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Abstract

As the importance of environmental sustainability and increasing market demands have
expressed pressure on New Zealand’s hill country farming systems, the more effective use of
available resources and additional inputs has become crucial. Pastoral hill country farms are
critical components of New Zealand’s economy, and precision agriculture solutions have been
increasingly utilised to improve the sectors’ financial stability and resilience, and to satisfy the
elevated expectations in yield. Profitability is dependent on pasture productivity that is highly
influenced by the availability of nutrients as well as the amount of soil moisture (6,,, m®*m™).
However, high variability of soil and landscape factors that control productivity is the primary
concept describing these diverse landscapes. Hence, a study was conducted on a 2600 ha
dominantly beef and sheep farm in the southern east coast of the North Island of New Zealand

representing typical hill country settings.

Some of the specific concerns of this research were the examination of the role of accurate,
calibrated 6, measurements via a wireless sensor network (WSN) (1) and the spatiotemporal
variability of 8,, (2). Furthermore, the study investigates the potential of remote sensing for the
mapping of near surface 8,, in sloping lands (3) and the characterisation of pasture yield patterns
induced by the topography (4). These primary points were addressed to better understanding
the complexity occurring behind the environmental factors governing pasture yield and to

potentially achieving improvement in pasture growth simulations.

Systematic 0, measurements have been used increasingly to inform decisions regarding
fertiliser applications, feed supply and stock management in non-irrigated farming systems. To
assist near real time 6, and soil temperature (T5) monitoring, 400 mm capacitance-based
AquaCheck (AquaCheck, South Africa) probes (four 8, and four T, sensors per probe) were
installed at 20 locations (hereinafter microsites) in predominantly silt loam soils. The spatially
distributed probes were arranged into a WSN to capture data from various topographical
positions. The application of manufacturer-provided calibration formula resulted in a mean root
mean square error (RMSE) of 0.106 m3® m™, a mean bias error of -0.099 m® m3 (indicating
underestimation), and a coefficient of determination (R?) of 0.58 when correlated to directly
measured reference 6,values. A single custom formula, relevant to the local soils resulted in an
improved RMSE of 0.039 m3®m™3, while microsite-specific calibrations achieved an RMSE of 0.029

m3m™ and R?of 0.77. The application of a sensor-specific calibration resulted in an RMSE of



Preface

0.019 m*m™3 with R? = 0.9. Sensor performance and accuracy errors were observed to vary as a
function of soil wetness, bulk density (p,, gcm™) clay and total organic carbon (TOC) content.
These effects were significant (P value < 0.001) but eliminated by the sensor-specific custom

calibration.

Sensor specifically calibrated 8,, was utilised the examine the effect of highly variable terrain
attributes such as aspect, slope angle and soil physical properties on the 8, patterns, stability
and distribution both spatiotemporally and along the soil profile. Non-normal 8,, distribution
was observed in the study period. The statistical analysis confirmed that the temporal stability
of 8,, was higher in the deeper sections in both dry and wet seasons, while the spatial variability
of 8, increased with decreasing mean 6,,, although the greatest was in the rewetting stages. The
degree of temporal persistence of the 6, patterns varied with soil wetness conditions and
seasons. Based on the temporal stability assessment, a representative location was selected
based on a north-facing and open slope with silt loam soils. The 8,, distribution patterns were
influenced by the topographic attributes showing that north-facing steep and moderately steep
slopes were characterised with the highest variation, while east- and west-facing slopes showed

similar trends.

Due to the significant variability, near surface 8,, mapping at a spatial resolution that would be
useful for describing within farm heterogeneity has been challenging for researchers. The near
surface 6, modelling performance of a Random Forest (RF) ensemble learning method and the
synergetic use of various remote sensing data with terrain attributes were investigated at 20x
20 m pixel size. The RF model was trained using a two-year reference dataset containing
Sentinel-1 SAR backscatter data (i), normalized difference vegetation index (NDVI derived from
Sentinel-2, Landsat 7 and Landsat 8 images) (ii), a number of landscape parameters (iii) and in
situ near surface 6,, values obtained by the WSN (iv) as ground truth. The RF algorithm captured
a significant amount of the complex relationships and the model predicted 6,, with a mean RMSE
of 0.047 m® m3 and adjusted R? of 0.76 at the point scale as given by the repeated cross
validation. The fine-tuned RF regressor was trained using 15 microsites and a series of near
surface 8, maps was developed. The maps were validated using the five left out microsites
resulting in 0.049 m* m3 RMSE and 0.76 adjusted R? indicating good agreement between
modelled and observed 6, values. The general annual trend of 6,, was closely reflected in the

developed maps.

The role of near surface and root zone 8, T, climatic variables and topographical attributes on
the spatiotemporal pattern of pasture productivity was investigated at 13 selected microsites at
which pasture herbage accumulation was monitored by the moveable exclusion cage method in
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2016-2018. Considerable differences were found in the stored soil water response to significant
rainfall events and climatic variables influencing pasture production. On the created multitable
dataset, a multiple factor analysis was executed. As a result of this analysis, the role of various
environmental parameters was defined highlighting the role of slope angle as the most
significant determinant of pasture growth. The effect of landscape position was found to be
more significant than aspect, which showed a seasonal dependence. Additionally, the
contribution of terrain attributes was not consistent during the study period and changed from
year to year. T; and 8, at a soil depth of 100 mm demonstrated the strongest governing effect

on pasture production among the monitored parameters.

In conclusion, the outcomes of this study imply that an extended and improved version of the
proposed methods have the potential to be a basis of more accurate water balance simulations
in complex landscapes at the regional scale. The presented quantification and isolation of the
influencing topographic factors on pasture production may assist in hill country intensification
by adding value to the generation of regulatory nutrient management plans. Ultimately, these
advancements will enable the better characterisation of the dynamic hill country pastoral
systems, which will lead towards helping hill country sheep and beef farmers to grow more
pasture and increase returns while reducing the degrading effects of fertiliser applications on

the environment.
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Chapter

GENERAL INTRODUCTION

This introductory chapter establishes the project background and the position of the study in the
“big picture”. Chapter 1 provides the scientific rational of the research and informs the reader
about the importance of hill country farming systems and their economic contribution. Based on
the given general information the role and advantages of environmental monitoring is presented
that guides the chapter towards to the problem statement and the potential research gaps
where improvements can be achieved with the aim of higher pasture production rates.
Afterwards, the chapter defines the specific directions of the study and the methodology used
for addressing the research questions. Finally, Chapter 1 depicts the outline of the entire thesis

with brief summaries given about the structure and the key concepts of each chapter.
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1 Chapter 1 - General introduction

1.1 Project background

The conducted research is associated with the innovation project, “Transforming Hill Country
Farming”, running under the ‘Pioneering to Precision: Application of Fertiliser in Hill Country ‘-
Primary Growth Partnership (PGP) programme. The initiative was funded by Ravensdown
Fertiliser Cooperative and Ministry of Primary Industries to target the development of hill
country farming from a new perspective. The outcome of the PGP project aimed to enable hill
country sheep and beef farmers to grow more pasture and increase returns while reducing the

degrading effects of fertiliser applications on the environmental systems.

One of the main limiting factors of pasture growth is the soil water content, thus, one slice of
the PGP project is looking at the ways of better estimation and spatial mapping of soil water
content for the potential improvement of the simulation accuracy of a commercial pasture
growth forecaster. As the availability of nutrients for pasture growth is highly dependent on soil
water content influencing the amount and quality of yield, thereby making the timely decisions
for feed budgeting crucial in dry hill country farming. Hill country is an iconic part of New
Zealand’s farming and variability is a key concept describing these terrains. The interaction of
climate, topography, parent materials and time has resulted in many different soil types with
varying soil properties, nutrient levels, and soil depths that has led to high diversity in pasture

cover and production rates.
The main challenge of the programme is to find answerers for the following questions:

e s it possible to find a way for better fertiliser placement so famers will be able to grow
more pasture without increasing the pressure on the environment?

e s it possible to capture the environmental variability existing in hill country landscapes
and use that information for better predictions, management and more efficient,

sustainable exploitation of natural resources and external inputs?
1.2 Hill country farming and its economic contribution

A simplified definition of hill country in New Zealand is given by Cameron (2016) and Kerr (2016)
stating that hill country is classified as land with slopes greater than 15° and below an altitude
of 1000 metres above mean sea level. Beef and sheep pastoral systems, dominantly situated on
hill country landscapes, represents the majority (70-75 %) of New Zealand’s agricultural land

use. Beef and sheep farms are distributed among approximately 5500-6000 holdings, from



which ~80 % is located in the North Island (Kerr, 2016). Approximately 4 million ha of the North
Island under pastoral land use is hill country which is 43 % of the total pastoral land area of New
Zealand (Fraser and Vesely, 2011, Kerr, 2016). Hill country is a major annual contributor to the
New Zealand economy and agricultural primary production accounts for nearly 50 % of New
Zealand’s export earnings (Statistics New Zealand, 2015). Through the export of various products
such as sheep meat, lamb, beef, venison, velvet and wool, hill country farms produced $2.8

billion value of exports in 2012 (Kemp and Lépez, 2016).

Based on these measures, the weight of hill country in the primary industries is evident making
these farms critical components of New Zealand’s economic activity. Therefore, this sloping land
has been in the centre of attention as a main breeding platform in the last 40 years and its
importance has been increasing with a research focus on higher yield rates, resilience and
adaptation (Kerr, 2016). The most distinguishing feature of hill country and the associated land
management is the variability due to the contour and sloping nature of the soil surface coupled
with generally low fertility soils (Gillingham, 1973). In the last decades, noticeable productivity
growth has been achieved as a result of improved grazing and pasture species, livestock-

breeding and the slowly increasing adaptation of sensor technologies (Fraser and Vesely, 2011).

The systematic observation of pasture production affecting variables, for example soil moisture,
can assist in better operational decisions and optimising feed over time. The benefits of soil
moisture observations have been recognised for many years. However, hill country soils have
not been studied in sufficient detail in terms of soil water variability and spatiotemporal patterns
at the paddock (i.e. an enclosed pastoral grazing management unit). Most hill country farmers
do not measure these variables regularly or if they do, they will monitor them at a single point
like location not capturing the existing variability. Some might use regional, coarse resolution
predictions or simply their experience and the “look and feel” method (Johnson, 1962) for
evaluating the land conditions. The recognition and characterisation of soil water regimes and
pasture yield distribution in time and spatially at least at the paddock scale could be considered

as a “game changer” in fertiliser input distribution planning as well as in farm management.

1.3 The importance of the monitoring of production influencing variables

concerning the future of hill country farming

Hill country farmers are used to dry summer conditions and extended dry autumns stretching
into early May but not to dry springs, which strongly influences yield by creating periods of soil

water stress. Their land and grazing management decisions are not only dependent upon
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experience and historical data but also on predictions regarding yield and weather, which are

also functions of soil moisture input.

New Zealand has experienced clear upward trends in historical temperature, with 0.09 + 0.03 °C
temperature rise per decade since 1909. In the 21° century, virtually certain further warming
combined with considerable changes in extreme events have been projected with increasing
number of hot days (T, 4, > 25 °C). According to the National Institute of Water and Atmospheric
Research (NIWA), these indicated drifts in climate are likely to cause change in rainfall patterns,
more frequent and increased runoff, flood and drought events in several regions of New
Zealand. Recent droughts on the East Coast of the North Island (Eastern Wairarapa) in 2008 and
2010 caused significant soil moisture stress and heavily affected grass and plant growth with the
driest April monitored since 1956 (Greater Wellington Regional Council, 2012). According to
NIWA, January 2018 was the hottest month and obviously the hottest January on record in New
Zealand breaking the previous record of January observed in 1956. Due to the combined impact
of extreme temperatures and the relative lack of rainfall, soil moisture levels were lower or
much lower than normal at certain parts of the country including the eastern and southern parts

of the North Island.

Considering the potential impacts of the projected climate change, a substantial contribution
can be anticipated to economic losses and pasture production may be influenced by the
changing environmental conditions (Pearce et al.,, 2017). Moreover, the issues around
preserving water quality and the consideration of several environmental and political limitations
will make farmers to operate within certain boundaries. Adapting to the forecasted changes can
increase costs and the pressure on producing more output for the same or reduced physical
inputs (Fennessy et al., 2016). These issues and the related consequences will possibly shape the
introduction of innovative ideas and technology to develop a solid, sustainable future for hill

country farming and to ensure the financial stability of the hill country farming sector.

Profitability is underpinned by the productivity of the land that is highly dependent on the soil
fertility, feed quantity and quality, water supply and the most effective strategic exploitation of
the available resources (Shadbolt and Martin, 2005, Lieffering et al., 2012, Fennessy et al., 2016).
The generally variable spatial pattern of soil moisture and feed supply are further complicated
by changes in slope, aspect and relief of the terrain in hill country (Bretherton, 2012). The
monitoring of farming systems and defining the variations in soil water content, pasture yield,
the vegetation’s biophysical parameters and soil characteristics can provide farmers with key

information for operational decisions and optimising feed over time (Schrimgeour, 2016).



Pastoral hill country farms are operated under a wide range of micro-climatic conditions and
various management regimes typically with low inputs (i.e. fertiliser, feed from external
sources). The dynamic nature of hill country and the interaction among numerous
environmental factors, e.g. climate, high variation in relief, soil properties, soil type patterns,
stock and grazing management, results in highly diverse production rates and pasture
composition (Radcliffe et al. 1968, Murray et al. 2007, Chapman and Macfarlane, 1985,
Bretherton, 2012). For these reasons, the spatial mapping and assessment of pasture growth
characteristics are still challenging and labour-intensive tasks. While soil conversation, water
quality and the mitigation of environmental pressure are among the highest priorities, fertiliser
applications are essential and will remain the key for the future of hill country farming

(Schrimgeour, 2016).

Considering the location-specific irregularities in environmental conditions, the precisely
targeted management practises and fertiliser inputs can significantly improve the farms’ yield
and the general efficiency of the farming system (Judd et al.,, 1990). To balance out the
differences in pasture productivity caused by the hilly landscape the farm-specific planning of

fertiliser applications is built on pasture growth simulations.

To facilitate improved yield and water management strategies in non-irrigated farming systems
the integration of soil moisture data into the decision making and forecasting systems and a
detailed description of yield affecting factors will enable a better understanding of feed supply
patterns. Hill country farming can benefit from both near surface and rooting zone soil moisture
estimation that can also provide an information on the amount of plant available water.
Furthermore, soil water content controls the soil infiltration rate, runoff and evapotranspiration
influencing the water storage and thereby the water uptake by plants (Rodriguez-lturbe et al.,

1999, Woodward et al., 2001).

Thus, soil moisture monitoring is rapidly developing across different types of soil-plant systems
over many landscape features and scales at a time of increasing food demand and the forecasted
more extremities in weather patterns (Howell, 2001, Charlesworth, 2005, Trenberth et al.,
2013). Systematic and frequent soil moisture information allow farmers and agronomists to
better inform pre- and in-crop strategic inputs, pasture management (Matson et al., 1997), and
nutrient cycling (Dougill et al.,, 1998) at the farm scale. Consequently, obtaining accurate,

frequent and non-destructive soil water data is significantly advantageous, if not fundamental.

The importance of soil water content and pasture growth distribution patterns suggests that

quantification of their spatiotemporal behaviour needs to be studied from the global scale to
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the small watersheds, paddocks and hill slopes. Most environmental variables are out of the
human control, but the perception and quantification of their effect on pasture growth patterns
enable farmers to maximise their land resources and optimise the production as well as the
consumption. It can be concluded that better-designed yield forecasters, advanced model
parameterisation, improved fertiliser application planning, more efficient, timely land
management and budgeting decisions are some of the key aspects that need to be addressed

by further research.
1.4 Problem statement — The soil water balance module

Pasture growth simulation models have been increasingly used for assessing the effects of the
controllable and fixed variables of the pastoral system (Li et al., 2011). Some standard units of
these commercial models are well understood, such as the seasonal distribution of feed demand

(Holmes et al., 1987), bringing together the existing knowledge of pastoral systems.

An ideal pasture growth forecaster algorithm would be able to predict yield spatially and
temporally. Additionally, it should take into account the effects of topography (slope angle,
aspect and altitude), climate variables (temperature, rainfall, incoming solar radiation,
ventilation effect), soil fertility (fertiliser history) and had a detailed water balance module

calculating daily soil water deficit considering the sub-paddock variations.

The modules accounting for soil hydrology, a critical component of agriculture, are still lacking
improvement for complex terrain and it is assumed that one of the weakest points of these
models lies in this component. The water balance module often fails to represent the variability
due to the complicated flow processes occurring on and under the rolling surface with

heterogeneous soil types.

The soil water balance for flat land in New Zealand has been extensively studied and it is quite
well understood (Scotter et al., 1979, McAneney and Judd, 1983, Woodward et al., 2001). In
contrast, relatively few studies have been published on the soil water balance in hill country
(Bircham and Gillingham, 1986, Bretherton et al., 2010, Bretherton et al., 2018), despite its
significant role in the primary sector. In general, soil water content predictability and variability
are not yet fully understood on rugged terrain, especially near the surface and within the root-
zone; these being the layers of high interest for most agricultural activities (Wilson et al., 2004,

Petropoulos et al., 2014).

In New Zealand, the spatial water balance model of one of the major commercially utilised, real-

world yield forecasting applications is fed by water-holding capacity values generated from



national, low spatial resolution soil layers, containing soil textural and water-holding capacity
estimations. Although, the sub-farm variability is dominantly much larger than that of the
existing and utilised input layers would be able to describe. Due to the interaction of numerous
environmental parameters, soil water content is generally considered as a spatiotemporally
highly changeable environmental variable (Vachaud et al., 1985, Vanderlinden et al., 2012,

Brocca et al., 2017).

Due to the lack of highly detailed soil cover information and water holding parameters obtained
by actual field surveys, a significant amount of uncertainty is introduced to the pasture yield
predictions and consequently to the farm-specific input applications. Moreover, soil water
content is too laborious and expensive to measure systematically that makes their incorporation

into these models rather difficult (Woodward, 2001).

Hence, the need for improved soil moisture monitoring is critical to support the planning of
fertiliser applications. Particularly, a more reliable soil water balance estimation would have a
considerable effect on the accuracy of pasture growth predictions. Apart from better, more
efficient and targeted fertiliser placement, there are several key advantages of soil water
information. These include the early prediction and recognition of declined pasture growth,
which reduces the risk behind the timing of significant land management practices and financial

decisions, such as selling stock or purchasing feed.
1.5 Specific directions of the study

As the productivity of hill country will come under increased pressure, being or becoming
resilient to climate change, more frequent dry periods and high intensity rainfall events, is crucial
for farmers (Kenny, 2001, Cameron, 2016). To be able to meet the growing demand, farmers
need to react to these environmental changes. As most of the environmental parameters are
not controllable, management and adaptation to the changes can be the only way to resilience
and sustainable future farming. Such situations and forecasts coupled with the above-
mentioned uncertainties in yield predictions raise numerous issues to solve and questions to
answer in the field of framing and scientific research. The questions listed below have set some

of the specific directions of this study.

I How can the soil water content be measured effectively, systematically and accurately
without regular fieldwork in hill country to represent the diverse terrain conditions?
Il. How does the complex landscape of hill country affect the spatial distribution patterns

and temporal evolution of the near surface and the root zone soil water?
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Il. What are the possible ways to obtain or predict soil water information spatially on hilly
landscapes utilising various data sources?

V. How could it be mapped at a spatial and temporal resolution, which is practically useful
for decision making, farming and pasture growth forecasting?

V.  What are the main driving factors of pasture growth in hill country and how could their

understanding be further improved for better pasture growth simulations?
1.6 Proposed methodology and its background

The future of pasture management, the sustainable production and the concept of optimising
returns and preserving resources requires research at various scales. This study aims to provide
useful, practical, transferable and understandable information at the farm scale and target the
within farm environmental heterogeneity including pasture growth and soil moisture. An
approximately 2600 ha hill country farm was chosen as research area, providing a good
representation of the heterogeneity of static (topographical features, soil types) and dynamic
(climate, vegetation) variables in the Wairarapa region of the North Island of New Zealand.
Ideally, the generated knowledge will be valuable for improving, refining and validating yield

predictions and soil water simulations in hilly landscapes.

In order to achieve more realistic water balance modelling outputs and therefore better yield
predictions, the incorporation of actual, systematic water content estimations on a spatial basis
seems to be an innovative and promising approach. Therefore, the input data would be required
regularly at least at medium spatial resolution (10-100 m pixel size) (Gao et al., 2010) to account

for the previously highlighted variability.

Soil moisture can be monitored by several methods, although field campaigns using classic
methods on hill country pastures have traditionally been cost-prohibitive due to the time- and
labour-intensive in situ (and mainly point scale) field measurements required for accurate
description of the landscape. On the other hand, in the geospatial sense, interpolation and
extrapolation based on point-scale like measurements are rather complex over rugged terrain
(Crow et al., 2012b). Consequently, a method for the determination of soil moisture without the
necessity for labour-intensive measurements would be beneficial for characterising soil

moisture patterns instantly at low cost.

Remote sensing missions equipped with microwave sensors, such as Soil Moisture Active Passive
(SMAP), Soil Moisture and Ocean Salinity (SMOS) have demonstrated their capability to measure
soil moisture under different environmental conditions near the surface (Kerr et al., 2001,

Entekhabi et al., 2010a). To date, the spatial resolution of soil water products has not yet
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reached the paddock scale (10-100 m) with reliable accuracy in an operational manner.
Although, that level of detail would be necessary to make a difference in the agriculture related
applications, water resource and land management decisions as well as in the improvement of
pasture growth models in hill country. Synthetic Aperture Radar (SAR) images from different
satellite missions (ENVISAT, RADARSAT-1 and ERS-2, etc.) have also been widely used for soil
moisture retrieval at finer spatial scales (10-20m) showing good agreement with in situ
measurements in the top soil (Baghdadi et al., 2012). However, they provide relatively low
temporal coverage and these sensors are sensitive to soil moisture as well as vegetation and
surface roughness (Paloscia et al., 2013). In hilly landscapes, the additional influence of

topography needs to be considered as well (Baghdadi et al., 2007, Bertoldi et al., 2014).

Optical (0.4-2.5 um) and thermal infrared (3.5-14 um) domains have been used for soil moisture
estimations (Schmugge et al., 1980, Kerr et al., 2010, Petropoulos, 2013). Optical soil moisture
retrieval methods take advantage of various water absorption wavelength regions and that of
reflectance generally drops with increasing soil moisture over bare soils (Anne et al., 2014, Fabre
et al., 2015). Over vegetation, the change in plant biophysical and biochemical characteristics
are sensed that are strongly dependent on water, indirectly indicating soil moisture conditions
(Gao et al., 2013). Soil moisture estimation methods utilising the thermal infrared wavelengths
can capture information from the slightly deeper soil layers. Thermal inertia, (Price, 1977), the
generation of crop water stress index, water deficiency index and temperature vegetation index

(Gao et al., 2013) are common approaches.

Some of the main limitations of these techniques are the coarse temporal resolutions,
atmospheric effects, daylight dependence, the cloud cover, the presence of vegetation, and the
effect of soil properties. In addition, the reflectance for optical remote sensing is received
directly from the soil or vegetation surface (Petropoulos et al., 2015, Sabaghy et al., 2018).
Despite these drawbacks, there is a real interest in estimating soil water content from such
sensors and the demand for high to medium resolution satellite-derived information for

agricultural and land-based predictions is rising steadily (Petropoulos et al., 2015).

The synergetic use and the fusion of data captured in the optical, thermal infrared and
microwave domain have been representing a new, promising direction in soil moisture mapping
by the advances of high performing computers. The increasing abundance of freely available
satellite images with higher spatial resolution and shorter revisit intervals than in the past, such
as the Sentinel-1, Sentinel-2 missions, raised the number of possibilities in soil moisture retrieval

research, especially in the last decade (Baghdadi et al., 2017, Bousbih et al., 2017, Gao et al.,
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2017). Combining images that are taken at various sections of the electromagnetic spectrum,
e.g. in the optical, thermal infrared and microwave domains, numerous limitations can be
reduced or eliminated. The integration of data from multiple, comparable, optical satellites can
improve the temporal coverage. However, the pre-processing and analysis of a long, time series
type of dataset containing hundreds of images is associated with significantly longer processing

time and high computing power requirements.

To address this issue, cloud-based computing tools, such as Google Earth Engine, Amazon, etc.,
enable the processing and manipulation of large image collections (Gorelick et al., 2017, Hird et
al., 2017). Advanced statistical methods, such as machine learning, plays a crucial role in these
experiments since they are capable of handling large datasets and high number of variables as
well as complex relationships (Ali et al., 2015). Machine learning has the capability to integrate
data from various sources and link extracted values from remotely sensed images to ground-
based reference observations as it has been shown in previous studies (Ali et al., 2015, Alexakis
et al.,, 2017, Kumar et al., 2018). To complete an efficient learning process, highly accurate
historical reference datasets are required that ideally cover the full range of the targeted.
Consequently, these models are often valid only over the training area and their extension for

generic use is challenging.

To target the above-mentioned scopes, the study utilised a combination of modern and
traditional approaches to exploit the benefits of the currently available innovative techniques
and the advantages of well known, broadly used data collection and statistical data analysis

methods in one, compound research.

During the monitoring period, a wide range of data collection techniques were utilised across a
variety of spatial scales including field-based, in situ soil and pasture sampling, the precise
laboratory work and the analysis of remotely sensed imagery from various sources acquired over
the research area. The field-based sample collection comprised of in situ soil sampling, soil
moisture and soil temperature measurements and pasture yield accumulation observations
through traditional pasture cuts. The laboratory work included the processing of the collected
soil samples for soil particle size analysis, soil bulk density and gravimetric water content
determination as well as total organic carbon content measurements. The pasture samples were

used for accumulated dry matter and daily average pasture growth rate estimations.

In situ, ground-based measurements consist of pasture production sampling at pasture, and soil
moisture and soil temperature recordings at the monitoring sites (i.e. microsites) by an

effectively designed observation network. The use of Wireless Sensor Networks (WSN) is a
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promising new in situ measurement technology for monitoring the spatial and temporal
variability of soil moisture in agricultural soils (Bogena et al., 2010, Hedley et al., 2012, Majone

et al., 2013, Rawat et al., 2014).

From the remote sensing perspective, the study utilises a high number of remotely sensed
images captured by spaceborne sensors mounted on Sentinel-1, Sentinel-2, Landsat 7 and
Landsat 8 satellites. The remotely sensed scenes were derived from the Google Earth Engine
(GEE) platform and the near surface soil moisture modelling was conducted using the Random
Forest (Breiman, 2001) ensemble machine learning method. The two types of datasets were
linked to each other based on the geographical location, i.e. the image pixels that corresponds
to the microsites. Several types of statistical and comparative analyses was carried out on the

final dataset, which was created as a combination of ground-based and remotely sensed data.
1.7 Research objectives and thesis outline

As a result of this study, an effective soil moisture and soil temperature monitoring network will
be deployed and the importance of sensing accuracy assessment as well as the role of site-
specific calibration will be highlighted. Secondly, the aim of the research is to characterise the
spatiotemporal behaviour of soil moisture and soil temperature as a function of topography.
Furthermore, an ensemble machine learning approach will be utilised and coupled with
Geographic Information Systems (GIS) to develop a prediction tool. The algorithm will be
capable of spatially modelling and predicting near surface soil moisture over the selected
research area for pasture growth throughout the year. The model will take, process, collate and
analyse point like and spatial data inputs from various sources and it will provide a better picture
of land-surface interactions and micro-topographic variability on farms. The study aims to
improve our understanding of the factors driving soil moisture distribution and their limiting
effects on pasture yield in this environment. To evaluate the correlation among these variables,
multivariate statistical approaches are accommodated. Medium resolution soil moisture maps
will be obtained by the aid of remote sensing technologies. Eventually, these methods and the
results will lead to the incorporation of the findings into pasture growth prediction models to
better explain and predict pasture production and response to fertiliser in hill country. Based on
the results of this study, critical pasture management decisions, such as species selection,
grazing strategy, feed budgeting and fertiliser placement can be made, contributing to the

increasing focus on the development of hill country pastoral systems.

This thesis is divided into 8 Chapters (including Chapter 1 as Introduction). The thesis follows

the paper-based format; thus Chapter 4-7 are considered as individual research papers
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representing the basis for publications. Due to the thesis structure and the limited space for
background information and methodology description in the individual papers, separated
literature review (Chapter 2) and methodology (Chapter 3) sections were necessary. The status
of the publishing process is summarised in Table 1.1 at the end of this chapter. Additionally, DRC
16 forms can be found in Appendix 1 to comply with Massey University’s policy on the “Thesis

by Publication” format.

Chapter 2 - It contains the review of the relevant literature focusing on the wide range of
scientific fields touched upon in this study. It aims to provide sufficient background information
and the current state of the supporting knowledge beginning with the overview of basic soil
water related terms. A general introduction to pastoral agriculture management is given and
the relevance of the study is linked with the key concepts of hill country, such as diversity. This
section is followed by the brief discussion of the recent issues of pasture yield simulations and
the main driving factors of soil moisture distribution in complex landscapes. Then, the reader is
introduced to the available soil moisture observation methods starting from the traditional
approaches and moving on to the state-of-the-art technologies including both ground-based
and remote sensing technologies. The presentation of soil moisture retrieval methods from
satellite images and its difficulties is followed by focusing on the currently available, global soil

moisture products.

Chapter 3 — This chapter specifically focuses on the research site located near Alfredton on the
East Coast of the North Island by providing details on its environmental characteristics, i.e.
geographical situation, geological settings and soil types. It is followed by reporting information
on the experiment design, instrumentation, microsite selection, the WSN deployment
procedure and the data collection. Furthermore, this chapter describes the steps of the
conducted field-based soil and pasture sampling as well as the applied methods for laboratory
work. The last section describes the generated dataset obtained by remote sensing including

the data source, access and the relevant data processing tools.

Chapter 4 — This chapter reports results on the site-specific calibration of the AquaCheck
capacitance-based soil probes arranged into a wireless sensor network. The calibration formulas
are developed by the relation of sensor readings and a high number of field-based gravimetric
soil moisture measurements. The generated conversion formulas are assessed, and the soil
moisture sensor accuracy is tested with the examination of the effects of some of the measured

soil properties potentially influencing the error distribution.
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Chapter 5 - An understanding of spatial and temporal soil moisture patterns in the root zone
and their driving factors in hill country is of great importance but has yet to emerge. This chapter
investigates the spatiotemporal variability, temporal variation and stability of the soil moisture
patterns and their profile characteristics. Temporal persistence and the most representative site
is defined. The study uses several statistical measures to quantify the variability and the driving

power of topography on the wetness conditions.

Chapter 6 — This chapter investigates the potential of a machine learning algorithm (Random
Forest) for the spatial modelling of near surface soil moisture by the synergetic use of ground-
based information and remotely sensed products at medium resolution. In addition, the
sensitivity of radar signal captured from different orbits to soil moisture is explored. The dataset
contains information extracted from an image series created from Sentinel-1, Sentinel 2, Landsat
7 and Landsat 8 satellite acquisitions. Training and test datasets are generated, and the accuracy
of the predictions is assessed through cross validation at each microsite. Furthermore, an
independent validation is carried out on a series of predicted soil moisture maps along the study

period.

Chapter 7 — The factors driving the spatiotemporal patterns of pasture productivity are studied
in this chapter to provide a better understanding of the interrelations for hill country pasture
management. Yield measurements collected from 13 locations are subjected to comparative
and multivariate statistical analyses to disaggregate the controlling role of selected
environmental variables. The spatial organisation and temporal trends of total herbage
accumulation and pasture growth rate are examined concerning the sites’ varied topographic
settings. Heat accumulation, soil temperature and soil water storage dynamics are related to
pasture production and the limiting role of these parameters as well as their optimal range for
the best growth conditions are described. In addition, a hypothesised hill concept was used for

visualising the difference as a function of slope angle and aspect in the polar space.

Chapter 8 — The final chapter of this thesis starts with highlighting the key concepts and the
motivation behind the conducted research with a brief description of the thesis structure and
study methods. The main part of the discussion is governed by four specified scopes and the
research questions or objectives raised within each scope. The four scopes contain brief
introductions to each topic, briefly describing the applied methods and their limitations, and
summarising the relevant findings of the study with their potential implications. Suggestions for
future work are made and possible ways are recommended for improving the outcome of the

thesis and utilising the generated valuable dataset.
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Table 1.1 The status of paper-based chapters in terms of publications process

Chapter Journal (or potential journals) Status Year
3 " Water Resource Research About-to-be-submitted 2020
= Sensors

a =  Agricultural Water published 2019

Management
= Journal of Hydrology

5 = Agricultural Water About-to-be-submitted 2020
management

6 =  Remote Sensing About-to-be-submitted 2020

=  New Zealand Journal of
7 Agricultural Research About-to-be-submitted 2020

=  Plant and Soil
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Chapter

REVIEW OF RELEVANT LITERATURE

The second chapter aims to provide a focussed overview of the relevant topics touched upon in
Chapter 1. It starts by several definitions related to soil water, the various ways for its expression
and the relevance of soil moisture in global environmental systems. This chapter also describes
basic principles and significance of pastoral farming in hill country and its associated driving
factors. These include pasture productivity, yield simulation methods and the highly important
role of plant available water. A detailed description is given on soil water variability in relation
to several environmental parameters. The review continues with a presentation of the various
ground-based methods available for soil moisture data acquisition. Afterwards, the focus is
placed on the potential of spaceborne remote sensing applications related to soil water content
retrieval. A summary regarding the key points and conclusions of the literature review completes

the chapter.

15| Page



CHAPTER 2

2 Chapter 2 - Review of relevant literature

2.1 Basic concepts of soil moisture

2.1.1 Relevant soil moisture and soil water storage definitions

The term ‘soil moisture’ has been approached in many ways by agronomists, climatologists,
hydrologists and researchers belonging to various disciplines (Seneviratne et al., 2010). It is
generally referred to as the amount of water present in the soil, and expressed as a weight or
volume per soil material. Alternative definitions occur depending on whether it is expressed in
absolute, relative or indirect terms (Seneviratne et al., 2010, Petropoulos et al., 2014). Soils are
considered as three phase systems, comprised of the solid phase (organic matter and mineral
components), the liquid phase (soil solutions) and the gaseous phase (dominantly air) (Hillel,

1998).

The liquid phase, consisting of soil water carrying dissolved minerals, is the main source for plant
water and nutrient uptake in the unsaturated zone, i.e. the portion of subsurface above the
groundwater table. The fractional content of soil water can be defined as the amount of water
in a soil, expressed as volume (or weight) of water to the total volume (or weight) of oven-dry
soil, which can be reported as decimal fractions or percentages (Petropoulos et al., 2015).
Gravimetric water content (0, g g1), the ratio of soil water mass and dry soil mass is a frequently
employed mass-based soil water content expression. The computation of 6, is given as per Eq.
(2.1) as follows:
g, = (M) = (Mas) _ mag
(Mmags) Mgs

Where m,,; = weight of wet soil, mgs = oven dried weight of soil sample and m,, = weight of

(2.1)

water. The computation of water fluxes in water balance models, land-surface simulations and
irrigation management often requires volumetric soil water content (6,, m* m?3), which is

calculated as per Eq. (2.2):

_ )
Ves)

Where 1}, is the volume of water and V;; is the volume of the known total soil sample (including

0, (2.2)

solids, water and air). Additionally, it is often converted to 6, in (mm mm™) and referred to as
soil water storage S; of a particular soil profile per unit area. The quantity of S; can be described

as per Eq. (2.3):

n
S, = Z by« 6, ; (2.3)
i=1

16



Hajdu: Soil water modelling in hill country Review of relevant literature

Here n indicates the number of layers, whereas b; and 6,,; are the depth and 6,, content for layer
i, respectively. Via the determination of soil bulk density (p,, gcm™), 6, can also be obtained
(Gardner et al., 2000, Shukla, 2013). In agriculture, p;, is defined as the ratio of the mass of oven

dried soil to a unit volume of soil (Grossman and Reinsch, 2002) as per Eq. (2.4):

Mys
Py = (2.4)
Vis
These parameters are related as per Eq. (2.5) (Gardner, 1986) to convert 6, to 0,,.
m Pp Pp
91] =%, _ 99 ° (25)
Mgs paq paq

Where, pgq refers to the density of water. In this thesis, the phrase “soil moisture” will generally

refer to the soil water content expressed in volumetric basis, i.e. 8,, if not specified otherwise.

To inform practical agriculture-specific and water management applications such as irrigation
scheduling, and to understand the soils’ water storage capability, four key soil water-holding
states are needed that express water status across various water potentials. Soil water content
at or near the level of saturation (i) (Bs4r) expresses approximately 0 — 0.0001 MPa matric
potential and it is considered a state, when all pores are filled with water (Seneviratne et al.,
2010). Field capacity (ii) (6z¢) represents the soil water content retained against free drainage
by matric forces at approximately -0.01 - 0.033 MPa tension. Soil water at the refill point (iii)
(Brr) ranges from -0.04 to -0.06 MPa and marks the point above which the evapotranspiration
rate is not affected by water stress. At ca. -1.5 MPa tension the water adheres too strongly to
mineral particles to be extractable for plants, thus this state is highly dependent on vegetation
type and defined as permanent wilting point (iv) (8py p) (Sperry J. S. et al., 2002, Kirkham, 2014).
These parameters can be derived from soil moisture release curves, estimated from field

measurements or through pedo-transfer functions.

The maximum volume of plant available water (PAW) is generally described as the difference
between O and 8py,p (Cassel and Nielsen, 1986). The maximum amount of water the soil can
hold onto during a rain-free period is defined as 8. (Petropoulos et al., 2014, Horne and
Scotter, 2016) which usually indicates the upper limit of PAW. The lower limit of PAW is
commonly associated with the 8py,p. However, only a certain portion of the PAW can be easily
taken up for unrestricted growth since the water held among larger pores is more readily
available than water found in the smaller pores (Horne and Scotter, 2016). Plants experience

water stress below a nominated O level that depends on species, climatic conditions, soil types
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and rooting depth. Therefore, the amount of water held between the root zone storage upper

limit or 8p¢ and Ogf is referred to as readily available water holding capacity (RAW).

Available water holding capacity (AWHC) is determined by integrating PAW over the root-zone
depth where water extraction occurs (Zotarelli et al., 2010, Horne and Scotter, 2016). The
concepts of Og- and Opyp, therefore PAW, RAW as well as AWHC have been objects of
arguments as various definitions exist in the literature (Kirkham, 2014). This is due to the
dynamic nature of soil water and the lack of agreement on the exact soil matric potential or
value range used during the retention-based determination (Horne and Scotter, 2016). The
previously mentioned terms relate soil water content to plant growth and are widely used in
modern numerical models, although, various water potential thresholds and terms have been
employed by the scientific community. This thesis accepts and refers to the definitions of the

main soil water parameters as they were described above.

2.1.2 Soil moisture, an environmental state variable

Soil moisture is a spatially and temporally highly variable environmental parameter and its
fundamental role in the hydrological cycle has been studied extensively (Brocca et al., 2017).
Although, the overall quantity of soil moisture is relatively small, ~0.001 % of total water
reserves (Dingman, 2002); hydrology, agronomy, geomorphology, bio-geography, ecology and
climatology heavily rely on soil moisture observations (Romano, 2014). Point-, field-, catchment-
, regional-, continental- and global-scale soil water content data obtained at various temporal
resolution have been utilised in a broad range of applications. Soil moisture data is crucial for
numerical weather prediction, climate simulations, flood monitoring, drought assessment,
water and energy budget calculations, greenhouse gas accounting, land-atmosphere-biosphere
interactions, estimation of land-surface fluxes, natural hazards forecasting, optimising
agricultural management and crop yield predictions (Dugua and Pietroniro, 2005, Entekhabi et
al., 2010b, Li and Rodell, 2013, Ochsner et al., 2013, Romano, 2014, Vereecken et al., 2014,
Bogena Heye R. et al., 2015, Dorigo and de Jeu, 2016).

Soil moisture is also considered as energy storage due to its dynamic long- and short-term effects
on the climate system by regulating heat and water fluxes (Pan et al., 2001, Teuling et al., 2007b).
Because of its well-established importance and that it can be globally monitored by remote
sensing, soil moisture was recognised as an Essential Climate Variable in 2004. In 2010, it was
added to the terrestrial Essential Climate Variables group by the Global Climate Observing

System program (Bojinski et al., 2014, Dorigo et al., 2015).
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Above all, soil moisture provides the plant-available water for vegetative life. In agriculture, soil
moisture is essential for crop and pasture yield improvements, irrigation scheduling and
extending the period of unstressed transpiration (Hillel, 2003a). The most crucial phases of the
life and growth of vegetation, such as photosynthesis, biomass production, the rates of
transpiration, organic matter cycle and nutrient uptake are often limited by soil water content
(Porporato et al., 2002, Rodriguez-lturbe and Porporato, 2007). Thus, soil moisture is the
principal limiting resource for pasture growth and agricultural production in New Zealand
(Woodward et al., 2001, Bittelli, 2011). Accurate information about soil moisture at a few cm to
tens of km scales are essential to improve the reliability and precision of many applications.
Measuring soil water content in a consistent and spatially comprehensive manner is challenging,
due to its spatiotemporal variability and environmental heterogeneity (Entin et al., 2000,

Rodriguez-Iturbe and Porporato, 2007).

2.2 The relevance of soil moisture studies in the pastoral agriculture in New
Zealand’s hill country

2.2.1 Geographical extent and definition of hill country

Slightly different definitions have been published in the literature regarding ‘hill country’. A
broadly accepted, generalised definition of hill country was presented by Basher et al. (2008) in
their erosion process report. The authors defined hill country as ‘all lowland and montane hill
and steeplands (slope > 15 °), classified as Land Use Capability (LUC) class 5, 6 or 7, and being
described in the unit descriptions in the New Zealand Land Resource Inventory as hill country’.
‘Lowland’ and ‘montane’ categories follow the altitude/temperature-related bioclimatic zones
of Wardle (1991). A simplified definition was followed by Cameron (2016) and Kerr (2016) stating
that hill country is classified as land with slopes greater than 15° and below an altitude of 1000
metres above mean sea level. It is worth noting that there will be hill slopes with lower steepness

and flat lands in these complex landscapes.

For the purposes of the study, the latter, simplified version of hill country definition is adequate
and will be applied hereinafter. According to the above criteria, 63% (6.3 million ha) of New
Zealand’s hill country area occurs in the North Island and 37% (3.7 million ha) in the South Island
that constitutes over 75% of New Zealand pastoral land (Bretherton, 2012). Around 5 million ha
of the total 10 million ha is designated as pastoral hill country farmland from which 4 million ha

is located in the North Island (Kemp and Lépez, 2016, Kerr, 2016).

The presented research was conducted in the East Coast Hill Country (ECHC) region of the North

Island. ECHC is a significant contributor to the national economy and covers the majority of
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North Island’s hill country area. To approximate the spatial extent of grazed pastures in the
North Island, the Land Use and Carbon Analysis System (LUCAS) dataset was chosen (Ministry
for the Environment, 2012). The study site and its surroundings are depicted on Figure 2.1 and
the low-producing grassland area that contains mostly hill country land is superimposed on a

Sentinel-2 satellite image mosaic (Land Information New Zealand, LINZ).
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Figure 2.1 Spatial distribution of pastoral hill country land in the North Island extracted from LUCAS
land use maps. On the right, a closer view the research area is shown. A detailed map of LUCAS land
use classes is provided along with a shaded relief map that illustrates the rugged, hilly terrain conditions
(Ministry for the Environment, 2012, LINZ, 2017).

2.2.2  Hill country farming and its economic value

The history of hill country pastoral farming and the establishment of pastures started with the
clearance of the indigenous forest about 100-150 years ago (Kemp and Lépez, 2016). This
agricultural expansion happened intensively and had a large effect on the environment and
economy. Hill country pasture development reached a milestone in the 1950’s when the
introduction of effective and affordable aerial spreading of fertilisers and seeds allowed
significant increases in production (Moot et al., 2009). Since then, the flatter and generally
better land has been lost dominantly to the dairy farming and partly to the urbanisation. In the
last few decades, the importance of hill country farming has been increasing and it has been in

an enhanced focus of research as a productive platform (Kerr, 2016).
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In 2017, more than $38 billion of New Zealand’s annual export earnings benefitted from primary
industrial production and a positive economic outlook with strong increase in export revenue
was expected for 2018 and 2019 (MPI, 2018). Pastoral farming contributes $20-25 billion
towards annual exports; this is approximately 75% of all agricultural exports (Morrison, 2017).
In terms of contributions to gross domestic products (GDP), the agriculture sector accounted for
3.1% of total GDP in 2016; hill country farming was a major annual contributor generating $7-
7.5 billion through the export of various products, such as meat and wool (Kemp and Ldpez,
2016, Statistics New Zealand, 2018, updated April 2018). Over 90% of the production was
exported to more than 120 countries making the red meat, mainly originating from hill country,
the second most imported product. The North Island accounts for 71% (2.485 million) of the
total amount of beef cattle and 50% (13.8 million) of sheep stock (Beef + Lamb New Zealand,
2017, Ministry for Primary Industries, 2018). Based on the above-mentioned economic
indicators and the weight of hill country in the primary industries, it is evident that hill country

farms are critical components of New Zealand’s economic activity.

2.2.3  Pasture management in hill country

New Zealand’s predominantly moist temperate climate, soil characteristics and its vegetation
species makes hill country farming unique and allows the development and operation of
efficient year round grazing systems (Hodgson et al., 2005). An essential requirement is
matching the pasture growth with the animals’ demand by producing the best quality feed and
fully utilising the local resources. As a consequence of growing food demand and quality
requirements of the international marketplace, future farming will likely involve further
management intensification (Mackay et al., 1993, Shadbolt and Martin, 2005, Mackay, 2008,

Hoogendoorn et al., 2016).

A large proportion of moderately intensive pastoral production is carried out on low-altitude hill
country farms where sheep and beef farming predominates. These farms are operated under a
range of climatic conditions and various management regimes typically with low inputs (i.e.
fertiliser, feed from external sources). Consequently, sustainability and profitability rely on
adapting to changing environmental conditions and the strategic exploitation of the available
biophysical, human and financial resources (Shadbolt and Martin, 2005, Lieffering et al., 2012).
Precisely targeted management practises that considers site-specific irregularities can
significantly improve the hill country farmers’ responsiveness, yield and the general efficiency

of their pastoral system (Judd et al., 1990).
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2.2.3.1 Diversity, a key concept in hilly landscapes

The most distinguishing feature of hill country land management are the contouring and sloping
nature of its soil surface coupled with generally low fertility soils (Gillingham, 1973). The
geologically young highly broken landscape - both at macro and micro topographical levels, the
variable climate and degree of erosion all affect soil development; in turn, this determines the
spatiotemporal heterogeneity and diversity of production rates (Phillips et al., 2016). Due to
these reasons and the differences in pasture composition and soil development, yield estimation
and improvement are challenging tasks (Radcliffe et al., 1968, Murray et al., 2007). A good
understanding of the complex soil/plant/animal/environment system is key to appropriate farm
management in order to convert forage into a profitable animal product. Certain pasture growth

affecting factors are natural or fixed and others are controllable (Shadbolt and Martin, 2005).

2.2.3.2 Role of natural factors in non-irrigated pastoralism

Some of the physical characteristics of a land are given by its geographical location, underlying
geology, geomorphology, natural soil fertility and climate. Such variables are mostly out of
human control, but the perception and quantification of their effect on pasture growth patterns
enable farmers to maximise their land resources. Parameterisation is also necessary for accurate
yield predictions and assessment of pasture production. According to Scott et al. (1985),
temperature, soil moisture, soil fertility and pasture managament are the four most important
influencing factors of hill country farming, although these factors are somewhat functions of the
terrain. Harris et al. (1985) concluded that temperature and PAW are the two most important
enviromental factors influencing pasture production as the majority of hilly country is non-
irrigated. Since all of the above-mentioned factors are linked to the terrain, it can be concluded
that specific management challenges are associated with the micro-climatic and landscape

features (i.e. slope and aspect) that govern the amount of PAW and yield potential.

2.2.3.2.1  Soil moisture

Water supply is a critical regulator of plant growth as they require water to transport nutrients
and to perform cellular processes (Rodrigez-lturbe, 2000, Robbins and Dinneny, 2018). The fact
that pasture production in hill country is strongly related to soil water content received early
recognition. Booth and Gibbs (1969) reported that many farmers are drought-conscious and the
provision of sufficient water management is top priority in the development of ECHC. According
to Card (1977) and Rodrigez-Iturbe (2000) moisture supply is probably the most important

environmental control of vegetation diversity and the attainment of production potentials.
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Salinger (1979) attributed much of the growth of the pastoral industry in 1950-69 to the below
average occurrence of drought in those years compared to the drier 1970’s. Furthermore,
Maunder (1979) observed that significant fluctuations in soil moisture deficits between years
had considerable effect on pasture and animal production. The annual pattern of soil moisture
change and deficit are crucial in grazing management and many regions of the North Island,
including the ECHC, are regularly influenced by water shortage during summer and autumn

(Chapman and Macfarlane, 1985, Bircham and Gillingham, 1986, Bretherton et al., 2011).

2.2.3.2.2 Topography

There is a strong relationship between pasture composition, distribution, growth, soil properties
and topography (Radcliffe, 1982, Kemp and Lépez, 2016). Topographic features such as altitude,
slope angle and aspect play important roles in hill pasture ecosystems; hence their effects on
pasture production have been investigated in several studies (Gillingham, 1973, Gillingham and
Bell, 1977, Lambert and Roberts, 1978, Radcliffe, 1982, Lépez et al., 2003, Moot et al., 2009,
Kemp and Lopez, 2016). Zhang et al. (2005) observed that slope angle and spring rainfall were
the two dominant variables limiting pasture growth. Production usually declines as slope
increases (mainly due to PAW limitations), whereas nutrient transfer and runoff losses increase
(Roberts and White, 2016). Slope angle and position differentiate the soil depth and soil physical
properties, soil fertility and the supply of water for plants, that is generally reduced by increasing

steepness (Radcliffe and Lefever, 1981, Lopez et al., 2003, Zhang et al., 2005).

Hill slopes modify the distribution of incoming solar radiation and heat budget that effects soil
and air temperature, as well as the rate of photosynthesis (McAneney and Noble, 1976). In
addition, if the slopes are steep enough, stock tracks may develop and exert further impact on

soil nutrient levels and pasture variability (Gillingham, 1973, Sheath and Boom, 1985).

The role of slope angle in pasture productivity is better defined, than that of aspect. The
presence of a seasonal pattern makes the interpretation of aspect effects sometimes
controversial and it varies from region to region (Suckling, 1959, Lambert et al., 1983). The
largest contrast has been found between north- and south-facing aspects. Northerly aspects
often produce more winter growth, while southerly aspects yield more herbage during moisture
stress in summer, although the length of the seasons has a major effect on the annual
productivity of both aspects (Lambert et al., 1983). White et al. (1972), Lambert and Roberts
(1978) and Radcliffe (1982) reported that annual pasture growth was higher on shady aspects,

than on northerly slopes, however, Gillingham (1973) and Suckling (1975) found the opposite.
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2.2.3.2.3 Ground temperature

Plant development is strongly influenced by soil temperature as plant species have different
requirements for optimal growth (Baars and Waller, 1979). Soil temperature is partly
determined by season, latitude, altitude, slope angle and aspect conditions in hill country (Scott
et al., 1985). Some legumes and grass species prefer the sunnier, warmer north aspects, while
southerly faces suit other species. Gillingham (1973) observed 10 % higher total pasture
production from northern aspects than southerly faces. Increased slope angle with reduced

pasture cover are associated with greater diurnal variation (Sheath and Boom, 1985).

A limiting temperature exists for each species, called base temperature (T}), below which their
development technically stops, for instance, the perennial ryegrass (Lolium perenne) displays
significantly higher leaf elongation above 4-5 °C, which is close to its T, (Peacock, 1975,
Nagelmdller et al., 2016). Growth rate and soil temperature are most likely linked by a

combination of linear and non-linear relationships (Voorend et al., 2014).

High temperatures rarely cause limitations if there is no moisture stress, in contrast, low
temperatures are common constraints of potential yield in hill country (Harris et al., 1985).
Moreover, the regrowth of common temperate grasses is strongly dependent on temperature
(Baars and Waller, 1979) and the species selection process needs to take into account how
different plant species tolerate the temperature fluctuations over seasons (Chapman and

Macfarlane, 1985).

2.2.3.3 The role of controllable soil management factors

Fertiliser management and grazing system are the main controllable factors in hill country that
have the potential to enhance the land’s production capability (Kemp and Lépez, 2016). The
natural fertility of the soil is fixed, but it can be modified by fertiliser applications and can be
exploited in a sustainable way by correct management practises. Grazing management
(structure, duration and intensity) highly depends on the level of knowledge regarding feed
requirements, the available pasture and the incorporated animals (Hodgson et al., 2005). A solid
understanding of growth patterns, feed surplus and deficiencies are parts of the grazing strategy

that a farmer needs to apply to accumulate pasture for the low producing periods.

In hill country, the main input is fertiliser as irrigation is currently not a feasible option in many
cases. Pasture growth and herbage accumulation can be stimulated through fertiliser
applications that also has effects on soil biological activity, botanical composition and organic
matter content, therefore, indirectly on soil water holding properties (Lépez et al., 2003, Kemp

and Lépez, 2016). Pastures rely on the nitrogen input fixed by legumes and supplied to
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associated grasses that usually generates deficiencies in phosphorus, sulphur and sometimes
lime. Thus, required correction of these constituents are dependent on the spatially
heterogeneous soil properties that makes fertiliser inputs location and climate specific (Scott et
al., 1985). Moreover, an adequate amount of soil water is required for the successful interaction
within the legume-grass-fertiliser-soil system (Gillingham et al., 1998), suggesting that input

placement and timing are critical components of pasture management.

2.2.3.4  Production quality and pastoral system management efficiency

Pasture management practises play a key role in the improvement of pasture quality that
determines animal productivity and performance (Gray et al., 2004). In New Zealand, pasture
quality is commonly characterised by the nutritive value that is estimated by two main
indicators, i.e. digestibility and metabolisable energy (Lambert and Litherland, 2000). These
parameters are strongly linked to feed allocation systems and the rate of intake that is
constrained by the amount of pasture available for the animals. To achieve quality increase,
farmers have been improving their management, introducing better quality species, attempting
to maximise legume content and green material while minimising dead matter (Hodgson et al.,

2005).

Land management development and operation efficiency are related to the stocking rate that is
a function of soil fertility, the vegetative cover, the amount and distribution of rainfall, soil
water-storing capabilities, the grazing system and the type of animal grazed. Two other major
measures of the performance of grazed pasture systems and animal production are the herbage
accumulation rate and herbage mass. In non-irrigated lands, productivity can be frequently
limited by moisture stress altering the strategic control on the paddock level (Lambert et al.,
1983, Harris et al., 1985, Bluett et al., 1998). Management decision are made by comparing
herbage mass distribution with a target value (Van Bysterveldt and Christie, 2007, Romera et al.,

2010).

Traditionally, farmers collected pasture growth data from their land on a regular basis, during
the so called ‘farm walk’ and sorted their paddocks considering the herbage mass and a target
line (Romera et al., 2013). To eliminate the time consuming data collection and to exploit more
information from the pastures, a collection of environmental variables and soil parameters have
been used to model potential yield (Scott et al., 1985, Romera et al., 2013). Although, these

models are prone to errors and uncertainties despite their key role in pasture management.
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2.2.4 Simulating pasture productivity

Pasture growth simulation models have been increasingly used by agronomists for assessing the
effects of the controllable and fixed variables of the pastoral system (Li et al., 2011). Some
standard units of these models are well-understood, such as the seasonal distribution of feed
demand (Holmes et al., 1987). However, pasture growth depends on a large number of variables
that are too laborious to measure or require a long-term data collection, making their

incorporation into these models rather difficult (Woodward, 2001).

Deterministic and process-based models are commonly applied and integrated into whole farm
and pastoral system simulations (Johnson et al., 2003, McCall and Bishop-Hurley, 2003, Barrett
et al., 2004, Romera et al., 2010, Li et al., 2011). However, most of these models were originally
designed for flat conditions such as the climate-driven Pasture Growth Simulation Using
Smalltalk (PGSUS) algorithm introduced by Romera et al. (2010). Consequently, modifications

and additional modules have been developed to make these models applicable on sloping lands.

In hill country, an ideal pasture growth forecaster application would be able to estimate the
potential pasture growth rate on various landscape features with spatiotemporally high
resolution for farming activities. Such a forecaster would take into account the topography
(slope, aspect, and altitude), climate variables (temperature, rainfall, incoming solar radiation,
ventilation effect), soil fertility (fertiliser history) and have a detailed water balance module

calculating daily RAW or soil water deficit considering the sub-paddock variations.

2.2.5 The water balance model

The soil water balance for flat land has been extensively studied and is quite well understood in
New Zealand. For instance, Woodward et al. (2001) provided an analysis of the work by Scotter
et al. (1979), leading to a validated daily time-step, two soil-layer model. In contrast, relatively
few studies have been published on the water balance in hill country, despite its significant role
in New Zealand’s primary sector. Bircham & Gillingham (1986) and Bretherton et al. (2010)
provided in-depth studies on the water balance modelling on New Zealand’s pastoral hill country
soils. Bretherton (2012) conducted a research on repellency-induced runoff and its
consequences in hill country environment, where he used a modified and refined version of the

water balance model described by Bircham and Gillingham (1986).

Commercial versions of these models are in operation, although it is assumed that one of the
weakest points of these models lies in the soil moisture balance estimations. The water balance
module often fails to represent the variability in hill country due to the complex water dynamics

under rolling surfaces and heterogeneous soil types. To overcome some of the issues
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encountered by the single-layer models (under-prediction of transpiration and growth in
prolonged dry periods), a two-layer water balance model for flat-lands was developed by Scotter
et al. (1979) and modified by Woodward et al. (2001). The two-layer Scotter model is illustrated
on Figure 2.2.

Rainfall Evapotranspiration

A Rapid
recharge zone

AWHC Total

water storage

!

Drainage

Figure 2.2 The simple two-zone, Scotter water balance model, depicting the division of the soil profile
into a preferentially recharged and depleted zone near the surface and a deeper soil section (Scotter et
al., 1979). AWHC-available water holding capacity.

The model derives the soil water deficit (W) for the deeper zone and soil water deficit for the
rapid recharge surface zone (W) on a daily basist. The formula requires the calculation of
potential evapotranspiration (PET) and soil-specific parameters i.e. AWHC for both layers. PET
can be estimated by using existing models that take into account the climatic data, such as
temperature, sunshine hours or radiation (Smith et al., 1998). The Woodward water balance

model is given as per Eq. (2.6).
Wiy1 = min(0, Wy + rain, — AET}) (2.6)
Ws (t+1) = min(O, Ws ® + raint - AETS (t))

Where W, is soil moisture deficit (negative), rain; is the daily precipitation and AET; is actual

evapotranspiration on day t. The AET model is expressed as:
AET = min(PET,a RAW) (2.7)
AET, = min(PET,c RAW;)

Where o is the proportion of RAW taken up by plants in one day. Woodward et al. (2001)
proposed that RAW can be calculated as the sum of available water in the surface zone RAW;,

and the remainder of available water in the deeper zone as per Equation 8.

RAW = RAW, + aPET[(AWHC + W) — RAW;] (2.8)
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RAW, = AWHC, + W,

Where aPET is the availability of soil water, whereas AWHCg and W represents the water
holding capacity and soil water deficit of the surface zone, respectively.

In the real-world applications, the spatially extended water balance model is fed by AWHC
values generated from national, low spatial resolution soil layers. Dominantly, the sub-farm
spatial variability is much larger than the utilised input layers would suggests, therefore the
improvement of the soil water balance part of the simulations would have a considerable effect

on the prediction accuracy of the pasture growth forecasters.

2.3 Factors driving soil moisture availability and distribution in hill country

Soil moisture is part of a complex environmental system, where static and dynamic controlling
factors may be distinguished according to Reynolds (1970) . Static or slowly changing
parameters include mainly the physical soil properties and topographical features. Climatic
variables, vegetation properties, soil organic matter, depth to water table and time since last
rainfall event are classified as dynamic factors. Many of these are interrelated and most of them
vary spatially and/or temporally, therefore the time and spatial scale are critical points (Crow et

al., 2012b).

Changes in soil moisture levels can generally occur via precipitation, evapotranspiration, net
lateral flow, or vertical drainage over a variety of timescales (Wilson et al., 2004). Consequently,
soil moisture is generally considered as a spatiotemporally highly changeable parameter (Korres
et al., 2013, Vereecken et al., 2014) that is particularly true at the soil surface, the interface of
energy and water exchange (Wilson et al., 2004, Petropoulos et al., 2014, Bretherton et al,,

2018).

On the other hand, Grayson et al. (1997) grouped the various affecting factors into local and
non-local controls. Local controls, such as soil properties, vegetation and possibly the radiation
(if the terrain is complex) determine the vertical fluxes, i.e. drainage and evapotranspiration
during dry periods. In contrast, under wet conditions, surface and subsurface lateral fluxes
govern the soil moisture distribution where the non-local controls dominate. These mechanisms
switch from one to the other when evapotranspiration increases/decreases and precipitation
decreases/increases. That is explained by the dominance of lateral flow over vertical fluxes or
vice versa (Grayson et al., 1997). In general, isolating the effects of the listed factors (or group
of factors) are difficult (Vereecken et al., 2014). A brief description is given about their impacting

magnitude regarding soil moisture variability.
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2.3.1 Meteorological forcing

Incoming solar radiation, air and soil temperature, wind, humidity and precipitation exert their
effects on the space-time dynamics of soil moisture (Petropoulos et al., 2014). A number of
studies have shown that precipitation is the most important of all meteorological factors
influencing soil water, runoff and subsurface flow characteristics (Chen et al., 2005), although it
is scale dependent (Crow et al., 2012b). The rate of evaporation is mainly controlled by incoming
solar radiation. Additionally, radiation also contributes to the rate of transpiration, consuming a
remarkable ~65-80% of rainfall (Bretherton et al., 2010). Climatic factors are often studied from
a cumulative, multi-parameter point of view due their complex interrelationships a (Bell et al.,

1980, Famiglietti et al., 1998).

2.3.2 Topography

The patterns of soil variation are strongly related to the topographical features of hill country.
Slope angle, aspect, curvature, specific contributing area and relative elevation strongly affect
the distribution of soil moisture (Crow et al., 2012b). It has been established that the direction
and angle of a slope can have a significant influence on surface temperature as they directly
control the amount of solar irradiation received (Petropoulos et al., 2014). The amount of
infiltration, drainage and runoff is influenced by the slope angle; steeper slopes have been
observed to be generally drier than flat areas (Famiglietti et al., 1998). As a general rule in the
southern hemisphere it is accepted that northern aspects are warmer and drier than south-
facing aspects (Radcliffe and Lefever, 1981). Radcliffe and Lefever (1981) also observed that the
moderately steep (25°) north-facing slopes exerted higher evapotranspiration rates and
received 80 % more radiation than the south-facing slopes on a grazed pasture over a year

period.

Curvature provides information on the convexity or concavity of the landscape that showed
significant correlation to soil moisture patterns (Moore et al., 1988, Sulebak et al., 2000, Kaleita
et al., 2007, Shi et al., 2012). It quantifies the rate of change of a first derivative such as slope or

aspect in a given direction that defines lateral flow characteristics (Gallant and Wilson, 2000).

Representing the catchment area, specific contributing area (also called upslope area) controls
the volume of subsurface moisture and lateral fluxes (Nyberg, 1996, Grayson et al., 1997). It is
defined as the upslope area above a certain length of contour line segment or grid cell that
drains to the given element or contributes to the flow across the element (Famiglietti et al.,

1998, Rieger, 1998, Gallant and Wilson, 2000). Larger upslope areas usually lead to higher soil
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water contents on hillslopes whereas slopes with a smaller contributing area are likely to be

drier (Famiglietti et al., 1998).

An inversely proportional relationship has been found between soil moisture and slope position,
also known as relative elevation (Hawley et al., 1983, Jacobs et al., 2004, de Rosnay et al., 2009).
It was observed that sites at higher relative elevation tend to lose more water and can have less
water received from the upslope areas (Qiu et al., 2001b). Exposed slopes and hilltops are most
likely to present drier conditions due to higher evapotranspiration rates (Qiu et al., 2001b). The
presence of topographic control on soil moisture variability is generally accepted, although it

may be a poor indicator during drying stages (Western et al., 2003).

2.3.3  Soil properties

Variations in soil texture, structure, organic matter and macro-porosity have been documented
to influence soil moisture distribution (Petropoulos et al., 2014). Gao et al. (2011) found strong
correlation between soil texture and moisture content. Infiltration, permeability, and water-
holding capacity are affected by the characteristics of soil texture and structure (Moore et al.,
1988). The proportion of clay, silt, and sand can also intensify the soil moisture deficit, since the
smaller the soil particle the greater its ability to retain water, meaning that clay soils have greater
water holding capacity than silt and sand (Younis and Igbal, 2015). Water and air storage
capabilities, drainage and drying processes depend on the porosity, where macro-pores (g > 30
um) influence the rate of water drainage and vertical penetration (Niemann and Edgell, 1993,

McLaren and Cameron, 1996).

The presence of soil organic matter (decomposed organic material) can improve the AWHC
(McLaren and Cameron, 1996). Additionally, soil albedo (reflectance) is partly a function of
organic matter content, which controls the amount of energy absorbed by the evaporating

surface of a bare soil (Kurucu et al., 2009).

2.3.4 Vegetation

The bidirectional relationship was investigated between soil moisture and vegetative cover by
Hawley et al. (1983) and Liancourt et al. (2012). Vegetation related controls are mainly linked to
the alteration of infiltration and evapotranspiration rates. These processes include canopy
throughfall, land surface shading, the generation of turbulence enhancing evapotranspiration,
the addition of organic matter and root activity which influence hydraulic conductivity and water
extraction (Famiglietti et al., 1998). The contribution of vegetation amount, type, density and
uniformity to soil moisture spatial variability has been documented to be a more dynamic
variable than soil and topographic factors (Crow et al., 2012a, Petropoulos et al., 2014). Hawley
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et al. (1983) also observed that variations caused by topography tend to be diminished by the

vegetative cover.

2.3.5 Land use and management

Soil physical properties, top soil structure and vegetation cover can be significantly affected by
land use and related practises that can have a significant effect on soil moisture patterns (Qiu et
al., 2001a). Unsuitable land management may lead to soil degradation, decreased soil organic
matter content, lower infiltration rate and PAW as well as enhanced erosion processes. Studies
have shown that differences in land management history can have a high impact on the
hydraulic properties of soils and can negatively influence soil productivity (Sonneveld et al.,
2003, Haghighi et al., 2010). Gao et al. (2014) observed that different land uses resulted in
differing spatial variations in soil water content. On farmed lands, the water pathways are
subject to change by the establishment of roads, terraces and ditches thereby modifying the

hydrological continuity and the spatial variation of soil moisture (Hébrard et al., 2006).

2.4 Observed soil moisture data

The benefits of reliable soil moisture data has been recognised for many decades as it governs
numerous key environmental processes at various spatial and temporal scales. From the
traditional ‘look and feel’ approach (Johnson, 1962) through to non-invasive, ground-based
approaches (Bogena Heye R. et al., 2015) to satellite-based observations (Wagner et al., 2007,

Wang and Qu, 2009), several techniques have been developed to estimate soil moisture.

Figure 2.3 depicts an illustration of several soil moisture observation methods as a function of
spatial extent and on what scale they are mostly applied. A combination of various observation
techniques is frequently utilised in soil moisture research and applications, therefore Figure 2.3

aims to give an understanding of how methods can be synergised.

Various ways exist to group soil moisture measuring and estimation methods. The available
techniques are often divided into three main approaches such as in-situ measurements, soil-
water models and remote sensing. Robinson et al. (2008b) and Romano (2014) categorised the
field techniques based on whether direct contact is required with the soils, i.e. contact-

based(invasive) and contact free (non-invasive) techniques.
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Relative observation scale
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Figure 2.3 Summary of the discussed ground-based and microwave remote sensing soil moisture
observation techniques. The methods are related to the spatial extent as well as the relative spatial
scale of observations (modified after Vereecken et al. (2008).

In the overview of Dobriyal et al. (2012) ground-based techniques and remote sensing methods
were discussed. Seneviratne et al. (2010) assessed the available soil moisture datasets from
ground-based measurements (direct, indirect), remote sensing, atmospheric-terrestrial water
balance and land-surface models. This thesis will discuss the methods by dividing them into

ground-based and remote sensing techniques.

2.4.1 Ground-based measurement methods

2.4.1.1  Direct methods

Direct methods are considered as the most accurate techniques, although they involve invasive
soil sampling and the removal of soil moisture by evaporation or chemical reaction. Despite
being a classical approach, the thermo-gravimetric technique is the most commonly applied
direct soil water determination method (Schmugge et al., 1980, Lekshmi et al., 2014). Due to its
unprecedented accuracy for all soil types, it is often referred to as the reference technique in
comparisons with soil moisture estimations using other methods (Johnson, 1962, Lal and Shukla,
2004, Dobriyal et al., 2012). The procedure consist of taking soil samples (100-200g) from the
site of interest, weighing the wet samples and placing them in a forced draft oven for drying to
a constant weight at 105 °C. The process ends when the sample weight becomes stable and as

a result, 8, on dry basis can be calculated as per Eq. (2.1) and then converted to 6, according to
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Eq. (2.5) if py, is known. Thermo-gravimetric observations are often required for calibration and
validation purposes, although the method is labour-intensive and time-consuming. The method
has limitations and disadvantages in obtaining a temporally dense dataset from the same
location. Therefore, indirect techniques have been established that are more cost and time

effective and can sense soil moisture with a higher temporal resolution.

2.4.1.2 Indirect methods

Several indirect methods measure a physico-chemical property of the soil to estimate soil water
content (Evett and Parkin, 2005). Strictly speaking, they are not able to measure soil water
content; thus, empirical calibrations are used to convert the measurements to soil moisture

values. Most of these methods require contact with the soil medium (Julien et al., 2011).

2.4.1.2.1 Nuclear techniques

The radioactive technology and idea of the neutron moisture probe published by Gardner and
Kirkham (1952) introduced a breakthrough in modern soil moisture estimation, which was
developed after the significantly improved knowledge about nuclear physics in the 1940s. The
most widely applied radioactive techniques are neutron scattering, nuclear magnetic resonance
(Zazueta and Xin, 1994) and gamma-ray attenuation. The latter has the capability to sense soil
water content in the top 1-2 cm of soil layer. The method uses the principle that gamma-ray
scattering and absorption are affected by the changes in soil wetness density (Schmugge et al.,
1980). Even though the gamma attenuation have some advantages over the neutron moisture
meters, the neutron scattering method remained the standard indirect method until the age of

dielectric sensors arrived in the 1980s (Ochsner et al., 2013).

The concept of neutron scattering is partly based on the physical fact that fast neutrons slow
down to the thermal stage through collision with common soil elements. Secondly, hydrogen is
the most effective element in the neutron thermalisation, which is mostly present in the form
of water molecules (Evett, 2000a). Neutron moisture meters are equipped with a high-energy
neutron source and a detector to sense the scattered and thermalized neutrons. Since the
portion of slow neutrons is mainly controlled by the amount of water present, the instrument
can estimate soil water content on the volume basis (Greacen, 1981). Neutron moisture meters
have been frequently used as reference techniques among the indirect, non-destructive
methods due to their high accuracy (Evett and Steiner, 1995, Chanasyk and Naeth, 1996). The
technique is extremely costly and it has special requirements for installation and operation.

Additionally, its sphere of influence varies in dry and wet conditions (Keys, 1990).
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2.4.1.2.2 Dielectric soil moisture sensing methods

The next set of 8, sensing are the dielectric techniques or electromagnetic (EM) methods as
they operate based on the measurements of EM properties. A broad spectrum of instruments
makes use of the dielectric parameters of the sensed media from the sample scale to remotely
sensed several km? area, which will be discussed outside of the ground-based methods. Each
technique produces one of the following outputs: travel time, impedance, capacitor charge time,
oscillation frequency or frequency shift depending on the sensor type. The raw acquisitions are
then converted to 8, through calibration functions (Blonquist et al., 2005). Dielectric methods
have been increasingly applied due to their non-destructive and reliable soil moisture
estimations that can be delivered rapidly and repeatedly from the same location via automation

(Robinson et al., 2003, Stacheder et al., 2009).

In general, dielectric instruments sense soil water content by measuring the apparent soil bulk
permittivity Ka that determines the velocity of an EM wave emitted into the surrounding soil
media. The theoretical relative permittivity &, describes how a given medium interacts with the
electric field compared to the effect of vacuum on the same electric field. The ¢, also called
dielectric constant, is defined as the ratio of absolute permittivity of the substance to the
permittivity of a vacuum (=1). &, is a complex quantity with a real and imaginary component,
although the imaginary part can be neglected concerning the field of study and its small

contribution (Topp et al., 1980).

Since the soil is a composite material, the measured permittivity is made up by the relative
contribution of minerals, air and water. The relative permittivity of liquid water Ka,, (=81) is
considerably larger than that of the other soil constituents Kag (=2—13 for most soil minerals)
and air Ka, (= 1), thus, the Ka is mainly governed by the amount of liquid water (Jones et al.,
2002, Chandler et al., 2004). The terms relative permittivity and relative dielectric constant are
used interchangeably in this study, although they can have different meanings in certain aspects.
Commonly, the relationship between Ka and 8,, is established by an empirical equation (Eq. 2.9)
of Topp et al. (1980) that provides estimations of 8,, < 0.5 m3*m2in most soils with a 6,, error of

+0.02 m3m3 (Evett and Parkin, 2005):
0,=—53¢ 1072 +2.29¢ 107 2Ka — 5.5 10™*Ka? + 4.3 « 10 °Ka3 (2.9)

The relationship between Ka and 6, has been re-established in numerous studies by using
physical approaches, such as dielectric mixing and composite sphere models to enhance the
general applicability of dielectric sensors and standardise their characteristics (Dobson et al.,

1985, Friedman, 1998, Jones et al., 2005). A range of dielectric methods are available on the
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market, but this review will focus only on the time domain reflectometry (TDR), frequency

domain reflectometry (FDR) and capacitance-based techniques due their relevance in this thesis.

2.4.1.2.2.1 Time domain reflectometry (TDR)

TDR is a widely accepted EM method, which was developed to sense soil water content and
made operational in the 1980s by Hoekstra and Delaney (1974) and Topp et al. (1980). In an
operating TDR device, very short, precisely timed EM pulses are generated and sent along
metallic rods (length L), at a bandwidth of 0.02-3 GHz, which are part of the so called

transmission lines (Fig. 2.4 (A)) (Robinson et al., 2003, Romano, 2014).
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Figure 2.4 Schematic design of a rod type TDR installed vertically (L = rod length) (A), multiple TDR
sensors for soil profile monitoring placed horizontally (B) and a multi-sensor capacitance-based probe
with ring electrodes.

By measuring the travel time of the propagating EM wave along the probe inserted in the soil,
the soil Ka can be determined (Dobriyal et al., 2012). The propagation velocity of the travelling
pulse is strongly controlled by the soil moisture content; hence, it can be related to 8,. The
instrument is equipped with 2-3 rods that are inserted in the soil, and a digitiser detects changes
in the energy levels along the transmission lines. The use of high frequency pulses provides a
less susceptible response to soil specific properties (Robinson et al., 2008b). However, soil
salinity or highly conductive heavy clay contents may affect TDR, as it contributes to attenuation
of the reflected pulses (Ferrara and Flore, 2003) and the rods need to be installed horizontally

from a soil pit which is a considerable disadvantage of the technique (Fig. 2.4 (B)).

2.4.1.2.2.2 Frequency Domain (FD) techniques
Frequency domain (FD) sensors have been favoured in agricultural applications, such as real-

time, feedback based irrigation control systems (Stacheder et al., 2009). Although they are less
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precise than the neutron probes (Gabriel et al., 2010, Wendroth et al., 2013), FD probes offer a
low cost alternative (Paltineanu and Starr, 1997). FD reflectometry (FDR) and capacitance
methods are often discussed simultaneously since both belong to the frequency domain (FD)
group (Romano, 2014). The basic idea behind FD methods is that a capacitor can be formed
between two or more electrodes (metal rods, spikes or rings) and the surrounding soil medium,
therefore the electrical capacitance is dictated by Ka. FDR techniques differ from the TDR in
that the former measures the variation in frequency of the returned EM pulses. FDR instruments

detect the swept frequency, i.e. it records data over a range of frequencies (Lekshmi et al., 2014).

Capacitance-based sensing devices also make use of the FD, although they measure the charging
time of the generated capacitance field that extends into the soil medium (Mittelbach et al.,
2012). An oscillator is often connected to the circuit, that converts the changes in Ka to the
variation in the frequency of the transmitted signal between the electrodes (Leib et al., 2003,
Lekshmi et al., 2014). If circular shaped electrode configuration is used, the electric components

(electrodes, oscillator) are often inserted into a PVC access tube (Fig. 2.4 (C)).

The frequencies used in FD devices (20-300MHz) are lower than that of TDR, which causes
sensitivity to soil properties (Romano, 2014), therefore FD sensors require the development of
soil-specific calibration curves (Blonquist et al., 2005). The sphere of influence is relatively small
(radius up to 5-6 cm) (Gabriel et al., 2010) making the correct installation crucial to ensure
optimal sensor to soil contact for accurate data acquisition. Despite these drawbacks, obtaining
multi-depth 6,, data by field-calibrated FD instruments has been receiving growing interest

especially in the field of precision agriculture.

2.4.1.2.3 Otherindirect methods
Since several further indirect techniques have been developed, a brief overview is given without
any intention to provide a complete synopsis. Describing each technique in detail is beyond the

scope of this thesis, therefore the reader is referred to the cited material for further information.

Additional indirect methods include amplitude domain reflectometry (Mufioz-Carpena et al.,
2004), soil resistance sensors, time domain transmission (Blonquist Jr et al., 2005) thermal
dissipation block technique (Dias et al., 2011), tensiometers, gypsum block method, pressure
plate method (Dobriyal et al., 2012), free line sensing (Stacheder et al., 2009), gamma-ray

scanners and hygrometric techniques (Zazueta and Xin, 1994).

The popularity of non-invasive, contactless sensing of soil moisture has been growing, along with
an increasing demand for large scale, regular, high spatial resolution products. Bogena Heye R.

et al. (2015) summarised the sensing of soil moisture by cosmic-ray neutron probes, Global
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Navigation Satellite System reflectometry, ground-based microwave radiometry, gamma-ray
intensity monitoring, terrestrial gravimetry and low frequency EM surface waves. In recent
years, cosmic-ray probes have been emerging, as they are able to sense the integrated soil
moisture from a profile down to approximately 75 cm (depending on wetness) and with a
horizontal footprint of about 330m. The probes make use of secondary fast neutrons generated
by the incoming, primary cosmic-ray particles. As the neutrons make their way back to the soil
surface, the amount of escaping particles is a function of the soil water content (Vereecken et

al., 2014).

Proximal methods, such as electrical resistivity tomography, ground penetrating radar (GPR)
(Lunt et al., 2005), EM induction (EMI) and optical (Vis-NIR) field-spectroscopy (Adamchuk and
Rossel, 2010) are referred to as non-invasive, hydro-geophysical approaches. Their soil moisture
outcome is commonly compared or combined with TDR or neutron probe estimations (Huisman
et al,, 2002). Proximal techniques offer promising alternatives to occasional surveys with high
spatial resolution to map the spatial distribution of soil properties filling the gap between the

point like and remote sensing methods (Robinson et al., 2012, Romano, 2014).

2.4.1.3  Ground-based wireless soil moisture data management

The above-mentioned methods have limitations regarding the spatial scale or the temporal
density of data collection. With the development of micro-electro-mechanical systems and
computer science, the wireless sensor network (WSN) technology has advanced and can offer
new, promising possibilities besides the initially prevalent military applications (Romer and
Mattern, 2004, Yick et al., 2008). WSNs provide a wireless communication protocol to send
sensor data to remote end users. These networks aim to bridge the gap between the small (point

to field) and the larger spatial scale (catchment-regional) terrestrial environmental observations.

A WSN is composed of a collection of spatially distributed, autonomous devices, called sensor
nodes, organised into a cooperative network that communicates wirelessly and forwards data
to the gateway (also known as base station or centre connecting point) (Verdone et al., 2010,
Rawat et al., 2014). These nodes are usually equipped with a processor, a radio interface, an
analog-to-digital converter, sensors, memory and a power supply. Sensors are connected to the
wireless nodes that are linked to the gateway unit via radio communication. Wireless internet

connection is established between the gateway’s modem and a server, which hosts the data.

Once the WSN has been deployed, the network can operate without continuous supervision and
perform data acquisition, logging and reporting functions (Yick et al., 2008). WSNs are commonly

deployed for soil moisture monitoring as they allow near-real time data access at increased
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temporal, spatial and vertical resolutions, thus eliminating some of the limitations caused by
conventional ground sampling. Due to the advantages offered by WSNs, observing networks are
utilised in precision irrigation scheduling (Hedley et al., 2012, Ekanayake and Hedley, 2018),
characterisation of hydrological fluxes, calibration and validation of remote sensing data (Dorigo

et al., 2015) and soil moisture variability investigations (Kerkez et al., 2012, Majone et al., 2013).

2.4.1.3.1 Topologies, deployment strategies and node architectures

In this study, a “one of a kind” WSN was deployed for ground-based 6,, data collection in hilly
environment that required a well-planned design to ensure unobstructed communication and
data transfer. Therefore, a basic review is provided to understand the main issues during a WSN

installation and its various structures for environmental observation.

For most WSNs the critical design step is the selection of representative sensor locations of the
targeted region. Sensor nodes can be deployed randomly, in an ad hoc manner, or installed at
pre-planned locations depending on the application, the environment and the sensor types
(Buratti et al., 2009, Abdollahzadeh and Navimipour, 2016). A well-designed network is flexible
and it is possible to increase the number of nodes or to replace devices without disturbing the

data collection (Bogena et al., 2010).

There are many factors influencing the WSN design comprising failure probability, scale
dependency, installation and maintenance costs, environmental conditions, topology,
hardware, transmission media and power supply (Akyildiz et al., 2002). The WSN topology (i.e.
the geometric properties and spatial relations of the WSN) determines major network
characteristics, such as data routing and processing, diameter and robustness (Romer and
Mattern, 2004). Logical topologies characterise how a sensor node communicates with other
nodes. Townsend & Arms (2005) described three topologies (star, mesh and hybrid) commonly

utilised in WSNs.

A star network (1) is a simple communication structure, where the remote nodes are connected
wirelessly to a single gateway. Sending and receiving data are only permitted between a single
base station and a remote node (a.k.a. single-hop communication). However, this topology is

prone to single point failure and there is no alternative routing path.

In contrast, a mesh network (2) setup allows for any node to transmit to any other node in the
WSN that is within its radio range, enabling multi-hop communications among the sensor nodes.
Therefore, if a device is set to transfer data to an out of range node, or there is a communication

barrier (topography, buildings, trees, etc.), it can use any node as relay to forward the message
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to the desired destination. Mesh networks may form an arbitrary and self-healing structure with

several message paths.

A hybrid star-mesh network (3) is the combination of the previous two types and provides a
robust and versatile communication network while maintaining the ability to keep the wireless
sensor node power consumption to a minimum. It is also known as partial mesh topology,
meaning that some nodes are enabled to operate in a multi-hop manner and the rest of the
nodes are only connected to those nodes they most frequently communicate to. The hybrid
topology utilises all the advantages of the star and mesh networks (Romer and Mattern, 2004,

Townsend and Arms, 2005, Sharma et al., 2013a, Sharma et al., 2013b, Rawat et al., 2014).

2.4.1.4  Global ground-based in situ soil moisture observations

Remote sensing techniques and land-surface models have been serving several environmental
simulation systems by providing operational global soil moisture products (Rodell et al., 2004,
Drusch and Viterbo, 2007, Dorigo et al., 2011b). The required input data varies with applications;
satellite missions would only sense soil moisture in the top soil layer depending on the sensor
type. Land-surface models usually operate on a layer-based manner and require input data from
the near-surface as well as the deeper sections of the soil profile (Bruckler et al., 1988, Wagner

et al., 19993, Albergel et al., 2012, Choi and Hur, 2012).

Systematic soil moisture data acquisition was started in the 1930s using mainly repeated direct,
gravimetric methods at weather stations (Robock et al., 2000b). In the following decades, more
and more countries were interested in soil moisture monitoring and deployed their own
research stations to establish observation networks. However, the datasets suffered from
inconsistent techniques and protocols that led to significant variation in the data. In the 1990s,
in situ soil moisture data from around the globe was made available through the Global Soil
Moisture Data Bank (Robock et al., 2000a). This database served as a starting point for the
revolutionary international cooperation and resulted in the establishment of the International
Soil Moisture Network (ISMN) in 2009. ISMN is a centralised data hosting facility, which collects
and harmonises the in situ soil moisture data acquired by a large variety of individually operating
networks. ISMN makes the data available for the geoscientific community through their data

portal at https://ismn.geo.tuwien.ac.at/data-access/ (Dorigo et al., 2011a, Dorigo et al., 2011b,

Dorigo et al., 2013).

2.4.2 Remote sensing of soil moisture

While soil moisture information is still of great importance at the point scale, the opportunities

lying behind large-scale observations from satellites (i.e. catchment, region, continent or global)
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have turned scientists to the rapidly evolving remote sensing or Earth observation techniques.
In the context of remote sensing, the information about physical objects is carried by the long-
range EM and gravitational fields (Robinson et al., 2008a). Consequently, remote sensing can be
defined as the science of physical information obtained by a device from a determined distance
through the analysis of the received EM or gravimetric signal after interaction with the object,
area or phenomenon of interest (Sharkov, 2003, Lillesand et al., 2014). Satellite gravimetry is
still among the emerging methods and can only be applied on an irrelevant large scale
considering the aim of this study (Tapley et al., 2004, Rodell, 2012). Thus, only the methods that

make use of the EM energy will be discussed here.

On this basis, remote sensing of soil moisture refers to those non-invasive, contact free
techniques that acquire observations via the EM spectrum from a remote position without
getting in direct contact with the soils. Sensors for remote observation of the Earth surface are
dominantly mounted airborne and spaceborne platforms but can also be installed on towers
providing a footprint range of m? to thousands of km? (Wagner et al., 2007). Spaceborne
platforms are frequently preferred as they provide global coverage on a regular basis offering

consistent datasets and quality.

Remote sensing methods are subdivided into two groups primarily distinguished based on the
source of EM energy used (Mladenova et al., 2014). Passive methods (1) provide only reception
of the variation in the EM field reflected or emitted from a natural source, while active
techniques (2) emit energy from their own illumination source and receive the reflected signal
from the investigated objects (Sharkov, 2003). The main components of the remote sensing

process are illustrated in Figure 2.5 for passive and active methods.
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Figure 2.5 Components of remote sensing processes: source of energy (a), propagation of energy
through the atmosphere (b), interaction (c), radiation towards sensor (d), detection of electromagnetic
signal (e), generation of sensor data (f) and transmission of data to Earth (g) and interpretation of data
(h) (Lillesand et al., 2014).

Since the 1970s, remote sensing approaches for soil moisture observations have drawn the
researchers’ attention and the potential of large-scale soil moisture observation has been
investigated intensively (Ulaby et al., 1986¢c, Schmugge and Jackson, 1994, Wagner et al., 1999b,
Chen et al., 2012, Ochsner et al., 2013). The considerable role of soil moisture in environmental
systems triggered many attempts to retrieve surface soil water content information using
various regions of the EM spectrum. Changes in the EM field can be detected and related to a
number of soil parameters (Robinson et al., 2008a). The highest potential for soil moisture
retrieval was found in the application of the optical (Vis, NIR, SWIR), thermal infrared (TIR) and

microwave regions (Maltese et al., 2013, Rahimzadeh-Bajgiran et al., 2013).

Optical remote sensing of soil moisture uses the 0.4-2.5 um domain of the EM spectrum and
measures the solar energy reflected back from the land surface (Petropoulos, 2013). The early
optical remote sensing over bare soil surfaces made use of the fact that wet soil is darker than
dry soil (Kerr et al., 2010). Optical spectral reflectance at various water absorption wavelength
regions (around 1.2, 1.4 and 1.9 pum) was observed to be sensitive to soil water content, showing
that reflectance generally drops with increasing soil moisture (Anne et al., 2014, Fabre et al.,
2015). Over vegetation, the Vis-NIR-SWIR bands are able to sense the change in plant biophysical
and biochemical characteristics which are strongly dependent on water (Gao et al., 2013). Thus,

vegetation indices, such as Normalized difference Vegetation Index (NDVI) and Normalized
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Difference Water Index (NDW!I) have been developed to indicate the physiological state of the

vegetation and indirectly the soil moisture (Peters et al., 2002).

TIR remote sensing proved its capability to map soil moisture in deeper depth than optical
methods by using the 3.5-14 um wavelength range (Schmugge et al.,, 1980, Behari, 2006,
Anderson et al., 2007). The most commonly applied technique is the thermal inertia approach
(Price, 1977), the generation of crop water stress index, water deficiency index and temperature
vegetation index (Gao et al., 2013). The thermal inertia method is built upon the diurnal cycle of
land surface temperature and the principle that heat capacity and heat conductivity of the land
surface is impacted by the soil water content. By knowing the amplitude of diurnal temperature
change, a model function can be developed to predict soil moisture, because the increase in soil
water content reduces the diurnal temperature fluctuation, thus the thermal inertia

proportionally increases (Petropoulos, 2013, Zhao and Li, 2013, Zhang and Zhou, 2016).

Optical and TIR approaches have numerous limitations due to the coarse temporal resolution
and the atmospheric effect, night effect, vegetation, soil properties, surface roughness and
cloud cover (Behari, 2006, Kerr et al., 2010, Zhang and Zhou, 2016). Moreover, optical bands can
interact only with the top few millimetres of bare soil or the surface of the plant leaves and
stems which allows only the indirect retrieval of soil water content (Petropoulos et al., 2015,

Sabaghy et al., 2018).

By using specific sections of the microwave region of the EM spectrum (0.1-100 cm), numerous
limitations related to the optical and TIR methods can be eliminated, placing the active and

passive microwave sensing among the preferred methods for spatial soil moisture mapping.

Furthermore, synergistic methods are able to derive soil moisture from a combination of several
remotely sensed information obtained at various regions of the EM spectrum. Common fusion-
based methods include the synergistic use of optical and thermal earth observation data (i), the
combination of active and passive microwave observations (ii) and the fusion of microwave and

optical or thermal infrared acquisitions (iii) (Petropoulos et al., 2015).

2.5 Microwave-based soil moisture remote sensing

2.5.1 Physical background

The EM waves applied in soil moisture remote sensing covers an extensive range from the short,
400 pm to long, 1 m wavelengths. The shortest wavelengths of the radio spectrum, the
microwaves, refer to the approximate frequency range of 0.3-300 GHz corresponding to a

wavelength range between 1 m and 1 mm shown (Fig 2.6) (Behari, 2006, Petropoulos, 2013).
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Figure 2.6 The electromagnetic spectrum (European Space Agency, 2012) and the band designation of
the microwave region used in microwave remote sensing (Ouchi, 2013).

This region is effectively independent of solar illumination and the sensed intensity depends on
the objects’ radiative, dielectric, physical, chemical, geometrical and thermal characteristics
(Sharkov, 2003). The microwave domain can be subdivided into several bands (Fig. 2.6). Most
studies found the low-frequency (X, C and L band) microwave sensing the most suitable for
quantifying soil moisture (Behari, 2006, Calvet et al., 2011, Dobriyal et al., 2012). These findings
made use of the large contrast between the Ka of dry and wet soils (Schmugge et al., 2002). L-
band has been the preferred choice for many satellite missions, but C and X bands carry useful

information regarding soil moisture if the vegetation is not too dense (Calvet et al., 2011).

2.5.2 Passive microwave remote sensing

Passive instruments usually detect the intensity of the naturally reflected or emitted energy
from the land surface. This energy either travels in the form of reflected solar radiation in the
Vis and NIR regions or emitted energy in the TIR or microwave regions (Schmugge et al., 2002,
Petropoulos et al., 2015). Every object that has a temperature higher than the absolute zero (-
273.15 °C) emits EM waves (thermal bands). Passive microwave remote sensing (radiometry) is
able to detect the radiated energy in the 1-30 cm region which is usually expressed in the form
of brightness temperature (Petropoulos, 2013). The thermally generated radiation is less
sensitive to surface roughness, soil parameters and land cover (Das and Paul, 2015a), although
it is largely influenced by soil water (Njoku and Entekhabi, 1996, Behari, 2006, Rees, 2013).
Passive sensors require large antennas to detect the thermal radiation that limits the spatial

resolution.
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2.5.3 Active microwave remote sensing

Active microwave platforms (radars) measure the magnitude of artificially generated energy
that is reflected, scattered back from the land surface or the targeted objects in the radio region
(Schmugge et al., 2002, Seneviratne et al., 2010, Lillesand et al., 2014). Radars may or may not
produce images. Radars mounted on satellites are mainly imaging systems that use the synthetic
aperture radar (SAR) technology producing continuous strips of imagery from a side-looking
position (Rees, 2013, Lillesand et al., 2014). SAR systems utilise an advanced signal processing
technique to synthesise the antenna length and a large aperture (Warner et al., 2009, Rees,
2013). The coherency of the emitted signal allows the creation of aperture synthesis and when
combined with the time history of radar echoes results in the high spatial resolution of SAR
images (Sharkov, 2003, National Academies of Sciences and Medicine, 2015). SAR imagery is a

major contributor to the objectives of this thesis.

2.5.4 Spaceborne missions for microwave-based soil moisture observations

Both passive and active microwave remote sensing have been of great importance in terms of
remotely sensed soil moisture retrieval in the past four decades (Ochsner et al., 2013, Wagner
et al., 2013, Mohanty et al., 2017). Hence, several space missions have been used for deriving
soil moisture even though they have initially not been foreseen to observe soil water (Table 2.1)
(Brocca et al., 2010Db, Liu et al., 2011, Mladenova et al., 2014). These missions are characterised
by approximately 25-150 km spatial resolution with varied revisit time, which are the cause of
several limitations. Nonetheless, promising correspondences were found between satellite
derived and ground-based data, closely reproducing the temporal dynamics of in situ soil

moisture (Brocca et al., 2010a, Dorigo et al., 2015).
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Table 2.1 Overview of spaceborne, microwave-based missions relevant for soil moisture applications (A

- frequency, EOL - End of Life, A-active, P - passive, rad - radiometer, scat -scatterometer, con -

constellation).
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Dedicated satellite missions designed for global soil moisture measurements appeared relatively
late. First, the Soil Moisture and Ocean Salinity (SMOS) mission was launched in 2009 by the
European Space Agency (ESA) (Mecklenburg et al., 2012) which was followed by NASA’s Soil
Moisture Active Passive (SMAP) program in 2015. The SMOS satellite is equipped with and L-
band radiometer recording the surface’s brightness temperature at a spatial resolution of 50 km
with an accuracy of £0.04 m3 m every three days. The basic idea behind the SMAP mission was
to merge the coarse resolution but highly sensitive passive and high-resolution active microwave
observations for the first time, and achieve an improvement in resolution and accuracy
(Entekhabi et al., 2010b). Unfortunately, a component of the L-band radar instrument failed in
the same year leaving only the radiometer operational, generating 36 km pixel size passive soil

moisture products (Ming et al., 2016, Das et al., 2018).

Potential future missions, summarised in Table 2.2, will be able to provide soil moisture
retrievals at higher spatial and temporal resolution and will open a market for new applications
(Mohanty et al., 2017). The number of SAR missions are on the rise and already either in the
planning or developmental phase. The commonly followed open data policy will allow more

widely available datasets for research and educational purposes.

Table 2.2 Overview of the future space borne missions that will open new possibilities for soil moisture
retrieval and global applications (A - frequency, EOL - End of Life, A-active, P - passive, rad - radiometer,
scat -scatterometer, con - constellation (number of satellites).

. .. Planned Planned Band /A (GHz)/  Revisit  Spatial
Type Satellite / Mission Agency launch EOL Instrument polarisation (d) res.
A RADARSAT con. (3) CSA and 2018 2025 SAR C/5.4/multi 4-12 3-100m
more
A METOP C ESA 2018 2024 ASCAT Cc/53/WwW 1.5 12.5-
50km
A METOP SG ESA 2021 SCAT C/53/VW,VH 15-
20km
A SAOCOM con. (4) CONAE/A 2018 2023 SAR L/1.27 / multi 8-16 10-
S| 100m
A NISAR NASA/ISR 2020 SAR L, S/ polarimetric ~ 12-60  0.1-
(0} 50km
A TERRASAR-X NG DLR 2020- SAR X/9.65/ multi 2.5 1-16m
2022
A PAZ INTA 2018 SAR X /9.65/ multi 11 1-15m
A/P WCOM CAS 2020 FPIR L,S,C/~1.41, 2-3 15-
~2.65, ~6.7 / full 50km
A TANDEM L DLR 2022 SAR L/1.2/full 8-16 50-
500m
A COSMO- ASI 2018 2026 SAR 2000 X /9.6 / multi 1.5-10 1-35m
SKYMED SG con. (2) SG

2.5.5 Main characteristics of Synthetic Aperture Radar (SAR) remote sensing

A SAR image pixel represents measurements of physical processes, expressed as digital
numbers. The fundamentals of radar backscattering was presented by Ulaby et al. (1982a)

providing the relationship between the received and the transmitted power. A common form of
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the ‘radar equation’ is given by Eq. (2.10) (Ulaby et al., 1981) that establishes the relationship
between received power on the antenna B, (W) and power reradiated by a single target:
P.G¢G2? (2.10)
"~ @mRr’

Where P; is the transmitted power (W), G; is the power gain on transmit, G, is the power gain
on receive, 4 is the wavelength (m), R is the distance between the radar and the target (m), 17 is
the efficiency of the antenna and o is the scattering cross section (m?2). SARs measure an infinite
collection of statistically identical signals from a target volume. Therefore, Eq. (2.10) is extended
to gain the backscattering coefficient or cross-section per unit surface area 6° (m*m2) (Ulaby
et al., 1996). The value of 6° quantifies the signal intensity and represents the power loss caused
by the interaction mechanisms. The ¢, for a given SAR configuration, can be expressed by
dividing the mean o with the illuminated area A, (m?) as per (Eq. 2.11).

50 = (o) _ 4mR*(|E|*) (2.11)

Ay AlE?

Where E; is the scattered electromagnetic field and Ej is the incident EM wave intensity.

Due to its wide dynamic range, 6 is usually converted to decibels (dB) (Rees, 2013) by Eq. (2.12)

presented in (Ulaby et al., 1996), where i, j = transmit and receive signal polarisation.

Ui(,)j(dB) =10log Ui(,)j(mz m~2) (2.12)

2.5.5.1 The side-looking SAR geometry

The basic geometry of an operating, spaceborne SAR imaging system is shown in Figure 2.7 (A).
As the SAR platform moves along the flight path, short, high-frequency pulses are transmitted
from an antenna perpendicular to the SAR propagation direction (azimuth direction) at an off
nadir angle (look angle) 6, at the order of microseconds (Ouchi, 2013, Rees, 2013). The 6; is
defined as the angle between the illumination direction (slant range direction) and the vertical
direction at the point of interaction. Ground range direction is the projected slant range
direction to the ground. The intersection of the radar beam (characterised by the azimuth
beamwidth) and the surface defines the width of an image swath (Rees, 2013). Range resolution
is the function of the bandwidth of the radar pulse and it allows the separation of ground
features located close to each other. The azimuth resolution depends on the azimuthal
beamwidth, slant range and the signal-processing algorithms. The deterioration of azimuth

resolution is eliminated by SAR, (Warner et al., 2009, Lillesand et al., 2014).
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Figure 2.7 lllustration of a side-looking SAR system geometry in operation (A) and the main geometric
distortions (B, C, D). Modified after Ouchi (2013) and Ford et al. (1993).

The collectively utilised side-looking geometry allows high spatial resolution images, although
the configuration induces geometric distortion effects (Fig. 2.7 (B) and (D)), especially over
undulating terrain (Jensen, 2009). As SARs measure travel time and the backscattered signals
are projected to an image reference plane, the process can lead to the phenomena of
foreshortening and layover. In case of foreshortening, the slopes oriented towards the SAR
appear compressed along the range direction (Fig. 2.7 (B)) while the backslope is extended by

the temporal shift of the signal (Braun and Hochschild, 2017).

Steep slopes may result in layover effects, if the valley has a larger slant range than the top of
the slope, thus the image will show a reversed order of the observed points compared to their
real position (Fig. 2.8 (C)). Due to topographic effects, radar shadow (zero returned signal) may
appear on the images (Fig. 2.8 (D)) if the slopes oriented away from the sensor are steeper than
the SAR’s depression angle (Warner et al., 2009, Lillesand et al., 2014). These effects are taken

into account during the image processing by using a digital elevation model (Bayer et al., 1991).

2.5.5.2 Basic scattering processes

The nature of interaction and the magnitude of the 6° upon contact with the target object are
dependent mainly on sensor and target properties (Mahdavi et al., 2017). Polarisation, 6; and
frequency are the primary sensor properties, whereas target parameters include surface

roughness, topography, soil properties (Ka, soil texture) and vegetation cover (biomass,
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geometry, structure, orientation and dielectric features) (Ogilvy and Merklinger, 1991, Moran
et al., 2004, Patel et al., 2006, Anguela et al., 2010, Kornelsen and Coulibaly, 2013, Braun and
Hochschild, 2017). The radar beam can be absorbed, scattered, reflected, double-bounced and
it can penetrate into the objects and become further absorbed or scattered (Fig. 2.9) (Kornelsen
and Coulibaly, 2013). In general, three main scattering processes are discussed, i.e. surface

scattering, volume scattering and double-bounce scattering (Zou et al., 2015).

Surface scattering Volume scattering Double-bounce

Specular Diffuse <
SAR reflection reflection

Calm water body
Smooth surface Moderately rough surface Complex canopy structure Trunk-smooth surface

Figure 2.8 Schematised elementary scattering processes of an incident radar signal over smooth, rough
surfaces and vegetated land (Es - scattered electromagnetic field, Ei - incident electromagnetic wave
intensity, E: - received energy).

In a specific case of surface scattering, a smooth surface can act similar to a mirror and reflect
the incident radiation away from the SAR. The process is known as specular scattering and it
commonly occurs over calm, smooth water surfaces, flooded soils, sealed roads and it can be
present over very smooth bare soils (Lillesand et al., 2014). Diffused surface reflection occurs if
the transmitted energy pulse interacts with a homogenous media such as soil scattering the
incoming wave in all directions (incoherent component) mainly governed by the surface

roughness (Moreira et al., 2013).

Volume scattering is the process, when the incident illumination enters an inhomogeneous
medium, such as vegetation and the discrete elements (leaves, stems, branches) scatter the

incident wave in multiple directions.

In the particular situation whereby the incident radar pulse is reflected away from the sensor
direction by a horizontal (or vertical) surface but it bounces back from a vertical (or horizontal)
structure (i.e. tree chunks, trunks, high buildings, smooth surfaces), double-bounce scattering
occurs. Thus, manmade features adjacent to smooth surfaces usually appear with particularly

high o® on SAR images (Warner et al., 2009, Lillesand et al., 2014).
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2.5.5.3  SAR configuration

High 6;, can cause little or no energy return because of the specular reflection on smooth
surfaces, whereas high depression angles, i.e. low 6;, may be received by the SAR resulting in
stronger backscatter (Dobson and Ulaby, 1986, Sabins, 2007). Due to the side-looking geometry,

radars are extremely sensitive to the 6; and terrain relation (Toselli, 1987).

The illumination frequency determines the wavelength; hence, it affects the backscattering
properties defining which parts of the target take part in the interaction (Chen et al., 2014). The
long P-waves are able to penetrate the vegetation canopy providing more information about
the soils, while L-band is more sensitive to vegetation cover and plant density (Patel et al., 2006,
Moreira et al.,, 2013). Shorter wavelengths are optimal for vegetation canopy and biomass

sensing, since they are not able to penetrate the canopy completely (Lillesand et al., 2014).

To obtain more information from images, SARs apply multiple polarisation modes, such as co-
polarised VV or HH, and cross-polarised VH or HV (Ulaby et al., 1996, Robinson et al., 2008a).
The first letter denotes to the polarisation of the transmitted wave whereas the second letter
refers to the polarisation of the received wave (V-vertical, H-horizontal) (Robinson et al., 2008a).
However, due to the geometric structure and dielectric properties of the target, a portion of the
radar signal is depolarised creating cross-polarised o® (Toselli, 1987). Cross-polarisation was

observed to be more sensitive to vegetation parameters than co-polarisation (Patel et al., 2006).

2.5.5.4  Effect of target characteristics on SAR scattering and the inherent noise

The scattering behaviour over natural surfaces is highly dependent on the relative concept of
roughness. Surface roughness is often expressed as the root mean square height RMS), (cm)
(Gupta and Jangid, 2011, Bousbih et al., 2017). In remote sensing, the application of the Rayleigh
Criterion can estimate whether the surface is rough or smooth (Sabins, 2007, Lillesand et al.,
2014). Increasing degree of roughness generally results in increased ¢?, although its effect varies
depending on sensor parameters (Ulaby and Batlivala, 1976, Ulaby et al., 1982b, Sano et al.,
1998, Wagner et al., 2007, Baghdadi and Zribi, 2016).

The soil and the vegetation dielectric properties, often referred to as complex ¢, and their
effects on the radar waves need to be considered (Lillesand et al., 2014). The value &/ is
proportional to the number of water dipoles present (Dobson and Ulaby, 1986). &, increase with
increasing water content. Free water has the largest effect on the &, although bound water can
also impact soil moisture estimates (Njoku and Entekhabi, 1996). If other factors are not taken
into account, increasing soil moisture results in increasing Ka that is followed by increasing ¢°

until an insensitivity threshold (Ulaby et al., 1986c¢, Kornelsen and Coulibaly, 2013).
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Vegetation exerts a significant effect on the o by causing a complex scattering and two-way
attenuation of the signal. Consequently, the total 6° of a vegetated land-surface is a result of
several contributions from surface, volume and multiple scattering and double-bounce (Hajnsek
et al., 2009, Wagner et al., 2013). C-band o¢®is a result of combined scattering and soil-
vegetation interaction, suggesting that it can penetrate through the canopy to a certain extent
(Ulaby et al., 1986b, Bouman and Hoekman, 1993). The vegetation &,, the size, shape and
orientation of canopy elements, the growth stage and biomass are the main controlling factors
of 6 (Ulaby et al., 1986a, Mattia et al., 2003). Ferrazzoli et al. (1992) and Toan et al. (1992) both

found that 6° increases with increasing amount biomass until a saturation point.

An additional amount of uncertainty is added to the image interpretation as SAR remote sensing
(and active systems in general) inherently suffers from a phenomenon called speckle or noise.
The active nature and the coherent data processing of SAR imagery introduce seemingly random
noise (speckles) to the images resulting in a grainy image appearance (Verhoest et al., 2008,
Rees, 2013, Braun and Hochschild, 2017). The interference introduces seemingly random bright
and dark pixels. The effect can be reduced by statistical noise modelling or averaging and

filtering techniques (Lee, 1981, Rees, 2013).

2.5.6  Soil moisture retrieval from SAR observations

Satellites equipped with SAR are considered as the most successful platforms for the monitoring
of soil moisture in an operational manner (Verhoest et al., 2008, Barrett et al., 2009, Petropoulos
et al., 2015). Although many affecting factors are present, the backbone of SAR-based soil
moisture estimation is the measurement’s sensitivity to the contrast between dielectric
properties of the soils and water, which acts as a proxy for soil moisture (Barrett et al., 2009,

Das and Paul, 2015b, Petropoulos et al., 2015).

The three microwave bands dominantly utilised for soil moisture estimation with ranging
sensitivity are the L-band (1-2 GHz, 30-15 cm), C-band (4-8 GHz, 7.5-3.8 cm) and X-band (8-12
GHz, 3.8-2.5 cm) (Wagner et al., 2007, Gao et al., 2017). Due to the diversity of the developed
approaches, the methods can be categorised in different ways. In the work of Barrett et al.
(2009), model-based approaches, change detection-based approaches and polarimetry are
investigated. Kornelsen and Coulibaly (2013) discriminated among empirical, semi-empirical,
theoretical (physical), numerical and analytical techniques. Karthikeyan et al. (2017)
summarised the main milestones and improvements made in remotely sensed soil moisture

research and classified the available active methods as physical, semi-empirical, empirical and
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change detection models (Fig. 2.9). In this review, only the retrieval methods applicable on

vegetated soils are discussed.
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Figure 2.9 Overview of the developed soil moisture retrieval approaches with color-coded citations and
algorithms. Citations in black have provided multiple algorithms; the contribution to two or more
different approaches is indicated by colour streaks (Karthikeyan et al., 2017).

2.5.6.1 Soil moisture retrieval over bare soil and with vegetation cover

Over bare soil surfaces, the o® can be thought of as a simplified function of the SAR
configuration conf, including polarisation, wavelength and 6;, and two main ground-based
components, i.e. 8,, and surface roughness R as shown by Eq. (2.13) (Barrett et al., 2009,

Aubert et al., 2013, Ouchi, 2013).

Teons = feons (Ovs Rs) (2.13)
One of the most problematic tasks is to disentangle the individual effects of roughness and soil
water content that usually requires a priori knowledge of the surface parameters (Ouchi, 2013).
The soil moisture retrieval is more complicated over vegetated areas partly due to volume
scattering. The vegetation cover tends to reduce the sensitivity of o° to soil water content
(Ulaby and Batlivala, 1976), as the radar response is influenced by the biomass water content
and structure (Vereecken et al., 2012). Therefore, the dependencies of the received radar signal

can be described as per Eq. (2.14):
aconf fconf (61;: R, Vp1; sz V ) (2.14)

Where V)1, Vp ... Vynrefers to the additional parameters introduced by of vegetation.
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Several studies attempted to decompose the o° and gain the contributions from vegetation and
surface properties to reduce the bias on 0,, estimations (Freeman and Durden, 1998, Hajnsek et
al., 2009, Jagdhuber et al., 2013, Ullmann et al., 2016). The ¢° can be defined as a composition

of three main components as per Eq. (2.15) (Ulaby et al., 1996):

0 =1%200 + 03, + 02, (2.15)

Where ¢ represents the contribution from bare soil, 72 is the two-way attenuation factor of
vegetation, 63, is the direct contribution of the vegetation layer, while 6., accounts for the
interaction between the soil surface and vegetation caused by multiple scattering mechanisms.
Eqg. (2.17) introduces the basic concept of the semi-empirical Water Cloud Model developed by
Attema and Ulaby (1978). The model treats the vegetation canopy as a collection of randomly
distributed spherical droplets and models the soil ¢° affected by vegetation (Barrett et al.,
2009). Since most of the real world applications are interested in soil moisture dynamics under
vegetation, many attempts have been made to improve the Water Cloud Model
parameterisation (Joseph et al., 2008, Kumar et al., 2012, He et al., 2014, Liu and Shi, 2016,
Chauhan et al., 2017).

2.5.6.1.1 Change detection methods

If multi-temporal images are available, the effect of surface roughness and vegetation on ¢° can
be assumed constant in time between two acquisitions and there is no need for a priory
information of the study area (Gao et al., 2017). This concept is employed by several change
detection based soil moisture retrieval approaches such as image differencing and rationing

(Engman, 1994, Wagner et al., 1999a, Shoshany et al., 2000, Thoma et al., 2004).

Change detection techniques rely on the assumption that changes in extraneous factors such as
vegetation, surface roughness and soil texture occur in a longer time scale than changes in near
surface Ka. Consequently, the 6° becomes dominantly a function of 8,, variations between two
image observation dates (Barrett et al., 2009). By the application of most change detection
methods, the relative change in 0, (if not absolute 6,, content) can be obtained and represented
by soil moisture indices (Karthikeyan et al., 2017). Shoshany et al. (2000) presented the
Normalised Radar Backscatter Soil Moisture Index (NBMI) for the generalisation of the

relationship between ¢ and 0,, within the 0-40% range, expressed by Eq. (2.16).

o1+ 0% 2.16
NBMI = Zxt9e (2.16)

Ot1 = Ot2

Where 62 and ¢ are the backscattered signal at different times t;, t,.

53|Page



CHAPTER 2

In contrast, when a multi-year o series is available, the acquisitions taken at the historically
driest and wettest soil moisture level can be analysed. The operationally used TU-Wien change
detection method estimates the relative soil moisture content mg ; by comparing the 0% on that
particular day t with the historically driest agry and wettest 02,, reference values measured at

a reference incidence angle ¥; ,f as per Eq. (2.17) (Wagner et al., 1999b, Moran et al., 2006).

9 _ Uo(tf&iref)_o'o(tfairef) (217)
v,t

T o0 ee(t0irer) - Ugry(tﬁimf)

* 100

The product 6,,, indicates the degree of saturation of the surface soil layer expressed as a
percentage. The method has been used in operational global soil moisture retrieval from ASCAT
sensors onboard METOP satellites (Wagner et al., 2013, Hahn et al., 2017, Karthikeyan et al.,
2017). The primary limitations of the change detection are the temporal resolution of imagery
and the constant surface roughness assumption (Lievens and Verhoest, 2011, Kornelsen and

Coulibaly, 2013).

2.5.6.1.2 Machine learning

In the past two decades, the research and remote sensing community has made a turn towards
more sophisticated techniques regarding the complex, non-linear retrieval problems. Advanced
statistical learning functions, implemented in so-called machine learning, can capture this
complexity. Several studies reported their success (Kashif et al., 2006, Notarnicola et al., 2008,
Paloscia et al., 2008, Ahmad et al., 2010, Ali et al., 2015, Alexakis et al., 2017) in modelling the
non-linear, multi-variable relationships among the parameters interacting with the incident
radar signal, without having a detailed knowledge about the input parameters’ distribution and
probability density. Machine learning is commonly used similarly to the conventional inversion
methods as the algorithms can be trained to extract information about surface parameters
based on various remotely sensed input data (Notarnicola et al., 2008). The dominant machine
learning algorithms include the Artificial Neural Networks (ANN) (Baghdadi et al., 2002, Satalino
etal., 2002, Pierdicca et al., 2008, Paloscia et al., 2013, Santi et al., 2013) and the Support Vector
Machine (SVM) (Lin et al., 2009, Ahmad et al., 2010, Pasolli et al., 2011, Khedri et al., 2017). ANN
methods have been found to be more accurate than conventional regression and Bayesian
approaches (Notarnicola et al., 2008, Pierdicca et al., 2008). To obtain geophysical and
biophysical parameters, including soil moisture, from various land cover types, the non-
parametric ANN, SVM and Random Forest (RF) methods have been commonly chosen showing

great potential (Lakhankar et al., 2009, Ali et al., 2015, Park et al., 2017, Kumar et al., 2018).
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Machine learning is able to ingest data from ground-based and remote sensing sources, as well
as taking into account multiple radar configurations, frequently achieving shorter operation time
and higher accuracy than conventional methods (Ali et al., 2015). However, as machine learning
is a data-driven approach, it usually requires robust and extensive training datasets (Paloscia et
al., 2013). Moran et al. (2006) and Barrett et al. (2009) presented a summary and review of

several other retrieval techniques along with their advantages and disadvantages.

2.6 Conclusions

This comprehensive survey of the literature demonstrates that soil moisture is a spatially and
temporally highly variable environmental and essential climate parameter having a fundamental
role in the hydrological cycle. Agronomists, geomorphologists, hydrologist, bio-geographers and
climatologist heavily rely on soil moisture data, utilised in a broad range of applications from
point to global scale. The key is to understand which scale is appropriate to study for specific
purposes, e.g. precision management requires high spatiotemporal resolution, but regional
planning can be performed on lower resolution soil moisture information. To meet the
objectives of the study, the spatiotemporal behaviour of soil moisture would ideally be

examined and modelled on the so-called paddock scale (10-100 m).

Soil moisture is the single most important factor in hill country pastoral agriculture that is
responsible for a major part of New Zealand’s economic performance. Hill country is principally
characterised by high heterogeneity due to the complex landscape, soil and climatic features.
The complexity of the land, the lack of detailed soil information and the non-irrigated hill country
creates challenges in sustainable land management. Pastoral farming has been under increasing
pressure due to the growing food demand and quality requirements. Improved land
management can be achieved by the more efficient use of natural and controllable resources
such as land, water and fertiliser input. Well timed and better decision making supported by
more accurate data acquisitions, fertiliser input strategy and pasture yield predictions are crucial
in the enhancement of resilience and sustainable productivity in hill country that can also reduce

the environmental impact.

The rugged terrain results in varied pasture growth rates and distribution patterns that make
predictions prone to errors on account of the variability caused by topography, soil cover and
meteorological forces. An essential part of the simulations is the water balance module, which
is well understood for flat surfaces, although only a few studies have approached the challenge
of modelling soil water dynamics in the hillslope environment. Therefore, it is one of the weakest

points in the algorithms. As environmental heterogeneity within a farm or within the paddocks
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is significant, the low spatial resolution of the modelled output is subject to uncertainties that

are carried along to the fertiliser application planning.

Ground-based methods can provide accurate soil moisture measurements and reliable
estimations; although in situ techniques are time consuming, costly, equipment intensive and
not feasible to conduct on the required spatial and temporal scale when it comes to real-world
applications. WSN technologies have been attempting to fill the gap between small and large-
scale applications and finding an optimal way for soil moisture monitoring with practically and
spatiotemporally useful resolution. Compared to conventional data collection, WSNs offer a
scale independent, reliable, and technically feasible solution with rapid deployment. The main
drawbacks are the cost of the installation, equipment and operation if a large number of sensors
are employed and the point like nature of the observations. On the other hand, in situ soil
moisture measurements play an important role in validating soil moisture data retrieved from

other methods, such as remote sensing.

Remote sensing techniques have demonstrated their capability to acquire surface soil water
content values under a variety of vegetation cover and topographical conditions. SAR
measurements are weather and daylight independent offering a possible solution for near-
surface soil moisture monitoring over frequently cloudy areas. The retrieval of accurate, high-
resolution soil moisture measurements has been of great interest and it has been a difficult task

for researchers.

Given the importance of soil moisture, there have been numerous studies on remotely sensed
soil moisture mapping and modelling at global, regional and watershed scale, leaving an obvious
gap for research at the sub-watershed, i.e. paddock and farm scale. The current state of research
suggests that the combination of modern machine-learning methods, remotely sensed and
ground-based systematic measurements integrated into a GIS framework is a promising
selection of tools for spatial soil moisture modelling on heterogeneous landscapes, such as New
Zealand’s hill country. Therefore, these methods and resources are used in the present study
that aims to investigate the possibilities regarding the soil moisture retrieval and modelling from

satellite imagery.
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MATERIALS AND METHODS

Chapter 3 aims to describe the methodology related mainly to the data collection. Since the
paper-based chapters contain only brief descriptions on the chosen methods, more details are
given here. A thorough summary is provided regarding the research site and its geographical
settings. This chapter presents the site-specific soil characteristics and describes the utilised
laboratory approaches. Fieldwork constitutes a core part of this research that included the
deployment of a wireless sensor network, reqgular pasture growth data collection and occasional
soil sampling. This section summarises the fieldwork with a strong focus on the sensor network
installation procedure. Additionally, the chapter introduces imagery obtained by the radar-based

remote sensing, the related data access and the satellite mission.
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3 Chapter 3 - Materials and methods

3.1 Research site and soil characterisation

3.1.1 Geographical and geological settings

A non-irrigated hill country farm (~2600 ha) was selected as the research site, called Patitapu
Station situated in the southern part of the ECHC (40.745020 S, 175.887320 E). Lang (2015)
described the east coast region as “an extensive stretch of land from southern Wairarapa to the
top of the East Cape, predominantly pastoral farmland and forestry, on rolling to steep hills,
from the coast to the inland ranges, interspersed with flat terraces and fertile plains”. Rock
forming processes, soil development and geomorphological processes are partly the
consequences of the underlying geology. The Wairarapa coast is located 65-125 km northwest
of the Hikurangi Trough, which is the southern end of a subduction zone, the boundary between
the Australian and Pacific plates (Suggate et al., 1978). The subducting Pacific Plate dips gently
north-westwards beneath the Australian Plate to reach a depth of about 10-15 km beneath the
eastern Wairarapa coast. The research site is situated within the Eastern Uplands, where the
subsurface consists of deformed sandstone, mudstone, greywacke, argillite and limestone with
river flats filled by alluvium. Intense long- and short-term geomorphological processes resulted
in an area of undulating and rolling topography, where slumping is common and much of the

region is prone to unstable slopes and landslides (Lee and Begg, 2002).

ECHC is renowned for its low fertility soil types with their complex spatial patterns. As the
underlying rock types differ widely, the expected variations are reflected in the soil patterns
representing weakly to moderately developed, shallow silt loam, silty clay loam, sandy loam and
sandy silt loam textures. The most extensive soil types are Argillic Pallic Soils and Orthic Brown
Sails in the southern ECHC while Orthic Recent Soils can be found in the northern regions of the

coastal area (Hewitt, 2010).

Patitapu Station is situated in the Manawatu-Wanganui region in southern Wairarapa, within
the Manawatu River’s catchment (Fig. 3.1) where beef and sheep farming dominates (> 50 % of
the area). The river drains an approximately 5850 km? watershed and its headwaters are located
between the Southern Ruahine Ranges and the northern end of the Tararua Ranges, with hill

country on the east, and the Manawatu Plains and sand country on the west.

Much of the Wairarapa’s climate parameters represent high variability through the year, with
common heavy rainfall events, regular summer dry periods and semi-regular droughts (Murray,

1982, Lang, 2015). The ECHC area receives most rainfall during winter with annual values ranging
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between 800-1600 mm. Low, unreliable precipitation and frequent seasonal lack of water
characterise the late spring and summer periods (Zhang et al., 2005). Historical climate data was
extracted from a NIWA weather station (Wairere, lhuraua), located 4.3 km southwest of the
farm’s meteorological station. Sixty-four year average annual rainfall of 1144 mm ranging from
721-1735 mm was received by the research site while the thirty-year (1961-1990) mean daily
temperature normals ranged between 6.4 °C in July and 18 °C in January (NIWA CliFlo, 1953-
2017, Tomlinson and Sansom, 1994). A permanent weather station (40.750032° S, 175.887493°
E) was installed at the property in 2015, from where meteorological parameters were obtained

and used in the following chapters.
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Figure 3.1 Location of the Manawatu River catchment (top left) and the research site situation (top
right), land cover (bottom left) and topography with elevation and non-pasture mask (bottom right).

In New Zealand, Land Resource Inventory and LUC have been used to assist long-term,

sustainable land and resource management from the individual farm to the national level since
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the 1950s (Lynn et al., 2009). LUC Class VI land covers 85 % of the farm, indicating that the land
is not suitable for arable use, but suitable for pastoral grazing where erosion is a common
limitation. Along the main water way in the middle of the property Class /Il land can be found
that is suitable for cultivation and cropping to a certain extent. Considering the potential
utilisation of the collected field-based datasets, the study adopted the slope groups recognised
by LUC, except the ‘very steep’ and ‘steep’ groups were merged into one ‘steep’ class. By the
application of LUC slope groups, 8.2 % of the research area is flat (0-3°), 8.8 % is undulating (3-
8°), 35.5 % is rolling (7-15°), 25.6 % is strongly rolling (15-20°), 14.9 % is moderately steep (20-
25°), 7 % is steep (>25°). The slope distribution closely agrees with the parameters of a typical
hill country property where significant variability is present at both macro- and micro-
topographical level as well as in the soil resources. Elevation ranges from 143-532 m above mean

sea level.
3.1.2 General soil description of Patitapu Station using available digital databases

Two main digital, geospatial datasets were available for Patitapu Station in terms of soil
resources at the time of the study. The nationwide, New Zealand Soil Portal held by Manaaki
Whenua, Landcare Research provides access to coarse resolution soil information based on the
New Zealand Soil Classification (NZSC). The most recent, national scale spatial soil information
system, S-map, is being developed by Landcare Research which has not covered the research
area to date (24/11/2017). Thus, the publicly available Fundamental Soil Layers (FSL) (now being
updated and incorporated into S-map) were used as a guideline for the research. Those layers
are built upon the spatial join of National Soils Database and New Zealand Land Resource
Inventory. The FSL is composed of 16 key spatial soil attribute layers from which the soil physical

properties were retrieved.

Hewitt (2010) defined the top three classes of the hierarchical NZSC. The majority of the
property is covered by Brown Soils in terms of soil order (Fig. 3.2 (A)) which also represents the
most extensive category in New Zealand covering 43% of the land. Soil orders are divided into
soil groups and those are further divided into subgroups. A common soil in the east side of the
North Island, the Pallic Orthic Brown (BOP) soil dominates over the study site at the subgroup
level. Typic Firm Brown (BFT) soils can be found in the generally steep, eastern side of the farm
at the highest altitudes within the property. Between BOP and BFT covered areas Mottled Orthic
Brown (BOM) soils were mapped. Brown soils are commonly found on slopes and young land
surfaces (Hewitt, 2010). The topsoil is typically described as dark grey-brown while the subsoil

is often brown or yellow-brown. This type of soil typically occurs in places where summer
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drought is uncommon and which are not water logged in winter (Hewitt, 2010, Landcare
Research, 2017). The flat middle sections of the farm have Typic Orthic Gley (GOT) soils along
the streams where waterlogging due to a persistent high water table are frequently observed.
Mottled Immature Pallic (PIM) soil can be found in the north-west corner of the property

covering a small extent. Regarding particle size, according to the FSL database (Fig. 3.2 (B)), the

silt is the primary texture class over the farm along with some loam and loam over sand.

Patitapu Station BOP - Pallic Orthic Brown Soils Patitapu Station 0 05 1 2Km
BFT - Typic Firm Brown Soils BOT - Typic Orthic Brown Soils L - Loamy

BOA - Acidic Orthic Brown Soils - GOT - Typic Orthic Gley Soils - LS - Loamy/Sandy

BOM - Mottled Orthic Brown Soils PIM - Mottled Immature Pallic Soils - Z - Silty

Figure 3.2 Soil classification map (A) and soil particle size map (B) extracted and adapted from the FSL
digital database (Landcare Research, 2017).

A more detailed soil survey was carried out by the Horizons Regional Council (Palmerston North,
New Zealand) at the Patitapu Station in 2009. It provides information at the paddock scale
including the soil parent materials, rock class, texture, soil depth, stone content, upper and
lower textures, and drainage as well as functional horizon attributes detailing horizon stone
content, texture, structure size, and consistence (Fig. 3.3). Dominant soil textures are the
variations of silt loam, silty clay loam, sandy loam and sandy silt loam with different drainage

properties and ranging from weakly to moderately developed status.

Concerning the main soil types and units, the soil maps from different sources displayed broad
agreement. Both maps indicate a distinguishable soil unit along the main waterway, which
formed on the plain surfaces from sediments strongly affected by waterlogging. Another good
agreement can be seen in the eastern part of the farm with the highest relief. Here, the Mottled
Orthic Brown (MOB) soils were displayed on the FSL and dark yellow silt loam was dominantly

observed by the Horizon’s soil survey.
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Patitapu Station
1 - Silty clay loam
1+10 - Silty clay loam + dark-yellow-brown silt loam
I 1+2 - Silt loam + dark-orange-yellow silt loam
I 1+2 - Silty clay loam + dark-orange-yellow silt loam
I 146 - Silty clay loam + pale-weak-orange sandy silt loam
I 148 - Silty clay loam + pale-weak-orange silt loam
I 149 - Silty clay loam + dark-orange-yellow silt loam
I 1+9+Br - Silty clay loam + dark-orange-yellow silt loam + Br
10 - Dark-yellow-brown silt loam
B 10+1 - Silty clay loam
Il 10+15 - Dark-yellow-brown silt loam + orange-brown silt loam
10+Br - Dark-yellow-brown silt loam + Br
12 - Orange low chroma motties silt loam
I 13 - Dark-orange-yellow silt loam
13+15 - Dark-orange-yellow silt loam + orange-brown silt loam
14+13 - Dusky-yellow-brown sandy silt loam + dark-orange-yellow silt loam
I 15 - Orange-brown silt loam
I 15+14 - Orange-brown silt loam + dusky-yellow-brown sandy silt loam
15+Br - Orange-brown silt loam + Br
I 2 - Dark-orange-yellow silt loam
I 241 - Dark-orange-yellow silt loam + silty clay loam
246 - Dark-orange-yellow silt loam + pale-weak-orange sandy silt loam
2+9 - Dark-orange-yellow silt loam + dark-orange-yeliow silt loam
I 3 - Pale-weak-orange silt loam
I 3+12 - Pale-weak-orange silt loam + orange low chroma mottles silt loam
347 - Pale-weak-orange silt loam + pale-weak-orange sandy silt loam
I 4 - Orange low chroma mottles silt loam
5 - Dark-orange-yellow sandy silt loam
Ml 5+1 - Dark-orange-yellow sandy silt loam + silty clay loam
546 - Dark-orange-yellow sandy silt loam + pale-weak-orange sandy silt loam
5+Br - Dark-orange-yellow sandy silt loam + Br
B 6 - Pale-weak-orange sandy silt loam
I 6+1 - Pale-weak-orange sandy silt loam + silty clay loam
I 7 - Pale-weak-orange sandy silt loam
8 - Pale-weak-orange silt loam
B 9+Br - Dark-orange-yeliow silt loam + Br

Figure 3.3 Soil resource map of Patitapu Station, adapted from the Horizons Regional Council
(Landvision Ltd., 2009).

The rest of the farm area, the mostly rolling land surface is characterised with dark-orange
yellow silt loam according to the Horizons’ soil survey, whilst Pallic Orthic Brown (BOP) soils were
defined by the FSL. In terms of soil texture, both soil layers demonstrate that the study area is
dominantly covered by silt loam soils or its varieties. The Horizon’s soil layer was used as the

most recent resource during the sensor network design and microsite selection.

3.2 Wireless sensor network deployment

3.2.1 Network description and design

In August 2016, twenty AquaCheck Classic subsurface, capacitance sensor probes were installed
at the Patitapu Station and these microsites were arranged into a WSN. A pre-determined
deployment strategy was applied, meaning that the sensor nodes were placed at specified
locations (Halder et al., 2011). After deployment, a two-month period was allowed for the soils
to equilibrate and to develop an optimal soil to sensor contact, thereby starting the data
collection on 1 November 2016. Each probe is equipped with soil moisture and soil temperature
sensor placed at four fixed, consecutive depths (100, 200, 300 and 400 mm). The WSN covers an
approximately 3 km x 4.6 km area (~13.8 km?) giving an average spacing density of ~0.69 km?
per microsite. The mean distance between microsites and the permanent local climate station

varies between 0.34 - 2.9 km giving a mean distance of 1.8 km.
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Consequently, the representative microsite selection was a challenging task and a crucial design
step to optimise sensor distribution, ensure easy access for installation and maintenance
purposes. To deploy the WSN, a criteria set was created that included macro- and micro-
topographical features, soil information, land cover type, land use, microsite accessibility,

equipment protection and foreseeable farm management plans.

In terms of wireless communication, the microsite selection was limited by an optimal, ~1.7 km
radio range recommended by the manufacturer. Each of the sensor nodes required line-of-sight
visibility to the gateway, or another sensor node, or alternatively, to the relay station. The
above-mentioned requisites had to be met without exceeding the cost constraints and by
ensuring sufficient equipment protection as the research area is an operating farm with livestock
and other activities associated with general farm operation. The deployment process considered
the concept that soil moisture and soil temperature measurements should be applicable for

validating products retrieved from land-surface models or remote sensing applications.
3.2.2 AGIS-supported network deployment approach

The WSN deployment posed a three dimensional problem due to the heterogeneous field that
contains obstacles mainly in the form and relief of the terrain, man-made (buildings) and natural
(tree lines) objects, which can prevent communication between the nodes. To address the
variability of the terrain, GIS platforms can provide powerful tools in sensor network planning
over complex environments (El Emary and Ramakrishnan, 2014). The Patitapu WSN deployment
was divided into three main tasks, including the identification of potential positions for the
gateway (1), finding an optimal location for the relay node (2) and preselecting suitable,
representative areas for sensor nodes (3) while fulfilling the line-of-sight visibility criteria. To
accomplish these tasks, GIS capabilities were used to support the decision-making and to
integrate the available environmental and auxiliary information. The GlIS-assisted spatial
methodologies included raster- and vector-based examination, such as land cover classification,
terrain analysis, conditional evaluation and intervisibility analysis (line-of-sight and viewshed) as
illustrated on Figure 3.4. Prior to the WSN deployment, several network variations and scenarios
were generated taking into account the number of sensor nodes, limitations and the study

objectives.

The input dataset consisted of a group of raster layers, i.e. a Digital Elevation Model (DEM), aerial
orthophoto collection and a hyperspectral image; and a group of vector based data layers, i.e.
fence lines, farm tracks, soil resources, cellular coverage and fencelines. The land cover

classification was executed in ENVI (Exelis Visual Information Solutions, Boulder, Colorado), the
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terrain analysis was conducted in ESRI ArcGIS ArcMap (ESRI Inc. Redlands, CA, USA, version 10.4)
and System for Automated Geoscientific Analysis (SAGA) (Conrad et al., 2015) software

environments.

Data input and
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Figure 3.4 The available raster and vector layers and the executed GIS-assisted spatial analysis methods
to support decision making in the network deployment. The derived datasets were analysed to
delineate the potential areas for the sensor installation that satisfy the predetermined requirements.

3.2.2.1 Land cover classification

The objective of the study required that the sensors were placed under pastoral vegetation
coverage; therefore, the delineation of grass surfaces was needed as part of the WSN planning
stage. Ground features have specific reflection signatures that characterises the radiance values
obtained from the object pixel by pixel, allowing the identification of a large variety of surface
types. Hyperspectral imagery demonstrated its capability in detailed thematic urban mapping

consisting of a wide range of surface classes (Goetz et al., 1985, Pullanagari et al., 2017).

The study area is comprised of several land cover types, such as buildings, manmade surfaces,
gravel roads, bare soil, vegetation (pasture surfaces, native bush and trees), waterways and
ponds. For the purpose of the study, pasture and non-pasture land cover classes were
discriminated through image classification. The hyperspectral image was acquired by a full-

spectrum, pushbroom AisaFENIX (Specim Ltd., Oulu, Finland) full spectrum, imaging system
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mounted on a fixed-wing aircraft. The sensor measures upwelling radiance between the visible
(Vis) and SWIR spectral regions (370-2500 nm) with a total of 448 bands that make it suitable

for remote, high-resolution spatial mapping of various surfaces (Pullanagari et al., 2018).

The image pre-processing included the following steps: correction for boresight effects,
correction for bad detector, geometric and radiometric calibration, atmospheric correction,
georectification, mosaicking, spatial and spectral smoothing. A detailed description of the

applied image processing and classification procedure can be found in Pullanagari et al. (2017).

Land cover types were identified by using high-resolution RGB imagery from which training
polygons were collected for a total of 13 land-cover classes (eight vegetation types, water,
wetland, bare soil, shadows and manmade surfaces) that were considered in the supervised
classification scheme. A commonly used classification method, the so-called Support Vector
Machines (Camps-Valls and Bruzzone, 2009, Camps-Valls et al., 2014), was chosen to link the
input training data to the corresponding reflectance spectrum of the underlying picture
elements. After validation and accuracy assessment, the number of classified land-cover types

were reduced to pasture and non-pasture classes.
3.2.2.2 Terrain analysis

At the time of the WSN planning stage, an 8x8 m resolution DEM was available through Land
Information New Zealand (LINZ) (LINZ, 2012). This national scale DEM contains only ground-
surface elevation data originally generated from contour lines providing information about the
terrain morphology. The DEM was sufficient for the WSN planning to gain insight into the terrain,
although shortly after the WSN installation, a high-resolution digital surface model (DSM) of the
research area was provided by Massey University and Ravensdown Ltd. The DSM was generated
using structure-from-motion technology (Micheletti et al., 2015), originally acquired at 0.2x0.2
m pixel size. Focal statistics, resampling and smoothing were applied to create a 5x5 m spatial

resolution dataset, which was used for extracting the topographic attributes of the microsites.

For the quantitative description and characterisation of the terrain, geomorphometric
derivatives can be computed in a GIS environment (Evans, 1972, Mark, 1975). The terrain
descriptors can be divided into zero order (i.e. elevation), first order (slope angle, aspect) and
second order (compound) derivatives (e.g. wetness index, curvature, etc.) (Kienzle, 2004, Minar
and Evans, 2008). For exploratory spatial data analysis and for the evaluation of the geographic

suitability of an area for WSN deployment, several fundamental terrain attributes were derived.

To develop an overall impression of the topography, the relief forms were emphasised by the

use of analytical hill shading that simulates the effect of natural light on the terrain surface to
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depict light and shadow. The terrain analysis included the mapping of slope angle (the degree
of incline of a surface) and aspect (the orientation of the slope) in degrees by the transformation
of the elevation data. These two first order derivatives played a key role in the microsite

deployment due to their dominating effect on soil moisture patterns in hill country.

The DEM was reclassified by overlaying the slope angle and aspect layers to distinguish flat areas
and to group each pixel into one of the five slope angle categories using the LUC categories (Lynn
et al., 2009) on each aspect. A more thorough investigation was achieved by calculating the
second derivatives of these initial metrics. To avoid erosion prone surfaces, the modified slope
length and steepness factor was computed as key attribute for predicting erosion potential
within a landscape (Desmet and Govers, 1996). The combination of slope steepness and specific

catchment area effects were used to delineate the areas of risk of soil erosion.

The geomorphological characterisation of the terrain was further examined by automated
landform classification to identify topographic units or principle landform elements and slope
positions. The analysis was performed on the basis of Topographical Position Index computation
(Guisan et al., 1999, Wilson and Gallant, 2000) and the study area was divided into 10 macro-
landform classes. The process defined stream, upland drainage, plain, valley, open slope, upper
slope, local ridge, midslope drainage, midslope ridge and high ridge categories. Landforms and
geomorphic features can be an indication of numerous factors related to water distribution and
soil conditions (Evans et al., 2016). Soils tend to be deeper and often mixed at lower slopes and

shallower on crests, having an impact on the sensor deployment.

Prior to the computation of compound hydrological metric outputs, the DEM was pre-processed
to fill the sinks or depressions that would capture the flow of water. At the small catchment and
hillslope scales, soil moisture distribution can be reasonably well indicated by the Topographic
Wetness Index developed by Beven and Kirkby (1979) and its modified version, the SAGA
Wetness Index (SWI) (Beven and Kirkby, 1979, Moore et al., 1991, Boéhner et al., 2001). In this
study, the SWI was used to map organised spatial fields of soil moisture and to identify
potentially extremely wet or dry areas. Moreover, drainage channels, upslope contribution area
(flow accumulation) and flow directions were mapped as part of the watershed analysis
including the delineation of catchments and the stream network. Drainage channels and farm
tracks were used as inputs in the buffer zone generation to limit the distance to stream lines,
and to ensure that the microsites will be accessible as installation and maintenance are labour-

intensive, especially on steep terrain.
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3.2.2.3 Intervisibility analysis

The chosen telemetry system required line-of-sight visibility for stable communication between
nodes. To ensure connectivity within the telemetry range, an intervisibility analysis was
undertaken in a three-dimensional space, as two nodes cannot connect to each other if the
terrain or other type of obstacles break the signal. The sightline visibility and viewability was
assessed over a functional surface, namely the DEM, taking into account the relief and the
effective communication range. The analysis was carried out by using the geoprocessing tools
built in the Esri ArcGIS software package version 10.4. Tree lines were generally avoided, given
the unknown height of the vegetation cover during the planning stage. To conduct the
intervisibility analysis, 4 m height was chosen as offset from the surface considering the radio

antenna position.

The line-of-sight analysis produced line features between each pair of nodes and labelled with
a value of intervisibility, one or zero, visible or not visible. Visibility profiles were extracted
between the potential locations and coupled with aerial imagery to ensure the connecting line
was not positioned too close to the surface concerning the presence of vegetation. The spatial
visualisation of radio coverage from a given location was produced by the viewshed analysis
workflow. Viewability grids were generated to predict the visible and not visible grid cells from
a specific location of the landscape. Due to the omnidirectional capabilities of the radio

transceivers, the operation attributes were selected regardless of the direction.
3.2.3 Gateway and relay station deployment

Once the required data layers had been generated, a thorough visual interpretation was carried
out to preselect various candidate locations for the gateway, relay node and the sensor nodes.
Firstly, the datasets were assessed to find potential gateway locations, which was mainly
governed by the cellular network coverage and suitable land surface conditions. The gateway
unit provides a connection between a computing device-based user platform and the physical
world via a cellular network. The ideal position was characterised with strong and sound cellular
reception, good accessibility, 360° clear visibility, free of obstacles, shade and potential risk
sources such as trees, power lines, and erosion prone surfaces. During an earlier field visit,
cellular coverage was generally found above 300 m altitude, thus these areas were queried from
the DEM and superimposed on multiple spatial layers. The final location was chosen on a stable,

outstanding hill top position at 320 m altitude.

The relay node had to be placed within 1.7 km radius to the gateway to provide a direct link. A

similar approach to the described above was taken to find candidate relay node positions, except
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the need for cellular reception. As the relay node aims to balance out data traffic and increase
the number of alternative communication paths, such a centric position was chosen that is
visible from every block of the farm and has a direct link to the gateway. The relay station was
placed on a hilltop elevated between two wide and open valleys at 287 m altitude nearby the

permanent weather station.
3.2.3.1 Sensor node locations

Considering the number of probes (20) available, the microsite locations were chosen with the
aim of establishing an adequate spatial distribution on a variety of topographic positions, land
use suitability categories and representing the agriculturally important soils of the pastoral area.
The microsite selection was driven by a two-step, conditional decision approach consisting of
candidate area pre-selection supported by GIS tools. This was followed by an on-site area
evaluation and validation of the potential sites. Each of the provided 20 sensor probes were
assigned to one of the slope angle and aspect classes adapting the modified LUC (Lynn et al.,
2009) categories. Figure 3.5 depicts the selection process for Site i, for a given slope angle and

aspect class.

A location was considered highly suitable if the attributes of a selected location or grid cell
passed through a series of specific conditional statements with TRUE values. Land cover, terrain,
visibility and accessibility contained the most important criteria sets. In terms of environmental
GIS data layers, a selected sensor location was situated over pastoral land surface class,
positioned farther than 5 m from stream edges. The cell needed to represent the given slope
and aspect class derived from overlay operation by combining the slope angel and aspect
thematic layers, and situated on a surface with low erosion risk as it was defined by the length

and slope factor layer.

To satisfy the effective communication range, 1.7 km distance was given as the longest distance
from either the gateway, the relay node or another sensor node. Additionally, the line-of-sight
visibility criteria had to be met without obstruction by tree lines or buildings. If any of these
conditions were evaluated as FALSE, a new location was placed under investigation. In case the
location satisfied these requirements, it was further examined for accessibility. Ideally, the
highly suitable site was located within 100 m to the closest track, as each node required the

installation of a robust fencepost and drilling applications for the radio and sensor placement.
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If the logical condition was FALSE, then the location was classified as a potential candidate area
for the Site i. These areas were taken into account if the high suitability areas did not pass the
on-site validation criteria. Figure 3.6 illustrates the raster and vector layers explored in the

suitability analysis related to terrain and accessibility features.
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Figure 3.6 The central part of the research area illustrating the terrain (slope angle and aspect) and
accessibility characteristics for 6 selected sensor nodes along with the position of the gateway, relay
node and weather station.

Once every sensor node location went through the conditional pre-selection process, the high
suitability areas were visited in the field by finding the GPS coordinates extracted from the GIS
data set. The on-site procedure involved the confirmation of intervisibility and that the
microsites were situated on well-grown, uniform pasture surfaces free of obstacles and frequent
shade. Figure 3.7 shows the architecture of the WSN including the established line-of-sight
connections among the gateway, relay station and sensor nodes from a three-dimensional point
of view. The land surface cover is represented by a high-resolution orthophoto that was
superimposed on the original, 0.2x0.2 m pixel size, DSM for an improved pasture surface

visualisation.
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Figure 3.7 A three dimensional demonstration of the deployed WSN with line-of-sight intervisibility and
vegetation cover overlaid on a high-resolution DSM.

Sufficient soil depth was inspected and micro-topographical features were examined to avoid
local water accumulating depressions and irregularities, i.e. stock tracks, soil erosion surfaces.
Accessibility was reassessed and farm management plans were reviewed during the field-based
validation to ensure that the assorted microsite locations were not subject to changes in

management plans, such as cultivation.

Table 3.1 contains the summary of the terrain parameters of each selected microsite extracted
from the 5x5 m pixel size DSM. In terms of land cover, the microsites were chosen from mostly
uniform pastoral grassland surfaces where the predominant plant communities are ryegrass and
clover species. Three probes were placed on flat areas spread over the plains along the main
waterway draining the farm area. Concerning slope angle classes, two nodes were placed on
undulating, three on rolling, four on strongly rolling, four on moderately steep and four on steep
surfaces. To capture the high contrast between south- and north-facing aspects, five nodes were
installed on each of these two classes, while four sensor probes were deployed on west and
three on east aspects. The geographical position of the gateway, relay station and sensor nodes
were surveyed by using a high accuracy (few cm) real-time kinematic global positioning system

(RTK GPS).
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Table 3.1 Main topographical characteristics of the selected microsites locations at the Patitapu Station.

Slope Aspect Elevation
Site ID Landscape element
(degree and class) (degree and class) (m)
1 Upper slope 13 Rolling 175 South 196.7
2 Plain - Flat - Flat 160.6
3 Open slope 16  Strongly rolling 115 East 249.0
4 Open slope 23  Moderately steep 94 East 279.0
5 Open slope 16  Strongly rolling 1 North 282.5
6 Plain - Flat - Flat 173.3
7 Open slope 14 Rolling 305 West 309.9
8 Midslope ridge 35 Steep 35 North 307.8
9 High ridge 5 Undulating 187 South 292.9
10 Open slope 22  Moderately steep 298 West 318.6
11 Upper slope 26 Steep 257 West 314.8
12 High ridge 32 Steep 178 South 301.8
13 Open slope 23  Moderately steep 22 North 232.8
14 Upper slope 23 Moderately steep 157 South 287.8
15 Plain - Flat - Flat 196.4
16 Open slope 17  Strongly rolling 283 West 373.6
17 High ridge 20  Strongly rolling 224 South 362.3
18 Open slope 26 Steep 46 East 400.7
19 Open slope 14 Rolling 15 North 380.7
20 High ridge 7 Undulating 355 North 199.5

The Patitapu WSN deployment followed a comprehensive manually guided approach with a
significant amount of visual interpretation that relied on datasets from various sources. The
microsite selection procedure was not automated mainly because of the poor knowledge
regarding soil moisture variability in hill country, the complex topography and the uncertainty
induced by the low-resolution soil information. Moreover, most of the automated statistical
methods and algorithms require a significant amount of input data. Additionally, microsite
localisation was influenced by the farm management plans and foreseeable land use changes,

which required an effective collaboration with the farm owner.

In the literature, there exist several, advanced approaches for designing soil sampling
campaigns and establishing sensor networks for observing environmental variables. Minasny
and McBratney (2006) applied the Latin hypercube method as a sampling strategy that is based
on a high amount of a priori knowledge of the targeted area. Some other approaches for
generating spatial sampling schemes have been based on the estimation of variograms (Pettitt
and McBratney, 1993) and the spatial interpolation of the variables using geostatistical tools,

such as kriging and the optimisation of kriging (Van Groenigen et al., 1999). Robertson et al.
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(2013) developed the balanced acceptance sampling algorithm for selecting spatially balanced

sampling locations that takes into account the spatial distribution of the resource.
3.2.4 WSN instrumentation and deployment

Due to the long-term nature of the research project, the terrain conditions, and the fact that the
microsites are located on an operating farm with livestock and other daily activities associated
with farm operation, the instrument selection was a crucial part of the planning stage. The
sensor nodes needed to withstand harsh outdoor conditions for several years; therefore, robust,

solid sensors and stable, long-range telemetry system with firm protection were required.

The chosen telemetry unit was provided by TAG I.T Technologies Ltd (Hamilton, New Zealand)
with capabilities of near real-time data logging and reporting at adjustable time intervals. The
HALO Farm System, an online service developed by the same company was responsible for
monitoring and visualising the data received from the sensors as it was sent to the web via
cellular 3G connection. The secure online dashboard can be accessed from smart computing
devices, allowing flexible display of time series data and the receiving of fault alerts, which

enabled prompt reaction to operational issues.

Once the sensor node, gateway and relay station locations were finalised, fence posts were
placed into the ground to provide a stable and secure base for the radio unit. Figure 3.8 (A)
illustrates the sensor node design on a hill slope position. The enclosure was installed ona 3 m
galvanised pole extension attached to the fence post. A high range antenna was placed into a
weatherproof PVC tube and mounted on the top end of the pole at ~4 m height. This position
improved visibility and connectivity attributes for the radio communication. The solar panels

were orientated to the north to ensure efficient battery recharging.

The sensing unit (Fig. 3.8 (B)) is connected to the telemetry device by a cable running through a
durable Alkathene pipe suitable for below ground installation. The flexible pipe was buried in an
~10 cm deep trench from the fencepost base to the head of the probe, protecting the wiring
from damage. Both ends of the Alkathene pipe were sealed to avoid water intrusion. The pipe
was guided along the galvanised pole and zip tied to it to protect it from stock. In the last stage,
the topsoil turves were placed back into the trench and the gaps were filled back with fine-

grained soil material.
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Figure 3.8 Schematic diagram depicting the design of a typical example of a microsite (A) and the
configuration of a 400 mm AquaCheck Sub-surface multi-sensor probe (B).

For root-zone soil moisture monitoring, 400 mm long subsurface type, the AquaCheck
(AquaCheck Soil Moisture Management, Durbanville, South Africa) multi-sensor probe was
chosen. A single AquaCheck probe was connected to a single radio unit reporting soil moisture
and soil temperature readings simultaneously at every 15 minutes. The solid-state, capacitance-
based probe is equipped with four sensors spaced at intervals of 100 mm and with a right hollow
cylindrical shaped sampling range. The sphere of influence can be approximated with geometric
parameters of h = 60 mm (cylinder height), r = 16 mm (internal radius) and R = 20-45 mm
(external radius). The probes are designed to be completely buried with an attached wire for
data transmission to a logger (Fig. 3.8 (A)). The probe measures the variation in the capacitance
of pairs of pieces of metal inside the probe as a proxy for soil moisture. The soil forms the
dielectric of the capacitor, with changes in moisture content altering the relative permittivity of
the soil. Most often, the capacitance is measured by forming an oscillator whose frequency is
dependent on the unknown capacitance. The frequency is then easily measured by the
microprocessor in the probe. The sensor transforms the frequency readings to Scaled Frequency
(SF) as raw output. The SF values range from 0-100 %, where 0 % is equal to a reading in open
air and 100 % when the sensor is immersed in distilled water. The SF readings are automatically

corrected for possible inherent temperature change by embedded compensation functions.

To calculate 6, (%), SF values need to be converted using an empirical, laboratory-based
calibration curve. The conversion is not a built-in function; therefore, the device is offered with

factory calibration equations for six soil textures, e.g. sand, clay, silt loam, loam, clay and generic
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(composited from sand, silt loam and clay soils) (Agri Optics, 2017). For the purpose of this study,

the resulting 6,, (%) output was converted to 6,, (m*m?3).

Soil temperature data is collected at the four depths by a Resistant Temperature Detector. The

temperature sensors are able to read data between 0-51 °C with 0.2 °C steps.
3.2.4.1 AquaCheck probe installation

The probe installation was a crucial part of the WSN deployment; therefore, the sensor
installation followed a standard procedure provided by precision agriculture technicians at Agri
Optics New Zealand Ltd. After the selection of the desired location, an approx. 25x25 cm square
shaped and 1-3 cm thick topsoil turf was removed. In order to allow the snug insertion of a
sensor probe, an installation auger (2 40 mm) was used to bore a slightly wider hole than the
probe shaft body. The hole was drilled in increments and the soil was removed from the auger
at each section and kept separately after a visual check of the variation within the profile. Great
care was taken to ensure that the holes were as vertical as possible at each site as it was

recommended during the training and by the installation guide.

As the correct depth was reached, soil slurry was made from the soil material obtained from the
hole by using a cordless driller and paint mixer. The homogenous, milk shake consistency was
made to ensure an optimal sensor-to-soil contact. After the removal of organic material, and
coarse soil components, such as gravels, an adequate amount of slurry was poured into the hole.
As the diameter of the auger was only slightly larger than the probe shaft diameter, the sphere
of influence is much larger than the thickness of the slurry, therefore the information is
dominantly collected from the soils occurring at the sensor depths. At the time of the
experiment, there was no published studies available on the effect of the installation method
on AquaCheck sensor readings. The next step was the careful insertion of the probe until only
the probe cap was visible on the fresh surface. Some slurry was forced out from the hole and it
surrounded the plastic cap. This slurry overflow was not removed, as it helps to improve the
snug fit by preventing additional water running down along the access tube and the formation
of air gaps. In the final step, the topsoil turf block was placed back to its original position and the
gaps were filled with finely screened soil material in order to assist soil recovery. The main steps

of the field-based probe placement process are shown in Figure 3.9.
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AquaCheck /
Sensor probe

Figure 3.9 An example of the main steps of the sensor node installation process on site. A) Underground
wiring with an Alkathene pipe running to the radio device in a trench. B) Probe insertion that creates
the slurry cap surrounding the device. C) A block of turf cover placed on the top of the probe. D)
Complete and connected sensor node.

3.2.5 WSN communication and architecture

The proposed WSN architecture consists of a gateway, a repeater station and twenty sensor
nodes arrayed in a mesh topology. The mesh feature enables multi-hop communication in an
arbitrary structure with numerous message paths, meaning that the nodes are allowed to
communicate with every other node in line-of-sight and within radio distance without any
restriction in the protocol (Townsend and Arms, 2005). A sensing node has a dual role, collecting
and sensing of data from its own sensor or acting as a relay for neighbouring nodes. The network
was considered homogenous as each of the sensor nodes have identical power, hardware,
transmitting and receiving capabilities. The employment of homogenous networks may lead to
the phenomenon known as the energy hole issue. Larger power consumption frequently occurs
in the nodes closer to the gateway or sink node, due to the increased data traffic received from
the more distant sensor nodes (Olariu and Stojmenovic, 2006, Halder et al., 2011, Abdollahzadeh
and Navimipour, 2016). The result is a non-uniform dissipation of energy leading to drained
batteries, data loss and communication issues. The application of non-uniform sensor topology,
energy-balanced network models or the deployment of relay nodes to forward data packages
can save energy for the nodes with sensing units attached (Al-Turjman et al., 2013, Huang et al.,
2013). The integration of a relay node ensures data load balancing, extra storage capacity,
increases the number of backup routes, extends the spatial network coverage and reduces the

risk of network disconnection due to unexpected failures and natural hazards. At Patitapu, a
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relay node was added to the network architecture and installed on a farm centric position from

where a direct radio link was provided towards the gateway and several sensing nodes.

The sensor readings are passed through underground wires from the sensors to the telemetry
units among which the data is transmitted via radio connection until they reach the gateway.
The information is uploaded to a server via cellular network ensuring near real-time access to
the data. Figure 3.10 illustrates the WSN workflow in respect to the main operational steps (A)

the related physical units (B) and the type of connectivity (C).

A) Operational workflow
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i Transmit data to ' R
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B) Physical network
Sensor node Gateway
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Sensing Processing Memory Transceiver Transceiver Processlng Memory Modem Cellular platform
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Figure 3.10 Main operational workflow for the sensor network at Patitapu Station coupled with the
responsible physical units and the nature of connectivity among the nodes.

The radio protocol uses 15 channels in the 2.4 GHz band that implements a self-healing tree
structure for routing. The gateway device is the root of the network, with other nodes
connecting to parent nodes so that every node has a single route back to the root. Nodes select
a parent to connect to by scanning for nodes already connected to the network, and then rank
them by signal strength and distance from the root. If they need to send data to a node that is
not reachable by one of their children, they forward it up the chain to their parent. Such packets
will travel up the tree until they reach a node that knows how to reach the destination. Links
between each node use a channel hopping protocol, with discrete time slots allocated for
communication by the parent node. Each time slot is assigned a pseudo-random channel
generated by a seed known to both nodes. Carrier-sense multiple access with collision detection
is used to avoid interfering with ongoing transmissions from other nodes. If a node is unable to

transmit in a time slot due to contention, it backs off and attempts again in its next time slot.

Connectivity (or adjacency) matrices and node-link network diagrams can be used to visualise
the possible links among nodes. The node-link diagram generated for the Patitapu WSN used

line features to represent the sightlines from each node towards every other visible node that
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was not obstructed by topography, vegetation or other manmade objects. In the finite simple
matrix form, each column and row represents a node and the binary (i.e. 0 or 1) elements
indicate whether the pairs of sensor nodes are visible or not. Figure 3.11 demonstrates the
network organisation and connectivity in a graphical, i.e. node-link diagram on the left, and in a

matrix form without taking into account the effective radio range on the right.
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Figure 3.11 The Patitapu WSN represented by its geometry (left) and its respective connectivity or
adjacency matrix (right, 1 — visible, 0 — not visible). Each grey line in the graph and each element of the
adjacency matrix represent a connection between two nodes. The mean distance (MD) among the
visible nodes and the number of visible nodes (VN) from each location are shown regardless the
effective radio range (G — gateway, R —relay node).

Once the network was in operation, network communication layouts were pulled out multiple
times from the system on various dates (06/12/2016, 17/06/2017, 08/09/2017). A reversed tree
diagram was used to visualize network connectivity that shows the WSN communication at a
specific time stamp (Fig. 3.12). The trees were generated from ASCII art trees provided by TAG
IT and the plots revealed the important role of the relay node and the parent-children
relationships. As the communication-protocol is self-healing and flexible, the WSN

communication structure changes depending on radio signal strength and node availability.

Figure 3.12 Examples of WSN communication layouts are shown on 6 October 2016 (A), on 17 June 2017
(B) and on 8 September 2017 (C) generated from ASCII art trees. The data transmission is dynamic and
it restructurers itself to maintain connectivity (RO: Root, GR: Gateway Radio, RE: Relay node). The
colours indicate various levels of the parent children relationships.
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3.2.6 AquaCheck probe calibration

Due to the distance among sensors, topography and soil conditions vary between microsites,
and this can effect sensor readings. Factory provided calibration functions were assessed and
they were observed to significantly underestimate the true soil water content (Hajdu et al.,
2019). Consequently, the accuracy of the probes were improved by performing a multi-level,
farm-, microsite or probe- and sensor-specific calibration depending on the required precision
and available soil information. Chapter 4 provides a detailed description of the calibration

procedure and accuracy assessment.
3.3 Determination of microsite-specific soil properties

The research required soil samples for gravimetric (6, gg*) and volumetric soil water content

(6, m*m?3), bulk density (p;,, gcm™), particle size analysis (soil texture) and total organic carbon

(TOC, %) measurements.
3.3.1 Gravimetric soil water content

The soil sampling events were carried out during dry (8, ~ 0.25 m®*m3), moderately wet (8, ~
0.35 m*m) and wet (6,, = 0.45 m®m?) stages of 6, conditions over five sampling events (on
21/11/2016, 23/02/2017, 24/04/2017, 31/10/2017 and 18/11/2017). During four sampling
events, the gravimetric samples were taken using a soil auger (2 5 cm) approximately 0.6-0.8 m
away from the multi-sensor probe location avoiding the upper slope areas (Fig. 3.13 (A)). Three
soil cores were collected at each location and the cores divided into four depths (70-130, 170-
230, 270-330 and 370-430 mm) corresponding to the depth of the soil volume sampled by each
sensor (Fig. 3.13 (B and C)).

Sampling events using soil auger

Date Soil cores

21/11/2016 o
23/02/2017 °
31/10/2017 o
18/11/2017 o

Sampling event via soil pit

S

Date Sampling pit

24/04/2017

@ AquaCheck probe wiring

@ Undisturbed soil

500 mm

’

. o —
Radio i Upperslope
@ unit direction Yo

Figure 3.13 Soil sampling design illustrating the soil core locations arranged in a circle surrounding the
sensor probe (A). The four soil depth increments obtained from soil cores for gravimetric analysis are
shown in (B) and the sampling method for soil bulk density measurements from soil pits is shown in (C).
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The samples were immediately placed in sealed containers inside a cooling box and taken
directly to the laboratory to be processed. For one sampling event, the three soil cores were
kept separate to ascertain variability caused by the sampling method. For the other three
sampling events, the samples were composited for each depth and treated as one sample in the

laboratory.

To obtain reference soil water content values used in the sensor calibration, 9g was measured
by the thermo-gravimetric technique (oven drying). Despite being an old technique, this
approach has been the most widely used for the direct determination of soil moisture
(Schmugge et al., 1980, Lekshmi et al., 2014). Therefore, it is often required for calibrating soil
moisture measuring equipment (Johnson, 1962, Lal and Shukla, 2004, Dobriyal et al., 2012). The
procedure involves taking representative soil specimens from the site of interest, and placing
the samples in a forced draft oven for drying at a constant temperature of about 105 °C. The
process ends if the sample weight becomes constant, and as a result, 6, on dry basis can be
calculated as per Eq. (2.1). Soil cores were used for obtaining samples for 8, measurements and
they were subsampled for particle size analysis and TOC estimation. Sampling pits provided

opportunity to examine the soil media surrounding the sensor probes down to 50 cm depth.
3.3.2 Bulk density measurements

For most purposes, water content based on volume fraction (i.e. 6,)) is required and more useful.
Through the determination of p;, of the soil sample, 8,, can be obtained (Gardner et al., 2000,
Shukla, 2013). Soil compaction is indicated by p,;, that affects infiltration, rooting depth, plant
available water, nutrient extraction by plants, soil porosity and aeration. In agriculture, p;, is
defined as the ratio of the mass of oven dry soil to a unit volume of soil (Grossman and Reinsch,
2002) as per Eq. (2.4). The relationship between p;, and 6, was used to compute 6, as presented

by Eq. (2.5).

During one sampling event, soil samples for both p;, and 6, measurements were acquired by
opening two narrow, 0.5 m deep pits approximately 0.4 m from the AquaCheck probe (Fig. 3.13
(A and C)). The p, samples were obtained horizontally using 84.76 cm? steel cylinders within
which the soil material was retained for subsequent drying and analysis. The steel cylinders with

the samples were dried in an oven at 105 °C for 24 h.

Soil variability tends to be greater near the soil surface in hill country. This is mainly due to the
interrelated effects of grazing livestock, soil organic matter, land use, topsoil downslope
movement, rooting characteristics, and the presence of soil organisms (Stavi et al., 2008,

Chaudhari et al., 2013). Hence, five replicates were taken from 100 mm soil depth while three
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replicates were obtained for all other soil depths. Mid-points of the sampling depths
corresponded to those of the sensing volume of each sensor. Sampling holes were subsequently

infilled with soil from the same horizon, preserving the compaction.
3.3.3 Particle size distribution analysis

The relative size distribution of the primary particles in a soil, referred to as soil texture, plays a
fundamental role in most pedogenic processes (Gee and Bauder, 1986). Soil water holding
capabilities, nutrient retention, the exchange of air and water parameters, effective rooting
depth and the overall physical behaviour of the soils are highly influenced by its mechanical
composition and clay content (Kettler et al., 2001, Eshel et al., 2004, Bronick and Lal, 2005).
Furthermore, the ground-based soil monitoring sensing units are usually sensitive to soil texture
and require soil-specific calibration. In case of the AquaCheck product utilised in this study, the
manufacturer provides 6 calibration equations for volumetric water content calculations
depending on the soil textural classes, namely sand, clay, silt-loam, generic, loam, and clay-loam
(Aquacheck, 2008). The following chapters of the study heavily rely on accurate soil moisture

readings. This requires detailed information on soil texture at the microsites at multiple depth.

Several methods are employed to determine the particle size distribution and to separate the
textural fractions. Field texturing, the hydrometer method, pipette method, sedimentation
technique, sieving, dynamic light scattering, image analysis and laser diffraction are some of the
various techniques applied for a wide range of sample types (Kettler et al., 2001). The overall
textural designation is determined based on mass ratios of the three separates, i.e. sand, silt and

clay using one of the standard soil textural classifications.

In this study, a laser scattering particle size distribution analysis or laser diffraction method
(LDM) was performed using a Horiba LA-950 (HORIBA Scientific, Kyoto, Japan) machine and an
attached slurry sampler extension (Fig. 3.14). The method was chosen based on the number of
samples under investigation and the accuracy required for the purpose of the study. It was
observed by Fisher et al. (2017) that LDM is a reliable approach for routine soil particle size
analysis. In the same study, the LDM results were also compared to grain size distribution
obtained from sedimentation method and showed strong agreement. The LDM offers
acceptable time effectiveness, reliability, precision and reproducibility parameters for soil
particle sizing, as well as continuous size information between the sensing ranges (Miller and

Schaetzl, 2012).
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Figure 3.14 The Horiba LA-950 laser particle size analyser with the attached slurry sampler extension
during operation.

The Horiba LA-950 unit is a sophisticated laser particle size distribution analyser that uses 2
beams of light of different wavelengths (LED: A = 405 nm, Laser: A = 650 nm) to determine the
distribution of grain size classes in fluid-solids dispersions. The grain size range of particles
compatible with the instrument is 10 nm to 3 mm. The internal circulation system uses deionised
water as dispersion medium. A double array of sensors detects light rays passing through or
scattered by solid particles of specific refractive indices (RI) in relation to deionised water. It
works on the principle that the angle of scattered light beam is inversely proportional to the
interacting object size. A collection of particles will produce a recognisable pattern of scattered
light defined by intensity and angle, providing information that can be converted into a particle
size distribution and visualised through the Horiba Software. The Horiba particle size distribution
analyser is calibrated by commercially available, traceable standard particles (polymer micro
spheres). This process guarantees a high accuracy of £0.6 % or less and a reproducibility of £0.1

% or less (Horiba Scientific, 2017).

In this research, only the fine earth class of soil granulometry was in interest, covering a particle
size range of 0-2000 um. Fine earth is usually divided into three particle size classes: clay (fine
particles < 2 um), silt (medium size particles between 2-50 um) and sand (coarser particles
between 50-2000 pum). The diameter range of the individual size groups were defined by the
U.S. Department of Agriculture (USDA) (Gee and Bauder, 1986) and their size limits were
accepted in this analysis since it widely applied globally and also generally accepted in New
Zealand. Taking into account the predefined size limits by the Horiba particle size distribution
analyser, the size intervals were chosen as 0-1.953 um for the clay, 1.953-44.19 um for the silt

and 441.9-2000 pum for the sand fraction.
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3.3.3.1 Sample processing

Each collected soil increment was sub-sampled into two sets, from which only one was chosen
for the particle size analysis. 3-4 grams of material was separated taking care that subsamples
reflect the entire sample as much as possible. It has been observed that in the case of LDM the
difference between using or not using chemical pre-treatment was not statistically apparent
neither for topsoil or subsoil (Fisher et al., 2017). On the other hand, ultrasound treatment was
observed to be a faster method for breaking down the particle aggregates than applying
chemical solutions such as Na-hexametaphosphate (Ryzak and Bieganowski, 2011). Additionally,
the samples were not treated for fine organic matter removal since the Aquacheck probes also

measure the original, intact soil material containing organic matter.

Prior to analysis, the samples were air-dried and the roots and coarse fragments (> 3 mm) were
separated since the Horiba LDM is not able to detect these elements. The samples were placed
in glass cylinders to achieve efficient dispersion through physical procedures (Fig. 3.15). The
tubes were filled with deionised water up to three quarter level for dilution and the samples
were stirred with a rod until homogenous suspensions were formed. Afterwards, a 16-hour end-

to-end rotational mixing was applied which was followed by a 10 min ultrasonic bath treatment

to improve the disintegration of the agglutinated particles.

Figure 3.15 Sample dispersions with added deionised water prior to the stirring as first step of the
preparation process.

Prior to the measurements, the suspensions were thoroughly mixed once again by a rod to

dislodge the sediment from the bottom of the cylinder.
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3.3.3.2 Laboratory measurements

The LDM method quantitatively determines the physical proportions of various sizes of primary
soil particles falling somewhere within the 38 predefined grain size bins. The slurry sampler
extension was used to run the samples in suspension and in batches of 30 samples. The
Scheduler part of the controlling software was set up to automate and simplify the analysis by
executing a pre-defined series of steps using the slurry sampler tray. The sequence includes
feeding, debubbling, aligning, blank measurement and rinsing multiple times to ensure
consistent reading and to mitigate contamination. The sample is taken from the glass beakers
after a high rom mechanical stirring controlled by the Horiba software. Each sample was
analysed three times and the mean of the three measurements were taken to define soil texture.
Volume-based particle size distribution was calculated by utilising the Mie scattering theory as
standard, modern procedure for specimens with all fine grain sizes (Sperazza et al., 2004, Ozer
et al., 2010). Input parameters, such as particle Rl and particle absorption index were
determined by the statistical method (considering R parameter and X square) suggested by

Horiba (Bodycomb, 2013) whereas the Rl of the dispersant (i.e. deionised water) was set to 1.33.
3.3.4 Total organic carbon (TOC) measurements

The TOC encompasses a wide range of organic compounds in soils, therefore its quantification
in soil horizons provides essential information for scientific research, agricultural activities and
management practices (Matejovic, 1993). TOC is a vital component of the complex soil-water-
atmosphere system, influencing numerous biological and physical processes that are in
continuous interaction with nutrient cycles. Microbiological activity, biomass accumulation,
organic matter decomposition and mineralisation are governed by soil water content that

affects yield production (Linn and Doran, 1984, Amador et al., 2005, Tulina et al., 2009).

Furthermore, TOC plays an important role in the characterisation of soil water storage and
hydraulic properties and there exists an optimum level of TOC that is required to hold adequate
amount of moisture and nutrients (Post and Kwon, 2000). Soil water holding capacity is strongly
limited by soil water retention that is impacted by TOC, hence driving soil moisture
redistribution, water availability, evaporation rates and several ecological processes (Yang et al.,
2014). Moreover, soil moisture spatial variability is strongly related to TOC as it was shown by

Baumann et al. (2009) on alpine grasslands.

TOC, particle size distribution and p;, are the main parameters in most pedotransfer functions
that predict soil water holding properties including field capacity, saturation, plant available

water and permanent wilting point (Yang et al., 2014, Minasny and McBratney, 2018).
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Although, various methods are available to measure TOC content in soils, such as the wet
oxidation techniques, the popular dry (or heat) combustion method was chosen in the present
study. It is one of the most commonly applied techniques for measuring TOC in soils and
agricultural products due to its precise and accurate automated operation that is able to
measure the quantity of C, H, N and S content from one weighed sample rapidly and

simultaneously (Sleutel et al., 2007).
3.3.4.1 Sample processing and preparation

As it was mentioned above, for particle size distribution analysis, 80 soil samples were collected
in the field and subdivided into two subsets in the laboratory. One set was used for the particle
size distribution analysis, whereas the second subset was used for the TOC analysis. The samples
were taken from the depth intervals corresponding to the soil moisture sensors’ position at 100,
200, 300 and 400 mm. The samples were air-dried, crushed and sieved using a 2 mm sieve before
they were homogenised. As a last step, the particle size was reduced to < 250 um by gentle

grinding.

The subsamples were packed in aluminium foils and WO; powder was used as additive to
increase the efficiency of the combustion. The samples were wrapped and closed gas tight
avoiding the loss of substance, before the capsules were weighed. Afterwards, the compressed
and folded sample packets were placed in the carousel sample magazine and were covered by
a plastic ring during the automated measurement process. To calculate the daily factor and
calibrate the instrument, conditioning samples were prepared that included blank samples and

daily factor samples using the factory recommended Sulphanilamide.
3.3.4.2 Sample analysis

The analysis was conducted by a Vario MACRO Cube CHNS elemental analyser (Elementar
Analysensysteme GmbH, Hanau, Germany) that operates on a catalytical, dry-combustion
principle (Fig. 3.16). The samples are combusted in a furnace at 950 °C to 1200 °C when lowered
in a combustion tube and oxygen is jet injected over the sample. The elevated temperature and
the use of accelerants ensure the complete combustion of all carbon forms present in the soils.
During combustion, the targeted sample elements are converted into simple gases, the desired
components are separated and moved to the detectors by carrier gases. The TOC is estimated
from the evolved CO; by a thermal conductivity detector (Sleutel et al., 2007). For the purposes

of the study, a single soil subsample was used for both total C and N content estimation.
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Figure 3.16 The Vario Macro Cube elemental analyser used in the study (A) and an example of the
prepared, grinded samples just before subsampling (B). The WOs powder was added to the subsamples
as combustion aid and Sulphanilamide was used for instrument conditioning.

3.4 Pasture growth measurements

3.4.1 The cage technique

In New Zealand, a commonly used method to measure herbage production is the application of
the exclosure cage-technique or “Cut method”. The method has been applied successfully,
providing valuable information in a number of studies where relative pasture production
differences were the main focus (Devantier et al., 1998). It involves the collection of re-growth

from a trimmed quadrat (Radcliffe, 1974a).

In this study, to assess the accumulated dry matter (DM), three moveable livestock exclusion
cages were positioned at 13 microsites to exclude stock from grazing that specific area. The cage-
protected surface was trimmed down to 10 mm height by using a grass shear and re-trimmed
every 4-6 weeks within a standard 320x320 mm quadrat. The cages were moved around the
AquaCheck probe and placed back on freshly cut surfaces making sure that the previously

measured spots were avoided.

The fresh pasture cuts were stored in chilled polystyrene boxes until they were weighed. The
selected 3 m diameter sampling areas were considered to represent a stand of more or less
homogenous pasture cover with relatively consistent pasture composition, terrain attributes

and soil parameters.

The samples were cleaned from soils and placed in paper bags for the determination of the
accumulated DM. The measurement was achieved through the evaporation of water from the
feed in a forced air oven with a drying time of 24-48 hours, leaving only the DM behind. The
effects of the cage technique on growth rate have been studied by Marsh (1978) who did not
observe any significant effect caused by the presence of exclosure cages. Slight change in micro-
climate under cages and increased growth rate was recorded by Heady (1957) inside the caged

area during the cold season with slow growth. The differences in growth rate between caged
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and not caged sampling sites seemed to disappear in spring with fast growth and there was no
difference detected in composition. Therefore, in the present study, the effect of cages have not
been taken into account. A comparison of cage and model techniques can be viewed in

Devantier et al. (1998).
3.4.2 The sampling sites and field data collection

The 13 microsites were distributed on flat areas as well as north-, east-, south- and west-facing
slopes, which were subdivided, based on slope angle. Each aspect class contains microsites on
steep and gently rolling slopes. These microsites were established to determine the effect of soil

physical properties, climatic parameters and topographical attributes on pasture production.

Pasture growth sampling was conducted 16 times during the experiment, covering the period
between 01/11/2016 and 20/06/2018. At every site, the total herbage accumulation was
calculated by averaging the DM data from the three sampling points. Yields were calculated as
kg DM/ha for each harvest date. Growth per day was computed by dividing the total yield by

the number of days separating two cuts.
3.5 Remote sensing data

The study aimed to synergistically use spaceborne radar (Sentinel-1) and multispectral (Sentinel-
2, Landsat 7 and Landsat 8) data for the spatial prediction of near-surface soil water content at
the Patitapu Station. The Materials and Methods section of Chapter 6 provides a brief
description of the Sentinel-2 and Landsat satellite missions and the characteristics of the utilised
image collections. After a brief summary of the science program and objectives behind the
Sentinel missions, the focus will be placed on the Sentinel-1 satellites, their characteristics and
currently available products due to the increasing role of radar data in soil moisture research. A
short description is given on how the remote sensing data is generally accessed in this study.
Finally, the section ends with a brief report detailing the specifications of the used radar dataset

over the research area.
3.5.1 The Copernicus Earth observation program

The Copernicus initiative, headed by the European Commission and the ESA was designed to
provide easily accessible information about the environment and to obtain data for civil services
and applications. Within the program’s lifetime, ESA is developing and placing into orbit a fleet
of new satellites, called Sentinels, to serve the requirements of the European Commission and
the European Union (Torres et al., 2012). The Sentinels will capture images of the land, oceans

and the atmosphere through currently seven satellite missions. At the time of the study, three
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operating, two-satellite constellations were in orbit, including the Sentinel-1, Sentinel-2 and
Sentinel-3 launched in the years of 2014-2018. The data is made available via a range of
information services to provide imagery for researchers, policy makers, civil services and
numerous other humanitarian needs (ESA, 2018b). These missions are considered as “game
changers” due to their operational configuration and improved instrumentation in the field of
land management, dynamic hydrological processes, marine environment, atmosphere,

emergency response, security and climate change.
3.5.2 The Sentinel-1 mission

The Sentinel-1 is a radar-imaging mission for land and ocean services generating systematic, high
quality products with quick data delivery. The Sentinel-1 mission, particularly Sentinel-1A
satellite represents the first dedicated component of the European Copernicus program that
was placed into orbit. The Sentinel-1A was sent to space on 3 April 2014 whereas Sentinel-1B
was launched on 25 April 2016. The constellation was designed to take images over landmasses,
coastal zones, sea-ice, polar areas and the global ocean to ensure data continuity after the age
of the first reliable and operational ERS 1 and 2 radar-imaging systems. The Sentinel-1 imaging
radar mission aimed to provide microwave-based observations with improved resolutions with
weather and daylight independent image collection capabilities. Taking into account these
advantages and the global coverage, the Sentinel-1 mission has the potential to be used for
operational soil moisture monitoring at a finer scale than previous space missions could achieve

(Wagner et al., 2009b, Hornacek et al., 2012, Paloscia et al., 2013).

Both satellites were placed on the same polar orbital plane at an altitude of 693 km but with a
phase difference of 180 degree. These conditions allow the formation of interferograms and the
maximum 12-day revisit time that applies to each satellite individually, can be shortened.
Therefore, the Sentinel-1 constellation is able to cover the main landmasses every six days at
the Equator and even shorter revisit times are given for areas with higher latitudes. The mission
offers regular, frequent image acquisition and a ground resolution of 5m x 20 m in the main, 250
km wide swath operation mode over landmasses (Attema et al., 2008, Torres et al., 2012). ESA
specified the life time of the individual satellites as 7 years, with consumables allowing the
extension of the mission up to 12 years, while the life cycle of a satellite generation is planned

to be in the order of 15-20 years (Torres et al., 2012).
3.5.2.1 Instruments and operational modes

The Sentinel-1 satellite pair was mounted with identical C-band SAR instruments working at

5.405 GHz frequency (A = 5.6 cm) and with 1dB radiometric accuracy. The C-band radar signal
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can penetrate through clouds and most rain events without major impact on the signal giving a
significant advantage over optical imagery for time series and change detection analysis (Muro
et al., 2016) in land surface monitoring. The C-SAR instrument is supplemented by an active
phased array antenna (length of 12 m) with dual channel transmit and receive modules. The SAR
is able to provide images with single or dual polarisation i.e. HH or VV for single and HH+HV and
VV+VH for dual channels (Hornacek et al., 2012). Four exclusive acquisition modes are available,

namely Stripmap, Interferometric Wide swath, Extra-Wide swath and Wave (Fig. 3.17).

Flight Direction

SENTINEL 1

Sub-Satellite Track

Orbit Height
~700 km

Mode
Wave Mode

Interferometric Wide Swath
Mode

Figure 3.17 Sentinel-1 image acquisition modes. Out of the four operational modes, the Interferometric
Wide swath mode satisfies the most requirements for numerous environmental applications (ESA,
2018c).

While the Stripmap, Extra-Wide swath and Wave modes are used only over specific areas and
specific applications, the Interferometric Wide swath option with VV+VH polarisation is the

primarily used mode over landmasses that serves most applications (ESA, 2018c).

There are three product types, Level 0, Level 1 and Level 2 depending on the level of processing.
Level 0 products contain the raw data with noise that is compressed and unfocused. The Level
1 and Level 2 data are produced from the Level O products. Most data users are interested in
the images derived by the Level 1 processing chain as it is transformed from raw data via various
algorithms to an easier to handle product. The processing can result in Single Look Complex
images or Ground Range Detected (GRD) images (ESA, 2018d). Single Look Complex products
contain the phase and backscattering information, which is required for the generation of the
coherency matrix for interferometry. In this study, the Level 1 GRD images were used that have
been detected, multi-looked (5 x 1 looks) and projected to the ground range by the application

of the Earth ellipsoid model WGS84, on which additional terrain correction was carried out. It
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carries less information and the file size is significantly smaller compared to the Single Look
Complex data. The focussed SAR GRD images used in this study were acquired in Interferometric
Wide swath operational mode at both VV (vertical transmit and vertical receive) and VH (vertical
transmit and horizontal receive) polarisations were available for most of the experimental

period. The pixel spacing was 10 x 10 m in range and azimuth directions.
3.5.3 Data access

Sentinel-1, Sentinel-2, Landsat 7 and Landsat 8 products are made freely available systematically
through the Copernicus Open Access Hub (Copernicus Open Access Hub, 2018) to all data users
including general public, researchers and commercial users. The ESA provides a freely accessible,
open software environment, called Sentinel Application Platform (SNAP), within which the open
source Sentinel-1 Toolbox is equipped with the essential tools for the pre-processing,

visualisation and analysis of the Sentinel-1 data (SNAP, 2018).

However, the ever-growing amount of available Earth observation data has been reforming the
concepts of how the data can be delivered to users and how the data is analysed (Hird et al.,,
2017, Esch et al., 2018). Individual, standard workstations are no longer able to process the data
volume with improved spatial and temporal resolution acquired by the increasing number of
satellites. In this study, the need for high computational power, storage capacity and the time
series type of dataset meant that an alternative data platform was chosen to extract Sentinel-1
SAR data as well as Sentinel-2, Landsat 7 and Landsat 8 data. The high number of remote sensing
images used in this thesis suggested the application of a cloud-based geoinformation service to

access consistent and continuous image collections.
3.5.3.1 Google Earth Engine (GEE)

One of the modern cloud-computing platforms for accessing and processing large amount of
Earth observation and geospatial data collections was developed by Google. Google’s GEE offers
a platform where researchers, scientists and developers have the possibility to conduct analysis
from the local to the planetary scale. The combination of thirty years of satellite imagery, already
existing or newly developed algorithms and real world applications makes GEE a powerful tool
in the field of Earth observation. Monitoring the dynamic changes on the Earth surface is of great
interest especially in the field of environmental applications such as the tracking of changes in

natural resources, deforestation, agricultural practices and climate.

GEE allows users to execute various geospatial processes on Google’s infrastructure and run the

computations on high performance, intrinsically parallel services. The interaction between the
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user and the platform is provided in several ways, although a commonly used option is the Code
Editor, a web-based integrated development environment. This environment supports the use
of Python and JavaScript application programming interfaces that allows users to reach an
analysis-ready, Internet accessible data catalogue. A large repository of pre-processed datasets
are made available from several satellite missions containing optical and non-optical image
collections (Gorelick et al., 2017, Google Earth Engine, 2018a). An advantage of using a cloud-
computing platform is the consistent datasets that can be analysed by multiple users. Another
benefit of the cloud-based approach is that the processing is done online and the data is not

downloaded to the local desktop computer during processing.
3.5.3.2 Sentinel-1 image collection and pre-processing

The GEE catalogue contains all processed GRD Sentinel-1 scenes at Level 1 since Oct 2014 with
weekly update. The dataset can be filtered to generate a homogenous image collection since
images at three resolutions, in three instrument modes and with various band combinations of
polarisation modes are all included. To be able to work with the SAR data and to create a GIS

ready image collection, several pre-processing steps need to be executed.

The pre-processing procedure implemented is built upon the algorithms applied in the Sentinel
1 Toolbox that is also employed in SNAP. The description below is mainly based on the
documentation available on GEE application programming interfaces (Google Earth Engine,
2018b). The standard workflow consists of six main steps that satisfy the data need for most
applications and assure the quality of the results retrieved from the imagery. First, an orbit file
refinement is performed to apply the most accurate satellite position and velocity information.
The second step removes the GRD border noise and invalid data from the scene edges that is
followed by the thermal noise removal as the third step to reduce discontinuities between sub-
swaths and the additive background energy (Carsey, 1992). Fourth, radiometric calibration is
conducted to derive backscatter intensity from digital numbers by the application of sensor-
specific calibration parameters. In the fifth step, also knowns as terrain correction, the data is
transformed from ground range geometry to backscatter coefficient ¢° represent the target
backscattering area (radar cross section) per unit ground area as it is explained in more detail in
Chapter 2, Section 2.5.5. To correct for the geometric distortions and to generate orthorectified
images, a 30 m DEM data from the Shuttle Radar Topography Mission (SRTM) is utilised. As a
last step, the unitless o is converted to dB, i.e. from linear scale to logarithmic scale as it can
vary across several orders of magnitude. The steps described above result in images with 10 m

pixel spacing. The pre-processed images are stored in a pyramid type of tile database with
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optimal tile size for online data reading and visualising the dataset effectively (Gorelick et al.,

2017).
3.5.4 Sentinel-1 imagery over New Zealand and the Patitapu Station

Over New Zealand, the available polarisations are VV and VH in both ascending and descending
modes. GRD products were chosen for this study, as the objectives needed backscattering
intensity and incidence angle data and did not require phase information. As the satellites carry
the same type of instrument, combinations of descending and ascending modes are generally
possible. Sentinel-1A passes over the research area in the evening, whereas Sentinel-1B flies
over in the morning hours. Figure 3.18 depicts the Sentinel-1 acquisition segments and sensor
view directions over New Zealand as well as the image positions that cover the Patitapu Station
in both orbit types. The 6° and incidence angle information were obtained by creating an image
collection within GEE and extract SAR data at the points of interests, i.e. at the twenty microsites.
The information was extracted from 150 Level-1, GRD images acquired in Interferometric Wide

swath mode between 01/11/2016 and 01/07/2018 in the available dual polarisation.

'~‘ ‘ esa Sentinel Online

Patitapu
Station

Image footprints overlapping
the research area

@ahcspoce
serco

Figure 3.18 lllustration of the Sentinel-1A (red) and -1B (black) image acquisition segments over New
Zealand and the image tiles as presented in Google Earth Engine specifically over the research area,
Patitapu Station, located in the North Island (background image generated in Google Earth Pro and
Sentinel 1 segments were accessed through ESA (2018a).
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4  Chapter 4 - Field performance assessment and calibration of
multi-depth  AquaCheck capacitance-based soil moisture
probes

4.1 Introduction

Soil water content monitoring is rapidly developing across different types of soil-plant systems
over many landscape features at a time of increasing food demand and more intense agricultural
drought events (Howell, 2001, Charlesworth, 2005, Trenberth et al.,, 2013). Accurate
measurements of real-time soil water contents allow farmers, agronomists and hydrologists to
better inform pre- and in-crop strategic inputs, pasture production (Matson et al., 1997),
irrigation management (Leib et al., 2003) and nutrient cycling (Dougill et al., 1998) at farm scale.
Similarly it is essential for hydrological modelling (Western et al., 2002), meteorological
applications (Rowntree and Bolton, 1983) and flood risk evaluation (Massari et al., 2014) at
catchment scales. Soil water content controls the soil infiltration rate, runoff and
evapotranspiration influencing plant water availability that plays an essential role in precision
agriculture as the single most important natural resource for pasture production (Rodriguez-

Iturbe et al., 1999, Woodward et al., 2001).

Due to the interaction of numerous environmental parameters, soil water content is generally
considered a both temporally and spatially highly changeable soil physical state variable,
although the spatial patterns have been observed to remain stable over time (Vachaud et al.,
1985, Vanderlinden et al., 2012, Brocca et al.,, 2017). Soil water content predictability and
variability are not yet fully understood, especially near the surface and within the root-zone;
these being the layers of interest for most applications (Wilson et al., 2004, Petropoulos et al.,
2014). Root-zone soil moisture is particularly useful for the evaluation of climate, land-surface
and energy exchange models, while in-situ, near-surface soil moisture data is utilised in the
validation and calibration of remotely sensed soil water products (Dorigo et al., 2011b, Liu et al.,
2017). Consequently, obtaining accurate, frequent and non-destructive soil water data is
significantly advantageous, if not essential, to facilitate improved yield and water management

strategies in both irrigated and non-irrigated farming systems.

Several indirect methods measure a physico-chemical property of the soil to estimate soil water
content (Evett and Parkin, 2005). The radioactive technology and the idea of the neutron

moisture metre published by Gardner and Kirkham (1952) induced a breakthrough in modern
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soil moisture estimation. Calibrated neutron moisture meters are able to achieve high soil
moisture sensing accuracy, although, the technique is extremely costly and it poses special
requirements for installation and operation. The technique remained the standard until the age
of dielectric sensors arrived in the 1980s (Ochsner et al., 2013). Since then, a wide range of
electromagnetic soil water content sensing devices have been developed (Robinson et al.,
2008b). State-of-the-art, continuous soil water measurement techniques make use of the
dielectric property of the sensed soil matrix (Lekshmi et al., 2014). It has long been recognised
that the measurement of the soils’ apparent dielectric constant (Ka) can be directly related to

volumetric soil water content (8,, m* m™3) sensitivity (Dean et al., 1987).

Time Domain Reflectometry (TDR), Frequency Domain Reflectometry (FDR) and capacitance
techniques are the most common methods to obtain soil water content by emitting
electromagnetic energy pulses into the soil. The basics of TDR, FDR and capacitance techniques
for soil water measurement were established by Topp et al. (1980) and Dean et al. (1987). The
techniques rely on the physical principle that water in soil pores has a significantly higher Ka
(~81 at 20 °C), than air in soil pores (~1), and higher than the typical mineral matrix of soils (3-
12) (Dean et al., 1987, Noborio, 2001, Chandler et al., 2004). The TDR method relates soil water
content to the travel time of the electromagnetic signal along a transmission line, since the
propagation velocity of the electromagnetic energy impulse is mainly influenced by soil Ka
(Blonquist et al., 2005). The generally expensive TDR sensors are commonly utilised as a
reference (Bogena et al., 2007) due to their high accuracy and good agreement with
observations obtained by neutron scattering (Serrarens et al., 2000). The FDR technique differs
from TDR in that the former measures the variation of frequency of the returned
electromagnetic pulses. Capacitance-based sensing devices are based on the frequency domain,
although they make use of the charging time of the emitted electromagnetic field which is a
function of soil Ka (Mittelbach et al., 2012). During measurement, a capacitor system is formed
by two or more electrodes (metal rods, spikes or rings) inserted in the soil, which serves as the
dielectric. An oscillator is often connected to the circuit - this converts the changes in soil Ka to
the variation in the frequency of the transmitted signal between the electrodes (Leib et al., 2003,

Lekshmi et al., 2014).

Soil Ka is influenced by factors other than soil water content, such as variation in soil bulk
density ( pp), clay content, temperature, soil organic matter, and salinity (Topp et al., 1980, Roth
et al., 1990, Tsheko and Savage, 2005). The sensing volume of FDR and capacitance techniques
is relatively small and the operating frequency is generally below 100MHz. Therefore, these

sensors have been observed to be sensitive to clay content, soil organic matter content, air gaps,
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temperature, amount of iron minerals and p; (Robinson et al., 1994, Mufioz-Carpena et al.,
2004, Dobriyal et al., 2012, Mittelbach et al., 2012, Visconti et al., 2014, Fares et al., 2016). In an
attempt to circumvent this, calibrations provided by the manufacturer are generally developed
under laboratory conditions by immersing the sensing units in solutions or in a soil medium with

known parameters (Kizito et al., 2008).

Capacitance sensors have been proven to be accurate for effective soil water monitoring for
either scientific or agronomic purposes, if a soil-specific calibration is provided (Matula et al.,
2016, Singh et al., 2018), offering a significantly lower cost alternative to TDR (Evett, 2000b,
Mittelbach et al., 2012, Visconti et al., 2014). However, their accuracy and dependency on soil
properties have not been investigated extensively under field conditions, particularly not in New

Zealand on diverse hill country landscapes and soils.

AqguaCheck Ltd has more than 20,000 probes installed in more than 20 countries around the
world, highlighting its key role among the industry’s leading vendors in the rapidly growing
global soil moisture sensor market space (Agri Optics, 2017). These numbers are expected to
rise worldwide imposed by the increased pressure on sustainable agricultural productivity and
the growing concern about climate, soil health and conservation. To date, AquaCheck Sub-
surface sensor performance and the assessment of standard calibration functions have received
little scientific attention, although they have been employed in several studies (Cronje and
Mostert, 2008, Murungu et al., 2011). AquaCheck reported soil moisture data were compared
to EnviroSCAN readings chosen as reference by Nolz (2013), however no comparisons were
made against direct soil moisture measurements. Recently, Singh et al. (2018) presented a
detailed evaluation of a variety of electromagnetic sensors in a loam soil in Nebraska, U.S,
including the Aquacheck Classic probe. AquaCheck readings were related in reference to field
calibrated neutron moisture meter observations. However, their study had a short timeframe
(from 28 July to 6 September, 2016), and a narrow soil water content range. Additionally, the
research was based on the statistical comparison of averaged soil moisture readings from two
replicates at each of two selected depths, separately and combined. A criticism of the Singh et
al. (2018) paper was published by Schwartz et al. (2018) questioning and commenting on the
meaningfulness of the comparison between electromagnetic sensors and a neutron probe. In
the reply of Rudnick et al. (2018), the authors reviewed the results in Singh et al. (2018) and
rejected the claim proposed in Schwartz et al. (2018). Rudnick et al. (2018) clearly stated that
their approach intended to generate a scientific review of the sensors available for customers

rather than a comprehensive comparison.
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Our study aims to evaluate the performance of 400 mm AquaCheck sub-surface multi-sensor,
capacitance probes during a one-year period under field conditions in silt loam and silty clay
loam soils. A comparison was made between sensor data collected from 20 spatially distributed
probes and reference thermo-gravimetric observations. To achieve this aim, our objectives are

to:

1. Assess the manufacturer-supplied calibration functions and establish new functions
between raw sensor readings and reference observations to improve 8, sensing
accuracy at multiple depths. These custom calibrations will occur at three scales, i.e.
farm (i.e. single calibration), probe (i.e. microsite-specific (20) calibrations) and sensor
(i.e. sensor-specific (80) calibrations).

2. Investigate temporal 8, patterns and compare differences in accuracy between the
custom calibration methods and the manufacturer provided calibrations that were most
suitable for the soil type at the research area.

3. Provide aspects about measurement accuracy for sensor users to help decision making
on whether the complete (at sensor level) calibration is necessary for their applications.

4. Determine the effect of selected soil properties and soil wetness on sensor error
distribution. Our intent is to inform future deployment of capacitance-based sensor
probes for accurate predictions of multi-depth 8,, patterns on New Zealand hill country

soils or in regions with similar soil characteristics.

4.2 Materials and methods

4.2.1 Experimental site and soil characterisation

The study was conducted on a ~2600 ha hill country property, Patitapu Station, located in the
Wairarapa region of the North Island of New Zealand (40.745020 S, 175.887320 E, Fig. 4.1). The
research site is primarily non-irrigated pastoral farmland mixed with native bush on rolling to
steep hills, interspersed with fertile flat land. Sixty-four-year annual average rainfall is 1144 mm
in this area with a range between 721-1735 mm (NIWA CliFlo, 1953-2017), although
precipitation is often localised in hill country. Elevation ranges from 143-535 m above sea level.
The microsites (Fig. 4.1) were selected from pastoral areas on the farm where the predominant
plant communities are ryegrass and clover species. A permanent weather station (40.750032°
S, 175.887493° E) was installed at the property, from where rainfall and air temperature
observations were collected to investigate sensor response to climatic variables. The minimum,
maximum and mean distance between the climate monitoring station and sensing probes were

0.34, 2.9 and 1.8 km, respectively.
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Soil resource information was retrieved from the Fundamental Soil Layers that describes the
spatial pattern of soil types defined by the New Zealand Soil Classification (Hewitt, 2010). The
majority of the property is covered by Brown Soils as it is illustrated on Figure 4.1. At the group
level, a common soil in the east side of the North Island, the Orthic Brown (BO) soil dominates
over the study area, while patches of Orthic Gley (GO) soils occur along the main water ways
and Firm Brown (BF) soils can be found in the eastern side of the property with higher altitudes.
The topsoil is typically described as dark grey-brown while the subsoil is often brown or yellow-

brown with generally well-drained characteristics and fine texture.

175°51'30" | 175°52'30"  175°53'30"  175°54'30" 175°55'30" 175°56'30"

-40°43'

-40°44'

i

S S
175°52'E  175°54'E 175°56'E

-40°45'

I Soil groups based on
New Zealand Soil Classification

BO - Orthic Brown Elevation [m]
- ic Brow e
BF - Firm Brown § AcquaCheck probe 531

GO - Orthic Gley .
PI - Immature Pallic e Weather station . 143

-40°46'

Figure 4.1 Location of the research area, land cover (LINZ, 2017), soil cover (New Zealand Soil
Classification) and the distribution of the selected 20 microsites illustrated on a digital surface model.

4.2.2 Instrumentation and sensor data collection

4.2.2.1 AquaCheck multi-sensor probe specifications

The capacitance-based, 400 mm AquaCheck Sub-Surface probe is a robust multi-level device
with four sensors spaced at intervals of 100 mm and with a right hollow cylindrical shaped
sampling range. The sphere of influence can be approximated with geometric parameters of h
= 60 mm (cylinder height), r = 16 mm (internal radius) and R = 20-45 mm (external radius). The
probes are designed to be completely buried with an attached wire for data transmission to a
logger (Fig. 2B). The sensor transforms the frequency readings to Scaled Frequency (SF) as raw
output. The SF values range from 0-100 %, where 0 % is equal to a reading in open air, and 100

% when the sensor is immersed in distilled water. SF is calculated as per Eq. (4.1) as follows:

F,,—F
sF=-"2_° (4.1)
Fair_Fa

Where F; is the frequency reading in the soil, F,;, is the sensor frequency reading in air, and F,

is the sensor frequency reading in distilled water (Zettl et al., 2015). The SF readings are
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automatically corrected for possible inherent temperature change by embedded compensation
functions. To calculate 6,, (%), SF values need to be converted using an empirical, laboratory-
based calibration curve. The conversion is not a built-in function; therefore, the device is offered
with factory calibration equations for six soil textures, e.g. sand, clay, silt loam, loam, clay and
generic (composited from sand, silt loam and clay soils) (Agri Optics, 2017). The linear calibration

equations provided by the manufacturer are in the form shown by Eq. (4.2):

where b, and b;are the y-intercept and slope parameters of the generalised linear regression
model and are dependent on the six determined soil textures. For the purpose of this study, the

resulting 8,, (%) output was converted to 8,, (m>m3).
4.2.2.2  Wireless sensor network based data collection and microsite design

At the Patitapu Station, a communication network utilising Wireless Sensor Network (WSN)
technology was deployed for the investigation of soil water distribution and temporal change in
the root-zone over a wide range of topographical positions on the farm. The WSN architecture
is composed of 20 multi-sensor probes, a gateway unit (base station and connecting point to the
cellular network) and a repeater station arrayed in a mesh topology. A typical example of a
microsite is illustrated in Figure 3.8 (A) in Chapter 3. Each multi-sensor probe was connected to
robust, long-range telemetry units for logging and transmission of data via radio connection to
the gateway. Each multi-sensor probe was buried vertically (Fig. 3.8 (B)) and placed
approximately 4 m away from the radio unit with a connecting cable running through a sealed
underground Alkathene pipe. Manufacturer-provided instructions were followed during the
probe installation to avoid preferential water flow and air gaps, as well as to ensure optimal
sensor contact with the soil. The interface board and battery (recharged by a solar panel) were
placed in a weatherproof enclosure mounted on a galvanised pole along with a long-range,
omnidirectional antenna (Fig. 3.8 (A)). The HALO Farm System, an online service developed by
Tag I.T Technologies Ltd (New Zealand, Hamilton), was used for web-based data collection and
management via cellular network. The criteria associated with the research objectives and the
farm management required the multi-sensor probes to be buried - this also provided equipment
protection. A two-month period prior to the experiment was allowed for the sensors to
equilibrate with the surrounding soil. For the purpose of this study, sensor readings were
retrieved from the WSN database at the time closest to the time stamps of the sampling events

at each microsite, giving a maximum of 7.5 min of time difference between sensor reading and
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sampling. There was no false or unusual reading in the analysis based on a comparison to the

previous and the following three sensor readings.
4.2.3 Soil sampling and reference soil water content

The soil sampling events were carried out during dry (6,, ~ 0.25 m®*m3), moderately wet (6,, ~
0.35 m®*m) and wet (6,, = 0.45 m*m3) stages of 6,, conditions over five sampling events (on
21/11/2016, 23/02/2017, 24/04/2017, 31/10/2017 and 18/11/2017 as marked on Figure 4.8).
The acquisition of gravimetric soil samples considered the variability in bulk density with depths,
thus the number of replicates were chosen accordingly. Reference soil water content values
were obtained from soil samples taken at multiple depths and the gravimetric water content
(8, gg*) was calculated by the standard gravimetric technique (Schmugge et al., 1980). For each
sensor, the laboratory 6, value was converted to 6, by multiplying by the mean pj, value. These
0, values were employed in comparisons and referred to as reference 6,, in the following
sections of the chapter. The fieldwork, sampling scheme and the laboratory work related to the

reference soil water content collection have been described in detail in Chapter 3, Section 3.3.
4.2.4  Soil description and soil texture

In this study, a laser scattering particle-size distribution analysis was performed on composited
samples (three replicates at each depth) using a Horiba LA-950 (HORIBA Scientific, Kyoto, Japan)
instrument to determine texture. The diameter range of the individual particle size classes were
defined by the U.S. Department of Agriculture (USDA) (Gee and Bauder, 1986) and their size
limits adopted in this analysis since it has been generally used in New Zealand for texture
analysis. Figure 4.2 (A) and Figure 4.2 (B) summarise the results from the particle size analysis
grouped by depth, along with the means and standard deviations (SDs) of the p;, values at each
microsite. Most of the 300 and 400 mm soil increments exhibited fine-textured silty clay loam
characteristics with 25 % and 28 % average clay content, respectively. Soil layers nearer the
surface tend to fall in the silt loam class with increased proportions of sand fractions and less
than 20 % clay content. Increasing p; values were observed with increasing depth with a mean
pp of 1.1 gcm™ for 100 mm, 1.22 gcm™ for 200 mm, 1.32 gcm™ for 300 mm, and 1.37 gcm™ at
400 mm depth (Fig. 4.2 (B)).
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Figure 4.2 Soil textural properties based on USDA classification (A) and measured bulk density p; (B) at
each microsite (1-20) for each soil depth on the study farm. Mean p,, is labelled and the error bars
indicate the mean * standard deviation.

Apart from py,, soil water holding properties are dependent on particle size distribution as well
as total organic carbon (TOC) content, which are the main parameters in most pedotransfer
functions that predicts field capacity, saturation, plant available water and permanent wilting
point (Yang et al., 2014, Minasny and McBratney, 2018). Thus, TOC values were derived for each
sensing depth at each microsite by a dry combustion method using a Vario MACRO Cube CHNS
elemental analyser (Elementar Analysensysteme GmbH, Hanau, Germany). The soil samples
taken on 31/10/2017 were used for the analysis providing a dominantly decreasing trend in TOC
content with depth at most monitored locations. The TOC values ranged between 2.01-5.31 %
(mean =3.48 %) at 100 mm, 0.64-4.27 % (mean = 2.13 %) at 200 mm, 0.54-2.91 % (mean = 1.32
%) at 300 mm and 0.52-2.39 (mean = 0.99 %) at 400 mm soil depth.

4.2.5 Calibration methods and sensor evaluation

4.2.5.1 Custom calibration approach

Custom calibration was carried out at three levels of scale to provide options for users
depending on their knowledge regarding the monitored soils. A farm-specific calibration (FC)
used the entire dataset to provide a single linear relationship i.e. a single equation for the
research area. At the next level of detail, microsite specific calibration (SIC), formulas were
developed to provide a linear calibration for each microsite/probe (20 in total). These
calibrations ignored the change in soil properties with depth. At the highest level of detail (SEC),
a custom calibration formula was determined for each depth for each sensor, resulting in 80

individual calibration equations.
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4.2.5.2  Statistical assessment of factory calibration and sensor accuracy

In this study, 6,, values computed by various factory calibration formulas were compared, the
relationship between SF and reference 8,, was analysed, and sensor reported 8,, determined by
three custom calibration and factory supplied functions were related to reference 8,,. A simple
linear regression approach was followed to investigate how SF and reference 6, were
associated. The assessment was performed for different subsets based on depth and calibration

type to identify errors and model fit for each group.

For the evaluation of sensor accuracy and the applicability of factory calibration functions, two
primary statistical indicators were utilised, i.e. the degree of coincidence and the degree of
association. The degree of coincidence was expressed by Absolute Accuracy Error (AAE, Eq. 4.3),
Mean Bias Error (MBE, Eq. 4.4), Mean Absolute Error (MAE, Eqg. 4.5) and Root Mean Square Error
(RMSE, Eq. 4.6) to assess how well sensor measurements matched the reference water content
values following the equations in Willmott (1982). AAE, MBE, MAE and RMSE are considered as
best measures of overall accuracy, reliability and model performance. The simultaneous use of
these metrics are often beneficial to assess model performance, thus their customised forms

are commonly applied in evaluation studies (Willmott, 1982, Chai and Draxler, 2014).

AAE = Ysen i — Yrefi (4.3)
1 n
MBE = EZ(Yseni — Vref i) (4.4)
i=1
1 n
MAE = ZZ')’seni — YVref i| (4.5)
i=1
1 n
2
RMSE = Ez (yseni - YTefi) (4.6)
i=1

where [ is the data pair index, n is the number of observations, y., is the sensor data and y,.s

is the reference 8,,.

The simplest measure, AAE, was used to retrieve the magnitude of difference for each sample
pair of sensor reported values and reference 8,,. AAE is the most useful when individual data
pairs are examined. If the AAE values are averaged over multiple measurements, the MBE can

be obtained that intends to measure average model bias. The MBE value can convey information
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on the degree of overestimation (positive) or underestimation (negative) (Sheiner and Beal,
1981) when calibration methods are compared to each other or to the reference 6,
measurements. The linear score of MAE was also calculated that measures accuracy by giving
the average magnitude of the prediction errors regardless their direction and by weighing
individual differences equally. Ideally, 8,, measurements are preferred within a certain threshold
(depending on applications and sensor type) and large errors are not desirable, therefore RMSE
was computed to penalise data pairs with large differences by giving them proportionally high
weights. The coefficient of determination (R?, the square of the Pearson correlation coefficient)
was selected as a measure of the degree of association, indicating how well regression models

can be fitted to raw sensor data, calibrated datasets, and to reference 8, data.

A general linear model approach (two-way factorial analysis of variance (ANOVA)) was chosen
to test the effect of soil physical properties, soil depth and calibration type on sensor response.
Firstly, sensor readings at five SF levels (i.e. 40, 50, 60, 70, 80 % + 0.5 %) and their corresponding
reference 6,, values were selected to examine whether the sensors would produce the same SF

values if either the soil texture or p, was different.

Secondly, ANOVA offers a statistical means of assessing the influencing power of a measured
variable (i.e. clay content /pj,) on a dependent continuous variable (i.e. sensor error) in addition
to a secondary categorical variable (i.e. depth/calibration method that contain a finite number
of categories). The influencing power of soil properties was expressed by statistical significance
(P value) and mean measurement error. It is assumed that the measured soil variables have not
been controlled by the experiment, but are considered to influence sensor performance. It is
also assumed that the relationship between the measured soil properties and the sensor errors
are linear based on previous findings regarding electromagnetic sensors types (Varble and

Chavez, 2011, Parvin and Degré, 2016).

To help visualising these relationships, interaction plots are commonly used to analyse the
interaction between categorical variables and a continuous response depending on the value of
another factor (calibration method). For example, the effect of clay content and p;, on sensor
error was visualised by displaying the levels of clay content / p;, on the x-axis with the means of
the continuous variable for each factor level on the y-axis. Both ANOVA related analyses were

conducted using the R statistical software version 3.4.1. (R Core Team, 2017).
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4.3 Results and discussion

4.3.1 Assessment of manufacturer provided formulas

The sensors measured SF was converted to 8, by the factory provided conversion equations
and compared to 400 (80 samples per sampling event) corresponding reference 8,,. While the
soils at the microsites are mainly silt loam or silty clay loam, five conversion formulas were
selected for comparison. Table 4.1 provides a depthwise summary about the statistical
measures of the various factory supplied calibration. Due to the linear nature of the factory
calibration, R? values varied only with depth, giving a range of 0.74-0.49 through the observed
soil profile. During the examination of the manufacturer calibration functions, the closest
agreement with reference 6, was achieved by the loam soil specific factory calibration,
performing slightly better than the clay soil formula. The loam calibration resulted in a range of
0.038-0.043 m*m= for RMSE between the reference 6, and the sensor reported 6, across all

depths providing the best overall accuracy.

Table 4.1 Statistical comparison of reference volumetric soil water content (8,,) and five manufacturer
calibrated 6,, at multiple soil depths. The values are presented in m®m=3,

100 mm (R2=0.74) 200 mm (R2 = 0.57) 300 mm (R? = 0.54) 400 mm (R? = 0.49)

Calibration RMSE  MAE MBE RMSE  MAE MBE RMSE  MAE MBE RMSE  MAE MBE
Loam 0.043 0.035 -0.015 | 0.043 0.037 0.011 | 0.038 0.030 0.017 | 0.038 0.030 0.013
Clay 0.061 0.051 -0.044 | 0.047 0.037 -0.015 | 0.040 0.032 -0.005 | 0.044 0.035 -0.007

Generic 0.104 0.096 -0.096 | 0.080 0.068 -0.068 | 0.071 0.062 -0.060 | 0.074 0.065 -0.063

Clay loam 0.109 0.101 -0.101 | 0.084 0.073 -0.073 | 0.075 0.066 -0.065 | 0.078 0.069 -0.067

Silt loam 0.125 0.118 -0.118 | 0.102 0.093 -0.093 | 0.095 0.089 -0.089 | 0.100 0.094 -0.094

The generic and clay loam calibration functions did not perform well providing very similar error
levels with 0.071-0.109 m3® m3RMSE. The loam type of factory calibration resulted in 0.163 m3
m= root mean squared difference in loamy soils in comparison to neutron scattering
observations according to Singh et al. (2018) which also highlights the uncertainty in the
manufacturer calibrations and the need for soil- or microsite-specific formulas. The silt loam
type of conversion significantly underestimated the 6, giving -0.0985 m* m™ of MBE and RMSE
between 0.095-0.125 m3 m= depending on depth. In comparison with the other four texture-
specific methods, the silt loam calibration showed the largest underestimation of the true 8,,.
The assessment also showed generally higher error values in the top half of the profile than in

the deeper sections regardless of the calibration method which was also observed by Nolz

(2013) when comparing AquaCheck readings to EnviroSCAN estimations. Similar trends were
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reported by Mittelbach et al. (2012) during an evaluation of low-cost sensors to TDR

measurements on loam and clay loam soils in Switzerland.

Taking into consideration the soil textural properties found at the majority of the microsites,
AquaCheck probe users would apply the silt loam specific equation to compute 8,, for their
applications. Therefore, the silt loam formula was selected and referred to as manufacturer

calibration (MC) in the further analysis and various comparisons.

4.3.2 Regression calibration

4.3.2.1 Relating raw sensor readings to reference volumetric water content

Raw sensor outputs as a function of true 8,, were analysed by fitting a linear model on SF and
reference 6,,. The relationship between SF and reference 8,, demonstrated significant positive
linear correlations at every depth (Fig. 4.3 (A)). However, the slope and intercept of the fitted
models differed for the various soil depth intervals (Fig. 4.3 (B)). The linear regression explained
58 % of the variability on the entire dataset and 74, 57, 54 and 58 % at 100, 200, 300, 400 mm
depth, respectively. Since the correlation between raw AquaCheck SF and reference 6, was
characterised as positive moderate (R* between 0.5 - 0.7) and strong (R* > 0.7), a linear
regression calibration approach was followed to develop custom calibration functions to
improve the precision of 6, predictions at different microsites and depths on the study farm.
Since there is a saturation or plateau effect at the extremely wet end of the soil 8, range (Fig.

4.8), a more complex model fit seems desirable for these conditions.
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Figure 4.3 Graphical representation of linear fit between sensor reported scaled frequency SF and
reference @, on the entire dataset (A) and depthwise (B).

A laboratory-based calibration process on site-specific soil samples could potentially improve
the model fit between raw SF readings and high-resolution reference 6, covering the entire

sensing range and lead to the development of non-linear models. Considering the linear
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regression approach followed by the manufacturer and the main objectives of the study the
linear calibration method seemed to be the most practical statistical approach that could be

easily reproduced by individuals not belonging to the scientific community.
4.3.2.2 Development of the custom calibration functions and model fit analysis

Figure 4.4 presents the steps and results of an example how SIC (Fig. 4.4 (A)) and SEC (Fig. 4.4

(B)) equations were developed at a selected microsite (namely, Site 9).
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Figure 4.4 Linear regression at a selected microsite (Site 9) for creating the microsite-specific (A) and
the sensor-specific (B) formulas. A comparison of reference 6, factory calibrated and custom
calibrated 0, (farm-specific: FC, manufacturer provided: MC, microsite-specific: SIC and sensor-specific:
SEC, is presented in (C) while their correlation is shown in (D).

Notice, MC, FC and SIC methods use only one single equation for each probe at a particular
location. The SIC model was fitted on reference 8, and SF readings obtained from all four depths
containing 20 data pair at each microsite. The SEC formula was generated from five data pair for
every individual sensor. As a final step, 8,, computed by MC, FC, SIC, SEC were compared and
correlated to the reference 6, to assess the difference in the converted 8, by various calibration

functions (Fig. 4.4 (C) and (D)).

The general trend given by the reference 6,, was followed by both the MC and the custom
calibration formulas (Fig. 4.4 (C)), although, it is clearly indicated that the custom linear
regression coefficients are able to offer a better agreement between the sensor predictions and
the reference 6,. Figure 4.4 (D) plots the model fits after calibration, where SEC method
evidently demonstrated an improved 0.89 R? as opposed to the 0.64 R? given by the other three

calibration methods.

The calibration process and the computation of R? values were completed on every microsite at

each depth for the four calibration methods. Figure 4.5 (A) summarises the results grouped by
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the methods and Figure 7B presents the statistical distribution of R? at each depth. The
correlations between the sensor predictions and the reference 8, obtained at the four soil
depths (Fig. 4.5 (B)) were significantly different, indicating that one calibration formula for one
microsite might not be sufficient, thus SEC for each soil depth may be used for applications

where high accuracy is required.

FC MC SEC Sic
0751 [ % ! | ===
- —" —— T—

®

ot
&)
=}

o
)
a

o
o
=}

Calibration type
100mm 200mm 300mm 400mm

. I

]
n I L !
s | > *

-
o
o

e

3

a
—

Coefficient of determination R?

e
0
o

0.25
N
0.00 <B/

Soil depth

Figure 4.5 The linear model fit is represented by the distribution of the coefficient of determination (R?)
considering every microsite for each calibration method (farm-specific: FC, manufacturer provided: MC,
microsite-specific: SIC and sensor-specific: SEC) (A) and for each soil depth (B). Upper extreme, upper
quartile, median, mean, lower quartile and lower extreme are represented for each box.

The model fit for the 100 mm soil depth produced the highest mean R? of 0.91 and the 400mm
soil depth demonstrated the lowest, 0.70 R? while 200 and 300 mm depth intervals performed
similarly well, giving 0.8 and 0.77 of R2. In terms of calibration methods, SEC method with 0.86
mean R?demonstrated considerably better fit than the MC, FC and SIC methods showing mean

R? of 0.66 each.
4.3.2.3  Custom calibration accuracy and error assessment

To investigate the improvement in accuracy, 8, values calculated by MC, FC, SIC and SEC were
correlated to reference 6,, data and the change was examined both on the entire dataset (Fig.
4.6 (A)) and at each depth (Fig. 4.6 (B)). The custom regression calibrations FC, SIC and SEC led
to substantial improvement in terms of accuracy of 8,, prediction considering the entire dataset.
The overall regression developed for FC resulted in appreciable improvement compared to the
MC method. The SIC method resulted in RMSE of 0.029 m®*m= compared to 0.039 m*m= for FC
and 0.106 m*m3 if the MC approach was utilised. The best performance was achieved by the

SEC formulas with mean RMSE of 0.019 m3®m (Table 4.2).
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Figure 4.6 Graphical representation of linear model fit between corresponding reference 8,, and the
custom calibrated values (farm-specific: FC, manufacturer provided: MC, site-specific: SIC and sensor-
specific: SEC) for the entire dataset (A) and separately at four depths (B).

The MAE ranged from 0.09-0.118, 0.025-0.039, 0.019-0.029 and 0.013-0.019 m*m? for MC, FC,
SIC and SEC, respectively, meaning that the absolute error and the error range through four
depths were reduced by moving towards the calibration at the sensor level. MBE varied between
-0.089-(-0.118) for MC, -0.021-0.007 for FC, -0.016-0.027 for SIC and gave 0.000 m*m for SEC,
suggesting that 8,, obtained by MC considerably underestimated the gravimetrically measured

reference 0,,.

Table 4.2 Statistical comparison of reference 8,,, farm-specific (FC) manufacturer-calibrated (MC),
microsite-specific (SIC) and sensor-specific (SEC) calibrated 8, at four depths. The values are given in
m3m3, Cal - calibration type

Depth 100 mm 200 mm 300 mm 400 mm

Mean
RMSE

Cal. | RMSE  MAE MBE RMSE  MAE MBE RMSE MAE MBE RMSE  MAE MBE
MC | 0.125 0.118 -0.118 | 0.102 0.09 -0.093 | 0.095 0.09  -0.089 0.1 0.09 -0.094 | 0.106
FC | 0.047 0.039 -0.021 | 0.042 0.036 0.003 | 0.034 0.027 0.007 | 0.034 0.025 0.001 | 0.039

SIC | 0.034 0.029 -0.016 | 0.032 0.027 0.006 | 0.025 0.019 0.008 | 0.024 0.019 0.002 | 0.029

SEC | 0.018 0.014 0.000 | 0.023 0.019 0.000 | 0.018 0.015 0.000 | 0.017 0.013 0.000 | 0.019

SEC was able to remove the presence of systematic over- or underestimation as the errors
cancelled out (Table 4.2). These results show that even a single farm-specific calibration will
perform better than the universal factory formulas. If the sensors are used in precision
agriculture applications, a SEC calibration will produce accuracy beyond the single FC and SIC
calibration, making perceivable difference on the long run in irrigation scheduling. Furthermore,

fertiliser applications are strongly dependent on the right amount of 8,, (Monaghan et al., 2007,
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Ma and Herath, 2016), thus more precise timing of inputs (at least matter of days) can be chosen

by using the most detailed, SEC method.

However, the distribution of errors in relation to reference 8,, was not uniform. The pattern of
error distributions was examined by the correlation of reference 6,, and the calculated AAE for
each custom and MC methods as plotted in Figure 4.7. To describe 8,, conditions during the five
sampling events, the frequency distribution of reference 8,, was displayed in the bottom of
Figure 4.7 for each depth. The histograms clearly demonstrate the wider range and higher
variability of reference 8, in the surface than in the deeper sections. At the 300 and 400 mm
depths, the shape of the data is slightly skewed to the left showing that the deeper part of the

soil profile was usually wetter than the surface on the date of sampling events.
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Figure 4.7 Absolute accuracy errors (AAE) of the AquaCheck reported data using the manufacturer and
custom calibrations with frequency distribution of reference 0, for each depth (farm-specific: FC,
manufacturer provided: MC, microsite-specific: SIC and sensor-specific: SEC). AAE is calculated as the
difference between calibrated sensor readings and reference 8,,.

In the upper section of Figure 4.7, normal confidence ellipsoids were added to the scatter plot
matrix with 95% confidence level as a graphical representation of correlation between AAE and
reference 6, (Friendly et al., 2013). At every depth, the ellipsoids are stretched out diagonally

from top left to bottom right indicating negative linear correlation.

The analysis revealed that sensor readings tend to overestimate the true 6, at drier soil
conditions (6,< 0.28-0.35 m*m, depending on the depth and calibration type). On the other
hand, underestimation occurred during the wetter soil stages, the largest AAE increased to 0.012
m3m?3 if FC and to 0.009 m3m?3 if SIC method was applied at 100 mm depth. The FC and SIC
methods led to considerably reduced errors, SIC being more accurate than FC at every depth

level. In general, the lowest AAE was observed if SEC calibration was used with less significant
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correlation, while the largest absolute differences were given by the MC. SEC was able to limit

the AAE to around #0.05 m®>m3for most observations at all depths.

The more elongated ellipses in the 100, 200 mm depths suggest higher correlation (R? of 0.56
for FC, 0.5 for MC, 0.30 for SIC and 0.05 for SEC at 100 mm) than the less elongated, nearly
circular shaped ellipsoids, for the deeper parts of the monitored soil profile (R? of 0.26 for FC,
0.21 for MC, 0.1 for SIC and 0.13 for SEC at 400 mm). R? typically decreased as the scale of the
calibration moved from FC towards the SEC, suggesting improvement and less sensitivity to high
and low moisture conditions. These results depict that the effect can be minimised by calibration
at the probe or sensor level, thus underestimation and overestimation can be diminished in
comparison with MC. Furthermore, Mittelbach et al. (2011) and Mittelbach et al. (2012) found
similar AAE trends for capacitance and FDR based sensors, who also emphasised the importance
of site-specific calibration and the sensitivity to soil types that agree with the findings of this

study.

A sensor-specific calibration might be an ideal option when the soils have variable physical
properties within the monitored profile. The collected and analysed data indicates that the
AqguaCheck sensors can be effectively field calibrated using direct gravimetric measurements.
Consequently, the new calibration coefficients developed in this study could be used for soils
with similar textural properties. The key findings of this study is supported by other field-based
evaluation experiments, stating that root mean square difference values dropped significantly
when microsite-specific or sensor-specific equations were applied (Rudnick and Irmak, 2014,
Singh et al., 2018). The generated custom calibration functions are expected to carry robust
representations of accurate soil water measurements, since a wide spectrum of 6,, were used
for the analysis along with sensor reported data acquired from 20 replicates. Therefore, the WSN
deployed at Patitapu Station can be applied to validate soil moisture products from other

sources, such as remote sensing.
4.3.3 Prediction of soil water temporal trends

Exploring the long-term behaviour of sensor response and general probe reliability through a
time-series based comparison is of great importance since it can reveal hysteresis effects,
reliability issues, technical problems and variation in measurement accuracy. It also highlights
the relevance of soil or site-specific calibration development in capturing moisture sorption and
desorption, especially when irrigation scheduling is guided by real-time soil water data from in
situ sensors. On the other hand, in rainfed pastoral systems, timing of fertiliser application in

relation to the received rainfall and the current state of 8,, can be crucial since untimely nutrient
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management can lead to nutrient loss and reduced amount of input taken up by plants (Beegle
et al., 2000). Pasture growth rates are largely governed by soil water content; therefore,
monitoring the temporal evolution of 8,, serves a valuable part in land management practices
and sufficient exploitation of the uncontrollable land resources (Scott et al., 1985, Shadbolt and

Martin, 2005).

Temporal evolution of climate variables is presented on Figure 4.8 including daily mean 8,
computed by MC at 100 mm depth with * SD, total daily rainfall, daily mean near-surface soil
temperature (obtained from 100 mm depth) = SD, and daily maximum 2-m air temperature.
Prior to trend analysis, the 15-min 6,, readings were converted to daily time series of 8,, and
then the data obtained from 20 probes were averaged for each depth. The probes have a built-
in compensation factor for correcting the effect of temperature, thus the effectiveness of

correction functions are not discussed in this paper.

The 68, monitoring started in the wet season (November 2016) which was followed by a drying
out period for about 2 months. In late January, the soils began a rewetting stage leading towards
near-saturated conditions in July and the 8,, levels remained high during the wintertime. In the
second half of October 2017, a rapid drying period occurred which was significantly more intense
thanin the previous year. During the experiment, 1111.2 mm rainfall was recorded by property’s

weather station, showing an extremely heavy rainfall of 123.8 mm on 14 July 2017.
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Figure 4.8 Temporal evolution of the main climate drivers, such as daily maximum 2-m air temperature,
daily precipitation, near-surface soil temperature tstandard deviation (100 mm depth, n = 20) and mean
volumetric soil moisture 0, + standard deviation (100 mm depth, n = 20) converted by the silt-loam
factory formula (MC). The temporal distribution of sampling events (S1-S5) and a zoomed in view of the
saturation (plateau) effect are depicted.
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The dynamic sensor response to the timing and magnitude of rainfall events, drying cycles and
the temporal trends of the climate variables were observed to be reasonable during the one-
year observation period. It can be concluded, that the sensors demonstrated stable response to
changes in soil Ka, i.e. indirectly to 8,, fluctuations making them reliable to use in non-irrigated

farm management as well as in irrigation scheduling.

The differences of the continuous data between MC and custom calibrations and the variation
among the four depths areillustrated on Figure 4.9. As it was expected the 100 mm, near-surface
layer showed the highest rate of drying out process and the largest temporal variability of 8,,
ranging from 0.24-0.47 m®*m?3 if the SEC method was applied. The lowest temporal 8,, variation
was found in the deepest section of the observed soil profile, giving a range of 0.29-0.42 m*m’
3. Factory calibration and the custom calibration methods followed the same trend, although

the 6, variation and range among the 20 microsites decreased downwards the soil profile.

Sampling events were added to the timeline (marked with dotted lines) with the corresponding
mean reference 8,,, so the temporal position of the collected gravimetric samples can be related
to the evolution of 8, through the experiment period. The SD was computed from the 20,
composite samples at every sampling campaign for each depth. Overall, the 100 mm reference
measurements exceeded the greatest spatial variability, whereas the reference set from 400

mm depth showed the smallest dispersion.

The interaction of numerous environmental parameters, such as incoming solar radiation,
evapotranspiration, precipitation and wind causes higher variation in the surface layers than
deeper in the soil profile. The comparison between MC and SEC exhibited more significant
differences in the top layer than in the deeper sections. The MC approach presented
underestimation over the entire observed timeframe at all depth, although a reduced difference
was observed during the dry seasons. This result suggest that the measurement error tends to
be larger when the 8, is close to field capacity, while the sensor readings show closer agreement
to reference 6, in dry conditions. FC and SIC showed very similar behaviour through the profile
and the study period except at the shallowest depth where the wet season exerted the greatest
differencesin 6,, between the MC and SEC. It was found that MC does not represent consistently
the entire measurement range. The difference between MC and SEC began to increase at > 0.33
m3*m?3 6, levels especially in the 100 mm depth, although better agreement was observed in

the low 6, range (< 0.33 m*m?).
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Figure 4.9 Temporal evolution of 0., at four consecutive soil depths based on factory offered (MC), farm-
specific (FC), microsite-specific (SIC) and sensor-specific (SEC) calibrations. Mean reference @,
tstandard deviation (n = 20) corresponding to the sampling events are shown for each depth.

The application of factory provided and custom calibration functions to the time series output
of the probes resulted in a visually more sensible representation of the importance of using the
custom calibration functions. In case of irrigation scheduling, the improved prediction of daily
water content will improve water usage and optimise water management as well as reduce the

amount of water leaching below the root zone.

4.3.4 Effect of soil properties on sensor performance

4.3.4.1 Raw sensor output dependence on clay content, bulk density and total organic carbon

content

Capacitance technique relies on the principle that 8, is the main influencing factor of the change
in soil Ka. Figure 4.10 (A), Figure 4.10 (B) and Figure 4.10 (C) present the sensor response at five
predetermined SF levels with their corresponding reference 8,, as a function of soil clay
content, p;, and TOC, respectively. Reference 8,, observations were selected corresponding to
the SF output levels of 40, 50, 60, 70 and 80 % 0.5 % to explore the potential impact of the
clay content, p; and TOC on the 8,, readings. At the 40, 50, 60 and 70 % SF levels, increasing
clay content reflected lower reference 6,,, while the 80 % SF level expressed the opposite trend.
A similar behaviour was observed for p, at the same SF categories. However, an a reversed
trend occurred in the case of TOC, i.e. decreasing TOC resulted in decreasing reference 8, at a

given SF level (Fig. 4.10 (C)) except at 80 % SF that showed the opposite trend.
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Figure 4.10 Reference 0, at selected raw sensor scaled frequency SF output levels plotted against clay
content (A), bulk density p; (B) and total organic carbon (TOC) content (C).

By the utilisation of the factory-supplied conversion (i.e. not depth- specific calibration), our
interpretation would suggest that at 40 % SF output, the predicted 8,, could fall anywhere
between a relatively wide range of 0.27-0.17 m*m™ depending on p,, or the amount of soil clay
present. In other words, increasing clay content and pj, can lead to increase in raw sensor
outputs at the same 6, level. Dielectric sensors have been reported to overestimate 6,, with
increasing clay content (Rldiger et al., 2010, Sharma et al., 2017). Parvin and Degré (2016)
reported increasing raw outputs for the layers with increasing clay content and p;, in case of
capacitance sensors in contrast to Seyfried and Murdock (2001) who observed that increased
bound water (i.e. increased clay content) resulted in decreased Ka, hence lower raw output
values. In our study, the former has been observed, except in the very high 8, range, i.e. at 80
% SF level. Since the clay content and p;, showed noticeable variation with soil depth at every
microsite (Fig. 2), the SEC type is recommended to minimise these effects when AquaCheck

products are chosen under similar soil conditions.
4.3.5 Summary of the analysis of variance (ANOVA)

Sensor errors were defined and computed as the difference between calibrated sensor readings
and the reference 8,, and used as input of the statistical analysis. As a result of the two-way
factorial ANOVA, it was observed that soils’ clay content and the depth tend to have notable
statistical effects on the sensor errors but their interaction is only significant on the 0.05 level
(Table 4.3). Since the soil texture (including clay content) and p, change with depth in a very
similar manner (Fig. 4.2), the combination of their influencing power may be reflected by the

depth as a factor.

The correlation between the sensor errors and soil clay content showed a P value < 0.001 and
the soil depth exerted an important effect at the 0.001 level. The interaction of clay content and

the calibration method factor was defined to be significant with P value < 0.001.

114 |Page



Hajdu: Soil water modelling in hill country AquaCheck sensor calibration

Table 4.3 A summary of the results from ANOVA using measurement error as dependent variable
related to various factorial variables (Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1’ 1).

Source Degree of freedom  Sum of Squares  Mean Square F value P value Significance
Clay 1 0.105 0.105 37.665 1.06e-09 *kk
Depth 3 0.046 0.015 5.440 0.00101 **
Clay : Depth 3 0.021 0.007 2.479 0.0596
Residuals 1592 4.457 0.003
Pb 1 0.033 0.034 11.82 0.0006 *xk
Depth 3 0.069 0.023 8.101 2.35e-05 Hkk
Pp : Depth 3 0.018 0.006 2.124 0.0952
Residuals 1592 4.508 0.003
TOC 1 0.072 0.072 25.539 4.84e-07 *kk
Depth 3 0.036 0.012 4.256 0.00528 **
TOC : Depth 3 0.006 0.002 0.703 0.55
Residuals 1592 4514 0.003
Clay 1 0.105 0.105 105.4 < 2e-16 *okx
Cal. type 3 2.871 0.957 956.2 < 2e-16 *kx
Clay : Cal. type 3 0.059 0.02 19.6 1.78e-12 *Ek
Residuals 1592 1.593 0.001
Pb 1 0.034 0.0335 31.113 2.86e-08 *kk
Cal. type 3 2.871 0.957 889.657 < 2e-16 *kx
Clay : Cal. type 3 0.012 0.004 3.606 0.0129 *
Residuals 1592 1.713 0.001
TOC 1 0.072 0.072 69.535 < 2e-16 *kx
Cal. Type 3 2.871 0.957 918.967 < 2e-16 *kx
TOC : Cal. type 3 0.027 0.009 8.742 9.45e-06 *kk
Residuals 1592 1.658 0.001

The high importance of p;, was also indicated by the ANOVA, giving a P value < 0.001. Calibration
type and depth demonstrated strong influence on the sensor error distribution with a significant
interaction between calibration method and p,, at the 0.05 level. According to the ANOVA table,
soil clay content has statistically higher influencing power than the p;,, although they both
represent the highest statistical significance category. The soils’” TOC content demonstrated
strong impact on sensor errors (P value < 0.001) while the interaction effect between TOC and
soil depth was not significant (P value of 0.55). In contrast, the interaction between the

calibration type and TOC was found significant with P value < 0.001.

The two-way interaction plots (Fig. 4.11) display the clay content (Fig. 4.11 (A)), pp (Fig. 4.11 (B))
and TOC (Fig. 4.11 (C)) levels plotted against the mean of the 8,, errors at each level for each
calibration method. The fitted regression lines with 95 % confidence intervals helped to identify
the differences caused by the factors considered. The difference in the slopes of the linear
functions indicates the rate of change, thus the effect of clay content, p; and TOC is the most
significant in the case of MC, less important for FC, hardly noticeable for SIC and completely
eliminated by the SEC calibration. Furthermore, low clay content and p, resulted in
underestimation of 8,,, while increasing values of both variables showed overestimation when

MC, SIC and FC were applied. In contrast, overestimation was observed with low TOC content
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and greater TOC values were associated with underestimation of 6,,. These findings represent

defined influencing trends on sensor performance and error distribution (Fig. 4.11).
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Figure 4.11 Interaction plots presenting the influencing effects of clay content (A), bulk density p; (B)
and total organic carbon (TOC) content on sensor performance with respect to measurement error
distribution. The solid lines indicate linear model fits with 95% confidence intervals and the dashed lines
mark the separation line between under- and overestimation.

With increasing depth, the p;, also increased and it shifted the sensor errors towards the positive
side meaning that overestimation of 8,, could occur in soils with high p;, and underestimation
may be observed in soils with lower p;,. The slopes’ inflection points were found at 23 % clay
content and 1.27 gcm? p,, (dashed vertical lines), respectively, indicating the observed boundary
between under- and overestimation of 8,, at the study microsites. Interaction occurs mainly
between MC, FC, SIC and SEC since the individually calibrated sensors acquired readings without
sensitivity to the soil textural properties. Based on the results from ANOVA and the generated
graphs shown, it is evident that the investigated soil physical properties have influencing power

on the sensor readings, which should be taken into consideration.
4.4 Conclusions

We deployed and assessed capacitance-based AquaCheck subsurface multi-sensor probes in
terms of performance and accuracy in monitoring 8, at four depths, and at 20 locations. The 20
probes were organised into a WSN in order to collect high-temporal resolution data from soils
with varying physical properties on a hill country farm in the southern east coast of the North
Island of New Zealand. Our results clearly indicate the need for at least farm-specific calibration
of the AquaCheck sensors since the application of factory-supplied formula for silt loam soils
underestimated the true 6,, (mean RMSE of 0.106 m*m). These findings were supported by the
significant effects of soil texture, p;, and TOC (P value < 0.001) on the error distribution, thus on

the conversion of SF readings to 8,, in the soil profile.

Compared to direct thermo-gravimetric 6, measurements, the farm-specific (RMSE of 0.039 m?

-3

m3, coefficient of determination of 0.58 R?) and microsite-specific calibrations reduced the
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effect of the considered soil physical properties (i.e. wetness, clay content, p;, and TOC) resulting
in a significant improvement in sensor measurement accuracy (RMSE of 0.029 m3®m3, coefficient
of determination of 0.77 R?). In terms of absolute error distribution, positive errors were found
in drier conditions (6,,< 0.28-0.35 m*m) while negative errors were observed in the wetter soil
stages if absolute errors are related to reference 6,,. To eliminate the impact of these physical
parameters, the sensor-specific calibration approach is recommended (RMSE of 0.019 m3>m?3,

coefficient of determination of 0.9 R?) that limited the absolute errors below + 0.05 m®*m™=.

The suggested calibration method is limited in that it requires soil samples to be taken at dry,
wet and intermediate 0, levels, extending the time taken for this calibration procedure. The
results of our study provides a quantitative awareness concerning the precision level that can
be achieved by different levels of calibration methods and the amount of fieldwork required.
Therefore, the paper aimed to provide valuable information and operational performance
assessment for the application of the increasing number of AquaCheck sensors being installed
around the globe. By taking into account the results of this study, and the presented soil
properties, this type of sensor calibration may be applicable and useful for customers and
researchers working with AquaCheck sensors on variable landscapes with similar soil

characteristics in other regions of New Zealand or globally.
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Chapter

Analysis of field-scale, spatiotemporal soil moisture variability and

its characteristics in a hill country terrain
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5 Chapter 5 - Analysis of field-scale, spatiotemporal soil moisture
variability and its characteristics in a steep hill country terrain
5.1 Introduction

Near surface soil moisture and the water content in the effective rooting-zone exert significant
control on a wide spectrum of hydrological processes, soil water-plant relations and land-surface
interactions (Bardossy and Lehmann, 1998, Famiglietti et al., 1998). Although, numerous
environmental processes are demonstrated non-linear relationships to soil moisture dynamics
making the multicomponent system rather complex (Brocca et al., 2007). Hence, a solid
understanding on the soil moisture spatial patterns is crucial for hydrologic modelling, remote
sensing and indirectly for simulations, such as yield mapping, that utilises a spatially applied
water balance module (Grayson et al., 1997, Western et al., 1998, Refsgaard, 2001). Climatic
predictions, evaporation computations, watershed models, erosion control, runoff simulations,
and soil nutrients cycle estimations all rely on the horizontal patterns and distribution of
moisture vertically in the soil profile (Pachepsky et al., 2003, Zhu et al., 2009, Seneviratne et al.,

2010).

In hill country pastoral farming systems, where irrigation is not possible (minor percentage is
irrigated), plant growth is highly influenced by the management practices that take into account
the variation in soil water availability in both space and time. As soil water is a vital component
of yield forecaster algorithms for various fertiliser applications, it exhibits significant influences
on the simulation accuracy. For these reasons, there have been an increasing interest to extend
the body of our knowledge concerning the spatial and temporal variability of soil water content

(Albertson and Kiely, 2001, Wilson et al., 2003, Famiglietti et al., 2008b).

Soil moisture is commonly characterised as a highly variable environmental parameter even in
small catchments, due to the interaction of a multitude of factors (Vereecken et al., 2014). The
heterogeneity in soil types, vegetation cover, land use type, climatic variables, subsurface and
surface lateral flow processes and topographical attributes result in variable soil moisture
patterns in the field scale (Hawley et al., 1983, Burt and Butcher, 1985, Gomez-Plaza et al., 2000,
Vereecken et al., 2007). The interaction of static and dynamic controls can lead to various soil
moisture patterns for a given area during wetting, draining and drying periods (Reynolds, 1970,

Grayson et al., 1997).
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Soil moisture spatiotemporal behaviour is strongly dependent on scale and it remains largely
undocumented in complex landscapes such as the hill country of New Zealand. These rugged
environments tend to enhance the spatiotemporal variations of soil moisture depending on the
scale (Vanderlinden et al., 2012), introduce challenges and large uncertainties in accurate

prediction of soil water fluxes.

Although, soil moisture changes with time, spatial soil moisture patterns have been observed to
represent similar arrangements at different time steps at a given sampling location (Penna et
al., 2013). This phenomena was defined as temporal stability by Vachaud et al. (1985) and it was
described as ““the time-invariant association between spatial location and classical statistical
parameters of a given soil property”. Kachanoski and Jong (1988) examined the temporal
persistence of a spatial pattern of soil moisture as a function of spatial scale through successive
time intervals. From a practical point of view, time stability analysis is commonly applied to find
representative locations for long-term monitoring to avoid collecting biased measurements, i.e.
records from consistently wetter or drier locations than the field mean, and represent the mean

soil moisture for the entire study area (Grayson and Western, 1998, Penna et al., 2013).

A similar approach was followed by Martinez-Fernandez and Ceballos (2005) to identify
sampling stations in several networks that represent the mean soil moisture of the monitored
area. Following this concept, it is assumed that a systematically surveyed location will keep its
soil wetness characteristics with high probability on subsequent occasions (Hu et al., 2013).
Therefore, time stability can be utilised to reduce the number of monitoring sites incorporated
in a large network to a few representative sites as it suggests that spatial patterns persist
through time (Vachaud et al., 1985, Wagner et al., 2008). Although, it has been noted that
complex terrain driven hydrological processes and topographically routed soil moisture
redistribution might diminish the time stable feature of soil moisture patterns in such landscapes
(Kachanoski and Jong, 1988, Grayson and Western, 1998). The existing studies have been
conducted on a variety of spatial extents ranging from a few meters (Jacques et al., 2001) to
hundreds of meters (Famiglietti et al., 1998, Grayson and Western, 1998). Only a few studies
have discussed soil moisture stability on fields larger than a km? (Grayson and Western, 1998).
In addition, in terms of soil depth, most studies investigate the variability in the near surface, 0-
20 cm layer (Gomez-Plaza et al., 2000, Cosh et al., 2008) and only a few papers refer to the
deeper soil profile. Kachanoski and Jong (1988) examined temporal persistence down to 1.7 m

and Hedley and Yule (2009) monitored soil moisture patterns to 60 cm.
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The idea that soil moisture patterns are maintained over time for a specific field was investigated
in various ways in this chapter. If such a pattern was proven existing for the given area, it could
be used as advantage in several growing research fields, such as watershed scale studies and
validation of remote sensing products (Grayson and Western, 1998, Cosh et al.,, 2004).
Spaceborne radar (especially SAR) techniques have been increasingly used to generate remotely
sensed soil moisture information (Wagner et al., 2008, Alexakis et al., 2017), although the
retrieval methods are still only able to predict soil moisture on a large scale. The temporal
resistance of soil moisture may be reflected in the spatiotemporal change in the radar signal,
therefore it is of great interest to investigate this parameter (Wagner et al., 2008). The methods
relate the spatial mean soil moisture and standard deviation (SD) on a selected day to the soil
moisture measured at a given site within the field. However, the characterisation of soil
moisture spatial distribution and the temporal stability of a spatial pattern has not been feasible
at farm-scale due to the lack of reliable, accurate and high-resolution (between 10-100 m) soil
moisture products e.g. from spaceborne observations. In addition, remotely sensed soil
moisture products provide estimations in the near surface layer and need to be calibrated by
ground-based measurements (De Lannoy et al., 2006). Therefore, it is a common approach to
study the spatiotemporal distribution of soil water content by statistical methods using in situ,

ground measurements at the field scale (Walker et al., 2004, Brocca et al., 2007).

The advent of remote automated measurement technologies, such as wireless sensor networks
(WSN), enable customers, farmers and researchers to obtain data regularly without frequent
field campaigns (Robinson et al., 2008a, Bogena et al., 2010, Ekanayake and Hedley, 2018). In
addition, the sensor readings from numerous predetermined or randomly selected locations can
be acquired simultaneously without inconsistency in the data. The combination of advanced
multi-sensor probes and wireless communication technology allows the collection of temporally
dense soil moisture datasets with improved spatial coverage. A WSN was deployed on a hill
country property to collect frequent, point-based volumetric soil moisture measurements at

multiple soil depths.

This chapter presents experimental outcomes from a farm-scale research (14-km?) carried out
on a hill country farm in the lower part of the North Island, New Zealand. The soil moisture data
was collected from twenty locations distributed across various topographical positions with a
range of slope angle and aspect parameters. Consequently, a detailed evaluation of soil moisture
trends and its space-time variability on landscapes dominated by enhanced elevation gradients

have been possible. Moreover, soil water holding properties estimated by pedotransfer
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functions (Saxton and Rawls, 2006) were briefly investigated by comparing the soil

measurement distributions.
The ultimate aims of this analysis are to:

1. Develop new datasets and use novel techniques to investigate the temporal stability,
dynamics and spatial variability of soil moisture at the farm-scale.

2. Contribute to the improvement of water management decisions of pastoral systems in
dry, hill country landscapes.

3. Better understand the spatial and temporal patterns and trends on soil moisture
organisation by revealing the degree of impact caused by the topography at farm-scale.

4. To identify representative locations that can explain most of the variability over the
research area.

5. To characterise the individual microsites and the variability that occurred during the 22

months of recording time, which was divided into the sub-periods.

5.2 Materials and Methods

5.2.1 Study area and experimental microsites

The study site and the soil moisture data collection have been described previously in high detail

in Chapter 2, Chapter 3 and Chapter 4, therefore only a brief description is given here.

The study was conducted on a non-irrigated hill country farm, namely Patitapu Station (Fig. 5.1)
that is also the member of the farm group under research within the scope of the
Ravensdown/Ministry of Primary Industries PGP project, “Pioneering to Precision”. The
approximately 2600 ha, primarily beef and sheep farm is located in the East Coast Hill Country
area of the North Island of New Zealand (Manawatu-Wanganui region), which is also home for
a significant portion of the pastoral farmland in the country. The complex landscape can be
described as a mixture of plain surfaces, and slopes from undulating to steep classes covered by
approximately 1760 ha effective pastoral land for all year around grazing that is the focus of this

study (Fig. 5.1 top).

In terms of environmental features, the windswept land is characterised with huge variability in
physical resources including altitude, aspect, slope angle, soil type, and potentially rainfall
distribution. Concerning climate, the landowners and their management decisions are
confronted with highly heterogenic macro- and micro-climatic conditions that can result in not
only extreme rainfall events but also summer dry periods with and average annual rainfall of

1144 mm (Murray, 1982, Lang, 2015). Based on New Zealand Soil Classification system, the area

123 |Page



CHAPTER 5

is mainly covered by Brown Soils (Hewitt, 2010). The dominant soil textures are the variations
of weakly to moderately developed silt loam, silty clay loam, sandy loam and sandy silt loam

with different drainage properties (Landvision Ltd., 2009).

Elevation [m]

. 2797 N

>l< AquaCheck probe

Figure 5.1 A 3D illustration of the study area by a hill shade model (centre) and an aerial photo
superimposed on a high-resolution digital surface model (top middle). The distribution of the microsites
is shown in the middle on a hill shade model. In addition, three examples of the microsites, the probe
and the telemetry unit locations are illustrated by photos taken in the field.

5.2.2 Soil moisture data collection

Twenty microsite locations were selected at the Patitapu Station by a two-step, conditional
decision approach developed for this research. The spatial distribution of the microsites are
depicted on a hillshade model while a closer view of three microsites are illustrated by photos
in Figure 5.1. The microsite selection procedure was mainly governed by a collection of
geospatial information supported by field-based observations for validation. Several terrain
attributes, soil types, land cover uniformity and land management were taken into account in
the preselection stage along with the unique properties of the chosen instrumentation, with
wireless communication and data transfer being subjects to special concerns due to the

considerable difference in relief.
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The microsites were equipped with AquaCheck (AquaCheck Soil Moisture Management,
Durbanville, South Africa) sub-surface probes for the collection of multi-depth, temporally dense
(15-min intervals) soil moisture observations. The 400 mm AquaCheck probes are supplied with
four capacitance-based soil moisture sensors with sensing centre lines situated at 100, 200, 300
and 400 mm soil depths. The probes were attached to HALO telemetry units (Tag I.T
Technologies Ltd, New Zealand, Hamilton) utilising radio-based data transfer as essential
components of the Patitapu wireless sensor network. The raw AquaCheck sensor readings have
been converted to soil moisture on the volumetric basis (m3m3) using sensor-specific calibration
functions developed in Chapter 4 and reported by Hajdu et al. (2019). Thus, the expression “soil

moisture” will be used to refer to volumetric soil water content hereinafter in this chapter.
5.2.3 Soil texture and soil water holding properties

To characterise the soils at each microsite and define soil texture, undisturbed soil cores were
collected with three replicates using a soil auger. The relative size distribution of the primary
particles (sand, silt and clay) was quantified by a laser scattering particle size distribution analysis
or laser diffraction method using a Horiba LA-950 (HORIBA Scientific, Kyoto, Japan) instrument.

Table 5.1 summarises the soil physical properties at the individual microsites at each soil depth.

To compute theoretical soil water holding properties, the Soil Water Characteristics Hydraulic
Properties predictive system was used which was developed by Saxton and Rawls (2006). The
improved soil water characteristics functions and hydrologic relationships were based on a
previous, texture-based method developed by Saxton et al. (1986) and used in several studies
(Saxton and Willey, 2005, Oyeogbe et al., 2012). The Soil Water Characteristics module is able
to simulate soil water tension, conductivity and water holding capability by employing
pedotransfer functions that take soil texture, gravel content, compaction, salinity and organic
matter as input variables if available. In this study, the model was applied to estimate permanent

wilting point and field capacity while saturation was estimated from the field measurements.
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Table 5.1 The results of soil particle size distribution analysis for each microsite at four depths. Sa - Sand
fraction > 50um (%), Si - Silt fraction 50 - 2um (%), Cl - Clay fraction < 2 um (%).

Depths: 100 mm 200 mm 300 mm 400 mm

Site ID | Sand Silt Clay | Sand Silt Clay | Sand Silt Clay | Sand Silt Clay
1 13.28 75.43 11.29 | 12.71 73.25 14.04 | 10.19 7196 17.85 | 5.25 71.02 23.73
2 15.77 7489 934 | 15.12 7276 1213 | 1435 7431 11.34 | 10.76 71.65 17.59
3 19.44 77.54 3.02 5.87 78.81 1532 | 487 7633 1881 | 6.68 70.62 22.70
4 6.73 75.38 17.90 | 3.70 63.24 33.06 | 0.00 69.64 30.36 | 1.20 72.35 26.46
5 17.75 73.58 8.68 | 17.41 68.46 14.14 | 10.50 64.64 24.86 | 9.60 60.08 30.32
6 11.29 7536 1335 | 467 8135 1399 | 6.19 7457 19.24 | 6.06 67.61 26.33
7 18.24 7299 8.77 9.16 71.82 19.02 | 6.16 66.25 2759 | 2.26 60.91 36.83
8 5.02 6139 3359 | 6.76 62.80 30.44 | 465 61.22 34.13 | 850 64.44 27.06
9 30.26 65.37 4.37 | 20.86 6874 10.40 | 1040 66.26 23.35 | 10.43 65.42 24.16
10 1141 70.58 18.01 | 2.82 7396 2323 | 0.02 67.44 3255 | 6.04 64.18 29.78
11 5.37 7036 24.28 | 453 63.27 3220 | 3.54 66.46 30.01 | 1.53 69.67 28.80
12 10.98 69.22 19.80 | 3.76 68.23 2801 | 6.83 65.22 27.96 | 538 66.05 28.58
13 23.23 7297 3.80 | 13.34 6888 17.79 | 586 63.69 3045 | 6.40 66.74 26.86
14 19.52 68.21 12.27 | 11.72 72.74 1554 | 8.87 65.79 2534 | 593 59.68 34.39
15 16.50 72.73 10.77 | 12.87 81.51 5.62 0.22 7228 27.50 | 237 63.62 34.01
16 21.84 7054 7.62 | 2254 7420 3.27 | 1549 71.00 13.52 | 10.27 69.43 20.30
17 1470 67.85 17.45 | 3.10 69.61 27.29 | 564 6396 30.39 | 0.02 64.57 3541
18 21.00 6855 10.46 | 26.69 62.20 11.11 | 26.81 60.24 12.96 | 23.64 5823 18.13
19 2427 6788 7.86 | 1469 7181 1349 | 6.68 68.50 24.82 | 863 63.38 27.99
20 15.00 65.20 19.81 | 947 63.52 27.01 | 440 56.79 38.81 | 2.67 56.80 40.53
Ave 16.08 70.80 13.12 | 11.09 70.56 18.35 | 7.58 67.33 25.09 | 6.68 65.32 28.00

Silt Silt loam Silty clay loam Silty clay

5.2.4 Data analysis

The collected soil moisture dataset was divided into two main time intervals considering the day
when the wet period ended in 2017 October. By separating the data this way, full transition
periods can be examined independently from the calendar year that was better suited the
nature of the presented analysis. Therefore, a comparison of nearly two complete years (22
months) of soil moisture datasets was made possible. These two main data collection periods
are referred to as Year 1 (01/11/2016-08/10/2017) and Year 2 (08/10/2017-31/08/2018)
hereafter in this chapter. Within the two main time intervals, a series of drying and wetting

cycles were identified covering a wide range of soil water content values.

The statistical analysis applied consists of three main approaches. First, the overall statistical

behaviour of the dataset is characterised by descriptive statistics. As the second step, the
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temporal stability and variability of the collected data is investigated whereas the third approach

examines the spatial variability of soil moisture and its behaviour through time.
5.2.5 Analysis of temporal changes in soil moisture content

Four methods were used to investigate the temporal and spatial behaviour of the soil moisture
and find the most time stable soil moisture sensing locations. It has been shown that using only
one single method might not be sufficient to describe the time stability and its controls (Lin,
2006). According to the review given by Vanderlinden et al. (2012), the literature reported
contradictory results and the authors highlighted that some of the basic questions remained

unanswered with respect to soil moisture time stability.

The first method (1) used the classic approach proposed by Vachaud et al. (1985) as a parametric
test of relative differencing to reveal differences in constancy of temporal stability among the
sampling stations. To assess the temporal stability, the mean relative difference (MRD or SL-) and
the standard deviation of the relative difference (SDRD or o(8);;) were computed for all soil
moisture measurements at each sampling time for four soil depths individually as well as for
averaged depths. The property of Si being positive or negative indicates whether a given
microsite (i) is generally drier or wetter than the field mean soil moisture within the considered
period. The temporal stability was described by the SDRD of the microsite, the lower the SDRD

the more stable the microsite was during the experiment.

Following the equations suggested by the concept of Vachaud et al. (1985), the relative

difference §;; was determined as per Eq. 5.1 as follows:
8jj =——=— (5.1)

Where, S;jis the soil moisture content at sampling microsite i on day j, and the spatial mean soil

moisture S_] on day j can be calculated as per Eq. 5.2 as follows::

_ 1

Where, N is the number of sampling locations. Therefore, the MRD for each location is

computed as per Eq. 5.3 as follows:

1 m

Jj=1
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Where, m is the number of observations or dates when the soil moisture was recorded during
the study period. The microsite with the lowest MRD and SDRD values is generally considered
the most time stable location and the most representative of the field mean. This method is
efficiently used for identification of sampling locations that systematically show overestimation
or underestimation of the field mean soil moisture (Vachaud et al., 1985). The SDRD was
computed as per Equation 5.4 for each soil moisture recording station to describe the variability

of MRD at the given location considering the study period, as per Eq. (5.4) as follows:

1% _
(8)y = EZ(aij—ai)z (5.4)
=1

The second method (2) computed the index of time stability ITS or ITS;; introduced by Zhao et
al. (2010) based on the work of Jacobs et al. (2004). The ITS forms a single metric to quantify the
time stability using the MRD and SDRD e.g. the variance of the relative difference at a given
sampling location. The monitoring station with the lowest ITS is suggested to represent the point
with the highest time stability and high values indicates either the wettest or the driest
measurement sites (Jacobs et al., 2004, Penna et al., 2013). The formula for the calculation of

ITS is given below as per Eq. (5.5) as defined by Zhao et al. (2010)

ITS;; = \/(Sijz +0(8),,%) (5.5)

The third method (3) included the time stable point assessment that was conducted by the
calculation of the non-parametric, Spearman’s rank correlation coefficient r; as presented in
Penna et al. (2013) to compute the total agreement between the spatial patterns captured on
various dates. It can be used to determine if the soil moisture ranks at the sampling stations
persists over the study period. The Spearman’s rank correlation formula is given as per Eq. (5.6)

as follows:

2
6+ -1 (Rij — Rix) 56
N(NZ—1)

rs=1-

Where, R;; is the rank of variable i.e. volumetric soil moisture 6;; at microsite i and day j,
whereas R;, is the rank of the same variable at the same location but on day k, and N is the
number of microsites (N = 20). The higher value of 1 suggests higher time stability and r, = 1
corresponds to the perfect agreement between the spatial patterns on different dates, i.e. it

indicates the identity of the ranks on different sampling days (Penna et al., 2013). It should be
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considered only as a statistical tool that can be used for measuring the degree of concordance

between rankings (Vachaud et al., 1985) for instance on selected days.

The fourth assessment (4), further investigated the stability of the spatial patterns, cumulative
probability functions were computed for two extreme soil moisture stages e.g. the driest and
wettest state. This aims to quantify whether a given monitoring location is able to maintain its
rank on these two dates. The rank stability analysis was executed on all four depths combined
and it was carried out by the application of cumulative probability plots similarly to Gao et al.
(2011a) and Martinez-Fernandez and Ceballos (2003). As a last step, Pearson correlation
coefficients were determined to quantify the strength of the relationship between soil moisture
acquired at successive observation times across all spatial locations. The temporal persistence
of spatial patterns has been characterised by several authors by using this technique (Kachanoski

and Jong, 1988, Lin, 2006, Heathman et al., 2009, Hedley and Yule, 2009).
5.2.6 Spatial variability analysis

The spatial variability of soil moisture was investigated by the calculation of spatial field mean,
standard deviation (SD) and the coefficient of variation (CV) to describe relative variability
(Famiglietti et al., 1999). Analysing the relationship between the spatial field mean, SD and CV
has received considerable attention and it is a broadly used method for characterising spatial
variance and defining the probability density functions of the obtained soil moisture data
(Brocca et al.,, 2007, Molina et al., 2014). Additionally, these statistical parameters were
computed on a daily basis that allowed the examination of the spatial pattern in terms of

temporal stability (Peng et al., 2016) and made it comparable to other studies.

The SD and CV, calculated as the ratio of the SD of soil moisture to spatial field mean soil
moisture, were related against the spatial field mean soil moisture to characterise the dynamics
of the changing spatial variability through various wetness conditions and seasons following the

work of Molina et al. (2014).

5.3 Results and discussion

5.3.1 Descriptive statistics and soil moisture distribution over time

The generation of Kernel density plots is usually a much more effective way for comparison
purposes of continuous variables than histograms, as they are not affected by the number of
bins (Vermeesch, 2012). Therefore, the non-parametric Kernel density estimation technique
(Silverman, 1986) was employed to visually assess the nature of the distribution shape regarding

the entire soil moisture data population by computing the probability density function without

129 |Page



CHAPTER 5

assuming normality (Fig. 5.2). In this case, the 15-min readings were taken and the years were
plotted separately at each depth to be able to identify potential temporal stability trends and
the peaks where values concentrated in each year. The comparison was completed to be able
to explore the differences in the soil moisture pattern in similar wetness stages.
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Figure 5.2 Kernel density plots visualising the 15-minute soil moisture content measurements collected
from 20 probes at four depth for the year of 2016-2017 (red) and 2017-2018 (blue) with annual mean
values indicated at the Patitapu Station.

The visual inspection was supported by the Shapiro-Wilk statistic that is a tool for testing
significance and normality by comparing the sample distribution to a normally distributed set of
scores (Ghasemi and Zahediasl, 2012). Table 5.2 contains the P values, and the test resulted in
P value < 0.001 in all cases, meaning that the null hypothesis can be rejected and the soil

moisture distribution can be characterised with non-normality.

The inspection of Figure 5.2 reveals the distinct differences in the mean soil moisture comparing
the Year 1 and Year 2. The analysis of density curves showed that most distributions exhibited
multimodal behaviour. The longer tail towards the left can be noticed in each depth that
confirms the negative skewness, meaning that a large number of the soil moisture readings were

lower than the average soil moisture. Furthermore, the length of the left tail increased in Year 2
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compared to Year 1 due to the drier conditions in Year 2. Interestingly, some studies reported
normal distribution for surface soil moisture, such as Francis et al. (1986) on a north-east facing
slope in Spain and positively skewed distributions were also observed by Charpentier and

Groffman (1992) in a valley, on flat and sloping land in Kansas, near Manhattan .

Table 5.2 summarises the descriptive statistical parameters of the spatially and temporally, i.e.
daily averaged field data for each soil depth over the study period. The collected dataset
contains readings from the 20 AquaCheck subsurface probes (i.e. at 80 depths as each probe is
equipped with four sensors) to describe its overall behaviour and to conduct exploratory data
analysis. To be able to compare the two years quantitatively, only the overlapping months were

used for the descriptive, univariate statistical characterisation.

Table 5.2 Descriptive statistical parameters of the daily mean soil moisture (m* m3) data divided into
two years (Year 1: 01/11/2016-01/09/2017, Year 2: 01/11/2017-01/09/2018) and grouped by the
sensing depths at the Patitapu Station.

DEPTH 100 mm 200 mm 300 mm 400 mm
PERIOD Year1l Year2 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2
NO. OF DAYS 305 305 305 305 305 305 305 305
NO. OF READINGS PER 29286 29286 29286 29286 29286 29286 29286 29286
SITE

MEAN 0.374 0.331 0.345 0.316 0.347 0.327 0.359 0.344
MEDIAN 0.401 0.337 0.361 0.322 0.362 0.329 0.369 0.349
STANDARD DEVIATION 0.065 0.084 0.046 0.054 0.040 0.042 0.033 0.035
COEFFICIENT OF 17.35 25.37 13.24 17.07 11.41 12.90 9.11 10.15
VARIATION (%)

SKEWNESS -0.536 -0.029 -0.457 -0.166 -0.359 -0.131 -0.440 -0.271
EXCESS KURTOSIS -1.213 -1.499 -1.119 -1.357 -1.044 -1.325 -0.808 -1.230
MINIMUM 0.233 0.201 0.246 0.225 0.268 0.258 0.290 0.284
25° P. 0.317 0.247 0.304 0.265 0.310 0.287 0.330 0.313
50° P. 0.401 0.337 0.361 0.322 0.362 0.329 0.369 0.349
75° P. 0.431 0.424 0.382 0.368 0.375 0.365 0.381 0.373
MAXIMUM 0.471 0.458 0.435 0.411 0.430 0.406 0.424 0.404
RANGE (TWO YEAR) 0.27 0.21 0.172 0.14
P VALUE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Therefore, in each year, 305 days’ worth of data was considered that was about 30,000 soil
moisture readings at one sensor in each year. Year 2 was relatively drier than Year 1 that is
clearly indicated by the mean soil moisture content differences, particularly in the upper soil
layers (100 and 200 mm). In Year 1, the near surface, 100 mm soil depth was generally the
wettest (0.374 m3 m3) while in Year 2 the soil at 400 mm held the highest amount of water
(0.344 m3m?3) (Table 5.2). The soil layers at 200 and 300 mm depths showed very similar mean
soil moisture values in Year 1, while a 0.01 m3m difference was observed in Year 2. The variance
of soil moisture decreased with soil depth in both years, although larger CV and SD values
occurred in Year 2 suggesting that higher soil moisture variability occurred during the drier year.

The minimum and maximum mean daily soil moisture values were lower for every depth in Year
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2 thanin Year 1. As it was expected, the near surface layer dried out the most with soil moisture
levels dropping from 0.431 to 0.233 m3*m?3 in Year 1 and from 0.458 to 0.201 m®*m3in Year 2
(Table 5.2).

In terms of kurtosis, platykurtic behaviour was observed for both years, although Year 2 was
assessed to be closer to normal distribution than Year 1. The interquartile ranges at 200 and 300
mm soil depths showed similar values whereas the 100 mm soil depth measurements were the
wettest except for the 25 percentile. The difference between Year 1 and Year 2 is also
represented by the shape of the density curves. In general, the negative skewness was more
apparent in Year 1 and the skewness values of Year 2 were closer to zero suggesting a more

symmetric data distribution.

According to Famiglietti et al. (1999) and Vereecken et al. (2014) flat surfaces can often be
characterised by normally distributed soil moisture probability density functions due to the less
variable soil physical and hydraulic properties. On the other hand, the distribution of soil
moisture on terrains with significant relief does not necessarily follow a normal pattern, i.e. it
may be better described by non-normal distributions. Vereecken et al. (2014) noted that the
normality of the probability density function of soil moisture is not an essential requirement for
the application of geostatistical tools. In complex terrain, the lateral redistribution has an
increased importance as it was shown by Western et al. (1998). During wet conditions, the most
significant predictor for spatial soil moisture distribution was found to be the upslope
contributing or specific area, whereas in dry conditions, aspect was the best predictor for soil

moisture spatial patterns (Famiglietti et al., 1998, Western et al., 1999)

Towards the deeper sections in the soil profile, the density curves had very similar shape for
Year 1 and Year 2. Figure 5.2 showed characteristic peaks occurring around certain soil moisture
levels (for example at 0.35 m®*m at 200 mm depth and 0.42 m*m at 400 mm depth) that can
indicate that the spatial soil moisture patterns have a certain temporal stability at deeper soil
depths. Therefore, temporal stability of the spatial patterns will be further investigated in the

following sections.

5.3.2 Time stability analysis

5.3.2.1 Investigation of mean relative difference and index of time stability

Using Equation 5.4, MRD plots were developed following Cosh et al. (2008) at each depth
separately and for combined soil depths. The MRD + SDRD values were ranked from smallest to

largest and shown on Figure 5.3 to assess soil moisture variability, time stability and bias at every

individual microsite compared to the spatial field mean (represented by the green line). It is
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apparent that some microsites were consistently wetter and others consistently drier than the
mean value. This mainly relates to the soil textural properties, topographic position of the
microsites and the aspect and slope angle features of the terrain. Additionally, the ITS was
computed based on Equation 5.5 and added to the ranked MRD plots for comparison. The most
representative monitoring stations were defined considering the four soil depths and for an

individual microsite if all soil depths are combined.
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Figure 5.3 Ranked mean relative difference (MRD) of soil moisture and the index of time stability (ITS)
for each sampling point and at each depth on the entire dataset in m®* m? at the Patitapu Station.
Vertical bars are associated with standard deviations of the relative differences (SDRD).

Figure 5.3 shows, that during the experiment, the temporal stabilities were not entirely
consistent at various soil depths. Negative MRD values were found at each soil depth for four
microsites on the north aspects (Site 5, Site 8, Site 13 and Site 20), two microsites on the west
(Site 11) and east facing (Site 18) steep slopes, on a flat paddock (Site 6) and on an undulating,
south-facing surface (Site 9). Their rank slightly changed along the soil profile, although their
time stability can be considered moderate in general. The inspection of the ITS values confirmed
these results and showed agreement in the position of the microsites that tend to be drier than

the field mean soil water content. The ITS was generally high for Site 8, Site 17, Site 9, Site 15
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and Site 7 while the lowest ITS values were observed at Site 6, Site 13 and Site 12 if all depths

were combined.

Positive MRD values occurred at Site 19 on a rolling slope with north aspect, at a rolling (Site 16)
and a strongly rolling (Site 7) west-facing stations, at locations on south aspect with rolling (Site
1) and moderately steep (Site 14) slopes, at two east-facing microsites on strongly rolling (Site
3) and moderately steep (Site 4) slopes and at two microsites situated on flat areas (Site 2 and
Site 15). According to their rank and position, most of these locations would considerably
overestimate the field mean soil moisture value, although their ranks were not consistent with
soil depth. The ITS values showed a lower variability among these microsites with positive MRD

values as compared to the microsites characterised with negative MRD values.

In terms of SDRD, the 100 and 200 mm soil depths demonstrated the greatest values as expected
due to the higher sensitivity to the changes in the climatic parameters. It is apparent from Figure
5.3 that smaller SDRD values were represented by the 300 and 400 mm soil depth compared to

the layers closer to the surface indicating significantly less variation.
5.3.2.2 Identification of a representative microsite

Similarly to other studies (Martinez-Fernandez and Ceballos, 2003, Guber et al., 2008, Hu et al.,
2010, Gao et al., 201143, Lv et al., 2016), different time-stable microsites could be identified at
various soil depths based-on the results given by the three considered statistical parameters,
MRD, SDRD and ITS. Identifying representative locations can reduce the number of microsites
necessary to describe the soil moisture characteristics of a given area (Brocca et al., 2007, Hu et
al., 2010). In practical means, the representative sensor locations can be chosen through time-
stability analysis for large scale, i.e. regional or national, monitoring network deployment. Since
the average characteristics are captured by the representative microsites, they can be used to
validate various remote sensing products. On the other hand, remote sensing and modelling
applications require the knowledge of the temporal behaviour of soil moisture over multiple
years. To select the most representative microsite, the results provided by the combined soil
depth plot in Figure 5.3 was used that represents the time stability through the profile (0 - 400

mm).

Ideally, the locations with nearest zero MRD, lowest SDRD and ITS closest to zero can be referred
to as representatives of the average soil water content for the given study area (Martinez-
Fernandez and Ceballos, 2005). Although, it has been found that MRD can carry inherent errors
characterised by the SD, therefore, using only the MRD value closest to zero wouldn’t guarantee

the highest temporal stability (Vanderlinden et al.,, 2012). Therefore, the main criteria in
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selecting the most time stable location was based on the lowest SDRD and MRD values close to
zero as it was similarly used by Schneider et al. (2008) and Gao et al. (2011a). Due to this issue,

the methods are commonly used simultaneously to identify the representative microsites (Jia

and Shao, 2013, Liu et al., 2018).

In this study, none of the microsites were represented by the lowest values of all these three
parameters used, therefore three potential microsites were selected for further investigation.
The three potential representatives were Site 6 located on a flat paddock, Site 12 placed on a

steep south-facing slope and Site 13 deployed on a moderately steep slope with north aspect

(Table 5.3).

Table 5.3 Temporal stability parameters in m®*m for the three potential representative microsites are
shown with main terrain attributes.

SITE MRD SDRD ITS SLOPE ASPECT LANDSCAPE ELEMENT ELEVATION (m)
6 -0.031 0.048 0.057 Flat Flat Plains 173

12 | -0.009 0.065 0.066 Steep South High ridge 301

13 ‘ -0.046 0.004 0.059 Moderately steep North Open slope 232

To validate the selection and to support the selection of the most time stable microsite, the time
series of soil moisture collected at the selected three microsites were plotted along with the

spatial field mean and the range considering all microsites (Fig. 5.4).
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Figure 5.4 A time series based comparison of daily spatial mean soil moisture (considering all depth)
and the evolution of soil moisture obtained from the three most representative microsites at the
Patitapu Station. The ribbon illustrates the range between minimum and maximum over all microsites.

A linear regression was further carried out between the spatial field mean soil moisture and soil
moisture readings collected from the three potential representatives, giving a coefficient of

determination (R?) of 0.94 for Site 13, 0.83 for Site 12 and 0.91 for Site 6. The root mean square
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errors (RMSE) between the field mean soil moisture, and soil moisture readings collected from
the potential representatives were given as 0.056 m*m for Site 6, 0.022 m3m? for Site 12 and
0.021 m3®m?3 for Site 13. This indicates that Site 13 is the most representative location at the
Patitapu Station out of the 20 microsites. Site 13 showed a generally good agreement, i.e. low
RMSE and high R? values when related to the spatial mean soil water content in every season
during the entire data collection period (Fig. 5.4). Taking into account that Site 6 is located on a
farm centric flat area near a waterway, it might be misleading to select that microsite as a
representative for a complex, hill country landscape, although it had the lowest ITS and relatively
low SDRD value. Based on the findings of Grayson and Western (1998) and Vivoni et al. (2008)
the most representative microsites should be able to capture the soil moisture dynamics at mid
slopes and mid elevation, which agrees with the selection of Site 13 as the most representative
location. However, the idea of keeping multiple microsites as representatives of the farm will be

further examined in the future which can be also linked to pasture growth accumulation.

5.3.3 Investigation of time stability of the spatial pattern

5.3.3.1  Frequency distribution analysis

To examine whether a soil moisture value derived from combined soil depths for a particular
microsite can maintain its rank in the cumulative probability function at two extreme sampling
dates, frequency distribution analysis was carried out following the approach by Brocca et al.
(2009) and Martinez-Fernandez and Ceballos (2003). The cumulative probability functions for
the two selected dates in each year are given in Figure 5.4 with the aspect and slope angle classes
indicated by various colours to investigate if the topographical position exhibits its effect on the

rank stability over time.

Figure 5.5 (A) shows that only Site 1 and Site 8 maintained the same rank whereas Site 6 and
Site 20 changed one rank only between the driest and wettest soil moisture conditions in Year
1. In Year 2, only Site 15 and Site 6 had the same rank under the extreme soil water levels. It is
apparent that most of the microsites were not able to maintain their rank from the dry to the
wet condition that suggests that the complex topography and the seasons affect the soil
moisture spatial pattern. It can be concluded, that a WSN approach is useful in monitoring the
variability so that it can be more effectively managed and interpreted. Looking at the aspect and
slope angle classes, the microsites on north-facing aspects were mostly positioned on the
bottom half of the plots in both years, while flat microsites were spread over the middle range.
These findings suggest that these terrain attributes have a noticeable effect on the temporal

stability of the spatial soil moisture pattern. In terms of slope angle classes, locations on steep
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and strongly rolling slopes typically situated near the bottom end of the cumulative probability
function for both years. In addition, Figure 5.5 clearly shows that Site 13 was located near the
0.5 probability level in dry and wet conditions in both years, supporting the previous findings
stating that Site 13 is the most representing microsite of the spatial field mean soil moisture at

the research area.
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Figure 5.5 Comparisons of cumulative probability functions at two selected dates for various wetness
(Min Dry and Max Wet) levels at the Patitapu Station. The data points are coloured based on aspect (A)
and slope angle (B) classes.

5.3.3.2 Spearman’s rank correlation

The behaviour of spatial patterns was further examined by comparing the 7 values on selected
dates. Table 5.4 presents the matrix of 7 of the daily mean combined soil water content among

10 measurement days including dry, drying, wetting and wet conditions to represent extreme
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and transition wetness stages during the two-year time span. The dates were selected at
minimum, 25" percentile, 75 percentile and maximum soil water content levels in both Year 1
and Year 2. The maximum water level, i.e. wet conditions were captured when the soils were

near the saturation state.

The statistical significance was also determined and indicated next to the ;. A P value < 0.001
was chosen as the condition to determine if the correlation was insignificant (Table 5.4). Blank
fields are shown where statistically insignificant relationship was observed. The 7, ranges from
0.24 and 1, although only about 25% of the values were below 0.5. The lowest 15 (0.24) were
shown between two dates with extreme soil moisture conditions i.e. between 18/01/17 and
13/07/17 in Year 1 and between 09/02/18 and 24/08/18 in Year 2, or between wet and wetting
stages. The highest 7y values were observed between two dry (18/01/17 and 09/02/2018,
75=0.88) and two wet days (13/07/17 and 24/08/2018, 1,=0.91). Although, days in the drying out
and dry stages (14/12/16 and 18/01/17) also showed a high r; of 0.85 between 14/12/16 and
18/01/17 (Table 5.4).

Table 5.4 Mean and standard deviation (SD) of daily mean soil moisture content (for all monitored
positions) on the selected ten dates at the Patitapu Station. The matrix of Spearman’s rank correlation
coefficients is given for a series of sampling dates during the 2016-2018 study period (P value legend: 0
“*¥%0.001 ‘**, 0.01 ‘*’).

14/12/16 18/01/17 27/03/17 25/06/17 13/07/17 5/12/17 9/02/18 7/03/18 7/06/18 24/08/18

MEAN 0.324 0.259 0.325 0.395 0.437 0.283 0.242 0.292 0.380 0.420
SD 0.034 0043 0051  0.033 0036 0042 0.044 0.043 0.050  0.044
14/12/16 1 * % % * % % * % % * % * % * % * % *
18/01/17 0.85 1 ok ok * ¥ * ok k * %k * *%
27/03/17 0.78 0.74 1 * *% * * % % Kok *
25/06/17 0.78 0.64 0.77 1 * * * * sk o *
13/07/17 0.38 0.39 0.53 0.5 1 *ak Lk

5/12/17 0.63 0.84 0.6 0.52 0.31 1 Hoxk * *x

9/02/18 0.64 0.88 0.55 0.48 024 0.91 1 * *

7/03/18 0.65 0.55 0.74 0.53 029 052 048 1 k%

7/06/18 0.64 0.67 0.81 0.72 073 062 054 0.68 1 *ok
24/08/18 0.49 0.39 0.52 0.51 091 038 028 034 069 1

In most cases, the patterns were significantly correlated with relatively high 7 values, meaning
that the spatial patterns can be preserved from one measurement time to another time to a
certain extent. Several studies applied the method and confirmed time stability in the spatial
distribution of soil moisture (Vachaud et al., 1985, Martinez-Fernandez and Ceballos, 2003, Hu
et al., 2009, Hu et al., 2013). In contrast, time instability was observed by Mohanty and Skaggs
(2001) and Comegna and Basile (1994). In this study, the relationship generally became weaker

with time. The relationship between the two extremes were shown to be not significant that
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might be due to the effect of slope angle and aspect that exerts its impact on the rate of drying

and influences runoff and subsurface lateral flows.

The soil moisture spatial patterns were further examined from the perspective of temporal
stability by relating the soil moisture levels against each other on different dates. For this
analysis, the four depths were combined at each location. The scatterplot correlation matrix and

the Pearson correlation coefficients (r) with significance levels are shown in Figure 5.6.
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Figure 5.6 Scatterplot matrix with fitted lines and the bivariate correlations with significance values of
soil moisture content measured by the AquaCheck probes at 20 microsites at the Patitapu Station. The
data pairs display soil moisture values derived by combining the four depths on ten selected dates. (P
value legend: 0 ‘***’,0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.” 0.1 ‘’).

Similarly to the Spearman’s rank correlation analysis results described above, a P value < 0.001
was chosen as the condition to determine if the correlation was insignificant. The significant
bivariate correlations, expressed as r ranged between 0.48-0.95 giving the strongest positive
correlations when the soil was in the extreme conditions, e.g. wet and the dry stages in Year 1

and Year 2. Similar findings were reported by Hedley and Yule (2009) who found the most
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obvious temporal stability when the soils were in the dry stage. The lowest and mostly
insignificant r values were found if dry and wet patterns were related suggesting that the soil
moisture distribution differ highly in these conditions. The transition stages were represented
by mainly moderate temporal stability. Significant relationship was dominantly observed
between consecutive dates, except if the transition stage in June 2017 and the following wet,

and the wet and dry conditions were related.

5.3.4 Spatial characteristics

5.3.4.1 Temporal dynamics of spatial field mean and variance

The relationships between the spatial variance i.e. the CV and SD, and the spatial field mean soil
moisture were analysed to assess the spatial variability among the microsites. These parameters
were calculated on a daily basis and plotted in Figure 5.7 for each soil depth separately to
illustrate the temporal evolution of the spatial variability. Additionally, the evolution of daily
total precipitation is also displayed on the top of the chart to be able to link the soil moisture
changes to the received rainfall. Visualising the values this way also allowed exploring whether
the variance was greater in dry or wet conditions and how its dynamics changed through

transition periods from dry to wet conditions and vice versa.

The accumulated rainfall was 1011 mm in Year 1 and 861 mm in Year 2, whereas the long-term.
The dry season lasted longer in Year 2 than in Year 1 and the rewetting process in Year 2 was

not as quick as it had happened in Year 1 when near-saturated conditions were reached in May.

The spatial mean varied synchronously in all soil depth showing apparent response of soil
moisture to the rainfall events. Soil moisture values decreased continuously from the 8 Nov 2016
until mid-January 2017, when the driest day occurred in Year 1. From mid-January, the spatial
mean increased until mid-May 2017 when most microsites reached soil moisture levels near
saturation. The soil saturation was maintained until the 8 Oct 2017 when another drying cycle
started dividing the dataset into two main periods (Year 1 and Year 2). The water stored in the
soil was lost considerably faster in Year 1 reaching Year 1's lowest soil water content already in

early-December 2017.

During Year 2 summer season the study farm did not receive significant amount of rainfall (a
total of 172 mm compared to the 207 mm in Year 1) although evaporation rates were higher
due to the elevated air and soil temperature. The summer low and the lowest soil moisture

content during the two-years long recording time was reached on the 9 Feb 2018.
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Figure 5.7 Top: Time series of daily precipitation values at the Patitapu Station (A) extracted from the
local climate station. The A, B, C, and D plots show the temporal evaluation of daily values of spatial
mean (20 probes) soil moisture (shaded areas corresponding to + 2* standard deviation) and its
coefficient of variation (CV) at each depth separately.

Following the dry season, near-saturation conditions occurred relatively late, end June 2018, as
opposed to Year 1. This wet stage lasted until the end of the data collection, 31 Aug 2018. The
range of the temporal soil moisture change was the largest at the 100 mm depth reaching 0.27
m3*m3, with a minimum occurring on the 18 Feb 2018 and maximum on the 13 July 2017. The
range decreased with depth, reducing to 0.21 m®*m™ at 200 mm, 0.172 m®*m= at 300 mm and

0.14 m®*m at 400 mm depth.

As the near surface layer is exposed to the largest effects of atmospheric forcing, the SD and the
CV showed the largest changes depicting more time variance in the spatial pattern behaviour

than other parts of the profile. The temporal stability of the spatial variability in the deeper
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sections of the soil profile were more pronounced as described by the lower SD and CV than in

the 100 mm soil layer.

The CV and SD were highest in the dry seasons (Jan-Feb 2017 and Dec 2017-March 2018) and
the wetting periods in autumn (Mar-Apr 2017 and Mar-May 2018) in both years. The variability
decreased noticeably through the wet stages when soil moisture levels increased to 0.26-0.29
m3m3 at 100 mm soil depth and reached its minimum at the end of the wet seasons. Similar
findings were reported by Korres et al. (2015) on various spatial scales in the Ruhr-catchment in
Western Germany based on nine different datasets during a two-year measurement period. The
minimum CV values were associated with soil conditions just below saturation point (above field
capacity) (Fig. 5.7) that was also found by Harter and Zhang (1999) and Owe et al. (1982) in
heterogeneous soils in South Dakota, USA. Most studies found that spatial variability decreased
with increasing soil moisture content (Famiglietti et al., 1999, Hu et al., 2011, Korres et al., 2013).
The CV and SD parameters showed increasing trends during the transition from wet to dry stage,
although the values were usually lower than changing from dry to wet state. The differences in
CV and SD among sub-periods were the largest in the 100 mm depth, and less significant towards
the deeper layers. While the CV line is relatively smooth for the near surface soil, the impact of
heavy rainfall events often associated with large peaks in CV and SD in the deeper horizons of

the profile.
5.3.4.2  Site-specific temporal soil moisture variability

A 3D visualisation of the research area and the microsite locations with some of their statistical
properties are given in Figure 5.8 to describe and quantify the soil moisture variability
temporally, spatially and vertically at each microsite and each depth. The boxplots generated
from the daily averaged soil moisture readings for the two-year monitoring period represent the
soil moisture temporal distribution. In addition, the temporal mean, SD and CV are summarised
for each depth to reveal trends along the soil profile. The role of temporal soil moisture
distribution is better understood if the soil moisture levels at essential water holding parameters
are indicated. Thus, the estimated soil water levels at wilting point, field capacity and saturation
were marked on the boxplots at each microsite and at each depth. To compare the soil moisture
distribution patterns at various aspects and slope angles, these terrain attributes are also

indicated in Figure 5.8.

Considering the theoretical water holding parameters, most soil moisture readings were
recorded within the expected range between saturation and permanent wilting point.

Concerning the spatial field mean soil moisture (as shown in Fig. 5.7), the soil water state at the
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the mean (white rhomboid), the

median (line across the box), 25" percentile and 75" percentile as lower and upper hinges and outlying

theoretical field capacity (Saxton and Rawls, 2006). The blue crosses indicate saturation observed from

points. The red vertical line indicates theoretical permanent wilting point, the black lines shows
the sensor readings.

Figure 5.8 Vertical distribution of temporally averaged soil moisture content at the Patitapu Station.

The boxplots visually summarises the following statistical parameters
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permanent witling point was never reached during the study period. Although, looking at the
individual microsites, the measurements obtained at Site 8 and Site 17 showed values at or
below permanent wilting point that occurred in the summer of Year 2. In terms of saturation,
the estimated values were reached at most microsites along the entire soil profile. In winter, the
soils were often saturated and soil moisture levels were often recorded above field capacity,
except at microsites that are situated on very steep slopes, (Site 8), at high ridge position (Site
17,) or upper slope position (i.e. Site 11 and Site 20). The microsites located on flat surfaces held
soil water above field capacity for the highest number of days. Based on the estimated soil water
holding properties, the amount of soil water available for plants decreased with depth in most
cases as it was expected mainly due to the increasing portion of the clay fraction with soil depth

(Table 5.1).

Itis clearly visible, that the range of soil moisture measurements were the largest in the 100 mm
horizon, while the deeper sections of the soil profile showed readings in a narrower range
indicating less variability and temporally more stable soil water contents in agreement with the
findings described previously. Soil moisture measurements on flat and north-facing slopes are
generally more spread out, especially at microsites located on moderately steep and steep
slopes. However, some of the microsites on strongly rolling and rolling slopes can be
characterised with similar, wider spread of soil moisture distribution than we would expect,
particularly near the surface. Monitoring stations on west- and east-facing slopes were observed

to have similar soil moisture dynamics.

Figure 5.9 presents the rank stability plots for the temporal mean soil moisture, as a function of
SD and the CV at each microsite and at each depth considering the entire study period. The
microsites are ordered by CV from low to high values to be able to examine the behaviour of
each microsite. The differences in spatial soil moisture behaviour at the four depths were

analysed by taking into account the data presented in Figure 5.8 and Figure 5.9.

In general, the largest SD and CV values were observed in the 100 mm soil horizon while the
lowest values occurred in the 400 mm layer showing an apparent decreasing trend. The lowest
SD values occurred at Site 4 (moderately steep, east aspect) at all depths ranging between 0.016-
0.053 m®*m=. Moreover, Site 4 also demonstrated the lowest CV at 200, 300, 400 mm soil depths
ranging between 3.9-7.8%. At the 100 mm depth, the minimum CV, 13 %, was represented by
Site 7 placed on a rolling, west-facing open slope. Site 17 demonstrated the largest temporal
variability at all depths with CV values ranging between 35.7-21.9 % from the near surface layer

to the deepest horizon. Near the surface, the wettest location was at Site 7 giving 0.430 m3®m?
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for temporal mean soil water content on a rolling, west-facing open slope, whereas the driest
temporal mean soil moisture of 0.278 m3 m3 was obtained from Site 20 on north-facing,
undulating slope but positioned closed to a ridge. Site 8 and Site 9 showed similarly dry
conditions to Site 20 at 100 mm soil depth. However, concerning all depths, Site 8 was observed
to be the driest location, placed on steep, north-facing slope with mean temporal soil moisture

of 0.293 m3m3 agreeing with the general expectations in the southern hemisphere.

Deeper in the soil profile, the wettest conditions were recorded also at Site 7 ranging between
0.397-0.406 m3m3. This observation may be explained by the large upslope contributing area of
Site 7 and the assumption that west-facing slopes receive more rainfall than the other aspects.
Interestingly, the wettest and driest microsites were both situated on the same elevation level
at approximately 310 m. The rank of the microsites with respect to their mean and the variability

expressed by SD and CV showed significant variation vertically as only Site 17 kept the same rank

at all depths.
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Figure 5.9 Ranked stability of the microsites at the Patitapu Station showing the mean, standard
deviation SD and coefficient of variation CV considering the entire study period.
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5.3.4.3 Relationship between spatial soil moisture mean and spatial variance

In soil moisture data analysis, it is a widely employed approach to relate SD representing
absolute variability and CV (relative variability) to the spatial mean soil water using scatterplots
and regression (Brocca et al., 2007, Famiglietti et al., 2008b, Molina et al., 2014). It is applied as
one of the most common procedures, including the examination of changes in soil moisture
variance with low or high soil water conditions. The results from previous studies have been
found contradictory, as some researchers reported decreasing variation with drying (Famiglietti
et al., 1998), whereas others observed decreasing variation as the soil was wetting (Hupet and

Vanclooster, 2002, Teuling et al., 2007a, Mittelbach and Seneviratne, 2012).

In this section, the relationship between the spatial mean soil moisture, the CV and SD were
examined individually during selected sub-periods in each year and in each soil depth (Fig. 5.10).
The sub-periods were chosen based on the soil moisture change and seasons to get a better
understanding of the correlations and trends with changing soil water conditions. The relatively
long observation time allowed a detailed investigation of this relationship. The sub-periods
included transition from wet to dry during spring (Nov 2016 and Oct — Nov 2017) and summer
(Dec 2016-Jan 2017 and Dec 2017-Feb 2018), dry to wet state during summer (Jan 2017-Febr
2017 and Feb 2018) and autumn (Mar 2017-May 2017 and Mar 2018-May 2018) and wet (Year
1: Jun 2017-Aug 2017 and Jun 2018-Aug 2018) conditions in winter for both years.
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Figure 5.10 Relationship between the spatial daily mean soil moisture and coefficient of variation (CV)
in the six selected sub-periods for each year visualised on scatterplots. The dots represent data from
twenty microsites and the colours indicates the four monitoring depths.
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Figure 5.10 shows a very similar annual soil moisture behaviour during both Year 1 and Year 2.
However, the variance was not consistent in the sub-periods and it is clearly not a static property
in complex terrain. The relationship varied between CV and the field spatial mean soil moisture
with the sub-periods and with the soil depth. The variability was the largest in dry conditions
typically below 0.25 m®m mean soil moisture and in transition from dry stage to the wet stage.
The lowest variability occurred in wet conditions, mostly when mean soil moisture levels were

over 0.35 m3m?.

In our analysis, polynomial fit resulted in increase of the R? value in only a few cases, therefore
the linear relationships were applied for better comparability (Table 5.5). During the drying
down periods and the beginning of the rewetting stage, as the mean soil moisture level declined,
the CV values inclined. During autumn, some of the correlations changed direction and were
positive but not significant. In winter, positive, significant correlations were observed which was

more pronounced in Year 1.

Other researchers also identified a variable relationship between the field mean soil moisture
and the CV. The results have been found contradictory, i.e. both increasing and decreasing soil
moisture variability with increasing mean soil moisture have been identified (Famiglietti et al.,
1998, Vereecken et al., 2014, Gwak and Kim, 2017). The relationship between spatial variability
and mean of soil moisture can change depending on a threshold as explained by Pan and Peters-
Lidard (2008). Exponentially decreasing CV pattern with increasing mean soil moisture was
found by Famiglietti et al. (2008a) and Gao et al. (2011b), while linearly decreasing CV with

increasing mean soil moisture was observed by Brocca et al. (2007).
Table 5.5 Values of coefficient of determination (R?) derived from linear regression between coefficient

of variation (CV) and the corresponding spatial mean soil moisture in the five sub-periods for each
depth.

DEPTH SPRING - SUMMER - SUMMER - AUTUMN-  WINTER -
DRYING DRYING WETTING WETTING WET

100 -0.86 -0.93 -0.04 0.56 -0.21

2 200 0.01 -0.93 0.02 0.19 0.45
& 300 0.39 -0.88 0.02 0.05 0.44
400 0.43 -0.88 0.00 0.00 0.79

100 -0.84 -0.24 -0.78 0.00 -0.40

. 200 -0.86 -0.81 -0.94 0.05 0.01
& 300 -0.45 -0.69 -0.65 0.32 0.12
400 -0.17 -0.67 -0.66 0.08 0.41

The significant correlations were mostly negative during the drying in spring and summer at 100
mm soil depth. The correlation dropped drastically in the rewetting stage in summer and

autumn in Year 1. In contrast, in Year 2, summer wetting showed high negative R? values for
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every depth. The least significant linear relationships were found during transition towards the
wet soil state in both years. Positive, moderate and strong correlations were observed during
the wettest conditions in the 200-400 mm soil depth in Year 1, whereas Year 2 showed a slightly
different behaviour with technically no considerable correlations in the 200-300 mm soil depth
and negative linear relationship in the near surface layer. These results show agreement with
the work published by Hedley and Yule (2009) who observed that the soil moisture pattern was
most stable during the drying out period in February and March. The CV peaked at 0.35 m®m?3
during the wetting stage reaching 28% variability and its minimum value was found in the wet

conditions giving a CV of 6.5 % in winter.

As a function of spatial soil moisture distribution, daily SD was related to mean field soil moisture
(Fig. 5.11), similarly, to how the CV and the mean soil moisture were correlated previously during
the same sub-periods. The SD behaved in the same manner as CV in the drying (or descending)
periods, while it did not present the same trends in the summer rewetting times. During autumn
and winter, the largest variance in SD occurred during the transition from dry to wet stage in
autumn. The deeper soil sections were more stable during the entire study period than the soil
moisture at 100 mm soil depth. The minimum SD values were found in the drying stage and in
winter whereas the peaks occurred in autumn in both years. During drying and wetting periods,
parabolic shapes were found, and the spatial variability was more widely scattered within these

transition stages.
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Figure 5.11 Relationship between the spatial mean soil moisture and standard deviation in the six
selected sub-periods for each year. The dots represent data from twenty microsites and the colours
indicates the four monitoring depths.
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Linear regression was used to fit models on the spatial mean soil moisture and the SD. The
analysis revealed similar trends to the ones found previously when CV and mean soil moisture
were correlated. Only the 100 mm soil depth showed unimodal convex shape during the drying
and wetting stages with a maximum soil moisture variability at about 0.35 m3>m?. Table 5.6
presents the R? values between SD and spatial mean soil moisture, showing that significant
correlations exist in most cases, although the character of the spatial correlation changed as the
soils were drying out and as the soils were rewetting. This behaviour was also presented in other
studies reporting that SD increases during drying from a very wet stage until it reaches a specific
soil moisture level and then SD decreases as the drying continues (Famiglietti et al., 1998, Harter
and Zhang, 1999, Choi et al., 2007). When the soils were drying out, mainly negative correlation

was found whereas during the wetting and wet stages the significant correlations were positive.

Table 5.6 Values of coefficient of determination R? of derived from linear regression between standard
deviation SD and the corresponding spatial mean soil moisture in the five sub-periods.

DEPTH  SPRING - SUMMER - SUMMER - AUTUMN-  WINTER -
DRYING DRYING WETTING WETTING WET

100 0.55 0.07 0.65 0.01 0.08

= 200 0.58 0.75 0.58 0.01 0.6
& 300 0.57 0.68 0.38 0.1 0.56
400 0.62 0.74 0.22 0.19 0.84

100 0.01 0.28 2024 0.58 027

~ 200 0.49 0.54 0.87 0.52 0.06
s 300 0.11 0.39 -0.43 0.63 0.22
400 0.01 0.46 -0.54 0.49 0.52

The most disperse data pairs appeared in autumn during the wetting processes with not
significant correlations in Year 1. Although, during autumn in Year 2, the results showed

moderate to strong positive linear relationships between SD and the mean soil moisture.

Our findings suggest that the relationship between CV, SD and mean soil moisture was not
consistent through the two monitoring years and their dependency on the soil’s wetness state
was apparent. Based on the analysis above, it can be concluded that soil moisture spatial
variability was affected by ascending or descending soil wetness change. Even though the
analysis considered the linear relationship between mean soil moisture, CV and SD, the
theoretical parabolic shape of the relationship, also found by Vereecken et al. (2007), occurred
in the drying stages and during wetting. This phenomenon may be explained by the frequent
change between drying and wetting events in the sub-periods that resulted in non-linear
characteristics. The transition periods generally showed a highly varied spatial distribution while
the relationship between mean soil moisture, SD and CV were more evident and significant in

the dry and wet stages. Gwak and Kim (2017) evaluated a humid hillslope and found that
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variability was high in intermediate soil moisture levels and low in extremely dry and wet
conditions that partly agrees with our findings. Soil water content variability was high when the
soils were dry in a hillslope transect study conducted by of Harter and Zhang (1999). However,
Famiglietti et al. (1998) and Hu et al. (2011) reported decreasing variability (expressed as SD) as
soil moisture was decreasing that is in disagreement with our results, since we observed mainly

increasing spatial variability with decreasing mean soil moisture content.

In an earlier study by Hajdu and Yule (2017) at the Patitapu Station, a 10-day soil moisture
measurement period was assessed for spatial variability containing data from six microsites.
They reported an inverse relationship between mean soil moisture and CV, i.e. soil moisture
distribution was more homogenous with increasing mean soil moisture. It was also observed
that the terrain attributes, such as slope angle and aspect had an effect on the soil moisture
distribution. The contribution of topographical attributes on spatial soil moisture variability
increased as the mean soil moisture decreased especially at the 100 mm soil depth which was
also found by Gwak and Kim (2017). The soil moisture patterns in the deeper soil layers were
temporally more stable than in the near surface layers that is mainly due to the decreased

impact of atmospheric forcing.
5.4  Summary and conclusions

In this chapter, the focus was placed on identifying trends and patterns in the spatiotemporal
distribution of soil moisture as these parameters are essential to improve simulations with
statistical error modelling for hydrological or agronomical purposes, such as pasture growth
forecasts. Temporally dense datasets are rarely available in hill country; thus, a soil moisture
time series dataset was collected containing capacitance-based, AquaCheck sensor
measurements from 20 spatially distributed locations at four consecutive depths. The nearly
two-year long dataset has been examined to quantify temporal and spatial variability as well as

temporal stability of soil moisture patterns at Patitapu Station.

It was observed that the soil moisture distribution could be characterised with non-normality on
complex terrain. Year 1 and Year 2 showed similarly shaped Kernel density curves in the 200-
400 mm soil depths indicating temporal stability in the distribution. Year 2, the drier part of the
data collection period, represented larger soil moisture variability than Year 1, although the
value and range of CV and SD of soil moisture decreased with soil depth in both years. The range
of soil moisture readings were the largest in the 100 mm soil depth while the spread became

narrower with increasing soil depth.
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The results obtained in the present work show that it is possible to select a station that is
representative of the mean water content of the soil in a given area, regardless of scale, from a
pre-established network of measuring stations. The temporal stabilities were not entirely
consistent at various soil depths; therefore, the depths were combined to select representative
microsites. We found that a microsite established on a north-facing, moderately steep and open
slope was the most representative of the field mean soil moisture (R? of 0.94 and RMSE of 0.021

m3m?3) at the study area based on the analysis of four statistical parameters.

We found that CV of soil moisture was the lowest when the soils were near saturation (or above
field capacity) showing negligible spatial variability and highest in the descending and ascending
transition stages, i.e. drying and rewetting periods. This study did not define specific soil
moisture levels to describe dry condition due to the rather arbitrary description of that soil water

stage.

In hill country, under the varied macro- and micro-climatic conditions, increasing spatial
variability was observed with decreasing mean soil moisture consistently at four soil depth down
to 400 mm. The evolution of spatially averaged soil moisture, its SD and CV in time revealed the
difference in soil moisture dynamics in the upper and deeper soil layers. The magnitude of the
spatial variation of soil moisture was greater near the surface than in the soil layers at 200-400
mm depths indicated by the lower SD and CV than at the 100 mm soil depth. The soil moisture
spatial pattern was more temporally stable at very dry and very wet conditions, i.e. when soil
water conditions are similar, and soil moisture spatial patterns tended to be less temporally

stable when soils are drying down or wetting up.

The temporal stability of the spatial pattern was not maintained between two extreme soil
moisture levels (minimum dry and maximum wet), which finding was supported by the
Spearman’s rank correlation analysis results. Recharging stages were found to carry higher
variability than drying periods that might be caused by the varied evaporation, infiltration and
runoff rates induced by the complex topography. Consequently, the spatial patterns were
dependent on the aspect, slope angle and the topographical position while the effect of soil
textural properties were not as significant as most locations have soils falling in the silt loam,

silty clay loam texture classes.

North-facing locations, especially on steep and moderately steep slopes tended to be drier and
represented more spread-out soil moisture range than the other aspects while microsites on
east- and west-facing slopes showed similar soil moisture distributions and trends. In overall, at

combined depths, the wettest microsite was located on a west-facing, rolling, open slope with
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0.408 m*m3 temporal mean soil moisture while the driest microsite was situated on a north-

facing, steep slope on a midslope ridge with 0.293 m3m temporal mean soil moisture.

The differences in soil moisture patterns have been shown and the knowledge of variability is
vital to improve our understanding of land-water interactions on complex terrains. The
appropriate consideration of the multi-modal nature of soil moisture distribution and the
spatiotemporal variability may contribute to the development of more accurate modelling
performance in the field of pedological, yield or hydrological applications. Moreover, the small-
scale study has the potential to be used to calibrate or validate within pixel average values
derived from remote sensing as the role of remotely sensed data in agricultural applications has
been increasing. Thus, the within pixel spatial characteristics and variation soil moisture has

been of great interest as it is an essential component of the statistical models.
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6 Chapter 6 - Modelling of near surface soil moisture using
machine learning and multi-temporal Sentinel-1, Sentinel-2,
Landsat 7 and Landsat 8 images in New Zealand

6.1 Introduction

The demand for accurate, high to medium resolution satellite-derived information for
agricultural and land-based predictions is rising steadily (Atzberger, 2013, Roumenina et al.,
2015). One critical attribute is the soil moisture that drives many environmental processes and
itis considered as an essential input of many numerical simulations related to climate, hydrology
and land-surface processes (Seneviratne et al., 2010). Since agricultural productivity is strongly
controlled by the soil moisture availability (Martinez-Fernandez et al., 2016), the spatial mapping
of soil moisture of New Zealand’s hilly landscapes is of great interest. The better understanding
of these hydrologically complex systems is beneficial for improved farm management to hit
productivity targets (e.g. fertiliser, stock and feed budgeting) and to mitigate impacts on climate-

related extreme events (e.g. drought).

In hilly and mountainous regions, soil moisture can be characterised by distinctly variable
dynamics that is dependent on the spatial scale. The interaction of soil properties, the rugged
topography, land cover type and meteorological factors result in high spatiotemporal variability
in soil moisture distribution, especially near the surface (Famiglietti et al., 1998, Brocca et al.,
2007) as it was also shown in Chapter 5 during the spatial variability and stability analysis.
Consequently, the measurement and monitoring of such a variable parameter by traditional
techniques is cumbersome especially if there are significant changes in topography. Hence,
many different approaches have been developed to retrieve soil moisture from remotely sensed

data (Petropoulos et al., 2015, Zhang and Zhou, 2016, Karthikeyan et al., 2017).

Spaceborne microwave remote sensing has been effectively used to sense soil moisture at
various scales, although the reliable, global soil moisture products have been only produced at
coarse spatial resolution (approx. 25-40 km). Scatterometers and passive microwave sensors
have been launched through Soil Moisture Active Passive (SMAP) programme, Aquarius (failed
in 2015) and Soil Moisture and Ocean Salinity (SMOS) missions have been providing soil moisture
estimations at the continental and global scale (Entekhabi et al., 2010b, Kerr et al., 2010,
Mecklenburg et al., 2012, Das et al., 2018). Active microwave sensors showed lower sensitivity

to soil moisture, although the product’s spatial resolution is higher than the observations
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obtained by passive microwave methods (Nichols et al., 2011). Among active microwave
sensors, the Synthetic Aperture Radar (SAR) instrument has been exploited effectively for
monitoring bio-geophysical surface properties including near surface soil moisture (Ulaby et al.,
1982b, Baghdadi et al., 2012, Paloscia et al.,, 2013, Eweys et al., 2017b). The presence of
vegetation cover tends to reduce the sensitivity of the SAR signal to soil water content due to
the biomass water content and the vegetation structure causing a two-way attenuation effect

(Vereecken et al., 2012) described in Chapter 2.

The radar-based soil moisture retrieval methods are built on the physical principle, that the
radar backscatter o (dB) is sensitive to the dielectric constant of the targeted surface, i.e. water
content of the imaged bare soil or vegetated terrain (Wagner et al., 2008). Over bare soil, the
sensitivity and response of microwave electromagnetic waves to soil moisture changes are well
established (Wang, 1980). As a general empirical rule, the presence of free water increases the
amount of energy reflected back towards the sensor from the bare soil surface (Dean et al.,
1987). However, numerous additional factors have impact on the o° generating an ill-posed
challenge in the retrieval processes as the relationship among the interacting target properties

is generally characterised by complexity and non-linearity (Ali et al., 2015).

The occurrence of vegetation, the confounding influence of radar configuration, topographical
variability, land use heterogeneity, surface roughness and soil parameters (soil texture, soil
moisture) are considered as the main driving forces of the ¢ behaviour in mountainous areas
(Ulaby et al., 1978, Luckman, 1998, Wagner et al., 2009a). The topography related effects and
distortions are taken into account through geometric and terrain correction, radiometric
(topographic) normalisation and speckle reduction as part of the SAR data pre-processing
procedure. In mountainous landscapes, the retrieval of soil moisture retrieval using SAR
information is very challenging (Pasolli et al., 2015), thus complementary information such as
topographical attributes can be included to reduce the remaining contribution of the terrain on
the o (Luckman, 1998, Paloscia et al., 2013) and help establish relations between the response

and explanatory variables.

The soil moisture retrieval processes may include data from different radar configurations
(incidence angle, polarisation, frequency) to be able to segregate and define the contribution of
vegetation, and surface roughness from that of soil (Paloscia et al., 2008, Barrett et al., 2009).
Advanced retrieval techniques utilise the main influencing features (vegetation coverage,
surface roughness and soil properties) as input parameters to reduce their effects on the radar

signal (Barrett et al., 2009, Petropoulos et al., 2015).
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The application of optical imagery as well as the fusion of radar and multispectral data
demonstrated its capability in accounting for some of these effects, i.e. the vegetation cover,
structure and water content of the vegetation (Inglada et al., 2015, Veloso et al., 2017). Over
vegetated areas, the combination of SAR and optical data is a preferred approach in near surface
soil moisture estimation (Baghdadi et al., 2017). It remains a widely applied approach due to
increased temporal coverage of the recently launched multispectral satellites (Bousbih et al.,
2017, Gao et al., 2017, Urban et al., 2018). The possibility of using the combination of satellite
derived multispectral and SAR data can be limited by cloud cover leading to observation gaps in

the time series.

However, the combination of European Space Agency’s (ESA) Sentinel missions and the Landsat
Data Continuity Mission offers new opportunities in Earth observation, for capturing the
dynamics of environmental parameters that has never possible before at an unprecedented
spatiotemporal resolution. The Sentinel-1 dedicated radar imaging mission was expected to
largely contribute to the mapping of high-resolution, near surface soil moisture (Malenovsky et
al., 2012). Sentinel-1, Sentinel-2 and Landsat 8 images have been used synergistically by Urban
et al. (2018) for drought monitoring and vegetation cover analysis. Gao et al. (2017) attempted
to map soil moisture at 100 m resolution using change detection by combining Sentinel-1 and
Sentinel-2 observations. However, there has been no attempt made to map soil moisture at
even higher resolution, i.e. 20-30 m, to address paddock scale soil moisture retrieval in hilly
areas. The advances of the ESA’s Sentinel-1 mission made it feasible to capture land surface
processes, including soil moisture change without the limitation of daylight and cloud cover. The
constellation of two satellites carrying C-band, SAR instruments provides 10 m pixel size multi-
looked images with a region-dependent 6-day repeat cycle when both satellites are considered.
SAR acquisitions are often preferred over frequently cloudy areas because of their daylight and

weather independent characteristics.

Recently, the analysis and use of the ever-increasing number of geospatial datasets and
remotely sensed products utilised in monitoring environmental systems have shown significant
advancement in their utilisation. Open access data, cloud computing and machine learning allow
the integration of large datasets faster and easier than ever before (Hird et al., 2017). Google
Earth Engine is one of the cloud-based free service available for computing large geospatial data
(Sidhu et al., 2018). GEE is being increasingly used in studies ranging from the field and
catchment scale to the country and planetary scale (Clement et al., 2018, Mandal et al., 2018,

Van Tricht et al., 2018).
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Soil moisture retrieval algorithms are generally divided into two main distinct groups although
there are other alternative methods, such as change detection. Theoretical or physical model-
based approaches are the first group commonly used for soil moisture estimation by
mathematical inversion of the models (Pasolli et al.,, 2015). The second group collects the
techniques that are built on experimental data. However, the target variables and the remote
sensing measurements are often related through non-linear functions signal saturation or the
non-uniform sensitivity of the signal to physical properties (Haboudane et al., 2004, Twomey,
2013). To capture this complexity, numerous studies investigated the potential of machine
learning techniques such as artificial neural networks, support vector regression or Random
Forest (Ali et al., 2015). These methods have been successfully applied to exploit information
and establish relationships between ¢?, soil-vegetation characteristics and near surface soil

moisture (Dawson et al., 1997, Ali et al., 2015, Alexakis et al., 2017, Kumar et al., 2018).

The currently available SAR and optical datasets with fine spatial resolution and frequent over
passes have been showing promising results in soil moisture prediction at a temporal scale close
to user needs. The currently applied water balance models use low spatial resolution input from
the Fundamental Soil Layers often failing to deal with the spatial heterogeneity of soil
properties. Considering the variability occurring in hill country terrain, a soil moisture product
with 10-30 m pixel size would result in more accurate fertiliser planning and application as well
as improved decision-making on pastoral land. Therefore, the main objectives of the present

study are to:

1. Implement an ensemble machine learning method to model soil moisture at medium
resolution and its temporal evolution during the study period at the Patitapu Station, in
the Wairarapa region.

2. Investigate radar signal sensitivity to near surface soil moisture at various spatial
resolutions to understand the backscatter behaviour specific to the research area.

3. Combine Sentinel-2, Landsat 7 and Landsat 8 observations to generate a time series of
Normalized Difference Vegetation Index (NDVI) for the representation of vegetation
presence and to account for its contribution on the radar signal.

4. Contribute to the generation and development of a systematic, spatial soil moisture
product for more accurate water balance calculations applied in farm management
practices and fertiliser application planning.

5. Provide an insight of the utilisation of a simple, synergetic use of remotely sensed data

and topographic attributes in soil moisture modelling in hilly landscapes.
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6.2 Materials and methods

6.2.1 Study area

The study was conducted on a 2623 ha hill country property, located in the Wairarapa region of
the North Island of New Zealand (40.745020 S, 175.887320 E). The study area is a primarily
pastoral farmland mixed with patches of forestry on rolling to steep hills, interspersed with
fertile plains. The average annual rainfall is 1050-1127 mm on the property, while elevation
ranges from 148-531 m above sea level. The predominant plant communities are ryegrass
(Lolium perenne) and white clover (Trifolium repens) species, while the soils are mainly silty clay
loam in texture. The ground-based, in situ soil moisture data collection was limited to relatively
homogenous, permanent pasture surfaces on soils with mainly silt loam and silty clay loam
texture. Figure 6.1 illustrates the research area on a Sentinel-2 RGB composite (Fig. 6.1 A) on
which the ground-based microsites were also displayed. A composite of timely averages (i.e.
seasonal mean) of Sentinel-1 ¢ data in spring, summer and winter (Fig 6.1 B) indicates various
land cover types as they exert different responses on the radar signal that is supported by an

NDVI product calculated from a Sentinel-2 scene from August 2018 (Fig. 6.1 C).

6.2.2 In situ data sources

6.2.2.1 Ground-based, in situ soil moisture observations

Soil moisture measurements were obtained by 20 capacitance-based, AquaCheck sub-surface
probes (AquaCheck Soil Moisture Management, Durbanville, South Africa) arranged into a WSN

(Fig. 6.1 A). The WSN deployment has been described previously in detail in Chapter 3 along with

the specific terrain and soil properties at each microsite.
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Figure 6.1 The extent of the research area represented by Sentinel-2 multispectral data and Sentinel-1
radar backscatter composite. A: the microsites marked on a cloud free Sentinel-2 optical image. B: VV
backscatter data where the red band shows the mean of the VV backscatter during spring (Sept 2017 -
Dec 2017), the green band shows the mean of VV backscatter in summer (Dec 2017 - Feb 2018) and the
blue band shows the mean of VV backscatter in winter (Jun 2018 - Aug 2018). C: Sentinel-2 NDVI on 24
Aug 2018.

The AquaCheck probe is equipped with moisture sensors spaced at 100, 200, 300, and 400 mm
depths, although only the 100 mm readings were utilised in this study. Soil water content was
recorded at 15-minute time intervals and the raw sensor readings were converted to volumetric
soil moisture (6, m*m=3) through sensor-specific calibration functions. The applied calibration
formulas were obtained through gravimetric soil moisture measurements considering a wide
range of various wetness conditions. More details on the calibration method and sensor
accuracy analysis was presented in Chapter 4. To create the reference database, 6, data was

obtained from the WSN at the time stamp that coincided best with the SAR image acquisition.

We note that 6,, measurements at 100 mm depth have their limitations when related to C-band
SAR data with typically shallow (few cm) soil penetration (Bruckler et al., 1988, Le Morvan et al.,
2008). However, the network is set up on an operating farm where the devices had to be
protected against human and animal activity by burying them. Due to the probe design and the
sensors’ cylindrical shaped sphere of influence, 6, information was gained from the ~70-130

mm increment and hereafter referred to as near surface 8,,.
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6.2.2.2 Terrain attributes

Terrain variables were extracted from a high-resolution (0.2x0.2 m) DSM generated through a
structure-from-motion technique (Micheletti et al., 2015) where images were captured using
DSLR camera from a fixed wing aircraft. The DSM was smoothed using focal statistics prior to
the terrain analysis. Topographical parameters and hydrological metrics, such as slope angle,
aspect, SAGA topographic wetness index (SWI), topographic position index (TPIl) and terrain
ruggedness index (TRI) were derived from the DSM. The process was conducted by the
application of the terrain analysis tool sets built in the System for Automated Geoscientific
Analysis (SAGA) software (Conrad et al., 2015). The datasets were resampled to 20 m pixel size
using bilinear interpolation to ensure integration with the SAR data. The reference terrain

information was extracted from the radar pixel footprint overlapping the twenty microsites.

6.2.3 Remote sensing data

6.2.3.1 Data access through Google Earth Engine

Due to the number of images used in the study, the associated processing time and computing
power requirements, the remotely sensed information was obtained via the cloud-based Google
Earth Engine (GEE) computing platform (Gorelick et al., 2017). GEE offers pre-processed image
collections and a unified framework to process large number of images that are stored within
Google’s cloud computing services. GEE’s data manipulation and visualisation toolsets provide
unprecedented possibilities for temporal analysis and data extraction from the vast amount of

publicly available remote sensing data.

For the purpose of the study, the JavaScript application programming interface was used via the
GEE code editor to access, filter, manipulate and extract a variety of the data from the GEE’s
data catalogue. Our study utilised the publicly accessible, standard Earth science raster datasets,
including high-resolution Synthetic Aperture Radar (SAR) images captured by the Sentinel-1
satellites and multispectral scenes acquired by the Sentinel-2, Landsat 7 and Landsat 8 missions.
The analysis and modelling tasks were executed on images that satisfied the geometric quality

requirements, i.e. GEE’s Tier 1 image collection.
6.2.3.2 Qverview of the exploited remote sensing images

As the Sentinel-1 SAR imagery is dominantly independent from cloud cover, a relatively dense
image collection was generated. Although the research area is covered by Sentinel-2 scenes
every 5-10 days, only 21 cloud-free images were available within the study period due to the

frequent overcast conditions in New Zealand. The extraction of clear, cloud-free pixel values
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over all microsites was crucial to build up a representative training dataset. Thus, we
investigated the availability of cloud free Landsat 7 and Landsat 8 acquisitions and incorporated
them to increase the temporal density of observations in the time series data. Table 6.1

summarises the number of analysed images acquired by various satellite sensors in partly cloudy

and cloud free conditions.

Table 6.1 The number of remote sensing images used in this study grouped by cloud cover.

Satellite and sensor Total no. of images
Sentinel 1/ SAR 153
No. of cloud free images over all No. of partly
microsites cloudy images
Sentinel 2 / MSI 21 18 39
Landsat 7 / ETM+ 11 7 18
Landsat 8 / OLI 9 11 20

The multispectral scenes were available in a significantly lower number and only about half of
the images were cloud free over all the microsites. Landsat and Sentinel-2 satellites have
spectral and spatial similarities so that they could be combined to increase the amount of cloud-
free observations (Flood, 2017, Li and Roy, 2017, Skakun et al., 2017, Pastick et al., 2018, Urban
et al., 2018). In total, 230 satellite scenes were exploited over a time span of 22 months for the
synergistic use of the data to achieve high model training results. Figure 6.2 illustrates the
temporal distribution of the remotely sensed images over the study period for the four satellite

missions from Nov 2016 to Aug 2018.
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Figure 6.2 Overview of the used satellite data coverage of Sentinel 1 (A/B), Sentinel 2 (A/B), Landsat 7
and Landsat 8 acquisitions over the Patitapu Station between 01/11/2016 and 31/08/2018. The scenes
marked with a rhomboid were cloud-free over all the 20 ground-based measurement locations.
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6.2.3.3  Radar imagery from the Sentinel-1 mission

The SAR data applied in this study was captured by instruments on board the Sentinel-1A and
1B satellites. The Sentinel-1 constellation is operated by the ESA and the mission is part of the
Copernicus program. The Sentinel-1 satellites are mounted with C-band (central frequency of
5.404 GHz) SAR instruments with equivalent configurations. Due to the design of the Sentinel-1
mission, a 6-day repeat cycle can be reached if both satellites are considered providing data in
single and dual polarisation modes. The mission provides an all-weather day-and-night supply

of SAR imagery with a spatial resolution of 10x10 m after multi-looking.
6.2.3.3.1 The SAR dataset over the study area

Incidence angle (8) and the 6®and data were extracted from 153 Level-1, Ground Range
Detected (GRD) images acquired in Interferometric Wide swath mode. The GRD products were
exploited in the available dual polarisation, i.e. VV (vertical transmit and vertical receive) and VH
(vertical transmit and horizontal receive) over the study area. GEE’s Sentinel-1 image collection
contains images with several different instrument configurations, resolutions obtained by the
satellite constellation during both descending (DES) and ascending (ASC) orbits. The attached
metadata properties can be used to filter the dataset and generate a homogenous Sentinel-1
image collection. In this project, we kept all the available SAR images to increase the amount of
radar data input into the model. Sentinel-1 ¢ was available at four acquisition modes over the
Patitapu Station, i.e. ASC orbits with 34° and 44° & and DES orbits with 30° and 41° . Considering
a specific acquisition mode, the & property found in the metadata barely changed due to the
proximity of the microsites and the small extent of the area. Additionally, the SAR data was
extracted at 10, 20 and 30 m resolution through GEE for each acquisition mode to investigate

the sensitivity of ¢° to soil moisture depending on @ and spatial resolution.

6.2.3.4  Multispectral imagery

6.2.3.4.1 Sentinel-2 mission and available dataset in GEE

The ESA has launched the Sentinel-2 satellite constellation comprising of two identical satellites
as part of the Copernicus program. The satellites are equipped with the Multi Spectral
Instrument (MSI) providing high to moderate spatial resolution imagery with frequent revisits
and similar spectral characteristics to the Landsat family (Drusch et al., 2012). The Sentinel-2
obtains images in 13 spectral bands spanning from visible (VIS) to short wave infrared (SWIR)
range, at different spatial resolutions ranging from 10 to 60 m. GEE delivers Sentinel-2, Level 1C
data representing orthorectified Top of Atmosphere (TOA) reflectance since June 2015.

Additionally, a quality assessment bit mask is added for cloud identification and masking.
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6.2.3.4.2 Landsat 7 and 8 mission and datasets in GEE

The Landsat 7 mission, launched in 1999, is equipped with the Enhanced Thematic Mapper Plus
instrument (ETM+) collecting information with a 16-day repeat coverage. The ETM+ sensor
captures images in seven spectral bands with a spatial resolution of 30-60 m and a panchromatic
band with 15 m resolution (USGS, 2018). For the purpose of the study the TOA reflectance image

collection was chosen, as Sentinel-2 data is only available in TOA reflectance.

The Landsat 8 mission was launched in 2013 and it captures images every 16 days in an 8-day
offset from Landsat 7. The satellite is equipped with the Operational Land Imager (OLI) for
multispectral observations. Landsat 8 images are also delivered in calibrated TOA reflectance
format by GEE containing 12 bands (USGS, 2018). Most bands have a resolution of 30 m, which
have been utilised in the present work. A quality assessment band is provided for every Landsat
7 and 8 products carrying descriptions about observation quality. This band was applied as a per

pixel filter to generate cloud-free image collections.

6.2.4 Combination of NDVI and adjustments specific to the study area

6.2.4.1 NDVI calculation

To represent the vegetation cover, NDVI was derived from spectral information captured by the
three multispectral satellite missions and combined into one time series following an
adjustment process. NDVI has been a widely applied indicator of green vegetation cover

(Reviewed by Bannari et al. (1995)). The generic form of NDVI calculation is given as Eq. (6.1).

NDVI = PNIR — PRED (6.1)

PNirR t PRED

Where py;r and pggp represents the reflectance in the near-infrared (NIR) and red channels,
respectively. Sentinel-2 NDVI was derived based on the Band 8A (NIR) and Band 4 (Red) as the
difference between Landsat 8 and Sentinel-2 NDVI were less pronounced when the Band 8A was
selected instead of Band 8 (Zhang et al., 2018). The same results were presented by Mandanici
and Bitelli (2016) showing that Band 8A should be used when Sentinel-2 NDVI is calculated to be
able to compare that to Landsat 8 NDVI. For Landsat 7, the Band 4 (NIR) and Band 3 (Red), while
in the case of Landsat 8, Band 5 (NIR) and Band 4 (Red) were selected for NDVI calculation as
per Eq. (6.1).

6.2.4.2 Satellite product comparability

In principle, the Sentinel-2 Level 1C TOA, Landsat 7 and Landsat 8 TOA products should provide

broadly comparable and complementary observations for most cases. However, small but
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consistent differences have been found during comparisons of Landsat 7 and Landsat 8 as well
as between Sentinel-2 and Landsat products (Flood, 2014, Holden and Woodcock, 2016, Zhu et
al.,, 2016, Flood, 2017). The combination of data from multiple satellites may lead to data
discrepancies due to the slight differences between sensor properties and bandwidth (Flood,
2014). Landsat 7 and Landsat 8 are not identical but they exhibit systematic variation between
the two sensors that makes them comparable after corrections (Flood, 2014, Holden and
Woodcock, 2016). The difference between Landsat 8 and 7 was quantified by Flood (2014) who
stated that NDVI values were systematically overestimated by Landsat 8 OLI by about 5% as

compared to Landsat 7 ETM+ without adjustment.

NASA released the Harmonized Landsat 8 and Sentinel-2 products and reported the
transformation functions for selected areas globally (Claverie et al., 2017), that did not include
New Zealand. Zhang et al. (2018) and Flood (2017) also characterised the transformation
parameters and found that their results were substantially different from the NASA’s published
coefficients. Therefore, it was suggested that the adjustment among these satellite products

might require coefficients derived on a regional basis.
6.2.4.3  Site-specific NDVI adjustments for Patitapu Station

Consequently, study area specific adjustments were developed and applied locally to the various
NDVI products to ensure a better match over the Patitapu Station. The corrections are
commonly based on Ordinary Least Square (OLS) linear regressions fitted on co-registered raster
datasets captured by different sensors and obtained on the same day or within a given time
window (Flood, 2014, Holden and Woodcock, 2016, Flood, 2017, Zhang et al., 2018). The present
work followed this method and the broadly accepted OLS technique was employed to generate

the specific adjustment formulas.

To develop the correction functions, coincident acquisitions were selected from dominantly
cloud free conditions on the same day or within a 3-day window. The cloud mask information
was derived from the Quality Assessment bit-mask bands for each satellite products to eliminate
cloudy pixels. The 10 m Sentinel-2 bands were spatially resampled to match the 30 m resolution
of Landsat scenes. NDVI was derived in GEE and the images with added NDVI bands were
exported and co-registered to ensure alignment between corresponding pixels from different
scenes. NDVI values were extracted from 5000 randomly generated sampling points distributed
over the study area from each image pair. A small portion of the sampled NDVI values was

removed due to patches of cloud cover or cloud shadow. To derive transformation functions
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from Landsat 7 and Landsat 8 NDVI values to Sentinel-2 NDVI, linear models were fitted on the

sampled NDVI individually as per Eq. (6.2).
NDVISZ = CO + C1 * NDVIL (62)

Where, NDV I, is NDVI derived from Sentinel-2 spectral information and NDVI; represents
NDVI from either Landsat 7 or Landsat 8 images while ¢, and c; are the intercept and slope of

the fitted models.
6.2.4.4  Filling NDVI gaps in the time series

To create a complete training dataset, a continuous, daily NDVI time series input was generated
from the combined, adjusted NDVI data. To derive NDVI values on the days coincident with SAR
image acquisitions, a missing value imputation process was applied by the utilisation of the tools
offered by ImputeTS package (Moritz and Bartz-Beielstein, 2017) in R software environment (R
Core Team, 2017). Although there are different algorithms available in ImputeTS, a Kalman filter
technique was chosen to improve the temporal consistency of the NDVI time series because it
is widely applied algorithm for remotely sensed and in situ data assimilation (de Wit and van
Diepen, 2007, Kleynhans et al., 2011). Similarly, the Kalman filter method has been used to

create continuous time series of NDVI images by Sedano et al. (2014).
6.2.5 SAR backscatter sensitivity to soil moisture

As the SAR images were obtained in four acquisition configurations in different 0 ranges, we
investigated the sensitivity of ¢© to 8, for each image collection. Under certain circumstances,
i.e. constant surface roughness and bare soil surface or negligible amount of vegetation cover,
a positive linear relationship can be assumed between these two parameters (Weimann et al.,
1998, Quesney et al.,, 2000, Srivastava et al., 2009). Therefore, a regression analysis was
performed to investigate the sensitivity and the linear relationship between ¢° to 6, at the
microsites. The analysis was conducted at various spatial resolutions to examine which cell size

is the most promising for 8, retrieval and noise reduction.
6.2.6 SAR backscatter normalisation

Due to the significantly different viewing orientation of the ASC and DES orbits, a simplified
normalisation process was applied to incorporate all the ° data to the training of the RF

0 caused by the angular variation was reduced by conducting a

regressor. The variance in ¢
broadly used square cosine angle correction technique (Ulaby et al., 1982b, Mladenova et al.,

2013, Topouzelis and Singha, 2016). The normalisation method follows Lambert’s law for optics
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and it assumes that the portion of the energy returning to the satellite sensor follows a cosine
law and the radiation variability within the observed area is also cosine dependent (Mladenova
et al., 2013). The correction approximates the radar response under any given angle from the

observed radar backscatter 01‘9) acquired at ¢ as per the formula provided in Eq. (6.3).

0 .2
0 Oy COS“ Uper

O9ref = (6.3)

cos? Y

Where, Ugref is the normalised radar response at a selected reference incidence angle ;... The
Sentinel-1 SAR data obtained over the Patitapu Station ranged from approximately 30° to 44°
considering all acquisition modes and orbits. Therefore, the mean 6, i.e. 37° was chosen as 19ref
following the method by Van Tricht et al. (2018) who combined Sentinel-1 and Sentinel-2
imagery for crop mapping.

6.2.7 The proposed methodology

To develop a model that can predict 8, and to capture the variability at the paddock and sub-
paddock scale, at least medium spatial resolution input layers at 10-100 m pixel size (Gao et al.,
2010) are required. Although ¢ is affected by noise and numerous parameters such as the
vegetation cover, dielectric properties and the geometrical characteristics (i.e. roughness) of the
targeted surface (Ulaby et al., 1978, Ulaby et al., 1982a), it carries information about 8,,. In
particular, volume scattering exerts a strong influence on SAR ¢ by attenuating the signal and
reducing its sensitivity to 8,, (Ulaby et al., 1986b). The degree of this effect is highly dependent
on the geometrical alignment and characteristics of the vegetation (Karjalainen et al., 2004,
Patel et al., 2006). Consequently, these effects need to be incorporated to the 6, modelling

algorithm in some ways to improve the performance of the simulation.

Optical imagery with multispectral characteristics can indicate the presence of vegetation and
its temporal evolution through derived indices such as the NDVI. Therefore, NDVI is commonly
used to correct for the vegetation effect on the radar signal and to improve the performance of
8, retrieval algorithms (Alexakis et al., 2017, Gao et al., 2017). It was shown that increasing NDVI
resulted in decreasing sensitivity of the radar signal to 8, (Bousbih et al., 2017). Hence, the
integration of radar and multispectral imagery into a time series was implemented to model the
temporal and spatial distribution of 8,,. Furthermore, terrain attributes were derived from a

DSM to represent some of the radar signal influencing parameters.

The various environmental variables and the nature of the previously described non-linear 6,

retrieval problem required an advanced method. Machine learning techniques represent a

166 |Page



Hajdu: Soil water modelling in hill country Remotely sensed soil moisture prediction

selection of techniques that are able to learn from a reference dataset using various learning
strategies (Ali et al., 2015). As a typical application of artificial intelligence, a machine learning
technique can detect patterns in data without relying on programmed prior rules and
relationships. The machine learning algorithms are able to predict or map further data from the
automatically recognised trends and relations (Robert, 2014). A great advantage of the machine
learning tools are that they have the capability to integrate data from different sources, as the
algorithms do not require assumptions regarding the statistical distribution of the given set of

predictors (Ali et al., 2015).

The overall modelling task was considered as a complex supervised regression problem built
upon a dataset consisting of continuous and categorical variables from various sources.
Furthermore, numerical values were expected as model output. Therefore, a non-parametric
regression tool, the Random Forest (RF) method was chosen, since this algorithm is capable of
simultaneously handling both type of variables and the prediction generates continuous
numerical values (Breiman, 2001). The state-of-the-art RF algorithm is fast and does not require
as large training datasets as other machine learning approaches such as artificial neural

networks (Ali et al., 2015).

RF predicts the final numerical value of a response variable (i.e. 8,), from several predictor
variables (i.e.d®, NDVI and terrain attributes) by aggregating the results from multiple
independently drawn decision trees (a “regression forest”). RF can overcome the commonly
occurring overfitting and training data sensitivity problems by constructing an ensemble of
decision trees from randomly selected training samples and variables at each node (Park et al.,
2017). The numerous decorrelated trees were constructed from bootstrapped samples from the
training data and the variance in the trees was reduced by averaging the results. It was shown
that RF was capable of efficient 8, retrieval under various crops by Kumar et al. (2018). The
chosen RF regressor was built on the Breiman’s algorithm (Breiman, 2001) and the model was
developed and assessed by the utilisation of the Caret (Kuhn, 2008) as well as randomForest
(Liaw and Wiener, 2002) R software packages. The overall model building and assessment

procedure is presented in Figure 6.3.

To evaluate the algorithm performance, 22-months’ worth of data was used to create validation
(25% of the observations) and training data (75% of the observations) subsets, based on pseudo
random sample selection. First, the RF model was fine-tuned to achieve the best performance
and the results from the Out-Of-Bag error estimation technique were used to assess prediction

performance.
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Figure 6.3 Graphical representation of the data pre-processing, extraction as well as the modelling and
validation workflow (8,, — volumetric soil moisture, ° — backscatter coefficient).

The second step included a repeated cross-validation to investigate generalised model stability,

predictive accuracy and the difference between Out-Of-Bag error estimations and the cross-

validation. Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and adjusted coefficient

168 |Page



Hajdu: Soil water modelling in hill country Remotely sensed soil moisture prediction

of determination (R?) were selected to benchmark the model accuracy and loss functions. As
part of the third step, the validation subset was fed into the optimised model and the time series

of observed and modelled 8,, were compared at each in situ 8,, monitoring location.

As a last step, we investigated the spatial 8,, mapping capability of the trained RF regressor at
the Patitapu Station on selected dates. To derive 6, spatially, a reference dataset collected by
15 microsites was used for training the RF algorithm. Five microsites were left out and used for
a technically independent evaluation of the RF model performance. The validation microsites
were chosen to represent various terrain conditions distributed over the farm pastoral areas
with different aspect and slope angle conditions. Modelled 6,, values were extracted from eight

computed spatial layers and related against corresponding observed 0,,.

6.3 Results and discussion

6.3.1 NDVI adjustment

The derived model parameters and the amount of data used to develop the transformation
model for NDVI from Landsat 7 and Landsat 8 to Sentinel-2 are presented in Table 6.2. Strong
linear relationships were observed during the model fitting, resulting in an R? of 0.85 for Landsat

8 to Sentinel-2 and R? of 0.89 for Landsat 7 to Sentinel-2 for NDVI transformations.

Table 6.2 Coefficients for adjusting Landsat 7 and Landsat 8 Normalized difference Vegetation Index
(NDVI) to Sentinel 2 NDVI generated over the Patitapu Station.

NDVI conversion Intercept c, Slope ¢4 R? No. of pixels / image pairs
Landsat 8 to Sentinel-2 -0.0307 1.0296 0.85 19425 /4
Landsat 7 to Sentinel-2 0.0686 0.9565 0.89 24121/5

6.3.2 Sensitivity of radar backscatter to soil moisture

C-band SAR data sensitivity to 8, is dependent on the 6 of the radar signal and lower 8 showed
higher sensitivity to soil water content (Ulaby et al., 1978, Baghdadi et al., 2006). To investigate
the difference in SAR data response to 8,, in the multiple acquisition modes, VV and VH ¢ data
were related to 6, through linear regression analysis as an initial approximation. The correlation
was defined at each ground-based microsite between VV and VH ¢° and 6,,. VH polarisation
showed insignificant correlation and sensitivity to 8, changes compared to the VV ¢°. These
findings were confirmed by previous studies observing that VH polarisation is less affected by
soil water content than VV (Eweys et al.,, 2017a, Amazirh et al., 2018). Hence, we provide
detailed results only on the VV ¢° and 6, relationship by reporting adjusted coefficient of

determination (adjusted R?) values as indicator of the strength of the relationship.
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Figure 6.4 depicts the distribution of adjusted R? values calculated for four 9 classes, although
the values were grouped by orbit mode and spatial resolution. It was observed that, in general,
the 20 m spatial resolution SAR data reached a slightly higher mean adjusted R? than the

datasets generated at 10 m and 30 m pixel size considering the twenty microsites.
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Figure 6.4 Adjusted coefficient of determination (R?) values of the regression between Sentinel-1A and
1B (SAR) VV backscatter and ground-based volumetric soil moisture for various satellite orbit and
spatial resolution combinations (ASC - ascending orbit - Sentinel-1B, DES - descending orbit - Sentinel-
1A). The boxplots visually summarise the following statistical parameters: the mean (white rhomboid),
the median (line across the box), 25" percentile and 75" percentile as lower and upper hinges and
outlying points.

For low 1, i.e. DES orbit, some of the microsites showed positive, moderately strong correlation
whereas at higher 9, i.e. ASC orbit, the strength of the relationship ranged from weak to
moderate. It is likely that the application of 10 m pixel size SAR dataset contained more noise
than the 20 m data, whereas the 30 m resolution seemed to be too large to represent 8,, due to
its highly variable distribution over complex terrain. Therefore, the 20 m spatial resolution was
chosen for the Sentinel-1 dataset and the spatial resolution of the modelling and mapping. The
lower 6 of the DES mode were shown to be better suited for 6, estimation than high 9.
According to these results, the prediction could be improved by only using the DES orbit data.
However, in this study, the RF algorithm was trained on normalised SAR data, thus the utilisation
of various SAR images will help to keep the high temporal resolution and make the model able

to process scenes captured in different acquisition modes.

The W ¢ was plotted as a function of 8,, for all 8 in ASC and DES orbits at 20 m resolution. The
linear fit between VV ¢ and 6, with shaded confidence regions (0.95) is presented in Figure
6.5. Some of the microsites (i.e. 4,9, 10, 12, 13 and 20) represented moderate correlations while
all the others showed weak or insignificant linear relationship. Although, it was clear that high
a® values were related to high 8, and low ¢° values were generally associated with dry

conditions.
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Figure 6.5 Scatterplots illustrating the relationship between VV backscatter (¢°) at 20 m spatial
resolution and near surface soil moisture (8,) at the 20 monitoring locations installed at the Patitapu
Station coloured by orbit mode. The shaded areas represent the 0.95 confidence regions.

These results suggest that the linear approach was not suitable to derive the 8,retrieval
functions over pastoral surfaces under hill country conditions. The low adjusted R? values and
the varying slopes of the fitted linear models indicates a large amount of uncertainty which can
be attributed to numerous influencing factors, such as speckle noise, vegetation cover, surface
roughness and complex terrain generating variable angular responses. According to Baghdadi et
al. (2008) the fitted linear models and their coefficients may differ from year to year and on a
regional basis requiring frequent calibration. Additionally, the 6,, sensors were located at 70-130
100 mm soil depth that was slightly deeper than the theoretical penetration depth for C-band
SAR signal. It was observed that the generation of homogenous image collections by using 0 as
a filter, achieved higher R? values, although the filtering led to significantly reduced temporal

SAR observation density.
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At a selected location, namely at Site 9, the temporal evolution of normalised SAR data, NDVI,
daily total rainfall and daily mean 8, were plotted together as shown in Figure 6.6. Site 9 is
situated on a near high ridge position with relatively homogenous pasture cover and a narrow

annual 8,, fluctuation range.
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Figure 6.6 Ascending (ASC) and descending (DES) VV backscatter (6°) development analogous to daily
mean volumetric soil moisture ( 8,,) , to daily NDVI derived at Site 9 and total daily rainfall measured
by the local weather station during two consecutive years at the Patitapu Station.

Both ASC and DES ¢ showed recognisable patterns and increasing values with increasing 6,,.
During the dry periods, the amount of backscattered energy was low, although the heavy rainfall
events seemed to increase the o® values. During Nov 2016 - Jan 2017 period, it was clearly visible
that low NDVI was associated with high ¢ and vice versa suggesting the presence of the
vegetation cover effect on the SAR signal (Fig. 6.6). Similar a° behaviour and moderate negative
correlations were observed at other locations as well, which are not presented here in detail.
Our results demonstrate agreement with other studies confirming that moisture sensitivity of
the g likely to decrease with increasing NDVI (Zribi and Dechambre, 2003, Baghdadi et al., 2008,
Gao et al.,, 2017). The response of ¢° to 8, changes was weak, but noticeable despite the fact

that the several affecting variables were not considered through the linear approach.
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6.3.3  Soil moisture modelling by a Random Forest (RF) ensemble learning method

6.3.3.1 Training accuracy assessment

Initially the RF model was built using the default parameters that include the number of trees to
grow (ntree) and the number of variables randomly considered at each split (mtry). To get the
best performance from the algorithm, a fine-tuning process was conducted to examine the
model performance with various settings. For this purpose, pseudo randomly sampled training
and validation datasets were generated. It was observed that the prediction accuracy decreased
if the mtry was > 4 for test error assessment and > 4 for the Out-of-Bag error estimates, i.e.
training accuracy. Considering the ntree parameter, no significant decrease in error was
observed if the ntree was set to > 300. The training error versus ntree and the optimisation of

mtry through the training and test error calculations are shown in Figure 6.7.
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Figure 6.7 Training error evolution through the optimisation of the number of trees (ntree) and the
number of variables randomly chosen at each split (mtry) hyperparameters.

Therefore, in the optimised model, the ntree was set to 300 and mtry to 4. These
hyperparameters were implemented during the cross validation of the final RF model. The Out-
of-Bag technique resulted in a 0.047 m*m™ RMSE and 76% of the variation was explained by the
RF model.

The second part of the RF algorithm assessment was based on the MAE, RMSE and R?values
generated by the five times repeated, 15-fold cross-validation. MAE ranged between 0.026 and
0.038 m®*m3, RMSE between 0.036 and 0.056 m* m while the mean R? achieved a relatively
high value of 0.76. Figure 6.8 presents the 6, modelling and cross-validation results, including
a summary of the mean and the spread of accuracies. These results suggest that the RF algorithm
performed generally well in modelling the 6, regardless of which section of the data population

was taken as training set.
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MAE RMSE Rsquared
0,628 l 0.0l32 l 0.(;36 (n;3m'3) O.C;4O O.OI4S 0.650 0.655 (m*m-3) 0.l70 0,I75 0.230
Min. Ist Qu. Median Mean 3rd Qu. Max.
MAE 0.026 0.030 0.033 0.032 0.034 0.038
RMSE 0.036 0.044 0.047 0.047 0.049 0.056
R? 0.69 0.74 0.77 0.76 0.79 0.85

Figure 6.8 Statistical summary of the Random Forest modelling performance using five times repeated
15-fold cross-validation.

6.3.3.2  Variable importance

In the RF implementation used in this study, two measures were used for interpreting variable
importance as provided and described by Liaw and Wiener (2002). For regression, the mean
decrease in accuracy is defined as the mean squared error (MSE) that was estimated based on
the prediction error on Out-of-Bag subsets of the data after a variable is permuted. Secondly,
the mean decrease in node impurity is described as the total decrease in node impurities from
splitting on the variable, averaged over all trees and expressed as residual sum of squares. Figure

6.9 shows the importance of variables for the final dataset based on these two metrics.

Following the previous results from the sensitivity analysis, ¢° with VV polarisation was more
related to 6, than VH, thus 0% with VH configuration was not included in the final set of
variables. The introduction of a seasonality component clearly increased the amount of
variability explained by the model from 40% to over 77% in case of RF training accuracy. NDVI,
SWI, slope angle and VV o were the most important explanatory variables besides the season
while elevation, aspect, TPl and TRI had less influence on the predictions. Concerning the mean
decrease in accuracy, VV o was situated at the bottom of the chart meaning that it had a weak
prediction strength. Although VV o represented a higher ranked position in the total decrease
in node impurities. These charts can be used for variable selection for tree-based models and
for this study; the variables presented in Fig. 6.x were kept. During the model building, some
other variables such as VV/VH ratio, VV and VH difference were left out as they did not improve

the prediction accuracy and showed the less important roles than VV ¢°.
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Figure 6.9 The relative importance of variables from the final Random Forest model showing the mean
decrease in accuracy (mean square error) and the total decrease in node impurities (as residual sum of
squares) as exported from the randomForest R package (Liaw and Wiener, 2002).

6.3.3.3 Test accuracy assessment

The optimised, best performing RF model was executed on the test subset and the prediction
function was applied to model 8,,. The accuracy of the predicted responses was assessed by
fitting linear regression on the modelled 8, values and the observed 8,,in the validation set. The
comparison resulted in 0.046 m®m=residual standard error and 0.78 adjusted R*values at the
statistically significant level (P value < 0.001). Figure 6.10 depicts the time series of the in situ 8,
and the modelled 8, at each sensing location with the imputed NDVI values coinciding with the
0, observations. The residuals were computed as the difference between observed and

modelled 6,,, and shown for each microsite on the right y-axis.
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Figure 6.10 Time series of predicted versus observed volumetric water content (8,) and the evolution
of NDVI at 20 sensing locations. The residuals are shown as columns for each observation pair indicating
either overestimation (light red) or underestimation (light blue).

Since the test subset is randomly selected, the analysed time interval varies at the microsites.

The general annual trend of 8,, was closely followed by the modelled responses and the closest
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agreement was found during the wet seasons between Apr-Aug 2017 and Jun-Aug 2018 at every
sensing location. Similarly, the algorithm worked well in the dry seasons (December — February)

in both years that might be due to the reduced amount of water in the vegetation.

However, significant uncertainty and errors occurred in the 8, prediction during the transition
periods, i.e. during the drying and rewetting stages. Large errors of ~0.06-0.16 m3> m3 were
produced between March-May 2017 dominantly underestimating the real 8,, when the soils
were in the ascending period. It was assumed that the generally high errors in autumn were due
to the combination of the actual phenological stage of the pasture cover, the increasing amount
of water content in the vegetation and the effect of increasing 6,, in the soils. It has been
observed in Chapter 5 that this period was characterised by high spatial soil moisture variability

that might be reflected in the radar signal.

On the other hand, when the soils were in the descending transition period (Dec 2017 — Jan
2018), i.e. drying out stage, the model typically overestimated the observed 6, values producing
the largest errors. These findings suggest that the vegetation exerted a noticeable impact on the
predictions during the drying out period and the errors can be associated with high NDVI values
as itis shown in Figure 6.8. The commonly observed high NDVI values of late autumn, late spring
- early summer can be associated with the perennial ryegrass-based pastures’ strong spring and
autumn tillering characteristics resulting in increased herbage accumulation and feed surplus.
Inautumn, the growth rate is triggered by the soils rewetting stage after the usually dry summer.
Consequently, enhanced plant growth rate resulted in increased amount of fresh biomass and

vegetation water content, which could lead to elevated ¢, thus higher modelled 8, responses.
6.3.4 Spatial modelling and the validation of near surface soil moisture predictions

After selecting the best performing RF model, the algorithm was executed on a spatial dataset
of input variables to compute and develop 8,, maps over the research area on selected cloud
free days. All available ancillary datasets were co-registered and resampled to 20 m spatial
resolution to match the Sentinel-1 and Sentinel-2 images. The land cover was classified based
on a hyperspectral raster layer and the non-pasture areas were masked out from the mapping
(The classification method is described in more detail in Chapter 3). The previously presented

training and testing procedure was applied to the RF model.

The algorithm was fed by the reduced dataset collected from fifteen in situ 6, monitoring
locations. The Out-Of-Bag error estimates of the RF training provided 0.79 adjusted R? and 0.045
m3m™ RMSE, whereas the test accuracy assessment resulted in 0.78 adjusted R? and 0.047 m3

m3 RMSE. These correlations were statistically significant (P value < 0.001) for both training and
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test assessment. A summary of the five times repeated, 15-fold cross-validation process is
reported in Figure 6.11 providing the accuracy distribution of the performance considering MAE,

RMSE and R? as quantifying parameters.

MAE RMSE Rsquared
------- RN SERERSEE—— . i { . ‘[
O.OIZG I O.OISO I 0.0134 l O.0I38(m3m'3) 0.0140 O.0I45 0.650 O.(;55(m3m’3) O.I7O 0.175 0.]80 0.185
Min. Ist Qu. Median Mean 3rd Qu. Max.
MAE 0.026 0.029 0.031 0.031 0.033 0.038
RMSE 0.037 0.041 0.045 0.045 0.048 0.055
R? 0.70 0.75 0.78 0.79 0.82 0.85

Figure 6.11 Statistical summary of the Random Forest modelling performance using five times repeated
15-fold cross-validation on the reduced reference dataset obtained by 15 ground-based microsites.

A relatively high deviation was observed, which could potentially be reduced by increasing the
number of folds and repeats. It was noticed that the model performance trained on the reduced
dataset did not drop considerably if compared to the model assessment results considering all
of the 6, monitoring locations (Fig. 6.8). However, the stability of the RF model performance
somewhat decreased if executed on the reduced dataset as indicated by the mainly lower

minimum and greater maximum values of the statistical parameters.
6.3.4.1 Independent validation of near surface soil moisture predictions

The following analysis aimed to investigate the spatial mapping performance of the proposed
method. The evaluation process included the extraction of modelled 8,, values at five selected
microsites (Site 3, 5, 6, 9, 16) from a series of eight 8,, maps compared to the observed daily
average 6, obtained from the five microsites on the same days. The linear regression (Fig. 6.12)
was executed at each validation microsite separately and for all microsites considered together.
The process resulted in a statistically significant correlation (P value < 0.001) with 0.77 adjusted
RZand 0.048 m3*m= RMSE. The relatively high values of these statistical measures suggested that
the spatial prediction process was not strongly affected by the lower amount of input data in

the case of the five selected validation microsites.
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Figure 6.12 Scatterplots and linear model fitting between the observed daily mean volumetric soil
moisture (8,,) from the WSN and the predicted 8,, extracted from eight maps at five microsites and for
all microsites considered together.

Table 6.3 lists the acquisition dates of the Sentinel-1 and Sentinel-2 satellite image pairs with
basic descriptive statistics computed for each 8, raster dataset. The image pairs were chosen in
a way that the longest time difference between the radar and multispectral acquisition was two

days that was considered suitable for the combination of these images.

Table 6.3 Sentinel-1 and Sentinel-2 scene pairs used for spatial soil moisture mapping and basic
statistical parameters in m®m computed from all the cellular values from each raster layer.

Sentinel-1 SAR  Sentinel-2 MSI | Mean SD Min Max
22/05/2017 21/05/2017 | 0.437 0.029 0.328 0.523
18/10/2017 18/10/2017 | 0.388 0.024 0.297 0.484

7/11/2017 07/11/2017 | 0.387 0.023 0.292 0.486
05/12/2017 07/12/2017 | 0.264 0.031 0.181 0.364
17/01/2018 16/01/2018 | 0.271 0.034 0.184 0.372
03/02/2018 05/02/2018 | 0.252 0.029 0.175 0.374
06/05/2018 06/05/2018 | 0.369 0.051 0.232 0.48
10/07/2018 10/07/2018 | 0.442 0.029 0.355 0.53

The temporal distribution of the obtained 8, maps and their basic statistical values including
spatial mean and SD (Table 6.3) was plotted along with the temporal behaviour of the observed

daily mean 6,, averaged over 20 microsites (Fig. 6.13). Furthermore, daily spatial 6,, standard
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deviation, minimum and maximum values extracted from the WSN using all sensors are
represented by the ribbons. The dates of the spatial predictions were selected to represent
intermediately wet (07/11/2017 and 06/05/2018), dry (05/12/2017, 16/01/2018 and
03/02/2018) and very wet (21/05/2017, 18/10/2017 and 10/07/2018) soil water levels.
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Figure 6.13 Temporal distribution of the modelled soil moisture (6,,) maps along with the evolution of
daily spatial mean 0, collected by the wireless sensor network. The blue ribbon marks the mean @, +
its standard deviation (SD), while the grey ribbon indicates the range between daily minimum and
maximum values. The red dots indicate the modelled spatial mean 6, on the given day marked by
vertical dashed lines while the error bars reflect the mean 6, + SD.

The 6, trend was closely followed by the mean values calculated from the modelled maps except
in the drying out period during spring in 2017. As it was found previously during the test accuracy
assessment (Fig. 6.10), the transition period from wet to dry conditions were associated with

significant modelling uncertainty that was reflected in the spatial mapping process.

The 6, values were considerably overestimated on 11 Nov 2017 giving a mean value of 0.387 m?
m3 compared to the observed WSN spatial mean of 0.33 m3 m3. The phenomena may be
explained by the strong influence of vegetation, possibly as a result of the late spring early
summer high growth rate and biomass production. In Nov 2017, the soil temperatures increased
very quickly triggering the pasture production to a high level (refer to Chapter 7, Figure 7.5),
which was followed by further soil warming causing a considerable drop in pasture growth rates.
The VV o9 values did not decrease in proportion with the dropping 8, levels. The influence of
high NDVI values on C-band VV ¢° SAR data during summer season was also observed by Oldak

et al. (2003) on test microsites with grass cover.

Figure 6.14 illustrates eight 8,, maps under various soil wetness conditions in autumn, spring,

summer and winter. The spatially modelled maps during the summer period of 2017-2018
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showed close agreement with the mean observed soil moisture values ranging between 0.22-
0.25 m3®m?3 that matched with the previously observed trend in the prediction accuracy. The

lowest soil water levels were reached on 3 Feb 2018 giving a mean 6,, of 0.252 m®*m?,

During the rewetting stage in Apr - Jun 2018, the RF algorithm was able to model the 8, showing
a relatively good fit between mean modelled 6,, of 0.369 m®*m= and observed 6, of 0.35 m*m-
3, After the rewetting period, the soils reached saturation in July 2018 and remained at the near
saturated level for the rest of the data collection time that is characterised by the lowest spatial
variability. The mean 6,, calculated from the predicted map was 0.442 m3>m™ on 10 July 2018

that was a close match with the observed spatial mean value of 0.448 m3m?.

Based on a visual analysis, macro-scale patterns can be recognised on all the eight images that
showed good agreement with the expected temporal 8, evolution during the study period. The
spatial 8, pattern was strongly linked to the various landscape features suggesting the existence
of temporal stability in 8,, spatial distribution in support of the results showed in Chapter 5.
These observations also indicate the importance of topographical attributes in 6,, patterns with
an enhanced influence near the surface due to the meteorological forcing. Those pixels located
along the valley floors and flat areas were generally represented by wetter conditions reaching
0.45-0.53 m*m= 0, in certain cases. It was also apparent that hilltops, ridges and steep hill slopes
showed lower 6, than areas with low altitude and gentle slope angles. The flat areas located
along the stream running along the valley bottoms dried out slower than the hill slopes that is

clearly visible on the maps (Fig. 6.14).
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Figure 6.14 Comparison of spatially modelled near-surface volumetric soil moisture (8,) under different
wetness conditions at the Patitapu Station computed by Random Forest algorithm. Blank areas
correspond to the non-pasture surfaces.
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Two predicted maps with the two extreme 8, levels were chosen for further, more detailed
illustration and visual comparison. Figure 6.15 (A) presents a smoothed, resampled version of
8, conditions on 3 Feb 2018 and July 10, 2018 (Fig. 6.15 (B)) using bilinear interpolation overlaid
on high-resolution aerial imagery captured in 2017. To emphasize the relief, the terrain is
displayed by a 1.7 vertical exaggeration of the elevation surface for easier interpretation and
better visualisation. Additionally, a zoomed in view is provided for a closer visual assessment of

0, patterns over various terrain features and topographic positions.

Based on raster statistics supported by visual examination, the role of slope and aspect was not
obvious during the winter season, although the presence of its effect was noticeable during the
driest conditions on 3 Feb 2018. Hill slopes facing north were represented by the lowest mean
6, value of 0.245 m®*m™ while the flat areas held the highest amount 6, at 0.265 m®*m. East
facing surfaces were slightly wetter giving 0.26 m3m than south and west aspects with 0.251
m*m=3 mean 0, respectively. The differences in mean 6,, found among various aspect was not
extremely significant, it clearly shows agreement with our expectations and previous results
(Radcliffe and Lefever, 1981) considering the findings of the spatiotemporal variability analysis
in Chapter 5 and the role of aspect discussed in Chapter 2. Aspect can be characterised with a
seasonal pattern exerting its effect on 8,, dominantly during the descending transition and in dry

periods while its influence is less evident through the rewetting and in wet the stages.

Near surface soil moisture(m®m-) on 03/02/2018
lo.37 \
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Near surface soil moisture:(m®m=) on 10/07/2018
0.53 \

N

Figure 6.15 Dry (A) soil moisture conditions captured on 03 Feb 2018 and very wet (B), winter obtained
on 10 Jul 2018 over pastoral surfaces superimposed on aerial imagery and visualised in 3D with 1.7
vertical exaggeration of the terrain. The insets show a detailed view of a central part of the research
area with diverse pastoral landscape features.

Due to the nature of the experiment, the spatial validation was limited and would be further
improved by the independent collection of 6, values on a grid basis. The model was clearly able
to predict the 8, differences between surfaces with various steepness that is one of the main
drivers of 8, distribution in hilly landscapes (Crow et al., 2012b). The pattern seemed to be

consistent throughout the year in different 8, levels.

The approach presented here suggests that the combination of ground-based variables and
radar imagery and multispectral data has the capability to generate 6, products based-on
historical training data at relatively high accuracy. The incorporation of terrain information and
a seasonal component improved the precision on the 8, estimates. High-resolution regional or
country scale modelling of 6, is also a possibility since most of the chosen variables can be
derived either from the nationally available digital elevation model or from the datasets made
available by GEE. The introduction of new parameters and a temporally denser vegetation cover
information could improve the simulation accuracy and provide closer agreement during the
rewetting and drying out stages of the soils. As the study area is limited to pastoral surfaces,
pasture growth measurements could provide information about the biomass, the vegetative
stage as well as the water content of the vegetation. However, these measurements are usually

carried out at the point like scale, which is not suitable for the spatial modelling of 8,, on complex
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terrain. Thus, this study highlights the importance of using multisensory data and advanced
machine learning methods to deal with the complex relationships among the environmental

variables interacting within a hill country pastoral farming system.

As a direction of focus in the future, the trained RF model could be executed on an independent
area to examine its potential and the value of the obtained reference dataset by the WSN.
Furthermore, the more detailed investigation of the effect of reduced spatial resolution can be
a possible future perspective as well as a study that could be based on 8,, prediction as per farm
management areas, i.e. paddocks. This sort of approach might be also useful for planning
applications and it could reduce the noise in the data, although the method would lose the
capability to represent the high 6, variability within a particular paddock. Further steps could
include a classification-based modelling approach that could improve the prediction accuracy by
predicting wetness classes rather than absolute 8, values. The consideration of other terrain
attributes related to hydrological processes influencing 6,, distribution such as curvature,
convergence index can have a positive impact on the prediction performance. Similarly, other
type of vegetation indices such as enhanced vegetation index, normalised difference water
index derived from multispectral images may contribute to the improvement of 8,, estimation

on a map basis.
6.4 Conclusion

This study explored the application of the Random Forest machine learning method in near
surface soil moisture mapping at high spatial resolution (20 m cell size). The chosen regression
driven algorithm has proved to be a useful tool in modelling the relationship among SAR data,
NDVI, volumetric soil moisture and predictor variables derived from a high-resolution digital
surface model. Although, there are discrepancies between the modelled and the observed soil
moisture values, the investigated method was considered effective in soil moisture mapping at

the farm scale (2600 ha).

The series of estimated maps described the temporal and spatial patterns of near surface soil
moisture in a heterogeneous environment showing generally good agreement with observed
values. It can be concluded that the synergetic use of remotely sensed and ground-based data
has the power for soil moisture retrieval in New Zealand’s hilly landscapes. Since the model is
empirical, the proposed method requires historical, long-term field observations and temporally
dense remote sensing data in addition to terrain information. In this regard, WSNs will

increasingly enable the temporally dense data to be provided to these modelling efforts.
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The results revealed that 8,, may be modelled using a machine learning approach with an RMSE
below 0.05 m3m at both the point and the spatial scale over pastoral surfaces with relatively
homogenous vegetation cover. The average prediction accuracy during training achieved cross-
validated 0.047 m3®m for mean RMSE and 0.77 for mean adjusted R? while 0.048 m*m= RMSE
and 0.77 R? occurred during the independent validation phase. These measures suggest a

reasonably high average modelling performance over the 22-month study period.

VV polarized backscatter was more sensitive to soil moisture dynamics than the VH
configuration. It was generally observed that VV backscatter increased with increasing soil
moisture while the relationship between NDVI and VV backscatter values followed an inverse
function. Seasonality, slope angle, NDVI and SAGA wetness index explained more variability than

aspect, topographic position and the terrain ruggedness.

While radar data were useful for soil moisture predictions and increased the accuracy,
seasonality and NDVI were the most important variables confirming that the synergy of
multispectral and radar data has the potential for medium resolution soil moisture mapping in

complex landscapes.

We associate the relatively low sensitivity to near surface soil moisture partially with the ground-
based sensors located deeper than the potential penetration of depth of SAR signal. The
prediction accuracy and model performance could be improved by using a larger number of soil
moisture sensors and cover more landscape position and terrain conditions. We propose that
data collection from soil sensors installed at the top 5 cm of soil layer could result in better
prediction performance. Due to the low number of regular cloud-free optical images over New
Zealand, space-borne radar techniques with multiple polarisations will provide potentially more
effective tools for monitoring near surface soil moisture for farming applications at regional

scale with medium to high spatial resolution.

The systematic incorporation of spatially mapped near-surface soil moisture products may lead
to an increase in prediction results of feed surplus and thus to better pasture management and
grazing practices. The study can be regarded as an initial investigation of the feasibility of using
satellite data for mapping soil moisture at a spatial scale that is practical for multiple farming

applications.
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The analysis of topographical effects on pasture production
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7 Chapter 7 - The analysis of topographical effects on pasture
production in complex landscapes of New Zealand’s hill country
7.1 Introduction

There are two major pastoral systems in New Zealand usually referred to as dairy farming (1)
mainly situated on lowlands, and sheep and beef farming (2) spanning low-altitude, seasonally
dry, steep lands of hilly landscapes with lower fertility soils. The dairy industry produces a
considerable fraction of exports from NZ, thus pasture quality, pasture growth rates (PGR) and
annual dry matter (DM) production on dairy farms have been studied extensively (Woodward,

2001, Macdonald et al., 2008, Chapman et al., 2009, Dalley and Geddes, 2012).

On the contrary, the number of research programs investigating the dynamic hill country
pastoral systems is low compared to lowland pastures despite its importance in the primary
sector contributing $7-7.5 billion towards annual exports (Morrison, 2017, Statistics New
Zealand, 2018, updated April 2018). The recent growth in the dairy industry has required more
land conversion, thus beef and sheep farms are increasingly being dominated by low-fertility
areas containing a mixture of flat, rolling, and steep land (Gaukrodger, 2014). However, pastoral
hill country farms still occupy a large fraction of agricultural land (4 million ha in the North Island)
and holds most of the nation’s sheep and beef stock (Keller et al., 2014, Cameron, 2016,

Scrimgeour, 2016).

To improve the profitability and resilience of hilly, non-irrigated farming systems, the efficient
use of the available resources, including water held by the soil, is crucial to ensure that the
guantity and quality of feed will meet stock demand. Sustainable yield maintenance and growth
enhancement have been of great interest, especially as a result of recent increased pressure on
environment (soil conservation, fertiliser application impacts, nutrient use and climatic
volatility) and food production (Scrimgeour, 2016). Consequently, the better understanding of
growth distribution, its variability and seasonal patterns may assist in the implementation of
more effective land management practices where diverse topography is a key influencing

feature.

In general, hill country landscapes are dominated by slopes > 15 ° and located below an altitude
of 1000 m (Basher et al.,, 2008) and demonstrate extremely variable pasture growing
characteristics that are influenced by a wide range of factors. The documentation of hill country

pasture production is difficult due to the complex interrelationships between terrain attributes
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(i.e. high local variation in microrelief), pasture composition and structure, uneven grazing
management, stock behaviour, soil fertility, soil patterns, and microclimatic parameters
(Gillingham, 1973, Lambert and Roberts, 1978, Chapman and Macfarlane, 1985, Bretherton,
2012).

7.1.1 Review of pasture growth studies in New Zealand

Aspect and slope angle are two of the primary topographical factors affecting pasture growth
patterns in hill country, which have received early attention with agronomic studies. Pasture
yield has been investigated on sunny (northerly) and shady (southerly) faces by several authors,
Suckling (1959), Suckling (1975) Bircham and Gillingham (1986), White et al. (1972), Gillingham
and Bell (1977) Lambert and Roberts (1978), Radcliffe et al. (1976), Gillingham et al. (1998) and

Bretherton (2012) on both unimproved and improved pastures of New Zealand.

Table 7.1 provides a structured summary of the studies completed in hill country, monitoring
annual pasture yield accumulation on surfaces with varying aspect and slope angle at various
locations in New Zealand. Radcliffe (1982) and Bretherton (2012) also provided a shorter review
on previous results on pasture growth accumulation. Furthermore, some of the key findings are
explained below to provide details from selected studies comparing mainly north and south
aspects. Suckling (1975) and Suckling (1959) observed that there were distinct differences in
seasonal yield between northerly and southerly faces (mainly due to temperature differences),

so that shady faces were grazed more in summer and sunny faces were grazed more in winter.

In terms of annual pasture production, 25 % more yield was observed on sunny faces if averaged
over a 9-year experiment. A field trial carried out by Luscombe (1980) at Ballantrae hill country
research station found that north easterly aspects produced more pasture than south west
aspects, producing approximately twice as much dry matter. Gillingham (1973) observed that
north aspects in steep hill country outperformed the south aspects, yielding 10 % more pasture
mainly due to the high winter growth on sunny faces. In contrast, Bretherton (2012) observed
similar total pasture production on south and north aspects, although his results indicated that
south-facing slopes might yield more pasture during summer and autumn in years with below
average soil water content. It should be noted, that there are latitude differences between these
two studies and the differences in seasonal rainfall amplitude may play a considerable role.
During winter and spring, northern slopes may out-perform southern slopes when soil water
content is not a limiting factor. Lambert et al. (2000) monitored pasture growth as part of a long-
term experiment and found the highest yield on east-facing slopes, although north-westerly

faces produced 7 % more pasture than south-westerly faces.
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By investigating the papers listed in Table 7.1, most of the considered studies examined the
differences between south- and north-facing slopes, providing little information about the
entire slope-aspect spectrum. It is was observed that most of the considered papers found
higher yield on north-facing slopes and a few on south-facing slopes. It is apparent, that these
findings were not consistent and somewhat controversial. This suggests that regional and local
effects on productivity are neither well defined nor fully understood in relation to the terrain,
vegetation cover, soil properties, and climatic parameters, agreeing with the conclusions made

by Lambert et al. (1983).

Table 7.1 Overview of annual herbage accumulation studies on different aspects and slope angles
recorded at various hilly regions of New Zealand using the trim technique.

Aspect with . Slope angle Time of data
. R Reference Location o .
highest yield (°) collection
Whatawhata, near Hamilton (NI) 0-20, 15-20, 11/01/1965 -
. 36-40 15/11/1965
Radcliffe (1971)
Te Kuiti, near Hamilton (NI) 10, 20 16/07/1969 -
! ! 24/06/1970
Suckling (1959) Te Awa, near Palmerston North varied (easy 1949 - 1956
(NI) to steep)
Suckling (1975) Te Awa, near Palmerston North varied (easy 1951 - 1957
\ (NI) to steep)
Radcliffe et al. . 15-20, 25, Nov 1964 —
(1968) Whatawhata, near Hamilton (NI) 36-40, 20 Nov 1965
- . steep (aver. August 1970-
Gillingham (1973) Whatawhata, near Hamilton (NI) 30) July 1973
Gillingham et al. . 15-20, 25-
W Hawke’s B NI ! 1 -1
(1998) near Waipawa, Hawke’s Bay (NI) 30 995-1998
Gillingham et al. . , varied (easy
(2003) near Waipawa, Hawke’s Bay (NI) to steep) 1995-2002
Lambert and . 5-30 (aver.
Roberts (1978) Ballantrae, near Woodbville (NI) 16) 1972
White et al. (1972) Hunua, near Waikari, North steep 1970-1971
s Canterbury, (SI)
. 12/10/1970-
Radcliffe (1971) Coopers Creek, near Oxford (Sl) 25-28 22/06/1971
Radcliffe (1982) Coopers Creek, near Oxford (SlI) varied 1973-1976
Radcliffe et al. 10-20, 20-
SwW (1977) Coopers Creek, Canterbury (SI) 25 1972-1975
. June 1977 -
NE Luscombe (1980) Ballantrae, near Woodville (NI) 10-15 December 1978
SE Bircham (1977) North Wairarapa (NI) 10-20 1975-1976
Radcliffe (1971) Geraldine (SI) 26-33 1970-1971
E
Lambert et al. . 1-12, 13-25,
(1983) Ballantrae, near Woodville (NI) 226 1971-1981
Insignificant yield differences between N and S
- Bretherton (2012) Alfredton (NI) 20-30 2010-2012

In terms of slope angle, pasture production tend to decrease with increasing slope angle

demonstrating a highly significant negative relationship (Gillingham, 1973, Lambert et al., 1983).
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The differences in yield are mainly attributed to the greater soil water availability on easier
slopes than on steep surfaces (Gillingham et al., 1998, Bretherton, 2012). Additionally, changes
in slope can also result in variations in organic matter, soil physical properties, pH, botanical
composition and soil fertility due to animal and gravity nutrient transfer from steep slopes

towards easier slopes, (Mackay et al., 1999, Lambert et al., 2000, Lépez et al., 2003).
7.1.2 Review of pasture production models

The diverse terrain, grazing management, and the climate-driven characteristics of pasture
growth patterns makes spatial and temporal prediction of pasture production difficult; hence,
several forecasting models have been developed (Herrero et al., 1998). These models attempt
to simulate pasture growth as a function of one or more environmental, soil and/or

management variables.

The classic modelling approaches include mechanistic and empirical techniques (Moir et al.,
2000, Scott, 2002, Zhang et al., 2005). While mechanistic models are built on theoretical
concepts and can be more broadly applied, empirical models are developed using experimental
data from a detailed trial work at a specific site and provide higher prediction accuracy over
mechanistic models for the particular area (Rickert et al., 2000). Therefore, to determine pasture
productivity affecting factors and to evaluate their contributions to spatiotemporal yield

distribution, empirical methods are preferred (Zhang et al., 2005).

To identify the key driving factors of pasture production, some pasture growth models are
discussed here. Pasture growth simulations are highly dependent on the prediction capability of
soil water status (McCall, 1984, Woodward, 2001). Moreover, it is evident that the key
component of water balance models is the evapotranspiration (Leenhardt et al., 1995) input
that can be estimated by theoretical models (i.e. calculation of potential evapotranspiration) or

empirical functions developed locally (i.e. actual evapotranspiration).

The climate driven, soil fertility dependent model developed by Moir et al. (2000) is based on an
assumption that pasture growth is proportional to the actual evaporation rate, which is
corrected for a site-specific factor indicating soil fertility status. Actual evaporation rate is
estimated through a soil water balance as given by Coulter (1973). Moir et al. (2000) attempted
to develop a pasture growth model that takes into account the soil fertility as well as the climate

as it influences soil water content and evapotranspiration.

Woodward (2001) reported the development of the Pasture Quality model to predict daily

growth of various vegetative grasses and dead fractions considering temperature, rainfall and
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incoming solar radiation. The considered biological processes are dependent on soil water which
is calculated by the two-layer model of Scotter et al. (1979). The model was further improved by
Woodward et al. (2001) by rewriting it into differential format and modifying the formulas so

that available water holding capacity can be added to estimate actual evapotranspiration.

The McCall model (McCall, 1984), later published and described in detail by McCall and Bishop-
Hurley (2003), was designed to predict pasture accumulation on grazed dairy pastures of New
Zealand by considering pasture growth dynamics, and the effects of climatic and management
variables. McCall’s simple algorithm mainly requires weather data; therefore, it has been widely
applied in farm system models and used in research with ryegrass-dominant pastures. One of
the drawbacks is the restricted generalised application due to the requirements for site-specific,

empirical data for calibration (Romera et al., 2009).

The pasture prediction models discussed above are mainly applicable for pasture growth
simulations on lowlands with deep soils as the model parameters assumed flat surfaces for
incoming solar radiation (ISR) and evapotranspiration estimations, and ignored other

hydrological processes such as surface runoff, lateral flows and water repellency.

In hill country, only a few in-depth studies have been conducted to develop water balance
models for sloping land (Bircham and Gillingham, 1986, Bretherton et al., 2010). These models
took into account the terrain effect on ISR and climate variables to calculate potential reference
crop evapotranspiration values and then the use of a soil water balance model to obtain actual
evapotranspiration. However, using these actual evaporation estimates for modelling hill
country water status can introduce uncertainties due to the assumption about rooting depth

and unrealistic soil-limited evaporation rates (Bretherton et al., 2010).

Some of the latest commercial models, for example, the Pasture Growth Forecaster (used by
Ravensdown Ltd.), have been calibrated for dairy farming conditions (i.e. dominantly high
fertility flat land) and modifications were introduced for predictions on sloping land. The Pasture
Growth Forecaster is defined as a hybrid model built on the McCall herbage growth model
(McCall, 1984) as revised by Romera et al. (2009). To improve this model’s accuracy, the soil
water balance model of Woodward et al. (2001) was chosen to replace the McCall model (Ogle
and Ma, 2015). Recently, improvements have been made by including corrections for slope
angle, aspect, and rainfall, to ensure that the algorithm is tuned to the terrain attributes (Ogle
et al., 2016). As a result of the changes, the model has become capable of independently
calculating the evapotranspiration for an inclined surface based on the Penman-Monteith model

as described in Zotarelli et al. (2010).
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Certain pasture growth model components rely on empirical parameters that makes the site-
specific calibration and model tuning required to achieve better predictive precision (Romera et
al., 2009). Model parameterisation can be made more efficient by improving the knowledge of
the numerous interrelated factors controlling pasture growth. The purpose of this chapter is to
provide a detailed overview of the role of soil parameters, topographic attributes, and the
influence of some climatic variables and their interactions within this complex system at the
Patitapu Station (the research area) situated in the lower east coast of the North Island. Our
study was designed to provide a more detailed analysis regarding pasture productivity than
previous studies. Spatial PGR distribution and response patterns were described by relating yield

data and environmental parameters recorded between November 2016 and June 2018.

Thus, soil and pasture monitoring microsites were designed and spatially distributed in the
research area to sample various pastures on various topographic positions. The microsites were
equipped with AquaCheck probes connected using a wireless sensor network (WSN) for long-
term, multi-level soil temperature (T;, °C) and volumetric soil moisture (6,, m* m3)
measurements. The latter is extremely valuable for the investigation of stored and plant-
available water variability within the rooting zone (Hillel, 1998, Nolz, 2013). Pasture yield was
measured by the traditional pre-trimmed exclusion cage technique on the grazed areas
(Radcliffe et al., 1968). The land surface was represented by a very high-resolution (0.2x0.2 m
cell size) digital surface model (DSM) surveyed in 2017 and used for deriving the terrain

attributes considered in this chapter.

Ever since the incorporation of precision agriculture techniques was introduced to hill country
farming, the variability in pasture production occurring on complex landscapes can be addressed
and better understood and the accuracy of yield simulations can be improved. Therefore, the

presented study aims to:

1. Utilise the combination of recent WSN technology and classic pasture monitoring
methodology assessing the herbage accumulation and PGR response to recorded and
derived parameters

2. Capture the differences in PGR in various landscape positions by descriptive and
comparative methods, and multivariate statistical analysis.

3. Provide a discussion on PGR variability by isolating the limiting effects of topography,
seasonality and soil parameters, on individual sites, as the combinations of these
factors could explain a significant amount of the variability in pasture yield in hill

country.
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7.2  Materials and methods

7.2.1 Research site

The selected research site, the Patitapu Station is situated within the East Coast Hill Country
(ECHC) area (40.745020 S, 175.887320 E) of the North Island of New Zealand (Fig. 7.1 (A)). The
ECHC region is an extensive section of primarily pastoral farmland and forestry on a mixture of
rolling to steep hills, flat terraces prone to summer-autumn soil moisture deficit as well as
flooding and heavy storm events. Patitapu Station is recognised as steep hill country terrain with
lower fertility soils where drought frequently occurs in summer. The station can be characterised
as steeply dissected with a high-density drainage network, and highly variable contour, aspect,

soil type, soil fertility, and altitude, and therefore a wide range of micro-climatic conditions.

Pastoral land covers approximately 70% of the 2,623 ha farm, typically experiencing warm, dry
summer and wet, mild winter conditions. Rotational grazing, which is in use by most hill country
farmers (Osborn and Cowie, 1978) has been adopted at the research area. The microsites were
selected from improved, permanent pasture areas under grazing by sheep or sheep and cattle.
Although the botanical composition varied between sites, the predominant plant communities
were perennial ryegrass (Lolium perenne L.), browntop (Agrostis capillaris) and Yorkshire fog
(Holcus lanatus) in combination with white clover (Trifolium repens). These species are
commonly found in many of New Zealand’s productive pastoral systems (Charlton and Stewart,

1999).

Figure 7.1 (B) illustrates the topography of the research site and its immediate surroundings as
well as the locations of the microsites superimposed on a recent aerial imagery (2017) clearly
showing native bush and pasture-based land cover types. An example of a microsite with the
AquaCheck probe and the pasture sampling locations within a 3 m circle is presented in Figure

7.1(C).
7.2.2  Fertiliser history

Patitapu Station has been operated and developed by the current owners since 2000, with a
relatively poor fertiliser history prior to purchase 19 years ago. Pasture swards have been
maintained by regular aerial oversowing, and have been top-dressed to build up soil fertility.
The station is divided into management blocks, which receive up to two applications in some
years. A maintenance rate is usually applied in November and a capital fertiliser input in

February.
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Figure 7.1 Geographical location of the research area (A), the spatial distribution of the 13 microsites
and weather station locations (B), and an inset map showing the relative positioning of an AquaCheck
probe and the situation of pasture sampling cages (C).

These applications have been mostly superphosphate at 200-300 kg/ha rate with some di-
ammonium phosphate added. The microsite locations were chosen from farm blocks that
historically received superphosphate at mainly 250 kg/ha. Based on the available fertiliser
history, all microsites received similar amount of input. Consequently, the effect of fertiliser
amount and products were not included in the analysis, which was due to the lack of spatial and

temporal data about the applied products.

7.2.3 Microsite characteristics, sampling design and data collection

7.2.3.1 Microsite characteristics

The thirteen microsite locations were chosen at variable landscape positions i.e. on flat areas,
north-, east-, south- and west-facing slopes, with rolling (8-15°), strongly rolling (16-20°),
moderately steep (21-25°) and steep (26-35°) slope angle classes following the Land Use
Capability slope classification scheme (Lynn et al., 2009). Additionally, they were placed on a
range of geomorphological elements, i.e. plains, open slopes, upper slopes and ridges. This study
used GlS-assisted methodologies to compute primary (i.e. slope angle, aspect) and secondary or
compound (i.e. landform elements) topographic attributes in raster format for the extraction of

pixel-based information at the microsites (Fig. 7.2).
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Figure 7.2 Primary and secondary terrain attributes generated from a 5x5m pixel resolution digital
terrain model at the Patitapu Station. Elevation (A), aspect (B), slope angle (C) and landform elements
(D) are shown. The non-pasture areas within the property have been masked out (white pixels).

Geomorphometric parameters were derived from an originally 0.2x0.2 m pixel size digital
surface model (DSM) generated using the novel structure-from-motion photogrammetric
technique (Micheletti et al., 2015) in 2017. Overlapping, high-resolution images were captured
using a digital camera mounted on a fixed wing aircraft. Following the processing of images
taken from multiple angle, a 3-dimensional representation of the land surface can be generated
(Fig. 7.2 (A)). Due to the nature of DSM, the natural and built features of the land surface are
captured. Therefore, smoothing and resampling techniques were applied to acquire a 5x5 m

resolution DSM to represent terrain attributes with mean values for the sampled pasture area.

Firstly, primary geomorphometric attributes such as aspect (Fig. 7.2 (B)) and slope angle (Fig.7.2
(C)) were derived. Secondly, since it is a compound attribute, the landform elements (Fig. 7.2
(D)) were identified based on a landform classification using topographic position index from the
hydrologically corrected DSM (Moore et al., 1991). The pre-processing and terrain analysis were
executed in the open source SAGA (System for Automated Geoscientific Analysis) GIS software

developed by Conrad et al. (2015) and in ArcGIS Pro (Environmental Systems Research Institute,
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Redlands, California, USA, 2017) environment. Table 7.2 provides information about the

microsites’ topographical attributes extracted from the generated topographic layers.

Table 7.2 Terrain attributes at the microsites as derived from a 5x5m digital surface model.

Slope Aspect
Site ID Landscape element (in degrees and class) (in degrees and class)  Elevation (m)
1 Upper slope 13 Rolling 175 South 196.7
3 Open slope 16 Strongly rolling 115 East 249.0
4 Open slope 23 Moderately steep 94 East 279.0
8 Midslope ridge 35 Steep 35 North 307.8
10 Open slope 22 Moderately steep 298 West 318.6
11 Upper slope 26 Steep 257 West 314.8
12 High ridge 32 Steep 178 South 301.8
13 Open slope 23 Moderately steep 22 North 232.8
14 Upper slope 23 Moderately steep 157 South 287.8
15 Plain - Flat - Flat 196.4
16 Open slope 17 Strongly rolling 283 West 373.6
18 Open slope 26 Steep 46 East 400.7
19 Open slope 14 Rolling 15 North 380.7

The following variables were monitored at each site: above ground-accumulated regrowth, i.e.
live herbage, 8, content and T at multiple depth. Data collection started on 1 October 2016 for
pasture yield and on the 1 November 2016 for 6, and T due to the time needed for soil
settlement after the AquaCheck probe installation. The soil and pasture monitoring was
completed on 20 June 2018 due to extremely wet conditions and difficulties in site accessibility.
In this chapter, the study period was divided into Year 1 and Year 2 and used to refer to the time
intervals of 1 November 2016 - 31 October 2017 and 1 November 2017 - 20 June 2018

hereinafter, respectively.
7.2.3.2  Pasture growth measurement and yield calculation

The growth of the ryegrass-based pastures was measured by the utilisation of the exclosure
cage-technique (also known as “rate of growth”) described and evaluated by Lynch and
Mountier (1954) and Radcliffe (1974a). The application of the method involves the cutting of
regrowth of pasture within a standard quadrat over short time intervals from previously
trimmed areas protected by exclosure cages. The microsites were selected on relatively uniform
vegetation cover to ensure that approximately the same pasture composition was sampled. A

detailed description of the technique can be found in Chapter 2.

To measure the accumulated yield, three moveable pasture cages were positioned around the

AguaCheck probe. The cages were moved around at 4-6 weeks intervals and placed randomly
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over freshly trimmed surfaces (down to 10 mm height) avoiding previously trimmed areas,
depressions, waterways and other irregularities on the soil surface. An example of a microsite

design and the cage relocation procedure is presented in Figure 7.3.
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Figure 7.3 Pasture and soil monitoring site (microsite) design with the AquaCheck multisensory probe
(A) located in the centre surrounded by the regularly rotated exclosure cages (B) and their position
relative to the high range telemetry unit (C).

To derive dry matter (DM) (kg DM/ha) and mean daily pasture growth rate (PGR) (kg
DM/ha/day), the collected samples were dried for 48 hin an oven and weighed in the laboratory.
At every site, the total herbage accumulation was calculated by averaging the DM data from the
three sampled surfaces exclosed by the cages. The mean daily PGR was computed by dividing

the total yield by the number of days separating two consecutive cuts.

The primary focus of this study is the variation between spatially distributed microsites and
relative differences between various landscape positions rather than absolute values in terms
of PGR and accumulated DM. It is noted that the “cage technique” suffer from a number of
disadvantages (e.g. micro-variability within the quadrats, inaccuracy related to human errors,
the effect of exclusion cage on growth). Despite of these factors, this method was observed to
deliver close and consistent approximations of the actual yield (Stephen and Revfeim, 1971) and
it is considered as an applicable method if the interest being the examination of relative growth

differences (Devantier et al., 1998).
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7.2.3.3  Soil moisture and soil temperature monitoring

As water extraction by pasture occurs down to a depth of at least 350 mm in the hill country if
the soil is deep enough (Bretherton et al., 2011), a capacitance-based, AquaCheck Sub-surface
Probe (AquaCheck Soil Moisture Management, Durbanville, South Africa) was chosen. The probe
collected 8,, and T readings at four soil depths (100, 200, 300, 400 mm) at 15-minute intervals.
The accuracy of the 8, sensors were improved by calibration following the procedure reported
in Chapter 4. The probes were attached to radio-based telemetry units (Tag I.T Technologies Ltd,
Hamilton, New Zealand) and arranged into a WSN. The HALO Farm System, an online service

developed by Tag I.T is used for monitoring, accessing and visualising the WSN data.
7.2.4 Meteorological data

The Patitapu Station is equipped with a weather station with a 2.5 m mast, and at an elevation
of 263 m on an open gently sloping site. The station collects precipitation, minimum and
maximum air temperature, net radiation, and wind speed and direction data at 1-hour intervals.
The rainfall data is collected at 0.2 mm resolution by a tipping bucket gauge. Rainfall information
was aggregated in daily intervals for this study and used for a comparison with historical
averages to characterise the study period as compared to the past 65 years. Historical rainfall
data (1953-2017) was sourced from the CliFlo web system (https://cliflo.niwa.co.nz/) that
contains New Zealand’s National Climate Database. The extracted data was collected by a
nearby NIWA climate station at Wairere, lhuraua, located only 4.5 km from the centre of the

research area (Fig. 7.1 (B)).
7.2.5 Soil moisture storage and soil water deficit calculation

As 0, is not measured continuously with depth, the monitored soil profile was divided into 7
discrete depths around the four sensors. Between each sensor, the trapezoid rule (Rahgozar et
al., 2012) of numerical integration was used to approximate the region under the soil water
profile curve, and to calculate the amount of stored water (SWS, mm). The SWS represents the
total amount of soil water stored in the monitored soil profile, and it does not refer to the plant
available water content. It was assumed that 8, in the top 70 mm layer was similar to the
topmost (100 mm) sensor reading due to the lack of sensors in that layer. The daily soil water
storage (SWS,;, mm) was calculated for the top 430 mm soil layer (i.e. the sensing limit of the

bottom sensor) based on the data from the capacitance sensors as described by Eq. (7.1):

SWSd =

7
b; * 0,,; (7.2)

=1
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The formula above integrates over seven discrete soil layers, where b; (mm) and 6,,; (m*m™) are
the depth and volumetric water content for soil layer i, respectively. To represent the amount
of stored water in the soil during the individual regrowth periods, accumulated soil water
storage SWS,, i.e. the sum of the SWS,; values, was computed taking into account the number

of days within the cutting intervals.

Soil water deficit (mm) was computed as the difference between 6,, on a given day at midnight,
and field capacity (Woodward et al., 2001). Field capacity was estimated from field-based 6,
data collected by the WSN during the wintertime when water loss due to evapotranspiration
was at its minimum. Field capacity was determined following heavy rain events after which the
soils were saturated. In most cases, after 1-3 days, the rate of downward movement markedly
decreased and the free drainage of excess water was negligible which was indicated by the
change in slope on the 8, curve, marking the transition to field capacity. The transition point
was identified by fitting tangential curves on the 8, curve by using derivatives of a fitted spline

function. By taking the intersection of the tangent curves, field capacity values can be obtained.

It is noted, that determining field capacity this way is subjective and heavily rely on visual
interpretation of the time stamp when the redistribution virtually ceased. Although, due to the
15 min sensor reading interval, the method should provide adequate field capacity estimates for
this study. The concept of field capacity and the questions raised regarding its definition is

discussed in Hillel (2003b) and Horne and Scotter (2016).

Theoretical values of permanent wilting point were calculated for each soil depth at each
microsite by the Soil Water Characteristics Hydraulic Properties predictive system developed by
Saxton and Rawls (2006). Mean field capacity, and permanent wilting point were calculated by

averaging over the four soil depths at each microsite.
7.2.6 Heat accumulation

Plant growth is controlled by T, and air temperature (T,) dependent on the different
requirements of the plant species. In hilly landscapes, T, distribution is a function of aspect and
slope, thus sunny and shady areas, flat, steep, and gentle slopes provide different conditions for
active growth (Chapman and Macfarlane, 1985). This means that some species may prefer
generally warmer surfaces while others can be efficient with less ISR, although, depending on

the season, the plants will also need to tolerate low 8, levels on sunny aspects.

A popular approach to define the relationship between temperature and plant development is

to express the amount of heat as growing degree-days (GDD, in units of °C) (also known as
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thermal time) (Arnold and Monteith, 1974, Moot et al., 2000). To investigate the relationship
between the temperature change over time and the pasture growth at various topographic
positions, daily GDD,; was computed using a canonical function given as per Eq. (7.2) as follows

(McMaster and Wilhelm, 1997):

T. + T mi
GDD, = s max - smin Tpase (7.2)

Where T 4 represents the maximum Tg on a given day, T i is the minimum T; on the
same day and T}, is the threshold temperature below which the plant does not develop. Since
pasture cover at the microsites contained mainly temperate pasture species, an appropriate
Thase had to be chosen. An appraisal of the available published threshold values, as well as a
review provided by Hutchinson et al. (2000) on experimental results in the United Kingdom and
New Zealand, 4 °C was selected as Tpqse- In this study, T values obtained at 100 mm soil depth
were used to calculate GDD,. Furthermore, annual heat accumulation GDD, was calculated as
the sum of daily mean T above a selected T}, 45, for a defined period (i.e. Year 1 and Year 2),

following the work of Radcliffe (1974b) and Hutchinson et al. (2000).

Year n Day last T T
+ .
GDDa — [ smax 2 smin _ Tbase] (73)
Year n Day 1
Annual accumulated heat GDD, was used to compare the amount of accumulated heat at

various terrain positions and microsites for both years (n = 1, 2).
7.2.7 Multivariate statistics using multiple factor analysis (MFA)

Statistical factor analysis is an important method in ecological studies and behavioural science
in which individuals or observations are described by groups of variables (Escofier and Pageés,
1994, Thanoon et al., 2014). Multiple factor analysis (MFA) is a dedicated tool for studying
complex datasets containing continuous and categorical variables provided in a group-based
structure (Escofier and Pagés, 1994). Therefore, MFA is considered as a factorial technique that
allows the simultaneous investigation of mixed data groups, i.e. a collection of quantitative
(numerical) and qualitative (categorical or nominal) variables. MFA is part of the multiblock
principle component analysis (PCA) method family and it is often referred to as an extension of
PCA to handle qualitative variables (Abdi and Williams, 2010, Abdi et al., 2013). By the
application of MFA, the influence of several sets of variables as well as an overview of
interdependence between various groups and the typology of individuals described by the

whole set of variables can be examined (Pages, 2014, Thanoon et al., 2014).
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With MFA, the variables within a specified group of variables are normalised and then weighted
with an attributed value that may be different for each group. This is an essential aspect of MFA,
thus variables in a group should be of the same type (Escofier and Pages, 1994). During this stage
of MFA, variables were organised into relevant groups, such as supplementary data (1), pasture
growth (2), soil moisture (3), soil temperature (4), climatic variables (5), terrain attributes (6)

and seasons (7).

Ultimately, MFA aims to summarise and to simplify the data by reducing the dimensionality of
the data set, utilising multivariate statistical data analysis methods, depending on the type of
data within a given variable group. MFA is a synthesis of multiple methods, that applies a
generalised PCA for quantitative variables and a type of multiple correspondence analysis for

qualitative variables (Lé et al., 2008).

For visualisation, biplots (i.e. a generalised scatter plot representing principle components on
the axes) and scree plots (i.e. a line segment plot showing a fraction of total variance) were
generated for both quantitative and qualitative variables. Biplots are low dimension graphical
representations that can reveal the relationship between variables and the correlations
between the dimensions by displaying the data in a correlation circle. Although PCA is not
designed for time series analysis, it is possible to apply PCA to time series without taking into
account the time as variable and considering the daily measurements as individual observations

(Zuur et al., 2003).

For the purpose of this study, it was sufficient to use MFA as no temporal dependence was
incorporated and the variables observed at the same time were grouped together. The analysis
was carried out using the following R software packages: FactoMineR for the analysis (Husson

et al., 2007) and factoextra for data visualisation (Kassambara and Mundt, 2016).
7.2.8 PGRin polar space

An attempt was made to generate a polar-grid-based representation of PGRs using a radial basis
interpolation method (i.e. a polar form of spatial interpolation) (Schaback, 2007). This method
calculates the PGR values at a high number of points defined by polar coordinate pairs. The
Gaussian approximation approach was chosen as interpolation algorithm for constructing a
continuous function from discrete data points, i.e. the microsites, defined by aspect and slope
angel as polar coordinates. Radial basis function methods are a special case of splines where the
generated surface will pass through all of the observed values. The Gaussian method was
selected due to its capability to capture trends and highlight local variations better than other

techniques, which often fit a 2-dimensional plane to the observations.
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The hill plot (Fig. 7.4) approach provides an alternative visualisation option of the results as it
includes the compass directions (aspect) on the polar axis and slope angle on the radius axis with
steepness decreasing from the centre. These two parameters have been observed to be the
dominant terrain attributes influencing pasture communities and production (Radcliffe, 1982,

Moir et al., 2000, Bretherton, 2012, Kemp and Ldpez, 2016).

A hypothetical hill plot was used to represent the relative position of the microsites in terms of
slope angle and aspect (Fig. 7.4). A simplified version of the technique has been used in several
studies to depict soil nutrient distribution (Lieffers and Larkin-Lieffers, 1987) and variations in
the composition of grassland vegetation when correlated with numerous slope characteristics

(Ayyad and Dix, 1964).

2
15 o Soil and pasture monitoring site
? with site number

T ——

Figure 7.4 An idealised hill plot to illustrate the situation of the microsites as a function of slope angle
and aspect used in this study. Slope angle ranges were categorised into six classes following the Land
Use Capability (Lynn et al., 2009) slope classification except in the case of the steep category.

7.3 Results and discussion

7.3.1 General description of the evolution of environmental parameters during the

study period and the spatial mean pasture production

The theoretical background of DM accumulation and regrowth of perennial ryegrass is well
documented, although field measurements can show high variability over different years
(Chapman et al.,, 2012). Climatic parameters, especially temperature, precipitation, and
consequently soil moisture are some of the most important determinants of pasture growth on
non-irrigated pastoral areas (Baars and Waller, 1979, Harris et al., 1985). An understanding of
their limiting effects as well as their temporal patterns within a specific area is essential to realise
the full potential to produce pasture. Hence, the measured PGR and the accumulated DM
evolution over time was plotted together with climatic data to allow investigation of temporal

growth trends (Fig. 7.5).
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A comparison was made between the study period and the previous 65 years in terms of rainfall
distribution to examine if the years between 2016 and 2018 can be considered as average years
and follow the general historical trends (Fig. 7.5 (A)). Additionally, the examination of rainfall
characteristics as opposed to the historic mean values of the study site can reveal the

dependencies of PGR on the temporal distribution of water supply.

Figure 7.5 (A) presents the time series of available precipitation data collected by the local
weather station and the nearest NIWA meteorological station. The annual rainfall of the
historical periods ranged from 721 to 1,735 mm with a mean of 1,139 mm over the 65-year
period recorded at the Wairere, lhuraua climate station. Generally, the highest amount of
rainfall was received during the winter months while the lowest amount of precipitation
occurred in November and from January to March. The three-year mean annual precipitation
(2016-2018) was 997 mm at the study site based on data recorded by the local weather station.
The total precipitation was 842 mm in 2016, 1,020 mm in 2017 and 1,130 mm in 2018.

Based on the historical precipitation characteristics of the research area it was observed that
the monthly total rainfall closely followed the historical mean values in November 2016 -
September 2017 while the rest of the year and the summer of 2017-2018 was drier than the

historical average (Fig. 7.5 (A)).

The temporal and spatial variability of 8,, at multiple depths were discussed in Chapter 5 in more
detail. Fluctuations of 8,, showed close agreement with daily rainfall patterns, with the largest
seasonal 8, amplitude occurring at the 100 mm soil depth (Fig. 7.5. (B)). The 200-400 mm soil
depth behaved similarly but displaying less amplitude across seasons. The driest conditions were
observed in January and February 2018 dropping to mean 6,, of 0.2 m®*m=, whereas the highest
mean 6, levels at 0.45 m3®m? (at near-saturated or saturated conditions) were reached and
maintained during most of the winter season triggering erosion, saturation excess runoff, and
stream flooding events (for example in July 2017). The driest 6,,= 0.18 m®m3and wettest 6,,=
0.48 m3*m3soil conditions occurring at the 100 mm soil depth is indicative of higher amplitude

responses of the surface soil to meteorological forcing.

During the summer season, the deepest soil sections had the highest 8, with a gradually
increasing difference in 8,, between soil depths from late November 2016 and early November
2017 when the curves crossed each other (Fig. 7.5 (B)). This indicates that the water loss by

evapotranspiration in the deeper soil layers occurred slower than at the top of the soil profile.
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Figure 7.5 Temporal plots of climatic variables obtained from the Patitapu weather station are shown
(A and C) along with historic rainfall data extracted from NIWA (A). These parameters include historical
monthly mean and monthly total rainfall (1953-2017). Daily total precipitation, cumulative rainfall, and
monthly total rainfall are shown in (A) whereas the minimum, maximum and mean daily air
temperature (T ,) are presented in (C). Daily spatial mean volumetric soil moisture (6, ) and total stored
water (SWS) in the profile (B) and soil temperature (T) (C) were acquired by AquaCheck probes. Dry
matter (DM) (D) and mean daily pasture growth rate (PGR) are shown in (E). Each DM and PGR data
point represents the average of measurement results from three cages at a single site.

The spatial mean (averaged over all sites) SWS,; reached 190 mm in the 430 mm soil profile

during the wettest conditions and the heaviest rainfall events. The lowest SWS,; (100 mm) was
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related to the long dry season in Year 2 (December 2017 — March 2018), which most likely
impacted on PGR. In Year 1, this impact was not observed, even though SWS,; decreased to
about 120 mm. Presumably, this level of water stress was not serious enough to significantly
impact on PGR levels. SWS,; only reached or approached the calculated values at permanent
wilting point at the north- and east-facing steep microsites as it is presented in Figure 5.7 in

Chapter 5.

To visually examine the effect of temperature on pasture growth and to better understand the
temporal changes in 6, and SWS,, T, and T, time series obtained from both the local weather
station and the WSN are illustrated in Figure 7.5 (C). The T spatial mean rose as high as 20 °Cin
the summer of 2017 and to 25 °Cin 2018. This may indicate the considerable difference in the
incoming radiation during the dry periods between the two monitored years, although the rate
of uptake via evapotranspiration can regulate T; to a certain extent. According to NIWA, January
2018 was the hottest month on record across the majority of New Zealand and T rose above
the historic annual average while 8, levels dropped below average within the ECHC. These

trends were also reflected in the climatic data collected at the Patitapu Station.

The coldest days were observed in July and August 2017 with spatial mean T dropping to 7 °C
at 100 mm soil depth, although at the deepest, 300-400 mm, soil depths it did not fall below 9
°C. The temporal change in T; was closely followed by T, reaching a maximum of 28 °C in Feb
2018 and a minimum of -4.8 °Cin Jul 2017 (Fig. 7.5 (C)). Winter frosts (< -1 °C) were recorded on

9 days at the Patitapu weather station in 2017.

The DM and PGR values for the perennial ryegrass pasture are represented by boxplots in Figure
7.5 (D) and (E), respectively, to investigate the spatial and temporal variability of pasture growth
and to be able to relate the response pattern of yield to the previously described environmental
variables. Each boxplot is a graphical rendition of descriptive statistics generated from the 13
microsites linked to the days of samplings. These boxplots visually summarise the following
statistical parameters: the mean (white rhomboid), the median (line across the box), 25"
percentile and 75 percentile as lower and upper hinges and outlying points. As the regrowth

intervals varied in length, the boxplots are distributed accordingly over time.

By visually investigating the pasture productivity charts, it can be concluded that considerable
spatial variation exists between the 13 microsites. The recorded DM and calculated PGR values
showed the largest variability in spring and summer seasons and the least noticeable differences

between sites were measured in winter. In late autumn and winter, the low values of T; and T,
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inhibited pasture production, although the 6, levels at near-saturated conditions may also effect

yield due to the reduced oxygen diffusion rate and aeration.

Itis also apparent that less DM was accumulated through Year 2 thanin Year 1 if the overlapping
months are considered. In both years, a strong spring - early summer peak was shown in DM
production. This peak was lower and appeared slightly earlier, in Year 2, (November 2017) than
in Year 1 (December 2016) when the highest PGR were observed during the study period. In Year
2, summer growth was limited by the early dry soil conditions in spring and the length of this
period exerted a large impact on yield. The extreme temperature conditions of January 2018
had a strong impact on SWS,; that is reflected by the considerably lower pasture production
compared to Year 1 (Fig. 7.4 (D) and (E)). The production window in spring was characterised by
increasing temperatures and at this time 8,, was not a growth-limiting factor in Year 1, although
it was in Year 2. Our observation shows agreement with the findings of Radcliffe (1982)
associating early reduction in PGR with low spring rainfall, as well as and that of Zhang et al.
(2005) stating that spring rainfall is one of the most important factors in annual pasture

productivity in hill country.
7.3.2  Optimal environmental conditions for pasture growth at Patitapu Station

Concerning the measured growth and the parameters recorded by the Patitapu weather station,
the optimal conditions can be defined for the highest yield-producing periods. The widest PGR
range of 55-90 kg DM/ha/day was observed when the mean T, was between 13 and 16°C during
the regrowth interval. The T at 100 mm soil depth varied in the 15-19 °C optimal temperature
window in the highest production periods. In terms of ISR, the pasture was most productive at
5500-6500 WH/m? and the variation in PGR between microsites was shown to follow a gradually
increasing trend with increasing ISR. This trend was clearly linked to the topographical positions
of the sites controlling differences in ISR. The most significant pasture development occurred
when cumulative precipitation for a regrowth interval was around 100 mm and the mean
0, values at 100 mm soil depth ranged between 0.29 and 0.45 m* m™. The highest pasture

productivity was reached when SWS,; was between 125 and 175 mm.

Low yield was observed when the mean air temperature dropped below 10 °C, giving the lowest
PGR values at 7.5 °C. However, when the mean T, exceeded 17 °C, the PGR markedly dropped
to 10-30 kg DM/ha/day. Similar trend was shown by the T; indicating that T below 14 °C and
above 19 °C were associated with lower PGR values. By looking at only this single parameter,
high temperature could potentially be a growth-limiting factor, although it has not been deeply

investigated in this study. The changes in T have to be examined together with the 8, levels,
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which were extremely low during the warm period, taking over the limiting role of grass growth
during the summer. The minimum values and the least variation in PGR occurred at 1500-2000

WH/m? ISR.

7.3.3  Dry matter accumulation and pasture growth rate trend analysis

7.3.3.1 Total accumulated dry matter

Total pasture production, expressed as accumulated DM, are shown for the period of Nov 2016
- Jun 2018 (individually for Year 1 and Year 2) in Figure 7.6 as a function of aspect and slope
angle (flat, rolling, strongly rolling, moderately steep, steep). Pasture yield was most abundant
on flat paddocks accumulating 16205 kg DM/ha in Year 1 and 7409 kg DM/ha in Year 2. In Year
1, the lowest amount of accumulated, i.e. cumulative DM was observed on the steep, west-
facing microsite which produced 7642 kg DM/ha, while in Year 2 a steep, south-facing microsite

produced the least amount of DM vyielding 4660 kg DM/ha.

In our study, north-facing slopes produced more DM than south-facing slopes in both years,
mirroring the observations of Suckling (1959) and Suckling (1975) sited on sandy loams in hill
country near the Ruahine ranges (60 km north of Patitapu Station). It also shows agreement with
the findings of Gillingham (1973) conducted on steep lands near Hamilton (350 km north of
Patitapu Station). The high productivity levels on north-facing slopes were dominantly due to
the better winter growth. On steep slopes, very similar DM accumulation was observed on both
south and north aspects, while the largest difference in DM production between north and south
aspects occurred on moderately steep slopes in Year 1. Most microsites on east-facing slopes
showed very similar results if compared to the sites on the west aspects. These observations can
be associated with the ISR input that are expected to be about the same on east and west
aspects. Although, the microsite at the steep, east-facing slope produced considerably more DM
in Year 1 than the microsite at the steep, west-facing slope. Little difference was observed
between east and west in Year 2. West- and east-facing slopes accumulated more herbage yield

than the microsites on the south-facing slopes.

These results are somewhat contradictory with the findings of Lambert and Roberts (1978)
obtained at a hill country research site located 45 km north of Patitapu Station. They reported
that east-facing slopes had higher productivity than north, south and west in the order of
decreasing yield potential. White et al. (1972) found that south aspects (shady faces) produced
twice as much yield as north aspects in North Canterbury, South Island. Similar results were
presented by Radcliffe et al. (1976) showing that 14% more DM was produced on south aspects.

Gillingham (1973) and Ledgard et al. (1982) found little difference between annual production
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rates as a function of aspect. These controversial findings support the evidence of the varying

role of aspect effect on DM in different parts of the country that can be related to latitude.

East Flat North South West
17500
[ ]
15000 P ° *
] - A
P 2 »
© (] - ° .
£ 125004 ’Q‘ | | S 4
< . .
= ... 2 % o
a + &A
2 7 + o
X * A n )
= 10000 4 A .
k] A O
Q0 ®r EEL
> | ] &Jr‘l“ 1N
B ¢ i A . i1
@ 75004 j &4 : ] I 4 ¥ s
] A
2 1 . &/ A 1A Al B A o
3 + -+ A
3 [ n .4 yi &
£ 50001 44 [ + 4% Ll Al 1F 2
$ ¢ . * P AF || # .
0+ . '++ i%t‘ + .+
s+ & if
2500 . u oF o 4 ot
+ T
l .+ [ ] % ﬁ /e 1 y il
y £ P I
OA -~ - - 'S r rs Y - -~
peEbERERO0N DEOEEEEENEO 0 COMEERESPSOD ©2ELEENEDO0 OO ik BTS00 D
SREQRRRIKRERR RS8RRARRARKER8R RSRRARKRIKNERR RERRARKARIKRER]R KRERRRIKIKERR
5 oS C D3 QRS E §ROSLCOE RoSE BOOLECOEOOSE BOOLECEODE0AOsE BQOSEEDE 985 €
S8B55358855 3885538488525 5825252888%5 58825288855 888853388855
m Flat ® Moderatelysteep /4 Rolling + Steep @ Strongly rolling

Figure 7.6 Total cumulative yield (kg dry matter (DM)/ha) for perennial ryegrass pasture surfaces as a
function of aspect and slope categories between Oct 2016 and Jun 2018.

As expected, the lowest total cumulative DM was observed on steep slopes and DM production
tended to decrease as slope angle increased, in agreement with the findings of Gillingham et al.
(1998), Bretherton (2012) and Roberts and White (2016). They associated this trend with the
diminishing amount of available soil water with increasing slope angle due to decreasing soil
depth with increasing slope. The dominant effect of slope angle was also highlighted by Zhang
et al. (2005) resulting from their decision-tree approach to pasture productivity modelling in
New Zealand. Our observations, and the agreement with previous studies confirm that slope
angle and aspect are specific landscape features dominating pasture productivity levels.
Furthermore, on the basis of the results presented in Figure 7.6, it can be inferred (from visual
inspection) that slope angle had a stronger effect on pasture yield than aspect. This is further

investigated by multivariate statistical methods later on in this chapter.
7.3.3.2  Spatial growth patterns and the effect of topography on the pasture growth rate

Annual yield is one of the most important measures of pasture performance, although seasonal
variation of PGR is also of great interest due to its impacts on farm management. ECHC areas
tend to experience seasonal weather extremes thus prompting an examination of the temporal
distribution of pasture production (Fig. 7.7). For improved interpretation of the relationship

between PGR variability and topographical attributes, the PGR time series at each microsite was
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visualised and assessed by considering the aspect and slope angle categories. This information

was used together with Figure 7.8 to describe spatial and temporal PGR trends.

The largest variation in pasture production between various microsites occurred during the
spring growth and summer periods as indicated by the standard deviation (SD) values of 17-20
kg DM/ha/day. There was little spatial variability in PGR during winter and autumn, with similar
SDs ranging between 3-10 kg DM/ha/day in Year 1 and Year 2. A decreasing trend was observed
in PGR variability from summer to winter in Year 1, with the lowest PGR values and the lowest
SD in June and July 2017. Following the pasture growth rate in winter, the SD values gradually

increased and reached a peak in the spring growing period in Year 2 (Nov 2017).

Figure 7.7 shows that the PGR evolution recorded at microsites with steep slope characteristics
consistently provided the lowest production values over the study period. Specifically, the west-
facing steep slope being the lowest producing location, followed by east and south aspects.
Rolling and moderately steep slopes are situated in the middle range, while strongly rolling and
flat areas produced the highest DM in Year 1. The spatial pattern of production was not
consistent and changed in Year 2, when moderately steep east-facing slopes produced nearly as

much DM as flat and strongly rolling east-facing microsites.
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Figure 7.7 Mean daily pasture growth rate (PGR) of different slope and aspect categories of hill country

pastures at Patitapu Station between Nov 2016 and Jun 2018 and their standard deviation (SD) over
time.

The data presented in Figure 7.7 suggests that the effect of slope angle and aspect has a marked
seasonal component and that this relationship changes with growth rates reaching maximum
variation during the spring and summer seasons. These results can be linked to the spatial
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8, variation, which was the highest during the dry seasons and strongly linked to aspect, and
the lowest in the wet periods as it was discussed in Chapter 5. This is due to the more divergent
ISR differences between north and south aspects over the longer dry periods. The high variation
in PGR observed during the dry season can also be partly explained by the difference in GDD, on
various aspects resulting in the warmest conditions on north and the least amount of GDD, on

south.

PGR values were displayed in the polar space to examine the potential patterns of the effect of
slope angle and aspect by the aid of a hypothetical hill plot (Fig. 7.8). It is clear that PGR values
tended to decrease with increasing slope angle for each aspect category. The effect was present
throughout the study period, although the strongest contrast between flat and steep surfaces
was observed in spring and summer. The difference in PGR between sites were not as marked

in winter.

PGR values ranged between 2.3 and 89.95 kg DM/ha/day, where the minimum and maximum
values were measured on a west-facing steep site and a flat paddock, respectively. Greater
winter production was observed on northerly aspects than on south-facing aspects and higher
summer yield was recorded on the north- and east-facing aspects than at the sites on the west
and south aspects. In contrast to the above findings, Lambert (1977) observed, that without the
use of fertiliser input, south aspects produced more yield than northerly faces through the year
except early summer. Findings by Suckling (1975) showed that pasture production on cooler
faces was often greater than that of on warmer slopes in summer on fertilised trials. These
various results indicate that regional dependence and latitude are factors to consider, as well as
the amplitude of seasonal fluctuations. For example, an increase in slope angle by a degree
resulted in a change of PGR in the range of 1.2-2 kg DM/ha/day in spring 2016 and 0.1-0.4 kg
DM/ha/day in the winter of 2017.

When examining the relationship between PGR values and aspect, the production difference
between aspect classes was less apparent, except for the flat category that exhibited the highest
PGR values during the study period. Additionally, production differences between years needs
to be examined, as there are other environmental variables, i.e. wind that can influence

microclimatic conditions and, therefore, PGR.
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Figure 7.8 Time series of polar plots illustrating pasture growth rate changes dependent on slope angle
and aspect. For interpolation, the Gaussian radial basis function approach was chosen. Black dots mark
the position of microsites based on their slope angle and aspect attributes.

By using a time series of polar plots (Fig. 7.8), it was expected that any variation caused by the
complex topography would be observable. However, the only noteworthy variation was
attributed to slope, supporting the previously the observations of other researchers. The
influence of other factors may be detected by employing more sampling sites, thereby

improving the systematic distribution of the sites in terms of topographic settings.
7.3.4 Heat accumulation as a function of topography

The rate of pasture development is highly influenced by T; and strong relationships were

observed between pasture growth and accumulated heat (Frank and Hofmann, 1989,
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Hutchinson et al., 2000). Since perennial ryegrass pasture is adapted to temperate climates, cold
winter and hot summer conditions limit its growth. Furthermore, the white clover, the
companion species of ryegrass, is summer active, and can be less productive and susceptible to
dying off in hot, dry conditions. This is clearly reflected by the PGR data presented in Figure 7.5.
In this section, the differences in annual heat accumulation, expressed as GDD,, (calculated as
per Equation 7.2), between the microsites based on aspect and slope angle was investigated

(Fig. 7.9).

In Year 1, the north-facing moderately steep slope reached the greatest annual GDD,, of 4370
°C, while the lowest amount of heat, 3386 °C, was accumulated on a south-facing steep site, i.e.
22.5 % less GDD,,. East- and west-facing, moderately steep slopes behaved very similarly,
gathering 3986 °C and 3904 °C, respectively. Steep microsites were represented by slightly less
GDD, than moderately steep microsites, whereas strongly rolling slopes received the lowest
amount of incident energy, accumulating 3659 °C on east and 3569 °C on west aspects. At the
flat microsite, 3714 °C was recorded placing this aspect in the middle of the GDD, range
observed at Patitapu Station. In Year 2, the moderately steep locations accumulated the highest
amount of GDD, similar to Year 1. The general trends observed with respect to aspect in Year 1
were mostly present in Year 2 as well, although the differences were not as large, due to the

shorter monitoring period in Year 2.

It can be seen that moderately steep slopes accumulated the highest amount of heat in most
cases in both years, except for the south aspect, where a microsite situated on a rolling slope
received the highest amount of heat. North, east, west and south aspects, accumulated heat in
decreasing order. In general, moderately steep, steep, flat, strongly rolling and rolling slopes
accumulated less heat in decreasing order, except for the south aspect where rolling,
moderately steep, and steep slopes exhibited a decreasing trend in GDD,,. The difference in heat
accumulation between microsites located on the same aspect started increasing during early

autumn in both years indicating the effect of slope angle on ISR.

The energy supply received from the incident radiation, converted/stored as heat, is available
for evaporation processes and it heats up the air and soil, thus influencing pasture development
(Gillingham and Bell, 1977). The accumulated heat energy is disseminated by evapotranspiration
that results an increase in water flow to the pasture root mass from lower depths in dry

conditions.
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Figure 7.9 Annual accumulated growing degree-days (GDD,) as a function of aspect and slope angle
classes at Patitapu Station plotted separately for Year 1 and Year 2

It is evident that the received heat at a given pasture surface is dependent on its topographical
situation (Benseman and Cook, 1969), therefore hill country topography is an important factor
in the spatial distribution of received energy, enhancing spatial variation in heat patterns.
Consequently, the differences observed with GDD, would suggest that spatial and temporal
variability in PGR would be affected. Our observations are in agreement with the conclusions of
several studies (Lambert and Roberts, 1976, Gillingham and Bell, 1977, Radcliffe and Lefever,
1981) where higher evaporation rates were governed by the warmer nature of north-facing

slopes than south-facing slopes with various slope angles.

7.3.5 The influence and interaction of soil water content and soil temperature on

pasture growth rate

In hill country, 8,, levels can range between the two soil moisture extremes, therefore pasture
production needs to cope with 8,, stress in dry, hot conditions as well as saturated conditions
during winter when the plants are relatively dormant. The temporal pattern of 6, deficit is
indicative of the amount of plant available water (PAW) throughout the study period. This
variable was plotted along with PGR and GDD, to provide a better understanding of pasture

response patterns at each microsite (Fig. 7.10).

In the winter of 2017, 6,, soil conditions were very wet, at near-saturated levels. At this time,
GDD, values were very low, resulting in low to negligible PGR at most microsites. During late

spring and summer, PGR can be limited by 8,, availability. The PGRs at this time were much lower
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in Year 2; most likely due to the early and quick GDD, rise during spring, which, in turn, is
dependent on the amount of ISR. This led towards a significantly warmer summer period than
in Year 1, causing a greater soil water deficit and reduced yield. During the longer dry period of
Year 2, the highest 0,, deficit was reached at most microsites, reducing their PGR. Steeper slopes
suffered from less effective rewetting due to slope angle and the earlier onset of soil water
repellency (Bretherton et al., 2018). These factors, coupled with the lower amount of stored
water in the shallower soil profiles, resulted in more severe and extended periods of 8,, deficits

for these slopes.

In Year 1, although 8, levels were decreasing from the end of November until the greatest soil
moisture deficit in January 2017, there was still sufficient moisture for the production of
relatively high amounts of pasture. A steady decline in PGR can be seen at most microsites from
November 2016 until June 2017. Medium PGR values at 40-50 kg DM/ha/day were recorded
while the water storage was refilling and approaching field capacity at the beginning of April

2017, when GDD; started decreasing.

Due to the combined effects of these two variables, PGR reached a minimum in May 2017. A
contrasting observation occurred in Year 2 after the long dry summer as GDD,; was decreasing
and the amount of 8, stored was increasing during autumn. Leaf growth recommenced and
higher PGR values were observed. A rapid decrease in GDD, was experienced both in May 2017
and May 2018, resulting in a decrease in PGR. Subsequently, for both years, the soil water
content was at or exceeded field capacity, thus providing ideal 8, conditions for growth.
However, the limiting role of GDD,; was becoming more prominent at this time, resulting in low

winter growth.

A study undertaken by Parfitt et al. (1985) indicated that ryegrass pasture growth was
significantly limited when soil water deficit reached 50 mm, and then ceased at 140 mm on
undulating terrain supporting silt loam soils. We observed that the PGR values noticeably
decreased at 30-45 mm soil water deficit at most microsites in both years. It is likely then, that
the 50 mm soil water deficit suggested by Parfitt et al. (1985) threshold is an acceptable
approximation of the level at which the PGR is significantly limited, although our study would
suggest that ryegrass/white clover pasture growth would begin to decrease at soil water deficit
levels around 30-45 mm. We note that the field capacity values used in this study are estimations

from the field-based 6,, data, which can have effect on these results.

215| Page



CHAPTER 7

1 3 &

A |

\

25
r20

I
| Mﬁ' w15
s NWN J AVM

80 4
10

1
ey e BEE
o) | MM lwh il ! T -
- il
1

204 |
404
60 4 | I
.80 1 I |
-100 4 1 1 1
8 10 11
804 T T A T 25
F20
ooflnie MW’” ; ' w AN,
a0 J R ) I Wi e |
204 gy 'NW | %ﬂ \W\w Qf' M\w- ;o
0 L ! YA AY A q = 0
— 40 -
60 1 I 1
80 1 | |
-100 4 1 | 1
12 13 14
804 T T T 25

P, Ul MT@%«' Aﬂ\ W “%A

Year 1 1 ear 2| Year 1 1 Year 2

) B e e e e e B e i B e v e S S o L = o P S i e o P e e T I o P

19 : . S3588833535885558R8 R8353RR3585RRRRERRR]

i B CQE e > DARE >0 O L >c 20 CcOL L >2ca AR >0 cOk = >c
80 | %W Lo SPS223323028502283 3859288332303 8582223
5 W s
4°'W%,\ } U
vk

I\ .
0 V\. 0 Mean daily pasture growth rate (PGR)

207 [J Daily soil water deficit
401 | — Daily growing degree-day (GDD )
601 L at 100 mm soil depth
-80 4
1001 Year 1 | Year 2
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In this study, the annual pattern of 8, has clearly affected plant growth. These patterns are in
agreement with the studies of Bretherton et al. (2011) and Bircham and Gillingham (1986). There
are many environmental components affecting PGR, causing variability in yield over complex
landscapes. The amount of PAW in the soils is one of the primary factors improving pasture
resilience (and hence productivity) and is influenced by effective infiltration, which, in turn, is
dependent on of slope position (i.e. altitude above channel lines and altitude below ridge lines),

shape (i.e. convexity) and slope angle and aspect (Lieffers and Larkin-Lieffers, 1987).

It was earlier demonstrated (Fig. 7.10) that during summer, pasture growth decreased with
decreasing 8,, despite the adequate temperature conditions. In contrast, in autumn and winter,
GDD,; was the main growth-limiting factor. 8,, and T variables at 100 mm depth were observed
to explain most of the variation of the autumn yield in Hawkes Bay by Baars and Waller (1979).
This implies that there were times, when specific soil moisture and temperature conditions
prevailed, when the dominance of these two variables was inverted. Accordingly, in late autumn
and winter, and despite sufficient PAW, plant growth slowed down due to temperature

limitations.

There are periods when these limiting effects overlap, such as late autumn, so that pasture
growth is severely constrained. During late spring and early summer, when both soil moisture

and soil temperature are non-limiting, pasture production is relatively unconstrained.
7.3.6  Multivariate statistical analysis

In this study, a large amount of sensory data has been presented in a descriptive manner,
primarily because the relationship between environmental variables and pasture production has
been difficult to quantify and interpret. Accordingly, a multivariate approach, such as MFA, is
likely to be an applicable and suitable method in order to examine the interdependence and
correlation amongst groups of observed variables. MFA looks for the common structures in
either all of the groups or in some of them and derives an integrated picture of the observations

and the relationships (Abdi and Valentin, 2007).

Most of the literature has examined the effect of a single soil attribute (Lopez et al., 2003) on
pasture yield, despite the fact that herbage production is a result of a compound interaction of
several elements. In our ensuing analysis, the following input variables were considered, and
arranged into groups according to their quantitative or qualitative nature (Table 7.3). The MFA

labels listed in Table 7.3 will be used to tag the results of the analysis in this section.
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Table 7.3 An overview of the various input variables used in the multiple factor analysis (MFA). The
variables are arranged into groups based on their type. The corresponding group and variable labels,
and variable types as they were used in the MFA are shown in the right.

Description

[Group Labels] - variable type
[Variable labels]

Group 1 - supplementary variables:

= |ocation reference
= date of cuts

[Origin] - qualitative

= [SitelD]
= [Date]

Group 2 - variable related to pasture growth:

=  Mean daily pasture growth rate

[PGR] - quantitative
= [PGR]

Group 3 - variables describing soil moisture levels:

=  Soil moisture at four depths
=  Accumulated soil water storage

[Moisture] - quantitative

= [SM100, SM200,
SM300, SM400]
= [AccSWS]

Group 4 - variables describing soil temperature and
accumulated heat:

=  Soil temperature at four depths
=  Accumulated growing degree-days

[Temperature] - quantitative

= [T100, T200, T300,
T400]
=  [AccGDD]

Group 5 - climatic variables:

=  Total accumulated rainfall
=  Rainfall frequency [> 2mm]

[Rainfall] - qualitative

=  [TotRain]
= [RainFq]

Group 6 - terrain attributes:

=  Slope angle
= Aspect
= Landscape element

[Terrain] - qualitative
= [Slo]

= [Asp]
=  [LandScEl]

Group 7 - seasonality:

= Seasons

[Season]- qualitative

= [Season]

A comparative MFA was performed separately on Year 1 and Year 2 in terms of PGR, soil
moisture and soil temperature conditions. As a first step, the MFA algorithm standardises the
input variables, balancing their influence to avoid the over-contribution of variable groups with
the strongest structure and largest variance. This step is necessary to make these groups
comparable (Abdi and Valentin, 2007). Secondly, the normalised datasets are merged to
generate a unique matrix. Then, this matrix was analysed in multidimensional (global) space
resulting in coordinates (factor scores) which were represented by points. To be able to compare
Year 1 and Year 2, the analysis was completed over the same months for Year 1 that were

present in Year 2. The MFA was executed on a total of 156 observations (78 per year).
7.3.6.1 Inter-dependence between groups and quantitative variables

Table 7.4 summarises the Eigen roots and Eigen vectors obtained from the MFA for both years

and reflects how much of the total inertia (i.e. a measure of the total variance or dispersion) is
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explained by each dimension (or factor), i.e. a collection of reference information about a
measureable variable (Sourial et al., 2010). In MFA, there are the same number of factors as
there are variables and each factor captures a portion of the total variance within the year under
investigation. Eigenvalues of the correlation matrix that are greater than one, explained more
variance than a single variable. Based on the Kaiser criterion (Kaiser, 1960), only those
dimensions that satisfied the “eigenvalue-greater-than-one rule” were retained (i.e. the first five
dimension in this study). This is a popular approach due to its simplicity and ease of
implementation (Braeken and van Assen, 2017). The variables of the supplementary group
(Group 1) containing point IDs and location information were not considered during the

generation of factor scores and the computation of contribution.

Table 7.4 Summary of the multiple factor analysis (MFA) results including Eigenvalues and the explained
variance for each dimension for Year 1 and Year 2. Dim. — dimension.

Year 1
Dimension Eigenvalue Variance (%) Cumulative variance (%)
Dim.1 3.7 24.7 24.7
Dim.2 2.5 17 41.8
Dim.3 2.3 154 57.1
Dim.4 1.2 8.2 65.4
Dim.5 1.1 7.2 72.6
Year 2
Dim.1 3.5 24.1 24.1
Dim.2 2.2 15.3 394
Dim.3 2.0 13.7 53.1
Dim.4 1.3 8.7 61.8
Dim.5 1.0 7.0 68.8

The analysis showed that the groups of Moisture, Temperature, Rainfall, Terrain and Season
explained a significant portion of the variability through the first five dimensions explaining 72.6
% and 68.8 % of the total variability for Year 1 and Year 2, respectively. The Dim.1 and Dim.2

accounted for 41.8 % of the variability for Year 1 and 39.4 % for Year 2.

The contribution of each group (i.e. the variation of squared loadings) and the correlation (R?)
to the corresponding dimensions or components can be used to assess the importance of a
group and the inter-relationships with other groups. The contribution results were converted to
percentage values and presented in Table 7.5. Similar contribution trends were observed for
both years, although the values changed from Year 1 to Year 2 indicating that the importance of
groups might change from year to year or season to season. The larger the percent contribution
value, the more a variable group contributed to the given dimension. Some of the groups, such
as Rainfall, Season can be considered as multi-dimensional groups because of their contribution

to several dimensions.
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Table 7.5 The percentage contribution and correlation of each group of variables to the five dimensions
are shown for Year 1 and Year 2 as obtained by the multiple factor analysis.

Percentage contribution (%) Correlation (R?)
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 | Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

Group Year 1
PGR 16.44 11.25 0.57 1.49 0.26 0.78 0.53 0.11 0.14 0.05
Moisture 9.99 13.23 9.68 3.65 7.89 0.63 0.59 0.68 0.42 0.29
Temperature | 23.00 0.52 4.28 4.71 0.38 0.92 0.13 0.37 0.28 0.08

Rainfall 26.38 36.97 43.07 7858 543 | 099 097 099 098 0.24
Terrain 021 110 024 200 8288 | 011 020 009 016 0.95
Season 23.99 3694 4216 958 3.17 | 094 097 098 034 0.8
Year 2

PGR 1 15.9 0 2794 1.19 019 060 000 060 0.11
Moisture 1993 047 019 1164 0.74 0.84 044 007 039 0.10
Temperature | 25.64 0.33 045  2.52 2 095 018 018 020 0.16
Rainfall 26.75 4131 49.67 1439 69.6 098 096 1.00 046 0.85
Terrain 046 086 0.02 35.83 2581 017 017 002 074 0.52

Season 26.24 41.13 49.67 7.69 0.66 0.96 0.96 1.00 0.31 0.08

A graphical illustration of the results is provided in Figure 7.11 for comparison between the two
years by focusing on the first two, principle dimensions. Figure 7.11 (A) and (B) present the map
of supplementary or origin (in green) and active variable groups (in red) based on the
coordinates of the groups that allow visualising the distance between tables. The position of the
groups in the MFA showed quite clearly that the Dim.1 was highly related to Temperature,
Moisture, Season and PGR in Year 1. In Year 2, Temperature, Moisture, Season and Rainfall were
characterised as the highest contributing groups for Dim.1, whereas the Dim.2 was mostly

related to Rainfall, Season and to a lower extent to PGR.

Figure 7.11 (C) and (D) depict the scree plots of cos? for Dim.1, that indicates the importance of
a component (or dimension) for a given observation (Abdi and Williams, 2010). For inter-
correlated quantitative dependent variables, cos? indicates the contribution of a component to
the squared distance of the observation to the origin. Large values of cos? suggest high
component importance for a given observation. In Year 1 Temperature and PGR were the most
important groups, while the Temperature and Moisture groups had the highest cos? values and

considerably higher importance was observed in Year 2 than in Year 1.
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Figure 7.11 Graphical representation of MFA with the map of tables showing the individual groups and
their position along the Dimension 1 and 2 axes (A and B). The bar plots depict the contributions of each
variable group to the Dimensions 1 and 2 (C and D). The correlation circle of quantitative variables
(coloured by cos?) illustrates the inter correlation between variables and Dimensions 1 and 2 (E and F).

By analysing the correlation circle of quantitative variables (Fig. 7.11 (E) and (F)), it is clear that

Moisture and Temperature groups were highly related to each other (negative correlation) and

strongly correlated with Dim.1. The PGR variable was more closely related (positive correlation)

to Temperature in Year 1 than in Year 2. Within the Moisture groups, SM100 was negatively

correlated to PGR in Year 1. In contrast, Moisture was more closely correlated with PGR in Year

2 with an indication of positive correlation along the Dim.1 axis.
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On the basis of cos? values, the most important variables were the SM100 and T100. Even though
AccSWS did not show high importance, it was negatively correlated to PGR while AccGDD
showed indication of positive correlation to PGR in Year 1. In Year 2, these relationships were
found not to be significant showing near orthogonal positions between PGR, AccSWS, and
AccGDD. The correlation of quantitative variables and their statistical significance (i.e. P value)
are reported in Table 7.6 for Dim.1 and Dim.2 for both years. This represents the basis of the

correlation circle map presented in Figure 7.11 (E) and Figure 7.11 (F).

Table 7.6 Significant correlations between quantitative variables and principle dimensions obtained by
the multiple factor analysis for Year 1 and Year 2. If the P value is < 0.001 the relationship is considered
significant (***).

Year 1 Year 2
Dimension | Variable | R? | Pvalue | Signific. | Variable | R? P value Signific.
T100 0.96 0.000 Hokk SM100 0.87 0.000 *kE
T200 0.94 0.000 Rk AccSWS  0.82 0.000 Rk
T300 0.93 0.000 Rk SM300 0.78 0.000 Rk
T400 0.92 0.000 Hokk SM200 0.77 0.000 *kE
PGR 0.77 0.000 Rk SM400 0.70 0.000 Rk
Dim.1 AccGDD 0.67 0.000 Hokk AccGDD -0.90 0.000 *Ex
AccSWS -0.12 0.000 Rk T400 -0.92 0.000 Rk
SM400 -0.44 0.000 Hokk T200 -0.93 0.000 *kE
SM300 -0.53 0.000 Hokk T300 -0.93 0.000 *kE
SM200 -0.6 0.000 Rk T100 -0.95 0.000 Rk
SM100 -0.73 0.000 *EX
PGR 0.53 0.000 Rk PGR 0.60 0.000 Rk
SM300 0.60 0.000 *EX
Dim.2 SM400 0.61 0.000 Rk
SM200 0.52 0.000 *EX
SM100 0.44 0.000 Rk
AccGDD -0.34 0.000 *EX

7.3.6.2  The effect of terrain-related qualitative variables

Figure 7.12 shows the individual observations with confidence ellipses and the centroids of
selected qualitative variables, such as Slo, Asp, LandScEl and Season for Year 1 and Year 2
separately. The variables contained in the Terrain group were strongly correlated along the Dim.
4 and Dim.5 axes. Therefore, these axes were used to visualise the role of these groups to help
understand the diversity of the observations induced by the tables within this group. Individuals,
i.e. observations, with similar characteristics are displayed close to each other on the factor map

(Fig. 7.12). The applied MFA highlighted general tendencies in the role of terrain attributes.
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A number of the centroids in Figure 7.12 of the qualitative variables are close to the origin, i.e.
Asp in Year 1, suggesting that its effect was not significant. In Year 2, the separation observed
along the Dim.5 axis suggested that the Asp variable was characterised with a slightly more
dominant role than in Year 1. Individuals with horizontal aspects clearly differed from all the
other aspects as indicated by higher coordinates along the Dim.4 and Dim.5 axes. In both years,
the effect of Slo was more apparent than the influence of Asp. The centroids of the Slo and
LandScEl categories were more widely distributed across the length of the Dim.4 axis in Year 2
axis, Dim.5 in Year 1, indicating that the variability found in these dimension was more closely
associated with these variables. Steep and rolling slopes were placed at the low and high end of
the Dim.4 and Dim.5 axes. This supports our previous findings regarding the considerable
contribution of slope angle to the variability that can be related to the observed decreasing

trend of PGR with increasing slope angle.

The position of the microsites in the landscape, represented by the Landscape element
(LandScEl) variable, had a discriminative effect, suggesting a considerable contribution to the
total annual variance, especially in both years. Upper slope, open slope (i.e. slope section
between upper and lower slopes) and ridge landform elements (Weiss, 2001) were located at
the lowest and highest positions of the range LandScEl along Dim.5 in Year 1 and Dim.4 in Year
2. The impact caused by LandScEl may be related to the varying soil types, soil moisture
conditions, and nutrient content dependence on slope position, i.e. its distance from the hilltops

and ridges.

The previously observed role of 8,, and T on pasture production was supported by the results
of this analysis. In Year 1, 6,, was not a limiting factor and the relationship between 6,, and PGR
was not significant. In contrast, the PGR was more related to T in Year 1. In Year 2, due to the
long dry period (December 2017 — March 2018), the PGR was more closely correlated to the 6,
variables, confirming our earlier statement that 8,, availability limited pasture production during
Year 2. However, T was still the most dominant factor explaining the highest amount of

variability in PGR in Year 2.
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Figure 7.12 Ordination of the individual observations on factor maps and the projection of centroids
with confidence ellipsoids calculated by MFA. The individuals were colour coded according to the
variables of the Terrain group, i.e. aspect, landscape elements and slope angle classes for Year 1 and
Year 2.

7.4 Summary and conclusions

The main terrain-related determinant of the spatial variability in PGR was the slope angle. A
combination of visual interpretation and multivariate statistical methods (MFA) helped
determine the effect of variable topography on the variation in pasture production. The
application of MFA allowed analysis of multiple dataset tables containing both quantitative and
qualitative variables. As a result, the observed PGR values were strongly associated with
landscape elements, i.e. the geomorphological position of the microsites, while aspect played a
less important role as physiographic factor. However, the importance of aspect changed with

seasonal analysis and its influence on PGR variation increased with increasing ISR and
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accumulated heat, and thus with increasing T. Due to the complexity of the soil-water- plant-

terrain-climate system, numerous factors contributed to the variation found in PGR values.

Seasonal temperatures and moisture regimes varied markedly between different micro-
environments induced by topographical diversity. In terms of temperature, the highest yield (55-
90 kg DM/ha/day) was observed at a mean T, ranging between 13 and 16 °C, with T at 100 mm
soil depth ranging between 15-19 °C. The influence of terrain was most significant during the
late spring and summer periods when high ISR values were prevalent. The importance of terrain
attributes in explaining pasture yield variability dropped during cold, wet seasons, and also when

large precipitation events occurred in autumn.

The terrain attributes under consideration exerted significant influences on soil moisture values,
which were observed to be less variable as the mean soil water content increased. An inverse
relationship between mean soil moisture and slope angle was also observed, suggesting that
microsites on steep slopes became drier earlier, held less water, and re-wetted later than gentle

sloping land.

These hill country farms are iconic platforms of New Zealand’s meat and wool industry, and will
remain so for the foreseeable future. Although non-irrigated farming is unable to control many
of the studied environmental factors, once the spatial and temporal effect of these factors on
pasture production are quantified, farm management practices can be implemented to improve
pasture production and profitability. However, accurate measurement of pasture growth is a
challenging task in hill country due to the complex terrain, representative sampling, and access

during adverse weather conditions in winter.

The conclusions drawn in this chapter may allow hill country pastoral farmers to use their lands
to their higher potential especially in spring and autumn and these findings may contribute to
the solution of currently relevant management issues to the farmer of today. Deeper knowledge
on pasture growth is essential to effectively setting stocking rates and realistic production
targets. It is also crucial for the driving of farming practices, such as feed budgeting, planning of

calving, seasonal pasture management and drying off dates.
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Chapter

GENERAL DISCUSSION AND CONCLUSIONS

This chapter begins with a brief summary of the key concepts and motivation behind the thesis.
It also introduces the scopes that govern the discussion section. Afterwards, the chapter presents
the main findings of this thesis relevant to each scope. The discussion places a strong focus on
the implications and practical applications that can be considered based on the findings this
study. Limitation and future perspectives are given for the various methods used in each chapter.

The chapter ends with the list of main conclusions and recommendation for future work.
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8 Chapter 8 - General Discussion and Conclusions
8.1 Brief summary of the key concepts

New Zealand’s pastoral agriculture faces significant challenges, including the ever-increasing
pressure on profit margins, the need for sustainable future farming and more efficient,
enhanced productivity due to the growing food demand (FAO, 2011) while reducing the
destructive impacts on the environment. Furthermore, the already evident changes in climate
and its trends will have a strong impact on agriculture with an increasing likelihood of more
frequent heat waves and more intense, extreme precipitation events (Howden et al., 2007,
Pachauri et al., 2014). These issues have led to a strong conviction that the monitoring of yield
affecting parameters is necessary to accomplish future production targets in non-irrigated hill

country pastoral systems (Atzberger, 2013).

These challenges need to be addressed not only regionally but also at the smaller scales,
ensuring a more coherent adaptation of pastoral farming systems to the potential changes. One
of the key concepts that makes facing these challenges in agricultural productivity in New
Zealand’s hilly landscapes cumbersome is the presence of high spatiotemporal environmental
variability. In hill country pastures, much variability exists at the farm and within the
management units (i.e. paddocks) as well as at both macro- and micro-topographical levels that
has been investigated by numerous studies (Harris et al., 1985, Scott et al., 1985, Lopez et al.,
2003, Chapman et al., 2009). Although, the farming related issues caused by these challenging
factors and decision making in land management have been usually targeted by the “averaging

approach” (Kerr, 2016).

Recent advancements in precision agriculture, computing technologies, machine learning
supported statistical methods, data analytics, in situ sensor development, global positioning
systems, digital representations of the terrain and satellite imagery opened up new vistas in
supporting decisions (Schellberg et al., 2008). These innovative methods allow researchers,
agronomists and farmers to address numerous problems imposed by the diverse, rugged
environmental conditions. The latest digital technologies are reshaping the ways of describing
complex landscapes and interrelations existing in this environment. The modern agricultural
industry utilises advanced technical solutions that are able to provide more accurate, denser
datasets, containing a high number of variables (for instance mass, volume, temperature,
relative humidity, etc.) at higher spatial resolution than traditional approaches (Cox, 2002).

However, several traditional, classic methods, such as ground-based soil moisture
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measurements, are still used for validation and performance assessment of the modern

techniques and modelling approaches (De Lannoy et al., 2006).

Consequently, the joint use of some of these methods are progressively being employed to
support farmers’ decision making related to farming activities, land management and the use of
optimal type and amount of inputs. Attempts have been made to quantify and incorporate the
variability and the effects of environmental parameters on yield into fertiliser planning
applications, pasture growth simulations and forecasts to achieve better returns. These aims led
to the ultimate goal of the current hill country development programs focusing on the
improvement of resilience and production efficiency while reducing the environmental pressure

induced by fertiliser applications.

Agricultural production is highly dependent on soil moisture (6,,, m* m), which is one of the
primary environmental factors controlling pasture yield in hill country (Davis et al., 1994,
Woodward et al., 2001, Bittelli, 2011). Soil water content is considered as a highly variable
environmental parameter both spatially and temporally (Brocca et al., 2007) which is further
complicated by the sloping nature of the land (Gillingham, 1973) resulting in significant

variability in pasture growth.

These concepts guide the motivation behind this thesis that aims to contribute to the knowledge
generated around the role, variability and potential monitoring methods of near surface and
root-zone 6, in hill country pastoral systems. In addition, the objectives included the
development of a better understanding of the main driving factors of pasture production, such
as soil temperature (T, °C) and terrain attributes in hilly landscapes for better parameterisation
of pasture models. Based on the given background the discussion is structured around four main

scopes, which are defined as follows:

1. The need for accurate 8,, and T; monitoring at the farm scale and the importance of site-
specific sensor calibration.

2. The quantification and description of the spatiotemporal behaviour of 8, patterns on
hilly terrain.

3. Extending the dimensions: moving from the point-scale 8,, observations to the spatial
mapping over the research area.

4. The investigation and quantification of pasture growth driving factors on hilly terrains

with a special focus on topographic attributes.
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8.2 The study area

The study is conducted on a 2600 ha predominantly beef and sheep farm situated in the
Wairarapa region, on the East Coast of the North Island (shown in Fig 3.1). In terms of terrain,

rolling to steep hills dominate the landscape interspersed with some flat terraces (Fig. 8.1).
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Figure 8.1 Slope category distribution of the Patitapu Station based on LUC (Lynn et al., 2009) slope
categories derived from an 8m digital elevation model (LINZ, 2012).

The significant environmental heterogeneity was described early by Murray (1982), stating that
“The Wairarapa region tends to extremes, too wet, too windy, too dry, too hot or too cold, all
this between seasons and over longer years”. Therefore, the chosen research area is a typical
representation of the diverse, pastoral hill country environment closely satisfying the
description of the hypothetical hill country farm by Kerr (2016). Hence, the farm, Patitapu
Station, is considered suitable for carrying out this study and the research area selection is
supported by the observed spatial and temporal variability in 8,,, T; and pasture growth during

the study.

8.3 The first scope — Accurate and representative monitoring of soil water and

temperature in the rooting zone

Since the collection of 8, information is highly challenging in hill country, the available datasets
are rare, and the sensors are often not calibrated to the site-specific soil conditions. Therefore,
the first scope of the study is to collect accurate multi-depth 6,, data with high temporal
resolution from spatially distributed locations to represent the rugged terrain conditions. Here,

the following research questions were raised:

a) How to collect 8, from spatially distributed positions?
b) How to select the location of the microsites to represent typical hill country conditions?
c) What type of sensor and sensing depth would be ideal for the purpose of the study?

d) How to calibrate, assess and validate the sensor performance?
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8.3.1 The WSN concept and deployment

The traditional 8, determination methods or 8, readings at a single location would not have
been sufficient for the purpose of the study considering the amount and richness of the data
needed. Hence, a smart environmental monitoring approach utilising WSN technology (Rawat
et al., 2014) is chosen for systematic data collection. The deployed WSN implements a multihop
(i.e. mesh topology) communication paradigm between sensor nodes, a relay node and the
gateway, whereas a 3G mobile network provides data transmission between the gateway and a
remote server. The near-real time data access is managed via a web interface operated by HALO

Farm Systems, TAG I.T. Technologies Ltd (Hamilton, New Zealand).

The WSN deployment and the microsite localisation posed a series of three-dimensional
problems concerning the highly variable terrain. Some of these were the natural and manmade
objects obstructing line-of-sight visibility, the relatively long distances, and the vertical
differences between microsites. The microsite localisation was guided by a two-step, conditional
decision approach taking into account several GIS layers through a geomorphometrical analysis
of the terrain. The candidate and the final microsite locations were selected by satisfying a set
of criteria including topographical attributes, soil types, inter-visibility, vegetation type, farm

management plans and equipment protection.

The microsites were equipped with AquaCheck multi-depth sensor probes (AquaCheck Soil
Moisture Management, Durbanville, South Africa). The probes were set to collect T readings
and capacitance-based 6,, data at 15-min intervals at four soil depths (70-130, 170-230, 270-330
and 370-430 mm). The sensor type was chosen considering the completely subsurface-based
operation design, the robust, tube-like shape (meaning easier installation), as well as the broad
compatibility with telemetry units. The length of the probe was determined by the hill country
soil characteristics and the 400 mm probe covers most of the soil profile that is used for plant
water uptake, which occurs down to at least 350 mm soil depth according to Bretherton et al.

(2010).

The financial resources allowed the installation of 20 AquaCheck sensor probes. The probes
were spatially distributed on flat surfaces and on sloping land classified based on five slope angle

and four aspect categories following mostly the LUC (Lynn et al., 2009) slope classes (Fig. 8.1).
8.3.2 Data gaps and WSN operation

The WSN operated mostly perfectly during the study period, although we experienced some

weaknesses regarding the power support at the gateway and certain sensor nodes, which was

231 | Page



CHAPTER 8

attributed to the recharging performance of the solar panels on specific aspects and slopes. As
it is shown in Figure 8.2, the power issues occurred mainly in winter on flat areas (Site 2, 15 and
6), on a south-facing, moderately steep slope (Site 14) and a south-facing strongly rolling slope
(Site 17). If the battery voltage decreased below the 2.8-3.2 V ranges, the battery was manually
recharged and replaced since they were not able to recover from the flat stage.
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Figure 8.2 Temporal evolution of power supply (Volt) for each sensor node with drops in the wintertime
at several microsites. The microsite IDs of the low performing locations are indicated. The lower end of
the numbered lines indicates the moment when the battery went flat and the communication was lost
temporarily.

The shadow produced by the hilly landscape, and the lower incoming solar radiation on south-
facing aspect that may explain some of the reasons behind the insufficient charging. This could
be avoided by shadow detection as part of the WSN planning procedure. On the other hand, due
to the self-healing, flexible communication protocol, Site 6 often transmitted significantly larger
amount of data packages, operating as a relay node, than the other microsites because of its

central position close to the gateway (Fig. 3.12).

During the study, the communication layouts revealed that the sensor nodes, more specifically
the radio units, were able to send data packages to other nodes situated much farther, than the
recommended maximum radio range of 1.7 km. It was observed that some of the nodes located
3.5-4 km (in line-of-sight) distance from each other could establish data transmission. These
findings should be taken into account if these devices are installed either on flat or hilly terrain,
which may improve the usefulness, and versatility of these instruments in the future, and

provide more flexibility for the microsite localisation.
8.3.3 Sensor calibration, performance and accuracy

The deployed WSN allows data collection in an automated manner with high temporal
resolution that provides a more effective way to monitor 6,,, than other classic methods such as

time domain reflectometry, gravimetric techniques, neutron probes (Brocca et al., 2007). The
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most essential components of the WSN is the connected AquaCheck sensor probe that utilises
the capacitance technique (Topp et al.,, 1980) to measure the surrounding soil’s apparent
dielectric constant. The frequency domain based readings can be related to 8,, (Dean et al., 1987,

Mittelbach et al., 2012).

Soil dielectric constant is mainly the function of 8,,, although other factors, such as soil bulk
density, clay content and organic matter have been observed to have an influence on the
dielectric properties (Topp et al., 1980, Roth et al., 1990). Due to the physical principles behind
the capacitance technique (and other dielectric techniques), the sensor readings are sensitive
to the above mentioned and several other soil properties that needs to be taken into account

(Robinson et al., 1994, Mittelbach et al., 2012, Fares et al., 2016).

Therefore, the AquaCheck sensors require either laboratory- or field-based calibrations to
convert the raw sensor readings to as accurate 8,, observations as possible. Most manufacturers
provide calibration formulas for common and generic soil types, which may or may not achieve
sufficient measurement accuracy for agronomic or scientific purposes. Thus, in this study, for
the first time, the globally utilised, industry leading AquaCheck sensors and their factory
calibrations were evaluated in New Zealand’s hill country soils. Furthermore, new site-specific

calibration formulas were generated and assessed.

The calibration and evaluation was based on thermo-gravimetric soil water measurements
(Schmugge et al., 1980) taken between dry and wet soil water states by collecting 400 reference
soil samples. The soil particle size analyses revealed that most of the probes are placed in silt
loam or silty clay loam soils as per the USDA classification (USDA, 1999), although soil texture
changed at several microsites along the soil profile and the clay content markedly increased with

increasing soil depth (Fig. 8.3).

The same increasing trend occurred for bulk density in contrast to the organic matter that
generally decreased moving downwards the soil profile. Concerning these trends in the soil
properties, it is likely, that discrepancies would occur in sensor measurement accuracy varying
not only between microsites but also vertically between shallow depths and the deeper soil

sections.
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Figure 8.3 A 3D view of the Patitapu Station and the spatial distribution of microsites equipped with
AquaCheck probes. Soil texture is indicated by colour codes based the USDA soil classification (USDA,

gem3) are shown

1999), the portion of clay content (%), total organic matter (TOC, %), bulk density (o},

for each microsite and each depth along with aspect and slope information.
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To date, little is known about the performance of the standard, manufacturer provided
AquaCheck calibration formulas despite the importance of these products in the worldwide soil
moisture sensor market. These reasons triggered the idea of assessing the manufacturer-
provided equations as compared to the reference 8, as well as the generation of new site-
specific calibration formulas. Nolz (2013) found that AquaCheck sensors within a single probe
performed differently during a comparison to EnviroSCAN probes. Thus, the custom calibration
process specific to the research area was carried out at three different levels, i.e. farm (Level 1),
probe (Level 2) and individual sensors (Level 3), which can be reproduced in other regions

depending on the available soil information and the required accuracy for the chosen utilisation.

Our results showed that the application of the factory-provided equation designed for silt loam
soils markedly underestimated the true 6,, by a mean RMSE of 0.106 m®*m. A root mean square
difference of 0.163 m3®m™ was observed by Singh et al. (2018) when AquaCheck sensors were
assessed in loamy soils against neutron probe measurements. These measurement errors were
rather too large for most purposes, thus the need for soil-specific formulas for AquaCheck

sensors was also confirmed by our findings.

A single, linear farm-specific calibration formula (Level 1) noticeably reduced the errors resulting
in a mean RMSE of 0.039 m®m™ and mean R?of 0.58. This improvement was outperformed by
the probe- or microsite-specific (Level 2) calibration giving a mean RMSE of 0.029 m®*m?3. The
lowest mean RMSE, 0.19 m® m3 was achieved by the sensor-specific (Level 3) calibration

indicating a substantially increased sensor accuracy.

The error distribution was not uniform, overestimation occurred in dry conditions while
underestimation tended to take place in wet soils. The effect of clay content, bulk density and
organic matter on sensor accuracy was significant (P value < 0.001) that could be minimised by

the sensor-specific calibration which considers the changes in soil properties with depth.

The created equations may be applicable in soils with similar characteristics, since the procedure
can be employed by any users for either irrigation scheduling or informing farming on non-
irrigated lands. Conserving freshwater on irrigated soils is one of the top concerns of our age
that can be addressed by the application of soil-specific sensor calibrations and increased

accuracy, thereby improving water use efficiency.

Based on the number of sensors, the achieved measurement accuracy and the identified soil
properties, the established WSN satisfies the requirements of the International Soil Moisture
Network (ISMN) (Dorigo et al., 2011a). In addition, the ISMN primarily accepts 8,, measurements

that are made at least in the top soil layer (< 10 cm) and preferably also in the root zone (Dorigo
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et al., 2013). Depending on the decision from the project funders, the WSN may become part of
the ISMN as the first data provider from New Zealand in the international context. The collected
dataset should be applicable for validating products retrieved from land-surface models or

remote sensing applications at various spatiotemporal scales.

From a New Zealand centred perspective, the WSN at Patitapu Station and similar networks can
provide calibration or ground truth opportunities for emerging, primarily agriculture-focussed
satellite missions in New Zealand, e.g. the one coordinated by the Centre for Space Science
Technology in Alexandra (CSST, 2018). In the near future, one of the main goals of the upcoming
projects is to develop high-resolution 8,, products for better irrigation management and more
efficient pasture production in hill country as well as for hazard management and forestry

applications.

The sensor accuracy could potentially be further improved by the collection of more reference
samples. Another possibility is the application of a non-linear calibration approach that would
consider the saturation effect on the top end of the 8, levels. An investigation on the impact of
other affecting factors, such as Ty, could result in slight improvements. Even though the
AquaCheck probes are equipped with a built in T correction function, there has not been any

assessment published about its performance to date.

8.4 The second scope - The quantification of spatiotemporal behaviour of soil

moisture patterns in hill country

The soil moisture spatiotemporal variability is an important attribute for studying the variable
infiltration and lateral redistribution rates, land - atmosphere interactions, hydrologic,
geomorphic, biologic, pedogenic processes as well as for predicting soil profile wetting and
drying between rainfall events (Western et al., 1998, da Silva et al., 2001, Western et al., 2004,
Teuling and Troch, 2005, Bolten et al., 2010). In general, most predictions have to be provided
along with their uncertainty, because the statistical error models utilise the quantified spatial
characteristics as an essential parameter (Lakhankar et al., 2010). Soil moisture variability is
known to be scale dependent and this makes its investigation crucial for numerous applications.
The improvement of soil water sampling schemes (Warrick, 1980), the understanding of
environmental aspects of the water cycle, and pasture growth patterns on sloping land from the
small (sub-catchment) to the large scale (regional), rely on the parameters describing variability

(Teuling and Troch, 2005, Hu et al., 2010).
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In the global context, near-surface 8, values are derived from advanced microwave remote
sensing over large areas, although these products average the spatial heterogeneity in 6,, within
the sensor footprint (Famiglietti et al., 1999, Brocca et al., 2009). An image pixel, i.e. the sensor
footprint, might overlap a mixture of flat and hilly landscapes. Hence, the derived mean value
masks the underlying 8, spatial variation and not able to provide practically useful information
for hill country farming. For instance, one of the globally available 6, products generated by

NASA and USDA provides surface 6, using a data assimilation approach (Bolten et al., 2010) at

approximately 27.8x21.1 km (0.25x0.25°) over the North Island (Fig. 8.4).

Figure 8.4 NASA-USDA global soil moisture data at 0.25x0.25° spatial resolution over the lower North
Island of New Zealand. The Patitapu Station, the overlapping pixels and the sensor locations (red dots)
are marked in the figure that was derived from Google Earth Engine showing surface soil moisture
conditions on 18 April 2018.

Little is known about the spatiotemporal behaviour of 8,, in complex landscapes (Molina et al.,
2014) and this is particularly true in New Zealand. To our knowledge, this is the first study to
document the 6, variability over the extent scale of approximately 14 km? at the Patitapu
Station, using high temporal resolution in situ measurements. The collection of a temporally

dense dataset was made possible due to the advances of the deployed WSN.

It is noted that the number of sensors used in this study would not be sufficient to completely
characterise the variation within such a large pixel (see Fig 8.4). Although, the conducted analysis
can give a better parameterisation of the spatiotemporal behaviour of 8,, at a smaller scale than
studies of the past decades. Due to the high number of implications of this type of multi-depth
0, datasets, the statistical properties of the observed 6, quantities are fundamental to

characterise the 8, patterns within the rooting zone (da Silva et al., 2001, Brocca et al., 2007).

The spatial resolution of global and regional 8,, products is generally increasing; thereby future

missions with improved resolution will potentially be able to use the Patitapu WSN or a similarly
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designed monitoring network to estimate variation within a pixel or validate the mean value

with better accuracy.

The purpose of Chapter 5 is to describe a small scale field investigation of 8,, variability through
the application of various statistical techniques based on point measurements, which have the
advantage of easier interpretation than remotely sensed data (Western et al., 1998). This

approach raised questions within the second scope of this thesis, addressed by the items below:

a) Descriptive statistics of the collected soil moisture data
b) Soil moisture spatiotemporal variability and temporal stability at multiple depths
c) Finding the representing microsite and the spatial mean of the area

d) Site-specific temporal soil moisture characteristics and trends along the root zone
8.4.1 Descriptive statistics and data distribution

This part of the study aimed to analyse the 8, data collected at the 20 microsites over four
depths, to determine its statistical properties and investigate its spatial structure as well as its
relation to topography. At the Patitapu Station, the annual temporal 8, distribution can be
characterised with negative skewness and with non-normality that agrees with the findings of
Brocca et al. (2007) and Famiglietti et al. (1999). These authors carryed out studies on silty loam
soils and defined non-normal distribution on terrains with significant relief. The temporal
variance of ,, and its range decreased with increasing depth. The 100- and 200-mm soil depths
demonstrated the greatest values of standard deviation (SD) as expected due to the higher
sensitivity to the changes in the climatic parameters and meteorological forcing. Firstly, 6,, data
distribution around the mean value is important for remote sensing applications to quantify
within pixel variability (Charpentier and Groffman, 1992). Secondly, persistent wet spots or
extremely dry areas might introduce uncertainties e.g. into pasture growth simulations or

hydrological models.

By the investigation of the Kernel density curves, characteristic peaks were identified at 8,, of
0.35 m®*m™ at 200 mm depth and 0.42 m3®m™ at 400 mm depth that were repeated annually
(during the 2-year study period) indicating the persistence of higher temporal stability in the

8, distribution deeper in the soil profile.
8.4.2 Time-stability analysis to identify the most representative microsite

In practice, the determination of the spatial 8,, mean in the root zone and the identification of
the most representative monitoring locations are essential for soil water management decisions,

particularly in watersheds situated on rugged terrain (Hu et al., 2010, Gao et al., 2011a).
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Furthermore, this analysis is useful for the evaluation of low spatial resolution remote sensing
products as a pixel is represented by a derived mean 8,, value for the overlapping area that can
be complex. By the help of time-stability analysis, the representative microsites can be chosen

more efficiently at various scales if a new WSN deployment is the primary objective.

Utilising the various statistical measures introduced by Vachaud et al. (1985) such as the mean
relative difference (MRD) and its standard deviation (SDRD) the number of monitoring sites
necessary to describe the 6,, characteristics of a given area can be reduced (Vachaud et al., 1985,
Wagner et al., 2008). Our results indicate that the spatial field mean 6,, can be obtained with an
RZ0f0.94 and an RMSE of 0.021 m3m™ using a single representative microsite on north-facing
aspect, situated on a moderately steep (23.9°) open slope. It is assumed; that the simultaneous
utilisation of data from the four most representative microsites, i.e. Site 6, Site 10, Site 12 and
Site 13 would be optimal to describe the mean 8, in these mixed landscapes. This is because
they represent flat areas, west-facing open slopes, north-facing mid-slopes and south-facing

steep slopes (see Fig. 5.2 in Chapter 5).
8.4.3 Time stability of soil moisture spatial patterns

Cumulative probability density functions and frequency distribution analysis demonstrated that
topographical attributes exert their effect on the 8, temporal stability. Site 1, Site 8, Site 15 and
Site 6 could keep their rank between two extreme 8,, levels and various slope angle and aspect
classes tended to move along the cumulative probability curve, suggesting the influence of the
landscape. The examination of Spearman’s rank correlation coefficients (r;) and their
significance confirmed that 8,, spatial patterns between extremely dry and wet conditions were
not maintained resulting in insignificant relationships with low 7y of 0.24-0.39. However, two
wet days (in different years) with 8,, levels at or above field capacity were significantly and highly
correlated (r;= 0.91, P value < 0.001). 6,, patterns on two dry days (in different years) behaved
analogously showing strong correlation (r;= 0.88, P value < 0.001). The 8, spatial patterns were
significantly correlated (P value < 0.001) with relatively high 75 values in the drying out phase
and not so much during rewetting, which was also found by Kachanoski and Jong (1988).

Furthermore, in hill country, the relationship became weaker by time within one sub-period.

The outcome of the time stability analysis also suggested that the 8, spatial distribution was
stable in dry and wet conditions and it can be preserved from one timestamp to another to a
certain extent depending on the stage of 8, change. As the spatial organisation of 8, exhibits
temporal stability, it is possible to describe an area through carefully selected, limited number

of microsites, thereby reducing the cost of data collection and field campaigns. Moreover, since
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the spatial patterns are time dependent, the defined 8, spatial distribution and its temporal
stability could be applied in management as they also reflect the influence of soil properties and

landscape attributes (da Silva et al., 2001).
8.4.4 Temporal dynamics of spatial field mean and its variance

The statistical analysis of spatiotemporal dynamics of the field mean 8,, included the calculation
of absolute variability, i.e. SD, and relative variability, i.e. coefficient of variation (CV). The daily
CV showed the highest values during the dry seasons of the study period. Thus, the spatial
variability under this climate and humid climates in general, was greater when the soils are dry.
In general, the spatial SD and CV decrease with increasing wetness conditions and the rewetting
(ascending) stages show the highest SD values in the top layer. The CV tend to drop once the
mean 6,, levels have reached 0.35 m®*m™ and CV values decline to the minimum at 0.45 m®*m?,
The temporal difference in SD is noticeable but not that prominent in the deeper layers and the

variance of 8,, decreases with soil depth.
8.4.5 Relationship between spatial soil moisture mean and spatial variance

Relating SD, i.e. absolute variability and CV, i.e. relative variability to the spatial mean 6, using
scatterplots and regression is a common procedure to characterise variability and the influence
of wetness conditions (Bell et al., 1980, Brocca et al., 2007, Famiglietti et al., 2008b, Molina et
al., 2014). There is no consensus in the literature on the relationship between mean 6,,, SD and
CV due to the scale dependency and the numerous influencing factors. Consequently, the role
of vegetation, soil properties, wetness conditions, topographical attributes and climatic

variables are not fully understood, and its characterisation requires research at various scales.

In this study, both increasing and decreasing variability (expressed by SD and CV) with increasing
mean 6,, occured depending on the soil wetness. The variability showed dependence on the sub-
periods and seasons, i.e. whether the land was dry, drying out, rewetting or wet, meaning that
variance was non-consistent in these landscapes. This indicates that the role and importance of
controlling factors on 6, variation change with time. During dry conditions, the influence of
terrain attributes (i.e. aspect, slope angle, elevation, etc.) take over the control on 8, variation
while the soil properties (i.e. soil texture, especially clay content) play more important role on

the 8, patterns (Famiglietti et al., 1998, Harter and Zhang, 1999, Choi et al., 2007).
8.4.6 Site-specific temporal soil moisture variability

The microsite-specific spatiotemporal analysis helps to identify the wettest and driest microsites

and reveal the different features of the shallower and deeper soil layers. If all depths were
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averaged, the wettest location was situated on a west-facing rolling open slope at Site 7 and the
driest position was a north-facing, steep midslope ridge at Site 8. The second wettest location
was Site 15 located on a flat paddock and the third wettest was Site 1 installed on an upper part
of a south-facing, rolling slope. The second driest topographic position was at Site 17, a south-
facing strongly rolling surface, located on a high ridge landscape element, while the third driest

location was Site 9 installed on an undulating slope near a high ridge.

The range of 8, measurements were the largest in the 100 mm soil depth, while the deeper
sections of the soil profile showed a narrower 8, range indicating less variability and temporally
more stable soil water contents with increasing soil depth. Site 4, an east-facing moderately
steep location with silt loam and silty clay loam soils represented the lowest 8, ranges in time
all over the four depths. In contrast, the widest temporal 8, range varied among depths and
microsites, although the 100 mm soil depth at an east-facing steep slope (Site 18) showed the

largest difference between minimum and maximum 8,,.
8.4.7 Future work

As a recommendation for further work, the daily averaged 6, data could be subjected to
geospatial and geostatistical analysis that are a frequently used techniques to characterise 8,
spatial organisation and spatial autocorrelation (Western and Bldschl, 1999, Brocca et al., 2007,
Famiglietti et al., 2008b, Molina et al., 2014). Although, the fact, that the variogram-based
analysis defines the variance as a function of distance between microsites might pose some
issues due to the non-grid-based distribution of the microsites. The highly varied topography
within two microsites would question the usefulness of this kind of analysis approach at the

small scale in hill country.

Furthermore, the temporally dense dataset could be used to estimate the shortest or the ideal
sampling interval to describe the temporal trends, which could reduce the amount of data and
optimise the sampling scheme for different seasons or drying and recharging sub-periods as also

suggested by Molina et al. (2014).

8.5 The third scope - Extending the dimensions: moving from the point-scale soil
moisture observations to the spatial mapping

Remote sensing applications with frequent revisit time are broadly and increasingly applied in

agriculture for the monitoring of growth patterns and temporally changing variables that

influence vyield (i.e. 8,, Ts, etc.) (Atzberger, 2013). 6, is a crucial parameter in agricultural

production and it is part of many environmental systems (Seneviratne et al., 2010). Therefore,
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the mapping of its distribution on a spatial and temporal basis is subject to research globally at
various scales. Remote sensing has the potential to highlight the 8,, patterns dominantly caused
by the variability in soil properties, land cover, climate and the terrain (Kong et al., 2011).
However, the generation of highly accurate, high- to medium-resolution 8,, products on an
operational manner, particularly over vegetated areas has been posing challenges over the last

four decades.

In New Zealand, the frequent cloud cover further complicates the generation of systematic
remotely sensed 8, products. Therefore, the use of active and passive microwave-based satellite
products would be preferred to create 8, maps in all weather conditions. Although, the
currently applied methods and missions (e.g. SMAP and SMOS) have some considerable
limitations, such as the complex signal interpretation and low spatial resolution (approx. 3x3 km
and 40x40 km depending on the latitude) that is far too coarse for addressing the sub-farm
variability. In contrast, multi-spectral Earth observation satellites are able to provide

0, estimates at higher resolution, although the image acquisition is cloud dependent.

The present study aims to explore the utilisation of an emerging synergy-based technique for 8,
mapping. The proposed method takes advantage of the combination of radar and optical
satellite images, the digital representation of the terrain, GIS-based platforms, and a modern

ensemble learning statistical method (i.e. the Random Forest).

Despite the importance of 8,, data in pasture production models, current algorithms use low-
resolution estimates of 8, input into their water balance equations. As a result, the currently
used simulations do not yet adequately represent the spatial and temporal variability of 8, in
hill country. The proposed approach can be potentially used to provide 6,, information for more
intelligent pastoral farming at an improved spatial resolution (i.e. paddock scale, ideally under

40x40 m) that is to be of actual use to the farmer and pasture yield predictions.

In addition, Chapter 6 also aims to contribute to the better understanding of the issues emerging
around the 8, retrieval from satellite images on hilly terrain. Moreover, it evaluates the accuracy
of the generated spatial 8,, predictions near the surface by the aid of calibrated, ground-based
measurements. These issues, the need for 8, monitoring and the introduced advantages of

remote sensing raised the following points:

a) Synergetic use of various satellite products to increase temporal coverage of 6, maps
b) Usage of a cloud-based platform for pre-processed, remotely sensed data access
c) Investigation of SAR data and 8,, relationship over pastoral surfaces and complex terrain

d) Spatial prediction of a medium resolution 8, product at various wetness conditions
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e) Testing the prediction accuracy and validating the spatial 8,, maps
8.5.1 Obtaining remote sensing data via Google Earth Engine

Obtaining and downloading remote sensing imagery captured by various satellites for a nearly
two-year period is a time-consuming task. It requires a large amount of storage and computing
power for executing the several pre-processing steps on varying data formats. Free software
environments and toolboxes are made available for the pre-processing, such as the SNAP (SNAP,
2018) but they require the building of processing chains and large memory capacity as well as
processor performance. Moreover, the data preparation procedure may vary slightly depending
on the products. Therefore, to generate a consistent and extendable dataset, the Google Earth
Engine (GEE), a cloud-based, geospatial computing platform was utilised in this study (Gorelick
etal., 2017). Data extraction through GEE and its web-based programming interface can produce
systematic and consistent products from pre-processed images without downloading the
images to the personal computer (Fig. 8.5). Thus, GEE allows users to visualize, manipulate and
analyse a large number of satellite scenes rapidly. In this study, pixel-based data extraction at
the microsites was conducted from Sentinel-1, Sentinel-2, Landsat 7 and Landsat 8 image

collections via the GEE platform.

Figure 8.5 Components of Google Earth Engine programming interface and a 10x10 m resolution
Sentinel-1 SAR image (26/08/2017) over the Patitapu Station with fence lines and microsites (red dots).

8.5.2 Soil moisture retrieval from radar images — relevant issues over vegetated surface

The linear nature of the relationship between the radar backscatter coefficient (6°) and 8,, over
bare soil surfaces has been observed by many studies (Le Hégarat-Mascle et al., 2002, Zribi et
al., 2005, Le Morvan et al., 2008). High 8,, content results in high backscattered energy towards

the sensor and low 8,, conditions cause low ¢° values, thus reflecting more energy away from
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the sensor (Dean et al., 1987). However, the most pronounced problems with radar-based 6,
retrieval is the complexity of the backscattering mechanisms from the targeted surface with
vegetation cover, which is even more enhanced over hilly terrains (Pasolli et al., 2015). Over
vegetation, the o° represents the total backscattered energy from the vegetation, the soil and
the interaction occurring between these two components within a resolution cell, determining
its electromagnetic response. Additionally, the heterogeneous terrain, the sensor parameters
(i.e. frequency, polarisation, and incidence angle), the amount of vegetation, its geometric and
structural features and the soil surface characteristics (i.e. roughness, dielectric properties, soil
properties) further complicate the interaction processes and its interpretation. Consequently,
these factors need to be accounted for to reduce their effects on ¢° (Barrett et al., 2009,

Petropoulos et al., 2015) and to disaggregate the impact of the 8,,.

Due to the multiple contribution of these factors, a so-called variable equifinality problem exists,
meaning that various combinations of target characteristics might result in very similar ¢ values
(Beven and Freer, 2001). Hence, the 6, retrieval from radar images is considered as an ill-posed
problem (Ali et al., 2015). One of the other shortcomings of the satellite-derived 8,, products is
the shallow effective depth (0-5 cm) that is dependent on the SAR operational frequency, the
wetness conditions, the vegetation characteristics and soil physical properties (Barrett et al.,
2009). C-band radars, such as Sentinel-1 has a penetration depth of approximately 2-5 cm in dry
conditions and only a couple of cm in wet conditions (Bruckler et al., 1988). Longer wavelengths,

such as L-band would be optimal for 8,, retrieval with low incidence angles (Ulaby et al., 1986c).

Surface roughness is one of the major determinants of the signal response, which cannot be
differentiated easily and there are no simple procedures to account for its effect (Altese et al.,
1996, Barrett et al., 2009). Generally, radar sensitivity to surface roughness increases with
increasing incidence angle and increasing degree of roughness results in elevated o°. Although,
its effect is dependent on the wavelength (Ulaby and Batlivala, 1976, Ulaby et al., 1982b, Sano
et al., 1998, Wagner et al., 2007, Baghdadi and Zribi, 2016).

8.5.3 Synergetic use of satellite data and terrain attributes

Several theoretical and physical models have been used to retrieve 8,,.. In this study, the
potential application of an empirical technique was investigated. The presented work used a
time series of in situ 8,, measurements recorded by the Patitapu WSN as reference and training
data. Various variables were obtained through a proper pixel-based extraction from satellite

images and DSM derived GIS layers at the microsites. The ground-based 6,, measurements, the
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corresponding variables and derived indices were fed into the Random Forest (RF) algorithm for

the generation of an optimised 6,, prediction model.

Animage collection of 153 scenes was created from the Sentinel-1 SAR, C-band imagery to utilise
the weather independent, systematic and temporally dense features of the 6° over the pastoral
land. To address the degree of vegetation coverage and its spatiotemporal pattern, an adjusted
NDVI was developed, since it is a broadly used indicator of phenological variations and biomass
changes (Sun et al., 2016). To increase the temporal coverage and to create a daily time series
of adjusted NDVI at 20x20 m resolution over the research area, a total of 77 Sentinel-2, Landsat
7 and Landsat 8 multi spectral images were used for data extraction. The geospatial layers, i.e.
slope angle, aspect, SAGA topographic wetness index, topographic position index and terrain
ruggedness indices, were derived from a high-resolution DSM to represent some of the

hydrological metrics, terrain attributes and surface ruggedness.
8.5.4 Results and accuracy

The Landsat 7 and Landsat 8 NDVI values were adjusted to the Sentinel-2 NDVI, to generate
more cloud free images over the study area, and to use the 20x20 m pixel size of Sentinel-2
images in the modelling. Strong linear relationship was observed between Landsat 7 and
Sentinel-2 NDVI (0.85 R?) as well as between Landsat 8 and Sentinel-2 NDVI (0.89 R%) making

them comparable and complementary observations.

During the examination of ¢°

sensitivity to near surface 8, VV polarisation showed more
promising correlations than VH. The VV 6° at 20x20 m spatial resolution demonstrates adjusted
R? of 0-0.5 for ascending orbits and adjusted R? of -0.13-0.8 for descending orbits. This indicated
that lower incidence angles of the descending orbit can result in stronger relationships over
pasture cover. At the microsites located on sensor-facing land surfaces, i.e. east and north
aspects, tended to demonstrate higher R? values, while flat microsites and microsites facing
away from the SAR sensor, i.e. south- and west-facing aspects show lower R2, This could suggest
that the relation between the terrain and the sensing parameters affect the 8, sensitivity
despite of the terrain correction steps taken during pre-processing. GEE uses the
Shuttle Radar Topography Mission’s 30x30 m resolution DEM for correction, which might be too
low resolution for the rugged hill country landscapes. This could be potentially improved by

applying a higher resolution elevation product generated for the specific region under

investigation.

The examination of the temporal trends between normalised ¢®, NDVI, daily total rainfall and

daily 6, revealed that the 6, sensitivity of the ¢° likely to decrease with increasing NDVI in

245 | Page



CHAPTER 8

agreement with previous studies (Zribi and Dechambre, 2003, Baghdadi et al., 2008, Gao et al.,
2017). C-band signal can penetrate vegetation better if the vegetation is drier, which usually
means lower NDVI values. This partly explains the noticeable response of ¢° to the dry
conditions in agreement with Brown et al. (1992). It can be concluded that over grass cover,
linearly relating near surface 6, and ¢ does not provide reliable correlation strength at the
targeted spatial resolution. Although, the utilisation of a homogenous image collection from the

descending orbit type could improve the correlation with reduced temporal resolution.
8.5.5 Random Forest modelling

To investigate the potential use of different machine learning techniques, several algorithms,
such as Random Forest (RF), Cubist (cubist), Bagged Cart (bagging), Cart (cart), Generalised
Boosted modelling (gbm), k-Nearest Neighbours (knn), Lasso and Elastic-Net Regularized
Generalized Linear Models (gimnet), Support Vector Machine (svm) and Logistic regression

(logistic) were executed on the reference dataset with default hyperparameters (Fig. 8.6).
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Figure 8.6 Comparisons between several machine learning algorithms for soil moisture modelling using
the caret R package (Kuhn, 2008) and default hyperparameters.

The RF model achieved the best results concerning RMSE, MAE and R? as the accuracy and
correlation measures, therefore the RF approach was chosen for this study. The final RF model
(hyperparameters: mtry = 4, ntree = 300) was able to predict near-surface 8,, with an average
accuracy of 0.047 m3>m3 and R? of 0.76 retrieved from the repeated cross-validation process.
The RF performed generally well regardless of which section of the data population was used
for model training. The most important variables were the seasonality, NDVI and slope angle

while the 6° data provided less contribution to the prediction than it was expected. Without the
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addition of seasons, the importance rank of the variables changes and ¢° represented a highly
important position along with NDVIin the 8,, prediction, although it resulted in a significant drop
in the percentage of explained variation (40%). The development of RF models for each season

could be a potential way to increase the accuracy and the amount of explained variation.

Using only the test dataset (randomly selected 25 % of the observations), 8,, predictions agreed
well with the observed 6, values at the point scale. An RMSE of 0.046 m® m™ and 0.078 R?
supported the statistically significant (P value < 0.001) good fit and indicated that the modelling
accuracy of RF algorithm was satisfactory. During winter and summer, i.e., in the wet and dry
seasons the modelled 8, values closely followed the observed 6,,, while significant errors (0.06-
0.16 m3 m3) occurred during drying and rewetting periods. Typically, overestimations were
found during the drying out period and underestimations took place in the rewetting stage,
which might be related to the high spatial variability of 8,, in these seasons observed in Chapter
5. Moreover, these errors can be linked to the increased pasture herbage accumulation
confirmed by the pasture growth trends and the elevated NDVI values. It is likely that enhanced
plant growth resulted in increased vegetation water content, and the higher amount of fresh
biomass due to the strong spring and autumn tillering could lead to elevated ¢°, thus higher

modelled 6, responses.

Concerning the spatial modelling performance with a reduced training dataset (15 microsites)
and 5 microsites used for independent validation, the RF model was still able to estimate 8,, at
the same accuracy level. The correlation between modelled and observed 8,, varied between

0.69-0.94 with a mean of 0.77 R?and mean RMSE of 0.048 m3*m3.

The predicted spatial 8,, maps reflected the expected 8, patterns at the macro-scale. Valley
bottoms and flat surfaces were dominantly represented by higher 6,, content while ridges and
hilltops showed lower 8,, and dry conditions could be observed on steep slopes. The effect of
aspect was noticeable giving lower 8,, on north-facing slopes (in dry seasons). Additionally, the
general temporal trend was closely followed by the mean 0,, values calculated for the eight

predicted maps individually.

It can be concluded, that the RF algorithm is a powerful predictor of near-surface 6, using
environmental covariates and remote sensing data, and it can produce outputs with acceptable
accuracy for most agriculture related applications. Data fusion and long time series carries the
strength of machine learning, and the flexible features of non-parametric techniques allow the
extension of the number of variables. Due to the prime importance of water management issues

around the world and the increasing role of agricultural yield monitoring, more and more
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satellite missions are being lunched carrying microwave-based sensors, leading towards the
“golden age” of 6, research. The quality of 6, predictions can be improved by the combination
of data from various instruments operating in a range of domains of the electromagnetic

spectrum as it was also stated by Rodriguez-Ferndndez et al. (2019).
8.5.6 Limitations

The RF algorithm may suggest a “black box” approach for a researcher, although the models can
be described by complex mathematical functions. In case of regression, RF does not predict
beyond the range in the training data therefore a longer study period, covering extremely dry
conditions would be required for wider 8, range in the training dataset. Additionally, the
generated RF model is only valid on the area used for training. Despite of the considerable
progress made in @, retrieval in the last few decades, there is no universal technique for
generalised application over various surfaces at various spatial scales. Increasing the amount of
training data has the potential for model improvement. Other machine learning methods could
be run on the existing dataset, such as the artificial neural networks, which is one of the earliest

statistical learning algorithms that can outperform classic regression techniques.

Another direction could be the prediction of biomass from radar imagery through the non-
parametric RF method as it was also suggested by Ali et al. (2015). One of the concerns in
satellite-based 8, retrieval is the shallow penetration depth in case of SAR (0-5 cm). This study
used measurements from the soil depth of 7-13 cm as the probes must be protected from
farming activates and stock but several studies compared satellite-based water content

estimations to 10 cm or soil profile measurements (Matthias et al., 2004).
8.5.7 Implications of near surface soil moisture spatial maps in New Zealand

It is assumed that a more advanced version of this machine learning approach would only be
useful for refining existing water balance models rather than producing an
independent 8,, product. Another limiting factor is the latency of the satellite image products as
timing can be crucial for farmers. This is a critical issue in globally available remotely sensed 8,

data due to the relatively long computing and delivery time (i.e. days).

To model the root zone 8, from the spatial near surface estimations, an additional processing
step would be needed. Root zone water dynamics is of the highest interest for water balance
calculations and decision making for farming activities. Promising results have been achieved for
root zone 8, modelling from near surface 6, estimations by Bezerra et al. (2013) over

homogenous area and Ford et al. (2014) in the USA.
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In New Zealand, a modified two-layer water balance model (similar to the one by Woodward et
al. (2001)) on a GIS basis could utilise the near surface 8,, data to model root zone conditions or
to validate and adjust predictions as often as possible. Incorporating actual 8,,values would
potentially have a significant positive impact on the simulation accuracy, especially during the
transition periods when the highest spatial 8,, variability occurs. The relationship between near
surface 8,, and the deeper sections show seasonal variations in correlation (Wu and Dickinson,
2004) and it has also been observed in this study (Fig. 8.7). Dry periods and wet periods tended
to show high correlation, although in different directions. Slightly lower R values could be seen
for the drying out and dry periods than in very wet, winter seasons. The correlations drastically

dropped during autumn, i.e. in the rewetting stage.

The water balance model should take into account the increasing persistence of 8,, patterns with

increasing soil depth (as observed in Chapter 5) at least in the top 45 cm soil layer in hill country.
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Figure 8.7 Temporal evolution of daily correlation values (expressed as R) between soil moisture and
soil depth (shaded area) and the time series of volumetric soil moisture content at four depths (mm).

8.6 The fourth scope - The investigation and quantification of the driving factors

of pasture growth on hilly terrains

The monitoring of hill country pastures is difficult as they span over low-altitude steep lands
representing diverse environmental characteristics with complex interrelationships between
the present soil, vegetation cover, management and climatic parameters (Gillingham, 1973,
Lambert and Roberts, 1978, Chapman and Macfarlane, 1985, Bretherton, 2012). On the account
of the challenges in pasture growth documentation, and the difficulties caused by the rugged
conditions, the interaction between the numerous environmental variables are not fully
understood yet. Pasture predictions are made to aid in land management decisions and fertiliser
application planning. The models are usually subject to validation against empirical data, which

is problematic due to the lack of appropriate pasture growth information (Woodward, 2001).
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Thus, periodic pasture growth observations at various topographic positions are highly valuable
and needed for validating yield forecasts as well as for model training and parameter
adjustments. On New Zealand’s non-irrigated hill country farms, the matching of seasonal feed
demands of the stock and the seasonal pattern of pasture productivity highly effects the amount
and timing of silage to be purchased (Woodward, 2001). The better understanding of the
spatiotemporal variability of pasture growth patterns is of great interest that can assist in the
usage of more effective land management practices in areas where diverse topography is a
major concern. While previous studies dominantly investigated the pasture productivity
difference between north and south aspects, the presented work considers the north, east,

south and west aspects, flat areas and five slope categories.

Chapter 7 aims to develop a clearer picture of the issues emerging around the pasture
productivity and vegetation response patterns on hilly terrain. Moreover, it evaluates the role
of various terrain parameters on the rate of growth and investigates the main limiting factors

and their dynamics through a nearly two-year study period.
These issues and the need for pasture growth monitoring raised the following questions:

a) Isit possible to capture the spatiotemporal variability in pasture productivity?

b) Can we quantify the impact of static topographical attributes on spatial pasture growth
patterns?

c) Is it feasible to isolate the effect of 8,and T, and their intermittent temporal
behaviour?

d) How could these findings be used for better parameterisation of pasture forecasts and

what differences they could make?
8.6.1 The methodological summary

This part of the study utilises 13 selected microsites for collecting multi-depth 6, and T
information as well as herbage accumulation and attempts to assess the pasture productivity
response to the monitored variables, climatic parameters and the derived topographical
attributes. This experiment combines the use of the deployed WSN, with the AquaCheck probes
and a classic pasture growth monitoring method, i.e. the cage technique (Radcliffe et al., 1968)
and GIS-derived terrain attributes through and empirical approach including multivariate
statistics. Additionally, a theoretical hill plot is used to visualise the effect of slope angle and
aspect on pasture growth rates (PGR) and dry matter (DM) production. It also allows the
investigation of pasture growth as a function of soil wetness conditions at four depths, the water

stored in the soil profile, and the accumulated heat.
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8.6.2 Pasture growth trends, optimal growth conditions and limiting factors

The temporal evolution of PGR is related to 6,, and T, conditions (Fig. 8.8). The stored soil water
levels dropped considerably (to 100 mm) in the second year following a long dry season spanning
through late spring and summer that limited the PGR (Fig. 8.8 (A)). The spatial mean T rose as
high as 20 °C in the summer of 2017 and 25 °C in 2018 indicating the considerable difference in
the amount of received heat (Fig. 8.8 (B)). The limiting role of 8,, and T change through the
seasons and governs pasture production. Figure 8.8 (D) depicts the alternating limiting effect of
0, and T during the two-year period, without taking into account the influence of fertiliser

applications.
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Figure 8.8 The temporal evolution of soil water content at 100 mm soil depth and soil water storage in
the monitored soil profile (A). The changes in air and soil temperature at 100 mm soil depth are shown
in (B) while the annual distribution of pasture growth rate (PGR) is depicted in (C). The changing limiting
role of soil moisture and temperature on PGR is illustrated during a nearly 2-year period (D).
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At the Pati Tapu station, the highest PGR values can be observed typically in November and
December (Fig. 8.8 (C)). Based on the nearly two-year dataset, the highest pasture production

occurs if the

e Spatial mean soil water storage deficit is < 35-45 mm

e Cumulative precipitation for the observed 4-6-week growth interval is approx. 100 mm
e Spatial mean 6, is 0.29-0.45 m®*m3 at 100 mm soil depth

e Spatial mean T is 15-19 °C at 100 mm soil depth

e Air temperature is 13-16 °C and

e The incoming solar radiation is 5500-6500 WH/m?.

The early dry soil conditions beginning in late spring of 2017 in the second year exerted its
limiting effect on pasture productivity levels in agreement with the findings of Radcliffe (1982)
and Zhang et al. (2005). They impressed that spring rainfall is one of the most important factors

in annual pasture productivity in hill country.

The recognised non-limited growth periods can be used for optimising farming activity patterns
and a longer time series could reveal the temporal shifts of the high producing periods which is
most likely to be related to the changing trends in climate. Furthermore, these time intervals
may be used for timing nitrogen fertiliser applications in order to achieve higher production

response without the limitations of 6,, and temperature on PGR (Lambert et al., 2012).

During these ideal conditions, the pasture clearly reflects the soil fertility parameters enabling
the examination of the spatial patterns of soil fertility characteristics and the effect of added
fertilisers. The application of high-resolution, airborne hyperspectral imagery is an emerging
method for hill country pasture monitoring with the capability of linking spectral reflectance to
several biophysical and biochemical properties of pasture quality and soil (Pullanagari et al.,
2018). Identifying these optimal periods can help in planning the ground-based sampling for the

calibration or validation of remote sensing observations and soil nutrient content mapping.
8.6.3 Spatial pasture growth variation and the role of topography

Even though the presence of environmental heterogeneity in hill country is obvious, the
guantitative assessment of variations is essential for investigating the strength and dynamics of
farm management effecting factors. It is clear, that considerable spatial variation exists between
the microsites’ pasture productivity. The differences are associated with the topographical

positions described by slope angle, aspect, landscape element and elevation. These features
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have a significant control on the seasonal temperature and available 8,, conditions affecting the

plant growth.

In terms of aspect, the sunnier, warmer north aspects are generally drier while the shadier,
cooler south aspects are wetter. At the Patitapu Station, north-facing slopes are more
productive than south-facing slopes mainly due to the better winter growth and the
approximately 22.5 % more accumulated heat on north aspects enhancing pasture
development. East-facing slopes are slightly more productive than west-facing surfaces
concerning summer yield and the steep east-facing slopes are significantly more productive than
steep west-facing slopes. Steep west- and south-facing slopes produce the lowest amount of

yield while strongly rolling and flat surfaces are the areas with the highest productivity.

Based on the findings of the comparative and multivariate statistical analysis, slope angle is the
most important factor governing PGR and DM. As the slope angle increases, the amount of yield
declines which is in agreement with previous studies by Gillingham et al. (1998), Bretherton
(2012), Roberts and White (2016) and Zhang et al. (2005). Aspect exerts its effect on PGR,
although it is not as significant as that of slope angle. In winter, the PGR spatial variation is low,
while in summer the difference in pasture production on various terrain positions is remarkably
more expressed. Hence, the degree of slope angle and aspect influences can be associated with
a temporal parameter and seasonality since these features control the distribution patterns of
energy supply, i.e. the accumulated heat as well as the stored soil water (Gillingham and Bell,

1977).

The geomorphometrical settings, i.e. the situation of a given point in terms of landscape
elements, are strongly associated with PGR and accumulated DM. Consequently, this study
suggests that landscape elements should be considered as input variable in the pasture growth
forecasting models based on the role of upslope contributing area as a predictor of 8,, patterns
in wet conditions (Famiglietti et al., 1998, Western et al., 1999). A geomorphometrical analysis
of a given terrain provide useful GIS layers that could be incorporated into algorithms predicting

pasture growth on a spatial basis.

These results might become an integral part of grazing management and it was already
suggested by Lambert and Roberts (1978) that slope angle and aspect variability should be
considered during decision making in farm management. Although, considering aspect in grazing
might not be feasible on highly broken hill country farms. On the other hand, it might be
beneficial to include the effect of aspect into the management plan, land subdivision and

fertiliser applications (Lambert and Roberts, 1978).
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In hill country, fertiliser requirements are dependent on slope angle and aspect features and soil
types (Lambert et al., 1983, Gillingham et al., 1999). Therefore, the findings of this chapter might
contribute to the better planning of variable rate input applications and to reduce over and
under fertilising. Moreover, following the findings of this study might enable farmers to adjust

their grazing and achieve a more even grazing pattern.
8.6.4 Limitations of the dataset and methods

The number of microsites and the number of cages were restricted due to a limited resource,
time constrains, and microsite access issues. A greater number of microsites could cover more
slope angle and aspect classes and could provide an improved dataset as far as the terrain
variables are concerned. The microsites were not replicated and the variation between the cuts
from the three cages at each microsite was not considered during the analysis. Therefore, the
pasture growth information presented in this study is not suitable for spatial interpolation since

it only represents the specific topographic and soil conditions at a given location.

The effect of management practices and fertiliser applications were also not considered in this
study. The assumption was made that every microsite received the same type of management
and fertiliser treatment. PGR may have been affected by the timing of the pasture cuts. In this
study, 4-6-week harvest intervals were chosen as a compromise to simulate sheep grazing. The
timing of harvests was strongly limited by weather conditions and farm operations. The
microsite distribution was primarily planned for 6, observations to study the potential of
remote sensing applications on spatial 8, mapping. Therefore, their locations could have been

tailored differently for the specific examination of pasture productivity.

Additionally, the length of the study and the difference between the “years” can be considered
as another limitation. Longer periods could potentially provide more robust conclusions. It
should be noted that the amount of precipitation may not be evenly distributed within the
property extent. The minimum, maximum and mean distance between the Patitapu weather
station and microsites were 0.34, 2.9 and 1.8 km, respectively. Hence, measuring rainfall

accumulation at each microsite could have significantly improved the assessment.
8.6.5 Future perspectives

The findings suggest that the spatial distribution patterns of pasture growth need to be
investigated regionally and locally, as the generalisation of the trends is cumbersome due the
environmental variability. The generalisation of the role of topographical factors in pasture

production has not been fully developed. Concerning the labour-intensive pasture growth
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measurements, the limitations of the point-like information, remote sensing will become the
main tool for spatial pasture growth mapping. Due to the sensitivity of radar signal to the
amount of vegetation present, the Sentinel-1 SAR imagery and future SAR missions have the
potential to be the basis of pasture growth mapping. An experiment that considers the pasture
growth within the satellite footprint with various pixel sizes may be used for calibration of radar

signal for the direct estimation of DM and temporal change in PGR.

8.7 General conclusions

Ultimately, the monitoring and quantitative description of the environmental factors and their
effect on pasture productivity might enable the hill country farming sector to produce more
pasture on the same area and use the inputs more efficiently. The achieved results and the

findings of this thesis can be summarised as follows:

e The field-based calibration is essential for accurate 6, measurements if capacitance
sensors are used.

e The application of an automated 8,, monitoring technique is capable of collecting useful
datasets to define spatiotemporal 8, variability and temporal stability.

e The lack of currently available, temporally dense 8,,, Tsand pasture productivity datasets
in hill country enhances the value and usefulness of the collected data throughout this
experiment.

e A0, dataset containing information from spatially distributed locations at the farm-
scale can be used to extend point-scale observations to the spatial extent. Machine
learning approaches can provide high training and test accuracy on a map basis.

e The synergetic use of radar (SAR) and multispectral satellite imagery can contribute
towards the improvement of locally generated 8, products at a spatial resolution that
is practical for farm management.

e The applied Random Forest machine learning technique showed promising predictions
for spatial, near surface 6,, mapping.

e The generated terrain information, pasture growth and climatic datasets may be a
valuable dataset for testing out and validating pasture growth simulations.

e While slope angle is the most important terrain attribute influencing pasture
productivity levels, aspect and landscape elements are also parameters to consider

along with the associated seasonality component.
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e 0, and T;at 100 mm soil depths were the most important for the pasture growth,
showing the strongest correlations, although their role changes with seasons.

e Based on the observed spatiotemporal variability, the need for improved 8,, monitoring
is critical to support fertiliser applications, farmers and in general decision making in hill

country farm management.
8.7.1 Recommendation for future research

The number of WSNs is continuously increasing, as the long-term records of 8,, are fundamental
for understanding how the climate change affects the water cycle as well as agricultural
productivity (Seneviratne et al., 2010, Dorigo et al., 2011c). Despite the growing number of
sensor networks, the resolution of 8, measurements is still relatively coarse globally, and

regionally (Dorigo et al., 2014).

Therefore, a potential future research direction could include the deployment of a regional or
country scale 8, and Ts; monitoring network using latest, and more affordable sensors. The
collected data could also be useful for climatic studies, better weather predictions and validating
remote sensing products. The research could involve farmers, who would voluntarily upload the
data and receive information and data access in return using subscription-based online surfaces.
At this stage, the knowledge between generations and farmers is given by extension; hence, this
kind of collaboration may improve the recognition of the values of scientific research and data
collection by the growers and bring closer the scientific and farming communities. If they are
willing to take up technology, willing to engage and be part of the innovation system, the
relationship between scientific research and practical implications could be significantly
improved. Thus, ultimately, this collaboration would lead to better wealth and more sustainable

growth in hill country farming.
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