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Abstract 

Eukaryotic Signature Proteins (ESPs) are proteins that delineate the eukaryotes from the 

archaea and bacteria. They have no homologues in any prokaryotic genome, but their 

homologues are present in all main branches of eukaryotes. ESPs are thus likely to have 

descended from ancient proteins that have existed since the first eukaryotic cell. This 

project looks at ESPs of some eukaryotic parasites and human (Homo sapiens) as their 

host organism and focuses on Giardia lamblia, a fresh water pathogenic basal 

eukaryote. The ESP datasets from Giardia and two other parasites, Trichomonas 

vaginalis and Plasmodium falciparum, as well as the host human were calculated in 

light of available genomic data and the datasets contained a range of proteins associated 

with membrane, cytoskeleton, nucleus and protein synthesis.  

ESPs have great potential in phylogenetic studies since these proteins are present in all 

eukaryotes and are expected to have a slow and constant rate of evolution. Phylogenetic 

analyses were performed on the 18 eukaryotic organisms including some basal 

eukaryotes, and also for mammals, using orthologues of the all ESPs from these 

organisms. Strategies such as concatenating sequences and constructing consensus 

networks were tested to evaluate their potential with large numbers of ESP alignments. 

The results were promising, and ESPs hold great potential for their use in future 

phylogenetic analyses of eukaryotes.  

RNA interference is hypothesised to be an ancient mechanism for gene regulation and 

like the ESPs, it is typically found in all main branches of eukaryotes. High throughput 

sequencing data from Giardia and Trichomonas small RNAs (15-29mers) were re-

analysed showing two length peaks for Giardia RNAs: a “larger peak” and an “ultra 

small peak”, the former of which is likely to be the product of the enzyme Dicer, which 

processes miRNA. The “ultra small peak” but not the “larger peak” was also found in 

Trichomonas. The two peaks possibly represent two different mechanisms of RNA 

interference (RNAi) in these parasites, but analysis of potential target sites from the 

Dicer-processed RNAs has not yet shown any indication that ESPs are regulated any 

differently from other parasite proteins. 

Sugar metabolic pathways including glycolysis and citric acid cycle were searched for 

ESPs, this was done to determine the relationship between the conservation of 
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eukaryotic metabolic pathways and conservation of individual proteins. However no 

ESPs were identified from these pathways because Giardia has enzymes that show 

more similarity to those from prokaryotes than eukaryotes. These enzymes are 

significantly different from that of the host’s, and these alternative enzymes offer 

potential as novel drug targets. In addition, ESPs that are present from host but lost in 

some parasites were analysed, and these ESPs are involved in many understudied 

pathways. It is these differences which can provide a guide in determining which 

pathways we should examine when designing drug targets. 

Overall, numerous proteomic similarities and differences in ESPs were identified 

between host and parasite. These proteins show potential for future evolutionary studies, 

and will guide future directions in ancestral eukaryotic regulation and metabolism. 
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Terminology 

3’UTR (three prime untranslated region): Region of mRNA downstream of the 

termination codon. In metazoans this region is where miRNA binds to regulate gene 

expression. 

5’UTR (five prime untranslated region): Region of mRNA upstream of the starting 

codon that often contain regulatory elements such as ribosome binding sites. 

Akaike Information Criterion (AIC): Measure used in model testing based on the 

goodness of fit to a statistical model 

Basal Eukaryote: A unicellular eukaryotic which is believed to have diverged early 

during the evolution of eukaryotes, e.g. Giardia lamblia. 

Bayesian inference: A tree searching method which is statistically similar to maximum 

likelihood, the aim is to find the tree with maximum posterior probability; can allow 

complex models of evolution to be implemented. 

BLAST (Basic Local Alignment Search Tool): Software which enables comparison of 

amino acid or nucleotide sequences. 

Blastp: A BLAST program which compares protein queries with protein databases. 

Cellular signature structure (CSS): Cell organelles or complex found in eukaryotes 

but not prokaryotes, e.g. mitochondria, Golgi apparatus, spliceosome. 

Excavata: A eukaryotic supergroup that contains the morphological feature of a ventral 

feeding groove. This supergroup includes Diplomonads (Giardia lamblia) and 

Parabasalia (Trichomonas vaginalis). 

Eukaryotic Signature Protein (ESP): A protein with no homologues in prokaryotic 

(archaea and bacteria) genomes, but it has homologues which are present in all the 

major branches of eukaryotes. 

Gene Ontology (GO): A project aimed to unify the representation of gene attributes 

across all species by using a controlled vocabulary to assign their functions. Website: 

http://www.geneontology.org. 

Long branch attraction (LBA): A phenomenon observed when highly divergent 

lineages are grouped together, regardless of their true evolutionary relationships. The 

long branches of a tree will group together regardless of the true tree topology. 

Maximum likelihood (ML) inference: A tree searching method which aims to find the 

tree with highest probability to produce the observed data. 
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Messenger RNA (mRNA): RNA transcribed from DNA, after mRNA processing (e.g. 

Capping, intron splicing) the mature mRNA is translated into protein by the ribosome. 

Micro RNA (miRNA): ~21-22 base pair (bp) single stranded RNA processed by the 

Dicer or Drosha proteins, which regulates gene expression by means of complimentary 

binding to the target mRNA. 

Non-coding RNA (ncRNA): RNA that does not code for proteins, but may have a 

function such as regulating, modifying or processing other RNAs. 

Perl: A dynamic programming language. Able to perform various bioinformatic tasks 

especially data mining and can connect with MySQL databases to enable fast and 

automated database management and queries. 

Small interfering RNA (siRNA): ~21-26 bp double stranded RNA processed by Dicer 

which regulates gene expression by means of complimentary binding to the target 

mRNAs. 
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Chapter 1: Introduction 

1.1 Eukaryotic signature proteins 

Eukaryotic signature proteins (ESPs) are signature proteins that delineate Eukarya from 

Archaea and Bacteria. They have no homologues in prokaryotic genomes, but their 

homologues are present in all the main branches of eukaryotes. They are also involved 

in most core functions of a eukaryote and provide landmarks to track the origin and 

evolution of eukaryote genomes (Kurland et al. 2006).  

The approach of searching for signature proteins for a cellular domain was first used by 

Graham et al. when they searched for archaeal signature proteins (Graham et al. 2000). 

Their study in 1999 found 351 clusters of proteins found only in Euryarchaeota species. 

Their definition of signature proteins, however, differs from that of ours, because their 

set of proteins was not conserved in all Euryarchaeota species. 

Turning to eukaryotes, Hartman et al. then collected Giardia ESPs in 2001 by searching 

yeast protein homologues against all three domains of life (archaea, bacteria and 

eukaryotes). Homologues were considered to be proteins with primary amino acid 

sequence similarities to those yeast proteins. Their analysis procedure was as follows 

(Hartman et al. 2002): 

 Initially the Saccharomyces cerevisiae genome was used to identify a potential 

ESP dataset, which contained 6271 proteins. 

 Then they removed proteins without homologues in Caenorhabditis elegans, 

Drosophila melanogaster and Arabidopsis thaliana. The homologue searches 

were performed using BLAST with a bit-score cut-off of 55, which is 

approximately equivalent to an e-value of 10-6 for the largest Giardia and 

bacterial database used. They stated that the cut-off was very conservative, but it 

would ensure that there were no false positive results for homologous proteins. 

 After that, they removed proteins that have homologues in any of the 44 

bacterial and archaeal species (there were only 44 available complete bacterial 

and archaeal genomes at the time). 

 Lastly they removed proteins without homologues in Giardia lamblia. 

By using this procedure Hartman et al. were left with 347 proteins, and they named this 

dataset the Eukaryotic Signature Proteins aka ESPs of Giardia. The main point of 
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Hartman et al.’s paper was to form a novel hypothesis on the formation of eukaryotic 

cells. Previously, a large number of researchers had hypothesised that eukaryotes 

originated from an engulfment or symbiotic event between a member of the Archaea 

and a member of the Bacteria kingdom (e.g. (Lake et al. 1994)). From the finding of 

these 347 ESPs, Hartman et al. argued that the presence of proteins without any 

bacterial and archaeal homologues meant that they must have come from a cell of a 

distinct lineage. They hypothesised that there was a third cell type, which they called a 

“chronocyte”, which was a progenitor of the eukaryotic cell, and the nucleus of a 

eukaryotic cell was formed from the endosymbiosis of an archaeon and a bacterium in 

the chronocyte (Hartman et al. 2002). 

Hartman et al. then predicted a partial picture of the chronocyte from the functions of 

the ESPs, in that it had a plasma membrane and a cytoskeleton, which provided 

competence for it to phagocytise archaea and bacteria. The chronocyte also had a 

complex inner membrane system for protein synthesis and breakdown, indicated by the 

presence of ER proteins, GTP-binding proteins, ubiquitins and ribosomal proteins in the 

ESP dataset. Interestingly, they also found a RNA-directed RNA polymerase to be 

present in all eukaryotes analysed except for Drosophila melanogaster, but absent in all 

archaea and bacteria. This enzyme is involved in replication of RNA interference 

(RNAi), an RNA based system that controls gene activation (Vasudevan et al. 2007) 

and silencing (Sen et al. 2007). Hence this finding suggested to them that the 

chronocyte was an RNA based cell. 

Subsequently the same research group also collected ESPs for the microsporidium 

Encephalitozoon cuniculi (Fedorov et al. 2004), the organism with the smallest 

sequenced eukaryotic genome. They found 401 ESPs for E. cuniculi, which consisted of 

238 ESPs in common with Giardia ESPs. This high level of similarity has indicated that 

even a minimal eukaryotic cell still preserved most of the ESPs, which agrees with their 

earlier hypothesis that these ESPs must come from a cell of distinct lineage. 

Hartman et al.’s paper has served as a reference for some other studies. Staley et al. 

compared the list of 347 eukaryotic signature proteins (ESPs) with genomes of two 

bacterial species, Prosthecobacter dejongeii of the Verrucomicrobia phylum and 

Gemmata sp. Wa-1 of the Planctomycetes phylum (Gillin et al. 1996). The 

Verrucomicrobia and Planctomycetes phyla possess a number of phenotypic and 

molecular features typical of eukaryotes. For example, Prosthecobacter have genes for 
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tubulin, which is a cytoskeletal element normally found only in eukaryotes (Jenkins et 

al. 2002). Jenkins et al. hypothesised that Verrucomicrobia and Planctomycetes were 

direct ancestors of eukaryotes (Jenkins et al. 2002). However, later on when Staley et 

al. BLASTed the proteome of these two species against the 347 ESPs obtained by 

Hartman et al., they could only manage to detect 17 and 10 significant ESP homologues 

from the two bacterial species respectively1, and this low number raised doubts over 

Jenkins et al.’s earlier hypothesis (Staley et al. 2005). 

Kurland et al. linked ESPs with cellular signature structures (CSSs), which are cellular 

compartments that distinguish eukaryotes from prokaryotes (Kurland et al. 2006). 

Examples of CSSs are mitochondria, nucleoli and spliceosomes. There are substantial 

numbers of ESPs present in the CSSs except for mitochondria (mitochondria are 

descended from α-proteobacteria (Andersson et al. 1998), thus most mitochondrial 

proteins would have bacterial homologues). The presence of ESPs and CSSs indicated 

that eukaryotes form a unique primordial lineage. They also designed a new model of 

how eukaryotes originated, quite similar to that of Hartman et al.’s but without the 

requirement of prokaryotic progenitors. From a community of saprotrophic, autotrophic 

and heterotrophic cells, a phagotrophic unicellular “raptor” emerged and then acquired a 

bacterial endosymbiont/mitochondria lineage, to become the common ancestor of all 

eukaryotes (Kurland et al. 2006). 

ESPs are thus a group of essential proteins because they are conserved by all 

eukaryotes. Parasitic eukaryotes, on the other hand, typically undergo reductive 

evolution, which gives the parasites an advantage in replication by permitting them to 

reproduce much faster than if they have a bigger genome. So, would these essential 

proteins be found even if the organisms have undergone severe reductive evolution? 

Which ESPs can parasites live without? They might hold the key to understanding the 

crucial differences between parasites and their host, and this is what is required for the 

discovery of new drug targets.  

                                                 
1 The cut off used by Staley et al. was a 10-6 e-value, which is lower than the 55 bit-score used by 
Hartman et al., given Giardia and the two bacteria had small genomes. 
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Figure 1. Giardia trophozoites as viewed by an 

electron microscope 

 
Figure reproduced from webpage: 

www.sierranaturenotes.com/naturenotes/Giardia.htm 

1.2 Parasites involved in the project 

The protozoans Giardia lamblia, Trichomonas vaginalis and Plasmodium falciparum 

are all obligate intracellular parasites of humans. These parasites cause the diseases 

giardiasis, trichomoniasis and malaria, respectively. These infections are amongst the 

leading causes of morbidity and mortality worldwide, and the nature of the complex life 

cycles of these organisms, as well as their highly adaptable gene expression 

mechanisms make it difficult to effectively treat infections caused by these protists 

(Adam 2001; Vedadi et al. 2007). Funding from the New Zealand Health Research 

Council (HRC) enabled this project to investigate using ESPs as conserved proteins to 

connect metabolism between humans and their protist parasites as a first step in 

uncovering new potential drug targets. 

1.2.1 Giardia lamblia, a unique organism 

The main parasite organism of this 

study is Giardia lamblia (also 

known as Giardia intestinalis or 

Giardia duodenalis, Figure 1). 

Giardia is a flagellated unicellular 

eukaryotic microorganism that 

commonly causes waterborne 

diarrheal disease in a variety of 

vertebrates, including humans 

(Adam 2001). It has two stages in its 

life cycle: cyst and trophozoite. The 

cyst is inert, and turns into a 

trophozoite, which is the vegetative 

form (Figure 2) after exposure to the acidic environment of the stomach. The complete 

cycle of Giardia cannot at present be replicated in laboratories. It was believed that 

Giardia reproduce asexually, however, recent studies indicate that homologues of genes 

specifically required for meiotic recombination are clearly present (Birky 2005; 

Logsdon 2008).   
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New Zealand has a higher incidence rate of giardiasis than other developed countries 

(Snel et al. 2009) and the numbers of cases are on the rise. The reported cases of 

Giardia was 470 between January and March in 2009, this figure rose to 555 in the 

same quarter in 20102.One of the main drugs for treating Giardia infection is 

metronidazole (Mz), a synthetic 5-nitroimidazole (NI) derivative (Harris et al. 2001; 

Valdez et al. 2009). Metronidazole is activated when its 5-nitro group is reduced by 

ferredoxin that has in turn been reduced by pyruvate:ferredoxin oxidoreductase (PFOR), 

generating toxic free radicals, and these free radicals that cause lethal damage to the 

parasite. Humans have an alternative pathway to PFOR, the pyruvate dehydrogenase 

                                                 
2Source: http://www.stuff.co.nz/national/health/3811421/Concern-over-giardia-outbreak-as-cases-rise 

Figure 2. Giardia life cycle 

Figure is from web page: http://sharinginhealth.ca/pathogens/parasites/giardia_lamblia.html 
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complex, and will be less harmed by Mz. However, Mz treatment fails in 20% of 

patients (Upcroft et al. 2001) and there are other issues including developing resistance 

to 5-NI compounds from Giardia (Dunn et al. 2010), and that Mz is inactive against 

Giardia cysts (Adam 2001).  

There are several other groups of compounds active against Giardia. Sodium nitrite is 

another respiratory inhibitor and it acts by destroying the iron-sulphur centre of PFOR 

(Adam 2001). Benzimidazoles act by interacting with the colchicine site in tubulin, 

thereby disrupting microtubules assembly and disassembly (Lacey 1988). This drug 

however is not very effective (Harris et al. 2001). Paromomycin acts by binding to a 

unique Giardial rRNA sequence, and inhibits protein synthesis (Harris et al. 2001). 

Quinacrine’s mechanism of action is unclear, but reports suggest that quinacrine acts on 

either flavin components of some enzymes (Paget et al. 1989), or binds to DNA and 

inhibits nucleic acid synthesis (Thompson et al. 1993). Furazolidone’s mechanism of 

action is also unclear with possibilities that it acts as electron acceptors of PFOR in a 

way similar to metronidazole, generating DNA damaging free radicals (Crouch et al. 

1986), or by inhibition of DNA synthesis and completion of the cell cycle (Hoyne et al. 

1989). Selective toxicity of all the above drugs is achieved through preferential 

absorption by the parasite, or minimally absorbed by the host intestine, and a higher 

dose also results in various unpleasant side-effects for the host (Harris et al. 2001). Due 

to the many weaknesses of current drugs treating infections, seeking treatments from a 

molecular biology angle is a potentially useful approach. The discovery and 

development of new therapeutics is important to expand the arsenal for controlling 

parasitic infection.  

Table 1. Antigiardial drugs and their targets 

Drugs Targets 

Metronidazole pyruvate:ferredoxin oxidoreductase 

Sodium nitrite pyruvate:ferredoxin oxidoreductase 

Benzimidazoles colchicine site in tubulin 

Paromomycin rRNA 

Quinacrine DNA 

Furazolidone pyruvate:ferredoxin oxidoreductase or DNA 

 

Giardia has two seemingly identical nuclei (hence it belongs to the group diplomonads), 

and the heterozygosity of genetic content of the two nuclei has been estimated to be less 
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than 0.01% (Morrison et al. 2007). Each nucleus contains five chromosomes (Adam 

2001) which are slowly being assembled in genomic studies. The Giardia genome size 

is ~12 megabases (Mb) containing ~5000 protein coding genes (Aurrecoechea et al. 

2009). The Giardia database GiardiaDB (http://www.giardiadb.org) (Aurrecoechea et 

al. 2009) provides the latest genomic resource for the organism. Giardia’s DNA 

organisation has most of the features expected for eukaryotic cells, as they are contained 

within linear chromosomes flanked by telomeres. The chromosomal DNAs are packed 

by Histone proteins (H2a, H2b, H3 and H4). The linker histone (H1) however is not 

present (Yee et al. 2007). It was suggested H1 is not needed since the genome of 

Giardia is small and gene-rich (77% of the genome are genes) (Morrison et al. 2007). 

Another significant protein missing in Giardia is myosin, which is a motor protein 

typically used during muscle contraction.  

Giardia’s reduced DNA synthesis, transcription, RNA processing and cell cycle 

machineries are often considered ‘simple’. Giardia is largely anaerobic (Brown et al. 

1998), with a ‘limited’ metabolic repertoire. For example, questions have been raised on 

the presence of the citric acid cycle and de novo purine and pyrimidine biosynthesis 

pathways (Morrison et al. 2007). In addition, Giardia’s amino acid and lipid 

metabolisms are also considered limited. With Giardia potentially having less 

redundancy in its metabolic pathways, it is important to understand which of these 

pathways it has in common with its host, and which are missing.  

It is believed that Giardia is a basal eukaryote which diverged during the early days of 

eukaryotic evolution (Vanacova et al. 2003). This also makes Giardia an interesting 

organism for evolutionary studies since it has many distinguishing characteristics. 

Notably Giardia has no mitochondria, which lead some to believe that Giardia is an 

“archezoa”. Cavalier-Smith first suggested the Archezoa theory (Cavalier-Smith 1987), 

which states free-living protists, called archezoa, were ancestors of eukaryotes. These 

ancient protists then acquired mitochondria and gave rise to modern eukaryotic cells. 

However, a true “archezoa” (i.e. a eukaryotic organism diverged prior to the 

endosymbiotic origin of mitochondria) however, has yet to be found (Brinkmann et al. 

2007). The theory of Giardia being an archezoa was quickly dismissed by the finding of 

mitosomes (an organelle appeared to be descended from mitochondria) and some 

mitochondrial related proteins in its nuclear genome, which led to the suggestion that 

the Giardia (and other amitochondrial protists) have secondarily lost their mitochondria 
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Figure 3. Electron microscopy of 

Trichomonas  

 
Figure reproduced from a research 

article (Lee et al. 2009). 

(Roger et al. 1998). The Golgi apparatus is another organelle thought to be missing 

from Giardia, but again a reduced apparatus has now been found (Dacks et al. 2003). 

This organelle reduction is one of the reasons that Giardia as a representative of an 

early (perhaps the earliest) eukaryotic lineage (Morrison et al. 2007), is considered to 

have an evolutionary history distinct from other eukaryotes (Baldauf 2003).  

Overall, the uniqueness and its impact on human disease have made Giardia a very 

interesting organism to study and it was chosen to be the main human parasite of this 

project. 

1.2.2 Trichomonas and Plasmodium 

Trichomonas vaginalis (Figure 3) and Plasmodium 

falciparum (Figure 4) are the two other parasites 

studied in the project. Comparison of the ESPs 

from these organisms was made with Giardia and 

human ESPs. 

Like Giardia, Trichomonas vaginalis is also an 

amitochondriate belong to supergroup Excavata. 

The Trichomonas trophozoite is oval shaped and 

flagellated (Figure 3). Trichomonas also lacks 

mitochondria and necessary enzymes to conduct 

oxidative phosphorylation, and it also primarily has 

an anaerobic lifestyle (Seema et al. 2008). 

Invasion of Trichomonas causes trichomoniasis, 

which is an extremely common sexually 

transmitted disease (Harp et al. 2011), with more than 160 million people worldwide 

infected by this protozoan annually. Trichomoniasis is treated with metronidazole (Mz), 

and tinidazole (Nanda et al. 2006). There are several cases of resistance to 

metronidazole reported in New Zealand (Lo et al. 2002). 

Trichomonas has a large genome in comparison with other eukaryotic parasites (e.g. 

Giardia with 12Mb). The genome size of Trichomonas is ~160 Mb, organised into six 

chromosomes, with ~60,000 protein genes and ~1100 RNA coding genes 

(Aurrecoechea et al. 2009). The Trichomonas database TrichDB 
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Figure 4. Plasmodium (trophozoite 

ring form) inside erythrocytes 

 
Figure from web page: 

http://dpd.cdc.gov/dpdx/html/Frames/

M-R/Malaria/falciparum/ 

body_malariadffalcring.htm 

(http://www.trichdb.org) (Aurrecoechea et al. 2009) is the database dedicated to latest 

genomic information for the organism. 

Plasmodium falciparum invades human red blood 

cells causing the tropical disease known as 

malaria (Cowman et al. 2002). Transmission of 

these parasites to humans occurs via Anopheles 

(mosquito) vectors. Malaria has a wide 

geographic distribution, which puts almost half of 

the world’s population at risk of contracting this 

tropical disease (Aurrecoechea et al. 2009). The 

year 2010 saw an estimated 216 million cases of 

malaria including 655,000 deaths worldwide 

(http://www.cdc.gov/MALARIA/). Although not 

endemic in NZ, travellers from overseas can 

come back to the country with malaria. 

Plasmodium has a very complex life cycle, which takes it through multiple stages and 

multiple cell types (in the vertebrate host’s liver, erythrocytes and in the arthropod 

vector) during which the parasite undergoes multiple developmental changes (Cowman 

et al. 2006). The trophozoite stage of its life cycle is illustrated in Figure 4. Some 

species of Plasmodium are also capable of invading other mammals, as well as birds 

and lizards (Cowman et al. 2006). Many antimalarial drugs are available, including 

chloroquine, amodiaquine and artemisinins (White 2004). However, the extensive 

deployment of these antimalarial drugs, in the past fifty years, has provided a 

tremendous selection pressure on human malaria parasites to evolve mechanisms of 

resistance. 

Distant from Giardia and Trichomonas, Plasmodium belongs to the supergroup 

Chromalveolata, and the phylum Apicomplexa. The genome of Plasmodium is 

organised into 14 chromosomes (Gardner et al. 2002). This ~24 Mb genome is 

extremely AT rich (~80%) and contains ~5000 genes (Gardner et al. 2002). The 

Plasmodium database PlasmoDB (http://www.plasmodb.org) (Aurrecoechea et al. 

2009) offers the latest genomic database for the organism. 
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1.2.3 Current RNA work on Giardia and Trichomonas 

Some non-coding RNAs (ncRNAs) have also been shown to be eukaryotic signatures in 

the same manner as the ESPs. RNA processing has become an increasingly important 

area of research, and numerous ncRNAs have been uncovered in all the model 

eukaryotic organisms. The term ncRNAs will refer here to those transcribed RNAs 

which are not translated into proteins. These ncRNAs include transfer RNAs (tRNAs) 

and ribosomal RNAs (rRNAs), as well as small nuclear RNAs (snRNAs), small 

nucleolar RNAs (snoRNAs), microRNAs (miRNAs), small interfering RNAs (siRNAs) 

and piwi-interacting RNA (piRNAs). The functions of these RNAs are summarised in 

Table 2. 

Table 2. Some types of ncRNAs 

Name Abbreviation Function 

Micro RNA miRNA Processed by Dicer, associates with RISC complex and 

regulates gene expression, single stranded precursors 

Small interfering RNA siRNA Processed by Dicer, target mRNAs, aids gene silencing, 

double stranded precursors. 

Small nuclear RNA snRNA Involved in RNA splicing, regulating RNA polymerase 

Small nucleolar RNA snoRNA Guides chemical modifications of snRNAs, rRNAs and 

tRNAs 

Piwi interacting RNA piRNA Chromatin regulation and transposon silencing 

Ribosomal RNA rRNA Ribosomal components, involved in translation 

Transfer RNA tRNA Transfers of amino acids, involved in translation, decodes 

mRNA into proteins 

 

Giardia possesses some different RNA processing components from those found in 

other eukaryotes (Chen et al. 2007). One major role of some ncRNAs is its involvement 

in RNA interference (RNAi), which is a system by which RNA is used to control the 

expression of genes. The high divergence of Giardia ncRNAs has created an interesting 

field to study. I am fortunate that I am associated with a research group at Massey 

University that is investigating ancestral RNAs and have done computational analysis 

and sequencing of ncRNAs from Giardia and Trichomonas (Chen et al. 2007; Chen et 

al. 2008; Chen et al. 2009). In 2007, Chen et al. found 31 ncRNAs from Giardia (Chen 

et al. 2007). Although only 5 of these have been characterised, spliceosomal RNA 

analysis found the uridine-rich snRNA U5 snRNA in small quantities. U6 snRNA, the 
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most conserved spliceosomal snRNA across all the eukaryotes was not found at the 

time, despite an intense effort to search for it. However, later on Chen et al. found a U2 

candidate, which subsequently helped to identify candidates for U6, as well as U1 and 

U4.  

Using Illumina sequencing (aka Solexa sequencing) and genome wide analysis of small 

RNAs from Giardia, Chen et al. identified another 10 miRNA candidates from Giardia 

and 11 from Trichomonas (Chen et al. paper in preparation). In addition, Chen et al. 

also characterised five unusual long tandem repeated double stranded RNAs that were 

named Girep-1 to Girep-5. Sequence alignments confirmed these five RNAs belong to 

the same group, and they share high degrees of sequence similarity with a number of 

variant-specific surface proteins (VSPs). VSP gene expression is crucial for the surface 

antigenic variation of Giardia trophozoites. By displaying different VSPs on the 

surface, Giardia is able to evade the host’s immune system (Nash et al. 2001). Chen et 

al. suspected Gireps are precursor siRNAs and have a strong potential to be involved in 

the regulation of VSP expression. 

These results overall suggest that ncRNAs and especially RNAi-associated ncRNAs 

existed in the last common ancestor of eukaryotes, and like ESPs, they are a 

characteristic unique to eukaryotes. The ancestral proteins are likely to have been under 

ancestral regulation. In addition, ncRNAs are becoming increasingly useful as markers 

for disease diagnostics in humans (e.g. (Fanini et al. 2011; Ferracin et al. 2011)). 

Understanding how ESPs as essential proteins are regulated in Giardia (and 

Trichomonas) could possibly uncover other differences in host and parasite metabolism. 

Comparing the ancestral research on RNAs with ancestral proteins (ESPs) is a part of a 

bigger project that examines ncRNA in basal eukaryotes. By using some of the same 

techniques from the ESP work (e.g. databases, Perl scripts, comparing genomic data), 

and combining the ESP results with the Giardia and Trichomonas ncRNA results, I was 

also able to participate in this wider project. 

1.3 Thesis structure 

This PhD project used an integration of genomic, phylogenetic and biological 

approaches, aimed to gain an understanding of the molecular and cellular differences 

between hosts and parasites, with the main focus on protist parasite Giardia lamblia and 

humans. Two other parasites Plasmodium falciparum and Trichomonas vaginalis have 
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also been analysed as comparisons. This project calculated ESPs of human and 

parasites, and by grouping these essential proteins and comparing the differences 

between the host and parasites, interesting proteins can be identified for further research 

purposes, especially those that can be used as potential drug targets.  

ESPs can potentially be very useful in further phylogenetic studies due to their 

conservation in virtually all eukaryotes and their consistent slow evolution rate. The 

ESP datasets for these eukaryotic parasites were then examined to assess their 

evolutionary significance, metabolic function and possible interactions with ncRNAs.  

1.3.1 Generating a new ESP dataset – Chapter 2 

The previously calculated ESP datasets (mainly Hartman et al.’s) can be considered a 

little outdated. Now that many more genomes with much better annotation are available, 

ESP datasets for the host organism Homo sapiens, parasitic organisms Giardia lamblia, 

Plasmodium falciparum and Trichomonas vaginalis were re-calculated. This was a 

crucial first step to obtain more accurate sets of ESPs. 

The procedure used here was similar to that of the previous work (see section 1.1), but 

more species were included and parameters were analysed in-depth to ensure the correct 

selection of proteins. Selecting suitable organisms was an important part of the 

procedure, because ideally all branches of the three domains (Archaea, Bacteria and 

Eukarya) should be covered, and yet the total number of species should not form a 

computational barrier (i.e. too many species and the analysis takes too long). The 

methodology for obtaining the ESP data is described as a protocol for future studies, so 

that when genomes are updated or if new genomes become available, new ESP datasets 

can be readily obtained. 

 

1.3.2 Phylogenetic analysis using ESPs – Chapter 3 

The current taxonomic system classifies eukaryotes into five supergroups based on 

molecular and morphological/cell-biological evidence (Keeling et al. 2005; Keeling 

2007). The five supergroups are Unikonta (note: this supergroup is often divided into 

Opisthokonta and Amoebozoa (Simpson 2003)), Plantae, Rhizaria, Chromalveolata, and 

Excavata. This system is significantly advanced from the classic “six kingdoms” 

eukaryotic tree of the 1980s, but is still not without controversy. For example the 
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monophyly of supergroups Chromalveolata, and Excavata is constantly under debate 

(Parfrey et al. 2006).  

Previously, molecular based phylogenetic studies between distantly related species 

(such as between different supergroups of eukaryotes) was done by using 18S rRNA, or 

based on a single gene when these happened to be sequenced. This approach can tend to 

give misleading results if the gene in question has undergone rates of change different 

from what is ‘typical’ for that species, or if there if there has been more than one change 

per site. A wider variety and larger quantities of molecular data is needed to accurately 

build the eukaryotic trees that can correctly place protist species such as Giardia. 

ESPs are a set of proteins conserved in all eukaryotes, so this potentially makes them 

great candidates for phylogenetic studies. ESPs provide large number of proteins to 

build phylogenetic relationships, and to ensure there is no missing data from any 

eukaryotic taxa. We would also expect the ancient proteins to have a slow and constant 

evolutionary rate (to keep them conserved), which also make them ideal for studying 

phylogenetic relationships between distant organisms. Therefore the potential for ESPs 

as candidates for phylogenetic analyses was examined in this project. The phylogenetic 

relationships between the 18 eukaryotic organisms used during ESP calculation process 

were analysed. Two methods were employed to deal with the large number of discrete 

protein sequences. The first approach, by using consensus networks, is where individual 

trees built from each protein are combined into a single network to show the consensus 

of all signals. The second approach was by concatenating all ESP sequences of each 

taxon, and then constructing a tree from the concatenated sequences. The first approach 

had not yet been tested for such a large amount of data. The second approach has been 

employed in other studies (e.g. (Hampl et al. 2009)), but their studies have selected 

genes with homologues not present in some of the organisms, thus their alignments had 

missing data. By using ESPs, there should be very little or no missing data since all 

orthologous proteins should be present in each taxon. In addition, the rate of evolution 

for every ESP should be more consistent (by being slow) and hence could be more 

reliable than using other sets of proteins. 

However, there are some difficulties with the ESP approach. There are very few 

excavates and chromalveolates genomes completely sequenced, and thus taxa from 

these two supergroups used in this analysis (Giardia and Phytophthora) are likely to 

form long branches. In addition, many species of these two supergroups have undergone 
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reductive evolution, and even with their genomes completed, some ESPs could be 

missing from these genomes. In light of this, a second study using an established 

metazoan group of species was also conducted, so that the results could be compared to 

other published studies to indicate the accuracy of using ESPs for phylogenetic analysis. 

Establishing ESPs as good candidates in a closely related group of species is important 

as they could hold a greater potential than just being used to study excavates and 

chromalveolates.  

1.3.3 Metabolic analysis of Giardia – Chapter 4 

ESPs are conserved and hence essential proteins are expected to predict which 

metabolic pathways are conserved (or otherwise) between host and parasite. This 

analysis was important (and hence part of the funding requirements) because differences 

in metabolism is what makes drugs against protists effective. The standard drug 

treatment metronidazole (Mz) knocks out a key enzyme in Giardia metabolism, but 

harms humans less because there are alternative pathways. However, Mz and other 

protist-targeting drugs are not always effective and can have severe side effects, so there 

is a real need to find more targets for drug development. Giardia is evolutionarily 

distant from other eukaryotes and thus relatively little is known about its core metabolic 

pathways. KEGG (Kyoto Encyclopaedia of Genes and Genomes, 

http://www.genome.jp/kegg), the widely referenced site for providing information of 

metabolism does not yet include many enzymes from Giardia species, therefore 

developing a new method to look at metabolic pathways using the information from 

other organisms is needed. Giardia’s core sugar metabolism was analysed to develop 

this new approach utilising data from the ESP calculations and metabolic information 

from KEGG. 

Here by comparing Giardia proteomes with known enzymes from other species, 

candidates for enzymes in the glycolysis pathway, as well as some enzymes involved in 

the TCA cycle and oxidative phosphorylation and amino acid metabolic pathways were 

identified, and differences between the parasitic and host enzymes observed. The 

enzymes from the Giardia glycolysis pathway have been previously reported to be more 

similar to those from bacteria (Morrison et al. 2007), and this was also investigated in 

this study. By identifying in more detail enzymes that are different in parasites in 

comparison with those found in mammals, the host organisms for Giardia, there is a 
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real possibility that these bacteria-like enzymes could indeed be novel drug targets for 

treating Giardia infections. 

1.3.4 Small RNAs in Giardia and Trichomonas – Chapter 5 

Both ESPs and RNAi (RNA interference) are found in all branches of eukaryotes, thus 

they are expected to be present in the last eukaryotic ancestor. So will there be any 

correlation between the ancient proteins and an ancient mechanism? Presence does not 

necessarily mean correlation and the connection between proteins and their possible 

regulation is another avenue in which humans may differ from their protist parasites. 

RNAi involves small RNA molecules including micro RNAs (miRNA) and small 

interfering RNAs (siRNA). Typical miRNAs and siRNAs which are processed typically 

with the proteins Dicer and Argonaute are ~21-22 nucleotides (nt) in length. However, 

given that the Dicer protein from Giardia has been reported to cut differently (25-27 nt) 

(MacRae et al. 2006), we expect that the small ncRNAs including miRNAs from deep 

branching eukaryotes might be different from those found in metazoans and plants. 

Even essential proteins need to be regulated (i.e. to be in step with the cell cycle) and 

thus there is the question as to whether ESPs show any trends in their regulation. 

Comparing miRNAs between all eukaryotes was beyond the scope of this project so 

here I used data that was being produced by another study from members of our group.  

Illumina sequencing of Giardia and Trichomonas small RNAs was performed as part of 

a study of ncRNA evolution in eukaryotes at Massey University, Palmerston North 

(Chen et al. 2009). Being ncRNA data it was assembled differently than what is typical 

for genomic sequencing. Computational analysis and sequencing was also done by the 

group previously. 

Here a different way of analysing from the above is presented. By working with 

unassembled data, large quantities of smaller RNAs are harvested, and interesting 

information about the ncRNA of the two parasites could be discovered. The data was 

used in the overall analysis with the examination of the putative Dicer-processed 

ncRNAs (i.e. 26-27nt). Where these ncRNAs were located in relation to the coding 

region of the gene was analysed in relation to whether there was a trend for 3’UTR or 

antisense coding region based regulation. In the end, this work was taken beyond just 

looking at ESPs and included all Giardia proteins. During the course of the ncRNA 

analysis another group of ultra-small RNAs was discovered in Giardia. As co-
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discoverer I will touch on this group only briefly since this is currently being researched 

in more detail. 

1.3.5 Summary 

The focus of this project is the study of ESPs, an interesting group of proteins which 

delineates eukaryotes from archaea and bacteria. The properties make these proteins 

interesting to study is its consistency and they have crucial functions in eukaryotes. 

ESPs can be used to directly or indirectly guide our way to discovering key differences 

between humans and their protist parasites. These differences in the past have led to the 

development of some drugs to combat infection but it is clear that new drugs are 

needed. The calculation and analysis of this unique set of proteins is but the first step in 

this pathway of discovery, but it is an important one to aid in the uncovering of 

whatever potential lies in the genomics currently being undertaken in this area. Studying 

ESPs will help our understanding of eukaryotic evolution, as they give insights on how 

eukaryotes first became distinguishable from other prokaryotes at the early days of their 

evolution. Genome reduction has also played an important role in parasitic evolution 

(Morrison et al. 2007). Even core proteins such as ESPs are often missing from some 

parasites, and the loss of ESPs can give insights to parasitic reductive evolution. In 

addition, ESPs can serve as guides to analyse eukaryotic phylogenetics, due to their 

conservation in all eukaryotic organisms. ESPs can be combined with other studies of 

other eukaryotic features, such as RNAi and intron splicing. Relationships between 

these ancient mechanisms may hold many interesting facts about eukaryotes. The thesis 

concludes with an overall conclusion and a look at future perspective in Chapter 6. 
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Chapter 2: Collecting Eukaryotic 

Signature Proteins 

2.1 Introduction 

In this chapter, updated Eukaryotic Signature Protein (ESP) sets for each of the three 

parasites, Giardia lamblia, Plasmodium falciparum and Trichomonas vaginalis, and the 

host for these three parasites – human (Homo sapiens) have been characterised. An ESP 

dataset for Giardia has been calculated before, and a summary of previous eukaryotic 

signature protein (ESP) work is given in Chapter 1, section 1.2.1 (pages 2-5). 

The re-calculation was needed as few genomes were available at the time of the analysis 

by Hartman et al.. Then, only 44 prokaryotic and five eukaryotic genomes were used to 

represent all major groups of prokaryotes and eukaryotes. At present there are many 

more options. In addition, rather than start the search with the yeast proteome, as 

Hartman et al. did, I used a more straightforward approach to start directly with the 

proteome of the organism of interest (either human or the parasites). This is because the 

parasites’ genomes are better annotated now than at the time Hartman et al. performed 

their research. In addition, Giardia is the focal organism in this project, and a set of 

Giardia ESPs serve better for the purpose of host and parasite comparisons than a set of 

yeast proteins.  

It is very difficult to obtain an exact list of ESPs due to factors such as distant 

homologues or sequencing error in the proteome of certain organisms (discussed later in 

Section 2.3.1). The new ESP dataset is believed to be much more precise than that of 

Hartman et al.’s. This will be a set of functionality important proteins, since all 

eukaryotes maintain them; this will also be a set of evolutionarily conserved proteins, 

because they are not present in any prokaryotes, and they may hold the key for this 

debatable transition from relatively simple prokaryote cell to more complex eukaryotic 

cell. The new ESPs list will serve as primary work for the remainder of the thesis. In 

future, this set of ESPs is planned to be uploaded to GiardiaDB 

(http://www.giardiadb.org) for public use. 
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2.1.1 BLAST statistics 

BLAST is used extensively in this chapter for homology searches, thus it is worth 

mentioning the algorithm of the software. BLAST is a suite of software developed by 

Altschul et al at the National Center of Biotechnology Information (NCBI) (Altschul et 

al. 1990). It is a heuristic program, thus not guaranteed to find every local alignment 

that passes its reporting criteria, and there is an array of parameters that control the 

shortcut it takes. These parameters influence BLAST’s trade-off between speed and 

sensitivity, and they are of the least importance for a user to understand because, except 

for the occasional appearance or disappearance of a weak similarity, they do not greatly 

affect the program’s output. What is important is the correct choice of scoring systems 

and interpretation of statistical significance (Korf et al. 2003). 

BLAST is a searching tool for significant alignments of a query sequence (or 

sequences) from a database. The BLAST program “blastall” has five running modes 

designed for the comparison of proteins with proteins, nucleotides with nucleotides and 

combinations of the two. The program used for ESP calculation is “blastp”, which 

compares protein query sequences with protein sequences in a database. The sequence 

alignments are performed using the default scoring matrix BLOSUM62 (blocks 

substitution matrix 62). The BLOSUM matrix was constructed by extracting ungapped 

sequence segments (blocks) from a set of multiply-aligned protein families. Then, 

counting the relative frequencies of each amino acid and its substitution probabilities, 

scores for each substitution were calculated. The number 62 indicates that all the 

sequences clustered have at least 62 percent similarity (Henikoff et al. 1992). BLOSUM 

is empirical and derived from a larger dataset and it is preferred over the PAM (percent 

accepted mutation) matrix (Korf et al. 2003). 

For each significant alignment produced by a BLAST search, a score and an expect 

value (e-value) are given. The score is computed from the scoring matrix and gap 

penalties (a cost for inserting a gap in a sequence alignment). A higher score indicates 

greater similarity. Raw score has no unit and it can be normalised, and normalisation is 

indicated by the unit “bits” added to the raw score. 

The e-value indicates the number of alignments expected at random given the size of the 

search space and the score of alignments. The lower the e-value the less likely it is that 

this similarity is random. 



19 

 

The Karlin-Altschul equation:             E = kmne-λS 

The above equation states the relationship between e-value, query size (m), database 

size (n) and normalized score (λS) during a sequence database search. The constant (k) 

undergoes a minor adjustment depending on the position of optimal alignment and 

usually has little effect. The e-value is inversely and exponentially related to the 

normalized score (λS). This means a small increase in score will lead to a large decrease 

in e-value, and therefore a more significant hit. Query size (m) and database size (n) do 

not directly refer to the actual length of the query or database, rather they refer to the 

“effective length”. The sequence must reach a particular length before it can produce an 

alignment with a significant e-value; this minimum length is referred to as the “expected 

HSP (high scoring pair) length”. The “effective length” is the actual length minus the 

“expected HSP length”. In a large search space, the “effective length” of query (m) may 

be negative; in this case, m will be set to 1/k to remove the effect of short sequence to 

the e-value (Korf et al. 2003). 

 

2.2 Material and methods  

2.2.1 Selection of species for analysis 

Ideally, the more species involved in the eukaryote-wide search, the more robust the 

ESP dataset would be; on the other hand, the time the analysis takes also increases as 

the number of species increase. Therefore, the number of species used has to be 

compromised to an extent. The ESP results will be biased due to his species selection so 

in order to minimise this bias, selected species should cover as wide a range of 

organisms as possible. 

The “interactive tree of life (iTOL) (Letunic et al. 2007) was downloaded, because this 

is a tree of all species with a complete genome. Although this tree is slightly out of date, 

it provided a very good starting point to choose species for the ESP calculation 

described here. Using this tree, species which would best represent major branches of 

bacteria and archaea were chosen for analysis. A detailed description of species 

selection from each of the three kingdoms follows. 

From Archaea, most of the culturable and well-investigated species are members of two 

main phyla, the Euryarchaeota and Crenarchaeota (Robertson et al. 2005). Recently a 
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new phylum also has been described, which is the Nanoarchaeota. This phylum 

currently has only one representative, Nanoarchaeum equitans (Huber et al. 2002). 

Eight Euryarchaeota and three Crenarchaeota species, as well as Nanoarchaeum 

equitans were selected for the analysis (see Table 1 for a complete list of archaeal 

species used). A guide tree (Figure 1) was also created by using the iTOL utility, and 

TreeViewX (Page 2002) was used to visualise the this tree. Please note this guide tree 

and other guide tree in Figure 2 are only acceptable as indicators of phylum coverage 

rather than true phylogenetic trees, which would be time consuming to construct and are 

always controversial. 

Table 1. List of archaeal species used in study 

Species Phylum NCBI 

Taxonomy ID 

Sulfolobus solfataricus P2 Crenarchaeota 2287 

Pyrobaculum aerophilum str. IM2 Crenarchaeota 13773 

Aeropyrum pernix K1 Crenarchaeota 56636 

Thermoplasma acidophilum DSM 1728 Euryarchaeota 2303 

Pyrococcus abyssi GE5 Euryarchaeota 29292 

Methanosarcina mazei Go1 Euryarchaeota 2209 

Methanopyrus kandleri AV19 Euryarchaeota 2320 

Methanocaldococcus jannaschii DSM 2661 Euryarchaeota 2190 

Halobacterium sp. NRC-1 Euryarchaeota 64091 

Haloarcula marismortui ATCC 43049 Euryarchaeota 2238 

Archaeoglobus fulgidus DSM 4304 Euryarchaeota 2234 

Nanoarchaeum equitans Kin4-M Nanoarchaeota 160232 
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From the Bacterial kingdom, culturable bacteria are divided into 29 phyla (Euzeby 

1997). Most phyla had at least one representative species in this analysis. Some phyla 

did not have any species with genomic sequencing information, for example, the 

phylum Caldiserica (which has only a few genes sequenced for few species), thus they 

were not used in the study. Some phyla had more than one species available. For 

example, the phylum Firmicutes contains a diverse groups of bacteria, as indicated by 

iTOL, thus four species (Clostridium acetobutylicum, Staphylococcus aureus, 

Streptococcus pyogenes, Thermoanaerobacter tengcongensis) from this phylum were 

used; two species from phylum Epsilonproteobacteria were included, Helicobacter 

pylori and Campylobacter jejuni. As mentioned earlier, the addition of these extra 

species is not expected to harm the results since including more species is beneficial. 

Planctomycetes have some eukaryotic characteristics (Fuchsman et al. 2006), which 

could confuse results in the initial screening, and therefore Rhodopirellula baltica, a 

species of planctomycete was excluded from the ESP protein analysis for now. Given 

its characteristics it is a species of interest for later work. See Table 2 for a complete list 

of bacterial species used, see Figure 2 for the guide tree. 

In the end, 28 bacterial and 12 archaeal species were selected, which is a diverse 

selection of prokaryotic organisms, all of these proteomes were downloaded from NCBI 

(http://www.ncbi.nlm.nih.gov). 

Figure 1. Phylogenetic relationship of selected archaeal species 

 
This tree was created from iTOL, TreeViewX was used for creating an image view. This is a guide 

tree, not an accurate depiction of the true phylogenetic relationship, branch lengths are suggestive only. 
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Table 2. List of eubacterial species used in study 

Species Phylum NCBI Taxonomy ID 

Acidobacterium capsulatum ATCC 51196 Acidobacteria 33075 

Corynebacterium diphtheriae NCTC 13129 Actinobacteria 1717 

Brucella melitensis 16M Alphaproteobacteria 29459 

Rickettsia conorii str. Malish 7 Alphaproteobacteria 781 

Aquifex aeolicus VF5 Aquificae 63363 

Bacteroides thetaiotaomicron VPI-5482 Bacteroidetes/Chlorobi 818 

Chlorobium tepidum TLS Bacteroidetes/Chlorobi 1097 

Bordetella pertussis Tohama I Betaproteobacteria 520 

Chlamydophila pneumoniae J138 Chlamydiae/Verrucomicrobia 83558 

Dehalococcoides ethenogenes 195 Chloroflexi 61435 

Synechococcus elongatus PCC 6301 Cyanobacteria 32046 

Deinococcus deserti VCD115 Deinococcus-Thermus 310783 

Bdellovibrio bacteriovorus HD100 Deltaproteobacteria 959 

Desulfovibrio vulgaris DP4 Deltaproteobacteria 881 

Campylobacter jejuni RM1221 Epsilonproteobacteria 197 

Helicobacter pylori 26695 Epsilonproteobacteria 210 

Fibrobacter succinogenes subsp. succinogenes 

S85 (project was incomplete) 

Fibrobacteres 833 

Clostridium acetobutylicum ATCC 824 Firmicutes 1488 

Staphylococcus aureus subsp. aureus MW2 Firmicutes 1280 

Streptococcus pyogenes M1 GAS Firmicutes 1314 

Thermoanaerobacter tengcongensis MB4 Firmicutes 119072 

Fusobacterium nucleatum subsp. nucleatum 

ATCC 25586 

Fusobacteria 851 

Coxiella burnetii CbuK_Q154 Gammaproteobacteria 777 

Escherichia coli str. K-12 substr. MG1655 K12 Gammaproteobacteria 562 

Rhodopirellula baltica SH 1 Planctomycetes 265606 

Borrelia burgdorferi B31 Spirochaetes 139 

Thermotoga lettingae TMO Thermotogae 177758 

Mycoplasma penetrans HF-2 Other Bacteria 28227 

Onion yellows phytoplasma OY-M Other Bacteria 100379 
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The selection of eukaryotic organisms was based on the same principle as for the 

prokaryotic organisms, i.e. use species from as diverse organisms as possible. Based on 

this principle, 20 eukaryotic organisms in addition to the host (Homo sapiens) and 

parasites (Giardia, Plasmodium, Trichomonas) were downloaded. This representation 

of eukaryotic organisms is a significant improvement on that of Hartman et al. who only 

worked with five eukaryotic species. 

Figure 2. Phylogenetic relationship of selected bacterial species 

 
This tree was created from iTOL, TreeViewX was used for creating an image view. This is a guide 

tree, not an accurate depiction of the true phylogenetic relationship, branch lengths are suggestive only. 
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The phylogenetic representation between the chosen eukaryotic organisms is shown in 

Figure 3. The monophyly of five supergroups of Eukaryotes, which includes Plantae, 

Rhizaria, Excavata, Opisthokonta and Amoebozoa (the last two branches are shown as 

“Unikonta” in Figure 3) are supported by recent phylogenetic studies (Parfrey et al. 

2006; Keeling 2007; Hampl et al. 2009). However, clear evidence of Chromalveolata 

being monophyletic is still lacking. Some lineages are not currently represented by a 

complete proteome (e.g. Rhizaria and red algae) so they were not chosen for the 

calculation. Incompletely sequenced genomes could be detrimental to ESP calculations, 

because this could cause false negative results due to proteins not being sequenced 

rather than them not being present, so only those genomes at an advanced stage were 

included. Proportionally more animal (Metazoa) species have been chosen, because 

Figure 3. Phylogenetic position of eukaryotic organisms chosen for this project  

 
 

 
The positions of organisms chosen are indicated on the eukaryotic tree. CM indicates the presence of cryptic 

mitochondria (hydrogenosomes or mitosomes). A question mark indicates that no organelle has yet been 

found. This eukaryotic tree is from Keeling (Keeling 2007) with extra annotations added here. 
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there are more completely sequenced genomes in this branch and the use of more 

genomes provides more robust ESP datasets. Three organisms (Entamoeba histolytica, 

Leishmania braziliensis and Theileria annulata) possess what is called a “reduced 

genome”. Although these three organisms are one of the few sequenced genomes in a 

large clade, due to the nature of their “reduced genomes”, false negative results could be 

caused by their presence, and they were later removed from the ESP dataset calculation. 

This is also the reason behind my exclusion of the model yeast Saccharomyces 

cerevisiae, because it is also a reduced genome and not the most “typical” eukaryote 

(Drinnenberg et al. 2011), Schizosaccharomyces pombe was selected as a fungi 

representative. 

Eukaryotic proteome databases were downloaded from best source available for each 

genome. For example, the Giardia database was downloaded from GiardiaDB 

(http://www.giardiadb.org), because this site provided the most updated version of the 

parasite’s protein and annotations. Ensembl (http://www.ensembl.org) is a very trusted 

source for animal proteomes, and its online tool Biomart (Kinsella et al. 2011) allows 

users to perform useful tasks such as tracking down the nucleotide sequences with ease. 

Other sources used in the study included NCBI (http://www.ncbi.nlm.nih.gov), 

PlasmoDB (http://www.plasmodb.org), TrichDB (http://www.trichdb.org), Dictybase 

(http://dictybase.org/), the Broad Institute (http://www.broadinstitute.org), AspGD 

(http://www.aspgd.org), Swiss-prot (http://au.expasy.org/sprot) and the Sanger Institute 

(http://www.sanger.ac.uk) (see Table 3 for more details).   
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Table 3. List of Eukaryotic species used in study 

Species  Supergroup NCBI Taxonomy ID Notes 

From Ensembl    

Aedes aegypti  Opisthokonta 7159   

Caenorhabditis elegans  Opisthokonta 6239   

Canis familiaris  Opisthokonta 9615   

Ciona intestinalis  Opisthokonta 7719   

Danio rerio  Opisthokonta 7955   

Drosophila melanogaster  Opisthokonta 7227   

Gallus gallus  Opisthokonta 9031   

Homo sapiens  Opisthokonta 9606  Release 59 

Mus musculus Opisthokonta 10090   

Tetraodon nigroviridis  Opisthokonta 99883   

Xenopus tropicalis  Opisthokonta 8364   

From Dictybase    

Dictyostelium discoideum Amoebozoa 44689  

From Broad Institute    

Neurospora crassa Opisthokonta 5141  

Phytophthora infestans Chromalveolata 4787  

From NCBI    

Arabidopsis thaliana Plantae 3702  

Oryza sativa Plantae 4530  

Schizosaccharomyces pombe Opisthokonta 4896  

From Aspgd    

Aspergillus nidulans Opisthokonta 162425  

From the Sanger Instititue    

Entamoeba histolytica Amoebozoa 5759 Reduced genome 

Leishmania braziliensis Excavata 5660 Reduced genome 

Theileria annulata Chromalveolata 5874 Reduce genome 

From Giardiadb    Version 1.3 

Giardia lamblia Excavata 5741 Reduced genome 

From Plasmodb   Release 6.5 

Plasmodium falciparum Chromalveolata 5833 Reduced genome 

From Trichdb    Version 1.1 

Trichomonas vaginalis Excavata  5722 Reduced genome 

From Swiss-prot    

Homo sapiens  9606  
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2.2.2 ESP calculations  

Basic local alignment search tool (BLAST) (Altschul et al. 1990) is set of programs for 

searching homologous proteins or DNA sequences (Altschul et al. 1990). BLAST 

employs a heuristic approach and therefore has adequate speed. ESP calculations only 

take a day for parasites and a week for human using this well established method. 

BLAST also has an option which allows the user to select a different output format. The 

tabular format (with BLASTall parameter -m 8) is a useful format, because Perl scripts 

can easily work through these files to find significant matches and list accession 

numbers of appropriate matches. The BLAST program BLASTall using “blastp” as 

comparison option was used for all protein comparisons. Although there is now a new 

version of blast available from NCBI (BLAST+ (Camacho et al. 2009)), this work was 

done with the previous standard BLAST. I see no issues with using the new BLAST+ 

for ESP calculations in the future. 

ESP datasets were calculated for the three parasites (Giardia lamblia, Plasmodium 

falciparum and Trichomonas vaginalis) and their host (Homo sapiens), under the 

following procedure (Figure 4):  

The analysis began with all annotated proteins of the organism to be analysed (either 

Giardia, Trichomonas or human proteome), first proteins that had homologues in any of 

the 28 bacterial and 12 archaeal species were discarded; then proteins that did not have 

homologues in any of the 17 eukaryotic species were removed. The remaining proteins 

are termed ESPs. Initially, the ESP calculation procedure also included screening 

against Rhodopirellula baltica (a prokaryote with some eukaryotic characteristics, a 

species of Planctomycetes) and three reduced eukaryotes, Entamoeba histolytica, 

Leishmania braziliensis and Theileria annulata. These steps were decided to be 

excluded because they may cause false results. In all ESP calculations, BLAST hits with 

a bit-score ≥ 55 were considered as “homologues”. The cut-off has been modified to test 

the robustness of ESPs (see section 2.3.3). 

With this procedure, incomplete archaeal and bacterial proteomes (i.e. since some 

sequencing projects are still in progress) were still useful, because proteins with 

homologues in this prokaryote’s genome could still be excluded. Incomplete eukaryotic 

genomes, however, can give false negatives, as some true ESPs may be excluded simply 

because their homologues were not listed in the incomplete genome it BLASTed against 
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or because sequence was not yet available. Note: “incomplete genome” denotes to an 

organism whose genome sequencing is not yet finished, different from “reduced 

genome”, which means the genome sequencing might or might not be finished, but due 

to the parasitic life style of the organism, its genome have shrank and some genes have 

been lost through its evolution. 
 

 

Figure 4 is a flow diagram of the procedure and results used to calculate Giardia ESPs. 

Procedures for collecting Plasmodium and Trichomonas ESPs are the same as that of 

Giardia, except the search was started with 5446 Plasmodium proteins from PlasmoDB, 

Note: numbers in brackets indicate number of proteins left from the calculation for Giardia ESPs. 

Figure 4. Procedure used for calculating ESPs 

4889 starting proteins 

Do they have homologues in Pyrobaculum 
Aerophilum? 

No (4753) 

Yes (136) 

Do they have homologues in any of the other 
39 prokaryotes (28 bacteria and 11 archaea)? 

No (3828) 

Yes (925) 

1061 proteins discarded 

Do they have homologues in 
Arabidopsis?  

Yes (597) 

No (3231) 

Do they have homologues in Oryza, 
Drosophila, Caenorhabditis and 14 other 
eukaryotic species? 

Yes to all (274), this set of proteins is our ESP dataset 

3554 proteins discarded 

No (323) 
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and 59672 Trichomonas proteins from TrichDB respectively. There were two sets of 

human ESPs calculated, the first set used Swiss-Prot human proteome database (20322 

proteins) for the calculation, and second set used the Ensembl human proteome (79063 

proteins). These two sets each have different advantages, Swiss-Prot has a minimal 

level of redundancy and hence a smaller number of proteins, as well as allowing a high 

level of integration with other databases; Ensembl data has cross-referencing to protein 

function and assignments to Gene Ontology (GO) term, as well as multiple transcripts 

from the same gene, e.g. proteins arising from such as alternative splicing of the same 

pre-mRNA transcripts. 

Perl scripts played an integral part in the refinement of the ESP dataset. They were used 

to select BLAST hits that are above the threshold, as well as preparing tables for 

loading into MySQL databases. The ESP calculation procedure is summarised by the 

flow diagram in Figure 4. 

From this work, I now have a protocol and procedure so that ESPs can be calculated for 

any collection of taxa with relative ease. The Perl scripts written for the procedure allow 

speedy calculations for future research (see supplementary data S2.1 for the protocol 

and examples of Perl scripts). This package has been uploaded to the DVD supplied 

with this thesis and given to my supervisor (Dr. Lesley Collins) to be used in future 

work. 

2.2.3 Assigning Gene Ontology terms 

Gene Ontology (GO, http://www.geneontology.org) is a collaborative effort to address 

the need for consistent descriptions of gene products in different databases and useful 

for clustering of results based on function. The GO assignments used in this work 

however are tentative and used primarily for clarifying ESP states. 

Assigning GO terms for human ESPs was performed by using the Ensembl online tool 

Biomart (Kinsella et al. 2011). By entering the accession numbers of our ESPs, GO 

terms were easily derived for each human ESP from the collated knowledge in this large 

database.  

Assigning GO terms for the parasites’ proteins was more complicated, because these 

proteins have not typically been annotated with GO terms. The parasites’ protein 

sequences were first BLASTed against the Saccharomyces cerevisiae genome, this is 

because GO term have been well annotated for Saccharomyces proteins. Then by using 
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Biomart, GO terms were assigned to the yeast proteins to which the parasite proteins 

were putatively homologous to. An issue is that one Giardia protein might have many 

homologues in the yeast genome; on the other hand, Saccharomyces cerevisiae also has 

a reduced genome, some of Giardia ESPs might have no yeast homologues at all (this is 

the case in 261 out of 274 Giardia ESPs); finding GO term for the homologue of 

proteins instead the actual proteins themselves can also create issues at times. This 

method had many weaknesses, so Giardia ESPs GO designations were discarded in the 

project, and the dataset was categorised manually according to function (see result 

section Table 4 and supplementary data S2.2 for more detail).  

2.2.4 Database construction and management  

Database construction and the management of genome sized datasets is another crucial 

part of this project. The advantage of using databases is that they allow fast and 

organised information retrieval, and easier updating when newer parasitic 

genomes/proteomes become available. In addition, the relational database management 

system allows large volumes of information to be efficiently stored and retrieved. Thus, 

MySQL databases were used for the storage of my ESP data. 

The Giardia database is illustrated in Figure 5 (created using MySQL Workbench 

version 5.0.22; OSS community edition). Each box corresponds to a table, the lines 

connecting tables show the relationship between the columns of the two tables, whether 

it is a one to one (one entity is related to only one occurrence in another table, indicated 

by a “ ”) or one to many (when one entity is related to many occurrences in 

another table, indicated by a “ ”) relationship, and the captions indicate which 

two columns correspond to each other. MySQL databases enabled the managed storage 

of a variety of information: for example the “Giardia_source” table contained detailed 

information about the Giardia proteins from GiardiaDB; the “BLAST_results” table 

stored all the information about the BLAST steps, which enabled to locate precisely 

when individual proteins were excluded from the datasets. MySQL databases for 

Plasmodium, Trichomonas and human were constructed in the same manner as for the 

Giardia database. These databases have been passed onto my supervisor for future work 

and can be easily updatable using my accompanying script “package”. 

By using MySQL commands, the comparison of multiple datasets can be readily 

performed; the homology between ESPs to proteins from other organisms can also be 
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Figure 5. Illustration of Giardia database layout 

 

viewed from the “BLAST_results” table. Additionally the use of a database greatly 

assisted statistical analysis such as assessing the number of GO terms. MySQL can be 

combined with Perl to perform various bioinformatic tasks effectively e.g. the fetching 

of homologous proteins from different organisms was performed in this manner in the 

phylogenetic section of the project (see Chapter 3). 
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2.3 Results and Discussion 

2.3.1 The Giardia ESP dataset 

There were 274 Giardia ESPs obtained from the ESP analysis, these comprised of 267 

distinctive proteins. Although the Giardia genome has been annotated, a large 

percentage of proteins are still designated as hypothetical proteins. This meant that a 

different strategy for assigning function had to be developed. It should be noted that this 

function assignment is putative only and indicative only of sequence similarity. The 274 

ESPs were divided into seven protein groups according to their predicted conserved 

functions based on description and homologies to Saccharomyces cerevisiae proteins. 

The seven protein groups are: proteins related to the plasma membrane and endocytosis 

(34 proteins); those associated with the cytoskeleton (39 proteins); those are involved in 

the signalling system (97 proteins); those in the nucleus (45 proteins); those involved 

with protein synthesis and breakdown (15 proteins); those with unknown function (34 

proteins) and hypothetical proteins (10 proteins). Table 4 has listed all ESPs by these 

categories (also see supplementary data S2.2 for the list of all ESPs). Some ESPs have 

multiple gene copies, and thus numbers of distinctive ESPs (i.e. not including the 

repeated ones) are also included in brackets. 

There are some protein families in the Giardia ESP dataset. Protein families are 

proteins which are descended from a common ancestor. Proteins belong to the same 

family typically have sequence and structural similarity and they perform similar 

functions. Examples of such in the dataset are the histone family, which consist of H2A, 

H2B, H3 and H4 (H1 not an ESP since H1 is not found in Giardia); members of the 

tubulin family are alpha, beta, gamma, delta and epsilon tubulin, all of which are ESPs. 
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Table 4. Categories of Giardia ESPs 

Protein category # proteins (distinct) Sub category # proteins (distinct) 

Cytoskeleton 37(34) actins 4 

microtubule related 1 

tubulins 8(5) 

kinesins 24 

Membrane 34 cell adhesion 2 

clathrin related 11 

endocytosis 1 

ER and Golgi 9 

lipid attachments 4 

vacuole 7 

Nucleus 45(41) DNA polymerase 1 

histones 11(7) 

histone-associated 4 

LIM related 4 

ribonucleoproteins 2 

RNA enzymes 9 

topoisomerase 1 

transcriptional factors 5 

transcriptional transactivators 2 

zinc fingers 6 

Protein synthesis and 

breakdown 

17 ribosome biogenesis proteins 4 

large ribosomal proteins 4 

small ribosomal proteins 3 

proteasome associated 2 

translation factors 4 

Signalling system 97 14-3-3 protein 1 

calmodulins 5 

cell cycle related 9 

GTP-binding proteins 20 

kinases and phosphatases 35 

Phosphatidylinositol proteins 7 

ubiquitins 2 

ubiquitin conjugation enzymes 15 

ubiquitin proteases 5 

Others 33 others 33 

Hypothetical proteins 10 hypothetical proteins 10 
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Interestingly, there are five ESPs that possessed multiple gene copies in the Giardia 

genome, all of which are members of histone and tubulin family. Alpha tubulin, histone 

H2A and histone H2B each possess at least two copies in Giardia; beta tubulin and 

histone H4 each possess at least three copies (see Table 5). 

Table 5. Proteins with multiple copies in ESP dataset 

Protein 
description 

Number of 
copies in 
Giardia 

Protein 1 Protein 2 Protein 3 

Alpha 
tubulin 

2 GL50803_103676 GL50803_112079  

Beta tubulin 3 GL50803_101291 GL50803_136020 GL50803_136021 
Histone 
H2A 

2 GL50803_14256 GL50803_27521  

Histone H2B 2 GL50803_121045 GL50803_121046  
Histone H4 3 GL50803_135001 GL50803_135002 GL50803_135003 
 

There were 39 ESPs designated to the cytoskeleton, including a number of actins 

(proteins that make microfilaments and thin filaments), tubulins (proteins that make 

microtubules), kinesins (protein motors) and a microtubule-binding protein. The 

cytoskeleton is thought to be a eukaryotic cellular signature structure (CSS) that defines 

eukatyotes, but recently a prokaryotic cytoskeleton has been identified (Shih et al. 2006; 

Watters 2006). It has been reported that the eukaryotic actin and tubulin genes possess 

weak similarity to FtsA and FtsZ, both of which are part of the bacterial cell division 

machinery (Jimenez et al. 2011). The 3-dimensional structure of FtsA and FtsZ are 

remarkably similar to that of actin and tubulin, respectively, but their primary structures 

(i.e. sequence) have little similarity (Desai et al. 1998; van den Ent et al. 2000). It is 

unknown whether these are cases of convergent evolution of different proteins, or the 

proteins are indeed diverged from a common ancestor. 

The majority of membrane associated ESPs are involved in the transportation of 

macromolecules. They contained a large number of clathrin (involved in forming coated 

vesicles), endoplasmic reticulum (ER) and Golgi apparatus related proteins, vacuolar 

proteins, proteins involved in attachment, and one protein involved in endocytosis. If 

indeed the eukaryotic cell arose by engulfing other cells, progenitors of these ancient 

proteins might once have functioned to enable the proposed “raptor” cell (Kurland et al. 

2006) or chronocyte (Hartman et al. 2002) to engulf ancestral bacterial and archaeal 

cells. 
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ESPs associated with the nucleus included histones, RNA associated enzymes and 

proteins in the DNA replicating machinery. Histones are responsible for packing DNA 

into chromatin structures. Prokaryotes and archaea do not possess complicated DNA 

packaging systems, thus histones H2A, H2B, H3 and H4 are expected to be ESPs. H1, 

the linker of chromatin, is an exception because it is less conserved than its histone 

orthologue and it is absent in some eukaryotes such as Giardia. Although archaeal 

(euryarchaeotes) genomes also contain ancient histone homologues (Spitalny et al. 

2008), the similarity is more at a structural level rather than the sequence level, in a 

similar manner to that of actin and tubulin. RNA enzymes include proteins involved in 

RNA editing, which has been proposed as an ancient mechanism (Collins et al. 2009). 

The presence of ESPs could suggest that RNA editing in eukaryotes existed since the 

last eukaryotic common ancestor. Finally, the DNA replication process of eukaryotes is 

much different from that of the prokaryotes’, as different polymerases and different 

transcription factors (including some proteins annotated as “zinc finger proteins”) were 

utilised, as expected DNA replication proteins were well represented in the ESP dataset. 

Several ESPs appear involved in protein synthesis. The eukaryotic 80S ribosome is 

different to the prokaryotic 70S ribosome. Several ribosomal proteins, translational 

factors fulfilled the criteria of ESP indicating that although Giardia has a smaller 

ribosome than eukaryotes, it is clearly eukaryotic rather than prokaryotic. There are also 

two proteasome related ESPs indicating the protein degradation mechanism is universal 

to all eukaryotes. 

Signalling system ESPs contain many kinases and phosphatases. These are enzymes 

performing a variety of functions by adding and removing phosphate groups to a 

molecule (such as proteins or ATP). Phosphatidylinositol kinases and phosphatases are 

involved in cellular functions such as cell growth, proliferation, differentiation, motility, 

survival and intracellular trafficking. GTP-binding proteins are prominent; they function 

as “molecular switches”, and give more sophisticated regulation of enzymes, ion 

channels, transporters, controlling numerous cell activity such as transcription, motility, 

contractility, and secretion (Neves et al. 2002). Ubiquitin related proteins are very 

abundant; they are involved in directing protein degradation. Five calmodulins were 

found as ESPs, indicating regulation by means of calcium-binding is a distinct 

mechanism in eukaryotes.  
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There are 9 proteins associated directly with the cell cycle, such as cyclins and cyclin-

dependent kinases (CDKs). Cyclins and cyclin-dependent kinases form complexes, 

which upon activation will dictate which phase the cell will go through. This is a unique 

scenario in eukaryotes because prokaryotes do not possess nuclei, and their cell division 

is relatively simple. Interestingly a protein annotated “notchless” was found as an ESP. 

The similarity between Giardia notchless and other eukaryotic notchless is very high 

(e.g. a bit-score of 296 to the Drosophila notchless protein), which suggested high 

confidence in the annotation. Notchless is a regulator of the notch pathway, which plays 

a central role in the control of cell fate decisions in a wide variety of cell lineages during 

invertebrate and vertebrate development (Royet et al. 1998). It is unknown why 

homologues of the gene for this protein would be present in Giardia lamblia, 

Phytophthora infestans and Dictyostelium discoideum, the three single celled 

eukaryotes used in this study. 

ESPs which fell into the category of “others” are the ones which have not been well 

annotated. Their annotations typically only have suggestion to their sequence or 

predicted 3D structure, for example the “Glycine-rich protein” or “WD-40 repeat 

protein”. Some proteins also have suggested functions such as “ATPase”. Lastly, ESPs 

in the “hypothetical protein” category all have “Hypothetical proteins” as their 

annotation and were not able to be resolved further. 

Kurland et al. suggested that all ESPs could be divided into three categories: proteins 

arising de novo in eukaryotes; proteins so divergent to homologues of other domains 

that their relationship is largely lost; or finally, descendants of proteins that are lost from 

other domains, surviving only as ESPs in eukaryotes (Kurland et al. 2006). In an 

evolutionary sense, group A ESPs (proteins arising de novo in eukaryotes) are of the 

most interest because these proteins hold the key for understanding of the difference 

between eukaryotes and prokaryotes. The Giardia ESPs were examined, taking 

Kurland’s hypothesis into consideration, and it was difficult to divide ESPs into these 

categories. For example, weak homologues of actin, tubulin and histones are all present 

in some group of prokaryotes, at least at the protein structural level, but it is hard to say 

this similarity is the because of homology or convergent evolution (i.e. two separate 

protein lineage has evolved to be similar appearance due to similarity in their functions). 

Therefore dividing the ESPs could not be achieved for the Giardia ESP dataset. The 
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“proteins so divergent to homologues of other domains that their relationship is largely 

lost” scenario possibly has occurred in many groups of ESPs. 

2.3.2 Comparison with Hartman’s dataset 

Hartman et al. initially researched Giardia ESPs in 2001 and obtained 347 ESPs for 

Giardia. Their approach used Saccharomyces cerevisiae as the starting point (see 

section 2.2.1 for detail of Hartman et al.’s method). Comparison between the ESP 

dataset obtained in this study and Hartman’s dataset was made in order to find out the 

similarities and differences between the two datasets. 

The results showed out of my 274 Giardia ESPs, 203 proteins had homologues in 

Hartman’s dataset, and 71 did not (more detail from each protein category is shown in 

Table 6). The reverse BLAST search has also been performed (i.e. the use of Hartman’s 

ESPs dataset as the input and search against my set of ESPs), and out of the 347 

Hartman’s ESPs, 237 had homologues in my ESP dataset, and 110 did not.  

Table 6. Giardia ESPs with homologues from Hartman dataset 

Protein category Number of ESP 

with homologues in 

Hartman’s data 

Number of ESP 

without homologues 

in Hartman’s data 

Membrane 22 12 

Cytoskeleton 36 1 

Signalling system 73 25 

Nucleus 37 8 

Protein synthesis and breakdown 10 7 

Others 18 15 

Hypothetical protein 7 3 

Total  203 71 

 

When the 347 Hartman’s ESPs were BLASTed against the whole Giardia genome, 326 

had homologues; This is quite different from the prediction (all 347 Hartman ESPs 

should have homologues), as Hartman et al. calculated their dataset with a step of 

BLASTing against Giardia, this is probably because the Giardia database has been 

vastly updated and some redundant proteins have been removed. Conversely if the 

whole Giardia genome was used to BLAST against Hartman’s data (using a cut off bit-

score of 55), 351 proteins had homologues. 
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Overall the datasets are very similar, because the principle was the same in both sets – 

to find proteins conserved across eukaryotes and not found in prokaryotes. The main 

cause of the slight variation is the difference in the way the ESPs are calculated, and of 

course the new databases played a role. Hartman et al. started with the Saccharomyces 

proteome because the Giardia genome was very poorly annotated at that time (it is 

better annotated now), and performed BLAST searches with these yeast proteins against 

the only 44 prokaryotes’ genomes available at the time, then only four eukaryotes, and 

lastly Giardia. I used a more straightforward approach and started my BLAST searches 

directly with Giardia proteins, giving the benefit of obtaining a set of the parasites 

protein in the end rather than a set of yeast proteins. In fact, Saccharomyces was not 

used at all in this project, because it also has a reduced genome and is no longer 

considered the most “typical” eukaryote. More species were also used in my study, 

which include 28 bacterial, 11 archaeal and 17 eukaryotic species. More genomes would 

definitely offer a more robust dataset.  

2.3.3 Decision of using 55 bit-score as cut-off  

The BLAST bit-score was used in my analysis as a cut-off value to delineate matches as 

being acceptable or not. The “e-value” is another parameter from the BLAST output 

that can be used to indicate the significance of the match. So would the e-value be a 

better indication of how good the match is? Also, is the cut off be too strict or too loose 

for deciphering homologues? To test this, an e-value of 10-7, which is roughly the same 

as a 55 bit-score cut off if the proteome database file is ~15 megabytes3 was used as a 

cut-off to calculate ESPs. The resulting dataset contained 248 ESPs, a similar number to 

my previous ESP datasets that used bit-score of 55 as a cut-off. There were 241 ESPs 

that appeared in both datasets, the other 33 proteins in this dataset did not appear in the 

original dataset calculated using a bit-score cut off of 55. The resulting datasets were 

not hugely different. Table 7 summarises the differences between the two datasets. 

To understand the differences between the datasets requires an understanding of how 

the scores are calculated. The bit-score is directly computed from the scoring matrix and 

gap penalties, and then normalised to give the unit “bits” to the raw score; the e-value 

indicates the number of alignments expected at random given the size of the search 

                                                 
3 Note the 15 megabytes is the size of the database file, not the genome. Most eukaryotic protein database 
files are about this size, plant database files are larger, and some fungi proteomes are smaller. 
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space and the score of alignments, the lower the e-value the less likely it is that this 

similarity is random. The e-value can be calculated by the Karlin-Altschul equation 

“E=kmne-λS”, where “m” is query size and n is the database size. Based on this 

knowledge the following test was performed to confirm relationships between database 

size, bit-score and e-value: 

Table 7. Comparison between using E-value and bit-score as cut-offs 

Protein category Number of ESP 

in both datasets 

Number of ESP in the 

original but not in this dataset 

Membrane 30 4 

Cytoskeleton 37 2 

Signalling system 82 15 

Nucleus 42 3 

Protein synthesis and breakdown 12 3 

Others 28 6 

Hypothetical protein 10 0 

Total  241 33 

 

A protein from Giardia was used as a query sequence, and the database contained only 

one protein from Arabdopsis (we call this protein A). When the query was BLASTed 

against the database, the BLAST output suggested the closest homologous Pyrobaculum 

protein was had e-value of 2x10-11 and bit-score of 52. 

For the second BLAST search, the same query sequence was used, but the database is 

now the entire proteome of Arabdopsis (a total of 95500 proteins). The resulting bit-

score remained at 52 bits, and so did other values such as percentage identity, alignment 

length, mismatches and gap openings. The only value which has changed was that of 

the e-value, which changed from 2x10-11 to 1x10-6, which is 50,000 fold larger. The 

effect of increased e-value in bigger databases can also be seen during the ESP 

calculating procedure, as e-values in BLAST results of eukaryotic steps are generally 

many magnitudes larger than results of archaeal/bacterial steps, when the bit-scores are 

roughly the same. This result suggested that when querying smaller databases (e.g. 

bacterial genomes), e-values will decrease, causing the result to be above the cut-off, 

suggesting the two proteins are homologues when the bit-score suggests otherwise, thus 

causing both false positives and false negatives in the ESP dataset. For the above 
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reason, bit-scores, a consistent scoring system was used in preference to e-value in this 

research.  

Having decided to use the bit-score, the next question is whether the 55 bit-score (used 

by Hartman et al.), was a good value for the cut-off. In this study, a comparison of 

proteins was made between distantly related species, and the cut off set reasonably low; 

on the other hand, it should not be too low that false homologues would be found. 

Histone H4 offered some guidance in deciding the cut-off value: when this protein was 

compared with Archaeoglobus fulgidus (an archaea), the best hit for H4 had a bit-score 

of 38.5 and e-value of 4x10-4. This corresponds to the aforementioned archaeal 

homologue for histones in section 2.3.1. This homologue was considered insignificant 

in the above section. Except for H1, which are not found in organisms such as Giardia, 

all other histone proteins are present in all eukaryotes, they are robust ESPs. In addition, 

Hartman’s dataset also included H4. Therefore H4 should be included in the dataset as a 

negative control. The ideal cut-off should be set above this value, but there is no 

absolutely right or wrong answer to this issue. The 55 bit-score cut off used this study 

was deemed to suffice and obtained good datasets. 

The length the query sequence may also cause some issue in deciphering homology. 

BLAST will list alignment of each of the segment of a protein to the database sequences 

separately, and each of these alignments will be given bit-score by BLAST. Giardia 

proteins are ranged from 33 to 8166 amino acid residues in length (though 97% proteins 

have <2000 residues), longer sequences have more chance to contain a segment of 

matching a database sequences by random, i.e. if a segment of 50 residues from the 

query protein aligned a database protein with 55 bit-score, the whole protein is 

considered “to have a homologue”. To fix this problem, there are 4 solutions: 

1 The best idea would be set minimal “alignment length” to a fixed ratio of the query 

protein length, however BLAST does not have this parameter. 

2 Set bit-score threshold higher for the large proteins, this can cause further controversy 

due to the nature of different criteria will be applied for each alignment. 

3 Split these large proteins in to smaller segments, this might cause some matches being 

missed out if the sequence similarity occurs at the position where sequence was split. 

4 Leave it the way it is and use 55 bit-score for all proteins. 

We have chosen option 4, because after screening against a large number of species, the 

chance of a long sequence remaining in the dataset by random is minimised. 
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2.3.4 The Plasmodium and Trichomonas ESP datasets 

The ESP datasets for these Plasmodium falciparum and Trichomonas vaginalis were 

calculated in a similar manner as that for the Giardia dataset (refer to Figure 4), starting 

the search with 5446 Plasmodium proteins from PlasmoDB, and 59672 Trichomonas 

proteins from TrichDB respectively (Table 8). For Plasmodium, 436 ESPs were 

obtained; and for Trichomonas, 2134 ESPs were obtained. These two parasitic datasets 

were calculated only for comparisons with Giardia and human ESPs, and thus were not 

analysed in great detail. 

Table 8. Summary of the number of ESPs obtained for each organism 

Organism name Number of 
ESPs 

Total number of 
proteins in database 

Giardia lamblia 274 4889 
Plasmodium falciparum 436 5446 
Trichomonas vaginalis 2134 59672 
Homo sapiens Swiss-Prot 2585 20322 
Homo sapiens Ensembl 8000 79063 

 

2.3.5 Human (Homo sapiens) ESP dataset 

There are a number of different proteomic databases available so two human ESP 

datasets were calculated during this study. The first, using the human proteome from 

Swiss-prot (http://au.expasy.org/sprot), comprised 2585 ESPs. The second set was 

calculated using the Ensembl human proteome database (http://www.ensembl.org), and 

exactly 8000 ESPs were obtained. The number of human ESPs is significantly larger 

than that of parasites, partly because that human genome might possess more copies of 

the same gene whereas parasites in their reduced state, has lower copy numbers of each 

gene.  

The GO term and nucleotide data for the Ensembl dataset was obtained by using 

Biomart, but 2325 ESPs did not have any GO term associated with them. Since the 8000 

human ESPs would be difficult to manually group according to function like the way 

the Giardia dataset was categorised, GO terms can give reasonable indications on 

protein function. 

However, the GO term annotation at Ensembl was very quickly updated. Ten months 

after GO terms were first assigned in September, 2010 (i.e. July 2011), the same 8000 

ESPs were assigned GO terms again using Biomart, but this time the results were vastly 
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different from the GO terms assigned initially. In the updated version, there were only 

477 ESPs without any GO term; 794 proteins did not exist anymore or had their 

accession number changed and Biomart simply ignored them, because the current 

release (release 62, released in April, 2011) is different from the version of the database 

used for ESP calculation (release 59, released in July, 2010). 

In order to understand the functional difference between ESPs and other proteins, the 

ESP GO terms needed to be compared with those of other proteins from the human 

proteome. The Ensembl human protein database release 59 contained 79063 proteins. 

For convenience matter, 8000 proteins were selected at random by a Perl script for 

comparison. The results from each set are summarised in Table 9 and Table 10. 

Table 9. The 15 most abundant GO terms for human ESPs (updated version) 

 GO term 
accession 

GO term name c.f. random 
set4 

# of 
proteins 

1 GO:0005515 protein binding ► 3079 
2 GO:0005622 intracellular ▲5 2041 
3 GO:0005634 nucleus ▼1 1956 
4 GO:0008270 zinc ion binding ▲3 1739 
5 GO:0003677 DNA binding ▲5 1243 
6 GO:0005737 cytoplasm ▼2 1182 
7 GO:0046872 metal ion binding ▲4 1124 
8 GO:0003676 nucleic acid binding ▲4 990 
9 GO:0006355 regulation of transcription, DNA-dependent ▲4 859 
10 GO:0000166 nucleotide binding ▲4 633 
11 GO:0016020 membrane ▼8 632 
12 GO:0005829 cytosol ▲5 564 
13 GO:0005524 ATP binding ▼4 543 
14 GO:0005525 GTP binding ▲40 511 
15 GO:0007165 signal transduction ▲1 491 
 Proteins did not have any GO terms  477 
 Proteins do not exist (or ID have been changed) in the new release  794 

 

In looking at the results, ESPs have been assigned to more GO terms than the random 

set, as the number of proteins for each GO term is higher, and the number of proteins 

that did not have any GO terms was lower. This is no surprise because ESPs are meant 

                                                 
4 This column refers to the ranking of the GO term when compared with a random set of proteins. ▲1 
indicates the ranking for this GO term in ESPs is higher than its ranking in the random set by 1 place; and 
▼1 indicates the ranking for this GO term in ESPs is lower than its ranking in the random set by 1 place. 
► indicates the ranking of this GO term is the same in both sets of proteins. 
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to be essential proteins for eukaryotic life and are expected to be better annotated than 

random sets of proteins. 

From the comparison with the random selection, we can see which GO terms were more 

abundant in the ESP set. The GO terms more abundant in ESP sets were: Intracellular, 

nucleic acid binding (and terms alike), metal ion binding and GTP-binding. 

GO terms appeared less in ESPs are membrane (and terms alike), which is expected 

since membrane is a feature in both eukaryotes and prokaryotes. Also GO terms of 

extracellular region are less abundant in ESPs. 

Table 10. The 15 most abundant GO terms for 8000 random human proteins 

 GO term 
accession 

GO term name c.f. ESP set # of proteins 

1 GO:0005515 protein binding ► 2299 
2 GO:0005634 nucleus ▲1 981 
3 GO:0016020 membrane ▲8 886 
4 GO:0005737 cytoplasm ▲2 814 
5 GO:0016021 integral to membrane ▲16 795 
6 GO:0008270 zinc ion binding ▼3 594 
7 GO:0005622 intracellular ▼5 590 
8 GO:0005886 plasma membrane ▼14 517 
9 GO:0005524 ATP binding ▲4 453 
10 GO:0003677 DNA binding ▼5 448 
11 GO:0046872 metal ion binding ▼4 438 
12 GO:0003676 nucleic acid binding ▼4 343 
13 GO:0006355 regulation of transcription, DNA-dependent ▼4 341 
14 GO:0000166 nucleotide binding ▼4 340 
15 GO:0005576 extracellular region ▲188 314 
 Proteins did not have any GO terms  1863 
 Proteins do not exist (or ID have been changed) in the new release  898 

 

2.3.6 Human ESPs in parasites 

ESPs can give a clue to differences between parasites and host. Parasites have a reduced 

genome and thus will maintain a small genome which would give them advantages in 

replication (Fedorov et al. 2004). The parasites can lose essential proteins so long as 

they are substituting that function in some way, for example, an amino acid synthesis 

pathway can be lost if the parasite can obtain it from the host. My results from the 

previous section raise some interesting questions:  

1. For all these very important proteins - which ESPs can a parasite survive 

without?  
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2. Which ESPs are the absolutely essential ESPs, for which even organisms with a 

minimal genome cannot survive without? 

To begin to look at these questions, the 8000 total human ESPs yielded from the 

Ensembl database were compared with the Giardia, Plasmodium, and Trichomonas 

genomes, from which the ESPs were divided into 3 groups: lost in all parasites, 

maintained in one or two parasites, or maintained in all parasites (the grouping 

“parasites” here meaning the three parasites mentioned above). 

There were 2929 (36.6%) ESPs maintained by all parasites, and 1043 (13.0%) ESPs 

were absent from all of the three parasites. The other 4028 (50.3%) proteins are either 

maintained by some parasites but absent in other parasites. This agreed with the 

conclusion from section 2.3.4, and showed that these parasites can survive without some 

key proteins which are considered essential to free-living eukaryotes. 

The proteins were all assigned with GO terms which illustrated which functional groups 

of ESPs are maintained by the parasites, and which ones are lost. Table 11 and Figure 6 

shows the most abundant 40 GO terms and also indicates whether proteins belonging to 

these GO terms are maintained or lost in parasites. Note: as mentioned in section 2.2.3 

the GO terms for parasites are putative only in that they represent sequence homology 

and assume that functional domains have remained intact. However, the GO terms for 

humans are directly from their database of origin and should represent a much clearer 

idea of function. 

The results here show that many functional groups (i.e. proteins with the same GO 

terms) are mostly maintained by the parasites. For example, microtubules serve as 

structural components within cells and are involved in many cellular processes 

including mitosis (Sgro et al. 2011) and vesicular transport (Vale 2003). More than 95% 

of the microtubule related GO terms are maintained by all parasites (80 out of 83 

proteins with GO term “microtubule-based movement” were maintained; similarly 175 

out of 176 proteins with GO term “microtubule-based process” were maintained). 

Nucleosome assembly contains many histone proteins and the majority of them are 

conserved in the parasites. Some transport systems (nucleocytoplasmic transport, 

intracellular protein transport) are also mostly conserved. Other functional groups that 

are conserved in the three parasites are post-translational protein modification, protein 

polymerization, regulation of ARF GTPase activity and small GTPase mediated signal 

transduction. 
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Table 11. The 40 most abundant GO terms for human ESPs 

GO term 
accession 

GO term name Total Maintained 
in all 
parasites 

Lost in all 
parasites 

GO:0006355 regulation of transcription, DNA-dependent 983 83 91 

GO:0007165 signal transduction 532 335 17 

GO:0015031 protein transport 519 424 16 

GO:0045449 regulation of transcription 519 102 70 

GO:0006886 intracellular protein transport 518 426 33 

GO:0007264 small GTPase mediated signal transduction 424 383 2 

GO:0006511 ubiquitin-dependent protein catabolic process 316 178 7 

GO:0006810 transport 265 55 39 

GO:0006913 nucleocytoplasmic transport 245 240 0 

GO:0006470 protein amino acid dephosphorylation 241 68 144 

GO:0016311 dephosphorylation 226 54 136 

GO:0016192 vesicle-mediated transport 218 160 5 

GO:0055085 transmembrane transport 192 6 62 

GO:0007018 microtubule-based movement 176 175 0 

GO:0006464 protein modification process 158 102 42 

GO:0051246 regulation of protein metabolic process 145 126 1 

GO:0043687 post-translational protein modification 145 126 1 

GO:0007049 cell cycle 141 82 6 

GO:0006468 protein amino acid phosphorylation 140 84 19 

GO:0006334 nucleosome assembly 133 111 1 

GO:0008380 RNA splicing 131 21 17 

GO:0032313 regulation of Rab GTPase activity 130 85 1 

GO:0006397 mRNA processing 129 15 21 

GO:0007275 multicellular organismal development 126 27 31 

GO:0006915 Apoptosis 110 50 16 

GO:0006412 Translation 108 58 3 

GO:0051258 protein polymerization 104 104 0 

GO:0023034 intracellular signalling pathway 102 35 18 

GO:0044419 interspecies interaction between organisms 96 52 2 

GO:0006508 Proteolysis 95 15 26 

GO:0032312 regulation of ARF GTPase activity 94 92 0 

GO:0016567 protein ubiquitination 93 65 1 

GO:0051301 cell division 93 51 4 

GO:0006357 regulation of transcription from RNA polymerase II 
promoter 

89 7 36 

GO:0016568 chromatin modification 88 34 18 

GO:0007067 mitosis 86 54 3 

GO:0045944 positive regulation of transcription from RNA polymerase 
II promoter 

86 17 30 

GO:0000122 negative regulation of transcription from RNA polymerase 
II promoter 

84 5 32 

GO:0007017 microtubule-based process 83 80 0 

GO:0008150 biological process 83 26 8 
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Some functional groups are not well maintained in parasites, such as mRNA processing, 

RNA splicing, transmembrane transport, regulation of transcription (both DNA-

dependent and RNA-dependent). Parasite genomes in general contain fewer introns, and 

the number of mRNA processing and RNA splicing components may be significantly 

reduced (L. Collins, personal communication). Parasites may also regulate their 

transcription differently from the host, or their transcription machinery may also have 
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been simplified. Transmembrane transport is the only transport system that appears not 

to be maintained in the three parasites, whereas other transport systems such as 

intracellular protein transport, nucleocytoplasmic transport and vesicle mediated 

transport all appear to be well maintained by these parasites. 

An initial aim was to identify metabolic pathways with missing ESPs, and to determine 

how parasites accommodated such loss (either obtaining the lost proteins from the host 

or modifying appropriate biochemical pathways). The idea is that a new drug could be 

developed from the alternative pathways of the parasite. In depth comparison between 

the host and parasites’ ESPs as individual proteins was not performed during this 

project, because this requires more complete annotation for the parasites than is 

presently available. It would also require more complete GO terms for the parasite 

proteins and more protein interaction data. 

2.3.7 Differences and similarities between parasite ESP datasets 

The ESP datasets of the three parasites were then compared to each other (summarised 

in Table 12). Quite remarkably, ESPs from one parasite are not necessarily present in 

the datasets of the other two parasites. The results can be explained by hypothesising a 

scenario that a free-living eukaryote might have more ESPs than any of these parasites, 

the parasites can survive without some key proteins which were considered essential to 

free-living eukaryotes (i.e. ESPs), they do not maintain them because this will give 

them a smaller genome and advantage in replication; their pattern in the conservation of 

essential proteins are different in each parasite due to their different niche. 

Table 12. ESP between parasites 

 Giardia Plasmodium Trichomonas Both parasites 

Giardia 274 207 225 195 (71.2%) 

Plasmodium 211 436 298 194 (44.5%) 

Trichomonas 1502 1642 2134 1334 (62.5%) 

 

Another test for ESP conservation was performed by comparing ESP datasets with the 

genome of the parasites instead of the ESP datasets, the results were summarised by 

Table 13. The results from this test were different from the previous one, indicating in 

some cases, homologues of the ESPs were present in the other parasites proteome, but 

the homologues were not in the ESP datasets of the other parasite. The reason may be 
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these proteins are “borderline” ESPs, and have been lost during the ESP calculation 

steps of some divergent species. This indicates that the loss of ESPs may not be the 

same in every parasite. There are likely to be evolutionary differences in which proteins 

are lost and more importantly which essential proteins (i.e. ESPs) can be lost. This 

pattern of loss would depend on the parasitic life-style and which nutrient resources are 

available from the host. 

Table 13. ESP vs other parasites’ proteome 

 Giardia Plasmodium Trichomonas Both parasites 

Giardia 274 242 259 236 (86.1%) 

Plasmodium 246 436 343 235(53.8%) 

Trichomonas 1619 1758 2134 1465(68.6) 

 

2.3.8 Other groups of proteins 

Besides ESPs, there are several other important and interesting groups of proteins 

calculated according to their conservation in the three domains of life. “Proteins 

conserved in all eukaryotic species” were calculated using Giardia proteins as a starting 

point, and during each step, proteins without homologue (55 bit-score cut off) excluded, 

the same 17 eukaryotic organisms from ESP calculation procedure were used. There 

were 849 proteins which fulfilled these criteria. 

The group “Giardia proteins conserved in all organisms” contains the most ancient 

proteins with homologues in all extant phyla from prokaryotes to eukaryotes. The same 

28 bacterial species, 12 archaeal species 17 eukaryotic species from the ESP calculation 

procedure were used. There were only 37 proteins conserved in all these organisms 

(listed in supplementary data S2.3). These proteins included numerous protease proteins 

(6 proteins), ATP-binding cassette transporters (13 proteins).  

“Archaeal signature proteins” were calculated similar to the manner of ESP calculation 

(i.e. using the 536 Nanoarchaeum equitans proteins as the starting point, identified 

proteins that are conserved in all archaeal species, and then excluded proteins with 

homologues in bacteria and eukaryotes). However no archaeal signature proteins were 

found using our standard cut-offs. There were 28 proteins conserved in all the archaea 

species, but this number may be low due to the fact that Nanoarchaeum has a small 

genome. All of these 28 proteins have bacterial homologues and also eukaryotic 
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homologues. This result differs from that of Graham et al. (Graham et al. 2000), who 

found 351 proteins unique to archaea. An important difference in studies is that Graham 

et al.’s definition of “archaeal signature proteins” is different from this study, since they 

have included proteins which are found in 2 or more taxa of Euryarchaeota, whereas 

this analysis only included proteins which are found in all taxa of archaea. 

Calculating “bacterial signature proteins” calculations (i.e. using 8308 Escherichia coli 

proteins as starting point, collecting proteins conserved in all bacterial species, and then 

excluding proteins with homologues in archaea and eukaryotes), resulted in 278 

proteins conserved in all bacteria. Homologues of these 278 proteins were found in 

eukaryotes. There were however, 44 proteins out of the 278 conserved bacterial proteins 

that had no homologues found in any archaea (listed in supplementary data S2.4). These 

44 proteins included almost all transcriptional and translational machinery, indicating 

that the bacterial transcription and translation systems are unique from those of archaea. 

It is also noticed that the aforementioned 28 proteins conserved in all archaea also 

contained a number of transcriptional and translational proteins. Therefore it seems that 

bacteria share the ancestry of transcriptional and translational machinery with Archaea, 

but have also since then developed different systems of their own. 

2.4 Conclusions 

2.4.1 ESP calculation conclusions 

The ESP datasets for Giardia lamblia and Trichomonas vaginalis and human have now 

been re-calculated and databases containing and connecting these ESP datasets have 

been constructed. I have also examined the difference in ESPs from host and parasites, 

and results showed interesting patterns of the trend of loss of ESPs (section 2.3.6). 

The current dataset is significantly more robust than Hartman et al.’s (Hartman et al. 

2002) due to many more organisms being used, but it may still have small amount of 

false positives due to the lack of any completed genomes from some branches of 

prokaryotes and eukaryotes. ESPs are not a complete set of ancestral proteins. Some 

eukaryotic organisms may have lost ancestral protein. For example, Dicer is an ancestral 

enzyme, but some lineages such as yeast have secondary loss of this protein. In future 

studies a protocol that captures proteins such as Dicer would be useful. 

The protocol for ESP calculation is flexible and permits future re-calculations to include 

newly sequenced genomes as well as updated genomic information. Increased computer 
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power means that more species can now be more readily included. The Perl scripts for 

forming ESP databases are planned for inclusion in a future manuscript (in preparation). 

2.4.2 Database updates 

Proteome databases are constantly being updated. This is problematic because outdated 

ESP results do not work on new databases very well due to change in the accession 

numbers, inclusion of more annotated proteins and exclusion of deprecated proteins 

from the newer database versions. For example, from the time our original human ESPs 

were calculated, three new versions of the human proteome were have been by 

Ensembl, the current version being version 62 (May 2011), whereas version 59 was 

used when human ESPs were calculated ten months earlier. The new databases have 

made changes to a number of proteins. The GO database has also been updated 

constantly, as the results from previous sections differed significantly when one analysis 

was performed ten months after the other (see section 2.3.4). Database use is therefore 

essential for managing data in this dynamic situation. 

For future ESP analysis, the dataset should be periodically updated in order to keep up 

with these changes in input data. Perl scripts and command line scripts have already 

been prepared to make the process of ESP re-calculation straightforward, and one only 

has to run (and perhaps slightly modify) these scripts to have an updated dataset. If 

ESPs are re-calculated in the future, more organisms can be included in the calculations 

especially when more complete genomes become available. For example, species from 

the bacterial phylum Caldiserica, or species from eukaryotic supergroup Rhizaria could 

be included, since these species were not used in this study because there are no 

complete genomes yet. The continuing increase in computing power will thus permit 

even more robust ESP calculations. 

2.4.3 Implications for current models of evolution 

The presence of ESPs has identified weaknesses in the popular genome fusion model 

(Rivera et al. 2004) (in general, prokaryotes combine genomes becoming eukaryotes). 

This is because the model is uninformative about the existence of ESPs and cellular 

signature structures (CSSs) which are not found in prokaryotes (Kurland et al. 2006). 

However, the fact that all bacterial and archaeal essential proteins (proteins conserved in 

all archaea or all bacteria) are found in eukaryotes, does suggest that eukaryotes may 
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have acquired archaeal and bacterial endosymbionts in the early days of eukaryotic 

evolution.  

The other two hypotheses on the origin of eukaryotes by Hartman et al. and Kurland et 

al. are very similar. Hartman et al. hypothesised that there was a third cell type, which 

they called a “chronocyte”, which was a progenitor of the eukaryotic cell, and the 

nucleus of a eukaryotic cell was formed from the endosymbiosis of an archaeon and a 

bacterium in the chronocyte (Hartman et al. 2002). Kurland et al.’s hypothesis is a 

slight variation from that of Hartman et al.’s. Kurland et al.’s hypothesis is that 

eukaryotes originated from a community of saprotrophic, autotrophic and heterotrophic 

cells, where a phagotrophic unicellular raptor emerged and then acquired a bacterial 

endosymbiont/mitochondria lineage, and became the common ancestor of all eukaryotes 

(Kurland et al. 2006). The two hypotheses are similar in the way that they both suggest 

a phagotrophic cell has acquired archaeal and bacterial endosymbionts and formed the 

last eukaryotic common ancestor. The major difference between the two hypotheses is 

in the nature of that phagotrophic cell (i.e. the “chronocyte” and the “raptor”). The 

chronocyte is considered a complete separate lineage from archaea and bacteria, and is 

an RNA based cell with a complex membrane system which was needed for 

phagocytosis; whereas the “raptor” was just another archaeal or a bacterial cell which 

lived in the same community as other early archaea or bacteria. 

The chronocyte hypothesis does have complications: archaea and bacteria diverged 

3500 million years ago (Glansdorff et al. 2008), the eukaryotic cell arose 1850 million 

years ago (Knoll et al. 2006), and this makes it not very likely a third lineage of 

organisms existed between the 1650 million years in between the two events. Thus the 

“raptor” scenario is favourable. A “complex membrane system” was not necessarily 

needed for uptake of other cells as it was suggested by Hartman et al.. Prokaryotic cells 

can at least uptake genetic material through mechanisms such as transformation. This 

study found ABC transporters (able to efflux various macro-molecules) are conserved in 

all organisms, suggesting that it is an ancient protein, and implies some the earliest 

organisms (more bacteria like) are capable of engulfing others organisms. 

In addition, it is proposed that the “raptor is more an archaea-like cell rather than 

bacteria-like, because the eukaryotic 18S ribosomal RNA is more similar to archaea 

(Woese et al. 1990), and literature suggests that bacteria diverged from the 

archaeal/eukaryotic lineage (Brown et al. 1997; Glansdorff et al. 2008). This group of 
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cells evolved clathrin like proteins which enabled phagocytosis to take place, and more 

complex membrane system was evolved to facilitate phagocytosis. This phagocyte 

could have engulfed many bacterial and archaeal cells and during its evolution, and 

maintained genetic material from the engulfed organisms. Early archaeal histone 

homologues enabled the “raptor” to sustain the large amount genetic material obtained 

from the engulfed cells and this group of proteins developed rapidly to the histones we 

know. This “raptor” was the common ancestor of all eukaryotes. This hypothesis can 

also successfully explain the existence all three groups of ESPs suggested by Kurland et 

al.. The “proteins appeared arising de novo in eukaryotes” were proteins unique to the 

“raptor” lineage at the time. The “proteins so divergent to homologues of other domains 

that their relationship is largely lost” were the proteins which played minor role in 

bacteria and archaea, but then proliferated to have major roles in the newly formed 

eukaryotic cell after they have been acquired by the “raptor”. Lastly the “descendants of 

proteins that are lost from other domains, surviving only as ESPs in eukaryotes” was 

due to the role change of prokaryotes after eukaryotes have evolved, the reductive 

evolution might have driven the loss of these proteins in prokaryotes. 

In conclusion, ESPs can be readily re-calculated and may hold other clues to early 

eukaryotic evolution when their functions are analysed further. Currently they are being 

used in a Marsden funded project looking at this very issue. 
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Supplementary material for Chapter 2 

S2.1 ESP calculation protocol and Perl scripts  

In a Windows environment, the commands for calculating are run in the following 

procedure: 

From D drive, create a folder for calculating ESPs (e.g. GiardiaESP). 

In folder GiardiaESP, create a folder for each organism used during screening process 

(e.g. organism1, organism2 etc). Each of these folders should contain the FASTA file 

for the annotated protein database for that organism, formatted by using BLAST 

command: 
Formatdb –i organism1DB.fasta –o  

In addition, organism1 folder also contain the protein database file for the organism 

whose ESP dataset is being calculated (e.g. Giardia_annotated_protein_db.fasta). 

After the above steps, the following commands can be run in the command line 

interface. Provided that have the right setup, all command lines can be pasted into the 

command line interface and will be executed one after another and new ESP dataset will 

be calculated. The –m 8 command BLAST output format to be in spread sheet format, 

which would be convenient to work with. Command “perl script4.pl” executes the Perl 

script “script4.pl”. The Perl scripts are listed on the next four pages.  

cd D:\GiardiaESP\organism1 

blastall -p blastp –I giardia_annotated_protein_db.fasta -m8 -d 

organism1db.fasta –o homolog.xls 
perl script4.pl 

copy remainingesp.txt D:\GiardiaESP\ oranism2 

cd D:\GiardiaESP\oranism2 

rename remainingesp.txt previousesp.txt 

blastall -p blastp -i previousesp.txt -m8 -d oranism2.fasta 

>homolog.xls 

perl script4.pl 

copy remainingesp.txt D:\ GiardiaESP\oranism3 

cd D:\GiardiaESP\oranism3 

rename remainingesp.txt previousesp.txt 

blastall -p blastp -i previousesp.txt -m8 -d oranism3.fasta 

>homolog.xls 
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perl script4.pl 

copy remainingesp.txt D:\ GiardiaESP\oranism4 

etc... 

Script 1. This Perl script allow selection of BLAST hits above a certain threshold of 

bit-score from a spread sheet formatted BLAST output (BLAST parameter “–m 8”), and 

print their accession number into output file, the output file was called 'GIhomolog.txt' 

in this study. The output listed accession numbers of all proteins with significant 

homologues from the screened organism. 

use strict; 

use warnings; 

my $cut = 55; #adjust $cut to desired cut off. 

my $input = "homolog.xls"; 

open (INPUT, "$input") or die "Input file not opened"; 

my $output = "GIhomolog.txt"; 

open (OUTPUT, ">$output") or die "output file not opened"; 

#load every line from input into @array: 

my @array; 

while (<INPUT>) { 

my $hit = $_; 

push @array, $hit; 

} 

my $i; 

foreach $i(@array) { 

 $i=~/(gb\|.*)\tgi.*\t.*\t.*\t.*\t.*\t.*\t.*\t.*\t.*\t.*\t(.*)/; 

 if ($2 >= $cut){ 

 print OUTPUT "$1\n"; 

 } 

} 

Script 2. This Perl script allows the removal of accession numbers that occurred more 

than once in “GIhomolog.txt” generated from script 1, the output file is called 

“GInorepeat.txt”. This script is needed because then script 3 can perform its designated 

task. 
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use strict; 

use warnings; 

my $input = "GIhomolog.txt"; 

open (INPUT, "$input") or die "Input file not opened"; 

my $output = "GInorepeat.txt"; 

my $output2 = $output . "_excl.txt"; 

open (OUTPUT, ">$output") or die "output file not opened"; 

open (OUTPUT2, ">$output2") or die "output2 file not opened"; 

#load accession numbers into array to use for searching 

my @array; 

my $idCount = 0; 

while (<INPUT>) { 

my $identifier = $_; 

chomp $identifier; 

push @array, $identifier; 

++ $idCount; 

} 

my $i; 

my @repeated; 

my @norepeat; 

for ($i = 0; $i < @array; ++$i) { 

 if ($array[$i] eq $array[$i+1]) { 

 push @repeated, $array[$i]; 

 } 

 else { 

 push @norepeat, $array[$i]; 

 } 

} 

foreach my $GI (@norepeat){ 

 print OUTPUT "$GI\n"; 

} 

foreach my $GI2 (@repeated){ 

 print OUTPUT2 "$GI2\n"; 

} 

Script 3. This Perl script can find protein sequences which have homologues from the 

screened organism, and put into one output file #1, and put proteins do not have 

homologues from the organism into output file #2. When screening against a 
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prokaryotic organism, output file #2 is called “remaininingESP.txt”, since this is the file 

carried onto the next step; and when screening against a eukaryotic organism, output file 

#1 is called “remainingESP.txt”, and carried onto the next step. Note Perl package 

“Bioperl” is needed for this script. 

use strict; 

use warnings; 

use Bio::SeqIO; 

my $idFile = "GInorepeat.txt"; 

open (IDFILE, "$idFile") or die "Identifier file not opened"; 

my $databaseFile = "previousesp.txt"; 

chomp $databaseFile; 

print "Output File for included sequences: "; 

my $outFile = "remainingESP.txt";#when screening against a 

eukaryotic organism, this file is called "nohomolog.txt"; 

my $outfile2 = "hasHomo.txt"; #when screening against a eukaryotic 

organism, this file is called "remainingESP.txt"; 

print "Output file for excluded sequences is $outfile2\n"; 

my @identArray; 

my $idCount = 0; 

while (<IDFILE>) { 

my $identifier = $_; 

chomp $identifier; 

push @identArray, $identifier; 

++ $idCount; 

} 

print "Number of sequences to remove: $idCount\n"; 

my @identFound; 

my $found = 0; 

my $in = Bio::SeqIO->new('-file' => "$databaseFile", '-format' => 

'fasta'); 

while ( my $seq = $in->next_seq() ) { 

 my $key = $seq->id; 

 chomp $key; 

 # change $key to the match the format of accession number of the 

organism 

 $key =~ /(gb\|GL50803_.\d*)/; 

 my $key2 = $1; 
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 foreach my $ident (@identArray) { 

  if ($key2 eq $ident) {  

   $found = 1;  

   my $out = Bio::SeqIO->new('-file'  => ">>$outfile2", 

'-format' => 'fasta'); 

    $out->write_seq($seq); 

    push @identFound, $ident; 

  }  

 } 

 if ($found == 0) { 

  my $out = Bio::SeqIO->new('-file' => ">>$outFile", '-

format' => 'fasta'); 

   $out->write_seq($seq); 

 } 

 else {$found = 0;} 

} 

my $thisCount = @identFound; 

print "Number of sequences removed to $outfile2: $thisCount"; 

if ($thisCount == $idCount) { 

 print "\nAll nominated sequences removed\n" 

} 

else { print "\nNot all sequences removed - please check output\n";} 

print "Program Complete\n"; 

Script 4. This Perl script allows scripts 1-3 to be run, it is used purely for convenience 

reasons. 

system "perl script1.pl"; 

system "perl script2.pl"; 

system "perl script3.pl"; 
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S2.2 List of 274 Giardia ESPs 

Cytoskeleton 

Actins 

GL50803_8589 Suppressor of actin 1 

GL50803_16299 Sda1, severe depolymerization of actin 

GL50803_15113 Actin 

GL50803_40817 Actin related protein 

Microtubule related 

GL50803_14048 EB1 

Tubulins 

GL50803_5462 Delta tubulin  

GL50803_136021 Beta tubulin 

GL50803_136020 Beta tubulin 

GL50803_101291 Beta tubulin 

GL50803_103676 Alpha-tubulin 

GL50803_6336 Epsilon tubulin 

GL50803_112079 Alpha-tubulin 

GL50803_114218 Gamma tubulin 

Kinesins  

GL50803_16945 Kinesin-13  

GL50803_4371 Kinesin-8 

GL50803_15134 Kinesin-6 like 

GL50803_16224 Kinesin-related protein 

GL50803_102455 Kinesin-6 

GL50803_6262 Kinesin-3 

GL50803_102101 Kinesin-3 

GL50803_112846 Kinesin-3 

GL50803_16456 Kinesin-2 

GL50803_112729 Kinesin like protein 

GL50803_11442 Kinesin-related protein 

GL50803_10137 Kinesin-9 

GL50803_16650 Kinesin-4 

GL50803_16425 Kinesin-5 
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GL50803_8886 Kinesin-14 

GL50803_17333 Kinesin-2 

GL50803_14070 Kinesin-like protein 

GL50803_17264 Kinesin like protein 

GL50803_7874 Kinesin-16 

GL50803_16161 Kinesin-16 

GL50803_15962 Kinesin-7 

GL50803_13797 Kinesin-14 

GL50803_6404 Kinesin-9 

GL50803_13825 Kinesin-1 

Membrane proteins 

Cell adhesion 

GL50803_16882 Bystin 

GL50803_92673 CHL1-like protein 

Clathrin related 

GL50803_102108 Clathrin heavy chain 

GL50803_15339 Adaptor protein complex large chain subunit BetaA 

GL50803_89622 Mu adaptin 

GL50803_21423 Beta adaptin 

GL50803_17304 Alpha adaptin 

GL50803_8917 Mu adaptin 

GL50803_3256 EH domain binding protein epsin 2 

GL50803_5328 Sigma adaptin 

GL50803_16364 Gamma adaptin 

GL50803_91198 Sigma adaptin 

GL50803_14373 Dynamin 

Endocytosis  

GL50803_42048 ABC transporter 

ER and Golgi  

GL50803_88082 Coatomer beta subunit  

GL50803_11953 Coatomer alpha subunit 

GL50803_4502 ER lumen protein retaining receptor 

GL50803_17065 Sec24 
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GL50803_17164 Sec24-like 

GL50803_9593 Coatomer beta' subunit 

GL50803_15413 RER1-like protein-retention of ER proteins 

GL50803_17192 Protein transport protein Sec7 

GL50803_29487 Protein disulfide isomerase PDI1 

Lipid attachments 

GL50803_10019 Phospholipid-transporting ATPase IA, putative  

GL50803_137725 Phospholipid-transporting ATPase IIB, putative 

GL50803_101810 Phospholipid-transporting ATPase IIB, putative 

GL50803_17082 Rab geranylgeranyltransferase 

Vacuole  

GL50803_100864 Vacuolar protein sorting 26, putative 

GL50803_23833 Vacuolar protein sorting 35 

GL50803_8559 Vacuolar ATP synthase 16 kDa proteolipid subunit 

GL50803_10530 Vacuolar ATP synthase 16 kDa proteolipid subunit 

GL50803_13000 Vacuolar ATP synthase subunit d 

GL50803_14961 Vacuolar ATP synthase subunit H 

GL50803_15598 Vacuolar ATP synthase 16 kDa proteolipid subunit 

Nucleus  

DNA polymerase 

GL50803_6980 DNA pol/primase, large sub 

Histones 

GL50803_3367 Histone H3 

GL50803_135002 Histone H4 

GL50803_135003 Histone H4 

GL50803_14212 Histone H3 

GL50803_20037 Histone H3 

GL50803_135231 Histone H3 

GL50803_27521 Histone H2A 

GL50803_121045 Histone H2B 

GL50803_121046 Histone H2B 

GL50803_135001 Histone H4 

GL50803_14256 Histone H2A 
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Histone-associated 

GL50803_14753 Histone acetyltransferase type B subunit 2 

GL50803_10666 Histone acetyltransferase GCN5 

GL50803_17263 Histone methyltransferase MYST1 

GL50803_2851 Histone acetyltransferase MYST2 

LIM related 

GL50803_9162 Nuclear LIM interactor-interacting factor 1 

GL50803_14905 Nuclear LIM interactor-interacting factor 1 

GL50803_4063 Nuclear LIM interactor-interacting factor 1 

GL50803_4235 Nuclear LIM interactor-interacting factor 1 

Ribonucleoproteins 

GL50803_16173 U3 small nucleolar ribonucleoprotein protein IMP4, putative 

GL50803_17112 U3 small nucleolar ribonucleoprotein protein IMP4, putative 

RNA enzymes 

GL50803_5661 RNA binding protein 

GL50803_6054 RNA binding putative 

GL50803_24860 Nonsense-mediated mRNA decay protein 3 

GL50803_10840 DNA-directed RNA polymerases I and III 16 kDa polypeptide 

GL50803_14763 Exonuclease 

GL50803_24133 5'-3' exoribonuclease 2 

GL50803_17325 Pumilio-family RNA-binding protein, putative 

GL50803_113365 5'-3' exoribonuclease 2 

GL50803_14702 RRNA biogenesis protein RRP5 

Topoisomerase 

GL50803_16285 Topoisomerase I-related protein 

Transcriptional factors 

GL50803_8209 CCR4-NOT transcription complex, subunit 7 

GL50803_8427 Transcriptional repressor NOT4Hp, putative 

GL50803_7231 CCAAT-binding transcription factor subunit A 

GL50803_4125 Transcription factor IIIB 70 kDa subunit BRF 

GL50803_10606 CCR4-NOT transcription complex, subunit 7 

Transcriptional transactivators  

GL50803_5347 Myb 1-like protein 
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GL50803_8722 Myb 1-like protein 

Zinc fingers 

GL50803_8619 Zinc finger domain 

GL50803_9529 Zinc finger domain 

GL50803_6733 Zinc finger domain 

GL50803_1908 DHHC-type zinc finger domain-containing protein 

GL50803_16928 Zinc finger domain 

GL50803_96562 Zinc finger domain 

Protein synthesis and breakdown 

Large ribosomal proteins 

GL50803_8462 Ribosomal protein L27 

GL50803_14622 Ribosomal protein L13 

GL50803_19436 Ribosomal protein L7 

GL50803_16387 Ribosomal protein L18a 

Small ribosomal protein 

GL50803_10367 Ribosomal protein S24 

GL50803_6135 Ribosomal protein S17 

GL50803_14329 Ribosomal protein S7 

Ribosome biogenesis protein 

GL50803_102722 Ribosome biogenesis protein BMS1 

GL50803_16718 Partner of Nob1 

GL50803_3589 Ribosome biogenesis protein Brix 

GL50803_8361 SOF1 protein 

Translation factors  

GL50803_13561 Translation elongation factor 

GL50803_8708 Eukaryotic translation initiation factor 1A 

GL50803_93275 Translational activator GCN1 

GL50803_13661 Eukaryotic translation initiation factor 3 subunit 2 

Proteasome associated  

GL50803_16823 Non ATPase subunit MPR1 of 26S proteasome  

GL50803_7896 26S proteasome non-ATPase regulatory subunit 7 

Signalling system 

14-3-3 proteins 
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GL50803_6430 14-3-3 protein 

Calmodulins 

GL50803_13652 Calmodulin 

GL50803_6744 Centrin 

GL50803_13231 Calmodulin 

GL50803_5333 Calmodulin 

GL50803_104685 Caltractin 

Cell cycle related 

GL50803_102890 BUB3 

GL50803_11044 Mob1-like protein 

GL50803_5772 CDC72 

GL50803_4008 Mob1-like protein 

GL50803_3977 G2/mitotic-specific cyclin B 

GL50803_9778 Tem-1-like protein 

GL50803_17103 Orc1/CDC6 

GL50803_15248 Spindle protein, putative 

GL50803_13667 Notchless 

GTP-binding proteins 

GL50803_13109 RabA 

GL50803_12157 RabB 

GL50803_16636 Rab2b 

GL50803_1695 Rab11 

GL50803_16979 Rab32, putative 

GL50803_7569 GTP-binding protein Sar1 

GL50803_13478 ARL1 

GL50803_13930 ARF3 

GL50803_7562 ARF2 

GL50803_15567 Rab2a 

GL50803_22454 ARF GAP 

GL50803_11495 Rab GDI 

GL50803_940  RabD 

GL50803_2834 ARF GAP 

GL50803_8497 RabF 



64 

 

GL50803_8496 Rac/Rho-like protein 

GL50803_4192 ARL2 

GL50803_15869 GTP-binding nuclear protein RAN/TC4 

GL50803_17561 ARF GAP 

GL50803_9558 Rab1a 

Kinases and phosphatases 

GL50803_11554 Kinase, NEK 

GL50803_5554 Kinase, NEK-frag 

GL50803_5553 Kinase, NEK 

GL50803_10313 Kinase 

GL50803_3414 5'-AMP-activated protein kinase, gamma-1 subunit 

GL50803_87928 Kinase, NEK 

GL50803_14044 Kinase, NEK 

GL50803_9365 Kinase, NEK 

GL50803_14648 Kinase, NEK-frag 

GL50803_14650 Ser/Thr phosphatase 2C, putative 

GL50803_32398 Protein phosphatase PP2A regulatory subunit B 

GL50803_9117 CAMP-dependent protein kinase regulatory chain 

GL50803_115572 Kinase, Wee 

GL50803_17406 Phosphoinositide-3-kinase, class 3 

GL50803_137730 Kinase 

GL50803_11740 Ser/Thr phosphatase 2C, putative 

GL50803_103838 Kinase, ULK 

GL50803_2538 Kinase, NAK 

GL50803_16443 Protein phosphatase 2A B' regulatory subunit Wdb1 

GL50803_113456 Kinase, VPS15 

GL50803_9293 Protein phosphatase 2C-like protein 

GL50803_4079 Protein phosphatase PP2A regulatory subunit B 

GL50803_12095 Kinase, NEK-frag 

GL50803_14404 Phosphatase 

GL50803_17335 Kinase, CMGC SRPK 

GL50803_36783 Kinase, NEK 

GL50803_10612 Phosphotyrosyl phosphatase activator protein, putative 
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GL50803_15112 Dual specificity phosphatase, catalytic 

GL50803_96616 Kinase, CMGC CDKL 

GL50803_7588 Serine/threonine protein phosphatase 7 

GL50803_21502 Kinase, putative 

GL50803_21116 Kinase, CMGC CMGC-GL1 

GL50803_137695 Kinase, CMGC DYRK 

GL50803_4288 Ser/Thr phosphatase 2C, putative 

GL50803_5999 Kinase, NEK 

Phosphatidylinositols kinases and phosphatases 

GL50803_11897 Phosphatidylinositol-4-phosphate 5-kinase, putative 

GL50803_14975 Phosphatidylinositol-glycan biosynthesis, class O protein 

GL50803_14855 Phosphoinositide-3-kinase, catalytic, alpha polypeptide 

GL50803_9077 Inositol 5-phosphatase 4 

GL50803_35180 GTOR 

GL50803_16558 Phosphatidylinositol 4-kinase 

GL50803_14787 Type II inositol-1,4,5-trisphosphate 5-phosphatase precursor 

Ubiquitins  

GL50803_7110 Ubiquitin 

GL50803_8843 Ubiquitin 

Ubiquitin conjugation enzymes 

GL50803_15162 Ubiquitin-conjugating enzyme E2-17 kDa 

GL50803_5921 Ubiquitin-conjugating enzyme E2-28.4 kDa 

GL50803_3171 UBCE14 

GL50803_3978 Ubiquitin-conjugating enzyme E2-17 kDa 

GL50803_31576 Ubiquitin-conjugating enzyme E2-21.2 kDa 

GL50803_4083 Ubiquitin-conjugating enzyme E1 

GL50803_6524 Ubiquitin-conjugating enzyme E2-28.4 kDa 

GL50803_3994 Ubiquitin fusion degradation protein 1 

GL50803_15252 Ubiquitin-conjugating enzyme E2-17 kDa 3 

GL50803_8638 Ubiquitin-conjugating enzyme E2-28.4 kDa 

GL50803_12950 Ubiquitin-conjugating enzyme E2-17 kDa 

GL50803_27055 Ubiquitin-conjugating enzyme E2-17 kDa 3 

GL50803_24068 UBC3 
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GL50803_2876 UBC2, putative 

Ubiquitin proteases 

GL50803_16090 Ubiquitin carboxyl-terminal hydrolase 4 

GL50803_5533 DUB-1 

GL50803_14460 Ubiquitin carboxyl-terminal hydrolase 4 

GL50803_8189 Ubiquitin carboxyl-terminal hydrolase 14 

GL50803_17386 Ubiquitin-protein ligase E3A 

Others 

GL50803_7533 Angio-associated migratory cell protein 

GL50803_88438 ATPase 

GL50803_9528 Methyltransferase like 2 

GL50803_15531 Periodic tryptophan protein 1, putative 

GL50803_113143 Lipopolysaccharide-responsive and beige-like anchor protein 

GL50803_10822 WD-40 repeat protein family 

GL50803_17502 Mannosyltransferase 

GL50803_9382 Prenyltransferase 

GL50803_27747 Flavohemoprotein B5+B5R 

GL50803_7287 Small glutamine-rich tetratricopeptide repeat-containing protein 

GL50803_17294 Degreening related gene dee76 protein 

GL50803_7030 Prefoldin subunit 3, putative 

GL50803_6835 Brix domain containing protein 

GL50803_13616 Glycine-rich protein 

GL50803_94653 Periodic tryptophan protein 2-like protein 

GL50803_11204 Plant adhesion molecule 1 

GL50803_8819 Protein required for cell viability 

GL50803_10755 Splicing factor 3A subunit 2 

GL50803_3993 Polyadenylate-binding protein, putative 

GL50803_14174 Glutamate-rich WD-repeat protein 

GL50803_15487 WD-40 repeat protein 

GL50803_16920 WD-containing protein 

GL50803_16202 Axoneme central apparatus protein 

GL50803_16572 N-terminal acetyltransferase complex ARD1 subunit, putative 

GL50803_17353 G beta-like protein GBL 
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GL50803_17013 Isoprenylcysteine carboxyl methyltransferase 

GL50803_16264 WD-40 repeat protein 

GL50803_21512 S-adenosylmethionine-dependent methyltransferase, putative 

GL50803_16957 WD-40 repeat protein family 

GL50803_33762 WD-40 repeat protein 

GL50803_16863 Caffeine-induced death protein 1-like protein 

GL50803_27310 Stress-induced-phosphoprotein 1 

GL50803_88581 Synaptic glycoprotein SC2 

Hypothetical proteins 

GL50803_103074 Hypothetical proteins 

GL50803_137754 Hypothetical proteins 

GL50803_16734 Hypothetical proteins 

GL50803_17068 Hypothetical proteins 

GL50803_16805 Hypothetical proteins 

GL50803_32531 Hypothetical proteins 

GL50803_33022 Hypothetical proteins 

GL50803_22338 Hypothetical proteins 

GL50803_15280 Hypothetical proteins 

GL50803_112258 Hypothetical proteins 
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S2.3 List of 37 Giardia proteins which are conserved in all organisms 

GL50803_4365 26S protease regulatory subunit 6A 

GL50803_7950 26S protease regulatory subunit 6B 

GL50803_21331 26S protease regulatory subunit 7 

GL50803_86683 26S protease regulatory subunit 7 

GL50803_17106 26S protease regulatory subunit 8 

GL50803_113554 26S proteasome ATPase subunit S4, putative 

GL50803_16867 AAA family ATPase 

GL50803_137726 ABC transporter ABCA.1, putative 

GL50803_16592 ABC transporter family protein 

GL50803_87446 ABC transporter family protein 

GL50803_16605 ABC transporter family protein 

GL50803_3470 ABC transporter family protein 

GL50803_16575 ABC transporter family protein 

GL50803_21411 ABC transporter, ATP-binding protein 

GL50803_9741 ABC transporter, ATP-binding protein 

GL50803_113876 ABC transporter, ATP-binding protein, putative 

GL50803_112692 ABC-type multidrug transport system, ATPase component 

GL50803_94478 ABC-type transport system ATP-binding chain, putative 

GL50803_96460 Alanyl-tRNA synthetase 

GL50803_8227 ATP-binding cassette protein 5 

GL50803_13777 Cell division control protein 48 

GL50803_16200 Developmentally regulated GTP-binding protein 1 

GL50803_114246 GTP-binding protein, putative 

GL50803_16065 Hypothetical protein 

GL50803_15368 Katanin 

GL50803_17132 MRP-like ABC transporter 

GL50803_17315 Multidrug resistance ABC transporter ATP-binding and permease 

protein 

GL50803_28379 Multidrug resistance-associated protein 1 (most likely to be an 

ABC transporter) 

GL50803_115052 Multidrug resistance-associated protein 1 (most likely to be an 

ABC transporter) 
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GL50803_114776 NSF 

GL50803_112681 NSF 

GL50803_8389 P60 katanin 

GL50803_10361 P60 katanin 

GL50803_15469 SKD1 protein 

GL50803_101906 SKD1 protein 

GL50803_16795 Topoisomerase II 

GL50803_42442 Transitional endoplasmic reticulum ATPase 
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S2.4 List of 44 Escherichia proteins which are conserved in all bacteria 

and not found in archaea 

gi|16130515|ref|NP_417085.1 23S rRNA pseudouridine 

gi|1788946|gb|AAC75643.1  23S rRNA pseudouridine 

gi|16129049|ref|NP_415604.1 23S rRNA pseudouridylate 

gi|1787327|gb|AAC74170.1  23S rRNA pseudouridylate 

gi|16131057|ref|NP_417634.1 30S ribosomal subunit protein 

gi|1789556|gb|AAC76199.1  30S ribosomal subunit protein 

gi|16130527|ref|NP_417097.1 50S ribosomal subunit protein 

gi|1788958|gb|AAC75655.1  50S ribosomal subunit protein 

gi|90111095|ref|NP_414717.2 CDP-diglyceride 

gi|87081696|gb|AAC73286.2  CDP-diglyceride 

gi|16131993|ref|NP_418592.1 delta(2)-isopentenylpyrophosphate tRNA-

adenosine 

gi|1790613|gb|AAC77128.1  delta(2)-isopentenylpyrophosphate tRNA-

adenosine 

gi|16128177|ref|NP_414726.1 DNA polymerase III alpha 

gi|1786381|gb|AAC73295.1  DNA polymerase III alpha 

gi|16131569|ref|NP_418156.1 DNA polymerase III, beta 

gi|1790136|gb|AAC76724.1  DNA polymerase III, beta 

gi|16131972|ref|NP_418571.1 Elongation factor 

gi|1790590|gb|AAC77107.1  Elongation factor 

gi|16130793|ref|NP_417367.1 peptide chain release factor 

gi|16129174|ref|NP_415729.1 peptide chain release factor 

gi|2367172|gb|AAC75929.1  peptide chain release factor 

gi|1787462|gb|AAC74295.1  peptide chain release factor 

gi|16129167|ref|NP_415722.1 peptidyl-tRNA 

gi|1787455|gb|AAC74288.1  peptidyl-tRNA 

gi|90111399|ref|NP_416676.4 predicted elongtion 

gi|87082061|gb|AAC75232.2  predicted elongtion 

gi|16128091|ref|NP_414640.1 preprotein translocase subunit, 

gi|1786287|gb|AAC73209.1  preprotein translocase subunit, 
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gi|16128052|ref|NP_414600.1 pseudouridine synthase for 23S rRNA (position 

746) and tRNAphe(position 32) 

gi|1786244|gb|AAC73169.1  pseudouridine synthase for 23S rRNA (position 

746) and tRNAphe(position 32) 

gi|16131878|ref|NP_418476.1 replicative DNA 

gi|1790486|gb|AAC77022.1  replicative DNA 

gi|16128075|ref|NP_414624.1 S-adenosyl-dependent methyltransferase activity 

on membrane-located 

gi|1786270|gb|AAC73193.1  S-adenosyl-dependent methyltransferase activity 

on membrane-located 

gi|16131061|ref|NP_417638.1 transcription termination/antitermination L 

gi|1789560|gb|AAC76203.1  transcription termination/antitermination L 

gi|16130539|ref|NP_417110.1 trans-translation 

gi|1788973|gb|AAC75669.1  trans-translation 

gi|16130528|ref|NP_417098.1 tRNA m(1)G37 methyltransferase, 

gi|1788959|gb|AAC75656.1  tRNA m(1)G37 methyltransferase, 

gi|16130698|ref|NP_417271.1 tRNA U65 pseudouridine 

gi|1789155|gb|AAC75833.1  tRNA U65 pseudouridine 

gi|16129595|ref|NP_416154.1 tyrosyl-tRNA 

gi|1787925|gb|AAC74709.1  tyrosyl-tRNA 
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S2.5 Poster 

ESP results were presented as a poster during Genome Informatics Workshop (GIW) 

2008 conference, held in Gold Coast, Australia. GIW is the longest running 

international bioinformatics conference, with a high impact factor for its proceedings. 

The results on the poster are slightly different from those presented in this chapter, 

because the data from the poster were the primary results, and more organisms and 

more up to date databases were used for this chapter. 
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Chapter 3: Phylogenetic analysis using 

ESPs 

3.1 Introduction 

3.1.1 Overview 

ESPs are conserved in all eukaryotes, and are “considered” to be ancient proteins with a 

slow and consistent evolving rate. These properties have made them theoretically good 

candidates for analysing the phylogenetic relationships of eukaryotic species. This 

chapter examines the possibilities of using ESPs as a special group of proteins in deep 

phylogenetic analysis. This multi-gene based analysis has used a variety of methods, 

including building tree networks and concatenation of sequences. A eukaryotic 

phylogenetic tree was generated here using the longest concatenated sequences to date. 

The phylogenetic relationship of 18 eukaryotic species, including some divergent 

species such as Giardia, Dictyostelium and Phytophthora, were analysed using ESPs. In 

addition, the phylogenetic relationship of 15 mammalian species was also briefly 

analysed to look at how ESPs perform in less deeper phylogenetic analysis. From the 

analysis, a proportion of ESPs are found to be good candidates for phylogenetic 

analysis.  

3.1.2 The current phylogenetic system 

Due to technological advances, recent years have seen the taxonomy of eukaryotes 

change rapidly, primarily through the application of phylogenetics. The current system 

classifies eukaryotes into five supergroups based on molecular and morphological/cell-

biological evidence (Keeling et al. 2005; Keeling 2007); these are Unikonta (note: some 

literatures divide this supergroup into Opisthokonta and Amoebozoa (Simpson 2003)), 

Plantae (aka Archaeplastida), Rhizaria, Chromalveolata, and Excavata. 

A recent eukaryotic phylogenetic tree by Keeling et al. (Figure 1) illustrates these five 

supergroups. The earliest eukaryotic divergences (i.e. the root of the tree) are 

unresolved at present. The positions of the 18 species used in this study are also shown 

on this tree.  



76 

 

Figure 1. Phylogenetic position of eukaryotic organisms chosen for this project 

 
 

 
The positions of organisms chosen are indicated on the eukaryotic tree. CM indicates the presence of cryptic 

mitochondria (hydrogenosomes or mitosomes). A question mark indicates that no organelle has yet been 

found. This eukaryotic tree is from Keeling (Keeling 2007) with extra annotations added here. 

Dictyostelium 

Aspergillus 
Neurospora 
Schizosaccharo
myces 

Aedes, Caenorhabditis, Canis, Ciona, Danio, 
Drosophila, Gallus, Homo sapiens, Tetraodon, 
Xenopus 

Giardia 

 

  Arabidopsis 
Oryza 

Phytophthora 

Giardia along with other diplomonads are placed into the “Excavata”, which is a 

supergroup composed predominately of free-living heterotrophic flagellates. The 

Excavata supergroup was originally proposed based on the basis of shared 

morphological characters - a ventral feeding groove and associated cytoskeletal 

structures (Simpson et al. 1999; Simpson 2003), with some additional taxa 

(parabasalids, euglenids, and oxymonads) linked to the group primarily through 

molecular studies. The Excavata supergroup includes diplomonads, parabasalids, 

euglenozoa, heterolobose, jakobids, and several other protists. Molecular phylogeny has 

not provided clear evidence that Excavata (and Chromalveolata) is monophyletic (i.e. 

all members are derived from a unique common ancestor) (Hampl et al. 2009).  

The monophyly of excavates has been challenged in several cases (Simpson et al. 2002; 

Simpson et al. 2006; Luo et al. 2009). These studies used diverse approaches, ranging 
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from single gene, multi-gene based phylogenies, to analysis of small nucleolar RNAs 

(snoRNAs). There are also studies that support Excavata supergroup’s monophyly. 

Hampl et al. (Hampl et al. 2009) performed analysis by concatenating 143 gene 

sequences from 48 species including 19 excavates, from which they have concluded that 

Excavata forms a monophyletic supra-kingdom-level group. However, even with the 

removal of some fast evolving gene sequences (i.e. remove individual genes which have 

accumulated large number of changes), they could only obtain an unconvincing 

bootstrap value of 54%. With long branch taxa removed they did have the support going 

up to 90%, but Giardia was one of the taxa that they removed, thus there were no 

diplomonads in their tree.  

3.1.3 How deep phylogenetic analysis was done in the past 

For decades, molecular phylogeneticists have attempted to infer the deepest 

relationships within the eukaryotic domain of the tree of life. Phylogenetic relationships 

between distant species are usually performed based on single ubiquitous genes such as 

18s rRNA, elongation factors and tubulins (Hashimoto et al. 1994). The 18S rRNA is 

one of the main markers used for Giardia diagnostics. Using 18s rRNA has the 

advantage of easy to amplify with PCR due to highly conserved flanking regions 

allowing for the use of universal primers (Meyer et al. 2010). However, the 

disadvantage of using 18s rRNA, is that accuracy can suffer from factors such as 

mutational saturation, unequal mutation rates and rapid evolutionary radiation (Philippe 

et al. 1998). It cannot resolve nodes at all taxonomic levels and its efficacy varies 

considerably among clades (Abouheif et al. 1998), We can end up with a lack of 

resolution (stochastic error) because of a low number of informative sites and 

systematic error in tree estimation caused by model violations, and problems related to 

long branch attraction (LBA, a phenomenon when highly divergent lineages are 

grouped together, regardless of their true evolutionary relationships) (Felsenstein 1978; 

Hendy et al. 1989; Philippe 2000; Lockhart et al. 2005). 

Due to an increasing number of genomes available to the public, it is now possible to 

compute gene trees for many different genes. Now researchers can attempt to obtain a 

more reliable species tree by building a consensus tree from a set of gene trees (Huson 

et al. 2006), and the approach of constructing a consensus tree from multiple genes is 

well represented in literature (Holland et al. 2003). The other approach of using 
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multiple genes to confer a species tree is by concatenating sequences (Hampl et al. 

2009). This approach can eliminate stochastic error, but it is complicated and somewhat 

controversial, because theoretically, different evolutionary models should be used in 

different parts of the concatenated alignment. Partitioning analysis can help but, this can 

make analysis very difficult and time consuming because of the large number of genes 

present. Other issues include that a large number of model tests would also be required, 

and the tree building process takes a very long time when all these factors are taken into 

account. 

3.1.4 The ESP approach 

The selected genes chosen in previous studies are more or less a random selection of 

available genes as long as the gene sequence was available in species of interest (e.g. 

(Hampl et al. 2009)). ESPs are conserved throughout eukaryotes, and it is possible that 

ESPs can outperform other random selections of proteins to determine the phylogenetic 

relationship of eukaryotes. ESPs could also outperform proteins present in all domains 

of life, because some species, such as Giardia, have a large number of genes which are 

more similar in sequence to bacterial genes which could bias the position of Giardia in 

eukaryotic phylogenetic studies (Nixon et al. 2002; Andersson et al. 2003; Morrison et 

al. 2007).  

To evaluate the usefulness of ESPs in phylogenetics, I present here an analysis of 

phylogenies of 18 eukaryotic species with ESPs, using approaches of generating 

consensus networks and concatenating sequences. The consensus network approach 

includes data from every distinct ESP, 267 proteins altogether; and the approach of 

concatenating sequences was performed based on 140 genes and the entire concatenated 

alignment contained 139,625 sites. My analysis used longer sequences than the 

previously analysis by Hampl et al., who performed their analysis based on 143 genes 

with their entire concatenated alignment contained 35,584 sites, but also had a large 

amount of missing data (averaging 44% per taxon) (Hampl et al. 2009). In theory by 

increasing the length of the dataset, more robust trees can be built. The study will also 

give more indication of phylogenetic position of Giardia, which has long been 

questioned along with all other long branched lineages.  
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3.2 Method 

3.2.1 Phylogenetic software 

Clustal W and Clustal X 

The oldest and most widely used multiple sequence alignment (MSA) program that 

estimates trees as it aligns multiple sequences, is ClustalW (Higgins et al. 1988; 

Thompson et al. 1994). ClustalX is an integrated graphical-user interface (GUI) version 

of the ClustalW multiple sequence alignment program (Thompson et al. 1997). It 

provides an easy-to use work environment for performing MSA and pattern analyses. 

The main advantage of ClustalX 2.0 is that it provides various formats of output that is 

needed for other applications. The new guided-tree implementation, compared with the 

older version, enables larger, faster computations. The latest version of ClustalX 

(version 2.0) (Larkin et al. 2007) was used to align sequences in this study. Other 

alignment software was considered (such as T-Coffee), but Clustal was chosen for 

speed and simplicity of operation for this analysis. All alignments in this chapter used 

ClustalX default parameters (GONNET protein matrix, gap opening cost = 10, gap 

extension cost = 0.2).  

Model testers 

Various models have been developed to estimate the total number of substitutions 

between sequences based on their present states, such as amino acid substitution 

matrices and gamma distribution models. A model test helps to pick out the best 

available model for the analysis. ProtTest version 2.4 (Abascal et al. 2005) was used for 

model testing in this study. ProtTest is a bioinformatics/phylogenetic tool for the 

selection of the most appropriate model of protein evolution (among the set of candidate 

models) for the data at hand. The software makes its selection is by finding the model 

with the best likelihood score, or the model with minimum Akaike Information 

Criterion (AIC), which is a measure of the goodness of fit of a statistical model (Akaike 

1974). In this study, the model with best AIC score was used. 

Geneious Pro 

Geneious Pro is a bioinformatics software platform that allows the user to search, 

organize and analyse genomic and protein information via a single desktop 

environment. The platform contains many plug-ins that allow to perform basic and 
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complex bioinformatic tasks such as aligning sequences and constructing phylogenetic 

trees (http://www.geneious.com). The PHYML (Guindon et al. 2003) plug-in was used 

for all ML analyses, and Mr Bayes (Huelsenbeck et al. 2001) plug-in was used for all 

Bayesian analyses. 

SplitsTree 

SplitsTree (Huson 1998; Huson et al. 2006) is able to generate a consensus tree 

network, which attempts to represent all phylogenetic signals present in the given set of 

gene trees simultaneously up to a given level of complexity (Holland et al. 2003). In 

practice, for a given set of taxa of interest, it is often the case that some of the genes 

under consideration are not present in all genomes, in which case a super network is 

able to address this problem (Huson et al. 2004). This is because a super network is able 

to take a collection of partial trees defined on subsets of full taxa set and produces as 

output a phylogenetic network representing all phylogenetic signals present in the input 

partial trees. For our study with ESPs we do have protein sequences from all taxa so this 

feature of the super-network was not required, but the program offered important 

visualisation aids for further analysis.  

3.2.2 Phylogenetic methods 

There are two general types of phylogenetic algorithms that were used in this study. The 

first, Distance method (e.g. neighbor-joining) is a scoring matrix based method. It is 

very fast but may not give reliable estimates of pairwise distances of divergent 

sequences, therefore neighbor-joining was used only for some primary analyses. Tree 

searching methods are better at solving this problem than simple neighbour-joining 

methods. The maximum parsimony is one tree searching method that tries to find the 

minimum number of mutations that could possibly reproduce the data. The drawback of 

this method is that the score of a tree is simply the minimum number of mutations and it 

does not account for the mechanism or the site on which the mutations occurred, e.g. 

multiple mutational events at the same site are not considered. Thus, parsimony is very 

susceptible to long branch attraction – the tendency of highly divergent sequences to 

group together in a tree regardless of their true relationships (Holder et al. 2003). My 

research covers a range of eukaryotic species including those typically having long 

branches in phylogenetic trees, therefore maximum parsimony was considered to be 

unsuitable for my analysis. 
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Accurately reconstructing the relationships between sequences that have been separated 

for a long time, or are evolving rapidly, requires a method that corrects for multiple 

mutational events at the same site. By using the maximum likelihood (ML) method, all 

possible mutational pathways that are compatible with the data are considered. 

Bootstrap analysis is often performed to assess the confidence of each branch. 

Bootstraps are done by taking subsamples and testing if each particular branch occurs in 

the resulting tree (Holder et al. 2003). PHYML is one software used to perform ML 

analysis (Guindon et al. 2003), and as it runs with reasonable speed and reliability, this 

method is used during majority of this chapter. 

Bayesian inference is relatively new, as it was first proposed in 1996 (Rannala et al. 

1996). It has several advantages over other phylogenetic inference, including easier 

interpretation of results, and the ability to incorporate prior information. Bayesian 

inference uses Markov Chain Monte Carlo (MCMC) to approximate the posterior 

probabilities (Huelsenbeck et al. 2001). A Geneious software plug-in Mr 

Bayes(Huelsenbeck et al. 2001) was also used for this project. It has been suggested 

that Bayesian method is less time consuming than ML (Huelsenbeck et al. 2001). 

However this was not the case in my experiments, where one tree took up to a week to 

construct by using default settings in Mr Bayes (MCMC chain length: 1,100,000, 

sample frequency: 200, burn-in length 100,000, substitution matrix: Poisson). Because 

my analysis involved building hundreds of trees, Bayesian inference was confined to 

generating trees for only a few specially chosen alignments. 

3.2.3 Analysis procedure 

For each Giardia ESP, sequences of its homologues were obtained using the MySQL 

Giardia database which contained all the BLAST results used for ESP calculation. By 

use of a Perl script (see supplementary material S3.2), the highest scored homologue 

from each of 17 eukaryotic organisms was recovered. The original sequences from 

Giardia as well as its homologues from the 17 eukaryotic organisms were then aligned 

using ClustalX version 2.0.11 (Larkin et al. 2007). The procedure was performed on all 

267 Giardia ESPs. All alignments were imported into software Geneious Pro version 

5.0.4 (http://www.geneious.com) for further phylogenetic analyses. 

Bayesian trees were built for a three alignments of various lengths in order to test the 

method. Analyses were performed using default settings in Geneious plug-in Mr Bayes 
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(Huelsenbeck et al. 2001) (MCMC chain length: 1,100,000, sample frequency: 200, 

burn-in length 100,000, substitution matrix: Poisson). Later, different chain lengths and 

burn-in length were used in order for the process to take less time. However Mr Bayes 

still took a long time (about four days) to build trees, and therefore this process was 

abandoned early on in favour of PHYML (see below). Densitree Version 1.45 was used 

to display tree samples (Bouckaert 2010). 

The Geneious plug-in PHYML (Guindon et al. 2003) was used to draw maximum 

likelihood trees, with one tree was built for each alignment. Ten bootstraps were 

performed for each tree. This number was relatively low but it was a compromise for 

the time taken to build 267 trees (using this method a ~500 residue alignment of the 18 

species takes about five minutes), these trees are only the primary analyses and a high 

number of bootstrap was not essential. 

The 267 trees were converted into NEXUS format with Geneious. By using SplitsTree4 

(version 4.11.3), neighbor-net trees were built for each tree. These trees give some 

information on how suitable the alignments are to build trees. A consensus network was 

also built using data collected from all 267 trees. 

The 267 trees were then manually examined to determine the best functional group for 

phylogenetic studies. By using prior phylogenetic knowledge (e.g. the animals should 

be grouped together, Giardia should not be found grouped with animals, fungi or plants, 

the trees were divided into three groups: Group A (excellent), Group B (good) and 

Group C (bad) based on the definitions below. 

Group A trees have all animals (Aedes, Caenorhabditis, Canis, Ciona, Danio, 

Drosophila, Gallus, Homo sapiens, Tetraodon, Xenopus) in one clade, all plants 

(Arabdopsis and Oryza) in one clade and all fungi (Aspergillus, Neurospora and 

Schizosaccharomyces) in one clade, the bootstrap value of any of these three clades has 

to be no less than 70 percent. Other organisms Phytophthora, Dictyostelium and 

Giardia are of less concern as long as they do not show up inside the three clades 

mentioned above (an assumption for this study). This is because the phylogenetic 

ordering of these three longer-branching organisms is less clear. Group A trees were 

considered of excellent quality, because the animals, fungi and plants are expected to be 

monophyletic. 

Group B trees have only one or two species being misplaced within the major clades, or 

if there are low bootstrapping values for the three clades mentioned above (even if the 
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topology of the tree fulfils all the requirement of Group A).  

Group C trees contain so called “star” trees, in which all major branches originates from 

a single point, and implies that all of these branches are unresolved. This group also 

contains trees have more than two clearly misplaced species (e.g. animal species 

grouped with fungi), likely due to incorrect paralogue used. Any tree that displayed 

properties not falling into the Group A and Group B was placed in this group. 

After this filtering procedure, a new consensus network tree was built using the Group 

A (excellent) and Group B (good) trees only. Also the Group A and B protein sequences 

of the same organism were concatenated, and a new PHYML tree was built on 

concatenated ESP sequences. A model test was first performed before this analysis, and 

out of the four substitution models (Dayhoff (Dayhoff et al. 1978), Mitochondrial 

Adachi and Hasegawa (Adachi et al. 1996), Jones-Taylor-Thornton (Jones et al. 1992), 

and Whelan and Goldman (Whelan et al. 2001)) that was available in the Geneious 

plug-in PHYML, the best model was Whelan and Goldman (WAG) substitution matrix 

with the proportion of invariable sites being 0.037 and with a gamma shape (4 rate 

categories) of 1.164 (WAG+Γ4+I). This model showed the best likelihood score, as 

well as the best AIC (Akaike Information Criterion) score, indicating this is the most 

accurate and the most fitting model to this data. 

3.3 Results  

3.3.1 ML trees of ESP 

A total of 267 groups of sequences were aligned with ClustalX, the ML trees built using 

the PHYML plug-in of Geneious. One tree was built for each ESP and a total of 267 

trees were built. For ESPs with multiple identical copies (e.g. Alpha tubulin, Beta 

tubulin, Histone H2A, Histone H2B and Histone H4), only one copy was used. Because 

of the large dataset, the number of bootstraps was limited to 10, due to time constraints.  

An example of a PHYML tree is show in Figure 2. Note that we see the long Giardia 

branch which was expected, and the animals forming a branch of its own, as do the 

three fungi and plant species. From this tree we can see the animals are grouped 

together in the top half of the tree, the two land plants (Oryza and Arabidopsis) are 

grouped together, as well as the two fungi (Neurospora and Aspergillus), the other fungi 

Schizosaccharomyces has been obviously mis-grouped with Giardia. This is likely to 

have been caused by a wrong paralogue from Schizosaccharomyces used to build the 
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tree (see Section 3.3.3 for more explanation of this scenario). The bootstrap values for 

all three aforementioned clades were 100%, indicating the robustness of the grouping. 

The divergent species (Giardia, Dictyostelium and Phytophthora) formed long 

branches. The majority of ESPs produced similar trees, with more or less misplaced 

species, but about 40% of ESPs produced trees of lower qualities, such as uninformative 

“star” trees or had misplaced a large number of species. 

 

Figure 2. Unrooted ML tree of protein GL50803_93275 (Translational activator GCN1) from 

different species

 
Bootstrapping values are shown on branches, the scale bar is number of substitutions per site. Note 

the mis-grouping of Schizosaccharomyces with Giardia (red box), this is likely to be caused by a 

wrong paralogue from Schizosaccharomyces was used to build the tree. 
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3.3.2 Bayesian analysis 

Bayesian analysis was performed on only a few alignments due to its high time 

consumption. The analysis was performed using default settings (MCMC chain length: 

1,100,000, sample frequency: 200, burn-in length 100,000, substitution matrix: Poisson) 

either with “unconstrained branch lengths” or with “uniform branch lengths” as a prior. 

The prior did not make any difference in the topology of the few trees generated but 

made some differences in the posterior probability. 

 

DensiTree can displays all trees sampled in the MCMC chain simultaneously. If the 

“uniform branch lengths” setting was used during tree searching, this will result in a 

diagram that displays the degree of uncertainty very well. An example of DensiTree 

diagram is shown in Figure 3. The alignment used is same as that of Figure 2, generated 

Figure 3. DensiTree output of Bayesian analysis of protein GL50803_93275 

 
DensiTree is capable of showing the all the trees that the heuristic search went through in MCMC 

chain. It is very useful to show the disagreements of the tree. The blue lines are the branches which 

agree with the final tree; lines of other colours (red and green) are other signals. A molecular clock 

was assumed in this analysis. 
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using ML. The main difference between the two trees is the position of Dictyostelium: 

with ML, Dictyostelium is closer to the plants; whereas with Bayesian inference 

Dictyostelium is closer to fungi, but with large amount of disagreement with between 

trees. It should also be noted if the long branches of Giardia and the “problem taxon” 

Schizosaccharomyces (probably result of a wrong homologous used, see next section) 

are deleted, both trees would be very similar to the established tree in Figure 1. This 

indicates both methods are reasonable for the tree building. 

The issue with time consumption of Mr Bayes has prevented this analysis from being 

performed extensively. Due to the large number of trees required, ML was used to 

generate nearly all trees in this chapter. 

3.3.3 Unexpected tree shapes 

Trees with unexpected shapes can be formed if a wrong paralogue (i.e. after a gene 

duplication, one copy of the gene may change function as it accumulates mutations) was 

used for tree construction. If the right paralogue (i.e. the original copy of the gene that 

has retained the original function) is used then the tree should display the true 

phylogenetic relationship. One of the ESPs showing this misplaced paralogue effect was 

the 26S proteasome non-ATPase regulatory subunit 7 (GL50803_7896). The ML tree 

was generated using the default procedure (see section 3.2.3) and the following tree was 

produced (Figure 4). Note this tree (and also Figure 5) was chosen to demonstrate the 

outcome of using incorrect paralogue, not the presentation of phylogeny. 

Clearly Gallus has been misplaced into the same clade with Giardia, with 99% 

bootstrap value (Figure 4A). I found that this protein has many paralogues in Gallus, the 

best match being ENSGALP00000008530 (Protein A) with bit-score of 65.5; the other 

match was ENSGALP00000000999 (Protein B) with slightly less bit-score of 65.1. In 

the default tree generating procedure, Protein A was used as the Gallus protein because 

of its higher bit-score. When Protein B was used as the Gallus protein, a different tree 

was generated, and Gallus was placed back to the animal clade where it clearly belongs 

(see Figure 4B). 
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However, for some trees, the obvious misplacing mistakes could not be fixed by using a 

different paralogue, e.g. GL50803_15339 (Adaptor protein complex large chain subunit 

BetaA). No matter which paralogue was used, Ciona remains as a long branch (Figure 

5). This may indicate that the paralogues may both have evolved rapidly. The problem 

of using the wrong paralogues was not resolved for all ESPs, as it would take a long 

Figure 4. Unrooted ML tree of orthologues for GL50803_7896 from different species 

showing effect of including an incorrect gene paralogue 

 
ENSGALP00000008530 (Protein A) was used as Gallus orthologue. Bootstrapping values are shown 

on branches, the scale bar is number of substitutions per site. Gallus (indicated by the arrow) has 

been grouped with Giardia when it should be grouped with other metazoans. 

 

 
ENSGALP00000000999 (Protein B) was used as Gallus orthologue. Bootstrapping values were 

shown on branches, the scale bar is number of substitutions per site. Using the correct homologue 

Protein B has placed Gallus back in the animal clade and displays a greater distance between the 

Giardia protein and its homologues (Gallus branch is indicated by the arrow). 

A 

B 
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time, thus I simply carried on the analysis using the alignments and trees already 

obtained. 

 

3.3.4 Consensus tree 

One good way of visualising the conflicting signals is to build a consensus tree network. 

Consensus tree networks were built using SplitsTree 4 (version 4.11.3), using the 267 

ML trees generated for each ESP as input (Figure 6). The way to visualising the 

conflicting signals in a consensus tree network is by “splits”. The edges lengths are 

proportional to the average branch length from gene trees in which a particular edge 

occurs, and this method allows the branch lengths to be visualised (refer to 

Figure 5. Unrooted ML tree of orthologues of GL50803_15339 from different species showing 

effect of including different Ciona paralogues 

 
ENSCINP00000018012 was used as Ciona orthologue. Bootstrapping values are shown on branches, 

the scale bar is number of substitutions per site. Ciona (indicated by the arrow) has been grouped with 

Giardia when it should be grouped with other metazoans. 

 
ENSCINP00000018007 was used as Ciona orthologue. Bootstrapping values were shown on branches, 

the scale bar is number of substitutions per site. Using this homologue Ciona is still approximately at 

the same position (Ciona branch is indicated by the arrow). 

 

A 

B 
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supplementary material S3.1 for further explanation). The splits threshold was set to be 

0.1, which means only splits occurring in at least 10% of all trees are displayed. 

Conflicting signals were displayed as splits, and this splits threshold value made tree 

easier to visualise. If all the noise from the data were shown, the consensus tree would 

be very messy (containing many box-like format), whereas setting a high splits 

threshold can result in a “star tree” incapable of resolving some taxa.  

 

The consensus tree (Figure 6) has integrated information from all 267 trees to a single 

network, showing the phylogenetic relationship between the 18 organisms. The metazoa 

clade (containing ten metazoan species), fungal clade (containing Aspergillus, 

Figure 6. Unrooted consensus tree built using 267 ML trees 

 
The edges lengths are proportional to the average branch length from gene trees in which a particular 

edge occurs, and the splits threshold was set to be 0.1. The scale bar is the number of substitutions per 

site. 
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Neurospora and Schizosaccharomyces) and the plant clade (containing Arabidopsis and 

Oryza) can be clearly identified from the network. The network shows Giardia is 

relatively close to Dictyostelium, but this result comes with large amount of noise; in 

addition, these two species formed the longest branches out of all taxa, and result could 

be due to long branch attraction. Dictyostelium was the sole Amoebozoa representative 

in this study. Keeling et al. has placed Dictyostelium and other Amoebozoa species 

along side Opisthokonta species (containing animals and fungi) into group “Unikonts”. 

From the consensus network, there is no evidence that Opisthokonta and Amoebozoa 

are monophyletic. 

Ciona is in the Chordata (vertebrate) phylum, the same phylum as Mouse (Mus), Dog 

(Canis) and Chicken (Gallus) etc, but this result showed Ciona and other chordates 

being polyphyletic and Ciona is on a branch on its own. The suspected reason is that the 

wrong paralogues were often included from this organism (other possible reason: Ciona 

may have undergone recent genome duplication or mass gene duplication which altered 

the rate of some proteins). For this very reason, another consensus tree was built only 

using selected ESPs which were considered to be more informative on the phylogenetic 

relationships (see Section 3.3.6). From that consensus tree, Ciona did appear to be 

monophyletic with other chordates. 

Although this consensus tree suggested that there are conflict signals around the central 

eukaryotic node, it had a greater resolution around this node than previous results.  

An average consensus tree of 18 eukaryotic species was built using SplitsTree (Figure 

7). Average consensus trees have the advantage of taking both the number of trees with 

a particular split and the branch lengths into account. Bootstrapping values however 

could not be implemented into building of the consensus tree, because SplitsTree could 

only take the final tree generated from each protein to consideration. This network is 

very similar to the consensus tree, suggesting the closest relative to Giardia is 

Dictyostelium, but this result also comes with large amount of noise. 
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3.3.5 Divide trees based on topology comparisons with expected tree 

The 267 trees were divided into three groups (see method section for detailed 

explanation of the three groups) based on the topology and bootstrap support of the tree: 

 Group A contained what considered to be 50 excellent trees, each tree has all 

animals, fungi and plants into three separate clades shows these three are clear 

monophyletic with bootstrapping value no less than 70 percent.  

 Group B contained 90 trees each having only one or two species being 

misplaced, or with low bootstrapping values for the three clades mentioned 

above even the topology of the tree is good. 

Figure 7. Unrooted average consensus tree built using 267 ML trees  

 
Average consensus tree take account of both branch length and the number of trees with this split. 

The scale bar is the number of substitutions per site. 
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 Group C contained 127 trees, which are considered trees not very useful for 

phylogenetic study.  

The reasons that Group C trees are less informative include the following: the sequences 

can be too short for analysis to give any meaningful phylogenetic signal; the genes have 

many paralogues, and inclusion of the wrong paralogues from species caused incorrect 

phylogenetic relationship being portrayed; and events such as horizontal gene transfer 

may have taken place in these genes. In addition, the log likelihood values of trees had 

no bearing on which group the trees were put into, as it gives no indication of how 

accurate the tree is compared with the true phylogenetic relationship of the species. 

Even a tree with a excellent log likelihood value could be very messy and have many 

misplaced species. This is because the log likelihood value is solely based on the 

sequence lengths and number of gaps and substitutions in the sequences. 

 

The relationship between the grouping of the trees and sequence lengths was then 

investigated (Figure 8). The above box plot suggests that proteins between 500-1000 

amino acid in length are generally suitable for phylogenetic analyses in this situation. 

Short sequences may not have enough substitutions to dictate a meaningful 

phylogenetic relationship. Genes with long sequences might contain multiple domains, 

the event of gaining or losing a domain in one clade species but not others will magnify 

the evolutionary distance between them; moreover the different segments of the query 

Figure 8. Box plot of gene length distribution. 
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Giardia protein can match to a different proteins paralogue in each organism, resulting 

orthologue ambiguity.  

3.3.6 Consensus tree with split tree, software results can be deceptive 

A splits tree of the consensus tree was generated combining the excellent trees (Group 

A) and good trees (Group B) (Figure 9). If all the noise from the data were shown the 

consensus tree would be very messy. Hence the split threshold was set to 0.15 (i.e. only 

include splits if they occur in at least 15% of all trees), to make the tree easier to 

visualise. Setting a too high splits threshold can result in a “star tree”. 

 

Figure 9. Consensus network Type 1 

 
The splits threshold was 0.15 (splits occur less than 15% of all trees were not shown). The lengths of 

the edges are proportional to the average branch length from gene trees in which a particular split 

occurs; thus the branching pointed to by the red arrow does not suggest there were more trees that 

placed Giardia with fungi, but rather that the trees that placed it there had a longer branch length at 

that point (refer to Supplementary material for further explanation). The scale bar is the number of 

substitutions per site.
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When the splits threshold was increased to 0.18 (i.e. splits occur less than 18% of all 

trees were not shown), we almost have a tree without any disagreement, the only 

exception was that the node separating Caenorhabditis and the insects was unresolved 

(Figure 10). Even the central root of the eukaryote has been resolved in this tree. The 

result could be easily misinterpreted as this is a network tree with solid support, and that 

all branches (including Giardia) can be placed where it is with little doubt. This 

however, appeared too good to be true. The 0.18 split threshold means that a split is 

shown if it occurred in more than 18% of all trees; splits associate with the same 

organism could have appeared in several different places in up to 82% of other trees, but 

the frequency the split occurs in each of these other place is less than 18%, hence they 

were not shown. Users should be aware about this in the future. 

 

Another consensus tree was built differently (Figure 11), with the edge lengths drawn 

proportional to the number of trees the splits occur. The actual branch lengths from each 

tree are ignored. Therefore even though Giardia should form a long branch, the length 

Figure 10. Consensus network Type 2 

 

The splits threshold was 0.18 (splits occur less than 18% of all trees were not shown). Note Giardia is 

now grouped with plants, Phytophthora and Dictyostelium. The scale bar is the number of 

substitutions per site. 
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of Giardia in this network is the same as all other species. This visualisation method 

focuses on the number of trees with the same topology rather than branch lengths. 

 

An average consensus network was then constructed using SplitsTree (Figure 12). This 

network has the advantage of taking both number of trees with a particular split and the 

branch lengths into account. This representation is more tree-like, and the splits are not 

seen as clearly as in consensus networks. This network clearly has well defined animal, 

fungal and plant clades, but the branches separating the central node are still very much 

unresolved, shown by the large amount of noise indicated by the red arrow. In addition, 

the splits between Ciona, insects and Chordates have a large amount of disagreement. 

Figure 11. Consensus network Type 3 

 

The splits threshold was 0.15 (splits occur less than 15% of all trees were not shown). The lengths of 

the edges are proportional to the number of trees the splits occur; thus the red arrow suggest there 

were more trees placed Giardia with plants-Dictyostelium and Phytophthora than fungi (c.f. Figure 9, 

refer to Supplementary material for further explanation). The scale bar is the number of trees count. 
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When using average branch lengths for presentation (Figure 9), the network suggested 

that Giardia is placed in same clade as fungi, but by using the number of trees in the 

representation, the result suggested otherwise (Figure 11). Consensus networks also 

have the drawback of taking all trees equally, despite the variation of sequence lengths 

of alignments the trees were built from.  

Overall, even using ESPs the phylogenetic relationship of Giardia was inconclusive by 

constructing networks. There are many disagreements between trees generated from 

each ESP, because the sequences in each tree are relatively short, and thus, there will be 

stochastic error because of the low number of informative sites. In addition, more 

species in the Chromalveolata and Excavata supergroup would be useful for future 

phylogenetic analyses to break the long branch lengths and permit better resolution. 

Figure 12. Average consensus  

 
Average consensus generated with 50 Group A and 90 Group B trees. The red arrow indicated the 

large amount of conflicting signals at the central eukaryotic node. The scale bar is the number of 

substitutions per site. 
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3.3.7 Tree building by concatenating sequences  

Another method for analysing phylogeny with multi-genes approach is by concatenating 

sequences. Using a Perl script, sequences of the same species from group A and B 

alignments were concatenated. This analysis was based on a total of 140 genes and the 

entire concatenated alignment contained 139,625 sites. Previously Hampl et al. 

performed a similar analysis based on 143 genes and their entire concatenated alignment 

contained 35,584 sites, but this alignment suffered from a large amount of missing data 

(averaging 44% per taxon) (Hampl et al. 2009). A model test was first performed before 

tree-building. The best model was Whelan and Goldman (WAG) substitution matrix 

with the proportion of invariable sites being 0.037 and with a gamma shape (4 rate 

categories) of 1.164 (WAG+Γ4+I). Therefore the WAG+Γ4+I model was chosen to be 

the amino acid substitution model for the tree-building. The tree was built and was 

bootstrapped 100 times (Figure 13).  

The tree built in this analysis was much easier to interpret than the trees using consensus 

networks. The animals, fungi and plants all formed monophyletic groups of with 100% 

bootstrap support. The bootstrap for supergroup Opisthokonta (containing animals and 

fungi) was moderate (57%), considering previous studies strongly supported that 

opisthokonts form a monophyletic group (Parfrey et al. 2006; Steenkamp et al. 2006). 

There are only four species that do not belong to supergroup Unikonta, which are 

Giardia, Photophthora, Arabidopsis and Oryza. The support for supergroup Unikonta 

(containing Opisthokonta and Amoebozoa) was low (43%). There are very few recent 

studies on the monophyly of unikonts (this supergroup was originally proposed on that 

unikonts ancestrally had a single flagellum and single basal body (Cavalier-Smith 

2002)). This grouping is however unlikely, since flagellated opisthokonts, as well as 

some flagellated Amoebozoa actually have two basal bodies, as in typical 'bikonts'. 

From our analysis, it is inconclusive whether Unikonta is monophyletic, due to the low 

bootstrap support. 
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Figure 13. Unrooted tree generated using the WAG+Γ4+I model 

 
This tree was built with 50 Group A and 90 Group B sequences concatenated, using WAG substitution 

model with estimated proportion of invariable sites (+I) and 4 substitution rate categories and estimated 

gamma distribution (+G). Bootstrapping values were shown on branches. The scale bar is number of 

substitutions per site. 

Phytophthora, the only Chromalveolata representative branched closer to plants than 

species from any other supergoups, with 100% bootstrap support. This is different to the 

tree by Keeling et al. (Keeling 2007) which indicated Chromalveolata and Plantae were 

two independent supergroups. This result agreed with Hampl et al.’s papers (Hampl et 

al. 2009) which suggested that Chromalveolata and Archaeplastida are paraphyletic (i.e. 

all members along with some other unmentioned species are derived from a unique 

common ancestor). Hampl et al.’s papers have also included some rhizaria species 

inside the clades which included Chromalveolata and land plants. The different results 
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between Keeling et al. and Hampl et al.’s papers may have due to difference in their 

methods, Hampl et al. used sequence concatenation method similar to ours, whereas 

Keeling et al. paper was a review article and the eukaryotic tree was hypothesised using 

various molecular and morphological data. 

Giardia formed the longest branch out of all taxa, this was also observed in the 

consensus networks constructed. Reason for this can be that the parasitic life style of 

Giardia caused its rate of mutation becoming higher than that of other taxa analysed 

(i.e. heterotachy). 

Another tree was built using the same model, but with the Giardia removed to study 

how the presence of a species with a very long branch affected the entire tree. With 

Giardia taken out, the bootstrap support for every branch went up to 100 (Figure 14). 

 
 

Figure 14. Unrooted tree generated with Giardia removed 

 
The tree was built with 50 Group A and 90 Group B sequences concatenated using WAG substitution 

model with estimated proportion of invariable sites (+I) and 4 substitution rate categories and estimated 

gamma distribution (+G). Bootstrapping values were shown on branches. The scale bar is number of 

substitutions per site. 
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3.3.8 Tree built with different model 

For comparison, a PHYML tree was built using the Dayhoff substitution model and the 

tree was bootstrapped 100 times (Figure 15). 

 

Using the Dayhoff model, the topology of the tree is exactly same as the WAG+Γ4+I 

model, except that the position of Giardia. Giardia has been placed inside the 

“Opisthokonta”, which consists of animal and fungi and a few others, and there is 

strong support here that this super-kingdom is monophyletic (the bootstrap support was 

Figure 15. Unrooted tree generated using the Dayhoff model 

 
The tree was built with 50 Group A and 90 Group B sequences concatenated using Dayhoff model 

with fixed proportion of invariable sites of 0 and only 1 substitution rate category. Bootstrapping 

values were shown on branches. The scale bar is number of substitutions per site. 
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also deceivingly high at 99%). Thus it seems the result is likely due to long branch 

attraction. Another tree built (not shown because the topology extremely close to Figure 

15) using WAG model but this time using fixed proportion of invariable sites (0 and 1 

substitution rate category), built a tree with the same topology as above, but the 

bootstrap support for the Giardia/fungi clade was as low as 26%. This indicates that 

although the bootstrap value is very high for this tree, it does not necessarily reflect the 

true phylogenetic relationship. For an accurate phylogenetic result, using the right 

model is vital. 

3.3.9 Relationship between protein function and its phylogenetic 

usefulness 

Moving away from the mechanics of tree-building, this section relates protein functions 

to the “quality” of tree generated. Previously Giardia ESPs were divided into several 

categories according to the protein function (section 2.3.1). For each recorded category, 

the numbers of proteins belonging to Groups A, B and C described in section 3.3.5 are 

shown in Table 1. 

All four ribosome biogenesis proteins have generated Group A (considered excellent 

quality) trees; membrane proteins have also generated a high proportion of (14/34) 

Group A trees, including proteins found in cellular signature structures (CSSs) such as 

vacuole, ER and Golgi. Proteins from these two groups have given more consistant 

results in phylogenetic analysis.  

Proteins of the signalling system gave less consistent trees (more Group C trees and less 

Group A trees). This group contains a variety of signal transduction proteins and 

enzymes (noticeably kinases and phosphatases) which can evolve at different rates due 

to speciation., These proteins play different roles in different species and appear to 

quickly evolve to adapt to a new role (protein engineering and directed evolution 

demonstrated new enzymes can arise quickly (Quin et al. 2011)). The other group 

which gave a high proportion of Group C trees were the cytoskeletal proteins. This 

might be due to the fact that actins and tubulins have many paralogues (genes arose 

from duplication, e.g. alpha and beta tubulin are paralogues), and a wrong paralogue 

may be annotated in a species (e.g. as with the case described in 3.3.3). Having multiple 

copies of the same gene could have an effect on the evolving rate of these proteins in 

some species.  
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Table 1. Function and phylogenetic utility 

Protein 
category 

Sub category Group A trees Group B trees Group C trees 

Cytoskeleton actin 6 2 9 1 21 1 
microtubule related 1 0 0 
proteasome associated 0 1 1 
tubulin 1 1 3 
tubulin-associated 2 6 16 

Hypothetical 
protein 

hypothetical protein 4 4 4 4 2 2 

Membrane cell adhesion 14 1 11 0 9 1 
clathrin related 5 4 2 
endocytosis 0 0 1 
ER and Golgi 4 1 4 
lipid attachments 0 3 1 
vacuole 4 3 0 

Nucleus DNA polymerase 2 0 20 1 19 0 
histones 0 2 5 
histone-associated 0 2 2 
LIM related 1 2 1 
ribonucleoprotein 0 2 0 
RNA enzymes 0 5 4 
topoisomerase 0 0 1 
transcriptional factors 1 3 1 
transcriptional 
transactivators 

0 0 2 

zinc finger 0 3 3 
Protein synthesis 
and breakdown 

ribosome biogenesis 
protein 

7 4 5 0 3 0 

large ribosomal protein 0 4 0 
small ribosomal protein 2 0 1 
translation factors 1 1 2 

Signalling 
system 

14-3-3 protein 13 0 21 0 63 1 
calmodulin 0 0 5 
cell cycle 2 3 3 
GTP-binding proteins 3 5 12 
kinases and phosphatases 5 7 23 
phosphatidylinositol 2 1 4 
ubiquitin 0 0 2 
ubiquitin conjugation 
enzymes 

1 4 9 

ubiquitin protease 0 1 4 
Unknown unknown 6 6 18 18 10 10 

 
Nuclear ESPs have also produced poor results in our tree building. This is quite 

surprising since this group comprises RNA enzymes, histones and transcription factors, 

which are all robust ESPs. Possible reasons are that short sequence lengths (in case of 
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histones) or multiple paralogue in the genomes (RNA enzymes and transcription 

factors) may be having an effect here. 

3.3.10 Phylogenetic analysis of mammal species using ESP 

Building a phylogenetic tree containing organisms from many supergroups is a difficult 

task, and the true phylogenetic relationship between distant species is often debatable. 

Therefore a simpler phylogenetic analysis was performed on mammalian species. 

Mammals first appeared ~225 million years ago (Kielan-Jaworowska 2007) and since 

there is good fossil evidence for mammalian evolution there are publications with which 

the ESP results can be compared. This analysis here can investigate if ESPs are good 

candidates for phylogenetic analysis over a shorter evolutionary distance.  

Fifteen mammalian species from Ensembl, all with at least 6X genome coverage were 

used. The species are: Ailuropoda melanoleuca (Panda), Bos taurus (Cow), Callithrix 

jacchus (Marmoset), Canis familiaris (Dog), Equus caballus (Horse), Gorilla gorilla 

(Gorilla), Homo sapiens (Human), Loxodonta africana (Elephant), Monodelphis 

domestica (Opossum), Mus musculus (Mouse), Ornithorhynchus anatinus (Platypus), 

Oryctolagus cuniculus (Rabbit), Pan troglodytes (Chimpanzee), Pongo pygmaeus 

(Orangutan), Sus scrofa (Pig). Anolis carolinensis (Anole Lizard) was also downloaded 

to serve as the outgroup for this study. 

Each of the 50 Group A and 90 Group B (described in section 3.3.5) ESPs were 

BLASTed against each mammal, and the hit with highest bit-score was recorded from 

each organism. The annotated transcript sequences were used for this analysis because 

the mammals are closely related, and comparing nucleotides should obtaining better 

results. The 140 cDNA sequences were concatenated for each organism, and a 

phylogenetic tree was built using PHYML (Figure 16). The resulting tree is almost 

identical to previously published and highly regarded mammalian trees (e.g. (Campbell 

et al. ; Prasad et al. 2008; Asher et al. 2009)), indicating that the ESPs are very good for 

phylogenetic analysis of species with around 200 million years of divergence. 
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3.4 Discussion 

3.4.1 ESPs as candidates for evolutionary studies 

ESPs as a group, hold interesting potential for further evolutionary studies, due to their 

presence in all eukaryotic genomes. Not all ESPs are useful, with some ESPs being less 

informative for tree-building, because: 

1. Sequences can be too short for analysis to give any meaningful phylogenetic signal. 

This problem can be solved if more ESPs were used (by means of concatenating 

sequences). 

2. Though ESPs are considered to be very slow evolving proteins, different evolving 

rates can still occur for individual ESPs. Partitioning analysis can potentially solve this 

problem but has a computational barrier (i.e. will take a long time for model testing). 

Figure 16. Phylogenetic tree of mammalian species 

 
Tree was built using 140 cDNAs concatenated from each species. HKY85 was the substitution matrix. 

The tree was bootstrapped 200 times and bootstrap values are shown on the tree. 
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3. Some genes have many paralogues, and inclusion of the wrong paralogue can cause 

an incorrect phylogenetic relationship to be portrayed. This problem can be solved by 

manually adding the right paralogues into alignments to replace the wrong ones (this 

process was not performed on many proteins due to time constraints). 

4. Rare events such as horizontal gene transfer may have taken place for some genes. 

There is no simple solution of this problem apart from not to use any ESPs which may 

have this problem. 

My results show some conflict across the eukaryotic tree as expected. The concatenated 

sequence analysis did however, separate the main supergroups of eukaryotes, although 

there were some low bootstrap values from the concatenated sequences, and it is 

unknown but expected that by adding more species to break long branches would 

increase the bootstrap support. On the positive side the bootstrap support was 100% for 

all branches in animal and fungi clades in the concatenated analysis. ESPs were well 

performed to resolved phylogenies of closer species, such as phylogenies among 

mammals. 

Resolving the central root in the eukaryotic tree (see Figure 1) is a difficult task for any 

researcher, and this study definitely did not expect to solve this problem. However, 

some trees had potential to point the way and with the addition of ESPs from more 

species to break up the long branches may lead towards a clearer answer. 

3.4.2 Limitations 

Alignments  

The problem of using wrong paralogue (see section 3.3.4 for more details) was not 

solved for all ESPs, as it would have taken a long time for the manual corrections 

required. This was not a large problem for the overall analysis since if there were a large 

number of wrong paralogues in one particular tree, then the ESP was simply discarded 

for the subsequent analysis as it would naturally fall into the Group C tree category. 

Limitations of generating consensus network 

In constructing the consensus trees, the bootstrap values of each tree that it was built 

from were ignored. Therefore there is no information about how strongly the data 

supports each branch. The other drawback of using consensus networks is that each tree 

was taken equally despite variation on their sequence lengths (this issue can be 

addressed using the sequence concatenation method).  



106 

 

When using average branch lengths to a construct a network, the splits can sometimes 

be misleading, because they show only the average branch length of trees with the split, 

but can completely ignore how many trees has this particular split. By tree counts, the 

other method, this problem is solved but this is unable to show branch lengths. 

Limitations of concatenating sequences 

In general, this method is being considered a better method than generating consensus 

networks, due to its easier methodology and easier interpretation of results as the 

uncertainties are displayed as bootstrap values instead of complicated geometrical 

boxes. 

Individual ESPs are expected to have evolved at different rates, and theoretically 

different substitution models should be used for the different ESPs. Partitioning analysis 

could be performed with a better understanding of the protein set, but this would be 

very computationally intensive. Even trees built without partitioning can take up to two 

weeks per tree, thus partitioning analysis was not performed due to time constraints. 

Generally speaking, all ESPs have arisen around the time that first eukaryotic cells were 

formed, thus the rates of evolution over the long period until today are expected to be 

quite similar. The aim of this research was not focused on the actual phylogenetic 

relationship between the supergroups of eukaryotes, but instead to investigate how good 

ESPs are as candidates for phylogenetic research. Concatenating ESP sequences in 

general can be useful but their quality status (Group A, B or C) should be taken into 

account before deciding to include a protein in the concatenation. 

Long branch attraction 

Long branch attraction (LBA) is the tendency of distant sequences to group together in 

a tree regardless of their true relationships. In general, LBA is more likely cause 

problem when fast evolving sequences or highly divergent sequences are used for 

analysis. In this study, the effect of LBA has been attempted to be minimised by using 

slow evolving, ancestral proteins. Protein sequences are less susceptible than DNA 

sequences to LBA, since there are 20 amino acids and only four nucleotides. However, 

LBA could is still inevitable since the organisms in the study were so divergent and 

there were not many species available which will break the long branches. The problem 

has been seen when Giardia was grouped with fungi when the Dayhoff model was used 

(see Figure 15).  
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LBA can occur purely because the grouping of longer branches is more statistically 

supported (Hendy et al. 1989), or it can be the outcome if different rate of evolution 

occur in taxa (i.e. heterotachy) (Lockhart et al. 2005). The case of heterotachy can occur 

in two scenarios, first is that one species have faster mutational rate across all sites 

(Felsenstein 1978), and second the faster evolving species possesses more variable sites 

than others (called mosaic evolution) (Simon et al. 1996). It seems that Giardia forms a 

significantly longer branch than other species, meant it possibly have a higher rate of 

evolution -a case of heterotachy. However we do not yet know which type of 

heterotachy it is. The LBA seen in Dayhoff model might be caused by heterotachy, and 

not merely a statistical matter. Using the WAG+Γ4+I model, Giardia was not grouped 

with fungi, LBA did not occur.  

When more basal eukaryotic organisms are available, adding taxa from the Excavata 

supergroup would definitely help resolved the long branch of Giardia. If the long 

branch of Giardia was taken out (see Figure 14), the bootstrap value of the tree went up, 

this again consistent with given a good model, ESPs are very good candidates for 

phylogenetic analyses. 

3.4.3 Conclusion and Future work 

To conclude, the ESP dataset could be a powerful tool to study eukaryotic phylogeny. I 

have demonstrated phylogenetic analysis using ESPs worked very well over short 

evolutionary distances as shown by the mammal trees. When analysing taxa with longer 

evolutionary distances such as phylogenetic relationship between the supergroups of 

eukaryotes, there were some promising results, although the long branching of some 

taxa (most notably Giardia) was problematic, and it was placed differently with 

different models. Adding close related taxa will help resolve long branches, and with 

more genomes becoming available, especially those of highly divergent organisms, the 

ESP approach is expected to produce even better results. 

Not all ESPs are equal in their ability to produce good trees. I have grouped ESPs 

according to the quality of trees they produced (Groups A, B and C). Future research 

might consider discarding Group C ESPs as they can produce biased results. Group A 

and B ESPs are excellent candidates for tree-building especially using the sequence 

concatenation method of tree-building. The other method (consensus network) also did 
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not perform too badly though the results are harder to interpret, and this method may 

not necessarily be discarded. 

For future work, it would be interesting to see if ESPs can produce good results when 

analysing phylogeny of other well understood clades of eukaryotes. This will further 

consolidate that ESPs are valuable for phylogenetic analyses. A number of animal 

clades with unclear phylogenetic relationship can also be analysed using the ESP 

approach, e.g. the relationship between insects and other groups of arthropods (555mya 

of divergence) (Strausfeld et al. 2011). Furthermore, phylogenetics of deep branching 

eukaryote taxa can take place using the ESP approach for a second time, when more 

high coverage genomes of other early diverging and evolutionarily important eukaryotes 

become available (e.g. Naegleria gruberi has recently been sequenced (Fritz-Laylin et 

al. 2010) and could be a useful species to include in the study). Inclusion of more basal 

eukaryotic organisms, such as excavates, chromalveolates or Rhizaria species in the 

analysis should answer many more questions about the relationship between the 

supergroups, and decipher the monophyly of unresolved groups of eukaryotes. 
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Supplementary material for Chapter 3 

S3.1 SplitsTree consensus network explanation 

The consensus network method uses splits to indicate evidence for possible 

relationships. For example, the graph below:  

 
 

Indicates the relationships shown in the two tree topologies: 

                 and                   

        Topology A                                                              Topology B 

 

Now suppose our dataset contains three trees of topology A (75%), and one tree of 

topology B (25%), with the branch lengths drawn to scale as above. when generating a 

consensus network, we have two options: either we can set the edge lengths to be 

proportional to the number of trees the splits occur, or we can set the edge lengths to be 

proportional to the average branch length when the splits occur. If we use the former, 

the consensus network generated from our dataset is shown below: 
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Notice the lengths of the edges are 3:1 in ratio favouring topology A, this ratio 

corresponds to the tree count in the dataset – three topology A trees and one topology B 

tree. In addition (not illustrated), this method also ignores branch lengths completely, 

even if one species forms a very long branch, it would still be shown as same branch 

length as all other species. 

Now the second option is to set the edge lengths proportional to the average branch 

length, the consensus network created is shown below: 

 
Notice now the edge lengths are equal, this is because the average branch length of the 

three trees of topology A is still same as the tree of topology B, despite more topology 

A trees in the dataset. 

There is another option in SplitsTree, the splits threshold, which dictates at what 

percentage of disagreement which would be ignored. If we set this value to 0.3, the 

consensus network would be look like: 

 
 

Note the consensus network is exactly same as topology A, this is because there are 

only one topology B tree in the dataset, 25%, which is below the 0.3 threshold, hence 

the disagreement is not shown in dataset. 

Now if we add another topology to the dataset: 
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          Topology C 

We have three trees of topology A, and one tree of each topology B and C, the 

consensus network is going to be look like: 

 
The conflicting signals are now shown three-dimensional. 

S3.2 Perl script used in this chapter 

Using this Perl script, the user can connect with the MySQL database (table 

blast_results in this study) and fetch Giardia ESP’s homologues with best bit-score 

from each of the 17 eukaryotic organisms. The program puts all homologue sequences 

and the original Giardia ESP sequences in a text file in FASTA format. 

#!/usr/bin/perl -w 

#Step 1, use mysql to track down all homologues exist for an ESP. 

use DBI; 

use strict; 

use warnings; 

my $giardiaseq = ""; #set $giardiaseq to the accession number of ESPs 

my $dbh = DBI->connect('dbi:mysql:giardia8909','username','password') 

or die "Connection Error: $DBI::errstr\n"; #put in the actual username 

and password. 

my $sql = "SELECT * FROM blast_results where GL = 

'gb|GL50803_$giardiaseq' order by blast_dict_ID, bitscore desc"; 

my $sth = $dbh->prepare($sql); 

$sth->execute 

or die "SQL Error: $DBI::errstr\n"; 

my $output1 = "homologues.txt"; 

open (OUTPUT1, ">$output1") or die "output file not opened"; 

my @row; 
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while (@row = $sth->fetchrow_array) { 

print OUTPUT1 "@row\n"; 

}  

close OUTPUT1; 

#Step 2, select best hit for each organism. 

open (INPUT1, "$output1") or die "Input file not opened"; 

my $output2 = "besthits.txt"; 

open (OUTPUT2, ">$output2") or die "output2 file not opened"; 

my @allhits; 

while (<INPUT1>) { 

my $rows1 = $_; 

chomp $rows1; 

push @allhits, $rows1; 

} 

for (my $ii = 0; $ii < @allhits - 1; ++$ii) { 

 my @f = split / /, $allhits[$ii]; 

 my @g = split / /, $allhits[$ii + 1]; 

 if ($ii == 0) { 

 print OUTPUT2 "@f\n"; 

 } 

 if ($g[12] ne $f[12]){ 

 print OUTPUT2 "@g\n"; 

 } 

} 

close INPUT1; 

close OUTPUT2; 

#Step 3, fetch homologue sequences from fasta files. Need to create a 

folder d:\\allorganisms, which #contains database files of each 

organism, match name of database file to the organism’s blast_dict_ID. 
open (INPUT2, "$output2") or die "Input file not opened"; 

my $final = "$giardiaseq homologs.txt"; 

open (FINAL, ">$final") or die "final file not opened"; 

#delete the following lines if don't want giardia sequence to appear: 

my $giardiadb = "d:\\allorganisms\\giardia.fasta"; 

open (GIARDIADB, "$giardiadb") or die "GIARDIA DB didnot open"; 

  print "giardia sequence gb|GL50803_$giardiaseq was 

added\n"; 

  my $found = 0; 
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  while (<GIARDIADB>) { 

   if ($_ =~ /^\>/) { 

    if ($_ =~ /GL50803_$giardiaseq/){ 

    $found = 1; 

    } 

    else {$found = 0;} 

   }  

   if ($found == 1) {  

   print FINAL "$_";  

   } 

  } 

close GIARDIADB; 

my @goodhit; 

my $fastafile; 

my $xx; 

while (<INPUT2>){ 

my $rows2 = $_; 

chomp $rows2; 

push @goodhit, $rows2; 

} 

my $zz=51; 

for ($xx = 51; $xx < 68; ++$xx) { 

 my $stop = 0; 

 my @h = split / /, $goodhit[$xx - $zz]; 

 if ($h[12] != $xx) { 

  my $diff = 52 - $zz; 

  print "a sequence was skipped, input line $diff, 

blastdict_id $h[12]\n"; 

  $zz--; 

  $xx--; 

  $stop = 1; 

 } 

 if ($stop == 0){ 

  my $fastafile = "d:\\allorganisms\\$xx.fasta"; 

  open (FASTAFILE, "$fastafile") or die "fasta file did not 

open, print $xx"; 

  my $thisSeq = $h[1]; 

  if ($thisSeq =~ /^gi.(\d*)/) {  



114 

 

  $thisSeq = $1; 

  } 

  print "$thisSeq was added\n"; 

  my $found = 0; 

  while (<FASTAFILE>) { 

   if ($_ =~ /^\>/) { 

    if ($_ =~ /$thisSeq/){ 

    $found = 1; 

    } 

    else {$found = 0;} 

   }  

   if ($found == 1) {  

   print FINAL "$_";  

   } 

  } 

 } 

}  

close FASTAFILE; 

close FINAL; 

#Step4, Double check how many sequences were found 

open (FINAL, "$final") or die "final file not opened"; 

my $seqcount = 0; 

while (<FINAL>) { 

 if ($_ =~ /^\>/){ 

 $seqcount ++; 

 } 

} 

print "total of $seqcount sequences in $final"; 
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Chapter 4: Reconstruction of 

metabolic pathways in Giardia 

4.1 Introduction 

Examining genomic differences between a host and its parasite heavily relies on the 

annotation that has been given by the larger well established databases. The human 

genome is heavily annotated with connections to functions, metabolic pathways and 

other information. However most of Giardia and other non-model organisms’ 

annotation have been performed automatically using variants of the BLAST algorithm. 

Most has not been manually checked and is not undergoing any detailed annotation in 

the near future (personal communication with GiardiaDB). This situation is similar 

when we look for metabolic information. KEGG (Kyoto Encyclopaedia of Genes and 

Genomes, http://www.genome.jp/kegg) is considered one of the most important 

resources for understanding higher-order functional utilities of organisms from genomic 

information (Kanehisa et al. 2006; Morrison et al. 2007). However, KEGG does not yet 

contain many enzymes from Giardia, partly due to the incomplete annotation of 

Giardia proteins. 

In this chapter I have developed a method for analysing metabolic pathways from an 

organism, even with less defined annotation, and allow a fast scan of a pathway’s 

presence or absence from an organism. The method was especially developed to work 

with Giardia information but could in theory be adapted for use with other species. The 

sugar pathways (e.g. glycolysis, TCA cycle and electron transport chain) were used for 

testing, and demonstrated success of the method. This method also indicates what 

cluster an enzyme belongs to, whether it is similar or different from that of the host’s, 

which would be a very important factor when identifying drug targets. 

Finding new methods to identify drug targets is one of the objectives of this study. It is 

especially relevant to Giardia. Giardia as explained in the introduction, is a major cause 

of human waterborne diarrheal disease, infecting an estimated 10% of the world’s 

population during their lifetime (Huang et al. 2006). Infection is by faecal-oral 

transmission and is initiated by ingestion of infectious cysts in contaminated water or 

through person-to-person contact. After excystation, flagellated trophozoites colonise 
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the upper small intestine where they attach to the epithelial lining but do not invade the 

mucosa. Around 50% of Giardia infections are asymptomatic, in others the major 

symptoms of Giardia infection include diarrhoea, with malabsorption, dehydration, 

weight loss, cognitive impairment in children, and chronic fatigue in adults as well as 

other symptoms (Dunn et al. 2010).  

One of the main drugs for treating Giardia infection is metronidazole (Mz), a synthetic 

5-nitroimidazole (NI) derivative which is also active against Trichomonas vaginalis and 

Entamoeba histolytica (Harris et al. 2001; Valdez et al. 2009). Metronidazole is 

activated when its 5-nitro group is reduced by ferredoxin that has in turn been reduced 

by pyruvate:ferredoxin oxidoreductase (PFOR), generating toxic free radicals, and it is 

these short-lived free radicals that cause lethal damage to the parasite. PFOR is a good 

drug target because humans have an alternative pathway to PFOR, the pyruvate 

dehydrogenase complex. However, Mz treatment fails in about 20% of patients (Upcroft 

et al. 2001) and there are other issues including developing resistance to 5-NI 

compounds from Giardia (Dunn et al. 2010), and that Mz is inactive against Giardia 

cysts (Adam 2001).  

The discovery and development of new therapeutics is important to expand the arsenal 

for controlling parasitic infection. Typically a drug target is a key molecule involved in 

a metabolic or signalling pathway that is specific to a disease condition or pathology, or 

to the infectivity or survival of a microbial pathogen (Rao et al. 2011). Since Giardia is 

a parasite with limited metabolic diversity, a better understanding of its metabolic 

pathways is important to the discovery of new drug targets. Although it has been 

described as having some bacteria-like metabolism (Adam 2001), Giardia displays 

typical eukaryotic features (e.g. cellular structure and ncRNAs such as a spliceosome 

(Chen et al. 2008), snoRNAs (Chen et al. 2008), and RNAi (Chen et al. 2009). 

However, given the large evolutionary distance between Giardia and other eukaryotes, 

and expected genome reduction due to its parasitic lifestyle, it is no surprise that the 

metabolism and these eukaryotic characteristics are slightly different in Giardia. It is 

these differences that can be highly effective as drug targets. 

To date, only a few metabolic pathways in Giardia have been described, which include 

some carbohydrate metabolic pathways. However, these pathways were suggested using 

comparative analysis and are yet to be confirmed (Adam 2001; Morrison et al. 2007). 

An issue is that only a few enzymes have been biologically verified for Giardia, so the 
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presence/absence of a pathway component is heavily reliant on the annotation. This 

annotation once generated is seldom questioned even if the majority of the annotations 

are “hypothetical proteins”. We expected that since ESPs are found throughout 

eukaryotes, they will also be found in key metabolic pathways (although this was later 

proven not the case as the Giardia has a set of prokaryote-like enzymes). 

I employed a bioinformatics approach to develop a metabolic pathway analysis 

procedure to look at the sugar metabolism of Giardia. The results have been compared 

with the information from KEGG. This resulted in an overview of its metabolic 

repertoire, and predicts candidates for enzymes in these pathways. The three sugar-

related metabolic pathways investigated in this chapter were glycolysis (including 

gluconeogenesis and glycogen synthesis), the tricarboxylic acid cycle, (TCA cycle, also 

known as citric acid cycle or Krebs cycle) and oxidative phosphorylation. 

The glycolysis pathway is the most basic sugar metabolic pathway and it occurs with 

variations in nearly all organisms (Romano et al. 1996). During glycolysis, a glucose 

molecule is catabolised into two pyruvate molecules. Two adenosine triphosphate 

(ATP) and two NADH molecules can be gained from one glucose molecule, which 

provides energy to the organism (Voet et al. 2004). The reverse pathway of glycolysis is 

gluconeogenesis, which utilises the majority of the same enzymes as glycolysis. This 

process enables organisms to store energy in the form of glucose.  

The product of glycolysis, pyruvate can be converted to acetyl CoA, which is the input 

molecule for the TCA cycle, which is the second pathway investigated. Acetyl-CoA and 

oxaloacetate combines to form citrate to begin the cycle, which then goes through a 

series of reactions until oxaloacetate is reformed to repeat the cycle. This enables 

carbohydrates to be fully oxidised into carbon dioxide and water, and generates two 

further ATPs and six reduced co-enzymes NADH per glucose molecule (Voet et al. 

2004). In eukaryotes this process typically occurs inside the mitochondrial matrix and in 

prokaryotes it occurs in the cytosol. Giardia is an aerotolerant anaerobe with no 

mitochondria, but instead has closely related organelles called mitosomes (Dolezal et al. 

2005; Jedelsky et al. 2011). These are a reduced form of mitochondria, but whether they 

actually participate in ATP synthesis is currently unknown (Emelyanov et al. 2011). 

The biosynthesis of FeS clusters, which plays an important role in oxidation/reduction 

reactions during the electron transport chain, has been said to be the only mitochondrial 

function retained by mitosomes in Giardia (Jedelsky et al. 2011). The TCA cycle 
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provides precursors for many compounds including some amino acids, therefore some 

part of the cycle may be functional in Giardia. 

The third pathway, oxidative phosphorylation, uses energy released during glycolysis 

and the TCA cycle to produce ATP. Electrons are transferred from electron donors 

(such as NADH generated from the TCA cycle) to electron acceptors (such as H2O) to 

the transfer of H+ ions (protons) across a membrane. The resulting electrochemical 

proton gradient is used to generate chemical energy in the form of ATP (Voet et al. 

2004). In eukaryotes, these redox reactions are carried out by five main protein 

complexes within mitochondria, named Complex I to Complex IV and ATP synthase. 

Some bacterial species can carry out the electron transport chain quite differently by 

using different electron donors, acceptors, and different enzymes. The chain may 

contain three proton pumps like those found in mitochondria (Complex I, III and IV), or 

it may contain only one or two pumps. Because Giardia is anaerobic, the majority of 

enzymes in the mitochondrial electron transport chain are expected to be absent, but 

further assessments could aid in determining if there are any bacteria-like electron 

transport chains in Giardia. 

In this chapter, candidates for key enzymes in these three pathways have been identified 

by similarity searching against all annotated enzymes from KEGG. I identified good 

candidates for several enzymes that were not recognised by KEGG, including 

phosphoglucomutase, phosphofructokinase and enzymes for ethanol fermentation. I 

have also determined which of the Giardia enzymes are more bacteria-like and which 

are more eukaryote-like. I use terms such as “bacteria-like” or “eukaryote-like” here to 

refer to enzyme amino acid sequence similarity to bacteria or eukaryotic enzymes 

respectively, and not to infer any phylogenetic relationship. I have identified a number 

of enzymes which show differences between Giardia and its hosts, thus making them as 

potential targets for drug discovery. This chapter lays the groundwork for metabolic 

comparisons using KEGG to enable further work towards identifying treatments for 

Giardia. 

 

4.2 Materials and Methods 

Because of the high standard of curation for genes in the KEGG database 

(http://www.genome.jp/kegg), this methodology was simple but precise enough to 
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permit an ‘overview’ look at metabolic pathways without years of proteomics and 

metabolomics. The KEGG database contains networks represented by wiring diagrams 

of protein and other gene products responsible for various cellular processes, such as 

metabolism (examples see Figure S1 and S2). 

In KEGG, enzymes that catalyze the same reaction typically have the same enzyme 

commission (EC) numbers in the major databases, regardless of their homology. 

Enzymes with the same EC number may show significant sequence and structural 

similarity. However, in some cases enzymes with the same activity (i.e. same EC 

number) can be associated with different phylogenetic lineages and have different 

catalytic mechanisms with little structural similarity. I used EC numbers during this 

study because enzymes can have variation on their names, but the EC numbers will 

remain the same (e.g. “phosphohexose isomerase” can also be referred to as 

“phosophglucose isomerase” or “Glucose-6-phosphate isomerase”, but the EC number 

will always be “EC: 5.3.1.9”).  

The “genes.pep” file was downloaded from KEGG (http://www.genome.jp/kegg, 

accessed January 2011), containing all the sequences in the KEGG database in FASTA 

format (a total of 5,338,631 sequences, with the EC number included in the annotation 

of each protein). This file made it possible to pull out all sequences belonging to the 

same EC number from different organisms). For each EC class, enzymes from all 

species were collated into a single FASTA file by the use of a Perl script, the Giardia 

protein database was then BLASTed (Altschul et al. 1990) against this FASTA file, and 

the proteins with the highest bit-score were recorded. A metabolic map of the pathway 

was generated according to bit-scores (the log scaled score given to alignments by 

BLAST, higher numbers correspond to higher similarity) of the hits for each enzyme. 

Hits with bit-scores higher than 300 were considered to be high-quality candidates for 

the enzyme, and hits with scores between 100 and 300 were considered as lower quality 

candidates. This procedure was repeated for each enzyme in the glycolysis, TCA cycle 

and oxidative phosphorylation pathways. EC numbers for all enzymes detected in 

Giardia in these pathways are given in tables S1-S3. 
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4.3 Results  

4.3.1 Glycolysis and Gluconeogenesis 

As expected, because glycolytic proteins are highly conserved in eukaryotes, the major 

enzymes in the backbone of the glycolysis pathway were found in the Giardia genome 

(see Figure 1). However, an unexpected feature is that most of these enzymes showed 

greater similarity to their bacterial orthologues than their eukaryotic orthologues (refer 

to supplementary data); some of these bacteria-like enzymes (e.g. phosphofructokinase, 

EC: 2.7.1.11) are also found in other eukaryotic protists (Toxoplasma, Tetrahymena, 

Trypanosoma, Plasmodium and Trichomonas). There were a few eukaryote-like 

enzymes from the glycolysis pathway detected, including phosphoglucomutase (EC: 

5.4.2.2), phosphoglycerate kinase (EC: 2.7.2.3), dihydrolipoyllysine-residue 

acetyltransferase (EC: 2.3.1.12), and enolase (EC: 4.2.1.11). These results are explained 

in more detail below. 

Phosphoglucomutase (PGM, EC: 5.4.2.2) facilitates the inter-conversion of glucose-1-

phosphate and glucose-6-phosphate. Giardia protein GL50803_17254 showed high 

similarity to the PGM from eukaryotes (bit-score of 310). Experimental evidence from 

Mitra et al. (Mitra et al. 2009) indicates that this protein has phosphoglucomutase 

activity, validating in part the potential of this method for finding new enzymes. 

Another glycolytic enzyme not yet in KEGG to Giardia, phosphofructokinase was also 

recovered, with the Giardia protein GL50803_14993 showing high similarity to 

phosphofructokinases from many bacterial species. KEGG have assigned the EC 

number “EC: 2.7.1.90” to this protein, suggesting that this is a pyrophosphate based 

phosphofructokinase. 
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Figure 1. Glycolysis in Giardia 

 
The diagram indicates which enzymes have been directly identified by KEGG (green), which have 

been identified during this chapter (red) and which are not present (grey). As can be seen, most 

glycolytic enzymes are present in Giardia. A more technical representation of this image is present in 

Figure S1. Key: The metabolites are labelled and grey boxes, the enzyme which catalyse reactions 

from one metabolite to another are shown in rectangles with their EC number indicated, and are 

coloured according to their homology to enzymes of other species: green: enzymatic function 

registered in KEGG; red: found in Giardia with bit-score >300, these are enzyme candidates with 

fairly high degrees of certainty; grey: found in Giardia with bit-score <100; there was no enzymes 

found in Giardia with bit-scores between 100-300 in this pathway. 
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Two enzymes are responsible for the inter-conversion of glucose to glucose-6-

phosphate, namely hexokinase (EC: 2.7.1.1) and its isozyme glucokinase (EC: 2.7.1.2). 

The difference is that glucokinase has a lower affinity for glucose than hexokinase. A 

Giardia glucokinase has been described by KEGG (GL50803_8826), with this protein 

showing more similarity (i.e. higher bit-score) to the bacterial (cyanobacteria) 

glucokinase than eukaryotic glucokinase. Tetrahymena thermophila (a free living 

protozoan species) also has a similar type of glucokinase. As yet it is unknown why 

Giardia has a lower affinity enzyme, but one possible reason is that the trophozoite 

living environment (intestines of animals) provides a generous glucose supply so a 

high-affinity enzyme is not required. I did not identify any hexokinase from Giardia 

although one fungal protein (uma:UM03093.1, “uma” indicates the species: Ustilago 

maydis and “UM03093.1” is the accession number of the protein) was mislabelled as a 

hexokinase by KEGG, and returned a Giardia protein with high similarity. Upon further 

analysis of uma:UM03093.1 by using genomic resource databases 

(http://www.ncbi.nlm.nih.gov) and homology search, I determined that the fungal and 

Giardia proteins were in fact false positives for hexokinase. In light of this it appears all 

conversion of glucose to glucose-6P is carried out by glucokinase exclusively in 

Giardia. 

The conversion of pyruvate to lactate is catalysed by lactate dehydrogenase (EC: 

1.1.1.27), and the coupled reaction also oxidises coenzyme NADH to NAD+. This 

reaction occurs in lactate fermenting bacteria and in eukaryotes such as humans in the 

absence of oxygen, to provide a constant supply of oxidised form of coenzyme NAD+ 

for glycolysis. The only Giardia protein with high bit-score to any known lactate 

dehydrogenase is GL50803_17325 with a bit-score of 161 against one (and only one) 

lactate dehydrogenase from Toxoplasma gondii (also a parasitic protozoan). However, 

further analysis indicated that tgo:TGME49_060600 may have been incorrectly 

assigned by KEGG (in the same manner as described above for hexokinase). The results 

here suggest that Giardia lacks lactate dehydrogenase, and that lactic acid fermentation 

does not take place in Giardia. Instead the re-oxidation of coenzyme NADH to NAD+ is 

performed by ethanol fermentation (discussed later). 

Pyruvate synthase (EC: 1.2.7.1) is also known as pyruvate:ferredoxin oxidoreductase 

(PFOR). This is an alternative enzyme to the pyruvate dehydrogenase complex (formed 

together by EC: 1.2.4.1, EC: 2.3.1.12 and EC: 1.8.1.4) found in mammals. PFOR is able 
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to oxidise pyruvate to acetyl-CoA, but utilizes ferredoxin rather than NAD+ as the 

electron acceptor. The PFOR of Giardia is GL50803_17063 and is the main target for 

the drug Metronidazole (Mz) (Valdez et al. 2009). The selective toxicity of Mz is 

achieved because the parasite has PFOR only. 

 

Giardia performs ethanol fermentation to maintain a constant supply of NAD+, but this 

pathway is different from that found in some bacteria and yeast in that it converts 

pyruvate into acetaldehyde and then into ethanol. Giardia seems to be unable to convert 

pyruvate directly to acetaldehyde because pyruvate decarboxylase (EC: 4.1.1.1) is 

noticeably absent. Giardia performs ethanol fermentation by first converting pyruvate 

to acetyl-CoA (by pyruvate synthase, EC: 1.2.7.1), then to acetaldehyde and finally to 

ethanol (see Figure 2). It has been reported (Sanchez 1998; Dan et al. 2000) that a 

Giardia enzyme has acetaldehyde dehydrogenase (EC:1.2.1.10) activity in the amino-

terminus which catalyses the conversion of acetyl-CoA to acetaldehyde, and alcohol 

dehydrogenase (EC: 1.1.1.1) activity in the carboxy-terminus which catalyses the 

conversion of acetaldehyde to ethanol, but the paper did not include the accession 

number used to identify the protein. I identified the aforementioned protein, as 

Figure 2. A possible ethanol fermenting pathway in Giardia 

 
Pyruvate is metabolised into acetyl-CoA, and acetyl-CoA is subsequently converted to 

acetaldehyde and alcohol by a bi-functional acetaldehyde-CoA and alcohol dehydrogenase. 
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GL50803_93358 which scored high bit-scores (870) for both alcohol dehydrogenase 

and acetaldehyde dehydrogenase. The closest homologue of this protein, tel:tlr0227, is 

also incidentally a bi-functional acetaldehyde-CoA and alcohol dehydrogenase from the 

cyanobacterium Thermosynechococcus elongates. 

I also found acetyl-CoA synthetase (EC: 6.2.1.13) in Giardia (GL50803_13608), 

indicating that pyruvate can also be converted to acetyl-CoA and then to acetate. 

Experimental evidence suggests that the metabolism of trophozoites is markedly 

affected by small changes in oxygen concentration (Paget et al. 1993). Under anaerobic 

conditions, ethanol is the major product of carbohydrate metabolism, and under aerobic 

conditions, alanine and acetate are the predominant products of energy metabolism. 

Thus, the pyruvate metabolism pathway appears to be flexible for dealing with different 

aerobic/anaerobic environments (Paget et al. 1993). 

I have identified enzymes which are significantly different from that of the host, as 

many enzymes in the glycolytic pathway are more closely related to those from archaea 

and bacteria, and thus different from those of eukaryotes. The Giardia enzymes that are 

different from eukaryotic enzymes and hence are possibilities for future drug discovery 

are listed in Table 1. Prokaryotic looking enzymes were known from Morrison et al. 

paper, but what there will be key eukaryotic pathways such as glycolysis, we expect 

Giardia to have eukaryotic glycolysis, because Giardia is a eukaryote. This raised some 

interesting evolutionary questions, as to whether this is a case of convergent evolution 

between Giardia and bacterial enzymes, or the last common ancestor of Giardia and 

bacteria had the same enzymes (discuss later section 4.4). It is also noted that none of 

the glycolytic enzymes are ESPs, because all of them have bacterial homologues, there 

are however, six enzymes that are conserved in all eukaryotes (discuss later in section 

4.4, see Table 2). 
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Table 1. Bacteria-like Giardia enzymes in glycolysis pathway 

EC Enzyme name Best candidate Bit 

score 

E-value Homologous 

Domain 

2.7.1.2‡ glucokinase GL50803_8826 393 2.00E-110 B, P 

2.7.1.11 phosphofructokinase GL50803_14993 429 9.00E-122 P, B 

4.1.2.13‡ aldolase GL50803_11043 390 3.00E-110 B, P 

1.2.1.59 glyceraldehyde-3-

phosphate dehydrogenase 

(NAD(P)+) 

GL50803_6687 326 6.00E-92 B 

1.2.7.6 glyceraldehyde-3-

phosphate dehydrogenase 

GL50803_6687 315 5.00E-89 B 

5.4.2.1† phosphoglycerate mutase GL50803_8822 551 4.00E-142 B 

1.2.7.1 pyruvate synthase GL50803_17063 1008 0.0 B 

6.2.1.13 acetyl-CoA synthetase 

(ADP-forming) 

GL50803_13608 507 5.00E-146 A, B, P 

1.1.1.1 alcohol dehydrogenase GL50803_93358 870 0.0 B 

eutG ethanol:NAD+ 

oxidoreductase 

GL50803_93358 717 0.0 B 

1.2.1.10 acetaldehyde 

dehydrogenase 

GL50803_93358 870 0.0 B 

There is very little literature on the presence of the gluconeogenesis pathway in Giardia. 

It has been suggested that gluconeogenesis may occur during encystation, when glucose 

uptake decreases substantially and Giardia gains its energy by up-taking amino acids 

(aspartate) followed by gluconeogenesis (Adam 2001); However, another group have 

also found no evidence of active gluconeogenesis (Ma’ayeh and Brook-Carter, 

presentation during the IV International Giardia and Cryptosporidium conference, 

Wellington, 2012). The gluconeogenesis pathway shares a number of identical enzymes 

with the glycolysis pathway. There are three subtle differences: first the reaction 

catalysed by pyruvate kinase (converting phosphoenolpyruvate to pyruvate) is 

irreversible, but pyruvate carboxylase (EC: 6.4.1.1) and phosphoenolpyruvate 

carboxykinase (PEPCK, EC: 4.1.1.32) can convert pyruvate into oxaloacetate and then 

back to phosphoenolpyruvate, which can be used for gluconeogenesis. Homologues of 

both of these enzymes were found in Giardia in this analysis, although pyruvate 

carboxylase has not yet been described in Giardia by KEGG. The second enzyme where 

gluconeogenesis differs from glycolysis is fructose bisphosphatase (EC: 3.1.3.11) which 
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converts fructose-1,6-bisphosphate to fructose-6-phosphate in gluconeogenesis, (the 

reverse of the reaction catalysed by phosphofructokinase in glycolysis). In Giardia, only 

the protein GL50803_17316 has some low similarity (bit-score of 99) to fructose 

bisphosphatase. Given this low similarity, it is likely this protein does not have fructose 

bisphosphatase enzymatic activity. Lastly, in the reverse of the reaction that is catalysed 

by glucokinase, no candidates for glucose-6-phosphatase (EC: 3.1.3.9) were recovered. 

Overall, this analysis suggests that two key gluconeogenic enzymes are absent, and that 

Giardia does not have the entire set of enzymes required to perform gluconeogenesis. 

Giardia may take up amino acids for energy, but may not convert it all the way back to 

glucose, and instead the amino acids are possibly converted to pyruvate or oxaloacetate 

to obtain limited energy (via the likes of the arginine dihydrolase pathway).  

Although unable to regenerate glucose, Giardia does appear to have all required 

enzymes to synthesise glycogen from glucose (glycogenesis): UTP-glucose-1-phosphate 

uridylyltransferase (EC: 2.7.7.9) and glycogen synthase (EC: 2.4.1.11) have both been 

noted by KEGG. Combining this result with previous reports that glycogen has been 

found to be present in trophozoites (Ladeira et al. 2005), it appears that Giardia is able 

to generate glycogen from glucose to serve as an energy reserve.  

In summary, Giardia is able to perform glycolysis, using glycolytic catabolic reactions 

to provide energy for the organism. Giardia is also able to synthesis glycogen from 

glucose to create an energy reserve. However, it appears that Giardia is unable to 

perform gluconeogenesis to generate glucose from pyruvate. 

4.3.2 Tricarboxylic acid cycle 

Most of the enzymes in the TCA cycle were not detected in Giardia (Figure 3). This 

was expected because Giardia is an anaerobe, and lacks the mitochondria in which the 

TCA cycle typically operates in other eukaryotes. Those enzymes that are present in 

Giardia are also part of alternative metabolic pathways (pyruvate synthase (EC: 

1.2.7.1), pyruvate carboxylase (EC: 6.4.1.1) and PEPCK (EC: 4.1.1.32) are all in the 

glycolysis pathway). The presence of citrate synthase (EC: 2.3.3.1) and malate 

dehydrogenase (EC: 1.1.1.37) is expected because citrate and malate are important 

intermediates involved in the metabolism of highly interconnected cellular metabolites. 

Thus it is possible that Giardia will need pyruvate synthase, pyruvate carboxylase and 

PEPCK to metabolise malate and citrate. 
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The best candidate for succinyl-CoA synthetase (EC: 6.2.1.5) is GL50803_13608, 

which also has similarity to acetyl-CoA synthetase (EC: 6.2.1.13). The substrates for 

both enzymes are similar, and it is more likely that this protein is an acetyl-CoA 

synthetase because of the higher bit-score (507 for acetyl-CoA synthetase vs 435 for 

succinyl-CoA synthetase) and the fact that GiardiaDB labelled this as acetyl-CoA 

synthetase. Overall, the lack of the majority of the enzymes in the pathway suggests the 

absence of the TCA cycle in Giardia. The absence of the TCA cycle is likely due to 

secondary loss when mitochondria were lost from the parasites, but this is not 

conclusive because of the long evolutionary distance between Giardia and other 

eukaryotes. 

  

Figure 3. TCA cycle enzymes in Giardia. 

 
Limited candidates were found for enzymes in the TCA cycle. A more technical representation of this 

image is present in Figure S2. Key as for Figure 1. 
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4.3.3 Oxidative phosphorylation 

The oxidative phosphorylation pathway is harder than the other pathways to analyse 

because many enzyme subunits with the same EC class, form the multimeric complexes 

involved in the pathway (e.g. Complex I contains as many as 45 peptides in metazoans). 

I did not expect Giardia to have a typical electron transport chain because they lack 

mitochondria, and there is likely to be a limited supply of reduced NADH due to the 

absence of the TCA cycle. However, Giardia does have reduced mitosomes and thus 

some proteins may have remained from the ancestral mitochondria. The main 

components of a typical oxidative phosphorylation pathway are shown in Figure 4.  

This analysis showed that Complex II (succinate dehydrogenase), Complex III 

(ubiquinol-cytochrome-c reductase) and Complex IV (cytochrome c oxidase) are clearly 

absent in Giardia. Complex I (NADH dehydrogenase) have two EC classes: EC: 1.6.5.3 

and EC: 1.6.99.3, the difference between the two EC classes is the former uses 

ubiquinone as the electron acceptor, the later does not have a specified electron 

acceptor. Homologues of Complex I were recovered from Giardia (e.g. GL50803_6304 

and GL50803_33769). However, Complex I is a polymer containing up to 45 individual 

peptides, given that very few homologues of these peptides have been found in, it is 

unlikely that Giardia has the entire Complex I. 

The ATP synthase (EC: 3.6.3.34, labelled as Complex V in Figure 4) was determined to 

be present. As many as 14 proteins (GL50803_10530, GL50803_12216, 

GL50803_13000, GL50803_13603, GL50803_14660, GL50803_14961, 

GL50803_15598, GL50803_18470, GL50803_30851, GL50803_3678, GL50803_7532, 

GL50803_8367, GL50803_8559, GL50803_87058) have been assigned to this EC 

class. These 14 proteins make up the vacuolar (V-type) ATPase (Hilario et al. 1998). 

The V-type is different from F1FO (F-type) ATPase, which is present in the plasma 

membrane of bacteria, the inner membrane of mitochondria, and the thylakoid 

membranes of chloroplasts. The V-ATPase is present in the endomembrane systems of 

eukaryotes: vacuoles, Golgi apparatus, and coated vesicles. V-type ATPases build up a 

H+ gradient across the membrane via ATP hydrolysis to transport solutes, or to lower 

the pH inside the endomembrane system, in reverse of reactions catalysed by F-ATPase 

(Hilario et al. 1998). Its function is to generate a proton gradient rather than utilising the 

proton gradient to harvest ATP. The other two ATP synthase enzymes present in 

Giardia were the H+/K+-exchanging ATPase (EC: 3.6.3.10) and H+-exporting ATPase 



129 

 

(EC: 3.5.3.6). These two enzymes function as transporters rather than ATP generators. 

No F-type ATPases were recovered from Giardia, indicating a possibility that there is 

no ATP-producing ATP synthase. Overall the lack of Complexes I, II, III and IV 

suggest that Giardia is unable to actively generate the proton gradient that is vital for 

generation of ATPs by F-ATP synthase. 

Some bacterial species can carry out the electron transport chain differently (i.e. during 

anaerobic respiration), by using different electron donors and acceptors and therefore 

different enzymes (e.g. Escherichia coli can use a large number of electron 

donor/acceptor pairs such as fumarate/succinate, or pyruvate/lactate (Unden et al. 

1997)). It cannot be ruled out that Giardia might have such a mechanism or an as yet 

completely novel mechanism, but an F-type ATP synthase is still lacking in Giardia, 

suggesting that Giardia is unable to mass produce ATP by using a typical eukaryotic 

electron transport chain pathway. 
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4.3.4 Other metabolic pathways 

Using the same procedure, a quick scan of a metabolic pathway to see if it is present in 

Giardia (or any other organisms) can easily be performed. Brief analyses on the 

Giardia pentose pathway, alanine and aspartate metabolism were performed but were 

not examined in great detail due to time constraints. 

Pentose phosphate pathway 

The pentose phosphate pathway is an alternative sugar metabolism pathway. The 

purpose of this pathway is to regenerate NADPH, produce ribose-5-phosphate (R5P), 

used in the synthesis of nucleotides and nucleic acids, and erythrose-4-phosphate (E4P), 

used in the synthesis of aromatic amino acids. It is unknown whether Giardia can 

synthesise these sugars de novo, and results here only took a brief look at this pathway. 

The results indicated that the majority of the enzymes are present, and Giardia is 

capable of synthesise ribose and erythrose, as well as regenerate NADPH (Figure 5). 

 

Figure 5. Pentose phosphate pathway in Giardia 

 
Colour scheme: green: enzymatic function registered in KEGG; blue: EC number registered in KEGG 

but was not in the KEGG Giardia glycolysis pathway; red: found in Giardia with score >300; orange: 

found in Giardia with score 200-300; yellow: found in Giardia with score 100-200, grey: found in 

Giardia with score <100; dark grey: no enzyme with this EC number registered in KEGG. Template 

image was downloaded from KEGG. 



 

132 

 

Alanine and aspartate metabolism 

The pathways for alanine and aspartate are quite simple (Figure 6). Alanine is broken 

down into pyruvate whereas aspartate is broken down into oxaloacetate. Giardia also 

appears unable to inter-convert between aspartate and asparagine. There were no other 

aspartate metabolism (e.g. to fumarate) pathways found from the results. 

 
 

4.4 Discussion 

Overall, I have been able to reconstruct a number of sugar-related metabolic pathways 

for Giardia lamblia, and highlight notable enzyme absences from these pathways. The 

glycolytic enzymes from Giardia bear a stronger homology with bacterial enzymes, 

rather than with eukaryotic or archaeal enzymes (except for phosphoglucomutase and 

phosphoglycerate kinase which are more similar to those found in eukaryotes). The 

difference between the host’s and parasite’s pathway can be exploited for medical 

applications. Only a few enzymes were identified from the TCA cycle and oxidative 

phosphorylation, indicating the likely absence of these pathways. In addition, because 

of the similarity to prokaryotic enzymes, glycolytic enzymes in Giardia cannot be 

considered ESPs. 

Figure 6. Alanine and aspartate in Giardia 

 
Colour scheme: green: enzymatic function registered in KEGG; blue: EC number registered in 

KEGG but was not in the KEGG Giardia glycolysis pathway; red: found in Giardia with score 

>300; orange: found in Giardia with score 200-300; yellow: found in Giardia with score 100-200, 

grey: found in Giardia with score <100; dark grey: no enzyme with this EC number registered in 

KEGG. Template image was downloaded from KEGG. 
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This approach of analysing metabolic pathways could, in theory, be applied to any 

organism with genome information but limited annotation. The advantage of using this 

approach is that it is reasonably quick to give an indication of which pathways are likely 

to be present and which ones are not. There are however some limitations: for a few 

proteins, KEGG can allocate wrong EC numbers which will result in false positives if 

users are not familiar with the pathways. False positives can also occur if one EC class 

is very similar to another EC class (such as in the case of succinyl-CoA synthetase and 

acetyl-CoA synthetase). KEGG is a database that is still growing and as yet, does not 

have the enzymes from all species. It is expected that enzyme candidates may not be 

recovered if they are from a species extremely different from the known enzymes and 

species. It is expected this issue will decrease with time as enzymatic studies on species 

such as Giardia, add to the improvement of KEGG annotations. 

The overall picture of Giardia indicates that glucose is absorbed from the host and 

metabolised into pyruvate through glycolysis, and after that, in order to regenerate the 

oxidised form of coenzyme NAD+, pyruvate is reduced to ethanol, alanine or acetate 

depending on the availability of oxygen. Under aerobic conditions, pyruvate is 

converted to alanine by a transamination reaction, or to acetate by acetyl-CoA 

synthetase. Also under anaerobic conditions, pyruvate is metabolised to acetyl-CoA by 

PFOR, and subsequently into acetaldehyde and ethanol. The TCA cycle and oxidative 

phosphorylation do not appear to occur. These latter results were not completely 

unexpected since it is already known that Giardia has an anaerobic life style, and has 

undergone genome reduction (i.e. a smaller genome with fewer unnecessary enzymes 

will give the parasite advantage when replicating) (Morrison et al. 2007). 

Giardia shares many metabolic attributes of bacteria, including its fermentative energy 

metabolism which relies heavily on pyrophosphate rather than adenosine triphosphate. 

Morrison et al. 2007 looked into Giardia’s metabolic repertoire briefly when the 

Giardia genome project was completed. Their results indicated that Giardia’s sugar 

metabolic pathways contained a mixture of eukaryote-like (enzymes that appeared more 

similar in sequence to those enzymes found in eukaryotes) and bacteria-like enzymes 

(Morrison et al. 2007). Morrison et al. 2007 indicated that about half of glycolytic 

enzymes are eukaryote-like (Morrison et al. 2007), but they did not distinguish between 

typical eukaryotic enzymes (i.e. those well studied in mammals, yeasts and plants) and 

enzymes from eukaryotic protists. This study has considered protists separately from 
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other eukaryotes, because frequently these eukaryotic protists have prokaryote-like 

enzymes rather than those from typically studied eukaryotes. Some reasons for Giardia 

having a sizable number of bacteria-like enzymes include the possibilities that 

mitochondrial genes migrated to the nucleus with the loss of this organelle (Adams et 

al. 2003); lateral gene transfer of bacterial genes (Andersson et al. 2003); convergent 

evolution between bacterial set of enzyme and some of Giardia enzymes due to their 

common anaerobic life style; or that the eukaryotic set of enzymes arose after their 

divergence from the ancestral eukaryote. There are still many evolutionary questions 

surrounding Giardia and it is expected that the clarification of its somewhat ‘atypical’ 

metabolism will aid this research. 

The glycolysis pathway occurs, in nearly all organisms with minor variations (Romano 

et al. 1996). So, if the enzymes in the glycolysis pathway are also conserved in all 

organisms? I also compared the Giardia annotated proteins (4889 in total) against 28 

bacterial, 12 archaeal species and 17 other eukaryotic species, and identified four groups 

of proteins according to the conservation of the proteins in the three super kingdoms: 

Group A (see section 2.3.8) contains 37 Giardia proteins that are conserved in all three 

domains of life; Group B (see section 2.3.8) contains 849 Giardia proteins that are 

found in all eukaryotes; Group C contains 274 eukaryotic signature proteins (ESPs, see 

section 2.3.1) (Hartman et al. 2002; Kurland et al. 2006), which are proteins conserved 

in all eukaryotes, but not found in any archaea or bacteria; and finally Group D contains 

278 Escherichia coli proteins conserved in all bacteria species (see section 2.3.8). 

The candidates of glycolytic enzymes (20 in total) were compared with the above four 

groups of proteins. None of the glycolytic enzymes matched were matched to Group A 

(conserved in all three domains), Group C (eukaryotic signature proteins) or Group D 

(conserved in all bacterial species). However, there were six candidates matched to 

Group B (conserved in all eukaryotic species, Table 2). 

Glycolysis in bacteria occurs in diverse forms. This means that none of the Giardia’s 

bacteria-like glycolytic enzymes are likely to be universal to all bacteria and thus less 

likely to be found matched to those in Group A or Group D. The eukaryotic glycolytic 

enzymes are more conserved across eukaryotes, and thus some of Giardia’s eukaryote-

like glycolytic enzymes were found to be conserved in all eukaryotes; in the contrary, 

not all enzymes in the glycolytic pathway are maintained in all eukaryotes, this indicate 

one cannot assume that just because a pathway is conserved throughout eukaryotes then 
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the individual enzymes are. However, homologues of these enzymes conserved in all 

eukaryotes are also found in some branches of bacteria, hence they did not show up in 

Group C (eukaryotic signature proteins). This result is due to the large variety of 

glycolytic enzymes present in bacteria. Most of the enzymes found from Giardia from 

these key eukaryotic pathways were not classed as ESPs, due to their similarity with 

prokaryotic proteins. 

Table 2. Giardia glycolytic enzyme candidates maintained in all eukaryotes 

Protein  Enzyme name EC number 

GL50803_11118 enolase 4.2.1.11 

GL50803_7260 alcohol dehydrogenase 1.1.1.2 

GL50803_7982 aldose 1-epimerase 5.1.3.3 

GL50803_90872 phosphoglycerate kinase 2.7.2.3 

GL50803_9115 glucose-6-phosphate isomerase 5.3.1.9 

GL50803_93938 triosephosphate isomerase 5.3.1.1 

 

Using sugar pathways as examples, this method has been shown to be successful in 

analysing metabolic pathways from incompletely annotated genomes. More pathways, 

such as those involved in amino acid metabolism, and the RNA degradation pathway, 

can be analysed using this method, adding more pieces to the puzzle of Giardia’s 

metabolism. This study also identified Giardia candidates for enzymes that had not 

been recognised before. They bear high homology to known enzymes of their classes, 

and although the actual functions of these enzymes have not been confirmed, this work 

gives direction to future experimental confirmation with activity assays, which could 

then lead to the identification of new drug targets. 

Typically a drug target is a key molecule for the infectivity or survival of a microbial 

pathogen. Selective toxicity would be best achieved if the parasite has a key enzyme 

that humans do not have or which is remarkably different from the host. For example, 

PFOR is found in Giardia, but the host (human or mammal) uses the pyruvate 

dehydrogenase complex to perform the same reaction, and thus drugs targeting PFOR 

such as metronidazole have been designed. From the glycolytic pathway, I have 

identified enzymes which are significantly different in Giardia from those in the host 

(see Table 2), including glucokinase and phosphofructokinase. Glucokinase has been 

investigated as a drug target for type 2 diabetes (Matschinsky 2009), and its potential to 
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be a target for parasite infection is as yet uncertain. Phosphofructokinase has been 

suggested as a drug target for Entamoeba histolytica by Byington et al. (Byington et al. 

1997), and they designed a competitive inhibitor of phosphofructokinase, with the drug 

inhibiting the growth of the parasite in vitro. These enzymes, and especially those that 

can be compensated in the host by alternative pathways, hold the possibility of new 

targets for drugs effective against Giardia. An even better understanding of this 

parasite’s metabolism will surely provide more ammunition against this worldwide 

parasitic problem. 
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Supplementary material for Chapter 4 

S1. Enzymes of glycolysis pathway in Giardia 

The enzymes are ordered in the approximately direction of the metabolic flux. † 

indicates this enzyme is already in KEGG Giardia glycolysis pathway, ‡ indicates the 

Giardia enzyme has already giving the EC number, but was not in the KEGG Giardia 

glycolysis pathway for unknown reason, ! indicates high possibility of false positive 

result. The last column indicates whether the Giardia enzyme is more homologous to 

bacterial (B), archaeal (A) or eukaryotic (E) enzymes, P indicates eukaryotic protists, 

which are considered separately from other eukaryotes. 

EC Name of the 

enzyme 

#sequences 

in KEGG 

Best candidate Bit-

score 

E-value Domain 

akin to 

2.7.1.41 glucose-1-phosphate 

phosphodismutase 

11 GL50803_14038 60.1 6.00E-13 - 

3.1.3.10 glucose-1-

phosphatase 

84 GL50803_7556 31.6 0.003 - 

5.4.2.2 phosphoglucomutase 929 GL50803_17254 310 9.00E-86 E, P 

3.1.3.9 glucose-6-

phosphatase 

28 GL50803_5631 30.8 0.004 - 

2.7.1.1! hexokinase 305 GL50803_7260 179 5.00E-47 - 

2.7.1.2‡ glucokinase 1110 GL50803_8826 393 2.00E-

110 

B, P 

5.1.3.3 aldose 1-epimerase 736 GL50803_7982 124 3.00E-30 B, E 

5.1.3.15 glucose-6-phosphate 

1-epimerase 

6 GL50803_9115 93.2 2.00E-22 - 

5.3.1.9† Phosphorhexose 

isomerase 

1261 GL50803_9115 394 5.00E-

111 

P, B, E 

2.7.1.69 glucose permease 8977 GL50803_9909 130 6.00E-31 B 

3.2.1.86 6-phospho-beta-

glucosidase 

788 GL50803_35487 38.9 0.004 - 

3.1.3.11 fructose-

bisphosphatase 

1286 GL50803_17316 99 3.00E-22 B 

2.7.1.11 phosphofructokinase 1172 GL50803_14993 429 9.00E-

122 

P, B 

4.1.2.13‡ aldolase 1839 GL50803_11043 390 3.00E-

110 

B, P 

5.3.1.1† triosephosphate 1352 GL50803_93938 348 8.00E-98 B, P, E 
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isomerase 

1.2.1.12† glyceraldehyde-3-

phosphate 

dehydrogenase 

1872 GL50803_17043 270 9.00E-74 B, E, P 

1.2.1.12† glyceraldehyde-3-

phosphate 

dehydrogenase 

1872 GL50803_6687 459 5.00E-

131 

E, B, P 

1.2.1.59 glyceraldehyde-3-

phosphate 

dehydrogenase 

(NAD(P)+) 

138 GL50803_6687 326 6.00E-92 B 

5.4.2.4 bisphosphoglycerate 

mutase 

60 GL50803_8822 278 1.00E-77 B, E 

2.7.2.3† phosphoglycerate 

kinase 

1289 GL50803_90872 453 4.00E-

129 

E 

3.1.3.13 bisphosphoglycerate 

phosphatase 

31 GL50803_135885 45.8 2.00E-08 - 

1.2.7.5 aldehyde ferredoxin 

oxidoreductase 

330 GL50803_13616 47.4 4.00E-07 - 

1.2.7.6 glyceraldehyde-3-

phosphate 

dehydrogenase 

26 GL50803_6687 315 5.00E-89 B 

1.2.1.9 glyceraldehyde-3-

phosphate 

dehydrogenase 

(NADP+) 

168 GL50803_6687 209 2.00E-56 B 

5.4.2.1† phosphoglycerate 

mutase 

2987 GL50803_8822 551 4.00E-

142 

B 

4.2.1.11† enolase 1329 GL50803_11118 455 1.00E-

129 

P, E 

4.1.1.32† phosphoenolpyruvate 

carboxykinase (GTP) 

322 GL50803_10623 470 2.00E-

134 

A, E, B 

4.1.1.49 phosphoenolpyruvate 

carboxykinase (ATP) 

554 GL50803_10623 41.6 4.00E-05 - 

2.7.1.40‡ pyruvate kinase 1575 GL50803_3206 1243 0  

1.1.1.27! L-lactate 

dehydrogenase 

658 GL50803_17325 161 3.00E-41 - 

1.2.7.1 pyruvate synthase 846 GL50803_17063 1008 0 B 

1.2.4.1! pyruvate 2632 GL50803_3281 156 3.00E-39 B 
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dehydrogenase 

(acetyl-transferring) 

4.1.1.1 pyruvate 

decarboxylase 

75 GL50803_9704 40.8 1.00E-05 - 

2.3.1.12 dihydrolipoyllysine-

residue 

acetyltransferase 

1351 GL50803_113021 647 0 E, P 

6.2.1.1 acetyl-CoA 

synthetase 

1718 GL50803_13608 226 4.00E-60 B 

6.2.1.13 acetyl-CoA 

synthetase (ADP-

forming) 

75 GL50803_13608 507 5.00E-

146 

A, B, P 

1.8.1.4! dihydrolipoyl 

dehydrogenase 

2009 GL50803_16125 450 2.00E-

127 

- 

1.2.1.3 aldehyde 

dehydrogenase 

(NAD+) 

1521 GL50803_93358 70.1 4.00E-13 - 

1.2.1.5 aldehyde 

dehydrogenase 

[NAD(P)+] 

90 GL50803_93358 65.5 6.00E-13 - 

1.1.1.1 alcohol 

dehydrogenase 

2659 GL50803_93358 870 0 B 

1.1.1.2 alcohol 

dehydrogenase 

(NADP+) 

219 GL50803_7260 240 6.00E-66 E 

1.1.99.8 alcohol 

dehydrogenase 

(acceptor) 

102 GL50803_3861 79.3 2.00E-17 - 

eutG ethanol:NAD+ 

oxidoreductase 

62 GL50803_93358 717 0 B 

1.2.1.10 acetaldehyde 

dehydrogenase 

611 GL50803_93358 870 0 B 
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Figure S1. KEGG diagram of glycolytic enzymes in Giardia 

 
Key: The metabolites are labelled and shown as small circles, the enzyme which catalyse reactions 

from one metabolite to another are shown in rectangles, with their EC number indicated. The Giardia 

enzymes are coloured according to their homology to enzymes of other species: green: enzymatic 

function registered in KEGG; blue: EC number registered in KEGG but was not in the KEGG map of 

Giardia metabolic pathways; red: found in Giardia with score >300, these are enzyme candidates with 

fairly high degrees of certainty; orange: found in Giardia with score 200-300; yellow: found in Giardia 

with score 100-200, grey: found in Giardia with score <100. Half painted grey indicates the result is 

very likely a false positive. The template image was downloaded from KEGG. 
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S2. Enzymes of citric acid cycle in Giardia 

EC Name of the 

enzyme 

#sequences 

in KEGG 

Best candidate Bit-

score 

E-value Domain 

akin to 

6.4.1.1 pyruvate carboxylase 526 GL50803_113021 644 0 P, B 

2.3.3.1 citrate synthase 1374 GL50803_7195 359 2.00E-

100 

B, A 

2.3.3.8 ATP citrate (pro-S)-

lyase 

166 GL50803_13608 46.6 6.00E-07 - 

4.1.3.6 citrate lyase subunit 

alpha 

1028 GL50803_38462 42.7 2.00E-04 - 

4.2.1.3 aconitate hydratase 1 1591 GL50803_17063 89 2.00E-18 - 

1.1.1.42 isocitrate 

dehydrogenase 

1108 GL50803_14785 43.9 1.00E-05 - 

1.1.1.41 isocitrate 

dehydrogenase 

(NAD+) 

508 GL50803_11230 37.4 4.00E-04 - 

1.2.4.2 oxoglutarate 

dehydrogenase 

852 GL50803_33769 52.8 3.00E-08 - 

2.3.1.61 2-oxoglutarate 

dehydrogenase 

989 GL50803_33769 51.2 5.00E-08 - 

1.2.7.3 2-oxoglutarate 
synthase 

1528 GL50803_22677 114 2.00E-27 - 

6.2.1.4 succinyl-CoA 

synthetase (GDP-

forming) 

361 GL50803_13608 48.9 1.00E-07 - 

6.2.1.5 succinyl-CoA 
synthetase (ADP-
forming) 

2107 GL50803_13608 435 2.00E-

123 

B, A, E 

1.3.99.1 succinate 
dehydrogenase 

4118 GL50803_9089 56.6 5.00E-10 - 

1.3.5.1 succinate 

dehydrogenase 

(ubiquinone) 

1137 GL50803_92246 62.8 6.00E-11 - 

4.2.1.2 fumarate hydratase 1807 GL50803_14259 84 5.00E-18 - 

1.1.1.37† malate 

dehydrogenase 

1349 GL50803_3331 659 0 B, E 
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Figure S2. TCA cycle enzymes in Giardia 

 
Colouring key is same as Figure S1. The bright blue box indicates this part of the pathway is also 

part of the glycolysis pathway in Figure S1. The template image was downloaded from KEGG. 
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S3. Enzymes of oxidative phosphorylation in Giardia 

EC Name of the 

enzyme 

#sequences 

in KEGG 

Best candidate Bit-

score 

E-value Domain 

akin to 

Complex I 
1.6.5.3 NADH 

dehydrogenase 
13702 12 proteins 1080 0 B, E, A 

1.6.99.3 NADH 
dehydrogenase 

3956 GL50803_33769 385 3.00E-
108 

B, E, A 

1.6.99.5 NADH 
dehydrogenase 
(quinone) 

3020 GL50803_14058 83.6 1.00E-16 - 

Complex II 
1.3.99.1 succinate 

dehydrogenase 
4118 GL50803_39312 42.4 3.00E-04 - 

1.3.5.1 succinate 
dehydrogenase 
(ubiquinone) 

1137 GL50803_9698 61.2 9.00E-12 - 

Complex III 
1.10.2.2 ubiquinol-

cytochrome c 
reductase 

1838 GL50803_39312 42.4 6.00E-04 - 

Complex IV 
1.9.3.1 cytochrome c 

oxidase 
4440 GL50803_103783 38.1 0 - 

ATP synthase 
3.6.3.14 F-type H+-

transporting ATPase 
14587 21 proteins 1800 0 P, E 

3.6.3.10 H+/K+-exchanging 
ATPase 

87 GL50803_96670 2665 1.00E-
170 

E 

3.6.3.6 H+-transporting 
ATPase 

196 4 proteins 590 0 E 

Others 
3.6.1.1 inorganic 

pyrophosphatase 
1831 3 proteins 1418 5.00E-05  

2.7.4.1 polyphosphate 
kinase 

703 GL50803_8174 42.4 3.00E-04 - 

  



 

144 

 

S4 Perl script used 

Using this Perl script, the user can fetch sequences from all organisms available in 

KEGG belonging to a particular EC number. This script requires the “genes.pep” file 

downloaded from KEGG. Note that future KEGG versions may modify this file and 

thus the script will also need modification should this occur. 

use strict; 

use warnings; 

my $ec = ""; ##add the correct EC number inside the quotation marks.  

my $output = "$ec.txt"; 

open (OUTPUT, ">$output") or die "output file not opened"; 

my $database = "D:\\Kegg maps\\all genes in kegg\\genes.pep"; 

open (DATABASE, "$database") or die "DATABASE file not opened"; 

my $quotedec= quotemeta($ec); 

while (<DATABASE>) { 

 if ($_ =~ /^\>/) { 

  if ($_ =~ /$quotedec\D/){ 

  $found = 1; 

  } 

  else {$found = 0;} 

 }  

 if ($found == 1) {  

 print OUTPUT "$_";  

 } 

 } 

close DATABASE; 

close OUTPUT; 

#double check how many sequences were found 

open (OUTPUT, "$output") or die "output file not opened"; 

my $seqcount = 0; 

while (<OUTPUT>) { 

 if ($_ =~ /^\>/){ 

 $seqcount ++; 

 } 

} 

print "total of $seqcount sequences in $output"; 
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Chapter 5: Non-coding RNAs of Giardia 

and Trichomonas and their 

relationship to ESPs 

5.1 Introduction to small ncRNAs 

The occurrence of ESPs and RNAi are both thought to represent ancient mechanisms, 

and both appear to be present in all main branches of eukaryotes. Have they both existed 

since the last common ancestor of eukaryotes? This chapter will investigate if there is 

any correlation between ESP and genes possibly regulated by RNAi. 

RNAi is a system by which RNA is used to control the expression of genes. RNAi 

usually involves two types of non-coding RNA (ncRNA) molecules, micro RNA 

(miRNA) and small interfering RNA (siRNA) (other types of small ncRNAs such as 

piRNAs, tasiRNAs will not be discussed in detail here). RNAi is a typical eukaryotic 

feature, and has been found in most branches of eukaryotes. There are some lineages 

that have lost their RNAi proteins but some still maintain some form of ncRNA-based 

regulation. For example, Saccharomyces cerevisiae does not have the Dicer-like RNases 

nor Argonaute, but it does have ncRNAs that act in the regulation of its genes 

(Drinnenberg et al. 2011). Therefore the existence of RNAi appears universal in 

eukaryotes. Although RNAi (using Dicer and Argonaute proteins) as such does not exist 

in prokaryotes, bacteria do have a comprehensive small RNA network system which 

does have some similarities to the eukaryotic RNAi (Collins 2011).  

Typical miRNAs are ~21-22 base pair (bp) single stranded RNA (Carrington et al. 

2003), and siRNAs are about 21-26 bp double stranded RNA (Hamilton et al. 2002). 

The miRNAs and siRNAs are processed in a similar manner (Figure 1). The siRNA 

precursors (pre-siRNAs) are normally double stranded RNAs that are transcribed by 

RNA dependent RNA polymerase 2 (RDR2) and RDR6 by using single stranded target 

RNAs as templates. The pre-miRNAs are produced from the transcription of a genomic 

locus independent of the target locus by DNA dependent RNA polymerase II (Williams 

et al. 2005), and the precursor molecules usually form double-stranded RNA by 

intramolecular pairing (Ambros et al. 2003). The RNAs precursors are then cleaved into 
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20 to 25 nt RNAs by Dicer or Drosha, which are RNase II family endonucleases in the 

cytoplasm (Carrington et al. 2003).  

 

After cleavage by Dicer, the miRNAs and siRNAs are incorporated into 

ribonucleoprotein particles which assemble to form the RNA-induced silencing 

complex (RISC). RISC unwinds the RNA duplex, and usually only one strand is active. 

The single-stranded siRNA or miRNA guides the RISC complex to the target mRNA, 

and it is strongly bound to the Argonaute protein which then cleaves the target mRNA. 

The cleaved mRNA is then recognised as aberrant and destroyed (see Figure 1). In 

metazoans the miRNA target sites are in the 3’ untranslated regions (UTR) of the 

mRNA (Bartel 2009); in plants targets can be located in the 3' UTR but are more often 

Figure 1. Micro RNA and siRNA mechanism of action 

 
Figure modified with permission from “The Epigenetics of non-coding RNA” Chapter in The 

Handbook of Epigenetics (Collins et al. 2011). 
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found in the coding region itself (He et al. 2004), and there are also studies suggesting 

the target sites reside on some promoter regions (Collins 2011). Small interfering RNAs 

are structurally related to miRNA and act via incomplete complementary base-pair 

interactions with a target mRNA. The siRNA can also act in RNAi-related pathways, 

such as in an antiviral mechanism where it binds to foreign DNAs causing cleavage and 

degradation of these DNAs (Ahlquist 2002). 

With the completion of genomes from Giardia lamblia and Trichomonas vaginalis, we 

can now use genomics to analyse the RNAi systems in these basal eukaryotes. Giardia 

and Trichomonas are both anaerobic eukaryotic parasites (Keeling et al. 2005), yet they 

are separated by a long evolutionary distance (Hampl et al. 2009), making them 

comparable yet distant models to study. Giardia and Trichomonas both have eukaryotic 

specific RNAs such as snoRNAs (Yang et al. 2005; Chen et al. 2007), spliceosomal 

snRNAs (Chen et al. 2008; Simoes-Barbosa et al. 2008), and RNase P (Marquez et al. 

2005). Dicer and Argonaute homologues have also been identified in Giardia (Dicer: 

GL50803_103887; Argonaute: GL50803_2902; neither were ESPs because they have 

no homologues in some eukaryotes such as Schizosaccharomyces) (Saraiya et al. 2008) 

and Trichomonas (Dicer: TVAG_491480; Argonaute: TVAG_463390 and 

TVAG_419780; again neither were ESPs) (Carlton et al. 2007). Giardia is also well 

known for its large abundance of antisense RNAs (Ullu et al. 2005; Teodorovic et al. 

2007). Therefore, the presence of other basic small RNAs such as miRNAs and siRNAs 

in the two parasites is expected. Giardia and Trichomonas may also possess some 

different RNA processing components from those found in other eukaryotes (Chen et al. 

2007). As an example, MacRae et al. suggested RNA fragments cleaved by Giardia 

Dicer are slightly longer than the typical miRNA at about 25-27 bp long (MacRae et al. 

2006). 

Investigating the different classes of Giardia and Trichomonas ncRNAs involves an 

interesting field to study. Researchers at Massey University, Palmerston North are 

currently investigating the evolution of ncRNAs by using RNA data from these two 

organisms (Chen et al. 2007; Chen et al. 2008; Collins et al. 2009). In 2008, Illumina 

Solexa sequencing and genome wide analysis of small RNAs from Giardia and 

Trichomonas were performed. From this sequencing data, Chen et al. identified 10 

miRNA candidates from Giardia and 11 from Trichomonas (Chen et al. 2009). These 

candidates were named Gims and Tvms respectively. In addition, Chen et al. also 
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characterised five unusual long tandem repeated double stranded RNAs which were 

named Girep-1 to Girep-5. The sequence alignment confirmed these five RNAs belong 

to the same group, and they share high degrees of sequence similarity with a number of 

variant-specific surface proteins (VSPs). VSP gene expression is crucial for the surface 

antigenic variation of Giardia trophozoites. By displaying different VSPs on the 

surface, Giardia is able to evade the host’s immune system (Nash et al. 2001). Chen et 

al. suspected Gireps are precursor siRNAs and have strong potential to be involved in 

regulation of VSP expression. Other research clarified the annotation of RNase P and 

RNase MRP RNA as well as identifying examples of the H/ACA class of small 

nucleolar RNA (snoRNAs) (Chen et al. 2011). 

In this chapter, the same Illumina sequencing data was re-analysed to further investigate 

the classes of small RNAs and especially how they relate to ESPs. The idea was to 

undertake preliminary data mining to uncover small RNA groups then for myself and 

my supervisor to apply that information to our different interests. The method in brief 

included removing known adaptor sequences from the sequences to yield a dataset of 

15-29 nt single stranded RNAs. The sequences were then mapped to the organisms’ 

genomes to identify possible miRNAs and siRNAs. This study involved Perl and 

various other bioinformatics data mining tools to find potential RNAs targeting sites, 

and evaluation of these with respect to ESP genes. This idea was then to combine the 

ESP results with the Giardia RNA Illumina results, searching for ncRNAs affecting 

ESPs. Some correlation between ncRNAs and ESPs was expected, because both are 

thought to be ancient mechanisms. It is hoped that the results will tell us more about the 

RNAi in deep-branching eukaryotes, as well potentially some insights on how ESPs are 

regulated.  

 

5.2 Methods 

5.2.1 Sample preparation and sequencing 

Giardia was grown and the DNA collected prior to this study by Dr. Sylvia Chen in the 

following manner: Giardia lamblia (WB strain) trophozoites were grown in TY1-S-33 

growth media at concentration of 1.4x107 cells/ml and collected by centrifugation. 

Samples of total RNA were prepared using Trizol (Invitrogen) according to the protocol 

provided by the manufacturer. 
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Trichomonas vaginalis was grown in Trichomonas broth (Fort Richard) at 37 °C for 3–4 

days. The culture was harvested by centrifugation. Growth media was removed and 

cells were resuspended. An equal volume of phenol:chloroform (5:1, pH 5) was added 

to the suspension, and the mixture was vortexed for 10 seconds. After that phases were 

separated by centrifugation, and the upper phase was further extracted twice with 

phenol:chloroform, then once with chloroform. Finally, total RNA was precipitated by 

adding LiCl to a final concentration of 0.2 M and 3 volumes of 100% EtOH, and 

incubated at -80 °C for 1 hour. 

For sequencing, 10 μg of total RNAs were separated on a 15% denaturing acrylamide 8 

M urea gel and RNAs ranging from 10 to 200 nt were cut out from the gel and prepared 

according to Illumina’s small RNA preparation protocol. 8 pmol of Giardia cDNA and 

12 pmol of Trichomonas cDNA were used for sequencing on an Illumina Genome 

Analyzer for 35 cycles. The sample preparation and sequencing steps were performed 

by Dr. Sylvia Chen and technicians of Massey University Genome Service (Chen et al. 

2009). 

5.2.2 Adaptor trimming and mapping 

The collection of our small RNA datasets from Giardia and Trichomonas is 

summarised in Figure 3. For each short sequence from the data, adaptor sequences were 

removed from the short-read sequences using the FastX-toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/, see Figure 2 for the reason for adaptor 

sequences to be removed).  

Sequences were initially trimmed to 34 nt. Sequences of ≤ 14 nt or ≥ 30 nt were 

discarded due to possible trimming errors, the remaining 15-29mers were our small 

ncRNA candidates. To aid in mapping the dataset was collapsed to unique sequences 

also using the FastX-toolkit. However, many of these sequences were found to be 

tRNAs and rRNA fragments so mapping to known tRNAs and rRNAs ensured that 

these sequences were removed. The unique 15-29mers were then mapped to the 

organism’s genome respectively allowing two mismatches for strain differences by 

mapping software Bowtie (Langmead et al. 2009). The mapping steps were performed 

prior to this study by Dr Lesley Collins. Genome coordinates of mapped sequences have 

been obtained and a MySQL database was constructed containing small 15-29mer 
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RNAs. The database also contains sequence information as well as the genome location 

of RNAs. 

 

For the Giardia, the RNAs appeared to form two length peaks. Sequences of the two 

peaks 15-18 nt (by my supervisor Lesley Collins) and 26-27 nt (by myself) were 

collected for detailed analysis. Genome sequences and annotation were obtained from 

GiardiaDB (http://www.giardiadb.org) using Giardia intestinalis version 2.3 

(Assemblage A, WB strain), and TrichDB (http://www.trichdb.org) using Trichomonas 

vaginalis version 1.2. The 26-27 peak was considered to be those sequences ideally 

sized for the Giardia Dicer protein so were analysed for potential miRNAs which could 

regulate gene expression. The 15-18 peak is unusual and is currently under 

investigation. A manuscript is currently in preparation and will include results from 

both studies. I did not expect to map ‘all’ miRNAs or identify in detail any miRNAs but 

to look as a first pass, at the trend of how these RNAs map against ESPs. A summary of 

the analysis procedure is presented in Figure 3. 

Figure 2. Why adaptor trimming was performed 

A: A ncRNA sequence (green) with attached 5’ adaptor (blue) and 3’ adaptor 

B: when the ncRNA sequence is longer than the cycles (35 in this case) performed by the sequencer, 

only the first 35 bases are read. 

C: when the ncRNA sequence is shorter than the cycles performed, the sequencer will read through the 

3’ adaptor. Therefore the adaptor sequences have to be removed to obtain the true sequence of the 

insert. 
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5.2.3 Finding mapped RNA targeting sites 

As miRNAs can affect other RNAs by complementary pairing, we can find potential 

target sites by locating ncRNA sequences complementary to genes and gene regulatory 

regions. The table containing unique RNAs mapped to Giardia genome and Giardia 

coding regions table (9747 genes, containing 3846 deprecated genes) were merged into 

a single table, containing information on genomic coordinates of both RNAs and coding 

regions. The rearrangement of results by genomic coordinate was performed using 

MySQL, and the result set was exported to text files. By using Perl scripts, RNAs that 

are in the vicinity of coding regions were pulled out, and divided into six categories 

according to strand and position in relation to the gene (Table 1).  

The mapping results show a 26mer and 27mer peak for Giardia RNAs. These 26mers 

and 27mers were subjected to the analysis above in order to find RNAs of this length 

adjacent to or inside of coding regions. The protein products of the coding regions these 

Figure 3. Summary of analysis procedure 
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RNAs associated with, have also been analysed to see if there is any trend in the 

proteins’ function. This step was not performed for Trichomonas RNAs due to the 

complete lack of a 26mer and 27mer peak. 

Table. 1 list of categories for mapped RNAs 

Category Strand Location in relation to coding region 

1 sense Upstream or partially overlap 

2 sense Inside of the gene 

3 sense Downstream or partially overlap 

4 antisense Upstream or partially overlap 

5 antisense Inside of the gene 

6 antisense Downstream or partially overlap 

 

5.3 Results and Discussion  

5.3.1 Summary of number of RNAs yielded after each step 

Illumina sequencing of small RNAs of Giardia and Trichomonas was performed. After 

the initial trimming of the adaptor sequences, several filtering and mapping steps were 

performed for the interpretation of results. The yield of RNA sequences after each step 

are summarised by Table 2. 

Table 2. Number of Giardia and Trichomonas RNAs remained after each step 

Step # Giardia RNAs # Trichomonas 

RNAs 

Trimming adaptor sequences to 14-34mers 327899 327980 

Selecting 15-29mers as candidates 208257 210529 

Use only unique results (i.e. delete repeated sequences) 88758 92452 

Delete sequences mapped to tRNAs and rRNAs 74647 90384 

Sequences mapped to organism’s genome 34196 8562 

26mers and 27mers 5447/5588 NA 

 

5.3.2 Small RNAs of Giardia 

The adaptor sequence from raw sequence data was removed, resulting in 327899 RNAs 

between 14-33 nt long. However, sequences of ≥30 nt may be possible trimming 
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remnants: because the sequencer only performed 35 cycles, RNAs longer than 33 nt will 

only have their first 33 nt sequenced, appearing to be 33 nt long (or a little bit shorter). 

Sequences of 14 nt were also discarded because they were too short for effective 

mapping (15nt being the shortest effectively used in mapping, personal communication 

L. Collins). Hence 14 nt or ≥ 30 nt were not used, leaving 15-29mers to be analysed in 

this study. This length range later did prove to be sufficient for the subsequent analyses. 

A new database containing 208257 oligonucleotide sequences between 15-29 bases 

long was constructed. The 5’nucleotide (i.e. the first nucleotide from the 5’ end of each 

RNA) was also analysed, because it may offer hints to the functions of these RNAs 

and/or how they are processed (Drinnenberg et al. 2011). The sequence length and 5’ 

nucleotide distributions were performed for RNAs between 15-29 nt in length (Figure 

4). 

 

The graph peaked at length of 22-23, which is the expected length of miRNA in 

metazoan. The most abundant 5’ nucleotides are As and Us, which is expected for 

miRNA and siRNA. There is a large amount of 22 nt long nucleotide with G at 5’ end. 

This is unusual as G is the least abundant 5’ nucleotide in small RNAs of other lengths. 

The small RNA “GTGGAGACCGGGGTTCGACTCC” occurred 7075 times, has 

contributed to this bias. Another sequence, “TCCGTGATAGTTTAATGGTCAGAA-

Figure 4. Length and 5’ nucleotide distribution for Giardia ncRNA 
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TGGGC” and its truncated forms have also occurred >10,000 times. When these 

sequences were BLASTed at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi), they both 

matched to nucleotides from a number of yeast species, including Saccharomyces 

cerevisiae. This indicated possible contaminations, which is apparently common with 

ncRNA sequencing with the earlier kits. By mapping the data to the organism’s 

genome, the contaminant sequences were effectively removed (see sections 5.3.4 and 

5.3.5). 

5.3.3 Small RNAs of Trichomonas 

The adaptor sequence from the Trichomonas sequencing data was trimmed off leaving 

sequences to 14-34 nt, with 15-29 nt RNAs selected for further analysis. The small 

RNA database contained 210529 oligonucleotide sequences between 15-29 bases long 

was constructed, and the sequence length and 5’ nucleotide distributions were 

performed (Figure 5). 

 

The graph is remarkably similar to that of Giardia’s. It peaked at length of 22-23 nt. 

The most abundant 5’ nucleotides are As and Us. Sequences “GTGGAGACCGGGG-

Figure 5. Length and 5’ nucleotide distribution for Trichomonas ncRNA 
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TTCGACTCC” and “TCCGTGATAGTTTAATGGTCAGAATGGGC” again occurred 

~10,000 times each indicating similar contamination. 

5.3.4 Giardia mapping results 

For both Giardia and Trichomonas, sequences that occurred multiple times were 

collapsed, and only unique results were used from this point onwards. This aids in the 

mapping process and subsequent interpretation of results. The 88758 unique sequences 

were mapped to rRNAs and tRNAs first, and 74647 sequences that were not mapped 

were further to mapped against the Giardia genome (Table 2). This step is performed to 

make sure that the small RNAs were not remnants of rRNA and tRNAs, and after this, 

the remaining RNAs were mapped to the Giardia genome to eliminate any other 

contaminant sequences.. There were 34196 sequences successfully mapped to the 

Giardia genome, and the sequence length and 5’ nucleotide distributions were analysed 

(Figure 6). 

 

The Giardia small RNA distribution graph shows two peaks, one “larger peak” around 

26-27 nt in length, and an “ultra small peak” around 15-18 nt in length. The 5’ 

nucleotide distribution has been fairly consistent throughout different sequence lengths, 

Figure 6. Length and 5’ nucleotide distribution for mapped Giardia ncRNA 
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with Cs being the most common, followed by As and Gs; Us are the least common 5’ 

nucleotides. This 5’ nucleotide distribution is also quite similar to overall nucleotide 

distribution of the sequenced RNAs (see section 5.3.6). 

The “larger peak” contains 26-27mers, which is with the similar length range to 

MacRae et al.’s finding that RNA fragments cleaved by Giardia Dicer are about 25-27 

bp long (MacRae et al. 2006); the function of the “ultra small peak” is unclear, as it has 

only been reported previously in human and referred to as “unusually small RNAs 

(usRNAs)” (Li et al. 2009). The human usRNAs could possibly be miRNA 

degradation-like products or can be non-miRNA-derived. The two peaks are likely to 

represent two separate RNAi mechanisms and is interesting work for the future. 

5.3.5 Trichomonas mapping results 

The 92452 unique Trichomonas sequences were mapped to rRNAs and tRNAs first, 

then the 90384 sequences that were not mapped were further mapped against the 

Trichomonas genome (Table 2). There were only 8562 sequences successfully mapped 

to the Trichomonas genome, which is significantly less than that of Giardia. The 

sequence length and 5’ nucleotide distributions were analysed (Figure 7). 

 

The distribution graph shows only the “ultra small peak” 15-18 nt in length. This peak 

was also observed in Giardia RNAs. However the 26-27 nt “larger peak” was not 

observed from the Trichomonas data. The absence of the larger peak suggests that the 

Figure 7. Length and 5’ nucleotide distribution for mapped Trichomonas ncRNA 
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“ultra small peak” is not a result of secondary processing of larger miRNA products like 

human usRNAs were suggested to be (Li et al. 2009). The 5’ nucleotide distribution is 

similar to that of Giardia, with highest proportion of Cs, followed by As and Gs, Us are 

the least common 5’ nucleotides. Although the Trichomonas genome is not completely 

assembled, most of the unmapped regions are repeat and transposon regions. Whether 

the genomically-unmapped sequences do in fact lie in these regions and are of different 

lengths is as yet unknown. 

5.3.6 GC content 

The total GC content of the mapped RNAs was analysed for any trends (Table 3). The 

GC content of all annotated transcripts and the entire genome from the organisms were 

also calculated as references. The results indicate all sequenced small RNAs, including 

the peaks (Giardia and Trichomonas 15-18mer peak and Giardia 26-27mer peak) have 

a high GC content. 

Table 3. GC content of Giardia and Trichomonas small RNAs 

 A T G C GC content 

Giardia      

26-27mers 26.16% 18.63% 30.60% 24.62% 55.21% 

15-18mers 23.94% 24.31% 28.83% 22.92% 51.75% 

All unique mapped sequences 25.90% 19.31% 30.77% 24.03% 54.80% 

All (non-unique) mapped and unmapped 

sequences 24.25% 19.94% 32.77% 23.04% 55.81% 

Annotated transcripts (GiardiaDB1.3) 26.61% 24.25% 24.26% 24.88% 49.14% 

Entire genome (GiardiaDB1.3) 25.42% 25.33% 24.62% 24.63% 49.25% 

Trichomonas      

15-18mers 24.97% 25.04% 27.09% 22.38% 49.47% 

All unique mapped sequences 26.26% 25.09% 27.09% 21.57% 48.66% 

All (non-unique) mapped and unmapped 

sequences 24.43% 19.99% 32.69% 22.89% 55.58% 

Annotated transcripts (TrichDB1.1) 36.21% 28.24% 17.70% 17.84% 35.54% 

Entire genome (TrichDB1.1) 33.57% 33.60% 16.41% 16.41% 32.83% 

 



 

158 

 

5.3.7 Determination of whether the “ultra small peak” of Giardia is a 

result of secondary processing of longer RNAs 

Both Giardia and Trichomonas have the “ultra-small peak” containing RNAs in the size 

range of 15-18 nt. The aim here was to investigate whether the “ultra-small peak” was 

associated with the secondary processing of siRNAs (Baulcombe 2007), and thus we 

would find the presence of shorter sequences (16-17mers) within our longer sequences 

(include 25-27mers, 25mers were also included because MacRae et al.’s finding 

suggested that RNA fragments cleaved by Giardia Dicer are about 25-27 bp long 

(MacRae et al. 2006)) .The analysis were done using the genomic coordinates and with 

the assistance of Perl scripts. The results did not show significant overlaps between the 

shorter RNAs and the longer RNAs, indicating there is limited evidence of the “ultra-

small peak” being secondary siRNA products (Table 4), thus it appears that the two 

peaks represent are two separate mechanisms. However, the “ultra small peak” is still 

being investigated as to whether it contains breakdown fragments from other longer 

ncRNAs such as snoRNAs. 

Table 4. Number of overlapping 16 and 17mers 

 16mers 17mers 

Total mapped sequences of this length 2030 2068 

sense overlap sequences 174 (8.6%) 194 (9.6%) 

antisense overlap sequences 117 (5.8%) 130 (6.4%) 

 

5.3.8 Possible target sites of Giardia 26 and 27mers  

The two peaks in the mapped Giardia sequence length distribution graph (see Figure 6) 

might be evidence of two different mechanisms of RNAi, therefore further analysis of 

their properties is necessary. The 26mers and 27mers of Giardia (11035 sequences in 

total) were subjected to more analysis by me; and the analyses performed on 15-18mers 

were done by my supervisor Dr. Lesley Collins (and thus not reported in this thesis). 

Although the ncRNAs are transcribed elsewhere, the target sites are usually in 

proximity to the target gene (3’UTR regions are commonly suggested (Bartel 2009; 

Chen et al. 2009)). RNA interference is achieved by means of complimentary binding 

of ncRNA to the mRNAs. Therefore during mapping, the ncRNAs can be mapped to 

two places: the loci where they are transcribed and the target sites because they will be 
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complimentary to the coding strand. A parameter was thus set during the mapping 

procedure so that if RNAs are mapped to multiple loci, all of these loci will be shown. 

This analysis will give insights on where the target sites for the 26-27mer RNAs, and 

what genes are potentially regulated by the RNAs. The number of ESPs with RNAs in 

proximity were then analysed to look for any connection between RNAi and ESP. 

The genome coordinates of 26mers and 27mers were compared with those of protein 

coding genes in the following manner. RNAs within 100 bp from 5’ and 3’ end of the 

gene, as well as RNAs located inside of the gene from both sense and antisense strand 

have been identified. Table 4 summarises the number of 26mers, 27mers and genes 

found for each region. The Giardia genome database GiardiaDB listed many 

“deprecated” gene products (3846 deprecated genes within total of 9747 genes), and the 

functional genes have been recorded as a separate column in Table 5. 

Table 5. Loci of 26 and 27mers in relation to genes 

Strand Location in relation to coding 

region 

# RNAs # all genes # functional 

genes 

# ESPs 

sense Upstream or partially overlap 635 104 99 3 

sense Inside of the gene 4800 464 409 27 

sense Downstream or partially overlap 758 142 105 4 

antisense Upstream or partially overlap 555 100 62 4 

antisense Inside of the gene 3354 224 152 5 

antisense Downstream or partially overlap 642 119 85 1 

 

In general, there are more RNAs on the sense strand than antisense strand, and possibly 

there are some mRNA degradation products here. There are large numbers of RNAs 

located inside the coding region of the gene, but this could be merely a statistical issue, 

because the average coding region length is 1064 bp, whereas the searched for upstream 

and downstream RNAs only carried on for 100 bp from the start or end of the coding 

region. The number of RNAs on the 3’ antisense is only slightly larger than on the 

5’antisense region. Given that these two sites are the most likely possible target binding 

sites, the conclusion cannot be made whether RNAs target sites are typically in the 3’ 

UTR of the mRNA (Bartel 2009), coding region itself (He et al. 2004) or the promoter 

region (Collins 2011). There is as yet no data from the Giardia genomics community on 

this issue (personal communication L. Collins). 
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The functions of genes with small RNAs in proximity were also analysed, and there was 

no obvious trend in gene functions. This is partly due to the annotation of the Giardia 

genome, as more than half of gene products are listed as “hypothetical proteins”. There 

is no significant higher or lower proportion of ESPs in the genes with 26-27mers in 

vicinity. 

The same Illumina data was also assembled into ‘contigs’ using a consensus assembly 

(performed by Dr. Sylvia Chen in 2008) (Chen et al. 2009). From the assembled 

contigs, Dr Sylvia Chen predicted 10 Giardia miRNA candidates and Trichomonas 11 

miRNAs, using a strategy of sequence similarity and searching miRNAs by definition 

(Chen et al. 2009). These miRNA candidates were named Gim1 to Gim10 and Tvm1 to 

Tvm11, respectively. The target genes of these miRNAs were also predicted by Dr 

Sylvia Chen. I have compared these putative target genes with the ESP dataset, to find 

out if any of these genes were ESPs. The results showed that none of the predicted 

target proteins of the Gims or the Tvms targets were ESPs. So results so far from both 

analyses suggest that there is no real relation between RNAi and ESP genes, unlike 

what was hypothesised. However, the work in this area is ongoing. 

The experiment to locate RNAs in location of the gene using genome coordinates is a 

new method. RNAs could map to their actual sites where they are transcribed or the site 

where it interacts with gene transcripts (mRNAs). The miRNA acts on the gene and can 

have mismatches in the binding so it is possible that this method here for Giardia might 

not allow enough mismatches for the RNA to be mapped to where it binds to the mRNA 

depending on whether mismatches are required (as for plants) or not (as for humans). 

Overall, this analysis did not show ESPs to have more association with 26-27mers, 

Gims or Tvms than other proteins do. Searching for eukaryotic signature RNAs (ESRs) 

can be performed in future, and this will form parallel work to the current ESP analysis. 

However, more “ribo-genomes” have to be completed before this can take place. 

 

5.4 Conclusion 

High throughput sequencing of RNAs <100 nt length for parasites Giardia lamblia and 

Trichomonas vaginalis was re-analysed. From the sequencing data RNAs between 15-

29 nt long were selected and shown to have a high GC content. Examination of Giardia 

small RNA data uncovered two length peaks: a larger peak around 26-27 nt long, 



 

161 

 

possibly cleaved by Dicer (MacRae et al. 2006); the other an “ultra small peak” 

containing RNAs 15-18 nt long. Only the “ultra small peak” was present in 

Trichomonas. The two length ranges of RNA are possibly two different groups of 

ncRNA which are cleaved through different mechanisms. The 26-27 nt sequences could 

be considered possible miRNAs because this is the range that Dicer has been 

functionally shown to process (MacRae et al. 2006). The 15-18 nt long peak has only 

been shown in humans, and they could be potential siRNAs or cleavage products from 

an as yet unknown mechanism (Dr Lesley Collins, personal communications). This 

study has confirmed the two length types of small RNAs from Giardia and the absence 

of one of these types from Trichomonas, which will guide further studies to unravel the 

actual RNAi mechanisms of the two deep branching eukaryotic parasites. 

There appeared to be no connection between ESPs and genes that small RNAs regulate, 

which indicate the two arose separately, or the RNAi mechanism have evolved to much 

for the two to have any apparent connections. This study is a part of a larger project 

currently undergoing in Massey University in RNA systems biology. A manuscript is 

currently in preparation that will include work from this chapter. 
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Supplementary material for Chapter 5 

S5.1 Abstract for 3rd Next Generation Sequencing Conference 

 

 
Small and Ultra-small RNAs from Parasitic Protists – more needles from the 

haystack of NGS data 

Jian Han1 and Lesley Collins2 
1Institute of Molecular BioSciences, and 2Institute of Fundamental Sciences, Massey 

University, Palmerston North, NZ. 

 

 

ncRNAs abound within eukaryotic protists such as Giardia lamblia and Trichomonas 

vaginalis, but are not well characterized. From high-throughput sequence data of small RNAs 

(Illumina small RNA length 36 nt) we have uncovered different ranges of small RNAs 

attributed to the RNAi mechanism in these organisms. There are similarities and differences 

between Giardia and Trichomonas siRNAs which is likely to have a direct reflection on their 

RNAi-based protein structure. We will also discuss further work involving Trichomonas 

expression data and examination of how small RNAs from these protists may be interacting 

with their host dsRNA viruses. 

 

Note: Both Jian Han and Lesley Collins presented.  

3rd Next Generation Sequencing 

Conference 

23-24 August 2011 

Palmerston North Convention Centre 

Palmerston North 
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S5.2 Abstract for IV International Giardia and Cryptosporidium 

Conference 

 

ncRNAs and their evolution in Giardia lamblia 
Lesley J. Collins1, Jian Han2 and David Penny2 

1. Institute of Fundamental Sciences, Massey University, Palmerston North.  
2. Institute of Molecular BioSciences, Massey University, Palmerston North, 

Correspondence to: l.j.collins@massey.ac.nz 

 

ncRNAs include regulatory RNAs such as miRNA and siRNA, but also processing RNAs such 

as RNase P, RNase MRP and snoRNAs. These ncRNAs do not exist on their own, but interact 

in complex RNA-protein networks that link transcription, translation, gene regulation and the 

cell cycle. We collectively call these networks the RNA-infrastructure. Over the last few years 

we have used high-throughput sequencing of some protists to aid our understanding of how 

RNAs interact within the cell, and how ncRNAs and their networks evolve throughout 

eukaryotes. Here we present findings from our work with ncRNAs from the Diplomonad 

Giardia lamblia.  

We have used RNA sequencing to investigate some very different classes of ncRNA from 

Giardia. Our study of snoRNAs (C-D box and H/ACA classes), RNase P and RNase MRP, 

have highlighted defining structural features to aid further classification. We confirm that in 

Giardia we see a peak of sequence lengths 25-27nt believed to be miRNAs (compared to 21-

22nt in humans), but we also find a peak of RNAs believed to be siRNAs in the 15-18nt range. 

These ultra-small RNAs have been previously found in humans, but Giardia usRNAs have 

different features most likely associated to the different domain structure of Giardia RNAi 

proteins Dicer and Argonaute. This leads to interesting questions on how the RNAi system in 

Giardia may have its own unique characteristics.  

Overall, we see remarkable differences in the lengths and structure of ncRNAs from Giardia to 

those displayed in ‘model’ eukaryotes. We also demonstrate that high-throughput sequencing is 

a valid option for protist ncRNA identification on a genomic scale. 

Note: L. Collins presented on behalf of all authors.  
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Final words 

This project is an in-depth study on eukaryotic signature proteins (ESPs), with a focus 

on Giardia lamblia, a single celled eukaryotic anaerobic parasite that causes intestinal 

disease throughout the world. New Zealand has a higher incidence rate of giardiasis 

than other developed countries with the annual rate of 44.1 notified cases per 100,000 

population. Giardia is a parasite that is rather unlike other eukaryotes, which is why it 

has been difficult to treat infection effectively. New drugs are needed to treat giardiasis, 

but in order to effectively develop them, an understanding of its metabolism and how 

Giardia has evolved in a very different way to the host is necessary. Thus analysing the 

phylogeny and metabolism of the organism became very important topics during my 

work. ESP datasets can guide phylogenetic or metabolic studies and aid our way on the 

long path towards discovering potential drug targets.  

The ESPs datasets for three parasites, Giardia lamblia, Trichomonas vaginalis and 

Plasmodium falciparum, as well as their host human have all been re-calculated. These 

new datasets are significantly advanced from previously calculated datasets due to the 

use of better quality and larger numbers of genomes for comparison. The definition of 

ESP however is not black or white, as there are issues with distant non-recognisable 

homologues and possible convergent evolution, and there will be some “fringe” ESPs 

(e.g. ESPs that do have some very distant homologues in prokaryotes but this detection 

falls below the cut-offs set in this study). With the new datasets I aimed to find the most 

precise list of ESPs that delineates eukaryotes from prokaryotes (archaea and bacteria). 

Through the calculation of the ESP datasets for Giardia and other organisms, a detailed 

protocol was developed. This is important as future databases will be updated and novel 

organisms’ genomes will become available, and these will consolidate and further 

improve the list of ESPs. 

The ESP calculations have already laid the groundwork for other studies. ESPs are an 

important resource to calculate and clarify ancestral proteins which are important 

differences between eukaryotes and prokaryotes. There is a potential for drug targeting 

for prokaryotes using this dataset as the enzymes here delineate metabolism that is 

different between the two groups (eukaryotes and prokaryotes). The ESP database is 

still currently being used to look at how ancient proteins and ancient RNAs interact in 
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networks (Chapter 5 and part of a larger project). Furthermore, the ESP data is also 

currently being used in a Marsden-funded research project looking at ancestral 

metabolism. 

During my study the differences between the ESP datasets from host and parasites were 

briefly analysed in a phylogenetic and metabolic manner, where ESPs from the human 

genome were compared with ESPs from parasites. Gene loss appears to dominate 

parasitic evolution (Smid et al. 2008), and some ESPs were missing from parasites, as 

indicated by GO annotations. Examples of ESPs likely to be missing are those that are 

involved in mRNA processing, RNA splicing, transmembrane transport and regulation 

of transcription. These pathways can hold potential for future drug treatment 

development, since in order for the parasites to deal with the loss, they must have 

alternative pathways. Protein interaction data is much needed and better annotations of 

Giardia genome is also required to identify these alternative pathways. Indeed these 

alternative pathways may be hidden in the mass of “hypothetical proteins” currently 

annotated. In-depth comparisons between the host and parasites’ ESPs can only be 

complete when the annotation for the parasites becomes more complete, GO terms for 

parasite proteins and more protein interaction data becomes available. 

One interesting aspect of ESPs as a set of proteins is their utility in phylogenetic 

analysis. There is a long evolutionary distance between different supergroups of 

eukaryotes, and using ESPs shortens this distance due to their slower rate of evolution. 

Chapter 3 has demonstrated the use of ESPs to analyse the phylogenetic relationships of 

eukaryotes. Two methods, consensus network and concatenating sequences, were 

employed to deal with the large number of discreet protein sequences, with the 

concatenation method being the more useful approach. The Unikonta eukaryotes formed 

clades with convincing bootstrap values. Although the two basal species Giardia and 

Dictyostelium formed long branches, they largely maintained their positions outside the 

main eukaryotic groups as expected. The mammalian phylogenetic relationship showed 

very similar results from published molecular and fossil results, to indicate that ESPs 

are capable of being good candidates for phylogenetic analysis. In future, ESPs could be 

used to attack more complex cutting-edge problems such as truly analysing deep 

phylogenies in detail with many other protists including more members of the 

controversial supergroups Excavata or Chromalveolata. More completed genomes of the 
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organisms in these supergroups, however, are still needed to break the long branches the 

taxa in these groups form at present. Overall, although it was not possible to conduct in-

depth phylogenetic analysis with ESPs due to time constraints, the work done here 

demonstrate that ESPs as a set of proteins could be very useful in future phylogenetic 

projects. 

Basal eukaryotic metabolism is often not well studied and the enzymes are often poorly 

annotated due to an overall lack of funding, and the fact that annotation of protists is 

much harder because they are so different from the other eukaryotes we know more 

about. Chapter 4 has investigated three key sugar metabolism pathways from Giardia 

lamblia by comparing its enzyme sequences to those in the widely used KEGG 

database. The analysis showed that the glycolysis pathway is present as expected but 

not the reverse gluconeogenesis pathway. The TCA cycle and the oxidative 

phosphorylation pathways only have a few enzymes represented in Giardia, which are 

likely to be part of other pathways. ESPs were expected to be present in some of these 

sugar metabolic pathways because Giardia is a eukaryote, and the eukaryotic 

metabolism is different from that of prokaryotes. However, the results suggest that this 

was not the case. Giardia has a few glycolytic enzymes that are conserved in 

eukaryotes, but because these enzymes also have clear prokaryotic (mostly bacterial) 

homologues, they could not be considered ESPs under our definition. Giardia has a 

unique metabolism that has been described as prokaryote-like. Given that many of the 

enzymes investigated here showed more similarity to prokaryotic enzymes than 

eukaryotic ones, this description is well earned. This raises questions as to whether 

these key enzymes hold ancient features in common with prokaryotes (i.e. divergent 

evolution) or reductive evolution has driven these enzymes to mimic prokaryotic 

enzymes (i.e. convergent evolution). With such a large evolutionary distance involved it 

is very hard to decipher which could be more likely. Whatever their origin, these 

prokaryote-like enzymes may be of important interest as new drug targets due to their 

dissimilarity with the equivalent host enzyme. 

Genomics and proteomics is how drugs are developed nowadays. However, the 

emphasis in Giardia research is on diagnosis and treatment, and not metabolism or 

proteomic studies. With little money being invested, complete annotation of the Giardia 

genome is likely to be many years away. Until many more enzymatic assay results 
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become available, annotation is at present the only way to infer function. Chapter 4 has 

developed a way to deal with poor annotations of parasitic organisms to infer metabolic 

function. This procedure simply used BLAST to find homology and KEGG as a way to 

group this homology together. It went further than comparison single proteins and 

looked at proteins in a group as they would be found in a metabolic pathway. This 

method resulted in a putative ‘map’ of a pathway, indicating which enzymes are present 

or absent, and which ones are different from the host (i.e. prokaryote-like). These maps 

can only be considered the “best estimate” of a pathway at present, but they do give us a 

handle on what is actually there in the absence of any hard proteomic assay data. The 

procedure developed in this study can be used to analyse other complicated pathways 

(such as amino acid pathways) of basal eukaryotes in future, and could be used to aid in 

designing which metabolic assays should be performed in future lab work when funding 

becomes available. 

Connecting ESPs and ncRNAs is important because therapeutic applications of ncRNAs 

has been well documented (e.g. (Zender et al. 2003)). The RNA analysis of Giardia and 

Trichomonas has yielded interesting results. Through analysing the length distribution 

of the mapped Giardia and Trichomonas small RNAs, two distinctive length types of 

RNAs have been discovered for Giardia: the “ultra small peak” of 15-18nt and a “larger 

peak” of 26-27nt. The “larger peak” matches that the length of reported Giardia Dicer 

product (MacRae et al. 2006) and we do expect that Dicer and perhaps the putative 

Argonaute protein are involved in the Giardia RNAi mechanism. Interestingly only the 

“ultra-small peak” was present in the Trichomonas data. The characteristics of small 

RNAs of this peak are still to be determined, but they could be potential siRNAs or 

cleavage products from an as yet unknown mechanism. After the analysis of potential 

target genes for the “larger peak”, it appears there is not a significant correlation of 

these genes with ESPs. Also the predicted targets Gims (potential miRNAs discovered 

by Chen et al. (Chen et al. 2009)) also showed no significant correlation with ESPs. 

These results indicate that although both ESPs and RNAi are ancient and eukaryote 

specific, either RNAi does not necessarily play a big role in regulation of ESPs, or the 

mechanism and genes have evolved so that any ancient role is no longer prominent (i.e. 

the ESP genes no longer stand out from the rest). We do expect ancestral regulation 

mechanisms to have had a large effect on ancestral proteins. If there is indeed some 

correlation, then perhaps in future therapies targeting ncRNA regulation of essential 
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proteins can be designed. So far, any detailed connection between ESPs and ncRNA has 

not been found, but more study could either find connections, or unveil why 

connections do not appear between the two.  

For future directions, relating the intron splicing mechanism with ESPs may also 

uncover interesting results. Spliceosomal introns have been demonstrated in both 

Giardia (Nixon et al. 2002) and Trichomonas (Vanacova et al. 2005), and it appears 

that a RNA splice-site motif shared by these two organisms is also found in yeast and 

metazoan introns. It is clear that the splicing mechanism (the spliceosome) is present in 

a common ancestor of Giardia, Trichomonas, yeast, and metazoans (Lynch et al. 2002; 

Collins et al. 2005; Vanacova et al. 2005). In addition, it appears that the ancestral 

mechanism have maintained most of the key components (the small nuclear 

ribonucleoproteins) across all crown eukaryotes (Collins et al. 2005). Any interesting 

pattern in the splicing of ESPs or analysis of ESPs which are involved in splicing could 

harvest meaningful insights to the nature of these ancestral proteins. 

Throughout my study data management has been crucial. This is because a large amount 

of information had to be effectively stored in an interactive platform. MySQL has 

proven to be a very effective data managing system during the project, as data can be 

easily stored and retrieved from tables and databases. Also the use of specific Perl code 

allows Perl scripts to communicate with the MySQL databases and perform designated 

tasks, so that large amounts of data can be processed automatically. Perl programming 

was also used extensively during the project, because it enables the simple but effective 

manipulation of data. The Perl scripts used here have been included in supplementary 

material in each chapter, so that the developed protocols can be used in future research. 

Using these scripts, updated ESP datasets can be readily re-calculated, and new 

databases can be constructed using MySQL, which can incorporate new genomes or 

updated ones when they become available. The database I constructed during my study 

is presently being used by researchers at Massey looking at ancestral metabolism in 

eukaryotes. Several manuscripts are currently being prepared for the new ESP datasets 

and on the RNAi pathway. Also the ESP datasets will be publically available, most 

likely on GiardiaDB. As co-discoverer of the usRNAs in Giardia, I am also working on 

their characterisation, and their inclusion in the EuPathDB protist databases. 
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To conclude, ESPs have shown good potential to be good candidates for phylogenetic 

analysis, for which complex phylogenetic problems can be analysed using the ESP 

approach in future. Giardia metabolic pathways appear to be more similar to those of 

prokaryotes in places, which means that although some enzymes are essential and are 

part of a pathway ancestral to eukaryotes, their prokaryotic similarities mean that they 

cannot be designated as ESPs. Where host and parasites differ in terms of ESPs, are the 

ones present in less studied pathways (such as RNA splicing). Understanding the 

parasitic version of these pathways (or their alternative pathways), can guide the way to 

potential drug targets. The same ESP may be involved in totally different pathways in 

human and in parasites. So how does a highly conserved protein gain, lose or change 

functions? How does the domain change affect this? Future studies could be focused on 

answering these questions and thereby provide more knowledge about these parasites. It 

is possible that with more accurate ESP datasets, that they could act as even better 

guides to pinpoint enzymes that could be further analysed. ESPs are essentially the 

modern equivalents of ancient proteins and not only do they hold clues about our past, 

but can aid our proteomics push towards drug discovery of the future. 
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