Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE DEVELOPMENT AND SIGNIFICANCE OF FUNGI

IN POULTRY REARING SHEDS

A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science in Microbiology at Massey University

Indira A. Mylvaganam

1984

665.12693

(a) I give my permission for my thesis, entitled THE DEVELOPMENT AND SIGNIFICANCE OF FUNGI IN POULTRY ***************************** REARING SHEDS. to be made available to readers in the Library under the conditions determined by the Librarian. (b) I agree to my thesis, if asked for by another institution, being sent away on temporary loan under conditions determined by the Librarian. (c) I also agree that my thesis may be copied for Library use 2. I do not wish my thesis, entitled to be made available to readers or to be sent to other institutions without my written consent within the next two years. Signed Huylvaganam 17 9 Date Strike out the sentence or phrase which does not apply. The Library Massey University Palmerston North, N.Z. The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address. Name and Address Date

SUMMARY

A study was conducted at the Poultry Research Centre, Massey University, to determine the numbers, types and patterns of development of fungi that occur in poultry rearing sheds. Two sheds, a broiler shed and a layer shed were analysed for the fungal population by weekly sampling of litter, feed and air. Particular emphasis was placed on the presence of <u>Penicillium</u> and <u>Aspergillus</u> as these genera contain species of potential significance to flock health as infectious or toxigenic agents. Use of the dilution plating method with modified Potato Dextrose Agar and Aspergillus Differential Medium for culture resulted in successful isolation of these genera. Further selectivity was attained with the use of a modification of the strip-bait method of Luttrell (1967). Air sampling was by the exposed agar plate method.

The poultry houses were found to contain high levels of viable fungal propagules. Of the total fungi, <u>Penicillium</u>, <u>Aspergillus</u> and <u>Scopulariopsis</u> were the major genera. Other genera included <u>Rhizopus</u>, <u>Mucor</u>, <u>Cladosporium</u> and <u>Geotrichum</u>. <u>Penicillium</u> was found throughout the trials. <u>Scopulariopsis</u> was present at low levels in fresh litter and feed but counts increased greatly with time. Counts of species of <u>Aspergillus</u>, (<u>A. flavus</u> and <u>A. fumigatus</u>) also showed increases mainly towards the end of the trials. Other genera (<u>Geotrichum</u>, <u>Cladosporium</u> etc.) were found on certain days only.

As litter aged, its pH and moisture content increased and these increases were correlated to the increase in total fungal numbers during the period of housing. Patterns of fungal succession in the litter were similar to those in air. For some species the increases in numbers in litter were preceded by a similar peak in the air (eg. <u>A. flavus</u>) whereas for others the peak in litter was earlier than the peak in air (<u>S. brevicaulis</u>). The correlation between patterns in air and those in feed and litter was more obvious in the layer shed, where a more active flock created greater air movement than in the broiler shed where the birds were docile and caused very little circulation of air.

<u>A. flavus</u> isolates were screened for the production of aflatoxin on coconut agar. Approximately 30% of all <u>A. flavus</u> isolates tested were toxigenic. Also, it was possible to extract the toxin after growth in

ii

semisynthetic liquid medium from isolates which had been strongly fluorescent on coconut agar, but not those which had been weakly fluorescent.

Feed and litter samples tested for the presence of aflatoxin and other mycotoxins (T-2, ochratoxin and zearalenone) were negative for these mycotoxins.

The fungal population of poultry houses has been shown to include species which may be of economic importance. The large amounts of <u>A. flavus</u> (potentially toxigenic) and <u>A. fumigatus</u> (infectious), in particular, should not be ignored as they may well affect poultry health and productivity.

ACKNOWLEDGEMENTS

I am indebted to Professor D.F. Bacon and the Department of Microbiology and Genetics, Massey University, for providing the opportunity and facilities for this study.

In particular, grateful thanks to my Supervisor, Dr. M. Baxter, for his invaluable advice, assistance and helpful criticism throughout this study and the preparation of this manuscript. His patience and encouragement are greatly appreciated.

I also wish to thank:

Mr. M.R. Patchell and Mr. R.D. King of the Poultry Research Centre, Massey University, for providing the facilities for collection of samples.

Mrs. L. Stanton, Mr. H. Hussein and Miss S. Lee for their helpful technical advice.

Mrs. E.J. Baxter for her excellent typing.

and Mr. R.J. Hartnell for his photographic work.

I would also like to express my sincere thanks to my husband Indran, my parents Dr. and Mrs. B.W. Rasiah, and Ajit and Ishani for their patience, help and encouragement during the course of this study.

CONTENTS

Summary	ii
Acknowledgements	iv
List of Tables	ix
List of Figures	x
List of Plates	xi

	1.	The	General Environment within Poultry Rearing Sheds	1
		1.1	Shed Design and Construction	1
		1.2	Air Circulation	3
		1.3	Management	4
			1.3.1 Equipment	4
			1.3.2 Litter	5
			1.3.3 Feed	6
	2.	Fung	i in Poultry Houses	9
		2.1	Fungal Isolation Techniques Relevant to Poultry	
			Houses	9
		2.2	Presence and Patterns	13
		2.3	Significance	16
		2.4	Mycotoxin Extraction and Analysis	23
	3.	Aims	of Project	24
MATE	RIA	LS AN	D METHODS	
	1.	Sour	ce of Samples and Sampling Procedure	25
		1.1	Poultry House Samples	25
		1.2	Soil Samples	27
		1.3	Duration of Sampling	27
		1.4	Sample Collection	27
			1.4.1 Litter	27
			1.4.2 Feed	28
			1.4.3 Air Sampling	28
			1.4.4 Soil Samples	28

RESULTS

1.	Mois	ture Content and pH of Poultry House Samples	41
	1.1	Moisture Content	41
		1.1.1 Litter	41
		1.1.2 Feed	41
	1.2	рН	41
2.	Tota	al Counts	46
	2.1	Total Counts on PDA at 25 ⁰ C	46
		2.1.1 Broiler trial	46
		2.1.2 Layer trial	46
	2.2	Total Counts on ADM at 37 ⁰ C	51
		2.2.1 Broiler trial	51
		2.2.2 Layer trial	51
	2.3	Relationship between Sample pH and Total	
		Mould Counts	56
		2.3.1 Broiler trial	56
		2.3.2 Layer trial	58
	2.4	Relationship between Sample Moisture Content	
		and Total Mould Counts	61
		2.4.1 Broiler trial	61
		2.4.2 Layer trial	61
3.	Succ	ession of Genera	66
	3.1	Broiler House Samples	66
		3.1.1 Litter	66
		3.1.2 Feed	66
		3.1.3 Air samples	71
	3.2	Layer House Samples	74
		3.2.1 Litter	74
		3.2.2 Feed	74
		3.2.3 Air samples	85

P	a	g	e
---	---	---	---

2.	Medi	a and R	leagents	29
	2.1	Media		29
	2.2	Reagen	nts	31
3.	Samp	le Exam	lination	33
	3.1	Moistu	re Content and pH Calculations	33
		3.1.1	Moisture content (m.c.)	33
		3.1.2	рН	33
	3.2	Diluti	on Plating	33
	3.3	Strip-	bait Method	33
		3.3.1	Preliminary testing of the strip-bait	34
		3.3.2	The strip-bait as a means of fungal	
			isolation in the poultry trials	35
4.	Meth	ods of	Identification	37
5.	Мусо	toxin P	roduction	37
	5.1	Screen	ing of <u>A. flavus</u> Isolates for	
		Aflato	xin Production	37
		5.1.1	Coconut agar	37
		5.1.2	Semisynthetic liquid medium (SMKY)	38
	5.2	Multim	ycotoxin Analysis of Feed and Litter	
		Extrac	ts	38
		5.2.1	Preparation of silica gel column	38
		5.2.2	Preparation of chloroform extracts	39
		5.2.3	Multimycotoxin method	39
	5.3	Thin-1	ayer Chromatography (TLC)	40
		5.3.1	TLC plates	40
		5.3.2	Spotting of samples and standards on	
			TLC plates	40
		5.3.3	Development of TLC plates	40
		5.3.4	Examination of TLC plates for the	
			presence of mycotoxins	40

Ρ	a	q	е

4.	Stri	p-bait Technique	91
	4.1	Strip-bait Effectiveness	91
		4.1.1 Use of the membrane filter in the	
		centre of the bait	91
		4.1.2 Nutrient solutions, incubation temper-	
		ature and culture media	91
		4.1.3 Substrate moisture content	91
		4.1.4 Fungal isolation in proportion to	
		numbers of propaagules in substrate	94
		4.1.5 Microscopic examination of membrane	
		filters	95
	4.2	Use of Strip-baits to Study the Succession of	
		Fungi in Litter and Feed	95
		4.2.1 Broiler trial	95
		4.2.2 Layer trial	98
5.	Мусс	toxin Production	
	5.1	Aflatoxin Production by <u>A. flavus</u> Isolates	102
		5.1.1 Coconut agar	102
		5.1.2 Aflatoxin production on semisynthetic	
		liquid medium (SMKY)	103
	5.2	Multimycotoxin Analysis of Litter/Feed Extracts	105
DISCUS	SION		107
REFERE	NCES		117

• *******

LIST OF 7	ΓA	BL	ES
-----------	----	----	----

			Page
Table	1.	Ingredients and nutrient composition of a typical standard rearing diet	8
Table	2.	Mycotoxins of importance to poultry	22
Table	3.	Effect of various conditions on the efficiency of the strip-baits	93
Table	4.	Ability of strip-bait to isolate fungi in prop- ortion to numbers present in substrate	94
Tables	5 -7 :	Succession of fungal genera in the broiler house litter and feed samples using strip-baits	
	5.	Litter, pen 10	96
	6.	Litter, pen 3	97
	7.	Feed	98
Tables	s 8-10 :	Succession of fungal genera in layer house litter and feed samples, using strip-baits	
	8.	Litter A	99
	9.	Litter B	100
	10.	Feed	101
Table	11.	Frequency of AT-positive <u>A. flavus</u> isolates	103
Table	12.	Aflatoxin production on SMKY stationary medium	104
Table	13.	Litter and feed samples tested for the presence of mycotoxins.	105

ix

LIST OF FIGURES

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

5.

Figure

Poultry Research Centre layer shed	26
Variation of moisture content of poultry	
house litter with age	42
Variation of moisture content of poultry	
feed with time of sampling	43
Variations in pH of poultry house litter	
with age	44
Variations in pH of poultry house feed	
with time of sampling	45
Total fungal counts of broiler house litter	
samples, using PDA, 25 ⁰ C	47
Total fungal counts of broiler house feed and	
air samples using PDA, 25 ⁰ C	48
Total fungal counts of layer house litter	
samples using PDA, 25 ⁰ C	49
Total fungal counts of layer house feed and	
air samples using PDA, 25 ⁰ C	50
Total fungal counts of broiler house litter	
samples using ADM, 37 ⁰ C	52
Total fungal counts of broiler house feed and	

samples, using Figure 7. Total fungal co air samples us Figure 8. Total fungal c samples using Figure 9. Total fungal co air samples us Figure 10. Total fungal co samples using *I* Total fungal c Figure 11. air samples using ADM, 37⁰C 53 Total fungal counts of layer house litter Figure 12. samples using ADM, 37^OC 54 Total fungal counts of layer house feed and Figure 13. air samples using ADM, 37⁰C 55 Relationship between total counts and pH of Figure 14. broiler house litter and feed samples (a) PDA, $25^{\circ}C$ 57 (b) ADM, 37⁰C 57 Relationship between total counts using PDA, Figure 15. 25⁰C and pH of layer house litter and feed samples 59 Relationship between total counts using ADM, Figure 16. 37^OC and pH of layer house litter and feed samples 60

Page

Page

Figure 17.	Relationship between total counts using PDA,	
	25°C and m.c. of broiler house litter	60
	and feed samples	62
Figure 18.	Relationship between total counts using ADM,	
	37 ⁰ C and m.c. of broiler house litter	
	and feed samples	63
Figure 19.	Relationship between total counts using PDA,	
	25 ⁰ C and m.c. of layer house litter	
	and feed samples	64
Figure 20.	Relationship between total counts using ADM,	
	37 ⁰ C and m.c. of layer house litter	
	and feed samples	65
Figure 21.	Changes in the levels of fungal genera on PDA,	
	25 ⁰ C in broiler house litter samples with age	67
Figure 22.	Changes in the levels of fungal genera on ADM,	
	37 ⁰ C in broiler house litter samples with age	68
Figure 23.	Changes in the levels of fungal genera on PDA,	
	25 ⁰ C in broiler house feed samples with age	69
Figure 24.	Changes in the levels of fungal genera on ADM,	
	37 ⁰ C in broiler house feed samples with age	70
Figure 25.	Changes in the levels of fungal genera in	
	broiler house air with time, using PDA 25 ⁰ C	· 72
Figure 26.	Changes in the levels of fungal genera in	
	broiler house air with time, using ADM 37 ⁰ C	73
Figure 27.	Changes in the levels of fungal genera on PDA,	
	25 ⁰ C in layer house litter samples with age	75
Figure 28.	Changes in the levels of fungal genera on ADM,	
	37 ⁰ C in layer house litter samples with age	78
Figure 29.	Changes in the levels of fungal genera on PDA,	
	25 [°] C in layer house feed samples with age	81
Figure 30.	Changes in the levels of fungal genera on ADM,	
	37°C in layer house feed samples with age	86
Figure 31.	Changes in the levels of fungal genera in	• -
	layer house air with time using PDA 25°C	89
Figure 32.	Changes in the levels of fungal genera in	• -
	layer house air with time using ADM 37 ⁰ C	90

xi

LIST OF PLATES

Plate 1.	Strip-bait technique: comparison of the use of a membrane filter square and a filter paper square as centre bait cultured on ADM	
	and PDA	92
Plate 2.	Silica gel column.	106

xii

Page