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Abstract

The most common hazards for communities surrounding mountain-forming
stratovolcanoes are mass flows of a range of types. Determining their frequency,
characteristics and distribution is a major focus of hazard mapping efforts. Recent
improvements in computer power and numerical models have meant that simulation
of mass flow scenarios is a new tool available for hazard analysis. Its application to
hazard mapping, land use planning and emergency management awaits robust
evaluation of the conditions under which simulation tools are effective. This study
focuses on this question in attempting to improve mass-flow hazard assessments at
the typical stratovolcanoes of Mts. Taranaki and Ruapehu in New Zealand. On Mt.
Ruapehu, Titan2D modelling was applied to forecast behaviour of non-cohesive lahars
in the Whangaehu River, primarily produced by Crater Lake break-outs, such as on 18
March 2007. The simulations were accurate in predicting inundation area, bifurcation,
super-elevation, hydraulic ponding, velocity and travel times of the lahar to 9-10 km. A
6 x 10° m® simulated granular flow had a minimum discharge of 1800-2100 m?/s at the
apex of the Whangaehu Fan, 9-10 km from source, comparable to all historic
information. The modelling implied that it was highly unlikely for a flow of this nature
to overtop a lahar training dyke (bund) at the fan-apex location and avulse northward
into a more vulnerable catchment. Beyond this point, the model could not cope with
the rapid and complex changes in rheology of these non-cohesive lahars. At Mt.
Taranaki chronostratigraphic grouping of mapped past lahar deposits often clouds the
actual series of landscape forming processes and hence variations in hazard that
occurred over time. Here, patterns of mass flows following emplacement of a 7 km®
debris avalanche deposit were examined from field geology and Titan2D modelling to
define a three-stage recovery process, where lahars of different types and sources
were focused initially beside and later on top of the debris avalanche deposit for up to
10 000 years. Results from Titan2D were used to identify source areas of mass flows at
different stages and their probable rheologies. Debris avalanche emplacement at Mt.

Taranaki was investigated on the c. 7 ka B.P. Opua Formation with the help of Titan2D



simulations to identify initial collapse parameters and major flow paths. Once again,
the simulations were reliable in proximal reaches, but could not reproduce the
rheological transformations from an initial collapsing/sliding pile through to a cohesive
clay-rich flow with long runout. In a further example, past block-and-ash flows (BAFs)
and dense pyroclastic flow deposits northwest of the current crater were analysed to
define the range of realistic model parameters for Titan2D simulations. These could be
incorporated inside a Geographic Information System to produce a gradational map of
relative probabilities of inundation by future BAF events that took both modelling and
geological variability into account. This study highlights that computational models are
now reaching the stage where a holistic approach can be taken to hazard analysis that
combines both geological mapping and simulation of mass flow scenarios in a
probabilistic framework to provide better tools for decision makers and land-use

planners.
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Fm. indicating the source and flow path of the deposit..........cccceuiiiiiiiiiiiiiiiiiiiiiiinns 181

Figure 5-7. Distribution of debris avalanche mounds with each mound in the exposed
distal areas being mapped as single point in GIS. Insets Aa-b and Ba-b show close-up of
the terrain with and without the identified mounds and mapped points. Note the

clustering patterns and groups of MouNds. ......coooeviiiiiiiiiiiiii 185

Figure 5-8. GIS raster map of the density of mounds across the landscape. Indicated
are the clustering of mounds and groupings forming ridges parallel to flow direction as

well as the two dominant flow paths (as indicated by the arrows). .......cccceccvvvieeen.. 186

Figure 5-9. Physiographic map of the Opua Fm. showing the distribution of Opua facies
1-4 from this STUAY . ....uuuiiiiiiiiiiiiiiiiiiie e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeees 188

Figure 5-10. Sketch and photos of the dominant landscapes in relation to each of the

four identified Opua facies. Lower sketch shows a longitudinal cross-section of the
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Opua debris avalanche deposit (modified from Palmer et al., 1991; Zernack, 2009).
Upper sketch displays the plan view and distribution of mounds. Arrows indicate

preferred fIoW dir€CtioN. ...... oo 190

Figure 5-11. Map of example outputs from the computer simulation Titan2D and the

location of the initial Pile.......ooeeeiiiieeeeeee e 194

Figure 6-1. Location map. A) Taranaki region and study area located along the Stony
River, northwestern sector of Mt. Taranaki/Egmont Volcano; B) Volcanic Flow Hazard
zones (Neall and Alloway, 1996) overlayed on shaded relief terrain of the Taranaki
peninsula. The study area is contained within the hazard zone A represented by 1:300

yr return period of pyroclastic flOWS.............uuuuiiiiiiiiiiiiiiiiiiiiiiiiirirreee e 210

Figure 6-2. Most recent inundation areas from dome collapse and BAFs. A) Recently
identified “cold rock collapse” of the remnant dome (Platz, 2007) B) Most recent BAF

deposits inundation area (Platz, 2007; Cronin et al., 2003)........ccvvvieeeireereeeeeeeeeeeeeeen. 217

Figure 6-3. The dome and reconstruction of initial pile for BAF simulations. A) Mt.
Taranaki, the current remnant dome, view of the northern side (note person for scale
as indicated by the arrow); B) Ortho-photograph of the summit and remnant dome,
dashed lines indicate the current outline of the remnant dome, solid lines represent
the reconstructed modelled dome; C) GIS representation of dome, 1. Underlying
summit surface with solid line representing the margins of the remnant dome. 2. 3D
representation of the current remnant dome, 2 x 10° m*. 3. Reconstructed dome used
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Figure 6-4. Simulation outputs analysis. Yellow lines highlight best fit. A) Summary of
initial visual analysis; B) Comparison of simulations to run-out distance,; C)

Comparison of simulations to H/L ratio; D) Comparison of simulations to inundation

Figure 6-5. A) Hazard zone created from Titan2D computer simulations based on the

1:300 yr BAF event from a dome collapse and B) 3D representation of the created
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Hazard zone in relation to the outline of the Hazard Zone C from Neall and Alloway
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