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Abstract

For normal trichromats, the hue of a light can change as its luminance varies. This Bezold-Brücke (B-B) hue shift is
commonly attributed to nonlinearity in the blue–yellow opponent system. In the present study, we questioned
whether protanopes experience analogous changes. Two protanopes (Ps) viewed spectral lights at six luminance
levels across three log steps. Two normal trichromats (NTs) were tested for comparison. A variant of the
color-naming method was used, with an additional “white” term. To overcome the difficulty of Ps’ idiosyncratic
color naming, we converted color-naming functions into individual color spaces, by way of interstimulus similarities
and multidimensional scaling (MDS). The color spaces describe each stimulus in terms of spatial coordinates, so
that hue shifts are measured geometrically, as displacements along specific dimensions. For the NTs, a B-B shift
derived through MDS agreed well with values obtained directly by matching color-naming functions. A change in
color appearance was also observed for the Ps, distinct from that in perceived brightness. This change was about
twice as large as the B-B shift for NTs and combined what the latter would distinguish as hue and saturation shifts.
The protanopic analogue of the B-B shift indicates that the blue–yellow nonlinearity persists in the absence of a
red–green signal. In addition, at mesopic levels (# 38 td), the Ps’ MDS solution was two dimensional at longer
wavelengths, suggesting rod input. Conversely, at higher luminance levels (76 td–760 td) the MDS solution was
essentially one dimensional, placing a lower limit on S-cone input at longer wavelengths.
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Introduction

Increasing luminance can alter the hue and saturation of a light, as
perceived by a normal trichromat, or NT (Purdy, 1937). Hue
changes are known as the Bezold-Brücke (B-B) shift and com-
monly attributed to nonlinearity in the blue–yellow opponent
system (e.g., Larimer et al., 1975; Werner & Wooten, 1979; but
also see Hurvich, 1981, pp. 73–74). Here we examine whether
protanopic observers (Ps) experience an analogous shift in the
absence of a red–green opponent dimension. The behavior of a
B-B shift in Ps can potentially shed light on nonlinear transforma-
tions in the color-processing system.

To estimate color appearance in NTs at varying luminances, the
method of color naming has been used (Boynton & Gordon,
1965). To quantify the B-B shift, color-naming functions are
matched across luminance levels. To elicit a description of (for
instance) 80% “yellow” and 20% “red” from an observer might
require chromatic stimuli of 580 nm at low and 590 nm at high
luminance (the longer wavelengths becoming subjectively yel-
lower as luminance increases).

The reliability of the color-naming procedure for Ps has been
established (Scheibner & Boynton, 1968). However, the luminance-

matching analysis of their data is problematic, because there may
be no combination of color terms at high luminance that matches
the specific combination a dichromat uses to describe a low-
luminance stimulus. Dichromats may fail to disentangle luminance
and hue in their use of terms like “green” or “yellow” (Paramei &
Cavonius, 1997), while the mutual exclusivity of “red” and “green”,
or “blue” and “yellow” is not assured.

One way of overcoming the problem uses multidimensional
scaling, or MDS (Shepard & Carroll, 1966; Gordon & Abramov,
1988). The outcome is a geometrical model in which points
represent stimuli, so each stimulus is specified by a spatial location
rather than by color-name combination, while hue shifts are mea-
sured as luminance-dependent displacements of those locations.
Points are arranged so that distances between them reflect the
similarities between corresponding pairs of stimuli; similarities in
turn are derived by comparing color-name profiles.

In the present study, this geometric approach is used to quan-
tify the shifting subjective properties of chromatic stimuli for Ps
while varying luminance across three log steps—from mesopic,
through low photopic, to high photopic levels. For validation,
similar data from NTs are analyzed in the same way, and by
matching luminances.

Materials and methods

The experiment was conducted at Moscow State University. Sub-
jects were dizygote twin males aged 23 years, AA and DA,
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diagnosed as Ps using Rabkin pseudoisochromatic plates (Rabkin,
1971). On an anomaloscope (Rautian, 1957) they accepted the full
range of Rayleigh-equation matches. NT subjects were two un-
related females, aged 25 and 30 years. All subjects were native
Russian speakers. The experiment was conducted in accordance
with principles embodied in the Declaration of Helsinki (Code of
Ethics of the World Medical Association).

Monochromatic stimuli and a broadband white stimulus were
produced by passing light from a KGM-24 tungsten filament
source (ca. 2850 K) through Zeiss interference filters, and a
neutral filter, respectively (Izmailov & Sokolov, 1991, Fig. 1). NTs
viewed 20 monochromatic stimuli at approximately equal steps
along the spectrum from 405 to 675 nm. For the Ps, five more
filters were added around 500 nm, in the region of the protanopic
achromatic point. Six luminance levels were used: 200, 100, 20,
10, 2, and 0.2 cd0m2 (760, 380, 76, 38, 7.6, and 0.76 td), with
luminance measured by a VFM-57 photometer and controlled with
a neutral-density wedge. Thus, 63 21 5 126 stimuli were pre-
sented to NTs, and 63 26 5 156 to Ps.

Stimuli were presented foveally in Maxwellian view. A 2.2-deg
circular test field was exposed against a dark surround for 3 s
followed by 15–20 s of darkness. Subjects were dark adapted for
20 min prior to the session. The NTs’ right eyes were tested, while
both eyes were tested for Ps.

Observers judged each stimulus using five response categories:
the Russian equivalents of red (R), yellow (Y), green (G), and blue
(B) to describe the hue, and white (W) for the achromatic content.
Siniy, the term used for B, is the closest equivalent (Abramov
et al., 1997). One, two, or three terms could be used, in order of
salience. Ten points were shared amongst those terms (if two terms
were used, the first was given 6 and the second 4; three terms

received 5, 3, and 2 points). Each combination of wavelength and
luminance was presented 20 times over ten sessions, twice per
session, in pseudorandom order. Summed over presentations, the
points for each color name gave the color-naming function. This is
an extension of previously reported data (Paramei et al., 1998).

The two NTs’ data were sufficiently similar to be averaged and
written as a 1263 5 matrix. Averaging data from both eyes of both
Ps gave a 1563 5 matrix. Next, the similarity between any pair of
stimuli was quantified as the Pearson correlation between the
corresponding rows (Gordon & Abramov, 1988), yielding 1263
126 and 1563 156 similarity matrices. These were analyzed with
a nonmetric MDS algorithm (Kruskal, 1964) to provide geometric
representations.

Results and discussion

Hue shifts in color spaces for NTs

MDS models with two, three, and four dimensions had Stress1

values (i.e., badness-of-fit) of 0.15, 0.09, and 0.07, respectively. As
a substantial improvement over two dimensions, three dimensions
were optimal, representing thei th stimulus by a pointxi with
coordinatesxi1, xi2, xi3. This model was rotated to maximize the
association between thexi3 ~D3 coordinates) and the W-naming
score for the corresponding stimuli.D3 was thus an achromatic or
“desaturation” axis, whileD1 and D2 were R–G and B–Y axes.
NTs seemingly did not use the available color vocabulary to
describe luminance, since no correlate could be found in the
solution for that aspect of stimuli.

The position of the pointsxi were expressed as spherical
coordinates: azimuthQi 5 arctan~xi20xi1!; altitude Ci 5 arctan

Fig. 1. Color space for normal trichromats, plotted in spherical coordinates. Horizontal axis5 hue angleQ. Vertical axis5 achromatic
angleC (desaturation). Same-wavelength stimuli linked in order of increasing luminance, from 0.76 td (open circles) to 760 td (solid
circles). Six unlabelled points nearC 5 90 deg (i.e., at the positive extreme ofD3) represent the W stimuli. Hue angles where stimuli
are “unique hues”8b, 8g, 8y, 8r in the raw data are marked as vertical lines.
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@xi30~xi1
2 1 xi2

2 !102#. We identifyQ andC ashueandachromatic
angle, respectively. Points also have a radial coordinateri , that is,
distance from the origin, but the standard deviation ofri was only
4.1% of the mean value.Qi andCi are plotted in Fig. 1. Fig. 1 also
shows four “unique hue” loci, that is, values ofQ where stimuli are
located that the observers described with a single opponent-hue
name (e.g., as G, with no component of B or Y).

Fig. 1 shows that chromatic stimuli vary substantially inC~l,
L!, that is, W-naming. The lowest values ofC (highest saturation)
appear at long wavelengths (described as R) and around 511 nm
(where G-naming peaks). Increasing luminance has the effect of
decreasing saturation forl , 511 nm, while increasing it for
longer wavelengths (particularly for stimuli described as yellow).

The horizontal and vertical displacement between same-
wavelength points distinguish two effects of luminance change, on
hue and saturation, respectively. For two luminance levels,L1, L2,
the B-B shift at wavelengthl1 is Dl 5 l2–l1, wherel2 is found
by matching hue angles (interpolating if necessary), that is,
Q~l1,L1! 5 Q~l2, L2!. Dl is plotted in Fig. 2, in which the highest
level of L is compared with each of the lower levels. The hue shift
peaks in the green–yellow region at 535 nm for the smallest
luminance difference and at 511 nm for larger differences. The
values are well in accord with those obtained by direct measures in

previous studies (Purdy, 1937; Boynton & Gordon, 1965; Gordon
& Abramov, 1988), though the lack of blue–green stimuli around
500 nm prevents us from estimating the shift in that spectral
region.

Chromatic shifts in color spaces for Ps

Averaged data are presented here, though it is worth noting that
individual solutions for DA and AA differed in specifics because
differences in their use of color terms led to loss of information in
particular spectral regions. A three-dimensional MDS solution was
optimal for the averaged color-naming data from the Ps, with
Stress1 5 0.13 (compared to values of 0.19 and 0.11 for two and
four dimensions). This is compatible with the reduced dimension-
ality of dichromatic vision, because the Ps evidently used the
available terms to describe variations in stimulusintensity: lumi-
nance emerged as a third dimension (D3). Retaining three dimen-
sions also avoided artefacts that emerged in a two-dimensional
solution, and eased comparisons with the solution for the NTs.

The solution islocally two dimensional, with pointsxi lying
close to a spherical surface: the distancesri from the xi to the
origin were distributed with a standard deviation that was 5.7% of
meanri . As with NTs, locations on this spherical surface can be

Fig. 2. Bezold-Brücke hue shift in normal trichromats, comparing 760 td stimuli against lower luminance values, from 380 td (_)
to 0.76 td (_). Horizontal axis5 l. Vertical axis5 Dl, the change in wavelength required to compensate for a difference in
luminance and produce the same hue angle.
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expressed as angular coordinatesQ andC (Fig. 3). In a departure
from the NT case, the altitudeC (and D3) separates the six
luminance levels (specifically separating the six luminances of
White in the vicinity of the neutral 511-nm stimuli). We interpret
C as a perceived brightness coordinate. As expected, perceived
brightness is reduced at longer wavelengths where the protanopes’
retinal efficiency declines.

The azimuth angleQ provides some separation of stimuli by
wavelength, and can again be interpreted as “hue angle”. This is
despite considerable overlap between the protanopes’ R- and
G-naming functions (not shown for reasons of space). This
precludes any interpretation ofD1 and D2 in terms of opponent
hues, and they are merely mathematical conveniences. Thus the
starting point forQ (0 deg5 360 deg) is arbitrary. Inspection of
the raw color-naming functions revealed no element of B-naming
in the long-wavelength responses, nor of R-naming at short wave-
lengths, soQ ranges around (slightly) less of the sphere than in the
NT case.

Note thatQ is an index of saturation as well as hue. Saturation
is zero at the neutral point (l ; 511 nm,Q ; 200 deg); it increases
with Q for longer wavelengths, but also increases with decreasing
Q for shorter wavelengths. Thus, if protanopes possess any ana-
logue to the luminance0saturation effect in NTs, one would expect
the desaturation of high-luminance, short-wavelength stimuli to
displace them longitudinally towards the neutral point. Conversely,
the saturation of high-luminance, long-wavelength stimuli should
sweep them away from the neutral point.

Luminance-induced hue0saturation shiftsDl were calculated
by matching hue anglesQ, and plotted in Fig. 4. The values are
quite similar in profile to those obtained from NTs but about
double the magnitude. The general picture is consistent with the
protanope observers experiencing an equivalent to the B-B shift,

but overlaid with what in NTs is a separate shift, in stimulus
saturation.

The MDS solution for protanopes could be rotated to different
axes. This would affect the specific values ofDl, but not the
essential feature of the solution—which is the relative displace-
ment of points representing high-luminance stimuli, compared to
low-luminance points.

If M-cones alone subserved protanopic perception of the long-
wavelength end of the spectrum, this region should collapse into
one dimension—with perceived brightness as the only quality
distinguishing the stimuli. Such pattern is indeed observed in
Fig. 3, for stimuli in the range 76–760 td (the three higher
luminance levels here) andl . 600 nm. For example, 635-nm
stimuli of varying luminance are arranged in sequence of per-
ceived brightness, but 675-nm stimuli fall along the same se-
quence, displaced along it by lower retinal efficiency at the longer
wavelength. Thus, the present results complement earlier findings
(McMahon & MacLeod, 1998) that S-cones contribute to discrim-
ination at sufficiently high intensities (;104 td). Significant S-cone
input at longer wavelengths would displace stimuli away from the
sequence in Fig. 3; the absence of any displacement places a lower
bound upon the required intensity.

In contrast, low-luminance stimuli~L # 38 td) occupy a second
dimension even at long wavelengths, that is, the Ps distinguished
them other than by perceived brightness. It is possible that rod
signals feed into chromatic pathways at mesopic light levels and
contribute to protanopic chromatic sensation (Buck et al., 2000).

Conclusion

In protanopes, luminance-dependent changes in the appearance of
spectral stimuli show the features that would be predicted by

Fig. 3. Color space for protanopes, plotted in spherical coordinates. Horizontal axis5 hue0saturation angleQ. Vertical axis5
brightness angleC. Same-wavelength stimuli linked in order of increasing luminance, from 0.76 td (open circles) to 760 td (solid
circles).
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superimposing the shifts in hue and saturation observed in normal
trichromats. The protanopic analogue of the Bezold-Brücke shift
indicates that the blue–yellow nonlinearity persists in the absence
of a red–green signal (presumably disrupted in these observers by
the absence of L photoreceptors).
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