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Abstract 

The influence of barley inclusion method and protease supplementation on the performance and 

coefficient of apparent ileal digestibility (CAID) of nutrients and energy and gastrointestinal tract 

development in broiler starters fed wheat-based diets from 1 to 21days of age were examined in this 

study. A normal starch hulled barley was ground in a hammer mill to pass through the screen size 

of 2.5 mm and 8.0 mm. Three basal diets containing normal starch hulled barley, either finely 

ground (2.5 mm), coarsely ground (8.0 mm) or whole barley, were used to develop six dietary 

treatments either with or without protease enzyme. A total of 288 one-day-old male broilers (Ross 

308) were individually weighed and allocated into 36 cages. Each of the six treatments was 

randomly assigned into six cages each housing eight birds. The pellet durability index (PDI) was 

higher (P < 0.05) in pellets made from diets based on finely ground barley than those made from 

coarsely ground or whole barley. The main effect of barley inclusion method was significant (P < 

0.01) for weight gain and feed conversion ratio (FCR) from day 1 to 21. Birds fed diets containing 

coarse particles and whole barley showed higher (P < 0.05) weight gain compared to those fed diets 

containing fine particles. Feed conversion ratio was lower (P < 0.05) in birds fed whole barley 

compared to birds fed fine particles. Diets made from coarsely ground and whole barley had higher 

(P < 0.05) CAID of dry matter, nitrogen, calcium, and gross energy compared to the diets made 

from finely ground barley. Fine and coarse grinding increased (P < 0.05) CAID of phosphorus 

compared to whole barley diets. Diets made from fine and coarse barley had higher (P < 0.05) 

gizzard pH compared to those made from whole barley. Diets made from fine and coarse grinding 

increased (P < 0.05) the relative weight of proventriculus and decreased (P < 0.05) the relative 

weight of gizzard compared to whole barley diets. An interaction (P < 0.05) was observed for the 

relative weight of caeca. The relative weight of caeca was reduced numerically with protease 

supplementation in fine and coarse ground diets, whereas, in whole barley diets, protease 

supplementation numerically increased relative weights of caeca compared to diets without enzyme. 

The main effect of protease supplementation and interaction of barley inclusion method x protease 

supplementation were not significant (P > 0.05) for growth performance, nutrient digestibility, 

energy and nitrogen-corrected apparent metabolizable energy parameters. Overall, the present data 

showed that coarse grinding and whole inclusion of barley, through enhanced nutrient digestibility, 

are beneficial to the growth performance in broiler starters.  
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CHAPTER 1  

General Introduction 

The demand for meat products such as poultry meat, has increased over the decades and 

consequently, the demand for feed and raw materials has also increased and will continue to 

increase in the future. There is a growing gap between supply and demand which results in higher 

prices for conventional feed ingredients used in animal production. This provides a convincing 

cause for exploring alternative feed ingredients and their potential in feed formulations and also 

practices that can be applied to reduce the cost of feed. Barley is one of the alternative feed 

ingredients that remains under-utilised in poultry feed due to numerous problems in practical 

implementation. Barley has been less preferred as a poultry feed ingredient due to its relatively 

low protein and energy and high fibre content (Singh et al., 2014a). Barley has high content of 

non-starch polysaccharides (NSP; Jacob and Pescatore, 2012). The prominent NSP present in 

barley is β-glucan, which limits its nutritive value by encapsulating the nutrients within the 

endosperm cells (Åman and Graham, 1987) and results in low digestibility of nutrients. This 

physicochemical properties of NSPs increase the intestinal viscosity which impair digestion and 

reduce the efficiency of absorption of nutrients (Classen, 1996). However, the supplementation of 

NSP-degrading enzymes such as β-glucanase and xylanase have been reported to be effective by 

eliminating the intestinal viscosity and eliminating the cage effect of NSP, thus improving the 

nutritive value of barley for poultry (Classen, 1996; Choct, 2006).  

Firstly, studies evaluating the effect of particle size in different cereal grains used in poultry 

are limited. In recent years, the attention toward particle size of feed ingredients has increased, as 

the industry continues to search for ways of optimising feed utilisation and improving production 

efficiency. Renewed attention in the area of particle size is also driven partly by increasing interest 

in feeding of whole grains. Recommendation regarding optimum particle size, have been 

contradictory, due to the number of factors including, grain type, endosperm hardness, grinding 

method, form of the diet, pellet quality and particle size distribution. 

Secondly, in recent years, whole-grain feeding has also received renewed attention in the 

commercial poultry industry and is being increasingly used in many parts of the world. The 

primary aim for whole-grain feeding is to reduce feed costs by eliminating the grinding step. 

Furthermore, this also meets consumer demands for a natural feeding system and improved animal 
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welfare (Gabriel et al., 2008). Published data on the effects of whole-grain feeding on performance 

of broilers have been contradictory, with some reports showing beneficial effects, while others 

failing to show any advantages. The discrepancy among published reports is due to several factors, 

including differences in experimental methodology, type and quality of grain, age of birds, feeding 

regime and inclusion level of whole grain. Moreover, most published data are based on whole 

wheat and data on other grains such as barley are scarce and little attempt has been made to use 

whole barley in poultry diets.   

In addition, studies on the digestibility of proteins and amino acids have shown that 

valuable amounts of protein in broiler diets are secreted and end up in the excreta (Wang and 

Parsons, 1998; Angel et al., 2011). This means that there is a need to improve protein utilisation 

and to reduce nitrogen emissions to the environment from intensive broiler production. This could 

be achieved by the use of supplemental exogenous proteases in broiler diets (Angel et al., 2011; 

Freitas et al., 2011). Using protease enzyme in the feed can help to increase digestibility of protein 

in broilers and thus represents a means to address this need. 

  Therefore, the objective of this study is to investigate the possible interactions between 

the three basal diets containing normal starch hulled barley, either finely ground (2.5 mm), coarsely 

ground (8.0 mm) or whole barley, and protease supplementation on the performance, nutrient 

digestibility, energy utilisation, and GIT development in broiler starters fed wheat-based diets. 

There are three chapters covered in this thesis. Chapter 1 provides a general introduction to the 

thesis. Chapter 2 provides a review on barley as a poultry feed ingredient, including the anti-

nutritive effects associated. It also highlights the effects of particle size and whole grain inclusion 

on performance, nutrient digestibility, energy utilisation and the gastrointestinal tract (GIT) 

development. Effects of supplemental exogenous enzymes in broiler diets are also discussed in 

this chapter. Chapter three presents the experimental work of this thesis, which consist of an 

abstract, introduction, materials and methods, results, discussion, and conclusion.  
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CHAPTER 2  

Literature Review 

2.1 Introduction 

The global feed ingredient supply has changed over the years due to several factors including the 

population growth, climatic changes, limited land availability for crop production, the increase in 

world fuel prices, and diversion of feed ingredients to biofuel manufacture. This is a major concern 

for sustainable poultry production, especially in developing countries, as they move towards 

animal protein regimen. The future requirements for the traditional feed ingredients such as maize, 

wheat, and soybean meal cannot be met, even according to optimistic forecasts (Abdollahi and 

Ravindran, 2019). As a result, it has become the major challenge for the poultry industry to source 

good quality and more sustainable feed ingredients at acceptable prices. Therefore, it is important 

to search for potential alternative raw materials as a strategy to overcome this global problem. This 

review will focus on barley (Hordeum vulgare L.) as an alternative feed ingredient and its nutrient 

composition in poultry diets. It will also cover the effect of particle size of barley, whole barley 

inclusion, and supplementation of protease on broiler performance, nutrient digestibility and 

energy utilisation, and gastrointestinal tract (GIT) development in broilers fed wheat-based diet.  

2.2  Background of barley 

Barley (Hordeum vulgare L.) was one of the first crops that was domesticated from its wild relative 

Hordeum spontaneum (Badr et al., 2000). It ranks fourth globally in cereal production behind 

maize, rice and wheat (Rasmusson, 1985, Ullrich, 2010). It is a short-seasoned, early maturing 

crop that has been adapted to a wide variety of climate; however, it does not tolerate the high 

humidity and warm climate of the tropics. Much of the world’s barley is produced in regions with 

climates not favourable to produce other major cereals. Barley has the characteristics to tolerate 

conditions of drought and high salinity (Mano et al., 1996, 1998; Fayez and Bazaid, 2014); thus, 

it has adapted to these climatic conditions over other crops.  
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The Russian Federation was the largest barley producer in 2016 and 2017 (Figure 2.1). 

Australia increased its barley production in 2017. Figure 2.2 shows that Europe is the largest 

producer of barley, followed by Asia.  
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Figure 2.1. (a) Major barley producing countries in 2017 and 2016; (b) Production (%) in major producing 

countries in 2017 (Source: Food and Agriculture Organisation, 2017). 

(a) 

 

(b) 

  

Figure 2.2. (a) Regional barley production (MMT); (b) Production (%) in different regions in 2017  

(Source: Food and Agriculture Organisation, 2017).  
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Barley is the essential ingredient for the production of beer and malt whiskey and is an 

important component of farm animal diets in many European countries, particularly in the north 

(McNab and Smithard, 1992; Jacob and Pescatore, 2014). The global malting industry accounts 

for an annual malt production, of which 90% is made from barley (Oliveira et al., 2012). In 

livestock feeding rations, approximately 40% of barley was fed to cattle, 34% to dairy cows, 20% 

to pigs, 6% to grazing ruminants and less than 1% to poultry (Black et al., 2005).  

Barley has been classified in several ways based on the number of seeds on the stalk, 

growth habits, presence or absence of awn, presence or absence of a hull, starch type, aleurone 

colour, and growth height (Jacob and Pescatore, 2012). The number of seeds on stalk includes the 

two-row and the six-row barley cultivars. The two-row cultivars are primarily the wild barley, and 

the six-row cultivars were developed in the early domestication of barley and were the result of a 

recently identified gene mutation (Komatsuda et al., 2007). The two-row varieties are grown in 

Europe because they are most adapted to dry climates, while the six-row varieties are mostly grown 

in North America.  

Firstly, the cultivars of the two-row and six-row both have winter and spring types. 

Vernalisation is a process when the seedlings of winter barley type are exposed to cold which 

enables them to produce heads and grains normally; thus, the best sowing season is during autumn 

(Anderson et al., 1995). Spring barley does not require this condition for cold temperatures, so it 

can be sown in spring or summer. The short growing season of spring barley makes it possible to 

grow the crop at high altitudes (Jeroch and Dänicke, 1995). 

Secondly, the absence or presence of an awn can be used to classify barley cultivars, such 

as awns being smooth or rough. Awns are useful in photosynthesis, transpiration and grain yield 

(Grundbacher, 1963; Khan, 1988); thus, the awn-less varieties have low yields compared to those 

that have awns (Tsvetkov and Tsvetkov, 2007). 

Thirdly, the proportion of hull to kernel can differ widely between the barley cultivars. The 

hull can represent 10-13% of the dry weight of barley kernel and consists mainly of cellulose, 

hemicellulose, lignin, and a small quantity of protein (Palmer and Bathgate, 1976; Bhatty, 1986). 

Thus, the hull is a major contributor to the crude fibre content of barley, and if the hull is removed, 

the crude fibre content will be similar to that of maize and wheat. Hull-less or naked barley 
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cultivars lose the hulls as they mature and are completely removed during harvesting (Bhatty, 

1986).  

Fourthly, the main component of cereal is starch and the content of barley starch ranges 

between 52 and 60%. Barley contains two major classes of starch, namely amylose and 

amylopectin. Normal starch barley contains about 27% amylose and 73% amylopectin whereas 

waxy starch barley contains about 2-10% amylose and 90-98% amylopectin. (Anker-Nilssen et al., 

2006). 

Furthermore, barley cultivars can also be classified according to the colour of the aleurone 

layer; which can be colourless, white, yellow, or blue (Jacob and Pescatore, 2012). The aleurone 

is part of the endosperm, acting as the storage tissue of the seed providing nourishment to the 

growing seedling at germination.  

In addition, the growth heights of the barley cultivars include the tall, semi-dwarf and short 

cultivars. Tall barley cultivars are used in rain-fed production regions, whereas the short dwarf and 

semi-dwarf cultivars are used in less favourable growing conditions (Jacob and Pescatore, 2012). 

Most Europe barley cultivars are semi-dwarf cultivars, while the dwarf cultivars are common in 

Japan (Dahleen et al., 2005). 

2.2.1 Composition 

The composition and properties of barley have gained interest in nutritional studies in determining 

the availability of its nutrients in animal feeds, as well as human food. The different cultivars of 

barley present a large variation in structural and chemical compositions contributing to the 

properties of the barley grain. The variation of the physicochemical properties is due to genetic 

and climatic factors, stage of maturity, use of nitrogen fertilisers, and the storage time (Jeroch and 

Dänicke, 1995). Extensive researches on barley as animal feed revealed variations in nutrient 

composition of different cultivars (Åman et al., 1985); thus, better understanding the nutrient 

composition is useful in the formulation of least-cost rations that meet nutrient requirements of 

animals.  
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2.2.1.1  Structural composition 

The endosperm of barley is the storage tissue of the seed that provides nourishment to the growing 

seedling at germination. It contains three layers of different cell types: the starchy endosperm, the 

basal transfer layer and the aleurone (Olsen, 2001, 2004; Jacob and Pescatore, 2012). The starchy 

endosperm is the major storage site for starch and proteins while the transfer layer functions in 

uptake of nutrients from the plant during seed development. The aleurone layer regulates the 

germination process by secreting amylase enzymes to break down the stored starch, providing the 

growing seedlings with sugars for energy and growth. The cell walls of the aleurone contain β-

glucans, arabinoxylans and phenolic acids, and the ratio of β-glucan and arabinoxylan is 25:75, 

which is the reverse for the endosperm cell walls (Zhang and Li, 2010). The sub-aleurone layer is 

located between the aleurone and endosperm and it contains proteins embedded in starch the 

granules (Macewicz et al., 2006). The embryo is the fertile part of the barley seed and contains 

starch, proteins and lipids (Zhang and Li, 2010). These are used when the seeds commence 

germination. The barley husk amounts to approximately 13% of grain weight but can range 

between 7-25% depending on the cultivar, growing environment and grain size (Evers et al., 1999). 

Variation occurs between row types; six-row have a larger proportion of husk compared to two-

row type. The hull plays an important role before and after harvest. It prevents pre-harvest 

sprouting (Benech-Arnold et al., 1999), and protect germ during harvesting (Olkku et al., 2005).  

2.2.1.2 Chemical composition 

There is a large variation in barley chemical composition, nutritive value, and bioavailable energy 

content, due to genetic and environmental factors and interaction between the two (Zhang et al., 

1994; Valaja et al., 1997; Andersson et al., 1999). A study by Svihus and Gullord (2002) on five 

barley varieties, grown on two locations on two different production years, showed that the nutrient 

content did not vary considerably among batches of barley; however, starch content was affected 

by barley variety, fat content was affected by year of growing, and protein content was affected by 

the interaction between location and year. Hughes and Choct (1999) also reported effect of 

variation in protein content due to location and the year of production.  

i) Starch 

Starch, comprising up to 70-80% of most cereal grains, is the primary source of energy in poultry 

diets (Zaefarian et al., 2015). Starch accumulates in granules in the endosperm and consists of two 
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different glucose polymers, namely amylose and amylopectin (Classen, 1996; Zaefarian et al., 

2015). Amylose is a linear (14)-α-glucan, and amylopectin is a branched polymer with (16)-

α-linkages at the branch points (Henry, 1988; Alberle et al., 1994). Andersson et al. (1999) and 

Holtekjølen et al. (2006) reported that the content of starch in barley generally ranged from 513-

644 g/kg. The types of barley are evaluated based on the amylose:amylopectin ratio and the four 

main types of barley based on this ratio are: i) normal, ii) high amylose, iii) waxy, and iv) zero 

amylose waxy. Normal barley starch consists of 15-25% amylose and 75-85% amylopectin; high 

amylose consists of 40% amylose and 60% amylopectin; while the waxy barley starches consist 

of 97-100% amylopectin (Ullrich et al., 1986; MacGregor and Fincher, 1993). The waxy gene was 

originally found in maize and later incorporated into barley (Jacob and Pescatore, 2012). The waxy 

cultivars do not produce one of the enzymes needed for starch synthesis; therefore, they produce 

starch composed primarily of amylopectin. Waxy starch is more digestible than normal starch 

because amylopectin is more susceptible to α-amylase than amylose (Ankrah et al., 1999). This 

could explain why high amylose:amylopectin ratio resulted in slower degradation of starch 

(Anker-Nilssen et al., 2006). Furthermore, there is a wide range of amylose to amylopectin that 

has been reported in previous studies (Table 2.1). Relatively small variations in the total dietary 

starch content and amylose to amylopectin ratio can affect the growth performance of poultry 

(Pirgozliev et al., 2010). In addition, to the ratio of amylose:amylopectin, starch granule size, 

shape, surface area and interactions with other nutrients can affect the accessibility of enzymes to 

starch granules and thus affect the rate of digestion. 

Mature barley endosperms consist of two distinct starch granules, the large, disc-shaped 

A-granules and small, spherical B-granules (Ao and Jane, 2006; Figure 2.3). Starch granules may 

occur individually or clustered as compound granules and occur in bimodal size distribution (Song 

and Jane, 2000; Ao and Jane, 2006; Copeland et al., 2009). The granule size distribution and shape 

are important for the functional properties of starch (Svihus et al., 2005). This suggests that the 

size of granule may also affect digestibility, as the relationship between surface area and volume, 

and thus contact between substrate and enzyme, decreases as the granule sizes increase. Moreover, 

cereals with small starch granules have a higher surface area to volume, therefore, have a greater 

starch digestibility than those with large starch granules. On the other hand, compound granule 

reduces the capacity for amylase to bind to the granule surface and therefore restricts the hydrolysis 

of starch (Tester and Karkalas, 2006).  
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Figure 2.3. Scanning electron micrographs of native wheat (A), triticale (D), and barley (G) starch granules, 

and their fractional large, A-granules (B, E, and H, respectively) and small, B-granules (C, F, and I, 

respectively), Source: Ao and Jane (2006). 

The amylose:amylopectin ratio and amylopectin branch chain length have a strong 

correlation with granule size and size distribution of hull-less barley (waxy, normal amylose, and 

high amylose; Li et al., 2001). A typical bimodal distribution in starch granule size has been 

reported in wheat, rye and barley with smaller granule diameter < 10 µm and large granule 

diameter > 10 µm. It has been reported that in normal barley the crystallinity of B-granules (23.0%) 

was greater than the A-granules (20.3%) compared to waxy barley, which the crystallinity of A-

granules is greater (36.6%) than the B-granules (33.0%; Tang et al., 2002). The large A-granules 

contain more amylose than small B-granules (Ao and Jane, 2007). The total number and the weight 

of A- and B-granules differ among different genotypes (Li et al., 2001). The A-granules constitute 
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Table 2.1. Comparison of starch, amylose and amylopectin contents (g/kg) in different cereal grains  

Nutrient composition of cereal grains (g/kg)       

References 

Cereal 

grain 

Hulled/ hull-

less Starch type N Starch Amylose Amylopectin 

Oscarsson et al., 1996 Barley Hulled  

High amylopectin, 

waxy 3 571   

   
High protein, 

normal 2 571   

   
Low β-glucan in 

grain, normal 1 600   

   

Low β-glucan in 

wort, high enzyme 

activity, normal 2 627   

   Normal starch 1 560   
   High amylose 1 494   

  Hull-less 

High amylopectin, 

waxy 1 602   

   

High protein and 

lysine, from hiproly, 

normal 1 494   

   
Normal (gene from 

Chinese material) 3 654   

   High amylose 1 584   
        
Knudsen, 1997  Barley Hulled - 10 587   
  Hull-less - 6 645   
 Maize   3 690   

 Wheat   5 651   

 Barley dehulled waxy - 630   

 Barley dehulled normal - 673   

 Barley dehulled high amylose - 607           

Li et al., 2001 Barley Hull-less Zero amylose 1 585 0 585 

   Waxy 2 622 34 588 

   
Waxy (compound 

granule) 1 582 27 555 

   
Normal amylose 

(compound granule) 2 604 177 427 

   Normal amylose 2 642 173 469 

   High amylose 2 563 251 312 
        
Ravindran et al., 2007 Barley Hulled normal  598 281 719 

  Hull-less normal  655 249 751 

  hull-less waxy  642 83 917 

  hull-less waxy  586 29 971 
        
Biel and Jacyno, 2013 Barley Hulled normal 4 591-616           

Perera et al., 2019 Barley Hulled Normal 1 610 267 343 

  Hull-less waxy 1 554 77.2 477 

  Wheat     1 537 229 308 
1n = Number of samples analysed. 

only about 10-15% in mature grains but can constitute up to 90% of the total weight of starch 

(Bleidere and Gaile, 2012). 
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Environmental factors, such as the growth temperatures during grain filling, have been 

shown to affect both granule size and starch properties. Starch accumulation is reduced when 

endosperms develop at high temperatures (Macleod and Duffus, 1988). It has been suggested that 

high temperatures have adverse effects on the sucrose cleavage enzyme UDP-sucrose synthase 

activity, which is necessary for the development of grain (Macleod and Duffus, 1988). Tester et 

al. (1991) examined effects of ambient temperatures (10, 15 and 20 oC) during grain filling on four 

different barley genotypes (one waxy, two normal, and one high-amylose barley) and the results 

showed that grain that was grown at high temperatures had lower starch accumulation, smaller A- 

and B-granules, and fewer B-granules. Furthermore, Savin and Nicolas (1996) reported that 

drought, combined with elevated temperatures, resulted in reduced grain weight of barley.  

ii) Protein and amino acid 

Cereal grains contain a relatively small amount of protein averaging about 10-12% of DM 

compared to legume seeds (Shewry and Halford, 2002). The protein content in the grains depends 

on the cultivar being grown, practices involved in the cultivation, such as nitrogen (N) fertilisation, 

and environment. The six-row cultivars of barley have a higher protein content compared to the 

two-row cultivars (Jeroch and Dänicke, 1995). Oscarsson et al. (1998) reported that increasing 

levels of N fertilisation rates in different barley cultivars at 45, 90 and 135 kg/ha, increased yields 

in all the barley cultivars, irrespective of the hull and starch type. Oscarsson et al. (1997, 1998) 

reported that the protein content of barley varied from 7.1-14.8%. The relative levels of essential 

amino acids decrease as the protein content of the grain increases with nitrogen fertilisation (Jeroch 

and Dänicke, 1995; Jacob and Pescatore, 2012).  

Furthermore, the absence of the hull seems to affect the content of protein in barley. 

Andersson et al. (1999) reported that the protein content in naked barley samples was lower 

compared to normal barley and they suggested that the absence of a hull to be the cause. In contrast, 

Holtekjølen et al. (2006) reported that due to the absence of husk, the hull-less barley varieties 

were higher in protein content than hulled barley while the waxy and high-amylose varieties had 

higher protein, β-glucan and soluble fibre content. This highlights a strong positive correlation 

between β-glucan and protein contents. Ravindran et al. (2007) reported that the crude protein (CP) 

content is independent of hulls, highlighting that the differences in amino acid composition might 

not be influenced by the starch type, but rather by the CP content (Table 2.2). Moreover, Biel and 
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Jacyno (2013) reported that the barley varieties with a higher CP content had a lower quality of 

proteins, with lysine being the most limiting amino acid examined in all barley varieties.  

In barley, the proteins are characterised by an unbalanced amino acid pattern compared to 

the requirements of poultry (Jeroch and Dänicke, 1995). Barley also has low lysine content but 

compared to wheat and maize, barley has a more favourable amino acid (Jeroch and Dänicke, 

1995). Since a formulated poultry diet consists of a large proportion of cereal grains, there is a 

potential of using barley in poultry diet formulations; however, when the CP content in barley 

increases, the protein quality deteriorates due to reduced relative proportions of lysine and other 

essential amino acids. Since barley has a higher CP content compared to maize, and with a strong 

positive correlation with β-glucan which impedes starch and protein utilisation, the addition of 

NSP-degrading enzymes and protease enzyme could improve the ileal digestibility of starch and 

protein and thus improve the nutritive value of barley. 

iii) Non-starch polysaccharide 

Polysaccharides are polymers of monosaccharides joined by glycosidic linkages, and the term non-

starch polysaccharides (NSP) covers a large variety of polysaccharide molecules, excluding the α-

glucan (starch; Choct, 1997). The fibre content of the grains consists primarily of NSP, which in 

cereals, form part of the cell wall structure (Choct, 1997). The physicochemical properties of NSPs 

in broiler diets are responsible for the anti-nutritive activities observed in broiler chickens. It 

contributes to the encapsulation of nutrients within the endosperm cell walls and increases in the 

intestinal viscosity, both of which impair digestion and reduce the efficiency of absorption of 

nutrients in broilers fed barley-based diets. The NSPs are categorised according to their solubility 

in water into two groups, namely, the soluble and insoluble NSP (Choct, 2015). Table 2.3 compares 

the NSP contents in barley, wheat, and maize in different studies and also the solubility of the 

NSPs. Soluble NSPs reduce the digestibility of starch, proteins and fat, leading to changes in gut 

physiology, gut microflora, and gut health, whereas insoluble and non-viscous NSPs have 

beneficial effects on the GIT development and endogenous enzyme secretion (Smits and Annison,  
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Table 2.2. Crude protein and amino acid composition (g/kg) in various barley varieties and wheat 

 

  Ravindran et al. (2005)   

Ravindran et al. (2007) 

   Biel and Jacyno (2013)   Perera et al. (2019b) 

 Barley  Barley   Barley  Barley  Wheat 

      

Hulled 

normal 

Hull-less 

normal 

Hull-less 

waxy 

Hull-less 

waxy   Hulled normal   

Hulled 

normal 

Hull-less 

waxy   

Crude Protein 97  
116 104 105 137  117-136  101 133 141 

Alanine 4.3  
4.54 4.12 3.69 5.79  3.81  4.28 4.98 4.99 

Arginine 5.1  
5.55 4.91 4.08 6.39  4.0325  5.28 6.44 6.79 

Aspartic acid 6.6  
7.73 6.72 6.37 10.86  5.755  6.82 8.09 7.46 

Cysteine 2.4  
2.33 2.26 2.21 2.41  1.395  2.65 3 3.5 

Glycine 4.2  
4.62 4.02 3.56 5.54  3.715  4.38 4.99 5.95 

Histidine 2.4  
3.11 2.58 2.3 3.45  2.4275  2.35 2.82 3.46 

Isoleucine 3.5  
4.18 3.89 3.54 5.24  3.3275  3.69 4.87 4.94 

Leucine 7.1  
8.15 7.24 6.47 10.07  6.185  7.02 8.99 9.82 

Lysine 3.7  
4.06 3.43 3.07 5.23  3.66  3.84 4.55 3.95 

Methionine 1.8  
1.85 1.69 1.66 1.89  1.5825  2.16 2.23 2.52 

Phenylalanine 5.0  
6.56 5.13 4.51 8.16  5.02  5.13 7.31 6.99 

Serine 4.3  
4.53 4.26 3.63 5.25  4.0625  4.5 5.23 7.1 

Threonine 3.2  
3.77 3.55 3.1 4.68  3.145  3.67 4.18 4.14 

Tryptophan 2.9  
1.22 1.03 1.05 1.16  1.1825  - - - 

Valine 5.0  
5.95 5.46 4.88 7.08  4.35  5.54 6.82 6.49 

Proline -  
14.22 11.35 10.37 18.32  9.5375  10.6 16.1 15.2 

Tyrosine -  
3.8 3.38 2.51 4.38  2.5275  3.41 4.36 4.68 

Glutamic acid 24.4   31.81 27.53 24.16 37.93   24.7425   23.6 34.4 45.1 
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1996; Hetland et al., 2004; Choct, 2015). The two major dietary fibre (DF) polysaccharides in 

barley are β-glucans (3.8-7.9%) and arabinoxylans (4.8-9.7%; Oscarsson et al., 1996). The 

definition of DF provokes a great deal of controversy because there have been numerous meanings 

over the years, including those based on the physiological effects and those based on methods of 

determination. In monogastric animal nutrition, DF is the sum of NSP and lignin (Choct, 2015), 

thus understanding the differences in the definition in different studies is important. 

a) Soluble 

The presence of soluble NSPs in poultry diets elicit the anti-nutritive properties and result in a 

significant increase in gut viscosity that causes a reduced apparent metabolisable energy (AME) 

of the diet, depressed feed efficiency and growth performance of birds (Choct et al., 1996). The 

partially mixed-linked (13), (14) β-D-glucan and arabinoxylans are the main NSP present in 

both wheat and barley compared to maize. In barley and oats, the predominant soluble NSP is the 

β-glucan whereas, in wheat, rye and triticale, arabinoxylan is the predominant NSP (Classen, 1996; 

Smits and Annison, 1996; Iji, 1999). It was observed that there was a moderate to high significant 

positive correlation that exists between viscosity and soluble fibre contents in barley (Svihus et al., 

2000). β-glucans are the least digestible, while the arabinoxylan is intermediate (Iji, 1999). The 

solubility of β-glucan affects the soluble:insoluble NSP ratio, which is greater in barley (1.50 

g/100g) than in wheat (0.47 g/100g; Messia et al., 2016). The effect of intestinal viscosity caused 

by NSPs has been shown to reduce the diffusion of endogenous enzymes and nutritional substrates 

in which can cause an increased feed passage time (Fengler and Marquardt, 1988). 

The mixed-linked (13), (14)-β-D-glucans is a soluble NSP, joined by the (13) and 

(14) glycosidic bonds (Jacob and Pescatore, 2014). The structure of the chain depends on the 

relative number of (13) and (14) glycosidic bonds between the repeating glucose molecule. 

Compared to the insoluble cellulose with the regularity of the polymer chains with the β-(14)-

links, the mixed-linked β-glucans cannot form this extensive inter-chain cross-links, resulting in 

polymers binding with water and readily forming viscous gels (McNab and Smithard, 1992; Jacob 

and Pescatore, 2012, 2014). The problem elicited by barley is due to the soluble, viscous, β-glucan 

component in endosperm cell walls (Burnett, 1966; White et al., 1983). The β-glucan content is 

high in barley, making it unpopular as a constituent of poultry diets due to increases in digesta 
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viscosity and consequently, loss of performance due to interference with digestion and absorption 

of nutrients (McNab and Smithard, 1992). Furthermore, the viscosity is not related to the linkage 

type or sugar composition of a polysaccharide, but rather, determined by the physical properties 

of the polysaccharide, such as molecular weight, distribution and structure (Choct, 2015). For 

instance, the molecular weights of soluble β-glucans are greater than those of the insoluble glucans 

(Gajdošová et al., 2007).  

In barley, β-glucan constitutes about 70% of the starch endosperm cell walls and the 

remaining 25% consists of the aleurone cell walls (Åman and Graham, 1987). The total β-glucan 

content of barley cultivars varies between 26 and 79 g/kg DM with 23-69 g/kg DM as soluble β-

glucan (Jeroch and Dänicke, 1995). The AME of barley as a feedstuff for poultry is greatly affected 

by the content of β-glucan (Kocher et al., 1997). In contrast, the cereal varieties rich in 

arabinoxylans and β-glucan have a strong potential for the production of health food products that 

contain high overall dietary fibre content (Messia et al., 2016). Diets containing barley β-glucans 

have been associated with lowering plasma cholesterol (LDL-cholesterol and triglycerides) in men 

and women (Behall et al., 2004; Izydorczyk and Dexter, 2008; Talati et al., 2009). It was reported 

that a relationship exists between the consumption of food rich in soluble fibres such as β-glucan, 

and the reduced risk of heart disease (De Paula et al., 2017). This highlights the benefits of soluble 

NSPs on reducing the risk of heart diseases in humans.  

The hulled high amylose variety of barley has a higher total and unextractable (insoluble) 

β-glucan than the waxy types, both of which are higher than normal starch varieties (Oscarsson et 

al., 1996; Andersson et al., 1999; Gajdošová et al., 2007; Ravindran et al., 2007). A strong positive 

correlation was observed between the β-glucan and the amount of soluble NSP, and protein 

contents (Holtekjølen et al., 2006), while an inverse relationship was observed between total β-

glucan content and starch content (Izydorczyk et al., 2000). Therefore, it is important to carefully 

consider the amylose:amylopectin ratio and the β-glucan content in barley-based diets for poultry 

when determining the feeding value of broiler diets (Perera et al., 2019b).  

The structure of cereal arabinoxylans (pentosans) is composed predominantly of two 

pentoses, namely arabinose and xylose, and their molecular structure consists of a linear (14)- 

β-xylan backbone (Perlin, 1951). Arabinoxylan is a minor component of the barley endosperm cell 
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wall, and a major component in aleurone cell wall; however, it is mainly located in the outer layers 

of barley kernel and husk (Izydorczyk et al., 1998; Holtekjølen et al., 2006). A strong negative 

correlation was observed between the amount of arabinoxylans and the degree of branching, as 

well as a negative correlation between β-glucan and arabinoxylan (Holtekjølen et al., 2006). The 

molecular characteristics of β-glucans and arabinoxylans are important determinants of their 

physical properties such as water solubility, viscosity, and gelation properties, as well as their 

physiological functions in the GIT (Izydorczyk and Dexter, 2008). This highlights the importance 

of considering viscosity based on both the concentration of NSPs as well as the molecular weight. 

b) Insoluble 

The insoluble fibre fraction has traditionally been regarded as a nutrient diluent in monogastric 

animal diets (Hetland et al., 2004; Michard et al., 2011). Insoluble and non-viscous NSP affect the 

gut functions and modulates nutrient digestibility of protein, starch, and fat (Smits and Annison, 

1996; Hetland et al., 2004). The insoluble polysaccharides such as cellulose and xylans can hold 

water as they behave like sponges, but their viscosity is very low (Smits and Annison, 1996). The 

main effects of the water-holding capacity of insoluble NSPs are the ability to increase the bulk of 

the chyme and to enhance the digesta passage rate in the small and large intestine (Smits and 

Annison, 1996). It has been observed that starch digestibility is higher, and digesta passage rate is 

faster when moderate levels of insoluble fibre are present in diets (Hetland et al., 2004). Oat hulls 

improved the digestibility of starch in young chicks fed unpelleted wheat diets, and the fibrous 

texture of oat hulls have a physiological effect in the gizzard, causing gizzard hypertrophy resulting 

in heavier gizzards (Rogel et al., 1987; Sacranie et al., 2012). Similarly, Amerah et al. (2009) also 

reported that wood shavings in the diet increased relative gizzard size and improved feed 

efficiency, ileal starch digestibility and excreta quality. Moreover, in a wheat-based diet, Svihus 

and Hetland (2001) reported that the starch digestibility increased significantly from 0.97 to 0.99 

when oat hulls were included in the diet. They observed that the feed intake in diets containing oat 

hulls was high and suggested that the inclusion of oat hulls increased gut volume and passage rate. 

The effects of insoluble fibre on GIT development and broiler performance differs depending on 

the source and coarseness of fibre (Amerah et al., 2009). The insoluble fractions accumulate in the 

gizzard resulting in gizzard hypertrophy which then improves the grinding capacity to reduce 

particle sizes entering through the pyloric sphincter into the duodenum, and this contributes to the 
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increased nutrient availability and utilisation (Michard, 2011; Sacranie et al., 2012). The general 

practical recommendation of coarse and durable fibres in broiler diets is between 2-3% (Michard, 

2011; Mateos et al., 2012).   

In barley grains, the cellulose content is generally highest in the hulled types, and this is 

due to the presence of the hull (Oscarsson et al., 1996). The insoluble NSP contents varied from 

10.6-27.3% in hulled two- and six-rowed Norwegian varieties, while the hull-less waxy barley had 

lower insoluble NSP contents (Holtekjølen et al., 2006). The cellulose content varied from 8.0-

17.7% with the highest amounts in the hulled waxy, followed by hull-less waxy, and high amylose 

barley. Atypical variety among the hull-less varieties had a higher amount of cellulose, which 

could imply that starch type may also influence the cellulose content. However, in general, the 

normal hulled barley varieties contain a high amount of total NSP and have more insoluble than 

soluble NSP (Holtekjølen et al., 2006).  

iv) Other components (fat and mineral) 

Several studies on lipid and fatty acid contents of barley have been reported (Bhatty et al., 1974; 

Price and Parsons, 1975; Fedak and Roche, 1977; Osman et al., 2000; Liu, 2011). It has been 

reported that the crude fat content of barley has not been improved over the years. The crude fat 

content of barley grain ranged between 10 and 37 g/kg DM (Bhatty et al., 1974; Fedak and Roche, 

1977; Oscarsson et al., 1996; Osman et al., 2000; Svihus and Gullord, 2002, Liu, 2011). The range 

of fat content is narrow, and the contents are low among the diverse cultivars of barley, making 

the prospects of improving the fat content unlikely (Fedak and Roche, 1977). Oscarsson et al. 

(1996) reported that both hull and hull-less barley showed no difference in crude fat contents 

regardless of hull type. In contrast, naked barley varieties have higher contents of fat than hulled 

grains to some extent because the presence of hull reduces the fat content in barley grains 

(Andersson et al., 1999; Liu, 2011).  

The fatty acid content in barley is affected by both genotype and the environment (De Man, 

1985). The most abundant fatty acids in barley are palmitic (C16:0), oleic (C18:1) and linoleic 

(C18:2) acids. It has been reported that linoleic acid content is comparatively high in barley grains, 

representing an average of 10.52% compared to sorghum averaging 1.46% (Osman et al., 2000). 

Furthermore, Liu (2011) revealed that from the outer surface to the inner core of seeds, oil content  
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Table 2.3. The non-starch polysaccharide types and contents in different cereal sources (g/kg DM) 

Reference 
Grain 

type 

Hulled/ 

Hull-less 

Starch 

type n1 

Soluble/ 

Insoluble NSP2 

Klason 

Lignin 

Total NSP 

(%) 
      

AX A X BG CEL MA GAL UA GLU Total 
  

Andersson et al. (1999) Barley Hulled  Normal 1 Soluble  77 2.4 3.2 22  0.7 0.7 1.5 32 40 15 17 

   
 

 Insoluble  21 50 25 40 3.6 2.0 2.9 55 200  83 

  Hulled 

High 

amylose 1 Soluble  
90 

4 5.6 26  1.4 0.8 1.7 49 63 
15 

20 

   
 

 Insoluble  23 57 43 47 6.7 2.3 3.4 67 249  80 

  Hulled Waxy 1 Soluble  75 3.3 4.6 31  0.9 0.8 2.1 46 58 14 23 

   
 

 Insoluble 
 

22 45 30 35 3.7 2 3.1 50 191 
 

77 

  Hulled Normal 1 Soluble  83 2.6 3.2 15  0.8 0.7 1.1 21 29 17 13 

   
 

 Insoluble 
 

23 55 13 42 6.7 2.1 3.5 49 194 
 

87 

  Hull-less Normal 1 Soluble  52 3.5 4.9 24  1 1.1 1.5 32 44 7.4 26 

   
 

 Insoluble 
 

17 27 22 19 3.9 1.6 1.9 33 125 
 

74 

  Hull-less 

High 

amylose 1 Soluble  
57 

4.5 6.6 26  1.4 0.8 1.7 48 63 
11 

28 

   
 

 Insoluble 
 

18 28 48 16 4.7 1.5 1.9 42 160 
 

72 

  Hull-less Waxy 1 Soluble  48 2.8 3.6 30  0.9 0.7 1.9 37 46 6.9 27 

   
 

 Insoluble 
 

18 24 26 14 4.2 1.8 1.7 33 123 
 

73 

  Hull-less Waxy 1 Soluble  120 7.8 13 12  3.7 1.8 2.4 123 152 10 30 

   
 

 Insoluble 
 

38 61 137 41 10 2.9 3.3 67 360 
 

70 

Holtekjølen et al. (2006) Barley Hulled Normal 28 Soluble 13.7 - - 34      106  31 

   
 

 Insoluble 116 - - 
 

127 - - - - 232  69 

  Hull-less Normal 6 Soluble 22.6 - -   - - - - 124  49 

   
 

 Insoluble 66.1 - -  91.8 - - - - 127  51 

  Hull-less Waxy 3 Soluble 24.1 - -   - - - - 200  64 

   
 

 Insoluble 62.9 - -  126.7 - - - - 114  36 

  Hull-less 

High 

amylose 1 Soluble 20.5 - -   - - - - 222  64 

   
 

 Insoluble 68 - -  140 - - - - 125  36 

  Hulled Waxy 1 Soluble 15.5 - - 65  - - - - 184  45 

   
 

 Insoluble 109.4 - -  177 - - - - 223  55 

Choct (2015) Barley   1 Soluble 8 - - 36  t 1 t  45  27 

     Insoluble 71 - - 7 39 2 1 2  122  73 

 Wheat   1 Soluble 18 - - 4  t 2 t  24  21 

     Insoluble 63 - - 4 20 t 1 2  90  79 

 Maize   1 Soluble 1 - - t  t t t  1.0  1.0 

          Insoluble 51 - - - 20 2 6 t   80   99 
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and C18:1 and linolenic acid (C18:3) decreased while C16:0 and stearic acid (C18:0) increased, and 

C18:2 changed slightly. The results of the study by Liu (2011) provided two major reasons for improved 

oxidative stability of pearled barley grains: i) reduced oil content and ii) shifting fatty acids towards 

more saturated and less unsaturated. In barley, the oil is concentrated in the germ and the bran region 

than the inner endosperm. This explains why the pearling of barley removes the regions where oil 

concentration is high, therefore lowers the lipid content and consequently reducing the chances of 

oxidation, thus improves the storage stability of the pearled barley (Liu, 2011). 

Table 2.4. Mineral composition of different cereal sources  

Minerals 

Jang et al. (2003)   Rodehutscord et al. (2016)   Perera et al. (2019b) 

Barley  Maize  Barley Wheat Maize  Barley   

WT1 LP1   WT LP           NSH1 WSHL1 Wheat 

n2  1 1  1 1  21 29 27  1 1 1 

Calcium 0.6 0.6  0.02 0.03  0.59 0.4 0.04  0.39 0.36 0.35 

Total 

Phosphorus 4.1 3.3  3.2 3.2  4.3 3.67 3.17  3.25 3.86 4.26 

Phytate P 2.3 1.1  2.2 0.9  2.81 1.92 2.26  1.32 1.79 2.22 

Non-phytate P 1.8 2.2  1.8 2.3  1.49 1.75 0.91  1.93 2.07 2.04 

Magnesium 1.3 1.3  1.3 1.2  1.63 1.56 1.45  1.28 1.39 1.45 

Potassium - -  - -  5.53 4.33 3.96  4.25 5.62 4.93 

Sodium - -  - -  0.050 0.005 0.003  0.2 0.1 0.06 

Iron - -  - -  0.044 0.041 0.022  0.06 0.06 0.06 

Chloride - -  - -      1.31 1.27 0.71 

Manganese 0.017 0.020  0.007 0.007  0.015 0.032 0.005  - - - 

Zinc 0.030 0.037  0.014 0.014  0.024 0.022 0.021  - - - 

Copper 0.009 0.011   0.006 0.006   0.005 0.004 0.002   - - - 
1WT = Wild type, LP = Low phytate, NSH = Normal starch hulled, WSHL = Waxy starch hull-less. 
2n = Number of samples analysed.  

Regarding minerals present in barley, few studies have compared the composition in some 

barley varieties and other cereal grains (Table 2.4). A recent study revealed that potassium is the major 

mineral in barley followed by phosphate (Perera et al., 2019b). The study further stated higher contents 

of magnesium and potassium in the hull-less waxy than the normal hulled barley, while potassium 

content was higher in the hull-less waxy barley than in wheat. In addition, in normal hulled barley, the 

content of sodium is markedly higher than in the hull-less waxy barley. All minerals were generally 

higher in the hull-less waxy barley except sodium, chloride and iron (Perera et al., 2019b).  
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2.2.2 Optimum inclusion rate of barley in the diet 

The optimum inclusion rate of barley in poultry diets is important to consider due to the adverse effects 

that impede digestion and absorption of nutrients caused by the high levels of NSPs, particularly β-

glucan and arabinoxylan. Table 2.5 shows the optimum inclusion level of barley, the duration of and 

the basal diets used in different studies. The range of inclusion is between 283 to 350 g/kg of diet. 

Perera et al. (2019a) reported 283 g/kg of the diet is the optimum inclusion level of barley to improve 

weight gain, feed intake and FCR. Inclusion over 283 g/kg resulted in reduced weight gain regardless 

of carbohydrase enzyme supplementation.  

Table 2.5. Inclusion rate of barley 

Reference Optimum inclusion rate (g/kg diet) Age (d) Basal diet 

Friesen et al. (1992) 350 17 Wheat diet 

Jerock and Danicke (1995)  200-300 - - 

Hetland et al. (2002) 300 38 Wheat diet 

Perera et al. (2019a) 283 21 Wheat diet 

 

2.3 Effects of feed particle size of diet in broilers 

The current industry practice of feed processing involves the reduction in particle size by grinding. It 

has been postulated that finer grinding increases substrate availability for enzymatic digestion; 

however, there is evidence that coarser grinding to a uniform particle size improves the performance of 

birds. This counter-intuitive effect may result from the positive effect of feed particle size on gizzard 

development (Amerah et al., 2007a). A more developed gizzard is associated with an increased grinding 

activity, increased gut motility, and improved digestibility of nutrients and overall performance 

(Amerah et al., 2007a). 

2.3.1 Measurement of particle size 

Feed particle size can be defined as the average diameter of individual particles of feed or the ‘fineness 

of grind’ of the feed (Amerah et al., 2007a). Early studies used the general terms ‘fine, medium and 

coarse’ to describe particle size, but these terms prevent meaningful comparisons of data. Therefore, 

the average particle size is described as the geometric mean diameter (GMD), expressed in millimetre 
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(mm) or micrometre (µm) and the range of variation is described by geometric standard deviation 

(GSD), such that a larger GSD represents a high presence of fine dust particles, resulting in lower 

uniformity (Nir et al., 1994a; Amerah et al., 2007a).  

The two common methods of particle size measurements are i) dry sieving method which is 

used to measure particle size of feed samples; and ii) wet sieving method which is used to measure 

particle size of digesta and excreta samples (Amerah et al., 2007a). In a dry sieving method, ground 

feed samples are passed through a sieve stack with a set of sieves from coarsest on top and finest at the 

bottom (2000, 1000, 500, 250, 125, and 63 µm, respectively), and the shaker is allowed to run for 10 

minutes (Baker and Herrman, 2002). The amount of sample retained on each sieve can be weighed, and 

the GMD and GSD of each sample can be calculated. Moreover, in the wet sieving method, a sample 

of digesta is suspended in 50 ml of distilled water for 30 minutes prior to sieving to ensure adequate 

hydration (Lentle et al., 2006). The sample is then washed through a set of sieves and the content of 

each sieve is washed onto a dried pre-weighed filter paper. The retained contents on the filter papers 

are then dried for 24 hours in a forced draft oven at 80oC. The GMD and GSD of the digesta and excreta 

samples can then be calculated. 

2.3.2 Methods of particle size reduction 

The two most commonly used equipment for particle size reduction of grains are the hammer mill and 

roller mill (Koch, 1996). Hammer mill comprises a set of hammers moving at high speed in a grinding 

chamber, which reduces the size of the grains until the particles are able to pass through a screen of 

designated size (Amerah et al., 2007a). The distribution of particle sizes will vary widely around the 

geometric mean such that there will be some large-sized and small-sized particles (Koch, 1996). 

Moreover, the efficiency of hammer mill is influenced by factors such as grain type, grain moisture 

content, screen size, screen area, peripheral speed, hammer width and design, number of hammers, 

hammer tip to screen clearance, feed rate, power of the motor and speed of airflow through the mill 

(Martin, 1985).  

Roller mill comprises one or more pairs of horizontal rollers in a supporting frame where the 

distance between rollers may be varied according to the particle size required (Amerah et al., 2007a). 

Roller mills are more efficient and require less energy for grinding than hammer mill. Compared to the 

hammer mill, the roller mill produces a more uniform particle size distribution with a lower proportion 
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of fines (Nir and Ptichi, 2001). As with the hammer mill, the particle size of roller mill product is 

influenced by grain type, such that different grains ground with the same conditions produce different 

particle sizes (Amerah et al., 2007a).  

2.3.3 Effect of particle size and distribution on performance 

The performance of birds is influenced, not only by the feed particle size but also the uniformity of the 

particle sizes (Amerah et al., 2007a). When the particle size of two ingredients are extremely different, 

they have a high chance to segregate, thus, particle size is the most important ingredient factor (Axe, 

1995). Particle shape is another ingredient factor that influences properties such as flowability and 

packing ability (Axe, 1995). Birds select their feed according to particle sizes due to the 

mechanoreceptors located at the beak. Therefore, a more uniform diet will reduce the time spent 

searching and selecting larger particles, with beneficial effects on performance (Amerah et al., 2007a). 

Nir et al. (1994a) reported that the best performance of birds was observed with diets having a medium 

texture. The GMD of the medium texture of maize, wheat and sorghum diets varied from 1130 to 1230 

µm and GSD from 1.19 to 1.35. Furthermore, the fine diets (GMD 500 to 670 µm) had the lowest 

performance while the coarse fraction (2010 to 2100 µm) was intermediate. Nir et al. (1994b) also 

reported that there was an improved performance with diets containing the medium particle size. This 

highlights that uniform feed particle size (smaller GSD) improves performance due to improved feed 

utilisation and to a certain extent, feed intake. 

There are contradictory results regarding the effect of feed particle size in pelleted diets on 

broiler performance. Svihus et al. (2004a) showed no difference in any of the performance parameter 

when broilers were fed pelleted wheat-based diets made in the hammer and roller mills to a range of 

particle sizes and concluded that pelleting evened out the differences in particle size distribution. 

Amerah et al. (2007b) also reported improved performance in pelleted diets compared to mash diets, 

but no effect of particle size between treatments was observed pelleted diets, which suggest that 

pelleting evened out the differences in particle size distribution. In contrast, Lentle et al. (2006) reported 

that in three wheat varieties with different particle size spectra as a result of hammer milling, diets with 

a higher relative proportion of coarser particles resulted in better FCR. On the other hand, Reece et al. 

(1986) reported that broilers fed pelleted fine and coarse ground diets improved weight gain and FCR, 

compared to those fed pelleted medium ground diets, even though there was no difference in feed 
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intake. This may suggest that the effect of particle size on performance may also be influenced by grain 

type. 

2.3.4 Effect of particle size on GIT development and physiology 

The development of the digestive tract of poultry, particularly the gizzard, has been shown to be 

influenced by feed particle size (Amerah et al., 2007a). Nir et al. (1994b) reported that feeding a coarse 

mash diet to broilers increased the gizzard weight compared to fine mash diets. The gizzard has adapted 

to grinding food particles in the digestive tract through the development of a very large mass of strongly 

myelinated smooth muscles (Duke, 1986; Svihus, 2011b). The main body of the gizzard comprises two 

thick, opposed lateral muscles and two thin anterior and posterior muscles. The gizzard is where the 

digestive action takes place by mixing ingested food with digestive enzymes and grinding to reduce 

feed particle sizes (Duke, 1986; Svihus, 2011b). The increase in the size of the gizzard is a logical 

consequence of an increased need for particle size reduction, due to the stimulative effect of the 

increased grinding activity on the size of the two pairs of gizzard muscles (Svihus, 2011b). However, 

the fine grinding of feed particles in diets negatively affects the gizzard size and function. As a result, 

the gizzard is underdeveloped, and the proventriculus is dilated and enlarged when fed finely ground 

diets (Jones and Taylor, 2001). In this condition, when the finely ground diet is fed to birds, the gizzard 

only acts as a transit point rather than performing its original function to grind. 

The particle size is positively correlated to the gizzard development in that as feed particle size 

increases, the relative weight of gizzard also increases (Nir and Ptichi, 2001; Amerah et al., 2008; 

Svihus, 2011b). The medium and coarse particle sizes of feed result in increased gizzard weight 

compared to the fine particle size (Nir et al., 1994a; Naderinejad et al., 2016). In addition, regardless of 

the feed particle size, Abdollahi et al. (2018a) reported that feeding oat hulls and wood shavings in 

wheat diets increased the caudodorsal muscle of the gizzard. They concluded that a high proportion of 

coarse particles and GMD is not always associated with the most developed gizzard musculature. 

Gizzard mass and musculature response are driven more likely by the nature of structural components 

than particle size. 

The gizzard has been described as the ‘pace-maker’ of gut motility in broiler chickens (Ferket, 

2000). The major stimuli causing an increased enzyme secretion by the pancreas are the vagus nerve 

and cholecystokinin (CCK) in the duodenal region of birds (Duke, 1992; Li and Owyang, 1993; Svihus 
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et al., 2004a; Svihus, 2011b). Large feed particles have been shown to influence the development and 

increased activity of the gizzard, thus, a stimulating effect of an increased gizzard activity on bile and 

enzyme secretion may be due to the gizzard-mediated vagovagal reflexes and increased CCK in the 

pyloric region (Svihus et al., 2004a; Hetland et al., 2003). 

Feed particle size has been shown to influence the development of the lower segments of the 

digestive tract of birds (Amerah et al., 2007a). Interaction between feed form and particle size on the 

relative lengths of the gut components (duodenum, jejunum, ileum, and caeca) have been reported in 

Amerah et al. (2007b) and Naderinejad et al. (2016) studies. Feeding fine mash diets resulted in the 

hypertrophy of the small intestine as well as a reduction in pH (Nir et al., 1994b). Amerah et al. (2007b) 

reported that in birds fed mash diets, gut components were shorter with coarse particles than medium 

particles; however, in birds fed pelleted diets, there was no difference in gut lengths with coarse and 

medium particles. In addition, Amerah et al. (2008) reported an interaction between particle size and 

grain type where wheat-based diets generally had shorter relative lengths of the gut components 

compared to maize-based diets. In maize-based diets, the gut components were shorter in birds fed 

coarse particles compared to those fed fine particles; however, there was no difference between gut 

components with different particle sizes in wheat-based diets (Amerah et al., 2008).  

2.3.5 Effect of particle size on digesta particle size 

The gizzard has a remarkable ability to grind all organic constituents of feed to a very consistent particle 

size range regardless of the original particle size of the feed, with some as fine as 0.05 µm (Hetland et 

al., 2004). The digesta passing through the gizzard has a consistent particle size distribution, with 

majority of the particle in the duodenum being below 40 µm in size (Hetland et al., 2002). In a barley-

based diet, the number of particles in the intestinal contents with sizes greater than 2400 µm was not 

significantly different between broilers fed whole barley and those fed ground barley; however, the 

number of particles with sizes between 2400 µm and 700 µm was lower when diets with whole barley 

were fed (Svihus et al., 1997). In contrast to Hetland et al. (2004), Amerah et al. (2007b) reported that 

feed form significantly influenced the duodenal particle size, whereas particle size had no effect. In 

their study, birds fed mash diets had a higher relative weight of gizzard, but a high proportion of large 

particles (1000-2000 µm) was found in the duodenal digesta than in birds fed pelleted diets. This 

indicated that the larger gizzard size was not efficient to reduce the size of all particles uniformly. It is 

noteworthy to mention that the method of particle size measurement determines the feed particle size 
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spectrum, for example, wet sieving determines changes over the range from less than 75 µm to over 

2000 µm (Lentle et al., 2006). It has been reported that although the enlarged gizzard could grind and 

reduce large particle size, some large particles can escape grinding into the duodenum (Amerah et al., 

2007b). 

2.3.6 Effect of particle size on nutrient digestibility and energy utilisation 

Although particle size reduction improves digestion of nutrients by increasing the surface area available 

to digestive enzymes, studies investigating the effect of particle size on digestibility of nutrients are 

limited. It is generally believed that small particle size of feed has a larger surface area and might be 

better digested due to greater access of digestive enzymes on the substrate in the GIT (Goodband et al., 

2002). However, it has been shown that large particle size of feed improves nutrient digestibility. 

Parsons et al. (2006) reported that the coarse particle size of maize increased nitrogen and lysine 

retention in broiler diets. Large maize particle size improved utilisation of calcium, total phosphorus 

and phytate phosphorus in broilers (Kasim and Edwards, 2000; Kilburn and Edwards, 2001). The 

retention of these minerals decreases with medium particle size maize and lowest with fine particle size 

of maize (Kasim and Edwards, 2000). On the other hand, fine grinding of wheat was reported to 

improve starch digestibility and AME compared to coarse grinding (Péron et al., 2005). 

2.3.7 Effect of particle size on passage rate 

O’Dell et al. (1959) reported that a purified basal diet with fine particle size passes through the GIT 

more rapidly than maize meal or maize grits (135 vs 165 minutes). The proventriculus of birds fed the 

diet with fine particles was filled with fluid rather than with food. In recent studies, the mean retention 

time in the proventriculus and gizzard has been estimated to vary between half an hour to an hour 

(Svihus, 2011b), with an average total retention time of 3-4 hours (Svihus, 2011a). Svihus et al. (2002) 

revealed that after 30 minutes of feeding, there was a significant amount of titanium dioxide (TiO2) 

that had passed through the gizzard regardless of the structure of the diet. Similarly, Amerah et al. 

(2008) reported that the digesta transit time is not influenced by grain type or particle size. Furthermore, 

Svihus et al. (2002) hypothesised that whole grain slows the passage rate through the upper digestive 

tract; however, the results in their study did not support this hypothesis because the passage rate for 

titanium through the gizzard was not different between diets with ground and whole wheat. Naderinejad 
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et al. (2016) reported that the digesta transit time was not significantly different between fine, medium, 

and coarse particles in mash and pellet diets. 

The passage rate of the digesta is measured using insoluble (solid phase) coloured markers such 

as chromic or ferric oxide or TiO2. It is noteworthy that the results may be confounded by preferential 

retention of particles in particular segments of the gut, by adherence to other particles or by dissolution 

(Svihus et al., 2002; Amerah et al., 2007a). Svihus et al. (2002) stated that uncertainty exists if titanium 

flow is representative for the flow of the whole diet.  

Several factors are known to affect the passage rate of solid-phase markers, including the strain 

of chicken, age of the bird, NSP content, insoluble NSP content, dietary fat level, and environmental 

temperature (Amerah et al., 2007a). In general, larger particles are retained longer than finer particles 

in the digestive tract through selective retention (Nir et al., 1994b; Svihus et al., 2002). This highlights 

the fact that regardless of diet structure, the retention time of feed may vary between the feed particle 

sizes, but the flow rate is not different. This may be attributed to a functional gizzard that is able to 

grind large particles to smaller particles, as well as an increased volume to contain the food ingested.  

2.3.8 Pellet quality 

The cost of poultry feed ingredients is always increasing; thus, decreasing the physical feed wastage 

through better pellet quality enhances the economic value of feed (Abdollahi et al., 2013b). Pelleting is 

the most prevalent heat treatment in poultry feed production, usually used to agglomerate smaller feed 

particles into larger particles as pellets (Abdollahi et al., 2013b).  

Good pellet quality is defined as the ability to withstand mechanical handling (bagging, 

transport, etc.) without breaking up, and reaching feeders without generating a high proportion of fines 

(Amerah et al., 2007a). Pellet quality is determined by two physical parameters; the pellet durability 

index (PDI) and pellet hardness (Amerah et al., 2007a). The PDI is expressed as the ratio of pellets not 

passing through the sieve after the test to whole pellets at the start (Abdollahi et al., 2013b). It is 

typically measured using the two parameters, namely the Holman Pellet Tester and Tumbling can 

(Behnke, 2001). Pellet hardness is determined, in a spring hardness tester, as the static force in 

kilograms (kg) required to break the pellet (Amerah et al., 2007a).  
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2.3.8.1 Steps of pellet processing 

The pelleting process undergoes four stages; i) grinding, proportioning and mixing, ii) steam 

conditioning, iii) pelleting process, and iv) cooling (Abdollahi et al., 2013b). 

i) Grinding, proportioning and mixing 

After receiving the ingredients, the majority of the feed ingredients, particularly cereal grains, 

are ground to reduce particle size before incorporation and mixing in the diet. The physical 

reduction of particle size increases the surface area, allowing for greater digestibility, improve 

blending ability and homogeneity of the mixed feed, decrease segregation and mixing problems, 

and facilitate pelleting (Behnke, 1996; Koch, 1996; Abdollahi et al., 2013b). The proportioning 

can be accomplished using two basic methods, namely, cyclical (batch) and continuous 

(Abdollahi et al., 2013b). In a cyclical or batching system, ingredients are individually weighed 

into batches, whereas a continuous system involves concurrent and continuous addition of 

ingredients; thus, to achieve a homogeneous mixture of proportioned ingredients, proper mixing 

of ingredients is essential. 

ii) Steam conditioning 

Steam conditioning of mash prior to pelleting is a major step in the pelleting process (Skoch et 

al., 1981). To optimise the steam conditioning process, a proper balance of heat and moisture 

must be obtained (Abdollahi et al., 2013b). The injection of heat during processing is essential 

to improve binding characteristics and eliminate feed-borne pathogens. Steam conditioning at 

temperatures of 65 and 78oC increased pellet production by 250 and 275% respectively (Skoch 

et al., 1981). The PDI was also improved by steam-conditioning with 90.6 and 93.8% at 

temperatures 65 and 78oC, respectively. High conditioning temperature to manufacture pellets 

is a major concern on the stability of exogenous feed enzymes (Abdollahi et al., 2013b). The 

conditioning temperatures employed worldwide generally range between 80 and 90oC, and 

these high temperatures improve pellet quality and reduce potential levels of feed-borne 

pathogens, such as salmonella and campylobacter (Abdollahi et al., 2013b).  

iii) Pelleting process 

The agglomeration of small particles into large particles occur when passing the mash feed from 

the mash bin into the feeder and conditioner. Steam is injected to the feed inside the conditioner, 
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and then the conditioned mash flows into the pelleting chamber, and the hot mash passes through 

a metal die, and pellets are formed (Abdollahi et al., 2013b). 

iv) Cooling 

Pellets leave the pellet mill at temperatures from 80 to 90oC and contain about 150-170 g/kg of 

moisture. The high temperature must be reduced to about 8oC ambient temperature, and the 

moisture to 100-120 g/kg (Abdollahi et al., 2013b). 

2.3.8.2 Factors affecting pellet quality 

Several factors have been shown to influence the quality of pellets and can be divided into several 

categories; i) feed formulation, ii) particle size, iii) conditioning temperature, iv) mash moisture, v) 

retention time in conditioner and conditioner design, and vi) die size (Behnke, 2001).  

i) Feed formulation 

The addition of fat to the mash pre-pellet diet usually results in decreased pellet quality 

(Behnke, 2001). Due to lubricating effects, fat could reduce friction force generated in the die 

holes, and often results in lower pellet quality. Dietary fat can partially cover feed particles 

and create a barrier for penetration of steam to feed particles, preventing starch gelatinisation 

and development of binding adhesions (Löwe, 2005; Abdollahi et al., 2013b). 

ii) Particle size 

Previous studies reported contradictory results on the effect of feed particle size on pellet 

quality. Reece et al. (1986) reported that pellets made from coarse maize particles (9.53 mm) 

were more durable compared to pellets from fine particles (3.18 mm). In contrast, some studies 

reported that the durability of pellets decreased as the screen size of the grinder increased 

(Angulo et al., 1995, Amerah et al., 2008, Chewning et al., 2012). Fine particles have more 

contact points with each other due to the larger surface area per unit volume which has shown 

to improve pellet quality (Behnke, 2001). Similarly, Svihus et al. (2004b) observed that pellets 

with coarse wheat particles had poorer quality than pellets with fine particles. Furthermore, 

Nathier-Dufour et al. (1995) reported that differences in particle size had no significant effect 

on the compacting behaviour of the pellet; however, the variation between the particle sizes was 

small and could have influenced the similar compacting behaviour. In addition, Amerah et al. 
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(2008) found that pellet durability was influenced by both grain type and particle size. In their 

study pellet quality showed different trend with different particle sizes in maize and in wheat. 

iii) Conditioning 

Steam-conditioning of mash pre-pelleting is a major factor in the pelleting process compared to 

dry pelleting (Skoch et al., 1981). Skoch et al. (1981) reported that steam conditioning improved 

pellet durability and production rates and decreased the amounts of fines generated, along with 

reduced energy consumption. Heat and moisture are two primary prerequisites for feed particles 

adhesion (Abdollahi et al., 2013b). Steam acts as a lubricant to reduce friction during pelleting 

(Behnke, 2001). Mash diet entering the conditioner comprises a wide variety of ingredients and 

each of these ingredients can affect the conditioning and eventual pellet quality (Behnke, 2001). 

According to Reimer (1992), pellet quality is proportionally dependent on the following factors: 

40% diet formulation, 20% particle size, 20% conditioning, 15% die specification, and 5% 

cooling and drying. This shows that 60% of pellet quality is determined before entering the 

conditioner and increases to 80% after conditioning.  

iv) Mash moisture 

The initial moisture of mash entering the conditioner dictates the amount of steam that can be 

added to the mash (Behnke, 2001). No more than 6% can be added to the conditioner; thus, 

large variation in initial diet moisture will be reflected in the moisture of hot mash, which can 

cause varying pellet mill performances (Behnke, 2001) which eventually can affect the output 

of pellets, thus pellet quality.  

v) Retention time and conditioner design 

Retention time refers to the amount of time that mash feed spends in the conditioner; thus, it is 

a measure of the duration of exposure of mash to steam for heat and moisture absorption 

(Behnke, 2001). The retention time is affected by conditioner design, including physical 

dimensions and operating parameters. The design and dimensions of conditioners vary in 

diameter, length, type of picks, number and placement of picks, pick angles, steam inlet location, 

presence or absence of baffles, and baffle placement, thus changing any of these physical 

parameters will affect conditioner time (Behnke, 2001).  

vi) Die selection 
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As suggested by Reimer (1992), die selection contributes about 15% on pellet quality; however, 

it is important to consider when dealing with issues relating to pellet quality. In general, a die 

with a greater thickness within a specific die diameter (greater L/d ratio) will result in improved 

pellet quality (Behnke, 2001). This is because of the greater flow resistance generated by a 

thicker die as well as long retention time under elevated pressure as the pellet passes through 

the die. It is generally suggested that the operator should choose the thinnest die possible to gain 

the greatest production rate at an acceptable pellet quality.  

An important parameter in describing the pellet die is the L/d ratio, which is the effective 

length of the die hole over the minimum die opening diameter (Behnke, 2001). For example, a 

6 mm die with an effective hole length of 60 mm would have an L/d ratio of 10:1. For most 

common livestock diets, L/d ratios should be between 8:1 and 12:1. It must be noted that a 

greater L/d ratio will result in improved pellet quality but will sacrifice production rate while 

lower L/d ratios can result in increased production but lower pellet quality (Behnke, 2001).  

2.4 Effects of whole-grain feeding in broiler diets 

Whole-grain feeding in broilers has gained interest as it provides an economic advantage by effectively 

reducing the cost of grinding and processing as well as positive effects on the digestive functions 

(Ravindran et al., 2006; Singh et al., 2014a; Liu et al., 2015). The cost of feed accounts for up to 65% 

of the production cost of chicken meat and eggs thus eliminating the grinding mechanism lowers the 

cost of production, hence the feed cost. Therefore, the primary role of whole-grain feeding is to lower 

the costs of feed by eliminating the grinding and processing step (Singh et al., 2014a) as well as meeting 

consumer demand for a natural feeding system (Gabriel et al., 2003, 2008).  

2.4.1 Methods of whole-grain feeding 

The methods of whole-grain inclusion in broiler diets are classified into three main feeding methods, 

namely the free-choice feeding (FCF), mixed feeding (MF) and sequential feeding (SF, Rose, 1996; 

Singh et al., 2014a). In these feeding strategies, whole grain can be given along with another feed, either 

in mash, crumble or pellet form.  
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2.4.1.1 Free choice feeding 

In FCF, birds are usually offered a choice among three types of ingredients; an energy source (e.g. 

cereal grains), a protein source (e.g. soybean meal, fish meal, meat meal, etc.) plus supplemental 

vitamins and minerals (Singh et al., 2014a). The basic principle behind FCF is that birds are capable of 

consuming the required nutrients from various feed ingredients to compose their diets according to their 

actual needs and production capacity (Hughes, 1984, Cumming, 1994). The theory behind this method 

is that birds if given a choice, can formulate a balanced ration on their own using nutritional wisdom 

(Singh et al., 2014a).  

2.4.1.2 Mixed feeding 

Mixed feeding is the commonly used method of feeding where whole grain is either substituted for a 

part of the ground grain in a complete diet or added to a complete diet in the same feeder at the same 

time in pellet or mash form (Singh et al., 2014a). There are two categories of mixed feeding method; 

the pre-pelleting (PRP) inclusion and post-pelleting (PP) inclusion of whole grain. In PRP, whole grain 

is first mixed with other feed components and then pelleted whereas in PP, other components of feed 

are mixed and pelleted, and whole grain is then mixed with the pelleted feed (Singh et al., 2014a).  

2.4.1.3 Sequential feeding 

In SF, birds are given time-limited ad libitum access to the whole grain, followed by time-limited ad 

libitum access to a complete or balancer diet (Rose et al., 1995). The birds are offered whole grains 

with a complete or balanced feed in the same feeder, but at different times (Singh et al., 2014a). This 

feeding regime is based on the principle of choice feeding and allows birds to exercise their freedom of 

choice between whole grains and complete or balanced feed, but with restricted time. When compared 

to FCF, SF is economical and efficient as it does not require offering food in two separate feeders, and 

more control on the amount of whole grain to be ingested by birds due to the time restriction (Singh et 

al., 2014a). However, this system needs more validation to direct it towards developing a commercial 

feeding system. 

2.4.2 Effects of whole-grain feeding on digestive tract characteristics 

A rapid and conspicuous enlargement and increased weight of the gizzard is usually observed when 

whole grains are included in broiler diets, which indicates that the development and physiology of the 
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GIT can be manipulated by dietary means (Svihus et al., 1997; Nahas and Lefrancois, 2001; Svihus and 

Hetland, 2001; Hetland et al., 2002; Taylor and Jones, 2004a; Wu and Ravindran, 2004; Amerah and 

Ravindran, 2008). The two major muscles in the gizzard reduce the particle size of ingested feed by 

grinding and mixing them with digestive enzymes (Duke, 1986). In the conventional feeding regime, 

whole grain is ground before incorporation into feed, and as a result, the gizzard is underdeveloped and 

functions as a transit rather than a grinding organ (Cumming, 1994). There is mounting evidence that 

gizzard responds rapidly to changes in the diet, particularly to changes in insoluble fibre and particle 

size, resulting in increased organ size or muscularity or both (Svihus, 2011b). The reduction of particle 

size to critical size must be consistent before leaving the gizzard (Hetland et al., 2002), therefore when 

feeding whole grain, the gizzard must be functional to achieve this. A comprehensive review by Svihus 

(2011b) recommended that at least 200 g/kg grain particles larger than 1.5-2.0 mm in size in the diet 

are needed to stimulate gizzard development.    

Compared to the gizzard, when birds are offered ground grain, the average weight of 

proventriculus is increased due to proventricular dilation (Taylor and Jones, 2004b). However, the 

hypertrophy of the proventriculus due to the conventional pelleted diets was eliminated when whole 

grains were fed to broilers (Taylor and Jones, 2004a). In contrast, Ravindran et al. (2006) reported that 

whole wheat inclusion had no effect on the relative weight of proventriculus. Moreover, the weight of 

the crop and relative lengths and weights of the small intestine were not affected by whole grain 

inclusion in the diet (Wu and Ravindran, 2004; Ravindran et al., 2006; Amerah and Ravindran, 2008).  

Furthermore, birds fed coarse ground diets and whole-grain diets resulted in a reduction in pH 

of the gizzard contents (Nir et al., 1994a; Gabriel et al., 2003). However, Hetland et al. (2002) 

experimented with different rate of replacement of ground wheat with whole wheat, barley and oats 

during 10 to 24 and 24 to 38 days of age (very high, 500 and 600; high 300 and 400 and moderate 125 

and 300 g/kg, respectively). They reported that the pH of gizzard contents was not conclusively affected 

by grain type or form of the grain.  

2.4.3 Effects of whole-grain feeding on feed passage rate, digesta particle size and viscosity 

The feed passage rate is affected by particle size where larger particles are retained longer than finer 

particles in the gizzard (Svihus, 2011b). Svihus et al. (2002) hypothesised that rapid passage rate 

reduces the time available for digestion and absorption, whilst slower rate limits feed intake. Since the 
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coarser particles need to be ground to a certain critical size before leaving the gizzard (Svihus, 2011b), 

longer transit time is expected with whole-grain feeding. However, surprisingly, several studies 

revealed that the overall retention time does not change when birds are fed whole grains (Svihus et al., 

2002; Wu et al., 2004; Amerah et al., 2007a; Amerah and Ravindran, 2008). Hetland et al. (2005) 

reported that the lack of effect on passage rate may be due to the rapid dissolution of starch granules 

and protein from whole grain in the low pH environment of the gizzard which results in a rapid 

reduction of particle size.  

Svihus et al. (1997) found that there was no difference in digesta particle size distribution in the 

duodenum of birds fed either whole or ground barley. Similarly, Hetland et al. (2003) reported that the 

particle size distribution in the duodenal digesta is not affected by whole wheat inclusion in the diet. 

Hetland et al. (2002) reported that the digesta passing through the gizzard had a consistent particle size 

distribution, with most particles being smaller than 40 µm regardless of the original particle size, 

highlighting the ability of gizzard as a grinding organ.  

Studies investigating the influence of whole grain on digesta viscosity are limited. The degree 

of digesta viscosity is dependent upon the amount of NSP, which varies amongst cereal grains (Amerah 

et al., 2007). In wheat-based diets, fine particle size was found to increase digesta viscosity compared 

to whole wheat diets (Yasar, 2003). In contrast, some studies reported that whole wheat feeding resulted 

in an increased digesta viscosity (Engberg et al., 2004; Taylor and Jones, 2004b; Wu et al., 2004). In 

addition, the inclusion of 200 g/kg of whole barley did not alter the viscosity of the digesta beyond the 

duodenum (Taylor and Jones, 2004a). This highlights that viscosity may be dependent on the NSP 

content rather than the method of inclusion in the diet. 

2.4.4 Effects of whole-grain feeding on performance 

Whole barley is used as an alternative feed ingredient but compared to wheat and maize it is least 

preferred due to its relatively low protein and energy, and high fibre content. Svihus et al. (1997) 

reported that the inclusion of 200 g/kg whole barley and up to 350 g/kg whole wheat resulted in similar 

FCR compared with birds fed the maize-soybean diets (Nahas and Lefrancois, 2001). In contrast, 

broilers fed diets containing 80 to 150 g/kg of whole barley grains had lower body weight gains and a 

further decrease in body weights was observed when whole barley inclusion increased from 120 to 250 

g/kg (Kliševičiūtė et al., 2012). Similarly, in a wheat-based diet, the inclusion of 200 g/kg whole wheat 
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in a MF system had no effect on the weight gain and FCR of broilers (Amerah and Ravindran, 2008). 

Moss et al. (2018) also found that whole wheat feeding did not influence weight gain, but feed intake 

was depressed by whole wheat feeding. This highlights that in cases where whole-grain feeding had no 

effect on weight gain and FCR compared to conventional feed, the economics will favour whole-grain 

feeding due to lower processing costs. To optimise the benefits of whole-grain feeding, Forbes and 

Covasa (1995) suggested that whole-grain feeding should be introduced to broiler chicks from the first 

week of life. 

2.4.5 Effects of whole-grain feeding on energy and nutrient utilisation. 

As previously discussed, whole-grain feeding is generally associated with an increase in the size of 

gizzard, and it has been hypothesised that the resultant increase in grinding activity will favourably 

increase the bird’s ability to better utilise nutrients (Svihus and Hetland, 2001). In addition to the 

grinding effect, an active gizzard also serves as a mixing compartment for digestive juices and 

substrates (Svihus, 2011b).  

Wu et al. (2004) compared PRP and PP inclusion of 200 g/kg whole wheat in broiler diets and 

reported improvements in AME irrespective of the method of whole wheat inclusion, however, PP 

inclusion resulted in 6% greater improvement in AME than PRP inclusion. Svihus et al. (2004a) also 

reported that AME was increased at day 14 and 20 when 375 g/kg whole wheat was included PRP. In 

addition, Preston et al. (2000) reported an increase in AME when ground wheat was replaced by whole 

wheat. However, Uddin et al. (1996) found no difference when two wheat cultivars were fed ground or 

whole at different levels (100-400 g/kg) to broiler chickens at 19 to 27 days of age. Amerah et al. (2011) 

observed that PRP inclusion of whole wheat (100 and 200 g/kg) increased ileal protein digestibility but 

had no effect on apparent ileal digestible energy.  

Some studies have shown that starch digestibility improved in birds fed whole wheat (Svihus 

and Hetland, 2001; Hetland et al., 2003; Svihus et al., 2004a; Wu et al., 2004) or whole barley (Hetland 

et al., 2002). Svihus et al. (2004a) reported that PP inclusion of 375 g/kg whole wheat increased starch 

digestibility at both ileal and excreta levels; however, a subsequent experiment using PRP replacement 

of ground wheat with 500 g/kg whole wheat failed to show any improvement in starch digestibility. 

This highlights that inclusion of whole grain in the diet for optimal starch digestion can be achieved at 

recommended optimum levels.  
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2.5 Exogenous enzymes in broiler diets 

The use of exogenous feed enzymes in poultry diets is becoming a norm to overcome the adverse effects 

of anti-nutritional factors and improve digestion of dietary components and bird performance 

(Ravindran, 2013). The responses to supplementation of enzymes are often variable, with some 

limitations caused by pH and digesta retention time within the digestive tract. The largest user of feed 

enzymes is the poultry industry (Ravindran, 2013). The highly integrated nature of the poultry sector 

has enabled the faster uptake of these new technologies, and the inclusion of exogenous enzymes has 

now become the norm to improve the digestibility and efficiency of utilisation of nutrients. During the 

past three decades, the chemistry of target substrates in feed ingredients has been better understood, 

and it has become possible to fine-tune the production of enzymes that are specific for individual 

substrates (Ravindran, 2013). Almost all wheat- and barley-based diets for broilers worldwide are now 

supplemented with NSP-degrading enzymes such as xylanase and β-glucanase (Ravindran, 2013). 

During the past decade, the use of microbial phytase in poultry diets has increased in response to 

concerns over phosphorus pollution of effluents from intensive animal production and the increased 

price of inorganic phosphate (Ravindran, 2013). As a result, microbial phytase has overtaken xylanase 

and β-glucanase as the primary feed enzyme worldwide.  

Protease enzyme supplementation has been of interest to improve protein and amino acid 

digestibility, particularly in very young animals where the relative activity of endogenous proteases 

may not be optimal (Lewis et al., 1955; Mahagna et al., 1995). A wide range of endogenous proteases 

are synthesised and released in the GIT of birds, and these are generally considered sufficient to 

optimise feed protein utilisation (Nir et al., 1993; Le Huerou-Luron et al., 1993). However, in the 

literature on protein digestibility, it shows that valuable amounts of protein pass through the GIT 

without being completely digested (Lemme et al., 2004), therefore this undigested protein presents an 

opportunity for the addition of specific exogenous proteases (Freitas et al., 2011). The degree of 

response is also governed by the existing level of performance in animals. Exogenous enzymes 

markedly influence ingredient and diet digestibility of younger birds which have deficient endogenous 

enzymes and high intestinal viscosity that compromise the digestive efficiency of the GIT (Bedford, 

1996).  
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2.5.1 Mode of action of NSP-degrading enzymes and microbial phytase. 

The enzyme technology has progressed greatly over the years with respect to the efficacy and matching 

activities of enzymes with their target substrates. The application of enzymes on a practical scale in the 

poultry industry was possible due to the recognition that the soluble NSPs present in viscous cereals 

(barley, wheat, triticale, and rye) impair nutrient digestion and absorption. Xylanase and β-glucanase 

enzymes target the degradation of the arabinoxylans and β-glucans in viscous cereal grains (Choct, 

2006).  

The supplementation of β-glucanases became a practical solution for improving the nutritive 

value of barley for poultry (Chesson, 1992; Choct, 2006). The β-glucanase is able to attack the mixed 

linked (13), (14) β-D-glucans and rapidly destroy the integrity of the polymer causing substantial 

disruption of the cell wall structure of the endosperm and this allows rapid access of the birds’ 

endogenous amylases and proteases to the cell contents (De Silva et al., 1983; Hesselman and Åman, 

1986; Chesson, 1992). β-glucanase supplementation in barley-based diets results in more rapid and 

complete digestion of nutrients which subsequently improves bird’s performance. 

Xylanase enhances nutrient digestion and utilisation mostly in wheat-based diets by the 

breakdown of arabinoxylans in the endosperm cell walls, resulting in reduced digesta viscosity due to 

increased depolymerisation of arabinoxylans to low-molecular-weight compounds (Ravindran et al., 

1999b). In wheat-based diets, xylanase supplementation improved weight gain and decreased FCR and 

intestinal viscosity (Svihus et al., 1997). Similarly, Wu and Ravindran (2004) found that xylanase 

supplementation improved weight gains in wheat-based diets regardless of wheat form. Therefore, there 

are considerable amounts of nutrients such as starch remain encapsulated in the cell walls and usually 

end up in the small intestine of chickens, and this anti-nutritive effect is removed upon xylanase 

supplementation (Bedford, 2002).  

Microbial phytase supplementation in poultry diets has been shown to improve phosphorus (P) 

utilisation. It increases the digestibility of phytate from around 25-70% in poultry diets (Choct, 2006). 

The magnitude of response of phytase is generally greater in diets containing low non-phytate P 

compared to those added adequate non-phytate P diets (Cabahug et al., 1999). Phytase supplementation 

resulted in improved P digestibility and retention (Juanpere et al., 2005; Tiwari et al., 2010), improved 
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growth performance (Ravindran et al., 1999c) and increased utilisation of dietary amino acids and 

proteins (Selle et al., 2000).  

2.5.2 Mode of action of protease enzyme 

Endogenous proteases are synthesised and released in the GIT; however, CP and amino acid 

digestibility reported for poultry indicated that high amounts of proteins end up being secreted in 

excreta (Wang and Parsons, 1998; Angel et al., 2011). The undigested protein represents an opportunity 

for the use of supplemental exogenous proteases in broiler feeds to improve protein digestibility (Angel 

et al., 2011; Freitas et al., 2011). An effective protease may reduce, not only the production costs for 

farmers but also the total nitrogen content in manure being excreted into the environment (Ravindran 

et al., 1999a). Most commercial enzyme products exist as enzyme blends, containing enzymes such as 

xylanase, amylase and protease, and the benefits elicited by this combination is that NSP-degrading 

enzymes target cell wall substrates and viscosity allowing other enzymes such as amylase and protease 

to rapidly access the cell contents (Freitas et al., 2011). Furthermore, Liu et al. (2015) suggested that a 

decline in gizzard pH in the whole-grain feeding regime could be problematic due to an increase in 

protein solubility thus enhancing the digestion of proteins and amino acids, which could result in a 

decreased response of exogenous proteases. However, further studies need to evaluate the 

supplementation of proteases in whole-grain feeding to support this conclusion  

2.5.2.1 Effect of exogenous protease on growth performance 

The supplementation of exogenous protease has been reported to improve weight gain, FCR and feed 

intake (Ravindran et al., 1999a; Cowieson and Adeola, 2005). Simbaya et al. (1995) reported a 

synergistic response of protease, carbohydrase and phytase enzymes in growth of young broiler 

chickens (4 to 11 days of age) where all enzyme combination resulted in highest weight gain and better 

FCR compared to individual or combination of two enzymes in a wheat/canola meal-based diet. 

Cowieson and Ravindran (2008) found that higher doses of enzyme cocktail (500 g/tonne) consisting 

of a xylanase, amylase and protease, resulted in higher weight gain and better FCR. Furthermore, Hu 

et al. (2019) reported that an acid protease supplementation increased weight gain and decreased FCR 

over 18 to 35 days. In contrast, Freitas et al. (2011) found that protease supplemented diets had no effect 

on body weight gain, regardless of protease concentration. In addition, a recent study by Walk et al. 

(2019) reported that protease supplementation did not improve performance in nutrient adequate diets 
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compared to phytase supplementation. When higher doses were supplemented, the growth performance 

was significantly reduced. These findings of previous studies may suggest that some improvements in 

protease supplementation might be attributed to the synergistic effect of enzyme blends rather than 

mono-component protease enzyme, however, further evaluation is needed for justification.  

2.5.2.2 Effect of exogenous protease on energy and nutrient utilisation 

The supplementation of exogenous protease has shown little effect on AME (2.3%) (Ravindran et al., 

1999c), digestibility of amino acids (Angel et al., 2011; Walk et al., 2018), and energy digestibility as 

a cumulative effect of increased protein and total fat digestibility (Fru-Nji et al., 2011). The 

improvement in total fat digestibility was assumed to be due to a secondary effect of the protein 

digestibility (Fru-Nji et al., 2011). Fru-Nji et al. (2011) highlighted that by degrading large protein 

molecules in a chyme complex, there might be better access to the total surface area of the lipid 

molecules for micelle formation. In addition, Ghazi et al. (2003) reported that the use of one mono-

component protease resulted in increased body weight gain and feed intake, but that feed efficiency 

was either negatively affected or not affected at all, depending on the protease concentration. In 

contrast, Walk et al. (2019) evaluated three novel proteases and observed that the apparent N 

digestibility was influenced by main effect of protease source or protease dose. They reported that 

protease supplementation reduced N digestibility with further reduction with higher doses (3x). In 

addition, supplementation of protease had no effect on the apparent ileal digestibility of amino acids 

(Ravindran et al., 1999c; Rada et al., 2016; Walk et al., 2019).  

2.6 Conclusion 

Barley is a good source of energy for poultry, but due to the presence of NSPs, the nutrient digestibility 

in barley is low compared to maize and wheat; therefore, it is least preferred among other cereals. 

However, the antinutritive effects caused by the NSPs can be eliminated by the supplementation of NSP 

degrading enzymes which improve the digestibility of nutrients by reducing the viscosity of the digesta. 

This results in improved performance, energy and nutrient utilisation. The methods of inclusion of 

cereal grains have been shown to affect performance, energy and nutrient utilisation, and GIT 

development in broiler chickens. Therefore, the method of inclusion of cereal grain, as well as the 

exogenous enzymes, are important to consider in barley-based diet formulations to exploit the potential 

benefits of barley as a poultry feed. 
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CHAPTER 3  

Influence of barley inclusion method and protease supplementation on growth performance, 

energy and nutrient utilisation and gastrointestinal tract development in broiler starters 

3.1 Introduction 

Barley is an alternative to maize in the production of ethanol and with its relative lower price over 

maize and wheat, there is an opportunity to utilise it as an alternative feed ingredient to conventional 

cereal grains (Jacob and Pescatore, 2012). Barley is a good source of energy for poultry feed; however, 

its carbohydrates are not easily digested compared to those in maize, due to the presence of non-starch 

polysaccharides (NSP, Jacob and Pescatore, 2012). The dominant NSP in barley is β-glucan and it 

impedes digestion by binding with water and forming viscous gels (McNab and Smithard, 1992; Jacob 

and Pescatore, 2012). This increase in digesta viscosity interferes with digestion and absorption of 

nutrients (McNab and Smithard, 1992), thus supplementation of NSP-degrading enzymes, namely β-

glucanase, reduces the viscosity, therefore improves the nutritive value of barley (Jacob and Pescatore, 

2012).  

Cereal grains for poultry feed are usually ground. The grinding can be categorised into three 

classes, namely fine, medium and coarse according to the screen size that the ground grains pass 

through. Fine grinding results in a greater surface area and consequently a greater substrate availability 

for enzymatic digestion. On the other hand, coarse grinding results in a well-developed gizzard with 

enhanced grinding activity and facilitates digestion of nutrients with increased gut motility (Amerah et 

al., 2007a). Grinding of whole grains is the second largest energy cost after pelleting in broiler 

production (Reece et al., 1985).  

Whole-grain feeding has received renewed attention in the commercial poultry industry and is 

being increasingly used in many parts of the world. Whole grain feeding, through the reduction of 

energy consumption for grinding, could significantly lower the cost of feed. Furthermore, it has shown 

positive effect on performance, nutrient digestibility and gut development and functionality of gizzard. 

The most common method of whole-grain feeding is the mixed feeding system where whole grains are 

added pre-pellet (PRP) or post-pellet (PP) in a complete diet (Singh et al., 2014a).  

The increase in population growth, climatic changes, limited land available for crop production 

and increase in fuel prices have affected the supply of global feed ingredients for poultry. The traditional 
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feed ingredients such as maize, wheat and soybean meal may not meet future demand (Abdollahi and 

Ravindran, 2019), thus alternative feed ingredients are required to overcome the global problem. With 

the realisation of barley as an alternative feed ingredient, it presents an opportunity to explore the use 

of whole barley grain and coarse-ground barley grain in broiler diets. The influence of grain particle 

size and whole grain inclusion on growth performance and nutrient utilisation in birds fed wheat-based 

diets have been understood (Plavnik et al., 2002; Amerah et al., 2007b), but corresponding studies with 

barley are limited. Moreover, the effects of protease enzyme with different barley inclusion methods 

on broiler performance and nutrient digestibility have been evaluated before and merit further 

investigation. Therefore, the present study was designed to investigate the possible interactions between 

finely-ground, coarsely-ground and PRP whole barley inclusion, and protease supplementation on the 

performance, nutrient digestibility and energy utilisation, and gastrointestinal tract development in 

broiler starters fed wheat-based diets. 

3.2 Materials and methods 

3.2.1 Enzymes 

A multi-component NSP-degrading enzyme, Ronozyme® Multigrain (produced by Trichoderma 

reesei, also known as Trichoderma longiabrachiatum), Ronozyme® HiPhos (a granular 6-phytase 

expressed in a strain of Aspergillus oryzae) and Ronozyme® ProAct (a serine protease from 

Nocardiopsis prasina) were obtained from DSM Nutritional Products, Kaiseraugst, Switzerland. The 

activities of endo-1, 4-β-glucanase, endo-1, 3 (4)-β-glucanase and endo-1, 4-β-xylanase in Ronozyme® 

Multigrain were 800 BGU/g, 700 BGU/g and 2,700 XU/g, respectively. One unit of β-glucanase (BGU) 

is defined as the quantity of enzyme that releases 1.0 µmol of reducing moieties from 1.5% of β-glucan 

per minute at pH 5.0 at an incubation temperature of 40oC for 20 minutes. One unit of xylanase (XU) 

is defined as the quantity of enzyme that releases 1.0 µmol of reducing moieties from 1.5% arabinoxylan 

per minute at pH 5.0 at incubation temperature of 40°C for 20 minutes. Ronozyme® HiPhos is a 

granular 6-phytase preparation expressed by submerged fermentation of Aspergillus oryzae and 

contains >10,000 units (FYT)/g. One FYT is defined as the activity of enzyme that releases 1.0 μmol 

of inorganic phosphorus per minute from 5.0 µmol/l sodium phytate at pH 5.5 and 37 ºC (DSM 

Nutritional Products Ltd., 2013). One protease unit (PROT) of Ronozyme® ProAct is defined as the 

amount of enzyme that releases 1.0 mmol of p-nitroaniline from 1.0 mM substrate (Suc-Ala-Ala-Pro-

Phe-pNA) per minute at pH 9.0 and 37oC. The activities of endo-1, 3 (4)-β-glucanase, endo-1, 4-
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xylanase, phytase and protease in samples of mash and pelleted diets were measured at Biopract GmbH, 

Berlin, Germany. The enzyme recovery was calculated as the percentage of measured enzyme activity 

in the diet to the expected enzyme activity estimated from the amount and minimum activity (DSM 

Nutritional Products Ltd., 2013) of enzymes added to the diets. 

3.2.2 Diets 

A normal starch hulled barley (cultivar, Fortitude) was obtained from a seed multiplication company 

(Luisetti seeds, Rangiora, New Zealand) and ground in a hammer mill to pass through screen sizes of 

2.5 and 8.0 mm for fine and coarse particle sizes, respectively. Wheat was obtained from a local 

commercial supplier ground to a size of 3.0 mm. A completely randomised design was used in this 

study, with a 3 x 2 factorial arrangement of 6 treatments. Three basal diets were prepared either without 

or with protease enzyme resulting in 6 dietary treatments: (1) Finely-ground barley without protease; 

(2) Finely-ground barley with protease; (3) Coarsely-ground barley without protease; (4) Coarsely-

ground barley with protease; (5) whole barley without protease; and (6) whole barley with protease. 

The diets were formulated to meet the Ross 308 strain recommendations for major nutrients (Ross 2014; 

Table 3.1). The nutrient composition, optimum inclusion level, apparent metabolisable energy (AME) 

and standardised digestible amino acid (AA) contents of barley were determined in a previous study at 

Massey University (Perera et al., 2019b). The three basal diets were used to develop six dietary 

treatments using two levels of enzyme; without and with protease enzyme (Ronozyme® ProAct (GT)) 

at a rate of 0.2 g/kg of the diet. To reduce the negative effects of NSPs in barley and wheat, NSP-

degrading enzymes (Ronozyme® Multigrain) was added in all diets at a rate of 0.15 g/kg of each diet. 

Phytase (Ronozyme® HiPhos) was also used in all diets at a rate of 0.1 g/kg of each diet. To determine 

the apparent metabolisable energy (AME) and the ileal nutrient digestibility, the indigestible marker, 

TiO2 (Merck KGaA, Darmstadt, Germany) was added at the rate of 5.0 g/kg in the diet. All diets were 

steam-conditioned at 60oC for 30 seconds and pelleted in the pellet mill (Model Orbit 15; Richard Sizer 

Ltd., Kingston-upon-Hull, UK) into small size pellets (screen size, 3.0 mm). Samples of each diet in 

mash and pelleted form were sent for measurement of enzyme activity at Biopract GmbH, Berlin, 

Germany One sample of the basal diet was ground to pass through a 0.5 mm sieve and stored in an 

airtight container at 4oC for laboratory analysis. The basal diet sample was analysed for DM, crude 

protein. 
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Table 3.1. Composition, calculated and analysed values (g/kg, as fed) of the basal broiler starter diet (day 1-21) 

Item Inclusion (g/kg) 

Wheat 314 

Normal (hulled) barley 283 

Soybean meal 297 

Maize gluten meal 50.0 

Soybean oil 16.4 

Di-calcium phosphate 11.0 

Limestone 8.70 

L-Lysine HCl 3.45 

DL-Methionine 2.20 

L-Threonine 1.30 

Sodium chloride 2.10 

Sodium bicarbonate 3.60 

Titanium dioxide1 5.00 

Vitamin premix2 1.00 

Mineral premix2 1.00 

Ronozyme Multigrain3 0.15 

Ronozyme HiPhos4 0.10 

Calculated analysis  

Nitrogen-corrected apparent metabolisable energy (AMEn, MJ/kg) 11.90 

Digestible methionine 5.80 

Digestible methionine + cysteine 9.00 

Digestible lysine 12.2 

Digestible threonine 8.20 

Crude fat 30.5 

Crude fibre 37.8 

Calcium 9.60 

Non-phytate phosphorus 4.80 

Sodium 2.00 

Chloride 2.00 

Analysed values  

Dry matter 908 

Gross Energy (MJ/kg) 16.8 

Crude protein (N x 6.25) 255 

Fat 37.2 

Starch 326 

Calcium 7.35 

Phosphorus 5.90 
1Merck KGaA, Darmstadt, Germany. 
2Supplied per kilogram of diet: antioxidant, 100 mg; biotin, 0.2 mg; calcium pantothenate, 12.8 mg; cholecalciferol, 60 µg; 

cyanocobalamin, 0.017 mg; folic acid, 5.2 mg; menadione, 4 mg; niacin, 35 mg; pyridoxine, 10 mg; trans-retinol, 3.33 mg; riboflavin, 

12 mg; thiamine, 3.0 mg; dl-α-tocopheryl acetate, 60 mg; choline chloride, 638 mg; Co, 0.3 mg; Cu, 3.0 mg; Fe, 25 mg; I, 1 mg; Mn, 

125 mg; Mo, 0.5 mg; Se, 200 µg; Zn, 60 mg. 
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3Ronozyme® Multigrain (800 BGU/g endo-1,4-β- glucanase, 700 BGU/g endo-1,3 (4)-β-glucanase and 2700 XU/g endo-1,4-β-

xylanase. One unit of xylanase (XU) is defined as the quantity of enzyme that releases 1µmol of reducing moieties from 1.5% 

arabinoxylan per minute at pH 5.0 and incubation temperature of 40°C for 20 minutes. One unit of β-glucanase (BGU) is defined as the 

quantity of enzyme that releases 1µmol of reducing moieties from 1.5% β-glucan per minute at pH 5.0 at incubation temperature of 

40°C for 20 minutes. 
4Ronozyme® HiPhos, DSM Nutritional Products, Kaiseraugst, Switzerland (1000 phytase units (FYT)/kg diet). One FYT is defined as 

the activity of enzyme that releases 1.0 μmol of inorganic phosphorus per minute from 5.0 µmol/l sodium phytate at pH 5.5 at 37 ºC.  

(CP), calcium (Ca), phosphorus (P), fat and starch at the Nutrition Laboratory of the Institute of Food 

Science and Technology, Massey University, Palmerston North. 

3.2.3 Determination of particle size distribution 

Dry sieving method was used to determine the particle size distribution of ground barley (2.5 and 8.0 

mm) using the method described by Baker and Herrman (2002). Ground barley samples (100g; two 

replicates per particle size) were passed through a set of six steel sieves (Endecotts Ltd., London, UK) 

stacked with the coarsest on the top and finest on the bottom (2000, 1000, 500, 250, 125, 63 µm), and 

allowed on the shaker for 10 minutes. The amount of sample retained in each sieve was weighed and 

the geometric mean diameter (GMD) and geometric standard deviation (GSD) was calculated for each 

sample. Particles retained in each sieve cannot be counted individually, therefore the average particle 

size was determined on a weight basis. Thus, the GMD and GSD were calculated with the following 

equations. 

di = (du x d0)0.5 

GDM = log-1[∑ (Wi log di) / ∑Wi] 

GSD = log-1[∑Wi(log di – log GMD)2 / ∑Wi]0.5 

Where, 

di = diameter of ith sieve on stack 

du = diameter opening through which particles will pass (sieve proceeding ith) 

d0 = diameter opening through which particles will not pass (ith sieve) 

Wi = weight fraction of sample on ith sieve 

The particle size distribution of three basal diets, both in mash and pellet forms (A, C and E 

consisting of fine and coarse ground, and whole barley, respectively) were determined by wet sieving 

method described by Lentle et al. (2006). Two samples of each diet in both mash and pellet forms 

(100g; two replicates per diet) were weighed. The first sample of each diet was dried at 80oC in a forced 

draft oven for 3 days to determine the DM content, and the second sample was soaked in water (100 g 
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diet in 400 ml water) and was allowed to stand for two hours prior to sieving to ensure adequate 

hydration. The set of steel sieve stack (Endecotts Ltd., London, UK) sizes were 2000, 1000, 500, 250, 

125, and 63 µm. The sample was then washed through the set of sieves, and the contents of each sieve 

were washed onto a dried, pre-weighed filter paper. The sample on the filter paper was then dried for 

24 hours in a forced draft oven at 80oC and re-weighed. The dry weight of particles retained by each 

sieve will be expressed as a proportion of the total DM recovered. 

3.2.4 Pellet durability 

The pellet durability of three basal diets (A, C and E) were determined using the Holmen pellet tester 

(New Holmen Pellet Tester, TekPro Ltd., Norfolk, UK) as described by Abdollahi et al. (2010). Clean 

pellet samples with no fines (100 g) were rapidly circulated in an air stream around a perforated test 

chamber for 30 seconds and fines were removed continuously through the perforations (screen size of 

2 mm diameter) during the test cycle. After the test cycle, the subject pellets were ejected and weighed 

manually. The pellet durability index (PDI) was calculated as the ratio of the pellets not passing through 

the perforations after the test to the whole pellets at the start. 

3.2.5 Pellet hardness 

The pellet hardness was tested in a Stable micro System Texture Analyser (TA-XT Plus, Godalming, 

Surrey, UK) as described by Abdollahi et al. (2013c). 15 pellets of similar size were selected from three 

basal diets (A, C and E), and each individual pellet was inserted between a pressure piston and a bar, 

and by increasing pressure applied by means of the pressure piston, the force (Newton) needed to break 

the pellets was determined. 

3.2.6 Birds and housing 

The experimental procedures employed were approved and in accordance with the guidelines of Massey 

University Animal Ethics Committee and conducted at the Massey University poultry unit farm. A total 

of 288 one-day old male broilers (Ross 308) were obtained from a commercial hatchery. Each bird was 

weighed individually and allocated into 36 cages in electrically heated battery brooders so that the 

average weight per cage was similar. Each of the six dietary treatments were randomly assigned into 

six cages, with eight birds per cage. A total of 6 cages were assigned to one dietary treatment. On day 

1, the temperature was set to 31oC and was gradually reduced to 24 oC by 21 days of age. The battery 
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brooders and grower cages, with wired floors, were housed in an environmentally controlled room with 

20 h of fluorescent illumination per day. The diets were offered ad libitum and water was available at 

all times throughout the experimental period. The birds were transferred into grower cages at 11 days 

of age and were fed the same diets until day 21. 

3.2.7 Performance data 

Throughout the experimental period, the body weights and feed intake were recorded on a cage basis 

at weekly intervals. In the first 2 days of life, mortality from each cage was replaced by birds from a 

spare cage, and after that, daily mortality was recorded. The FCR values were corrected for the body 

weights of any bird that died during the experimental period. 

3.2.8 Determination of nitrogen-corrected apparent metabolisable energy (AMEn) 

The AMEn value of the assay diets was determined by using the classical total excreta collection 

method. On day 17, feed was weighed, and excreta was collected from each cage over four consecutive 

days, starting on day 18 to 21, and feed intake was recorded on day 21. The pooled excreta were mixed 

well in a blender and subsampled as representative samples and were freeze-dried (Model 0610m 

Cuddon Engineering, Blenheim, New Zealand). The dried excreta samples were ground through a 0.5 

mm sieve and stored in airtight plastic containers at 4 oC for analysis of DM, N, Ti and GE. 

3.2.9 Determination of coefficient of apparent ileal digestibility (CAID) of nutrients 

On day 21, six broilers per cage were euthanised by an intracardial injection (1 ml per 2 kg live weight) 

of pentobarbitone solution (Provet NZ Pty Ltd, Auckland, New Zealand). The ileal digesta was 

collected from the lower half of the ileum according to procedures described by Ravindran et al. (2005). 

Distilled water was used to gently flush the contents of the lower half of the ileum into airtight plastic 

containers. The ileum is defined as the portion of the small intestine extending from the Meckel’s 

diverticulum to a point approximately 40 mm proximal to the ileo-caecal junction. The ileum was 

divided into two halves, and the digesta was collected from the lower half towards the ileo-caecal 

junction. The collected ileal digesta from birds of respective cages were pooled, freeze-dried, ground 

to pass through a 0.5 mm sieve and then stored in airtight containers at 4 oC for laboratory analysis. The 

ileal digesta samples were analysed for DM, Ti, GE, N, starch, fat, Ca and P at the Nutrition Laboratory 

of the Institute of Food Science and Technology, Massey University, Palmerston North. 
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3.2.10 Gizzard pH 

The gizzard pH was measured as described by Singh et al. (2014b). On day 21, 2 birds per cage were 

euthanised by intracardial injection of pentobarbitone solution, and the gastrointestinal tract was 

eviscerated immediately on a stainless-steel dissection tray at room temperature and the gizzard and 

proventriculus were excised. The gizzard pH of each bird was measured by inserting a calibrated digital 

pH meter (Model IQ120, ISFET pH Meter, Shindengen, Japan) at three different regions (proximal, 

middle and distal) of the gizzard. The readings were recorded after stabilisation of each value, and the 

average of the three readings was considered as the final pH value.  

3.2.11 Digestive tract measurement 

The same birds euthanised for gizzard pH measurements were used for the measurements of the 

digestive tract. The digestive tract, from the crop to caeca was carefully excised and adherent fat was 

removed. The relative lengths (cm) of the duodenum, jejunum, ileum, and caeca were determined and 

reported as cm/kg liveweight. The relative empty weights of the crop, proventriculus, gizzard, 

duodenum, jejunum, ileum, and caeca in the individual birds were determined and reported as g/kg of 

body weights. The absolute weight (g) of the crop, proventriculus and gizzard was also determined.  

3.2.12 Viscosity 

The jejunal digesta was obtained from the lower jejunum of two birds from each of the replicate cages 

euthanised for ileal collection and was collected into a centrifuge tube according to methods described 

by Perera et al. (2019a). The samples were centrifuged at 3000 g at 20 oC for 15 minutes. A 0.5 ml 

aliquot was obtained from the supernatant solution and was used in a viscometer (Brookfield digital 

viscometer, Model DV2TLV; Brookfield Engineering Laboratories Inc., Stoughton, MA) fitted with 

CP-40 cone spindle with shear rates of 5 to 500/s to measure the viscosity. 

3.2.13 Determination of duodenal particle size distribution 

The determination of particle size distribution of the duodenal digesta was determined according to 

methods described by Amerah et al. (2007b). The duodenal digesta was obtained from the duodenum 

of two birds from each of the replicate cages euthanised for ileal collection. The digesta was removed 

from the duodenum by simple drainage. A sample from two birds within each pen was pooled, giving 
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a total of 6 digesta samples per treatment. The particle size spectra of various samples were determined 

by wet sieving as described by Lentle et al. (2006). The samples were weighed and equally divided into 

two sub-samples. One will be oven-dried at 80 oC in a forced draft oven for 3 days to determine the 

DM content, and the other sample was suspended in 50 ml of distilled water for 15 minutes. The sample 

was then washed through a set of steel sieves stacks (2000, 1000, 500, 250, 125 and 63 µm). The content 

of each sieve was then subsequently washed onto a dried, pre-weighed filter paper, and dried for 24 

hours in a forced draft oven at 80 oC and was reweighed. The dry weights of the particles retained in 

each sieve and of fines remaining in the bottom of the pan were expressed as the percentage of the total 

DM recovered. 

3.2.14 Chemical analyses 

Dry matter was determined using standard procedures (Methods 925.10 and 930.16; AOAC, 2016). 

Nitrogen was determined by combustion (Method 968.06; AOAC, 2016) using a CNS-200 carbon, N 

and Sulphur auto-analyser (LECO Corporation, St. Joseph, MI). An adiabatic bomb calorimeter 

(Gallenkamp Autobomb, London, UK) standardised with benzoic acid was used for the determination 

of GE. Starch was measured using a Megazyme kit (method 996.11; AOAC, 2016) based on 

thermostable α-amylase and amyloglucosidase (McCleary et al., 1997). Ash was determined by 

standard procedures (Method 942.05; AOAC, 2005) using a furnace at 550 oC for 16 hours. Ca and P 

were determined by colorimetric methods after ashing the samples at 550 oC and acid digestion in 6.0 

M HCl using standard procedures (Method 968.08D; AOAC, 2005). The samples were tested for Ti on 

a UV spectrometer in accordance with the method described by Short et al. (1996).  

3.2.15 Calculations 

The AMEn values of the diet (without and with enzymes) were calculated using the following formula: 

 

AME diet (MJ/kg) = (Feed intake x GE diet) – (Excreta output x GE excreta) 

         Total feed intake 

The correction for zero nitrogen retention was calculated using a factor of 36.54 kj per gram 

nitrogen retained in the body as described by Hill and Anderson (1958). 
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The following formula was used to calculate the coefficient of apparent ileal digestibility 

(CAID): 

CAID of diet nutrient = (Nutrient / Ti)diet – (Nutrient /Ti)ileal 

Nutrient / Ti)diet 

Where, 

(Nutrient / Ti)diet = ratio of nutrient to Ti in the diet, and 

(Nutrient / Ti)ileal = ratio of nutrient to Ti in the ileal digesta 

 

3.2.16 Statistical analyses 

The data were analysed by two-way analysis of variance (ANOVA) to determine the main effects 

(barley inclusion method and protease) and their interaction using the General Linear Models procedure 

of SAS (version 9.4; SAS Institute., Cary, NC). The cage means were served as the experimental unit 

and the differences were considered to be significant at P < 0.05. The significant differences between 

means were separated by the Least Significant Difference (LSD) test. 

3.3 Results 

3.3.1  Enzyme recovery 

The average recovery of endo-1,3 (4)-glucanase, endo-1, 4-β-xylanase, phytase, and protease from 

enzyme-supplemented diets were 87.8, 155.3, 200.9 and 77.9%, respectively. 

3.3.2 Particle size distribution, pellet durability index and pellet hardness 

The particle size distribution of the ground barley and mash and pelleted diets is shown in Table 

3.2. The GMD of barley ground through 2.5 and 8.0 mm screen sizes were determined to be 635 and 

1274 µm, respectively, with corresponding GSD values of 2.1 and 1.8. The GMD values of mash diets 

based on fine and coarse ground and whole barley were 399, 478 and 515, with corresponding GSD 

values of 4.1, 4.4 and 4.5, respectively. However, the GMD values of pellets made from diets based on 

fine and coarse ground and whole barley were 190, 217 and 236, with corresponding GSD values of 
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3.9, 4.1. and 4.3, respectively. Pelleting reduced the relative proportion of coarse particles (>2000 and 

1000 µm) and increased that of fine particles < 63 µm with fine, coarse and whole barley. 

Graphic comparisons of the particle size distribution of mash and pelleted diets (Figure 3.1) 

obtained by wet sieving showed that pelleting reduced the relative proportion of particles > 500 µm, 

and increased the proportion of fines < 63 µm so that the variation of average particle size distribution 

of the three methods of barley inclusion was small in pellet diets compared to the mash diets.  

Table 3.2. Determined particle size distribution (percentage of retained particles on sieve)1 and geometric mean diameter ± 

geometric standard deviation (GMD ± GSD, µm) of ground barley, mash and pelleted diets, and the influence of fine, coarse 

and whole barley inclusion on pellet durability index (PDI, %)2 and pellet hardness3 (Newton) 

Barley inclusion 

method 

Openings (µm)   Pellet quality 

2000 1000 500 250 125 63 <63 GMD±GSD   PDI 
Pellet 

hardness 

Ground barley            

Fine 0.00 28.70 42.56 17.92 6.91 3.16 0.75 635 ± 2.1  - - 

Coarse 30.00 47.48 14.62 5.28 1.90 0.60 0.13 1274 ± 1.8  - -             

Mash diets            

Fine 3.36 38.11 16.77 8.37 4.56 3.55 25.28 399 ± 4.1  - - 

Coarse 20.57 26.99 14.21 7.24 3.99 3.21 23.79 478 ± 4.4  - - 

Whole barley 27.85 21.86 13.57 6.66 4.12 3.11 22.83 515 ± 4.5  - -             

Pelleted diets            

Fine 0.24 13.95 20.67 11.41 6.89 2.78 44.07 190 ± 3.9  79.5a 19.2 

Coarse 2.02 17.36 20.31 10.66 5.24 2.16 42.24 217 ± 4.1  76.7b 20.0 

Whole barley 6.78 16.92 17.90 9.74 5.94 2.82 39.90 239 ± 4.3  75.7b 19.5 

            

SEM4          0.57 0.79 

Probabilities, P ≤          0.001 0.758  

Fine and coarse grades were achieved using screen sizes of 2.5 and 8.0 mm, respectively. Means in a column not sharing a common 

letter (a-b) are significantly different (P < 0.05). 
1Each value represents the mean of two replicates. 
2Each value represents the mean of 6 replicates. 
3Each value represents the mean of 15 replicates. 
4Pooled standard error of mean. 
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Figure 3.1. Particle size distribution of mash (a) and pelleted (b) diets. 

 

The pellet durability index was significantly (P < 0.05) higher in the pellets made from diets 

based on finely ground barley than those made from coarsely ground or whole barley (Table 3.2). There 

was no difference (P > 0.05) in pellet hardness between pellets made from finely and coarsely ground 

barley, and whole barley.  
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3.3.3 Growth performance 

Mortality of 4.9% was recorded over the experimental period and was not influenced (P > 0.05) by any 

dietary treatment (Table 3.3).  

The main effect of barley inclusion method was significant for feed intake (P < 0.01) and FCR 

(P < 0.001) during day 1 to 7 post-hatch (Table 3.3). Birds fed diets containing fine particles showed 

higher (P < 0.05) feed intake compared to those fed whole barley. Feed conversion ratio was higher (P 

< 0.05) in birds fed diets containing fine and coarse particles compared to those fed whole barley.  

During day 8 to 14 post-hatch, barley inclusion method was significant for weight gain (P < 

0.05) and FCR (P < 0.001). Fine grinding resulted in lower (P < 0.05) weight gain and higher FCR (P 

< 0.05) compared to coarse grinding and whole barley inclusion. Main effects of barley inclusion 

method for feed intake tended (P = 0.059) to be significant. 

 During day 15 to 21 post-hatch, effect of barley inclusion method was significant for weight 

gain (P < 0.05) and feed intake (P < 0.01). Birds fed diets containing whole barley showed higher (P < 

0.05) weight gain than birds fed fine particles. Fine grinding resulted in lower (P < 0.05) feed intake 

compared to coarse grinding and whole barley inclusion.  

Over the whole experimental period (day 1 to 21), the main effect of barley inclusion method 

was significant (P < 0.01) for weight gain and FCR. Coarse grinding and whole barley inclusion resulted 

in higher (P < 0.05) weight gain compared to fine grinding. Feed conversion ratio was higher (P < 0.05) 

in birds fed diets containing fine particles compared to those fed diets containing whole barley. Barley 

inclusion method tended (P = 0.078) to be significant for feed intake during the whole trial period.  

The main effect of protease supplementation and interaction between barley inclusion method 

and protease supplementation were not significant (P > 0.05) for weight gain, feed intake and FCR 

during each and whole experimental periods. 

3.3.4 Nutrient digestibility and energy utilisation 

The effects of dietary treatments on CAID of nutrients and GE and energy utilisation parameters are 

shown in Table 3.4. The main effect of barley inclusion method was significant (P < 0.01-0.05) for the 

CAID of DM, N, fat, Ca, P and GE, with coarsely ground and whole barley inclusion resulting in higher 

(P < 0.05) DM, N, Ca and GE digestibility than finely ground barley. Coarse grinding of barley resulted 
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in higher (P < 0.05) CAID of fat compared to fine grinding and whole barley inclusion. For CAID of 

P, birds fed diets containing finely and coarsely ground particles had higher (P < 0.05) values compared 

to birds fed whole barley  

The barley inclusion method was significant (P < 0.05) for ileal digestible energy (IDE). Diets 

made from coarse particle and whole barley had higher (P < 0.05) IDE values compared to diets made 

from fine particles.  

The main effect of protease supplementation and interaction between barley inclusion method 

and protease supplementation were not significant (P > 0.05) for nutrient digestibility and energy 

utilisation parameters. 

3.3.5 Digestive tract measurements and gizzard pH 

Barley inclusion method had significant (P < 0.001 to 0.05) effects on absolute weight of crop, 

proventriculus and gizzard (Table 3.5). Fine grinding of barley resulted in higher (P < 0.05) absolute 

weight of crop compared to whole barley inclusion. Birds fed diets containing finely and coarsely 

ground barley had higher (P < 0.05) absolute weight of proventriculus and lower (P < 0.05) absolute 

weight of gizzard compared to birds fed whole barley.  

The main effect of barley inclusion method was also significant (P < 0.05 to 0.001) for the 

relative weight of crop, proventriculus, gizzard, jejunum and ileum; with relative weight of crop, 

jejunum and ileum being heavier (P < 0.05) in birds fed finely ground barley compared to those fed 

whole barley diets. Birds fed diets containing finely and coarsely ground particles had higher (P < 0.05) 

relative weight of proventriculus and lower (P < 0.05) relative weight of gizzard compared to birds fed 

whole barley. 

The main effect of barley inclusion method was not significant (P > 0.05) for relative weight of 

duodenum. The main effect of protease supplementation and interaction between barley inclusion 

method and protease supplementation were not significant (P > 0.05) for absolute and relative weight 

of digestive tract compartments. 

Significant (P < 0.05) barley inclusion method x enzyme interaction was observed for the 

relative weights of caeca. In finely and coarsely ground diets, relative weights of caeca numerically 
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reduced by protease supplementation, whereas, in whole barley diets, protease supplementation 

numerically increased relative weights of caeca compared to diets without protease.  

The main effect of barley inclusion method was significant (P < 0.001) for the gizzard pH with 

whole barley having lower (P < 0.05) gizzard pH compared to finely and coarsely ground barley.
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Table 3.3. Influence of barley inclusion method and protease supplementation on weight gain (g/bird), feed intake (g/bird) and feed conversion ratio (FCR; g feed/g gain) of broiler 

starters1 and mortality (%) 

    day 1 to 7  day 8 to 14  day 15 to 21  day 1 to 21   

Barley inclusion method Protease 
Weight 

gain 

Feed 

intake 
FCR   

Weight 

gain 

Feed 

intake 
FCR   

Weight 

gain 

Feed 

intake 
FCR   

Weight 

gain 

Feed 

intake 
FCR Mortality 

Fine - 197 182 0.925  389 494 1.272  553 728 1.334  1138 1404 1.241 2.1 

 + 192 183 0.953  393 495 1.280  567 728 1.314  1152 1406 1.238 8.3 
                  

Coarse - 190 178 0.940  403 508 1.259  585 759 1.300  1178 1444 1.226 4.2 

 + 192 180 0.938  407 509 1.253  575 738 1.297  1173 1427 1.221 6.3 
                  

Whole barley - 193 176 0.909  406 496 1.228  584 761 1.308  1183 1433 1.212 6.3 

 + 193 175 0.904  399 493 1.234  597 764 1.299  1190 1431 1.211 2.1 

                  

SEM2  2.4 2.1 0.0084  5.2 6.5 0.0076  11.1 10.0 0.0164  12.8 14.4 0.0083 3.14 

Main effects                  

Barley inclusion method                 

Fine  194 182a 0.939a  391b 495 1.276a  560b 728b 1.324  1145b 1405 1.239a 5.2 

Coarse  191 179ab 0.939a  405a 508 1.256b  580ab 748a 1.298  1176a 1436 1.223ab 5.2 

Whole barley  193 175b 0.906b  403a 494 1.231c  591a 763a 1.303  1187a 1432 1.212b 4.2 
                  

Protease - 193 178 0.924  399 499 1.253  574 749 1.314  1167 1427 1.226 4.2 

 + 192 179 0.932  400 499 1.256  580 743 1.303  1172 1421 1.223 5.6 

Probabilities, P ≤                  

Barley inclusion method 0.302 0.010 0.001  0.024 0.059 0.001  0.032 0.006 0.269  0.009 0.078 0.009 0.929 

Protease  0.705 0.667 0.295  0.898 0.977 0.652  0.546 0.449 0.428  0.614 0.633 0.639 0.592 

Barley inclusion method x Protease 0.367 0.734 0.107  0.504 0.925 0.611  0.459 0.451 0.867  0.765 0.779 0.960 0.263 

Fine and coarse grades were achieved using screen sizes of 2.5 and 8.0 mm, respectively. Means in a column not sharing a common letter (a-c) are significantly different (P < 0.05). 
1Each value represents the mean of six replicates (eight birds per replicate). 
2Pooled standard error of mean.
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Table 3.4. Influence of barley inclusion method and protease supplementation on the coefficient of apparent ileal digestibility (CAID) of dry matter (DM), nitrogen (N), starch, 

fat, calcium (Ca), phosphorus (P) and gross energy (GE); ileal digestible energy (IDE), apparent metabolisable energy (AME, MJ/kg DM) and N-corrected AME (AMEn, MJ/kg 

DM) in broilers 

    CAID1   Energy utilisation 

Barley inclusion method Protease DM N Starch Fat Ca P GE  IDE AME AMEn 

Fine - 0.578 0.713 0.957 0.715 0.345 0.648 0.606  11.20 13.75 12.70 

 + 0.597 0.726 0.954 0.749 0.353 0.664 0.623  11.52 13.51 12.49 
             

Coarse - 0.628 0.752 0.946 0.829 0.456 0.672 0.653  12.07 13.71 12.65 

 + 0.633 0.762 0.955 0.841 0.451 0.656 0.660  12.20 13.62 12.61 
             

Whole barley - 0.634 0.778 0.957 0.725 0.455 0.595 0.659  12.18 13.86 12.77 

 + 0.632 0.786 0.956 0.728 0.453 0.591 0.659  12.18 13.90 12.81 
             

SEM2  0.0173 0.0160 0.0046 0.0410 0.0374 0.0195 0.0173  0.3200 0.104 0.126 

Main effects             

Barley inclusion method             

Fine   0.588b 0.720b 0.956 0.732b 0.349b 0.656a 0.615b  11.36b 13.63 12.60 

Coarse  0.630a 0.757a 0.950 0.835a 0.453a 0.664a 0.657a  12.13a 13.67 12.63 

Whole barley  0.633a 0.782a 0.957 0.726b 0.454a 0.593b 0.659a  12.18a 13.88 12.79 

Protease             

 - 0.613 0.748 0.953 0.756 0.418 0.638 0.640  11.82 13.77 12.71 

 + 0.620 0.758 0.955 0.772 0.419 0.637 0.647  11.96 13.68 12.64 

Probabilities, P <             

Barley inclusion method  0.023 0.002 0.340 0.020 0.011 0.002 0.026  0.025 0.171 0.293 

Protease  0.608 0.446 0.660 0.628 0.986 0.926 0.579  0.585 0.413 0.490 

Barley inclusion method x Protease   0.823 0.984 0.388 0.929 0.983 0.714 0.885  0.887 0.623 0.614 

Fine and coarse grade were achieved using screen sizes of 2.5 and 8.0 mm, respectively. Means in a column not sharing a common letter (a-b) are significantly different (P < 0.05). 

1Each value represents the mean of six replicates (six birds per replicate). 

2Pooled standard error of mean. 
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Table 3.5. Influence of barley inclusion method and protease supplementation on the absolute weights (g) of crop, proventriculus and gizzard, and relative weights (g/kg of bird 

live weight) of the crop, proventriculus, gizzard, duodenum, ileum, jejunum and caeca, and the gizzard pH of broilers1 

Barley inclusion method Protease 
Absolute weights (g)   Relative weights (g/kg body weight)   Gizzard 

pH2 Crop Proventriculus Gizzard   Crop Proventriculus Gizzard Duodenum Jejunum Ileum Caeca   

Fine - 3.33 4.89 9.68  2.73 4.10 7.89 3.37 7.02 6.62 2.26ab  3.70 
 + 3.31 4.51 9.94  2.75 3.72 8.23 3.48 7.20 7.00 2.12ab  3.72 

               

Coarse - 3.14 5.07 10.29  2.57 4.14 8.39 3.10 6.51 6.14 2.26ab  3.48 
 + 3.09 4.82 9.80  2.49 3.87 7.88 3.32 6.65 6.45 2.03b  3.59 

               

Whole barley - 2.86 3.77 12.18  2.31 3.03 9.76 3.13 6.47 6.05 2.13ab  3.02 
 + 3.03 4.10 13.29  2.42 3.27 10.60 3.13 6.39 6.02 2.37a  3.03 

               

SEM3  0.147 0.339 0.440  0.146 0.270 0.336 0.164 0.275 0.264 0.093  0.151 

Main effects               

Barley inclusion method               

Fine  3.32a 4.70a 9.81b  2.74a 4.01a 8.13b 3.43 7.11a 6.81a 2.19  3.71a 

Coarse  3.12ab 4.95a 10.04b  2.53ab 3.91a 8.06b 3.21 6.58ab 6.29ab 2.15  3.54a 

Whole barley  2.95b 3.94b 12.73a  2.36b 3.15b 10.18a 3.13 6.43b 6.04b 2.25  3.02b 

Protease               

 - 3.11 4.58 10.71  2.54 3.76 8.68 3.20 6.67 6.27 2.22  3.40 
 + 3.15 4.48 11.01  2.55 3.62 8.90 3.31 6.75 6.49 2.18  3.45 

Probabilities, P ≤               

Barley inclusion method  0.050 0.016 0.001  0.049 0.006 0.001 0.195 0.045 0.020 0.550  0.001 

Protease  0.785 0.724 0.414  0.895 0.546 0.424 0.403 0.723 0.313 0.592  0.694 

Barley inclusion method x Protease 0.709 0.547 0.208   0.818 0.477 0.144 0.799 0.877 0.710 0.041   0.930 

Fine and coarse grades were achieved using screen sizes of 2.5 and 8.0 mm, respectively. Means in a column not sharing a common letter (a-b) are significantly different (P < 0.05). 
1Each value represents the mean of six replicates (two birds per replicate). 
2 Each value represents the mean of six replicates (two gizzards per replicate, three pH readings per gizzard). 
3Pooled standard error of mean. 
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The influence of dietary treatments on relative length of digestive tract compartments and 

jejunal digesta viscosity are shown in Table 3.6. A tendency (P = 0.09) was observed for the 

interaction between barley inclusion method and protease supplementation on relative length of 

duodenum. Protease supplementation in coarsely ground barley tended to reduce relative length of 

duodenum while in finely ground and whole barley protease supplementation tended to have no 

effect on relative length of duodenum. 

Table 3.6. Influence of barley inclusion method and protease supplementation on the relative lengths (cm/kg of live 

body weight) of duodenum, jejunum, ileum and caeca and jejunal digesta viscosity (cP) of broilers1 

Barley inclusion method Protease 
Relative lengths (cm/kg body weight) Jejunal 

digesta 

viscosity2 Duodenum Jejunum Ileum Caeca 

Fine - 21.6 55.6 62.6 14.0 3.77 
 + 22.4 56.2 64.4 14.1 3.51 

       

Coarse - 22.7 58.3 64.7 14.5 3.55 
 + 21.1 56.7 65.0 13.8 3.40 

       

Whole barley - 21.8 53.7 61.1 13.2 3.53 
 + 21.6 55.1 61.0 13.6 3.58 

       

SEM3  0.52 1.65 1.89 0.34 0.188 

Main effects       

Barley inclusion method       

Fine  22.0 55.9 63.5 14.1 3.64 

Coarse  21.9 57.5 64.9 14.2 3.47 

Whole barley  21.7 54.4 61.0 13.4 3.56 

Protease       
 - 22.0 55.9 62.8 13.9 3.62 
 + 21.7 56.0 63.4 13.8 3.50 

Probabilities, P ≤       

Barley inclusion method  0.800 0.195 0.137 0.065 0.680 

Protease  0.460 0.920 0.676 0.791 0.460 

Barley inclusion method x Protease 0.093 0.655 0.875 0.272 0.708 
 

Fine and coarse grades were achieved using screen sizes of 2.5 and 8.0 mm, respectively. Means in a column not sharing a 

common letter (a-b) are significantly different (P < 0.05). 
1Each value represents the mean of six replicates (two birds per replicate).  
2Each value represents the mean of six replicates (two birds per replicate). 
3Pooled standard error of mean 
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A tendency (P = 0.065) was observed for the main effect of barley inclusion method on the 

relative length of caeca (Table 3.6). Relative length of caeca tended to be lower in birds fed whole 

barley compared to those fed fine barley.  

The main effect of protease supplementation and interaction between barley inclusion 

method and protease supplementation were not significant (P > 0.05) for relative lengths of 

duodenum, jejunum and ileum and jejunal viscosity. 

3.3.6 Determination of particle size distribution in duodenal digesta 

Table 3.7 shows that there is no distinction between particle size distributions of the duodenal 

digesta of birds fed fine and coarse ground and whole barley.  

The proportion of particles less than 500 µm in the duodenal digesta were 94.5, 92.5 and 

93.2% for fine and coarse ground and whole barley diets, respectively. The percentage of particles 

over 1000 µm were 0, 2.4 and 0.9% for fine and coarse ground and whole barley diets, respectively. 

The GMD of particles in duodenal digesta of birds fed fine and coarse ground and whole barley 

showed that the average particle size is less than 250 µm for the three different barley inclusion 

method.  

Table 3.7. Influence of barley inclusion method on the proportion of particle size classes (mean) in the duodenal 

digesta (% based on dry weight basis) of broilers1 

 Duodenal particle size (µm) 
 

Fine Coarse Whole barley 

< 63 78.61 ± 2.47 73.22 ± 3.64 72.81 ± 4.97 

63 to 125 6.57 ± 1.02 7.33 ± 1.02 8.36 ± 1.57 

125 to 250 4.77 ± 0.70 6.01 ± 0.84 6.49 ± 1.19 

250 to 500 4.53 ± 0.56 5.99 ± 0.61 5.49 ± 1.24 

500 to 1000 5.52 ± 0.60 5.10 ± 0.92 5.94 ± 1.10 

1000 to 2000 0.00 2.35 ± 1.03 0.91 ± 0.91 

    

GMD ± GSD 190 ± 3.9 217 ± 4.1 238 ± 4.3 
1Each value represents the mean ± SE of 6 replicate samples. 
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3.4 Discussion 

Data from the current study showed that coarse grinding of barley increased the relative proportion 

of particles > 1000 µm compared to fine grinding (77.5 and 28.7%, respectively). The relative 

proportion of large particles (> 1000 µm) in fine and coarse ground and whole barley diets were 

reduced by 65.8 (from 41.5 to 14.2), 59.2 (from 47.6 to 19.4) and 52.3% (from 49.7 to 23.7), 

respectively, as a result of pelleting. Pelleting-induced particle size reduction was more 

pronounced in particles > 2000 µm, with corresponding reductions of 92.9, 90.2 and 75.7% in fine 

and coarse ground, and whole barley diets, respectively. This shows that the pelleting process 

further reduced large feed particles and whole barley and increased the proportion of fines < 63 

µm, thus minimizing the differences in the particle size distribution between fine and coarse 

ground, and whole barley diets. These findings are in accordance with previous results of Engberg 

et al. (2002), Svihus et al. (2004b), Péron et al. (2005), Amerah et al. (2007b), Abdollahi et al. 

(2011, 2013a), and Naderinejad et al. (2016) who reported that pelleting reduced feed particle size. 

Large feed particles are prone to grinding due to the narrow distance between the pellet rolls and 

the pellet die, thus, adding further grinding which reduces the proportion of large particles and 

even out the differences in the particle size distribution (Engberg et al., 2002; Svihus et al., 2004b; 

Abdollahi et al., 2011).  

The pellet quality values, as determined by the PDI test, showed that PDI for finely ground 

barley is higher compared to coarsely ground and whole barley diets. This is consistent with the 

results by Angulo et al. (1996), Svihus et al. (2004b) and Chewning et al. (2012). The smaller 

particles produce more durable pellets due to more contact points to each other owing to a larger 

surface area to volume ratio (Behnke, 2001). In contrast to these findings, Reece et al. (1986) and 

Naderinejad et al. (2016) found that pellets made from coarse grinding of maize were more durable 

than fine grinding. In addition, Singh et al. (2014b) found that increasing the inclusion of pre-

pelleting of whole maize resulted in increased PDI. In the present study, the normal starch hulled 

(NSH) barley has considerable amounts of hulls, however, the hulls are finely ground in the fine 

diets while coarse grinding and whole barley have large size of hulls and this may have contributed 

to higher PDI of pellets made from finely ground barley compared to those made from coarse 

ground and whole barley.   
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According to Nir et al. (1995), better PDI improved feed intake. In the present study, on 

day 1 to 7 post-hatch, feed intake was 4% higher in finely ground compared to whole barley diets 

(182 vs 175 g/bird). But this increase transformed to 4.6 (728 vs 763 g/bird) and 1.9% (1405 vs 

1432 g/bird) decrease on day 15 to 21 and whole trial period, respectively. These results are in 

agreement with Singh et al. (2014b) who reported that despite the improved PDI, feed intake was 

reduced in broiler chickens from day 1 to 21 of age compared to the diets with lower PDI. Svihus 

et al. (1997) found that feed intake was 7.33% higher in diets containing whole barley compared 

to ground barley and this increase was not influenced by NSP-degrading enzyme supplementation. 

Nahas and Lefrancois (2001) found that inclusion of 20% whole barley in a maize-soybean meal-

based diet resulted in an increased feed intake. They reported that higher feed intake could be a 

consequence of a reduction in digesta viscosity. In contrast, Liu et al. (2015) reported that whole-

grain feeding is associated with a reduction in feed intake due to increased retention of large 

particles of digesta in the gizzard and slower passage rates along the digestive tract. Hetland et al. 

(2002) found that feed intake was reduced when ground barley was replaced by whole barley with 

moderate inclusion rate (12.5-30%). Moss et al. (2017) found that wheat- and sorghum-based diets 

and a blend of a wheat-sorghum-based diet containing post-pelleted whole barley depressed feed 

intake by 2.1% compared to ground barley (2297 vs 2345). 

 The lower feed intake observed in first week in birds fed diets containing whole barley 

may have been caused by physical limitations of digestive tract of newly hatched chicks. Chickens 

in early life have limited gizzard capacity to grind coarse particles along with slower feed passage 

rate through the digestive tract (Hetland et al., 2002; Biggs and Parsons, 2009). The higher feed 

intake reported at d 15 to 21 in birds fed diets containing coarse ground and whole barley can be 

attributed to the ability of birds to grind larger feed particles after week two. Svihus et al. (1997) 

found that broiler chickens at 14 to 28 days of age are able to grind diets containing whole barley 

efficiently even when no grit was added.  

Feed intake is the primary factor driving the growth rate of broilers (Abdollahi et al., 

2018b). In the present study, over the first week (day 1-7), there was no improvement in weight 

gain between the treatments; however, during the second week, coarsely ground and whole barley 

improved weight gain by 3.6 and 3.1%, respectively. On the third week, coarse ground and whole 

barley improved weight gain by 3.6 and 5.5% compared to fine diets. During the whole 
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experimental period, coarsely ground and whole barley inclusion improved weight gain by 2.2 and 

3.7%, respectively. Improvements in weight gain with inclusion of whole barley in boiler diets 

have been reported in some studies (Svihus et al., 1997; Bennett et al., 2002; Biggs and Parsons, 

2009). Svihus et al. (1997) found that the increase in weight gain was attributed to higher feed 

intake. Coarse grinding of maize also improved weight gain compared to fine grinding in Amerah 

et al. (2008) study. In contrast, Hetland et al. (2002) and Kliševičiūtė et al. (2012) found that 

moderate or high inclusion of whole grains (wheat, oats, and barley) in broiler diets resulted in 

lower weight gains. They suggested that lower feed intake is the reason for lower weight gain in 

birds fed moderate or high inclusion of whole grains. Hetland et al. (2002) also reported that 

grinding process of the gizzard requires energy, and as a consequence, there would be less energy 

expected to be available for growth. In addition, Lott et al. (1992) reported that broilers fed pelleted 

feeds with coarse maize particles (GMD, 1196 µm) had significantly lower weight gain and higher 

FCR at day 21 compared to those fed pellets with fine maize particles (GMD, 679 µm).  

In the present study, overall, birds fed coarse particles or whole barley outperformed those 

fed fine particles. Regardless of enzyme supplementation, whole barley feeding improved weight 

gain, FCR by 3.5, 3.5 and 2.2%, during day 1 to 7, 8 to14 and 1 to 21 post-hatch, respectively. 

The greater proportion of coarse particles that are retained longer within the gizzard may 

have enhanced digestion and thus improve feed efficiency. Coarse particles or whole grains might 

stimulate greater gizzard activity leading to a more efficient grinding and greater production of 

finer particles that are more readily digested (Amerah et al., 2008). Hetland et al. (2002) found that 

inclusion of moderate (300 g/kg) amount of whole barley did not affect FCR compared to diet 

containing ground wheat. Furthermore, Moss et al. (2017) found that whole barley diets 

supplemented with phytase enzyme improved FCR by 3.2% (1.362 vs 1.407) compared to ground 

barley diets. However, FCR was compromised in birds fed ground barley supplemented with 

phytase enzyme.  

The main intention of the present study, however, was to examine whether the 

manipulation of barley particle size will have similar effects on nutrient digestibility of broilers 

fed diets with or without protease enzyme. Barley inclusion method had no effect on the CAID of 

starch, AME and AMEn, but affected those of DM, N, fat, Ca, P, GE and IDE. In general, coarse 
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grindings and whole barley inclusion appeared to increase DM, N, fat and GE digestibility and 

IDE. A similar finding which is consistent with that of Biggs and Parsons (2009), who reported an 

increase in nutrient digestibility and AMEn when broiler chicks were fed whole grains (barley, 

wheat and sorghum). In the present study, despite the improved CAID of GE and IDE in birds fed 

coarsely ground barley and whole barley, the AME and AMEn were not affected. In contrast to 

our results, Moss et al. (2017) found that whole barley inclusion with phytase supplementation 

improved AME and AMEn of the diets compared to ground barley diets. Amerah et al. (2011) 

observed that PRP inclusion of whole wheat (100 and 200 g/kg) had no effect on apparent IDE 

compared to ground wheat diet. 

The results from the present study regarding the improvement of CAID of Ca with coarse 

and whole barley are in agreement with Qaisrani et al. (2015) who reported that a more acidic 

gizzard pH might have contributed, at least in part, to the increased digestibility of Ca. Guinotte et 

al. (1995) also highlighted that a lower pH enhances the solubility and absorption of mineral salts. 

It was also previously reported that large feed particle size of maize diets also improved the CAID 

of Ca (Kasim and Edwards, 2000; Kilburn and Edwards, 2001). Furthermore, Abdollahi et al. 

(2018a) found that insoluble fibre increased CAID of Ca by 45% and 61% in coarsely ground and 

whole wheat diets, respectively. This could be attributed to the effect of low pH due to structural 

components and large feed particle sizes. In the current study, diets containing fine and coarse 

particles had higher CAID of P compared to whole barley. Improved CAID of P with coarse feed 

particles has previously been reported by Kasim and Edwards (2000) and Kilburn and Edwards 

(2001). 

Changes in the gastrointestinal morphology associated with inclusion of whole grain, 

coarse particles and dietary fibre have been reported with special emphasis to the gizzard 

morphology (Hetland et al., 2002; Bennett et al., 2002; Hetland et al., 2003; Engberg et al., 2004; 

Amerah et al., 2008; Abdollahi et al., 2018a). A more developed gizzard musculature, as an 

adaptive response to inclusion of whole grain, coarse particles, and dietary fibre, can lead to 

increase in gizzard weight. In the present study, the inclusion of whole barley in the diet resulted 

in higher relative and absolute weights of the gizzard compared to finely and coarsely ground 

barley. The increase in gizzard weight as a response to large particle size and whole grain 

stimulates its grinding efficiency, and this might contribute to the higher digestibility of nutrients 
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observed in the current study which subsequently resulted in an improved FCR. The increased 

gizzard grinding activity and development by feeding coarse particles and whole grain can increase 

reverse peristalsis of digesta, and subsequently retention time leading to better mixing of substrate 

and enzymes (Duke, 1992; Li and Owyang, 1993; Ferket, 2000; Singh et al., 2014b).  

Finely ground pelleted diets have been related to an enlargement of the proventriculus and 

atrophy of the gizzard (Singh et al., 2014a). However, whole-grain feeding has been associated 

with an increase in relative weight of the gizzard but a reduction in the relative weight of 

proventriculusand reduced gizzard pH (Forbes and Covasa, 1995; Gracia et al., 2016). The 

proventriculus is the glandular stomach where digestion primarily begins and is anterior to the 

muscular gizzard (ventriculus). The proventriculus secrets pepsinogen and hydrochloric acid 

(HCl) and the small volume of the proventriculus results in a short retention time (Svihus, 2011b). 

However, finely ground pelleted diets may contribute to a non-functional gizzard resulting in the 

hypertrophy of the proventriculus. The proventriculus is the initial site of protein digestion in 

chickens where proteins are exposed to HCl, which denatures the proteins and exposes the peptide 

bonds for enzyme hydrolysis (Perera et al., 2019a).  

Coarse feed particles need to be ground to a certain critical size before they can leave the 

gizzard (Clemens et al., 1975; Moore, 1999). As a result, the contraction of the large gizzard 

muscles to grind large feed particles cause refluxes of feed materials into the proventriculus 

allowing for additional secretions to be added to the substrate and also moves smaller particles that 

are able to pass through the pylorus into the duodenum (Duke, 1992). In the present study, there 

was no difference observed in duodenal digesta particle size distribution between treatments which 

suggests that the grinding activity of the gizzard evened out the differences in particle size 

distribution. This is in agreement with the results by Amerah et al. (2007b, 2008). In three different 

barley inclusion methods, over 70% of the duodenal particle size was below 63 µm and this 

highlights the ability of the gizzard to grind large feed particles to fine particles. Furthermore, the 

longer retention time to grind large feed particle sizes and continuous refluxes allows for more 

secretion of HCl which contributed to a lower pH in birds fed diets containing whole barley 

compared to those fed finely ground barley. As a result, a heavier gizzard in birds fed coarsely 

ground barley and whole barley might have aided in initial protein hydrolysis and subsequently 
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resulted in greater CAID of N. Amerah et al. (2011) found that PRP inclusion of whole wheat (100 

and 200 g/kg) increased ileal protein digestibility.  

In the present study, all dietary treatments were supplemented with phytase and NSP-

degrading enzymes and this might have contributed to the lack of effect of protease on growth 

performance and nutrient digestibility. Supplementation of NSP-degrading enzymes have been 

reported to reduce the intestinal viscosity and empty weights of the small intestine (Simon, 1998; 

Dänicke et al., 2000). However, the lack of effect of dietary treatments on the jejunal digesta 

viscosity in current study can be explained by supplementation of NSP-degrading enzymes, in all 

diets.  

In the present study, the relative weight of jejunum and ileum was lower in birds fed whole 

barley compared to birds fed finely ground barley. Previous studies have shown that relative 

weight and length of intestinal segments were not affected by the substitution of ground wheat 

with whole wheat (Jones and Taylor, 2001; Engberg et al., 2004; Wu et al., 2004; Ravindran et al., 

2006). However, according to Brenes et al. (1993), a decrease in weights of pancreas and the GIT 

by whole-grain feeding may presumably be a result of an adaptive response to increased nutrient 

digestibility and availability which has also contributed to an increase in carcass yield. The present 

study showed that the main effect of barley inclusion method did not have any effect on the relative 

lengths of duodenum, jejunum and ileum. These results are in agreement with the results of 

Naderinejad et al. (2016) study, who reported that maize particle size had no effect on the relative 

length of GIT component. However, Amerah et al. (2007b) found that the gut components of birds 

fed coarse particles were relatively shorter than those fed medium particles. In a subsequent study, 

Amerah et al. (2008) reported that all gut components (duodenum, ileum, jejunum and caeca) were 

shorter in birds fed coarse particles compared to those fed fine particles in maize-based diets, but 

no difference was observed between particle sizes in wheat-based diets.  

In the current study, whole barley inclusion tended to decrease the length of the caeca 

compared to fine and coarsely ground barley. This could be attributed to the lower undigested feed 

materials being delivered to the caeca for fermentation as active gizzard might have contributed to 

better utilisation of nutrients and lower fermentation products in the caeca. Amerah et al. (2008) 

found that birds fed coarse ground maize had shorter caeca compared to fine ground maize diets. 
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Singh et al. (2014b) found that the length of caeca was unaffected when pre-pelleting inclusion of 

whole maize was increased from 0 to 450 g/kg; however, increasing up to 600 g/kg increased the 

relative length of the caeca. An interaction of barley inclusion method x protease was also observed 

for the relative weight of caeca where protease supplementation numerically reduced the relative 

weight of caeca in finely and coarsely ground barley diets whereas in whole barley diets, protease 

supplementation numerically increased the relative weights of caeca compared to diets without 

enzyme. Gracia et al. (2016) found that there was no significant effect of whole wheat on caecal 

weight. The higher relative weight of caeca in birds fed whole barley with enzyme might have 

contributed to lower water loss through excreta than those fed no enzyme. 

In the current study, protease supplementation did not have any effect on performance and 

nutrient digestibility. Reviewing the literature shows that the results of protease supplementation 

on performance and nutrient digestibility of broiler chickens are not consistent. Kocher et al. 

(2003) suggested that the efficacy of proteases might be affected by the type of the ingredients 

used in the diet. Some researchers have reported that the benefit of protease may be influenced by 

the presence of other enzymes such as xylanase and/or phytase (Sultan et al., 2011; Kalmendal and 

Tauson, 2012). Kocher et al. (2003) have stated that various functions of proteases may also 

depend on dietary formulation and ingredients used in the diet. With carbohydrases 

supplementation in the diet, two separate hypotheses on the mode of action have been suggested: 

the viscosity theory and the cell wall encapsulation theory (Bedford, 2002). Independent of which 

theory best describes the action of carbohydrases, it may be expected that an elevated accessibility 

to nutrients following the addition of xylanases would increase the potential of exogenous 

proteases to digest proteinous components in the feed. It has been reported that the addition of 

protease into the diet can significantly improve the digestibility of amino acids (Angel et al., 2011; 

Liu et al., 2013). But this effect has not been observed in the current study. Cowieson and Roos 

(2014) suggested that inherent digestibility of the control diet is important to see the protease 

effect. They reported that when the inherent digestibility of amino acids in the diet was less than 

70%, protease supplementation improved amino acid digestibility around 10%. However, when 

the inherent digestibility of amino acids in the diet was more than 90% there was 2% improvement 

in digestibility of amino acids by protease supplementation.  
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In summary, the current study demonstrated that when coarsely ground and pre-pelleting 

whole barley were fed to broilers, growth performance started to improve from early stage of life. 

The CAID of nutrients were also improved when coarsely ground and whole barley were fed. Both 

the increased weight of the gizzard and the inclusion of whole barley had a positive effect on the 

gizzard pH and nutrient digestibility and energy utilisation.  

3.5 Conclusion 

In conclusion, the findings of the present study suggest that coarse grinding and PRP whole 

barley inclusion resulted in enhanced nutrient digestibility and gizzard development and 

subsequently improved performance in broilers. Exogenous protease supplementation had no 

effect on broiler performance and nutrient digestibility. The lack of protease effects may 

hypothetically mirror a low potential for further improvements, due to the phytase and 

carbohydrase enzymes and high digestible components in the feed.  
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