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Abstract 

The use of strength and power training regimes is common place among elite and 

recreational athletes. However, the application of such methods as direct determinants 

of improvement in sporting performance is a controversial and much debated topic 

because the degree of transfer from the training exercise to the sporting application is 

unknown. In recent years combining strength and sport specific training methods into 

one training session ( complex training) has been promoted as a method to enhance 

training transfer. The purpose of this project was to examine the effect of complex 

training on horizontal power production in rugby players. 

9 participants completed two four week phases of training ( complex and standard) in a 

randomized order. Participant performance in 5RM squat, horizontal force and 

horizontal power was tested prior to and at the end of each training phase. 

A number of significant improvements were observed following complex training: 

maximum slope of the horizontal force curve increased by 12.29 ±33.59%, maximum 

power increased by 15.13 ± 7.49%, width of the power curve increased by 28.30 

± 18.16%, and maximum velocity during the horizontal power test improved by 20.63 

± 14.21 %. The improvements were significantly different from the respective standard 

training measures (p :'.S .05). 

It is concluded that power gains were a product of an enhanced ability to produce force 

at higher velocities. No significant weight gain or significant improvement in 5RM 

force production was associated with the improvement in maximum power. Therefore it 

is inferred that neural mechanisms accounted for the difference following complex 

training. The results presented here suggest that complex training not only improves 

horizontal power production but also transfers performance improvements to an 

untrained task by improving the rate of force development in the horizontal force 

condition. It appears that the complex training regime has in some way created a 

persistent change in the control mechanisms regulating the performance of both the 

horizontal strength and power conditions. 
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1 Introduction 

Action in sport is a direct manifestation of the only function of muscle fibres, namely 

the generation of force. The ability to produce force is affected by numerous factors; a 

strength and conditioning training programme is one such factor. 

Muscular strength and conditioning programmes and structured training programs have 

been used to enhance sporting performance since the ancient Olympic Games. This 

implies that some methods of strength and power development have been known for 

many years. However, the recognition of such methods as direct determinants of 

improvement in sporting performance is still in question. This is largely because the 

degree of transfer from the training application to the sporting situation is unknown. 

The following review discusses the methods of strength and power development, the 

mechanisms involved in them, and their applicability to the field of sport performance 

enhancement. 
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1.1 Muscular strength 

1.1.1 Definition of strength 

"Muscle fibres, the cells of skeletal muscles, have but one .function: to generate force. " 

(Billeter & Heppler, 1992). 

Muscular strength may be defined as the force or torque a muscle can exert against a 

resistance in one maximal effort (Potach & Chu, 2000; Wilson, 1994). The mechanism 

of muscular contraction is described by the sliding filament theory. In this context, force 

production is affected by several factors, including: 

1) the release of calcium into the myofibril, which 1s governed by the 

innervation of the muscle; 

2) the number of actin and myosin cross bridge interactions at a given position 

and time, determined by the length-tension and force-velocity relationships; 

3) the physiological cross sectional area of the muscle; and 

4) the anatomical structure of the muscle, that is the angle of muscle fibres 

relative to the tendon and line of force. 

The sliding filament theory of muscular contraction proposes that, after stimulation of 

the muscle fibre via the motor neuron, calcium ions are released by the sarcoplasmic 

reticulum. The calcium binds to troponin, which in turn creates conformational changes 

in tropomyosin allowing binding of the myosin head to the actin filament. Once bound, 

the myosin head bends drawing the actin filament towards the centre of the sarcomere; 

this is the power stroke. This process is facilitated by the cleaving of a phosphate group 
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from A TP within the myosin head, allowing binding to take place and leading to the 

power stroke (Billeter & Hoppler, 1992). 

The amount of calcium released is related to the frequency of stimulation from the 

innervating motor neuron. It is recognised that motor neurons stimulate more than one 

muscle fibre, and so the term motor unit (MU) incorporating the motor neuron and all 

the fibres it innervates is used to describe the functional unit of muscle action. MUs are 

recruited in an all or none fashion , meaning that all fibres within the MU contract 

simultaneously to produce force. Each individual stimulation and contraction of the MU 

is referred to as a twitch. Each single twitch produces a force pulse, and if stimulation is 

repeated prior to relaxation of the MU the force pulses of the two twitches summate 

creating a greater force than the single twitch. By decreasing the interval between 

twitches summation of force is enhanced and when stimulation is at maximum 

frequency twitches become indistinguishable in the force trace. This is a fused tetanus, 

and produces the largest amount of force that the MU can develop. MUs themselves 

may be broadly categorised into two classes or types; type I or slow twitch, and type II 

or fast twitch. Each type is identified using physiological characteristics; type I by its 

aerobic qualities and relatively low force capabilities, and type II by its anaerobic 

qualities and its relatively high force capabilities. All fibres within a MU are of the 

same type. 

The force that an individual sarcomere can produce is proportional to the number of 

actin and myosin filaments interacting at a given instant. The length-tension relationship 

indicates that the optimal position ( optimal interaction of actin and myosin) for a 

sarcomere to produce maximal force is at its resting length; when the sarcomere is either 

shortened or lengthened its force producing capacity will be diminished (Edman, 1992). 
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This implies that the length of the muscle itself will have a direct bearing on the force 

production possible at any given instant. The force a muscle can produce is also 

governed by the force-velocity relationship which relates the velocity of concentric 

contraction to force production. Contraction velocity will be discussed at a later stage. 

Muscle strength is proportional to the physiological cross sectional area (pCSA) of the 

muscle (Hunter, 2000; Roy & Egderton, 1992; Wilson, 1994). The greater the pCSA the 

greater number of sarcomeres in parallel and, consequently, the greater the maximum 

possible force production (Hunter, 2000). Speed of contraction of a muscle is 

proportional to the number of sarcomeres in series. Because type II muscle fibres have 

relatively short sarcomeres compared to type I, they will have more sarcomeres in series 

for a given length of muscle and consequently will contract faster than type I fibres. 

Therefore, type II fibres have the greatest potential for both maximal force production 

and velocity of shortening. 

The morphology of muscle (such as pennation) affects the force that a muscle can 

produce. The term pennation refers to the angle between the line of action of the muscle 

fibres and the line of the tendon to which they attach. In general, it is considered that a 

pennate muscle will have a greater number of sarcomeres in parallel compared with a 

non-pennate muscle and so it will have the potential to produce greater force. However, 

the number of sarcomeres in parallel must be great enough to compensate for the 

reduction in muscular force as a consequence of the oblique alignment of the muscle to 

the tendon. Therefore, if a pennate muscle has a sufficiently large pCSA it will allow 

the development of greater force than a non-pennate muscle of similar size. The 

morphology of muscle, such as fibre arrangement, origin and insertion, appears to be a 

genetic predisposition and so is unable to be modified by training. Consequently, 
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variation in muscle structure may account for differences in strength seen in individuals 

of similar physical stature with a similar proportion of type II MUs within a given 

muscle (Hunter, 2000; Roy & Egderton, 1992). 

Therefore, we may conclude that muscular strength is dependent on the proportion of 

high force producing MUs within a muscle, the neural activation of those MUs, the 

muscle pCSA, and the structure of the muscle. As a result, hypertrophy of muscle, 

increasing the number of MUs recruited, and increasing the rate of MU recruitment will 

enhance muscle strength. Hypertrophy and neural adaptation account for strength gains 

when muscle is subjected to a training stimulus. These two categories of adaptations 

occur within well documented time frames . It is reported that in the first 6-8 weeks of 

training neural adaptation precedes muscular adaptation; following this, muscular 

adaptation accounts for the majority of strength improvements. However, it appears 

possible that our ability to gain strength via muscular adaptation may be limited by 

genetic factors and so performance improvements beyond a certain point may only be 

gained by neural adaptations; that is learning to use what we have more effectively. 

1.1.2 Muscular adaptation to strength training. 

By adhering to the general principles of training, such as progressive overload, which 

allow muscle to be repeatedly and appropriately stimulated, muscle may be made to 

adapt and become stronger. The primary mechanism of muscular adaptation is 

hypertrophy. Because Type II muscle fibres have a greater ability to hypertrophy they 

have a greater potential for strength adaptation than Type I muscle fibres (Goldspink, 

1992; Goldspink & Harridge, 2003). When considering the method of recruitment of 

MUs (the size principle), training loads applied should be sufficiently heavy to allow 

full recruitment of all type II MUs in the muscle being trained. 
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1.1.2.1 Hypertrophy 

As the mechanisms of muscular hypertrophy are well known they will only be briefly 

discussed here; for a more detailed description see Goldspink (1992). Increase of fibre 

CSA is reported to be associated with a large increase in the myofibrillar content of the 

fibre as a consequence of myofibrils undergoing longitudinal splitting into two or more 

myofibrils (Goldspink, 1992). This process is reported to be stimulated by micro trauma 

within the muscle fibre caused by overload (performing heavily loaded contractions to 

fatigue). Repair of this micro trauma proceeds by two mechanisms; an increase in the 

rate of protein synthesis, or a decrease in the rate of protein breakdown (Goldspink, 

1992; Goldspink & Harridge, 2003 ). The myofibril increases in size because of the 

increased volume of the myofilaments actin and myosin, this increases the ability of the 

sarcomere to produce force and, at some stage, the force produced is large enough to 

create a "snap" of the z-discs effectively subdividing the myofibril. Hypertrophy of the 

muscle fibre may take place independent of any change in the size of the entire muscle 

because the increase in fibre CSA occurs at the expense of extra-cellular space 

(Goldspink & Harridge, 2003). It is important not to confuse myofibrilar proliferation 

with an increase in the number of muscle fibres (hyperplasia). 

1.1.2.2 Hyperplasia 

Hyperplasia is an increase in the number of muscle fibres and has not been reported to 

take place in human muscle as a result of training interventions. This is not to say that 

the mechanism for hyperplasia is not present. The presence of satellite cells, which 

appear to function as reserve muscle cells, could provide such a mechanism 

(MacDougall et al., 1992). Cadaver studies have shown that the muscles of dominant 

limbs contain a greater number of muscle fibres than those of the non-dominant limb 

(McCall et al. , 1996; Sjostrom et al. , 1990). This implies that chronic training or use of 
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musculature induces hyperplasia as a means of increasing pCSA. The lack of support 

for hyperplasia in the current literature may be a consequence of the mismatch between 

the time course of hyperplasia and the average training intervention (Sjostrom et al., 

1990). That is, the typical duration of training interventions used in scientific research is 

approximately 12 weeks, but the time course required to observe hyperplasia may be 

years rather than weeks or months. This then limits our means of enhancing pCSA in 

the short to medium term to the mechanisms of hypertrophy, which, in turn indicates 

that the principles of hypertrophy (muscular adaptation to resistance training) must be 

considered in any discussion of strength adaptation. 

1.1.2.3 Morphological Changes 

Strength training is reported to induce shifts in fibre type composition (Tesch & Alkner, 

2003). To understand this concept we must consider the Type II muscle fibres to exist 

as two sub-types or isoforms. One method of determining the isoform of muscle is to 

measure the myosin heavy chain (MHC) content. The isoforms are usually labelled 

Type I, Type Ila and Type Ilb. Strength training induces a shift from the expression of 

the Type IIb isoform towards the Type Ila (Goldspink & Harridge, 2003; Kraemer, 

2000; Schiaffino & Reggiani , 1994). However, there is no report of change in fibre type 

(Type II to Type I, or Type I to Type II) following resistance training. It is suggested 

that the Type Ilb isoform may be the default Type II fibre expression in 

unconditioned/untrained muscle, therefore, any training will promote a shift away from 

the Type Ilb isoform (Tesch & Alkner, 2003). This is supported by an investigation into 

detraining that shows an isoform shift back towards Type Ilb following a period of 

detraining (Anderson & Aagaard, 2000). This implies that the shift towards the Type 

Ila isoform following training may be an adaptation to allow more efficient force 

production. Therefore, the individual becomes more efficient a lifting an absolute load 
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following resistance training. Another way to think of this is to consider that the 

absolute load which was once maximal becomes sub-maximal , a greater load must now 

be lifted to achieve maximal activation of MUs. The physical outcome of this is 

increased strength. There may be implications of this shift for strength and power 

performance, however, these are yet to be explored and are beyond the scope of this 

study. 

1.1.2.4 Cardiovascular Changes 

The two most commonly reported cardiovascular changes following strength training 

are increased left ventricular wall thickness and decreased capillary density. There are 

other cardiovascular changes that occur as a response to strength training, but they 

appear to have little effect on strength or power performance (Fleck, 2003). 

When considering strength training regimes it is clear that improvement in strength as a 

function of muscular adaptation is a product of muscular hypertrophy and therefore, 

increase in pCSA. 

1.1.3 Neural component of strength adaptation 

Although strength is proportional to pCSA, increasing pCSA alone does not account for 

all strength gains; the non-hypertrophy gains are partly attributable to neural adaptation. 

Therefore, strength of a muscle is determined both by muscle size and the ability of the 

nervous system to activate the muscle appropriately. There appears to be a complex 

interaction of neural drive to the agonists, synergists, and antagonists involved m a 

movement (Sale, 2003; Wilson, 1994). Whatever interactions are present MU 

recruitment appears to be controlled, in the first instance, by the size principle. 
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1.1.3.1 Recruitment of Motor Units 

The size principle that governs the recruitment pattern of MUs may be described as 

follows; as the demand on muscle to produce muscular tension increases, MUs are 

recruited in order of increasing size. As described previously type I MUs tend to be 

smaller, low force producing MUs, while type II MUs tend to be larger, higher force 

producing MUs. Consequently, increasing muscle force is produced by initially 

recruiting small , low threshold MUs, then increasing the firing rate of those MUs, 

followed by the progressive recruitment of larger MUs, and finally by increasing the 

firing rate of the large MUs. Theoretically a voluntary contraction that incorporates the 

maximal number of MUs (high and low threshold) will produce the largest force 

possible. However, research has shown that maximal voluntary contraction (MYC) does 

not produce the maximum force possible from a given muscle (Belanger & Mccomas, 

1981 ). By superimposing electrical stimulation over MVC (known as the interpolated 

twitch method) additional force can be produced (Belanger & McComas, 1981 ). This 

suggests that improvement of MU recruitment could enhance strength. This is supported 

by observations of increased agonist activation and decreased difference between MYC 

force and force produced with stimulation superimposed over MYC following a training 

protocol (Hakkinen et al., 1992; Moritani & deVries, 1979). This suggests regulatory 

mechanisms are present governing the magnitude of voluntary production of force, and 

that training modifies these mechanisms allowing increased activation of MUs involved 

in producing the intended movement (agonists), and decreased activation of MUs 

inhibiting the intended movement (antagonists). 

1.1.3.2 Disinhibition 

Movement is essentially the sum of force produced in the line of the intended action by 

the agonist and any opposing force produced by the antagonist, that is, the true 
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expression of agonist force may be inhibited by the level of antagonist force. Exposure 

to high levels of tension has been repo1ted to reduce the sensitivity of Golgi Tendon 

Organs (the receptors which regulate muscle tension). This creates a disinhibitory effect 

allowing greater agonist activation and, consequently, greater force production. 

Disinhibition can occur in the absence of muscular hypertrophy (Wilson, 1994). 

Decreasing antagonist co-activation allows a truer expression of agonist force. Although 

the concept of reduced sensitivity of Golgi Tendon Organs appears to be widely 

accepted some authors reject it as an adaptation to strength training citing lack of 

evidence (Chalmers, 2002). Disinhibition theoretically allows increased agonist 

activation and increased muscle force which may, in some instances, be brought about 

via the synchronization of MU recruitment. 

1.1.3.3 Motor Unit Synchronization 

Synchronization of MUs refers to the coordination of different MUs within a muscle 

creating a synchronised firing pattern. Strength training reportedly increases 

synchronization of MUs resulting in increased force production (Wilson, 1994). This 

coordination enables greater force to be expressed through the combined effect of 

numerous MUs contracting simultaneously. Not only is the force of a contraction 

increased but also the Rate of Force Development (RFD) is enhanced. 

1.1.3.4 Rate of Force Development (RFD) 

In many situations it is not necessarily the magnitude of force that can be produced that 

determines sporting success, rather it is the rate at which force is developed. In theory 

two identical athletes who produce identical peak force in opposing directions (such as a 

scrummaging situation in rugby) would achieve zero net movement~ this suggests that 

the only means for athletes of similar size and force producing potential to gain 

advantage over the other is to reach peak force in a shorter time. In this situation the 
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athlete with more rapid RFD would be superior. This concept was explored in a 

comparison of untrained men and ski jump athletes (Komi, 1984). The author showed 

there was no difference between groups in peak force production during a leg extension 

exercise between groups. However, the defining attribute of the ski jump athletes was 

superior RFD. 

The type of training has also been shown to effect RFD. Hakkinen et al. (1985) showed 

that both explosive jump training and heavy resistance training improved peak force 

(11 % and 27% respectively). However, only explosive jump training was able to 

significantly alter RFD (24% improvement following explosive jump training compared 

to 0.4% improvement following heavy resistance training). It is suggested that increased 

motor neuron firing rates, selective recruitment of high threshold MUs, or both, account 

for this adaptation (Aagaard et al. , 2002; Sale, 2003). 

Therefore, it is clear that neural mechanisms exi st that allow greater expression of force 

and RFD independent of muscular adaptation. It is also clear that strength training 

methods are able to induce neural adaptations. 

1.1.4 Summary of Strength Adaptation 

Strength is the ability of the muscle to produce force . MUs are the functional units of 

the neuromuscular system and because they are composed of motor neurons and muscle 

fibres strength may be increased by inducing both muscular and neural adaptations. 

Muscular adaptation is primarily a consequence of muscular hypertrophy which is a 

result of increased net accumulation of protein within the myofibril; this ultimately 

causes myofibrilar proliferation and hypertrophy of the muscle fibre. Hypertrophy of the 

muscle fibre may occur without increasing pCSA of the muscle. An increase in the 
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number of muscle fibres , hyperplasia, is not believed to contribute to increasing pCSA 

in short term interventions. 

Neural adaptations that enhance strength include increased agonist activation, decreased 

antagonist activation, increased MU synchronization, increased firing rates and 

increased rate of force development. Neural adaptations are not limited by the time 

course associated with structural and metabolic repair/recovery processes seen m 

muscular adaptation; consequently, neural adaptations can occur more rapidly than 

muscular adaptation 

Therefore, it appears clear that optimisation of muscular strength requires optimisation 

of the muscle pCSA, and optimisation of the neural components of muscle action. In the 

absence of any of these adaptations maximal strength will not be fully realised. 

Furthermore, for those who have already achieved significant muscular adaptation, 

neural adaptation may be the only means of further improvement. This suggests that 

interventions may not need to be as long as those intended to induce muscular 

adaptation because it is recognised that the time frame associated with neural adaptation 

is shorter. 


