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Abstract 

As the importance of environmental sustainability and increasing market demands have 

expressed pressure on New Zealand’s hill country farming systems, the more effective use of 

available resources and additional inputs has become crucial. Pastoral hill country farms are 

critical components of New Zealand’s economy, and precision agriculture solutions have been 

increasingly utilised to improve the sectors’ financial stability and resilience, and to satisfy the 

elevated expectations in yield. Profitability is dependent on pasture productivity that is highly 

influenced by the availability of nutrients as well as the amount of soil moisture (𝜃𝑣, m3 m−3). 

However, high variability of soil and landscape factors that control productivity is the primary 

concept describing these diverse landscapes. Hence, a study was conducted on a 2600 ha 

dominantly beef and sheep farm in the southern east coast of the North Island of New Zealand 

representing typical hill country settings. 

Some of the specific concerns of this research were the examination of the role of accurate, 

calibrated 𝜃𝑣 measurements via a wireless sensor network (WSN) (1) and the spatiotemporal 

variability of 𝜃𝑣 (2). Furthermore, the study investigates the potential of remote sensing for the 

mapping of near surface 𝜃𝑣 in sloping lands (3) and the characterisation of pasture yield patterns 

induced by the topography (4). These primary points were addressed to better understanding 

the complexity occurring behind the environmental factors governing pasture yield and to 

potentially achieving improvement in pasture growth simulations.  

Systematic 𝜃𝑣 measurements have been used increasingly to inform decisions regarding 

fertiliser applications, feed supply and stock management in non-irrigated farming systems. To 

assist near real time 𝜃𝑣 and soil temperature (𝑇𝑠) monitoring, 400 mm capacitance-based 

AquaCheck (AquaCheck, South Africa) probes (four 𝜃𝑣 and four 𝑇𝑠 sensors per probe) were 

installed at 20 locations (hereinafter microsites) in predominantly silt loam soils. The spatially 

distributed probes were arranged into a WSN to capture data from various topographical 

positions. The application of manufacturer-provided calibration formula resulted in a mean root 

mean square error (RMSE) of 0.106 m3 m−3, a mean bias error of -0.099 m3 m−3 (indicating 

underestimation), and a coefficient of determination (R2) of 0.58 when correlated to directly 

measured reference 𝜃𝑣values. A single custom formula, relevant to the local soils resulted in an 

improved RMSE of 0.039 m3 m−3, while microsite-specific calibrations achieved an RMSE of 0.029 

m3 m−3 and R2 of 0.77. The application of a sensor-specific calibration resulted in an RMSE of 
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0.019 m3 m−3 with R2 = 0.9. Sensor performance and accuracy errors were observed to vary as a 

function of soil wetness, bulk density (𝜌𝑏 , gcm-3) clay and total organic carbon (TOC) content. 

These effects were significant (P value < 0.001) but eliminated by the sensor-specific custom 

calibration. 

Sensor specifically calibrated 𝜃𝑣 was utilised the examine the effect of highly variable terrain 

attributes such as aspect, slope angle and soil physical properties on the 𝜃𝑣  patterns, stability 

and distribution both spatiotemporally and along the soil profile. Non-normal 𝜃𝑣 distribution 

was observed in the study period. The statistical analysis confirmed that the temporal stability 

of 𝜃𝑣 was higher in the deeper sections in both dry and wet seasons, while the spatial variability 

of 𝜃𝑣 increased with decreasing mean 𝜃𝑣, although the greatest was in the rewetting stages. The 

degree of temporal persistence of the  𝜃𝑣 patterns varied with soil wetness conditions and 

seasons. Based on the temporal stability assessment, a representative location was selected 

based on a north-facing and open slope with silt loam soils. The 𝜃𝑣 distribution patterns were 

influenced by the topographic attributes showing that north-facing steep and moderately steep 

slopes were characterised with the highest variation, while east- and west-facing slopes showed 

similar trends.  

Due to the significant variability, near surface 𝜃𝑣 mapping at a spatial resolution that would be 

useful for describing within farm heterogeneity has been challenging for researchers. The near 

surface 𝜃𝑣 modelling performance of a Random Forest (RF) ensemble learning method and the 

synergetic use of various remote sensing data with terrain attributes were investigated at 20x 

20 m pixel size. The RF model was trained using a two-year reference dataset containing 

Sentinel-1 SAR backscatter data (i), normalized difference vegetation index (NDVI derived from 

Sentinel-2, Landsat 7 and Landsat 8 images) (ii), a number of landscape parameters (iii) and in 

situ near surface 𝜃𝑣 values obtained by the WSN (iv) as ground truth. The RF algorithm captured 

a significant amount of the complex relationships and the model predicted 𝜃𝑣 with a mean RMSE 

of 0.047 m3 m-3 and adjusted R2 of 0.76 at the point scale as given by the repeated cross 

validation. The fine-tuned RF regressor was trained using 15 microsites and a series of near 

surface 𝜃𝑣 maps was developed. The maps were validated using the five left out microsites 

resulting in 0.049 m3 m-3 RMSE and 0.76 adjusted R2 indicating good agreement between 

modelled and observed 𝜃𝑣 values. The general annual trend of 𝜃𝑣 was closely reflected in the 

developed maps.  

The role of near surface and root zone 𝜃𝑣, 𝑇𝑠, climatic variables and topographical attributes on 

the spatiotemporal pattern of pasture productivity was investigated at 13 selected microsites at 

which pasture herbage accumulation was monitored by the moveable exclusion cage method in 
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2016-2018. Considerable differences were found in the stored soil water response to significant 

rainfall events and climatic variables influencing pasture production. On the created multitable 

dataset, a multiple factor analysis was executed. As a result of this analysis, the role of various 

environmental parameters was defined highlighting the role of slope angle as the most 

significant determinant of pasture growth. The effect of landscape position was found to be 

more significant than aspect, which showed a seasonal dependence. Additionally, the 

contribution of terrain attributes was not consistent during the study period and changed from 

year to year. 𝑇𝑠 and 𝜃𝑣 at a soil depth of 100 mm demonstrated the strongest governing effect 

on pasture production among the monitored parameters.  

In conclusion, the outcomes of this study imply that an extended and improved version of the 

proposed methods have the potential to be a basis of more accurate water balance simulations 

in complex landscapes at the regional scale. The presented quantification and isolation of the 

influencing topographic factors on pasture production may assist in hill country intensification 

by adding value to the generation of regulatory nutrient management plans. Ultimately, these 

advancements will enable the better characterisation of the dynamic hill country pastoral 

systems, which will lead towards helping hill country sheep and beef farmers to grow more 

pasture and increase returns while reducing the degrading effects of fertiliser applications on 

the environment. 
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Chapter 1 
GENERAL INTRODUCTION 

This introductory chapter establishes the project background and the position of the study in the 

“big picture”. Chapter 1 provides the scientific rational of the research and informs the reader 

about the importance of hill country farming systems and their economic contribution. Based on 

the given general information the role and advantages of environmental monitoring is presented 

that guides the chapter towards to the problem statement and the potential research gaps 

where improvements can be achieved with the aim of higher pasture production rates. 

Afterwards, the chapter defines the specific directions of the study and the methodology used 

for addressing the research questions. Finally, Chapter 1 depicts the outline of the entire thesis 

with brief summaries given about the structure and the key concepts of each chapter.      



 

2 

 

1 Chapter 1 - General introduction 

1.1 Project background 

The conducted research is associated with the innovation project, “Transforming Hill Country 

Farming”, running under the ‘Pioneering to Precision: Application of Fertiliser in Hill Country ‘- 

Primary Growth Partnership (PGP) programme. The initiative was funded by Ravensdown 

Fertiliser Cooperative and Ministry of Primary Industries to target the development of hill 

country farming from a new perspective. The outcome of the PGP project aimed to enable hill 

country sheep and beef farmers to grow more pasture and increase returns while reducing the 

degrading effects of fertiliser applications on the environmental systems.  

One of the main limiting factors of pasture growth is the soil water content, thus, one slice of 

the PGP project is looking at the ways of better estimation and spatial mapping of soil water 

content for the potential improvement of the simulation accuracy of a commercial pasture 

growth forecaster. As the availability of nutrients for pasture growth is highly dependent on soil 

water content influencing the amount and quality of yield, thereby making the timely decisions 

for feed budgeting crucial in dry hill country farming. Hill country is an iconic part of New 

Zealand’s farming and variability is a key concept describing these terrains. The interaction of 

climate, topography, parent materials and time has resulted in many different soil types with 

varying soil properties, nutrient levels, and soil depths that has led to high diversity in pasture 

cover and production rates. 

The main challenge of the programme is to find answerers for the following questions:  

• Is it possible to find a way for better fertiliser placement so famers will be able to grow 

more pasture without increasing the pressure on the environment?  

• Is it possible to capture the environmental variability existing in hill country landscapes 

and use that information for better predictions, management and more efficient, 

sustainable exploitation of natural resources and external inputs? 

1.2 Hill country farming and its economic contribution 

A simplified definition of hill country in New Zealand is given by Cameron (2016) and Kerr (2016) 

stating that hill country is classified as land with slopes greater than 15° and below an altitude 

of 1000 metres above mean sea level. Beef and sheep pastoral systems, dominantly situated on 

hill country landscapes, represents the majority (70-75 %) of New Zealand’s agricultural land 

use. Beef and sheep farms are distributed among approximately 5500-6000 holdings, from 
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which ~80 % is located in the North Island (Kerr, 2016). Approximately 4 million ha of the North 

Island under pastoral land use is hill country which is 43 % of the total pastoral land area of New 

Zealand (Fraser and Vesely, 2011, Kerr, 2016). Hill country is a major annual contributor to the 

New Zealand economy and agricultural primary production accounts for nearly 50 % of New 

Zealand’s export earnings (Statistics New Zealand, 2015). Through the export of various products 

such as sheep meat, lamb, beef, venison, velvet and wool, hill country farms produced $2.8 

billion value of exports in 2012 (Kemp and López, 2016).  

Based on these measures, the weight of hill country in the primary industries is evident making 

these farms critical components of New Zealand’s economic activity. Therefore, this sloping land 

has been in the centre of attention as a main breeding platform in the last 40 years and its 

importance has been increasing with a research focus on higher yield rates, resilience and 

adaptation (Kerr, 2016). The most distinguishing feature of hill country and the associated land 

management is the variability due to the contour and sloping nature of the soil surface coupled 

with generally low fertility soils (Gillingham, 1973). In the last decades, noticeable productivity 

growth has been achieved as a result of improved grazing and pasture species, livestock-

breeding and the slowly increasing adaptation of sensor technologies (Fraser and Vesely, 2011). 

The systematic observation of pasture production affecting variables, for example soil moisture, 

can assist in better operational decisions and optimising feed over time. The benefits of soil 

moisture observations have been recognised for many years. However, hill country soils have 

not been studied in sufficient detail in terms of soil water variability and spatiotemporal patterns 

at the paddock (i.e. an enclosed pastoral grazing management unit). Most hill country farmers 

do not measure these variables regularly or if they do, they will monitor them at a single point 

like location not capturing the existing variability. Some might use regional, coarse resolution 

predictions or simply their experience and the “look and feel” method (Johnson, 1962) for 

evaluating the land conditions. The recognition and characterisation of soil water regimes and 

pasture yield distribution in time and spatially at least at the paddock scale could be considered 

as a “game changer” in fertiliser input distribution planning as well as in farm management.  

1.3 The importance of the monitoring of production influencing variables 

concerning the future of hill country farming 

Hill country farmers are used to dry summer conditions and extended dry autumns stretching 

into early May but not to dry springs, which strongly influences yield by creating periods of soil 

water stress. Their land and grazing management decisions are not only dependent upon 
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experience and historical data but also on predictions regarding yield and weather, which are 

also functions of soil moisture input.  

New Zealand has experienced clear upward trends in historical temperature, with 0.09 ± 0.03 °C 

temperature rise per decade since 1909. In the 21st century, virtually certain further warming 

combined with considerable changes in extreme events have been projected with increasing 

number of hot days (𝑇𝑚𝑎𝑥 > 25 °C). According to the National Institute of Water and Atmospheric 

Research (NIWA), these indicated drifts in climate are likely to cause change in rainfall patterns, 

more frequent and increased runoff, flood and drought events in several regions of New 

Zealand. Recent droughts on the East Coast of the North Island  (Eastern Wairarapa) in 2008 and 

2010 caused significant soil moisture stress and heavily affected grass and plant growth with the 

driest April monitored since 1956 (Greater Wellington Regional Council, 2012). According to 

NIWA, January 2018 was the hottest month and obviously the hottest January on record in New 

Zealand breaking the previous record of January observed in 1956. Due to the combined impact 

of extreme temperatures and the relative lack of rainfall, soil moisture levels were lower or 

much lower than normal at certain parts of the country including the eastern and southern parts 

of the North Island. 

Considering the potential impacts of the projected climate change, a substantial contribution 

can be anticipated to economic losses and pasture production may be influenced by the 

changing environmental conditions (Pearce et al., 2017). Moreover, the issues around 

preserving water quality and the consideration of several environmental and political limitations 

will make farmers to operate within certain boundaries. Adapting to the forecasted changes can 

increase costs and the pressure on producing more output for the same or reduced physical 

inputs (Fennessy et al., 2016). These issues and the related consequences will possibly shape the 

introduction of innovative ideas and technology to develop a solid, sustainable future for hill 

country farming and to ensure the financial stability of the hill country farming sector. 

Profitability is underpinned by the productivity of the land that is highly dependent on the soil 

fertility, feed quantity and quality, water supply and the most effective strategic exploitation of 

the available resources (Shadbolt and Martin, 2005, Lieffering et al., 2012, Fennessy et al., 2016). 

The generally variable spatial pattern of soil moisture and feed supply are further complicated 

by changes in slope, aspect and relief of the terrain in hill country (Bretherton, 2012). The 

monitoring of farming systems and defining the variations in soil water content, pasture yield, 

the vegetation’s biophysical parameters and soil characteristics can provide farmers with key 

information for operational decisions and optimising feed over time (Schrimgeour, 2016).  
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Pastoral hill country farms are operated under a wide range of micro-climatic conditions and 

various management regimes typically with low inputs (i.e. fertiliser, feed from external 

sources). The dynamic nature of hill country and the interaction among numerous 

environmental factors, e.g. climate, high variation in relief, soil properties, soil type patterns, 

stock and grazing management, results in highly diverse production rates and pasture 

composition (Radcliffe et al. 1968, Murray et al. 2007, Chapman and Macfarlane, 1985, 

Bretherton, 2012). For these reasons, the spatial mapping and assessment of pasture growth 

characteristics are still challenging and labour-intensive tasks. While soil conversation, water 

quality and the mitigation of environmental pressure are among the highest priorities, fertiliser 

applications are essential and will remain the key for the future of hill country farming 

(Schrimgeour, 2016).  

Considering the location-specific irregularities in environmental conditions, the precisely 

targeted management practises and fertiliser inputs can significantly improve the farms’ yield 

and the general efficiency of the farming system (Judd et al., 1990). To balance out the 

differences in pasture productivity caused by the hilly landscape the farm-specific planning of 

fertiliser applications is built on pasture growth simulations.  

To facilitate improved yield and water management strategies in non-irrigated farming systems 

the integration of soil moisture data into the decision making and forecasting systems and a 

detailed description of yield affecting factors will enable a better understanding of feed supply 

patterns. Hill country farming can benefit from both near surface and rooting zone soil moisture 

estimation that can also provide an information on the amount of plant available water. 

Furthermore, soil water content controls the soil infiltration rate, runoff and evapotranspiration 

influencing the water storage and thereby the water uptake by plants (Rodriguez‐Iturbe et al., 

1999, Woodward et al., 2001). 

Thus, soil moisture monitoring is rapidly developing across different types of soil-plant systems 

over many landscape features and scales at a time of increasing food demand and the forecasted 

more extremities in weather patterns (Howell, 2001, Charlesworth, 2005, Trenberth et al., 

2013). Systematic and frequent soil moisture information allow farmers and agronomists to 

better inform pre- and in-crop strategic inputs, pasture management (Matson et al., 1997), and 

nutrient cycling (Dougill et al., 1998) at the farm scale. Consequently, obtaining accurate, 

frequent and non-destructive soil water data is significantly advantageous, if not fundamental. 

The importance of soil water content and pasture growth distribution patterns suggests that 

quantification of their spatiotemporal behaviour needs to be studied from the global scale to 
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the small watersheds, paddocks and hill slopes. Most environmental variables are out of the 

human control, but the perception and quantification of their effect on pasture growth patterns 

enable farmers to maximise their land resources and optimise the production as well as the 

consumption. It can be concluded that better-designed yield forecasters, advanced model 

parameterisation, improved fertiliser application planning, more efficient, timely land 

management and budgeting decisions are some of the key aspects that need to be addressed 

by further research.  

1.4 Problem statement – The soil water balance module 

Pasture growth simulation models have been increasingly used for assessing the effects of the 

controllable and fixed variables of the pastoral system (Li et al., 2011). Some standard units of 

these commercial models are well understood, such as the seasonal distribution of feed demand 

(Holmes et al., 1987), bringing together the existing knowledge of pastoral systems.  

An ideal pasture growth forecaster algorithm would be able to predict yield spatially and 

temporally. Additionally, it should take into account the effects of topography (slope angle, 

aspect and altitude), climate variables (temperature, rainfall, incoming solar radiation, 

ventilation effect), soil fertility (fertiliser history) and had a detailed water balance module 

calculating daily soil water deficit considering the sub-paddock variations.  

The modules accounting for soil hydrology, a critical component of agriculture, are still lacking 

improvement for complex terrain and it is assumed that one of the weakest points of these 

models lies in this component. The water balance module often fails to represent the variability 

due to the complicated flow processes occurring on and under the rolling surface with 

heterogeneous soil types.  

The soil water balance for flat land in New Zealand has been extensively studied and it is quite 

well understood (Scotter et al., 1979, McAneney and Judd, 1983, Woodward et al., 2001). In 

contrast, relatively few studies have been published on the soil water balance in hill country 

(Bircham and Gillingham, 1986, Bretherton et al., 2010, Bretherton et al., 2018), despite its 

significant role in the primary sector. In general, soil water content predictability and variability 

are not yet fully understood on rugged terrain, especially near the surface and within the root-

zone; these being the layers of high interest for most agricultural activities (Wilson et al., 2004, 

Petropoulos et al., 2014).  

In New Zealand, the spatial water balance model of one of the major commercially utilised, real-

world yield forecasting applications is fed by water-holding capacity values generated from 



      

 

7 | P a g e  

 

national, low spatial resolution soil layers, containing soil textural and water-holding capacity 

estimations. Although, the sub-farm variability is dominantly much larger than that of the 

existing and utilised input layers would be able to describe. Due to the interaction of numerous 

environmental parameters, soil water content is generally considered as a spatiotemporally 

highly changeable environmental variable (Vachaud et al., 1985, Vanderlinden et al., 2012, 

Brocca et al., 2017).  

Due to the lack of highly detailed soil cover information and water holding parameters obtained 

by actual field surveys, a significant amount of uncertainty is introduced to the pasture yield 

predictions and consequently to the farm-specific input applications. Moreover, soil water 

content is too laborious and expensive to measure systematically that makes their incorporation 

into these models rather difficult (Woodward, 2001).  

Hence, the need for improved soil moisture monitoring is critical to support the planning of 

fertiliser applications. Particularly, a more reliable soil water balance estimation would have a 

considerable effect on the accuracy of pasture growth predictions. Apart from better, more 

efficient and targeted fertiliser placement, there are several key advantages of soil water 

information. These include the early prediction and recognition of declined pasture growth, 

which reduces the risk behind the timing of significant land management practices and financial 

decisions, such as selling stock or purchasing feed.  

1.5 Specific directions of the study 

As the productivity of hill country will come under increased pressure, being or becoming 

resilient to climate change, more frequent dry periods and high intensity rainfall events, is crucial 

for farmers (Kenny, 2001, Cameron, 2016). To be able to meet the growing demand, farmers 

need to react to these environmental changes. As most of the environmental parameters are 

not controllable, management and adaptation to the changes can be the only way to resilience 

and sustainable future farming. Such situations and forecasts coupled with the above-

mentioned uncertainties in yield predictions raise numerous issues to solve and questions to 

answer in the field of framing and scientific research. The questions listed below have set some 

of the specific directions of this study.  

I. How can the soil water content be measured effectively, systematically and accurately 

without regular fieldwork in hill country to represent the diverse terrain conditions?  

II. How does the complex landscape of hill country affect the spatial distribution patterns 

and temporal evolution of the near surface and the root zone soil water? 
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III. What are the possible ways to obtain or predict soil water information spatially on hilly 

landscapes utilising various data sources? 

IV. How could it be mapped at a spatial and temporal resolution, which is practically useful 

for decision making, farming and pasture growth forecasting?  

V. What are the main driving factors of pasture growth in hill country and how could their 

understanding be further improved for better pasture growth simulations? 

1.6 Proposed methodology and its background 

The future of pasture management, the sustainable production and the concept of optimising 

returns and preserving resources requires research at various scales. This study aims to provide 

useful, practical, transferable and understandable information at the farm scale and target the 

within farm environmental heterogeneity including pasture growth and soil moisture. An 

approximately 2600 ha hill country farm was chosen as research area, providing a good 

representation of the heterogeneity of static (topographical features, soil types) and dynamic 

(climate, vegetation) variables in the Wairarapa region of the North Island of New Zealand. 

Ideally, the generated knowledge will be valuable for improving, refining and validating yield 

predictions and soil water simulations in hilly landscapes. 

In order to achieve more realistic water balance modelling outputs and therefore better yield 

predictions, the incorporation of actual, systematic water content estimations on a spatial basis 

seems to be an innovative and promising approach. Therefore, the input data would be required 

regularly at least at medium spatial resolution (10-100 m pixel size) (Gao et al., 2010) to account 

for the previously highlighted variability.  

Soil moisture can be monitored by several methods, although field campaigns using classic 

methods on hill country pastures have traditionally been cost-prohibitive due to the time- and 

labour-intensive in situ (and mainly point scale) field measurements required for accurate 

description of the landscape. On the other hand, in the geospatial sense, interpolation and 

extrapolation based on point-scale like measurements are rather complex over rugged terrain 

(Crow et al., 2012b). Consequently, a method for the determination of soil moisture without the 

necessity for labour-intensive measurements would be beneficial for characterising soil 

moisture patterns instantly at low cost.  

Remote sensing missions equipped with microwave sensors, such as Soil Moisture Active Passive 

(SMAP), Soil Moisture and Ocean Salinity (SMOS) have demonstrated their capability to measure 

soil moisture under different environmental conditions near the surface (Kerr et al., 2001, 

Entekhabi et al., 2010a). To date, the spatial resolution of soil water products has not yet 
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reached the paddock scale (10-100 m) with reliable accuracy in an operational manner. 

Although, that level of detail would be necessary to make a difference in the agriculture related 

applications, water resource and land management decisions as well as in the improvement of 

pasture growth models in hill country. Synthetic Aperture Radar (SAR) images from different 

satellite missions (ENVISAT, RADARSAT-1 and ERS-2, etc.) have also been widely used for soil 

moisture retrieval at finer spatial scales (10-20m) showing good agreement with in situ 

measurements in the top soil (Baghdadi et al., 2012). However, they provide relatively low 

temporal coverage and these sensors are sensitive to soil moisture as well as vegetation and 

surface roughness (Paloscia et al., 2013). In hilly landscapes, the additional influence of 

topography needs to be considered as well (Baghdadi et al., 2007, Bertoldi et al., 2014).  

Optical (0.4-2.5 µm) and thermal infrared (3.5-14 µm) domains have been used for soil moisture 

estimations (Schmugge et al., 1980, Kerr et al., 2010, Petropoulos, 2013). Optical soil moisture 

retrieval methods take advantage of various water absorption wavelength regions and that of 

reflectance generally drops with increasing soil moisture over bare soils (Anne et al., 2014, Fabre 

et al., 2015). Over vegetation, the change in plant biophysical and biochemical characteristics 

are sensed that are strongly dependent on water, indirectly indicating soil moisture conditions 

(Gao et al., 2013). Soil moisture estimation methods utilising the thermal infrared wavelengths 

can capture information from the slightly deeper soil layers. Thermal inertia, (Price, 1977), the 

generation of crop water stress index, water deficiency index and temperature vegetation index 

(Gao et al., 2013) are common approaches.  

Some of the main limitations of these techniques are the coarse temporal resolutions, 

atmospheric effects, daylight dependence, the cloud cover, the presence of vegetation, and the 

effect of soil properties. In addition, the reflectance for optical remote sensing is received 

directly from the soil or vegetation surface (Petropoulos et al., 2015, Sabaghy et al., 2018). 

Despite these drawbacks, there is a real interest in estimating soil water content from such 

sensors and the demand for high to medium resolution satellite-derived information for 

agricultural and land-based predictions is rising steadily (Petropoulos et al., 2015).  

The synergetic use and the fusion of data captured in the optical, thermal infrared and 

microwave domain have been representing a new, promising direction in soil moisture mapping 

by the advances of high performing computers. The increasing abundance of freely available 

satellite images with higher spatial resolution and shorter revisit intervals than in the past, such 

as the Sentinel-1, Sentinel-2 missions, raised the number of possibilities in soil moisture retrieval 

research, especially in the last decade (Baghdadi et al., 2017, Bousbih et al., 2017, Gao et al., 
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2017). Combining images that are taken at various sections of the electromagnetic spectrum, 

e.g. in the optical, thermal infrared and microwave domains, numerous limitations can be 

reduced or eliminated. The integration of data from multiple, comparable, optical satellites can 

improve the temporal coverage. However, the pre-processing and analysis of a long, time series 

type of dataset containing hundreds of images is associated with significantly longer processing 

time and high computing power requirements.  

To address this issue, cloud-based computing tools, such as Google Earth Engine, Amazon, etc., 

enable the processing and manipulation of large image collections (Gorelick et al., 2017, Hird et 

al., 2017). Advanced statistical methods, such as machine learning, plays a crucial role in these 

experiments since they are capable of handling large datasets and high number of variables as 

well as complex relationships (Ali et al., 2015). Machine learning has the capability to integrate 

data from various sources and link extracted values from remotely sensed images to ground-

based reference observations as it has been shown in previous studies (Ali et al., 2015, Alexakis 

et al., 2017, Kumar et al., 2018). To complete an efficient learning process, highly accurate 

historical reference datasets are required that ideally cover the full range of the targeted. 

Consequently, these models are often valid only over the training area and their extension for 

generic use is challenging. 

To target the above-mentioned scopes, the study utilised a combination of modern and 

traditional approaches to exploit the benefits of the currently available innovative techniques 

and the advantages of well known, broadly used data collection and statistical data analysis 

methods in one, compound research. 

During the monitoring period, a wide range of data collection techniques were utilised across a 

variety of spatial scales including field-based, in situ soil and pasture sampling, the precise 

laboratory work and the analysis of remotely sensed imagery from various sources acquired over 

the research area. The field-based sample collection comprised of in situ soil sampling, soil 

moisture and soil temperature measurements and pasture yield accumulation observations 

through traditional pasture cuts. The laboratory work included the processing of the collected 

soil samples for soil particle size analysis, soil bulk density and gravimetric water content 

determination as well as total organic carbon content measurements. The pasture samples were 

used for accumulated dry matter and daily average pasture growth rate estimations.  

In situ, ground-based measurements consist of pasture production sampling at pasture, and soil 

moisture and soil temperature recordings at the monitoring sites (i.e. microsites) by an 

effectively designed observation network. The use of Wireless Sensor Networks (WSN) is a 
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promising new in situ measurement technology for monitoring the spatial and temporal 

variability of soil moisture in agricultural soils (Bogena et al., 2010, Hedley et al., 2012, Majone 

et al., 2013, Rawat et al., 2014). 

From the remote sensing perspective, the study utilises a high number of remotely sensed 

images captured by spaceborne sensors mounted on Sentinel-1, Sentinel-2, Landsat 7 and 

Landsat 8 satellites. The remotely sensed scenes were derived from the Google Earth Engine 

(GEE) platform and the near surface soil moisture modelling was conducted using the Random 

Forest (Breiman, 2001) ensemble machine learning method. The two types of datasets were 

linked to each other based on the geographical location, i.e. the image pixels that corresponds 

to the microsites. Several types of statistical and comparative analyses was carried out on the 

final dataset, which was created as a combination of ground-based and remotely sensed data. 

1.7 Research objectives and thesis outline 

As a result of this study, an effective soil moisture and soil temperature monitoring network will 

be deployed and the importance of sensing accuracy assessment as well as the role of site- 

specific calibration will be highlighted. Secondly, the aim of the research is to characterise the 

spatiotemporal behaviour of soil moisture and soil temperature as a function of topography. 

Furthermore, an ensemble machine learning approach will be utilised and coupled with 

Geographic Information Systems (GIS) to develop a prediction tool. The algorithm will be 

capable of spatially modelling and predicting near surface soil moisture over the selected 

research area for pasture growth throughout the year. The model will take, process, collate and 

analyse point like and spatial data inputs from various sources and it will provide a better picture 

of land-surface interactions and micro-topographic variability on farms. The study aims to 

improve our understanding of the factors driving soil moisture distribution and their limiting 

effects on pasture yield in this environment. To evaluate the correlation among these variables, 

multivariate statistical approaches are accommodated. Medium resolution soil moisture maps 

will be obtained by the aid of remote sensing technologies. Eventually, these methods and the 

results will lead to the incorporation of the findings into pasture growth prediction models to 

better explain and predict pasture production and response to fertiliser in hill country. Based on 

the results of this study, critical pasture management decisions, such as species selection, 

grazing strategy, feed budgeting and fertiliser placement can be made, contributing to the 

increasing focus on the development of hill country pastoral systems. 

This thesis is divided into 8 Chapters (including Chapter 1 as Introduction). The thesis follows 

the paper-based format; thus Chapter 4-7 are considered as individual research papers 
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representing the basis for publications. Due to the thesis structure and the limited space for 

background information and methodology description in the individual papers, separated 

literature review (Chapter 2) and methodology (Chapter 3) sections were necessary. The status 

of the publishing process is summarised in Table 1.1 at the end of this chapter. Additionally, DRC 

16 forms can be found in Appendix 1 to comply with Massey University’s policy on the “Thesis 

by Publication” format.  

Chapter 2 - It contains the review of the relevant literature focusing on the wide range of 

scientific fields touched upon in this study. It aims to provide sufficient background information 

and the current state of the supporting knowledge beginning with the overview of basic soil 

water related terms.  A general introduction to pastoral agriculture management is given and 

the relevance of the study is linked with the key concepts of hill country, such as diversity. This 

section is followed by the brief discussion of the recent issues of pasture yield simulations and 

the main driving factors of soil moisture distribution in complex landscapes. Then, the reader is 

introduced to the available soil moisture observation methods starting from the traditional 

approaches and moving on to the state-of-the-art technologies including both ground-based 

and remote sensing technologies. The presentation of soil moisture retrieval methods from 

satellite images and its difficulties is followed by focusing on the currently available, global soil 

moisture products.  

Chapter 3 – This chapter specifically focuses on the research site located near Alfredton on the 

East Coast of the North Island by providing details on its environmental characteristics, i.e. 

geographical situation, geological settings and soil types. It is followed by reporting information 

on the experiment design, instrumentation, microsite selection, the WSN deployment 

procedure and the data collection. Furthermore, this chapter describes the steps of the 

conducted field-based soil and pasture sampling as well as the applied methods for laboratory 

work. The last section describes the generated dataset obtained by remote sensing including 

the data source, access and the relevant data processing tools.   

Chapter 4 – This chapter reports results on the site-specific calibration of the AquaCheck 

capacitance-based soil probes arranged into a wireless sensor network. The calibration formulas 

are developed by the relation of sensor readings and a high number of field-based gravimetric 

soil moisture measurements. The generated conversion formulas are assessed, and the soil 

moisture sensor accuracy is tested with the examination of the effects of some of the measured 

soil properties potentially influencing the error distribution. 
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Chapter 5 - An understanding of spatial and temporal soil moisture patterns in the root zone 

and their driving factors in hill country is of great importance but has yet to emerge. This chapter 

investigates the spatiotemporal variability, temporal variation and stability of the soil moisture 

patterns and their profile characteristics. Temporal persistence and the most representative site 

is defined. The study uses several statistical measures to quantify the variability and the driving 

power of topography on the wetness conditions.  

Chapter 6 – This chapter investigates the potential of a machine learning algorithm (Random 

Forest) for the spatial modelling of near surface soil moisture by the synergetic use of ground-

based information and remotely sensed products at medium resolution. In addition, the 

sensitivity of radar signal captured from different orbits to soil moisture is explored. The dataset 

contains information extracted from an image series created from Sentinel-1, Sentinel 2, Landsat 

7 and Landsat 8 satellite acquisitions. Training and test datasets are generated, and the accuracy 

of the predictions is assessed through cross validation at each microsite. Furthermore, an 

independent validation is carried out on a series of predicted soil moisture maps along the study 

period.  

Chapter 7 – The factors driving the spatiotemporal patterns of pasture productivity are studied 

in this chapter to provide a better understanding of the interrelations for hill country pasture 

management. Yield measurements collected from 13 locations are subjected to comparative 

and multivariate statistical analyses to disaggregate the controlling role of selected 

environmental variables. The spatial organisation and temporal trends of total herbage 

accumulation and pasture growth rate are examined concerning the sites’ varied topographic 

settings. Heat accumulation, soil temperature and soil water storage dynamics are related to 

pasture production and the limiting role of these parameters as well as their optimal range for 

the best growth conditions are described. In addition, a hypothesised hill concept was used for 

visualising the difference as a function of slope angle and aspect in the polar space. 

Chapter 8 – The final chapter of this thesis starts with highlighting the key concepts and the 

motivation behind the conducted research with a brief description of the thesis structure and 

study methods. The main part of the discussion is governed by four specified scopes and the 

research questions or objectives raised within each scope. The four scopes contain brief 

introductions to each topic, briefly describing the applied methods and their limitations, and 

summarising the relevant findings of the study with their potential implications. Suggestions for 

future work are made and possible ways are recommended for improving the outcome of the 

thesis and utilising the generated valuable dataset. 
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Table 1.1 The status of paper-based chapters in terms of publications process 

Chapter Journal (or potential journals) Status Year 

3 
▪ Water Resource Research 

▪ Sensors 
About-to-be-submitted 2020 

4 
▪ Agricultural Water 

Management 
Published 2019 

5 
▪ Journal of Hydrology 
▪ Agricultural Water 

management 
About-to-be-submitted 2020 

6 ▪ Remote Sensing About-to-be-submitted 2020 

7 
▪ New Zealand Journal of 

Agricultural Research 
▪ Plant and Soil 

About-to-be-submitted 2020 
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Chapter 2 

REVIEW OF RELEVANT LITERATURE 

The second chapter aims to provide a focussed overview of the relevant topics touched upon in 

Chapter 1. It starts by several definitions related to soil water, the various ways for its expression 

and the relevance of soil moisture in global environmental systems. This chapter also describes 

basic principles and significance of pastoral farming in hill country and its associated driving 

factors. These include pasture productivity, yield simulation methods and the highly important 

role of plant available water. A detailed description is given on soil water variability in relation 

to several environmental parameters. The review continues with a presentation of the various 

ground-based methods available for soil moisture data acquisition. Afterwards, the focus is 

placed on the potential of spaceborne remote sensing applications related to soil water content 

retrieval. A summary regarding the key points and conclusions of the literature review completes 

the chapter.
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2 Chapter 2 - Review of relevant literature 

2.1 Basic concepts of soil moisture 

2.1.1 Relevant soil moisture and soil water storage definitions 

The term ‘soil moisture’ has been approached in many ways by agronomists, climatologists, 

hydrologists and researchers belonging to various disciplines (Seneviratne et al., 2010). It is 

generally referred to as the amount of water present in the soil, and expressed as a weight or 

volume per soil material. Alternative definitions occur depending on whether it is expressed in 

absolute, relative or indirect terms (Seneviratne et al., 2010, Petropoulos et al., 2014). Soils are 

considered as three phase systems, comprised of the solid phase (organic matter and mineral 

components), the liquid phase (soil solutions) and the gaseous phase (dominantly air) (Hillel, 

1998).   

The liquid phase, consisting of soil water carrying dissolved minerals, is the main source for plant 

water and nutrient uptake in the unsaturated zone, i.e. the portion of subsurface above the 

groundwater table. The fractional content of soil water can be defined as the amount of water 

in a soil, expressed as volume (or weight) of water to the total volume (or weight) of oven-dry 

soil, which can be reported as decimal fractions or percentages (Petropoulos et al., 2015). 

Gravimetric water content (𝜃𝑔, g g-1), the ratio of soil water mass and dry soil mass is a frequently 

employed mass-based soil water content expression. The computation of 𝜃𝑔 is given as per Eq. 

(2.1) as follows: 

 𝜃𝑔 =
(𝑚𝑤𝑠) −  (𝑚𝑑𝑠)

(𝑚𝑑𝑠)
=

𝑚𝑎𝑞

𝑚𝑑𝑠
 (2.1) 

Where 𝑚𝑤𝑠 = weight of wet soil, 𝑚𝑑𝑠  = oven dried weight of soil sample and 𝑚𝑎𝑞 = weight of 

water. The computation of water fluxes in water balance models, land-surface simulations and 

irrigation management often requires volumetric soil water content (𝜃𝑣, m3 m-3), which is 

calculated as per Eq. (2.2): 

 𝜃𝑣 =
(𝑉𝑤)

(𝑉𝑡𝑠)
 (2.2) 

Where 𝑉𝑤 is the volume of water and 𝑉𝑡𝑠 is the volume of the known total soil sample (including 

solids, water and air). Additionally, it is often converted to 𝜃𝑣 in (mm mm-1) and referred to as 

soil water storage 𝑆𝑖 of a particular soil profile per unit area. The quantity of 𝑆𝑖 can be described 

as per Eq. (2.3): 

 𝑆𝑖 = ∑ 𝑏𝑖

𝑛

𝑖=1
• 𝜃𝑣 𝑖 (2.3) 
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Here 𝑛 indicates the number of layers, whereas 𝑏𝑖 and 𝜃𝑣𝑖 are the depth and 𝜃𝑣 content for layer 

𝑖, respectively. Via the determination of soil bulk density (𝜌𝑏, gcm-3), 𝜃𝑣 can also be obtained 

(Gardner et al., 2000, Shukla, 2013). In agriculture, 𝜌𝑏 is defined as the ratio of the mass of oven 

dried soil to a unit volume of soil (Grossman and Reinsch, 2002) as per Eq. (2.4): 

 𝜌𝑏 =
𝑚𝑑𝑠 

𝑉𝑡𝑠
 (2.4) 

These parameters are related as per Eq. (2.5) (Gardner, 1986) to convert 𝜃𝑔 to 𝜃𝑣.  

 𝜃𝑣 =
𝑚𝑎𝑞

𝑚𝑑𝑠
•

𝜌𝑏

𝜌𝑎𝑞
 = 𝜃𝑔  •  

𝜌𝑏

𝜌𝑎𝑞
  (2.5) 

Where, 𝜌𝑎𝑞 refers to the density of water. In this thesis, the phrase “soil moisture” will generally 

refer to the soil water content expressed in volumetric basis, i.e. 𝜃𝑣, if not specified otherwise. 

To inform practical agriculture-specific and water management applications such as irrigation 

scheduling, and to understand the soils’ water storage capability, four key soil water-holding 

states are needed that express water status across various water potentials. Soil water content 

at or near the level of saturation (i) (𝜃𝑆𝐴𝑇) expresses approximately 0 – 0.0001 MPa matric 

potential and it is considered a state, when all pores are filled with water (Seneviratne et al., 

2010). Field capacity (ii) (𝜃𝐹𝐶) represents the soil water content retained against free drainage 

by matric forces at approximately -0.01 - 0.033 MPa tension. Soil water at the refill point (iii) 

(𝜃𝑅𝐹) ranges from -0.04 to -0.06 MPa and marks the point above which the evapotranspiration 

rate is not affected by water stress. At ca. -1.5 MPa tension the water adheres too strongly to 

mineral particles to be extractable for plants, thus this state is highly dependent on vegetation 

type and defined as permanent wilting point (iv) (𝜃𝑃𝑊𝑃) (Sperry J. S. et al., 2002, Kirkham, 2014). 

These parameters can be derived from soil moisture release curves, estimated from field 

measurements or through pedo-transfer functions.  

The maximum volume of plant available water (PAW) is generally described as the difference 

between 𝜃𝐹𝐶 and 𝜃𝑃𝑊𝑃 (Cassel and Nielsen, 1986). The maximum amount of water the soil can 

hold onto during a rain-free period is defined as 𝜃𝐹𝐶 (Petropoulos et al., 2014, Horne and 

Scotter, 2016) which usually indicates the upper limit of PAW. The lower limit of PAW is 

commonly associated with the 𝜃𝑃𝑊𝑃. However, only a certain portion of the PAW can be easily 

taken up for unrestricted growth since the water held among larger pores is more readily 

available than water found in the smaller pores (Horne and Scotter, 2016). Plants experience 

water stress below a nominated 𝜃𝑅𝐹 level that depends on species, climatic conditions, soil types 
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and rooting depth. Therefore, the amount of water held between the root zone storage upper 

limit or 𝜃𝐹𝐶 and 𝜃𝑅𝐹 is referred to as readily available water holding capacity (RAW).  

Available water holding capacity (AWHC) is determined by integrating PAW over the root-zone 

depth where water extraction occurs (Zotarelli et al., 2010, Horne and Scotter, 2016). The 

concepts of 𝜃𝐹𝐶  and 𝜃𝑃𝑊𝑃, therefore PAW, RAW as well as AWHC have been objects of 

arguments as various definitions exist in the literature (Kirkham, 2014). This is due to the 

dynamic nature of soil water and the lack of agreement on the exact soil matric potential or 

value range used during the retention-based determination (Horne and Scotter, 2016). The 

previously mentioned terms relate soil water content to plant growth and are widely used in 

modern numerical models, although, various water potential thresholds and terms have been 

employed by the scientific community. This thesis accepts and refers to the definitions of the 

main soil water parameters as they were described above.  

2.1.2 Soil moisture, an environmental state variable 

Soil moisture is a spatially and temporally highly variable environmental parameter and its 

fundamental role in the hydrological cycle has been studied extensively (Brocca et al., 2017). 

Although, the overall quantity of soil moisture is relatively small, ~0.001 % of total water 

reserves (Dingman, 2002); hydrology, agronomy, geomorphology, bio-geography, ecology and 

climatology heavily rely on soil moisture observations (Romano, 2014). Point-, field-, catchment-

, regional-, continental- and global-scale soil water content data obtained at various temporal 

resolution have been utilised in a broad range of applications. Soil moisture data is crucial for 

numerical weather prediction, climate simulations, flood monitoring, drought assessment, 

water and energy budget calculations, greenhouse gas accounting, land-atmosphere-biosphere 

interactions, estimation of land-surface fluxes, natural hazards forecasting, optimising 

agricultural management and crop yield predictions (Dugua and Pietroniro, 2005, Entekhabi et 

al., 2010b, Li and Rodell, 2013, Ochsner et al., 2013, Romano, 2014, Vereecken et al., 2014, 

Bogena Heye R. et al., 2015, Dorigo and de Jeu, 2016).  

Soil moisture is also considered as energy storage due to its dynamic long- and short-term effects 

on the climate system by regulating heat and water fluxes (Pan et al., 2001, Teuling et al., 2007b). 

Because of its well-established importance and that it can be globally monitored by remote 

sensing, soil moisture was recognised as an Essential Climate Variable in 2004. In 2010, it was 

added to the terrestrial Essential Climate Variables group by the Global Climate Observing 

System program (Bojinski et al., 2014, Dorigo et al., 2015).  
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Above all, soil moisture provides the plant-available water for vegetative life. In agriculture, soil 

moisture is essential for crop and pasture yield improvements, irrigation scheduling and 

extending the period of unstressed transpiration (Hillel, 2003a). The most crucial phases of the 

life and growth of vegetation, such as photosynthesis, biomass production, the rates of 

transpiration, organic matter cycle and nutrient uptake are often limited by soil water content 

(Porporato et al., 2002, Rodríguez-Iturbe and Porporato, 2007). Thus, soil moisture is the 

principal limiting resource for pasture growth and agricultural production in New Zealand 

(Woodward et al., 2001, Bittelli, 2011). Accurate information about soil moisture at a few cm to 

tens of km scales are essential to improve the reliability and precision of many applications. 

Measuring soil water content in a consistent and spatially comprehensive manner is challenging, 

due to its spatiotemporal variability and environmental heterogeneity (Entin et al., 2000, 

Rodríguez-Iturbe and Porporato, 2007). 

2.2 The relevance of soil moisture studies in the pastoral agriculture in New 

Zealand’s hill country 

2.2.1 Geographical extent and definition of hill country 

Slightly different definitions have been published in the literature regarding ‘hill country’. A 

broadly accepted, generalised definition of hill country was presented by Basher et al. (2008) in 

their erosion process report. The authors defined hill country as `all lowland and montane hill 

and steeplands (slope > 15 °), classified as Land Use Capability (LUC) class 5, 6 or 7, and being 

described in the unit descriptions in the New Zealand Land Resource Inventory as hill country’. 

‘Lowland’ and ‘montane’ categories follow the altitude/temperature-related bioclimatic zones 

of Wardle (1991). A simplified definition was followed by Cameron (2016) and Kerr (2016) stating 

that hill country is classified as land with slopes greater than 15° and below an altitude of 1000 

metres above mean sea level. It is worth noting that there will be hill slopes with lower steepness 

and flat lands in these complex landscapes. 

For the purposes of the study, the latter, simplified version of hill country definition is adequate 

and will be applied hereinafter. According to the above criteria, 63% (6.3 million ha) of New 

Zealand’s hill country area occurs in the North Island and 37% (3.7 million ha) in the South Island 

that constitutes over 75% of New Zealand pastoral land (Bretherton, 2012). Around 5 million ha 

of the total 10 million ha is designated as pastoral hill country farmland from which 4 million ha 

is located in the North Island (Kemp and López, 2016, Kerr, 2016).  

The presented research was conducted in the East Coast Hill Country (ECHC) region of the North 

Island. ECHC is a significant contributor to the national economy and covers the majority of 
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North Island’s hill country area. To approximate the spatial extent of grazed pastures in the 

North Island, the Land Use and Carbon Analysis System (LUCAS) dataset was chosen (Ministry 

for the Environment, 2012). The study site and its surroundings are depicted on Figure 2.1 and 

the low-producing grassland area that contains mostly hill country land is superimposed on a 

Sentinel-2 satellite image mosaic (Land Information New Zealand, LINZ).  

 

Figure 2.1 Spatial distribution of pastoral hill country land in the North Island extracted from LUCAS 
land use maps. On the right, a closer view the research area is shown. A detailed map of LUCAS land 
use classes is provided along with a shaded relief map that illustrates the rugged, hilly terrain conditions 
(Ministry for the Environment, 2012, LINZ, 2017). 

2.2.2 Hill country farming and its economic value 

The history of hill country pastoral farming and the establishment of pastures started with the 

clearance of the indigenous forest about 100-150 years ago (Kemp and López, 2016). This 

agricultural expansion happened intensively and had a large effect on the environment and 

economy. Hill country pasture development reached a milestone in the 1950’s when the 

introduction of effective and affordable aerial spreading of fertilisers and seeds allowed 

significant increases in production (Moot et al., 2009). Since then, the flatter and generally 

better land has been lost dominantly to the dairy farming and partly to the urbanisation. In the 

last few decades, the importance of hill country farming has been increasing and it has been in 

an enhanced focus of research as a productive platform (Kerr, 2016).  
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In 2017, more than $38 billion of New Zealand’s annual export earnings benefitted from primary 

industrial production and a positive economic outlook with strong increase in export revenue 

was expected for 2018 and 2019 (MPI, 2018). Pastoral farming contributes $20-25 billion 

towards annual exports; this is approximately 75% of all agricultural exports (Morrison, 2017). 

In terms of contributions to gross domestic products (GDP), the agriculture sector accounted for 

3.1% of total GDP in 2016;  hill country farming was a major annual contributor generating $7-

7.5 billion through the export of various products, such as meat and wool (Kemp and López, 

2016, Statistics New Zealand, 2018, updated April 2018). Over 90% of the production was 

exported to more than 120 countries making the red meat, mainly originating from hill country, 

the second most imported product. The North Island accounts for 71% (2.485 million) of the 

total amount of beef cattle and 50% (13.8 million) of sheep stock (Beef + Lamb New Zealand, 

2017, Ministry for Primary Industries, 2018). Based on the above-mentioned economic 

indicators and the weight of hill country in the primary industries, it is evident that hill country 

farms are critical components of New Zealand’s economic activity.  

2.2.3 Pasture management in hill country 

New Zealand’s predominantly moist temperate climate, soil characteristics and its vegetation 

species makes hill country farming unique and allows the development and operation of 

efficient year round grazing systems (Hodgson et al., 2005). An essential requirement is 

matching the pasture growth with the animals’ demand by producing the best quality feed and 

fully utilising the local resources. As a consequence of growing food demand and quality 

requirements of the international marketplace, future farming will likely involve further 

management intensification (Mackay et al., 1993, Shadbolt and Martin, 2005, Mackay, 2008, 

Hoogendoorn et al., 2016).  

A large proportion of moderately intensive pastoral production is carried out on low-altitude hill 

country farms where sheep and beef farming predominates. These farms are operated under a 

range of climatic conditions and various management regimes typically with low inputs (i.e. 

fertiliser, feed from external sources). Consequently, sustainability and profitability rely on 

adapting to changing environmental conditions and the strategic exploitation of the available 

biophysical, human and financial resources (Shadbolt and Martin, 2005, Lieffering et al., 2012). 

Precisely targeted management practises that considers site-specific irregularities can 

significantly improve the hill country farmers’ responsiveness, yield and the general efficiency 

of their pastoral system (Judd et al., 1990).  
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2.2.3.1 Diversity, a key concept in hilly landscapes  

The most distinguishing feature of hill country land management are the contouring and sloping 

nature of its soil surface coupled with generally low fertility soils (Gillingham, 1973). The 

geologically young highly broken landscape - both at macro and micro topographical levels, the 

variable climate and degree of erosion all affect soil development; in turn, this determines the 

spatiotemporal heterogeneity and diversity of production rates (Phillips et al., 2016). Due to 

these reasons and the differences in pasture composition and soil development, yield estimation 

and improvement are challenging tasks (Radcliffe et al., 1968, Murray et al., 2007). A good 

understanding of the complex soil/plant/animal/environment system is key to appropriate farm 

management in order to convert forage into a profitable animal product. Certain pasture growth 

affecting factors are natural or fixed and others are controllable (Shadbolt and Martin, 2005). 

2.2.3.2 Role of natural factors in non-irrigated pastoralism 

Some of the physical characteristics of a land are given by its geographical location, underlying 

geology, geomorphology, natural soil fertility and climate. Such variables are mostly out of 

human control, but the perception and quantification of their effect on pasture growth patterns 

enable farmers to maximise their land resources. Parameterisation is also necessary for accurate 

yield predictions and assessment of pasture production. According to Scott et al. (1985), 

temperature, soil moisture, soil fertility and pasture managament are the four most important 

influencing factors of hill country farming, although these factors are somewhat functions of the 

terrain. Harris et al. (1985) concluded that temperature and PAW are the two most important 

enviromental factors influencing pasture production as the majority of hilly country is non-

irrigated. Since all of the above-mentioned factors are linked to the terrain, it can be concluded 

that specific management challenges are associated with the micro-climatic and landscape 

features (i.e. slope and aspect) that govern the amount of PAW and yield potential. 

2.2.3.2.1 Soil moisture 

Water supply is a critical regulator of plant growth as they require water to transport nutrients 

and to perform cellular processes (Rodrigez-Iturbe, 2000, Robbins and Dinneny, 2018). The fact 

that pasture production in hill country is strongly related to soil water content received early 

recognition. Booth and Gibbs (1969) reported that many farmers are drought-conscious and the 

provision of sufficient water management is top priority in the development of ECHC. According 

to Card (1977) and Rodrigez-Iturbe (2000) moisture supply is probably the most important 

environmental control of vegetation diversity and the attainment of production potentials. 
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Salinger (1979) attributed much of the growth of the pastoral industry in 1950-69 to the below 

average occurrence of drought in those years compared to the drier 1970’s. Furthermore, 

Maunder (1979) observed that significant fluctuations in soil moisture deficits between years 

had considerable effect on pasture and animal production. The annual pattern of soil moisture 

change and deficit are crucial in grazing management and many regions of the North Island, 

including the ECHC, are regularly influenced by water shortage during summer and autumn 

(Chapman and Macfarlane, 1985, Bircham and Gillingham, 1986, Bretherton et al., 2011).  

2.2.3.2.2 Topography 

There is a strong relationship between pasture composition, distribution, growth, soil properties 

and topography (Radcliffe, 1982, Kemp and López, 2016). Topographic features such as altitude, 

slope angle and aspect play important roles in hill pasture ecosystems; hence their effects on 

pasture production have been investigated in several studies (Gillingham, 1973, Gillingham and 

Bell, 1977, Lambert and Roberts, 1978, Radcliffe, 1982, López et al., 2003, Moot et al., 2009, 

Kemp and López, 2016). Zhang et al. (2005) observed that slope angle and spring rainfall were 

the two dominant variables limiting pasture growth. Production usually declines as slope 

increases (mainly due to PAW limitations), whereas nutrient transfer and runoff losses increase 

(Roberts and White, 2016). Slope angle and position differentiate the soil depth and soil physical 

properties, soil fertility and the supply of water for plants, that is generally reduced by increasing 

steepness (Radcliffe and Lefever, 1981, López et al., 2003, Zhang et al., 2005).  

Hill slopes modify the distribution of incoming solar radiation and heat budget that effects soil 

and air temperature, as well as the rate of photosynthesis (McAneney and Noble, 1976). In 

addition, if the slopes are steep enough, stock tracks may develop and exert further impact on 

soil nutrient levels and pasture variability (Gillingham, 1973, Sheath and Boom, 1985). 

The role of slope angle in pasture productivity is better defined, than that of aspect. The 

presence of a seasonal pattern makes the interpretation of aspect effects sometimes 

controversial and it varies from region to region (Suckling, 1959, Lambert et al., 1983). The 

largest contrast has been found between north- and south-facing aspects. Northerly aspects 

often produce more winter growth, while southerly aspects yield more herbage during moisture 

stress in summer, although the length of the seasons has a major effect on the annual 

productivity of both aspects (Lambert et al., 1983). White et al. (1972), Lambert and Roberts 

(1978) and Radcliffe (1982) reported that annual pasture growth was higher on shady aspects, 

than on northerly slopes, however, Gillingham (1973) and Suckling (1975) found the opposite.  
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2.2.3.2.3 Ground temperature 

Plant development is strongly influenced by soil temperature as plant species have different 

requirements for optimal growth (Baars and Waller, 1979). Soil temperature is partly 

determined by season, latitude, altitude, slope angle and aspect conditions in hill country (Scott 

et al., 1985). Some legumes and grass species prefer the sunnier, warmer north aspects, while 

southerly faces suit other species. Gillingham (1973) observed 10 % higher total pasture 

production from northern aspects than southerly faces. Increased slope angle with reduced 

pasture cover are associated with greater diurnal variation (Sheath and Boom, 1985).  

A limiting temperature exists for each species, called base temperature (𝑇𝑏), below which their 

development technically stops, for instance, the perennial ryegrass (Lolium perenne) displays 

significantly higher leaf elongation above 4-5 °C, which is close to its 𝑇𝑏 (Peacock, 1975, 

Nagelmüller et al., 2016). Growth rate and soil temperature are most likely linked by a 

combination of linear and non-linear relationships (Voorend et al., 2014). 

High temperatures rarely cause limitations if there is no moisture stress, in contrast, low 

temperatures are common constraints of potential yield in hill country (Harris et al., 1985). 

Moreover, the regrowth of common temperate grasses is strongly dependent on temperature 

(Baars and Waller, 1979) and the species selection process needs to take into account how 

different plant species tolerate the temperature fluctuations over seasons (Chapman and 

Macfarlane, 1985).  

2.2.3.3 The role of controllable soil management factors  

Fertiliser management and grazing system are the main controllable factors in hill country that 

have the potential to enhance the land’s production capability (Kemp and López, 2016). The 

natural fertility of the soil is fixed, but it can be modified by fertiliser applications and can be 

exploited in a sustainable way by correct management practises. Grazing management 

(structure, duration and intensity) highly depends on the level of knowledge regarding feed 

requirements, the available pasture and the incorporated animals (Hodgson et al., 2005). A solid 

understanding of growth patterns, feed surplus and deficiencies are parts of the grazing strategy 

that a farmer needs to apply to accumulate pasture for the low producing periods.  

In hill country, the main input is fertiliser as irrigation is currently not a feasible option in many 

cases. Pasture growth and herbage accumulation can be stimulated through fertiliser 

applications that also has effects on soil biological activity, botanical composition and organic 

matter content, therefore, indirectly on soil water holding properties (López et al., 2003, Kemp 

and López, 2016). Pastures rely on the nitrogen input fixed by legumes and supplied to 
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associated grasses that usually generates deficiencies in phosphorus, sulphur and sometimes 

lime. Thus, required correction of these constituents are dependent on the spatially 

heterogeneous soil properties that makes fertiliser inputs location and climate specific (Scott et 

al., 1985). Moreover, an adequate amount of soil water is required for the successful interaction 

within the legume-grass-fertiliser-soil system (Gillingham et al., 1998), suggesting that input 

placement and timing are critical components of pasture management.   

2.2.3.4 Production quality and pastoral system management efficiency  

Pasture management practises play a key role in the improvement of pasture quality that 

determines animal productivity and performance (Gray et al., 2004). In New Zealand, pasture 

quality is commonly characterised by the nutritive value that is estimated by two main 

indicators, i.e. digestibility and metabolisable energy (Lambert and Litherland, 2000). These 

parameters are strongly linked to feed allocation systems and the rate of intake that is 

constrained by the amount of pasture available for the animals. To achieve quality increase, 

farmers have been improving their management, introducing better quality species, attempting 

to maximise legume content and green material while minimising dead matter (Hodgson et al., 

2005).  

Land management development and operation efficiency are related to the stocking rate that is 

a function of soil fertility, the vegetative cover, the amount and distribution of rainfall, soil 

water-storing capabilities, the grazing system and the type of animal grazed. Two other major 

measures of the performance of grazed pasture systems and animal production are the herbage 

accumulation rate and herbage mass. In non-irrigated lands, productivity can be frequently 

limited by moisture stress altering the strategic control on the paddock level (Lambert et al., 

1983, Harris et al., 1985, Bluett et al., 1998). Management decision are made by comparing 

herbage mass distribution with a target value (Van Bysterveldt and Christie, 2007, Romera et al., 

2010).  

Traditionally, farmers collected pasture growth data from their land on a regular basis, during 

the so called ‘farm walk’ and sorted their paddocks considering the herbage mass and a target 

line (Romera et al., 2013). To eliminate the time consuming data collection and to exploit more 

information from the pastures, a collection of environmental variables and soil parameters have 

been used to model potential yield (Scott et al., 1985, Romera et al., 2013). Although, these 

models are prone to errors and uncertainties despite their key role in pasture management. 
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2.2.4 Simulating pasture productivity 

Pasture growth simulation models have been increasingly used by agronomists for assessing the 

effects of the controllable and fixed variables of the pastoral system (Li et al., 2011). Some 

standard units of these models are well-understood, such as the seasonal distribution of feed 

demand (Holmes et al., 1987). However, pasture growth depends on a large number of variables 

that are too laborious to measure or require a long-term data collection, making their 

incorporation into these models rather difficult (Woodward, 2001). 

Deterministic and process-based models are commonly applied and integrated into whole farm 

and pastoral system simulations (Johnson et al., 2003, McCall and Bishop-Hurley, 2003, Barrett 

et al., 2004, Romera et al., 2010, Li et al., 2011). However, most of these models were originally 

designed for flat conditions such as the climate-driven Pasture Growth Simulation Using 

Smalltalk (PGSUS) algorithm introduced by Romera et al. (2010). Consequently, modifications 

and additional modules have been developed to make these models applicable on sloping lands.  

In hill country, an ideal pasture growth forecaster application would be able to estimate the 

potential pasture growth rate on various landscape features with spatiotemporally high 

resolution for farming activities. Such a forecaster would take into account the topography 

(slope, aspect, and altitude), climate variables (temperature, rainfall, incoming solar radiation, 

ventilation effect), soil fertility (fertiliser history) and have a detailed water balance module 

calculating daily RAW or soil water deficit considering the sub-paddock variations.  

2.2.5 The water balance model 

The soil water balance for flat land has been extensively studied and is quite well understood in 

New Zealand. For instance, Woodward et al. (2001) provided an analysis of the work by Scotter 

et al. (1979), leading to a validated daily time-step, two soil-layer model. In contrast, relatively 

few studies have been published on the water balance in hill country, despite its significant role 

in New Zealand’s primary sector. Bircham & Gillingham (1986) and Bretherton et al. (2010) 

provided in-depth studies on the water balance modelling on New Zealand’s pastoral hill country 

soils. Bretherton (2012)    conducted a research on repellency-induced runoff and its 

consequences in hill country environment, where he used a modified and refined version of the 

water balance model described by Bircham and Gillingham (1986).  

Commercial versions of these models are in operation, although it is assumed that one of the 

weakest points of these models lies in the soil moisture balance estimations. The water balance 

module often fails to represent the variability in hill country due to the complex water dynamics 

under rolling surfaces and heterogeneous soil types. To overcome some of the issues 
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encountered by the single-layer models (under-prediction of transpiration and growth in 

prolonged dry periods), a two-layer water balance model for flat-lands was developed by Scotter 

et al. (1979) and modified by Woodward et al. (2001). The two-layer Scotter model is illustrated 

on Figure 2.2.  

 

Figure 2.2 The simple two-zone, Scotter water balance model, depicting the division of the soil profile 
into a preferentially recharged and depleted zone near the surface and a deeper soil section (Scotter et 
al., 1979). AWHC-available water holding capacity. 

The model derives the soil water deficit (W) for the deeper zone and soil water deficit for the 

rapid recharge surface zone (Ws) on a daily basis t. The formula requires the calculation of 

potential evapotranspiration (PET) and soil-specific parameters i.e. AWHC for both layers. PET 

can be estimated by using existing models that take into account the climatic data, such as 

temperature, sunshine hours or radiation (Smith et al., 1998). The Woodward water balance 

model is given as per Eq. (2.6).  

 𝑊𝑡+1 = 𝑚𝑖𝑛(0, 𝑊𝑡 + 𝑟𝑎𝑖𝑛𝑡 − 𝐴𝐸𝑇𝑡)   (2.6) 

 Ws (t+1) = min(0, Ws (t) + raint − AETs (t))  

Where Wt is soil moisture deficit (negative), 𝑟𝑎𝑖𝑛𝑡 is the daily precipitation and AETt is actual 

evapotranspiration on day 𝑡. The 𝐴𝐸𝑇 model is expressed as: 

𝐴𝐸𝑇 = 𝑚𝑖𝑛(𝑃𝐸𝑇, 𝜎 𝑅𝐴𝑊)   (2.7) 

𝐴𝐸𝑇𝑠  = 𝑚𝑖𝑛(𝑃𝐸𝑇, 𝜎 𝑅𝐴𝑊𝑠)  

Where σ is the proportion of RAW taken up by plants in one day. Woodward et al. (2001) 

proposed that RAW can be calculated as the sum of available water in the surface zone RAWs, 

and the remainder of available water in the deeper zone as per Equation 8. 

𝑅𝐴𝑊 = 𝑅𝐴𝑊𝑠 + 𝛼𝑃𝐸𝑇[(𝐴𝑊𝐻𝐶 + 𝑊) − 𝑅𝐴𝑊𝑠] (2.8) 
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𝑅𝐴𝑊𝑠  = 𝐴𝑊𝐻𝐶𝑠 + 𝑊𝑠   

Where αPET is the availability of soil water, whereas AWHCs and Ws represents the water 

holding capacity and soil water deficit of the surface zone, respectively.  

In the real-world applications, the spatially extended water balance model is fed by AWHC 

values generated from national, low spatial resolution soil layers. Dominantly, the sub-farm 

spatial variability is much larger than the utilised input layers would suggests, therefore the 

improvement of the soil water balance part of the simulations would have a considerable effect 

on the prediction accuracy of the pasture growth forecasters.  

2.3 Factors driving soil moisture availability and distribution in hill country 

Soil moisture is part of a complex environmental system, where static and dynamic controlling 

factors may be distinguished according to Reynolds (1970)   . Static or slowly changing 

parameters include mainly the physical soil properties and topographical features. Climatic 

variables, vegetation properties, soil organic matter, depth to water table and time since last 

rainfall event are classified as dynamic factors. Many of these are interrelated and most of them 

vary spatially and/or temporally, therefore the time and spatial scale are critical points (Crow et 

al., 2012b).  

Changes in soil moisture levels can generally occur via precipitation, evapotranspiration, net 

lateral flow, or vertical drainage over a variety of timescales (Wilson et al., 2004). Consequently, 

soil moisture is generally considered as a spatiotemporally highly changeable parameter (Korres 

et al., 2013, Vereecken et al., 2014) that is particularly true at the soil surface, the interface of 

energy and water exchange (Wilson et al., 2004, Petropoulos et al., 2014, Bretherton et al., 

2018).  

On the other hand, Grayson et al. (1997) grouped the various affecting factors into local and 

non-local controls. Local controls, such as soil properties, vegetation and possibly the radiation 

(if the terrain is complex) determine the vertical fluxes, i.e. drainage and evapotranspiration 

during dry periods. In contrast, under wet conditions, surface and subsurface lateral fluxes 

govern the soil moisture distribution where the non-local controls dominate. These mechanisms 

switch from one to the other when evapotranspiration increases/decreases and precipitation 

decreases/increases. That is explained by the dominance of lateral flow over vertical fluxes or 

vice versa (Grayson et al., 1997). In general, isolating the effects of the listed factors (or group 

of factors) are difficult (Vereecken et al., 2014). A brief description is given about their impacting 

magnitude regarding soil moisture variability. 
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2.3.1 Meteorological forcing 

Incoming solar radiation, air and soil temperature, wind, humidity and precipitation exert their 

effects on the space-time dynamics of soil moisture (Petropoulos et al., 2014). A number of 

studies have shown that precipitation is the most important of all meteorological factors 

influencing soil water, runoff and subsurface flow characteristics (Chen et al., 2005), although it 

is scale dependent (Crow et al., 2012b). The rate of evaporation is mainly controlled by incoming 

solar radiation. Additionally, radiation also contributes to the rate of transpiration, consuming a 

remarkable ~65-80% of rainfall (Bretherton et al., 2010). Climatic factors are often studied from 

a cumulative, multi-parameter point of view due their complex interrelationships a (Bell et al., 

1980, Famiglietti et al., 1998). 

2.3.2 Topography 

The patterns of soil variation are strongly related to the topographical features of hill country. 

Slope angle, aspect, curvature, specific contributing area and relative elevation strongly affect 

the distribution of soil moisture (Crow et al., 2012b). It has been established that the direction 

and angle of a slope can have a significant influence on surface temperature as they directly 

control the amount of solar irradiation received (Petropoulos et al., 2014). The amount of 

infiltration, drainage and runoff is influenced by the slope angle; steeper slopes have been 

observed to be generally drier than flat areas (Famiglietti et al., 1998). As a general rule in the 

southern hemisphere it is accepted that northern aspects are warmer and drier than south-

facing aspects (Radcliffe and Lefever, 1981). Radcliffe and Lefever (1981) also observed that the 

moderately steep (25°) north-facing slopes exerted higher evapotranspiration rates and 

received 80 % more radiation than the south-facing slopes on a grazed pasture over a year 

period. 

Curvature provides information on the convexity or concavity of the landscape that showed 

significant correlation to soil moisture patterns (Moore et al., 1988, Sulebak et al., 2000, Kaleita 

et al., 2007, Shi et al., 2012). It quantifies the rate of change of a first derivative such as slope or 

aspect in a given direction that defines lateral flow characteristics (Gallant and Wilson, 2000).  

Representing the catchment area, specific contributing area (also called upslope area) controls 

the volume of subsurface moisture and lateral fluxes (Nyberg, 1996, Grayson et al., 1997). It is 

defined as the upslope area above a certain length of contour line segment or grid cell that 

drains to the given element or contributes to the flow across the element (Famiglietti et al., 

1998, Rieger, 1998, Gallant and Wilson, 2000). Larger upslope areas usually lead to higher soil 
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water contents on hillslopes whereas slopes with a smaller contributing area are likely to be 

drier (Famiglietti et al., 1998).  

An inversely proportional relationship has been found between soil moisture and slope position, 

also known as relative elevation (Hawley et al., 1983, Jacobs et al., 2004, de Rosnay et al., 2009). 

It was observed that sites at higher relative elevation tend to lose more water and can have less 

water received from the upslope areas (Qiu et al., 2001b). Exposed slopes and hilltops are most 

likely to present drier conditions due to higher evapotranspiration rates (Qiu et al., 2001b). The 

presence of topographic control on soil moisture variability is generally accepted, although it 

may be a poor indicator during drying stages (Western et al., 2003). 

2.3.3 Soil properties 

Variations in soil texture, structure, organic matter and macro-porosity have been documented 

to influence soil moisture distribution (Petropoulos et al., 2014). Gao et al. (2011) found strong 

correlation between soil texture and moisture content. Infiltration, permeability, and water-

holding capacity are affected by the characteristics of soil texture and structure (Moore et al., 

1988). The proportion of clay, silt, and sand can also intensify the soil moisture deficit, since the 

smaller the soil particle the greater its ability to retain water, meaning that clay soils have greater 

water holding capacity than silt and sand (Younis and Iqbal, 2015). Water and air storage 

capabilities, drainage and drying processes depend on the porosity, where macro-pores (ø > 30 

µm) influence the rate of water drainage and vertical penetration (Niemann and Edgell, 1993, 

McLaren and Cameron, 1996).  

The presence of soil organic matter (decomposed organic material) can improve the AWHC 

(McLaren and Cameron, 1996). Additionally, soil albedo (reflectance) is partly a function of 

organic matter content, which controls the amount of energy absorbed by the evaporating 

surface of a bare soil (Kurucu et al., 2009). 

2.3.4 Vegetation 

The bidirectional relationship was investigated between soil moisture and vegetative cover by 

Hawley et al. (1983) and Liancourt et al. (2012). Vegetation related controls are mainly linked to 

the alteration of infiltration and evapotranspiration rates. These processes include canopy 

throughfall, land surface shading, the generation of turbulence enhancing evapotranspiration, 

the addition of organic matter and root activity which influence hydraulic conductivity and water 

extraction (Famiglietti et al., 1998). The contribution of vegetation amount, type, density and 

uniformity to soil moisture spatial variability has been documented to be a more dynamic 

variable than soil and topographic factors (Crow et al., 2012a, Petropoulos et al., 2014). Hawley 
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et al. (1983) also observed that variations caused by topography tend to be diminished by the 

vegetative cover.  

2.3.5 Land use and management 

Soil physical properties, top soil structure and vegetation cover can be significantly affected by 

land use and related practises that can have a significant effect on soil moisture patterns (Qiu et 

al., 2001a). Unsuitable land management may lead to soil degradation, decreased soil organic 

matter content, lower infiltration rate and PAW as well as enhanced erosion processes. Studies 

have shown that differences in land management history can have a high impact on the 

hydraulic properties of soils and can negatively influence soil productivity (Sonneveld et al., 

2003, Haghighi et al., 2010). Gao et al. (2014)  observed that different land uses resulted in 

differing spatial variations in soil water content. On farmed lands, the water pathways are 

subject to change by the establishment of roads, terraces and ditches thereby modifying the 

hydrological continuity and the spatial variation of soil moisture (Hébrard et al., 2006).  

2.4 Observed soil moisture data 

The benefits of reliable soil moisture data has been recognised for many decades as it governs 

numerous key environmental processes at various spatial and temporal scales. From the 

traditional ‘look and feel’ approach (Johnson, 1962) through to non-invasive, ground-based 

approaches (Bogena Heye R. et al., 2015) to satellite-based observations (Wagner et al., 2007, 

Wang and Qu, 2009), several techniques have been developed to estimate soil moisture. 

Figure 2.3 depicts an illustration of several soil moisture observation methods as a function of 

spatial extent and on what scale they are mostly applied. A combination of various observation 

techniques is frequently utilised in soil moisture research and applications, therefore Figure 2.3 

aims to give an understanding of how methods can be synergised.  

Various ways exist to group soil moisture measuring and estimation methods. The available 

techniques are often divided into three main approaches such as in-situ measurements, soil-

water models and remote sensing. Robinson et al. (2008b) and Romano (2014) categorised the 

field techniques based on whether direct contact is required with the soils, i.e. contact-

based(invasive) and contact free (non-invasive) techniques. 
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Figure 2.3 Summary of the discussed ground-based and microwave remote sensing soil moisture 
observation techniques. The methods are related to the spatial extent as well as the relative spatial 
scale of observations (modified after Vereecken et al. (2008). 

In the overview of Dobriyal et al. (2012) ground-based techniques and remote sensing methods 

were discussed. Seneviratne et al. (2010) assessed the available soil moisture datasets from 

ground-based measurements (direct, indirect), remote sensing, atmospheric-terrestrial water 

balance and land-surface models. This thesis will discuss the methods by dividing them into 

ground-based and remote sensing techniques. 

2.4.1 Ground-based measurement methods  

2.4.1.1 Direct methods 

Direct methods are considered as the most accurate techniques, although they involve invasive 

soil sampling and the removal of soil moisture by evaporation or chemical reaction. Despite 

being a classical approach, the thermo-gravimetric technique is the most commonly applied 

direct soil water determination method (Schmugge et al., 1980, Lekshmi et al., 2014). Due to its 

unprecedented accuracy for all soil types, it is often referred to as the reference technique in 

comparisons with soil moisture estimations using other methods (Johnson, 1962, Lal and Shukla, 

2004, Dobriyal et al., 2012). The procedure consist of taking soil samples (100-200g) from the 

site of interest, weighing the wet samples and placing them in a forced draft oven for drying to 

a constant weight at 105 °C. The process ends when the sample weight becomes stable and as 

a result, 𝜃𝑔 on dry basis can be calculated as per Eq. (2.1) and then converted to 𝜃𝑣 according to 
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Eq. (2.5) if 𝜌𝑏  is known. Thermo-gravimetric observations are often required for calibration and 

validation purposes, although the method is labour-intensive and time-consuming. The method 

has limitations and disadvantages in obtaining a temporally dense dataset from the same 

location. Therefore, indirect techniques have been established that are more cost and time 

effective and can sense soil moisture with a higher temporal resolution.  

2.4.1.2 Indirect methods 

Several indirect methods measure a physico-chemical property of the soil to estimate soil water 

content (Evett and Parkin, 2005). Strictly speaking, they are not able to measure soil water 

content; thus, empirical calibrations are used to convert the measurements to soil moisture 

values. Most of these methods require contact with the soil medium (Julien et al., 2011). 

2.4.1.2.1 Nuclear techniques 

The radioactive technology and idea of the neutron moisture probe published by Gardner and 

Kirkham (1952) introduced a breakthrough in modern soil moisture estimation, which was 

developed after the significantly improved knowledge about nuclear physics in the 1940s. The 

most widely applied radioactive techniques are neutron scattering, nuclear magnetic resonance 

(Zazueta and Xin, 1994) and gamma-ray attenuation. The latter has the capability to sense soil 

water content in the top 1-2 cm of soil layer. The method uses the principle that gamma-ray 

scattering and absorption are affected by the changes in soil wetness density (Schmugge et al., 

1980). Even though the gamma attenuation have some advantages over the neutron moisture 

meters, the neutron scattering method remained the standard indirect method until the age of 

dielectric sensors arrived in the 1980s (Ochsner et al., 2013). 

The concept of neutron scattering is partly based on the physical fact that fast neutrons slow 

down to the thermal stage through collision with common soil elements. Secondly, hydrogen is 

the most effective element in the neutron thermalisation, which is mostly present in the form 

of water molecules (Evett, 2000a). Neutron moisture meters are equipped with a high-energy 

neutron source and a detector to sense the scattered and thermalized neutrons. Since the 

portion of slow neutrons is mainly controlled by the amount of water present, the instrument 

can estimate soil water content on the volume basis (Greacen, 1981). Neutron moisture meters 

have been frequently used as reference techniques among the indirect, non-destructive 

methods due to their high accuracy (Evett and Steiner, 1995, Chanasyk and Naeth, 1996). The 

technique is extremely costly and it has special requirements for installation and operation. 

Additionally, its sphere of influence varies in dry and wet conditions (Keys, 1990). 
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2.4.1.2.2 Dielectric soil moisture sensing methods 

The next set of 𝜃𝑣 sensing are the dielectric techniques or electromagnetic (EM) methods as 

they operate based on the measurements of EM properties. A broad spectrum of instruments 

makes use of the dielectric parameters of the sensed media from the sample scale to remotely 

sensed several km2 area, which will be discussed outside of the ground-based methods. Each 

technique produces one of the following outputs: travel time, impedance, capacitor charge time, 

oscillation frequency or frequency shift depending on the sensor type. The raw acquisitions are 

then converted to 𝜃𝑣 through calibration functions (Blonquist et al., 2005). Dielectric methods 

have been increasingly applied due to their non-destructive and reliable soil moisture 

estimations that can be delivered rapidly and repeatedly from the same location via automation 

(Robinson et al., 2003, Stacheder et al., 2009).  

In general, dielectric instruments sense soil water content by measuring the apparent soil bulk 

permittivity 𝐾𝑎 that determines the velocity of an EM wave emitted into the surrounding soil 

media. The theoretical relative permittivity 휀𝑟 describes how a given medium interacts with the 

electric field compared to the effect of vacuum on the same electric field. The 휀𝑟, also called 

dielectric constant, is defined as the ratio of absolute permittivity of the substance to the 

permittivity of a vacuum (=1). 휀𝑟 is a complex quantity with a real and imaginary component, 

although the imaginary part can be neglected concerning the field of study and its small 

contribution (Topp et al., 1980).  

Since the soil is a composite material, the measured permittivity is made up by the relative 

contribution of minerals, air and water. The relative permittivity of liquid water 𝐾𝑎𝑤   (=81) is 

considerably larger than that of the other soil constituents  𝐾𝑎𝑠  (=2–13 for most soil minerals) 

and air 𝐾𝑎𝑎  (= 1), thus, the 𝐾𝑎 is mainly governed by the amount of liquid water (Jones et al., 

2002, Chandler et al., 2004). The terms relative permittivity and relative dielectric constant are 

used interchangeably in this study, although they can have different meanings in certain aspects. 

Commonly, the relationship between 𝐾𝑎 and 𝜃𝑣 is established by an empirical equation (Eq. 2.9) 

of Topp et al. (1980) that provides estimations of 𝜃𝑣  < 0.5 m3 m-3 in most soils with a 𝜃𝑣 error of 

±0.02 m3 m-3 (Evett and Parkin, 2005):  

 𝜃𝑣 = −5.3 • 10−2 + 2.29 • 10−2𝐾𝑎 − 5.5 • 10−4𝐾𝑎2 + 4.3 • 10−6𝐾𝑎3  (2.9) 

The relationship between 𝐾𝑎 and 𝜃𝑣 has been re-established in numerous studies by using 

physical approaches, such as dielectric mixing and composite sphere models to enhance the 

general applicability of dielectric sensors and standardise their characteristics (Dobson et al., 

1985, Friedman, 1998, Jones et al., 2005). A range of dielectric methods are available on the 
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market, but this review will focus only on the time domain reflectometry (TDR), frequency 

domain reflectometry (FDR) and capacitance-based techniques due their relevance in this thesis.  

2.4.1.2.2.1 Time domain reflectometry (TDR) 

TDR is a widely accepted EM method, which was developed to sense soil water content and 

made operational in the 1980s by Hoekstra and Delaney (1974) and Topp et al. (1980). In an 

operating TDR device, very short, precisely timed EM pulses are generated and sent along 

metallic rods (length 𝐿), at a bandwidth of 0.02-3 GHz, which are part of the so called 

transmission lines (Fig. 2.4 (A)) (Robinson et al., 2003, Romano, 2014).  

 

Figure 2.4 Schematic design of a rod type TDR installed vertically (L = rod length) (A), multiple TDR 
sensors for soil profile monitoring placed horizontally (B) and a multi-sensor capacitance-based probe 
with ring electrodes.  

By measuring the travel time of the propagating EM wave along the probe inserted in the soil, 

the soil 𝐾𝑎 can be determined (Dobriyal et al., 2012). The propagation velocity of the travelling 

pulse is strongly controlled by the soil moisture content; hence, it can be related to 𝜃𝑣. The 

instrument is equipped with 2-3 rods that are inserted in the soil, and a digitiser detects changes 

in the energy levels along the transmission lines. The use of high frequency pulses provides a 

less susceptible response to soil specific properties (Robinson et al., 2008b). However, soil 

salinity or highly conductive heavy clay contents may affect TDR, as it contributes to attenuation 

of the reflected pulses (Ferrara and Flore, 2003) and the rods need to be installed horizontally 

from a soil pit which is a considerable disadvantage of the technique (Fig. 2.4 (B)). 

2.4.1.2.2.2 Frequency Domain (FD) techniques 

Frequency domain (FD) sensors have been favoured in agricultural applications, such as real-

time, feedback based irrigation control systems (Stacheder et al., 2009). Although they are less 
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precise than the neutron probes (Gabriel et al., 2010, Wendroth et al., 2013), FD probes offer a 

low cost alternative (Paltineanu and Starr, 1997). FD reflectometry (FDR) and capacitance 

methods are often discussed simultaneously since both belong to the frequency domain (FD) 

group (Romano, 2014). The basic idea behind FD methods is that a capacitor can be formed 

between two or more electrodes (metal rods, spikes or rings) and the surrounding soil medium, 

therefore the electrical capacitance is dictated by 𝐾𝑎. FDR techniques differ from the TDR in 

that the former measures the variation in frequency of the returned EM pulses. FDR instruments 

detect the swept frequency, i.e. it records data over a range of frequencies (Lekshmi et al., 2014).  

Capacitance-based sensing devices also make use of the FD, although they measure the charging 

time of the generated capacitance field that extends into the soil medium (Mittelbach et al., 

2012). An oscillator is often connected to the circuit, that converts the changes in 𝐾𝑎 to the 

variation in the frequency of the transmitted signal between the electrodes (Leib et al., 2003, 

Lekshmi et al., 2014). If circular shaped electrode configuration is used, the electric components 

(electrodes, oscillator) are often inserted into a PVC access tube (Fig. 2.4 (C)).  

The frequencies used in FD devices (20-300MHz) are lower than that of TDR, which causes 

sensitivity to soil properties (Romano, 2014), therefore FD sensors require the development of 

soil-specific calibration curves (Blonquist et al., 2005). The sphere of influence is relatively small 

(radius up to 5-6 cm) (Gabriel et al., 2010) making the correct installation crucial to ensure 

optimal sensor to soil contact for accurate data acquisition. Despite these drawbacks, obtaining 

multi-depth 𝜃𝑣 data by field-calibrated FD instruments has been receiving growing interest 

especially in the field of precision agriculture. 

2.4.1.2.3 Other indirect methods 

Since several further indirect techniques have been developed, a brief overview is given without 

any intention to provide a complete synopsis. Describing each technique in detail is beyond the 

scope of this thesis, therefore the reader is referred to the cited material for further information. 

Additional indirect methods include amplitude domain reflectometry (Muñoz-Carpena et al., 

2004), soil resistance sensors, time domain transmission (Blonquist Jr et al., 2005)  thermal 

dissipation block technique (Dias et al., 2011), tensiometers, gypsum block method, pressure 

plate method (Dobriyal et al., 2012), free line sensing (Stacheder et al., 2009), gamma-ray 

scanners and hygrometric techniques (Zazueta and Xin, 1994).  

The popularity of non-invasive, contactless sensing of soil moisture has been growing, along with 

an increasing demand for large scale, regular, high spatial resolution products. Bogena Heye R. 

et al. (2015) summarised the sensing of soil moisture by cosmic-ray neutron probes, Global 
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Navigation Satellite System reflectometry, ground-based microwave radiometry, gamma-ray 

intensity monitoring, terrestrial gravimetry and low frequency EM surface waves. In recent 

years, cosmic-ray probes have been emerging, as they are able to sense the integrated soil 

moisture from a profile down to approximately 75 cm (depending on wetness) and with a 

horizontal footprint of about 330m. The probes make use of secondary fast neutrons generated 

by the incoming, primary cosmic-ray particles. As the neutrons make their way back to the soil 

surface, the amount of escaping particles is a function of the soil water content (Vereecken et 

al., 2014). 

Proximal methods, such as electrical resistivity tomography, ground penetrating radar (GPR) 

(Lunt et al., 2005), EM induction (EMI) and optical (Vis-NIR) field-spectroscopy (Adamchuk and 

Rossel, 2010) are referred to as non-invasive, hydro-geophysical approaches. Their soil moisture 

outcome is commonly compared or combined with TDR or neutron probe estimations (Huisman 

et al., 2002). Proximal techniques offer promising alternatives to occasional surveys with high 

spatial resolution to map the spatial distribution of soil properties filling the gap between the 

point like and remote sensing methods (Robinson et al., 2012, Romano, 2014).   

2.4.1.3 Ground-based wireless soil moisture data management 

The above-mentioned methods have limitations regarding the spatial scale or the temporal 

density of data collection. With the development of micro-electro-mechanical systems and 

computer science, the wireless sensor network (WSN) technology has advanced and can offer 

new, promising possibilities besides the initially prevalent military applications (Romer and 

Mattern, 2004, Yick et al., 2008). WSNs provide a wireless communication protocol to send 

sensor data to remote end users. These networks aim to bridge the gap between the small (point 

to field) and the larger spatial scale (catchment-regional) terrestrial environmental observations.  

A WSN is composed of a collection of spatially distributed, autonomous devices, called sensor 

nodes, organised into a cooperative network that communicates wirelessly and forwards data 

to the gateway (also known as base station or centre connecting point) (Verdone et al., 2010, 

Rawat et al., 2014). These nodes are usually equipped with a processor, a radio interface, an 

analog-to-digital converter, sensors, memory and a power supply. Sensors are connected to the 

wireless nodes that are linked to the gateway unit via radio communication. Wireless internet 

connection is established between the gateway’s modem and a server, which hosts the data.  

Once the WSN has been deployed, the network can operate without continuous supervision and 

perform data acquisition, logging and reporting functions (Yick et al., 2008). WSNs are commonly 

deployed for soil moisture monitoring as they allow near-real time data access at increased 
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temporal, spatial and vertical resolutions, thus eliminating some of the limitations caused by 

conventional ground sampling. Due to the advantages offered by WSNs, observing networks are 

utilised in precision irrigation scheduling (Hedley et al., 2012, Ekanayake and Hedley, 2018), 

characterisation of hydrological fluxes, calibration and validation of remote sensing data (Dorigo 

et al., 2015) and soil moisture variability investigations (Kerkez et al., 2012, Majone et al., 2013). 

2.4.1.3.1 Topologies, deployment strategies and node architectures 

In this study, a “one of a kind” WSN was deployed for ground-based 𝜃𝑣 data collection in hilly 

environment that required a well-planned design to ensure unobstructed communication and 

data transfer. Therefore, a basic review is provided to understand the main issues during a WSN 

installation and its various structures for environmental observation.  

For most WSNs the critical design step is the selection of representative sensor locations of the 

targeted region. Sensor nodes can be deployed randomly, in an ad hoc manner, or installed at 

pre-planned locations depending on the application, the environment and the sensor types 

(Buratti et al., 2009, Abdollahzadeh and Navimipour, 2016). A well-designed network is flexible 

and it is possible to increase the number of nodes or to replace devices without disturbing the 

data collection (Bogena et al., 2010). 

There are many factors influencing the WSN design comprising failure probability, scale 

dependency, installation and maintenance costs, environmental conditions, topology, 

hardware, transmission media and power supply (Akyildiz et al., 2002). The WSN topology (i.e. 

the geometric properties and spatial relations of the WSN) determines major network 

characteristics, such as data routing and processing, diameter and robustness (Romer and 

Mattern, 2004). Logical topologies characterise how a sensor node communicates with other 

nodes. Townsend & Arms (2005) described three topologies (star, mesh and hybrid) commonly 

utilised in WSNs. 

A star network (1) is a simple communication structure, where the remote nodes are connected 

wirelessly to a single gateway. Sending and receiving data are only permitted between a single 

base station and a remote node (a.k.a. single-hop communication). However, this topology is 

prone to single point failure and there is no alternative routing path. 

In contrast, a mesh network (2) setup allows for any node to transmit to any other node in the 

WSN that is within its radio range, enabling multi-hop communications among the sensor nodes. 

Therefore, if a device is set to transfer data to an out of range node, or there is a communication 

barrier (topography, buildings, trees, etc.), it can use any node as relay to forward the message 
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to the desired destination. Mesh networks may form an arbitrary and self-healing structure with 

several message paths. 

A hybrid star-mesh network (3) is the combination of the previous two types and provides a 

robust and versatile communication network while maintaining the ability to keep the wireless 

sensor node power consumption to a minimum. It is also known as partial mesh topology, 

meaning that some nodes are enabled to operate in a multi-hop manner and the rest of the 

nodes are only connected to those nodes they most frequently communicate to. The hybrid 

topology utilises all the advantages of the star and mesh networks (Romer and Mattern, 2004, 

Townsend and Arms, 2005, Sharma et al., 2013a, Sharma et al., 2013b, Rawat et al., 2014). 

2.4.1.4 Global ground-based in situ soil moisture observations 

Remote sensing techniques and land-surface models have been serving several environmental 

simulation systems by providing operational global soil moisture products (Rodell et al., 2004, 

Drusch and Viterbo, 2007, Dorigo et al., 2011b). The required input data varies with applications; 

satellite missions would only sense soil moisture in the top soil layer depending on the sensor 

type. Land-surface models usually operate on a layer-based manner and require input data from 

the near-surface as well as the deeper sections of the soil profile (Bruckler et al., 1988, Wagner 

et al., 1999a, Albergel et al., 2012, Choi and Hur, 2012). 

Systematic soil moisture data acquisition was started in the 1930s using mainly repeated direct, 

gravimetric methods at weather stations (Robock et al., 2000b). In the following decades, more 

and more countries were interested in soil moisture monitoring and deployed their own 

research stations to establish observation networks. However, the datasets suffered from 

inconsistent techniques and protocols that led to significant variation in the data. In the 1990s, 

in situ soil moisture data from around the globe was made available through the Global Soil 

Moisture Data Bank (Robock et al., 2000a). This database served as a starting point for the 

revolutionary international cooperation and resulted in the establishment of the International 

Soil Moisture Network (ISMN) in 2009. ISMN is a centralised data hosting facility, which collects 

and harmonises the in situ soil moisture data acquired by a large variety of individually operating 

networks. ISMN makes the data available for the geoscientific community through their data 

portal at https://ismn.geo.tuwien.ac.at/data-access/ (Dorigo et al., 2011a, Dorigo et al., 2011b, 

Dorigo et al., 2013). 

2.4.2 Remote sensing of soil moisture  

While soil moisture information is still of great importance at the point scale, the opportunities 

lying behind large-scale observations from satellites (i.e. catchment, region, continent or global) 

https://ismn.geo.tuwien.ac.at/data-access/
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have turned scientists to the rapidly evolving remote sensing or Earth observation techniques. 

In the context of remote sensing, the information about physical objects is carried by the long-

range EM and gravitational fields (Robinson et al., 2008a). Consequently, remote sensing can be 

defined as the science of physical information obtained by a device from a determined distance 

through the analysis of the received EM or gravimetric signal after interaction with the object, 

area or phenomenon of interest (Sharkov, 2003, Lillesand et al., 2014). Satellite gravimetry is 

still among the emerging methods and can only be applied on an irrelevant large scale 

considering the aim of this study (Tapley et al., 2004, Rodell, 2012). Thus, only the methods that 

make use of the EM energy will be discussed here.  

On this basis, remote sensing of soil moisture refers to those non-invasive, contact free 

techniques that acquire observations via the EM spectrum from a remote position without 

getting in direct contact with the soils. Sensors for remote observation of the Earth surface are 

dominantly mounted airborne and spaceborne platforms but can also be installed on towers 

providing a footprint range of m2 to thousands of km2 (Wagner et al., 2007). Spaceborne 

platforms are frequently preferred as they provide global coverage on a regular basis offering 

consistent datasets and quality.   

Remote sensing methods are subdivided into two groups primarily distinguished based on the 

source of EM energy used (Mladenova et al., 2014). Passive methods (1) provide only reception 

of the variation in the EM field reflected or emitted from a natural source, while active 

techniques (2) emit energy from their own illumination source and receive the reflected signal 

from the investigated objects (Sharkov, 2003). The main components of the remote sensing 

process are illustrated in Figure 2.5 for passive and active methods.  
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Figure 2.5 Components of remote sensing processes: source of energy (a), propagation of energy 
through the atmosphere (b), interaction (c), radiation towards sensor (d), detection of electromagnetic 
signal (e), generation of sensor data (f) and transmission of data to Earth (g) and interpretation of data 
(h) (Lillesand et al., 2014). 

Since the 1970s, remote sensing approaches for soil moisture observations have drawn the 

researchers’ attention and the potential of large-scale soil moisture observation has been 

investigated intensively (Ulaby et al., 1986c, Schmugge and Jackson, 1994, Wagner et al., 1999b, 

Chen et al., 2012, Ochsner et al., 2013). The considerable role of soil moisture in environmental 

systems triggered many attempts to retrieve surface soil water content information using 

various regions of the EM spectrum. Changes in the EM field can be detected and related to a 

number of soil parameters (Robinson et al., 2008a). The highest potential for soil moisture 

retrieval was found in the application of the optical (Vis, NIR, SWIR), thermal infrared (TIR) and 

microwave regions (Maltese et al., 2013, Rahimzadeh-Bajgiran et al., 2013).  

Optical remote sensing of soil moisture uses the 0.4-2.5 µm domain of the EM spectrum and 

measures the solar energy reflected back from the land surface (Petropoulos, 2013). The early 

optical remote sensing over bare soil surfaces made use of the fact that wet soil is darker than 

dry soil (Kerr et al., 2010). Optical spectral reflectance at various water absorption wavelength 

regions (around 1.2, 1.4 and 1.9 µm)  was observed to be sensitive to soil water content, showing 

that reflectance generally drops with increasing soil moisture (Anne et al., 2014, Fabre et al., 

2015). Over vegetation, the Vis-NIR-SWIR bands are able to sense the change in plant biophysical 

and biochemical characteristics which are strongly dependent on water (Gao et al., 2013). Thus, 

vegetation indices, such as Normalized difference Vegetation Index (NDVI) and Normalized 
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Difference Water Index (NDWI) have been developed to indicate the physiological state of the 

vegetation and indirectly the soil moisture (Peters et al., 2002).  

TIR remote sensing proved its capability to map soil moisture in deeper depth than optical 

methods by using the 3.5-14 µm wavelength range (Schmugge et al., 1980, Behari, 2006, 

Anderson et al., 2007). The most commonly applied technique is the thermal inertia approach 

(Price, 1977), the generation of crop water stress index, water deficiency index and temperature 

vegetation index (Gao et al., 2013). The thermal inertia method is built upon the diurnal cycle of 

land surface temperature and the principle that heat capacity and heat conductivity of the land 

surface is impacted by the soil water content. By knowing the amplitude of diurnal temperature 

change, a model function can be developed to predict soil moisture, because the increase in soil 

water content reduces the diurnal temperature fluctuation, thus the thermal inertia 

proportionally increases (Petropoulos, 2013, Zhao and Li, 2013, Zhang and Zhou, 2016).  

Optical and TIR approaches have numerous limitations due to the coarse temporal resolution 

and the atmospheric effect, night effect, vegetation, soil properties, surface roughness and 

cloud cover (Behari, 2006, Kerr et al., 2010, Zhang and Zhou, 2016). Moreover, optical bands can 

interact only with the top few millimetres of bare soil or the surface of the plant leaves and 

stems which allows only the indirect retrieval of soil water content (Petropoulos et al., 2015, 

Sabaghy et al., 2018).  

By using specific sections of the microwave region of the EM spectrum (0.1-100 cm), numerous 

limitations related to the optical and TIR methods can be eliminated, placing the active and 

passive microwave sensing among the preferred methods for spatial soil moisture mapping. 

Furthermore, synergistic methods are able to derive soil moisture from a combination of several 

remotely sensed information obtained at various regions of the EM spectrum. Common fusion-

based methods include the synergistic use of optical and thermal earth observation data (i), the 

combination of active and passive microwave observations (ii) and the fusion of microwave and 

optical or thermal infrared acquisitions (iii) (Petropoulos et al., 2015).  

2.5 Microwave-based soil moisture remote sensing 

2.5.1 Physical background 

The EM waves applied in soil moisture remote sensing covers an extensive range from the short, 

400 µm to long, 1 m wavelengths. The shortest wavelengths of the radio spectrum, the 

microwaves, refer to the approximate frequency range of 0.3-300 GHz corresponding to a 

wavelength range between 1 m and 1 mm shown (Fig 2.6) (Behari, 2006, Petropoulos, 2013).  
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Figure 2.6 The electromagnetic spectrum (European Space Agency, 2012) and the band designation of 
the microwave region used in microwave remote sensing (Ouchi, 2013). 

This region is effectively independent of solar illumination and the sensed intensity depends on 

the objects’ radiative, dielectric, physical, chemical, geometrical and thermal characteristics 

(Sharkov, 2003). The microwave domain can be subdivided into several bands (Fig. 2.6). Most 

studies found the low-frequency (X, C and L band) microwave sensing the most suitable for 

quantifying soil moisture (Behari, 2006, Calvet et al., 2011, Dobriyal et al., 2012). These findings 

made use of the large contrast between the 𝐾𝑎 of dry and wet soils (Schmugge et al., 2002). L-

band has been the preferred choice for many satellite missions, but C and X bands carry useful 

information regarding soil moisture if the vegetation is not too dense (Calvet et al., 2011).  

2.5.2 Passive microwave remote sensing  

Passive instruments usually detect the intensity of the naturally reflected or emitted energy 

from the land surface. This energy either travels in the form of reflected solar radiation in the 

Vis and NIR regions or emitted energy in the TIR or microwave regions (Schmugge et al., 2002, 

Petropoulos et al., 2015). Every object that has a temperature higher than the absolute zero (-

273.15 °C) emits EM waves (thermal bands). Passive microwave remote sensing (radiometry) is 

able to detect the radiated energy in the 1-30 cm region which is usually expressed in the form 

of brightness temperature (Petropoulos, 2013). The thermally generated radiation is less 

sensitive to surface roughness, soil parameters and land cover (Das and Paul, 2015a), although 

it is largely influenced by soil water (Njoku and Entekhabi, 1996, Behari, 2006, Rees, 2013). 

Passive sensors require large antennas to detect the thermal radiation that limits the spatial 

resolution. 
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2.5.3 Active microwave remote sensing 

Active microwave platforms (radars) measure the magnitude of artificially generated energy 

that is reflected, scattered back from the land surface or the targeted objects in the radio region 

(Schmugge et al., 2002, Seneviratne et al., 2010, Lillesand et al., 2014). Radars may or may not 

produce images. Radars mounted on satellites are mainly imaging systems that use the synthetic 

aperture radar (SAR) technology producing continuous strips of imagery from a side-looking 

position (Rees, 2013, Lillesand et al., 2014). SAR systems utilise an advanced signal processing 

technique to synthesise the antenna length and a large aperture (Warner et al., 2009, Rees, 

2013). The coherency of the emitted signal allows the creation of aperture synthesis and when 

combined with the time history of radar echoes results in the high spatial resolution of SAR 

images (Sharkov, 2003, National Academies of Sciences and Medicine, 2015). SAR imagery is a 

major contributor to the objectives of this thesis. 

2.5.4 Spaceborne missions for microwave-based soil moisture observations 

Both passive and active microwave remote sensing have been of great importance in terms of 

remotely sensed soil moisture retrieval in the past four decades (Ochsner et al., 2013, Wagner 

et al., 2013, Mohanty et al., 2017). Hence, several space missions have been used for deriving 

soil moisture even though they have initially not been foreseen to observe soil water (Table 2.1) 

(Brocca et al., 2010b, Liu et al., 2011, Mladenova et al., 2014). These missions are characterised 

by approximately 25-150 km spatial resolution with varied revisit time, which are the cause of 

several limitations. Nonetheless, promising correspondences were found between satellite 

derived and ground-based data, closely reproducing the temporal dynamics of in situ soil 

moisture (Brocca et al., 2010a, Dorigo et al., 2015).  
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Table 2.1 Overview of spaceborne, microwave-based missions relevant for soil moisture applications (λ 
- frequency, EOL - End of Life, A-active, P - passive, rad - radiometer, scat -scatterometer, con - 
constellation). 
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Dedicated satellite missions designed for global soil moisture measurements appeared relatively 

late. First, the Soil Moisture and Ocean Salinity (SMOS) mission was launched in 2009 by the 

European Space Agency (ESA) (Mecklenburg et al., 2012) which was followed by NASA’s Soil 

Moisture Active Passive (SMAP) program in 2015. The SMOS satellite is equipped with and L-

band radiometer recording the surface’s brightness temperature at a spatial resolution of 50 km 

with an accuracy of ±0.04 m3 m-3 every three days. The basic idea behind the SMAP mission was 

to merge the coarse resolution but highly sensitive passive and high-resolution active microwave 

observations for the first time, and achieve an improvement in resolution and accuracy 

(Entekhabi et al., 2010b). Unfortunately, a component of the L-band radar instrument failed in 

the same year leaving only the radiometer operational, generating 36 km pixel size passive soil 

moisture products (Ming et al., 2016, Das et al., 2018). 

Potential future missions, summarised in Table 2.2, will be able to provide soil moisture 

retrievals at higher spatial and temporal resolution and will open a market for new applications 

(Mohanty et al., 2017). The number of SAR missions are on the rise and already either in the 

planning or developmental phase. The commonly followed open data policy will allow more 

widely available datasets for research and educational purposes. 

Table 2.2 Overview of the future space borne missions that will open new possibilities for soil moisture 
retrieval and global applications (λ - frequency, EOL - End of Life, A-active, P - passive, rad - radiometer, 
scat -scatterometer, con - constellation (number of satellites). 

Type Satellite / Mission Agency 
Planned 
launch 

Planned 
EOL 

Instrument 
Band / λ (GHz) / 

polarisation 
Revisit

(d) 
Spatial 

res. 

A RADARSAT con. (3) CSA and 
more 

2018 2025 SAR C / 5.4 / multi 4-12 3-100m 

A METOP C ESA 2018 2024 ASCAT C / 5.3 / VV 1.5 12.5-
50km 

A METOP SG ESA 2021 
 

SCAT C / 5.3 / VV , VH 
 

15-
20km 

A SAOCOM con. (4) CONAE/A
SI 

2018 2023 SAR L / 1.27 / multi 8-16 10-
100m 

A NISAR NASA/ISR
O 

2020 
 

SAR L, S / polarimetric 12-60 0.1-
50km 

A TERRASAR-X NG DLR 2020-
2022 

 
SAR X / 9.65 /  multi 2.5 1-16m 

A PAZ INTA 2018 
 

SAR X / 9.65 / multi 11 1-15m 

A/P WCOM CAS 2020 
 

FPIR L, S, C / ~1.41, 
~2.65, ~6.7 / full 

2-3 15-
50km 

A TANDEM L DLR 2022 
 

SAR L / 1.2 / full 8-16 50-
500m 

A COSMO- 
SKYMED SG con. (2) 

ASI 2018 2026 SAR 2000 
SG 

X / 9.6 / multi 1.5-10 1-35m 

2.5.5 Main characteristics of Synthetic Aperture Radar (SAR) remote sensing  

A SAR image pixel represents measurements of physical processes, expressed as digital 

numbers. The fundamentals of radar backscattering was presented by Ulaby et al. (1982a) 

providing the relationship between the received and the transmitted power. A common form of 
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the ‘radar equation’ is given by Eq. (2.10) (Ulaby et al., 1981) that establishes the relationship 

between received power on the antenna 𝑃𝑟  (W) and power reradiated by a single target:  

 
𝑃𝑟 =

𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋)3𝜂𝑅4
𝜎  

(2.10) 

Where 𝑃𝑡 is the transmitted power (W), 𝐺𝑡 is the power gain on transmit, 𝐺𝑟 is the power gain 

on receive, 𝜆 is the wavelength (m), 𝑅 is the distance between the radar and the target (m), 𝜂 is 

the efficiency of the antenna and σ is the scattering cross section (m2). SARs measure an infinite 

collection of statistically identical signals from a target volume. Therefore, Eq. (2.10) is extended 

to gain the backscattering coefficient or cross-section per unit surface area σ0 (m2 m-2)  (Ulaby 

et al., 1996). The value of σ0 quantifies the signal intensity and represents the power loss caused 

by the interaction mechanisms. The σ0, for a given SAR configuration, can be expressed by 

dividing the mean σ with the illuminated area 𝐴0 (m2) as per (Eq. 2.11). 

 
𝜎0 =

〈𝜎〉

𝐴0
=

4𝜋𝑅2〈|𝐸𝑠|2〉

𝐴0|𝐸𝑖|2
  

(2.11) 

Where 𝐸𝑠 is the scattered electromagnetic field and 𝐸𝑖  is the incident EM wave intensity.  

Due to its wide dynamic range, σ0 is usually converted to decibels (dB) (Rees, 2013) by Eq. (2.12) 

presented in (Ulaby et al., 1996), where i, j = transmit and receive signal polarisation.  

 𝜎𝑖,𝑗
0 (𝑑𝐵) = 10 𝑙𝑜𝑔 𝜎𝑖,𝑗

0 (𝑚2 𝑚−2)  (2.12) 

2.5.5.1 The side-looking SAR geometry 

The basic geometry of an operating, spaceborne SAR imaging system is shown in Figure 2.7 (A). 

As the SAR platform moves along the flight path, short, high-frequency pulses are transmitted 

from an antenna perpendicular to the SAR propagation direction (azimuth direction) at an off 

nadir angle (look angle) 𝜃𝑜𝑓𝑓  at the order of microseconds (Ouchi, 2013, Rees, 2013). The 𝜃𝑖 is 

defined as the angle between the illumination direction (slant range direction) and the vertical 

direction at the point of interaction. Ground range direction is the projected slant range 

direction to the ground. The intersection of the radar beam (characterised by the azimuth 

beamwidth) and the surface defines the width of an image swath (Rees, 2013). Range resolution 

is the function of the bandwidth of the radar pulse and it allows the separation of ground 

features located close to each other. The azimuth resolution depends on the azimuthal 

beamwidth, slant range and the signal-processing algorithms. The deterioration of azimuth 

resolution is eliminated by SAR, (Warner et al., 2009, Lillesand et al., 2014).   
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Figure 2.7 Illustration of a side-looking SAR system geometry in operation (A) and the main geometric 
distortions (B, C, D). Modified after Ouchi (2013) and Ford et al. (1993). 

The collectively utilised side-looking geometry allows high spatial resolution images, although 

the configuration induces geometric distortion effects (Fig. 2.7 (B) and (D)), especially over 

undulating terrain (Jensen, 2009). As SARs measure travel time and the backscattered signals 

are projected to an image reference plane, the process can lead to the phenomena of 

foreshortening and layover. In case of foreshortening, the slopes oriented towards the SAR 

appear compressed along the range direction (Fig. 2.7 (B)) while the backslope is extended by 

the temporal shift of the signal (Braun and Hochschild, 2017). 

Steep slopes may result in layover effects, if the valley has a larger slant range than the top of 

the slope, thus the image will show a reversed order of the observed points compared to their 

real position (Fig. 2.8 (C)). Due to topographic effects, radar shadow (zero returned signal) may 

appear on the images (Fig. 2.8 (D)) if the slopes oriented away from the sensor are steeper than 

the SAR’s depression angle (Warner et al., 2009, Lillesand et al., 2014). These effects are taken 

into account during the image processing by using a digital elevation model (Bayer et al., 1991).  

2.5.5.2 Basic scattering processes 

The nature of interaction and the magnitude of the σ0 upon contact with the target object are 

dependent mainly on sensor and target properties (Mahdavi et al., 2017). Polarisation,  𝜃𝑖 and 

frequency are the primary sensor properties, whereas target parameters include surface 

roughness, topography, soil properties (𝐾𝑎, soil texture) and vegetation cover (biomass, 
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geometry, structure, orientation and dielectric features) (Ogilvy and Merklinger, 1991, Moran 

et al., 2004, Patel et al., 2006, Anguela et al., 2010, Kornelsen and Coulibaly, 2013, Braun and 

Hochschild, 2017). The radar beam can be absorbed, scattered, reflected, double-bounced and 

it can penetrate into the objects and become further absorbed or scattered (Fig. 2.9) (Kornelsen 

and Coulibaly, 2013). In general, three main scattering processes are discussed, i.e. surface 

scattering, volume scattering and double-bounce scattering (Zou et al., 2015).  

 

Figure 2.8 Schematised elementary scattering processes of an incident radar signal over smooth, rough 
surfaces and vegetated land (Es - scattered electromagnetic field, Ei - incident electromagnetic wave 
intensity, Er - received energy).  

In a specific case of surface scattering, a smooth surface can act similar to a mirror and reflect 

the incident radiation away from the SAR. The process is known as specular scattering and it 

commonly occurs over calm, smooth water surfaces, flooded soils, sealed roads and it can be 

present over very smooth bare soils (Lillesand et al., 2014). Diffused surface reflection occurs if 

the transmitted energy pulse interacts with a homogenous media such as soil scattering the 

incoming wave in all directions (incoherent component) mainly governed by the surface 

roughness (Moreira et al., 2013).  

Volume scattering is the process, when the incident illumination enters an inhomogeneous 

medium, such as vegetation and the discrete elements (leaves, stems, branches) scatter the 

incident wave in multiple directions.  

In the particular situation whereby the incident radar pulse is reflected away from the sensor 

direction by a horizontal (or vertical) surface but it bounces back from a vertical (or horizontal) 

structure (i.e. tree chunks, trunks, high buildings, smooth surfaces), double-bounce scattering 

occurs. Thus, manmade features adjacent to smooth surfaces usually appear with particularly 

high σ0 on SAR images (Warner et al., 2009, Lillesand et al., 2014). 



CHAPTER 2 

50 

 

2.5.5.3 SAR configuration 

High  𝜃𝑖, can cause little or no energy return because of the specular reflection on smooth 

surfaces, whereas high depression angles, i.e. low  𝜃𝑖, may be received by the SAR resulting in 

stronger backscatter (Dobson and Ulaby, 1986, Sabins, 2007). Due to the side-looking geometry, 

radars are extremely sensitive to the 𝜃𝑖 and terrain relation (Toselli, 1987). 

The illumination frequency determines the wavelength; hence, it affects the backscattering 

properties defining which parts of the target take part in the interaction (Chen et al., 2014). The 

long P-waves are able to penetrate the vegetation canopy providing more information about 

the soils, while L-band is more sensitive to vegetation cover and plant density (Patel et al., 2006, 

Moreira et al., 2013). Shorter wavelengths are optimal for vegetation canopy and biomass 

sensing, since they are not able to penetrate the canopy completely (Lillesand et al., 2014).  

To obtain more information from images, SARs apply multiple polarisation modes, such as co-

polarised VV or HH, and cross-polarised VH or HV (Ulaby et al., 1996, Robinson et al., 2008a). 

The first letter denotes to the polarisation of the transmitted wave whereas the second letter 

refers to the polarisation of the received wave (V-vertical, H-horizontal) (Robinson et al., 2008a). 

However, due to the geometric structure and dielectric properties of the target, a portion of the 

radar signal is depolarised creating cross-polarised σ0 (Toselli, 1987). Cross-polarisation was 

observed to be more sensitive to vegetation parameters than co-polarisation (Patel et al., 2006).  

2.5.5.4 Effect of target characteristics on SAR scattering and the inherent noise 

The scattering behaviour over natural surfaces is highly dependent on the relative concept of 

roughness. Surface roughness is often expressed as the root mean square height 𝑅𝑀𝑆ℎ (cm) 

(Gupta and Jangid, 2011, Bousbih et al., 2017). In remote sensing, the application of the Rayleigh 

Criterion can estimate whether the surface is rough or smooth (Sabins, 2007, Lillesand et al., 

2014). Increasing degree of roughness generally results in increased σ0, although its effect varies 

depending on sensor parameters (Ulaby and Batlivala, 1976, Ulaby et al., 1982b, Sano et al., 

1998, Wagner et al., 2007, Baghdadi and Zribi, 2016).  

The soil and the vegetation dielectric properties, often referred to as complex 휀𝑟 and their 

effects on the radar waves need to be considered (Lillesand et al., 2014). The value εr is 

proportional to the number of water dipoles present (Dobson and Ulaby, 1986). 휀𝑟 increase with 

increasing water content. Free water has the largest effect on the 휀𝑟, although bound water can 

also impact soil moisture estimates (Njoku and Entekhabi, 1996). If other factors are not taken 

into account, increasing soil moisture results in increasing 𝐾𝑎 that is followed by increasing σ0 

until an insensitivity threshold (Ulaby et al., 1986c, Kornelsen and Coulibaly, 2013).  
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Vegetation exerts a significant effect on the σ0 by causing a complex scattering and two-way 

attenuation of the signal. Consequently, the total σ0 of a vegetated land-surface is a result of 

several contributions from surface, volume and multiple scattering and double-bounce (Hajnsek 

et al., 2009, Wagner et al., 2013). C-band σ0 is a result of combined scattering and soil-

vegetation interaction, suggesting that it can penetrate through the canopy to a certain extent 

(Ulaby et al., 1986b, Bouman and Hoekman, 1993). The vegetation 휀𝑟, the size, shape and 

orientation of canopy elements, the growth stage and biomass are the main controlling factors 

of σ0 (Ulaby et al., 1986a, Mattia et al., 2003). Ferrazzoli et al. (1992) and Toan et al. (1992) both 

found that σ0 increases with increasing amount biomass until a saturation point.  

An additional amount of uncertainty is added to the image interpretation as SAR remote sensing 

(and active systems in general) inherently suffers from a phenomenon called speckle or noise. 

The active nature and the coherent data processing of SAR imagery introduce seemingly random 

noise (speckles) to the images resulting in a grainy image appearance (Verhoest et al., 2008, 

Rees, 2013, Braun and Hochschild, 2017). The interference introduces seemingly random bright 

and dark pixels. The effect can be reduced by statistical noise modelling or averaging and 

filtering techniques (Lee, 1981, Rees, 2013). 

2.5.6 Soil moisture retrieval from SAR observations  

Satellites equipped with SAR are considered as the most successful platforms for the monitoring 

of soil moisture in an operational manner (Verhoest et al., 2008, Barrett et al., 2009, Petropoulos 

et al., 2015). Although many affecting factors are present, the backbone of SAR-based soil 

moisture estimation is the measurement’s sensitivity to the contrast between dielectric 

properties of the soils and water, which acts as a proxy for soil moisture (Barrett et al., 2009, 

Das and Paul, 2015b, Petropoulos et al., 2015).  

The three microwave bands dominantly utilised for soil moisture estimation with ranging 

sensitivity are the L-band (1-2 GHz, 30-15 cm), C-band (4-8 GHz, 7.5-3.8 cm) and X-band (8-12 

GHz, 3.8-2.5 cm) (Wagner et al., 2007, Gao et al., 2017). Due to the diversity of the developed 

approaches, the methods can be categorised in different ways. In the work of Barrett et al. 

(2009), model-based approaches, change detection-based approaches and polarimetry are 

investigated. Kornelsen and Coulibaly (2013) discriminated among empirical, semi-empirical, 

theoretical (physical), numerical and analytical techniques. Karthikeyan et al. (2017) 

summarised the main milestones and improvements made in remotely sensed soil moisture 

research and classified the available active methods as physical, semi-empirical, empirical and 
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change detection models (Fig. 2.9). In this review, only the retrieval methods applicable on 

vegetated soils are discussed. 

 

Figure 2.9 Overview of the developed soil moisture retrieval approaches with color-coded citations and 
algorithms. Citations in black have provided multiple algorithms; the contribution to two or more 
different approaches is indicated by colour streaks (Karthikeyan et al., 2017). 

2.5.6.1 Soil moisture retrieval over bare soil and with vegetation cover 

Over bare soil surfaces, the 𝜎0 can be thought of as a simplified function of the SAR 

configuration 𝑐𝑜𝑛𝑓, including polarisation, wavelength and 𝜃𝑖, and two main ground-based 

components, i.e. θ𝑣 , and surface roughness  𝑅𝑠 as shown by Eq. (2.13) (Barrett et al., 2009, 

Aubert et al., 2013, Ouchi, 2013).  

 𝜎𝑐𝑜𝑛𝑓
0 = 𝑓𝑐𝑜𝑛𝑓(𝜃𝑣,  𝑅𝑠)  (2.13) 

One of the most problematic tasks is to disentangle the individual effects of roughness and soil 

water content that usually requires a priori knowledge of the surface parameters (Ouchi, 2013). 

The soil moisture retrieval is more complicated over vegetated areas partly due to volume 

scattering. The vegetation cover tends to reduce the sensitivity of 𝜎0 to soil water content 

(Ulaby and Batlivala, 1976), as the radar response is influenced by the biomass water content 

and structure (Vereecken et al., 2012). Therefore, the dependencies of the received radar signal 

can be described as per Eq. (2.14):  

 𝜎𝑐𝑜𝑛𝑓
0 = 𝑓𝑐𝑜𝑛𝑓(𝜃𝑣, 𝑅𝑠, 𝑉𝑝1, 𝑉𝑝2 … 𝑉𝑝𝑛) (2.14) 

Where 𝑉𝑝1, 𝑉𝑝2 … 𝑉𝑝𝑛refers to the additional parameters introduced by of vegetation.  
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Several studies attempted to decompose the 𝜎0 and gain the contributions from vegetation and 

surface properties to reduce the bias on θ𝑣  estimations (Freeman and Durden, 1998, Hajnsek et 

al., 2009, Jagdhuber et al., 2013, Ullmann et al., 2016). The 𝜎0 can be defined as a composition 

of three main components as per Eq. (2.15) (Ulaby et al., 1996):  

 𝜎0 = 𝜏2𝜎𝑠
0 + 𝜎𝑑𝑣

0 + 𝜎𝑖𝑛𝑡
0   (2.15) 

Where 𝜎𝑠
0 represents the contribution from bare soil, 𝜏2 is the two-way attenuation factor of 

vegetation, σ𝑑𝑣
0  is the direct contribution of the vegetation layer, while 𝜎𝑖𝑛𝑡

0  accounts for the 

interaction between the soil surface and vegetation caused by multiple scattering mechanisms. 

Eq. (2.17) introduces the basic concept of the semi-empirical Water Cloud Model developed by 

Attema and Ulaby (1978). The model treats the vegetation canopy as a collection of randomly 

distributed spherical droplets and models the soil 𝜎0 affected by vegetation (Barrett et al., 

2009). Since most of the real world applications are interested in soil moisture dynamics under 

vegetation, many attempts have been made to improve the Water Cloud Model 

parameterisation (Joseph et al., 2008, Kumar et al., 2012, He et al., 2014, Liu and Shi, 2016, 

Chauhan et al., 2017). 

2.5.6.1.1 Change detection methods  

If multi-temporal images are available, the effect of surface roughness and vegetation on 𝜎0 can 

be assumed constant in time between two acquisitions and there is no need for a priory 

information of the study area (Gao et al., 2017). This concept is employed by several change 

detection based soil moisture retrieval approaches such as image differencing and rationing 

(Engman, 1994, Wagner et al., 1999a, Shoshany et al., 2000, Thoma et al., 2004).  

Change detection techniques rely on the assumption that changes in extraneous factors such as 

vegetation, surface roughness and soil texture occur in a longer time scale than changes in near 

surface 𝐾𝑎. Consequently, the 𝜎0 becomes dominantly a function of θ𝑣  variations between two 

image observation dates (Barrett et al., 2009). By the application of most change detection 

methods, the relative change in θ𝑣 (if not absolute θ𝑣  content) can be obtained and represented 

by soil moisture indices (Karthikeyan et al., 2017). Shoshany et al. (2000) presented the 

Normalised Radar Backscatter Soil Moisture Index (NBMI) for the generalisation of the 

relationship between 𝜎0 and θ𝑣 within the 0-40% range, expressed by Eq. (2.16).  

 𝑁𝐵𝑀𝐼 =
𝜎𝑡1

0 + 𝜎𝑡2
0

𝜎𝑡1 
0 − 𝜎𝑡2

0   (2.16) 

Where 𝜎𝑡1
0  and 𝜎𝑡2

0  are the backscattered signal at different times 𝑡1, 𝑡2.  
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In contrast, when a multi-year 𝜎0 series is available, the acquisitions taken at the historically 

driest and wettest soil moisture level can be analysed. The operationally used TU-Wien change 

detection method estimates the relative soil moisture content 𝑚𝑠,𝑡 by comparing the 𝜎0 on that 

particular day 𝑡 with the historically driest 𝜎𝑑𝑟𝑦
0  and wettest 𝜎𝑤𝑒𝑡

0  reference values measured at 

a reference incidence angle 𝜗𝑖 𝑟𝑒𝑓 as per Eq. (2.17) (Wagner et al., 1999b, Moran et al., 2006).  

 
𝜃𝑣,𝑡 =

𝜎0(𝑡,𝜗𝑖 𝑟𝑒𝑓) − 𝜎0(𝑡,𝜗𝑖 𝑟𝑒𝑓)

𝜎𝑤𝑒𝑡
0 (𝑡,𝜗𝑖 𝑟𝑒𝑓) − 𝜎𝑑𝑟𝑦

0 (𝑡,𝜗𝑖 𝑟𝑒𝑓)
∗ 100  

(2.17) 

The product 𝜃𝑣,𝑡 indicates the degree of saturation of the surface soil layer expressed as a 

percentage. The method has been used in operational global soil moisture retrieval from ASCAT 

sensors onboard METOP satellites (Wagner et al., 2013, Hahn et al., 2017, Karthikeyan et al., 

2017). The primary limitations of the change detection are the temporal resolution of imagery 

and the constant surface roughness assumption (Lievens and Verhoest, 2011, Kornelsen and 

Coulibaly, 2013).  

2.5.6.1.2 Machine learning 

In the past two decades, the research and remote sensing community has made a turn towards 

more sophisticated techniques regarding the complex, non-linear retrieval problems. Advanced 

statistical learning functions, implemented in so-called machine learning, can capture this 

complexity. Several studies reported their success (Kashif et al., 2006, Notarnicola et al., 2008, 

Paloscia et al., 2008, Ahmad et al., 2010, Ali et al., 2015, Alexakis et al., 2017) in modelling the 

non-linear, multi-variable relationships among the parameters interacting with the incident 

radar signal, without having a detailed knowledge about the input parameters’ distribution and 

probability density. Machine learning is commonly used similarly to the conventional inversion 

methods as the algorithms can be trained to extract information about surface parameters 

based on various remotely sensed input data (Notarnicola et al., 2008). The dominant machine 

learning algorithms include the Artificial Neural Networks (ANN) (Baghdadi et al., 2002, Satalino 

et al., 2002, Pierdicca et al., 2008, Paloscia et al., 2013, Santi et al., 2013) and the Support Vector 

Machine (SVM) (Lin et al., 2009, Ahmad et al., 2010, Pasolli et al., 2011, Khedri et al., 2017). ANN 

methods have been found to be more accurate than conventional regression and Bayesian 

approaches (Notarnicola et al., 2008, Pierdicca et al., 2008). To obtain geophysical and 

biophysical parameters, including soil moisture, from various land cover types, the non-

parametric ANN, SVM and Random Forest (RF) methods have been commonly chosen showing 

great potential  (Lakhankar et al., 2009, Ali et al., 2015, Park et al., 2017, Kumar et al., 2018).  
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Machine learning is able to ingest data from ground-based and remote sensing sources, as well 

as taking into account multiple radar configurations, frequently achieving shorter operation time 

and higher accuracy than conventional methods (Ali et al., 2015). However, as machine learning 

is a data-driven approach, it usually requires robust and extensive training datasets (Paloscia et 

al., 2013). Moran et al. (2006) and Barrett et al. (2009) presented a summary and review of 

several other retrieval techniques along with their advantages and disadvantages. 

2.6 Conclusions 

This comprehensive survey of the literature demonstrates that soil moisture is a spatially and 

temporally highly variable environmental and essential climate parameter having a fundamental 

role in the hydrological cycle. Agronomists, geomorphologists, hydrologist, bio-geographers and 

climatologist heavily rely on soil moisture data, utilised in a broad range of applications from 

point to global scale. The key is to understand which scale is appropriate to study for specific 

purposes, e.g. precision management requires high spatiotemporal resolution, but regional 

planning can be performed on lower resolution soil moisture information. To meet the 

objectives of the study, the spatiotemporal behaviour of soil moisture would ideally be 

examined and modelled on the so-called paddock scale (10-100 m). 

Soil moisture is the single most important factor in hill country pastoral agriculture that is 

responsible for a major part of New Zealand’s economic performance. Hill country is principally 

characterised by high heterogeneity due to the complex landscape, soil and climatic features. 

The complexity of the land, the lack of detailed soil information and the non-irrigated hill country 

creates challenges in sustainable land management.  Pastoral farming has been under increasing 

pressure due to the growing food demand and quality requirements. Improved land 

management can be achieved by the more efficient use of natural and controllable resources 

such as land, water and fertiliser input. Well timed and better decision making supported by 

more accurate data acquisitions, fertiliser input strategy and pasture yield predictions are crucial 

in the enhancement of resilience and sustainable productivity in hill country that can also reduce 

the environmental impact. 

The rugged terrain results in varied pasture growth rates and distribution patterns that make 

predictions prone to errors on account of the variability caused by topography, soil cover and 

meteorological forces. An essential part of the simulations is the water balance module, which 

is well understood for flat surfaces, although only a few studies have approached the challenge 

of modelling soil water dynamics in the hillslope environment. Therefore, it is one of the weakest 

points in the algorithms. As environmental heterogeneity within a farm or within the paddocks 
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is significant, the low spatial resolution of the modelled output is subject to uncertainties that 

are carried along to the fertiliser application planning.  

Ground-based methods can provide accurate soil moisture measurements and reliable 

estimations; although in situ techniques are time consuming, costly, equipment intensive and 

not feasible to conduct on the required spatial and temporal scale when it comes to real-world 

applications. WSN technologies have been attempting to fill the gap between small and large-

scale applications and finding an optimal way for soil moisture monitoring with practically and 

spatiotemporally useful resolution. Compared to conventional data collection, WSNs offer a 

scale independent, reliable, and technically feasible solution with rapid deployment. The main 

drawbacks are the cost of the installation, equipment and operation if a large number of sensors 

are employed and the point like nature of the observations. On the other hand, in situ soil 

moisture measurements play an important role in validating soil moisture data retrieved from 

other methods, such as remote sensing.  

Remote sensing techniques have demonstrated their capability to acquire surface soil water 

content values under a variety of vegetation cover and topographical conditions. SAR 

measurements are weather and daylight independent offering a possible solution for near-

surface soil moisture monitoring over frequently cloudy areas. The retrieval of accurate, high-

resolution soil moisture measurements has been of great interest and it has been a difficult task 

for researchers.  

Given the importance of soil moisture, there have been numerous studies on remotely sensed 

soil moisture mapping and modelling at global, regional and watershed scale, leaving an obvious 

gap for research at the sub-watershed, i.e. paddock and farm scale. The current state of research 

suggests that the combination of modern machine-learning methods, remotely sensed and 

ground-based systematic measurements integrated into a GIS framework is a promising 

selection of tools for spatial soil moisture modelling on heterogeneous landscapes, such as New 

Zealand’s hill country. Therefore, these methods and resources are used in the present study 

that aims to investigate the possibilities regarding the soil moisture retrieval and modelling from 

satellite imagery. 
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Chapter 3 

MATERIALS AND METHODS 

Chapter 3 aims to describe the methodology related mainly to the data collection. Since the 

paper-based chapters contain only brief descriptions on the chosen methods, more details are 

given here. A thorough summary is provided regarding the research site and its geographical 

settings. This chapter presents the site-specific soil characteristics and describes the utilised 

laboratory approaches. Fieldwork constitutes a core part of this research that included the 

deployment of a wireless sensor network, regular pasture growth data collection and occasional 

soil sampling. This section summarises the fieldwork with a strong focus on the sensor network 

installation procedure. Additionally, the chapter introduces imagery obtained by the radar-based 

remote sensing, the related data access and the satellite mission. 
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3 Chapter 3 - Materials and methods 

3.1 Research site and soil characterisation 

3.1.1 Geographical and geological settings 

A non-irrigated hill country farm (~2600 ha) was selected as the research site, called Patitapu 

Station situated in the southern part of the ECHC (40.745020 S, 175.887320 E). Lang (2015) 

described the east coast region as “an extensive stretch of land from southern Wairarapa to the 

top of the East Cape, predominantly pastoral farmland and forestry, on rolling to steep hills, 

from the coast to the inland ranges, interspersed with flat terraces and fertile plains”. Rock 

forming processes, soil development and geomorphological processes are partly the 

consequences of the underlying geology. The Wairarapa coast is located 65-125 km northwest 

of the Hikurangi Trough, which is the southern end of a subduction zone, the boundary between 

the Australian and Pacific plates (Suggate et al., 1978). The subducting Pacific Plate dips gently 

north-westwards beneath the Australian Plate to reach a depth of about 10-15 km beneath the 

eastern Wairarapa coast. The research site is situated within the Eastern Uplands, where the 

subsurface consists of deformed sandstone, mudstone, greywacke, argillite and limestone with 

river flats filled by alluvium. Intense long- and short-term geomorphological processes resulted 

in an area of undulating and rolling topography, where slumping is common and much of the 

region is prone to unstable slopes and landslides (Lee and Begg, 2002).  

ECHC is renowned for its low fertility soil types with their complex spatial patterns. As the 

underlying rock types differ widely, the expected variations are reflected in the soil patterns 

representing weakly to moderately developed, shallow silt loam, silty clay loam, sandy loam and 

sandy silt loam textures. The most extensive soil types are Argillic Pallic Soils and Orthic Brown 

Soils in the southern ECHC while Orthic Recent Soils can be found in the northern regions of the 

coastal area (Hewitt, 2010). 

Patitapu Station is situated in the Manawatu-Wanganui region in southern Wairarapa, within 

the Manawatu River’s catchment (Fig. 3.1) where beef and sheep farming dominates (> 50 % of 

the area). The river drains an approximately 5850 km2 watershed and its headwaters are located 

between the Southern Ruahine Ranges and the northern end of the Tararua Ranges, with hill 

country on the east, and the Manawatu Plains and sand country on the west.  

Much of the Wairarapa’s climate parameters represent high variability through the year, with 

common heavy rainfall events, regular summer dry periods and semi-regular droughts (Murray, 

1982, Lang, 2015). The ECHC area receives most rainfall during winter with annual values ranging 
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between 800-1600 mm. Low, unreliable precipitation and frequent seasonal lack of water 

characterise the late spring and summer periods (Zhang et al., 2005). Historical climate data was 

extracted from a NIWA weather station (Wairere, Ihuraua), located 4.3 km southwest of the 

farm’s meteorological station. Sixty-four year average annual rainfall of 1144 mm ranging from 

721-1735 mm was received by the research site while the thirty-year (1961-1990) mean daily 

temperature normals ranged between 6.4 °C in July and 18 °C in January (NIWA CliFlo, 1953-

2017, Tomlinson and Sansom, 1994). A permanent weather station (40.750032° S, 175.887493° 

E) was installed at the property in 2015, from where meteorological parameters were obtained 

and used in the following chapters.  

 

Figure 3.1 Location of the Manawatu River catchment (top left) and the research site situation (top 
right), land cover (bottom left) and topography with elevation and non-pasture mask (bottom right).  

In New Zealand, Land Resource Inventory and LUC have been used to assist long-term, 

sustainable land and resource management from the individual farm to the national level since 
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the 1950s (Lynn et al., 2009). LUC Class VI land covers 85 % of the farm, indicating that the land 

is not suitable for arable use, but suitable for pastoral grazing where erosion is a common 

limitation. Along the main water way in the middle of the property Class III land can be found 

that is suitable for cultivation and cropping to a certain extent. Considering the potential 

utilisation of the collected field-based datasets, the study adopted the slope groups recognised 

by LUC, except the ‘very steep’ and ‘steep’ groups were merged into one ‘steep’ class. By the 

application of LUC slope groups, 8.2 % of the research area is flat (0-3°), 8.8 % is undulating (3-

8°), 35.5 % is rolling (7-15°), 25.6 % is strongly rolling (15-20°), 14.9 % is moderately steep (20-

25°), 7 % is steep (>25°). The slope distribution closely agrees with the parameters of a typical 

hill country property where significant variability is present at both macro- and micro-

topographical level as well as in the soil resources. Elevation ranges from 143-532 m above mean 

sea level. 

3.1.2 General soil description of Patitapu Station using available digital databases 

Two main digital, geospatial datasets were available for Patitapu Station in terms of soil 

resources at the time of the study. The nationwide, New Zealand Soil Portal held by Manaaki 

Whenua, Landcare Research provides access to coarse resolution soil information based on the 

New Zealand Soil Classification (NZSC). The most recent, national scale spatial soil information 

system, S-map, is being developed by Landcare Research which has not covered the research 

area to date (24/11/2017). Thus, the publicly available Fundamental Soil Layers (FSL) (now being 

updated and incorporated into S-map) were used as a guideline for the research. Those layers 

are built upon the spatial join of National Soils Database and New Zealand Land Resource 

Inventory. The FSL is composed of 16 key spatial soil attribute layers from which the soil physical 

properties were retrieved.  

Hewitt (2010) defined the top three classes of the hierarchical NZSC. The majority of the 

property is covered by Brown Soils in terms of soil order (Fig. 3.2 (A)) which also represents the 

most extensive category in New Zealand covering 43% of the land. Soil orders are divided into 

soil groups and those are further divided into subgroups. A common soil in the east side of the 

North Island, the Pallic Orthic Brown (BOP) soil dominates over the study site at the subgroup 

level. Typic Firm Brown (BFT) soils can be found in the generally steep, eastern side of the farm 

at the highest altitudes within the property. Between BOP and BFT covered areas Mottled Orthic 

Brown (BOM) soils were mapped. Brown soils are commonly found on slopes and young land 

surfaces (Hewitt, 2010). The topsoil is typically described as dark grey-brown while the subsoil 

is often brown or yellow-brown. This type of soil typically occurs in places where summer 
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drought is uncommon and which are not water logged in winter (Hewitt, 2010, Landcare 

Research, 2017). The flat middle sections of the farm have Typic Orthic Gley (GOT) soils along 

the streams where waterlogging due to a persistent high water table are frequently observed. 

Mottled Immature Pallic (PIM) soil can be found in the north-west corner of the property 

covering a small extent. Regarding particle size, according to the FSL database (Fig. 3.2 (B)), the 

silt is the primary texture class over the farm along with some loam and loam over sand.  

 

Figure 3.2 Soil classification map (A) and soil particle size map (B) extracted and adapted from the FSL 
digital database (Landcare Research, 2017). 

A more detailed soil survey was carried out by the Horizons Regional Council (Palmerston North, 

New Zealand) at the Patitapu Station in 2009. It provides information at the paddock scale 

including the soil parent materials, rock class, texture, soil depth, stone content, upper and 

lower textures, and drainage as well as functional horizon attributes detailing horizon stone 

content, texture, structure size, and consistence (Fig. 3.3). Dominant soil textures are the 

variations of silt loam, silty clay loam, sandy loam and sandy silt loam with different drainage 

properties and ranging from weakly to moderately developed status.  

Concerning the main soil types and units, the soil maps from different sources displayed broad 

agreement. Both maps indicate a distinguishable soil unit along the main waterway, which 

formed on the plain surfaces from sediments strongly affected by waterlogging. Another good 

agreement can be seen in the eastern part of the farm with the highest relief. Here, the Mottled 

Orthic Brown (MOB) soils were displayed on the FSL and dark yellow silt loam was dominantly 

observed by the Horizon’s soil survey. 
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Figure 3.3 Soil resource map of Patitapu Station, adapted from the Horizons Regional Council 
(Landvision Ltd., 2009). 

The rest of the farm area, the mostly rolling land surface is characterised with dark-orange 

yellow silt loam according to the Horizons’ soil survey, whilst Pallic Orthic Brown (BOP) soils were 

defined by the FSL. In terms of soil texture, both soil layers demonstrate that the study area is 

dominantly covered by silt loam soils or its varieties. The Horizon’s soil layer was used as the 

most recent resource during the sensor network design and microsite selection.  

3.2 Wireless sensor network deployment 

3.2.1 Network description and design 

In August 2016, twenty AquaCheck Classic subsurface, capacitance sensor probes were installed 

at the Patitapu Station and these microsites were arranged into a WSN. A pre-determined 

deployment strategy was applied, meaning that the sensor nodes were placed at specified 

locations (Halder et al., 2011). After deployment, a two-month period was allowed for the soils 

to equilibrate and to develop an optimal soil to sensor contact, thereby starting the data 

collection on 1 November 2016. Each probe is equipped with soil moisture and soil temperature 

sensor placed at four fixed, consecutive depths (100, 200, 300 and 400 mm). The WSN covers an 

approximately 3 km x 4.6 km area (~13.8 km2) giving an average spacing density of ~0.69 km2 

per microsite. The mean distance between microsites and the permanent local climate station 

varies between 0.34 - 2.9 km giving a mean distance of 1.8 km.  



Hajdu: Soil water modelling in hill country  Materials and methods 

63 | P a g e  

 

Consequently, the representative microsite selection was a challenging task and a crucial design 

step to optimise sensor distribution, ensure easy access for installation and maintenance 

purposes. To deploy the WSN, a criteria set was created that included macro- and micro-

topographical features, soil information, land cover type, land use, microsite accessibility, 

equipment protection and foreseeable farm management plans. 

In terms of wireless communication, the microsite selection was limited by an optimal, ~1.7 km 

radio range recommended by the manufacturer. Each of the sensor nodes required line-of-sight 

visibility to the gateway, or another sensor node, or alternatively, to the relay station. The 

above-mentioned requisites had to be met without exceeding the cost constraints and by 

ensuring sufficient equipment protection as the research area is an operating farm with livestock 

and other activities associated with general farm operation. The deployment process considered 

the concept that soil moisture and soil temperature measurements should be applicable for 

validating products retrieved from land-surface models or remote sensing applications. 

3.2.2 A GIS-supported network deployment approach 

The WSN deployment posed a three dimensional problem due to the heterogeneous field that 

contains obstacles mainly in the form and relief of the terrain, man-made (buildings) and natural 

(tree lines) objects, which can prevent communication between the nodes. To address the 

variability of the terrain, GIS platforms can provide powerful tools in sensor network planning 

over complex environments (El Emary and Ramakrishnan, 2014). The Patitapu WSN deployment 

was divided into three main tasks, including the identification of potential positions for the 

gateway (1), finding an optimal location for the relay node (2) and preselecting suitable, 

representative areas for sensor nodes (3) while fulfilling the line-of-sight visibility criteria. To 

accomplish these tasks, GIS capabilities were used to support the decision-making and to 

integrate the available environmental and auxiliary information. The GIS-assisted spatial 

methodologies included raster- and vector-based examination, such as land cover classification, 

terrain analysis, conditional evaluation and intervisibility analysis (line-of-sight and viewshed) as 

illustrated on Figure 3.4. Prior to the WSN deployment, several network variations and scenarios 

were generated taking into account the number of sensor nodes, limitations and the study 

objectives. 

The input dataset consisted of a group of raster layers, i.e. a Digital Elevation Model (DEM), aerial 

orthophoto collection and a hyperspectral image; and a group of vector based data layers, i.e. 

fence lines, farm tracks, soil resources, cellular coverage and fencelines. The land cover 

classification was executed in ENVI (Exelis Visual Information Solutions, Boulder, Colorado), the 
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terrain analysis was conducted in ESRI ArcGIS ArcMap (ESRI Inc. Redlands, CA, USA, version 10.4) 

and System for Automated Geoscientific Analysis (SAGA) (Conrad et al., 2015) software 

environments. 

 

Figure 3.4 The available raster and vector layers and the executed GIS-assisted spatial analysis methods 
to support decision making in the network deployment. The derived datasets were analysed to 
delineate the potential areas for the sensor installation that satisfy the predetermined requirements.  

3.2.2.1 Land cover classification 

The objective of the study required that the sensors were placed under pastoral vegetation 

coverage; therefore, the delineation of grass surfaces was needed as part of the WSN planning 

stage. Ground features have specific reflection signatures that characterises the radiance values 

obtained from the object pixel by pixel, allowing the identification of a large variety of surface 

types. Hyperspectral imagery demonstrated its capability in detailed thematic urban mapping 

consisting of a wide range of surface classes (Goetz et al., 1985, Pullanagari et al., 2017). 

The study area is comprised of several land cover types, such as buildings, manmade surfaces, 

gravel roads, bare soil, vegetation (pasture surfaces, native bush and trees), waterways and 

ponds. For the purpose of the study, pasture and non-pasture land cover classes were 

discriminated through image classification. The hyperspectral image was acquired by a full-

spectrum, pushbroom AisaFENIX (Specim Ltd., Oulu, Finland) full spectrum, imaging system 
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mounted on a fixed-wing aircraft. The sensor measures upwelling radiance between the visible 

(Vis) and SWIR spectral regions (370-2500 nm) with a total of 448 bands that make it suitable 

for remote, high-resolution spatial mapping of various surfaces (Pullanagari et al., 2018). 

The image pre-processing included the following steps: correction for boresight effects, 

correction for bad detector, geometric and radiometric calibration, atmospheric correction, 

georectification, mosaicking, spatial and spectral smoothing. A detailed description of the 

applied image processing and classification procedure can be found in Pullanagari et al. (2017). 

Land cover types were identified by using high-resolution RGB imagery from which training 

polygons were collected for a total of 13 land-cover classes (eight vegetation types, water, 

wetland, bare soil, shadows and manmade surfaces) that were considered in the supervised 

classification scheme. A commonly used classification method, the so-called Support Vector 

Machines (Camps-Valls and Bruzzone, 2009, Camps-Valls et al., 2014), was chosen to link the 

input training data to the corresponding reflectance spectrum of the underlying picture 

elements. After validation and accuracy assessment, the number of classified land-cover types 

were reduced to pasture and non-pasture classes. 

3.2.2.2 Terrain analysis 

At the time of the WSN planning stage, an 8x8 m resolution DEM was available through Land 

Information New Zealand (LINZ) (LINZ, 2012). This national scale DEM contains only ground-

surface elevation data originally generated from contour lines providing information about the 

terrain morphology. The DEM was sufficient for the WSN planning to gain insight into the terrain, 

although shortly after the WSN installation, a high-resolution digital surface model (DSM) of the 

research area was provided by Massey University and Ravensdown Ltd. The DSM was generated 

using structure-from-motion technology (Micheletti et al., 2015), originally acquired at 0.2x0.2 

m pixel size. Focal statistics, resampling and smoothing were applied to create a 5x5 m spatial 

resolution dataset, which was used for extracting the topographic attributes of the microsites. 

For the quantitative description and characterisation of the terrain, geomorphometric 

derivatives can be computed in a GIS environment (Evans, 1972, Mark, 1975). The terrain 

descriptors can be divided into zero order (i.e. elevation), first order (slope angle, aspect) and 

second order (compound) derivatives (e.g. wetness index, curvature, etc.) (Kienzle, 2004, Minar 

and Evans, 2008). For exploratory spatial data analysis and for the evaluation of the geographic 

suitability of an area for WSN deployment, several fundamental terrain attributes were derived.  

To develop an overall impression of the topography, the relief forms were emphasised by the 

use of analytical hill shading that simulates the effect of natural light on the terrain surface to 
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depict light and shadow. The terrain analysis included the mapping of slope angle (the degree 

of incline of a surface) and aspect (the orientation of the slope) in degrees by the transformation 

of the elevation data. These two first order derivatives played a key role in the microsite 

deployment due to their dominating effect on soil moisture patterns in hill country.  

The DEM was reclassified by overlaying the slope angle and aspect layers to distinguish flat areas 

and to group each pixel into one of the five slope angle categories using the LUC categories (Lynn 

et al., 2009) on each aspect. A more thorough investigation was achieved by calculating the 

second derivatives of these initial metrics. To avoid erosion prone surfaces, the modified slope 

length and steepness factor was computed as key attribute for predicting erosion potential 

within a landscape (Desmet and Govers, 1996). The combination of slope steepness and specific 

catchment area effects were used to delineate the areas of risk of soil erosion. 

The geomorphological characterisation of the terrain was further examined by automated 

landform classification to identify topographic units or principle landform elements and slope 

positions. The analysis was performed on the basis of Topographical Position Index computation 

(Guisan et al., 1999, Wilson and Gallant, 2000) and the study area was divided into 10 macro-

landform classes. The process defined stream, upland drainage, plain, valley, open slope, upper 

slope, local ridge, midslope drainage, midslope ridge and high ridge categories. Landforms and 

geomorphic features can be an indication of numerous factors related to water distribution and 

soil conditions (Evans et al., 2016). Soils tend to be deeper and often mixed at lower slopes and 

shallower on crests, having an impact on the sensor deployment. 

Prior to the computation of compound hydrological metric outputs, the DEM was pre-processed 

to fill the sinks or depressions that would capture the flow of water. At the small catchment and 

hillslope scales, soil moisture distribution can be reasonably well indicated by the Topographic 

Wetness Index developed by Beven and Kirkby (1979) and its modified version, the SAGA 

Wetness Index (SWI) (Beven and Kirkby, 1979, Moore et al., 1991, Böhner et al., 2001). In this 

study, the SWI was used to map organised spatial fields of soil moisture and to identify 

potentially extremely wet or dry areas. Moreover, drainage channels, upslope contribution area 

(flow accumulation) and flow directions were mapped as part of the watershed analysis 

including the delineation of catchments and the stream network. Drainage channels and farm 

tracks were used as inputs in the buffer zone generation to limit the distance to stream lines, 

and to ensure that the microsites will be accessible as installation and maintenance are labour-

intensive, especially on steep terrain.  
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3.2.2.3 Intervisibility analysis 

The chosen telemetry system required line-of-sight visibility for stable communication between 

nodes. To ensure connectivity within the telemetry range, an intervisibility analysis was 

undertaken in a three-dimensional space, as two nodes cannot connect to each other if the 

terrain or other type of obstacles break the signal. The sightline visibility and viewability was 

assessed over a functional surface, namely the DEM, taking into account the relief and the 

effective communication range. The analysis was carried out by using the geoprocessing tools 

built in the Esri ArcGIS software package version 10.4. Tree lines were generally avoided, given 

the unknown height of the vegetation cover during the planning stage. To conduct the 

intervisibility analysis, 4 m height was chosen as offset from the surface considering the radio 

antenna position.  

The line-of-sight analysis produced line features between each pair of nodes and labelled with 

a value of intervisibility, one or zero, visible or not visible. Visibility profiles were extracted 

between the potential locations and coupled with aerial imagery to ensure the connecting line 

was not positioned too close to the surface concerning the presence of vegetation. The spatial 

visualisation of radio coverage from a given location was produced by the viewshed analysis 

workflow. Viewability grids were generated to predict the visible and not visible grid cells from 

a specific location of the landscape. Due to the omnidirectional capabilities of the radio 

transceivers, the operation attributes were selected regardless of the direction.  

3.2.3 Gateway and relay station deployment 

Once the required data layers had been generated, a thorough visual interpretation was carried 

out to preselect various candidate locations for the gateway, relay node and the sensor nodes. 

Firstly, the datasets were assessed to find potential gateway locations, which was mainly 

governed by the cellular network coverage and suitable land surface conditions. The gateway 

unit provides a connection between a computing device-based user platform and the physical 

world via a cellular network. The ideal position was characterised with strong and sound cellular 

reception, good accessibility, 360° clear visibility, free of obstacles, shade and potential risk 

sources such as trees, power lines, and erosion prone surfaces. During an earlier field visit, 

cellular coverage was generally found above 300 m altitude, thus these areas were queried from 

the DEM and superimposed on multiple spatial layers. The final location was chosen on a stable, 

outstanding hill top position at 320 m altitude. 

The relay node had to be placed within 1.7 km radius to the gateway to provide a direct link. A 

similar approach to the described above was taken to find candidate relay node positions, except 
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the need for cellular reception. As the relay node aims to balance out data traffic and increase 

the number of alternative communication paths, such a centric position was chosen that is 

visible from every block of the farm and has a direct link to the gateway.  The relay station was 

placed on a hilltop elevated between two wide and open valleys at 287 m altitude nearby the 

permanent weather station. 

3.2.3.1 Sensor node locations 

Considering the number of probes (20) available, the microsite locations were chosen with the 

aim of establishing an adequate spatial distribution on a variety of topographic positions, land 

use suitability categories and representing the agriculturally important soils of the pastoral area. 

The microsite selection was driven by a two-step, conditional decision approach consisting of 

candidate area pre-selection supported by GIS tools. This was followed by an on-site area 

evaluation and validation of the potential sites. Each of the provided 20 sensor probes were 

assigned to one of the slope angle and aspect classes adapting the modified LUC (Lynn et al., 

2009) categories. Figure 3.5 depicts the selection process for Site i, for a given slope angle and 

aspect class.    

A location was considered highly suitable if the attributes of a selected location or grid cell 

passed through a series of specific conditional statements with TRUE values. Land cover, terrain, 

visibility and accessibility contained the most important criteria sets. In terms of environmental 

GIS data layers, a selected sensor location was situated over pastoral land surface class, 

positioned farther than 5 m from stream edges. The cell needed to represent the given slope 

and aspect class derived from overlay operation by combining the slope angel and aspect 

thematic layers, and situated on a surface with low erosion risk as it was defined by the length 

and slope factor layer. 

To satisfy the effective communication range, 1.7 km distance was given as the longest distance 

from either the gateway, the relay node or another sensor node.  Additionally, the line-of-sight 

visibility criteria had to be met without obstruction by tree lines or buildings. If any of these 

conditions were evaluated as FALSE, a new location was placed under investigation. In case the 

location satisfied these requirements, it was further examined for accessibility. Ideally, the 

highly suitable site was located within 100 m to the closest track, as each node required the 

installation of a robust fencepost and drilling applications for the radio and sensor placement. 
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Figure 3.5 Flowchart of the pre-selection and field-based validation of suitable sensor node locations. 
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If the logical condition was FALSE, then the location was classified as a potential candidate area 

for the Site i. These areas were taken into account if the high suitability areas did not pass the 

on-site validation criteria. Figure 3.6 illustrates the raster and vector layers explored in the 

suitability analysis related to terrain and accessibility features.  

 

Figure 3.6 The central part of the research area illustrating the terrain (slope angle and aspect) and 
accessibility characteristics for 6 selected sensor nodes along with the position of the gateway, relay 
node and weather station. 

Once every sensor node location went through the conditional pre-selection process, the high 

suitability areas were visited in the field by finding the GPS coordinates extracted from the GIS 

data set. The on-site procedure involved the confirmation of intervisibility and that the 

microsites were situated on well-grown, uniform pasture surfaces free of obstacles and frequent 

shade. Figure 3.7 shows the architecture of the WSN including the established line-of-sight 

connections among the gateway, relay station and sensor nodes from a three-dimensional point 

of view. The land surface cover is represented by a high-resolution orthophoto that was 

superimposed on the original, 0.2x0.2 m pixel size, DSM for an improved pasture surface 

visualisation.  
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Figure 3.7 A three dimensional demonstration of the deployed WSN with line-of-sight intervisibility and 
vegetation cover overlaid on a high-resolution DSM.  

Sufficient soil depth was inspected and micro-topographical features were examined to avoid 

local water accumulating depressions and irregularities, i.e. stock tracks, soil erosion surfaces. 

Accessibility was reassessed and farm management plans were reviewed during the field-based 

validation to ensure that the assorted microsite locations were not subject to changes in 

management plans, such as cultivation.  

Table 3.1 contains the summary of the terrain parameters of each selected microsite extracted 

from the 5x5 m pixel size DSM. In terms of land cover, the microsites were chosen from mostly 

uniform pastoral grassland surfaces where the predominant plant communities are ryegrass and 

clover species. Three probes were placed on flat areas spread over the plains along the main 

waterway draining the farm area. Concerning slope angle classes, two nodes were placed on 

undulating, three on rolling, four on strongly rolling, four on moderately steep and four on steep 

surfaces. To capture the high contrast between south- and north-facing aspects, five nodes were 

installed on each of these two classes, while four sensor probes were deployed on west and 

three on east aspects. The geographical position of the gateway, relay station and sensor nodes 

were surveyed by using a high accuracy (few cm) real-time kinematic global positioning system 

(RTK GPS).  
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Table 3.1 Main topographical characteristics of the selected microsites locations at the Patitapu Station. 

Site ID Landscape element 
Slope 

(degree and class) 

Aspect 

(degree and class) 

Elevation 

(m) 

1 Upper slope 13 Rolling 175 South 196.7 

2 Plain - Flat - Flat 160.6 

3 Open slope 16 Strongly rolling 115 East 249.0 

4 Open slope 23 Moderately steep 94 East 279.0 

5 Open slope 16 Strongly rolling 1 North 282.5 

6 Plain - Flat - Flat 173.3 

7 Open slope 14 Rolling 305 West 309.9 

8 Midslope ridge 35 Steep 35 North 307.8 

9 High ridge 5 Undulating 187 South 292.9 

10 Open slope 22 Moderately steep 298 West 318.6 

11 Upper slope 26 Steep 257 West 314.8 

12 High ridge 32 Steep 178 South 301.8 

13 Open slope 23 Moderately steep 22 North 232.8 

14 Upper slope 23 Moderately steep 157 South 287.8 

15 Plain - Flat - Flat 196.4 

16 Open slope 17 Strongly rolling 283 West 373.6 

17 High ridge 20 Strongly rolling 224 South 362.3 

18 Open slope 26 Steep 46 East 400.7 

19 Open slope 14 Rolling 15 North 380.7 

20 High ridge 7 Undulating 355 North 199.5 

The Patitapu WSN deployment followed a comprehensive manually guided approach with a 

significant amount of visual interpretation that relied on datasets from various sources. The 

microsite selection procedure was not automated mainly because of the poor knowledge 

regarding soil moisture variability in hill country, the complex topography and the uncertainty 

induced by the low-resolution soil information. Moreover, most of the automated statistical 

methods and algorithms require a significant amount of input data. Additionally, microsite 

localisation was influenced by the farm management plans and foreseeable land use changes, 

which required an effective collaboration with the farm owner.       

 In the literature, there exist several, advanced approaches for designing soil sampling 

campaigns and establishing sensor networks for observing environmental variables. Minasny 

and McBratney (2006) applied the Latin hypercube method as a sampling strategy that is based 

on a high amount of a priori knowledge of the targeted area. Some other approaches for 

generating spatial sampling schemes have been based on the estimation of variograms (Pettitt 

and McBratney, 1993) and the spatial interpolation of the variables using geostatistical tools, 

such as kriging and the optimisation of kriging (Van Groenigen et al., 1999). Robertson et al. 
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(2013) developed the balanced acceptance sampling algorithm for selecting spatially balanced 

sampling locations that takes into account the spatial distribution of the resource.  

3.2.4 WSN instrumentation and deployment 

Due to the long-term nature of the research project, the terrain conditions, and the fact that the 

microsites are located on an operating farm with livestock and other daily activities associated 

with farm operation, the instrument selection was a crucial part of the planning stage. The 

sensor nodes needed to withstand harsh outdoor conditions for several years; therefore, robust, 

solid sensors and stable, long-range telemetry system with firm protection were required.  

The chosen telemetry unit was provided by TAG I.T Technologies Ltd (Hamilton, New Zealand) 

with capabilities of near real-time data logging and reporting at adjustable time intervals. The 

HALO Farm System, an online service developed by the same company was responsible for 

monitoring and visualising the data received from the sensors as it was sent to the web via 

cellular 3G connection. The secure online dashboard can be accessed from smart computing 

devices, allowing flexible display of time series data and the receiving of fault alerts, which 

enabled prompt reaction to operational issues. 

Once the sensor node, gateway and relay station locations were finalised, fence posts were 

placed into the ground to provide a stable and secure base for the radio unit. Figure 3.8 (A) 

illustrates the sensor node design on a hill slope position. The enclosure was installed on a 3 m 

galvanised pole extension attached to the fence post. A high range antenna was placed into a 

weatherproof PVC tube and mounted on the top end of the pole at ~4 m height. This position 

improved visibility and connectivity attributes for the radio communication. The solar panels 

were orientated to the north to ensure efficient battery recharging. 

The sensing unit (Fig. 3.8 (B)) is connected to the telemetry device by a cable running through a 

durable Alkathene pipe suitable for below ground installation. The flexible pipe was buried in an 

~10 cm deep trench from the fencepost base to the head of the probe, protecting the wiring 

from damage. Both ends of the Alkathene pipe were sealed to avoid water intrusion. The pipe 

was guided along the galvanised pole and zip tied to it to protect it from stock. In the last stage, 

the topsoil turves were placed back into the trench and the gaps were filled back with fine-

grained soil material.  
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Figure 3.8 Schematic diagram depicting the design of a typical example of a microsite (A) and the 
configuration of a 400 mm AquaCheck Sub-surface multi-sensor probe (B). 

For root-zone soil moisture monitoring, 400 mm long subsurface type, the AquaCheck 

(AquaCheck Soil Moisture Management, Durbanville, South Africa) multi-sensor probe was 

chosen. A single AquaCheck probe was connected to a single radio unit reporting soil moisture 

and soil temperature readings simultaneously at every 15 minutes. The solid-state, capacitance-

based probe is equipped with four sensors spaced at intervals of 100 mm and with a right hollow 

cylindrical shaped sampling range. The sphere of influence can be approximated with geometric 

parameters of h = 60 mm (cylinder height), r = 16 mm (internal radius) and R = 20-45 mm 

(external radius). The probes are designed to be completely buried with an attached wire for 

data transmission to a logger (Fig. 3.8 (A)). The probe measures the variation in the capacitance 

of pairs of pieces of metal inside the probe as a proxy for soil moisture. The soil forms the 

dielectric of the capacitor, with changes in moisture content altering the relative permittivity of 

the soil. Most often, the capacitance is measured by forming an oscillator whose frequency is 

dependent on the unknown capacitance. The frequency is then easily measured by the 

microprocessor in the probe. The sensor transforms the frequency readings to Scaled Frequency 

(SF) as raw output. The SF values range from 0-100 %, where 0 % is equal to a reading in open 

air and 100 % when the sensor is immersed in distilled water. The SF readings are automatically 

corrected for possible inherent temperature change by embedded compensation functions.  

To calculate 𝜃𝑣 (%), SF values need to be converted using an empirical, laboratory-based 

calibration curve. The conversion is not a built-in function; therefore, the device is offered with 

factory calibration equations for six soil textures, e.g. sand, clay, silt loam, loam, clay and generic 
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(composited from sand, silt loam and clay soils) (Agri Optics, 2017). For the purpose of this study, 

the resulting 𝜃𝑣 (%) output was converted to 𝜃𝑣 (m3 m-3).  

Soil temperature data is collected at the four depths by a Resistant Temperature Detector. The 

temperature sensors are able to read data between 0-51 °C with 0.2 °C steps. 

3.2.4.1 AquaCheck probe installation 

The probe installation was a crucial part of the WSN deployment; therefore, the sensor 

installation followed a standard procedure provided by precision agriculture technicians at Agri 

Optics New Zealand Ltd. After the selection of the desired location, an approx. 25x25 cm square 

shaped and 1-3 cm thick topsoil turf was removed. In order to allow the snug insertion of a 

sensor probe, an installation auger (⌀ 40 mm) was used to bore a slightly wider hole than the 

probe shaft body. The hole was drilled in increments and the soil was removed from the auger 

at each section and kept separately after a visual check of the variation within the profile. Great 

care was taken to ensure that the holes were as vertical as possible at each site as it was 

recommended during the training and by the installation guide. 

As the correct depth was reached, soil slurry was made from the soil material obtained from the 

hole by using a cordless driller and paint mixer. The homogenous, milk shake consistency was 

made to ensure an optimal sensor-to-soil contact. After the removal of organic material, and 

coarse soil components, such as gravels, an adequate amount of slurry was poured into the hole. 

As the diameter of the auger was only slightly larger than the probe shaft diameter, the sphere 

of influence is much larger than the thickness of the slurry, therefore the information is 

dominantly collected from the soils occurring at the sensor depths. At the time of the 

experiment, there was no published studies available on the effect of the installation method 

on AquaCheck sensor readings. The next step was the careful insertion of the probe until only 

the probe cap was visible on the fresh surface. Some slurry was forced out from the hole and it 

surrounded the plastic cap. This slurry overflow was not removed, as it helps to improve the 

snug fit by preventing additional water running down along the access tube and the formation 

of air gaps. In the final step, the topsoil turf block was placed back to its original position and the 

gaps were filled with finely screened soil material in order to assist soil recovery. The main steps 

of the field-based probe placement process are shown in Figure 3.9.   
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Figure 3.9 An example of the main steps of the sensor node installation process on site. A) Underground 
wiring with an Alkathene pipe running to the radio device in a trench. B) Probe insertion that creates 
the slurry cap surrounding the device. C) A block of turf cover placed on the top of the probe. D) 
Complete and connected sensor node.  

3.2.5 WSN communication and architecture 

The proposed WSN architecture consists of a gateway, a repeater station and twenty sensor 

nodes arrayed in a mesh topology. The mesh feature enables multi-hop communication in an 

arbitrary structure with numerous message paths, meaning that the nodes are allowed to 

communicate with every other node in line-of-sight and within radio distance without any 

restriction in the protocol (Townsend and Arms, 2005). A sensing node has a dual role, collecting 

and sensing of data from its own sensor or acting as a relay for neighbouring nodes. The network 

was considered homogenous as each of the sensor nodes have identical power, hardware, 

transmitting and receiving capabilities. The employment of homogenous networks may lead to 

the phenomenon known as the energy hole issue. Larger power consumption frequently occurs 

in the nodes closer to the gateway or sink node, due to the increased data traffic received from 

the more distant sensor nodes (Olariu and Stojmenovic, 2006, Halder et al., 2011, Abdollahzadeh 

and Navimipour, 2016). The result is a non-uniform dissipation of energy leading to drained 

batteries, data loss and communication issues. The application of non-uniform sensor topology, 

energy-balanced network models or the deployment of relay nodes to forward data packages 

can save energy for the nodes with sensing units attached (Al-Turjman et al., 2013, Huang et al., 

2013). The integration of a relay node ensures data load balancing, extra storage capacity, 

increases the number of backup routes, extends the spatial network coverage and reduces the 

risk of network disconnection due to unexpected failures and natural hazards. At Patitapu, a 
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relay node was added to the network architecture and installed on a farm centric position from 

where a direct radio link was provided towards the gateway and several sensing nodes. 

The sensor readings are passed through underground wires from the sensors to the telemetry 

units among which the data is transmitted via radio connection until they reach the gateway. 

The information is uploaded to a server via cellular network ensuring near real-time access to 

the data. Figure 3.10 illustrates the WSN workflow in respect to the main operational steps (A) 

the related physical units (B) and the type of connectivity (C).    

 

Figure 3.10 Main operational workflow for the sensor network at Patitapu Station coupled with the 
responsible physical units and the nature of connectivity among the nodes.  

The radio protocol uses 15 channels in the 2.4 GHz band that implements a self-healing tree 

structure for routing. The gateway device is the root of the network, with other nodes 

connecting to parent nodes so that every node has a single route back to the root. Nodes select 

a parent to connect to by scanning for nodes already connected to the network, and then rank 

them by signal strength and distance from the root. If they need to send data to a node that is 

not reachable by one of their children, they forward it up the chain to their parent. Such packets 

will travel up the tree until they reach a node that knows how to reach the destination. Links 

between each node use a channel hopping protocol, with discrete time slots allocated for 

communication by the parent node. Each time slot is assigned a pseudo-random channel 

generated by a seed known to both nodes. Carrier-sense multiple access with collision detection 

is used to avoid interfering with ongoing transmissions from other nodes. If a node is unable to 

transmit in a time slot due to contention, it backs off and attempts again in its next time slot. 

Connectivity (or adjacency) matrices and node-link network diagrams can be used to visualise 

the possible links among nodes. The node-link diagram generated for the Patitapu WSN used 

line features to represent the sightlines from each node towards every other visible node that 
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was not obstructed by topography, vegetation or other manmade objects. In the finite simple 

matrix form, each column and row represents a node and the binary (i.e. 0 or 1) elements 

indicate whether the pairs of sensor nodes are visible or not. Figure 3.11 demonstrates the 

network organisation and connectivity in a graphical, i.e. node-link diagram on the left, and in a 

matrix form without taking into account the effective radio range on the right.  

 

Figure 3.11 The Patitapu WSN represented by its geometry (left) and its respective connectivity or 
adjacency matrix (right, 1 – visible, 0 – not visible). Each grey line in the graph and each element of the 
adjacency matrix represent a connection between two nodes. The mean distance (MD) among the 
visible nodes and the number of visible nodes (VN) from each location are shown regardless the 
effective radio range (G – gateway, R – relay node). 

Once the network was in operation, network communication layouts were pulled out multiple 

times from the system on various dates (06/12/2016, 17/06/2017, 08/09/2017). A reversed tree 

diagram was used to visualize network connectivity that shows the WSN communication at a 

specific time stamp (Fig. 3.12). The trees were generated from ASCII art trees provided by TAG 

IT and the plots revealed the important role of the relay node and the parent-children 

relationships. As the communication-protocol is self-healing and flexible, the WSN 

communication structure changes depending on radio signal strength and node availability.       

  

Figure 3.12 Examples of WSN communication layouts are shown on 6 October 2016 (A), on 17 June 2017 
(B) and on 8 September 2017 (C) generated from ASCII art trees. The data transmission is dynamic and 
it restructurers itself to maintain connectivity (RO: Root, GR: Gateway Radio, RE: Relay node). The 
colours indicate various levels of the parent children relationships.  
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3.2.6 AquaCheck probe calibration 

Due to the distance among sensors, topography and soil conditions vary between microsites, 

and this can effect sensor readings. Factory provided calibration functions were assessed and 

they were observed to significantly underestimate the true soil water content (Hajdu et al., 

2019). Consequently, the accuracy of the probes were improved by performing a multi-level, 

farm-, microsite or probe- and sensor-specific calibration depending on the required precision 

and available soil information. Chapter 4 provides a detailed description of the calibration 

procedure and accuracy assessment. 

3.3 Determination of microsite-specific soil properties 

The research required soil samples for gravimetric (𝜃𝑔, gg-1) and volumetric soil water content 

(𝜃𝑣, m3 m-3), bulk density (𝜌𝑏 , gcm-3), particle size analysis (soil texture) and total organic carbon 

(TOC, %) measurements.  

3.3.1 Gravimetric soil water content 

The soil sampling events were carried out during dry (𝜃𝑣 ≈ 0.25 m3 m-3), moderately wet (𝜃𝑣 ≈

 0.35 m3 m-3) and wet (𝜃𝑣 ≈ 0.45 m3 m-3) stages of 𝜃𝑣 conditions over five sampling events (on 

21/11/2016, 23/02/2017, 24/04/2017, 31/10/2017 and 18/11/2017). During four sampling 

events, the gravimetric samples were taken using a soil auger (⌀ 5 cm) approximately 0.6-0.8 m 

away from the multi-sensor probe location avoiding the upper slope areas (Fig. 3.13 (A)). Three 

soil cores were collected at each location and the cores divided into four depths (70-130, 170-

230, 270-330 and 370-430 mm) corresponding to the depth of the soil volume sampled by each 

sensor (Fig. 3.13 (B and C)).  

 

Figure 3.13 Soil sampling design illustrating the soil core locations arranged in a circle surrounding the 
sensor probe (A). The four soil depth increments obtained from soil cores for gravimetric analysis are 
shown in (B) and the sampling method for soil bulk density measurements from soil pits is shown in (C). 
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The samples were immediately placed in sealed containers inside a cooling box and taken 

directly to the laboratory to be processed. For one sampling event, the three soil cores were 

kept separate to ascertain variability caused by the sampling method. For the other three 

sampling events, the samples were composited for each depth and treated as one sample in the 

laboratory. 

To obtain reference soil water content values used in the sensor calibration, 𝜃𝑔 was measured 

by the thermo-gravimetric technique (oven drying). Despite being an old technique, this 

approach has been the most widely used for the direct determination of soil moisture 

(Schmugge et al., 1980, Lekshmi et al., 2014). Therefore, it is often required for calibrating soil 

moisture measuring equipment (Johnson, 1962, Lal and Shukla, 2004, Dobriyal et al., 2012). The 

procedure involves taking representative soil specimens from the site of interest, and placing 

the samples in a forced draft oven for drying at a constant temperature of about 105 °C. The 

process ends if the sample weight becomes constant, and as a result, 𝜃𝑔 on dry basis can be 

calculated as per Eq. (2.1). Soil cores were used for obtaining samples for 𝜃𝑔 measurements and 

they were subsampled for particle size analysis and TOC estimation. Sampling pits provided 

opportunity to examine the soil media surrounding the sensor probes down to 50 cm depth. 

3.3.2 Bulk density measurements 

For most purposes, water content based on volume fraction (i.e. 𝜃𝑣) is required and more useful. 

Through the determination of 𝜌𝑏  of the soil sample, 𝜃𝑣 can be obtained (Gardner et al., 2000, 

Shukla, 2013). Soil compaction is indicated by 𝜌𝑏  that affects infiltration, rooting depth, plant 

available water, nutrient extraction by plants, soil porosity and aeration. In agriculture, 𝜌𝑏 is 

defined as the ratio of the mass of oven dry soil to a unit volume of soil (Grossman and Reinsch, 

2002) as per Eq. (2.4). The relationship between 𝜌𝑏 and 𝜃𝑔 was used to compute 𝜃𝑣 as presented 

by Eq. (2.5). 

During one sampling event, soil samples for both 𝜌𝑏  and 𝜃𝑔 measurements were acquired by 

opening two narrow, 0.5 m deep pits approximately 0.4 m from the AquaCheck probe (Fig. 3.13 

(A and C)). The 𝜌𝑏 samples were obtained horizontally using 84.76 cm3 steel cylinders within 

which the soil material was retained for subsequent drying and analysis. The steel cylinders with 

the samples were dried in an oven at 105 °C for 24 h.  

Soil variability tends to be greater near the soil surface in hill country. This is mainly due to the 

interrelated effects of grazing livestock, soil organic matter, land use, topsoil downslope 

movement, rooting characteristics, and the presence of soil organisms (Stavi et al., 2008, 

Chaudhari et al., 2013). Hence, five replicates were taken from 100 mm soil depth while three 
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replicates were obtained for all other soil depths. Mid-points of the sampling depths 

corresponded to those of the sensing volume of each sensor. Sampling holes were subsequently 

infilled with soil from the same horizon, preserving the compaction.   

3.3.3 Particle size distribution analysis 

The relative size distribution of the primary particles in a soil, referred to as soil texture, plays a 

fundamental role in most pedogenic processes (Gee and Bauder, 1986). Soil water holding 

capabilities, nutrient retention, the exchange of air and water parameters, effective rooting 

depth and the overall physical behaviour of the soils are highly influenced by its mechanical 

composition and clay content (Kettler et al., 2001, Eshel et al., 2004, Bronick and Lal, 2005). 

Furthermore, the ground-based soil monitoring sensing units are usually sensitive to soil texture 

and require soil-specific calibration. In case of the AquaCheck product utilised in this study, the 

manufacturer provides 6 calibration equations for volumetric water content calculations 

depending on the soil textural classes, namely sand, clay, silt-loam, generic, loam, and clay-loam 

(Aquacheck, 2008). The following chapters of the study heavily rely on accurate soil moisture 

readings. This requires detailed information on soil texture at the microsites at multiple depth.  

Several methods are employed to determine the particle size distribution and to separate the 

textural fractions. Field texturing, the hydrometer method, pipette method, sedimentation 

technique, sieving, dynamic light scattering, image analysis and laser diffraction are some of the 

various techniques applied for a wide range of sample types (Kettler et al., 2001). The overall 

textural designation is determined based on mass ratios of the three separates, i.e. sand, silt and 

clay using one of the standard soil textural classifications.  

In this study, a laser scattering particle size distribution analysis or laser diffraction method 

(LDM) was performed using a Horiba LA-950 (HORIBA Scientific, Kyoto, Japan) machine and an 

attached slurry sampler extension (Fig. 3.14). The method was chosen based on the number of 

samples under investigation and the accuracy required for the purpose of the study. It was 

observed by Fisher et al. (2017) that LDM is a reliable approach for routine soil particle size 

analysis. In the same study, the LDM results were also compared to grain size distribution 

obtained from sedimentation method and showed strong agreement. The LDM offers 

acceptable time effectiveness, reliability, precision and reproducibility parameters for soil 

particle sizing, as well as continuous size information between the sensing ranges (Miller and 

Schaetzl, 2012).  
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Figure 3.14 The Horiba LA-950 laser particle size analyser with the attached slurry sampler extension 
during operation.  

The Horiba LA-950 unit is a sophisticated laser particle size distribution analyser that uses 2 

beams of light of different wavelengths (LED: λ = 405 nm, Laser: λ = 650 nm) to determine the 

distribution of grain size classes in fluid-solids dispersions. The grain size range of particles 

compatible with the instrument is 10 nm to 3 mm. The internal circulation system uses deionised 

water as dispersion medium. A double array of sensors detects light rays passing through or 

scattered by solid particles of specific refractive indices (RI) in relation to deionised water. It 

works on the principle that the angle of scattered light beam is inversely proportional to the 

interacting object size. A collection of particles will produce a recognisable pattern of scattered 

light defined by intensity and angle, providing information that can be converted into a particle 

size distribution and visualised through the Horiba Software. The Horiba particle size distribution 

analyser is calibrated by commercially available, traceable standard particles (polymer micro 

spheres). This process guarantees a high accuracy of ±0.6 % or less and a reproducibility of ±0.1 

% or less (Horiba Scientific, 2017). 

In this research, only the fine earth class of soil granulometry was in interest, covering a particle 

size range of 0-2000 μm. Fine earth is usually divided into three particle size classes: clay (fine 

particles < 2 μm), silt (medium size particles between 2-50 μm) and sand (coarser particles 

between 50-2000 μm). The diameter range of the individual size groups were defined by the 

U.S. Department of Agriculture (USDA) (Gee and Bauder, 1986) and their size limits were 

accepted in this analysis since it widely applied globally and also generally accepted in New 

Zealand. Taking into account the predefined size limits by the Horiba particle size distribution 

analyser, the size intervals were chosen as 0-1.953 μm for the clay, 1.953-44.19 μm for the silt 

and 441.9-2000 μm for the sand fraction. 
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3.3.3.1 Sample processing 

Each collected soil increment was sub-sampled into two sets, from which only one was chosen 

for the particle size analysis. 3-4 grams of material was separated taking care that subsamples 

reflect the entire sample as much as possible. It has been observed that in the case of LDM the 

difference between using or not using chemical pre-treatment was not statistically apparent 

neither for topsoil or subsoil (Fisher et al., 2017). On the other hand, ultrasound treatment was 

observed to be a faster method for breaking down the particle aggregates than applying 

chemical solutions such as Na-hexametaphosphate (Ryżak and Bieganowski, 2011). Additionally, 

the samples were not treated for fine organic matter removal since the Aquacheck probes also 

measure the original, intact soil material containing organic matter. 

Prior to analysis, the samples were air-dried and the roots and coarse fragments (> 3 mm) were 

separated since the Horiba LDM is not able to detect these elements. The samples were placed 

in glass cylinders to achieve efficient dispersion through physical procedures (Fig. 3.15). The 

tubes were filled with deionised water up to three quarter level for dilution and the samples 

were stirred with a rod until homogenous suspensions were formed. Afterwards, a 16-hour end-

to-end rotational mixing was applied which was followed by a 10 min ultrasonic bath treatment 

to improve the disintegration of the agglutinated particles. 

 

Figure 3.15 Sample dispersions with added deionised water prior to the stirring as first step of the 
preparation process. 

Prior to the measurements, the suspensions were thoroughly mixed once again by a rod to 

dislodge the sediment from the bottom of the cylinder. 
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3.3.3.2 Laboratory measurements 

The LDM method quantitatively determines the physical proportions of various sizes of primary 

soil particles falling somewhere within the 38 predefined grain size bins. The slurry sampler 

extension was used to run the samples in suspension and in batches of 30 samples. The 

Scheduler part of the controlling software was set up to automate and simplify the analysis by 

executing a pre-defined series of steps using the slurry sampler tray. The sequence includes 

feeding, debubbling, aligning, blank measurement and rinsing multiple times to ensure 

consistent reading and to mitigate contamination. The sample is taken from the glass beakers 

after a high rpm mechanical stirring controlled by the Horiba software. Each sample was 

analysed three times and the mean of the three measurements were taken to define soil texture. 

Volume-based particle size distribution was calculated by utilising the Mie scattering theory as 

standard, modern procedure for specimens with all fine grain sizes (Sperazza et al., 2004, Ozer 

et al., 2010). Input parameters, such as particle RI and particle absorption index were 

determined by the statistical method (considering R parameter and Χ square) suggested by 

Horiba (Bodycomb, 2013) whereas the RI of the dispersant (i.e. deionised water) was set to 1.33.  

3.3.4 Total organic carbon (TOC) measurements 

The TOC encompasses a wide range of organic compounds in soils, therefore its quantification 

in soil horizons provides essential information for scientific research, agricultural activities and 

management practices (Matejovic, 1993). TOC is a vital component of the complex soil-water-

atmosphere system, influencing numerous biological and physical processes that are in 

continuous interaction with nutrient cycles. Microbiological activity, biomass accumulation, 

organic matter decomposition and mineralisation are governed by soil water content that 

affects yield production (Linn and Doran, 1984, Amador et al., 2005, Tulina et al., 2009). 

Furthermore, TOC plays an important role in the characterisation of soil water storage and 

hydraulic properties and there exists an optimum level of TOC that is required to hold adequate 

amount of moisture and nutrients (Post and Kwon, 2000). Soil water holding capacity is strongly 

limited by soil water retention that is impacted by TOC, hence driving soil moisture 

redistribution, water availability, evaporation rates and several ecological processes (Yang et al., 

2014). Moreover, soil moisture spatial variability is strongly related to TOC as it was shown by 

Baumann et al. (2009) on alpine grasslands.  

TOC, particle size distribution and 𝜌𝑏 are the main parameters in most pedotransfer functions 

that predict soil water holding properties including field capacity, saturation, plant available 

water and permanent wilting point (Yang et al., 2014, Minasny and McBratney, 2018).  
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Although, various methods are available to measure TOC content in soils, such as the wet 

oxidation techniques, the popular dry (or heat) combustion method was chosen in the present 

study. It is one of the most commonly applied techniques for measuring TOC in soils and 

agricultural products due to its precise and accurate automated operation that is able to 

measure the quantity of C, H, N and S content from one weighed sample rapidly and 

simultaneously (Sleutel et al., 2007).  

3.3.4.1 Sample processing and preparation 

As it was mentioned above, for particle size distribution analysis, 80 soil samples were collected 

in the field and subdivided into two subsets in the laboratory. One set was used for the particle 

size distribution analysis, whereas the second subset was used for the TOC analysis. The samples 

were taken from the depth intervals corresponding to the soil moisture sensors’ position at 100, 

200, 300 and 400 mm. The samples were air-dried, crushed and sieved using a 2 mm sieve before 

they were homogenised. As a last step, the particle size was reduced to < 250 µm by gentle 

grinding.  

The subsamples were packed in aluminium foils and WO3 powder was used as additive to 

increase the efficiency of the combustion. The samples were wrapped and closed gas tight 

avoiding the loss of substance, before the capsules were weighed. Afterwards, the compressed 

and folded sample packets were placed in the carousel sample magazine and were covered by 

a plastic ring during the automated measurement process. To calculate the daily factor and 

calibrate the instrument, conditioning samples were prepared that included blank samples and 

daily factor samples using the factory recommended Sulphanilamide. 

3.3.4.2 Sample analysis 

The analysis was conducted by a Vario MACRO Cube CHNS elemental analyser (Elementar 

Analysensysteme GmbH, Hanau, Germany) that operates on a catalytical, dry-combustion 

principle (Fig. 3.16). The samples are combusted in a furnace at 950 °C to 1200 °C when lowered 

in a combustion tube and oxygen is jet injected over the sample. The elevated temperature and 

the use of accelerants ensure the complete combustion of all carbon forms present in the soils.  

During combustion, the targeted sample elements are converted into simple gases, the desired 

components are separated and moved to the detectors by carrier gases. The TOC  is estimated  

from the evolved CO2  by a thermal conductivity detector (Sleutel et al., 2007). For the purposes 

of the study, a single soil subsample was used for both total C and N content estimation. 
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Figure 3.16 The Vario Macro Cube elemental analyser used in the study (A) and an example of the 
prepared, grinded samples just before subsampling (B). The WO3 powder was added to the subsamples 
as combustion aid and Sulphanilamide was used for instrument conditioning.  

3.4 Pasture growth measurements 

3.4.1 The cage technique 

In New Zealand, a commonly used method to measure herbage production is the application of 

the exclosure cage-technique or “Cut method”. The method has been applied successfully, 

providing valuable information in a number of studies where relative pasture production 

differences were the main focus (Devantier et al., 1998). It involves the collection of re-growth 

from a trimmed quadrat (Radcliffe, 1974a).  

In this study, to assess the accumulated dry matter (DM), three moveable livestock exclusion 

cages were positioned at 13 microsites to exclude stock from grazing that specific area. The cage-

protected surface was trimmed down to 10 mm height by using a grass shear and re-trimmed 

every 4-6 weeks within a standard 320x320 mm quadrat. The cages were moved around the 

AquaCheck probe and placed back on freshly cut surfaces making sure that the previously 

measured spots were avoided. 

The fresh pasture cuts were stored in chilled polystyrene boxes until they were weighed. The 

selected 3 m diameter sampling areas were considered to represent a stand of more or less 

homogenous pasture cover with relatively consistent pasture composition, terrain attributes 

and soil parameters.  

The samples were cleaned from soils and placed in paper bags for the determination of the 

accumulated DM. The measurement was achieved through the evaporation of water from the 

feed in a forced air oven with a drying time of 24-48 hours, leaving only the DM behind. The 

effects of the cage technique on growth rate have been studied by Marsh (1978) who did not 

observe any significant effect caused by the presence of exclosure cages. Slight change in micro-

climate under cages and increased growth rate was recorded by Heady (1957) inside the caged 

area during the cold season with slow growth. The differences in growth rate between caged 
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and not caged sampling sites seemed to disappear in spring with fast growth and there was no 

difference detected in composition. Therefore, in the present study, the effect of cages have not 

been taken into account. A comparison of cage and model techniques can be viewed in 

Devantier et al. (1998).  

3.4.2 The sampling sites and field data collection  

The 13 microsites were distributed on flat areas as well as north-, east-, south- and west-facing 

slopes, which were subdivided, based on slope angle. Each aspect class contains microsites on 

steep and gently rolling slopes. These microsites were established to determine the effect of soil 

physical properties, climatic parameters and topographical attributes on pasture production.  

Pasture growth sampling was conducted 16 times during the experiment, covering the period 

between 01/11/2016 and 20/06/2018. At every site, the total herbage accumulation was 

calculated by averaging the DM data from the three sampling points. Yields were calculated as 

kg DM/ha for each harvest date. Growth per day was computed by dividing the total yield by 

the number of days separating two cuts.  

3.5 Remote sensing data 

The study aimed to synergistically use spaceborne radar (Sentinel-1) and multispectral (Sentinel-

2, Landsat 7 and Landsat 8) data for the spatial prediction of near-surface soil water content at 

the Patitapu Station. The Materials and Methods section of Chapter 6 provides a brief 

description of the Sentinel-2 and Landsat satellite missions and the characteristics of the utilised 

image collections. After a brief summary of the science program and objectives behind the 

Sentinel missions, the focus will be placed on the Sentinel-1 satellites, their characteristics and 

currently available products due to the increasing role of radar data in soil moisture research. A 

short description is given on how the remote sensing data is generally accessed in this study. 

Finally, the section ends with a brief report detailing the specifications of the used radar dataset 

over the research area.   

3.5.1 The Copernicus Earth observation program 

The Copernicus initiative, headed by the European Commission and the ESA was designed to 

provide easily accessible information about the environment and to obtain data for civil services 

and applications. Within the program’s lifetime, ESA is developing and placing into orbit a fleet 

of new satellites, called Sentinels, to serve the requirements of the European Commission and 

the European Union (Torres et al., 2012). The Sentinels will capture images of the land, oceans 

and the atmosphere through currently seven satellite missions. At the time of the study, three 
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operating, two-satellite constellations were in orbit, including the Sentinel-1, Sentinel-2 and 

Sentinel-3 launched in the years of 2014-2018. The data is made available via a range of 

information services to provide imagery for researchers, policy makers, civil services and 

numerous other humanitarian needs (ESA, 2018b). These missions are considered as “game 

changers” due to their operational configuration and improved instrumentation in the field of 

land management, dynamic hydrological processes, marine environment, atmosphere, 

emergency response, security and climate change.  

3.5.2 The Sentinel-1 mission 

The Sentinel-1 is a radar-imaging mission for land and ocean services generating systematic, high 

quality products with quick data delivery. The Sentinel-1 mission, particularly Sentinel-1A 

satellite represents the first dedicated component of the European Copernicus program that 

was placed into orbit. The Sentinel-1A was sent to space on 3 April 2014 whereas Sentinel-1B 

was launched on 25 April 2016. The constellation was designed to take images over landmasses, 

coastal zones, sea-ice, polar areas and the global ocean to ensure data continuity after the age 

of the first reliable and operational ERS 1 and 2 radar-imaging systems. The Sentinel-1 imaging 

radar mission aimed to provide microwave-based observations with improved resolutions with 

weather and daylight independent image collection capabilities. Taking into account these 

advantages and the global coverage, the Sentinel-1 mission has the potential to be used for 

operational soil moisture monitoring at a finer scale than previous space missions could achieve 

(Wagner et al., 2009b, Hornacek et al., 2012, Paloscia et al., 2013). 

Both satellites were placed on the same polar orbital plane at an altitude of 693 km but with a 

phase difference of 180 degree. These conditions allow the formation of interferograms and the 

maximum 12-day revisit time that applies to each satellite individually, can be shortened. 

Therefore, the Sentinel-1 constellation is able to cover the main landmasses every six days at 

the Equator and even shorter revisit times are given for areas with higher latitudes. The mission 

offers regular, frequent image acquisition and a ground resolution of 5m x 20 m in the main, 250 

km wide swath operation mode over landmasses (Attema et al., 2008, Torres et al., 2012).  ESA 

specified the life time of the individual satellites as 7 years, with consumables allowing the 

extension of the mission up to 12 years, while the life cycle of a satellite generation is planned 

to be in the order of 15–20 years (Torres et al., 2012). 

3.5.2.1 Instruments and operational modes 

The Sentinel-1 satellite pair was mounted with identical C-band SAR instruments working at 

5.405 GHz frequency (λ = 5.6 cm) and with 1dB radiometric accuracy. The C-band radar signal 
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can penetrate through clouds and most rain events without major impact on the signal giving a 

significant advantage over optical imagery for time series and change detection analysis (Muro 

et al., 2016) in land surface monitoring. The C-SAR instrument is supplemented by an active 

phased array antenna (length of 12 m) with dual channel transmit and receive modules. The SAR 

is able to provide images with single or dual polarisation i.e. HH or VV for single and HH+HV and 

VV+VH for dual channels (Hornacek et al., 2012). Four exclusive acquisition modes are available, 

namely Stripmap, Interferometric Wide swath, Extra-Wide swath and Wave (Fig. 3.17).  

 

Figure 3.17 Sentinel-1 image acquisition modes. Out of the four operational modes, the Interferometric 
Wide swath mode satisfies the most requirements for numerous environmental applications (ESA, 
2018c).  

While the Stripmap, Extra-Wide swath and Wave modes are used only over specific areas and 

specific applications, the Interferometric Wide swath option with VV+VH polarisation is the 

primarily used mode over landmasses that serves most applications (ESA, 2018c). 

There are three product types, Level 0, Level 1 and Level 2 depending on the level of processing. 

Level 0 products contain the raw data with noise that is compressed and unfocused. The Level 

1 and Level 2 data are produced from the Level 0 products. Most data users are interested in 

the images derived by the Level 1 processing chain as it is transformed from raw data via various 

algorithms to an easier to handle product. The processing can result in Single Look Complex 

images or Ground Range Detected (GRD) images (ESA, 2018d). Single Look Complex products 

contain the phase and backscattering information, which is required for the generation of the 

coherency matrix for interferometry. In this study, the Level 1 GRD images were used that have 

been detected, multi-looked (5 x 1 looks) and projected to the ground range by the application 

of the Earth ellipsoid model WGS84, on which additional terrain correction was carried out. It 
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carries less information and the file size is significantly smaller compared to the Single Look 

Complex data. The focussed SAR GRD images used in this study were acquired in Interferometric 

Wide swath operational mode at both VV (vertical transmit and vertical receive) and VH (vertical 

transmit and horizontal receive) polarisations were available for most of the experimental 

period. The pixel spacing was 10 x 10 m in range and azimuth directions.  

3.5.3 Data access 

Sentinel-1, Sentinel-2, Landsat 7 and Landsat 8 products are made freely available systematically 

through the Copernicus Open Access Hub (Copernicus Open Access Hub, 2018) to all data users 

including general public, researchers and commercial users. The ESA provides a freely accessible, 

open software environment, called Sentinel Application Platform (SNAP), within which the open 

source Sentinel-1 Toolbox is equipped with the essential tools for the pre-processing, 

visualisation and analysis of the Sentinel-1 data (SNAP, 2018).   

However, the ever-growing amount of available Earth observation data has been reforming the 

concepts of how the data can be delivered to users and how the data is analysed (Hird et al., 

2017, Esch et al., 2018). Individual, standard workstations are no longer able to process the data 

volume with improved spatial and temporal resolution acquired by the increasing number of 

satellites. In this study, the need for high computational power, storage capacity and the time 

series type of dataset meant that an alternative data platform was chosen to extract Sentinel-1 

SAR data as well as Sentinel-2, Landsat 7 and Landsat 8 data. The high number of remote sensing 

images used in this thesis suggested the application of a cloud-based geoinformation service to 

access consistent and continuous image collections.  

3.5.3.1 Google Earth Engine (GEE) 

One of the modern cloud-computing platforms for accessing and processing large amount of 

Earth observation and geospatial data collections was developed by Google. Google’s GEE offers 

a platform where researchers, scientists and developers have the possibility to conduct analysis 

from the local to the planetary scale. The combination of thirty years of satellite imagery, already 

existing or newly developed algorithms and real world applications makes GEE a powerful tool 

in the field of Earth observation. Monitoring the dynamic changes on the Earth surface is of great 

interest especially in the field of environmental applications such as the tracking of changes in 

natural resources, deforestation, agricultural practices and climate.  

GEE allows users to execute various geospatial processes on Google’s infrastructure and run the 

computations on high performance, intrinsically parallel services. The interaction between the 
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user and the platform is provided in several ways, although a commonly used option is the Code 

Editor, a web-based integrated development environment. This environment supports the use 

of Python and JavaScript application programming interfaces that allows users to reach an 

analysis-ready, Internet accessible data catalogue. A large repository of pre-processed datasets 

are made available from several satellite missions containing optical and non-optical image 

collections (Gorelick et al., 2017, Google Earth Engine, 2018a). An advantage of using a cloud-

computing platform is the consistent datasets that can be analysed by multiple users. Another 

benefit of the cloud-based approach is that the processing is done online and the data is not 

downloaded to the local desktop computer during processing.  

3.5.3.2 Sentinel-1 image collection and pre-processing 

The GEE catalogue contains all processed GRD Sentinel-1 scenes at Level 1 since Oct 2014 with 

weekly update. The dataset can be filtered to generate a homogenous image collection since 

images at three resolutions, in three instrument modes and with various band combinations of 

polarisation modes are all included. To be able to work with the SAR data and to create a GIS 

ready image collection, several pre-processing steps need to be executed.  

The pre-processing procedure implemented is built upon the algorithms applied in the Sentinel 

1 Toolbox that is also employed in SNAP. The description below is mainly based on the 

documentation available on GEE application programming interfaces (Google Earth Engine, 

2018b). The standard workflow consists of six main steps that satisfy the data need for most 

applications and assure the quality of the results retrieved from the imagery. First, an orbit file 

refinement is performed to apply the most accurate satellite position and velocity information. 

The second step removes the GRD border noise and invalid data from the scene edges that is 

followed by the thermal noise removal as the third step to reduce discontinuities between sub-

swaths and the additive background energy (Carsey, 1992). Fourth, radiometric calibration is 

conducted to derive backscatter intensity from digital numbers by the application of sensor-

specific calibration parameters. In the fifth step, also knowns as terrain correction, the data is 

transformed from ground range geometry to backscatter coefficient 𝜎0 represent the target 

backscattering area (radar cross section) per unit ground area as it is explained in more detail in 

Chapter 2, Section 2.5.5. To correct for the geometric distortions and to generate orthorectified 

images, a 30 m DEM data from the Shuttle Radar Topography Mission (SRTM) is utilised. As a 

last step, the unitless 𝜎0 is converted to dB, i.e. from linear scale to logarithmic scale as it can 

vary across several orders of magnitude. The steps described above result in images with 10 m 

pixel spacing. The pre-processed images are stored in a pyramid type of tile database with 
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optimal tile size for online data reading and visualising the dataset effectively (Gorelick et al., 

2017). 

3.5.4 Sentinel-1 imagery over New Zealand and the Patitapu Station 

Over New Zealand, the available polarisations are VV and VH in both ascending and descending 

modes. GRD products were chosen for this study, as the objectives needed backscattering 

intensity and incidence angle data and did not require phase information.  As the satellites carry 

the same type of instrument, combinations of descending and ascending modes are generally 

possible. Sentinel-1A passes over the research area in the evening, whereas Sentinel-1B flies 

over in the morning hours. Figure 3.18 depicts the Sentinel-1 acquisition segments and sensor 

view directions over New Zealand as well as the image positions that cover the Patitapu Station 

in both orbit types. The σ° and incidence angle information were obtained by creating an image 

collection within GEE and extract SAR data at the points of interests, i.e. at the twenty microsites. 

The information was extracted from 150 Level-1, GRD images acquired in Interferometric Wide 

swath mode between 01/11/2016 and 01/07/2018 in the available dual polarisation. 

 

Figure 3.18 Illustration of the Sentinel-1A (red) and -1B (black) image acquisition segments over New 
Zealand and the image tiles as presented in Google Earth Engine specifically over the research area, 
Patitapu Station, located in the North Island (background image generated in Google Earth Pro and 
Sentinel 1 segments were accessed through ESA (2018a). 
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4 Chapter 4 - Field performance assessment and calibration of 

multi-depth AquaCheck capacitance-based soil moisture 

probes 

4.1 Introduction 

Soil water content monitoring is rapidly developing across different types of soil-plant systems 

over many landscape features at a time of increasing food demand and more intense agricultural 

drought events (Howell, 2001, Charlesworth, 2005, Trenberth et al., 2013). Accurate 

measurements of real-time soil water contents allow farmers, agronomists and hydrologists to 

better inform pre- and in-crop strategic inputs, pasture production (Matson et al., 1997), 

irrigation management (Leib et al., 2003) and nutrient cycling (Dougill et al., 1998) at farm scale. 

Similarly it is essential for hydrological modelling (Western et al., 2002), meteorological 

applications (Rowntree and Bolton, 1983) and flood risk evaluation (Massari et al., 2014) at 

catchment scales. Soil water content controls the soil infiltration rate, runoff and 

evapotranspiration influencing plant water availability that plays an essential role in precision 

agriculture as the single most important natural resource for pasture production (Rodriguez‐

Iturbe et al., 1999, Woodward et al., 2001).  

Due to the interaction of numerous environmental parameters, soil water content is generally 

considered a both temporally and spatially highly changeable soil physical state variable, 

although the spatial patterns have been observed to remain stable over time (Vachaud et al., 

1985, Vanderlinden et al., 2012, Brocca et al., 2017). Soil water content predictability and 

variability are not yet fully understood, especially near the surface and within the root-zone; 

these being the layers of interest for most applications (Wilson et al., 2004, Petropoulos et al., 

2014). Root-zone soil moisture is particularly useful for the evaluation of climate, land-surface 

and energy exchange models, while in-situ, near-surface soil moisture data is utilised in the 

validation and calibration of remotely sensed soil water products (Dorigo et al., 2011b, Liu et al., 

2017). Consequently, obtaining accurate, frequent and non-destructive soil water data is 

significantly advantageous, if not essential, to facilitate improved yield and water management 

strategies in both irrigated and non-irrigated farming systems.   

Several indirect methods measure a physico-chemical property of the soil to estimate soil water 

content (Evett and Parkin, 2005). The radioactive technology and the idea of the neutron 

moisture metre published by Gardner and Kirkham (1952) induced a breakthrough in modern 



Hajdu: Soil water modelling in hill country  AquaCheck sensor calibration 

95 | P a g e  

 

soil moisture estimation. Calibrated neutron moisture meters are able to achieve high soil 

moisture sensing accuracy, although, the technique is extremely costly and it poses special 

requirements for installation and operation. The technique remained the standard until the age 

of dielectric sensors arrived in the 1980s (Ochsner et al., 2013). Since then, a wide range of 

electromagnetic soil water content sensing devices have been developed (Robinson et al., 

2008b). State-of-the-art, continuous soil water measurement techniques make use of the 

dielectric property of the sensed soil matrix (Lekshmi et al., 2014). It has long been recognised 

that the measurement of the soils’ apparent dielectric constant (𝐾𝑎) can be directly related to 

volumetric soil water content (𝜃𝑣, m3 m−3) sensitivity (Dean et al., 1987).  

Time Domain Reflectometry (TDR), Frequency Domain Reflectometry (FDR) and capacitance 

techniques are the most common methods to obtain soil water content by emitting 

electromagnetic energy pulses into the soil. The basics of TDR, FDR and capacitance techniques 

for soil water measurement were established by Topp et al. (1980) and Dean et al. (1987). The 

techniques rely on the physical principle that water in soil pores has a significantly higher 𝐾𝑎 

(~81 at 20 °C), than air in soil pores (~1), and higher than the typical mineral matrix of soils (3-

12) (Dean et al., 1987, Noborio, 2001, Chandler et al., 2004). The TDR method relates soil water 

content to the travel time of the electromagnetic signal along a transmission line, since the 

propagation velocity of the electromagnetic energy impulse is mainly influenced by soil 𝐾𝑎 

(Blonquist et al., 2005). The generally expensive TDR sensors are commonly utilised as a 

reference (Bogena et al., 2007) due to their high accuracy and good agreement with 

observations obtained by neutron scattering (Serrarens et al., 2000). The FDR technique differs 

from TDR in that the former measures the variation of frequency of the returned 

electromagnetic pulses. Capacitance-based sensing devices are based on the frequency domain, 

although they make use of the charging time of the emitted electromagnetic field which is a 

function of soil 𝐾𝑎 (Mittelbach et al., 2012). During measurement, a capacitor system is formed 

by two or more electrodes (metal rods, spikes or rings) inserted in the soil, which serves as the 

dielectric. An oscillator is often connected to the circuit - this converts the changes in soil 𝐾𝑎 to 

the variation in the frequency of the transmitted signal between the electrodes (Leib et al., 2003, 

Lekshmi et al., 2014).  

Soil 𝐾𝑎 is influenced by factors other than soil water content, such as variation in soil bulk 

density ( 𝜌𝑏), clay content, temperature, soil organic matter, and salinity (Topp et al., 1980, Roth 

et al., 1990, Tsheko and Savage, 2005). The sensing volume of FDR and capacitance techniques 

is relatively small and the operating frequency is generally below 100MHz. Therefore, these 

sensors have been observed to be sensitive to clay content, soil organic matter content, air gaps, 
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temperature, amount of iron minerals and 𝜌𝑏  (Robinson et al., 1994, Muñoz-Carpena et al., 

2004, Dobriyal et al., 2012, Mittelbach et al., 2012, Visconti et al., 2014, Fares et al., 2016). In an 

attempt to circumvent this, calibrations provided by the manufacturer are generally developed 

under laboratory conditions by immersing the sensing units in solutions or in a soil medium with 

known parameters (Kizito et al., 2008).  

Capacitance sensors have been proven to be accurate for effective soil water monitoring for 

either scientific or agronomic purposes,  if a soil-specific calibration is provided (Matula et al., 

2016, Singh et al., 2018), offering a significantly lower cost alternative to TDR (Evett, 2000b, 

Mittelbach et al., 2012, Visconti et al., 2014). However, their accuracy and dependency on soil 

properties have not been investigated extensively under field conditions, particularly not in New 

Zealand on diverse hill country landscapes and soils.  

AquaCheck Ltd has more than 20,000 probes installed in more than 20 countries around the 

world, highlighting its key role among the industry’s leading vendors in the rapidly growing 

global soil moisture sensor market space (Agri Optics, 2017). These numbers are expected to 

rise worldwide imposed by the increased pressure on sustainable agricultural productivity and 

the growing concern about climate, soil health and conservation. To date, AquaCheck Sub-

surface sensor performance and the assessment of standard calibration functions have received 

little scientific attention, although they have been employed in several studies (Cronje and 

Mostert, 2008, Murungu et al., 2011). AquaCheck reported soil moisture data were compared 

to EnviroSCAN readings chosen as reference by Nolz (2013), however no comparisons were 

made against direct soil moisture measurements. Recently, Singh et al. (2018) presented a 

detailed evaluation of a variety of electromagnetic sensors in a loam soil in Nebraska, U.S, 

including the Aquacheck Classic probe. AquaCheck readings were related in reference to field 

calibrated neutron moisture meter observations. However, their study had a short timeframe 

(from 28 July to 6 September, 2016), and a narrow soil water content range. Additionally, the 

research was based on the statistical comparison of averaged soil moisture readings from two 

replicates at each of two selected depths, separately and combined. A criticism of the Singh et 

al. (2018) paper was published by Schwartz et al. (2018) questioning and commenting on the 

meaningfulness of the comparison between electromagnetic sensors and a neutron probe. In 

the reply of Rudnick et al. (2018), the authors reviewed the results in Singh et al. (2018) and 

rejected the claim proposed in Schwartz et al. (2018). Rudnick et al. (2018) clearly stated that 

their approach intended to generate a scientific review of the sensors available for customers 

rather than a comprehensive comparison.  
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Our study aims to evaluate the performance of 400 mm AquaCheck sub-surface multi-sensor, 

capacitance probes during a one-year period under field conditions in silt loam and silty clay 

loam soils. A comparison was made between sensor data collected from 20 spatially distributed 

probes and reference thermo-gravimetric observations. To achieve this aim, our objectives are 

to: 

1. Assess the manufacturer-supplied calibration functions and establish new functions 

between raw sensor readings and reference observations to improve 𝜃𝑣 sensing 

accuracy at multiple depths. These custom calibrations will occur at three scales, i.e. 

farm (i.e. single calibration), probe (i.e. microsite-specific (20) calibrations) and sensor 

(i.e. sensor-specific (80) calibrations).  

2. Investigate temporal 𝜃𝑣 patterns and compare differences in accuracy between the 

custom calibration methods and the manufacturer provided calibrations that were most 

suitable for the soil type at the research area.  

3. Provide aspects about measurement accuracy for sensor users to help decision making 

on whether the complete (at sensor level) calibration is necessary for their applications.  

4. Determine the effect of selected soil properties and soil wetness on sensor error 

distribution. Our intent is to inform future deployment of capacitance-based sensor 

probes for accurate predictions of multi-depth 𝜃𝑣 patterns on New Zealand hill country 

soils or in regions with similar soil characteristics. 

4.2 Materials and methods 

4.2.1 Experimental site and soil characterisation 

The study was conducted on a ~2600 ha hill country property, Patitapu Station, located in the 

Wairarapa region of the North Island of New Zealand (40.745020 S, 175.887320 E, Fig. 4.1). The 

research site is primarily non-irrigated pastoral farmland mixed with native bush on rolling to 

steep hills, interspersed with fertile flat land. Sixty-four-year annual average rainfall is 1144 mm 

in this area with a range between 721-1735 mm (NIWA CliFlo, 1953-2017), although 

precipitation is often localised in hill country. Elevation ranges from 143-535 m above sea level. 

The microsites (Fig. 4.1) were selected from pastoral areas on the farm where the predominant 

plant communities are ryegrass and clover species. A permanent weather station (40.750032° 

S, 175.887493° E) was installed at the property, from where rainfall and air temperature 

observations were collected to investigate sensor response to climatic variables. The minimum, 

maximum and mean distance between the climate monitoring station and sensing probes were 

0.34, 2.9 and 1.8 km, respectively. 
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Soil resource information was retrieved from the Fundamental Soil Layers that describes the 

spatial pattern of soil types defined by the New Zealand Soil Classification (Hewitt, 2010). The 

majority of the property is covered by Brown Soils as it is illustrated on Figure 4.1. At the group 

level, a common soil in the east side of the North Island, the Orthic Brown (BO) soil dominates 

over the study area, while patches of Orthic Gley (GO) soils occur along the main water ways 

and Firm Brown (BF) soils can be found in the eastern side of the property with higher altitudes. 

The topsoil is typically described as dark grey-brown while the subsoil is often brown or yellow-

brown with generally well-drained characteristics and fine texture.  

 

Figure 4.1 Location of the research area, land cover (LINZ, 2017), soil cover (New Zealand Soil 
Classification) and the distribution of the selected 20 microsites illustrated on a digital surface model.  

4.2.2 Instrumentation and sensor data collection 

4.2.2.1 AquaCheck multi-sensor probe specifications 

The capacitance-based, 400 mm AquaCheck Sub-Surface probe is a robust multi-level device 

with four sensors spaced at intervals of 100 mm and with a right hollow cylindrical shaped 

sampling range. The sphere of influence can be approximated with geometric parameters of h 

= 60 mm (cylinder height), r = 16 mm (internal radius) and R = 20-45 mm (external radius). The 

probes are designed to be completely buried with an attached wire for data transmission to a 

logger (Fig. 2B). The sensor transforms the frequency readings to Scaled Frequency (𝑆𝐹) as raw 

output. The 𝑆𝐹 values range from 0-100 %, where 0 % is equal to a reading in open air, and 100 

% when the sensor is immersed in distilled water. 𝑆𝐹 is calculated as per Eq. (4.1) as follows:  

 
𝑺𝑭 =

𝑭𝒂𝒊𝒓 − 𝑭𝒔

𝑭𝒂𝒊𝒓 − 𝑭𝒂
 (4.1) 

Where 𝐹𝑠 is the frequency reading in the soil, 𝐹𝑎𝑖𝑟 is the sensor frequency reading in air, and 𝐹𝑎 

is the sensor frequency reading in distilled water (Zettl et al., 2015). The 𝑆𝐹 readings are 
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automatically corrected for possible inherent temperature change by embedded compensation 

functions. To calculate 𝜃𝑣 (%), 𝑆𝐹 values need to be converted using an empirical, laboratory-

based calibration curve. The conversion is not a built-in function; therefore, the device is offered 

with factory calibration equations for six soil textures, e.g. sand, clay, silt loam, loam, clay and 

generic (composited from sand, silt loam and clay soils) (Agri Optics, 2017). The linear calibration 

equations provided by the manufacturer are in the form shown by Eq. (4.2): 

 𝜽𝒗 = 𝒃𝟎 + 𝒃𝟏 ∗ 𝑺𝑭 (4.2) 

where 𝑏0 and 𝑏1are the y-intercept and slope parameters of the generalised linear regression 

model and are dependent on the six determined soil textures. For the purpose of this study, the 

resulting 𝜃𝑣 (%) output was converted to 𝜃𝑣 (m3 m-3).  

4.2.2.2 Wireless sensor network based data collection and microsite design   

At the Patitapu Station, a communication network utilising Wireless Sensor Network (WSN) 

technology was deployed for the investigation of soil water distribution and temporal change in 

the root-zone over a wide range of topographical positions on the farm. The WSN architecture 

is composed of 20 multi-sensor probes, a gateway unit (base station and connecting point to the 

cellular network) and a repeater station arrayed in a mesh topology. A typical example of a 

microsite is illustrated in Figure 3.8 (A) in Chapter 3. Each multi-sensor probe was connected to 

robust, long-range telemetry units for logging and transmission of data via radio connection to 

the gateway. Each multi-sensor probe was buried vertically (Fig. 3.8 (B)) and placed 

approximately 4 m away from the radio unit with a connecting cable running through a sealed 

underground Alkathene pipe. Manufacturer-provided instructions were followed during the 

probe installation to avoid preferential water flow and air gaps, as well as to ensure optimal 

sensor contact with the soil. The interface board and battery (recharged by a solar panel) were 

placed in a weatherproof enclosure mounted on a galvanised pole along with a long-range, 

omnidirectional antenna (Fig. 3.8 (A)). The HALO Farm System, an online service developed by 

Tag I.T Technologies Ltd (New Zealand, Hamilton), was used for web-based data collection and 

management via cellular network. The criteria associated with the research objectives and the 

farm management required the multi-sensor probes to be buried - this also provided equipment 

protection. A two-month period prior to the experiment was allowed for the sensors to 

equilibrate with the surrounding soil. For the purpose of this study, sensor readings were 

retrieved from the WSN database at the time closest to the time stamps of the sampling events 

at each microsite, giving a maximum of 7.5 min of time difference between sensor reading and 
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sampling. There was no false or unusual reading in the analysis based on a comparison to the 

previous and the following three sensor readings.  

4.2.3 Soil sampling and reference soil water content 

The soil sampling events were carried out during dry (𝜃𝑣 ≈ 0.25 m3 m-3), moderately wet (𝜃𝑣 ≈

 0.35 m3 m-3) and wet (𝜃𝑣 ≈ 0.45 m3 m-3) stages of 𝜃𝑣 conditions over five sampling events (on 

21/11/2016, 23/02/2017, 24/04/2017, 31/10/2017 and 18/11/2017 as marked on Figure 4.8). 

The acquisition of gravimetric soil samples considered the variability in bulk density with depths, 

thus the number of replicates were chosen accordingly. Reference soil water content values 

were obtained from soil samples taken at multiple depths and the gravimetric water content 

(𝜃𝑔, gg-1) was calculated by the standard gravimetric technique (Schmugge et al., 1980). For each 

sensor, the laboratory 𝜃𝑔 value was converted to 𝜃𝑣 by multiplying by the mean 𝜌𝑏  value. These 

𝜃𝑣 values were employed in comparisons and referred to as reference 𝜃𝑣 in the following 

sections of the chapter. The fieldwork, sampling scheme and the laboratory work related to the 

reference soil water content collection have been described in detail in Chapter 3, Section 3.3.  

4.2.4 Soil description and soil texture 

In this study, a laser scattering particle-size distribution analysis was performed on composited 

samples (three replicates at each depth) using a Horiba LA-950 (HORIBA Scientific, Kyoto, Japan) 

instrument to determine texture. The diameter range of the individual particle size classes were 

defined by the U.S. Department of Agriculture (USDA) (Gee and Bauder, 1986) and their size 

limits adopted in this analysis since it has been generally used in New Zealand for texture 

analysis. Figure 4.2 (A) and Figure 4.2 (B) summarise the results from the particle size analysis 

grouped by depth, along with the means and standard deviations (SDs) of the 𝜌𝑏 values at each 

microsite. Most of the 300 and 400 mm soil increments exhibited fine-textured silty clay loam 

characteristics with 25 % and 28 % average clay content, respectively. Soil layers nearer the 

surface tend to fall in the silt loam class with increased proportions of sand fractions and less 

than 20 % clay content. Increasing 𝜌𝑏   values were observed with increasing depth with a mean 

𝜌𝑏   of 1.1 gcm-3 for 100 mm, 1.22 gcm-3 for 200 mm, 1.32 gcm-3 for 300 mm, and 1.37 gcm-3 at 

400 mm depth (Fig. 4.2 (B)).  
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Figure 4.2 Soil textural properties based on USDA classification (A) and measured bulk density 𝝆𝒃  (B) at 
each microsite (1-20) for each soil depth on the study farm. Mean 𝝆𝒃 is labelled and the error bars 
indicate the mean ± standard deviation. 

Apart from 𝜌𝑏, soil water holding properties are dependent on particle size distribution as well 

as total organic carbon (TOC) content, which are the main parameters in most pedotransfer 

functions that predicts field capacity, saturation, plant available water and permanent wilting 

point (Yang et al., 2014, Minasny and McBratney, 2018). Thus, TOC values were derived for each 

sensing depth at each microsite by a dry combustion method using a Vario MACRO Cube CHNS 

elemental analyser (Elementar Analysensysteme GmbH, Hanau, Germany). The soil samples 

taken on 31/10/2017 were used for the analysis providing a dominantly decreasing trend in TOC 

content with depth at most monitored locations. The TOC values ranged between 2.01-5.31 % 

(mean = 3.48 %) at 100 mm, 0.64-4.27 % (mean = 2.13 %) at 200 mm, 0.54-2.91 % (mean = 1.32 

%) at 300 mm and 0.52-2.39 (mean = 0.99 %) at 400 mm soil depth.  

4.2.5 Calibration methods and sensor evaluation 

4.2.5.1 Custom calibration approach 

Custom calibration was carried out at three levels of scale to provide options for users 

depending on their knowledge regarding the monitored soils. A farm-specific calibration (FC) 

used the entire dataset to provide a single linear relationship i.e. a single equation for the 

research area. At the next level of detail, microsite specific calibration (SIC), formulas were 

developed to provide a linear calibration for each microsite/probe (20 in total). These 

calibrations ignored the change in soil properties with depth. At the highest level of detail (SEC), 

a custom calibration formula was determined for each depth for each sensor, resulting in 80 

individual calibration equations.  
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4.2.5.2 Statistical assessment of factory calibration and sensor accuracy 

In this study, 𝜃𝑣 values computed by various factory calibration formulas were compared, the 

relationship between 𝑆𝐹 and reference 𝜃𝑣 was analysed, and sensor reported 𝜃𝑣 determined by 

three custom calibration and factory supplied functions were related to reference 𝜃𝑣. A simple 

linear regression approach was followed to investigate how 𝑆𝐹 and reference 𝜃𝑣 were 

associated. The assessment was performed for different subsets based on depth and calibration 

type to identify errors and model fit for each group.  

For the evaluation of sensor accuracy and the applicability of factory calibration functions, two 

primary statistical indicators were utilised, i.e. the degree of coincidence and the degree of 

association. The degree of coincidence was expressed by Absolute Accuracy Error (AAE, Eq. 4.3), 

Mean Bias Error (MBE, Eq. 4.4), Mean Absolute Error (MAE, Eq. 4.5) and Root Mean Square Error 

(RMSE, Eq. 4.6) to assess how well sensor measurements matched the reference water content 

values following the equations in Willmott (1982). AAE, MBE, MAE and RMSE are considered as 

best measures of overall accuracy, reliability and model performance. The simultaneous use of 

these metrics are often beneficial to assess model performance, thus their customised forms 

are commonly applied in evaluation studies (Willmott, 1982, Chai and Draxler, 2014).  

 𝑨𝑨𝑬 = 𝒚𝒔𝒆𝒏 𝒊 − 𝒚𝒓𝒆𝒇 𝒊 (4.3) 

 𝑀𝐵𝐸 =
1

𝑛
∑(𝑦𝑠𝑒𝑛 𝑖 − 𝑦𝑟𝑒𝑓 𝑖)

𝑛

𝑖=1

 (4.4) 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑠𝑒𝑛 𝑖 − 𝑦𝑟𝑒𝑓 𝑖|

𝑛

𝑖=1

 (4.5) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑠𝑒𝑛 𝑖 − 𝑦𝑟𝑒𝑓 𝑖)

2
𝑛

𝑖=1

 (4.6) 

where 𝑖 is the data pair index, 𝑛 is the number of observations,  𝑦𝑠𝑒𝑛  is the sensor data and 𝑦𝑟𝑒𝑓  

is the reference 𝜃𝑣. 

The simplest measure, AAE, was used to retrieve the magnitude of difference for each sample 

pair of sensor reported values and reference 𝜃𝑣. AAE is the most useful when individual data 

pairs are examined. If the AAE values are averaged over multiple measurements, the MBE can 

be obtained that intends to measure average model bias. The MBE value can convey information 



Hajdu: Soil water modelling in hill country  AquaCheck sensor calibration 

103 | P a g e  

 

on the degree of overestimation (positive) or underestimation (negative) (Sheiner and Beal, 

1981) when calibration methods are compared to each other or to the reference 𝜃𝑣 

measurements. The linear score of MAE was also calculated that measures accuracy by giving 

the average magnitude of the prediction errors regardless their direction and by weighing 

individual differences equally. Ideally, 𝜃𝑣 measurements are preferred within a certain threshold 

(depending on applications and sensor type) and large errors are not desirable, therefore RMSE 

was computed to penalise data pairs with large differences by giving them proportionally high 

weights. The coefficient of determination (R2, the square of the Pearson correlation coefficient) 

was selected as a measure of the degree of association, indicating how well regression models 

can be fitted to raw sensor data, calibrated datasets, and to reference 𝜃𝑣 data. 

A general linear model approach (two-way factorial analysis of variance (ANOVA)) was chosen 

to test the effect of soil physical properties, soil depth and calibration type on sensor response. 

Firstly, sensor readings at five 𝑆𝐹 levels (i.e. 40, 50, 60, 70, 80 % ± 0.5 %) and their corresponding 

reference 𝜃𝑣 values were selected to examine whether the sensors would produce the same 𝑆𝐹 

values if either the soil texture or 𝜌𝑏 was different.  

Secondly, ANOVA offers a statistical means of assessing the influencing power of a measured 

variable (i.e. clay content /𝜌𝑏) on a dependent continuous variable (i.e. sensor error) in addition 

to a secondary categorical variable (i.e. depth/calibration method that contain a finite number 

of categories). The influencing power of soil properties was expressed by statistical significance 

(P value) and mean measurement error. It is assumed that the measured soil variables have not 

been controlled by the experiment, but are considered to influence sensor performance. It is 

also assumed that the relationship between the measured soil properties and the sensor errors 

are linear based on previous findings regarding electromagnetic sensors types (Varble and 

Chávez, 2011, Parvin and Degré, 2016).  

To help visualising these relationships, interaction plots are commonly used to analyse the 

interaction between categorical variables and a continuous response depending on the value of 

another factor (calibration method). For example, the effect of clay content and 𝜌𝑏 on sensor 

error was visualised by displaying the levels of clay content / 𝜌𝑏 on the x-axis with the means of 

the continuous variable for each factor level on the y-axis. Both ANOVA related analyses were 

conducted using the R statistical software version 3.4.1. (R Core Team, 2017). 
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4.3 Results and discussion 

4.3.1 Assessment of manufacturer provided formulas 

The sensors measured 𝑆𝐹 was converted to 𝜃𝑣 by the factory provided conversion equations 

and compared to 400 (80 samples per sampling event) corresponding reference 𝜃𝑣. While the 

soils at the microsites are mainly silt loam or silty clay loam, five conversion formulas were 

selected for comparison. Table 4.1 provides a depthwise summary about the statistical 

measures of the various factory supplied calibration. Due to the linear nature of the factory 

calibration, R2 values varied only with depth, giving a range of 0.74-0.49 through the observed 

soil profile. During the examination of the manufacturer calibration functions, the closest 

agreement with reference 𝜃𝑣 was achieved by the loam soil specific factory calibration, 

performing slightly better than the clay soil formula. The loam calibration resulted in a range of 

0.038-0.043 m3 m-3 for RMSE between the reference 𝜃𝑣 and the sensor reported 𝜃𝑣 across all 

depths providing the best overall accuracy. 

Table 4.1 Statistical comparison of reference volumetric soil water content (𝜽𝒗) and five manufacturer 
calibrated 𝜽𝒗 at multiple soil depths. The values are presented in m3 m-3. 
 

100 mm (R2 = 0.74) 200 mm (R2 = 0.57) 300 mm (R2 = 0.54) 400 mm (R2 = 0.49) 

Calibration RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE 

Loam 0.043 0.035 -0.015 0.043 0.037 0.011 0.038 0.030 0.017 0.038 0.030 0.013 

Clay 0.061 0.051 -0.044 0.047 0.037 -0.015 0.040 0.032 -0.005 0.044 0.035 -0.007 

Generic 0.104 0.096 -0.096 0.080 0.068 -0.068 0.071 0.062 -0.060 0.074 0.065 -0.063 

Clay loam 0.109 0.101 -0.101 0.084 0.073 -0.073 0.075 0.066 -0.065 0.078 0.069 -0.067 

Silt loam 0.125 0.118 -0.118 0.102 0.093 -0.093 0.095 0.089 -0.089 0.100 0.094 -0.094 

The generic and clay loam calibration functions did not perform well providing very similar error 

levels with 0.071-0.109 m3 m-3 RMSE. The loam type of factory calibration resulted in 0.163 m3 

m-3 root mean squared difference in loamy soils in comparison to neutron scattering 

observations according to Singh et al. (2018) which also highlights the uncertainty in the 

manufacturer calibrations and the need for soil- or microsite-specific formulas. The silt loam 

type of conversion significantly underestimated the 𝜃𝑣, giving -0.0985 m3 m-3 of MBE and RMSE 

between 0.095-0.125 m3 m-3 depending on depth. In comparison with the other four texture-

specific methods, the silt loam calibration showed the largest underestimation of the true 𝜃𝑣. 

The assessment also showed generally higher error values in the top half of the profile than in 

the deeper sections regardless of the calibration method which was also observed by Nolz 

(2013) when comparing AquaCheck readings to EnviroSCAN estimations. Similar trends were 
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reported by Mittelbach et al. (2012) during an evaluation of low-cost sensors to TDR 

measurements on loam and clay loam soils in Switzerland.  

Taking into consideration the soil textural properties found at the majority of the microsites, 

AquaCheck probe users would apply the silt loam specific equation to compute 𝜃𝑣 for their 

applications. Therefore, the silt loam formula was selected and referred to as manufacturer 

calibration (MC) in the further analysis and various comparisons. 

4.3.2 Regression calibration 

4.3.2.1 Relating raw sensor readings to reference volumetric water content 

Raw sensor outputs as a function of true 𝜃𝑣 were analysed by fitting a linear model on  𝑆𝐹 and 

reference 𝜃𝑣. The relationship between 𝑆𝐹 and reference  𝜃𝑣 demonstrated significant positive 

linear correlations at every depth (Fig. 4.3 (A)). However, the slope and intercept of the fitted 

models differed for the various soil depth intervals (Fig. 4.3 (B)). The linear regression explained 

58 % of the variability on the entire dataset and 74, 57, 54 and 58 % at 100, 200, 300, 400 mm 

depth, respectively. Since the correlation between raw AquaCheck 𝑆𝐹 and reference  𝜃𝑣 was 

characterised as positive moderate (R2 between 0.5 - 0.7) and strong (R2 > 0.7), a linear 

regression calibration approach was followed to develop custom calibration functions to 

improve the precision of  𝜃𝑣 predictions at different microsites and depths on the study farm. 

Since there is a saturation or plateau effect at the extremely wet end of the soil  𝜃𝑣 range (Fig. 

4.8), a more complex model fit seems desirable for these conditions. 

 

Figure 4.3 Graphical representation of linear fit between sensor reported scaled frequency 𝑺𝑭 and 
reference 𝜽𝒗 on the entire dataset (A) and depthwise (B).  

A laboratory-based calibration process on site-specific soil samples could potentially improve 

the model fit between raw 𝑆𝐹 readings and high-resolution reference  𝜃𝑣 covering the entire 

sensing range and lead to the development of non-linear models. Considering the linear 
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regression approach followed by the manufacturer and the main objectives of the study the 

linear calibration method seemed to be the most practical statistical approach that could be 

easily reproduced by individuals not belonging to the scientific community.  

4.3.2.2 Development of the custom calibration functions and model fit analysis 

Figure 4.4 presents the steps and results of an example how SIC (Fig. 4.4 (A)) and SEC (Fig. 4.4 

(B)) equations were developed at a selected microsite (namely, Site 9).  

 

Figure 4.4 Linear regression at a selected microsite (Site 9) for creating the microsite-specific (A) and 
the sensor-specific (B) formulas. A comparison of reference 𝜽𝒗, factory calibrated and custom 
calibrated 𝜽𝒗 (farm-specific: FC, manufacturer provided: MC, microsite-specific: SIC and sensor-specific: 
SEC, is presented in (C) while their correlation is shown in (D). 

Notice, MC, FC and SIC methods use only one single equation for each probe at a particular 

location. The SIC model was fitted on reference 𝜃𝑣 and 𝑆𝐹 readings obtained from all four depths 

containing 20 data pair at each microsite. The SEC formula was generated from five data pair for 

every individual sensor. As a final step, 𝜃𝑣 computed by MC, FC, SIC, SEC were compared and 

correlated to the reference 𝜃𝑣 to assess the difference in the converted 𝜃𝑣 by various calibration 

functions (Fig. 4.4 (C) and (D)). 

The general trend given by the reference 𝜃𝑣 was followed by both the MC and the custom 

calibration formulas (Fig. 4.4 (C)), although, it is clearly indicated that the custom linear 

regression coefficients are able to offer a better agreement between the sensor predictions and 

the reference 𝜃𝑣. Figure 4.4 (D) plots the model fits after calibration, where SEC method 

evidently demonstrated an improved 0.89 R2 as opposed to the 0.64 R2 given by the other three 

calibration methods.  

The calibration process and the computation of R2 values were completed on every microsite at 

each depth for the four calibration methods. Figure 4.5 (A) summarises the results grouped by 
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the methods and Figure 7B presents the statistical distribution of R2 at each depth. The 

correlations between the sensor predictions and the reference 𝜃𝑣 obtained at the four soil 

depths (Fig. 4.5 (B)) were significantly different, indicating that one calibration formula for one 

microsite might not be sufficient, thus SEC for each soil depth may be used for applications 

where high accuracy is required.  

 

Figure 4.5 The linear model fit is represented by the distribution of the coefficient of determination (R2) 
considering every microsite for each calibration method (farm-specific: FC, manufacturer provided: MC, 
microsite-specific: SIC and sensor-specific: SEC) (A) and for each soil depth (B). Upper extreme, upper 
quartile, median, mean, lower quartile and lower extreme are represented for each box.  

The model fit for the 100 mm soil depth produced the highest mean R2 of 0.91 and the 400mm 

soil depth demonstrated the lowest, 0.70 R2 while 200 and 300 mm depth intervals performed 

similarly well, giving 0.8 and 0.77 of R2. In terms of calibration methods, SEC method with 0.86 

mean R2 demonstrated considerably better fit than the MC, FC and SIC methods showing mean 

R2 of 0.66 each.  

4.3.2.3 Custom calibration accuracy and error assessment 

To investigate the improvement in accuracy, 𝜃𝑣 values calculated by MC, FC, SIC and SEC were 

correlated to reference  𝜃𝑣 data and the change was examined both on the entire dataset (Fig. 

4.6 (A)) and at each depth (Fig. 4.6 (B)). The custom regression calibrations FC, SIC and SEC led 

to substantial improvement in terms of accuracy of 𝜃𝑣 prediction considering the entire dataset. 

The overall regression developed for FC resulted in appreciable improvement compared to the 

MC method. The SIC method resulted in RMSE of 0.029 m3 m-3 compared to 0.039 m3 m-3 for FC 

and 0.106 m3 m-3 if the MC approach was utilised. The best performance was achieved by the 

SEC formulas with mean RMSE of 0.019 m3 m-3 (Table 4.2).  
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Figure 4.6 Graphical representation of linear model fit between corresponding reference 𝜽𝒗 and the 
custom calibrated values (farm-specific: FC, manufacturer provided: MC, site-specific: SIC and sensor-
specific: SEC) for the entire dataset (A) and separately at four depths (B). 

The MAE ranged from 0.09-0.118, 0.025-0.039, 0.019-0.029 and 0.013-0.019 m3 m-3 for MC, FC, 

SIC and SEC, respectively, meaning that the absolute error and the error range through four 

depths were reduced by moving towards the calibration at the sensor level. MBE varied between 

-0.089-(-0.118) for MC, -0.021-0.007 for FC, -0.016-0.027 for SIC and gave 0.000 m3 m-3 for SEC, 

suggesting that 𝜃𝑣 obtained by MC considerably underestimated the gravimetrically measured 

reference 𝜃𝑣. 

Table 4.2 Statistical comparison of reference 𝜽𝒗, farm-specific (FC) manufacturer-calibrated (MC), 
microsite-specific (SIC) and sensor-specific (SEC) calibrated  𝜽𝒗 at four depths. The values are given in 
m3 m-3. Cal - calibration type  

Depth 100 mm 200 mm 300 mm 400 mm 

Cal. RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE 
Mean 
RMSE 

 MC 0.125 0.118 -0.118 0.102 0.09 -0.093 0.095 0.09 -0.089 0.1 0.09 -0.094 0.106 

 FC 0.047 0.039 -0.021 0.042 0.036 0.003 0.034 0.027 0.007 0.034 0.025 0.001 0.039 

SIC 0.034 0.029 -0.016 0.032 0.027 0.006 0.025 0.019 0.008 0.024 0.019 0.002 0.029 

SEC 0.018 0.014 0.000 0.023 0.019 0.000 0.018 0.015 0.000 0.017 0.013 0.000 0.019 

SEC was able to remove the presence of systematic over- or underestimation as the errors 

cancelled out (Table 4.2). These results show that even a single farm-specific calibration will 

perform better than the universal factory formulas. If the sensors are used in precision 

agriculture applications, a SEC calibration will produce accuracy beyond the single FC and SIC 

calibration, making perceivable difference on the long run in irrigation scheduling. Furthermore, 

fertiliser applications are strongly dependent on the right amount of 𝜃𝑣 (Monaghan et al., 2007, 
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Ma and Herath, 2016), thus more precise timing of inputs (at least matter of days) can be chosen 

by using the most detailed, SEC method. 

However, the distribution of errors in relation to reference 𝜃𝑣 was not uniform. The pattern of 

error distributions was examined by the correlation of reference 𝜃𝑣  and the calculated AAE for 

each custom and MC methods as plotted in Figure 4.7. To describe 𝜃𝑣 conditions during the five 

sampling events, the frequency distribution of reference 𝜃𝑣 was displayed in the bottom of 

Figure 4.7 for each depth. The histograms clearly demonstrate the wider range and higher 

variability of reference 𝜃𝑣 in the surface than in the deeper sections. At the 300 and 400 mm 

depths, the shape of the data is slightly skewed to the left showing that the deeper part of the 

soil profile was usually wetter than the surface on the date of sampling events. 

 

Figure 4.7 Absolute accuracy errors (AAE) of the AquaCheck reported data using the manufacturer and 
custom calibrations with frequency distribution of reference 𝜽𝒗 for each depth (farm-specific: FC, 
manufacturer provided: MC, microsite-specific: SIC and sensor-specific: SEC). AAE is calculated as the 
difference between calibrated sensor readings and reference 𝜽𝒗. 

In the upper section of Figure 4.7, normal confidence ellipsoids were added to the scatter plot 

matrix with 95% confidence level as a graphical representation of correlation between AAE and 

reference 𝜃𝑣 (Friendly et al., 2013). At every depth, the ellipsoids are stretched out diagonally 

from top left to bottom right indicating negative linear correlation.  

The analysis revealed that sensor readings tend to overestimate the true 𝜃𝑣 at drier soil 

conditions (𝜃𝑣< 0.28-0.35 m3 m-3, depending on the depth and calibration type). On the other 

hand, underestimation occurred during the wetter soil stages, the largest AAE increased to 0.012 

m3 m-3 if FC and to 0.009 m3 m-3 if SIC method was applied at 100 mm depth. The FC and SIC 

methods led to considerably reduced errors, SIC being more accurate than FC at every depth 

level. In general, the lowest AAE was observed if SEC calibration was used with less significant 
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correlation, while the largest absolute differences were given by the MC. SEC was able to limit 

the AAE to around ±0.05 m3 m-3 for most observations at all depths.  

The more elongated ellipses in the 100, 200 mm depths suggest higher correlation (R2 of 0.56 

for FC, 0.5 for MC, 0.30 for SIC and 0.05 for SEC at 100 mm) than the less elongated, nearly 

circular shaped ellipsoids, for the deeper parts of the monitored soil profile (R2 of 0.26 for FC, 

0.21 for MC, 0.1 for SIC and 0.13 for SEC at 400 mm). R2 typically decreased as the scale of the 

calibration moved from FC towards the SEC, suggesting improvement and less sensitivity to high 

and low moisture conditions. These results depict that the effect can be minimised by calibration 

at the probe or sensor level, thus underestimation and overestimation can be diminished in 

comparison with MC. Furthermore,  Mittelbach et al. (2011) and Mittelbach et al. (2012) found 

similar AAE trends for capacitance and FDR based sensors, who also emphasised the importance 

of site-specific calibration and the sensitivity to soil types that agree with the findings of this 

study.  

A sensor-specific calibration might be an ideal option when the soils have variable physical 

properties within the monitored profile. The collected and analysed data indicates that the 

AquaCheck sensors can be effectively field calibrated using direct gravimetric measurements. 

Consequently, the new calibration coefficients developed in this study could be used for soils 

with similar textural properties. The key findings of this study is supported by other field-based 

evaluation experiments, stating that root mean square difference values dropped significantly 

when microsite-specific or sensor-specific equations were applied (Rudnick and Irmak, 2014, 

Singh et al., 2018). The generated custom calibration functions are expected to carry robust 

representations of accurate soil water measurements, since a wide spectrum of 𝜃𝑣  were used 

for the analysis along with sensor reported data acquired from 20 replicates. Therefore, the WSN 

deployed at Patitapu Station can be applied to validate soil moisture products from other 

sources, such as remote sensing. 

4.3.3 Prediction of soil water temporal trends 

Exploring the long-term behaviour of sensor response and general probe reliability through a 

time-series based comparison is of great importance since it can reveal hysteresis effects, 

reliability issues, technical problems and variation in measurement accuracy. It also highlights 

the relevance of soil or site-specific calibration development in capturing moisture sorption and 

desorption, especially when irrigation scheduling is guided by real-time soil water data from in 

situ sensors. On the other hand, in rainfed pastoral systems, timing of fertiliser application in 

relation to the received rainfall and the current state of 𝜃𝑣 can be crucial since untimely nutrient 
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management can lead to nutrient loss and reduced amount of input taken up by plants (Beegle 

et al., 2000). Pasture growth rates are largely governed by soil water content; therefore, 

monitoring the temporal evolution of 𝜃𝑣 serves a valuable part in land management practices 

and sufficient exploitation of the uncontrollable land resources (Scott et al., 1985, Shadbolt and 

Martin, 2005). 

Temporal evolution of climate variables is presented on Figure 4.8 including daily mean 𝜃𝑣 

computed by MC at 100 mm depth with ± SD, total daily rainfall, daily mean near-surface soil 

temperature (obtained from 100 mm depth) ± SD, and daily maximum 2-m air temperature. 

Prior to trend analysis, the 15-min 𝜃𝑣 readings were converted to daily time series of 𝜃𝑣 and 

then the data obtained from 20 probes were averaged for each depth. The probes have a built-

in compensation factor for correcting the effect of temperature, thus the effectiveness of 

correction functions are not discussed in this paper.  

The 𝜃𝑣 monitoring started in the wet season (November 2016) which was followed by a drying 

out period for about 2 months. In late January, the soils began a rewetting stage leading towards 

near-saturated conditions in July and the 𝜃𝑣 levels remained high during the wintertime. In the 

second half of October 2017, a rapid drying period occurred which was significantly more intense 

than in the previous year. During the experiment, 1111.2 mm rainfall was recorded by property’s 

weather station, showing an extremely heavy rainfall of 123.8 mm on 14 July 2017.  

 

Figure 4.8 Temporal evolution of the main climate drivers, such as daily maximum 2-m air temperature, 
daily precipitation, near-surface soil temperature ±standard deviation (100 mm depth, n = 20) and mean 
volumetric soil moisture 𝜽𝒗  ± standard deviation (100 mm depth, n = 20) converted by the silt-loam 
factory formula (MC). The temporal distribution of sampling events (S1-S5) and a zoomed in view of the 
saturation (plateau) effect are depicted. 
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The dynamic sensor response to the timing and magnitude of rainfall events, drying cycles and 

the temporal trends of the climate variables were observed to be reasonable during the one-

year observation period. It can be concluded, that the sensors demonstrated stable response to 

changes in soil 𝐾𝑎, i.e. indirectly to 𝜃𝑣 fluctuations making them reliable to use in non-irrigated 

farm management as well as in irrigation scheduling. 

The differences of the continuous data between MC and custom calibrations and the variation 

among the four depths are illustrated on Figure 4.9. As it was expected the 100 mm, near-surface 

layer showed the highest rate of drying out process and the largest temporal variability of 𝜃𝑣 

ranging from 0.24-0.47 m3 m-3 if the SEC method was applied. The lowest temporal 𝜃𝑣 variation 

was found in the deepest section of the observed soil profile, giving a range of 0.29-0.42 m3 m-

3. Factory calibration and the custom calibration methods followed the same trend, although 

the 𝜃𝑣 variation and range among the 20 microsites decreased downwards the soil profile.  

Sampling events were added to the timeline (marked with dotted lines) with the corresponding 

mean reference 𝜃𝑣, so the temporal position of the collected gravimetric samples can be related 

to the evolution of 𝜃𝑣  through the experiment period. The SD was computed from the 20, 

composite samples at every sampling campaign for each depth. Overall, the 100 mm reference 

measurements exceeded the greatest spatial variability, whereas the reference set from 400 

mm depth showed the smallest dispersion.  

The interaction of numerous environmental parameters, such as incoming solar radiation, 

evapotranspiration, precipitation and wind causes higher variation in the surface layers than 

deeper in the soil profile. The comparison between MC and SEC exhibited more significant 

differences in the top layer than in the deeper sections. The MC approach presented 

underestimation over the entire observed timeframe at all depth, although a reduced difference 

was observed during the dry seasons. This result suggest that the measurement error tends to 

be larger when the 𝜃𝑣 is close to field capacity, while the sensor readings show closer agreement 

to reference 𝜃𝑣 in dry conditions. FC and SIC showed very similar behaviour through the profile 

and the study period except at the shallowest depth where the wet season exerted the greatest 

differences in 𝜃𝑣 between the MC and SEC. It was found that MC does not represent consistently 

the entire measurement range. The difference between MC and SEC began to increase at > 0.33 

m3 m-3  𝜃𝑣 levels especially in the 100 mm depth, although better agreement was observed in 

the low 𝜃𝑣 range (< 0.33 m3 m-3). 
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Figure 4.9 Temporal evolution of 𝜽𝒗 at four consecutive soil depths based on factory offered (MC), farm-
specific (FC), microsite-specific (SIC) and sensor-specific (SEC) calibrations. Mean reference 𝜽𝒗 
±standard deviation (n = 20) corresponding to the sampling events are shown for each depth. 

The application of factory provided and custom calibration functions to the time series output 

of the probes resulted in a visually more sensible representation of the importance of using the 

custom calibration functions. In case of irrigation scheduling, the improved prediction of daily 

water content will improve water usage and optimise water management as well as reduce the 

amount of water leaching below the root zone. 

4.3.4 Effect of soil properties on sensor performance  

4.3.4.1 Raw sensor output dependence on clay content, bulk density and total organic carbon 

content 

Capacitance technique relies on the principle that 𝜃𝑣 is the main influencing factor of the change 

in soil 𝐾𝑎. Figure 4.10 (A), Figure 4.10 (B) and Figure 4.10 (C) present the sensor response at five 

predetermined 𝑆𝐹 levels with their corresponding reference 𝜃𝑣 as a function of soil clay 

content, 𝜌𝑏 and TOC, respectively. Reference 𝜃𝑣 observations were selected corresponding to 

the  𝑆𝐹 output levels of 40, 50, 60, 70 and 80 % ±0.5 % to explore the potential impact of the 

clay content, 𝜌𝑏 and TOC on the 𝜃𝑣 readings. At the 40, 50, 60 and 70 % 𝑆𝐹 levels, increasing 

clay content reflected lower reference 𝜃𝑣, while the 80 % 𝑆𝐹 level expressed the opposite trend. 

A similar behaviour was observed for 𝜌𝑏 at the same 𝑆𝐹 categories. However, an a reversed 

trend occurred in the case of TOC, i.e. decreasing TOC resulted in decreasing reference 𝜃𝑣 at a 

given 𝑆𝐹 level (Fig. 4.10 (C)) except at 80 % 𝑆𝐹 that showed the opposite trend. 
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Figure 4.10 Reference  𝜽𝒗 at selected raw sensor scaled frequency 𝑺𝑭 output levels plotted against clay 
content (A), bulk density 𝝆𝒃 (B) and total organic carbon (TOC) content (C).   

By the utilisation of the factory-supplied conversion (i.e. not depth- specific calibration), our 

interpretation would suggest that at 40 % 𝑆𝐹 output, the predicted 𝜃𝑣 could fall anywhere 

between a relatively wide range of 0.27-0.17 m3 m-3 depending on 𝜌𝑏 or the amount of soil clay 

present. In other words, increasing clay content and 𝜌𝑏 can lead to increase in raw sensor 

outputs at the same 𝜃𝑣 level. Dielectric sensors have been reported to overestimate 𝜃𝑣 with 

increasing clay content (Rüdiger et al., 2010, Sharma et al., 2017). Parvin and Degré (2016) 

reported increasing raw outputs for the layers with increasing clay content and 𝜌𝑏 in case of 

capacitance sensors in contrast to Seyfried and Murdock (2001) who observed that increased 

bound water (i.e. increased clay content) resulted in decreased Ka, hence lower raw output 

values. In our study, the former has been observed, except in the very high 𝜃𝑣 range, i.e. at 80 

% 𝑆𝐹 level. Since the clay content and 𝜌𝑏 showed noticeable variation with soil depth at every 

microsite (Fig. 2), the SEC type is recommended to minimise these effects when AquaCheck 

products are chosen under similar soil conditions. 

4.3.5 Summary of the analysis of variance (ANOVA) 

Sensor errors were defined and computed as the difference between calibrated sensor readings 

and the reference 𝜃𝑣 and used as input of the statistical analysis. As a result of the two-way 

factorial ANOVA, it was observed that soils’ clay content and the depth tend to have notable 

statistical effects on the sensor errors but their interaction is only significant on the 0.05 level 

(Table 4.3). Since the soil texture (including clay content) and 𝜌𝑏  change with depth in a very 

similar manner (Fig. 4.2), the combination of their influencing power may be reflected by the 

depth as a factor.  

The correlation between the sensor errors and soil clay content showed a P value < 0.001 and 

the soil depth exerted an important effect at the 0.001 level. The interaction of clay content and 

the calibration method factor was defined to be significant with P value < 0.001.   
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Table 4.3 A summary of the results from ANOVA using measurement error as dependent variable 
related to various factorial variables (Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ’ ’ 1). 

Source 
Degree of freedom Sum of Squares Mean Square F value P value Significance 

Clay 1 0.105 0.105 37.665 1.06e-09 *** 
Depth 3 0.046 0.015 5.440 0.00101 ** 

Clay : Depth 3 0.021 0.007 2.479 0.0596 . 
Residuals 1592 4.457 0.003    

ρb 1 0.033 0.034 11.82 0.0006 *** 
Depth 3 0.069 0.023 8.101 2.35e-05 *** 

ρb : Depth 3 0.018 0.006 2.124 0.0952 . 
Residuals 1592 4.508 0.003    

TOC 1 0.072 0.072 25.539 4.84e-07 *** 
Depth 3 0.036 0.012 4.256 0.00528 ** 

TOC : Depth 3 0.006 0.002 0.703 0.55  
Residuals 1592 4.514 0.003    

Clay 1 0.105 0.105 105.4 < 2e-16 *** 
Cal. type 3 2.871 0.957 956.2 < 2e-16 *** 

Clay : Cal. type 3 0.059 0.02 19.6 1.78e-12 *** 
Residuals 1592 1.593 0.001    

ρb 1 0.034 0.0335 31.113 2.86e-08 *** 
Cal. type 3 2.871 0.957 889.657 < 2e-16 *** 

Clay : Cal. type 3 0.012 0.004 3.606 0.0129 * 
Residuals 1592 1.713 0.001    

TOC 1 0.072 0.072 69.535 < 2e-16 *** 
Cal. Type 3 2.871 0.957 918.967 < 2e-16 *** 

TOC : Cal. type 3 0.027 0.009 8.742 9.45e-06 *** 
Residuals 1592 1.658 0.001    

The high importance of 𝜌𝑏  was also indicated by the ANOVA, giving a P value < 0.001. Calibration 

type and depth demonstrated strong influence on the sensor error distribution with a significant 

interaction between calibration method and 𝜌𝑏 at the 0.05 level. According to the ANOVA table, 

soil clay content has statistically higher influencing power than the 𝜌𝑏, although they both 

represent the highest statistical significance category. The soils’ TOC content demonstrated 

strong impact on sensor errors (P value < 0.001) while the interaction effect between TOC and 

soil depth was not significant (P value of 0.55). In contrast, the interaction between the 

calibration type and TOC was found significant with P value < 0.001. 

The two-way interaction plots (Fig. 4.11) display the clay content (Fig. 4.11 (A)), 𝜌𝑏 (Fig. 4.11 (B)) 

and TOC (Fig. 4.11 (C)) levels plotted against the mean of the 𝜃𝑣 errors at each level for each 

calibration method. The fitted regression lines with 95 % confidence intervals helped to identify 

the differences caused by the factors considered. The difference in the slopes of the linear 

functions indicates the rate of change, thus the effect of clay content, 𝜌𝑏 and TOC is the most 

significant in the case of MC, less important for FC, hardly noticeable for SIC and completely 

eliminated by the SEC calibration. Furthermore, low clay content and 𝜌𝑏 resulted in 

underestimation of 𝜃𝑣, while increasing values of both variables showed overestimation when 

MC, SIC and FC were applied. In contrast, overestimation was observed with low TOC content 
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and greater TOC values were associated with underestimation of 𝜃𝑣. These findings represent 

defined influencing trends on sensor performance and error distribution (Fig. 4.11).  

 

Figure 4.11 Interaction plots presenting the influencing effects of clay content (A), bulk density 𝝆𝒃 (B) 
and total organic carbon (TOC) content on sensor performance with respect to measurement error 
distribution. The solid lines indicate linear model fits with 95% confidence intervals and the dashed lines 
mark the separation line between under- and overestimation. 

With increasing depth, the 𝜌𝑏 also increased and it shifted the sensor errors towards the positive 

side meaning that overestimation of 𝜃𝑣 could occur in soils with high 𝜌𝑏 and underestimation 

may be observed in soils with lower 𝜌𝑏. The slopes’ inflection points were found at 23 % clay 

content and 1.27 gcm-3 𝜌𝑏  (dashed vertical lines), respectively, indicating the observed boundary 

between under- and overestimation of 𝜃𝑣 at the study microsites. Interaction occurs mainly 

between MC, FC, SIC and SEC since the individually calibrated sensors acquired readings without 

sensitivity to the soil textural properties. Based on the results from ANOVA and the generated 

graphs shown, it is evident that the investigated soil physical properties have influencing power 

on the sensor readings, which should be taken into consideration. 

4.4 Conclusions 

We deployed and assessed capacitance-based AquaCheck subsurface multi-sensor probes in 

terms of performance and accuracy in monitoring 𝜃𝑣 at four depths, and at 20 locations. The 20 

probes were organised into a WSN in order to collect high-temporal resolution data from soils 

with varying physical properties on a hill country farm in the southern east coast of the North 

Island of New Zealand. Our results clearly indicate the need for at least farm-specific calibration 

of the AquaCheck sensors since the application of factory-supplied formula for silt loam soils 

underestimated the true 𝜃𝑣 (mean RMSE of 0.106 m3 m-3). These findings were supported by the 

significant effects of soil texture, 𝜌𝑏 and TOC (P value < 0.001) on the error distribution, thus on 

the conversion of 𝑆𝐹 readings to 𝜃𝑣 in the soil profile.  

Compared to direct thermo-gravimetric 𝜃𝑣measurements, the farm-specific (RMSE of 0.039 m3 

m-3, coefficient of determination of 0.58 R2) and microsite-specific calibrations reduced the 
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effect of the considered soil physical properties (i.e. wetness, clay content, 𝜌𝑏 and TOC) resulting 

in a significant improvement in sensor measurement accuracy (RMSE of 0.029 m3 m-3, coefficient 

of determination of 0.77 R2). In terms of absolute error distribution, positive errors were found 

in drier conditions (𝜃𝑣< 0.28-0.35 m3 m-3) while negative errors were observed in the wetter soil 

stages if absolute errors are related to reference 𝜃𝑣. To eliminate the impact of these physical 

parameters, the sensor-specific calibration approach is recommended (RMSE of 0.019 m3 m-3, 

coefficient of determination of 0.9 R2) that limited the absolute errors below ± 0.05 m3 m-3. 

The suggested calibration method is limited in that it requires soil samples to be taken at dry, 

wet and intermediate 𝜃𝑣  levels, extending the time taken for this calibration procedure. The 

results of our study provides a quantitative awareness concerning the precision level that can 

be achieved by different levels of calibration methods and the amount of fieldwork required. 

Therefore, the paper aimed to provide valuable information and operational performance 

assessment for the application of the increasing number of AquaCheck sensors being installed 

around the globe. By taking into account the results of this study, and the presented soil 

properties, this type of sensor calibration may be applicable and useful for customers and 

researchers working with AquaCheck sensors on variable landscapes with similar soil 

characteristics in other regions of New Zealand or globally.  
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Chapter 5 

Analysis of field-scale, spatiotemporal soil moisture variability and 

its characteristics in a hill country terrain 
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5 Chapter 5 - Analysis of field-scale, spatiotemporal soil moisture 

variability and its characteristics in a steep hill country terrain 

5.1 Introduction 

Near surface soil moisture and the water content in the effective rooting-zone exert significant 

control on a wide spectrum of hydrological processes, soil water-plant relations and land-surface 

interactions (Bárdossy and Lehmann, 1998, Famiglietti et al., 1998). Although, numerous 

environmental processes are demonstrated non-linear relationships to soil moisture dynamics 

making the multicomponent system rather complex (Brocca et al., 2007). Hence, a solid 

understanding on the soil moisture spatial patterns is crucial for hydrologic modelling, remote 

sensing and indirectly for simulations, such as yield mapping, that utilises a spatially applied 

water balance module (Grayson et al., 1997, Western et al., 1998, Refsgaard, 2001). Climatic 

predictions, evaporation computations, watershed models, erosion control, runoff simulations, 

and soil nutrients cycle estimations all rely on the horizontal patterns and distribution of 

moisture vertically in the soil profile (Pachepsky et al., 2003, Zhu et al., 2009, Seneviratne et al., 

2010).  

In hill country pastoral farming systems, where irrigation is not possible (minor percentage is 

irrigated), plant growth is highly influenced by the management practices that take into account 

the variation in soil water availability in both space and time. As soil water is a vital component 

of yield forecaster algorithms for various fertiliser applications, it exhibits significant influences 

on the simulation accuracy. For these reasons, there have been an increasing interest to extend 

the body of our knowledge concerning the spatial and temporal variability of soil water content 

(Albertson and Kiely, 2001, Wilson et al., 2003, Famiglietti et al., 2008b). 

Soil moisture is commonly characterised as a highly variable environmental parameter even in 

small catchments, due to the interaction of a multitude of factors (Vereecken et al., 2014). The 

heterogeneity in soil types, vegetation cover, land use type, climatic variables, subsurface and 

surface lateral flow processes and topographical attributes result in variable soil moisture 

patterns in the field scale (Hawley et al., 1983, Burt and Butcher, 1985, Gómez‐Plaza et al., 2000, 

Vereecken et al., 2007). The interaction of static and dynamic controls can lead to various soil 

moisture patterns for a given area during wetting, draining and drying periods (Reynolds, 1970, 

Grayson et al., 1997).  
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Soil moisture spatiotemporal behaviour is strongly dependent on scale and it remains largely 

undocumented in complex landscapes such as the hill country of New Zealand. These rugged 

environments tend to enhance the spatiotemporal variations of soil moisture depending on the 

scale (Vanderlinden et al., 2012), introduce challenges and large uncertainties in accurate 

prediction of soil water fluxes.  

Although, soil moisture changes with time, spatial soil moisture patterns have been observed to 

represent similar arrangements at different time steps at a given sampling location (Penna et 

al., 2013). This phenomena was defined as temporal stability by Vachaud et al. (1985) and it was 

described as ‘‘the time-invariant association between spatial location and classical statistical 

parameters of a given soil property’’. Kachanoski and Jong (1988) examined the temporal 

persistence of a spatial pattern of soil moisture as a function of spatial scale through successive 

time intervals. From a practical point of view, time stability analysis is commonly applied to find 

representative locations for long-term monitoring to avoid collecting biased measurements, i.e. 

records from consistently wetter or drier locations than the field mean, and represent the mean 

soil moisture for the entire study area (Grayson and Western, 1998, Penna et al., 2013). 

A similar approach was followed by Martínez-Fernández and Ceballos (2005) to identify 

sampling stations in several networks that represent the mean soil moisture of the monitored 

area. Following this concept, it is assumed that a systematically surveyed location will keep its 

soil wetness characteristics with high probability on subsequent occasions (Hu et al., 2013). 

Therefore, time stability can be utilised to reduce the number of monitoring sites incorporated 

in a large network to a few representative sites as it suggests that spatial patterns persist 

through time (Vachaud et al., 1985, Wagner et al., 2008). Although, it has been noted that 

complex terrain driven hydrological processes and topographically routed soil moisture 

redistribution might diminish the time stable feature of soil moisture patterns in such landscapes 

(Kachanoski and Jong, 1988, Grayson and Western, 1998). The existing studies have been 

conducted on a variety of spatial extents ranging from a few meters (Jacques et al., 2001) to 

hundreds of meters (Famiglietti et al., 1998, Grayson and Western, 1998). Only a few studies 

have discussed soil moisture stability on fields larger than a km2 (Grayson and Western, 1998). 

In addition, in terms of soil depth, most studies investigate the variability in the near surface, 0-

20 cm layer (Gómez‐Plaza et al., 2000, Cosh et al., 2008) and only a few papers refer to the 

deeper soil profile. Kachanoski and Jong (1988) examined temporal persistence down to 1.7 m 

and Hedley and Yule (2009) monitored soil moisture patterns to 60 cm.  
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The idea that soil moisture patterns are maintained over time for a specific field was investigated 

in various ways in this chapter. If such a pattern was proven existing for the given area, it could 

be used as advantage in several growing research fields, such as watershed scale studies and 

validation of remote sensing products (Grayson and Western, 1998, Cosh et al., 2004). 

Spaceborne radar (especially SAR) techniques have been increasingly used to generate remotely 

sensed soil moisture information (Wagner et al., 2008, Alexakis et al., 2017), although the 

retrieval methods are still only able to predict soil moisture on a large scale. The temporal 

resistance of soil moisture may be reflected in the spatiotemporal change in the radar signal, 

therefore it is of great interest to investigate this parameter (Wagner et al., 2008). The methods 

relate the spatial mean soil moisture and standard deviation (SD) on a selected day to the soil 

moisture measured at a given site within the field. However, the characterisation of soil 

moisture spatial distribution and the temporal stability of a spatial pattern has not been feasible 

at farm-scale due to the lack of reliable, accurate and high-resolution (between 10-100 m) soil 

moisture products e.g. from spaceborne observations. In addition, remotely sensed soil 

moisture products provide estimations in the near surface layer and need to be calibrated by 

ground-based measurements (De Lannoy et al., 2006). Therefore, it is a common approach to 

study the spatiotemporal distribution of soil water content by statistical methods using in situ, 

ground measurements at the field scale (Walker et al., 2004, Brocca et al., 2007).  

The advent of remote automated measurement technologies, such as wireless sensor networks 

(WSN), enable customers, farmers and researchers to obtain data regularly without frequent 

field campaigns (Robinson et al., 2008a, Bogena et al., 2010, Ekanayake and Hedley, 2018). In 

addition, the sensor readings from numerous predetermined or randomly selected locations can 

be acquired simultaneously without inconsistency in the data. The combination of advanced 

multi-sensor probes and wireless communication technology allows the collection of temporally 

dense soil moisture datasets with improved spatial coverage. A WSN was deployed on a hill 

country property to collect frequent, point-based volumetric soil moisture measurements at 

multiple soil depths.  

This chapter presents experimental outcomes from a farm-scale research (14-km2) carried out 

on a hill country farm in the lower part of the North Island, New Zealand. The soil moisture data 

was collected from twenty locations distributed across various topographical positions with a 

range of slope angle and aspect parameters. Consequently, a detailed evaluation of soil moisture 

trends and its space-time variability on landscapes dominated by enhanced elevation gradients 

have been possible. Moreover, soil water holding properties estimated by pedotransfer 
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functions (Saxton and Rawls, 2006) were briefly investigated by comparing the soil 

measurement distributions.  

The ultimate aims of this analysis are to: 

1. Develop new datasets and use novel techniques to investigate the temporal stability, 

dynamics and spatial variability of soil moisture at the farm-scale. 

2. Contribute to the improvement of water management decisions of pastoral systems in 

dry, hill country landscapes.  

3. Better understand the spatial and temporal patterns and trends on soil moisture 

organisation by revealing the degree of impact caused by the topography at farm-scale. 

4. To identify representative locations that can explain most of the variability over the 

research area.  

5. To characterise the individual microsites and the variability that occurred during the 22 

months of recording time, which was divided into the sub-periods. 

5.2 Materials and Methods 

5.2.1 Study area and experimental microsites 

The study site and the soil moisture data collection have been described previously in high detail 

in Chapter 2, Chapter 3 and Chapter 4, therefore only a brief description is given here. 

The study was conducted on a non-irrigated hill country farm, namely Patitapu Station (Fig. 5.1) 

that is also the member of the farm group under research within the scope of the 

Ravensdown/Ministry of Primary Industries PGP project, “Pioneering to Precision”. The 

approximately 2600 ha, primarily beef and sheep farm is located in the East Coast Hill Country 

area of the North Island of New Zealand (Manawatu-Wanganui region), which is also home for 

a significant portion of the pastoral farmland in the country. The complex landscape can be 

described as a mixture of plain surfaces, and slopes from undulating to steep classes covered by 

approximately 1760 ha effective pastoral land for all year around grazing that is the focus of this 

study (Fig. 5.1 top).  

In terms of environmental features, the windswept land is characterised with huge variability in 

physical resources including altitude, aspect, slope angle, soil type, and potentially rainfall 

distribution. Concerning climate, the landowners and their management decisions are 

confronted with highly heterogenic macro- and micro-climatic conditions that can result in not 

only extreme rainfall events but also summer dry periods with and average annual rainfall of 

1144 mm (Murray, 1982, Lang, 2015). Based on New Zealand Soil Classification system, the area 
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is mainly covered by Brown Soils (Hewitt, 2010). The dominant soil textures are the variations 

of weakly to moderately developed silt loam, silty clay loam, sandy loam and sandy silt loam 

with different drainage properties (Landvision Ltd., 2009). 

 

Figure 5.1 A 3D illustration of the study area by a hill shade model (centre) and an aerial photo 
superimposed on a high-resolution digital surface model (top middle). The distribution of the microsites 
is shown in the middle on a hill shade model. In addition, three examples of the microsites, the probe 
and the telemetry unit locations are illustrated by photos taken in the field. 

5.2.2 Soil moisture data collection 

Twenty microsite locations were selected at the Patitapu Station by a two-step, conditional 

decision approach developed for this research. The spatial distribution of the microsites are 

depicted on a hillshade model while a closer view of three microsites are illustrated by photos 

in Figure 5.1. The microsite selection procedure was mainly governed by a collection of 

geospatial information supported by field-based observations for validation. Several terrain 

attributes, soil types, land cover uniformity and land management were taken into account in 

the preselection stage along with the unique properties of the chosen instrumentation, with 

wireless communication and data transfer being subjects to special concerns due to the 

considerable difference in relief.  
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The microsites were equipped with AquaCheck (AquaCheck Soil Moisture Management, 

Durbanville, South Africa) sub-surface probes for the collection of multi-depth, temporally dense 

(15-min intervals) soil moisture observations. The 400 mm AquaCheck probes are supplied with 

four capacitance-based soil moisture sensors with sensing centre lines situated at 100, 200, 300 

and 400 mm soil depths. The probes were attached to HALO telemetry units (Tag I.T 

Technologies Ltd, New Zealand, Hamilton) utilising radio-based data transfer as essential 

components of the Patitapu wireless sensor network. The raw AquaCheck sensor readings have 

been converted to soil moisture on the volumetric basis (m3 m-3) using sensor-specific calibration 

functions developed in Chapter 4 and reported by Hajdu et al. (2019). Thus, the expression “soil 

moisture” will be used to refer to volumetric soil water content hereinafter in this chapter.  

5.2.3 Soil texture and soil water holding properties 

To characterise the soils at each microsite and define soil texture, undisturbed soil cores were 

collected with three replicates using a soil auger. The relative size distribution of the primary 

particles (sand, silt and clay) was quantified by a laser scattering particle size distribution analysis 

or laser diffraction method using a Horiba LA-950 (HORIBA Scientific, Kyoto, Japan) instrument. 

Table 5.1 summarises the soil physical properties at the individual microsites at each soil depth. 

To compute theoretical soil water holding properties, the Soil Water Characteristics Hydraulic 

Properties predictive system was used which was developed by Saxton and Rawls (2006). The 

improved soil water characteristics functions and hydrologic relationships were based on a 

previous, texture-based method developed by Saxton et al. (1986) and used in several studies 

(Saxton and Willey, 2005, Oyeogbe et al., 2012). The Soil Water Characteristics module is able 

to simulate soil water tension, conductivity and water holding capability by employing 

pedotransfer functions that take soil texture, gravel content, compaction, salinity and organic 

matter as input variables if available. In this study, the model was applied to estimate permanent 

wilting point and field capacity while saturation was estimated from the field measurements.  
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Table 5.1 The results of soil particle size distribution analysis for each microsite at four depths. Sa - Sand 
fraction > 50µm (%), Si - Silt fraction 50 - 2µm (%), Cl - Clay fraction < 2 µm (%).  

Depths: 100 mm 200 mm 300 mm 400 mm 

Site ID Sand Silt Clay Sand Silt Clay Sand Silt Clay Sand Silt Clay 

1 13.28 75.43 11.29 12.71 73.25 14.04 10.19 71.96 17.85 5.25 71.02 23.73 

2 15.77 74.89 9.34 15.12 72.76 12.13 14.35 74.31 11.34 10.76 71.65 17.59 

3 19.44 77.54 3.02 5.87 78.81 15.32 4.87 76.33 18.81 6.68 70.62 22.70 

4 6.73 75.38 17.90 3.70 63.24 33.06 0.00 69.64 30.36 1.20 72.35 26.46 

5 17.75 73.58 8.68 17.41 68.46 14.14 10.50 64.64 24.86 9.60 60.08 30.32 

6 11.29 75.36 13.35 4.67 81.35 13.99 6.19 74.57 19.24 6.06 67.61 26.33 

7 18.24 72.99 8.77 9.16 71.82 19.02 6.16 66.25 27.59 2.26 60.91 36.83 

8 5.02 61.39 33.59 6.76 62.80 30.44 4.65 61.22 34.13 8.50 64.44 27.06 

9 30.26 65.37 4.37 20.86 68.74 10.40 10.40 66.26 23.35 10.43 65.42 24.16 

10 11.41 70.58 18.01 2.82 73.96 23.23 0.02 67.44 32.55 6.04 64.18 29.78 

11 5.37 70.36 24.28 4.53 63.27 32.20 3.54 66.46 30.01 1.53 69.67 28.80 

12 10.98 69.22 19.80 3.76 68.23 28.01 6.83 65.22 27.96 5.38 66.05 28.58 

13 23.23 72.97 3.80 13.34 68.88 17.79 5.86 63.69 30.45 6.40 66.74 26.86 

14 19.52 68.21 12.27 11.72 72.74 15.54 8.87 65.79 25.34 5.93 59.68 34.39 

15 16.50 72.73 10.77 12.87 81.51 5.62 0.22 72.28 27.50 2.37 63.62 34.01 

16 21.84 70.54 7.62 22.54 74.20 3.27 15.49 71.00 13.52 10.27 69.43 20.30 

17 14.70 67.85 17.45 3.10 69.61 27.29 5.64 63.96 30.39 0.02 64.57 35.41 

18 21.00 68.55 10.46 26.69 62.20 11.11 26.81 60.24 12.96 23.64 58.23 18.13 

19 24.27 67.88 7.86 14.69 71.81 13.49 6.68 68.50 24.82 8.63 63.38 27.99 

20 15.00 65.20 19.81 9.47 63.52 27.01 4.40 56.79 38.81 2.67 56.80 40.53 

Ave 16.08 70.80 13.12 11.09 70.56 18.35 7.58 67.33 25.09 6.68 65.32 28.00 

 

Silt Silt loam Silty clay loam Silty clay 

5.2.4 Data analysis 

The collected soil moisture dataset was divided into two main time intervals considering the day 

when the wet period ended in 2017 October. By separating the data this way, full transition 

periods can be examined independently from the calendar year that was better suited the 

nature of the presented analysis. Therefore, a comparison of nearly two complete years (22 

months) of soil moisture datasets was made possible. These two main data collection periods 

are referred to as Year 1 (01/11/2016-08/10/2017) and Year 2 (08/10/2017-31/08/2018) 

hereafter in this chapter. Within the two main time intervals, a series of drying and wetting 

cycles were identified covering a wide range of soil water content values.  

The statistical analysis applied consists of three main approaches. First, the overall statistical 

behaviour of the dataset is characterised by descriptive statistics. As the second step, the 
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temporal stability and variability of the collected data is investigated whereas the third approach 

examines the spatial variability of soil moisture and its behaviour through time.  

5.2.5 Analysis of temporal changes in soil moisture content 

Four methods were used to investigate the temporal and spatial behaviour of the soil moisture 

and find the most time stable soil moisture sensing locations. It has been shown that using only 

one single method might not be sufficient to describe the time stability and its controls (Lin, 

2006). According to the review given by Vanderlinden et al. (2012), the literature reported 

contradictory results and the authors highlighted that some of the basic questions remained 

unanswered with respect to soil moisture time stability.  

The first method (1) used the classic approach proposed by Vachaud et al. (1985) as a parametric 

test of relative differencing to reveal differences in constancy of temporal stability among the 

sampling stations. To assess the temporal stability, the mean relative difference (MRD or 𝛿�̅�) and 

the standard deviation of the relative difference (SDRD or 𝜎(𝛿)𝑖𝑗) were computed for all soil 

moisture measurements at each sampling time for four soil depths individually as well as for 

averaged depths. The property of 𝛿�̅�  being positive or negative indicates whether a given 

microsite (𝑖) is generally drier or wetter than the field mean soil moisture within the considered 

period. The temporal stability was described by the SDRD of the microsite, the lower the SDRD 

the more stable the microsite was during the experiment.  

Following the equations suggested by the concept of Vachaud et al. (1985), the relative 

difference 𝛿𝑖𝑗  was determined as per Eq. 5.1 as follows: 

 
𝛿𝑖𝑗 =

𝑆𝑖𝑗 − 𝑆�̅�

𝑆�̅�

 (5.1) 

Where, 𝑆𝑖𝑗is the soil moisture content at sampling microsite 𝑖 on day 𝑗, and the spatial mean soil 

moisture 𝑆�̅� on day 𝑗 can be calculated as per Eq. 5.2 as follows::  

 
𝑆�̅� =  

1

𝑁
∑ 𝑆𝑖𝑗

𝑁

𝑖=1

 (5.2) 

Where, 𝑁 is the number of sampling locations. Therefore, the MRD for each location is 

computed as per Eq. 5.3 as follows:  

 
𝛿�̅� =  

1

𝑚
∑ 𝑆𝑖𝑗

𝑚

𝑗=1

 (5.3) 
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Where, 𝑚 is the number of observations or dates when the soil moisture was recorded during 

the study period. The microsite with the lowest MRD and SDRD values is generally considered 

the most time stable location and the most representative of the field mean. This method is 

efficiently used for identification of sampling locations that systematically show overestimation 

or underestimation of the field mean soil moisture (Vachaud et al., 1985). The SDRD was 

computed as per Equation 5.4 for each soil moisture recording station to describe the variability 

of MRD at the given location considering the study period, as per Eq. (5.4) as follows:  

 

𝜎(𝛿)𝑖𝑗 =  √
1

𝑚
∑(𝛿𝑖𝑗 − 𝛿�̅�)

2
𝑚

𝑗=1

 (5.4) 

The second method (2) computed the index of time stability ITS or 𝐼𝑇𝑆𝑖𝑗 introduced by Zhao et 

al. (2010) based on the work of Jacobs et al. (2004). The ITS forms a single metric to quantify the 

time stability using the MRD and SDRD e.g. the variance of the relative difference at a given 

sampling location. The monitoring station with the lowest ITS is suggested to represent the point 

with the highest time stability and high values indicates either the wettest or the driest 

measurement sites (Jacobs et al., 2004, Penna et al., 2013). The formula for the calculation of 

ITS is given below as per Eq. (5.5) as defined by Zhao et al. (2010) 

 
𝐼𝑇𝑆𝑖𝑗 = √(𝛿�̅�𝑗

2
+ 𝜎(𝛿)𝑖𝑗

2) (5.5) 

The third method (3) included the time stable point assessment that was conducted by the 

calculation of the non-parametric, Spearman’s rank correlation coefficient 𝑟𝑠 as presented in 

Penna et al. (2013) to compute the total agreement between the spatial patterns captured on 

various dates. It can be used to determine if the soil moisture ranks at the sampling stations 

persists over the study period. The Spearman’s rank correlation formula is given as per Eq. (5.6) 

as follows: 

 
𝑟𝑠 = 1 −  

6 ∗ ∑ (𝑅𝑖𝑗 − 𝑅𝑖𝑘)
2𝑁

𝑖=1

𝑁(𝑁2 − 1)
 5.6 

Where, 𝑅𝑖𝑗  is the rank of variable i.e. volumetric soil moisture 𝜃𝑖𝑗 at microsite 𝑖 and day 𝑗, 

whereas 𝑅𝑖𝑘 is the rank of the same variable at the same location but on day 𝑘, and 𝑁 is the 

number of microsites (𝑁 = 20). The higher value of 𝑟𝑠 suggests higher time stability and 𝑟𝑠 = 1 

corresponds to the perfect agreement between the spatial patterns on different dates, i.e. it 

indicates the identity of the ranks on different sampling days (Penna et al., 2013). It should be 
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considered only as a statistical tool that can be used for measuring the degree of concordance 

between rankings (Vachaud et al., 1985) for instance on selected days.  

The fourth assessment (4), further investigated the stability of the spatial patterns, cumulative 

probability functions were computed for two extreme soil moisture stages e.g. the driest and 

wettest state. This aims to quantify whether a given monitoring location is able to maintain its 

rank on these two dates. The rank stability analysis was executed on all four depths combined 

and it was carried out by the application of cumulative probability plots similarly to Gao et al. 

(2011a) and Martínez-Fernández and Ceballos (2003). As a last step, Pearson correlation 

coefficients were determined to quantify the strength of the relationship between soil moisture 

acquired at successive observation times across all spatial locations. The temporal persistence 

of spatial patterns has been characterised by several authors by using this technique (Kachanoski 

and Jong, 1988, Lin, 2006, Heathman et al., 2009, Hedley and Yule, 2009).  

5.2.6 Spatial variability analysis  

The spatial variability of soil moisture was investigated by the calculation of spatial field mean, 

standard deviation (SD) and the coefficient of variation (CV) to describe relative variability 

(Famiglietti et al., 1999). Analysing the relationship between the spatial field mean, SD and CV 

has received considerable attention and it is a broadly used method for characterising spatial 

variance and defining the probability density functions of the obtained soil moisture data 

(Brocca et al., 2007, Molina et al., 2014). Additionally, these statistical parameters were 

computed on a daily basis that allowed the examination of the spatial pattern in terms of 

temporal stability (Peng et al., 2016) and made it comparable to other studies.  

The SD and CV, calculated as the ratio of the SD of soil moisture to spatial field mean soil 

moisture, were related against the spatial field mean soil moisture to characterise the dynamics 

of the changing spatial variability through various wetness conditions and seasons following the 

work of Molina et al. (2014).  

5.3 Results and discussion 

5.3.1 Descriptive statistics and soil moisture distribution over time 

The generation of Kernel density plots is usually a much more effective way for comparison 

purposes of continuous variables than histograms, as they are not affected by the number of 

bins (Vermeesch, 2012). Therefore, the non-parametric Kernel density estimation technique 

(Silverman, 1986) was employed to visually assess the nature of the distribution shape regarding 

the entire soil moisture data population by computing the probability density function without 
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assuming normality (Fig. 5.2). In this case, the 15-min readings were taken and the years were 

plotted separately at each depth to be able to identify potential temporal stability trends and 

the peaks where values concentrated in each year. The comparison was completed to be able 

to explore the differences in the soil moisture pattern in similar wetness stages.   

 

Figure 5.2 Kernel density plots visualising the 15-minute soil moisture content measurements collected 
from 20 probes at four depth for the year of 2016-2017 (red) and 2017-2018 (blue) with annual mean 
values indicated at the Patitapu Station.   

The visual inspection was supported by the Shapiro-Wilk statistic that is a tool for testing 

significance and normality by comparing the sample distribution to a normally distributed set of 

scores (Ghasemi and Zahediasl, 2012). Table 5.2 contains the P values, and the test resulted in 

P value < 0.001 in all cases, meaning that the null hypothesis can be rejected and the soil 

moisture distribution can be characterised with non-normality.  

The inspection of Figure 5.2 reveals the distinct differences in the mean soil moisture comparing 

the Year 1 and Year 2. The analysis of density curves showed that most distributions exhibited 

multimodal behaviour. The longer tail towards the left can be noticed in each depth that 

confirms the negative skewness, meaning that a large number of the soil moisture readings were 

lower than the average soil moisture. Furthermore, the length of the left tail increased in Year 2 
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compared to Year 1 due to the drier conditions in Year 2. Interestingly, some studies reported 

normal distribution for surface soil moisture, such as  Francis et al. (1986) on a north-east facing 

slope in Spain and positively skewed distributions were also observed by Charpentier and 

Groffman (1992) in a valley, on flat and sloping land in Kansas, near Manhattan .  

Table 5.2 summarises the descriptive statistical parameters of the spatially and temporally, i.e. 

daily averaged field data for each soil depth over the study period. The collected dataset 

contains readings from the 20 AquaCheck subsurface probes (i.e. at 80 depths as each probe is 

equipped with four sensors) to describe its overall behaviour and to conduct exploratory data 

analysis. To be able to compare the two years quantitatively, only the overlapping months were 

used for the descriptive, univariate statistical characterisation.  

Table 5.2 Descriptive statistical parameters of the daily mean soil moisture (m3 m-3) data divided into 
two years (Year 1: 01/11/2016-01/09/2017, Year 2: 01/11/2017-01/09/2018) and grouped by the 
sensing depths at the Patitapu Station. 

DEPTH 
100 mm 200 mm 300 mm 400 mm 

PERIOD Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 
NO. OF DAYS 305 305 305 305 305 305 305 305 

NO. OF READINGS PER 
SITE 

29286 29286 29286 29286 29286 29286 29286 29286 

MEAN 0.374 0.331 0.345 0.316 0.347 0.327 0.359 0.344 

MEDIAN 0.401 0.337 0.361 0.322 0.362 0.329 0.369 0.349 

STANDARD DEVIATION 0.065 0.084 0.046 0.054 0.040 0.042 0.033 0.035 

COEFFICIENT OF 
VARIATION (%) 

17.35 25.37 13.24 17.07 11.41 12.90 9.11 10.15 

SKEWNESS -0.536 -0.029 -0.457 -0.166 -0.359 -0.131 -0.440 -0.271 

EXCESS KURTOSIS -1.213 -1.499 -1.119 -1.357 -1.044 -1.325 -0.808 -1.230 

MINIMUM 0.233 0.201 0.246 0.225 0.268 0.258 0.290 0.284 

25° P.  0.317 0.247 0.304 0.265 0.310 0.287 0.330 0.313 

50° P.  0.401 0.337 0.361 0.322 0.362 0.329 0.369 0.349 

75° P.  0.431 0.424 0.382 0.368 0.375 0.365 0.381 0.373 

MAXIMUM 0.471 0.458 0.435 0.411 0.430 0.406 0.424 0.404 

RANGE (TWO YEAR) 0.27 0.21 0.172 0.14 

P VALUE < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Therefore, in each year, 305 days’ worth of data was considered that was about 30,000 soil 

moisture readings at one sensor in each year. Year 2 was relatively drier than Year 1 that is 

clearly indicated by the mean soil moisture content differences, particularly in the upper soil 

layers (100 and 200 mm). In Year 1, the near surface, 100 mm soil depth was generally the 

wettest (0.374 m3 m-3) while in Year 2 the soil at 400 mm held the highest amount of water 

(0.344 m3 m-3) (Table 5.2). The soil layers at 200 and 300 mm depths showed very similar mean 

soil moisture values in Year 1, while a 0.01 m3 m-3 difference was observed in Year 2. The variance 

of soil moisture decreased with soil depth in both years, although larger CV and SD values 

occurred in Year 2 suggesting that higher soil moisture variability occurred during the drier year. 

The minimum and maximum mean daily soil moisture values were lower for every depth in Year 
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2 than in Year 1. As it was expected, the near surface layer dried out the most with soil moisture 

levels dropping from 0.431 to 0.233 m3 m-3 in Year 1 and from 0.458 to 0.201 m3 m-3 in Year 2 

(Table 5.2).  

In terms of kurtosis, platykurtic behaviour was observed for both years, although Year 2 was 

assessed to be closer to normal distribution than Year 1. The interquartile ranges at 200 and 300 

mm soil depths showed similar values whereas the 100 mm soil depth measurements were the 

wettest except for the 25 percentile. The difference between Year 1 and Year 2 is also 

represented by the shape of the density curves. In general, the negative skewness was more 

apparent in Year 1 and the skewness values of Year 2 were closer to zero suggesting a more 

symmetric data distribution.  

According to Famiglietti et al. (1999) and Vereecken et al. (2014) flat surfaces can often be 

characterised by normally distributed soil moisture probability density functions due to the less 

variable soil physical and hydraulic properties. On the other hand, the distribution of soil 

moisture on terrains with significant relief does not necessarily follow a normal pattern, i.e. it 

may be better described by non-normal distributions. Vereecken et al. (2014) noted that the 

normality of the probability density function of soil moisture is not an essential requirement for 

the application of geostatistical tools. In complex terrain, the lateral redistribution has an 

increased importance as it was shown by Western et al. (1998). During wet conditions, the most 

significant predictor for spatial soil moisture distribution was found to be the upslope 

contributing or specific area, whereas in dry conditions, aspect was the best predictor for soil 

moisture spatial patterns (Famiglietti et al., 1998, Western et al., 1999)  

Towards the deeper sections in the soil profile, the density curves had very similar shape for 

Year 1 and Year 2. Figure 5.2 showed characteristic peaks occurring around certain soil moisture 

levels (for example at 0.35 m3 m-3 at 200 mm depth and 0.42 m3 m-3 at 400 mm depth) that can 

indicate that the spatial soil moisture patterns have a certain temporal stability at deeper soil 

depths. Therefore, temporal stability of the spatial patterns will be further investigated in the 

following sections.  

5.3.2 Time stability analysis 

5.3.2.1 Investigation of mean relative difference and index of time stability  

Using Equation 5.4, MRD plots were developed following Cosh et al. (2008) at each depth 

separately and for combined soil depths. The MRD ± SDRD values were ranked from smallest to 

largest and shown on Figure 5.3 to assess soil moisture variability, time stability and bias at every 

individual microsite compared to the spatial field mean (represented by the green line). It is 
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apparent that some microsites were consistently wetter and others consistently drier than the 

mean value. This mainly relates to the soil textural properties, topographic position of the 

microsites and the aspect and slope angle features of the terrain. Additionally, the ITS was 

computed based on Equation 5.5 and added to the ranked MRD plots for comparison. The most 

representative monitoring stations were defined considering the four soil depths and for an 

individual microsite if all soil depths are combined.  

 

Figure 5.3 Ranked mean relative difference (MRD) of soil moisture and the index of time stability (ITS) 
for each sampling point and at each depth on the entire dataset in m3 m-3 at the Patitapu Station. 
Vertical bars are associated with standard deviations of the relative differences (SDRD).  

Figure 5.3 shows, that during the experiment, the temporal stabilities were not entirely 

consistent at various soil depths. Negative MRD values were found at each soil depth for four 

microsites on the north aspects (Site 5, Site 8, Site 13 and Site 20), two microsites on the west 

(Site 11) and east facing (Site 18) steep slopes, on a flat paddock (Site 6) and on an undulating, 

south-facing surface (Site 9). Their rank slightly changed along the soil profile, although their 

time stability can be considered moderate in general. The inspection of the ITS values confirmed 

these results and showed agreement in the position of the microsites that tend to be drier than 

the field mean soil water content. The ITS was generally high for Site 8, Site 17, Site 9, Site  15 
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and Site 7 while the lowest ITS values were observed at Site 6, Site 13 and Site 12 if all depths 

were combined.    

Positive MRD values occurred at Site 19 on a rolling slope with north aspect, at a rolling (Site 16) 

and a strongly rolling (Site 7) west-facing stations, at locations on south aspect with rolling (Site 

1) and moderately steep (Site 14) slopes, at two east-facing microsites on strongly rolling (Site 

3) and moderately steep (Site 4) slopes and at two microsites situated on flat areas (Site 2 and 

Site 15). According to their rank and position, most of these locations would considerably 

overestimate the field mean soil moisture value, although their ranks were not consistent with 

soil depth. The ITS values showed a lower variability among these microsites with positive MRD 

values as compared to the microsites characterised with negative MRD values.  

In terms of SDRD, the 100 and 200 mm soil depths demonstrated the greatest values as expected 

due to the higher sensitivity to the changes in the climatic parameters. It is apparent from Figure 

5.3 that smaller SDRD values were represented by the 300 and 400 mm soil depth compared to 

the layers closer to the surface indicating significantly less variation.  

5.3.2.2 Identification of a representative microsite 

Similarly to other studies (Martínez-Fernández and Ceballos, 2003, Guber et al., 2008, Hu et al., 

2010, Gao et al., 2011a, Lv et al., 2016), different time-stable microsites could be identified at 

various soil depths based-on the results given by the three considered statistical parameters, 

MRD, SDRD and ITS. Identifying representative locations can reduce the number of microsites 

necessary to describe the soil moisture characteristics of a given area (Brocca et al., 2007, Hu et 

al., 2010). In practical means, the representative sensor locations can be chosen through time-

stability analysis for large scale, i.e. regional or national, monitoring network deployment. Since 

the average characteristics are captured by the representative microsites, they can be used to 

validate various remote sensing products. On the other hand, remote sensing and modelling 

applications require the knowledge of the temporal behaviour of soil moisture over multiple 

years. To select the most representative microsite, the results provided by the combined soil 

depth plot in Figure 5.3 was used that represents the time stability through the profile (0 - 400 

mm).  

Ideally, the locations with nearest zero MRD, lowest SDRD and ITS closest to zero can be referred 

to as representatives of the average soil water content for the given study area (Martínez-

Fernández and Ceballos, 2005). Although, it has been found that MRD can carry inherent errors 

characterised by the SD, therefore, using only the MRD value closest to zero wouldn’t guarantee 

the highest temporal stability (Vanderlinden et al., 2012). Therefore, the main criteria in 
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selecting the most time stable location was based on the lowest SDRD and MRD values close to 

zero as it was similarly used by Schneider et al. (2008) and Gao et al. (2011a). Due to this issue, 

the methods are commonly used simultaneously to identify the representative microsites (Jia 

and Shao, 2013, Liu et al., 2018).  

In this study, none of the microsites were represented by the lowest values of all these three 

parameters used, therefore three potential microsites were selected for further investigation. 

The three potential representatives were Site 6 located on a flat paddock, Site 12 placed on a 

steep south-facing slope and Site 13 deployed on a moderately steep slope with north aspect 

(Table 5.3). 

Table 5.3 Temporal stability parameters in m3 m-3 for the three potential representative microsites are 
shown with main terrain attributes.  

SITE MRD SDRD ITS SLOPE ASPECT LANDSCAPE ELEMENT ELEVATION (m) 

6 -0.031 0.048 0.057 Flat Flat Plains 173 

12 -0.009 0.065 0.066 Steep South High ridge 301 

13 -0.046 0.004 0.059 Moderately steep North Open slope 232 

To validate the selection and to support the selection of the most time stable microsite, the time 

series of soil moisture collected at the selected three microsites were plotted along with the 

spatial field mean and the range considering all microsites (Fig. 5.4).  

 

Figure 5.4 A time series based comparison of daily spatial mean soil moisture (considering all depth) 
and the evolution of soil moisture obtained from the three most representative microsites at the 
Patitapu Station. The ribbon illustrates the range between minimum and maximum over all microsites. 

A linear regression was further carried out between the spatial field mean soil moisture and soil 

moisture readings collected from the three potential representatives, giving a coefficient of 

determination (R2) of 0.94 for Site 13, 0.83 for Site 12 and 0.91 for Site 6. The root mean square 
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errors (RMSE) between the field mean soil moisture, and soil moisture readings collected from 

the potential representatives were given as 0.056 m3 m-3 for Site 6, 0.022 m3 m-3 for Site 12 and 

0.021 m3 m-3 for Site 13. This indicates that Site 13 is the most representative location at the 

Patitapu Station out of the 20 microsites. Site 13 showed a generally good agreement, i.e. low 

RMSE and high R2 values when related to the spatial mean soil water content in every season 

during the entire data collection period (Fig. 5.4). Taking into account that Site 6 is located on a 

farm centric flat area near a waterway, it might be misleading to select that microsite as a 

representative for a complex, hill country landscape, although it had the lowest ITS and relatively 

low SDRD value. Based on the findings of Grayson and Western (1998) and Vivoni et al. (2008) 

the most representative microsites should be able to capture the soil moisture dynamics at mid 

slopes and mid elevation, which agrees with the selection of Site 13 as the most representative 

location. However, the idea of keeping multiple microsites as representatives of the farm will be 

further examined in the future which can be also linked to pasture growth accumulation.  

5.3.3 Investigation of time stability of the spatial pattern 

5.3.3.1 Frequency distribution analysis 

To examine whether a soil moisture value derived from combined soil depths for a particular 

microsite can maintain its rank in the cumulative probability function at two extreme sampling 

dates, frequency distribution analysis was carried out following the approach by Brocca et al. 

(2009) and Martínez-Fernández and Ceballos (2003). The cumulative probability functions for 

the two selected dates in each year are given in Figure 5.4 with the aspect and slope angle classes 

indicated by various colours to investigate if the topographical position exhibits its effect on the 

rank stability over time.  

Figure 5.5 (A) shows that only Site 1 and Site 8 maintained the same rank whereas Site 6 and 

Site 20 changed one rank only between the driest and wettest soil moisture conditions in Year 

1. In Year 2, only Site 15 and Site 6 had the same rank under the extreme soil water levels. It is 

apparent that most of the microsites were not able to maintain their rank from the dry to the 

wet condition that suggests that the complex topography and the seasons affect the soil 

moisture spatial pattern. It can be concluded, that a WSN approach is useful in monitoring the 

variability so that it can be more effectively managed and interpreted. Looking at the aspect and 

slope angle classes, the microsites on north-facing aspects were mostly positioned on the 

bottom half of the plots in both years, while flat microsites were spread over the middle range. 

These findings suggest that these terrain attributes have a noticeable effect on the temporal 

stability of the spatial soil moisture pattern. In terms of slope angle classes, locations on steep 
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and strongly rolling slopes typically situated near the bottom end of the cumulative probability 

function for both years. In addition, Figure 5.5 clearly shows that Site 13 was located near the 

0.5 probability level in dry and wet conditions in both years, supporting the previous findings 

stating that Site 13 is the most representing microsite of the spatial field mean soil moisture at 

the research area. 

    

 

Figure 5.5 Comparisons of cumulative probability functions at two selected dates for various wetness 
(Min Dry and Max Wet) levels at the Patitapu Station. The data points are coloured based on aspect (A) 
and slope angle (B) classes. 

5.3.3.2 Spearman’s rank correlation 

The behaviour of spatial patterns was further examined by comparing the 𝑟𝑠 values on selected 

dates. Table 5.4 presents the matrix of 𝑟𝑠 of the daily mean combined soil water content among 

10 measurement days including dry, drying, wetting and wet conditions to represent extreme 
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and transition wetness stages during the two-year time span. The dates were selected at 

minimum, 25th percentile, 75 percentile and maximum soil water content levels in both Year 1 

and Year 2. The maximum water level, i.e. wet conditions were captured when the soils were 

near the saturation state. 

The statistical significance was also determined and indicated next to the 𝑟𝑠. A P value < 0.001 

was chosen as the condition to determine if the correlation was insignificant (Table 5.4). Blank 

fields are shown where statistically insignificant relationship was observed. The 𝑟𝑠 ranges from 

0.24 and 1, although only about 25% of the values were below 0.5. The lowest 𝑟𝑠 (0.24) were 

shown between two dates with extreme soil moisture conditions i.e. between 18/01/17 and 

13/07/17 in Year 1 and between 09/02/18 and 24/08/18 in Year 2, or between wet and wetting 

stages. The highest 𝑟𝑠 values were observed between two dry (18/01/17 and 09/02/2018, 

𝑟𝑠=0.88) and two wet days (13/07/17 and 24/08/2018, 𝑟𝑠=0.91). Although, days in the drying out 

and dry stages (14/12/16 and 18/01/17) also showed a high 𝑟𝑠 of 0.85 between 14/12/16 and 

18/01/17 (Table 5.4). 

Table 5.4 Mean and standard deviation (SD) of daily mean soil moisture content (for all monitored 
positions) on the selected ten dates at the Patitapu Station. The matrix of Spearman’s rank correlation 
coefficients is given for a series of sampling dates during the 2016-2018 study period (P value legend: 0 
‘***’, 0.001 ‘**’, 0.01 ‘*’).  

  
14/12/16 18/01/17 27/03/17 25/06/17 13/07/17 5/12/17 9/02/18 7/03/18 7/06/18 24/08/18 

MEAN 0.324 0.259 0.325 0.395 0.437 0.283 0.242 0.292 0.380 0.420 

SD 0.034 0.043 0.051 0.033 0.036 0.042 0.044 0.043 0.050 0.044 

14/12/16 1 *** *** ***   ** ** ** ** * 

18/01/17 0.85 1 *** ** 
 

*** *** * ** 
 

27/03/17 0.78 0.74 1   * ** * *** *** * 

25/06/17 0.78 0.64 0.77 1 * * * * *** * 

13/07/17 0.38 0.39 0.53 0.5 1       *** *** 

5/12/17 0.63 0.84 0.6 0.52 0.31 1 *** * ** 
 

9/02/18 0.64 0.88 0.55 0.48 0.24 0.91 1 * *   
7/03/18 0.65 0.55 0.74 0.53 0.29 0.52 0.48 1 *** 

 

7/06/18 0.64 0.67 0.81 0.72 0.73 0.62 0.54 0.68 1 ** 

24/08/18 0.49 0.39 0.52 0.51 0.91 0.38 0.28 0.34 0.69 1 

In most cases, the patterns were significantly correlated with relatively high 𝑟𝑠 values, meaning 

that the spatial patterns can be preserved from one measurement time to another time to a 

certain extent. Several studies applied the method and confirmed time stability in the spatial 

distribution of soil moisture (Vachaud et al., 1985, Martínez-Fernández and Ceballos, 2003, Hu 

et al., 2009, Hu et al., 2013). In contrast, time instability was observed by Mohanty and Skaggs 

(2001) and Comegna and Basile (1994). In this study, the relationship generally became weaker 

with time. The relationship between the two extremes were shown to be not significant that 
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might be due to the effect of slope angle and aspect that exerts its impact on the rate of drying 

and influences runoff and subsurface lateral flows. 

The soil moisture spatial patterns were further examined from the perspective of temporal 

stability by relating the soil moisture levels against each other on different dates. For this 

analysis, the four depths were combined at each location. The scatterplot correlation matrix and 

the Pearson correlation coefficients (𝑟) with significance levels are shown in Figure 5.6.  

 

Figure 5.6 Scatterplot matrix with fitted lines and the bivariate correlations with significance values of 
soil moisture content measured by the AquaCheck probes at 20 microsites at the Patitapu Station. The 
data pairs display soil moisture values derived by combining the four depths on ten selected dates. (P 
value legend: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1 ‘ ’).  

Similarly to the Spearman’s rank correlation analysis results described above, a P value < 0.001 

was chosen as the condition to determine if the correlation was insignificant. The significant 

bivariate correlations, expressed as 𝑟 ranged between 0.48-0.95 giving the strongest positive 

correlations when the soil was in the extreme conditions, e.g. wet and the dry stages in Year 1 

and Year 2. Similar findings were reported by Hedley and Yule (2009) who found the most 
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obvious temporal stability when the soils were in the dry stage. The lowest and mostly 

insignificant  𝑟 values were found if dry and wet patterns were related suggesting that the soil 

moisture distribution differ highly in these conditions. The transition stages were represented 

by mainly moderate temporal stability. Significant relationship was dominantly observed 

between consecutive dates, except if the transition stage in June 2017 and the following wet, 

and the wet and dry conditions were related. 

5.3.4 Spatial characteristics 

5.3.4.1 Temporal dynamics of spatial field mean and variance 

The relationships between the spatial variance i.e. the CV and SD, and the spatial field mean soil 

moisture were analysed to assess the spatial variability among the microsites. These parameters 

were calculated on a daily basis and plotted in Figure 5.7 for each soil depth separately to 

illustrate the temporal evolution of the spatial variability. Additionally, the evolution of daily 

total precipitation is also displayed on the top of the chart to be able to link the soil moisture 

changes to the received rainfall. Visualising the values this way also allowed exploring whether 

the variance was greater in dry or wet conditions and how its dynamics changed through 

transition periods from dry to wet conditions and vice versa.  

The accumulated rainfall was 1011 mm in Year 1 and 861 mm in Year 2, whereas the long-term. 

The dry season lasted longer in Year 2 than in Year 1 and the rewetting process in Year 2 was 

not as quick as it had happened in Year 1 when near-saturated conditions were reached in May.  

The spatial mean varied synchronously in all soil depth showing apparent response of soil 

moisture to the rainfall events. Soil moisture values decreased continuously from the 8 Nov 2016 

until mid-January 2017, when the driest day occurred in Year 1. From mid-January, the spatial 

mean increased until mid-May 2017 when most microsites reached soil moisture levels near 

saturation. The soil saturation was maintained until the 8 Oct 2017 when another drying cycle 

started dividing the dataset into two main periods (Year 1 and Year 2). The water stored in the 

soil was lost considerably faster in Year 1 reaching Year 1’s lowest soil water content already in 

early-December 2017.  

During Year 2 summer season the study farm did not receive significant amount of rainfall (a 

total of 172 mm compared to the 207 mm in Year 1) although evaporation rates were higher 

due to the elevated air and soil temperature. The summer low and the lowest soil moisture 

content during the two-years long recording time was reached on the 9 Feb 2018. 
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Figure 5.7 Top: Time series of daily precipitation values at the Patitapu Station (A) extracted from the 
local climate station. The A, B, C, and D plots show the temporal evaluation of daily values of spatial 
mean (20 probes) soil moisture (shaded areas corresponding to ± 2* standard deviation) and its 
coefficient of variation (CV) at each depth separately. 

Following the dry season, near-saturation conditions occurred relatively late, end June 2018, as 

opposed to Year 1. This wet stage lasted until the end of the data collection, 31 Aug 2018. The 

range of the temporal soil moisture change was the largest at the 100 mm depth reaching 0.27 

m3 m-3, with a minimum occurring on the 18 Feb 2018 and maximum on the 13 July 2017. The 

range decreased with depth, reducing to 0.21 m3 m-3 at 200 mm, 0.172 m3 m-3 at 300 mm and 

0.14 m3 m-3 at 400 mm depth.  

As the near surface layer is exposed to the largest effects of atmospheric forcing, the SD and the 

CV showed the largest changes depicting more time variance in the spatial pattern behaviour 

than other parts of the profile. The temporal stability of the spatial variability in the deeper 
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sections of the soil profile were more pronounced as described by the lower SD and CV than in 

the 100 mm soil layer.  

The CV and SD were highest in the dry seasons (Jan-Feb 2017 and Dec 2017-March 2018) and 

the wetting periods in autumn (Mar-Apr 2017 and Mar-May 2018) in both years. The variability 

decreased noticeably through the wet stages when soil moisture levels increased to 0.26-0.29 

m3 m-3 at 100 mm soil depth and reached its minimum at the end of the wet seasons. Similar 

findings were reported by Korres et al. (2015) on various spatial scales in the Ruhr-catchment in 

Western Germany based on nine different datasets during a two-year measurement period. The 

minimum CV values were associated with soil conditions just below saturation point (above field 

capacity) (Fig. 5.7) that was also found by Harter and Zhang (1999) and Owe et al. (1982) in 

heterogeneous soils in South Dakota, USA. Most studies found that spatial variability decreased 

with increasing soil moisture content (Famiglietti et al., 1999, Hu et al., 2011, Korres et al., 2013). 

The CV and SD parameters showed increasing trends during the transition from wet to dry stage, 

although the values were usually lower than changing from dry to wet state. The differences in 

CV and SD among sub-periods were the largest in the 100 mm depth, and less significant towards 

the deeper layers. While the CV line is relatively smooth for the near surface soil, the impact of 

heavy rainfall events often associated with large peaks in CV and SD in the deeper horizons of 

the profile. 

5.3.4.2 Site-specific temporal soil moisture variability 

A 3D visualisation of the research area and the microsite locations with some of their statistical 

properties are given in Figure 5.8 to describe and quantify the soil moisture variability 

temporally, spatially and vertically at each microsite and each depth. The boxplots generated 

from the daily averaged soil moisture readings for the two-year monitoring period represent the 

soil moisture temporal distribution. In addition, the temporal mean, SD and CV are summarised 

for each depth to reveal trends along the soil profile. The role of temporal soil moisture 

distribution is better understood if the soil moisture levels at essential water holding parameters 

are indicated. Thus, the estimated soil water levels at wilting point, field capacity and saturation 

were marked on the boxplots at each microsite and at each depth. To compare the soil moisture 

distribution patterns at various aspects and slope angles, these terrain attributes are also 

indicated in Figure 5.8.  

Considering the theoretical water holding parameters, most soil moisture readings were 

recorded within the expected range between saturation and permanent wilting point. 

Concerning the spatial field mean soil moisture (as shown in Fig. 5.7), the soil water state at the  
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Figure 5.8 Vertical distribution of temporally averaged soil moisture content at the Patitapu Station. 
The boxplots visually summarises the following statistical parameters: the mean (white rhomboid), the 
median (line across the box), 25th percentile and 75th percentile as lower and upper hinges and outlying 
points. The red vertical line indicates theoretical permanent wilting point, the black lines shows 
theoretical field capacity (Saxton and Rawls, 2006). The blue crosses indicate saturation observed from 
the sensor readings. 
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permanent witling point was never reached during the study period. Although, looking at the 

individual microsites, the measurements obtained at Site 8 and Site 17 showed values at or 

below permanent wilting point that occurred in the summer of Year 2. In terms of saturation, 

the estimated values were reached at most microsites along the entire soil profile. In winter, the 

soils were often saturated and soil moisture levels were often recorded above field capacity, 

except at microsites that are situated on very steep slopes, (Site 8), at high ridge position (Site 

17,) or upper slope position (i.e. Site 11 and Site 20). The microsites located on flat surfaces held 

soil water above field capacity for the highest number of days. Based on the estimated soil water 

holding properties, the amount of soil water available for plants decreased with depth in most 

cases as it was expected mainly due to the increasing portion of the clay fraction with soil depth 

(Table 5.1).  

It is clearly visible, that the range of soil moisture measurements were the largest in the 100 mm 

horizon, while the deeper sections of the soil profile showed readings in a narrower range 

indicating less variability and temporally more stable soil water contents in agreement with the 

findings described previously. Soil moisture measurements on flat and north-facing slopes are 

generally more spread out, especially at microsites located on moderately steep and steep 

slopes.  However, some of the microsites on strongly rolling and rolling slopes can be 

characterised with similar, wider spread of soil moisture distribution than we would expect, 

particularly near the surface. Monitoring stations on west- and east-facing slopes were observed 

to have similar soil moisture dynamics.  

Figure 5.9 presents the rank stability plots for the temporal mean soil moisture, as a function of 

SD and the CV at each microsite and at each depth considering the entire study period. The 

microsites are ordered by CV from low to high values to be able to examine the behaviour of 

each microsite. The differences in spatial soil moisture behaviour at the four depths were 

analysed by taking into account the data presented in Figure 5.8 and Figure 5.9. 

In general, the largest SD and CV values were observed in the 100 mm soil horizon while the 

lowest values occurred in the 400 mm layer showing an apparent decreasing trend. The lowest 

SD values occurred at Site 4 (moderately steep, east aspect) at all depths ranging between 0.016-

0.053 m3 m-3. Moreover, Site 4 also demonstrated the lowest CV at 200, 300, 400 mm soil depths 

ranging between 3.9-7.8%. At the 100 mm depth, the minimum CV, 13 %, was represented by 

Site 7 placed on a rolling, west-facing open slope. Site 17 demonstrated the largest temporal 

variability at all depths with CV values ranging between 35.7-21.9 % from the near surface layer 

to the deepest horizon. Near the surface, the wettest location was at Site 7 giving 0.430 m3 m-3 
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for temporal mean soil water content on a rolling, west-facing open slope, whereas the driest 

temporal mean soil moisture of 0.278 m3 m-3 was obtained from Site 20 on north-facing, 

undulating slope but positioned closed to a ridge. Site 8 and Site 9 showed similarly dry 

conditions to Site 20 at 100 mm soil depth. However, concerning all depths, Site 8 was observed 

to be the driest location, placed on steep, north-facing slope with mean temporal soil moisture 

of 0.293 m3 m-3 agreeing with the general expectations in the southern hemisphere. 

Deeper in the soil profile, the wettest conditions were recorded also at Site 7 ranging between 

0.397-0.406 m3 m-3. This observation may be explained by the large upslope contributing area of 

Site 7 and the assumption that west-facing slopes receive more rainfall than the other aspects. 

Interestingly, the wettest and driest microsites were both situated on the same elevation level 

at approximately 310 m. The rank of the microsites with respect to their mean and the variability 

expressed by SD and CV showed significant variation vertically as only Site 17 kept the same rank 

at all depths.  

 

Figure 5.9 Ranked stability of the microsites at the Patitapu Station showing the mean, standard 
deviation SD and coefficient of variation CV considering the entire study period. 
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5.3.4.3 Relationship between spatial soil moisture mean and spatial variance 

In soil moisture data analysis, it is a widely employed approach to relate SD representing 

absolute variability and CV (relative variability) to the spatial mean soil water using scatterplots 

and regression (Brocca et al., 2007, Famiglietti et al., 2008b, Molina et al., 2014). It is applied as 

one of the most common procedures, including the examination of changes in soil moisture 

variance with low or high soil water conditions. The results from previous studies have been 

found contradictory, as some researchers reported decreasing variation with drying (Famiglietti 

et al., 1998), whereas others observed decreasing variation as the soil was wetting (Hupet and 

Vanclooster, 2002, Teuling et al., 2007a, Mittelbach and Seneviratne, 2012). 

In this section, the relationship between the spatial mean soil moisture, the CV and SD were 

examined individually during selected sub-periods in each year and in each soil depth (Fig. 5.10). 

The sub-periods were chosen based on the soil moisture change and seasons to get a better 

understanding of the correlations and trends with changing soil water conditions. The relatively 

long observation time allowed a detailed investigation of this relationship. The sub-periods 

included transition from wet to dry during spring (Nov 2016 and Oct – Nov 2017) and summer 

(Dec 2016-Jan 2017 and Dec 2017-Feb 2018), dry to wet state during summer (Jan 2017-Febr 

2017 and Feb 2018) and autumn (Mar 2017-May 2017 and Mar 2018-May 2018) and wet (Year 

1: Jun 2017-Aug 2017 and Jun 2018-Aug 2018) conditions in winter for both years. 

 

Figure 5.10 Relationship between the spatial daily mean soil moisture and coefficient of variation (CV) 
in the six selected sub-periods for each year visualised on scatterplots. The dots represent data from 
twenty microsites and the colours indicates the four monitoring depths.   
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Figure 5.10 shows a very similar annual soil moisture behaviour during both Year 1 and Year 2. 

However, the variance was not consistent in the sub-periods and it is clearly not a static property 

in complex terrain. The relationship varied between CV and the field spatial mean soil moisture 

with the sub-periods and with the soil depth. The variability was the largest in dry conditions 

typically below 0.25 m3 m-3 mean soil moisture and in transition from dry stage to the wet stage. 

The lowest variability occurred in wet conditions, mostly when mean soil moisture levels were 

over 0.35 m3 m-3.  

In our analysis, polynomial fit resulted in increase of the R2 value in only a few cases, therefore 

the linear relationships were applied for better comparability (Table 5.5). During the drying 

down periods and the beginning of the rewetting stage, as the mean soil moisture level declined, 

the CV values inclined. During autumn, some of the correlations changed direction and were 

positive but not significant. In winter, positive, significant correlations were observed which was 

more pronounced in Year 1.  

Other researchers also identified a variable relationship between the field mean soil moisture 

and the CV. The results have been found contradictory, i.e. both increasing and decreasing soil 

moisture variability with increasing mean soil moisture have been identified (Famiglietti et al., 

1998, Vereecken et al., 2014, Gwak and Kim, 2017). The relationship between spatial variability 

and mean of soil moisture can change depending on a threshold as explained by Pan and Peters-

Lidard (2008). Exponentially decreasing CV pattern with increasing mean soil moisture was 

found by Famiglietti et al. (2008a) and Gao et al. (2011b), while linearly decreasing CV with 

increasing mean soil moisture was observed by Brocca et al. (2007).  

Table 5.5 Values of coefficient of determination (R2) derived from linear regression between coefficient 
of variation (CV) and the corresponding spatial mean soil moisture in the five sub-periods for each 
depth.  
 

DEPTH SPRING - 
DRYING 

SUMMER - 
DRYING 

SUMMER - 
WETTING 

AUTUMN - 
WETTING 

WINTER - 
WET 

Y
EA

R
 1

 

100 -0.86 -0.93 -0.04 0.56 -0.21 

200 0.01 -0.93 0.02 0.19 0.45 

300 0.39 -0.88 0.02 0.05 0.44 

400 0.43 -0.88 0.00 0.00 0.79 

Y
EA

R
 2

 

100 -0.84 -0.24 -0.78 0.00 -0.40 

200 -0.86 -0.81 -0.94 0.05 0.01 

300 -0.45 -0.69 -0.65 0.32 0.12 

400 -0.17 -0.67 -0.66 0.08 0.41 

The significant correlations were mostly negative during the drying in spring and summer at 100 

mm soil depth. The correlation dropped drastically in the rewetting stage in summer and 

autumn in Year 1. In contrast, in Year 2, summer wetting showed high negative R2 values for 
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every depth. The least significant linear relationships were found during transition towards the 

wet soil state in both years. Positive, moderate and strong correlations were observed during 

the wettest conditions in the 200-400 mm soil depth in Year 1, whereas Year 2 showed a slightly 

different behaviour with technically no considerable correlations in the 200-300 mm soil depth 

and negative linear relationship in the near surface layer. These results show agreement with 

the work published by Hedley and Yule (2009) who observed that the soil moisture pattern was 

most stable during the drying out period in February and March. The CV peaked at 0.35 m3 m-3 

during the wetting stage reaching 28% variability and its minimum value was found in the wet 

conditions giving a CV of 6.5 % in winter. 

As a function of spatial soil moisture distribution, daily SD was related to mean field soil moisture 

(Fig. 5.11), similarly, to how the CV and the mean soil moisture were correlated previously during 

the same sub-periods. The SD behaved in the same manner as CV in the drying (or descending) 

periods, while it did not present the same trends in the summer rewetting times. During autumn 

and winter, the largest variance in SD occurred during the transition from dry to wet stage in 

autumn. The deeper soil sections were more stable during the entire study period than the soil 

moisture at 100 mm soil depth. The minimum SD values were found in the drying stage and in 

winter whereas the peaks occurred in autumn in both years. During drying and wetting periods, 

parabolic shapes were found, and the spatial variability was more widely scattered within these 

transition stages.  

 

Figure 5.11 Relationship between the spatial mean soil moisture and standard deviation in the six 
selected sub-periods for each year. The dots represent data from twenty microsites and the colours 
indicates the four monitoring depths. 
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Linear regression was used to fit models on the spatial mean soil moisture and the SD. The 

analysis revealed similar trends to the ones found previously when CV and mean soil moisture 

were correlated. Only the 100 mm soil depth showed unimodal convex shape during the drying 

and wetting stages with a maximum soil moisture variability at about 0.35 m3 m-3. Table 5.6 

presents the R2 values between SD and spatial mean soil moisture, showing that significant 

correlations exist in most cases, although the character of the spatial correlation changed as the 

soils were drying out and as the soils were rewetting. This behaviour was also presented in other 

studies reporting that SD increases during drying from a very wet stage until it reaches a specific 

soil moisture level and then SD decreases as the drying continues (Famiglietti et al., 1998, Harter 

and Zhang, 1999, Choi et al., 2007). When the soils were drying out, mainly negative correlation 

was found whereas during the wetting and wet stages the significant correlations were positive. 

Table 5.6 Values of coefficient of determination R2 of derived from linear regression between standard 
deviation SD and the corresponding spatial mean soil moisture in the five sub-periods.   

  
DEPTH SPRING - 

DRYING 
SUMMER - 

DRYING 
SUMMER - 

WETTING 
AUTUMN - 

WETTING 
WINTER - 

WET 

Y
EA

R
 1

 

100 -0.55 -0.07 0.65 0.01 -0.08 

200 0.58 -0.75 0.58 0.01 0.6 

300 0.57 -0.68 0.38 0.1 0.56 

400 0.62 -0.74 0.22 0.19 0.84 

Y
EA

R
 2

 

100 -0.01 0.28 -0.24 0.58 -0.27 

200 -0.49 -0.54 -0.87 0.52 0.06 

300 -0.11 -0.39 -0.43 0.63 0.22 

400 0.01 -0.46 -0.54 0.49 0.52 

The most disperse data pairs appeared in autumn during the wetting processes with not 

significant correlations in Year 1. Although, during autumn in Year 2, the results showed 

moderate to strong positive linear relationships between SD and the mean soil moisture.  

Our findings suggest that the relationship between CV, SD and mean soil moisture was not 

consistent through the two monitoring years and their dependency on the soil’s wetness state 

was apparent. Based on the analysis above, it can be concluded that soil moisture spatial 

variability was affected by ascending or descending soil wetness change. Even though the 

analysis considered the linear relationship between mean soil moisture, CV and SD, the 

theoretical parabolic shape of the relationship, also found by Vereecken et al. (2007), occurred 

in the drying stages and during wetting. This phenomenon may be explained by the frequent 

change between drying and wetting events in the sub-periods that resulted in non-linear 

characteristics. The transition periods generally showed a highly varied spatial distribution while 

the relationship between mean soil moisture, SD and CV were more evident and significant in 

the dry and wet stages. Gwak and Kim (2017) evaluated a humid hillslope and found that 
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variability was high in intermediate soil moisture levels and low in extremely dry and wet 

conditions that partly agrees with our findings. Soil water content variability was high when the 

soils were dry in a hillslope transect study conducted by of Harter and Zhang (1999). However, 

Famiglietti et al. (1998) and Hu et al. (2011) reported decreasing variability (expressed as SD) as 

soil moisture was decreasing that is in disagreement with our results, since we observed mainly 

increasing spatial variability with decreasing mean soil moisture content.  

In an earlier study by Hajdu and Yule (2017) at the Patitapu Station, a 10-day soil moisture 

measurement period was assessed for spatial variability containing data from six microsites. 

They reported an inverse relationship between mean soil moisture and CV, i.e. soil moisture 

distribution was more homogenous with increasing mean soil moisture. It was also observed 

that the terrain attributes, such as slope angle and aspect had an effect on the soil moisture 

distribution. The contribution of topographical attributes on spatial soil moisture variability 

increased as the mean soil moisture decreased especially at the 100 mm soil depth which was 

also found by Gwak and Kim (2017). The soil moisture patterns in the deeper soil layers were 

temporally more stable than in the near surface layers that is mainly due to the decreased 

impact of atmospheric forcing.  

5.4 Summary and conclusions 

In this chapter, the focus was placed on identifying trends and patterns in the spatiotemporal 

distribution of soil moisture as these parameters are essential to improve simulations with 

statistical error modelling for hydrological or agronomical purposes, such as pasture growth 

forecasts. Temporally dense datasets are rarely available in hill country; thus, a soil moisture 

time series dataset was collected containing capacitance-based, AquaCheck sensor 

measurements from 20 spatially distributed locations at four consecutive depths. The nearly 

two-year long dataset has been examined to quantify temporal and spatial variability as well as 

temporal stability of soil moisture patterns at Patitapu Station. 

It was observed that the soil moisture distribution could be characterised with non-normality on 

complex terrain. Year 1 and Year 2 showed similarly shaped Kernel density curves in the 200-

400 mm soil depths indicating temporal stability in the distribution. Year 2, the drier part of the 

data collection period, represented larger soil moisture variability than Year 1, although the 

value and range of CV and SD of soil moisture decreased with soil depth in both years. The range 

of soil moisture readings were the largest in the 100 mm soil depth while the spread became 

narrower with increasing soil depth. 
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The results obtained in the present work show that it is possible to select a station that is 

representative of the mean water content of the soil in a given area, regardless of scale, from a 

pre-established network of measuring stations. The temporal stabilities were not entirely 

consistent at various soil depths; therefore, the depths were combined to select representative 

microsites. We found that a microsite established on a north-facing, moderately steep and open 

slope was the most representative of the field mean soil moisture (R2 of 0.94 and RMSE of 0.021 

m3 m-3) at the study area based on the analysis of four statistical parameters. 

We found that CV of soil moisture was the lowest when the soils were near saturation (or above 

field capacity) showing negligible spatial variability and highest in the descending and ascending 

transition stages, i.e. drying and rewetting periods. This study did not define specific soil 

moisture levels to describe dry condition due to the rather arbitrary description of that soil water 

stage. 

In hill country, under the varied macro- and micro-climatic conditions, increasing spatial 

variability was observed with decreasing mean soil moisture consistently at four soil depth down 

to 400 mm. The evolution of spatially averaged soil moisture, its SD and CV in time revealed the 

difference in soil moisture dynamics in the upper and deeper soil layers. The magnitude of the 

spatial variation of soil moisture was greater near the surface than in the soil layers at 200-400 

mm depths indicated by the lower SD and CV than at the 100 mm soil depth. The soil moisture 

spatial pattern was more temporally stable at very dry and very wet conditions, i.e. when soil 

water conditions are similar, and soil moisture spatial patterns tended to be less temporally 

stable when soils are drying down or wetting up.  

The temporal stability of the spatial pattern was not maintained between two extreme soil 

moisture levels (minimum dry and maximum wet), which finding was supported by the 

Spearman’s rank correlation analysis results. Recharging stages were found to carry higher 

variability than drying periods that might be caused by the varied evaporation, infiltration and 

runoff rates induced by the complex topography. Consequently, the spatial patterns were 

dependent on the aspect, slope angle and the topographical position while the effect of soil 

textural properties were not as significant as most locations have soils falling in the silt loam, 

silty clay loam texture classes.  

North-facing locations, especially on steep and moderately steep slopes tended to be drier and 

represented more spread-out soil moisture range than the other aspects while microsites on 

east- and west-facing slopes showed similar soil moisture distributions and trends. In overall, at 

combined depths, the wettest microsite was located on a west-facing, rolling, open slope with 
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0.408 m3 m-3 temporal mean soil moisture while the driest microsite was situated on a north-

facing, steep slope on a midslope ridge with 0.293 m3 m-3 temporal mean soil moisture. 

The differences in soil moisture patterns have been shown and the knowledge of variability is 

vital to improve our understanding of land-water interactions on complex terrains. The 

appropriate consideration of the multi-modal nature of soil moisture distribution and the 

spatiotemporal variability may contribute to the development of more accurate modelling 

performance in the field of pedological, yield or hydrological applications. Moreover, the small-

scale study has the potential to be used to calibrate or validate within pixel average values 

derived from remote sensing as the role of remotely sensed data in agricultural applications has 

been increasing. Thus, the within pixel spatial characteristics and variation soil moisture has 

been of great interest as it is an essential component of the statistical models.
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Chapter 6 

Modelling of near surface soil moisture using machine learning and 

multi-temporal Sentinel-1, Sentinel-2, Landsat 7 and Landsat 8 

images in New Zealand 
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6 Chapter 6 - Modelling of near surface soil moisture using 

machine learning and multi-temporal Sentinel-1, Sentinel-2, 

Landsat 7 and Landsat 8 images in New Zealand 

6.1 Introduction 

The demand for accurate, high to medium resolution satellite-derived information for 

agricultural and land-based predictions is rising steadily (Atzberger, 2013, Roumenina et al., 

2015). One critical attribute is the soil moisture that drives many environmental processes and 

it is considered as an essential input of many numerical simulations related to climate, hydrology 

and land-surface processes (Seneviratne et al., 2010). Since agricultural productivity is strongly 

controlled by the soil moisture availability (Martínez-Fernández et al., 2016), the spatial mapping 

of soil moisture of New Zealand’s hilly landscapes is of great interest. The better understanding 

of these hydrologically complex systems is beneficial for improved farm management to hit 

productivity targets (e.g. fertiliser, stock and feed budgeting) and to mitigate impacts on climate-

related extreme events (e.g. drought).  

In hilly and mountainous regions, soil moisture can be characterised by distinctly variable 

dynamics that is dependent on the spatial scale. The interaction of soil properties, the rugged 

topography, land cover type and meteorological factors result in high spatiotemporal variability 

in soil moisture distribution, especially near the surface (Famiglietti et al., 1998, Brocca et al., 

2007) as it was also shown in Chapter 5 during the spatial variability and stability analysis. 

Consequently, the measurement and monitoring of such a variable parameter by traditional 

techniques is cumbersome especially if there are significant changes in topography. Hence, 

many different approaches have been developed to retrieve soil moisture from remotely sensed 

data (Petropoulos et al., 2015, Zhang and Zhou, 2016, Karthikeyan et al., 2017).  

Spaceborne microwave remote sensing has been effectively used to sense soil moisture at 

various scales, although the reliable, global soil moisture products have been only produced at 

coarse spatial resolution (approx. 25-40 km). Scatterometers and passive microwave sensors 

have been launched through Soil Moisture Active Passive (SMAP) programme, Aquarius (failed 

in 2015) and Soil Moisture and Ocean Salinity (SMOS) missions have been providing soil moisture 

estimations at the continental and global scale (Entekhabi et al., 2010b, Kerr et al., 2010, 

Mecklenburg et al., 2012, Das et al., 2018). Active microwave sensors showed lower sensitivity 

to soil moisture, although the product’s spatial resolution is higher than the observations 
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obtained by passive microwave methods (Nichols et al., 2011). Among active microwave 

sensors, the Synthetic Aperture Radar (SAR) instrument has been exploited effectively for 

monitoring bio-geophysical surface properties including near surface soil moisture (Ulaby et al., 

1982b, Baghdadi et al., 2012, Paloscia et al., 2013, Eweys et al., 2017b). The presence of 

vegetation cover tends to reduce the sensitivity of the SAR signal to soil water content due to 

the biomass water content and the vegetation structure causing a two-way attenuation effect 

(Vereecken et al., 2012) described in Chapter 2.  

The radar-based soil moisture retrieval methods are built on the physical principle, that the 

radar backscatter 𝜎0 (dB) is sensitive to the dielectric constant of the targeted surface, i.e. water 

content of the imaged bare soil or vegetated terrain (Wagner et al., 2008). Over bare soil, the 

sensitivity and response of microwave electromagnetic waves to soil moisture changes are well 

established (Wang, 1980). As a general empirical rule, the presence of free water increases the 

amount of energy reflected back towards the sensor from the bare soil surface (Dean et al., 

1987). However, numerous additional factors have impact on the 𝜎0 generating an ill-posed 

challenge in the retrieval processes as the relationship among the interacting target properties 

is generally characterised by complexity and non-linearity (Ali et al., 2015).  

The occurrence of vegetation, the confounding influence of radar configuration, topographical 

variability, land use heterogeneity, surface roughness and soil parameters (soil texture, soil 

moisture) are considered as the main driving forces of the 𝜎0 behaviour in mountainous areas 

(Ulaby et al., 1978, Luckman, 1998, Wagner et al., 2009a). The topography related effects and 

distortions are taken into account through geometric and terrain correction, radiometric 

(topographic) normalisation and speckle reduction as part of the SAR data pre-processing 

procedure. In mountainous landscapes, the retrieval of soil moisture retrieval using SAR 

information is very challenging (Pasolli et al., 2015), thus complementary information such as 

topographical attributes can be included to reduce the remaining contribution of the terrain on 

the 𝜎0 (Luckman, 1998, Paloscia et al., 2013) and help establish relations between the response 

and explanatory variables.  

The soil moisture retrieval processes may include data from different radar configurations 

(incidence angle, polarisation, frequency) to be able to segregate and define the contribution of 

vegetation, and surface roughness from that of soil (Paloscia et al., 2008, Barrett et al., 2009). 

Advanced retrieval techniques utilise the main influencing features (vegetation coverage, 

surface roughness and soil properties) as input parameters to reduce their effects on the radar 

signal (Barrett et al., 2009, Petropoulos et al., 2015).  
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The application of optical imagery as well as the fusion of radar and multispectral data 

demonstrated its capability in accounting for some of these effects, i.e. the vegetation cover, 

structure and water content of the vegetation (Inglada et al., 2015, Veloso et al., 2017). Over 

vegetated areas, the combination of SAR and optical data is a preferred approach in near surface 

soil moisture estimation (Baghdadi et al., 2017). It remains a widely applied approach due to 

increased temporal coverage of the recently launched multispectral satellites (Bousbih et al., 

2017, Gao et al., 2017, Urban et al., 2018). The possibility of using the combination of satellite 

derived multispectral and SAR data can be limited by cloud cover leading to observation gaps in 

the time series. 

However, the combination of European Space Agency’s (ESA) Sentinel missions and the Landsat 

Data Continuity Mission offers new opportunities in Earth observation, for capturing the 

dynamics of environmental parameters that has never possible before at an unprecedented 

spatiotemporal resolution. The Sentinel-1 dedicated radar imaging mission was expected to 

largely contribute to the mapping of high-resolution, near surface soil moisture (Malenovský et 

al., 2012). Sentinel-1, Sentinel-2 and Landsat 8 images have been used synergistically by Urban 

et al. (2018) for drought monitoring and vegetation cover analysis. Gao et al. (2017) attempted 

to map soil moisture at 100 m resolution using change detection by combining Sentinel-1 and 

Sentinel-2 observations. However, there has been no attempt made to map soil moisture at 

even higher resolution, i.e. 20-30 m, to address paddock scale soil moisture retrieval in hilly 

areas. The advances of the ESA’s Sentinel-1 mission made it feasible to capture land surface 

processes, including soil moisture change without the limitation of daylight and cloud cover. The 

constellation of two satellites carrying C-band, SAR instruments provides 10 m pixel size multi-

looked images with a region-dependent 6-day repeat cycle when both satellites are considered. 

SAR acquisitions are often preferred over frequently cloudy areas because of their daylight and 

weather independent characteristics. 

Recently, the analysis and use of the ever-increasing number of geospatial datasets and 

remotely sensed products utilised in monitoring environmental systems have shown significant 

advancement in their utilisation. Open access data, cloud computing and machine learning allow 

the integration of large datasets faster and easier than ever before (Hird et al., 2017). Google 

Earth Engine is one of the cloud-based free service available for computing large geospatial data 

(Sidhu et al., 2018). GEE is being increasingly used in studies ranging from the field and 

catchment scale to the country and planetary scale (Clement et al., 2018, Mandal et al., 2018, 

Van Tricht et al., 2018).  
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Soil moisture retrieval algorithms are generally divided into two main distinct groups although 

there are other alternative methods, such as change detection. Theoretical or physical model- 

based approaches are the first group commonly used for soil moisture estimation by 

mathematical inversion of the models (Pasolli et al., 2015). The second group collects the 

techniques that are built on experimental data. However, the target variables and the remote 

sensing measurements are often related through non-linear functions signal saturation or the 

non-uniform sensitivity of the signal to physical properties (Haboudane et al., 2004, Twomey, 

2013). To capture this complexity, numerous studies investigated the potential of machine 

learning techniques such as artificial neural networks, support vector regression or Random 

Forest (Ali et al., 2015). These methods have been successfully applied to exploit information 

and establish relationships between 𝜎0, soil-vegetation characteristics and near surface soil 

moisture (Dawson et al., 1997, Ali et al., 2015, Alexakis et al., 2017, Kumar et al., 2018).  

The currently available SAR and optical datasets with fine spatial resolution and frequent over 

passes have been showing promising results in soil moisture prediction at a temporal scale close 

to user needs. The currently applied water balance models use low spatial resolution input from 

the Fundamental Soil Layers often failing to deal with the spatial heterogeneity of soil 

properties. Considering the variability occurring in hill country terrain, a soil moisture product 

with 10-30 m pixel size would result in more accurate fertiliser planning and application as well 

as improved decision-making on pastoral land. Therefore, the main objectives of the present 

study are to:  

1. Implement an ensemble machine learning method to model soil moisture at medium 

resolution and its temporal evolution during the study period at the Patitapu Station, in 

the Wairarapa region.  

2. Investigate radar signal sensitivity to near surface soil moisture at various spatial 

resolutions to understand the backscatter behaviour specific to the research area. 

3. Combine Sentinel-2, Landsat 7 and Landsat 8 observations to generate a time series of 

Normalized Difference Vegetation Index (NDVI) for the representation of vegetation 

presence and to account for its contribution on the radar signal. 

4. Contribute to the generation and development of a systematic, spatial soil moisture 

product for more accurate water balance calculations applied in farm management 

practices and fertiliser application planning. 

5. Provide an insight of the utilisation of a simple, synergetic use of remotely sensed data 

and topographic attributes in soil moisture modelling in hilly landscapes. 
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6.2 Materials and methods 

6.2.1 Study area 

The study was conducted on a 2623 ha hill country property, located in the Wairarapa region of 

the North Island of New Zealand (40.745020 S, 175.887320 E). The study area is a primarily 

pastoral farmland mixed with patches of forestry on rolling to steep hills, interspersed with 

fertile plains. The average annual rainfall is 1050-1127 mm on the property, while elevation 

ranges from 148-531 m above sea level. The predominant plant communities are ryegrass 

(Lolium perenne) and white clover (Trifolium repens) species, while the soils are mainly silty clay 

loam in texture. The ground-based, in situ soil moisture data collection was limited to relatively 

homogenous, permanent pasture surfaces on soils with mainly silt loam and silty clay loam 

texture.  Figure 6.1 illustrates the research area on a Sentinel-2 RGB composite (Fig. 6.1 A) on 

which the ground-based microsites were also displayed. A composite of timely averages (i.e. 

seasonal mean) of Sentinel-1 𝜎0 data in spring, summer and winter (Fig 6.1 B) indicates various 

land cover types as they exert different responses on the radar signal that is supported by an 

NDVI product calculated from a Sentinel-2 scene from August 2018 (Fig. 6.1 C). 

6.2.2 In situ data sources 

6.2.2.1 Ground-based, in situ soil moisture observations 

Soil moisture measurements were obtained by 20 capacitance-based, AquaCheck sub-surface 

probes (AquaCheck Soil Moisture Management, Durbanville, South Africa) arranged into a WSN 

(Fig. 6.1 A). The WSN deployment has been described previously in detail in Chapter 3 along with 

the specific terrain and soil properties at each microsite. 
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Figure 6.1 The extent of the research area represented by Sentinel-2 multispectral data and Sentinel-1 
radar backscatter composite. A: the microsites marked on a cloud free Sentinel-2 optical image. B: VV 
backscatter data where the red band shows the mean of the VV backscatter during spring (Sept 2017 - 
Dec 2017), the green band shows the mean of VV backscatter in summer (Dec 2017 - Feb 2018) and the 
blue band shows the mean of VV backscatter in winter (Jun 2018 - Aug 2018). C: Sentinel-2 NDVI on 24 
Aug 2018. 

The AquaCheck probe is equipped with moisture sensors spaced at 100, 200, 300, and 400 mm 

depths, although only the 100 mm readings were utilised in this study. Soil water content was 

recorded at 15-minute time intervals and the raw sensor readings were converted to volumetric 

soil moisture (𝜃𝑣, m3 m-3) through sensor-specific calibration functions. The applied calibration 

formulas were obtained through gravimetric soil moisture measurements considering a wide 

range of various wetness conditions. More details on the calibration method and sensor 

accuracy analysis was presented in Chapter 4. To create the reference database, 𝜃𝑣  data was 

obtained from the WSN at the time stamp that coincided best with the SAR image acquisition.  

We note that 𝜃𝑣 measurements at 100 mm depth have their limitations when related to C-band 

SAR data with typically shallow (few cm) soil penetration (Bruckler et al., 1988, Le Morvan et al., 

2008). However, the network is set up on an operating farm where the devices had to be 

protected against human and animal activity by burying them. Due to the probe design and the 

sensors’ cylindrical shaped sphere of influence, 𝜃𝑣 information was gained from the ~70-130 

mm increment and hereafter referred to as near surface 𝜃𝑣.  
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6.2.2.2 Terrain attributes 

Terrain variables were extracted from a high-resolution (0.2x0.2 m) DSM generated through a 

structure-from-motion technique (Micheletti et al., 2015) where images were captured using 

DSLR camera from a fixed wing aircraft. The DSM was smoothed using focal statistics prior to 

the terrain analysis. Topographical parameters and hydrological metrics, such as slope angle, 

aspect, SAGA topographic wetness index (SWI), topographic position index (TPI) and terrain 

ruggedness index (TRI) were derived from the DSM. The process was conducted by the 

application of the terrain analysis tool sets built in the System for Automated Geoscientific 

Analysis (SAGA) software (Conrad et al., 2015). The datasets were resampled to 20 m pixel size 

using bilinear interpolation to ensure integration with the SAR data. The reference terrain 

information was extracted from the radar pixel footprint overlapping the twenty microsites.  

6.2.3 Remote sensing data 

6.2.3.1 Data access through Google Earth Engine 

Due to the number of images used in the study, the associated processing time and computing 

power requirements, the remotely sensed information was obtained via the cloud-based Google 

Earth Engine (GEE) computing platform (Gorelick et al., 2017). GEE offers pre-processed image 

collections and a unified framework to process large number of images that are stored within 

Google’s cloud computing services. GEE’s data manipulation and visualisation toolsets provide 

unprecedented possibilities for temporal analysis and data extraction from the vast amount of 

publicly available remote sensing data.  

For the purpose of the study, the JavaScript application programming interface was used via the 

GEE code editor to access, filter, manipulate and extract a variety of the data from the GEE’s 

data catalogue. Our study utilised the publicly accessible, standard Earth science raster datasets, 

including high-resolution Synthetic Aperture Radar (SAR) images captured by the Sentinel-1 

satellites and multispectral scenes acquired by the Sentinel-2, Landsat 7 and Landsat 8 missions. 

The analysis and modelling tasks were executed on images that satisfied the geometric quality 

requirements, i.e. GEE’s Tier 1 image collection. 

6.2.3.2 Overview of the exploited remote sensing images  

As the Sentinel-1 SAR imagery is dominantly independent from cloud cover, a relatively dense 

image collection was generated. Although the research area is covered by Sentinel-2 scenes 

every 5-10 days, only 21 cloud-free images were available within the study period due to the 

frequent overcast conditions in New Zealand. The extraction of clear, cloud-free pixel values 
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over all microsites was crucial to build up a representative training dataset. Thus, we 

investigated the availability of cloud free Landsat 7 and Landsat 8 acquisitions and incorporated 

them to increase the temporal density of observations in the time series data. Table 6.1 

summarises the number of analysed images acquired by various satellite sensors in partly cloudy 

and cloud free conditions. 

Table 6.1 The number of remote sensing images used in this study grouped by cloud cover. 

Satellite and sensor  Total no. of images 

Sentinel 1 / SAR  153 

 
No. of cloud free images over all 

microsites 
No. of partly 

cloudy images 
 

Sentinel 2 / MSI 21 18 39 

Landsat 7 / ETM+ 11 7 18 

Landsat 8 / OLI 9 11 20 

The multispectral scenes were available in a significantly lower number and only about half of 

the images were cloud free over all the microsites. Landsat and Sentinel-2 satellites have 

spectral and spatial similarities so that they could be combined to increase the amount of cloud-

free observations (Flood, 2017, Li and Roy, 2017, Skakun et al., 2017, Pastick et al., 2018, Urban 

et al., 2018). In total, 230 satellite scenes were exploited over a time span of 22 months for the 

synergistic use of the data to achieve high model training results. Figure 6.2 illustrates the 

temporal distribution of the remotely sensed images over the study period for the four satellite 

missions from Nov 2016 to Aug 2018. 

 

Figure 6.2 Overview of the used satellite data coverage of Sentinel 1 (A/B), Sentinel 2 (A/B), Landsat 7 
and Landsat 8 acquisitions over the Patitapu Station between 01/11/2016 and 31/08/2018. The scenes 
marked with a rhomboid were cloud-free over all the 20 ground-based measurement locations. 
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6.2.3.3 Radar imagery from the Sentinel-1 mission 

The SAR data applied in this study was captured by instruments on board the Sentinel-1A and 

1B satellites. The Sentinel-1 constellation is operated by the ESA and the mission is part of the 

Copernicus program. The Sentinel-1 satellites are mounted with C-band (central frequency of 

5.404 GHz) SAR instruments with equivalent configurations. Due to the design of the Sentinel-1 

mission, a 6-day repeat cycle can be reached if both satellites are considered providing data in 

single and dual polarisation modes. The mission provides an all-weather day-and-night supply 

of SAR imagery with a spatial resolution of 10x10 m after multi-looking.  

6.2.3.3.1 The SAR dataset over the study area 

Incidence angle (θ) and the 𝜎0 and data were extracted from 153 Level-1, Ground Range 

Detected (GRD) images acquired in Interferometric Wide swath mode. The GRD products were 

exploited in the available dual polarisation, i.e. VV (vertical transmit and vertical receive) and VH 

(vertical transmit and horizontal receive) over the study area. GEE’s Sentinel-1 image collection 

contains images with several different instrument configurations, resolutions obtained by the 

satellite constellation during both descending (DES) and ascending (ASC) orbits. The attached 

metadata properties can be used to filter the dataset and generate a homogenous Sentinel-1 

image collection. In this project, we kept all the available SAR images to increase the amount of 

radar data input into the model. Sentinel-1 𝜎0 was available at four acquisition modes over the 

Patitapu Station, i.e. ASC orbits with 34° and 44° θ and DES orbits with 30° and 41° θ. Considering 

a specific acquisition mode, the θ property found in the metadata barely changed due to the 

proximity of the microsites and the small extent of the area. Additionally, the SAR data was 

extracted at 10, 20 and 30 m resolution through GEE for each acquisition mode to investigate 

the sensitivity of 𝜎0 to soil moisture depending on θ and spatial resolution.  

6.2.3.4 Multispectral imagery 

6.2.3.4.1 Sentinel-2 mission and available dataset in GEE 

The ESA has launched the Sentinel-2 satellite constellation comprising of two identical satellites 

as part of the Copernicus program. The satellites are equipped with the Multi Spectral 

Instrument (MSI) providing high to  moderate spatial resolution imagery with frequent revisits 

and similar spectral characteristics to the Landsat family (Drusch et al., 2012). The Sentinel-2 

obtains images in 13 spectral bands spanning from visible (VIS) to short wave infrared (SWIR) 

range, at different spatial resolutions ranging from 10 to 60 m. GEE delivers Sentinel-2, Level 1C 

data representing orthorectified Top of Atmosphere (TOA) reflectance since June 2015. 

Additionally, a quality assessment bit mask is added for cloud identification and masking. 
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6.2.3.4.2 Landsat 7 and 8 mission and datasets in GEE 

The Landsat 7 mission, launched in 1999, is equipped with the Enhanced Thematic Mapper Plus 

instrument (ETM+) collecting information with a 16-day repeat coverage. The ETM+ sensor 

captures images in seven spectral bands with a spatial resolution of 30-60 m and a panchromatic 

band with 15 m resolution (USGS, 2018). For the purpose of the study the TOA reflectance image 

collection was chosen, as Sentinel-2 data is only available in TOA reflectance.  

The Landsat 8 mission was launched in 2013 and it captures images every 16 days in an 8-day 

offset from Landsat 7. The satellite is equipped with the Operational Land Imager (OLI) for 

multispectral observations. Landsat 8 images are also delivered in calibrated TOA reflectance 

format by GEE containing 12 bands (USGS, 2018). Most bands have a resolution of 30 m, which 

have been utilised in the present work. A quality assessment band is provided for every Landsat 

7 and 8 products carrying descriptions about observation quality. This band was applied as a per 

pixel filter to generate cloud-free image collections.  

6.2.4 Combination of NDVI and adjustments specific to the study area  

6.2.4.1 NDVI calculation 

To represent the vegetation cover, NDVI was derived from spectral information captured by the 

three multispectral satellite missions and combined into one time series following an 

adjustment process. NDVI has been a widely applied indicator of green vegetation cover 

(Reviewed by Bannari et al. (1995)). The generic form of NDVI calculation is given as Eq. (6.1). 

 𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 (6.1) 

Where 𝜌𝑁𝐼𝑅  and 𝜌𝑅𝐸𝐷 represents the reflectance in the near-infrared (NIR) and red channels, 

respectively. Sentinel-2 NDVI was derived based on the Band 8A (NIR) and Band 4 (Red) as the 

difference between Landsat 8 and Sentinel-2 NDVI were less pronounced when the Band 8A was 

selected instead of Band 8 (Zhang et al., 2018). The same results were presented by Mandanici 

and Bitelli (2016) showing that Band 8A should be used when Sentinel-2 NDVI is calculated to be 

able to compare that to Landsat 8 NDVI. For Landsat 7, the Band 4 (NIR) and Band 3 (Red), while 

in the case of Landsat 8, Band 5 (NIR) and Band 4 (Red) were selected for NDVI calculation as 

per Eq. (6.1).  

6.2.4.2 Satellite product comparability 

In principle, the Sentinel-2 Level 1C TOA, Landsat 7 and Landsat 8 TOA products should provide 

broadly comparable and complementary observations for most cases. However, small but 
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consistent differences have been found during comparisons of Landsat 7 and Landsat 8 as well 

as between Sentinel-2 and Landsat products (Flood, 2014, Holden and Woodcock, 2016, Zhu et 

al., 2016, Flood, 2017). The combination of data from multiple satellites may lead to data 

discrepancies due to the slight differences between sensor properties and bandwidth (Flood, 

2014). Landsat 7 and Landsat 8 are not identical but they exhibit systematic variation between 

the two sensors that makes them comparable after corrections (Flood, 2014, Holden and 

Woodcock, 2016). The difference between Landsat 8 and 7 was quantified by Flood (2014) who 

stated  that NDVI values were systematically overestimated by Landsat 8 OLI by about 5% as 

compared to Landsat 7 ETM+ without adjustment. 

NASA released the Harmonized Landsat 8 and Sentinel-2 products and reported the 

transformation functions for selected areas globally (Claverie et al., 2017), that did not include 

New Zealand. Zhang et al. (2018) and Flood (2017) also characterised the transformation 

parameters and found that their results were substantially different from the NASA’s published 

coefficients. Therefore, it was suggested that the adjustment among these satellite products 

might require coefficients derived on a regional basis.  

6.2.4.3 Site-specific NDVI adjustments for Patitapu Station 

Consequently, study area specific adjustments were developed and applied locally to the various 

NDVI products to ensure a better match over the Patitapu Station. The corrections are 

commonly based on Ordinary Least Square (OLS) linear regressions fitted on co-registered raster 

datasets captured by different sensors and obtained on the same day or within a given time 

window (Flood, 2014, Holden and Woodcock, 2016, Flood, 2017, Zhang et al., 2018). The present 

work followed this method and the broadly accepted OLS technique was employed to generate 

the specific adjustment formulas.  

To develop the correction functions, coincident acquisitions were selected from dominantly 

cloud free conditions on the same day or within a 3-day window. The cloud mask information 

was derived from the Quality Assessment bit-mask bands for each satellite products to eliminate 

cloudy pixels. The 10 m Sentinel-2 bands were spatially resampled to match the 30 m resolution 

of Landsat scenes. NDVI was derived in GEE and the images with added NDVI bands were 

exported and co-registered to ensure alignment between corresponding pixels from different 

scenes. NDVI values were extracted from 5000 randomly generated sampling points distributed 

over the study area from each image pair. A small portion of the sampled NDVI values was 

removed due to patches of cloud cover or cloud shadow. To derive transformation functions 
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from Landsat 7 and Landsat 8 NDVI values to Sentinel-2 NDVI, linear models were fitted on the 

sampled NDVI individually as per Eq. (6.2). 

 𝑁𝐷𝑉𝐼𝑆2 = 𝑐0 + 𝑐1 ∗ 𝑁𝐷𝑉𝐼𝐿 (6.2) 

Where, 𝑁𝐷𝑉𝐼𝑆2 is NDVI derived from Sentinel-2 spectral information and 𝑁𝐷𝑉𝐼𝐿 represents 

NDVI from either Landsat 7 or Landsat 8 images while 𝑐0 and 𝑐1 are the intercept and slope of 

the fitted models.  

6.2.4.4 Filling NDVI gaps in the time series 

To create a complete training dataset, a continuous, daily NDVI time series input was generated 

from the combined, adjusted NDVI data. To derive NDVI values on the days coincident with SAR 

image acquisitions, a missing value imputation process was applied by the utilisation of the tools 

offered by ImputeTS package (Moritz and Bartz-Beielstein, 2017) in R software environment (R 

Core Team, 2017). Although there are different algorithms available in ImputeTS, a Kalman filter 

technique was chosen to improve the temporal consistency of the NDVI time series because it 

is widely applied algorithm for remotely sensed and in situ data assimilation (de Wit and van 

Diepen, 2007, Kleynhans et al., 2011). Similarly, the Kalman filter method has been used to 

create continuous time series of NDVI images by Sedano et al. (2014). 

6.2.5 SAR backscatter sensitivity to soil moisture 

As the SAR images were obtained in four acquisition configurations in different θ ranges, we 

investigated the sensitivity of 𝜎0 to 𝜃𝑣 for each image collection. Under certain circumstances, 

i.e. constant surface roughness and bare soil surface or negligible amount of vegetation cover, 

a positive linear relationship can be assumed between these two parameters (Weimann et al., 

1998, Quesney et al., 2000, Srivastava et al., 2009). Therefore, a regression analysis was 

performed to investigate the sensitivity and the linear relationship between 𝜎0 to 𝜃𝑣 at the 

microsites. The analysis was conducted at various spatial resolutions to examine which cell size 

is the most promising for 𝜃𝑣  retrieval and noise reduction.  

6.2.6 SAR backscatter normalisation 

Due to the significantly different viewing orientation of the ASC and DES orbits, a simplified 

normalisation process was applied to incorporate all the 𝜎0 data to the training of the RF 

regressor. The variance in 𝜎0 caused by the angular variation was reduced by conducting a 

broadly used square cosine angle correction technique (Ulaby et al., 1982b, Mladenova et al., 

2013, Topouzelis and Singha, 2016). The normalisation method follows Lambert’s law for optics 
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and it assumes that the portion of the energy returning to the satellite sensor follows a cosine 

law and the radiation variability within the observed area is also cosine dependent (Mladenova 

et al., 2013). The correction approximates the radar response under any given angle from the 

observed radar backscatter 𝜎𝜗
0  acquired at θ as per the formula provided in Eq. (6.3).  

 𝜎𝜗𝑟𝑒𝑓
0 =

𝜎𝜗
0 cos2 𝜗𝑟𝑒𝑓

cos2 𝜗
 (6.3) 

Where, 𝜎𝜗𝑟𝑒𝑓
0  is the normalised radar response at a selected reference incidence angle 𝜗𝑟𝑒𝑓. The 

Sentinel-1 SAR data obtained over the Patitapu Station ranged from approximately 30° to 44° 

considering all acquisition modes and orbits. Therefore, the mean 𝜃, i.e. 37° was chosen as 𝜗𝑟𝑒𝑓 

following the method by Van Tricht et al. (2018) who combined Sentinel-1 and Sentinel-2 

imagery for crop mapping.  

6.2.7 The proposed methodology 

To develop a model that can predict 𝜃𝑣 and to capture the variability at the paddock and sub-

paddock scale, at least medium spatial resolution input layers at 10-100 m pixel size (Gao et al., 

2010) are required. Although 𝜎0 is affected by noise and numerous parameters such as the 

vegetation cover, dielectric properties and the geometrical characteristics (i.e. roughness) of the 

targeted surface (Ulaby et al., 1978, Ulaby et al., 1982a), it carries information about 𝜃𝑣. In 

particular, volume scattering exerts a strong influence on SAR 𝜎0 by attenuating the signal and 

reducing its sensitivity to 𝜃𝑣  (Ulaby et al., 1986b). The degree of this effect is highly dependent 

on the geometrical alignment and characteristics of the vegetation (Karjalainen et al., 2004, 

Patel et al., 2006). Consequently, these effects need to be incorporated to the 𝜃𝑣 modelling 

algorithm in some ways to improve the performance of the simulation.  

Optical imagery with multispectral characteristics can indicate the presence of vegetation and 

its temporal evolution through derived indices such as the NDVI. Therefore, NDVI is commonly 

used to correct for the vegetation effect on the radar signal and to improve the performance of 

𝜃𝑣 retrieval algorithms (Alexakis et al., 2017, Gao et al., 2017). It was shown that increasing NDVI 

resulted in decreasing sensitivity of the radar signal to 𝜃𝑣 (Bousbih et al., 2017). Hence, the 

integration of radar and multispectral imagery into a time series was implemented to model the 

temporal and spatial distribution of 𝜃𝑣. Furthermore, terrain attributes were derived from a 

DSM to represent some of the radar signal influencing parameters.  

The various environmental variables and the nature of the previously described non-linear 𝜃𝑣 

retrieval problem required an advanced method. Machine learning techniques represent a 
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selection of techniques that are able to learn from a reference dataset using various learning 

strategies (Ali et al., 2015). As a typical application of artificial intelligence, a machine learning 

technique can detect patterns in data without relying on programmed prior rules and 

relationships. The machine learning algorithms are able to predict or map further data from the 

automatically recognised trends and relations (Robert, 2014). A great advantage of the machine 

learning tools are that they have the capability to integrate data from different sources, as the 

algorithms do not require assumptions regarding the statistical distribution of the given set of 

predictors (Ali et al., 2015). 

The overall modelling task was considered as a complex supervised regression problem built 

upon a dataset consisting of continuous and categorical variables from various sources. 

Furthermore, numerical values were expected as model output. Therefore, a non-parametric 

regression tool, the Random Forest (RF) method was chosen, since this algorithm is capable of 

simultaneously handling both type of variables and the prediction generates continuous 

numerical values (Breiman, 2001). The state-of-the-art RF algorithm is fast and does not require 

as large training datasets as other machine learning approaches such as artificial neural 

networks (Ali et al., 2015). 

RF predicts the final numerical value of a response variable (i.e. 𝜃𝑣), from several predictor 

variables (i.e. 𝜎0, NDVI and terrain attributes) by aggregating the results from multiple 

independently drawn decision trees (a “regression forest”). RF can overcome the commonly 

occurring overfitting and training data sensitivity problems by constructing an ensemble of 

decision trees from randomly selected training samples and variables at each node (Park et al., 

2017). The numerous decorrelated trees were constructed from bootstrapped samples from the 

training data and the variance in the trees was reduced by averaging the results. It was shown 

that RF was capable of efficient 𝜃𝑣 retrieval under various crops by Kumar et al. (2018). The 

chosen RF regressor was built on the Breiman’s algorithm (Breiman, 2001) and the model was 

developed and assessed by the utilisation of the Caret (Kuhn, 2008) as well as randomForest 

(Liaw and Wiener, 2002) R software packages. The overall model building and assessment 

procedure is presented in Figure 6.3. 

To evaluate the algorithm performance, 22-months’ worth of data was used to create validation 

(25% of the observations) and training data (75% of the observations) subsets, based on pseudo 

random sample selection. First, the RF model was fine-tuned to achieve the best performance 

and the results from the Out-Of-Bag error estimation technique were used to assess prediction 

performance.  
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Figure 6.3 Graphical representation of the data pre-processing, extraction as well as the modelling and 

validation workflow (𝜽𝒗 – volumetric soil moisture, 𝝈𝟎 – backscatter coefficient). 

The second step included a repeated cross-validation to investigate generalised model stability, 

predictive accuracy and the difference between Out-Of-Bag error estimations and the cross-

validation. Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and adjusted coefficient 
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of determination (R2) were selected to benchmark the model accuracy and loss functions. As 

part of the third step, the validation subset was fed into the optimised model and the time series 

of observed and modelled 𝜃𝑣 were compared at each in situ 𝜃𝑣 monitoring location.  

As a last step, we investigated the spatial 𝜃𝑣 mapping capability of the trained RF regressor at 

the Patitapu Station on selected dates. To derive 𝜃𝑣  spatially, a reference dataset collected by 

15 microsites was used for training the RF algorithm. Five microsites were left out and used for 

a technically independent evaluation of the RF model performance. The validation microsites 

were chosen to represent various terrain conditions distributed over the farm pastoral areas 

with different aspect and slope angle conditions. Modelled 𝜃𝑣 values were extracted from eight 

computed spatial layers and related against corresponding observed 𝜃𝑣. 

6.3 Results and discussion 

6.3.1 NDVI adjustment 

The derived model parameters and the amount of data used to develop the transformation 

model for NDVI from Landsat 7 and Landsat 8 to Sentinel-2 are presented in Table 6.2. Strong 

linear relationships were observed during the model fitting, resulting in an R2 of 0.85 for Landsat 

8 to Sentinel-2 and R2 of 0.89 for Landsat 7 to Sentinel-2 for NDVI transformations. 

Table 6.2 Coefficients for adjusting Landsat 7 and Landsat 8 Normalized difference Vegetation Index 
(NDVI) to Sentinel 2 NDVI generated over the Patitapu Station.  

NDVI conversion Intercept 𝑐0 Slope 𝑐1 R2 No. of pixels / image pairs 

Landsat 8 to Sentinel-2 -0.0307 1.0296 0.85 19425 / 4 

Landsat 7 to Sentinel-2 0.0686 0.9565 0.89 24121 / 5 

6.3.2 Sensitivity of radar backscatter to soil moisture 

C-band SAR data sensitivity to 𝜃𝑣  is dependent on the θ of the radar signal and lower θ showed 

higher sensitivity to soil water content (Ulaby et al., 1978, Baghdadi et al., 2006). To investigate 

the difference in SAR data response to 𝜃𝑣 in the multiple acquisition modes, VV and VH 𝜎0 data 

were related to 𝜃𝑣 through linear regression analysis as an initial approximation. The correlation 

was defined at each ground-based microsite between VV and VH 𝜎0 and 𝜃𝑣. VH polarisation 

showed insignificant correlation and sensitivity to 𝜃𝑣 changes compared to the VV 𝜎0. These 

findings were confirmed by previous studies observing that VH polarisation is less affected by 

soil water content than VV (Eweys et al., 2017a, Amazirh et al., 2018). Hence, we provide 

detailed results only on the VV 𝜎0 and 𝜃𝑣 relationship by reporting adjusted coefficient of 

determination (adjusted R2) values as indicator of the strength of the relationship. 
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Figure 6.4 depicts the distribution of adjusted R2 values calculated for four ϑ classes, although 

the values were grouped by orbit mode and spatial resolution. It was observed that, in general, 

the 20 m spatial resolution SAR data reached a slightly higher mean adjusted R2 than the 

datasets generated at 10 m and 30 m pixel size considering the twenty microsites. 

 

Figure 6.4 Adjusted coefficient of determination (R2) values of the regression between Sentinel-1A and 
1B (SAR) VV backscatter and ground-based volumetric soil moisture for various satellite orbit and 
spatial resolution combinations (ASC - ascending orbit - Sentinel-1B, DES - descending orbit - Sentinel-
1A). The boxplots visually summarise the following statistical parameters: the mean (white rhomboid), 
the median (line across the box), 25th percentile and 75th percentile as lower and upper hinges and 
outlying points. 

For low 𝜗, i.e. DES orbit, some of the microsites showed positive, moderately strong correlation 

whereas at higher 𝜗, i.e. ASC orbit, the strength of the relationship ranged from weak to 

moderate. It is likely that the application of 10 m pixel size SAR dataset contained more noise 

than the 20 m data, whereas the 30 m resolution seemed to be too large to represent 𝜃𝑣 due to 

its highly variable distribution over complex terrain. Therefore, the 20 m spatial resolution was 

chosen for the Sentinel-1 dataset and the spatial resolution of the modelling and mapping. The 

lower 𝜃 of the DES mode were shown to be better suited for 𝜃𝑣 estimation than high ϑ. 

According to these results, the prediction could be improved by only using the DES orbit data. 

However, in this study, the RF algorithm was trained on normalised SAR data, thus the utilisation 

of various SAR images will help to keep the high temporal resolution and make the model able 

to process scenes captured in different acquisition modes.  

The VV 𝜎0 was plotted as a function of 𝜃𝑣 for all θ in ASC and DES orbits at 20 m resolution. The 

linear fit between VV 𝜎0 and 𝜃𝑣 with shaded confidence regions (0.95) is presented in Figure 

6.5. Some of the microsites (i.e. 4, 9, 10, 12, 13 and 20) represented moderate correlations while 

all the others showed weak or insignificant linear relationship. Although, it was clear that high 

𝜎0 values were related to high 𝜃𝑣 and low 𝜎0 values were generally associated with dry 

conditions.  
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Figure 6.5 Scatterplots illustrating the relationship between VV backscatter (𝝈𝟎) at 20 m spatial 
resolution and near surface soil moisture (𝜽𝒗) at the 20 monitoring locations installed at the Patitapu 
Station coloured by orbit mode. The shaded areas represent the 0.95 confidence regions. 

These results suggest that the linear approach was not suitable to derive the 𝜃𝑣retrieval 

functions over pastoral surfaces under hill country conditions. The low adjusted R2 values and 

the varying slopes of the fitted linear models indicates a large amount of uncertainty which can 

be attributed to numerous influencing factors, such as speckle noise, vegetation cover, surface 

roughness and complex terrain generating variable angular responses. According to Baghdadi et 

al. (2008) the fitted linear models and their coefficients may differ from year to year and on a 

regional basis requiring frequent calibration. Additionally, the 𝜃𝑣 sensors were located at 70-130 

100 mm soil depth that was slightly deeper than the theoretical penetration depth for C-band 

SAR signal. It was observed that the generation of homogenous image collections by using θ as 

a filter, achieved higher R2 values, although the filtering led to significantly reduced temporal 

SAR observation density.  
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At a selected location, namely at Site 9, the temporal evolution of normalised SAR data, NDVI, 

daily total rainfall and daily mean 𝜃𝑣  were plotted together as shown in Figure 6.6. Site 9 is 

situated on a near high ridge position with relatively homogenous pasture cover and a narrow 

annual 𝜃𝑣 fluctuation range.  

 

Figure 6.6 Ascending (ASC) and descending (DES) VV backscatter (𝝈𝟎)  development analogous to daily 
mean volumetric soil moisture ( 𝜽𝒗) , to daily NDVI derived at Site 9 and total daily rainfall measured 
by the local weather station during two consecutive years at the Patitapu Station. 

Both ASC and DES 𝜎0 showed recognisable patterns and increasing values with increasing 𝜃𝑣. 

During the dry periods, the amount of backscattered energy was low, although the heavy rainfall 

events seemed to increase the 𝜎0 values. During Nov 2016 - Jan 2017 period, it was clearly visible 

that low NDVI was associated with high 𝜎0 and vice versa suggesting the presence of the 

vegetation cover effect on the SAR signal (Fig. 6.6). Similar 𝜎0 behaviour and moderate negative 

correlations were observed at other locations as well, which are not presented here in detail. 

Our results demonstrate agreement with other studies confirming that moisture sensitivity of 

the 𝜎0 likely to decrease with increasing NDVI (Zribi and Dechambre, 2003, Baghdadi et al., 2008, 

Gao et al., 2017). The response of 𝜎0 to  𝜃𝑣 changes was weak, but noticeable despite the fact 

that the several affecting variables were not considered through the linear approach.   
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6.3.3 Soil moisture modelling by a Random Forest (RF) ensemble learning method 

6.3.3.1 Training accuracy assessment 

Initially the RF model was built using the default parameters that include the number of trees to 

grow (ntree) and the number of variables randomly considered at each split (mtry). To get the 

best performance from the algorithm, a fine-tuning process was conducted to examine the 

model performance with various settings. For this purpose, pseudo randomly sampled training 

and validation datasets were generated. It was observed that the prediction accuracy decreased 

if the mtry was > 4 for test error assessment and > 4 for the Out-of-Bag error estimates, i.e. 

training accuracy. Considering the ntree parameter, no significant decrease in error was 

observed if the ntree was set to > 300. The training error versus ntree and the optimisation of 

mtry through the training and test error calculations are shown in Figure 6.7.  

 

Figure 6.7 Training error evolution through the optimisation of the number of trees (ntree) and the 
number of variables randomly chosen at each split (mtry) hyperparameters.  

Therefore, in the optimised model, the ntree was set to 300 and mtry to 4. These 

hyperparameters were implemented during the cross validation of the final RF model. The Out-

of-Bag technique resulted in a 0.047 m3 m-3 RMSE and 76% of the variation was explained by the 

RF model.  

The second part of the RF algorithm assessment was based on the MAE, RMSE and R2 values 

generated by the five times repeated, 15-fold cross-validation. MAE ranged between 0.026 and 

0.038 m3 m-3, RMSE between 0.036 and 0.056 m3 m-3 while the mean R2 achieved a relatively 

high value of 0.76. Figure 6.8 presents the  𝜃𝑣 modelling and cross-validation results, including 

a summary of the mean and the spread of accuracies. These results suggest that the RF algorithm 

performed generally well in modelling the  𝜃𝑣 regardless of which section of the data population 

was taken as training set. 
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 Min. 1st Qu. Median Mean 3rd Qu. Max. 

MAE  0.026 0.030 0.033 0.032 0.034 0.038 

RMSE 0.036 0.044 0.047 0.047 0.049 0.056 

R2 0.69 0.74 0.77 0.76 0.79 0.85 

Figure 6.8 Statistical summary of the Random Forest modelling performance using five times repeated 
15-fold cross-validation. 

6.3.3.2 Variable importance  

In the RF implementation used in this study, two measures were used for interpreting variable 

importance as provided and described by Liaw and Wiener (2002). For regression, the mean 

decrease in accuracy is defined as the mean squared error (MSE) that was estimated based on 

the prediction error on Out-of-Bag subsets of the data after a variable is permuted. Secondly, 

the mean decrease in node impurity is described as the total decrease in node impurities from 

splitting on the variable, averaged over all trees and expressed as residual sum of squares. Figure 

6.9 shows the importance of variables for the final dataset based on these two metrics. 

Following the previous results from the sensitivity analysis, 𝜎0 with VV polarisation was more 

related to  𝜃𝑣 than VH, thus 𝜎0 with VH configuration was not included in the final set of 

variables. The introduction of a seasonality component clearly increased the amount of 

variability explained by the model from 40% to over 77% in case of RF training accuracy. NDVI, 

SWI, slope angle and VV 𝜎0 were the most important explanatory variables besides the season 

while elevation, aspect, TPI and TRI had less influence on the predictions. Concerning the mean 

decrease in accuracy, VV 𝜎0 was situated at the bottom of the chart meaning that it had a weak 

prediction strength. Although VV 𝜎0 represented a higher ranked position in the total decrease 

in node impurities. These charts can be used for variable selection for tree-based models and 

for this study; the variables presented in Fig. 6.x were kept. During the model building, some 

other variables such as VV/VH ratio, VV and VH difference were left out as they did not improve 

the prediction accuracy and showed the less important roles than VV 𝜎0.  
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Figure 6.9 The relative importance of variables from the final Random Forest model showing the mean 
decrease in accuracy (mean square error) and the total decrease in node impurities (as residual sum of 
squares) as exported from the randomForest R package (Liaw and Wiener, 2002). 

6.3.3.3 Test accuracy assessment 

The optimised, best performing RF model was executed on the test subset and the prediction 

function was applied to model 𝜃𝑣. The accuracy of the predicted responses was assessed by 

fitting linear regression on the modelled  𝜃𝑣 values and the observed 𝜃𝑣  in the validation set. The 

comparison resulted in 0.046 m3 m-3 residual standard error and 0.78 adjusted R2 values at the 

statistically significant level (P value < 0.001). Figure 6.10 depicts the time series of the in situ 𝜃𝑣 

and the modelled 𝜃𝑣 at each sensing location with the imputed NDVI values coinciding with the 

 𝜃𝑣  observations. The residuals were computed as the difference between observed and 

modelled 𝜃𝑣, and shown for each microsite on the right y-axis.  
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Figure 6.10 Time series of predicted versus observed volumetric water content (𝜽𝒗) and the evolution 
of NDVI at 20 sensing locations. The residuals are shown as columns for each observation pair indicating 
either overestimation (light red) or underestimation (light blue). 

Since the test subset is randomly selected, the analysed time interval varies at the microsites. 

The general annual trend of  𝜃𝑣 was closely followed by the modelled responses and the closest 
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agreement was found during the wet seasons between Apr-Aug 2017 and Jun-Aug 2018 at every 

sensing location. Similarly, the algorithm worked well in the dry seasons (December – February) 

in both years that might be due to the reduced amount of water in the vegetation. 

However, significant uncertainty and errors occurred in the  𝜃𝑣  prediction during the transition 

periods, i.e. during the drying and rewetting stages. Large errors of ~0.06-0.16 m3 m-3 were 

produced between March-May 2017 dominantly underestimating the real  𝜃𝑣  when the soils 

were in the ascending period. It was assumed that the generally high errors in autumn were due 

to the combination of the actual phenological stage of the pasture cover, the increasing amount 

of water content in the vegetation and the effect of increasing 𝜃𝑣 in the soils. It has been 

observed in Chapter 5 that this period was characterised by high spatial soil moisture variability 

that might be reflected in the radar signal.  

On the other hand, when the soils were in the descending transition period (Dec 2017 – Jan 

2018), i.e. drying out stage, the model typically overestimated the observed  𝜃𝑣 values producing 

the largest errors. These findings suggest that the vegetation exerted a noticeable impact on the 

predictions during the drying out period and the errors can be associated with high NDVI values 

as it is shown in Figure 6.8. The commonly observed high NDVI values of late autumn, late spring 

- early summer can be associated with the perennial ryegrass-based pastures’ strong spring and 

autumn tillering characteristics resulting in increased herbage accumulation and feed surplus. 

In autumn, the growth rate is triggered by the soils rewetting stage after the usually dry summer. 

Consequently, enhanced plant growth rate resulted in increased amount of fresh biomass and 

vegetation water content, which could lead to elevated 𝜎0, thus higher modelled  𝜃𝑣 responses. 

6.3.4 Spatial modelling and the validation of near surface soil moisture predictions 

After selecting the best performing RF model, the algorithm was executed on a spatial dataset 

of input variables to compute and develop 𝜃𝑣 maps over the research area on selected cloud 

free days. All available ancillary datasets were co-registered and resampled to 20 m spatial 

resolution to match the Sentinel-1 and Sentinel-2 images. The land cover was classified based 

on a hyperspectral raster layer and the non-pasture areas were masked out from the mapping 

(The classification method is described in more detail in Chapter 3). The previously presented 

training and testing procedure was applied to the RF model.  

The algorithm was fed by the reduced dataset collected from fifteen in situ 𝜃𝑣 monitoring 

locations. The Out-Of-Bag error estimates of the RF training provided 0.79 adjusted R2 and 0.045 

m3 m-3 RMSE, whereas the test accuracy assessment resulted in 0.78 adjusted R2 and 0.047 m3 

m-3 RMSE. These correlations were statistically significant (P value < 0.001) for both training and 
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test assessment. A summary of the five times repeated, 15-fold cross-validation process is 

reported in Figure 6.11 providing the accuracy distribution of the performance considering MAE, 

RMSE and R2 as quantifying parameters. 

 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

MAE  0.026 0.029 0.031 0.031 0.033 0.038 

RMSE 0.037 0.041 0.045 0.045 0.048 0.055 

R2 0.70 0.75 0.78 0.79 0.82 0.85 

Figure 6.11 Statistical summary of the Random Forest modelling performance using five times repeated 
15-fold cross-validation on the reduced reference dataset obtained by 15 ground-based microsites. 

A relatively high deviation was observed, which could potentially be reduced by increasing the 

number of folds and repeats. It was noticed that the model performance trained on the reduced 

dataset did not drop considerably if compared to the model assessment results considering all 

of the 𝜃𝑣  monitoring locations (Fig. 6.8). However, the stability of the RF model performance 

somewhat decreased if executed on the reduced dataset as indicated by the mainly lower 

minimum and greater maximum values of the statistical parameters. 

6.3.4.1 Independent validation of near surface soil moisture predictions 

The following analysis aimed to investigate the spatial mapping performance of the proposed 

method. The evaluation process included the extraction of modelled 𝜃𝑣 values at five selected 

microsites (Site 3, 5, 6, 9, 16) from a series of eight 𝜃𝑣 maps compared to the observed daily 

average 𝜃𝑣  obtained from the five microsites on the same days. The linear regression (Fig. 6.12) 

was executed at each validation microsite separately and for all microsites considered together. 

The process resulted in a statistically significant correlation (P value < 0.001) with 0.77 adjusted 

R2 and 0.048 m3 m-3 RMSE. The relatively high values of these statistical measures suggested that 

the spatial prediction process was not strongly affected by the lower amount of input data in 

the case of the five selected validation microsites.  
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Figure 6.12 Scatterplots and linear model fitting between the observed daily mean volumetric soil 
moisture (𝜽𝒗) from the WSN and the predicted 𝜽𝒗 extracted from eight maps at five microsites and for 
all microsites considered together.  

Table 6.3 lists the acquisition dates of the Sentinel-1 and Sentinel-2 satellite image pairs with 

basic descriptive statistics computed for each 𝜃𝑣 raster dataset. The image pairs were chosen in 

a way that the longest time difference between the radar and multispectral acquisition was two 

days that was considered suitable for the combination of these images. 

Table 6.3 Sentinel-1 and Sentinel-2 scene pairs used for spatial soil moisture mapping and basic 
statistical parameters in m3 m-3 computed from all the cellular values from each raster layer. 

Sentinel-1 SAR Sentinel-2 MSI Mean SD Min Max 

22/05/2017 21/05/2017 0.437 0.029 0.328 0.523 

18/10/2017 18/10/2017 0.388 0.024 0.297 0.484 

7/11/2017 07/11/2017 0.387 0.023 0.292 0.486 

05/12/2017 07/12/2017 0.264 0.031 0.181 0.364 

17/01/2018 16/01/2018 0.271 0.034 0.184 0.372 

03/02/2018 05/02/2018 0.252 0.029 0.175 0.374 

06/05/2018 06/05/2018 0.369 0.051 0.232 0.48 

10/07/2018 10/07/2018 0.442 0.029 0.355 0.53 

The temporal distribution of the obtained 𝜃𝑣 maps and their basic statistical values including 

spatial mean and SD (Table 6.3) was plotted along with the temporal behaviour of the observed 

daily mean 𝜃𝑣 averaged over 20 microsites (Fig. 6.13). Furthermore, daily spatial 𝜃𝑣 standard 



CHAPTER 6 

180 | P a g e  

 

deviation, minimum and maximum values extracted from the WSN using all sensors are 

represented by the ribbons. The dates of the spatial predictions were selected to represent 

intermediately wet (07/11/2017 and 06/05/2018), dry (05/12/2017, 16/01/2018 and 

03/02/2018) and very wet (21/05/2017, 18/10/2017 and 10/07/2018) soil water levels. 

 

Figure 6.13 Temporal distribution of the modelled soil moisture (𝜽𝒗) maps along with the evolution of 
daily spatial mean 𝜽𝒗 collected by the wireless sensor network. The blue ribbon marks the mean 𝜽𝒗 ± 
its standard deviation (SD), while the grey ribbon indicates the range between daily minimum and 
maximum values. The red dots indicate the modelled spatial mean 𝜽𝒗 on the given day marked by 
vertical dashed lines while the error bars reflect the mean 𝜽𝒗 ± SD.   

The 𝜃𝑣  trend was closely followed by the mean values calculated from the modelled maps except 

in the drying out period during spring in 2017. As it was found previously during the test accuracy 

assessment (Fig. 6.10), the transition period from wet to dry conditions were associated with 

significant modelling uncertainty that was reflected in the spatial mapping process.  

The 𝜃𝑣 values were considerably overestimated on 11 Nov 2017 giving a mean value of 0.387 m3 

m-3 compared to the observed WSN spatial mean of 0.33 m3 m-3. The phenomena may be 

explained by the strong influence of vegetation, possibly as a result of the late spring early 

summer high growth rate and biomass production. In Nov 2017, the soil temperatures increased 

very quickly triggering the pasture production to a high level (refer to Chapter 7, Figure 7.5), 

which was followed by further soil warming causing a considerable drop in pasture growth rates. 

The VV 𝜎0 values did not decrease in proportion with the dropping 𝜃𝑣 levels. The influence of 

high NDVI values on C-band VV 𝜎0 SAR data during summer season was also observed by Oldak 

et al. (2003) on test microsites with grass cover.  

Figure 6.14 illustrates eight 𝜃𝑣 maps under various soil wetness conditions in autumn, spring, 

summer and winter. The spatially modelled maps during the summer period of 2017-2018 
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showed close agreement with the mean observed soil moisture values ranging between 0.22-

0.25 m3 m-3 that matched with the previously observed trend in the prediction accuracy. The 

lowest soil water levels were reached on 3 Feb 2018 giving a mean  𝜃𝑣 of 0.252 m3 m-3. 

During the rewetting stage in Apr - Jun 2018, the RF algorithm was able to model the  𝜃𝑣 showing 

a relatively good fit between mean modelled 𝜃𝑣  of 0.369 m3 m-3 and observed  𝜃𝑣 of 0.35 m3 m-

3. After the rewetting period, the soils reached saturation in July 2018 and remained at the near 

saturated level for the rest of the data collection time that is characterised by the lowest spatial 

variability. The mean 𝜃𝑣 calculated from the predicted map was 0.442 m3 m-3 on 10 July 2018 

that was a close match with the observed spatial mean value of 0.448 m3 m-3.  

Based on a visual analysis, macro-scale patterns can be recognised on all the eight images that 

showed good agreement with the expected temporal  𝜃𝑣 evolution during the study period. The 

spatial  𝜃𝑣 pattern was strongly linked to the various landscape features suggesting the existence 

of temporal stability in  𝜃𝑣 spatial distribution in support of the results showed in Chapter 5. 

These observations also indicate the importance of topographical attributes in  𝜃𝑣 patterns with 

an enhanced influence near the surface due to the meteorological forcing. Those pixels located 

along the valley floors and flat areas were generally represented by wetter conditions reaching 

0.45-0.53 m3 m-3 𝜃𝑣 in certain cases. It was also apparent that hilltops, ridges and steep hill slopes 

showed lower  𝜃𝑣 than areas with low altitude and gentle slope angles. The flat areas located 

along the stream running along the valley bottoms dried out slower than the hill slopes that is 

clearly visible on the maps (Fig. 6.14). 
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Figure 6.14 Comparison of spatially modelled near-surface volumetric soil moisture (𝜽𝒗) under different 
wetness conditions at the Patitapu Station computed by Random Forest algorithm. Blank areas 
correspond to the non-pasture surfaces. 
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Two predicted maps with the two extreme 𝜃𝑣  levels were chosen for further, more detailed 

illustration and visual comparison. Figure 6.15 (A) presents a smoothed, resampled version of 

 𝜃𝑣 conditions on 3 Feb 2018 and July 10, 2018 (Fig. 6.15 (B)) using bilinear interpolation overlaid 

on high-resolution aerial imagery captured in 2017. To emphasize the relief, the terrain is 

displayed by a 1.7 vertical exaggeration of the elevation surface for easier interpretation and 

better visualisation. Additionally, a zoomed in view is provided for a closer visual assessment of 

 𝜃𝑣  patterns over various terrain features and topographic positions. 

Based on raster statistics supported by visual examination, the role of slope and aspect was not 

obvious during the winter season, although the presence of its effect was noticeable during the 

driest conditions on 3 Feb 2018. Hill slopes facing north were represented by the lowest mean 

 𝜃𝑣  value of 0.245 m3 m-3 while the flat areas held the highest amount  𝜃𝑣  at 0.265 m3 m-3. East 

facing surfaces were slightly wetter giving 0.26 m3 m-3 than south and west aspects with 0.251 

m3 m-3 mean 𝜃𝑣, respectively. The differences in mean 𝜃𝑣  found among various aspect was not 

extremely significant, it clearly shows agreement with our expectations and previous results 

(Radcliffe and Lefever, 1981) considering the findings of the spatiotemporal variability analysis 

in Chapter 5 and the role of aspect discussed in Chapter 2. Aspect can be characterised with a 

seasonal pattern exerting its effect on 𝜃𝑣  dominantly during the descending transition and in dry 

periods while its influence is less evident through the rewetting and in wet the stages.   
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Figure 6.15 Dry (A) soil moisture conditions captured on 03 Feb 2018 and very wet (B), winter obtained 
on 10 Jul 2018 over pastoral surfaces superimposed on aerial imagery and visualised in 3D with 1.7 
vertical exaggeration of the terrain. The insets show a detailed view of a central part of the research 
area with diverse pastoral landscape features. 

Due to the nature of the experiment, the spatial validation was limited and would be further 

improved by the independent collection of  𝜃𝑣  values on a grid basis. The model was clearly able 

to predict the  𝜃𝑣  differences between surfaces with various steepness that is one of the main 

drivers of  𝜃𝑣 distribution in hilly landscapes (Crow et al., 2012b). The pattern seemed to be 

consistent throughout the year in different  𝜃𝑣 levels.  

The approach presented here suggests that the combination of ground-based variables and 

radar imagery and multispectral data has the capability to generate  𝜃𝑣 products based-on 

historical training data at relatively high accuracy. The incorporation of terrain information and 

a seasonal component improved the precision on the  𝜃𝑣  estimates. High-resolution regional or 

country scale modelling of  𝜃𝑣 is also a possibility since most of the chosen variables can be 

derived either from the nationally available digital elevation model or from the datasets made 

available by GEE. The introduction of new parameters and a temporally denser vegetation cover 

information could improve the simulation accuracy and provide closer agreement during the 

rewetting and drying out stages of the soils. As the study area is limited to pastoral surfaces, 

pasture growth measurements could provide information about the biomass, the vegetative 

stage as well as the water content of the vegetation. However, these measurements are usually 

carried out at the point like scale, which is not suitable for the spatial modelling of 𝜃𝑣  on complex 
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terrain. Thus, this study highlights the importance of using multisensory data and advanced 

machine learning methods to deal with the complex relationships among the environmental 

variables interacting within a hill country pastoral farming system.  

As a direction of focus in the future, the trained RF model could be executed on an independent 

area to examine its potential and the value of the obtained reference dataset by the WSN. 

Furthermore, the more detailed investigation of the effect of reduced spatial resolution can be 

a possible future perspective as well as a study that could be based on  𝜃𝑣 prediction as per farm 

management areas, i.e. paddocks. This sort of approach might be also useful for planning 

applications and it could reduce the noise in the data, although the method would lose the 

capability to represent the high  𝜃𝑣 variability within a particular paddock. Further steps could 

include a classification-based modelling approach that could improve the prediction accuracy by 

predicting wetness classes rather than absolute 𝜃𝑣 values. The consideration of other terrain 

attributes related to hydrological processes influencing  𝜃𝑣 distribution such as curvature, 

convergence index can have a positive impact on the prediction performance. Similarly, other 

type of vegetation indices such as enhanced vegetation index, normalised difference water 

index derived from multispectral images may contribute to the improvement of 𝜃𝑣 estimation 

on a map basis. 

6.4 Conclusion 

This study explored the application of the Random Forest machine learning method in near 

surface soil moisture mapping at high spatial resolution (20 m cell size). The chosen regression 

driven algorithm has proved to be a useful tool in modelling the relationship among SAR data, 

NDVI, volumetric soil moisture and predictor variables derived from a high-resolution digital 

surface model. Although, there are discrepancies between the modelled and the observed soil 

moisture values, the investigated method was considered effective in soil moisture mapping at 

the farm scale (2600 ha).  

The series of estimated maps described the temporal and spatial patterns of near surface soil 

moisture in a heterogeneous environment showing generally good agreement with observed 

values. It can be concluded that the synergetic use of remotely sensed and ground-based data 

has the power for soil moisture retrieval in New Zealand’s hilly landscapes. Since the model is 

empirical, the proposed method requires historical, long-term field observations and temporally 

dense remote sensing data in addition to terrain information. In this regard, WSNs will 

increasingly enable the temporally dense data to be provided to these modelling efforts. 
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The results revealed that 𝜃𝑣 may be modelled using a machine learning approach with an RMSE 

below 0.05 m3 m-3 at both the point and the spatial scale over pastoral surfaces with relatively 

homogenous vegetation cover. The average prediction accuracy during training achieved cross-

validated 0.047 m3 m-3 for mean RMSE and 0.77 for mean adjusted R2 while 0.048 m3 m-3 RMSE 

and 0.77 R2 occurred during the independent validation phase. These measures suggest a 

reasonably high average modelling performance over the 22-month study period.  

VV polarized backscatter was more sensitive to soil moisture dynamics than the VH 

configuration. It was generally observed that VV backscatter increased with increasing soil 

moisture while the relationship between NDVI and VV backscatter values followed an inverse 

function. Seasonality, slope angle, NDVI and SAGA wetness index explained more variability than 

aspect, topographic position and the terrain ruggedness.  

While radar data were useful for soil moisture predictions and increased the accuracy, 

seasonality and NDVI were the most important variables confirming that the synergy of 

multispectral and radar data has the potential for medium resolution soil moisture mapping in 

complex landscapes.  

We associate the relatively low sensitivity to near surface soil moisture partially with the ground-

based sensors located deeper than the potential penetration of depth of SAR signal. The 

prediction accuracy and model performance could be improved by using a larger number of soil 

moisture sensors and cover more landscape position and terrain conditions. We propose that 

data collection from soil sensors installed at the top 5 cm of soil layer could result in better 

prediction performance. Due to the low number of regular cloud-free optical images over New 

Zealand, space-borne radar techniques with multiple polarisations will provide potentially more 

effective tools for monitoring near surface soil moisture for farming applications at regional 

scale with medium to high spatial resolution.  

The systematic incorporation of spatially mapped near-surface soil moisture products may lead 

to an increase in prediction results of feed surplus and thus to better pasture management and 

grazing practices. The study can be regarded as an initial investigation of the feasibility of using 

satellite data for mapping soil moisture at a spatial scale that is practical for multiple farming 

applications. 
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Chapter 7 

The analysis of topographical effects on pasture production  

patterns in complex landscapes of New Zealand’s hill country  
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7 Chapter 7 - The analysis of topographical effects on pasture 

production in complex landscapes of New Zealand’s hill country 

7.1 Introduction 

There are two major pastoral systems in New Zealand usually referred to as dairy farming (1) 

mainly situated on lowlands, and sheep and beef farming (2) spanning low-altitude, seasonally 

dry, steep lands of hilly landscapes with lower fertility soils. The dairy industry produces a 

considerable fraction of exports from NZ, thus pasture quality,  pasture growth rates (PGR) and 

annual dry matter (DM) production on dairy farms have been studied extensively  (Woodward, 

2001, Macdonald et al., 2008, Chapman et al., 2009, Dalley and Geddes, 2012).  

On the contrary, the number of research programs investigating the dynamic hill country 

pastoral systems is low compared to lowland pastures despite its importance in the primary 

sector contributing $7-7.5 billion towards annual exports (Morrison, 2017, Statistics New 

Zealand, 2018, updated April 2018). The recent growth in the dairy industry has required more 

land conversion, thus beef and sheep farms are increasingly being dominated by low-fertility 

areas containing a mixture of flat, rolling, and steep land (Gaukrodger, 2014). However, pastoral 

hill country farms still occupy a large fraction of agricultural land (4 million ha in the North Island) 

and holds most of the nation’s sheep and beef stock (Keller et al., 2014, Cameron, 2016, 

Scrimgeour, 2016).  

To improve the profitability and resilience of hilly, non-irrigated farming systems, the efficient 

use of the available resources, including water held by the soil, is crucial to ensure that the 

quantity and quality of feed will meet stock demand. Sustainable yield maintenance and growth 

enhancement have been of great interest, especially as a result of recent increased pressure on 

environment (soil conservation, fertiliser application impacts, nutrient use and climatic 

volatility) and food production (Scrimgeour, 2016). Consequently, the better understanding of 

growth distribution, its variability and seasonal patterns may assist in the implementation of 

more effective land management practices where diverse topography is a key influencing 

feature.   

In general, hill country landscapes are dominated by slopes > 15 ° and located below an altitude 

of 1000 m (Basher et al., 2008) and demonstrate extremely variable pasture growing 

characteristics that are influenced by a wide range of factors. The documentation of hill country 

pasture production is difficult due to the complex interrelationships between terrain attributes 
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(i.e. high local variation in microrelief), pasture composition and structure, uneven grazing 

management, stock behaviour, soil fertility, soil patterns, and microclimatic parameters 

(Gillingham, 1973, Lambert and Roberts, 1978, Chapman and Macfarlane, 1985, Bretherton, 

2012).  

7.1.1 Review of pasture growth studies in New Zealand 

Aspect and slope angle are two of the primary topographical factors affecting pasture growth 

patterns in hill country, which have received early attention with agronomic studies. Pasture 

yield has been investigated on sunny (northerly) and shady (southerly) faces by several authors, 

Suckling (1959), Suckling (1975) Bircham and Gillingham (1986), White et al. (1972), Gillingham 

and Bell (1977) Lambert and Roberts (1978), Radcliffe et al. (1976), Gillingham et al. (1998) and 

Bretherton (2012) on both unimproved and improved pastures of New Zealand.  

Table 7.1 provides a structured summary of the studies completed in hill country, monitoring 

annual pasture yield accumulation on surfaces with varying aspect and slope angle at various 

locations in New Zealand. Radcliffe (1982) and Bretherton (2012) also provided a shorter review 

on previous results on pasture growth accumulation. Furthermore, some of the key findings are 

explained below to provide details from selected studies comparing mainly north and south 

aspects. Suckling (1975) and Suckling (1959) observed that there were distinct differences in 

seasonal yield between northerly and southerly faces (mainly due to temperature differences), 

so that shady faces were grazed more in summer and sunny faces were grazed more in winter.  

In terms of annual pasture production, 25 % more yield was observed on sunny faces if averaged 

over a 9-year experiment. A field trial carried out by Luscombe (1980) at Ballantrae hill country 

research station found that north easterly aspects produced more pasture than south west 

aspects, producing approximately twice as much dry matter. Gillingham (1973) observed that 

north aspects in steep hill country outperformed the south aspects, yielding 10 % more pasture 

mainly due to the high winter growth on sunny faces. In contrast, Bretherton (2012) observed 

similar total pasture production on south and north aspects, although his results indicated that 

south-facing slopes might yield more pasture during summer and autumn in years with below 

average soil water content. It should be noted, that there are latitude differences between these 

two studies and the differences in seasonal rainfall amplitude may play a considerable role. 

During winter and spring, northern slopes may out-perform southern slopes when soil water 

content is not a limiting factor. Lambert et al. (2000) monitored pasture growth as part of a long-

term experiment and found the highest yield on east-facing slopes, although north-westerly 

faces produced 7 % more pasture than south-westerly faces.  
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By investigating the papers listed in Table 7.1, most of the considered studies examined the 

differences between south- and north-facing slopes, providing little information about the 

entire slope-aspect spectrum. It is was observed that most of the considered papers found 

higher yield on north-facing slopes and a few on south-facing slopes. It is apparent, that these 

findings were not consistent and somewhat controversial. This suggests that regional and local 

effects on productivity are neither well defined nor fully understood in relation to the terrain, 

vegetation cover, soil properties, and climatic parameters, agreeing with the conclusions made 

by Lambert et al. (1983).  

Table 7.1 Overview of annual herbage accumulation studies on different aspects and slope angles 
recorded at various hilly regions of New Zealand using the trim technique. 

Aspect with 
highest yield 

Reference Location 
Slope angle 

(°) 
Time of data 

collection 

N 

Radcliffe (1971) 

Whatawhata, near Hamilton (NI) 
0-20, 15-20, 

36-40 
11/01/1965 – 
15/11/1965 

Te Kuiti, near Hamilton (NI) 10, 20 
16/07/1969 - 
24/06/1970 

Suckling (1959) 
Te Awa, near Palmerston North 

(NI) 
varied (easy 

to steep) 
1949 - 1956 

Suckling (1975) 
Te Awa, near Palmerston North 

(NI) 
varied (easy 

to steep) 
1951 - 1957 

Radcliffe et al. 
(1968) 

Whatawhata, near Hamilton (NI) 
15-20, 25, 
36-40, 20 

Nov 1964 – 
Nov 1965 

Gillingham (1973) Whatawhata, near Hamilton (NI) 
steep (aver. 

30) 
August 1970- 

July 1973 

Gillingham et al. 
(1998) 

near Waipawa, Hawke’s Bay (NI) 
15-20, 25-

30 
1995-1998 

Gillingham et al. 
(2003) 

near Waipawa, Hawke’s Bay (NI) 
varied (easy 

to steep) 
1995-2002 

S 

Lambert and 
Roberts (1978) 

Ballantrae, near Woodville (NI) 
5-30 (aver. 

16) 
1972 

White et al. (1972) 
Hunua, near Waikari, North 

Canterbury, (SI) 
steep 1970-1971 

Radcliffe (1971) Coopers Creek, near Oxford (SI) 25-28 
12/10/1970- 
22/06/1971 

Radcliffe (1982) Coopers Creek, near Oxford (SI) varied 1973-1976 

SW 
Radcliffe et al. 

(1977) 
Coopers Creek, Canterbury (SI) 

10-20, 20-
25 

1972-1975 

NE Luscombe (1980) Ballantrae, near Woodville (NI) 10-15 
June 1977 – 

December 1978 

SE Bircham (1977) North Wairarapa (NI) 10-20 1975-1976 

E 

Radcliffe (1971) Geraldine (SI) 26-33 1970-1971 

Lambert et al. 
(1983) 

Ballantrae, near Woodville (NI) 
1-12, 13-25, 

>26 
1971-1981 

Insignificant yield differences between N and S 

- Bretherton (2012) Alfredton (NI) 20-30 2010-2012 

In terms of slope angle, pasture production tend to decrease with increasing slope angle 

demonstrating a highly significant negative relationship (Gillingham, 1973, Lambert et al., 1983). 



Hajdu: Soil water modelling in hill country  Pasture growth pattern analysis 

191 | P a g e  

 

The differences in yield are mainly attributed to the greater soil water availability on easier 

slopes than on steep surfaces (Gillingham et al., 1998, Bretherton, 2012). Additionally, changes 

in slope can also result in variations in organic matter, soil physical properties, pH, botanical 

composition and soil fertility due to animal and gravity nutrient transfer from steep slopes 

towards easier slopes, (Mackay et al., 1999, Lambert et al., 2000, López et al., 2003).  

7.1.2 Review of pasture production models  

The diverse terrain, grazing management, and the climate-driven characteristics of pasture 

growth patterns makes spatial and temporal prediction of pasture production difficult; hence, 

several forecasting models have been developed (Herrero et al., 1998). These models attempt 

to simulate pasture growth as a function of one or more environmental, soil and/or 

management variables.  

The classic modelling approaches include mechanistic and empirical techniques (Moir et al., 

2000, Scott, 2002, Zhang et al., 2005). While mechanistic models are built on theoretical 

concepts and can be more broadly applied, empirical models are developed using experimental 

data from a detailed trial work at a specific site and provide higher prediction accuracy over 

mechanistic models for the particular area (Rickert et al., 2000). Therefore, to determine pasture 

productivity affecting factors and to evaluate their contributions to spatiotemporal yield 

distribution, empirical methods are preferred (Zhang et al., 2005). 

To identify the key driving factors of pasture production, some pasture growth models are 

discussed here. Pasture growth simulations are highly dependent on the prediction capability of 

soil water status (McCall, 1984, Woodward, 2001). Moreover, it is evident that the key 

component of water balance models is the evapotranspiration (Leenhardt et al., 1995) input 

that can be estimated by theoretical models (i.e. calculation of potential evapotranspiration) or 

empirical functions developed locally (i.e. actual evapotranspiration).  

The climate driven, soil fertility dependent model developed by Moir et al. (2000) is based on an 

assumption that pasture growth is proportional to the actual evaporation rate, which is 

corrected for a site-specific factor indicating soil fertility status. Actual evaporation rate is 

estimated through a soil water balance as given by Coulter (1973). Moir et al. (2000) attempted 

to develop a pasture growth model that takes into account the soil fertility as well as the climate 

as it influences soil water content and evapotranspiration.  

Woodward (2001) reported the development of the Pasture Quality model to predict daily 

growth of various vegetative grasses and dead fractions considering temperature, rainfall and 
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incoming solar radiation. The considered biological processes are dependent on soil water which 

is calculated by the two-layer model of Scotter et al. (1979). The model was further improved by 

Woodward et al. (2001) by rewriting it into differential format and modifying the formulas so 

that available water holding capacity can be added to estimate actual evapotranspiration.  

The McCall model (McCall, 1984), later published and described in detail by McCall and Bishop-

Hurley (2003), was designed to predict pasture accumulation on grazed dairy pastures of New 

Zealand by considering pasture growth dynamics, and the effects of climatic and management 

variables. McCall’s simple algorithm mainly requires weather data; therefore, it has been widely 

applied in farm system models and used in research with ryegrass-dominant pastures. One of 

the drawbacks is the restricted generalised application due to the requirements for site-specific, 

empirical data for calibration (Romera et al., 2009).  

The pasture prediction models discussed above are mainly applicable for pasture growth 

simulations on lowlands with deep soils as the model parameters assumed flat surfaces for 

incoming solar radiation (ISR) and evapotranspiration estimations, and ignored other 

hydrological processes such as surface runoff, lateral flows and water repellency.  

In hill country, only a few in-depth studies have been conducted to develop water balance 

models for sloping land (Bircham and Gillingham, 1986, Bretherton et al., 2010). These models 

took into account the terrain effect on ISR and climate variables to calculate potential reference 

crop evapotranspiration values and then the use of a soil water balance model to obtain actual 

evapotranspiration. However, using these actual evaporation estimates for modelling hill 

country water status can introduce uncertainties due to the assumption about rooting depth 

and unrealistic soil-limited evaporation rates (Bretherton et al., 2010).  

Some of the latest commercial models, for example, the Pasture Growth Forecaster (used by 

Ravensdown Ltd.), have been calibrated for dairy farming conditions (i.e. dominantly high 

fertility flat land) and modifications were introduced for predictions on sloping land. The Pasture 

Growth Forecaster is defined as a hybrid model built on the McCall herbage growth model 

(McCall, 1984)  as revised by Romera et al. (2009). To improve this model’s accuracy, the soil 

water balance model of Woodward et al. (2001) was chosen to replace the McCall model (Ogle 

and Ma, 2015). Recently, improvements have been made by including corrections for slope 

angle, aspect, and rainfall, to ensure that the algorithm is tuned to the terrain attributes (Ogle 

et al., 2016). As a result of the changes, the model has become capable of independently 

calculating the evapotranspiration for an inclined surface based on the Penman-Monteith model 

as described in Zotarelli et al. (2010).  



Hajdu: Soil water modelling in hill country  Pasture growth pattern analysis 

193 | P a g e  

 

Certain pasture growth model components rely on empirical parameters that makes the site-

specific calibration and model tuning required to achieve better predictive precision (Romera et 

al., 2009). Model parameterisation can be made more efficient by improving the knowledge of 

the numerous interrelated factors controlling pasture growth. The purpose of this chapter is to 

provide a detailed overview of the role of soil parameters, topographic attributes, and the 

influence of some climatic variables and their interactions within this complex system at the 

Patitapu Station (the research area) situated in the lower east coast of the North Island. Our 

study was designed to provide a more detailed analysis regarding pasture productivity than 

previous studies. Spatial PGR distribution and response patterns were described by relating yield 

data and environmental parameters recorded between November 2016 and June 2018.  

Thus, soil and pasture monitoring microsites were designed and spatially distributed in the 

research area to sample various pastures on various topographic positions. The microsites were 

equipped with AquaCheck probes connected using a wireless sensor network (WSN) for long-

term, multi-level soil temperature (𝑇𝑠, °C) and volumetric soil moisture (𝜃𝑣, m3 m-3) 

measurements. The latter is extremely valuable for the investigation of stored and plant-

available  water variability within the rooting zone (Hillel, 1998, Nolz, 2013). Pasture yield was 

measured by the traditional pre-trimmed exclusion cage technique on the grazed areas 

(Radcliffe et al., 1968). The land surface was represented by a very high-resolution (0.2x0.2 m 

cell size) digital surface model (DSM) surveyed in 2017 and used for deriving the terrain 

attributes considered in this chapter. 

Ever since the incorporation of precision agriculture techniques was introduced to hill country 

farming, the variability in pasture production occurring on complex landscapes can be addressed 

and better understood and the accuracy of yield simulations can be improved. Therefore, the 

presented study aims to: 

1. Utilise the combination of recent WSN technology and classic pasture monitoring 

methodology assessing the herbage accumulation and PGR response to recorded and 

derived parameters 

2. Capture the differences in PGR in various landscape positions by descriptive and 

comparative methods, and multivariate statistical analysis.  

3. Provide a discussion on PGR variability by isolating the limiting effects of topography, 

seasonality and soil parameters, on individual sites, as the combinations of these 

factors could explain a significant amount of the variability in pasture yield in hill 

country. 
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7.2 Materials and methods 

7.2.1 Research site 

The selected research site, the Patitapu Station is situated within the East Coast Hill Country 

(ECHC) area (40.745020 S, 175.887320 E) of the North Island of New Zealand (Fig. 7.1 (A)). The 

ECHC region is an extensive section of primarily pastoral farmland and forestry on a mixture of 

rolling to steep hills, flat terraces prone to summer-autumn soil moisture deficit as well as 

flooding and heavy storm events. Patitapu Station is recognised as steep hill country terrain with 

lower fertility soils where drought frequently occurs in summer. The station can be characterised 

as steeply dissected with a high-density drainage network, and highly variable contour, aspect, 

soil type, soil fertility, and altitude, and therefore a wide range of micro-climatic conditions. 

Pastoral land covers approximately 70% of the 2,623 ha farm, typically experiencing warm, dry 

summer and wet, mild winter conditions. Rotational grazing, which is in use by most hill country 

farmers (Osborn and Cowie, 1978) has been adopted at the research area. The microsites were 

selected from improved, permanent pasture areas under grazing by sheep or sheep and cattle. 

Although the botanical composition varied between sites, the predominant plant communities 

were perennial ryegrass (Lolium perenne L.), browntop (Agrostis capillaris) and Yorkshire fog 

(Holcus lanatus) in combination with white clover (Trifolium repens). These species are 

commonly found in many of New Zealand’s productive pastoral systems (Charlton and Stewart, 

1999).  

Figure 7.1 (B) illustrates the topography of the research site and its immediate surroundings as 

well as the locations of the microsites superimposed on a recent aerial imagery (2017) clearly 

showing native bush and pasture-based land cover types. An example of a microsite with the 

AquaCheck probe and the pasture sampling locations within a 3 m circle is presented in Figure 

7.1 (C). 

7.2.2 Fertiliser history 

Patitapu Station has been operated and developed by the current owners since 2000, with a 

relatively poor fertiliser history prior to purchase 19 years ago. Pasture swards have been 

maintained by regular aerial oversowing, and have been top-dressed to build up soil fertility. 

The station is divided into management blocks, which receive up to two applications in some 

years. A maintenance rate is usually applied in November and a capital fertiliser input in 

February. 
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Figure 7.1 Geographical location of the research area (A), the spatial distribution of the 13 microsites 
and weather station locations (B), and an inset map showing the relative positioning of an AquaCheck 
probe and the situation of pasture sampling cages (C).  

These applications have been mostly superphosphate at 200-300 kg/ha rate with some di-

ammonium phosphate added. The microsite locations were chosen from farm blocks that 

historically received superphosphate at mainly 250 kg/ha. Based on the available fertiliser 

history, all microsites received similar amount of input. Consequently, the effect of fertiliser 

amount and products were not included in the analysis, which was due to the lack of spatial and 

temporal data about the applied products.  

7.2.3 Microsite characteristics, sampling design and data collection 

7.2.3.1 Microsite characteristics 

The thirteen microsite locations were chosen at variable landscape positions i.e. on flat areas, 

north-, east-, south- and west-facing slopes, with rolling (8-15°), strongly rolling (16-20°), 

moderately steep (21-25°) and steep (26-35°) slope angle classes following the Land Use 

Capability slope classification scheme (Lynn et al., 2009). Additionally, they were placed on a 

range of geomorphological elements, i.e. plains, open slopes, upper slopes and ridges. This study 

used GIS-assisted methodologies to compute primary (i.e. slope angle, aspect) and secondary or 

compound (i.e. landform elements) topographic attributes in raster format for the extraction of 

pixel-based information at the microsites (Fig. 7.2).  
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Figure 7.2 Primary and secondary terrain attributes generated from a 5x5m pixel resolution digital 
terrain model at the Patitapu Station. Elevation (A), aspect (B), slope angle (C) and landform elements 
(D) are shown. The non-pasture areas within the property have been masked out (white pixels). 

Geomorphometric parameters were derived from an originally 0.2x0.2 m pixel size digital 

surface model (DSM) generated using the novel structure-from-motion photogrammetric 

technique (Micheletti et al., 2015) in 2017. Overlapping, high-resolution images were captured 

using a digital camera mounted on a fixed wing aircraft. Following the processing of images 

taken from multiple angle, a 3-dimensional representation of the land surface can be generated 

(Fig. 7.2 (A)). Due to the nature of DSM, the natural and built features of the land surface are 

captured. Therefore, smoothing and resampling techniques were applied to acquire a 5x5 m 

resolution DSM to represent terrain attributes with mean values for the sampled pasture area.    

Firstly, primary geomorphometric attributes such as aspect (Fig. 7.2 (B)) and slope angle (Fig.7.2 

(C)) were derived. Secondly, since it is a compound attribute, the landform elements (Fig. 7.2 

(D)) were identified based on a landform classification using topographic position index from the 

hydrologically corrected DSM (Moore et al., 1991). The pre-processing and terrain analysis were 

executed in the open source SAGA (System for Automated Geoscientific Analysis) GIS software 

developed by Conrad et al. (2015) and in ArcGIS Pro (Environmental Systems Research Institute, 
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Redlands, California, USA, 2017) environment. Table 7.2 provides information about the 

microsites’ topographical attributes extracted from the generated topographic layers. 

Table 7.2 Terrain attributes at the microsites as derived from a 5x5m digital surface model. 

Site ID Landscape element 
Slope 

(in degrees and class) 
Aspect 

(in degrees and class) Elevation (m) 

1 Upper slope 13 Rolling 175 South 196.7 

3 Open slope 16 Strongly rolling 115 East 249.0 

4 Open slope 23 Moderately steep 94 East 279.0 

8 Midslope ridge 35 Steep 35 North 307.8 

10 Open slope 22 Moderately steep 298 West 318.6 

11 Upper slope 26 Steep 257 West 314.8 

12 High ridge 32 Steep 178 South 301.8 

13 Open slope 23 Moderately steep 22 North 232.8 

14 Upper slope 23 Moderately steep 157 South 287.8 

15 Plain - Flat - Flat 196.4 

16 Open slope 17 Strongly rolling 283 West 373.6 

18 Open slope 26 Steep 46 East 400.7 

19 Open slope 14 Rolling 15 North 380.7 

The following variables were monitored at each site: above ground-accumulated regrowth, i.e. 

live herbage, 𝜃𝑣 content and 𝑇𝑠 at multiple depth. Data collection started on 1 October 2016 for 

pasture yield and on the 1 November 2016 for 𝜃𝑣 and 𝑇𝑠 due to the time needed for soil 

settlement after the AquaCheck probe installation. The soil and pasture monitoring was 

completed on 20 June 2018 due to extremely wet conditions and difficulties in site accessibility. 

In this chapter, the study period was divided into Year 1 and Year 2 and used to refer to the time 

intervals of 1 November 2016 - 31 October 2017 and 1 November 2017 - 20 June 2018 

hereinafter, respectively. 

7.2.3.2 Pasture growth measurement and yield calculation 

The growth of the ryegrass-based pastures was measured by the utilisation of the exclosure 

cage-technique (also known as “rate of growth”) described and evaluated by Lynch and 

Mountier (1954) and Radcliffe (1974a). The application of the method involves the cutting of 

regrowth of pasture within a standard quadrat over short time intervals from previously 

trimmed areas protected by exclosure cages. The microsites were selected on relatively uniform 

vegetation cover to ensure that approximately the same pasture composition was sampled. A 

detailed description of the technique can be found in Chapter 2. 

To measure the accumulated yield, three moveable pasture cages were positioned around the 

AquaCheck probe. The cages were moved around at 4-6 weeks intervals and placed randomly 
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over freshly trimmed surfaces (down to 10 mm height) avoiding previously trimmed areas, 

depressions, waterways and other irregularities on the soil surface. An example of a microsite 

design and the cage relocation procedure is presented in Figure 7.3. 

 

Figure 7.3 Pasture and soil monitoring site (microsite) design with the AquaCheck multisensory probe 
(A) located in the centre surrounded by the regularly rotated exclosure cages (B) and their position 
relative to the high range telemetry unit (C).  

To derive dry matter (DM) (kg DM/ha) and mean daily pasture growth rate (PGR) (kg 

DM/ha/day), the collected samples were dried for 48 h in an oven and weighed in the laboratory. 

At every site, the total herbage accumulation was calculated by averaging the DM data from the 

three sampled surfaces exclosed by the cages. The mean daily PGR was computed by dividing 

the total yield by the number of days separating two consecutive cuts.  

The primary focus of this study is the variation between spatially distributed microsites and 

relative differences between various landscape positions rather than absolute values in terms 

of PGR and accumulated DM. It is noted that the “cage technique” suffer from a number of 

disadvantages (e.g. micro-variability within the quadrats, inaccuracy related to human errors, 

the effect of exclusion cage on growth). Despite of these factors, this method was observed to 

deliver close and consistent approximations of the actual yield (Stephen and Revfeim, 1971) and 

it is considered as an applicable method if the interest being the examination of relative growth 

differences (Devantier et al., 1998).  
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7.2.3.3 Soil moisture and soil temperature monitoring 

As water extraction by pasture occurs down to a depth of at least 350 mm in the hill country if 

the soil is deep enough (Bretherton et al., 2011), a capacitance-based, AquaCheck Sub-surface 

Probe (AquaCheck Soil Moisture Management, Durbanville, South Africa) was chosen. The probe 

collected 𝜃𝑣 and 𝑇𝑠 readings at four soil depths (100, 200, 300, 400 mm) at 15-minute intervals. 

The accuracy of the 𝜃𝑣 sensors were improved by calibration following the procedure reported 

in Chapter 4. The probes were attached to radio-based telemetry units (Tag I.T Technologies Ltd, 

Hamilton, New Zealand) and arranged into a WSN. The HALO Farm System, an online service 

developed by Tag I.T is used for monitoring, accessing and visualising the WSN data. 

7.2.4 Meteorological data 

The Patitapu Station is equipped with a weather station with a 2.5 m mast, and at an elevation 

of 263 m on an open gently sloping site. The station collects precipitation, minimum and 

maximum air temperature, net radiation, and wind speed and direction data at 1-hour intervals. 

The rainfall data is collected at 0.2 mm resolution by a tipping bucket gauge. Rainfall information 

was aggregated in daily intervals for this study and used for a comparison with historical 

averages to characterise the study period as compared to the past 65 years. Historical rainfall 

data (1953-2017) was sourced from the CliFlo web system (https://cliflo.niwa.co.nz/) that 

contains New Zealand’s National Climate Database. The extracted data was collected by a 

nearby NIWA climate station at Wairere, Ihuraua, located only 4.5 km from the centre of the 

research area (Fig. 7.1 (B)).  

7.2.5 Soil moisture storage and soil water deficit calculation 

As 𝜃𝑣 is not measured continuously with depth, the monitored soil profile was divided into 7 

discrete depths around the four sensors. Between each sensor, the trapezoid rule (Rahgozar et 

al., 2012) of numerical integration was used to approximate the region under the soil water 

profile curve, and to calculate the amount of stored water (𝑆𝑊𝑆, mm). The 𝑆𝑊𝑆 represents the 

total amount of soil water stored in the monitored soil profile, and it does not refer to the plant 

available water content. It was assumed that 𝜃𝑣 in the top 70 mm layer was similar to the 

topmost (100 mm) sensor reading due to the lack of sensors in that layer. The daily soil water 

storage (𝑆𝑊𝑆𝑑, mm) was calculated for the top 430 mm soil layer (i.e. the sensing limit of the 

bottom sensor) based on the data from the capacitance sensors as described by Eq. (7.1): 

 𝑆𝑊𝑆𝑑 = ∑ 𝑏𝑖 ∗ 𝜃𝑣𝑖

7

𝑖=1

 (7.1) 
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The formula above integrates over seven discrete soil layers, where 𝑏𝑖 (mm) and 𝜃𝑣𝑖 (m
3 m-3) are 

the depth and volumetric water content for soil layer 𝑖, respectively. To represent the amount 

of stored water in the soil during the individual regrowth periods, accumulated soil water 

storage 𝑆𝑊𝑆𝑎, i.e. the sum of the 𝑆𝑊𝑆𝑑 values, was computed taking into account the number 

of days within the cutting intervals.  

Soil water deficit (mm) was computed as the difference between 𝜃𝑣 on a given day at midnight, 

and field capacity (Woodward et al., 2001). Field capacity was estimated from field-based 𝜃𝑣 

data collected by the WSN during the wintertime when water loss due to evapotranspiration 

was at its minimum. Field capacity was determined following heavy rain events after which the 

soils were saturated. In most cases, after 1-3 days, the rate of downward movement markedly 

decreased and the free drainage of excess water was negligible which was indicated by the 

change in slope on the 𝜃𝑣 curve, marking the transition to field capacity. The transition point 

was identified by fitting tangential curves on the 𝜃𝑣 curve by using derivatives of a fitted spline 

function. By taking the intersection of the tangent curves, field capacity values can be obtained.  

It is noted, that determining field capacity this way is subjective and heavily rely on visual 

interpretation of the time stamp when the redistribution virtually ceased. Although, due to the 

15 min sensor reading interval, the method should provide adequate field capacity estimates for 

this study. The concept of field capacity and the questions raised regarding its definition is 

discussed in Hillel (2003b) and Horne and Scotter (2016).  

Theoretical values of permanent wilting point were calculated for each soil depth at each 

microsite by the Soil Water Characteristics Hydraulic Properties predictive system developed by 

Saxton and Rawls (2006). Mean field capacity, and permanent wilting point were calculated by 

averaging over the four soil depths at each microsite. 

7.2.6 Heat accumulation 

Plant growth is controlled by 𝑇𝑠 and air temperature (𝑇𝑎) dependent on the different 

requirements of the plant species. In hilly landscapes, 𝑇𝑠 distribution is a function of aspect and 

slope, thus sunny and shady areas, flat, steep, and gentle slopes provide different conditions for 

active growth (Chapman and Macfarlane, 1985). This means that some species may prefer 

generally warmer surfaces while others can be efficient with less ISR, although, depending on 

the season, the plants will also need to tolerate low 𝜃𝑣 levels on sunny aspects.   

A popular approach to define the relationship between temperature and plant development is 

to express the amount of heat as growing degree-days (𝐺𝐷𝐷𝑑 in units of °C) (also known as 
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thermal time) (Arnold and Monteith, 1974, Moot et al., 2000). To investigate the relationship 

between the temperature change over time and the pasture growth at various topographic 

positions, daily 𝐺𝐷𝐷𝑑 was computed using a canonical function given as per Eq. (7.2) as follows 

(McMaster and Wilhelm, 1997): 

 𝐺𝐷𝐷𝑑 =
𝑇𝑠 𝑚𝑎𝑥 + 𝑇𝑠 𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒 (7.2) 

Where 𝑇𝑠 𝑚𝑎𝑥 represents the maximum 𝑇𝑠  on a given day, 𝑇𝑠 𝑚𝑖𝑛 is the minimum 𝑇𝑠  on the 

same day and 𝑇𝑏𝑎𝑠𝑒 is the threshold temperature below which the plant does not develop. Since 

pasture cover at the microsites contained mainly temperate pasture species, an appropriate 

𝑇𝑏𝑎𝑠𝑒 had to be chosen. An appraisal of the available published threshold values, as well as a 

review provided by Hutchinson et al. (2000) on experimental results in the United Kingdom and 

New Zealand, 4 °C was selected as 𝑇𝑏𝑎𝑠𝑒. In this study, 𝑇𝑠 values obtained at 100 mm soil depth 

were used to calculate 𝐺𝐷𝐷𝑑. Furthermore, annual heat accumulation 𝐺𝐷𝐷𝑎 was calculated as 

the sum of daily mean 𝑇𝑠 above a selected 𝑇𝑏𝑎𝑠𝑒 for a defined period (i.e. Year 1 and Year 2), 

following the work of Radcliffe (1974b) and Hutchinson et al. (2000).  

 𝐺𝐷𝐷𝑎 = ∑ [
𝑇𝑠 𝑚𝑎𝑥 + 𝑇𝑠 𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒]

𝑌𝑒𝑎𝑟 𝑛 𝐷𝑎𝑦 𝑙𝑎𝑠𝑡

𝑌𝑒𝑎𝑟 𝑛 𝐷𝑎𝑦 1

 (7.3) 

Annual accumulated heat 𝐺𝐷𝐷𝑎 was used to compare the amount of accumulated heat at 

various terrain positions and microsites for both years (𝑛 = 1, 2).  

7.2.7 Multivariate statistics using multiple factor analysis (MFA) 

Statistical factor analysis is an important method in ecological studies and behavioural science 

in which individuals or observations are described by groups of variables (Escofier and Pagès, 

1994, Thanoon et al., 2014). Multiple factor analysis (MFA) is a dedicated tool for studying 

complex datasets containing continuous and categorical variables provided in a group-based 

structure (Escofier and Pagès, 1994). Therefore, MFA is considered as a factorial technique that 

allows the simultaneous investigation of mixed data groups, i.e. a collection of quantitative 

(numerical) and qualitative (categorical or nominal) variables. MFA is part of the multiblock 

principle component analysis (PCA) method family and it is often referred to as an extension of 

PCA to handle qualitative variables (Abdi and Williams, 2010, Abdi et al., 2013). By the 

application of MFA, the influence of several sets of variables as well as an overview of 

interdependence between various groups and the typology of individuals described by the 

whole set of variables can be examined (Pagès, 2014, Thanoon et al., 2014).  
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With MFA, the variables within a specified group of variables are normalised and then weighted 

with an attributed value that may be different for each group. This is an essential aspect of MFA, 

thus variables in a group should be of the same type (Escofier and Pagès, 1994). During this stage 

of MFA, variables were organised into relevant groups, such as supplementary data (1), pasture 

growth (2), soil moisture (3), soil temperature (4), climatic variables (5), terrain attributes (6) 

and seasons (7).  

Ultimately, MFA aims to summarise and to simplify the data by reducing the dimensionality of 

the data set, utilising multivariate statistical data analysis methods, depending on the type of 

data within a given variable group. MFA is a synthesis of multiple methods, that applies a 

generalised PCA for quantitative variables and a type of multiple correspondence analysis for 

qualitative variables (Lê et al., 2008).  

For visualisation, biplots (i.e. a generalised scatter plot representing principle components on 

the axes) and scree plots (i.e. a line segment plot showing a fraction of total variance) were 

generated for both quantitative and qualitative variables. Biplots are low dimension graphical 

representations that can reveal the relationship between variables and the correlations 

between the dimensions by displaying the data in a correlation circle. Although PCA is not 

designed for time series analysis, it is possible to apply PCA to time series without taking into 

account the time as variable and considering the daily measurements as individual observations 

(Zuur et al., 2003).  

For the purpose of this study, it was sufficient to use MFA as no temporal dependence was 

incorporated and the variables observed at the same time were grouped together. The analysis 

was carried out using the following R software packages: FactoMineR for the analysis (Husson 

et al., 2007) and factoextra for data visualisation (Kassambara and Mundt, 2016).  

7.2.8 PGR in polar space 

An attempt was made to generate a polar-grid-based representation of PGRs using a radial basis 

interpolation method (i.e. a polar form of spatial interpolation) (Schaback, 2007). This method 

calculates the PGR values at a high number of points defined by polar coordinate pairs. The 

Gaussian approximation approach was chosen as interpolation algorithm for constructing a 

continuous function from discrete data points, i.e. the microsites, defined by aspect and slope 

angel as polar coordinates. Radial basis function methods are a special case of splines where the 

generated surface will pass through all of the observed values. The Gaussian method was 

selected due to its capability to capture trends and highlight local variations better than other 

techniques, which often fit a 2-dimensional plane to the observations.  
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The hill plot (Fig. 7.4) approach provides an alternative visualisation option of the results as it 

includes the compass directions (aspect) on the polar axis and slope angle on the radius axis with 

steepness decreasing from the centre. These two parameters have been observed to be the 

dominant terrain attributes influencing pasture communities and production (Radcliffe, 1982, 

Moir et al., 2000, Bretherton, 2012, Kemp and López, 2016).  

A hypothetical hill plot was used to represent the relative position of the microsites in terms of 

slope angle and aspect (Fig. 7.4). A simplified version of the technique has been used in several 

studies to depict soil nutrient distribution (Lieffers and Larkin-Lieffers, 1987) and variations in 

the composition of grassland vegetation when correlated with numerous slope characteristics 

(Ayyad and Dix, 1964). 

 

Figure 7.4 An idealised hill plot to illustrate the situation of the microsites as a function of slope angle 
and aspect used in this study. Slope angle ranges were categorised into six classes following the Land 
Use Capability (Lynn et al., 2009) slope classification except in the case of the steep category. 

7.3 Results and discussion 

7.3.1 General description of the evolution of environmental parameters during the 

study period and the spatial mean pasture production 

The theoretical background of DM accumulation and regrowth of perennial ryegrass is well 

documented, although field measurements can show high variability over different years 

(Chapman et al., 2012). Climatic parameters, especially temperature, precipitation, and 

consequently soil moisture are some of the most important determinants of pasture growth on 

non-irrigated pastoral areas (Baars and Waller, 1979, Harris et al., 1985). An understanding of 

their limiting effects as well as their temporal patterns within a specific area is essential to realise 

the full potential to produce pasture. Hence, the measured PGR and the accumulated DM 

evolution over time was plotted together with climatic data to allow investigation of temporal 

growth trends (Fig. 7.5).  
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A comparison was made between the study period and the previous 65 years in terms of rainfall 

distribution to examine if the years between 2016 and 2018 can be considered as average years 

and follow the general historical trends (Fig. 7.5 (A)). Additionally, the examination of rainfall 

characteristics as opposed to the historic mean values of the study site can reveal the 

dependencies of PGR on the temporal distribution of water supply. 

Figure 7.5 (A) presents the time series of available precipitation data collected by the local 

weather station and the nearest NIWA meteorological station. The annual rainfall of the 

historical periods ranged from 721 to 1,735 mm with a mean of 1,139 mm over the 65-year 

period recorded at the Wairere, Ihuraua climate station. Generally, the highest amount of 

rainfall was received during the winter months while the lowest amount of precipitation 

occurred in November and from January to March. The three-year mean annual precipitation 

(2016-2018) was 997 mm at the study site based on data recorded by the local weather station. 

The total precipitation was 842 mm in 2016, 1,020 mm in 2017 and 1,130 mm in 2018.  

Based on the historical precipitation characteristics of the research area it was observed that 

the monthly total rainfall closely followed the historical mean values in November 2016 - 

September 2017 while the rest of the year and the summer of 2017-2018 was drier than the 

historical average (Fig. 7.5 (A)).  

The temporal and spatial variability of 𝜃𝑣 at multiple depths were discussed in Chapter 5 in more 

detail. Fluctuations of 𝜃𝑣 showed close agreement with daily rainfall patterns, with the largest 

seasonal 𝜃𝑣  amplitude occurring at the 100 mm soil depth (Fig. 7.5. (B)). The 200-400 mm soil 

depth behaved similarly but displaying less amplitude across seasons. The driest conditions were 

observed in January and February 2018 dropping to mean 𝜃𝑣  of 0.2 m3 m-3, whereas the highest 

mean 𝜃𝑣 levels at 0.45 m3 m-3 (at near-saturated or saturated conditions) were reached and 

maintained during most of the winter season triggering erosion, saturation excess runoff, and 

stream flooding events (for example in July 2017). The driest 𝜃𝑣= 0.18 m3 m-3 and wettest 𝜃𝑣= 

0.48 m3 m-3 soil conditions occurring at the 100 mm soil depth is indicative of higher amplitude 

responses of the surface soil to meteorological forcing.  

During the summer season, the deepest soil sections had the highest 𝜃𝑣 with a gradually 

increasing difference in 𝜃𝑣 between soil depths from late November 2016 and early November 

2017 when the curves crossed each other (Fig. 7.5 (B)). This indicates that the water loss by 

evapotranspiration in the deeper soil layers occurred slower than at the top of the soil profile. 
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Figure 7.5 Temporal plots of climatic variables obtained from the Patitapu weather station are shown 
(A and C) along with historic rainfall data extracted from NIWA (A). These parameters include historical 
monthly mean and monthly total rainfall (1953-2017). Daily total precipitation, cumulative rainfall, and 
monthly total rainfall are shown in (A) whereas the minimum, maximum and mean daily air 
temperature (𝑻𝒂) are presented in (C). Daily spatial mean volumetric soil moisture (𝜽𝒗 ) and total stored 
water (SWS) in the profile (B) and soil temperature (𝑻𝒔) (C) were acquired by AquaCheck probes. Dry 
matter (DM) (D) and mean daily pasture growth rate (PGR) are shown in (E). Each DM and PGR data 
point represents the average of measurement results from three cages at a single site.  

The spatial mean (averaged over all sites) 𝑆𝑊𝑆𝑑 reached 190 mm in the 430 mm soil profile 

during the wettest conditions and the heaviest rainfall events. The lowest 𝑆𝑊𝑆𝑑 (100 mm) was 
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related to the long dry season in Year 2 (December 2017 – March 2018), which most likely 

impacted on PGR. In Year 1, this impact was not observed, even though 𝑆𝑊𝑆𝑑 decreased to 

about 120 mm. Presumably, this level of water stress was not serious enough to significantly 

impact on PGR levels. 𝑆𝑊𝑆𝑑 only reached or approached the calculated values at permanent 

wilting point at the north- and east-facing steep microsites as it is presented in Figure 5.7 in 

Chapter 5. 

To visually examine the effect of temperature on pasture growth and to better understand the 

temporal changes in 𝜃𝑣 and 𝑆𝑊𝑆𝑑, 𝑇𝑎 and 𝑇𝑠 time series obtained from both the local weather 

station and the WSN are illustrated in Figure 7.5 (C). The 𝑇𝑠 spatial mean rose as high as 20 °C in 

the summer of 2017 and to 25 °C in 2018. This may indicate the considerable difference in the 

incoming radiation during the dry periods between the two monitored years, although the rate 

of uptake via evapotranspiration can regulate 𝑇𝑠 to a certain extent. According to NIWA, January 

2018 was the hottest month on record across the majority of New Zealand and 𝑇𝑠 rose above 

the historic annual average while 𝜃𝑣  levels dropped below average within the ECHC. These 

trends were also reflected in the climatic data collected at the Patitapu Station. 

The coldest days were observed in July and August 2017 with spatial mean 𝑇𝑠 dropping to 7 °C 

at 100 mm soil depth, although at the deepest, 300-400 mm, soil depths it did not fall below 9 

°C. The temporal change in 𝑇𝑠 was closely followed by 𝑇𝑎  reaching a maximum of 28 °C in Feb 

2018 and a minimum of -4.8 °C in Jul 2017 (Fig. 7.5 (C)). Winter frosts (< -1 °C) were recorded on 

9 days at the Patitapu weather station in 2017.    

The DM and PGR values for the perennial ryegrass pasture are represented by boxplots in Figure 

7.5 (D) and (E), respectively, to investigate the spatial and temporal variability of pasture growth 

and to be able to relate the response pattern of yield to the previously described environmental 

variables. Each boxplot is a graphical rendition of descriptive statistics generated from the 13 

microsites linked to the days of samplings. These boxplots visually summarise the following 

statistical parameters: the mean (white rhomboid), the median (line across the box), 25th 

percentile and 75th percentile as lower and upper hinges and outlying points. As the regrowth 

intervals varied in length, the boxplots are distributed accordingly over time.  

By visually investigating the pasture productivity charts, it can be concluded that considerable 

spatial variation exists between the 13 microsites. The recorded DM and calculated PGR values 

showed the largest variability in spring and summer seasons and the least noticeable differences 

between sites were measured in winter. In late autumn and winter, the low values of 𝑇𝑠 and 𝑇𝑎 
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inhibited pasture production, although the 𝜃𝑣 levels at near-saturated conditions may also effect 

yield due to the reduced oxygen diffusion rate and aeration. 

It is also apparent that less DM was accumulated through Year 2 than in Year 1 if the overlapping 

months are considered. In both years, a strong spring - early summer peak was shown in DM 

production. This peak was lower and appeared slightly earlier, in Year 2, (November 2017) than 

in Year 1 (December 2016) when the highest PGR were observed during the study period. In Year 

2, summer growth was limited by the early dry soil conditions in spring and the length of this 

period exerted a large impact on yield. The extreme temperature conditions of January 2018 

had a strong impact on 𝑆𝑊𝑆𝑑 that is reflected by the considerably lower pasture production 

compared to Year 1 (Fig. 7.4 (D) and (E)). The production window in spring was characterised by 

increasing temperatures and at this time 𝜃𝑣 was not a growth-limiting factor in Year 1, although 

it was in Year 2. Our observation shows agreement with the findings of Radcliffe (1982) 

associating early reduction in PGR with low spring rainfall, as well as and that of Zhang et al. 

(2005) stating that spring rainfall is one of the most important factors in annual pasture 

productivity in hill country.  

7.3.2 Optimal environmental conditions for pasture growth at Patitapu Station 

Concerning the measured growth and the parameters recorded by the Patitapu weather station, 

the optimal conditions can be defined for the highest yield-producing periods. The widest PGR 

range of 55-90 kg DM/ha/day was observed when the mean 𝑇𝑎 was between 13 and 16°C during 

the regrowth interval. The 𝑇𝑠 at 100 mm soil depth varied in the 15-19 °C optimal temperature 

window in the highest production periods. In terms of ISR, the pasture was most productive at 

5500-6500 WH/m2 and the variation in PGR between microsites was shown to follow a gradually 

increasing trend with increasing ISR. This trend was clearly linked to the topographical positions 

of the sites controlling differences in ISR. The most significant pasture development occurred 

when cumulative precipitation for a regrowth interval was around 100 mm and the mean 

𝜃𝑣 values at 100 mm soil depth ranged between 0.29 and 0.45 m3 m-3. The highest pasture 

productivity was reached when 𝑆𝑊𝑆𝑑 was between 125 and 175 mm. 

Low yield was observed when the mean air temperature dropped below 10 °C, giving the lowest 

PGR values at 7.5 °C. However, when the mean 𝑇𝑎  exceeded 17 °C, the PGR markedly dropped 

to 10-30 kg DM/ha/day. Similar trend was shown by the 𝑇𝑠; indicating that 𝑇𝑠 below 14 °C and 

above 19 °C were associated with lower PGR values. By looking at only this single parameter, 

high temperature could potentially be a growth-limiting factor, although it has not been deeply 

investigated in this study. The changes in 𝑇𝑠 have to be examined together with the 𝜃𝑣 levels, 
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which were extremely low during the warm period, taking over the limiting role of grass growth 

during the summer. The minimum values and the least variation in PGR occurred at 1500-2000 

WH/m2 ISR. 

7.3.3 Dry matter accumulation and pasture growth rate trend analysis 

7.3.3.1 Total accumulated dry matter 

Total pasture production, expressed as accumulated DM, are shown for the period of Nov 2016 

- Jun 2018 (individually for Year 1 and Year 2) in Figure 7.6 as a function of aspect and slope 

angle (flat, rolling, strongly rolling, moderately steep, steep). Pasture yield was most abundant 

on flat paddocks accumulating 16205 kg DM/ha in Year 1 and 7409 kg DM/ha in Year 2.  In Year 

1, the lowest amount of accumulated, i.e. cumulative DM was observed on the steep, west-

facing microsite which produced 7642 kg DM/ha, while in Year 2 a steep, south-facing microsite 

produced the least amount of DM yielding 4660 kg DM/ha.   

In our study, north-facing slopes produced more DM than south-facing slopes in both years, 

mirroring the observations of Suckling (1959) and Suckling (1975) sited on sandy loams in hill 

country near the Ruahine ranges (60 km north of Patitapu Station). It also shows agreement with 

the findings of Gillingham (1973) conducted on steep lands near Hamilton (350 km north of 

Patitapu Station). The high productivity levels on north-facing slopes were dominantly due to 

the better winter growth. On steep slopes, very similar DM accumulation was observed on both 

south and north aspects, while the largest difference in DM production between north and south 

aspects occurred on moderately steep slopes in Year 1. Most microsites on east-facing slopes 

showed very similar results if compared to the sites on the west aspects. These observations can 

be associated with the ISR input that are expected to be about the same on east and west 

aspects. Although, the microsite at the steep, east-facing slope produced considerably more DM 

in Year 1 than the microsite at the steep, west-facing slope. Little difference was observed 

between east and west in Year 2. West- and east-facing slopes accumulated more herbage yield 

than the microsites on the south-facing slopes.  

These results are somewhat contradictory with the findings of Lambert and Roberts (1978) 

obtained at a hill country research site located 45 km north of Patitapu Station. They reported 

that east-facing slopes had higher productivity than north, south and west in the order of 

decreasing yield potential. White et al. (1972) found that south aspects (shady faces) produced 

twice as much yield as north aspects in North Canterbury, South Island. Similar results were 

presented by Radcliffe et al. (1976) showing that 14% more DM was produced on south aspects. 

Gillingham (1973) and Ledgard et al. (1982) found little difference between annual production 
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rates as a function of aspect. These controversial findings support the evidence of the varying 

role of aspect effect on DM in different parts of the country that can be related to latitude.  

 

Figure 7.6 Total cumulative yield (kg dry matter (DM)/ha) for perennial ryegrass pasture surfaces as a 
function of aspect and slope categories between Oct 2016 and Jun 2018. 

As expected, the lowest total cumulative DM was observed on steep slopes and DM production 

tended to decrease as slope angle increased, in agreement with the findings of Gillingham et al. 

(1998), Bretherton (2012) and Roberts and White (2016). They associated this trend with the 

diminishing amount of available soil water with increasing slope angle due to decreasing soil 

depth with increasing slope. The dominant effect of slope angle was also highlighted by Zhang 

et al. (2005) resulting from their decision-tree approach to pasture productivity modelling in 

New Zealand. Our observations, and the agreement with previous studies confirm that slope 

angle and aspect are specific landscape features dominating pasture productivity levels. 

Furthermore, on the basis of the results presented in Figure 7.6, it can be inferred (from visual 

inspection) that slope angle had a stronger effect on pasture yield than aspect. This is further 

investigated by multivariate statistical methods later on in this chapter. 

7.3.3.2 Spatial growth patterns and the effect of topography on the pasture growth rate 

Annual yield is one of the most important measures of pasture performance, although seasonal 

variation of PGR is also of great interest due to its impacts on farm management. ECHC areas 

tend to experience seasonal weather extremes thus prompting an examination of the temporal 

distribution of pasture production (Fig. 7.7). For improved interpretation of the relationship 

between PGR variability and topographical attributes, the PGR time series at each microsite was 



CHAPTER 7 

210 | P a g e  

 

visualised and assessed by considering the aspect and slope angle categories. This information 

was used together with Figure 7.8 to describe spatial and temporal PGR trends.  

The largest variation in pasture production between various microsites occurred during the 

spring growth and summer periods as indicated by the standard deviation (SD) values of 17-20 

kg DM/ha/day. There was little spatial variability in PGR during winter and autumn, with similar 

SDs ranging between 3-10 kg DM/ha/day in Year 1 and Year 2. A decreasing trend was observed 

in PGR variability from summer to winter in Year 1, with the lowest PGR values and the lowest 

SD in June and July 2017. Following the pasture growth rate in winter, the SD values gradually 

increased and reached a peak in the spring growing period in Year 2 (Nov 2017).  

Figure 7.7 shows that the PGR evolution recorded at microsites with steep slope characteristics 

consistently provided the lowest production values over the study period. Specifically, the west-

facing steep slope being the lowest producing location, followed by east and south aspects. 

Rolling and moderately steep slopes are situated in the middle range, while strongly rolling and 

flat areas produced the highest DM in Year 1. The spatial pattern of production was not 

consistent and changed in Year 2, when moderately steep east-facing slopes produced nearly as 

much DM as flat and strongly rolling east-facing microsites. 

 

Figure 7.7 Mean daily pasture growth rate (PGR) of different slope and aspect categories of hill country 
pastures at Patitapu Station between Nov 2016 and Jun 2018 and their standard deviation (SD) over 
time. 

The data presented in Figure 7.7 suggests that the effect of slope angle and aspect has a marked 

seasonal component and that this relationship changes with growth rates reaching maximum 

variation during the spring and summer seasons. These results can be linked to the spatial 
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𝜃𝑣 variation, which was the highest during the dry seasons and strongly linked to aspect, and 

the lowest in the wet periods as it was discussed in Chapter 5. This is due to the more divergent 

ISR differences between north and south aspects over the longer dry periods. The high variation 

in PGR observed during the dry season can also be partly explained by the difference in 𝐺𝐷𝐷𝑎 on 

various aspects resulting in the warmest conditions on north and the least amount of 𝐺𝐷𝐷𝑎 on 

south. 

PGR values were displayed in the polar space to examine the potential patterns of the effect of 

slope angle and aspect by the aid of a hypothetical hill plot (Fig. 7.8). It is clear that PGR values 

tended to decrease with increasing slope angle for each aspect category. The effect was present 

throughout the study period, although the strongest contrast between flat and steep surfaces 

was observed in spring and summer. The difference in PGR between sites were not as marked 

in winter. 

PGR values ranged between 2.3 and 89.95 kg DM/ha/day, where the minimum and maximum 

values were measured on a west-facing steep site and a flat paddock, respectively. Greater 

winter production was observed on northerly aspects than on south-facing aspects and higher 

summer yield was recorded on the north- and east-facing aspects than at the sites on the west 

and south aspects. In contrast to the above findings, Lambert (1977) observed, that without the 

use of fertiliser input, south aspects produced more yield than northerly faces through the year 

except early summer. Findings by Suckling (1975) showed that pasture production on cooler 

faces was often greater than that of on warmer slopes in summer on fertilised trials. These 

various results indicate that regional dependence and latitude are factors to consider, as well as 

the amplitude of seasonal fluctuations. For example, an increase in slope angle by a degree 

resulted in a change of PGR in the range of 1.2-2 kg DM/ha/day in spring 2016 and 0.1-0.4 kg 

DM/ha/day in the winter of 2017. 

When examining the relationship between PGR values and aspect, the production difference 

between aspect classes was less apparent, except for the flat category that exhibited the highest 

PGR values during the study period. Additionally, production differences between years needs 

to be examined, as there are other environmental variables, i.e. wind that can influence 

microclimatic conditions and, therefore, PGR.  
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Figure 7.8 Time series of polar plots illustrating pasture growth rate changes dependent on slope angle 
and aspect. For interpolation, the Gaussian radial basis function approach was chosen. Black dots mark 
the position of microsites based on their slope angle and aspect attributes. 

By using a time series of polar plots (Fig. 7.8), it was expected that any variation caused by the 

complex topography would be observable. However, the only noteworthy variation was 

attributed to slope, supporting the previously the observations of other researchers. The 

influence of other factors may be detected by employing more sampling sites, thereby 

improving the systematic distribution of the sites in terms of topographic settings. 

7.3.4 Heat accumulation as a function of topography 

The rate of pasture development is highly influenced by 𝑇𝑠 and strong relationships were 

observed between pasture growth and accumulated heat (Frank and Hofmann, 1989, 
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Hutchinson et al., 2000). Since perennial ryegrass pasture is adapted to temperate climates, cold 

winter and hot summer conditions limit its growth. Furthermore, the white clover, the 

companion species of ryegrass, is summer active, and can be less productive and susceptible to 

dying off in hot, dry conditions. This is clearly reflected by the PGR data presented in Figure 7.5. 

In this section, the differences in annual heat accumulation, expressed as 𝐺𝐷𝐷𝑎 (calculated as 

per Equation 7.2), between the microsites based on aspect and slope angle was investigated 

(Fig. 7.9). 

In Year 1, the north-facing moderately steep slope reached the greatest annual 𝐺𝐷𝐷𝑎 of 4370 

°C, while the lowest amount of heat, 3386 °C, was accumulated on a south-facing steep site, i.e. 

22.5 % less 𝐺𝐷𝐷𝑎. East- and west-facing, moderately steep slopes behaved very similarly, 

gathering 3986 °C and 3904 °C, respectively. Steep microsites were represented by slightly less 

𝐺𝐷𝐷𝑎 than moderately steep microsites, whereas strongly rolling slopes received the lowest 

amount of incident energy, accumulating 3659 °C on east and 3569 °C on west aspects. At the 

flat microsite, 3714 °C was recorded placing this aspect in the middle of the 𝐺𝐷𝐷𝑎 range 

observed at Patitapu Station. In Year 2, the moderately steep locations accumulated the highest 

amount of 𝐺𝐷𝐷𝑎 similar to Year 1. The general trends observed with respect to aspect in Year 1 

were mostly present in Year 2 as well, although the differences were not as large, due to the 

shorter monitoring period in Year 2.  

It can be seen that moderately steep slopes accumulated the highest amount of heat in most 

cases in both years, except for the south aspect, where a microsite situated on a rolling slope 

received the highest amount of heat. North, east, west and south aspects, accumulated heat in 

decreasing order. In general, moderately steep, steep, flat, strongly rolling and rolling slopes 

accumulated less heat in decreasing order, except for the south aspect where rolling, 

moderately steep, and steep slopes exhibited a decreasing trend in 𝐺𝐷𝐷𝑎. The difference in heat 

accumulation between microsites located on the same aspect started increasing during early 

autumn in both years indicating the effect of slope angle on ISR. 

The energy supply received from the incident radiation, converted/stored as heat, is available 

for evaporation processes and it heats up the air and soil, thus influencing pasture development 

(Gillingham and Bell, 1977). The accumulated heat energy is disseminated by evapotranspiration 

that results an increase in water flow to the pasture root mass from lower depths in dry 

conditions.  
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Figure 7.9 Annual accumulated growing degree-days (𝑮𝑫𝑫𝒂) as a function of aspect and slope angle 
classes at Patitapu Station plotted separately for Year 1 and Year 2 

It is evident that the received heat at a given pasture surface is dependent on its topographical 

situation (Benseman and Cook, 1969), therefore hill country topography is an important factor 

in the spatial distribution of received energy, enhancing spatial variation in heat patterns. 

Consequently, the differences observed with 𝐺𝐷𝐷𝑎 would suggest that spatial and temporal 

variability in PGR would be affected. Our observations are in agreement with the conclusions of 

several studies (Lambert and Roberts, 1976, Gillingham and Bell, 1977, Radcliffe and Lefever, 

1981) where higher evaporation rates were governed by the warmer nature of north-facing 

slopes than south-facing slopes with various slope angles. 

7.3.5 The influence and interaction of soil water content and soil temperature on 

pasture growth rate 

In hill country, 𝜃𝑣 levels can range between the two soil moisture extremes, therefore pasture 

production needs to cope with 𝜃𝑣 stress in dry, hot conditions as well as saturated conditions 

during winter when the plants are relatively dormant. The temporal pattern of 𝜃𝑣 deficit is 

indicative of the amount of plant available water (PAW) throughout the study period. This 

variable was plotted along with PGR and 𝐺𝐷𝐷𝑑 to provide a better understanding of pasture 

response patterns at each microsite (Fig. 7.10).  

In the winter of 2017, 𝜃𝑣  soil conditions were very wet, at near-saturated levels. At this time, 

 𝐺𝐷𝐷𝑑  values were very low, resulting in low to negligible PGR at most microsites. During late 

spring and summer, PGR can be limited by 𝜃𝑣  availability. The PGRs at this time were much lower 
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in Year 2; most likely due to the early and quick 𝐺𝐷𝐷𝑑 rise during spring, which, in turn, is 

dependent on the amount of ISR. This led towards a significantly warmer summer period than 

in Year 1, causing a greater soil water deficit and reduced yield. During the longer dry period of 

Year 2, the highest 𝜃𝑣 deficit was reached at most microsites, reducing their PGR. Steeper slopes 

suffered from less effective rewetting due to slope angle and the earlier onset of soil water 

repellency (Bretherton et al., 2018). These factors, coupled with the lower amount of stored 

water in the shallower soil profiles, resulted in more severe and extended periods of 𝜃𝑣 deficits 

for these slopes.   

In Year 1, although 𝜃𝑣  levels were decreasing from the end of November until the greatest soil 

moisture deficit in January 2017, there was still sufficient moisture for the production of 

relatively high amounts of pasture. A steady decline in PGR can be seen at most microsites from 

November 2016 until June 2017. Medium PGR values at 40-50 kg DM/ha/day were recorded 

while the water storage was refilling and approaching field capacity at the beginning of April 

2017, when 𝐺𝐷𝐷𝑑  started decreasing.  

Due to the combined effects of these two variables, PGR reached a minimum in May 2017. A 

contrasting observation occurred in Year 2 after the long dry summer as 𝐺𝐷𝐷𝑑 was decreasing 

and the amount of 𝜃𝑣  stored was increasing during autumn. Leaf growth recommenced and 

higher PGR values were observed. A rapid decrease in 𝐺𝐷𝐷𝑑 was experienced both in May 2017 

and May 2018, resulting in a decrease in PGR. Subsequently, for both years, the soil water 

content was at or exceeded field capacity, thus providing ideal 𝜃𝑣 conditions for growth. 

However, the limiting role of 𝐺𝐷𝐷𝑑 was becoming more prominent at this time, resulting in low 

winter growth. 

A study undertaken by Parfitt et al. (1985) indicated that ryegrass pasture growth was 

significantly limited when soil water deficit reached 50 mm, and then ceased at 140 mm on 

undulating terrain supporting silt loam soils. We observed that the PGR values noticeably 

decreased at 30-45 mm soil water deficit at most microsites in both years. It is likely then, that 

the 50 mm soil water deficit suggested by Parfitt et al. (1985) threshold is an acceptable 

approximation of the level at which the PGR is significantly limited, although our study would 

suggest that ryegrass/white clover pasture growth would begin to decrease at soil water deficit 

levels around 30-45 mm. We note that the field capacity values used in this study are estimations 

from the field-based 𝜃𝑣 data, which can have effect on these results. 



CHAPTER 7 

216 | P a g e  

 

 

Figure 7.10 The pattern of mean daily pasture growth rate, daily soil water deficit and growing degree-
days (𝑮𝑫𝑫𝒅) at each microsite. The black horizontal line marks the position of field capacity estimated 
for each microsite based on in situ soil moisture (𝜽𝒗)  measurements.  
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In this study, the annual pattern of 𝜃𝑣 has clearly affected plant growth. These patterns are in 

agreement with the studies of Bretherton et al. (2011) and Bircham and Gillingham (1986). There 

are many environmental components affecting PGR, causing variability in yield over complex 

landscapes. The amount of PAW in the soils is one of the primary factors improving pasture 

resilience (and hence productivity) and is influenced by effective infiltration, which, in turn, is 

dependent on of slope position (i.e. altitude above channel lines and altitude below ridge lines), 

shape (i.e. convexity) and slope angle and aspect (Lieffers and Larkin-Lieffers, 1987).  

It was earlier demonstrated (Fig. 7.10) that during summer, pasture growth decreased with 

decreasing 𝜃𝑣 despite the adequate temperature conditions. In contrast, in autumn and winter, 

𝐺𝐷𝐷𝑑  was the main growth-limiting factor. 𝜃𝑣 and 𝑇𝑠 variables at 100 mm depth were observed 

to explain most of the variation of the autumn yield in Hawkes Bay by Baars and Waller (1979). 

This implies that there were times, when specific soil moisture and temperature conditions 

prevailed, when the dominance of these two variables was inverted. Accordingly, in late autumn 

and winter, and despite sufficient PAW, plant growth slowed down due to temperature 

limitations.  

There are periods when these limiting effects overlap, such as late autumn, so that pasture 

growth is severely constrained. During late spring and early summer, when both soil moisture 

and soil temperature are non-limiting, pasture production is relatively unconstrained. 

7.3.6 Multivariate statistical analysis 

In this study, a large amount of sensory data has been presented in a descriptive manner, 

primarily because the relationship between environmental variables and pasture production has 

been difficult to quantify and interpret. Accordingly, a multivariate approach, such as MFA, is 

likely to be an applicable and suitable method in order to examine the interdependence and 

correlation amongst groups of observed variables. MFA looks for the common structures in 

either all of the groups or in some of them and derives an integrated picture of the observations 

and the relationships (Abdi and Valentin, 2007). 

Most of the literature has examined the effect of a single soil attribute (López et al., 2003) on 

pasture yield, despite the fact that herbage production is a result of a compound interaction of 

several elements. In our ensuing analysis, the following input variables were considered, and 

arranged into groups according to their quantitative or qualitative nature (Table 7.3). The MFA 

labels listed in Table 7.3 will be used to tag the results of the analysis in this section.  
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Table 7.3 An overview of the various input variables used in the multiple factor analysis (MFA). The 
variables are arranged into groups based on their type. The corresponding group and variable labels, 
and variable types as they were used in the MFA are shown in the right.  

Description 
[Group Labels] - variable type 

[Variable labels] 

Group 1 - supplementary variables: 

▪ location reference 
▪ date of cuts 

[Origin] - qualitative 

▪ [SiteID] 
▪ [Date] 

Group 2 - variable related to pasture growth: 

▪ Mean daily pasture growth rate 

[PGR] - quantitative 

▪ [PGR] 

Group 3 - variables describing soil moisture levels: 

▪ Soil moisture at four depths 
▪ Accumulated soil water storage 

[Moisture] - quantitative 

▪ [SM100, SM200, 
SM300, SM400] 

▪ [AccSWS] 

Group 4 - variables describing soil temperature and 
accumulated heat: 

▪ Soil temperature at four depths  
▪ Accumulated growing degree-days 

[Temperature] - quantitative 

▪ [T100, T200, T300, 
T400] 

▪ [AccGDD] 

Group 5 - climatic variables: 

▪ Total accumulated rainfall 
▪ Rainfall frequency [> 2mm] 

[Rainfall] - qualitative 

▪ [TotRain] 
▪ [RainFq] 

Group 6 - terrain attributes: 

▪ Slope angle 
▪ Aspect 
▪ Landscape element 

[Terrain] - qualitative 

▪ [Slo] 
▪ [Asp] 
▪ [LandScEl] 

Group 7 - seasonality: 

▪ Seasons 

[Season]- qualitative 

▪ [Season] 

A comparative MFA was performed separately on Year 1 and Year 2 in terms of PGR, soil 

moisture and soil temperature conditions. As a first step, the MFA algorithm standardises the 

input variables, balancing their influence to avoid the over-contribution of variable groups with 

the strongest structure and largest variance. This step is necessary to make these groups 

comparable (Abdi and Valentin, 2007). Secondly, the normalised datasets are merged to 

generate a unique matrix. Then, this matrix was analysed in multidimensional (global) space 

resulting in coordinates (factor scores) which were represented by points. To be able to compare 

Year 1 and Year 2, the analysis was completed over the same months for Year 1 that were 

present in Year 2. The MFA was executed on a total of 156 observations (78 per year). 

7.3.6.1 Inter-dependence between groups and quantitative variables 

Table 7.4 summarises the Eigen roots and Eigen vectors obtained from the MFA for both years 

and reflects how much of the total inertia (i.e. a measure of the total variance or dispersion) is 



Hajdu: Soil water modelling in hill country  Pasture growth pattern analysis 

219 | P a g e  

 

explained by each dimension (or factor), i.e. a collection of reference information about a 

measureable variable (Sourial et al., 2010). In MFA, there are the same number of factors as 

there are variables and each factor captures a portion of the total variance within the year under 

investigation. Eigenvalues of the correlation matrix that are greater than one, explained more 

variance than a single variable. Based on the Kaiser criterion (Kaiser, 1960), only those 

dimensions that satisfied the “eigenvalue-greater-than-one rule” were retained (i.e. the first five 

dimension in this study). This is a popular approach due to its simplicity and ease of 

implementation (Braeken and van Assen, 2017). The variables of the supplementary group 

(Group 1) containing point IDs and location information were not considered during the 

generation of factor scores and the computation of contribution. 

Table 7.4 Summary of the multiple factor analysis (MFA) results including Eigenvalues and the explained 
variance for each dimension for Year 1 and Year 2. Dim. – dimension. 

Year 1 

Dimension Eigenvalue Variance (%) Cumulative variance (%) 

Dim.1 3.7 24.7 24.7 

Dim.2 2.5 17 41.8 

Dim.3 2.3 15.4 57.1 

Dim.4 1.2 8.2 65.4 

Dim.5 1.1 7.2 72.6 

Year 2 

Dim.1 3.5 24.1 24.1 

Dim.2 2.2 15.3 39.4 

Dim.3 2.0 13.7 53.1 

Dim.4 1.3 8.7 61.8 

Dim.5 1.0 7.0 68.8 

The analysis showed that the groups of Moisture, Temperature, Rainfall, Terrain and Season 

explained a significant portion of the variability through the first five dimensions explaining 72.6 

% and 68.8 % of the total variability for Year 1 and Year 2, respectively. The Dim.1 and Dim.2 

accounted for 41.8 % of the variability for Year 1 and 39.4 % for Year 2.  

The contribution of each group (i.e. the variation of squared loadings) and the correlation (R2) 

to the corresponding dimensions or components can be used to assess the importance of a 

group and the inter-relationships with other groups. The contribution results were converted to 

percentage values and presented in Table 7.5. Similar contribution trends were observed for 

both years, although the values changed from Year 1 to Year 2 indicating that the importance of 

groups might change from year to year or season to season. The larger the percent contribution 

value, the more a variable group contributed to the given dimension. Some of the groups, such 

as Rainfall, Season can be considered as multi-dimensional groups because of their contribution 

to several dimensions.  
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Table 7.5 The percentage contribution and correlation of each group of variables to the five dimensions 
are shown for Year 1 and Year 2 as obtained by the multiple factor analysis. 

 
Percentage contribution (%) Correlation (R2) 

 
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Group Year 1 

PGR 16.44 11.25 0.57 1.49 0.26 0.78 0.53 0.11 0.14 0.05 

Moisture 9.99 13.23 9.68 3.65 7.89 0.63 0.59 0.68 0.42 0.29 

Temperature 23.00 0.52 4.28 4.71 0.38 0.92 0.13 0.37 0.28 0.08 

Rainfall 26.38 36.97 43.07 78.58 5.43 0.99 0.97 0.99 0.98 0.24 

Terrain 0.21 1.10 0.24 2.00 82.88 0.11 0.20 0.09 0.16 0.95 

Season 23.99 36.94 42.16 9.58 3.17 0.94 0.97 0.98 0.34 0.18  
Year 2 

PGR 1 15.9 0 27.94 1.19 0.19 0.60 0.00 0.60 0.11 

Moisture 19.93 0.47 0.19 11.64 0.74 0.84 0.44 0.07 0.39 0.10 

Temperature 25.64 0.33 0.45 2.52 2 0.95 0.18 0.18 0.20 0.16 

Rainfall 26.75 41.31 49.67 14.39 69.6 0.98 0.96 1.00 0.46 0.85 

Terrain 0.46 0.86 0.02 35.83 25.81 0.17 0.17 0.02 0.74 0.52 

Season 26.24 41.13 49.67 7.69 0.66 0.96 0.96 1.00 0.31 0.08 

A graphical illustration of the results is provided in Figure 7.11 for comparison between the two 

years by focusing on the first two, principle dimensions. Figure 7.11 (A) and (B) present the map 

of supplementary or origin (in green) and active variable groups (in red) based on the 

coordinates of the groups that allow visualising the distance between tables. The position of the 

groups in the MFA showed quite clearly that the Dim.1 was highly related to Temperature, 

Moisture, Season and PGR in Year 1. In Year 2, Temperature, Moisture, Season and Rainfall were 

characterised as the highest contributing groups for Dim.1, whereas the Dim.2 was mostly 

related to Rainfall, Season and to a lower extent to PGR. 

Figure 7.11 (C) and (D) depict the scree plots of cos2 for Dim.1, that indicates the importance of 

a component (or dimension) for a given observation (Abdi and Williams, 2010). For inter-

correlated quantitative dependent variables, cos2 indicates the contribution of a component to 

the squared distance of the observation to the origin. Large values of cos2 suggest high 

component importance for a given observation. In Year 1 Temperature and PGR were the most 

important groups, while the Temperature and Moisture groups had the highest cos2 values and 

considerably higher importance was observed in Year 2 than in Year 1.  
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Figure 7.11 Graphical representation of MFA with the map of tables showing the individual groups and 
their position along the Dimension 1 and 2 axes (A and B). The bar plots depict the contributions of each 
variable group to the Dimensions 1 and 2 (C and D). The correlation circle of quantitative variables 
(coloured by cos2) illustrates the inter correlation between variables and Dimensions 1 and 2 (E and F).  

By analysing the correlation circle of quantitative variables (Fig. 7.11 (E) and (F)), it is clear that 

Moisture and Temperature groups were highly related to each other (negative correlation) and 

strongly correlated with Dim.1. The PGR variable was more closely related (positive correlation) 

to Temperature in Year 1 than in Year 2. Within the Moisture groups, SM100 was negatively 

correlated to PGR in Year 1. In contrast, Moisture was more closely correlated with PGR in Year 

2 with an indication of positive correlation along the Dim.1 axis. 
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On the basis of cos2 values, the most important variables were the SM100 and T100. Even though 

AccSWS did not show high importance, it was negatively correlated to PGR while AccGDD 

showed indication of positive correlation to PGR in Year 1. In Year 2, these relationships were 

found not to be significant showing near orthogonal positions between PGR, AccSWS, and 

AccGDD. The correlation of quantitative variables and their statistical significance (i.e. P value) 

are reported in Table 7.6 for Dim.1 and Dim.2 for both years. This represents the basis of the 

correlation circle map presented in Figure 7.11 (E) and Figure 7.11 (F).  

Table 7.6 Significant correlations between quantitative variables and principle dimensions obtained by 
the multiple factor analysis for Year 1 and Year 2. If the P value is < 0.001 the relationship is considered 
significant (***). 

 Year 1 Year 2 

Dimension Variable R2 P value Signific. Variable R2 P value Signific. 

Dim.1 

T100 0.96 0.000 *** SM100 0.87 0.000 *** 

T200 0.94 0.000 *** AccSWS 0.82 0.000 *** 

T300 0.93 0.000 *** SM300 0.78 0.000 *** 

T400 0.92 0.000 *** SM200 0.77 0.000 *** 

PGR 0.77 0.000 *** SM400 0.70 0.000 *** 

AccGDD 0.67 0.000 *** AccGDD -0.90 0.000 *** 

AccSWS -0.12 0.000 *** T400 -0.92 0.000 *** 

SM400 -0.44 0.000 *** T200 -0.93 0.000 *** 

SM300 -0.53 0.000 *** T300 -0.93 0.000 *** 

SM200 -0.6 0.000 *** T100 -0.95 0.000 *** 

SM100 -0.73 0.000 ***     

Dim.2 

PGR 0.53 0.000 *** PGR 0.60 0.000 *** 

SM300 0.60 0.000 ***     

SM400 0.61 0.000 ***     

SM200 0.52 0.000 ***     

SM100 0.44 0.000 ***     

AccGDD -0.34 0.000 ***     

7.3.6.2 The effect of terrain-related qualitative variables 

Figure 7.12 shows the individual observations with confidence ellipses and the centroids of 

selected qualitative variables, such as Slo, Asp, LandScEl and Season for Year 1 and Year 2 

separately. The variables contained in the Terrain group were strongly correlated along the Dim. 

4 and Dim.5 axes. Therefore, these axes were used to visualise the role of these groups to help 

understand the diversity of the observations induced by the tables within this group. Individuals, 

i.e. observations, with similar characteristics are displayed close to each other on the factor map 

(Fig. 7.12). The applied MFA highlighted general tendencies in the role of terrain attributes. 
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A number of the centroids in Figure 7.12 of the qualitative variables are close to the origin, i.e. 

Asp in Year 1, suggesting that its effect was not significant. In Year 2, the separation observed 

along the Dim.5 axis suggested that the Asp variable was characterised with a slightly more 

dominant role than in Year 1. Individuals with horizontal aspects clearly differed from all the 

other aspects as indicated by higher coordinates along the Dim.4 and Dim.5 axes. In both years, 

the effect of Slo was more apparent than the influence of Asp. The centroids of the Slo and 

LandScEl categories were more widely distributed across the length of the Dim.4 axis in Year 2 

axis, Dim.5 in Year 1, indicating that the variability found in these dimension was more closely 

associated with these variables. Steep and rolling slopes were placed at the low and high end of 

the Dim.4 and Dim.5 axes. This supports our previous findings regarding the considerable 

contribution of slope angle to the variability that can be related to the observed decreasing 

trend of PGR with increasing slope angle.  

The position of the microsites in the landscape, represented by the Landscape element 

(LandScEl) variable, had a discriminative effect, suggesting a considerable contribution to the 

total annual variance, especially in both years. Upper slope, open slope (i.e. slope section 

between upper and lower slopes) and ridge landform elements (Weiss, 2001) were located at 

the lowest and highest positions of the range LandScEl along Dim.5 in Year 1 and Dim.4 in Year 

2. The impact caused by LandScEl may be related to the varying soil types, soil moisture 

conditions, and nutrient content dependence on slope position, i.e. its distance from the hilltops 

and ridges.  

The previously observed role of 𝜃𝑣  and 𝑇𝑠 on pasture production was supported by the results 

of this analysis. In Year 1, 𝜃𝑣 was not a limiting factor and the relationship between 𝜃𝑣 and PGR 

was not significant. In contrast, the PGR was more related to 𝑇𝑠 in Year 1. In Year 2, due to the 

long dry period (December 2017 – March 2018), the PGR was more closely correlated to the 𝜃𝑣 

variables, confirming our earlier statement that 𝜃𝑣  availability limited pasture production during 

Year 2. However, 𝑇𝑠 was still the most dominant factor explaining the highest amount of 

variability in PGR in Year 2. 
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Figure 7.12 Ordination of the individual observations on factor maps and the projection of centroids 
with confidence ellipsoids calculated by MFA. The individuals were colour coded according to the 
variables of the Terrain group, i.e. aspect, landscape elements and slope angle classes for Year 1 and 
Year 2. 

7.4 Summary and conclusions 

The main terrain-related determinant of the spatial variability in PGR was the slope angle. A 

combination of visual interpretation and multivariate statistical methods (MFA) helped 

determine the effect of variable topography on the variation in pasture production. The 

application of MFA allowed analysis of multiple dataset tables containing both quantitative and 

qualitative variables. As a result, the observed PGR values were strongly associated with 

landscape elements, i.e. the geomorphological position of the microsites, while aspect played a 

less important role as physiographic factor. However, the importance of aspect changed with 

seasonal analysis and its influence on PGR variation increased with increasing ISR and 
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accumulated heat, and thus with increasing 𝑇𝑠. Due to the complexity of the soil-water- plant-

terrain-climate system, numerous factors contributed to the variation found in PGR values. 

Seasonal temperatures and moisture regimes varied markedly between different micro- 

environments induced by topographical diversity. In terms of temperature, the highest yield (55-

90 kg DM/ha/day) was observed at a mean 𝑇𝑎 ranging between 13 and 16 °C, with 𝑇𝑠 at 100 mm 

soil depth ranging between 15-19 °C. The influence of terrain was most significant during the 

late spring and summer periods when high ISR values were prevalent. The importance of terrain 

attributes in explaining pasture yield variability dropped during cold, wet seasons, and also when 

large precipitation events occurred in autumn. 

The terrain attributes under consideration exerted significant influences on soil moisture values, 

which were observed to be less variable as the mean soil water content increased. An inverse 

relationship between mean soil moisture and slope angle was also observed, suggesting that 

microsites on steep slopes became drier earlier, held less water, and re-wetted later than gentle 

sloping land.  

These hill country farms are iconic platforms of New Zealand’s meat and wool industry, and will 

remain so for the foreseeable future. Although non-irrigated farming is unable to control many 

of the studied environmental factors, once the spatial and temporal effect of these factors on 

pasture production are quantified, farm management practices can be implemented to improve 

pasture production and profitability. However, accurate measurement of pasture growth is a 

challenging task in hill country due to the complex terrain, representative sampling, and access 

during adverse weather conditions in winter.  

The conclusions drawn in this chapter may allow hill country pastoral farmers to use their lands 

to their higher potential especially in spring and autumn and these findings may contribute to 

the solution of currently relevant management issues to the farmer of today. Deeper knowledge 

on pasture growth is essential to effectively setting stocking rates and realistic production 

targets. It is also crucial for the driving of farming practices, such as feed budgeting, planning of 

calving, seasonal pasture management and drying off dates.
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Chapter 8 

GENERAL DISCUSSION AND CONCLUSIONS 

 
This chapter begins with a brief summary of the key concepts and motivation behind the thesis. 

It also introduces the scopes that govern the discussion section. Afterwards, the chapter presents 

the main findings of this thesis relevant to each scope. The discussion places a strong focus on 

the implications and practical applications that can be considered based on the findings this 

study. Limitation and future perspectives are given for the various methods used in each chapter. 

The chapter ends with the list of main conclusions and recommendation for future work.   
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8 Chapter 8 - General Discussion and Conclusions 

8.1 Brief summary of the key concepts  

New Zealand’s pastoral agriculture faces significant challenges, including the ever-increasing 

pressure on profit margins, the need for sustainable future farming and more efficient, 

enhanced productivity due to the growing food demand (FAO, 2011) while reducing the 

destructive impacts on the environment. Furthermore, the already evident changes in climate 

and its trends will have a strong impact on agriculture with an increasing likelihood of more 

frequent heat waves and more intense, extreme precipitation events (Howden et al., 2007, 

Pachauri et al., 2014). These issues have led to a strong conviction that the monitoring of yield 

affecting parameters is necessary to accomplish future production targets in non-irrigated hill 

country pastoral systems (Atzberger, 2013).  

These challenges need to be addressed not only regionally but also at the smaller scales, 

ensuring a more coherent adaptation of pastoral farming systems to the potential changes. One 

of the key concepts that makes facing these challenges in agricultural productivity in New 

Zealand’s hilly landscapes cumbersome is the presence of high spatiotemporal environmental 

variability. In hill country pastures, much variability exists at the farm and within the 

management units (i.e. paddocks) as well as at both macro- and micro-topographical levels that 

has been investigated by numerous studies (Harris et al., 1985, Scott et al., 1985, López et al., 

2003, Chapman et al., 2009). Although, the farming related issues caused by these challenging 

factors and decision making in land management have been usually targeted by the “averaging 

approach” (Kerr, 2016). 

Recent advancements in precision agriculture, computing technologies, machine learning 

supported statistical methods, data analytics, in situ sensor development, global positioning 

systems, digital representations of the terrain and satellite imagery opened up new vistas in 

supporting decisions (Schellberg et al., 2008). These innovative methods allow researchers, 

agronomists and farmers to address numerous problems imposed by the diverse, rugged 

environmental conditions. The latest digital technologies are reshaping the ways of describing 

complex landscapes and interrelations existing in this environment. The modern agricultural 

industry utilises advanced technical solutions that are able to provide more accurate, denser 

datasets, containing a high number of variables (for instance mass, volume, temperature, 

relative humidity, etc.) at higher spatial resolution than traditional approaches (Cox, 2002). 

However, several traditional, classic methods, such as ground-based soil moisture 



Hajdu: Soil water modelling in hill country  Discussion and conclusions 

229 | P a g e  

 

measurements, are still used for validation and performance assessment of the modern 

techniques and modelling approaches (De Lannoy et al., 2006).  

Consequently, the joint use of some of these methods are progressively being employed to 

support farmers’ decision making related to farming activities, land management and the use of 

optimal type and amount of inputs. Attempts have been made to quantify and incorporate the 

variability and the effects of environmental parameters on yield into fertiliser planning 

applications, pasture growth simulations and forecasts to achieve better returns. These aims led 

to the ultimate goal of the current hill country development programs focusing on the 

improvement of resilience and production efficiency while reducing the environmental pressure 

induced by fertiliser applications. 

Agricultural production is highly dependent on soil moisture (𝜃𝑣, m3 m-3), which is one of the 

primary environmental factors controlling pasture yield in hill country (Davis et al., 1994, 

Woodward et al., 2001, Bittelli, 2011). Soil water content is considered as a highly variable 

environmental parameter both spatially and temporally (Brocca et al., 2007) which is further 

complicated by the sloping nature of the land (Gillingham, 1973) resulting in significant 

variability in pasture growth.  

These concepts guide the motivation behind this thesis that aims to contribute to the knowledge 

generated around the role, variability and potential monitoring methods of near surface and 

root-zone 𝜃𝑣  in hill country pastoral systems. In addition, the objectives included the 

development of a better understanding of the main driving factors of pasture production, such 

as soil temperature (𝑇𝑠, °C) and terrain attributes in hilly landscapes for better parameterisation 

of pasture models. Based on the given background the discussion is structured around four main 

scopes, which are defined as follows:   

1. The need for accurate 𝜃𝑣 and 𝑇𝑠 monitoring at the farm scale and the importance of site-

specific sensor calibration. 

2. The quantification and description of the spatiotemporal behaviour of 𝜃𝑣 patterns on 

hilly terrain. 

3. Extending the dimensions: moving from the point-scale 𝜃𝑣 observations to the spatial 

mapping over the research area. 

4. The investigation and quantification of pasture growth driving factors on hilly terrains 

with a special focus on topographic attributes. 
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8.2 The study area 

The study is conducted on a 2600 ha predominantly beef and sheep farm situated in the 

Wairarapa region, on the East Coast of the North Island (shown in Fig 3.1). In terms of terrain, 

rolling to steep hills dominate the landscape interspersed with some flat terraces (Fig. 8.1).  

 

Figure 8.1 Slope category distribution of the Patitapu Station based on LUC (Lynn et al., 2009) slope 
categories derived from an 8m digital elevation model (LINZ, 2012).  

The significant environmental heterogeneity was described early by Murray (1982), stating that 

“The Wairarapa region tends to extremes, too wet, too windy, too dry, too hot or too cold, all 

this between seasons and over longer years”. Therefore, the chosen research area is a typical 

representation of the diverse, pastoral hill country environment closely satisfying the 

description of the hypothetical hill country farm by Kerr (2016). Hence, the farm, Patitapu 

Station, is considered suitable for carrying out this study and the research area selection is 

supported by the observed spatial and temporal variability in 𝜃𝑣, 𝑇𝑠 and pasture growth during 

the study. 

8.3 The first scope – Accurate and representative monitoring of soil water and 

temperature in the rooting zone 

Since the collection of 𝜃𝑣  information is highly challenging in hill country, the available datasets 

are rare, and the sensors are often not calibrated to the site-specific soil conditions. Therefore, 

the first scope of the study is to collect accurate multi-depth 𝜃𝑣 data with high temporal 

resolution from spatially distributed locations to represent the rugged terrain conditions. Here, 

the following research questions were raised: 

a) How to collect 𝜃𝑣  from spatially distributed positions? 

b) How to select the location of the microsites to represent typical hill country conditions?  

c) What type of sensor and sensing depth would be ideal for the purpose of the study? 

d) How to calibrate, assess and validate the sensor performance? 
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8.3.1 The WSN concept and deployment 

The traditional 𝜃𝑣 determination methods or 𝜃𝑣 readings at a single location would not have 

been sufficient for the purpose of the study considering the amount and richness of the data 

needed. Hence, a smart environmental monitoring approach utilising WSN technology (Rawat 

et al., 2014) is chosen for systematic data collection. The deployed WSN implements a multihop 

(i.e. mesh topology) communication paradigm between sensor nodes, a relay node and the 

gateway, whereas a 3G mobile network provides data transmission between the gateway and a 

remote server. The near-real time data access is managed via a web interface operated by HALO 

Farm Systems, TAG I.T. Technologies Ltd (Hamilton, New Zealand).  

The WSN deployment and the microsite localisation posed a series of three-dimensional 

problems concerning the highly variable terrain. Some of these were the natural and manmade 

objects obstructing line-of-sight visibility, the relatively long distances, and the vertical 

differences between microsites. The microsite localisation was guided by a two-step, conditional 

decision approach taking into account several GIS layers through a geomorphometrical analysis 

of the terrain. The candidate and the final microsite locations were selected by satisfying a set 

of criteria including topographical attributes, soil types, inter-visibility, vegetation type, farm 

management plans and equipment protection. 

The microsites were equipped with AquaCheck multi-depth sensor probes (AquaCheck Soil 

Moisture Management, Durbanville, South Africa). The probes were set to collect 𝑇𝑠 readings 

and capacitance-based 𝜃𝑣  data at 15-min intervals at four soil depths (70-130, 170-230, 270-330 

and 370-430 mm). The sensor type was chosen considering the completely subsurface-based 

operation design, the robust, tube-like shape (meaning easier installation), as well as the broad 

compatibility with telemetry units. The length of the probe was determined by the hill country 

soil characteristics and the 400 mm probe covers most of the soil profile that is used for plant 

water uptake, which occurs down to at least 350 mm soil depth according to Bretherton et al. 

(2010).  

The financial resources allowed the installation of 20 AquaCheck sensor probes. The probes 

were spatially distributed on flat surfaces and on sloping land classified based on five slope angle 

and four aspect categories following mostly the LUC (Lynn et al., 2009) slope classes (Fig. 8.1).  

8.3.2 Data gaps and WSN operation 

The WSN operated mostly perfectly during the study period, although we experienced some 

weaknesses regarding the power support at the gateway and certain sensor nodes, which was 
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attributed to the recharging performance of the solar panels on specific aspects and slopes. As 

it is shown in Figure 8.2, the power issues occurred mainly in winter on flat areas (Site 2, 15 and 

6), on a south-facing, moderately steep slope (Site 14) and a south-facing strongly rolling slope 

(Site 17). If the battery voltage decreased below the 2.8-3.2 V ranges, the battery was manually 

recharged and replaced since they were not able to recover from the flat stage. 

 

Figure 8.2 Temporal evolution of power supply (Volt) for each sensor node with drops in the wintertime 
at several microsites. The microsite IDs of the low performing locations are indicated. The lower end of 
the numbered lines indicates the moment when the battery went flat and the communication was lost 
temporarily.   

The shadow produced by the hilly landscape, and the lower incoming solar radiation on south-

facing aspect that may explain some of the reasons behind the insufficient charging. This could 

be avoided by shadow detection as part of the WSN planning procedure. On the other hand, due 

to the self-healing, flexible communication protocol, Site 6 often transmitted significantly larger 

amount of data packages, operating as a relay node, than the other microsites because of its 

central position close to the gateway (Fig. 3.12).  

During the study, the communication layouts revealed that the sensor nodes, more specifically 

the radio units, were able to send data packages to other nodes situated much farther, than the 

recommended maximum radio range of 1.7 km. It was observed that some of the nodes located 

3.5-4 km (in line-of-sight) distance from each other could establish data transmission. These 

findings should be taken into account if these devices are installed either on flat or hilly terrain, 

which may improve the usefulness, and versatility of these instruments in the future, and 

provide more flexibility for the microsite localisation.  

8.3.3 Sensor calibration, performance and accuracy 

The deployed WSN allows data collection in an automated manner with high temporal 

resolution that provides a more effective way to monitor 𝜃𝑣, than other classic methods such as 

time domain reflectometry, gravimetric techniques, neutron probes (Brocca et al., 2007). The 
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most essential components of the WSN is the connected AquaCheck sensor probe that utilises 

the capacitance technique (Topp et al., 1980) to measure the surrounding soil’s apparent 

dielectric constant. The frequency domain based readings can be related to 𝜃𝑣 (Dean et al., 1987, 

Mittelbach et al., 2012).  

Soil dielectric constant is mainly the function of 𝜃𝑣, although other factors, such as soil bulk 

density, clay content and organic matter have been observed to have an influence on the 

dielectric properties (Topp et al., 1980, Roth et al., 1990). Due to the physical principles behind 

the capacitance technique (and other dielectric techniques), the sensor readings are sensitive 

to the above mentioned and several other soil properties that needs to be taken into account 

(Robinson et al., 1994, Mittelbach et al., 2012, Fares et al., 2016).  

Therefore, the AquaCheck sensors require either laboratory- or field-based calibrations to 

convert the raw sensor readings to as accurate 𝜃𝑣 observations as possible. Most manufacturers 

provide calibration formulas for common and generic soil types, which may or may not achieve 

sufficient measurement accuracy for agronomic or scientific purposes. Thus, in this study, for 

the first time, the globally utilised, industry leading AquaCheck sensors and their factory 

calibrations were evaluated in New Zealand’s hill country soils. Furthermore, new site-specific 

calibration formulas were generated and assessed. 

The calibration and evaluation was based on thermo-gravimetric soil water measurements 

(Schmugge et al., 1980) taken between dry and wet soil water states by collecting 400 reference 

soil samples. The soil particle size analyses revealed that most of the probes are placed in silt 

loam or silty clay loam soils as per the USDA classification (USDA, 1999), although soil texture 

changed at several microsites along the soil profile and the clay content markedly increased with 

increasing soil depth (Fig. 8.3).  

The same increasing trend occurred for bulk density in contrast to the organic matter that 

generally decreased moving downwards the soil profile. Concerning these trends in the soil 

properties, it is likely, that discrepancies would occur in sensor measurement accuracy varying 

not only between microsites but also vertically between shallow depths and the deeper soil 

sections.  
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Figure 8.3 A 3D view of the Patitapu Station and the spatial distribution of microsites equipped with 
AquaCheck probes. Soil texture is indicated by colour codes based the USDA soil classification (USDA, 
1999), the portion of clay content (%), total organic matter (TOC, %), bulk density (𝝈𝒃, gcm-3) are shown 
for each microsite and each depth along with aspect and slope information.  



Hajdu: Soil water modelling in hill country  Discussion and conclusions 

235 | P a g e  

 

To date, little is known about the performance of the standard, manufacturer provided 

AquaCheck calibration formulas despite the importance of these products in the worldwide soil 

moisture sensor market. These reasons triggered the idea of assessing the manufacturer-

provided equations as compared to the reference 𝜃𝑣  as well as the generation of new site-

specific calibration formulas. Nolz (2013) found that AquaCheck sensors within a single probe 

performed differently during a comparison to EnviroSCAN probes. Thus, the custom calibration 

process specific to the research area was carried out at three different levels, i.e. farm (Level 1), 

probe (Level 2) and individual sensors (Level 3), which can be reproduced in other regions 

depending on the available soil information and the required accuracy for the chosen utilisation.  

Our results showed that the application of the factory-provided equation designed for silt loam 

soils markedly underestimated the true 𝜃𝑣 by a mean RMSE of 0.106 m3 m-3. A root mean square 

difference of 0.163 m3 m-3 was observed by Singh et al. (2018) when AquaCheck sensors were 

assessed in loamy soils against neutron probe measurements. These measurement errors were 

rather too large for most purposes, thus the need for soil-specific formulas for AquaCheck 

sensors was also confirmed by our findings.  

A single, linear farm-specific calibration formula (Level 1) noticeably reduced the errors resulting 

in a mean RMSE of 0.039 m3 m-3 and mean R2 of 0.58. This improvement was outperformed by 

the probe- or microsite-specific (Level 2) calibration giving a mean RMSE of 0.029 m3 m-3. The 

lowest mean RMSE, 0.19 m3 m-3 was achieved by the sensor-specific (Level 3) calibration 

indicating a substantially increased sensor accuracy.  

The error distribution was not uniform, overestimation occurred in dry conditions while 

underestimation tended to take place in wet soils. The effect of clay content, bulk density and 

organic matter on sensor accuracy was significant (P value < 0.001) that could be minimised by 

the sensor-specific calibration which considers the changes in soil properties with depth.  

The created equations may be applicable in soils with similar characteristics, since the procedure 

can be employed by any users for either irrigation scheduling or informing farming on non-

irrigated lands. Conserving freshwater on irrigated soils is one of the top concerns of our age 

that can be addressed by the application of soil-specific sensor calibrations and increased 

accuracy, thereby improving water use efficiency.  

Based on the number of sensors, the achieved measurement accuracy and the identified soil 

properties, the established WSN satisfies the requirements of the International Soil Moisture 

Network (ISMN) (Dorigo et al., 2011a). In addition, the ISMN primarily accepts 𝜃𝑣  measurements 

that are made at least in the top soil layer (< 10 cm) and preferably also in the root zone (Dorigo 
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et al., 2013). Depending on the decision from the project funders, the WSN may become part of 

the ISMN as the first data provider from New Zealand in the international context. The collected 

dataset should be applicable for validating products retrieved from land-surface models or 

remote sensing applications at various spatiotemporal scales.  

From a New Zealand centred perspective, the WSN at Patitapu Station and similar networks can 

provide calibration or ground truth opportunities for emerging, primarily agriculture-focussed 

satellite missions in New Zealand, e.g. the one coordinated by the Centre for Space Science 

Technology in Alexandra (CSST, 2018). In the near future, one of the main goals of the upcoming 

projects is to develop high-resolution 𝜃𝑣 products for better irrigation management and more 

efficient pasture production in hill country as well as for hazard management and forestry 

applications.  

The sensor accuracy could potentially be further improved by the collection of more reference 

samples. Another possibility is the application of a non-linear calibration approach that would 

consider the saturation effect on the top end of the 𝜃𝑣 levels. An investigation on the impact of 

other affecting factors, such as 𝑇𝑠, could result in slight improvements. Even though the 

AquaCheck probes are equipped with a built in 𝑇𝑠 correction function, there has not been any 

assessment published about its performance to date. 

8.4 The second scope - The quantification of spatiotemporal behaviour of soil 

moisture patterns in hill country 

The soil moisture spatiotemporal variability is an important attribute for studying the variable 

infiltration and lateral redistribution rates, land - atmosphere interactions, hydrologic, 

geomorphic, biologic, pedogenic processes as well as for predicting soil profile wetting and 

drying between rainfall events (Western et al., 1998, da Silva et al., 2001, Western et al., 2004, 

Teuling and Troch, 2005, Bolten et al., 2010). In general, most predictions have to be provided 

along with their uncertainty, because the statistical error models utilise the quantified spatial 

characteristics as an essential parameter (Lakhankar et al., 2010). Soil moisture variability is 

known to be scale dependent and this makes its investigation crucial for numerous applications. 

The improvement of soil water sampling schemes (Warrick, 1980), the understanding of 

environmental aspects of the water cycle, and pasture growth patterns on sloping land from the 

small (sub-catchment) to the large scale (regional), rely on the parameters describing variability 

(Teuling and Troch, 2005, Hu et al., 2010).  
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In the global context, near-surface 𝜃𝑣 values are derived from advanced microwave remote 

sensing over large areas, although these products average the spatial heterogeneity in 𝜃𝑣  within 

the sensor footprint (Famiglietti et al., 1999, Brocca et al., 2009). An image pixel, i.e. the sensor 

footprint, might overlap a mixture of flat and hilly landscapes. Hence, the derived mean value 

masks the underlying 𝜃𝑣 spatial variation and not able to provide practically useful information 

for hill country farming. For instance, one of the globally available 𝜃𝑣 products generated by 

NASA and USDA provides surface 𝜃𝑣 using a data assimilation approach (Bolten et al., 2010) at 

approximately 27.8x21.1 km (0.25x0.25°) over the North Island (Fig. 8.4).  

 

Figure 8.4 NASA-USDA global soil moisture data at 0.25x0.25° spatial resolution over the lower North 
Island of New Zealand. The Patitapu Station, the overlapping pixels and the sensor locations (red dots) 
are marked in the figure that was derived from Google Earth Engine showing surface soil moisture 
conditions on 18 April 2018.  

Little is known about the spatiotemporal behaviour of 𝜃𝑣 in complex landscapes (Molina et al., 

2014) and this is particularly true in New Zealand. To our knowledge, this is the first study to 

document the 𝜃𝑣 variability over the extent scale of approximately 14 km2 at the Patitapu 

Station, using high temporal resolution in situ measurements. The collection of a temporally 

dense dataset was made possible due to the advances of the deployed WSN. 

It is noted that the number of sensors used in this study would not be sufficient to completely 

characterise the variation within such a large pixel (see Fig 8.4). Although, the conducted analysis 

can give a better parameterisation of the spatiotemporal behaviour of 𝜃𝑣 at a smaller scale than 

studies of the past decades. Due to the high number of implications of this type of multi-depth 

𝜃𝑣 datasets, the statistical properties of the observed 𝜃𝑣  quantities are fundamental to 

characterise the 𝜃𝑣 patterns within the rooting zone (da Silva et al., 2001, Brocca et al., 2007).  

The spatial resolution of global and regional 𝜃𝑣 products is generally increasing; thereby future 

missions with improved resolution will potentially be able to use the Patitapu WSN or a similarly 
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designed monitoring network to estimate variation within a pixel or validate the mean value 

with better accuracy. 

The purpose of Chapter 5 is to describe a small scale field investigation of 𝜃𝑣  variability through 

the application of various statistical techniques based on point measurements, which have the 

advantage of easier interpretation than remotely sensed data (Western et al., 1998). This 

approach raised questions within the second scope of this thesis, addressed by the items below:  

a) Descriptive statistics of the collected soil moisture data 

b) Soil moisture spatiotemporal variability and temporal stability at multiple depths 

c) Finding the representing microsite and the spatial mean of the area 

d) Site-specific temporal soil moisture characteristics and trends along the root zone 

8.4.1 Descriptive statistics and data distribution 

This part of the study aimed to analyse the 𝜃𝑣 data collected at the 20 microsites over four 

depths, to determine its statistical properties and investigate its spatial structure as well as its 

relation to topography. At the Patitapu Station, the annual temporal 𝜃𝑣  distribution can be 

characterised with negative skewness and with non-normality that agrees with the findings of 

Brocca et al. (2007) and Famiglietti et al. (1999). These authors carryed out studies on silty loam 

soils and defined non-normal distribution on terrains with significant relief. The temporal 

variance of 𝜃𝑣 and its range decreased with increasing depth. The 100- and 200-mm soil depths 

demonstrated the greatest values of standard deviation (SD) as expected due to the higher 

sensitivity to the changes in the climatic parameters and meteorological forcing. Firstly, 𝜃𝑣 data 

distribution around the mean value is important for remote sensing applications to quantify 

within pixel variability (Charpentier and Groffman, 1992). Secondly, persistent wet spots or 

extremely dry areas might introduce uncertainties e.g. into pasture growth simulations or 

hydrological models.  

By the investigation of the Kernel density curves, characteristic peaks were identified at 𝜃𝑣 of 

0.35 m3 m-3 at 200 mm depth and 0.42 m3 m-3 at 400 mm depth that were repeated annually 

(during the 2-year study period) indicating the persistence of higher temporal stability in the 

𝜃𝑣 distribution deeper in the soil profile.  

8.4.2 Time-stability analysis to identify the most representative microsite 

In practice, the determination of the spatial 𝜃𝑣 mean in the root zone and the identification of 

the most representative monitoring locations are essential for soil water management decisions, 

particularly in watersheds situated on rugged terrain (Hu et al., 2010, Gao et al., 2011a). 
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Furthermore, this analysis is useful for the evaluation of low spatial resolution remote sensing 

products as a pixel is represented by a derived mean 𝜃𝑣  value for the overlapping area that can 

be complex. By the help of time-stability analysis, the representative microsites can be chosen 

more efficiently at various scales if a new WSN deployment is the primary objective.  

Utilising the various statistical measures introduced by Vachaud et al. (1985) such as the mean 

relative difference (MRD) and its standard deviation (SDRD) the number of monitoring sites 

necessary to describe the 𝜃𝑣 characteristics of a given area can be reduced (Vachaud et al., 1985, 

Wagner et al., 2008). Our results indicate that the spatial field mean 𝜃𝑣 can be obtained with an 

R2 of 0.94 and an RMSE of 0.021 m3 m-3 using a single representative microsite on north-facing 

aspect, situated on a moderately steep (23.9°) open slope. It is assumed; that the simultaneous 

utilisation of data from the four most representative microsites, i.e. Site 6, Site 10, Site 12 and 

Site 13 would be optimal to describe the mean 𝜃𝑣 in these mixed landscapes. This is because 

they represent flat areas, west-facing open slopes, north-facing mid-slopes and south-facing 

steep slopes (see Fig. 5.2 in Chapter 5). 

8.4.3 Time stability of soil moisture spatial patterns 

Cumulative probability density functions and frequency distribution analysis demonstrated that 

topographical attributes exert their effect on the 𝜃𝑣  temporal stability. Site 1, Site 8, Site 15 and 

Site 6 could keep their rank between two extreme 𝜃𝑣  levels and various slope angle and aspect 

classes tended to move along the cumulative probability curve, suggesting the influence of the 

landscape. The examination of Spearman’s rank correlation coefficients (𝑟𝑠) and their 

significance confirmed that 𝜃𝑣  spatial patterns between extremely dry and wet conditions were 

not maintained resulting in insignificant relationships with low 𝑟𝑠 of 0.24-0.39. However, two 

wet days (in different years) with 𝜃𝑣 levels at or above field capacity were significantly and highly 

correlated (𝑟𝑠= 0.91, P value < 0.001). 𝜃𝑣 patterns on two dry days (in different years) behaved 

analogously showing strong correlation (𝑟𝑠= 0.88, P value < 0.001). The 𝜃𝑣 spatial patterns were 

significantly correlated (P value < 0.001) with relatively high 𝑟𝑠 values in the drying out phase 

and not so much during rewetting, which was also found by Kachanoski and Jong (1988). 

Furthermore, in hill country, the relationship became weaker by time within one sub-period.  

The outcome of the time stability analysis also suggested that the 𝜃𝑣 spatial distribution was 

stable in dry and wet conditions and it can be preserved from one timestamp to another to a 

certain extent depending on the stage of 𝜃𝑣  change. As the spatial organisation of 𝜃𝑣 exhibits 

temporal stability, it is possible to describe an area through carefully selected, limited number 

of microsites, thereby reducing the cost of data collection and field campaigns. Moreover, since 
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the spatial patterns are time dependent, the defined 𝜃𝑣  spatial distribution and its temporal 

stability could be applied in management as they also reflect the influence of soil properties and 

landscape attributes (da Silva et al., 2001). 

8.4.4 Temporal dynamics of spatial field mean and its variance 

The statistical analysis of spatiotemporal dynamics of the field mean 𝜃𝑣 included the calculation 

of absolute variability, i.e. SD, and relative variability, i.e. coefficient of variation (CV). The daily 

CV showed the highest values during the dry seasons of the study period. Thus, the spatial 

variability under this climate and humid climates in general, was greater when the soils are dry. 

In general, the spatial SD and CV decrease with increasing wetness conditions and the rewetting 

(ascending) stages show the highest SD values in the top layer. The CV tend to drop once the 

mean 𝜃𝑣 levels have reached 0.35 m3 m-3 and CV values decline to the minimum at 0.45 m3 m-3. 

The temporal difference in SD is noticeable but not that prominent in the deeper layers and the 

variance of 𝜃𝑣 decreases with soil depth. 

8.4.5 Relationship between spatial soil moisture mean and spatial variance 

Relating SD, i.e. absolute variability and CV, i.e. relative variability to the spatial mean 𝜃𝑣  using 

scatterplots and regression is a common procedure to characterise variability and the influence 

of wetness conditions (Bell et al., 1980, Brocca et al., 2007, Famiglietti et al., 2008b, Molina et 

al., 2014). There is no consensus in the literature on the relationship between mean 𝜃𝑣, SD and 

CV due to the scale dependency and the numerous influencing factors. Consequently, the role 

of vegetation, soil properties, wetness conditions, topographical attributes and climatic 

variables are not fully understood, and its characterisation requires research at various scales.  

In this study, both increasing and decreasing variability (expressed by SD and CV) with increasing 

mean 𝜃𝑣 occured depending on the soil wetness. The variability showed dependence on the sub-

periods and seasons, i.e. whether the land was dry, drying out, rewetting or wet, meaning that 

variance was non-consistent in these landscapes. This indicates that the role and importance of 

controlling factors on 𝜃𝑣 variation change with time. During dry conditions, the influence of 

terrain attributes (i.e. aspect, slope angle, elevation, etc.) take over the control on 𝜃𝑣 variation 

while the soil properties (i.e. soil texture, especially clay content) play more important role on 

the 𝜃𝑣  patterns (Famiglietti et al., 1998, Harter and Zhang, 1999, Choi et al., 2007). 

8.4.6 Site-specific temporal soil moisture variability 

The microsite-specific spatiotemporal analysis helps to identify the wettest and driest microsites 

and reveal the different features of the shallower and deeper soil layers. If all depths were 
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averaged, the wettest location was situated on a west-facing rolling open slope at Site 7 and the 

driest position was a north-facing, steep midslope ridge at Site 8. The second wettest location 

was Site 15 located on a flat paddock and the third wettest was Site 1 installed on an upper part 

of a south-facing, rolling slope. The second driest topographic position was at Site 17, a south-

facing strongly rolling surface, located on a high ridge landscape element, while the third driest 

location was Site 9 installed on an undulating slope near a high ridge.  

The range of 𝜃𝑣 measurements were the largest in the 100 mm soil depth, while the deeper 

sections of the soil profile showed a narrower 𝜃𝑣  range indicating less variability and temporally 

more stable soil water contents with increasing soil depth. Site 4, an east-facing moderately 

steep location with silt loam and silty clay loam soils represented the lowest 𝜃𝑣 ranges in time 

all over the four depths. In contrast, the widest temporal 𝜃𝑣 range varied among depths and 

microsites, although the 100 mm soil depth at an east-facing steep slope (Site 18) showed the 

largest difference between minimum and maximum 𝜃𝑣. 

8.4.7 Future work 

As a recommendation for further work, the daily averaged 𝜃𝑣  data could be subjected to 

geospatial and geostatistical analysis that are a frequently used techniques to characterise 𝜃𝑣 

spatial organisation and spatial autocorrelation (Western and Blöschl, 1999, Brocca et al., 2007, 

Famiglietti et al., 2008b, Molina et al., 2014). Although, the fact, that the variogram-based 

analysis defines the variance as a function of distance between microsites might pose some 

issues due to the non-grid-based distribution of the microsites. The highly varied topography 

within two microsites would question the usefulness of this kind of analysis approach at the 

small scale in hill country.  

Furthermore, the temporally dense dataset could be used to estimate the shortest or the ideal 

sampling interval to describe the temporal trends, which could reduce the amount of data and 

optimise the sampling scheme for different seasons or drying and recharging sub-periods as also 

suggested by Molina et al. (2014).  

8.5 The third scope - Extending the dimensions: moving from the point-scale soil 

moisture observations to the spatial mapping 

Remote sensing applications with frequent revisit time are broadly and increasingly applied in 

agriculture for the monitoring of growth patterns and temporally changing variables that 

influence yield (i.e. 𝜃𝑣, 𝑇𝑠, etc.) (Atzberger, 2013). 𝜃𝑣 is a crucial parameter in agricultural 

production and it is part of many environmental systems (Seneviratne et al., 2010). Therefore, 
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the mapping of its distribution on a spatial and temporal basis is subject to research globally at 

various scales. Remote sensing has the potential to highlight the 𝜃𝑣  patterns dominantly caused 

by the variability in soil properties, land cover, climate and the terrain (Kong et al., 2011). 

However, the generation of highly accurate, high- to medium-resolution 𝜃𝑣 products on an 

operational manner, particularly over vegetated areas has been posing challenges over the last 

four decades. 

In New Zealand, the frequent cloud cover further complicates the generation of systematic 

remotely sensed 𝜃𝑣 products. Therefore, the use of active and passive microwave-based satellite 

products would be preferred to create 𝜃𝑣 maps in all weather conditions. Although, the 

currently applied methods and missions (e.g. SMAP and SMOS) have some considerable 

limitations, such as the complex signal interpretation and low spatial resolution (approx. 3x3 km 

and 40x40 km depending on the latitude) that is far too coarse for addressing the sub-farm 

variability. In contrast, multi-spectral Earth observation satellites are able to provide 

𝜃𝑣 estimates at higher resolution, although the image acquisition is cloud dependent.   

The present study aims to explore the utilisation of an emerging synergy-based technique for 𝜃𝑣 

mapping. The proposed method takes advantage of the combination of radar and optical 

satellite images, the digital representation of the terrain, GIS-based platforms, and a modern 

ensemble learning statistical method (i.e. the Random Forest).  

Despite the importance of 𝜃𝑣 data in pasture production models, current algorithms use low-

resolution estimates of 𝜃𝑣 input into their water balance equations. As a result, the currently 

used simulations do not yet adequately represent the spatial and temporal variability of 𝜃𝑣 in 

hill country. The proposed approach can be potentially used to provide 𝜃𝑣 information for more 

intelligent pastoral farming at an improved spatial resolution (i.e. paddock scale, ideally under 

40x40 m) that is to be of actual use to the farmer and pasture yield predictions.  

In addition, Chapter 6 also aims to contribute to the better understanding of the issues emerging 

around the 𝜃𝑣 retrieval from satellite images on hilly terrain. Moreover, it evaluates the accuracy 

of the generated spatial 𝜃𝑣 predictions near the surface by the aid of calibrated, ground-based 

measurements. These issues, the need for 𝜃𝑣 monitoring and the introduced advantages of 

remote sensing raised the following points: 

a) Synergetic use of various satellite products to increase temporal coverage of 𝜃𝑣 maps 

b) Usage of a cloud-based platform for pre-processed, remotely sensed data access 

c) Investigation of SAR data and 𝜃𝑣 relationship over pastoral surfaces and complex terrain 

d) Spatial prediction of a medium resolution 𝜃𝑣 product at various wetness conditions  
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e) Testing the prediction accuracy and validating the spatial 𝜃𝑣 maps 

8.5.1 Obtaining remote sensing data via Google Earth Engine 

Obtaining and downloading remote sensing imagery captured by various satellites for a nearly 

two-year period is a time-consuming task. It requires a large amount of storage and computing 

power for executing the several pre-processing steps on varying data formats. Free software 

environments and toolboxes are made available for the pre-processing, such as the SNAP (SNAP, 

2018) but they require the building of processing chains and large memory capacity as well as 

processor performance. Moreover, the data preparation procedure may vary slightly depending 

on the products. Therefore, to generate a consistent and extendable dataset, the Google Earth 

Engine (GEE), a cloud-based, geospatial computing platform was utilised in this study (Gorelick 

et al., 2017). Data extraction through GEE and its web-based programming interface can produce 

systematic and consistent products from pre-processed images without downloading the 

images to the personal computer (Fig. 8.5). Thus, GEE allows users to visualize, manipulate and 

analyse a large number of satellite scenes rapidly. In this study, pixel-based data extraction at 

the microsites was conducted from Sentinel-1, Sentinel-2, Landsat 7 and Landsat 8 image 

collections via the GEE platform.  

 

Figure 8.5 Components of Google Earth Engine programming interface and a 10x10 m resolution 
Sentinel-1 SAR image (26/08/2017) over the Patitapu Station with fence lines and microsites (red dots). 

8.5.2 Soil moisture retrieval from radar images – relevant issues over vegetated surface 

The linear nature of the relationship between the radar backscatter coefficient (σ0) and 𝜃𝑣 over 

bare soil surfaces has been observed by many studies (Le Hégarat-Mascle et al., 2002, Zribi et 

al., 2005, Le Morvan et al., 2008). High 𝜃𝑣 content results in high backscattered energy towards 

the sensor and low 𝜃𝑣  conditions cause low σ0 values, thus reflecting more energy away from 
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the sensor (Dean et al., 1987). However, the most pronounced problems with radar-based 𝜃𝑣 

retrieval is the complexity of the backscattering mechanisms from the targeted surface with 

vegetation cover, which is even more enhanced over hilly terrains (Pasolli et al., 2015). Over 

vegetation, the σ0 represents the total backscattered energy from the vegetation, the soil and 

the interaction occurring between these two components within a resolution cell, determining 

its electromagnetic response. Additionally, the heterogeneous terrain, the sensor parameters 

(i.e. frequency, polarisation, and incidence angle), the amount of vegetation, its geometric and 

structural features and the soil surface characteristics (i.e. roughness, dielectric properties, soil 

properties) further complicate the interaction processes and its interpretation. Consequently, 

these factors need to be accounted for to reduce their effects on σ0 (Barrett et al., 2009, 

Petropoulos et al., 2015) and to disaggregate the impact of the 𝜃𝑣.  

Due to the multiple contribution of these factors, a so-called variable equifinality problem exists, 

meaning that various combinations of target characteristics might result in very similar σ0 values 

(Beven and Freer, 2001). Hence, the 𝜃𝑣 retrieval from radar images is considered as an ill-posed 

problem (Ali et al., 2015). One of the other shortcomings of the satellite-derived 𝜃𝑣 products is 

the shallow effective depth (0-5 cm) that is dependent on the SAR operational frequency, the 

wetness conditions, the vegetation characteristics and soil physical properties (Barrett et al., 

2009). C-band radars, such as Sentinel-1 has a penetration depth of approximately 2-5 cm in dry 

conditions and only a couple of cm in wet conditions (Bruckler et al., 1988). Longer wavelengths, 

such as L-band would be optimal for 𝜃𝑣  retrieval with low incidence angles (Ulaby et al., 1986c). 

Surface roughness is one of the major determinants of the signal response, which cannot be 

differentiated easily and there are no simple procedures to account for its effect (Altese et al., 

1996, Barrett et al., 2009). Generally, radar sensitivity to surface roughness increases with 

increasing incidence angle and increasing degree of roughness results in elevated σ0. Although, 

its effect is dependent on the wavelength (Ulaby and Batlivala, 1976, Ulaby et al., 1982b, Sano 

et al., 1998, Wagner et al., 2007, Baghdadi and Zribi, 2016). 

8.5.3 Synergetic use of satellite data and terrain attributes 

Several theoretical and physical models have been used to retrieve 𝜃𝑣. In this study, the 

potential application of an empirical technique was investigated. The presented work used a 

time series of in situ 𝜃𝑣  measurements recorded by the Patitapu WSN as reference and training 

data. Various variables were obtained through a proper pixel-based extraction from satellite 

images and DSM derived GIS layers at the microsites. The ground-based 𝜃𝑣  measurements, the 
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corresponding variables and derived indices were fed into the Random Forest (RF) algorithm for 

the generation of an optimised 𝜃𝑣  prediction model. 

An image collection of 153 scenes was created from the Sentinel-1 SAR, C-band imagery to utilise 

the weather independent, systematic and temporally dense features of the σ0 over the pastoral 

land. To address the degree of vegetation coverage and its spatiotemporal pattern, an adjusted 

NDVI was developed, since it is a broadly used indicator of phenological variations and biomass 

changes (Sun et al., 2016). To increase the temporal coverage and to create a daily time series 

of adjusted NDVI at 20x20 m resolution over the research area, a total of 77 Sentinel-2, Landsat 

7 and Landsat 8 multi spectral images were used for data extraction. The geospatial layers, i.e. 

slope angle, aspect, SAGA topographic wetness index, topographic position index and terrain 

ruggedness indices, were derived from a high-resolution DSM to represent some of the 

hydrological metrics, terrain attributes and surface ruggedness. 

8.5.4 Results and accuracy 

The Landsat 7 and Landsat 8 NDVI values were adjusted to the Sentinel-2 NDVI, to generate 

more cloud free images over the study area, and to use the 20x20 m pixel size of Sentinel-2 

images in the modelling. Strong linear relationship was observed between Landsat 7 and 

Sentinel-2 NDVI (0.85 R2) as well as between Landsat 8 and Sentinel-2 NDVI (0.89 R2) making 

them comparable and complementary observations. 

During the examination of σ0 sensitivity to near surface 𝜃𝑣, VV polarisation showed more 

promising correlations than VH. The VV σ0 at 20x20 m spatial resolution demonstrates adjusted 

R2 of 0-0.5 for ascending orbits and adjusted R2 of -0.13-0.8 for descending orbits. This indicated 

that lower incidence angles of the descending orbit can result in stronger relationships over 

pasture cover. At the microsites located on sensor-facing land surfaces, i.e. east and north 

aspects, tended to demonstrate higher R2 values, while flat microsites and microsites facing 

away from the SAR sensor, i.e. south- and west-facing aspects show lower R2. This could suggest 

that the relation between the terrain and the sensing parameters affect the 𝜃𝑣  sensitivity 

despite of the terrain correction steps taken during pre-processing. GEE uses the 

Shuttle Radar Topography Mission’s 30x30 m resolution DEM for correction, which might be too 

low resolution for the rugged hill country landscapes. This could be potentially improved by 

applying a higher resolution elevation product generated for the specific region under 

investigation. 

The examination of the temporal trends between normalised 𝜎0, NDVI, daily total rainfall and 

daily 𝜃𝑣  revealed that the 𝜃𝑣  sensitivity of the 𝜎0 likely to decrease with increasing NDVI in 
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agreement with previous studies (Zribi and Dechambre, 2003, Baghdadi et al., 2008, Gao et al., 

2017). C-band signal can penetrate vegetation better if the vegetation is drier, which usually 

means lower NDVI values. This partly explains the noticeable response of 𝜎0 to the dry 

conditions in agreement with Brown et al. (1992). It can be concluded that over grass cover, 

linearly relating near surface 𝜃𝑣 and σ0 does not provide reliable correlation strength at the 

targeted spatial resolution. Although, the utilisation of a homogenous image collection from the 

descending orbit type could improve the correlation with reduced temporal resolution.   

8.5.5 Random Forest modelling 

To investigate the potential use of different machine learning techniques, several algorithms, 

such as Random Forest (RF), Cubist (cubist), Bagged Cart (bagging), Cart (cart), Generalised 

Boosted modelling (gbm), k-Nearest Neighbours (knn), Lasso and Elastic-Net Regularized 

Generalized Linear Models (glmnet), Support Vector Machine (svm) and Logistic regression 

(logistic) were executed on the reference dataset with default hyperparameters (Fig. 8.6). 

 

Figure 8.6 Comparisons between several machine learning algorithms for soil moisture modelling  using 
the caret R package (Kuhn, 2008) and default hyperparameters.  

The RF model achieved the best results concerning RMSE, MAE and R2 as the accuracy and 

correlation measures, therefore the RF approach was chosen for this study. The final RF model 

(hyperparameters: mtry = 4, ntree = 300) was able to predict near-surface 𝜃𝑣 with an average 

accuracy of 0.047 m3 m-3 and R2 of 0.76 retrieved from the repeated cross-validation process. 

The RF performed generally well regardless of which section of the data population was used 

for model training. The most important variables were the seasonality, NDVI and slope angle 

while the σ0 data provided less contribution to the prediction than it was expected. Without the 
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addition of seasons, the importance rank of the variables changes and σ0 represented a highly 

important position along with NDVI in the 𝜃𝑣  prediction, although it resulted in a significant drop 

in the percentage of explained variation (40%). The development of RF models for each season 

could be a potential way to increase the accuracy and the amount of explained variation. 

Using only the test dataset (randomly selected 25 % of the observations), 𝜃𝑣 predictions agreed 

well with the observed 𝜃𝑣 values at the point scale. An RMSE of 0.046 m3 m-3 and 0.078 R2 

supported the statistically significant (P value < 0.001) good fit and indicated that the modelling 

accuracy of RF algorithm was satisfactory. During winter and summer, i.e., in the wet and dry 

seasons the modelled 𝜃𝑣  values closely followed the observed 𝜃𝑣, while significant errors (0.06-

0.16 m3 m-3) occurred during drying and rewetting periods. Typically, overestimations were 

found during the drying out period and underestimations took place in the rewetting stage, 

which might be related to the high spatial variability of 𝜃𝑣 in these seasons observed in Chapter 

5. Moreover, these errors can be linked to the increased pasture herbage accumulation 

confirmed by the pasture growth trends and the elevated NDVI values. It is likely that enhanced 

plant growth resulted in increased vegetation water content, and the higher amount of fresh 

biomass due to the strong spring and autumn tillering could lead to elevated 𝜎0, thus higher 

modelled 𝜃𝑣 responses. 

Concerning the spatial modelling performance with a reduced training dataset (15 microsites) 

and 5 microsites used for independent validation, the RF model was still able to estimate 𝜃𝑣 at 

the same accuracy level. The correlation between modelled and observed 𝜃𝑣 varied between 

0.69-0.94 with a mean of 0.77 R2 and mean RMSE of 0.048 m3 m-3. 

The predicted spatial 𝜃𝑣 maps reflected the expected 𝜃𝑣  patterns at the macro-scale. Valley 

bottoms and flat surfaces were dominantly represented by higher 𝜃𝑣  content while ridges and 

hilltops showed lower 𝜃𝑣 and dry conditions could be observed on steep slopes. The effect of 

aspect was noticeable giving lower 𝜃𝑣 on north-facing slopes (in dry seasons). Additionally, the 

general temporal trend was closely followed by the mean 𝜃𝑣  values calculated for the eight 

predicted maps individually.  

It can be concluded, that the RF algorithm is a powerful predictor of near-surface 𝜃𝑣 using 

environmental covariates and remote sensing data, and it can produce outputs with acceptable 

accuracy for most agriculture related applications. Data fusion and long time series carries the 

strength of machine learning, and the flexible features of non-parametric techniques allow the 

extension of the number of variables. Due to the prime importance of water management issues 

around the world and the increasing role of agricultural yield monitoring, more and more 
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satellite missions are being lunched carrying microwave-based sensors, leading towards the 

“golden age” of  𝜃𝑣 research.  The quality of  𝜃𝑣 predictions can be improved by the combination 

of data from various instruments operating in a range of domains of the electromagnetic 

spectrum as it was also stated by Rodríguez-Fernández et al. (2019).  

8.5.6 Limitations 

The RF algorithm may suggest a “black box” approach for a researcher, although the models can 

be described by complex mathematical functions. In case of regression, RF does not predict 

beyond the range in the training data therefore a longer study period, covering extremely dry 

conditions would be required for wider 𝜃𝑣 range in the training dataset. Additionally, the 

generated RF model is only valid on the area used for training. Despite of the considerable 

progress made in 𝜃𝑣 retrieval in the last few decades, there is no universal technique for 

generalised application over various surfaces at various spatial scales. Increasing the amount of 

training data has the potential for model improvement. Other machine learning methods could 

be run on the existing dataset, such as the artificial neural networks, which is one of the earliest 

statistical learning algorithms that can outperform classic regression techniques.  

Another direction could be the prediction of biomass from radar imagery through the non-

parametric RF method as it was also suggested by Ali et al. (2015). One of the concerns in 

satellite-based 𝜃𝑣  retrieval is the shallow penetration depth in case of SAR (0-5 cm). This study 

used measurements from the soil depth of 7-13 cm as the probes must be protected from 

farming activates and stock but several studies compared satellite-based water content 

estimations to 10 cm or soil profile measurements (Matthias et al., 2004).  

8.5.7 Implications of near surface soil moisture spatial maps in New Zealand 

It is assumed that a more advanced version of this machine learning approach would only be 

useful for refining existing water balance models rather than producing an 

independent 𝜃𝑣 product. Another limiting factor is the latency of the satellite image products as 

timing can be crucial for farmers. This is a critical issue in globally available remotely sensed  𝜃𝑣 

data due to the relatively long computing and delivery time (i.e. days).  

To model the root zone 𝜃𝑣 from the spatial near surface estimations, an additional processing 

step would be needed. Root zone water dynamics is of the highest interest for water balance 

calculations and decision making for farming activities. Promising results have been achieved for 

root zone 𝜃𝑣 modelling from near surface 𝜃𝑣 estimations by Bezerra et al. (2013) over 

homogenous area and Ford et al. (2014) in the USA. 
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In New Zealand, a modified two-layer water balance model (similar to the one by  Woodward et 

al. (2001)) on a GIS basis could utilise the near surface  𝜃𝑣 data to model root zone conditions or 

to validate and adjust predictions as often as possible. Incorporating actual 𝜃𝑣values would 

potentially have a significant positive impact on the simulation accuracy, especially during the 

transition periods when the highest spatial 𝜃𝑣 variability occurs. The relationship between near 

surface 𝜃𝑣 and the deeper sections show seasonal variations in correlation (Wu and Dickinson, 

2004) and it has also been observed in this study (Fig. 8.7). Dry periods and wet periods tended 

to show high correlation, although in different directions. Slightly lower R values could be seen 

for the drying out and dry periods than in very wet, winter seasons. The correlations drastically 

dropped during autumn, i.e. in the rewetting stage.  

The water balance model should take into account the increasing persistence of 𝜃𝑣 patterns with 

increasing soil depth (as observed in Chapter 5) at least in the top 45 cm soil layer in hill country.   

 

Figure 8.7 Temporal evolution of daily correlation values (expressed as R) between soil moisture and 
soil depth (shaded area) and the time series of volumetric soil moisture content at four depths (mm). 

8.6 The fourth scope - The investigation and quantification of the driving factors 

of pasture growth on hilly terrains 

The monitoring of hill country pastures is difficult as they span over low-altitude steep lands 

representing diverse environmental characteristics with complex interrelationships between 

the present soil, vegetation cover, management and climatic parameters (Gillingham, 1973, 

Lambert and Roberts, 1978, Chapman and Macfarlane, 1985, Bretherton, 2012). On the account 

of the challenges in pasture growth documentation, and the difficulties caused by the rugged 

conditions, the interaction between the numerous environmental variables are not fully 

understood yet. Pasture predictions are made to aid in land management decisions and fertiliser 

application planning. The models are usually subject to validation against empirical data, which 

is problematic due to the lack of appropriate pasture growth information (Woodward, 2001). 
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Thus, periodic pasture growth observations at various topographic positions are highly valuable 

and needed for validating yield forecasts as well as for model training and parameter 

adjustments. On New Zealand’s non-irrigated hill country farms, the matching of seasonal feed 

demands of the stock and the seasonal pattern of pasture productivity highly effects the amount 

and timing of silage to be purchased (Woodward, 2001). The better understanding of the 

spatiotemporal variability of pasture growth patterns is of great interest that can assist in the 

usage of more effective land management practices in areas where diverse topography is a 

major concern. While previous studies dominantly investigated the pasture productivity 

difference between north and south aspects, the presented work considers the north, east, 

south and west aspects, flat areas and five slope categories.  

Chapter 7 aims to develop a clearer picture of the issues emerging around the pasture 

productivity and vegetation response patterns on hilly terrain. Moreover, it evaluates the role 

of various terrain parameters on the rate of growth and investigates the main limiting factors 

and their dynamics through a nearly two-year study period. 

These issues and the need for pasture growth monitoring raised the following questions: 

a) Is it possible to capture the spatiotemporal variability in pasture productivity? 

b) Can we quantify the impact of static topographical attributes on spatial pasture growth 

patterns?  

c) Is it feasible to isolate the effect of 𝜃𝑣 and 𝑇𝑠, and their intermittent temporal 

behaviour? 

d) How could these findings be used for better parameterisation of pasture forecasts and 

what differences they could make? 

8.6.1 The methodological summary 

This part of the study utilises 13 selected microsites for collecting multi-depth  𝜃𝑣  and 𝑇𝑠 

information as well as herbage accumulation and attempts to assess the pasture productivity 

response to the monitored variables, climatic parameters and the derived topographical 

attributes. This experiment combines the use of the deployed WSN, with the AquaCheck probes 

and a classic pasture growth monitoring method, i.e. the cage technique (Radcliffe et al., 1968) 

and GIS-derived terrain attributes through and empirical approach including multivariate 

statistics. Additionally, a theoretical hill plot is used to visualise the effect of slope angle and 

aspect on pasture growth rates (PGR) and dry matter (DM) production. It also allows the 

investigation of pasture growth as a function of soil wetness conditions at four depths, the water 

stored in the soil profile, and the accumulated heat.  
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8.6.2 Pasture growth trends, optimal growth conditions and limiting factors 

The temporal evolution of PGR is related to 𝜃𝑣  and 𝑇𝑠 conditions (Fig. 8.8). The stored soil water 

levels dropped considerably (to 100 mm) in the second year following a long dry season spanning 

through late spring and summer that limited the PGR (Fig. 8.8 (A)). The spatial mean 𝑇𝑠 rose as 

high as 20 °C in the summer of 2017 and 25 °C in 2018 indicating the considerable difference in 

the amount of received heat (Fig. 8.8 (B)). The limiting role of 𝜃𝑣 and 𝑇𝑠 change through the 

seasons and governs pasture production. Figure 8.8 (D) depicts the alternating limiting effect of 

 𝜃𝑣  and 𝑇𝑠 during the two-year period, without taking into account the influence of fertiliser 

applications.  

 

Figure 8.8 The temporal evolution of soil water content at 100 mm soil depth and soil water storage in 
the monitored soil profile (A). The changes in air and soil temperature at 100 mm soil depth are shown 
in (B) while the annual distribution of pasture growth rate (PGR) is depicted in (C). The changing limiting 
role of soil moisture and temperature on PGR is illustrated during a nearly 2-year period (D). 



CHAPTER 8 

252 | P a g e  

 

At the Pati Tapu station, the highest PGR values can be observed typically in November and 

December (Fig. 8.8 (C)). Based on the nearly two-year dataset, the highest pasture production 

occurs if the 

• Spatial mean soil water storage deficit is < 35-45 mm 

• Cumulative precipitation for the observed 4-6-week growth interval is approx. 100 mm 

• Spatial mean  𝜃𝑣  is 0.29-0.45 m3 m-3 at 100 mm soil depth 

• Spatial mean 𝑇𝑠 is 15-19 °C at 100 mm soil depth 

• Air temperature is 13-16 °C and 

• The incoming solar radiation is 5500-6500 WH/m2. 

The early dry soil conditions beginning in late spring of 2017 in the second year exerted its 

limiting effect on pasture productivity levels in agreement with the findings of Radcliffe (1982) 

and Zhang et al. (2005). They impressed that spring rainfall is one of the most important factors 

in annual pasture productivity in hill country.  

The recognised non-limited growth periods can be used for optimising farming activity patterns 

and a longer time series could reveal the temporal shifts of the high producing periods which is 

most likely to be related to the changing trends in climate. Furthermore, these time intervals 

may be used for timing nitrogen fertiliser applications in order to achieve higher production 

response without the limitations of  𝜃𝑣 and temperature on PGR (Lambert et al., 2012).  

During these ideal conditions, the pasture clearly reflects the soil fertility parameters enabling 

the examination of the spatial patterns of soil fertility characteristics and the effect of added 

fertilisers. The application of high-resolution, airborne hyperspectral imagery is an emerging 

method for hill country pasture monitoring with the capability of linking spectral reflectance to 

several biophysical and biochemical properties of pasture quality and soil (Pullanagari et al., 

2018). Identifying these optimal periods can help in planning the ground-based sampling for the 

calibration or validation of remote sensing observations and soil nutrient content mapping. 

8.6.3 Spatial pasture growth variation and the role of topography 

Even though the presence of environmental heterogeneity in hill country is obvious, the 

quantitative assessment of variations is essential for investigating the strength and dynamics of 

farm management effecting factors. It is clear, that considerable spatial variation exists between 

the microsites’ pasture productivity. The differences are associated with the topographical 

positions described by slope angle, aspect, landscape element and elevation. These features 
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have a significant control on the seasonal temperature and available  𝜃𝑣 conditions affecting the 

plant growth.   

In terms of aspect, the sunnier, warmer north aspects are generally drier while the shadier, 

cooler south aspects are wetter. At the Patitapu Station, north-facing slopes are more 

productive than south-facing slopes mainly due to the better winter growth and the 

approximately 22.5 % more accumulated heat on north aspects enhancing pasture 

development. East-facing slopes are slightly more productive than west-facing surfaces 

concerning summer yield and the steep east-facing slopes are significantly more productive than 

steep west-facing slopes. Steep west- and south-facing slopes produce the lowest amount of 

yield while strongly rolling and flat surfaces are the areas with the highest productivity.  

Based on the findings of the comparative and multivariate statistical analysis, slope angle is the 

most important factor governing PGR and DM. As the slope angle increases, the amount of yield 

declines which is in agreement with previous studies by Gillingham et al. (1998), Bretherton 

(2012), Roberts and White (2016) and Zhang et al. (2005). Aspect exerts its effect on PGR, 

although it is not as significant as that of slope angle. In winter, the PGR spatial variation is low, 

while in summer the difference in pasture production on various terrain positions is remarkably 

more expressed. Hence, the degree of slope angle and aspect influences can be associated with 

a temporal parameter and seasonality since these features control the distribution patterns of 

energy supply, i.e. the accumulated heat as well as the stored soil water (Gillingham and Bell, 

1977). 

The geomorphometrical settings, i.e. the situation of a given point in terms of landscape 

elements, are strongly associated with PGR and accumulated DM. Consequently, this study 

suggests that landscape elements should be considered as input variable in the pasture growth 

forecasting models based on the role of upslope contributing area as a predictor of 𝜃𝑣 patterns 

in wet conditions (Famiglietti et al., 1998, Western et al., 1999). A geomorphometrical analysis 

of a given terrain provide useful GIS layers that could be incorporated into algorithms predicting 

pasture growth on a spatial basis.  

These results might become an integral part of grazing management and it was already 

suggested by Lambert and Roberts (1978) that slope angle and aspect variability should be 

considered during decision making in farm management. Although, considering aspect in grazing 

might not be feasible on highly broken hill country farms. On the other hand, it might be 

beneficial to include the effect of aspect into the management plan, land subdivision and 

fertiliser applications (Lambert and Roberts, 1978).  
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In hill country, fertiliser requirements are dependent on slope angle and aspect features and soil 

types (Lambert et al., 1983, Gillingham et al., 1999). Therefore, the findings of this chapter might 

contribute to the better planning of variable rate input applications and to reduce over and 

under fertilising. Moreover, following the findings of this study might enable farmers to adjust 

their grazing and achieve a more even grazing pattern. 

8.6.4 Limitations of the dataset and methods 

The number of microsites and the number of cages were restricted due to a limited resource, 

time constrains, and microsite access issues. A greater number of microsites could cover more 

slope angle and aspect classes and could provide an improved dataset as far as the terrain 

variables are concerned. The microsites were not replicated and the variation between the cuts 

from the three cages at each microsite was not considered during the analysis. Therefore, the 

pasture growth information presented in this study is not suitable for spatial interpolation since 

it only represents the specific topographic and soil conditions at a given location.  

The effect of management practices and fertiliser applications were also not considered in this 

study. The assumption was made that every microsite received the same type of management 

and fertiliser treatment. PGR may have been affected by the timing of the pasture cuts. In this 

study, 4-6-week harvest intervals were chosen as a compromise to simulate sheep grazing. The 

timing of harvests was strongly limited by weather conditions and farm operations. The 

microsite distribution was primarily planned for 𝜃𝑣  observations to study the potential of 

remote sensing applications on spatial 𝜃𝑣 mapping. Therefore, their locations could have been 

tailored differently for the specific examination of pasture productivity.  

Additionally, the length of the study and the difference between the “years” can be considered 

as another limitation. Longer periods could potentially provide more robust conclusions. It 

should be noted that the amount of precipitation may not be evenly distributed within the 

property extent. The minimum, maximum and mean distance between the Patitapu weather 

station and microsites were 0.34, 2.9 and 1.8 km, respectively. Hence, measuring rainfall 

accumulation at each microsite could have significantly improved the assessment.   

8.6.5 Future perspectives 

The findings suggest that the spatial distribution patterns of pasture growth need to be 

investigated regionally and locally, as the generalisation of the trends is cumbersome due the 

environmental variability. The generalisation of the role of topographical factors in pasture 

production has not been fully developed. Concerning the labour-intensive pasture growth 



Hajdu: Soil water modelling in hill country  Discussion and conclusions 

255 | P a g e  

 

measurements, the limitations of the point-like information, remote sensing will become the 

main tool for spatial pasture growth mapping. Due to the sensitivity of radar signal to the 

amount of vegetation present, the Sentinel-1 SAR imagery and future SAR missions have the 

potential to be the basis of pasture growth mapping. An experiment that considers the pasture 

growth within the satellite footprint with various pixel sizes may be used for calibration of radar 

signal for the direct estimation of DM and temporal change in PGR.  

 

8.7 General conclusions  

Ultimately, the monitoring and quantitative description of the environmental factors and their 

effect on pasture productivity might enable the hill country farming sector to produce more 

pasture on the same area and use the inputs more efficiently. The achieved results and the 

findings of this thesis can be summarised as follows:  

• The field-based calibration is essential for accurate 𝜃𝑣  measurements if capacitance 

sensors are used. 

• The application of an automated 𝜃𝑣 monitoring technique is capable of collecting useful 

datasets to define spatiotemporal 𝜃𝑣 variability and temporal stability.  

• The lack of currently available, temporally dense 𝜃𝑣, 𝑇𝑠and pasture productivity datasets 

in hill country enhances the value and usefulness of the collected data throughout this 

experiment. 

• A 𝜃𝑣 dataset containing information from spatially distributed locations at the farm-

scale can be used to extend point-scale observations to the spatial extent. Machine 

learning approaches can provide high training and test accuracy on a map basis. 

• The synergetic use of radar (SAR) and multispectral satellite imagery can contribute 

towards the improvement of locally generated 𝜃𝑣 products at a spatial resolution that 

is practical for farm management. 

• The applied Random Forest machine learning technique showed promising predictions 

for spatial, near surface 𝜃𝑣 mapping. 

• The generated terrain information, pasture growth and climatic datasets may be a 

valuable dataset for testing out and validating pasture growth simulations. 

• While slope angle is the most important terrain attribute influencing pasture 

productivity levels, aspect and landscape elements are also parameters to consider 

along with the associated seasonality component. 
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•  𝜃𝑣 and 𝑇𝑠 at 100 mm soil depths were the most important for the pasture growth, 

showing the strongest correlations, although their role changes with seasons.  

• Based on the observed spatiotemporal variability, the need for improved 𝜃𝑣 monitoring 

is critical to support fertiliser applications, farmers and in general decision making in hill 

country farm management. 

8.7.1 Recommendation for future research 

The number of WSNs is continuously increasing, as the long-term records of 𝜃𝑣 are fundamental 

for understanding how the climate change affects the water cycle as well as agricultural 

productivity (Seneviratne et al., 2010, Dorigo et al., 2011c). Despite the growing number of 

sensor networks, the resolution of 𝜃𝑣 measurements is still relatively coarse globally, and 

regionally (Dorigo et al., 2014).  

Therefore, a potential future research direction could include the deployment of a regional or 

country scale 𝜃𝑣 and 𝑇𝑠 monitoring network using latest, and more affordable sensors. The 

collected data could also be useful for climatic studies, better weather predictions and validating 

remote sensing products. The research could involve farmers, who would voluntarily upload the 

data and receive information and data access in return using subscription-based online surfaces. 

At this stage, the knowledge between generations and farmers is given by extension; hence, this 

kind of collaboration may improve the recognition of the values of scientific research and data 

collection by the growers and bring closer the scientific and farming communities. If they are 

willing to take up technology, willing to engage and be part of the innovation system, the 

relationship between scientific research and practical implications could be significantly 

improved. Thus, ultimately, this collaboration would lead to better wealth and more sustainable 

growth in hill country farming.  
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