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Abstract
In an earlier paper (Hunter, 2002) it was shown that mean first passage times play an important role in
determining bounds on the relative and absolute differences between the stationary probabilities in
perturbed finite irreducible discrete time Markov chains. Further when two perturbations of the transition
probabilities in a single row are carried out the differences between the stationary probabilities in the
unperturbed and perturbed situations are easily expressed in terms of a reduced number of mean first
passage times. Using this procedure we provide an updating procedure for mean first passage times to
determine changes in the stationary distributions under successive perturbations. Simple procedures for
determining both stationary distributions and mean first passage times in a finite irreducible Markov
chain are also given. The techniques used in the paper are based upon the application of generalized
matrix inverses.
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1. Introduction

Cho and Meyer [1] and Hunter [8] have shown that there is a strong interconnection between the mean
first passage times and stationary distributions in examining the effects of small changes, or
perturbations, on the transition probabilities in finite irreducible discrete time Markov chains. We explore
these interconnections in more detail, especially in relation to updating Markov chains through successive
two-element perturbations. Since multiple-element perturbations do not have the nice properties in
respect to the observed effects upon the stationary distributions evident in the two-element perturbation
situation, we consider decomposing such perturbations into a string of two-element perturbations. This
requires the updating of the mean first passage times, in conjunction with the stationary distributions, at
each perturbation.

Our techniques involve the use of generalized matrix inverses. Following a summary of the relevant
properties of such matrices for Markovian kernels we look at procedures for obtaining stationary
distributions and mean first passage times. We then summarize the results for the changes in these
brought about by general perturbations but more specifically by two-element perturbations. This leads to
a general procedure for updating both stationary distributions and mean first passage times under
successive two-element perturbations.

2. Generalized inverses of Markovian kernels

Let P = [pij] be the transition matrix of a finite irreducible, m-state Markov chain with state space S
= {1, 2,…, m} and stationary probability vector ππππ′ = (π1, π2,…, πm).

The following results summarise the key features of generalized inverses of the Markovian kernel I – P
that we shall make use of in developing our results.

2.1 G is a generalized inverse (g-inverse), or a 1-condition g-inverse, of I – P if and only if
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(I – P)G(I – P) = I – P.                                                  (2.1)

2.2 (Hunter, [2]). If G is any g-inverse of I – P then there exists vectors f, g, t and u with u′e ≠ 0 and
ππππ′t ≠ 0 where e′ = (1, 1, …, 1) such that

G = [I – P +  tu′]-1 + ef′ + gππππ′ (2.2)

2.2 (Hunter, [6]) If G is any g-inverse of I – P, define A ≡ I – (I – P)G and B ≡ I – G(I – P),

then G = [I – P +  ααααββββ′]-1 + γeππππ′, (2.3)

where  αααα = Ae, ββββ′ = ππππ′B,  γ + 1 = ππππ′Gαααα = ββββ′Ge = ββββ′Gαααα, (2.4)

and ππππ′αααα = 1, ββββ′e = 1.    (2.5)

Further A = ααααππππ′                                                                              (2.6)

and B = eββββ′.                        (2.7)

2.2 The parameters αααα, ββββ, and γ uniquely specify and characterize the g-inverse so that we can denote
such a g-inverse as G(αααα , ββββ , γ).

2.2 Generalized inverses may satisfy additional conditions.  In particular, we have the following
conditions:

Condition 1: (I – P)G(I – P)  = I – P,
Condition 2: G(I – P)G  = G,
Condition 3: [(I – P )G]′  =  (I – P)G,
Condition 4: [G(I – P)]′ =  G(I – P),
Condition 5: (I – P)G  = (I – P)G.

In Hunter [6] it is shown that

G(αααα, ββββ, γ) satisfies condition 2 if and only if γ = – 1,
G(αααα, ββββ, γ) satisfies condition 3 if and only if αααα = ππππ/ππππ′ππππ,
G(αααα, ββββ, γ) satisfies condition 4 if and only if ββββ = e/e′e,
G(αααα, ββββ, γ) satisfies condition 5 if and only if αααα = e  and  ββββ = ππππ.

Special unique generalized inverses are the Moore-Penrose g-inverse of I – P which satisfies
conditions 1, 2, 3 and 4 with G = G(ππππ/ππππ′′′′ππππ, e/e′′′′e, – 1) and the group inverse which satisfies
conditions 1, 2 and 5 with G = G(e, ππππ, – 1) = A# as originally derived by Paige, Styan and Wachter
[12] and Meyer [10], respectively.

2.6 The following results are easily established (see Section 3.3, [2])
(a) u′′′′[I – P + tu′′′′]-1 = ππππ′′′′/(ππππ′′′′t). (2.8)
(b) [I – P + tu′′′′]-1t = e/(u′′′′e). (2.9)
(c) u′[I – P + tu′′′′]-1t = 1. (2.10)

2. Stationary distributions

There are a variety of techniques that can be used for the computation of stationary distributions
involving the solution of the singular system of linear equations, ππππ′′′′(I – P) = 0′′′′,  subject to the boundary
condition ππππ′′′′e = 1.
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Since, as we shall see later, the derivation of mean first passage times involves either the computation of
a matrix inverse or a matrix generalized inverse, we consider those techniques for solving the stationary
distributions using generalized inverses. This will enable us later to consider the joint computation of the
stationary distributions and mean first passage times with a minimal set of computations.

Theorem 3.1.: (Hunter[2]) If G is any g-inverse of I – P, A = I – (I – P)G, and v is any vector such that
v′Ae ≠ 0 then

′ =
′
′

ππ
v A

v Ae
 .                                                                           ( . )3 1

Numerous special cases follow from the above Theorem. See Hunter [2], [3], [7].

The key observation however is that A has a very special structure as exhibited by (2.6) viz. A ≡
I – (I – P)G =  ααααππππ′  where αααα′ is a subset of the parameters that specify the g-inverse of I – P.  Since, from
(2.5),  ππππ′′′′αααα = 1 it is clear that αααα ≠ 0 (for otherwise ππππ′αααα  would be zero) and consequently Ae = αααα ≠ 0 and a
suitable choice of v′ for Theorem 3.1 is always possible to obtain.

Suppose we let v′ = ei′ = (0,…, 0, 1, 0, …, 0), the elementary vector with 1 in the ith position and zero
elsewhere. Then ei′Ae = ei′αααα = ααααi′ which must be non-zero for at least one such i. Since ei′A is the vector
consisting of the elements of the ith row of A, the implications of the above observation is that we can
always find at least one row of A that does not contain a non-zero element. Furthermore, if there is at
least one element non-zero in that row all the elements in that row must be non-zero since the rows of A
are scaled versions of ππππ′. Thus if A = [aij] then there is at least one i such ai1 ≠ 0 in which case aij ≠ 0 for
j = 1, …, m.

This leads to following result, obtained earlier by Hunter, [7].

Theorem 3.2: Let G be any g-inverse of I – P. Let A = I – (I – P)G ≡ [aij].

In applying Theorem 3.2 one typically needs to first find a11. If a11 ≠ 0 then the first row of A will suffice
to find the stationary probabilities. If not find a21, a31, … and stop at the first non-zero ar1. If we know
something of the structure of the g-inverse package being used typically we need only find the first row
of A. For example MATLAB uses the pseudo inverse routine pinv(I – P) which satisfies conditions 1, 2,
3 and 4 of §2.5.

Corollary 3.2.1: If G is any g-inverse of I – P that satisfies either condition 3 or condition 5 of §2.5, and

if A = I – (I – P)G ≡ [aij] then

Proof: G satisfies condition 3 if αααα = ππππ/ππππ′ππππ, in which case α1 ≠ 0. Similarly G satisfies condition 5 if  αααα = e
in which case α1 = 1. The non-zero form of α1 ensures a11 ≠ 0.

Conditions 2 or 4 of §2.4 do not place any restrictions upon αααα and consequently the non-zero nature of a11

cannot be guaranteed in these situations.
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While (3.1), (3.2) and (3.3) are useful expressions for obtaining the stationary probabilities, the added
computation of A following the derivation of a g-inverse G is typically unnecessary, especially when
additional special properties of G are given. Typically one can take G as special matrix inverse.

Theorem 3.3:    If G = [I – P +  tu′]-1 where u and t are any vectors such that u′e ≠ 0 and  ππππ′t ≠ 0, then

and hence, if  u′ = (u1, u2, …, um),

Proof: Using (2.8) it is easily seen that u′[I – P + tu′]-1e = ππππ′e/(ππππ′t) = 1/(ππππ′t) and (3.4) follows. Elemental
expression (3.5) follows.

In this paper we consider the use of a variety of special g-inverses, which we enumerate below with their
specific parameters (cf. §2.3). Let pr

(r)′ = er′P denote the rth row of the transition matrix P and pr
(c) = Per

denote the rth column of P.
Table 1: Special g-inverses

Identifier g-inverse
[I – P + tu′]-1

αααα ββββ′ γ

Grr
(r) [I – P + erpr

(r)′]-1 er/πr pr
(r)′ (1/πr) – 1

Grr
(c) [I – P + pr

(c)er′]
-1 pr

(c)/πr er′ (1/πr) – 1
Grr [I – P + erer′]

-1 er/πr er′ (1/πr) – 1
Ger

(r) [I – P + epr
(r)′]-1 e pr

(r)′  0
Gre

(c) [I – P + pr
(c)e′]-1 pr

(c)/πr e′/m (1/mπr) – 1
Gee [I – P + ee′]-1 e e′/m (1/m) – 1
Ger [I – P + eer′]

-1 e er′ 0
Gre [I – P + ere′]

-1 er/πr e′/m (1/mπr) – 1

All these results follow from the observation that if G = [I – P + tu′]-1 then the parameters are given by αααα
= t/ππππ′t, ββββ′ = u′/u′e and γ + 1 = 1/{(ππππ′t)(u′′′′e)}.

The special structure of the g-inverses given in Table 1 lead, in most cases, to very simple forms for the
stationary probabilities.

In applying Theorem 3.3, observe that ππππ′ = u′G  if and only if u′Ge = 1 if and only if ππππ′t = 1.

Simple sufficient conditions for ππππ′t  = 1 are t = e or t = αααα (cf. (2.5)). (This later condition is of use only if
αααα does not explicitly involve any of the stationary probabilities.)

Corollary 3.3.1: If G = [I – P + eu′]-1 where u′e ≠ 0,

  ππππ′ = u′G .                                                             (3.6)

and hence if  u′ = (u1, u2, …, um) and  G = [gij] then

′ =
′
′

ππ
u

u e

G

G
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In particular, we have the following special cases:
(i) If u′ = e′ then G ≡ Gee = [I – P + ee′]-1 = [gij] and

(ii) If u′ = pr
(r)′ then G ≡ Ger

(r) = [I – P + epr
(r)′]-1  = [gij] and

 (iii) If u′ = er′ then G ≡ Ger = [I – P + eer′]
-1  = [gij] and

Corollary 3.3.2:  If G = [I – P + te′]-1 where ππππ′t ≠ 0,

and hence, if G = [gij], then

In particular, results (3.12) hold for G = Gre
(c), Gee and Gre.

In the special case of Gee, using (2.10) it follows that g.. = 1, and (3.12) reduces to (3.8).

Corollary 3.3.3:  If G = [I – P + ter′]
-1 where ππππ′t ≠ 0,

and hence, if  G  = [gij], then

In particular, results (3.14) hold for G = Grr
(c), Grr and Ger.

In the special case of Ger, gr. = 1 since u′[I – P + tu′]-1t = 1 and (3.14) reduces to (3.10).

Corollary 3.3.3:  If G = [I – P + tpr
(r)′]-1 where ππππ′t ≠ 0,

and hence, if G = [gij], then
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In particular, results (3.16) hold for G = Grr
(r)  and Ger

(r).

In the special case of Ger
(r), the denominator of (3.16) is 1 and (3.16) reduces to (3.9).

Thus we have been able to find simple elemental expressions for the stationary probabilities using any of
the generalized inverses in Table 1. In the special cases of Gee, Ger

(r) and Ger the denominator of the
expression given by equations (3.5) is always 1. (In each other case, observe that denominator of the
expression, u′Ge, is in fact 1/πr and that u′G = ππππ′/πr.)

We explore inter-relationships between some of the g-inverses in Table 1 by utilizing the following result
given by Theorem 3.3 of Hunter [5].

Theorem 3.4: Let P be the transition matrix of a finite irreducible transition matrix of a Markov chain
with stationary probability vector ππππ′. Suppose that for i = 1, 2, ππππ′ti ≠ 0 and ui′e ≠ 0. Then

and hence that

In particular, we wish to focus on the difference between Grr
(c)  = [I – P + pr

(c)er′]
-1 and Gr r

(r) =
[I – P + erpr

(r)′]-1.

We first need to establish some preliminary results:

Lemma 3.5:

Proof: (a) Follows from (2.8) and the fact that ππππ′pr
(c) = ππππ′Per    = ππππ′er

 =     πr.

(b) First observe that, by (2.9) Grr
(c)pr

(c) = e, so that by the definition of Grr
(c),

Now post-multiplication of (3.23) by er yields

 and  (3.20) follows.

(c) By the definition of Grr
(r),
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     and  (3.21) follows.

(d) Follows from (2.9) and the fact that pr
(r) ′′′′e = 1.

Theorem 3.6:

G Grr

(c

rr

(r) ) e
ee− =

′
− ′r

r

r

ππ
π

  .                                                                    ( . )3 27

Proof:  From equation (3.18) it is easily seen that

Using the observations that er′e = 1, er′Grr
(r) = er′, pr

(c) = Per, ππππ′pr
(c) = ππππ′er

 ====    πr, er′Per = prr, equation (3.28)
simplifies to

Now observe that, by the definition of Grr
(r),

Post-multiplying (3.30) by er and using the results of (3.22) yields

Substitution of the expression for Grr
(r)Per from (3.31) into (3.29) yields (3.27).

A close study of equation (3.27) shows that Grr
(c)

 and Grr
(r)  differ only in the rth row and rth column, with

specific elements in the rth row and column in each matrix given by Lemma 3.5, and with all the other
elements identical. A formal proof follows from (3.27), since for  i ≠ r and j ≠ r, the (i, j)th element of
Grr

(c) – Grr
(r) is given by

(A proof can be constructed via determinants and cofactors defining the inverses Grr
(c) and Grr

(r)  upon
noting that in constructing I – P + erpr

(r)′ the only elements of I – P that are changed are in the rth row
where each element is zero apart from the (r,r)th element which is 1. Similarly that in constructing
I – P + pr

(c)er′
 the only elements of I – P that are changed are in the rth column  where each element is zero

apart from the (r,r)th element which is 1. )

This is of interest later in the computation of mean first passages times and useful in tying together some
different results.

Similar connections  can be developed regarding relationships between other g-inverses.
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Proof: These results follow directly from Theorem 3.4 and the properties of Lemma 3.5.

Note also the following extension to Lemma 3.5 which follows directly using (2.8) and (2.9).

Corollary 3.5.1:

4. Mean first passage times

All known general procedures for finding mean first passage times involve the determination of either
matrix inverses or generalised inverses. The following theorem summarises the general determination of
M = [mij], the mean first passage time matrix of a finite irreducible, Markov chain with transition matrix
P. Let  E = ee′ = [1] and  D = Md

  = (Πd)
-1 where Π = eππππ′.

Theorem 4.1: (i)  Let G be any g-inverse of I – P, then

M = [GΠ  – E(GΠ)d + I – G + EGd]D.                                   (4.1)

(ii)  Let H = G(I – Π), then

M = [EHd  – H  + I]D.                             (4.2)

(iii)  Let C = I – H, then

M = [C  – ECd + E]D.                                                            (4.3)

Proof: (i) Expression (4.1) appears in Hunter [3] as Theorem 7.3.6 having initially appeared in the
literature in Hunter [2].
(ii) Expression (4.2) follows from (4.1) upon substitution. The technique was also used in a
disguised form in Corollary 3.1.1 of Hunter [6].
(iii) Expression (4.3) follows form (4.2). It was first derived in Hunter [7].

The advantages of expressions (4.2) and (4.3) is that we can deduce simple elemental forms of mij direct
from these results.

Corollary 4.1.1: (i) If C = [cij] then

(ii) If H = [hij] then

  
(a) The rth row of  is given by  .                                                                     eG Grr rrr

r

′ =
′ππ

π
 (3.34)

(b) The rth column of  is given by .                                                                  3 35G Grr rre er = ( . )

m = [h  h  +  ]  =  
[h  h ]

                                               (4.5)        ij jj ij ij

jj ij

−

=

− ≠











δ
π

π

π

1

1

1
j

j

j

i j

i j

, ,

, .

m = [c  c  +  1]  ,    , .                                                                      (4.4)        ij ij jj−
1

π j

for all i j
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(iii) If G = [ gij] then

Proof: (i) Result (4.4) follows directly from equation (4.3) (correcting the results given in Hunter [7]).
(ii) Result (4.5) follows either from (4.2) or (4.4) since hij = δij – cij.
(iii) Since H = G – GΠ,

and results (4.6) follow from (4.5). Note also that since C = I – H

and hence results (4.6) follow alternatively from (4.4).

Note that expression (4.4) has the advantage that no special treatment of the i = j case is required.

In our earlier study of perturbations (Hunter [8]) it was seen that expressions for the changes in the
stationary probabilities were more conveniently expressed in terms of N = [nij] = [(1 – δij)mijπj] so that N
= (M – Md)(Md)

-1. The following follows directly from (4.2) and (4.6).

Theorem 4.2:

Note that njj = 0 for all j.

The following joint computation procedure for πj and mij was given in Hunter [7], based upon Theorem
3.2 and Corollary 4.1.1 (iii) above. (The version below corrects some minor errors given in the initial
derivation.)

Theorem 4.3:
1.  Compute  G = [gij], be any g-inverse of I – P.
1.  Compute sequentially rows 1, 2, …r ( ≤ m) of A = I – (I – P)G ≡ [aij]

4  .

, ,

[ .

       =  
[  ]

 +   g ],

                    

jk

Compute m

a

a
i j

g g a

a
g i j

ij

rk
k

m

rj

jj ij rk
k

m

rj

ik
k

m

=

=

=

∑

∑ ∑

=

−
− ≠














1

1

1

While this theorem outlines a procedure for the joint computation of all the πj and mij, following the
computation of any g-inverse, the procedure contains the unnecessary additional computation of the
elements of A.

h = g  g  =  g  g  ,  for all i, j.                                              (4.7)        ij ij ik j ij i  j− −
=

∑
k

m

1
π π.

m = [g  g  +  ]
1

 +  [g  g ],     , .                                                (4.6)        ij jj ij ij

j

i j− −δ
π . . for all i j

c =  g +  g  =  g +  g ,  for all i, j.                               (4.8)        ij ij ij ik j ij ij i jδ π δ π− −
=

∑
k

m

1
 .

N =  [n ] =  EH  H  H =  G(I  ),

 n = (g  g ) +  (g  g ) , .                                                                        (4.9)        
ij d

ij jj ij i j j

− −

− −

where

so that  for all i, j

Π

. . π

until (1 r m) is the first non zero sum  .arkk
m ≤ ≤∑ =    -  1

3.             ,  2,  ...,  .  Compute π j

rj

rkk
m

a

a
j m=

∑
=

=1

1,
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Instead we can use one of the special g-inverses given in Table 1 to find all the πj and mij and/or nij. The
results are summarised in Table 2.

 Table 2: Joint computation of {πj}and [nij] using special g-inverses

g-inverse πj nij

Grr
(r) = [I – P + erpr

(r)′]-1 Σkprkgkj/ΣiΣsprigis (gjj – gij) + (gi. –g j.)Σkprkgkj/ΣiΣsprigis

Grr
(c) = [I – P + pr

(c)er′]
-1 grj/gr. (gjj – gij) + (gi. –g j.)grj/gr.

Grr    = [I – P + erer′]
-1 grj/gr. (gjj – gij) + (gi. –g j.)grj/gr.

Ger
(r) = [I – P + epr

(r)′]-1 Σkprkgkj (gjj – gij) + (gi. –g j.) Σkprkgkj

Gre
(c) = [I – P + pr

(c)e′]-1 g.j/g.. (gjj – gij) + (gi. –g j.)g.j/g..

Gee    = [I – P + ee′]-1 g.j (gjj – gij) + (gi. –g j.)g.j

Ger    = [I – P + eer′]
-1 grj (gjj – gij) + (gi. –g j.)grj

Gre    = [I – P + ere′]
-1 g.j/g.. (gjj – gij) + (gi. –g j.)g.j/g..

Before we complete this section we wish to remark on other alternative procedures for finding the mean
first passage times.

If the stationary probability vector has already been computed then the standard procedure is to compute
either Kemeny and Snell′s ‘fundamental matrix’, ([9]), Z ≡  [I – P + Π]-1, where Π  = eππππ′, or Meyer′s
‘group inverse’, ([10]), A# ≡ Z – Π. Both of these matrices are in fact g-inverses of I – P. The relevant
results, which follow from Corollary 4.1.1 (iii) are as follows.

Corollary 4.1.2:
(i) If Z = [I – P + eππππ′]-1  = [zij] then

                         M = [mij] =  [I  – Z  + EZd]D,                                                                          (4.10)
and

(ii) If A# = [I – P + eππππ′]-1 – eππππ′ = [aij
#] then

 M = [mij] =  [I  – A#  + EAd
#]D,                                                                     (4.12)

and

Proof: See Hunter, [3], Corollary 7.3.6C. These are also special cases of (4.6) since Ze = e and A#e = 0,
so that Σj zij = zi. = 1 for all i and Σj aij

# = ai.
# = 0 for all i.

Further, in deriving the mean first passage times  one is in effect solving the set of equations

If we hold j fixed, (j = 1, 2, …, m), and let mj
′′′′ = (m1j, m2j, …, mmj) then equation (4.14) yields

m

1
i j

z z
i j
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=

=
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≠
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(This results appears in Hunter [3], as Corollary 7.3.3A). Note the appearance of one of the special g-
inverses considered in this paper of the form of Grr

(c)  with r = j.

Thus an explicit evaluation of mij (for fixed j, 1 ≤ i ≤ m) can be obtained from (4.15). Further we can
deduce expressions for mij direct from Gjj

(r) or Gjj using the inter-relationships derived in Theorem 3.6 and
Corollary 3.6.1. The following Theorem summarises the results.

Theorem 4.4: For fixed j, 1  ≤ i  ≤ m,

 

(ii)   m

m

ij

j

ij

j

j

ij i jj

(r)

jj

(r)

rs ij i

i

 =  G   1.                                                                                          (4.17)

          G = [g ],    = g  +    1 =
i j,

g   1, i j.
           

e e +
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′ −

−
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− ≠
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πFurther,  if then 
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(iii)  m

m

ij

j

ij i jj

jj rs ij

j

i j

 =  G  .                                                                                           (4.18)

        G = [g ]   =
g i = j,

g g i j.

e e +

.

. .

′
−

− ≠




δ

π

1

 Further,  if then

All of these results are consistent with equation (4.6).

For example, for (4.16), with Gjj
(c) = [grs] from equation (3.14), πi = gji/gj. for all i. Observe that from

(3.19) and (3.20) that the jth row and column of Gjj
(c) are, respectively, ππππ′/πj and ej, so that for fixed j,

gjj = 1, and for i ≠ j, gij = 0 and  gji =  πi/πj with gj. = 1/πj. Substitution in (4.6), for fixed j, yields mjj = 1/πj

= gj.  and for i ≠ j, mij  = [gjj – gij] gj. + [gi. – gj.] = gj. + gi. – gj. = gi., as given by (4.16).  Similarly one can
examine (4.17) and (4.18) to establish the required equivalence.

Note that using Gjj
(c) and Gjj

  an expression for mjj (and hence also an expression for πj) is found directly
from the elements of the g-inverse as gj. . In the case of Gjj

(r) a subsidiary computation for mjj (or
alternatively ) is required. From (3.16) it is easy to see that  Gj j

(r)

jj

(r)π πp e′ = =1 j jjm .

5. Perturbations and stationary distributions
We use the same terminology used in Hunter [8]. Let P(1) = [pij

(1)] be the transition matrix of a finite
irreducible, m-state Markov chain.  Let P(2) = [pij

(2)] = P(1) + ΕΕΕΕ   be the transition matrix of the perturbed
Markov chain where ΕΕΕΕ  = [εij] is the matrix of perturbations. We assume that the perturbed Markov chain
is also irreducible with the same state space S = {1, 2,…, m}.  For i = 1, 2, let ππππ(i)′′′′ = (π1

(i), π2
(i),…, πm

(i)) be
the stationary probability vectors for the respective Markov chains.

In Hunter [8] we established the following key results for the differences in the stationary probability
vectors ππππ(2)′′′′ – ππππ(1)′′′′    using arbitrary g-inverses of I – P(1):

Theorem 5.1: If G is any g-inverse of I – P(1) then, for any general perturbation ΕΕΕΕ ,

 m p e e ej j

c

j

1

jj

(c)I P  =  G                                                                       (4.15)= − + −[ ] .( )

    

(i)    m

m

ij i jj

(c)

jj

(c)

rs ij i

 =  G                                                                                                            (4.16)

       G = [g ],   g

e e.

.

′

= Further,  if then
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ππππ(2)′′′′ – ππππ(1)′′′′ = ππππ(2)′′′′ΕΕΕΕ G(I – Π(1)).                                                  (5.1)

In particular
(i) If  G = [I – P(1) + tu′′′′]-1 + ef ′′′′ + gππππ(1)′′′′ with ππππ(1)′′′′t ≠ 0, u′′′′e ≠ 0, f ′′′′ and g arbitrary vectors,

then

ππππ(2)′′′′ – ππππ(1)′′′′ = ππππ(2)′′′′ΕΕΕΕ [I – P(1) + tu′′′′]-1(I – Π(1)).                             (5.2)

(ii) If G = [I – P(1) + eu′′′′]-1 + ef ′′′′ + gππππ(1)′ with ππππ(1)′′′′t ≠ 0, u′′′′e ≠ 0, f ′′′′ and g arbitrary vectors,
then

ππππ(2)′′′′ – ππππ(1)′′′′ = ππππ(2)′′′′ΕΕΕΕ [I – P(1) + eu′′′′]-1.                                          (5.3)

(ii) If G = [I – P(1) + eu′′′′]-1 + ef ′  with  u′′′′e ≠ 0, and f ′′′′ an  arbitrary vector, then

ππππ(2)′′′′ – ππππ(1)′′′′ = ππππ(2)′′′′ΕΕΕΕ G.                       (5.4)

    
We then showed that mean first passage times have important connections to these results by establishing
the following results.

Theorem 5.2: If M(1) is the mean first passage time matrix of the finite irreducible, Markov chain with
transition matrix P(1), then for any general perturbation ΕΕΕΕ  of P(1),

ππππ(2)′′′′ – ππππ(1)′′′′ = – ππππ(2)′′′′ΕΕΕΕ (M(1) – Md
(1))(Md

(1))-1.                     (5.5)

Further, if N(1) = [nij
(1)] = [(1 – δij) mij

(1)πj
 (1)], then

          ππππ(2)′′′′ – ππππ(1)′′′′ = – ππππ(2)′′′′ΕΕΕΕ Ν(1).                                                      (5.6)

By focussing on perturbations in a single row of the transition matrix we were able to establish some
interesting results. Let pr

(i)′ = erP
(i) so that pr

(i)′ is the rth row of the transition matrix P(i). Now suppose ΕΕΕΕ  =
erεεεεr′ where εεεεr′ = pr

(2)′′′′ – pr
(1)′′′′, so that the perturbation replaces the rth row of the transition matrix P(1) by the

rth row of the transition matrix P(2).

Suppose that εεεεr′ = (ε1, ε2, . . . , εm) where εεεεr′′′′e = 0. Substitution in equation (5.6) yields

     ππππ(1)′′′′ – ππππ(2)′′′′ = ππππ(2)′′′′erεεεεr′′′′Ν
(1)  = πr

(2)εεεεr′′′′N
(1) 

so that in elemental form, for j = 1, 2, …, m,

Now restrict attention to the simplest perturbation of decreasing the (r,a)th element of P(1) by an amount ε
and increasing the (r,b)th element of P(1) by the same amount to obtain the new transition matrix P(2). Thus
pra

(2) = pra
(1) – ε < pra

(1) and prb
(2) = prb

(1) + ε  > prb
(1). We assume that the stochastic and irreducible nature of

both P(1) and P(2) is preserved. For this special case we obtained the following results.

Theorem 5.3: Suppose that the transition probability pra
(1) in an irreducible chain is decreased by an

amount ε while prb
(1) is increased by an amount ε. If the resulting chain is irreducible then expressions for

difference in the stationary probabilities πj
(1) –  πj

(2)  are given by

j j r i ij j r i ij

i ji j

n m( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 1π π π ε π π ε−
≠≠

∑∑ =   =  .                                      (5.7)   
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This resulting perturbation has some nice properties that are not necessarily replicated in other more
general perturbations. In particular

(i)  
   =  ,  1  j  m.                 (5.9)   − =

−
≤

−
≤

−
≤ ≤ε π

π π
π

π π
π

π π
π

ε πr a b
b b

b

j j

j

a a

a

r b am m( ) ( )
( ) ( )
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( ) ( )
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( ) ( )

( )

( ) ( )2 1
1 2

1

1 2

1

1 2

1

2 1

(i)  
  1       =  1 +   ,   1  j  m.                   (5.10)   − = ≤ ≤ ≤ ≤ε π

π
π
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π

π
π

ε πr b a
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The approach that we now explore for general perturbations is to regard the changes in stationary
probabilities as being carried out by a succession of 2-element perturbations. This permits at each stage
consideration of the effect that perturbation will have on the stationary probabilities.

The requirements we now seek are simple procedures to first update the stationary probability vector ππππ(1)′′′′
to ππππ(2)′′′′ and then the mean first passage matrix M (1) to M(2); alternatively, N(1) to N(2) . Where possible we
strive to use the same g-inverse or a slight modification in order to minimise the required computations.

We first observe that every expression for ππππ(2)′′′′ – ππππ(1)′′′′ (cf (5.1) to (5.7)) is of the form

ππππ(2)′′′′ – ππππ(1)′′′′ = ππππ(2)′′′′ΕΕΕΕ K                                                                   (5.12)

where typically K is a g-inverse, or involves M(1) or N(1).

For a general perturbation, involving just the rth row, we can express ΕΕΕΕ    = erεεεε′.  Define  k′ = εεεε′K so that
ΕΕΕΕ K = erεεεε′Κ =  erk′. For such expressions we have the following inter-relationships between ππππ(1)′′′′ and ππππ(2)′.

Theorem 5.4: If ΕΕΕΕ    = erεεεε′ and  k′ = εεεε′K,

ππ ππ

ππ ππ
−−

( ) ( )

( ) ( )
( )

( ) ( )

( ),

,

( ).

1 2

2 1
1

1 2

1

1
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′ = ′ +
′
′

= − ′

I r
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r

r r

e k

k
k e

k e

                                                                          (5.13)

                                                                         (5.14)

Note also that                                                       (5.15)

π

π π r

Proof: Since equation (5.12) can be reexpressed as ππππ(2)′′′′ – ππππ(1)′′′′ = ππππ(2)′′′′erk′, (5.13) immediately follows. Now
it is easily established by matrix multiplication that

[I Ir
r

r

− ′ = +
′
′

e k
e k

 k e
]-1

1 -
and equation (5.14) follows from (5.13). Further, (5.15) follows from (5.14) by noting that for i = 1, 2,
ππππ(i)′′′′er =   πr

(i)....             

In order to apply the results of Theorem 5.4 observe that we do not need to find all the elements of K.
Consider a two element perturbation acting on the elements of the rth row of the transition matrix with
εεεε′ =  ε( eb′– ea′) corresponding to an increase of an amount ε to the the transition probability at position
(r, b) and a decrease of an amount ε to the transition probability at position (r, b).  Then k′  =   εεεε′K =
 ε(eb′– ea′)K  =  ε(kb′– ka′) where ki′ is the ith row of K. Thus we need only determine the elements of the
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ath and bth rows of K, be it a g-inverse, or the N-matrix with elements involving the stationary
probabilities combined with mean first passage times.

6. Updating procedures

The general approach that we take is the following:

Step 1:  Select a suitable g-inverse G(1). (We have a variety of possible candidates given in Table 1.)
Step 2:  Solve for the stationary probability vector ππππ(1)′′′′  using the g-inverse selected.
Step 3:  Solve for the mean first passage time matrix M(1) = [mij

(1)] (or the matrix N(1)) using the same g-
inverse G(1).  This permits us to determine the changes in ππππ(2)′′′′    −     ππππ(1)′′′′.
Step 4:  Solve for the stationary probability vector ππππ (2)′′′′  using e.g. Theorem 5.4 or G(1) or a suitable
variant.
Step 5:  Solve for the mean first passage time matrix M(2) = [mij

(2)] (or the matrix N(2)) using either the
same g-inverse G(1) or modification, G(2), which hopefully can be obtained by the updating procedure
using a variant of Theorem 3.4.

Let us suppose that we make a perturbation on the rth row of P(1) of the form  ΕΕΕΕ        = erεεεε′ where εεεε′ = εεεεr′ =
pr

(2)′′′′ – pr
(1)′′′′, so that the perturbation replaces the rth row of the transition matrix P(1) by the rth row of the

transition matrix P(2).

Step 1:  Consider using the g-inverse G(1) = [gij
(1)] = Grr

(r,1) = [I – P(1) + erpr
(1)′]-1 as this is directly based

upon the row selected for the perturbation.

Step 2:  An expression for the stationary probabilities πj
(1) are given by (3.16):

  π j
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  ,                                                                     (6.1)   

Step 3:  Expressions for the nij
(1) are given in Table 2 from Theorem 4.2, i.e.
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p g
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. .                                                      (6.2)

Step 4: Under the perturbation, with the new rth row as pr
(2)′′′′,,,,        a suitable g-inverse would be Grr

(r,2) =
[I – P(2) + erpr

(2)′]-1 . Note however that since P(2)  = P(1) + er(pr
(2)′ – pr

(1)′), Grr
(r,2) = Grr

(r,1) = G(1) = [gij
(1)] so

that the same g-inverse can be used for finding the properties of the Markov chain with transition matrix
P(2). Thus an expression for the stationary probabilities πj

(2)     are given by (3.16):
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Step 5:  Expressions for the nij
(2) are given, as in Step 3, but with pri

(1) replaced by pri
(2), as

n g g g g
p g

p gij jj ij i j
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Thus, as long as perturbations are carried out in the same row, we have a very simple procedure for
updating the stationary probabilities and the mean first passage times (via the nij.)

In matrix-vector form the above procedure is as follows:
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(1) Let G = [I – P(1) + erpr
(1)′]-1 = [I – P(2) + erpr

(2)′]-1 .
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ππ ππ
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Note also,since from (3.22) G  = , that for i =  1,  2,    re e  p eπ r

i

r

i G( ) ( ) .= ′1

This leads to the following relationships between the original and updated mean first passage times.

Theorem 6.1: If the same g-inverse G = [gij] is used in the updating of a transition matrix of a finite
irreducible Markov chain, the following relationships hold between the stationary probabilities and the
mean first passage times for the two respective Markov chains:

m m g gij j ij j j j j

( ) ( ) ( ) ( ) ( ) ( )( )( ).2 2 1 1 2 1π π π π− = − −i .  .                                                                    (6.6)

Proof: Extraction of the (i,j)th element of (6.5) leads to (6.6), since g′ = (g1., g2., . . . gm.).
   

A more general result where the updating is carried using two different g-inverses is the following:

Theorem 6.2: If G(1) = [gij
(1)] and G(2) = [gij

(2)] are two different g-inverses with G(i) (i= 1, 2) used to
determine expressions for the stationary probabilities and mean first passage times in for the ith finite
irreducible Markov chain then the following relationships hold between their stationary probabilities and
the mean first passage times:

m m g g g g g g g gij j ij j jj ij jj ij i j j i j j

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) .2 2 1 1 2 2 1 1 2 2 2 1 1 1π π π π− = − − + + − − − .  .  .  .                      (6.7)

Proof: Observe that from Theorem 4.2 for k = 1, 2,
N =  [n ] =  E(H )  H  where H  =  G (I  ) with  =   ,  so that

                                   n =  [m ] =  (g  g ) +  (g  g ) ,  for all i, j.

(k)
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(k) (k)

d

(k) (k) (k) (k) (k) (k)
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(k)

jj

(k)
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(k)

i 

(k)

j 

(k)

− −
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Π Π e

. .

π

π πj

(k)

j

(k)

Extraction of [nij
(2)] – [nij

(1)] yields equation (6.7).
                               

Note that the relationships do not depend upon the nature of the updating nor on any special
interrelationship between the stationary probabilities. Note that (6.6) also follows as special case of (6.7)
when the two g-inverses are same i.e. [gij

(1)] = [gij
(2)] = [gij]. Further, in this case we can update the mean

first passage times directly as follows:

Corollary 6.2.1: If  [gij
(1)] = [gij

(2)] = [gij] then,  for  i ≠ j,

m m g g

with m and m

ij ij ij jj

j j

jj

j

jj

j

( ) ( )

( ) ( )

( )

( )

( )

( )

( )( )

.

2 1

1 2

1

1

2

2

1 1

1 1

= + − −

= =

π π

π π

  ,                                                                        (6.8)
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Proof: Equation (6.8) follows directly from equation (4.6).
                                     

Let us now focus on the main application case of  two element perturbations. We start with the g-inverse
G = [I – P(1) + erpr

(1)′]-1 = [gij] with pr
(1)′ the rth row of P(1). Now suppose ΕΕΕΕ  = erεεεεr′ where εεεεr′ = pr

(2)′′′′ – pr
(1)′′′′,

so that the perturbation replaces the rth row of the transition matrix P(1) by the rth row of the transition
matrix P(2).

Theorem 6.3: For the two element perturbation case, if the initial Markov chain with transition matrix
P(1) has stationary probabilities πj

(1) and mean first passage times mij
(1) then the perturbed Markov chain

with transition matrix P(2) = P( 1 )  + ΕΕΕΕ   where ΕΕΕΕ   =  er(pr
(2 )′′′′  – pr

(1)′′′′) = εer(eb′  – ea′) has stationary
probabilities πj

(2) and mean first passage times mij
(2) given by

π π πj r rk
k

m

kj r ri
k

m

ip g j m where p g( ) ( ) ( ) ( ) ( ) ,1 1 1

1

1 1

1
1 2 1= =

= =∑ ∑,   = ,  ,  ...,  ,   .

π π π ε π π ε πj r j aj bj r r r a bg g where g g( ) ( ) ( ) ( ) ( ) ( )[ ( )] [ ( )],2 2 1 2 1 11= − − = − − ,  j =  1,  2,  ...,  m,   . .

so that

g g g g j mj j r bj aj b a j

   

     π π επ π( ) ( ) ( ) ( )[( ) ( ) ], , , ..., ;2 1 2 1 1 2− = − − − =. .

m m for all i j where mij jj jj j

( ) ( ) ( ) ( ) ,1 1 1 11= − − ≠ =[g  g ]  +  [g   g ],     ,    jj ij i j. . π

m m for all i j where mij jj jj j

( ) ( ) ( ) ( ) ,2 2 2 21= − − ≠ =[g  g ]  +  [g   g ],     ,    jj ij i j. . π

so that

m mij ij

j j

   

 [g  g ](
1

  
1

jj ij

( ) ( )

( ) ( )
)2 1

2 1
− = − −

π π

where G = [gij] = [I – P(1) + erpr
(1)′]-1 .

Proof: The expressions for πj
(1) and πj

(2) follow as special cases of  (6.1) and (6.3). For the difference
between πj

(2) and πj
(1) we can use one or more of the various forms for ππππ(2)′′′′ – ππππ(1)′′′′.... In particular, from (5.2)

          ππππ(2)′′′′ – ππππ(1)′′′′ = πr
(2)εεεεr′G(I – eππππ(1)′′′′) = επr

(2)(eb′ – ea′)G(I – eππππ(1)′′′′)
= επr

(2)(gb′ – ga′)(I – eππππ(1)′′′′)
= – επr

(2) )(hb′ – ha′)
=– επr

(2)(nb′ – na′),
where gi′, hi′ , and ni′ represent the ith row of G,  H(1) = G(I – Π(1)) and N(1) respectively.

 Thus in element form

    π π επ επ επ πj j r aj bj r aj bj r bj aj b a jn n h h g g g g( ) ( ) ( ) ( ) ( ) ( )( ) ( ) [( ) ( ) ].2 1 2 2 2 1− = − = − = − − −    . .

(Note that for j = a, naa = 0 and for j = b, nbb = 0. However this does not imply similar values for haa and
hbb since nij = hjj – hij where hij = gij – gi.πj.)

Expressions for mij
(1) and mij

(2) follow from (4.6) and the difference between mij
(2) and mij

(1) from (6.8).
    

The matrix Grr
(r)

 = [I – P(1) + erpr
(1)′]-1 has special properties that can be utilised. In particular note that from

(3.21) and (3.22) the rth row is er′ and the rth column is e, so that gir = 1 for all i while grj = 0 for all j ≠ r,
with grr = gr. = 1. A simple consequence of this is that
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For i r           ,                                                                                                          (6.9)

and,  for j r,        and                                                              (6.10)

Further,     
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Further special results can be deduced by making use of the Theorem 4.4.

In general, a single row perturbation affects all the stationary probabilities. However, from (6.9), it is
clear that the mean first passage times from any state (≠ r) to state r do not change when a perturbation is
carried out in the rth row of the transition matrix, as to be intuitively expected.

In conclusion note that when subsequent perturbations are made to another row, say the sth row, the
procedures outlined above will still hold but with G(1) = [I – P(1) + erpr

(1)′]-1 = [I – P(2) + erpr
(2)′]-1  replaced

by G(2) = [I – P(2) + esps
(2)′]-1. This change can be effected by updating G(1) to G(2), using (3.17):

G I P I G Is
s

s s

( ) ( ) ( )[ ] [ ] [ ] .2 2 1 1= − + ′ = − ′ −
′

′
+

′
′

−                    e p ep
e

e
e

e
( ) ( )
s

2

s

2 ππ
ππ

ππ
ππ

The computation of the mean first passages times in the updated chain can also be carried out using either
an updated fundamental matrix or group inverse, using the formulae of  Corollary 4.1.2.  These
approaches have been considered, respectively, by Hunter [4] for the case of a rank one update of the
form ΕΕΕΕ        = ab′ where it can be deduced that

Z I Z I
Z

Z
( ) ( ) ( ) ( )

( )

( )
[ ] [ ],2 2 1 1

1

11
= − ′ + ′ +

′
− ′

e e
ab

b a
ππ ππ   

and Meyer and Shoaf [11] ,for the case of changing the ith row of P(1), pi
(1)′, to pi

(2)′, where it is shown, in
the terminology of this paper, that

A A A A I A
A

A
i

i i

i i

#( ) #( ) ( ) #( ) #( ) #( )
( ) ( ) #( )

( ) ( ) #( )

]
[

[
.2 1 1 1 1 1

1 2 1

1 2 11
= + ′ − ′ − ′ ′ =

′ − ′

+ ′ − ′
π eb [ b e e b b

p p ]

p p ] e
i i i i i i

i

 where 

The utilisation of g-inverses into the joint computation of stationary distribtiions and mean first passage
times leads to a significant simplification in that at most a single matrix inverse needs to be computed and
often this involves a row and/or a column with very simple form further reducing the necessary
computations. While no computational examples have been included in this paper, a variety of new
procedures have been presented that warrant further examination from a computational efficiency
perspective.
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