Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

EPIDEMIOLOGY OF EQUINE HERPESVIRUS INFECTIONS

ZHEN FANG FU

A thesis presented in partial fulfilment (75%)

of the requirement for the degree of

Master of Philosophy in Veterinary

Science at Massey University

ABSTRACT

The epidemiology of infections with equine herpesvirus (EHV) types 1 and 2 in foals on a Thoroughbred stud in New Zealand was investigated. As part of this study an ELISA test was developed to measure antibody titres to EHV-2 in equine sera. All the sera collected from the foals before the ingestion of colostrum were negative for antibodies to both EHV-1 and EHV-2. Soon after sucking, these foals had serum antibody levels against these two viruses similar to those of their dams. The maternally derived antibody to EHV-1 lasted for 3-4 months and antibody titres rose again at around weaning time. In contrast, passively acquired antibody to EHV-2 was rapidly supplemented by actively produced antibody.

Serological evidence suggested that most of the foals (85%) became infected with EHV-1, and 25% were reinfected in their first ten months of life; however EHV-1 was not recovered either from these mares or their foals during the investigation period despite the large increase in antibody titres. Serological evidence of EHV-1 infection in foals indicated that this occurred around the time of weaning when the maternally derived antibody had declined to a level which was presumably unprotective. The clinical signs which developed after EHV-1 infection were very mild, the main symptom observed being a profuse nasal discharge usually lasting two or three days, occasionally with an elevation of body temperature. The source of EHV-1 infection in foals could not be determined and there was no evidence to suggest that their dams were infected with EHV-1 around the time when the foals became infected. relationship between preinfection antibody titres (log 10) against EHV-1 and the viral infection was observed.

In contrast, EHV-2 was isolated from all of the foals by 2 to 4 months of age. The virus infection persisted in these animals for 2 to 6 months and stimulated continuous production of antibody. As soon as the antibody level against EHV-2 reached a peak, the

isolation of the virus decreased, and eventually EHV-2 was no longer isolated from these foals by 9 months of age. The foals possibly contracted EHV-2 infection from their dams since some of them excreted the virus around the time when EHV-2 was isolated from their foals. Clinical reactions at around the time of EHV-2 infection varied from foal to foal, ranging from subclinical to fever, mucopurulent nasal discharge and swollen submandibular lymph nodes. Two severely affected foals from which EHV-2 was isolated died of complications resulting from secondary bacteraemia. From these findings, an association between EHV-2 and the respiratory disease observed in these foals was postulated. However, the possible role of EHV-2 as a pathogen for young foals needs confirmation by further studies including experimental infection of gnotobiotic foals.

A trail for evaluation of Pneumabort-K (an EHV-1 subtype 1 vaccine) was conducted in these foals. Animals inoculated with the vaccine at the age of 30 and 60 days failed to respond serologically to the immunization, and it was assumed that this was due to the intereference of the high levels of passively acquired antibody. Based on this observation, another EHV-1 vaccination procedure for foals commencing at 80-90 days was recommended.

ACKNOWLEDGEMENT

The work described in this thesis was jointly supported by a China-NZ exchange scholarship, the Department of Veterinary Patholgy and Public Health, Massey University, and Mr. D.Benjamin of Field House, Matamata.

Thanks are due to Professor B.W.Manketelow who kindly made available the facilities of the Department of Veterinary Pathology and Public Health, Massey University for this study.

I would particularly like to thank Dr. R.B.Marshall, my supervisor, for his continuous help and encouragement throughout this project; Dr. D.J.Hampson for his commentary on some of the experiments, and particularly in the preparation of this thesis; Dr. M.R.Alley for his help whenever needed; and Mrs. Linley Denby for her excellent technical assistence.

The friendship and effort of the staff of the Matamata Veterinary Services, involving collection of all the materials, useful discussions and generous hospitality, are greatly appreciated, and special thanks are due to Merss L.G.Dickinson, J.B.Grimmett, and P.D.Jolly.

I am also indeted to Dr. A.J.Robinson, director of MRC Virus Research Unit, for his enthusiasm and useful suggestions; Mr. G.W.Horner, Veterinary Investigation Officer of Ruakura Animal Health Laboratory, Hamilton for advice and kindly suppling EHV-1 and EHV-2 viruses.

Finally, I would also like to thank all the staff in the Department of Veterinary Pathology and Public Health, especially Professor D.K.Blackmore for guidance in Epidemiology, Dr. K.M.Moriaty for advice in Immunology, Dr. G.V.Peterson for help with statistical analysis, Mr. P.N.Wildbore for administrative assistance, and Mr. T.Law for the preparation of the photographs.

TABLE OF CONTENTS

	ABSTRACT	i
	ACKNOWLEDGEMENTS	i
	TABLE OF CONTENTS	1
	INDEX OF TABLES	i
	INDEX OF FIGURES AND PLATES	2
Chapter 1	INTRODUCTION	•
Chapter 2	LITERATURE REVIEW	1
2.1	Equine Herpesviruses	1
2.1.1	Introduction	1
2.1.2	Virion Mophology and Structure	1
2.1.3	Resistance of EHVs to Inactivation	6
2.1.4	Propagation of EHV	
2.2	Equine Herpesvirus Type 1	10
2.2.1	Clinical Manifestations and Pathology of EHV-1	
	Infection	10
	Respiratory Disease	10
	Abortion	12
	Perinatal Mortality	13
	Paralysis	15
2.2.2	Epidemiology of EHV-1 Infection	16
2.2.3	Immunity to EHV-1 Infection	20
2.2.4	Immunization against EHV-1 Infection	2
2.3	Equine Herpesvirus Type 2	. 27
2.3.1	Introduction	27
2.3.2	Clinical signs and pathology	2
2.3.3	Enidemiology and Immunology of EHV-2 Infection	3.

Chapter 3	MATERIALS and METHODS	35
3.1	Animals	35
3.2	Sampling Procedures for Horses	35
3.2.1	Nasal swabs	35
3.2.2	Sera	36
3.3	Cell Culture	36
3.3.1	Storing and Reconstitution of cells	36
3.3.2	Growth and Trypsinization of Confluent Monolayers	37
3.4	Virus Isolation	37
3.5	Production of Virus Stocks	38
3.5.1	EHV-1	38
3.5.2	EHV-2	38
3.6	Titration of Viruses	39
3.7	Virus Identification	39
3.7.1	Observation of Virus Behaviour in Cell Culture	39
3.7.2	Electron Microscopy (EM)	39
3.7.3	Chloroform Sensitivity	40
3.7.4	Staining of Inclusion Bodies	40
	•	
Chapter 4	THE DEVELOPEMENT OF AN ELISA TEST FOR DETECTING	
	ANTIBODIES AGAINST EHV-2 IN EQUINE SERA	41
4.1	Introduction	41
4.2	Materials and Methods	41
4.2.1	Preparation of Antigen	41
4.2.2	ELISA Procedures	42
4.2.3	Standardization of ELISA	43
. A	Titration of Serum and Conjugate	43
В	Determination of Optimum Antigen Concentration	44
С	Colour Development	44
4.2.4	Titration of Test Sera	45
4.2.5	Expression of the ELISA Result	45
4.2.6	Comparision of ELISA Results with SN Results	
	and Virus Isolation	46
4.3	Results	46
4.3.1	Antigen	46
4.3.2	Standardization of Serum and Conjugate	46
4.3.3	Determination of Optimum Antigen Concentration	47

4.3.4	Colour Developement	47
4.3.5	Titration of Test Sera	48
4.3.6	Comparision of ELISA Titres with SN Titres	48
4.4	Discussion	49
Chapter 5	EQUINE HERPESVIRUS TYPE 1	61
5.1	Introduction	61
5.2	Meterials and Methods	62
5.3	Results	63
5.3.1	Passive Immunity	63
5.3.2	Response to Vaccination in Thoroughbreds	63
A	Response of Mares to Vaccine	63
В	Response of Foals to Vaccine	63
5.3.3	Evidence of Infection with EHV-1	64
A	EHV-1 Infection in Foals	64
В	EHV-1 Infection in Mares	65
С	Effect of Maternally Derived Antibody on Response to	
	Vaccination and the Occurrence of EHV-1 Infection in	
	Thoroughbred Foals	65
5.3.4	Relationship between EHV-1 Infection and Respiratory	
	Disease	66
5.4	Discussion	66
Chapter 6	EQUINE HERPESVIRUS 2	74
6.1	Introduction	74
6.2	Results	75
6.2.1	Maternally Derived Antibody	75
6.2.2	Virus Isolation	75
6.2.3	Serological Response	76
A	Serological Response of Foals to EHV-2 Infection	76
В	Serological Response of Mares to EHV-2 Infection	76
6.2.4	Clinical Observation Associated with EHV-2 Infection	
	in The Foals	77
6.2.5	Characterization of Viral Isolates	78
6.3	Discussion	78

Chapter 7	GENERAL CONCLUSION		94
		25 0	
	APPENDIX I		97
	APPENDIX II		100
	DEEEDENCES		4.01

INDEX OF TABLES

Table 4-1	Protein contents of viral and control antigens	52
Table 4-2	Serum-conjugate chequerboard titration	53
Table 4-3	Antibody titres to EHV-2 as measured by serum	
	neutralisation (SN) test and by ELISA test	54
Table 5-1	Serum antibody titres against EHV-1 in mares and	
	in their foasls after consumption of colostrum	71
Table 5-2	Serum antibody titres against EHV-1 in mares and	
	in their foals at one month of age	72
Table 6-1	Serum antibody titres against EHV-2 in mares and	
	in their foals after ingestion of colostrum	84
Table 6-2	Recovery of EHV-2 from foals	85
Table 6-3	Recovery of EHV-2 from mares	86

INDEX OF FIGURES AND PLATES

Figure	4-1	Comparison of ELISA activities at different dilution	
		of serum and conjugate	55
Figure	4-2	Comparison of ELISA activities at different antigen	
		concentrations (strongly positive serum) .	56
Figure	4-3	Comparison of ELISA activities at different antigen	
		concentrations (weakly positive and negative sera)	57
Figure	4-4	Titration curves of representative sera	58
Figure	4-5	Comparison of SN and ELISA antibody titres against	
		EHV-2	59
Figure	4-6	Frequency distribution of EHV-2 antibody titres	
		obtained by SN and ELISA	60
Figure	5-1	ELISA antibody titres against EHV-1 in mares and	
		their foals	73
Figure	6-1	Incidence of EHV-2 infection in foals	87
Figure	6-2	Prevalence of EHV-2 infection in foals	88
Figure	6-3	ELISA antibody titres against EHV-2 in mares and	
		their foals	89
Figure	6-4	Serological response of foal No. 7 to EHV-2 infection	90
Figure	6-5	Serological response of foal No. 11 to EHV-2	
		infection	91
Plate	6-1	Characteristic CPE of EHV-2 (3 days post infection)	92
Plate	6-2	Characteristic CPE of EHV-2 (5 days post infection)	92
Plate	6-3	Cowdry type A inclusion bodies in EHV-2 infected	
		cells	93
Plate	6-4	Morphology of EHV-2 under EM (enveloped, empty	
		particle)	93