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Abstract

Many New Zealand native bird species are under threat, and as such conservationists
are interested in obtaining accurate estimates of population density in order to closely
monitor the changes in abundance of these species over time. One method of estimating
the presence and abundance of birdlife in an area is using acoustic recorders; currently,
omnidirectional microphones are used, which provide no estimate of the direction of
arrival of the call. An estimate of the direction from which each sound came from would
help to discern one individual calling multiple times, from multiple birds calling in
succession – thus providing more accurate information to models of population density.
The estimation of this direction-of-arrival (or DOA) for each source is known as acoustic
source localisation, and is the subject of this work.

This thesis contains a discussion and application of two families of algorithm for
acoustic source localisation: those based on the Generalised Cross-Correlation (GCC)
algorithm, which applies weightings to the calculation of the cross-correlation of two
signals; and those based on the Multiple Signal Classification (MUSIC) algorithm,
which provides an estimate of source direction based on subspaces generated by the
covariance matrix of the data. As the MUSIC algorithm was originally described for
narrowband signals – an assumption not applicable to birdsong – we discuss several
adaptations of MUSIC to the broadband scenario; one such adaptation requiring the
use of polynomial matrices, which are described herein.

An experiment was conducted during this work to determine the effect that the
distance between the microphones in a microphone array has on the ability of that
array to localise various acoustic signals, including the New Zealand native North Island
Brown Kiwi, Apteryx mantelli. It was found that both GCC and MUSIC benefit
from larger inter-array spacings, and that a variant of the MUSIC algorithm known as
autofocusing MUSIC (or AF-MUSIC) provided the most precise DOA estimates.

Though native birdlife was the motivator for the research, none of the methods
described within this thesis are necessarily bound only to work on recordings of bird-
song; indeed, any multichannel audio which satisfies the necessary assumptions for each
algorithm would be suitable.

As well as a description of the algorithms, an implementation of GCC, MUSIC, and
AF-MUSIC was produced in the Python 3 programming language, and is available at
https://github.com/alexW335/Locator.
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Chapter 1

Introduction

1.1 Motivation

The New Zealand native kiwi bird is a national icon, its citizens adopting the bird’s
name as a demonym, and its name even being adopted by state-owned businesses such
as Kiwibank and KiwiRail. Unfortunately, the kiwi, along with many other native birds,
is under threat – four out of five living kiwi species are categorised as “Vulnerable” by
the IUCN Red List, and two of the five are further decreasing in number [1–5]. In order
to preserve the species, conservationists use information about both the number and
the whereabouts of animals to effectively target their efforts, and to establish trends in
population counts. There are six main methods used by the New Zealand Department
of Conservation in their Kiwi Recovery Programme to determine the presence and
abundance of kiwi in a given area [6, 7]:

• Casual observations, i.e. reported sightings of signs of kiwi by the general public,
including sightings of any of: the birds themselves, their feathers, probe holes
(holes left in the ground from the kiwi searching for insects), footprints, or their
faeces.

• Kiwi call counts. These are voluntary counts of kiwi vocalisations, often con-
ducted by field workers when working in areas which are already known to be
potential kiwi habitats. These call counts involve standing at a location for two
hours and listening for birds. Upon hearing a potential kiwi call, the listener
records the time, estimated distance, and direction-of-arrival of the call.

• Use of acoustic recorders. This involves placement of a single omnidirectional
microphone in a location of interest, and returning later to collect the recorded
audio for analysis. These microphones may record for long periods of time, and
have a detection rate around 80% that of the human call counts as described
above, however they cannot estimate the direction from which each bird call was
heard.

• Walk-through surveys. These are where the conservationist walks through an
area of interest, recording the time and approximate position of any kiwi calls
heard, as well as transmitting pre-recorded kiwi calls to incite replies.
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CHAPTER 1. INTRODUCTION 2

• Dog surveys. In areas which are known to be high-density kiwi habitats, the use
of trained “kiwi dogs” is possible. These are highly trained dogs which have been
trained to track kiwi using their scent.

• Trail cameras. Motion-activated infra-red cameras have become common-place
for their use in game hunting, and may be affixed to a tree and left to record
images for up to a year with no necessary maintenance. Trail cameras may
potentially enable the identification of individual birds, however they require the
birds to pass through the camera’s field of view, which is a much smaller area
than that covered by acoustic recorders; the kiwi must pass directly in front of
the camera within a few meters, whereas in ideal conditions the kiwi call can be
heard and recorded from up to 2 km away.

The method using acoustic recorders benefits from having a large area of effect, being
minimally invasive, and requiring low human input once set up. However, one omni-
directional microphone as currently used can not discern between sources in space; i.e.
it may not be possible to distinguish whether two recorded calls arose from two birds
at separate locations, or one bird calling twice. To address this, we aim to record on
multiple microphones simultaneously, and to use the multi-track audio captured to esti-
mate the birds’ relative direction from the microphones at the time of its vocalisations,
in a procedure is known as acoustic source localisation. These direction estimates may
then be used to better distinguish between individuals in situations as described above,
and hence provide more precise estimates of population density such as was done in a
2016 study on gibbon populations by Kidney et al. [8].

1.2 Objectives

We aim to provide a thorough and cohesive overview of both the GCC algorithm,
and several variants of the MUSIC algorithm (MUSIC, ISSM, AF-MUSIC, PS/PSS-
MUSIC), the latter of which requires the description of polynomial matrices. As well as
a discussion of the theoretical basis for each algorithm, we will provide a software im-
plementation of a subset of them in the Python programming language, to be available
for public use. We will demonstrate the use of the code in the localisation of several
sounds, including the call of the female North Island Brown Kiwi, Apteryx mantelli,
and use it to investigate the effect that the geometry of the microphone array has on
its ability to effectively localise sources.

1.3 Results

Of the two algorithms tested; GCC, and a variant of the MUSIC algorithm known as
autofocusing MUSIC (or AF-MUSIC), both appeared to be able to adequately localise
the sources trialled, to different degrees of precision. Several adaptations (known as
‘processors’) of the GCC algorithm were tested, with one of the more versatile ones
known as ρ-PHAT showing the most promise for use in acoustic source localisation. In
general, AF-MUSIC provided a more precise DOA estimate than the GCC algorithm, as
well as a lower tendency to provide false estimates – however at a higher computational
cost.
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1.4 Outline

This thesis is organised as follows. Chapter 2 provides a summary of the current state
of the field of Acoustic Source Localisation, as well as a discussion of methods for
the eigenvalue decomposition of polynomial matrices. Chapter 3 introduces the GCC
algorithm; one of the two algorithms which were selected for use in direction-of-arrival
estimation for this thesis. Chapter 4 introduces the concept of polynomial matrices,
and discusses their eigenvalue decomposition and some related properties. Chapter 5
introduces the second algorithm of interest – the MUSIC algorithm – and some relevant
variants, including one which utilises the polynomial matrices described in Chapter 4.
Chapter 6 describes the experiment conducted as part of this research, and Chapter 7
both provides an overview of the results, and outlines the scope for future work.



Chapter 2

Literature Review

2.1 Acoustic Source Localisation

Technologically aided Acoustic Source Localisation dates back to at least as far as
1918. Sir Alfred Rawlinson wrote in The Defence of London [9] about a ‘machine’
used for localisation of enemy airships when visibility was low. Two large gramophone
trumpets, with doctors’ stethoscopes affixed to the base, were attached to either end of
a long horizontal pole which was free to rotate around a central pivot. Blind men, with
their already elevated sense of hearing [10, 11], were then stationed at each of these
machines and instructed to turn their heads – and thus the machine attached to them
– towards the sound of an enemy aircraft. While they turned, a pencil and compass
pad tracked the bearing towards which they were facing. Several of these contraptions
were stationed surrounding London, and were used to track the flight paths of German
warplanes as they flew overhead. Though we may not apply this method directly in
our goal of localising birdcalls, it sets the scene for the idea of technologically aided
acoustic source localisation; in essence, we aim to virtually replace the gramophone
trumpets with microphones, and the man steering the machine with a computer.

The act of localising a sound generally involves using in some way the time-delays
induced by the signal arriving between pairs of receivers. For example, if a plane wave
arrives at your right ear τ seconds before it arrives at your left ear, and your head is d
meters in diameter, then the sound must have came from

θ◦ = ± arccos

(
csτ

d/2

)
, (2.1)

where cs is the speed of sound in air. Using 2.1, we can reduce the problem down to
estimating these time-delays from the observed data. However, estimating the time-
delay between two waves is not trivial. One approach is to use the cross-correlation
between two functions f(t) and g(t), Rfg(τ), defined by

Rfg(τ) =

∫ ∞
−∞

f(t)g(t− τ)dt, (2.2)

which is a measure of the similarity of f and g as a function of the time-delay τ . Even
before the advent of digital signal processing (DSP), the cross-correlation between two

4



CHAPTER 2. LITERATURE REVIEW 5

signals was being used to produce an estimate of the time delay [12, 13]. It was in
the 1960s that Cooley and Tukey [14] described arguably one of the most important
algorithms of all time, known as the Fast Fourier Transform (FFT), and with it opened
the door for DSP to begin to see widespread use. The Fast Fourier Transform brought
with it the ability to speed up the computation of the correlation hugely, thanks to the
convolution theorem. This allowed the correlation to be a useful tool in practice, rather
than just in theory, as it brought the computation time down to something practical.

The first major work related to Acoustic Source Localisation came from Peter Roth
in his 1971 paper Effective Measurements Using Digital Signal Analysis [15]. Roth
realised there was a problem not with the correlation itself, but with its common
interpretation. He showed that the current interpretation of the correlation between
two functions was only valid in particular cases, and as a result was in general not
showing what it was thought to show. Roth then developed a weighting to apply to the
correlation during its calculation which made the end result more easily interpretable,
and less ambiguous. The Roth Processor, as it is now known, does not appear to have
been used widely since then, however it was later shown to be a Maximum Likelihood
estimator for the time delay between two signals under certain conditions [16].

2.1.1 The Generalised Cross-Correlation

In 1976, Knapp and Carter proposed the now common-place Generalised Cross-Correlation
(GCC) algorithm [16]. Knapp and Carter further investigated Roth’s discussion of ap-
plying weightings during the calculation of the correlation, and found that applying dif-
ferent weightings corresponded to different forms of a particular kind of pre-processing
known as filtering. Filtering is the process of removing or amplifying particular com-
ponents of a signal; a common example of a filter is the ubiquitous audio equaliser,
found in cellphones, televisions and media players. Knapp and Carter described how
one particular weighting, the Phase Transform (leading to a variant of GCC known as
GCC-PHAT), theoretically provides a very precise estimate for the time delays, pro-
vided that the noise in the signal is uncorrelated both with the source and with itself
between channels. GCC-PHAT has been used widely since then, for example: Wang
and Chu used a modified GCC-PHAT to automatically direct a video camera in a
videoconferencing environment [17]; and Gray and Hioka tested the PHAT weighting,
along with a Maximum Likelihood weighting and a linear combination of the two, in
locating New Zealand Kiwi [18]. Gray and Hioka exploited the known harmonic struc-
ture of the kiwi call to automatically distinguish sections in the data which contain
calls from those which do not, and thus estimate the harmonic structure of noise for
use in their Maximum Likelihood weighting. Other GCC weightings exist, including
the Eckart processor [16] and the Smoothed Coherence Transform (SCOT) [19], both
of which act to apply a lighter weighting in the calculations to the frequencies which
have a lower estimated signal-to-noise ratio, and thus weight the source higher in the
calculation. Ritu and Dhull [20] provide a summary of the different processors, and a
comparison of their performance.
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2.1.2 The Multiple Signal Classification (MUSIC) Algorithm

In 1979, Ralph Schmidt proposed a method with higher resolution than GCC, which
takes a different approach altogether. The algorithm, known as Multiple Signal Clas-
sification (or MUSIC), uses calculations based on subspaces generated from the data,
rather than directly using the data itself. Schmidt originally proposed the algorithm at
the RADC Spectrum Estimation Workshop, held in October 1979 at Griffiss Air Force
Base, New York – however as the proceedings from that workshop were very limited in
circulation, and as the method quickly became the standard for use, Schmidt’s paper
was republished in IEEE Transactions on Antennas and Propagation in 1986 [21]. MU-
SIC has an advantage over GCC in that it may estimate multiple simultaneous source
directions, as well as the characteristics of the original sources. MUSIC also benefits
from ‘superresolution’, i.e. its method of action does not confine its DOA predictions
to be discretised by the discrete nature of the data. MUSIC does come with its dis-
advantages, however, primarily that in its original form it is confined to work on only
one frequency component of the data. This means that for broadband situations, i.e.
ones in which the signal to be localised is built up out of a wide range of frequencies,
MUSIC only utilises a small amount of the available information.

The extension of traditional MUSIC to a broadband scenario has been done in at
least three distinct ways: the first, and simplest of the three, is to break the signal
up into many smaller frequency bins to apply regular MUSIC to, and then produce a
weighted linear combination of the resulting location estimates [22]. This method is
known as the Incoherent Signal Subspace Method (ISSM), and breaks down both in sit-
uations where there are a different number of sources across different frequency ranges,
and in a low signal-to-noise ratio environment. The second method is an advancement
on the first, known as auto-focusing MUSIC, or AF-MUSIC [23]. AF-MUSIC ‘shifts’
the covariance matrices from all frequencies up to some reference frequency in such a
way that leaves their eigen-structures intact, and then runs the traditional MUSIC al-
gorithm on this combined space. The third approach is to use polynomial matrices [24]
(a polynomial matrix is a matrix with polynomial entries, or equivalently a polynomial
with matrix coefficients) and the polynomial eigenvalue decomposition (PEVD) [25].
The ISSM and polynomial matrix methods for broadband MUSIC are compared in a
paper by Alrmah, Weiss, and Lambotharan [26], in which the PEVD-based approach
to broadband MUSIC was introduced. Weiss et al. [27] showed that the method using
polynomial matrices had benefits in accuracy and resolution over the frequency-binned
option, assuming one has an efficient method of calculating the PEVD. This assumption
is further discussed in Section 2.2.

Returning our attention to the narrowband MUSIC algorithm, Barabell [28] ob-
served that for a particular array design known as a Uniform Linear Array (ULA) –
where the microphones are spaced equidistant along a straight line – the search over
the angle parameter that MUSIC leaves the user with can be removed, and the problem
may be solved directly by finding the roots of a polynomial. This new algorithm, called
root-MUSIC, allowed for greatly reduced computational effort at the cost of having an
enforced array geometry. Friedlander [29] then extended the root-MUSIC algorithm to
arbitrary array designs by using ‘interpolated’ arrays; virtual ULAs imagined within the
actual physical array. Coventry [30] then extended this to the broadband scenario using
a polynomial eigenvalue decomposition algorithm, similar to Alrmah et al.’s approach
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to broadband MUSIC [26].

2.1.3 The Min-Norm Algorithm

In 1983, Tufts and Kumaresan described another subspace-based algorithm, similar to
MUSIC, known as Min-Norm [31]. Min-Norm had a similar advantage to root-MUSIC
over traditional MUSIC in that it allowed for direct computation of results – how-
ever, similarly to root-MUSIC, the original Min-Norm algorithm was only applicable
to ULAs. Even with this restriction, the advantages of this method over root-MUSIC
were two-fold. Firstly, in low signal-to-noise ratio environments Min-Norm is a more
accurate method of DOA estimation by design; and secondly, the algorithm is designed
such that false solutions tend to lie on the unit circle and correct solutions far from it
– allowing for easy detection of incorrect estimates.

Li, Vaccaro, and Tufts in 1989 described an extension of Min-Norm to arrays of
arbitrary design [32], which brought with it both advantages and disadvantages. Two
of the main advantages to this extension are that perturbations to an array may simply
be calibrated to and dealt with, and that the end user is as such not confined to the
ULA array design. With the increased versatility came the disadvantage of increased
complexity – instead of finding the roots of a polynomial, the problem again became a
search problem, i.e. we are left with a function of the estimated direction-of-arrival θ
to maximise, as is done in MUSIC.

Though the statistical performance of Min-Norm has been analysed showing promis-
ing results [33–35], it remains less common in practice than MUSIC. Li and Vaccaro [35]
showed that the variance in the DOA estimation error for the Min-Norm algorithm is
bounded below by that of MUSIC, and that the variances in the error introduced by
polynomial root-finding algorithms which are used in the original Min-Norm algorithm
are identical to those introduced by extrema-finding algorithms such as are required
for MUSIC.

2.1.4 ESPRIT

In 1985, Roy, Paulraj, and Kailath proposed a new algorithm by the name of Estimation
of Signal Parameters via Rotational Invariance Techniques, or ESPRIT [36]. ESPRIT
is a subspace-based algorithm similar to MUSIC, with several important improvements
over MUSIC: it does not require knowledge of the microphone characteristics; it is less
complex from a computational perspective, as it directly calculates the DOA estimates
rather than searching for them over some space; it does not require calibration of the
array; and it simultaneously estimates the DOAs and the number of sources. ESPRIT’s
main disadvantage is that it requires a very specific array geometry, where each element
in the array is in fact a pair of microphones separated by some constant shift in space
– for example, if one microphone was 12cm North-East of the other in one microphone
pair, then every other pair must have the same separation.

ESPRIT performs similarly to, though slightly worse than, MUSIC [37–39], how-
ever if the physical design of the array is free to meet the specifications required for
the algorithm and runtime is an important factor in the use-case, then it is still a good
choice. ESPRIT was used by Tao alongside time-reversal microwave imaging to locate
and image breast tumours [40], and by Sun et al. for imaging road surface layers via
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ground penetrating RADAR [41]. ESPRIT has been extended for use in uniform cir-
cular arrays (UCA-ESPRIT) [42], as well as specialised for use in uniform rectangular
arrays [43].

2.1.5 Beamforming

Beamforming is another related algorithm, which is used to focus the constructive
interference of multiple transmitters to a localised point in space – commonly used,
for example, in radar & sonar systems [44], 5G technology [45–47], and Wi-Fi net-
works [48]. Beamforming may also be used for “directionally focused recording”, where
it is used to attract the focus of a microphone array to a particular point in space – for
example, to focus recording on the speaker at a conference or in a videoconferencing
environment [49–52].

Though beamforming has often been applied to the situation of unknown DOA [53,
54] this is often an extension of the ‘focused recording’ problem, rather than solely to
provide a location estimate for the source, and it is common to find papers which refer
to ‘unknown DOA’ in the context of enhancing a component of interest from a signal
without knowing from which direction that component came. Nevertheless, Krishnaveni
et al. surveyed the use of beamforming as it pertains to DOA estimation [55]; this
consists of retrospectively applying beamformers to observed data, and finding which
direction maximised the sum of the beamformers’ output.

2.1.6 Machine Learning

The recent explosion in popularity of artificial neural networks (ANNs) has not left the
field of acoustic source localisation untouched. Though the physical interpretation in
the situation of DOA estimation is clear, and we may directly establish deterministic or
statistical estimates for the DOA, several groups have applied ANNs to the problem of
acoustic source localisation. Agatonovic et al. [56] designed a system in which a multi-
layer perceptron performed a crude discretisation of the search space, and a radial basis
function neural network was used to get a finer approximation of the DOA from within
the reduced search space. The results were comparable to two-dimensional MUSIC, but
with a considerable increase in speed owing to the computationally inexpensive nature
of the ANN feed-forward (prediction) process. This was offset somewhat by the large
amount of time taken to train the model (though this is typically a task completed
during development and not at the time of use). Unlersen and Yaldiz [57] fed the
covariance matrix of the data from a five element ULA into a simple two-layer neural
network with a hardmax 19-node output layer. They only trained the model on sources
in front of the array, and obtained an output resolution of 10 degrees. The results
appear promising, however no comparisons were made with the predictions from a well-
established method such as MUSIC or ESPRIT. Yang, Chan, and Chang [58] designed
a complex-valued neural network with limited results, which were again not compared
to those from any other algorithms. Adavanne, Politis, and Virtanen [59] designed
a deep neural network (referred to as DOAnet), consisting of two key components:
a convolutional neural network (CNN), stacked on top of a recurrent neural network
(RNN). This structure is known as a convolutional recurrent neural network (CRNN).
The CRNN was trained directly on a portion of the Fourier Transform of the data.
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DOAnet was incredibly promising, being shown to perform considerably better than
MUSIC in most scenarios in which it was tested. Chakrabarty and Habets [60] opted for
a simpler CNN which they trained on white noise, which they showed to generalise to
speech signals. The trained CNN was robust to both noise and small perturbations in
array geometry, however did not allow for localisation of multiple simultaneous sources.

2.2 History of the Polynomial Eigenvalue Decomposition

It was mentioned that the adaptations to the MUSIC algorithm using polynomial ma-
trices had significant benefits in accuracy over the frequency-binned option, assuming
one has an efficient method of calculating the Polynomial Eigenvalue Decomposition
(PEVD). This is not a trivial matter; in fact, particularly in recent years, there has
been extensive work on obtaining computationally tractable PEVD algorithms, as well
as in the underlying theory of polynomial matrices.

The road to a complete theory of polynomial matrix algebra, including the PEVD,
begins at least as early as 1993 with Vaidyanathan [61], who investigated the idea
of paraunitary matrices (the polynomial matrix equivalent of unitary matrices), and
constructing them with a series of delays interspersed by rotations. In 1996, Russell
Lambert gave explicit mention of “FIR Matrix Algebra” with respect to the separation
of multipath mixtures and blind decorrelation [62]. FIR stands for “finite impulse
response”, a term which implies that the polynomial representation of a filter has
finitely many non-zero coefficients. Vaidyanathan, in 1998, published a paper on the
theory of optimal subband coders [63], and introduced the concept of strong (or total)
decorrelation. This work would later be used to show the tendency of a particular PEVD
algorithm, known as SBR2, to impose a strict ordering on the returned eigenvalues; an
attribute known as spectral majorisation. Gao and Nguyen [64] described in 2001
the factorisation of matrices which contain a specific type of polynomial – ones that
describe a particular type of filter known as a causal FIR filter. In 2003, Do-Hong
and Russer [65] described a way to split an aspect of the calculation for spatially-close
wideband sources into two separate components via Bessel functions – one component
modelling source direction, and one modelling source separation.

The first method for numerical calculation of the PEVD, known as the Sequential
Best Rotation algorithm with Second Order Statistics (or simply SBR2), was intro-
duced as a prototype by Baxter and McWhirter in 2004 [66]. SBR2 is an iterative
algorithm which effectively treats the polynomial matrix as a stack of scalar matri-
ces: one matrix corresponding to each polynomial degree. At each iteration, some
off-diagonal energy is shifted to the constant coefficient matrix, and then that shifted
energy is subsequently rotated down onto the diagonal. In 2007, SBR2 was properly
introduced by McWhirter, Baxter, Cooper, Redif and Foster [25], alongside a proof of
convergence and demonstration of its tendency for spectral majorisation. In 2010, An-
dre Tkacenko released an algorithm similar to SBR2 which didn’t require full knowledge
about the matrix to be diagonalised, and could thus be used in the frequency domain
as well as the time domain [67]. Another advantage of the PEVD algorithm suggested
by Tkacenko is that the size of the ‘stack’ of matrices only increases by one in each
iteration, in contrast to SBR2, in which this increase is variable and on average much
larger. The same year, Weiss, Millar and Stewart published a paper on the inversion
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of parahermitian polynomial matrices [68] (a parahermitian matrix is the polynomial
matrix equivalent of a complex hermitian matrix, and appears as the generalisation of
the covariance matrix in the setting of polynomial matrices). This paper relies on the
existence and uniqueness of the EVD of a parahermitian matrix, which had not yet
been proven. Also in 2010, Rasmus Brandt published his thesis entitled “Polynomial
Matrix Decompositions” [69], which summarised the methods available at the time.

2011 brought with it the extension of the MUSIC algorithm to the broadband
scenario via the use of polynomial matrices, in a paper published by Alrmah, Weiss,
and Lambotharan [26]. With this came two versions of polynomial MUSIC, known as
polynomial spatial MUSIC (PS-MUSIC) and polynomial spatio-spectral MUSIC (PSS-
MUSIC). The same year, Redif, Weiss, and McWhirter published an extension of the
algorithm proposed by Tkacenko based on Householder transformations, which could
handle arbitrary-degree FIR paraunitary matrices. Though broadband MUSIC via
polynomial matrices was now established, one aspect of the calculation known as the
steering vector was difficult to produce accurately. Alrmah, Weiss, and McWhirter
saw to this issue in their 2013 paper “Implementation of Broadband Steering Vectors
for Broadband Angle-Of-Arrival Estimation” [70]. This year, other common scalar
matrix techniques were posed in the polynomial framework, including comparing AF-
MUSIC to both PS-MUSIC and PSS-MUSIC, and showing their equivalence in certain
situations [27]. Another method, known as the parametrised spatial covariance method,
was later added to the comparison [71]. Tohidian, Amindavor, and Reza [72] introduced
another way of obtaining the PEVD through the two-dimensional Discrete Fourier
Transform (DFT) and a point-wise calculation around the unit circle.

In 2014, the Sequential Matrix Diagonalisation (SMD) algorithm for calculation of
the PEVD was introduced by Redif, Weiss, and McWhirter [73]. This is similar to
SBR2, but delays more off-diagonal energy per iteration, and diagonalises the entire
constant coefficient matrix, instead of only rotating a small amount of energy onto
the diagonal. That year, the same authors alongside Corr, Thompson, and Proudler,
published an improved version of SMD known as Multiple-Shift Maximum-Element
SMD (MSME-SMD) [74], which makes multiple shifts per iteration and has a different,
restricted, search phase as compared to regular SMD. Alrmah, Corr, Alzin, Thomp-
son, and Weiss compared use of MSME-SMD and SBR2 in the MUSIC algorithm, and
showed MSME-SMD produced more accurate DOA estimates [75]. To avoid the com-
putational cost of a full diagonalisation of the constant coefficient matrix via an EVD
in SMD algorithms, Corr, Thompson, Weiss, McWhirter, and Proudler proposed the
use of a series of Givens rotations performed in a particular order to minimise residual
off-diagonal elements [76].

The following year, the same “multiple shift” idea from MSME-SMD was applied to
SBR2 by Wang, McWhirter, Corr, and Weiss, to create the MS-SBR2 algorithm [77],
which was published alongside a proof of convergence. In general, the memory required
by the SBR2 algorithm (or SMD, or any variant of these two) grows rapidly at each
iteration of the process, and Corr, Thompson, Weiss, McWhirter, and Proudler pro-
posed a way of keeping these memory requirements low for multiple-shift variants by
utilising the commutativity of delay operations [78]. Also in 2015, Corr, Thompson,
Weiss, Proudler, and McWhirter proposed a method of reducing the complexity of
the initial search step in MSME-SMD, leading to Reduced Search Space MSME-SMD
(RS-MSME-SMD) [79].
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Several papers dealing with memory and complexity reduction for PEVD algorithms
were released in 2016. Wang, McWhirter, Corr and Weiss adapted the delay strategy
of the MS-SBR2 algorithm to create order-controlled MS-SBR2 (OC-MS-SBR2) [80].
Coutts et al. proposed utilising the symmetry present in a parahermitian polynomial
matrix to reduce the storage requirements by a factor of two, and illustrated how to
perform delays in this reduced representation [81]. The same authors also demonstrated
how to reduce computational complexity in algorithms requiring a cyclic sweep of Jacobi
rotations, and proposed thresholding the delayed elements in the constant coefficient
matrix to decide whether it was worth expending the computational effort required to
rotate them [82].

In 2017, Dr Jamie Corr published his PhD thesis entitled Advanced Algorithms for
Polynomial Eigenvalue Decomposition [83]. This was a comprehensive account of the
available algorithms at the time, including SBR2, SMD, ME-SMD, MSME-SMD, and
MS-SBR2; as well as discussion of truncation methods, search-space restriction, and
complexity reduction. Also included were discussions of applications of the PEVD,
including polynomial MUSIC algorithms, the generalised polynomial EVD, and para-
hermitian matrix inversion. Dr Corr’s thesis is an excellent reference for this material,
and includes visualisations which help build further intuition about the algorithms dis-
cussed. The same year, Redif, Weiss, and McWhirter discussed the relevance of the
PEVD to broadband blind signal separation; noting its uses in underwater acoustics
and suppression of unwanted radar back-scattering [84]. Coutts, Thompson, Weiss, and
Proudler published a divide-and-conquer variant of SMD named DC-SMD this year [85],
and analysed its performance on data from large broadband sensor arrays [86]. The
same authors also compared SBR2, SMD, and DC-SMD for use in the SSP-MUSIC al-
gorithm on a 12-element sensor array, with DC-SMD showing the best performance [87],
and published a comparison between iterative and DFT-based PEVD algorithms for
different scenarios [88]. Iterative methods were shown to be a good choice for diagonal-
ising low-dimensional matrices, and DFT-based methods were shown to perform well
in scenarios with a low initial lag parameter.

The following year, Coutts, Thompson, Pestana, Proudler, and Weiss extended the
most common DFT-based method for calculation of the PEVD to not require a priori
information of the order of the eigenvalues/eigenvectors to be calculated. The same
paper introduced a new metric for the smoothness of a function on the unit circle,
and used this to enforce smoothness of the eigenvectors [89]. Despite all the effort
going into calculating the PEVD of a parahermitian polynomial matrix, the existence
and uniqueness of such a decomposition was not proven until the 2018 paper On the
Existence and Uniqueness of the Eigenvalue Decomposition of a Parahermitian Matrix
by Weiss, Pestana, and Proudler [90].



Chapter 3

Generalised Cross-Correlation
(GCC)

Consider some real signal s(t) impinging on an array of 2 sensors x1 and x2 from
some angle of arrival θ. For demonstration, in this chapter we shall use a 22050 Hz
recording of the female North Island Brown Kiwi call, simulated as if captured on two
microphones 10 meters apart. Figure 3.1 shows two visualisations of the data; in both
the spectrogram in 3.1(a), and the raw data plot in 3.1(b), the two channels appear
similar, with a visible horizontal (time-axis) shift.

(a) Spectrogram of Kiwi Data (b) Raw Plot of Kiwi Data

Figure 3.1: Simulated recording of a North Island Brown Kiwi call with a 642.67 sample
delay between channels, caused by the signal travelling 10 meters at 343.1 meters per
second, while being sampled at 22050 samples per second.

The data captured at the two sensors may be modelled by:

x1(t) = s(t) + n1(t) (3.1)

x2(t) = αs(t−D) + n2(t), (3.2)

where D is the relative delay caused by the sound having to traverse the distance
between the two microphones, α is an attenuation factor to model the decay in volume
as the signal travels between the microphones, and n1(t) and n2(t) are independent
and identically distributed additive Gaussian noise. As the time delay is relative to the

12
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two microphones, we may without loss of generality assume that the signal is at sensor
x1 at time t = 0 with attenuation factor 1, which is why α and D only appear in the
equation for x1(t). Notice that D is governed by the angle of arrival θ, as well as the
array geometry. Assuming that the array geometry is known a priori, we aim to work
backwards and estimate θ through the delay D. But how do we find an estimate of D?

3.1 The Fourier Transform

A tool of particular use in the remainder of this thesis is an integral transform known
as the Fourier Transform, which will be introduced here before continuing on to the
Generalised Cross-Correlation. The Fourier Transform is a common tool in engineering
applications, as it acts to change a function of time into a function of frequency; for
example, one may transform a recording of a musical chord to be able to investigate its
constituent notes, or transform a set of time-series data to identify different periodic
components.

The Fourier Transform of a continuous time function g(t), denoted F {g(t)} (f), is
given by the integral

F {g(t)} (f) =

∫ ∞
−∞

g(t)e−2πiftdt. (3.3)

In practice, such as in the case of working with audio data sampled by a computer,
the signal of interest is a function of discrete time (n ∈ Z) instead of continuous time
(t ∈ R), and one wishes to obtain a discrete function of f . In this case, we may use the
Discrete Fourier Transform (or simply DFT) of a discrete signal x[k], given by:

X[fn] = DFT {x[k]} =
N−1∑
k=0

x[k]e−2πink
N , (3.4)

which turns a series of N samples in time x[0], ..., x[N − 1] into a series of N samples
in frequency X[0], ..., X[N − 1]. Here, rather than use the “F” notation, we simply
capitalise the variable name to symbolise that it is now a function of discrete frequency
rather than discrete time. The inverse of Eq. (3.4) is the Inverse Discrete Fourier
Transform (or IDFT), given by

x[n] = IDFT [X[n]] =
1

N

N−1∑
k=0

X[fn]e2πink
N . (3.5)

For analytic work, it is sometimes desirable to transform a function of discrete time
into a function of continuous frequency. This is indeed possible, and is done with the
Discrete Time Fourier Transform (DTFT), which is given by:

X(f) = DTFT {x[k]} =
∞∑

k=−∞
x[k]e−2πifn. (3.6)
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or if working in units of ω radians per sample:

X(ω) = DTFT {x[k]} =
∞∑

k=−∞
x[k]e−iωn. (3.7)

3.2 Cross-Correlation

We have seen in Eq. (2.1) that the time-delays induced by a signal arriving at spatially
separated receivers may be used to estimate the direction-of-arrival of a signal, and
thus finding some way to estimate these delays seems like a good initial approach to
the problem of acoustic source localisation. One method of estimating the time-delay
D between two signals is using something known as the cross-correlation of the two
signals; indeed we will see that the time-delay τ which maximises the cross-correlation
provides an estimate of D. The cross-correlation, also known as the sliding dot product,
of two real, continuous-time, observed signals x1(t) and x2(t), is given by [16]:

Rx1x2(τ) = E [x1(t)x2(t− τ)] (3.8)

=

∫ ∞
−∞

x1(t)x2(t− τ)dt, (3.9)

where E [x(t)] denotes the expected value of x(t) over all t; or for real discrete signals
x1[n] and x2[n]:

Rx1x2 [τ ] = E [x1[n]x2[n− τ ]] (3.10)

=

∞∑
n=−∞

x1[n]x2[n− τ ]. (3.11)

An example of the cross-correlation can be seen in Figure 3.2, which shows the cross
correlation of the signals shown in Figure 3.1 as a function of the time-delay τ .

(a) Full Time-Scale (b) Behaviour Around τ = 642.67

Figure 3.2: The cross-correlation of the simulated data as introduced in Figure 3.1.
(a) shows the full cross-correlation, and (b) shows a close-up of the behaviour of the
cross-correlation around the true delay D = 642.67 samples.
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Wide-Sense Stationarity

A random process X(t) with mean function µ(t) and variance function σ2(t) is said
to be wide-sense stationary (WSS) if its mean, variance, and autocorrelation function
do not change over time; i.e. if both µ(t) = µ(0) and σ2(t) = σ2(0) for all t, and
E{X(t)X∗(t− τ)} = E{X(0)X∗(−τ)} for all t.

For discrete wide-sense stationary signals x1[n] and x2[n] of length L, we may
estimate (3.11) by

Rx1x2 [τ ] ≈ R̂x1x2 [τ ]

=
L∑
n=0

x1[n]x2[n− τ ], (3.12)

which is defined for −L ≤ τ ≤ L by letting x2[n] = 0 for n /∈ [0, L]. Where we may
estimate Rx1x2 [τ ] as done in Eq. (3.12) by the wide-sense stationarity of x1[n] and x2[n].

Consider the two continuous-time signals f(t) and g(t). The cross-correlation of
f with g may be visualised as lining the end of g up with the start of f , i.e. letting
τ = −L, and taking the dot product of the pieces which overlap. Then, slide g along
f , taking the dot product of the overlapping pieces every step of the way. The function
of τ given by the dot product of the overlapping parts is the cross-correlation of f with
g; hence the alternate name “sliding dot product”.

3.3 Generalised Cross-Correlation

For the model given in (3.1), as we have assumed the signal and noise are uncorrelated
(i.e. their cross-correlation is 0), (3.8) gives

Rx1x2(τ) = αRss(τ −D) +Rn1n2(τ) (3.13)

= αRss(τ) ~ δ(t−D), (3.14)

where δ denotes the Dirac delta function, and (3.13) to (3.14) is by the assumption
that the noise channels n1(t) and n2(t) are uncorrelated; both with each other, and
with any sources present. The Fourier Transform of (3.14) is what is known as the
cross-power spectrum, Gx1x2(f), of x1(t) and x2(t), and is given by:

Gx1x2(f) = αGss(f)e−2πifD. (3.15)

Thus, the cross-correlation of x1(t) and x2(t) is a Dirac delta function which has been
convolved by the inverse Fourier Transform of Gss(ω), the autospectrum1 of the source
signal s(t) [16].

In 1976, Knapp and Carter described a method to extend the cross-correlation
to incorporate the pre-filtering of the input signals as a weighting in the frequency
domain [16]. To see why this is advantageous, consider the convolution theorem:

1The autospectrum is to the cross-power spectrum what the autocorrelation is to the cross-
correlation; i.e. the autospectrum of a signal is the cross-power spectrum of the signal and itself.
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Convolution Theorem

The Convolution Theorem [91] for two functions f(x) and g(x) in the Lp space L1(R)
(i.e. for absolutely integrable real-valued functions f and g) states:

f(x) ~ g(x) = F−1 (F {f(x)} ·F {g(x)}) , (3.16)

where f(x) ~ g(x) denotes the circular convolution of f(x) and g(x).

The convolution theorem allows us to perform the correlation by taking the Fourier
transform of f(x) and g(x), conjugating the transform of g(x), multiplying the results
point-wise, and taking the inverse Fourier transform of the product. This gives a com-
putational complexity of O(n log n) thanks to the Fast Fourier Transform (FFT) [14],
as compared to cross-correlation via traditional sliding convolution, which is O(n2) in
complexity.

Another advantage of Eq. (3.16), and the basis of the Generalised Cross-Correlation
(GCC) algorithm, is as follows. Consider the situation in which the autocorrelation of
s(t), Rss, is a Dirac delta function. In this case, (3.14) reduces to δ(t−D), providing
an easy estimate for D. In general, however, the autocorrelation of a source signal will
not be of this form, and so we must modify our received data in some way for this to
be the case. As seen in (3.15) and (3.14), the inverse Fourier Transform of a constant
term is a Dirac delta function, and thus if we can normalise the autospectrum of s(t) to
have unit magnitude at all frequencies, i.e. if we can whiten the signal component of the
received data, then we will obtain the desired result. This effect can be approximated
by with a procedure known as filtering, whereby the frequency spectrum of the data is
shaped in the desired way by a purpose-built filter. We take further advantage of the
Convolution Theorem, and apply the filters by multiplying the Fourier Transform of
x1(t) and x2(t) by the Fourier Transform of the appropriate filters h1 and h2, H1 and
H2 respectively. As multiplication is associative in C, we may combine the transformed
filters into one general frequency weighting ψg(f) = H1 ·H2 to apply to the cross-power
spectrum of the observed data.

This leads to a ‘weighted’ cross-correlation that Knapp and Carter called the Gen-
eralised Cross-Correlation, and is given by

R̂(g)
x1x2(τ) =

∫ ∞
−∞

H1(f)H2(f)Ĝx1x2(f)e2πifτdf

=

∫ ∞
−∞

ψg(f)Gx1x2(f)e2πifτdf, (3.17)

estimated in practice, where Xi[fn] denotes the nth frequency component of the discrete
Fourier transform of xi(t), by

R̂(g)
x1x2 [τn] = IDFT

[
ψg[fn] ·X1[fn] ·X2[fn]

]
, (3.18)

using (3.4), (3.5), the discrete version of the convolution theorem in (3.16) [92], and
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the approximation

Gx1x2 [fn] ≈ Ĝx1x2 [fn] (3.19)

= X1[fn] ·X2[fn]. (3.20)

In (3.18), we have used square brackets and the notation τn to illustrate that the
calculation as shown is a function of integer time delays and is as such not defined for
non-integer τ . To get around this restriction in practice, we may use some form of
interpolation (such as cubic spline or linear interpolation) to approximate the GCC at
non-integer time delays for discrete data.

This is a very versatile approach to the direction of arrival estimation problem;
different processors can be designed to suit different environments. Note that for ψg = 1
(= ψCC), the GCC is simply the cross-correlation between x1(t) and x2(t).

3.3.1 GCC Processors

The different weightings ψ in the GCC procedure are commonly known as ‘processors’.
Several have been described and reviewed by many, including Knapp and Carter [16],
Marinescu et al. [93] and Ritu and Dhull [20]. We discuss some here.

Phase Transform

The Phase Transform (PHAT) [16, 19] was developed as an ad hoc method to whiten
the signals and thus make the cross-correlation a delta function for easy peak detection.
The PHAT weighting is given by

ψPHAT(f) =
1

|Gx1x2(f)|
, (3.21)

which, with |Gx1x2(f)| = αGss(f) by our assumptions about the noise, gives

Gx1x2(f)

|Gx1x2(f)|
=
αGss(f)e−2πifD

αGss(f)
= e−i2πfD, (3.22)

and thus combined with (3.17),

R̂(PHAT)
x1x2 (τ) =

∫ ∞
−∞

Gx1x2(f)

|Gx1x2(f)|
e2πifτdf (3.23)

=

∫ ∞
−∞

e−2πifDe2πifτdf (3.24)

=

∫ ∞
−∞

e2πif(τ−D)df (3.25)

= δ(τ −D) (3.26)

(3.27)

The PHAT processor provides some potential issues; frequencies where the source
is not present, or has low power, are weighted just as high as all other frequency
components in the data. Thus for a narrowband signal (a signal for which the total
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power is very localised in frequency, for example a 440 Hz sine wave) this weighting
is potentially not a wise choice, but for a broadband signal (a broadband signal is the
opposite of a narrowband signal; the total power is very spread out in frequency, for
example white noise) such as human speech, it may perform better.

(a) Full Time-Scale (b) Behaviour Around τ = 642.67

Figure 3.3: The PHAT-weighted cross-correlation of the data as introduced in Fig-
ure 3.1. (a) shows the full GCC output, and (b) shows a close-up of the behaviour of
the GCC output around the true delay D = 642.67 samples.

Figure 3.3 shows the output of the GCC algorithm with the PHAT weighting for the
kiwi call data as introduced in Figure 3.1. Comparing Figure 3.2(b) and Figure 3.3(b)
we can see how the attempted whitening of the signal acts to flatten out the GCC
output either side of the true time-delay D.

A few adaptations of the PHAT processor exist, which do not attempt to whiten
the signal entirely as (3.21) does; the rationale being that the signal components with
high magnitude are more likely to have come from the source than the noise, and so
should still contribute more strongly to the GCC calculation.

The first such adaptation is the ρ-PHAT processor [94], as given by

ψρ-PHAT(f) =
1

|Gx1x2(f)|ρ
. (3.28)

Notice that for ρ = 0,

ψ0-PHAT(f) =
1

|Gx1x2(f)|0

= 1

= ψCC(f),

which gives the normal cross-correlation, and for ρ = 1:

ψ1-PHAT(f) =
1

|Gx1x2(f)|1

=
1

|Gx1x2(f)|
= ψPHAT(f).
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Thus by choosing 0 ≤ ρ ≤ 1, the user has control over the level of whitening of the signal
in the GCC calculation. The optimal value of ρ can be established experimentally, but
a common choice for a default value in audio applications appears to be ρ ≈ 0.73 [93,
94].

(a) Full Time-Scale (b) Behaviour Around τ = 642.67

Figure 3.4: The ρ-PHAT (ρ= 0.73) weighted cross-correlation of the data as introduced
in Figure 3.1. (a) shows the full GCC output, and (b) shows a close-up of the behaviour
of the GCC output around the true delay D = 642.67 samples.

An example output for the GCC algorithm with ρ-PHAT weighting (ρ= 0.73) for
the kiwi data is shown in Figure 3.4.

Roth Impulse Response

The Roth Processor [15] aims to estimate the optimum linear Wiener-Hopf filter

Hm(f) =
Gx1x2(f)

Gx1x1(f)
, (3.29)

which best approximates the mapping of x1(t) to x2(t) [16]. The Roth processor uses
the weighting

ψROTH(f) =
1

Gx1x1(f)
. (3.30)

Combining (3.17) and (3.30) give

R̂(ROTH)
x1x2 (τ) =

∫ ∞
−∞

Ĝx1x2(f)

Gx1x1(f)
e2πifτdf (3.31)

and we can see the approximation of 3.29. The Roth Processor weights low the fre-
quencies at which Gn1n1(f) is large, with the idea that the estimate Ĝx1x2(f) of the
cross-power spectra of x1 and x2 is more likely to be erroneous at these frequencies.
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(a) Full Time-Scale (b) Behaviour Around τ = 642.67

Figure 3.5: The ROTH-weighted cross-correlation of the data as introduced in Fig-
ure 3.1. (a) shows the full GCC output, and (b) shows a close-up of the behaviour of
the GCC output around the true delay D = 642.67 samples.

An example output of the ROTH-weighted GCC algorithm for the kiwi data is
shown in Figure 3.5.

Smoothed Coherence Transform

The Smoothed Coherence Transform, or SCOT [19], aims to perform a similar weighting
to the PHAT in order to tend Rx1x2(τ) towards a delta function. The difference,
however, is that the SCOT aims to mitigate the errors due to low signal power by
weighting by an estimate of how ‘likely’ it is that the signals at a particular frequency
are related by a linear filter, and thus weighting the signal components which do not
appear to be related less than components which do appear to be related. The statistic
used for this weighting is called the coherence between x1 and x2, denoted γ12(f), and
is low when x2(t) is not likely to be the result of applying a linear filter to x1(t). The
SCOT weighting is given by

ψSCOT(f) =
1√

Gx1x1(f)Gx2x2(f)
, (3.32)

in which can be seen an estimate for γ12(f):

γ̂1,2(f) =
|Gx1x2(f)|2

Gx1x1(f)Gx2x2(f)
. (3.33)

The SCOT processor considers both channels, and will broaden the peak of cross-
correlation function when compared to the ROTH processor.
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(a) Full Time-Scale (b) Behaviour Around τ = 642.67

Figure 3.6: The ROTH-weighted cross-correlation of the data as introduced in Fig-
ure 3.1. (a) shows the full GCC output, and (b) shows a close-up of the behaviour of
the GCC output around the true delay D = 642.67 samples.

An example output of the SCOT-weighted GCC algorithm for the kiwi data is
shown in Figure 3.6.

Other Processors

Several other processors also exist which have not been implemented or investigated in
this thesis. These include the Wiener Processor:

ψWiener(f) = |γ12(f)|2 , (3.34)

proposed by Hero and Schwartz [95]; the HB processor

ψHB(f) =
|Gx1x2(f)|

Gx1x1(f) ·Gx2x2(f)
, (3.35)

described by Hassan and Boucher [96]; and a maximum likelihood processor known as
the Hannan and Thomson processor [97]:

ψHT(f) =
1

|Gx1x2(f)|
· |γ12(f)|2

[1− |γ12(f)|2]
. (3.36)

For more information about these processors, Marinescu et al. [93] provide an overview
of all processors described above.

This concludes our discussion of GCC; the first of the two algorithms for acoustic
source localisation to be discussed in this thesis. Before moving on to the second – the
Multiple Signal Classification (MUSIC) algorithm – we will first introduce the idea of
polynomial matrices, as they will be of use in the application of the MUSIC algorithm
to broadband signals.



Chapter 4

Polynomial Matrices

The MUSIC algorithm, to be discussed in Chapter 5, is an algorithm capable of superior
precision to the GCC algorithm, with the significant drawback that it was originally
only designed for use with narrowband sources; the data is modelled explicitly as a single
complex sinusoid. In the case of working with audio data, true narrowband sources are
rare, and thus it would be advantageous to extend MUSIC to the broadband scenario.
One such method for this extension is by incorporating a time aspect into the covariance
matrix of the data; possible by the use of polynomial matrices. In this chapter we will
define polynomial matrices, as well as present some results about them pertinent to
their use in the MUSIC algorithm.

4.1 Overview

A polynomial matrix R in the variable z, denoted by R(z), is a matrix whose entries
are polynomials, for example:

R(z) =

[
2z2 − 1 3z − 5 + 4iz−1

0 6z

]
. (4.1)

Equivalently, a polynomial matrix may be thought of as a polynomial with matrix
coefficients; e.g. for R(z) as above:

R(z) =

[
2 0
0 0

]
z2 +

[
0 3
0 6

]
z +

[
−1 −5
0 0

]
+

[
0 4i
0 0

]
z−1.

Assuming that the polynomials populating the matrices satisfy some conditions to be
outlined in this chapter, polynomial matrices can be manipulated in much the same
ways as scalar matrices, with two notable differences. Firstly, note that the element-
wise multiplication involved in matrix multiplication is now polynomial multiplication,
not scalar multiplication, for example:[
2z2 − 1 3z − 5 + 4iz−1

0 6z

] [
z + 3z−2 2z

0 z−1

]
=

[
−z + 6− 3z−2 −2z + 3− 5z−1 + 4iz−2

0 6

]
.

22
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Secondly, we may define an additional operation as follows. We define the parahermitian
transpose of a polynomial matrix R(z), denoted RP (z), to be:

RP (z) = R∗(1/z),

where R∗(z) denotes the conjugate transpose of matrix R(z), for example for R(z) as
given in (4.1);

RP (z) = R∗(1/z) =

[
2z−2 − 1 0

−4iz − 5 + 3z−1 6z−1

]
. (4.2)

This can be viewed as the application of both the complex conjugate transpose and
a “time reversal” of the coefficients of z. A parahermitian matrix is a polynomial
matrix which is equal to its own parahermitian transpose, and a paraunitary matrix is
a polynomial matrix U(z) such that U(z)UP (z) = UP (z)U(z) = I.

Some terminology used here has also been borrowed from signal processing, as the
polynomials of interest are also used to describe an important object in signal processing
known as filters. A filter can be thought of as a set of coefficients used to generate a
linear combination of the input signal and time-delayed versions of itself. Letting z−τ

denote a delay of the input signal by τ samples, we see how a polynomial in z can
describe a filter. For example, after applying the filter described by

H(z) = 0.2z3 − 0.5 + 0.6z−1,

the nth sample of the output signal would be the sum of 0.2 times the (n+ 3)rd input
sample, 0.5 times the nth input sample, and 0.6 times the (n−1)th input sample. Notice
that this particular filter has finitely many non-zero coefficients (three); we call filters
with this property finite impulse response (FIR) filters. A causal filter is one in which
the nth term in the result only depends on samples at indices prior to n; these are of
particular interest as they may be implemented in real-time (for more information, see
any reference text on digital signal processing e.g. [98]). A stable filter is one whose
series of coefficients h[n] approaches 0 as n→∞.

While much work has been done utilising polynomial matrices (e.g. [26]), the nature
of the polynomials involved, and the resultant algebraic properties of the set from which
we populate our matrices is often left as assumed knowledge. We present a foundation
for Finite Impulse Response (FIR) matrices as given by R. Lambert in his 1996 thesis,
Multichannel Blind Deconvolution: FIR Matrix Algebra and Separation of Multipath
Mixtures [62], particularly Chapter 3.

Definition 4.1.1. Laurent Polynomial. A Laurent Polynomial over C is an expression
of the form

p(z) =
k∑

n=−j
a[n]zn, (4.3)

with j, k ∈ N, and a[n] ∈ C ∀n.

Here, there are a finite number of terms with negative powers of z, as well as a
finite number of terms with positive powers of z. Laurent Polynomials are commonly
found as the impulse responses of Finite Impulse Response (FIR) filters. Note that
Laurent polynomials form a ring R with unity under term-wise addition (with identity
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polynomial 0), and polynomial multiplication (with unity polynomial 1), which may be
calculated via convolution of the series of coefficients.

It is important to notice, however, that in general there do not exist multiplicative
inverses in this ring, e.g. for p(z) = 1 + z ∈ R,

(1 + z)−1 =

∞∑
n=0

(−1)nzn, (4.4)

which is not an element of the ring. Thus R does not constitute a field - a desired
property of R so that we may construct a vector space over it to transfer familiar
techniques from Linear Algebra. Note that R is an integral domain, as C is an integral
domain. To be able to include inverses, we must expand our definition to accommodate
expressions such as Eq. (4.4).

Definition 4.1.2. Laurent Series. A Laurent series over C is an expression of the form

p(z) =

∞∑
n=−j

a[n]zn (4.5)

with j ∈ N, and a[n] ∈ C ∀n.

Notice that this is in fact the field of quotients of the integral domain R as above,
and thus is a field [99]. Here we have only finitely many negative powers of z, but
potentially infinitely many non-zero positive powers of z. This now includes elements
such as (4.4).

Is this all we require to form our vector space? Recall that an operation of partic-
ular interest when dealing with polynomial matrices is the parahermitian transpose of
polynomial matrix A(z), AP (z) = A∗(1/z). Consider the (1× 1) polynomial matrix

Q(z) =

 ∞∑
n=−j

a[n]zn

 .
We have that

QP (z) =

[
j∑

n=−∞
b[n]zn

]
,

with appropriate b[n]. Notice, however, that the lone element in QP (z) is not an
element of R, as there exist infinitely many terms in z with negative exponent. Hence
we do not have closure under the parahermitian transpose as it stands, and we must
expand our definition of R further to include such matrices.

Definition 4.1.3. Formal Laurent Series. A formal Laurent series over C is an ex-
pression of the form

p(z) =

∞∑
−∞

a[n]zn (4.6)

with a[n] ∈ C ∀n.
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Including infinitely many terms with both positive and negative exponent such
as this gives us closure under the parahermitian transpose, but brings about its own
set of problems. Consider two formal Laurent series p(z) =

∑∞
−∞ a[n]zn and q(z) =∑∞

−∞ b[n]zn. Multiplying them as we would Laurent Polynomials, for example, we see
that the series of coefficients of their product is given by

c[n] =

∞∑
m=0

a[n+m]b[n−m]

and it becomes apparent that we must stipulate some further conditions on the series
a[n] and b[n] for the elements of c[n] to be finite.

4.1.1 Description

We restrict our attention to formal Laurent series whose series of coefficients a[n] are
absolutely summable, i.e. those for which

∑∞
−∞ |a[n]| exists and is finite.

In this case, we may perform the convolution of two series of coefficients a[n] and
b[n] (and hence multiplication of their corresponding formal Laurent Series) by making
use of the Discrete Time Fourier Transform (DTFT), and the Convolution Theorem.

Discrete Time Fourier Transform

Recall from (3.6) that the DTFT of an infinite, non-periodic, absolutely summable
sequence x[n] is given by:

X(ω) = DTFT {x[n]} =

∞∑
n=−∞

x[n]e−iωn, (3.6, in radians/sample)

with inverse transform (IDTFT)

x[n] = IDTFT [X(ω)] =
1

2π

∫ π

−π
X(eiω)eiωndω. (4.7)

Convolution Theorem (Discrete Version)

The Convolution Theorem for sequences, where x[n]∗y[n] denotes the linear convolution
of x[n] and y[n], states that:

x[n] ∗ y[n] = IDTFT [DTFT {x[n]} ·DTFT {y[n]}] . (4.8)

This is the discrete version of the convolution theorem in (3.16).

4.1.2 Implications

Under our assumption of absolute summability, we are now able to: add, subtract,
multiply, and divide formal Laurent series, and thus we have a field. Our field is also
closed under time inversion, an important property to ensure that we may make use
of the parahermitian transpose. Provided that absolute summability is a reasonable
assumption (this will be addressed later), we can now construct a vector space over the
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field and put its elements inside matrices, and generalise results from traditional linear
algebra to our new space.

4.2 Existence and Uniqueness of Parahermitian Matrix
EVDs

This partial proof of the existence and uniqueness of parahermitian matrix eigenvalue
decompositions comes from the Weiss et al. paper On the Existence and Uniqueness of
the Eigenvalue Decomposition of a Parahermitian Matrix [90]. Not all cases detailed in
the original paper will be covered here (they do not all apply to the direction-of-arrival
estimation problem - in particular, we expect by design to have fewer sources than we
have sensors and thus have noise-space eigenvalues of multiplicity greater than one).
Before we proceed, we must define the z-transform of a series x[n].

Definition 4.2.1. The z-transform. Given a series x[n], we define its z-transform X(z)
to be

X(z) =
∞∑

n=−∞
x[n]z−n. (4.9)

Notice that for z restricted to the unit circle (i.e. for z = eiω, 0 ≤ ω ≤ 2π), we have:

X(ω) =
∞∑

n=−∞
x[n]e−iωn = DTFT {x[n]} .

Note that when working with polynomial matrices in software, one is in fact manipulat-
ing the inverse z-transform of the polynomial; the series of coefficients of the polynomial.
This is indeed the natural way to store and work with polynomials in software.

4.2.1 Analyticity

Consider the M ×M parahermitian space-time covariance matrix, R[τ ], of M -channel
data x, defined by:

R[τ ] = E {x[n]x∗[n− τ ]} , (4.10)

where E denotes the expectation operator. This can be visualised as a ‘stack’ of covari-
ance matrices - each layer in the stack corresponding to a different time-delay. Assuming
the power spectral density (PSD) of each of the L < M sources present is generated
by a stable and causal innovation filter Fl(z), l = 1, 2, · · · , L, and if the (m, l) entry
Hm,l(z) of M ×L matrix H(z) is the (causal and stable) transfer function between the
lth source and the mth sensor, then the z-transform of (4.10) becomes

R(z) = H(z)F (z)FP (z)HP (z) (4.11)

= H(z)

S1(z)
. . .

SL(z)

HP (z), (4.12)

where F (z) = diag{F1(z), F1(z), . . . , FL(z)}, and Sl(z) = Fl(z)F
P
l (z) is the PSD of the

lth source [90].



CHAPTER 4. POLYNOMIAL MATRICES 27

An innovation filter is a filter used to generate the signal of interest from white
noise input. For a signal to be produced in this way, it must be that the signal under
consideration satisfies the Paley-Wiener condition [100]:∫ ∞

−∞

| logFi(e
iω)|

1 + ω2
dω <∞, (4.13)

for ω ∈ [0, 2π), which implies that the signal must not be bandlimited [101].
By the assumption of stability of each of their respective entries, the maximum

modulus of any pole of H(z) or F (z), ρ, lies within the open interval (0, 1), and thus
the region of convergence (ROC) for H(z)F (z) is |z| > ρ. Similarly, the maximum
modulus of any pole of HP (z) or FP (z) is ρ−1, and thus the product FP (z)HP (z) has
ROC |z| < ρ−1. Hence R(z) = H(z)F (z)FP (z)HP (z) has ROC ρ < |z| < ρ−1 and,
importantly, is thus analytic on an annulus containing the unit circle. Analyticity on
the unit circle implies absolute convergence of the series of coefficients there, i.e. for
space-time covariance matrices, the assumption of absolute summability from 4.1.1 is
appropriate. Note also that any finite polynomial has an absolutely summable series of
coefficients and is thus analytic, and so the assumption is also valid for polynomials of
this type. For brevity we refer to a polynomial matrix comprised of analytic polynomials
as an analytic matrix. The product of two analytic matrices is also analytic.

4.2.2 EVD on the Unit Circle

As the inverse z-transform

x[n] =
1

2πi

∮
C
X(z)zn−1dz (4.14)

requires evaluation on a closed path C around the origin, and we have that the matrix
of Laurent polynomials and/or rational functions R(z) is analytic on the unit circle,
the equivalent (on the unit circle) inverse Discrete Time Fourier Transform

x[n] =
1

2π

∫ π

−π
X(eiω)eiωndω (4.15)

takes us from R(eiω) to the time domain. We may then take the z-transform of the
resultant time-domain function to get back to an R(z) consisting of only Laurent poly-
nomials, which we know is analytic. Notice then that R(z) is completely characterised
by R(eiω).

Now, for each value of ω ∈ [0, 2π], we may perform a regular scalar eigenvalue
decomposition

R(eiω) = Q(eiω)Λ(eiω)QH(eiω), (4.16)

where Λ(eiω) is the diagonal matrix of eigenvalues of R(eiω), Q(eiω) is the matrix whose
columns are the eigenvectors of R(eiω) (the modal matrix of R(eiω)), and with existence
and uniqueness coming from the usual scalar matrix complex positive-definite case. All
that remains is to show the eigenvalues and vectors vary smoothly with ω.
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4.2.3 Continuity of Eigenvalues

The continuity of the eigenvalues of R(eiω) comes as a corollary to a theorem in matrix
perturbation theory known as the Wielandt-Hoffman Theorem.

Theorem (Wielandt-Hoffman). Let A and M be (n× n) Hermitian matrices, and
let αi and µi (i = 1, ..., n) be the eigenvalues of A and M , respectively, with each set
arranged in non-increasing order.

Then
n∑
j=1

(αj − µj)2 ≤ ||A−M ||2F ,

where ||M ||F denotes the Frobenius norm of matrix M . Assuming the eigenvalues
λi(e

iω) of R(eiω) are in non-increasing order of magnitude and letting A = R(eiω) and
M = R(ei(ω−∆ω)) in the above statement, the Wielandt-Hoffman Theorem [102, 103]
gives ∑

i

|λi(eiω)− λi(ei(ω+∆ω))| ≤ ||R(eiω)−R(ei(ω−∆ω))||F . (4.17)

By assumption, R(z) is analytic and thus continuous, and so the right-hand side of
(4.17) approaches 0 as ∆ω → 0. This then implies

lim
∆ω→0

(
∑
i

|λi(eiω)− λi(ei(ω+∆ω))|) = 0, (4.18)

i.e. the eigenvalues are continuous in ω. Analyticity of the eigenvalues for R(z) on an
annulus containing the unit circle is given by the spectral theorem.

4.2.4 Existence of Parahermitian Polynomial Matrix Inverses

A parahermitian polynomial matrix R(z), by Section 4.2.2, admits an eigenvalue de-
composition

R(z) = Q(z)Λ(z)QP (z) (4.19)

with paraunitary Q(z) (i.e. QP (z)Q(z) = Q(z)QP (z) = I), and diagonal matrix Λ(z)
containing eigenvalue polynomials λ1(z), λ2(z), . . . , λL(z). Consider now the matrix

S(z) = Q(z)Λ−1(z)QP (z), (4.20)

where Q(z) is the same as in R(z), and

Λ−1(z) =

(λ1(z))−1

. . .

(λL(z))−1

 , (4.21)

where (λ(z))−1 = IFFT
{

(FFT [λ[n]])−1
}

, with λ[n] the series of coefficients of λ(z).
Proof of existence of these inverses is given by Weiss, Millar, and Stewart [104]. We
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then have

R(z)S(z) = Q(z)Λ(z)QP (z)Q(z)Λ−1(z)QP (z)

= Q(z)Λ(z)Λ−1(z)QP (z)

= Q(z)QP (z)

= I
= Q(z)Λ−1(z)Λ(z)QP (z)

= Q(z)Λ−1(z)Q(z)QP (z)Λ(z)QP (z)

= S(z)R(z)

where I is the identity matrix, i.e. S(z) = (R(z))−1, and thus the inverses exist.

4.3 Calculation of the PEVD

We have seen that the EVD of a parahermitian polynomial matrixR(z) = Q(z)Λ(z)QP (z)
exists, but how does one calculate it in practice? The most common way is through the
use of the algorithm known as the Sequential Best Rotation Algorithm Using Second
Order Statistics (known as the SBR2 algorithm) [66], or one of its variants. This was
originally an ad hoc method which was later proven to indeed converge to the PEVD.
The aim of the SBR2 algorithm is to generate a paraunitary matrix Q(z) such that
QP (z)R(z)Q(z) = Λ(z), where Λ(z) is a diagonal matrix of polynomial eigenvalues of
R(z).

4.3.1 The SBR2 Algorithm

Two types of construction are required to proceed: the first is the delay matrix Dk,τ (z),
where

Dk,τ (z) = diag{1, . . . , 1, zτ︸︷︷︸
kth entry

, 1, . . . , 1}. (4.22)

Note that Dk,τ (z) is paraunitary, as

Dk,τ (z)DP
k,τ (z) = diag{1, . . . , 1, zτ , 1, . . . , 1}diag{1, . . . , 1, z−τ , 1, . . . , 1}

= diag{1, . . . , 1, 1, 1, . . . , 1}
= I
= DP

k,τ (z)Dk,τ (z),

and that Dk,τ (z) is also analytic, as each entry has a finite number of polynomial
coefficients. The delay matrix is so called because it acts to shift the kth column of a
matrix by τ samples, equivalent to applying a delay.

The second construction is the rotation matrix, Jj,k(θ, φ):
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Jj,k(θ, φ) =



1
. . .

cos θ . . . eiφ sin θ
... I

...
−e−iφ sin θ . . . cos θ

. . .

1


, (4.23)

or explicitly,

{Jj,k(θ, φ)}l,m =


cos θ, if l = m = j, or l = m = k

eiφ sin θ, if l = j, and m = k

−e−iφ sin θ, if l = k, and m = j

{I}l,m, otherwise.

Notice that Jj,k(θ, φ) is also paraunitary, as by taking the submatrix of non-identity
parts of Jj,k(θ, φ) we see

Jj,k(θ, φ)JPj,k(θ, φ) =

[
cos θ eiφ sin θ

−e−iφ sin θ cos θ

] [
cos θ −eiφ sin θ

e−iφ sin θ cos θ

]
=

[
cos2 θ + sin2 θ eiφ sin θ cos θ − eiφ sin θ cos θ

e−iφ sin θ cos θ − e−iφ sin θ cos θ cos2 θ + sin2 θ

]
= I

with a similar calculation for JPj,k(θ, φ)Jj,k(θ, φ). We may now introduce the SBR2
algorithm for polynomial eigenvalue decomposition.

The SBR2 Algorithm
The SBR2 algorithm is an iterative algorithm, where each iteration is as follows:

1. Search the off-diagonal elements of parahermitian polynomial matrix R(z) for the
coordinates (j, k, τ) such that the coefficient of zτ in the polynomial Rj,k(z) has
the largest absolute value of all coefficients of all off-diagonal polynomials in R(z).

2. Use the coordinates (j, k, τ) to create matrix Dk,τ (z) as per (4.22), and conjugate
R(z) by Dk,τ (z) to produce

R′(z) = Dk,τ (z)R(z)DP
k,τ (z). (4.24)

The matrix R′(z) will now have its largest off-diagonal coefficient as a coefficient
of z0, in the position (j, k).

3. With r′l,m(z) being the entry in position (l,m) of matrix R′(z), and r′l,m(0) being
its evaluation at z = 0, evaluate

φ = arg
(
r′j,k(0)

)
(4.25)
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and

θ =
1

2
arctan

(
2|r′j,k(0)|

r′j,j(0)− r′k,k(0)

)
, (4.26)

calculated in practice with

θ = atan2
(
2|r′j,k(0)|, r′j,j(0)− r′k,k(0)

)
(4.27)

as implemented in many modern programming languages, such as Python and
MATLAB. Using φ and θ as well as coordinates j and k, create rotation matrix
Jj,k(θ, φ) as per (4.23), and conjugate R′(z) to give

R′′(z) = Jj,k(θ, φ)R′(z)JPj,k(θ, φ). (4.28)

This Jacobi transformation has the effect of shifting the ‘energy’ of the largest
off-diagonal coefficient (the one which was found and via Dk,τ (z)) down onto the
diagonal.

4. Repeat from step 1 with R(z) = R′′(z) until the matrix is sufficiently diagonalised.

Each iteration of the SBR2 algorithm shifts the largest off-diagonal element of R(z)
onto the diagonal, and thus the algorithm iteratively diagonalises the matrix. A visual
representation of the SBR2 algorithm is provided in Appendix A, Figures A.1-A.9.

4.3.2 Example Use of SBR2

Here we give an example of use of the SBR2 algorithm on the parahermitian matrix
R(z), where

R(z) =

 1 −0.4iz 0
0.4iz−1 1 0.5z−2

0 0.5z2 1

 . (4.29)

This matrix is the same as is given as an example in Eq. (2.21) from [25].

1. We begin by searching R(z) for the coordinates of the coefficient pair with max-
imum absolute value. Note that we only need to search the above-diagonal (or
equivalently the below-diagonal) entries, as R(z) is parahermitian. In this case,
the maximum element is found in position (2, 3) with lag parameter −2, and has
magnitude 0.5.

2. We now create the delay matrix D3,−2(z),

D3,−2(z) =

1 0 0
0 1 0
0 0 z−2

 , (4.30)
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and conjugate R(z) by D3,−2(z) to give:

R′(z) = D3,−2(z)R(z)DP
3,−2(z) (4.31)

=

1 0 0
0 1 0
0 0 z−2

 1 −0.4iz 0
0.4iz−1 1 0.5z−2

0 0.5z2 1

1 0 0
0 1 0
0 0 z2


=

1 0 0
0 1 0
0 0 z−2

 1 −0.4iz 0
0.4iz−1 1 0.5

0 0.5z2 z2


=

 1 −0.4iz 0
0.4iz−1 1 0.5

0 0.5 1


3. We now calculate φ and θ according to (4.25) and (4.26)

φ = arg
(
r′2,3(0)

)
= arg (0.5)

= 0

and

θ =
1

2
arctan

(
2|r′2,3(0)|

r′2,2(0)− r′3,3(0)

)
=

1

2
atan2 (1, 0)

= π/4,

and use them to create Jacobi rotation matrix J2,3(π4 , 0),

J2,3(π4 , 0) =

1 0 0
0 cos (π/4) sin (π/4)
0 − sin (π/4) cos (π/4)

 =


1 0 0

0 1√
2

1√
2

0 −1√
2

1√
2

 . (4.32)

Next we conjugate R′(z) by J2,3(π4 , 0) to give R′′(z),

R′′(z) = J2,3(π4 , 0)R′(z)JP2,3(π4 , 0) (4.33)

=


1 0 0

0 1√
2

1√
2

0 −1√
2

1√
2


 1 −0.4iz 0

0.4iz−1 1 0.5
0 0.5 1




1 0 0

0 1√
2
−1√

2

0 1√
2

1√
2



=


1 −i

√
2

5 z i
√

2
5 z

i
√

2
5 z−1 1.5 0

−i
√

2
5 z−1 0 0.5

 .
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The off-diagonal energy has been transferred down onto the diagonal, and one iteration
is complete. The process repeats from step 1, with R(z) = R′′(z).

To assure oneself that the on-diagonal energy has in fact increased, we may compare
the Frobenius norm of the diagonal entries of the original matrix,

√
12 + 12 + 12 =√

(3) ≈ 1.732, with the Frobenius norm after the SBR2 iteration:
√

12 + 1.52 + 0.52 =√
(14

4 ) ≈ 1.871. Notice that the Frobenius norm of the entire matrix remains unchanged
at √

1 + 1 + 1 + 2(
1

2
)2 + 2(

4

10
)2 =

√
1 + (

3

2
)2 + (

1

2
)2 + 4(

√
2

5
)2 =

√
191

50
,

and so we can be assured that information was only shifted and not lost.

4.3.3 Notes on Practical Implementation

We may model the matrix R(z) as a 3D array, for example with a four microphone
array, one may have a (4× 4× 101) space-time covariance matrix. Each matrix ‘slice’
along the third dimension corresponds to the matrix of coefficients of a different power
of z. For example, we may store the polynomial

P (z) = azτmax + bzτmax−1 + · · ·+ cz + d+ ez−1 + · · ·+ fz−(τmax−1) + gz−τmax (4.34)

in a Python/NumPy array like so:

p = [a,b,...,c,d,e,...,f,g].

This means that the constant coefficient of the (2, 3) term in R(z), for example, is
accessed by

d = R[2,3,(p.shape[-1]-1)//2],

and thus for our example of a (4 × 4 × 101) NumPy array, we will be able to store
polynomials with powers of z of magnitude up to b(101 − 1)/2c = 50. If we require
higher order polynomials, we must increase the size of the array.

Implicit Use of Dk,τ (z)

Though it is possible to create the full matrix Dk,τ (z) and to do explicit polynomial
matrix multiplication for the conjugation during the delay step in SBR2, this is not
necessary in practice. For a delay of τ ∈ Z, one may simply pad the stack of matrices
with a stack zeros of depth τ on each end, and then use numpy.roll (or an equivalent
method) to delay the appropriate rows and columns by τ or −τ . numpy.roll(x,n), for
a vector of length k and an integer n, acts to map the element at index i (0 ≤ i ≤ k−1)
to index (i+ n) mod k; when n = τ , adding the stack of τ zeros on either end ensures
that no coefficients of positive powers of z erroneously become coefficients of negative
powers of z, and vice versa.

Memory Issues

Consider multiplying z49 with z2. The answer is indeed z51. If, however, you were
trying to do this with the polynomials stored in arrays of size 101 as described earlier,
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you would reach a problem - there is nowhere to store the 1 coefficient of the z51 term.
There are two options: either let that piece of information disappear and suffer a loss
of accuracy, or expand your matrix to be able to hold coefficients of larger exponents of
z. If we choose the latter option, then during every iteration of SBR2 our matrix must
increase in size by |τ |, where τ is the exponent of z which corresponds to the largest
magnitude coefficient. This may cause rapid growth, and the user may quickly find
themselves either out of memory or waiting a long time for each SBR2 iteration to run.
One option, as suggested by the authors of the SBR2 algorithm [25], is to “trim” the
matrix at the end of each SBR2 iteration. This trimming procedure involves removing
high-order terms layer by layer until a predefined proportion of the total energy has been
removed - ‘energy’ here simply referring to the squared Frobenius norm of the matrix
stack. In this way the end user may perform a trade-off of speed against information
loss.

4.3.4 Extensions to SBR2

As noted in Section 2.2, several adaptations of the SBR2 algorithm exist which have
been designed to exhibit faster convergence, including Multiple-Shift SBR2 (MS-SBR2)
and Sequential Matrix Diagonalisation (SMD). MS-SBR2 is similar to SBR2, except
that at each time step one may choose multiple terms to shift, under some constraints
regarding which rows and columns will be affected by the Jacobi transformation. SMD
is also reminiscent of SBR2, but replaces the Jacobi transformation by a complete scalar
EVD at each iteration. For a comparison and review of these algorithms and more,
refer to the PhD thesis of Dr Jamie Corr [105].



Chapter 5

The MUSIC Algorithm

5.1 Multiple Signal Classification (MUSIC)

In 1986, in Multiple Emitter Location and Signal Parameter Estimation [21], Schmidt
proposed an algorithm which allows for the simultaneous location estimation of multiple
sources. This method, known as MUSIC (Multiple Signal Classification), is based on
the properties of spaces generated from the data, rather than directly derived from
the data itself akin to GCC. MUSIC thus benefits from ‘superresolution’, i.e. it is not
confined by the discrete nature of the data. Schmidt modelled the received vector X
(one frequency component of the Fourier transform of the received data) by

X1

X2
...

XM

 =

aθ1(ω1) aθ2(ω2) . . . aθD(ωD)



f1

f2
...
fD

+


w1

w2
...

wM


or equivalently

X = Af + w, (5.1)

where a uppercase variable denotes a matrix, and an bold lowercase variable a vector.
Though X is a vector, here it remains uppercase to symbolise that it is the result of a
Fourier transform.

These terms require some explanation. Beginning on the right-hand side, wi (1 ≤
i ≤M) is the total noise component of the data in channel i, whether it originates from
within the receiver/array itself or during transmission; we model this with a vector of
independent identically distributed Gaussian random variables. The next term to the
left, fj (1 ≤ j ≤ D), where D is the number of sources present in the signal, is
the complex exponential emitted from the jth source, of frequency ωj radians/sample.
Finally, aθj (ωj) is the jth complex steering vector, a function of the direction-of-arrival
θ which acts to shift the phase of fj to match how it would be observed at each
microphone, had the source indeed come from angle θj . These phase shifts are used to
model the delays that occur between the wavefront hitting each of the microphones,

35
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and for some frequency ω will look like so:

aθ(ω) =
[
e−iωτ1 e−iωτ2 . . . e−iωτM

]T
, (5.2)

where τk is the relative time taken for the wavefront to travel from some reference point
(be it the source location or otherwise) to microphone k. If working in units of Hertz
(samples/second), (5.2) becomes:

aθ(f) =
[
e−i2πfτ1 e−i2πfτ2 . . . e−i2πfτM

]T
. (5.3)

The steering vectors may be readily extended to be a function of both angle and az-
imuth, or of angle and radius, if required – this will only act to change the calculation
of the value of τ in each entry. The following explanation of the MUSIC algorithm is
adapted from Schmidt’s 1986 paper [21].

Under the assumption that the sources and noise are uncorrelated (so that the
expected value of the source/noise cross-terms is zero), the M ×M covariance matrix
S of the vector X is given by

S = E[XX∗] = AE[f f∗]A∗ + E[ww∗] = APA∗ + λS0, (5.4)

where denotes X∗ the Hermitian transpose (i.e. conjugate transpose) of X, E[XX∗]
denotes the expectation1 of the outer product XX∗, and where P = E[f f∗]. Note that
P is positive semidefinite (it is a rank 1 matrix; the columns are linear combination of
the vector f) and thus, for A full rank, APA∗ is positive semidefinite; conjugation by A
is merely a change of basis and does not effect the dimensionality of the eigen-structure
of P .

If the number of signals to be localised is less than the number M of microphones
in the array, then APA∗ is singular with rank (M−D) < M , and thus det(APA∗) = 0.
By (5.4), then, we have that det(S − λS0) = 0. Notice that this is only true with λ
equal to one of the eigenvalues of S in the metric of S0 (i.e. solutions to the generalised
eigenvalue problem Sv = λS0v), and as APA∗ is positive semi-definite, λ must be
equal to the smallest eigenvalue λmin ' 0. Hence we may write (5.4) as

S = APA∗ + λminS0, (5.5)

where λmin ≥ 0 is the smallest solution to det(S−λS0) = 0. As the positive semidefinite
matrix APA∗ = S − λminS0 is singular with rank M − D, its minimum eigenvalue is
0, with multiplicity M −D. Notice now that the eigenvalues of S and the eigenvalues
of S − λminS0 all differ by λmin; this implies that the multiplicity of the minimum
eigenvalue λmin must also be M −D.

The last observation required before presenting the final result for the MUSIC
algorithm is as follows: by definition, the M eigenvectors ei (1 ≤ i ≤ M) and their
corresponding eigenvalues λi of S in the metric of S0 must satisfy

Sei = λiS0ei. (5.6)

1i.e. the average value of the M ×M matrix XX∗ over several partitions of the data.
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Now by substituting (5.6) into (5.5), we have

(APA∗ + λmin)ei = λiS0ei =⇒ APA∗ei = (λi − λmin)S0ei, (5.7)

and so for the M − D eigenvectors with corresponding eigenvalues equal to λmin, we
must have APA∗ei = 0, and hence the eigenvectors associated with λmin are orthogonal
to the column-space of A.

We now have two orthogonal subspaces of CM : the space spanned by the eigen-
vectors corresponding to λmin (known as the noise subspace) which is governed by the
noise in the data and is orthogonal to the column-space of A; and a subspace governed
by the D ‘signal’ eigenvectors corresponding to the D eigenvalues not equal to λmin (we
call this the signal subspace).

The continuum of possible steering vectors aθ(ω) winds through CM , and intercepts
the signal subspace precisely D times. When an intercept occurs, the angle θ from aθ(ω)
points in the same direction as one of the D sources - and thus we may search over
the continuum of possible steering vectors to find these intercepts. Schmidt [21] gives
a graphical representation of this process, shown in Figure 5.1.
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Figure 5.1: A visualisation of the MUSIC algorithm. The image shown is for the case
with three microphones and two sources, hence why the space depicted is R3

with a 2D signal subspace. x1,··· ,3 are the standard basis vectors. θ1 and θ2 are the
angles at which the steering vectors intercept the signal subspace, and thus are the
angles at which the sources were positioned during the recording of the data. Image

taken from [21] ©1986 IEEE.

Given any vector aθ(ω), we may calculate the distance between it and the signal
subspace using its orthogonal projection onto the noise eigenvectors. The MUSIC
spectrum PMU is defined to be the reciprocal of this squared distance; the closer the
steering vector is to the signal subspace, the higher the value of PMU . The MUSIC
spectrum is given by:

PMU(θ) = ||E∗N (ω)aθ(ω)||−2
2 (5.8)

= (a∗θ(ω)EN (ω)E∗N (ω)aθ(ω))−1 , (5.9)

where the columns of the matrix EN (ω) are the M −D noise eigenvectors as discussed
previously. To find EN (ω) in practice, we sort the eigenvectors of the covariance matrix
S in non-increasing order by the magnitude of their corresponding eigenvalues. The
eigenvectors corresponding to the M − D smallest eigenvalues of S then form the
columns of EN . The M −D smallest eigenvalues of S should be approximately 0, and
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Figure 5.2: Spectrogram of the call of a captive female North Island Brown Kiwi.
Here, a darker colour corresponds to a higher signal strength. Horizontal axis is
time as shown in blue, and vertical axis is frequency. Audio taken from http://

www.nzbirdsonline.org.nz/sites/all/files/09%20-%20Track%209_12.mp3, spec-
trogram generated with the use of the free software Praat, available from http:

//www.fon.hum.uva.nl/praat/. Note the spread of intensity over a large range of
frequencies.

so we may get an estimate of D, if it is not known a priori, by thresholding this set of
eigenvalues.

Though not of further interest in this thesis, Schmidt shows that under the as-
sumption that the noise is uncorrelated and white (i.e. has identity covariance matrix),
we may also estimate the original signal parameters by approximating the covariance
matrix P = E[ff∗] by

P ≈ (A∗A)−1A∗(E[XX∗]− λminI)A(A∗A)−1. (5.10)

For situations where the assumption of whiteness does not hold, another estimator
which whitens as necessary is also provided by Schmidt [21].

5.1.1 Limitations

It was briefly mentioned in the foundations of the MUSIC algorithm in Section 5.1,
that the algorithm only deals with one frequency component of the data. This means
that the end user must either be attempting to localise a narrowband source of known
frequency, or must choose one frequency to look at from a range of active frequencies in
a broadband signal. The former is not always the case, especially when working with
acoustic signals, and the latter poses some problems of its own. For example, consider
the call of the female North Island Brown Kiwi, Apteryx mantelli, with spectrogram
shown in Figure 5.2. The call of this bird is a harsh screech, with total energy spread

http://www.nzbirdsonline.org.nz/sites/all/files/09%20-%20Track%209_12.mp3
http://www.nzbirdsonline.org.nz/sites/all/files/09%20-%20Track%209_12.mp3
http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
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out over a rather large range of frequencies. This spread makes for a lower signal-to-
noise ratio (SNR) at each frequency, reducing the effectiveness of the algorithm at each
individual frequency. How then does one get around these limitations?

5.1.2 Extensions to the MUSIC Algorithm

The most obvious initial choice is to sum the output of the MUSIC algorithm over
all K frequency bins ωk (k = 1, · · · ,K) obtained from the DFT of the data. This
weights all frequencies equally, which may in fact make performance worse when the
source does not cover the entire frequency spectrum, as the noise in the signal will be
treated with equal importance to the signal at the frequencies at which the source is
not present. To get around this, we may weight the sum by the square root of the
largest eigenvalue for each frequency bin, which is roughly proportional to the strength
of the source component of the signal [22]. This method is known as the Incoherent
Signal Subspace Method (ISSM) [106], and is formally:

PISSM(θ) =

K∑
k=1

(√
λmax(ωk)||E∗N (ωk)aθ(ωk)||−2

2

)
(5.11)

=

K∑
k=1

( √
λmax(ωk)

a∗θ(ωk)EN (ωk)E
∗
N (ωk)aθ(ωk)

)
, (5.12)

where K is the number of frequencies at which the DFT is evaluated, and λmax(ωk)
is the maximum eigenvalue of the covariance matrix E {X[k]X∗[k]}. Here we have
explicitly stated each term’s dependence on the frequency ω. This is a good first-
attempt method at applying MUSIC to broadband scenarios, but breaks down in the
situation where the eigenspaces have different structures at different frequencies; for
example, if there is one source active over the 1000-2000Hz range, but two active over
the 50-100Hz range.

To work with situations with a variable number of sources across the frequency
spectrum, Wang and Kaveh [23] first transformed each frequency to some reference
frequency ω0, and then performed the MUSIC algorithm on the ‘combined eigenspace’
at ω0. However, Wang and Kaveh’s algorithm required initial estimates of the direction-
of-arrival, and designing individual focusing matrices for each frequency bin. In 2009,
Pal and Vaidyanathan [107] introduced a new method which avoids these problems
by performing the ‘focusing’ from Wang and Kaveh’s work automatically, and was
thus coined autofocusing MUSIC, or AF-MUSIC. The AF-MUSIC spectrum is the
same as the regular MUSIC spectrum, but performed on the “universal focused sample
covariance matrix”, Rcoh [107]:

Rcoh = ES(ω0)RsE
H
S (ω0) + σ2I (5.13)

Rs =
1

K

K−1∑
k=0

EHS (ωk)A(ωk)R(ωk)A
H(ωk)ES(ωk), (5.14)

where K is the number of frequency bins, Es(ωk) is a matrix of orthogonal spanning
vectors for the signal subspace at frequency ωk, A(θk) is the matrix of array steering
vectors at frequency ωk, and R(ωk) is the covariance matrix of the data at frequency
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ωk. The universal focused sample covariance matrix, Rcoh, is a matrix whose rows span
the same subspace of CM as the matrix of array steering vectors at reference frequency
ω0, but is built to coherently combine the information available from the data at all K
available frequencies, and is given by

Rcoh =
K−1∑
k=0

Ryy[k], (5.15)

Ryy[k] = E
[
Y [k](Y [k])H

]
, (5.16)

Y [k] = Tauto(ω0, ωk)X[k], (5.17)

Tauto(ω0, ωk) =
1√
K
E(ω0)(E(ωk))

H , (5.18)

where Tauto(ω0, ωk) is known as the ‘focusing matrix’ and acts to transform the in-
formation at frequency ωk to ω0, and E(ωk) is the matrix of eigenvectors of Rxx[k] =
E [X[ωk]X

∗[ωk]] sorted in non-increasing order by the magnitude of their corresponding
eigenvalues. Combining (5.15)-(5.18) gives

Rcoh =
1

K

K−1∑
k=0

E
[
E(ω0)(E(ωk))

HX[k](X[k])HE(ωk)(E(ω0))H
]

(5.19)

=

K−1∑
k=0

Tauto (ω0, ωk)Rxx[k]THauto (ω0, ωk) (5.20)

(5.21)

which only requires the use of known matrices – we do not need to know the number of
sources at frequency ωk to formulate E(ωk). The AF-MUSIC Spectrum is then given
by [107]:

PAF(θ, ω0) = ||E∗N (ω0)aθ(ω0)||−2
2 (5.22)

= (a∗θ(ω0)EN (ω0)E∗N (ω0)aθ(ω0))−1 , (5.23)

where EN (ω0) is the matrix of noise-only eigenvectors of the universal focused sample
covariance matrix, Rcoh, and aθ(ω0) is the steering vector as in Eq. (5.2), evaluated at
reference frequency ω0. We may estimate the number of sources active over the entire
frequency range by thresholding the eigenvalues of Rcoh similarly to the narrowband
case.

AF-MUSIC allows the end user to make use of the information present at all fre-
quencies in the signal, however they are not explicitly able see to what extent each
frequency contributes to the directional estimate like as is possible with (5.11). To gain
access to this information, we may utilise polynomial matrices.

5.2 Broadband MUSIC

Introduction of the concept of polynomial matrices to the MUSIC algorithm allows us
to change from a narrowband covariance matrix to one which captures the broadband
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nature of the data, namely R(z), the z-transform of the space-time covariance ma-
trix (4.10) as introduced in Section 4.2.1. This is a polynomial matrix in the variable
z which describes the covariance between all frequencies of all channels of the observed
data.

5.2.1 The MUSIC Spectrum

Similarly to the narrow-band case, we may scan over the nullspace of the matrix EN (z)
of noise-space eigenvectors of R(z) using the broadband steering vector

aθ(z) =

 D0(z, θ)
...

DM−1(z, θ)

 (5.24)

with Di(z, θ) the z-transform of the fractional delay filter di[n] = sinc (nTs −∆τi),
where Ts is the sample period of the array, and ∆τi is the time delay at channel i.
However, now

Γθ(z) = aPθ (z)EN (z)EPN (z)aθ(z)

is not the squared norm of the distance from the steering vector estimate to the signal-
subspace, but a power spectral density, and hence contains frequency information.
This motivates two versions of polynomial MUSIC: Polynomial Spatio-MUSIC, which
integrates over the frequencies to provide only a function of the direction-of-arrival;
and Polynomial Spatio-Spectral MUSIC, which leaves the frequency information in to
be used or searched over.

Polynomial Spatio-MUSIC

We can use the autocorrelation-type sequence γθ[τ ], the inverse z-transform of Γθ(z),
to get to the required DOA estimate. In particular, as we are dealing with an autocor-
relation, the zero-lag term will be representative of the total energy of the signal, and
thus we may search over

PPS(θ) = (γθ[0])−1 (5.25)

=

(
1

2π

∫ π

−π
Γθ(e

iω)dω

)−1

(5.26)

to find a global maxima, such as in narrow-band MUSIC [26]. In practice, as we know
parahermitian matrices are analytic on the unit circle, we may approximate the integral
in (5.26) by a sum over K discrete frequency bins ωk (k = 1, · · · ,K) in a DFT, i.e.

PPS(θ) ≈ K

(
K∑
k=1

Γθ(ωk)

)−1

(5.27)

= K

(
K∑
k=1

aPθ (ωk)EN (ωk)E
P
N (ωk)aθ(ωk)

)−1

. (5.28)
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An example output from the Polynomial Spatio-MUSIC algorithm is shown in Fig-
ure 5.3.

Figure 5.3: An example output of the Polynomial Spatio-MUSIC algorithm. The
horizontal axis here is the direction-of-arrival θ, and the vertical axis is an indication
of how likely it is that the source came from that angle.

Polynomial Spatio-Spectral MUSIC

If, however, we would like to make use of the spectral component of the PSD,

PPSS(θ, eiω) =
(
Γθ(e

iω)
)−1

(5.29)

=
(
aPθ (eiω)EN (eiω)EPN (eiω)aθ(e

iω)
)−1

(5.30)

will allow us to search over both the angle of arrival, θ, and the normalised frequency
ω. In this way we may examine not only estimates of direction, but the frequencies
which contributed to them, for example in Figure 5.4.
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Figure 5.4: An example output of the Polynomial Spatio-Spectral MUSIC algorithm.
The horizontal axis here is the direction-of-arrival θ/2π, the vertical axis is the nor-
malised frequency Ω, and the colour intensity is proportional to the likelihood of the
source being in that position in θ − Ω space.

Notice that PS-MUSIC and PSS-MUSIC are closely related, explicitly:

1

2π

∫ π

−π
PPSS(θ, eiΩ)dΩ =

1

2π

∫ π

−π

(
aPθ (eiΩ)EN (eiΩ)EPN (eiΩ)aθ(e

iΩ)
)−1

dΩ

=
1

2π

∫ π

−π

(
Γθ(e

iΩ)
)−1

dΩ

=

(
1

2π

∫ π

−π
Γθ(e

iΩ)dΩ

)−1

= (γθ[0])−1

= PPS(θ).

5.2.2 Limitations

Upon application of Broadband MUSIC via polynomial matrices to the problem of
acoustic source localisation with the array configurations used in our experiment (a full
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explanation of which is provided in Chapter 6), we noticed that none of the PEVD
algorithms tested could sufficiently diagonalise the required space-time covariance ma-
trix. We think this is because the initial maximum lag parameter is so large; indeed,
as the maximum inter-microphone distance in our four-microphone array was 0.5447m
with a sample rate of 96kHz, we had an initial maximum lag parameter τ of

τ =

⌈
0.5447 ∗ 96000

csound

⌉
≈ 153 samples,

where csound is the speed of sound in air, which requires diagonalisation of a (4×4×307)
array. It would appear that such a level of diagonalisation is not attainable with current
algorithms (S. Weiss, personal communication, February 14, 2019). However, we will
show that AF-MUSIC may be used as a low computational-cost approximation to the
polynomial MUSIC algorithms.

5.2.3 Equivalence of PS(S)-MUSIC to AF-MUSIC

Returning to AF-MUSIC and the definition of the universal focused sample covariance
matrix given by (5.19), we can write:

Rcoh =
1

K

K−1∑
k=0

E[E(ω0)(E(ωk))
HX[k](X[k])HE(ωk)(E(ω0))H ] (5.19, revisited)

=
1

K

K−1∑
k=0

T (ωk)R(ωk)(T (ωk))
H . (5.31)

If we replace the summation over frequencies in (5.31) with an integration over the
Fourier transform (i.e. letting the number of frequency bins K tend to infinity), we
get:

Rcoh ≈
1

2π

∮ {
T (z)R(z)(T (z))H

}
z=eiω

dω (5.32)

= E(ω0)

(
1

2π

∮ {
E(z)R(z)(E(z))H

}
z=eiω

dω

)
(E(ω0))H , (5.33)

assuming that the DFT is a good approximation of the Fourier transform [27]. However,
as we know from Chapter 4.2, the matrix E(z) diagonalises the polynomial matrix R(z)
to give diagonal matrix Λ(z), and thus we have

Rcoh ≈ E(ω0)

(
1

2π

∮
{Λ(z)}z=eiω dω

)
(E(ω0))H (5.34)

= E(ω0)Λ[0](E(ω0))H (5.35)

=⇒ Λ[0] ≈ (E(ω0))HRcohE(ω0), (5.36)
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where (5.35) comes from a direct application of the definition of the inverse Fourier
transform, specifically for n = 0;

Λ[0] =
1

2π

∫ π

π
Λ(eiω)eiωndω

=
1

2π

∮
{Λ(z)}z=eiω dω.

Hence conjugation of Rcoh by E(ω0) approximately yields the zero-lag coefficient of the
diagonal matrix of polynomial eigenvalues of the space-time covariance matrix R(z).

Now, for K suitably high such that the DTFT is a good approximation of the
Fourier transform (3.3):

PAF(θ, ω0) =
(
aPθ (ω0)EN (ω0)EPN (ω0)aθ(ω0)

)−1
(5.23)

≈
{(

aPθ (z)EN (z)EPN (z)aθ(z)
)−1
}
|z=eiω0 , (5.30)

and thus AF-MUSIC with reference frequency ω0 is approximately equal to SSP-MUSIC
evaluated at ω0 [27, 71].



Chapter 6

Experiment

During the course of this thesis, two experiments were conducted; one with the general
aim of collecting data for future use, and one to investigate the effect of array size on
the DOA estimation ability of the various implemented algorithms. The former was
only of use for initial testing during development, until the ability to simulate data was
added to the code. This chapter will focus on the latter experiment.

6.1 Aim & Overview

The aim of this experiment is to determine the effect of the array size on the result of
the currently implemented source localisation algorithms. The array configuration was
an equilateral triangular array with a fourth microphone in the center. Beginning at
minimum arm length of 0.07m, we linearly and uniformly increased the distance from
the origin to the three non-central microphones at each iteration, stopping at a limit of
0.346m (governed by the physical constraints of the board housing the microphones).
This design is illustrated in Figure 6.1.

120◦

0.346m

0.074m

Figure 6.1: Illustration of the array configurations.

47
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6.2 Audio File

The 7.5 second, 44.1 kHz, single-channel audio file for use in the experiment was con-
structed with the following components:

• 1.0 seconds of a bandlimited 440 Hz sawtooth wave (seen at t = 0.5 to t =
1.5 in Figure 6.2). This was chosen for use with broadband source localisation
algorithms.

• 1.0 seconds of a 4439.5 Hz sine wave (t = 2.0 to t = 3.0 in Figure 6.2). This
frequency was picked as it coincided with the strongest power frequency in the
Stitchbird call situated at the end of the audio file. This frequency corresponds
to a wavelength of 343.1

4439.5 = 0.077283 m.

All of the above sections of audio are inter-dispersed with short, half-second,
periods of silence for ease of data separation – bringing the total playback time
to 7.5 seconds. A spectrogram of the file is shown in Figure 6.2.

• 1.25 seconds of a female North Island Brown Kiwi call (t = 5.0 to t = 6.25 in
Figure 6.2). This was chosen as it is a harsh, broadband, call and also a species
of particular interest due to both it’s ‘Declining’ conservation status [108], and
its status as a de facto national icon.

• 0.75 seconds of a Stitchbird/Hihi call (t = 6.75 to t = 7.5 in Figure 6.2). This
bird was chosen as it has a more melodic, higher-pitched call, and a ‘Nationally
Vulnerable’ conservation status [108].

All of the above sections of audio are inter-dispersed with short, half-second, periods
of silence for ease of data separation – bringing the total playback time to 7.5 seconds.
A spectrogram of the file is shown in Figure 6.2.

6.3 Method

Due to the vertical symmetry of the array, either positive or negative angles may be
used to transmit the sound from the source, and due to the rotational symmetry, it
is only necessary to consider angles with magnitude less than or equal to π

3 . In this
case, to ensure a clear path between source and microphones on the sloped ground in
the forest clearing where the experiment was conducted, negative angles were used as
illustrated in Figure 6.3.
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Figure 6.2: Spectrogram of the audio file used for the experiment. The time axis is
shown along the top of the figure, with the frequency (in Hz) shown on the left-hand-
side. The brightness of colour at any point on the time-frequency graph corresponds
to the strength of the signal at that point. The apparent ‘clicks’ at the start and end
of each piece of audio (e.g. at 2.0s and 3.0s) are artefacts of the procedure used to
generate the spectrogram.

M1
M2

M4

M3

θ = 0

θ = −π/6θ = −π/3 θ = −π/4

Figure 6.3: Visual demonstration of the source directions-of-arrival, with microphones
corresponding to channels 1-4 labelled M1-M4, respectively. The speaker was placed
8m along the shown rays.

The method for the experiment is outlined in Algorithm 1. All coordinates are in
meters, relative to the center of the array. The method involves the physical handling
of the array mid-experiment to adjust the position of the microphones. As a result of
this, it is possible that small biases in the direction-of-arrival estimates may appear
as a result of the array not being placed perfectly in alignment with its position at
previous iterations. Indeed for the experiment conducted by the author, the board in
which the microphones were housed was lined up with four marks spray-painted on the
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ground at each of its four corners – however this was difficult to do precisely, and some
small biases may be seen in the DOA estimates. Some sort of rigid, semi-permanent,
physical mount that holds the array firmly in position could be used to counteract this
in future experiments.

initialisation place microphone 1 at position (0, 0);
for d ∈ {0.07, 0.125, 0.181, 0.236, 0.291, 0.346} do

for m ∈ {2, 3, 4} do

place microphone m at coordinates (d cos (2−m)π
3 , d sin (2−m)π

3 );
end
begin audio capture;
for ϑ ∈ {0, −π6 ,

−π
4 ,
−π
3 } do

place the speaker at coordinate (8 cosϑ, 8 sinϑ);
silently:

begin audio file playback;
while audio playing do

wait;
end

end silence

end
cease audio capture;

end

Algorithm 1: Method for the experiment.
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Results

Of the two algorithms tested; GCC and AF-MUSIC, both appear to work well. Several
GCC processors were tested, with ρ-PHAT showing the most promise for use in acoustic
source localisation. In general, AF-MUSIC provided a more precise estimate, as well
as a lower tendency to provide false estimates when compared to GCC, however at a
notably higher computational cost.

7.1 GCC Performance

In general, GCC appears to be be a reasonably accurate, low-cost, algorithm which
is not particularly difficult to implement. The choice of multiple processors such as
those described in Section 3.3.1 provides some versatility. From simulation and manual
inspection, GCC works best in broadband high signal-to-noise ratio environments. It
would thus be a better choice for localisation of birds with lower-pitched, harsh, calls
such as the female North Island Brown Kiwi, rather than high pitched birds such as
the Hihi/Stitchbird (whose high-pitched calls drop in power rapidly over a distance),
or more melodic calls such as the Grey Warbler.

7.1.1 False Positives

For highly periodic signals (such as the two sine waves included in the experiment),
the cross-correlation between any pair of microphones is also periodic, with period the
same as the period of the signal. This means that for delays an integer period out from
the true delay the cross-correlation will be nearly as high as the cross-correlation at the
true delay, and thus any angles which correspond to these false GCC peaks for that
microphone pair will contribute a significant proportion of their global maxima to the
GCC sum as in Eq. (B.2). If the wavelength of the signal and array geometry is such
that multiple pairs of microphones happen to have this occur at the same time, the
effect will be exacerbated, such as in Figure 7.1.

This phenomenon was also present in any noise-free simulation of GCC with the
high pitched 4439.5 Hz call, however for this high of a frequency sound, the source was
massively overpowered in magnitude by the noise in the data, and as such the output
from almost all GCC calculations on the experimental data was akin to Figure 7.2.

It should be noted that the false positives were only of major concern in low-
frequency, narrowband, signals – indeed, for a more complex broadband call such as
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(a) Total GCC Output (b) Example Correlations

Figure 7.1: (a) shows the GCC output obtained from experimental data for localisation
of a 909.5 Hz sine wave at an angle of 0 degrees relative to the array, as illustrated by
the red line. (b) shows a subset of the correlation functions for some microphone pairs
(legend “[a b]” indicates the line corresponds to the GCC output of microphones a+ 1
and b+ 1); the red dashed line shows the true DOA, and the red dotted lines indicate
the angles of the false positives in (a).

Figure 7.2: A representative example of the GCC output for the 4439.5 Hz sine wave
at all array configurations. The red line illustrates the true signal DOA.
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(a) The Cross-Correlation (b) The PHAT Processor

Figure 7.3: The effect of different GCC processors on localisation of a strong, narrow-
band signal – in this case a 909.5 Hz sine wave at an angle of 315 degrees relative to
the array, as illustrated by the red line in each figure.

from the female kiwi, these false positives did not regularly appear. This is good, as
the kiwi has already been identified as a species of particular interest.

7.1.2 Choice of Processor

In initial testing of the GCC algorithm, only the regular cross-correlation was used
(i.e. ψ(ω) = 1 ∀ω in (3.17)). Later, the PHAT processor was trialled, which showed
promising results, in particular by reducing the false positives discussed in 7.1.1, for
example as shown in Figure 7.3.

For narrowband sources such as the 909.5 Hz sine wave, the performance of the
PHAT processor degrades, as the number of frequency components with no active
source begin to outnumber the source component of the signal. To counteract this, the
ρ-PHAT processor allows the end user to essentially scale back the amount of whitening
applied to the data, to allow strong tonal components to have more of an impact, but
still apply some whitening in an attempt to sharpen the peak of the cross-correlation
functions. This is shown in Figure 7.4. The regular cross-correlation in Figure 7.4(a)
displays a strong false positive, likely caused by the high periodicity of the signal leading
to a spurious false peak in the cross-correlations which happens to line up in the ≈ 45◦

direction.
Figure 7.5(a) helps to strengthen the hypothesis that the false positive in Fig-

ure 7.4(a) was from a coincidental lining-up of the highly periodic data at that angle,
rather than an unintended second source in the recording – it shows a simulation of
the experiment in the noise-free case. The second peak occurs in the simulation, where
there is no added noise and we can be sure of no additional source. Notice that the
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(a) The Cross-Correlation (b) The PHAT Processor (c) The ρ-PHAT Processor, with
ρ=0.73

Figure 7.4: The effect of different GCC processors on localisation of a strong, narrow-
band signal – in this case a 909.5 Hz sine wave at an angle of 315 degrees relative to
the array, as illustrated by the red line in each figure.

(a) The Cross-Correlation (b) The PHAT Processor (c) The ρ-PHAT Processor, with
ρ=0.73

Figure 7.5: The effect of different GCC processors on localisation of a simulated (noise-
free) strong, narrowband signal – in this case a 909.5 Hz sine wave at an angle of 315
degrees relative to the array, as illustrated by the red line in each figure.
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second peak is gone in Figure 7.5(b) as in Figure 7.4(b), and that the true direction-
of-arrival is accentuated when using ρ-PHAT in Figure 7.5(c).

7.2 AF-MUSIC Performance

Though we have presented no metric for accuracy, in general AF-MUSIC appeared to
perform better than GCC; the peaks were sharper, there were fewer false positives,
and it allowed for localisation in situations where GCC did not – for example in the
situation shown in Figure 7.6, which shows the localisation of a Hihi call at 300◦ on an
array of 0.291m radius with both the GCC and AF-MUSIC algorithms.

(a) Localisation via GCC (b) Localisation via AF-MUSIC

Figure 7.6: This figure shows an example of AF-MUSIC providing a direction-of-arrival
estimate where GCC fails to do so. (a) is the same as Figure 7.2, and (b) is the
same situation analysed with the AF-MUSIC algorithm. Both the PHAT and ρ-PHAT
processors performed as badly as the CC processor shown in (a) in this case.

7.3 Remarks on Computational Cost

Though the AF-MUSIC algorithm showed much greater localisation abilities than any
of the GCC variants tested, it also comes with the burden of much higher computational
cost. If the data on M microphones of length N samples is split up into B bins for the
expectation in the calculation of the eigenvectors of Rxx(ωk) for the generation of the
focusing matrices Tauto(ω0, ωk), and if there are K DFT coefficients calculated, then
there are least B DFTs (of runtime proportional to N

B log N
B ) to calculate, as well as

BK eigendecompositions of Hermitian matrices of size M ×M . In contrast, the cross-
correlation only requires two K-bin DFTs, K scalar multiplications, and one inverse
DFT. The code developed to accompany this thesis is largely not optimised, however
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a comparison of runtimes between GCC, MUSIC, and AF-MUSIC may be found in
Appendix C.3.

7.4 Array Radius

The experiment described in Chapter 6 was conducted during the course of this thesis
to determine the effect of the physical size of the array on localisation ability. In
particular, we hypothesised that a larger inter-microphone distance would increase the
resolution of the array. This indeed seems to be the case, however the GCC algorithm
appears more sensitive to microphone separation than AF-MUSIC, as is shown in the
following figures.

Figure 7.7 shows the output of the ρ-PHAT weighted GCC algorithm (ρ= 0.73)
for a small (0.07 m), medium (0.181 m), and large (0.346 m) array arm radius – here,
“arm radius” refers to the distance from the array center at which the non-central
microphones are placed; refer to 6.1 for a diagram of the array geometry.

(a) Array Radius: 0.070 m (b) Array Radius: 0.181 m (c) Array Radius: 0.346 m

Figure 7.7: The effect of varying array radius on the output of the GCC algorithm
with ρ-PHAT weighting (ρ=0.73). Here, the kiwi call was broadcast at 0 degrees as
indicated by the red line in each graph.

As the array radius increased, we saw an increase in precision in the DOA esti-
mate, as illustrated by Figure 7.7. The small biases in the estimate, especially present
in 7.7(c), are believed to be due to physical handling of the array between trials as
discussed in Section 6.3.
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(a) Array Radius: 0.070 m (b) Array Radius: 0.181 m (c) Array Radius: 0.346 m

Figure 7.8: The effect of varying array radius on the output of the AF-MUSIC algo-
rithm. In this case, the kiwi call was broadcast at 300 degrees, as indicated by the red
line in each graph.

In general, an increase in array radius also acted to increase the precision of the
AF-MUSIC algorithm similarly to with GCC, as illustrated by Figure 7.8. This effect
was not as profound for AF-MUSIC based localisation; it was common for the 7 cm
array to lose all GCC-based localisation ability and yet still provide a reasonably precise
estimate using AF-MUSIC, such as in Figure 7.9.

(a) ρ-PHAT GCC (b) AF-MUSIC

Figure 7.9: Localisation via 0.07m array of the Hihi/Stitchbird call at 315 degrees, as
indicated by the red line in each figure. Figure 7.9(a) shows GCC-based localisation
with the ρ-PHAT weighting (ρ = 0.73), and Figure 7.9(b) shows AF-MUSIC based
localisation.
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7.5 Future Work

Though the motivation for this work was the localisation of native birds for aid in
conservation, none of methods described herein are bound to work solely on recordings
of birdsong. Gray and Hioka [18] used the known harmonic structure of the kiwi call
to automatically segment the data into sections in which bird’s call was present and
sections with only noise, allowing them to obtain an estimate of the noise spectra to be
used in a maximum-likelihood GCC processor. As this thesis was part of an ongoing
project1 which includes work into the automatic detection and classification of birdsong,
this could possibly prove to be a fruitful avenue for further exploration – however from
the experiments conducted so far, it is anticipated that AF-MUSIC will still outperform
any GCC variants.

The current array design, while it benefits from its small size by being light and
portable, is too small to allow for estimation of the distance from the array to the signal
source. To counteract this, two or more arrays may be used to provide approximate
bearings, and then a least squares fit for their intersection may be performed. Ex-
pected challenges with this approach include inter-array synchronisation, and accurate
measurement of the arrays’ relative location in potentially dense native bush.

1The AviaNZ project, for more information visit http://www.avianz.net/

http://www.avianz.net/
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Appendix A

Figures

A.1 SBR2 Visualisation

These figures are taken from slides prepared for UDRC Summer School 2017, entitled
Polynomial Matrices and Decompositions; Tutorial Examples Including Beamforming
and Source Localisation, with permission from Prof. Stephan Weiss. They provide a
visual representation of an iteration of the SBR2 algorithm as presented in 4.3.1.

Figure A.1: The first step of the SBR2 algorithm is to locate the pair (by symmetry)
of elements in the 3D array of coefficients with the highest absolute value. In this case,
they have been displayed in red, and are found at time slice ±T .
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Figure A.2: Next, we use the coordinates of the red entries to create the delay matrix
Dk,T (z). The aim of these matrices is to shift the red entries onto the same plane as
the black diagonal entries at the coefficient plane of exponent 0.

Figure A.3: Applying Dk,T (z) to the matrix from the left, we see that it acts to shift
the blue highlighted row slice forward towards the zero coefficient plane.
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Figure A.4: After the application of Dk,T (z), we see that the red element which was
at the slice corresponding to time T is now at the constant coefficient plane. Notice
also that the rear portion of the row has been shifted further out off the end - this is
where the expansion of the matrix comes in; we may either truncate those entries off,
or expand the array to make room to keep them. Also notice that the diagonal entry
in the T th row has been displaced.

Figure A.5: Now applying DP
k,T (z) on the right, we shift the T th column slice back

towards the zero coefficient plane. Notice that this action restores the black diagonal
entry to where is was previously.
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Figure A.6: The result of applying DP
k,T (z) to the right of the matrix.

Figure A.7: The state of the matrix after completion of the delay step. The red terms
have both been shifted onto the zero coefficient plane. All that remains is to apply a
Jacobi transformation to shift them down onto the diagonal.
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Figure A.8: Using the coordinates and details of the red entries, we now create the
rotation matrix Jj,k(θ, φ) which we will use to shift the red entries down to the blue
highlighted positions. This step is simply a regular scalar Jacobi transformation, but
must be carried out across the matrices at all lag indices.

Figure A.9: The result of conjugating by Jj,k(θ, φ). We see that the red entries have
been rotated down onto the diagonal; this concludes one iteration of the SBR2 algo-
rithm. Repeat these steps until the matrix is sufficiently diagonalised.
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Image Generation

In his chapter we discuss what is done with the output of the algorithms presented in
Chapters 3 & 5, including the generation of visual direction estimates.

B.1 Graphical Representation

A visual representation of the algorithm output is a useful tool for both development
and quick inspection. For this, the provided Locator class can produce both heatmaps
(e.g. Figure B.1(a)) and radial plots (e.g. Figure B.1(b)) from the output of both the
GCC and the AF-MUSIC algorithm.

(a) A heatmap. (b) A radial plot.

Figure B.1: Examples of both a heatmap (a), and a radial plot (b) generated by the
Locator class. Both figures were generated from experimental data – in the heatmap,
the source was at the position of the red dot, and the magenta ‘+’ symbols represent
the microphone positions. In the radial plot, the source was at the angle θ = 0, as
shown by the red line.
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B.1.1 GCC Heatmap Generation

A visual representation of the GCC output was produced as follows. First, create some
representation of the domain of interest; in this case, a mesh of two-dimensional points
was created with numpy.meshgrid, with each point corresponding to a unique point in
space. Then, for each point (dx, dy) in the domain, calculate what the observed time
delays would be if the signal had indeed come from this point in space. There will be
one time delay per pair of microphones, i.e. for each pair of microphones with indices
j and k in an M -microphone array, we get

τj,k =
1

csound

(√
(mk

x − dx)
2

+
(
mk
y − dy

)2 −√(mj
x − dx

)2
+
(
mk
y − dy

)2)
, (B.1)

where ml
x is the x-coordinate of microphone l, ml

y its y-coordinate, and csound the speed
of sound in air.

Next, evaluate the interpolated GCC function for each microphone pair at it’s
corresponding simulated time delay from (B.1), and sum the results. Explicitly, for
each point (dx, dy) calculate

M−1∑
j=1

M∑
k=j+1

R̂(g)
xjxk

(τj,k). (B.2)

The heatmaps produced by the Locator class (as seen in Figures B.2(a)–B.2(c)) are
produced by calculating these sums for each point in the domain, and mapping the
highest GCC sums to highest intensity colours, and vice versa. The point (dx, dy) in
the domain which maximises the sum (B.2) provides an estimate of source position, akin
to a maximum likelihood method. Some example heatmaps are shown in Figure B.2.

(a) Array Radius: 0.070 m (b) Array Radius: 0.181 m (c) Array Radius: 0.346 m

Figure B.2: Experimental results of GCC-based localisation of the call of the Female
North Island Brown Kiwi call with varying array radii. In each image, the red dot illus-
trates the position of the speaker playing the call, and the pink ‘+’ symbols represent
the microphones.
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B.1.2 Radial Plots

Though the heatmaps are a nice visual representation of the space in which the ex-
periments were conducted, they illustrate the main inadequacy of the currently imple-
mented methods on such a physically small array; the apparent inability to estimate
the distance from the array to the source. From simulation, this only appears possible
either in the near-field case where the source is within the space spanned by the array,
or when there are multiple arrays all giving directional estimates which intersect at a
unique point. To this end, instead of generating the heatmaps and evaluating Eq. (B.2)
potentially millions of times over a large two-dimensional domain, we may reduce the
computational load by modelling the source as a plane-wave, i.e. assuming that it is
far enough from the array that the curvature of the wavefront is essentially 0 by the
time it passes over the microphones. This assumption reduces the search space down
to one dimension, namely the angle-of-arrival θ.

(a) Array Radius: 0.070 m (b) Array Radius: 0.181 m (c) Array Radius: 0.346 m

Figure B.3: Radial plot of GCC-based far-field localisation of the call of the Female
North Island Brown Kiwi call with varying array radii. In each image, the red line
illustrates the angle of the speaker playing the call.

Figures B.3(a)-B.3(c) show exactly this. Using the same data as was used to create
Figure B.2, we model the time-delays as if the source were emitting a plane wave, and
plot the GCC output as a function of the direction-of-arrival of that plane wave. Notice
that the radial plots are qualitatively very similar to what is seen in the heatmaps when
tracing a circle of fixed radius about the microphones with the eye.

B.1.3 AF-MUSIC Image Generation

The procedure for creating visual results via the AF-MUSIC algorithm is similar to the
procedure for creating the images for GCC as detailed in B.1.1, up to and including
creating the domain of points (dx, dy). At this stage, the calculation of the delays of
interest differ; rather than calculate the delay between the signal reaching two micro-
phones, for each point in the domain we calculate the time it took for the sound to
travel from that point to each of the microphones in the array, i.e. for microphones
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m = 1, 2, · · · ,M , calculate:

τm =
1

csound

(√
(mx − dx)2 + (my − dy)2

)
. (B.3)

We then use these time delays to create the steering vector aθ(ω) as follows:

aθ(ω) =
[
e−iωτ1 e−iωτ2 . . . e−iωτM

]T
, (5.2)

and then proceed to calculate the AF-MUSIC output PAF(θ, ω0) as per (5.22). This
procedure is done for every point in the domain, and the output is plotted either as a
heatmap or a radial plot, depending on the dimensionality of the domain of interest.
Some example radial plots of AF-MUSIC output are shown in Figures B.4(a)-B.4(c).

(a) Array Radius: 0.070 m (b) Array Radius: 0.181 m (c) Array Radius: 0.346 m

Figure B.4: Radial plot of AF-MUSIC-based far-field localisation of the call of the
Female North Island Brown Kiwi call with varying array radii. In each image, the red
line illustrates the angle of the speaker playing the call.
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Code Demonstration

The Locator class

During the course of this degree, a Python package was developed for use in Acoustic
Source Localisation, with the main class being coined the Locator class. The code is
hosted at https://github.com/alexW335/Locator. In this chapter, we will provide
a demonstration of its use, similar to the Demo.ipynb Jupyter notebook also hosted
in the GitHub repository. The code that follows was run in an ipython shell with the
following imports:

%pylab

from scipy import signal

from scipy.io import wavfile as wav

import locator

C.1 Simulating and Loading Data

The locator class has the functionality to artificially shift a signal to simulate as if
it had come from some position in space, as well as to load in actual array data to
process. To begin the demonstration, we will create a mono ‘WAVE’ file comprised of
white noise, and then artificially shift it as if it had come from the direction-of-arrival
θ = π/5.

noise = random.normal(0., 1., size=44100//5)

noise *= 2**15/max(noise)

wav.write(``noisedemo.wav'', 44100, noise)

Now that we have our source file saved as “noisedemo.wav”, we instantiate a Locator
object, and use it to create our artificial array data, like so:

loc = locator.Locator(mic_locations=locator.UCA(n=4, r=0.346,

centerpoint=True,

show=True))
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When using the helper function locator.UCA to simulate a Uniform Circular Array,
we may pass in the named keyword show=True to produce a visual representation of
the microphone positions, as shown in Figure C.1

Figure C.1: The position of the simulated microphones, shown by the blue dots.

Now that we have a Locator object, we may make use of the shift sound method
to create our artificial data. The shift sound method actually takes in a pair of
coordinates (x, y) as its position argument, because some of the methods implemented
in the locator work for near-field sources as well as far-field. In this case, we just shift
the source very far away.

# Define an (x,y) tuple for the source position

source_position = (100000*cos(pi/5), 100000*sin(pi/5))

# Artificially shift the source to that position,

# save as ``noisedemoSHIFTED.wav''.

loc.shift_sound(source_position, "noisedemo.wav",

"noisedemoSHIFTED.wav", noisescale=0.0)

You may notice that the shift sound method has a “noisescale” parameter. You can
introduce artificial noise in the data with this parameter – it generates Gaussian i.i.d.
noise with mean 0 and variance noisescale times the variance of the source file.

# Load the newly-shifted file.

loc.load("noisedemoSHIFTED.wav", GCC_processor="CC")

The load method also generates the weighted cross-correlation functions using the
weighting specified by the GCC processor keyword. Options available are: CC, PHAT,
pPHAT (for ρ-PHAT), RIR, HB, and SCOT. You can avoid calculation of the cross-
correlations (e.g. if only utilising MUSIC-based algorithms) by passing the parameter
do FFTs=False.
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C.2 Localisation

The next step is to try and localise our artificial array data using the Locator func-
tionality. GCC-based methods available are:

• display heatmap()

• display radial()

MUSIC-based methods available are:

• display radMUSIC(frequency)

• display MUSICheatmap(frequency)

and AF-MUSIC-based methods available are:

• AF MUSIC()

C.2.1 GCC-Based Methods

To display GCC-based heatmaps (discussed in B.1.1), we use the display heatmap

method as follows:

loc.display_heatmap()

Figure C.2: Example output of the display heatmap method.

For a radial plot (discussed in B.1.2), we use the display radial method. This method
has one required parameter radius, which is the radius from the array center at which
to evaluate the GCC. The method is called as so:

loc.display_radial(1000)
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Figure C.3: Example output of the display radial method.

C.2.2 MUSIC-Based Methods

Both display MUSICheatmap and display radMUSIC require the selection of a fre-
quency at which to evaluate the MUSIC algorithm. For this demonstration, I picked
an arbitrary frequency to use (500 Hz), as the white noise signal should have equal
power at all frequencies. For MUSIC, there is the option of a two-dimensional heatmap
like so:

loc.display_MUSICheatmap(500, xrange=(0,40), yrange=(0,40), xstep=0.01,

ystep=0.01)

Figure C.4: Example output of the display MUSICheatmap method with frequency =
500.

or the radial plots for far-field DOA estimation, as follows:
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loc.display_radMUSIC(500)

Figure C.5: Example output of the display radMUSIC method with frequency = 500.

AF-MUSIC

The AF-MUSIC algorithm does not require the selection of a single frequency to work
on, and as such the related methods do not require any arguments. To make a radial
plot of DOA estimation, we use the AF MUSIC method as follows:

loc.AF_MUSIC()

Figure C.6: Example output of the AF MUSIC method.
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C.2.3 Example Using Real Data

Both algorithms appear to work well on the simulation with no noise. But do they
work for real data? In practice, the Locator is used in exactly the same way. The file
“kdemo.wav” was recorded as part of a larger experiment on how array size effects the
localisation ability of the array, as described in Chapter 6. It was captured with a 0.346
m radius 4-element UCA with one microphone in the center (the same shape as in the
simulations above). The source was placed at an angle of 0 degrees from the array at a
distance of 8 m. As before, the first thing we must do is instantiate a Locator, however
this time we must be sure to place the microphones in the same positions as they were
during recording of the data.

# Load the file

l_exp = locator.Locator(mic_locations=locator.UCA(n=4, r=0.346,

centerpoint=True))

l_exp.load("kdemo.wav")

To begin with, we will try the GCC-based heatmap and radial plot. First we generate
the heatmap as follows:

l_exp.display_heatmap(xrange=(-10,10), yrange=(-10,10))

Figure C.7: The output of the display heatmap method for the “kdemo.wav” file.

For the display radial method, we must pass in a radius at which to evaluate the
GCC. We know a priori that the source was 8 meters away from the array, so we shall
pass in this distance for the radius parameter:

l_exp.display_radial(8)
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Figure C.8: The output of the display radial method for the “kdemo.wav” file.

Now we shall try the MUSIC-based algorithms – but at which frequency do we evaluate
the MUSIC spectrum? One suggestion is to look at the Fourier transform of the
recorded call of the female North Island Brown Kiwi; the frequency with the highest
magnitude seems to be a sensible choice for use, as it contributes the most to the data.

plot(fft.rfftfreq(l_exp.data[:,0].shape[0])*l_exp.sample_rate,

np.abs(fft.rfft(l_exp.data[:,0])))

xlabel("Frequency [Hz]")

Figure C.9: The Fourier transform of the kiwi call.

Notice how the total signal power is spread out over a large range of frequencies.
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frq = fft.rfftfreq(l_exp.data[:,0].shape[0])[argmax(

np.abs(fft.rfft(l_exp.data[:,0])))]*l_exp.sample_rate

print("The frequency with highest power is", frq, "Hz")

>>> The frequency with highest power is 1559.2987858217573 Hz

We will then use this frequency as the choice for the MUSIC algorithm, like so:

l_exp.display_radMUSIC(frq)

Figure C.10: The output of the display radMUSIC method for the experimental data,
evaluated at ∼1559 Hz.

For the ∼1559 Hz component of the signal, it appears that the kiwi call at 0 degrees
is not the only active source; there are multiple peaks in the output. Rather than pick
one frequency for localisation, by using AF-MUSIC we may combine the information
available at all frequencies in the data, like so:

l_exp.AF_MUSIC()
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Figure C.11: The output of the AF MUSIC method for the experimental data.

C.3 Runtime Comparison

As AF-MUSIC combines the information available at all frequencies, there is a lot more
computation involved. Indeed, regular MUSIC takes approximately 34 milliseconds per
run:

%%timeit

_ = l_exp.display_radMUSIC(frq, shw=False)

>>> 33.9 ms +- 2.65 ms per loop (mean +- std. dev. of 7 runs,

10 loops each)

Whereas AF-MUSIC takes around 3.9 seconds:

%%timeit

_ = l_exp.AF_MUSIC(shw=False)

>>> 3.66 s +- 11.3 ms per loop (mean +- std. dev. of 7 runs,

1 loop each)

For comparison, the cross-correlation based method only takes around 9 milliseconds.

%%timeit

_ = l_exp.display_radial(8, shw=False)

>>> 8.91 ms +- 683 us per loop (mean +- std. dev. of 7 runs,

100 loops each)
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