
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Formal Framework For Data
Flow Diagrams With Control

Extensions

A dissertation presented
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Computer Science at Massey University

Robert Bertrand France

1989

Abstract

In this thesis a formal foundation for data flow diagrams (DFDs) with control

extensions is developed. The DFD is the primary specification tool of the Structured

Analysis (SA) approach to requirements analysis and specification.

In recent times, a number of extensions to DFDs, which enhance their use in

the specification of behaviour of complex applications (i.e. applications with

concurrent or real-time aspects), have been proposed. Such extensions tend to

concentrate on increasing the descriptive power of DFDs, while paying less

attention to providing the extended DFDs with a formal foundation. Such a

foundation would facilitate the generation of formal specifications from DFDs,

which could then be used to rigorously validate the DFDs and the behavioural

properties they capture, and could also be used as the basis of formal verification

activities where subsequent specifications are verified against the formal

specifications generated from DFDs. Also, the simple, graphical nature of DFDs,

supported by a formal foundation, facilitates their use in formal development

strategies. Their use in this respect achieves a level of understandability not usually

associated with formal specification tools.

The formal foundation introduced in this thesis consists of two parts: the

Picture Level (PL) and the Specification Level (SL). The PL is an algebraic

specification characterizing the syntactic aspects of DFDs. The specification is

associated with an operational semantics which provides an effective means for

investigating the syntactic properties of DFDs with the PL.

The SL consists of tools and techniques for describing control aspects of

applications, and for formally specifying the data, functional, and control aspects of

the control-extended DFDs. The control-extended DFDs are called Extended DFDs

(ExtDFDs). An ExtDFD depicts the types of interactions that can take place between

DFD components, as well as the events that affect the mode of operation of the

application it models. A formal specification, called the Behavioural Specification

(BS), is generated from an ExtDFD and supporting specifications characterizing the

data objects and primitive processing components of the ExtDFD. The role of the

BS in formal validation and verification activities is discussed in this thesis.

I I

Acknowledgements

I would like to thank Thomas Docker for starting me on this research and for

his support during the investigative parts of the research, as well as for his much

appreciated efforts in creating an environment conducive to my research in New

Zealand. I would also like to thank Professor Mark Apperley, my chief supervisor,

for his support during the preparation of this thesis, especially in the latter stages,

and to Dr. John Hudson, my second supervisor, for his valuable comments, and

efforts in reviewing the more technical aspects of this thesis. The reviewing of this

thesis has not been an easy task, given the volume of technical notation and detail,

and my own failure to write in a clearer manner in some cases, and I am grateful to

the above three persons for their efforts in this respect. Thanks also to the entire

staff of the Department of Computer Science at Massey University for making

study far from home bearable.

iii

Contents

Chapter O : Introduction
0.1 The context .. 1

0.1.1 The requirements specification problem 1

0.1.2 Formal requirements specification .: 2

0.1.3 Thesis objectives ... 3

0.2 Formal specifications from data flow diagrams 4

0.3 Overview of thesis ... 5

Chapter 1: Data Flow-Orientated Requirements
Specification Techniques

1.0 Introduction .. 7

1.1 Structured Analysis (SA) specification techniques 8

1.1.1 Data flow diagrams (DFDs) .. 8

1.1.2 The data dictionary and process specifications 14

1.1.3 SA and design ... 15

1.1.4 Limitations of SA specification tools and techniques 17

1.2 Extensions to SA .. 20

1.2.1 Yourdon's Structured Method (YSM) 20

1.2.2 Hatley's extensions ... 25

1.2.3 ADISSA .. 28

1.2.4 DARTS ... 31

1.2.5 Tse's extensions: Formal DFDs (FDFDs) 33

1.2.6 Extended DFDs (EXT-DFDs) ... 35

1.3 Conclusion .. 36

Chapter 2: Syntactic and Semantic Aspects of DFDs
2.0 Introduction .. 38

2.1 A computer-based library application ... 38

2.2 Syntactic aspects of DFDs ... 39

2.2.1 Syntactic aspects of flat DFDs ... 44

2.2.2 Syntactic aspects of hierarchies of DFDs46

2.3 Semantics aspects of DFDs .. 53

2. 3 .1 Flattening hierarchies of D FDs .. 54

iv

2.3.2 Describing the control aspects of applications 56

2.3.3 Semantics aspects of data flows and data stores 60

2.3.4 Semantic aspects of processes ... 64

2.3.5 Specifying the interactions in a DFD 67

2.4 Summary ... 71

Chapter 3: Positive-Negative Relational Specifications:
An Algebraic Approach to Specification

3.0 Introduction ... 72

3.1 Positive-negative relational specifications (RSs) 73

3. I. I Specifications and algebras .. 73

3.1.2 Hierarchical RSs .. 79

3.1.3 RS schemas ... 83

3.2 Model-theoretic interpretation of RSs .. 84

3 .2.1 Equality and inequality assumptions 84

3.2.2 Negated relation assumptions 87

3.3 An operational semantics for RSs .. 87

3.3.1 Relational conditional term rewriting systems (R-CTRSs) 88

3.3.2 Sufficient conditions for termination and

confluence of R-CTRSs ... 91

3.3.3 Correctness of R-CTRSs .. 94

3.4 Summary .. 95

Chapter 4: The Picture Level:
Characterizing the syntactic aspects of DFDs

4.0 Introduction ... 96

4.1 Characterizing the syntactic aspects of flat DFDs 97

4.1.1 Characterizing structurally correct flat data flows 98

4.1.2 Characterizing structurally correct flat processes 98

4.1.3 Characterizing structurally correct flat external entities and

data stores .. 100

4.1.4 Characterizing structurally correct process structures 101

4.1.5 The RS characterizing structurally correct flat DFDs 106

4.2 Characterizing the syntactic aspects of hierarchical DFDs (H_DFDs) 107

4.2.1 Characterizing structurally correct hierarchical data flows ... 107

4.2.2 Characterizing structurally correct hierarchical processes 113

4.2.3 The RS characterizing H_DFDs 117

V

4.3 Model and operational semantics for the PL 118

4.3.1 The PL R-CTRS .. 120

4.4 Limitations of the PL .. 122

Chapter 5: The Specification Level: Deriving
Behavioural

Specifications from DFDs
5.0 Introduction .. 124

5.1 The Data Environment (DE) ... 126

5 .1. 1 Characterizing the object classes associated with

data entities .. 126

5.1.2 Characterizing the structure of data entities 131

5.2 The Behavioural Specification (BS) .. 133

5.2.1 Algebraic state transition systems (ASTSs) 134

5.2.2 Specifying the behaviour of ExtDFD processes 135

5.2.3 Specifying ExtDFD actions 137

5.2.4 Characterizing the behaviour of data flows and data stores .. 141

5.2.5 Deriving the BS ... 143

5.3 The BS as a formal basis for reasoning with ExtDFDs 147

5. 3 .1 Investigating behavioural properti~s of ExtDFD

with the BS .. 147

5.3.2 Proving implementations of the BS 148

5.4 Conclusion ... 150

Chapter 6: Two Examples of Deriving Behavioural
Specifications from ExtDFDs

6.0 Introduction .. 151

6.1 The automobile cruise application ... 151

6.2 The computer-based university library application 170

6.3 Conclusion ... 194

Chapter 7: Conclusion
7 .1 Thesis summary and achievements .. 196

7 .1.1 Achievements ... 197

7.1.2 Comments ... 198

7 .2 Further work ... 199

7.3 Conclusion ... 200

Bibliography .. 201

vi

CHAPTER 0

Introduction

0.1 The context
This section outlines the context in which the research described in this thesis

should be placed.

0.1.1 The requirements specification problem

The increasing size and cost of software have been major concerns of

software developers since the late sixties. These concerns are especially relevant

today given the growing demand for, and scope of software in diverse application

areas, and the widening influence of software on human welfare.

While there is no general concensus on the central problems afflicting

software development, there is increasing evidence that the lack of thorough

attention to the requirements analysis and specification phase of software

development is a major contributor [YZCC84]. The evidence usually cited takes the

form of extensive rewriting of the software and cancellations of projects whose

completion was found to be unfeasible as a consequence of inadequate or

inappropriate requirements analysis and specification [Boe76, Boe81]. The

importance of the requirements analysis and specification stage as the first stage of

software development should be self-evident. The result of this phase, the

requirements specification, as well as being the basis for further development,

provides the means by which the quality and applicability of the software can be

measured [FREQ79]. In order to adequately support such a role in development,

requirements specifications should have the following properties:

• Understandability : It is important that a requirements specification be

understandable by users and implementors, as well as the specifiers, in order for

effective communication to take place. This property is considered as being of

prime importance by Balzer and Goldman [BG87]. Tse and Pong [TP86a]

identify two main aspects of understandability - complexity and clarity of

description. The reduction of complexity in an application can be achieved by the

use of abstraction, and partition [YZCC84]. The use of abstraction allows one to

suppress certain detail while concentrating on other essential detail, while

partitioning permits one to represent the whole as the sum of its parts. The use of

abstraction results in hierarchies of specifications, where a specification at a

1

Chapter 0: Introduction 2

lower level in the hierarchy presents detail ignored at the higher levels. For this

reason, abstraction is viewed as a vertical decomposition tool. Partitioning

allows for the modular building of specifications, and can be viewed as a

horizontal decomposition tool. On the clarity of description, it is generally felt

that graphic-based languages with few constructs are easier to understand than

mainly textual languages.

• Precision : The requirements specification, as the basis of further development,

must be stated in a precise, and unambiguous manner. This characteristic is

necessary to reduce confusion or misunderstandings arising from information

obtained from the specification.

• Testability : A requirements specification is said to be testable if it can be used to

establish in an effective manner that an implemented application is, in some well

defined sense, "equivalent" to it. In general, a notion of equivalence is based on

a mapping from information in the requirements specification to information in

the implemented application. If it can be proved that an implemented application

is equivalent to a specification, then the implementation is said to be correct with

respect to the specification. The activity of determining the equivalence of an

implementation and its specification is called verification. As a prerequisite to

verification, it must be possible to determine whether the different parts of the

specification are consistent with each other. Such an activity is called validation.

• Modifiability: It is foolhardy to assume that requirements once given remain

fixed throughout the development life of the software. Requirements can, and

often do, change over time, thus it should be possible to modify a requirements

specification without undue difficulty.

Currently, there is no single requirements specification language in which

specifications possessing all the above characteristics can be expressed.

0.1.2 Formal requirements specifications

Requirements specification languages can be classified as being formal or

informal. Formal specification languages have strict syntax and semantics. The

specifications that are expressible by them are calledformal specifications. Formal

specification languages are seen by many reserachers as being necessary for

expressing in a precise and unambiguous manner the requirements of applications

(see for example [YZCC84, TP86a, BG87, FREQ79, Goo84, Zav82, ZY81, FP]).

The use of formal specifications also permits validation of the specification by

formal means, for example, by logical proof, automatic checks, or simulation.

Formal verification is also facilitated by the use of formal specification

languages. Currently, there are two approaches to the formal verification of

Chapter 0: Introduction 3

software. In the first approach the software is developed independently of the

specification, and showing that the software implements the specification means

developing a formal proof that the program implements the specification in some

well defined sense. After two decades of work on this approach it is now generally

accepted that such an approach is not feasible for realistically sized applications

[San88]. In the second approach, called the transformation approach, software is

developed from requirements specifications via a series of refinement steps. The

result of each step is a specification which incorporates the design decisions the step

encapsulates. Such an approach can be pictorially depicted as a sequence of

specifications as shown below:

SP0 --> SPl --> ... --> S

where SP0 is the requirements specification and S is the implemented application.

Each specification in the sequence can be thought of as an implementation of its

predecessor, for example SPl can be thought of as an implementation of SP0. If

each individual step can be proved correct, that is, if it can be proved that SPi

implements SPi-1, then S itself is guarantied to be correct with respect to SP0. As a

formal development method, this approach offers more promise than the first,

though it is not without its problems. For example, when applied to large and

complex applications the individual specifications SPi can become large and

unwieldy resulting in some difficulty in proving the correctness of refinement steps

[San88]. This problem can be solved by appropriately partitioning the specifications

and refining them independently. Deriving an appropriate partitioning strategy is

still an area of active research.

A number of formal specification languages have been developed since the

early seventies, but their use in industry is limited despite their potential usefulness.

Both technical and sociological reasons can account for this lack of use. On the

sociological side, the proper use of formal specification languages requires a degree

of mathematical maturity not previously required by software developers.

Furthermore, formal specifications are difficult to read, even by the trained eye. On

the technical side, the lack of a firm method addressing the entire development of

software, which unifies at least some of the techniques is lacking. Current work on

the transformation approach is directed at deriving such a total method for software

development.

0.1.3 Thesis objectives

In the wider context, this thesis investigates an approach to integrating formal

and informal specification techniques, in order to come up with a specification

language which is both understandable, and formal. The approach involves

Chapter 0: Introduction 4

associating with informal specification tools and associated techniques a formal

framework, thus enabling the generation of formal specifications from the

(informal) specifications built using the tools and techniques. The informal

specifications can thus be viewed as 'fronts' to the formal specifications, and

should provide intuitive insight consistent with the formal interpretation it seeks to

hide. A developer could then develop a specification in terms of the (seemingly)

informal language, which could then be translated into a specification expressed in

terms of the underlying formal language. Such an approach is based on a proposal

put forward by Naur [Nau82, Nau85], which essentially states that formal

expressions are extensions of informal expressions.

In the narrower context, this thesis provides a formal framework for

structured analysis specification tools, mainly the data flow diagram, and also

extends the notation so that aspects other than the data flow through an application

can be specified. Most current languages provide support only for the specification

of what the application does, ignoring other non-functional aspects such as timing,

performance, and security. This is mainly because there is at present no

comprehensive theory or methodology for specifying such requirements

[YZCC84]. In this thesis attention is also paid to the specification of the time

depenedent (or control) aspects of applications.

0.2 Fonnal specifications from data flow diagrams
Structured Analysis (SA) is a methodology which addresses the requirements

analysis and specification phase of software development [DeM78]. The primary

tool of SA is the data flow diagram (DFD), which is a simple graphical language

used for describing the required structure of an application in terms of the data

flowing through it. At the time of its inception, SA was hailed as a radical approach

to requirements analysis and specification because of its use of graphical

specification tools as an aid to understanding. Less attention was paid to the lack of

a firm conceptual basis for the tools and techniques until much later when the

resulting problems reared their heads. Problems arose mainly from the different

uses of the tools and techniques amongst practitioners, a direct result of the lack of

a firm conceptual basis for them [Woo78]. This, inevitably, led to disagreements

over the "proper" use of the tools and techniques, and encouraged many

practitioners to incorporate customized extensions. Added to this, the irreversible

nature of the transition from SA specifications to initial Structured Design (SD)

specifications [YC78] limited their use in other than the requirements analysis and

specification phase of software development [Pet88, Ric86]. Such transitions have

also proved difficult to carry out in some cases, and require considerable experience

Chapter 0: Introduction 5

and skill on the part of the developer carrying out the transition [Ric86, Sho88]. A

further problem with the SA approach is that it specifies applications in terms of a

single aspect: the data flowing through it. For data processing applications this may

have been adequate, but for other types of applications, for example embedded or

real-time systems, other aspects are equally important.

Providing SA with a mathematical foundation may solve some of the

problems associated with its use, if one can be found. It is this author's view that

requirements analysis involves sociological processes which cannot be formalized

in terms of any mathematical theory. For this reason this thesis does not attempt to

provide an all-encompassing mathematical basis for SA, rather it restricts itself to

developing a formal framework for its specification tools, primarily the DFD. The

objective is to alleviate the problems associated with the use of SA specifications

discussed above, and at the same time provide a specification language which is

understandable, precise, and testable.

The formal framework consists of two parts: the Picture Level (PL), and the

Specification Level (SL). The PL provides formal support for constructing DFDs

by giving formal rules for building the syntactic entities involved. Specifically, the

PL is a system for abstractly characterizing and formally reasoning about the

syntactic structures of DFDs. The characterizations are abstract in the sense that

they are representation independent. An effective, sound and complete deduction

system can be associated with the PL, enabling its use as the formal basis for

automated DFD syntax-checking tools which are based on the rules expressed by

the PL.

The SL can be viewed as the part of the formal foundation which is used to

specify the semantic aspects of DFDs. Specifically, the SL is a set of techniques for

formally specifying the data, functional, and control aspects of control-extended

DFDs. The data aspects concern the structure of the data depicted in DFDs, and the

relationships between them, while the functional aspects concern the input/output

behaviour of the processing components of DFDs. The control aspects of DFDs

concern the interactions between the processing and data components of DFDs. The

primary product of the SL is the Behavioural Specification (BS), which is a formal

specification characterizing the behaviour of applications depicted by control­

extended DFDs. Such a specification facilitates formal validation and verification

activities, as is shown in this thesis.

0.3 Overview of thesis
Chapter 1 surveys some of the major extensions made to SA tools and

techniques- over the years since the inception of the methodology. It describes the

Chapter 0: Introduction 6

early SA approach of DeMarco [DeM78] and discusses the problems associated

with it, and the manner in which some of these problems are tackled by other

researchers. Chapter 2 introduces, in an informal setting, the formal basis for

DFDs. This chapter can be viewed as the informal 'front' to the more formal parts

of the thesis. Chapter 3 details the mathematical and operational foundations of the

algebraic specification technique underlying the formal framework. The technique is

based on the work of Broy and Wirsing on partial algebraic specifications [WB82],

the work of Astesiano et al on relational specifications [ARW86], and the work of

Mohan et al on inequational assumptions [MS87].-Chapter 4 describes the PL,

while Chapter 5 describes the techniques in the SL. Chapter 6 applies the

techniques described in Chapter 5 to both a data intensive application, and a control

intensive application. The data-intensive example is a computer-based library

application for a university, and the control-intensive example is an automobile

cruise-control application. Chapter 7 discusses the merits and the limitations of the

formal framework and pinpoints areas which require further research.

