
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

The Cognitive Construction of Programs by Novice Programmers

A thesis presented in partial

fulfillment of the requirements

for the degree of

Master of Science

in Computer Science at

Massey University

Zoe Joanne Rose

1998

This page intentionally left blank

ABSTRACT

Human memory and cognition are studied to aid novice programmers with the cognitive

construction and the acquisition of program plans. Particular emphasis is placed on the

storage and retrieval of program knowledge, the cognitive structure of stored program

knowledge, the effects of transferring cognitive structures from one programming

language to another, and the learning activities involved with learning a new

programming language. Cognitive principles are applied to the design of a

programming language and environment. The design of both the programming

language and environment are discussed together with an introduction of how they are

used. The hypothetical results of two experiments are argued to demonstrate that the

programming language and environment are well suited in supporting the development

of program plans.

This page intentionally left blank

ACKNOWLEDGMENTS

To Grant for having the patience of a saint.

For being great parents and giving unlimited support a special thankyou to Paul and

Julie Rose.

Happy smiley faces also go to my supervisors © Nigel and © Doug for patiently waiting

for a masterpiece to be completed - hope this thesis will suffice instead.

Giant cuddles and big meaty bones also go to my dog Akela for all the daily walks I

missed.

This page intentionally left blank

TABLE OF CONTENTS

1. INTRODUCTION ... 15

1.1 Theories of Human Memory Storage ... 15

I.I.I The Atkinson-Schiffrin Model of Human Memory 16

1.1.2 The Levels of Processing Approach 17

1.1.3 The Episodic and Semantic Model of Memory 17

1.2 Cognitive Representation of Computer Programs .. 18

1.2.1 Mental Models 18

1.3 Expert Programmers Versus Novice Programmers .. 20

1.3 .1 Characteristics of an Expert Programmers Mental Representation 20

1.3. 1.1 Hierarchic Structure 20

1.3 .1.2 Explicit Mappings 21

1.3 .1.3 Basic Recurring Patterns 22

1.3 .1.4 Well Connected 22

1.3.1.5 Well Grounded 23

1.4 Transfer 23

1.5 Central Learning Activities ... 24

1.5.1 Language Syntax 25

1.5 .2 Language Semantics 25

1.5 .3 Planning Activities 26

1.5 .3.1

1.5 .3.2

1.5.3 .3

Strategic Plans 26

Tactical Plans 26

Implementation Plans 27

1.6 Objective ... 29

2. PROGRAMMING CONCEPTS ... 31

2.1 Mental Models and the ZL Programming Language ... 31

2.1.1 Value Naming 31

2.1.1.l Mental Model - Value Naming 32

2.1.2 Operator Application 33

2 .1.2.1 Mental Model - Operator Application 33

2.1.3 Conditionals ... 34

2.1.3 .1 Mental Model - Conditionals 34

2.1.4 Nesting 35

2.1 .4.1 Mental Model - Nesting 35

2.1 .5 Iteration and Recursion 37

2.1.5.1 Mental Model - Iteration and Recursion 37

2.1.6 Pattern Matching 39

2.1 .6.1 Mental Model - Pattern Matching 39

2.2 Mental Models and the ZL Environment ... 41

2.2.1 Stationary Windows 41

2.2.2 Microsoft Standard 42

2.2.3 Relating Iconic Pictures to Toolbar Button Functions43

2.2.4 Separate Window for each ZL Function44

3. THE ZL LANGUAGE ... 45

3.1 Overview 45

3.2 Types .. 45

3.2.1 Basic Types 45

3.2.2 Tuple Types 46

3.2.3 Pattern Types 46

3.2.4 Function Types 46

3.3 Expressions 46

3.3.1 Simple Expressions 47

3.3.1 .1 Literal Constants 47

3 .3 .1.2 Tuple Expressions 4 7

3.3.2 Qualified Expressions 48

3.3.3 Application Expressions 49

3.3.3.1 Conditional Expressions 49

3.3.3 .2 Function Applications 50

3.3.3 .3 Operator Applications 50

3.4 Patterns 52

3 .4 .1 Pattern Matching 52

3.5 Functions ... 54

4. THE ZL ENVIRONMENT .. 57

4.1 Overview 57

4.1.1 The Menubar 58

4.1.2 The Toolbar 59

4.1.3 Status Bar 60

4 .1.4 Function Toolbar 60

4.1.5 Expression Bar 61

4.1.6 Message Bar 61

4.1.7 Function Window 61

4.2 Using The ZL Environment .. 62

4.2.1 Entering and Evaluating an Expression 62

4.2.1.1 Entering an Expression: 62

4 .2.1.2 Evaluating an Expression 62

4.2.2 Entering and Evaluating a Function 63

4 .2.2.1 Creating a New Function 63

4 .2.2.2 Debugging a Function 64

4 .2.2.3 Using a Predefined Function 64

5. IMPLEMENTATION .. 67

5.1 Introduction to Design Methodology ... 67

5. 1.1 The Unified Method 67

5.1.1.1 Classes 67

5.1 .1.2 Objects 68

5. I .1.3 Aggregation 68

5.2 Overview 69

5.3 Interface 71

5.3.1 Application Class 71

5.3.2 Mainframe Class 72

5.3.3 Control Bars 73

5.3.3 .1 Toolbar 73

5.3.3 .2 Function Toolbar 74

5.3.3 .3 Expression Bar 74

5.3.3.4 Message Bar 75

5.3.4 Function Window 75

5.3.4.1 Function Document Class 75

5.3.4.2 Function View Class 76

5.3.4.3 Function Frame Class 76

5.4 Lexical Analyser ... 77

5.4.1 Tokens .. 78

5.5 Parser .. 79

5.5.1 Parse Tree ... 79

5.5.1.1

5.5.1.2

5.5.1.3

5.5.1.4

5.5.1.5

5.5.1.6

5.5.1.7

Definition Class .. 80

Function Class 80

Pattern Class 80

Expression Class .. 81

Qualified Expression Class .. 81

Tuple Expression Class .. 81

Application Class ... 82

5.6 Type Checker 85

5.6.1 Tables 86

5 .6.1.1 The Operator Table 86

5.6.1.2 The Identifier Table 87

5.6.1.3 The Global Function Table 87

5.6.2 Typechecking a Parse Tree ... 87

5.7 Evaluator ... 90

5.7.1 ValueStructure 91

5.7 .2 Evaluating the Parse Tree 91

6. TESTING THE OBJECTIVE .. 95

6.1 Identifying Objectives .. 95

6.2 Testing Objectives .. 96

6.2.1 The Construction of Mental Models for Generic Programming Concepts 96

6.2.1.1 Subjects 96

6.2.1.2 Procedure 96

6.2.2 Hypothetical Test Results 99

6.2.3 Planning and the Transfer of Mental Models 100

6.2.3. I Subjects 10 I

6.2.3.2 Procedure ... 101

6.2.4 Hypothetical Test Results 103

6.2.5 Difficulties of Measuring Transfer 106

7. CONCLUSION .. 109

8. REFERENCES .. 115

9. APPENDIX A: THE ZL GRAMMAR .. 119

10. APPENDIX 8: THE ZL TYPE RULES .. 121

This page intentionally left blank

TABLE OF FIGURES

Figure 1 : The Atkinson-Schiffrin Model of Memory 16

Figure 2: A Tourist's Mental Model of Directions 19

Figure 3 : A Taxi Driver's Mental Model of Directions .. . 19

Figure 4 : Structure Diagram (Mental Model) of Problem 1 .. 21

Figure 5 : Mapping Program Goals to the Mental Model 22

Figure 6 : Generic Strategic Plan for Solution to Problems 1 and 2 .. . 26

Figure 7 : Generic Tactical Plan for Solution to Problems 1 and 2 27

Figure 8 : Levels of Plan Knowledge Amongst Expert Programmers .. 28

Figure 9 : Mental Model of a Value Naming 33

Figure 10: Mental Model of an Operator Application 34

Figure 11 : Mental Model of a Conditional.. 35

Figure 12: Mental Model of Nesting 36

Figure 13 : Mental Model of Recursion 38

Figure 14: Mental Model of Pattern Matching 40

Figure 15 : The ZL Environment.. 41

Figure 16 : The Hide, Debug, and Run Buttons 43

Figure 17 : ZL Expressions and Functions in a Novice Programmer's Mental Model 44

Figure 18 : Functional Perspective of the Sum Algorithm ... 45

Figure 19 : The ZL Environment.. .. 57

Figure 20 : The Menubar 58

Figure 21 : The Main Toolbar .. 59

Figure 22 : The Status Bar .. 60

Figure 23 : The Function Toolbar 60

Figure 24: The Expression Bar 61

Figure 25 : The Message Bar 61

Figure 26 : The Function Window ... 62

Figure 27: Class Diagram 67

Figure 28: Object Message Diagram ... 68

Figure 29 : Aggregation 68

Figure 30 : Creating a Parse Tree for a ZL Function 70

Figure 31 : Evaluating an Expression ... 71

Figure 32 : The Application Class 72

Figure 33 : The Mainframe Class 72

Figure 34 : Control Bars in the ZL Environment... 73

Figure 35 : The Expression Bar .. 75

Figure 36 : Message Bar 75

Figure 37 : The Function Document Class ... 75

Figure 38 : The Function View Class ... 76

Figure 39: The Function Frame Class .. 76

Figure 40 : Creating the Lexer Object 77

Figure 41 : Retrieving a Symbol from the lexer - activated by message Get Symbol() 78

Figure 42: Structure oflexinfo (token) .. 78

Figure 43 : Creating the Parser Object 79

Figure 44 : The Definition Class 80

Figure 45 : The Function Class ... 80

Figure 46 : The Pattern Class 81

Figure 4 7 : The Expression Class ... 8 I

Figure 48 : The Qualified Expression Class ... 81

Figure 49 : The Tu pie Expression Class 82

Figure 50 : The Application Class .. 82

Figure 51 : The ZL Parse Tree 82

Figure 52 : Object Message Diagram for the ZL Parser ... 83

Figure 53 : Creation of a Parse Tree for ZL Function 'sqr' 84

Figure 54 : Parse Tree for ZL Function 'sqr' ... 85

Figure 55 : Creating a Typechecker Object 85

Figure 56 : Structure of an Operator Table Element.. ... 86

Figure 57 : Structure of an Identifier Table Element .. 87

Figure 58 : Object Message Diagram of the ZL Typechecker .. 88

Figure 59 : Typechecking the ZL Function 'sqr' 90

Figure 60: Value Structure 91

Figure 61 : Object Message Diagram for Evaluating a ZL Parse Tree ... 92

Figure 62 : Parse Tree for the ZL Expression 'sqr (5)' .. 93

Figure 63 : Evaluating the ZL Expression 'sqr(5)' 93

Figure 64 : Problem I - Time spent by ZL and Control Groups at the Planning Stages 105

Figure 65 : Problem2 - Time spent by ZL and Control Groups at the Planning Stages 106

15

1. INTRODUCTION

Computer programming is a form of problem solving, and like all forms of problem

solving it takes time to reach an expert level of proficiency. According to Campell,

Brown and DiBello (1992), this time period is approximately five or more years.

In order to optimise this time period and understand why it takes so long to become a

proficient programmer it is necessary to study human memory and cognition (Holt,

Boehm-Davis and Schultz, 1987). Specifically, it is necessary to study:

• How knowledge is cognitively stored and retrieved in human memory, in

particular how programming knowledge is cognitively stored and retrieved.

• The differences between an expert programmer's knowledge store and a

novice programmer's knowledge store.

• What type of knowledge is transferred from one programming language to

another, and does this transfer of knowledge help or hinder the programmer?

• What stages of learning does a programmer progress through in order to learn

a new programming language?

1.1 THEORIES OF HUMAN MEMORY STORAGE

Memory involves retaining information over time; this can include memories retained

for less than one second or memories that are retained over a lifetime. At present there

are three main theories on human memory storage:

• The Atkinson-Schiffrin Model (1968);

• The Levels of Processing Approach (Craik and Lockhart, 1972);

• The Episodic and Semantic Model of Memory (Tulving 1972).

16

1.1.1 The Atkinson-Schiffrin Model of Human Memory

Figure 1 presents a flow chart of the Atkinson and Schiffrin model of memory, the flow

indicates that information is transferred from one storage area to another.

External Input

Sensory Memory
Lost from SM

Short Term Memory
Lost from STM

Long Term Memory
Lost from L TM

Figure I : The Atkinson-Schiffrin Model of Memory

Information from the environment that is raw and unprocessed will first enter sensory

memory. Sensory memory is the large capacity storage system that records information

from the senses.

Relevant information then passes from sensory memory into short term memory, while

all other irrelevant information is discarded (as shown in Figure 1). For example, a

student studying in a library will often hear the whispers of other library patrons talking.

The whispering noises are irrelevant to the studying student, thus these noises will be

discarded and only the relevant studied facts will be transferred to the student's short­

term memory.

As shown in Figure 1 information will then pass from short-term memory to long-term

memory. Atkinson and Schiffrin state that if information is rehearsed frequently and

kept for a long period oftime in short term memory, the information will be more likely

to transfer to long term memory. Information that is contained in long term memory is

relatively permanent and not easily lost (Matlin, 1989).

In more recent years there has been an abundance of research into human memory that

suggests memory may not be stored in fixed structures, as with the Atkinson-Schiffrin

model. This research has lead to the popularity of the levels of processing approach.

17

1.1.2 The Levels of Processing Approach

In contrast to the Atkinson-Schiffrin model, which places the emphasis on fixed

structures, the levels of processing theory stresses the flexibility humans use when

processing information (Matlin, 1989; Reed, 1988).

The levels of processing model suggests humans analyse new information in many

different ways, from shallow levels of processing to deep levels of processing. Shallow

levels of processing may involve judgements about letters, e.g. the height, colour, or

shape of a letter, whereas deeper levels of processing may involve judgements about

words, e.g. whether a word is appropriate for a particular sentence (Matlin, 1989).

According to Craik and Lockhart (1972), deeper processing of information leads to

better retention and recall of information, because deeper levels of encoding will extract

more from a stimulus. When an individual analyses new information they may think of

other associations, images, and past experiences related to the new information. A

deeper association is thus made to the new information, and it is less likely to be

forgotten.

Craik and Lockhart believe that the levels of processing approach uses distinctiveness

and elaboration to help promote information recall. Distinctiveness describes the extent

to which a stimuli's memory trace is different from other memory traces in an

individual 's memory system. Elaboration involves processing in terms of meaning

(Matlin, 1989, Reed, 1988).

1.1.3 The Episodic and Semantic Model of Memory

Like Atkinson and Schiffrin's model of memory Tulving (1972) also categorises

memory into two types: Episodic and Semantic.

Episodic memory contains information about time-date events, e.g. "I have a dentist

appointment at 3:30 p.m. tomorrow". Semantic memory holds fairly constant, organised

knowledge about the world, e.g. "I remember that the chemical formula for water is

H20".

18

Just as there are many different theories on how memory as a whole is stored, there are

many different theories on how Tulving's semantic memory is stored. One of the most

popular theories is Anderson's Propositional Network Model (1983). According to

Anderson the propositional network model proposes that there is a netlike organisation

of propositions in memory, where a proposition is the smallest unit of knowledge that

can be judged true or false.

Each proposition is represented as a node in one of many networks contained in human

memory. According to Anderson the links between the nodes vary in strength. The

more the links are used the stronger they become. When one node is activated, the

activation spreads to other linked nodes, which in tum are also activated.

Both the levels of processing approach and the propositional network approach agree

that the more associations a given piece of information receives, then the easier that

information is to recall and retain. However, if an incorrect association occurs the

wrong information can mistakenly be recalled.

1.2 COGNITIVE REPRESENTATION OF COMPUTER PROGRAMS

In order to aid programmers it is not only necessary to study theories of human memory

storage, it is also necessary to study the way in which a program is stored cognitively,

and how the programmer uses this cognitive representation (Holt, Boehm-Davis &

Schultz 1987).

Letovsky (1986) suggests that mental models are used to help form the basis of a

programmer's cognitive model. Holt et.al. (1987) suggests that programmers form this

mental model from a program's structure and function.

1.2.1 Mental Models

A mental model is an internal representation that an individual has of a problem (Matlin,

1989), i.e. a picture in one's mind. For example, if a tourist needs directions from their

hotel to a famous church, they might be given these instructions:

Turn left when you leave the hotel. Turn right at the first
set of lights. On the same intersection is a McDonalds

restaurant and a children's park. Carry on down this road
until you reach the third set of traffic lights. Just
before you reach the traffic lights there is a lake for
sailing boats. The church is in the opposite corner of the
intersection.

19

Figure 2 shows the mental model the visitor might construct from the above directions.

~ I #c#c ~~l I DDCJ

~ 1aaa TI aaar IW
Figure 2 : A Tourist's Mental Model of Directions

As shown in Figure 2 the tourist has included unnecessary information in his model.

The tourist has even included assumed information that was not stated. This

unnecessary attention, by the tourist, has caused inaccuracies in the model to occur. The

tourist now believes the church is one traffic light closer than it actually is.

If the same directions were given to a taxi driver, then Figure 3 could represent the

outcome of the driver's mental model.

_J LJ Li LJI '------------'
~nnn1rn

Figure 3 : A Taxi Driver's Mental Model of Directions

As the taxi driver is assumed to be an expert in the field of deciphering directions his

mental model is simple and uncomplicated. He has managed to eliminate all

unnecessary information, and is left with a simple model that will guide him directly to

the church.

20

From the above example, it can be seen that if the tourist doesn't learn to build mental

models similar to the expert's, then he is going to have to buy a map.

Just as the tourist needs to learn how to construct a taxi driver's expert mental model, a

novice programmer needs to learn how to construct an expert programmer's mental

model.

Letovsky (1986) suggests that an expert programmer's mental model is created through

the combination of information from:

• reading the program documentation and code;

• knowledge from a knowledge base of expertise.

Reading a program's documentation and code is easy, but how does a programmer build

a knowledge base of expertise?

1.3 EXPERT PROGRAMMERS VERSUS NOVICE PROGRAMMERS

According to Fix, Wiedenbeck & Scholtz (I 993) a general research finding is that

expert programmers have a better functional understanding about what a program does

rather than how it does it. Novice programmers fail to extract the necessary information

to fom1 a complete mental representation. Fix et.al. (1993) go further to suggest that

there are five abstract characteristics which exist in an expert's mental representation of

a program, which do not appear in a novice's mental representation.

1.3.1 Characteristics of an Expert Programmers Mental Representation

1.3.1.1 Hierarchic Structure

A hierarchically structured mental model is a representation that contains depth and

breadth proportional to a program's structure. Nanja and Cook (1987) also observed this

characteristic and noted that expert programmers read a program in the order it is

executed. Nanja and Cook believe this feature leads to the hierarchical structure of a

programmer's mental model. For example, Figure 4 illustrates 'Problem 1' with a

structure diagram that has both depth and breadth.

Output the sum of ten random numbers

Initialise Variables

Counter<- 0
Total<- 0

Number<-
Get Random Number

Problem 1

Problem 1

Calculate Answer

While Counter
<> 10 Do

Total <­
Number + Total

Output Answer

Output Total

Counter <­
Counter + 1

Figure 4 : Structure Diagram (Mental Model) of Problem 1

1.3.1.2 Explicit Mappings

21

Explicit mappings are the links between the layers of a hierarchically structured mental

model. Letovsky (1986) argues that programs can be quite clear to novices through the

use of documentation, variable names, data structures etc. However, overall program

comprehension cannot be achieved unless there are links between the different entities,

i.e. a mapping between high-level program goals and their code representation.

Pennington (1987) further verified that there existed differences in the ability of expert

and novice programmers to link specific segments of code to program goals.

As a simplified example of this case, problem 1 has three simple goals:

1. Initialise variables

2. Calculate answer

3. Output answer

As illustrated in Figure 5, expert programmers relate goals 1-3 to areas a-c respectively.

22

area a area b ,..
: ________ =

I Initialise Variables I I
: ________ '
I c;~:~~~~ 0 I
.. ·

Calculate Answer

While Counter
<> 10 Do

area c ,

: ~-------' ! j Output Answer j I

1 ... 1 ~~~:..~~ .. ~~-~~-l 1.J

~ .. :

j Number <- Total <- Counter <- j
l Get Random Number Number+ Total Counter+ I \

~ ... ~

Figure 5 : Mapping Program Goals to the Mental Model

1.3.1.3 Basic Recurring Patterns

Soloway and Ehrlich (1984) suggest that expert programmers store programmer

knowledge as 'plans' (mental models) for managing frequently recurring situations.

They showed that if programs were not structured in a 'plan' format then experienced

programmers comprehension was disrupted.

For example, the programmer' s plan in Figure 4 is to use a 'while statement' for

summing 10 random numbers. The programmer in this example could just have easily

used a 'for statement'. However, it might be that the programmer has used 'while

statements' several times previously, and so already has a planned mental model of

'while statements' formed.

According to the Levels of Processing Approach and Anderson's Propositional Network

Model, this is because the more the 'while statement' is used by the programmer the

deeper the statement will be processed in memory and the more associations it will

have. Thus, when recalling information about a statement that can be used for iteration,

the 'while statement' immediately occurs to the programmer.

1.3.1.4 Well Connected

Fix et. al. (1993) state that a model is well connected if a programmer understands how

parts of a program interact together. They go further to state that an experienced

programmer will concentrate more on areas of their code which require interaction, i.e.

23

module interfaces, whereas a novice 1s unlikely to pay attention to this type of

information.

Using Figure 5 as an example, the experienced programmer is able to understand how

the different areas interact together, i.e. the programmer knows that 'area a' is always

executed first, followed by 'areas band c'.

1.3.1.5 Well Grounded

A mental model is well grounded if it includes information on the physical locality of

structures and operations in the program code. Fix et.al. (1993) state that in general

experts will have a mental model which is well grounded in the program text, whereas a

novice's model is only well grounded for fixed information. For example, an expert

programmer will know the locality of different programs and functions throughout their

code, whereas a novice programmer may only know where to locate declared variables.

1.4 TRANSFER

Once a novice programmer learns the basic steps of creating a 'programmer' s' mental

model, they can use those steps as building blocks to help create future programs.

However, what if it is necessary for a programmer to write a program in a target

language that is different from the language in which they initially learned to program?

Leaming second and subsequent programming languages involves transferring

previously learned skills and concepts (Scholtz and Wiedenbeck, 1990). Although the

transfer remains in the domain of programming it is still difficult, even for experienced

programmers. This is because having an understanding of the new language is not

enough, the programmer must also build a foundation of mental models with the new

language.

When learning a second or subsequent programming language, two types of transfer can

occur: negative transfer and beneficial transfer. Negative transfer occurs when the

learning of a new skill is in direct conflict with a skill already well known (Anderson,

1985). An example of negative transfer is mental set. Mental set is a characteristic of

problem solvers to use a solution they have previously used to solve a new problem,

24

even when there maybe better methods. Mental set can therefore be described as

blocking the problem solver from effective problem solving (Matlin, 1989).

Luchins (1942) demonstrated the problem of mental set very effectively. He used a

'water jar' puzzle to test the mental set of subjects. The problem has seven sub­

problems. All seven problems could be solved using the same solution method. The

last two, however, have a much simpler and easier solution. Luchins discovered that if a

subject solved problems 1 - 5 first, then they were more likely to use the same method

for solving problems 6 and 7. However, if a subject solved problems 6 and 7 first, then

the subject was more likely to use the simpler method.

Beneficial transfer occurs when an old skill aids the learning of a new skill (Anderson,

1985). Singley and Anderson (1985) showed that if two text editors shared common

elements, then knowledge learned from one text editor beneficially transfers to the

other.

Learning a text editor can be quite different from learning a programming language.

Does the Singley theory hold for learning new programming languages? In other words,

do common elements between programming languages transfer, and if so, what are these

common elements, and in which areas do programmers have the most difficulty

transferring knowledge and skills.

1.5 CENTRAL LEARNING ACTIVITIES

Scholtz and Wiedenbeck (1990) showed that when a programmer is given a problem to

solve in a new programming language, the programmer:

• first forms a mental model of the solution in a language they already know,

• then tries to find ways to implement this solution in the new language.

Often the concepts or constructs a programmer needs are not found in the new language.

This is a clear case of negative transfer, where the programmer has made incorrect

mental model associations.

25

Scholtz and Wiedenbeck (1990) also discovered three learning activities associated with

the learning of a new programming language.

1.5.1 Language Syntax

"Syntax describes the form of the sentences in a language" (Terry, 1986). For example,

the English sentence 'The boy ran away' is syntactically correct. Whereas the sentence

'Boy away ran the' isn't. According to Scholtz and Wiedenbeck, learning the syntax is

the easiest part of learning a new programming language.

If an experienced programmer is already familiar with a language, they will spend very

little time thinking about syntax. If however, an experienced programmer is learning a

new language, they will devote more time to studying the new syntax.

1.5.2 Language Semantics

"Semantics describe the meaning of a syntactically correct sentence in a language"

(Terry, 1986). For example the sentence "The frog ate the fly" is syntactically and

semantically correct. Whereas the sentence 'The fly ate the frog' although syntactically

correct, is not semantically correct.

Scholtz and Wiedenbeck discovered that an experienced programmer will concentrate

more on the semantics of a language than on the syntax of a language. Experienced

programmers are very careful to understand the semantics of constructs they use. If

constructs in a new language have a similar syntax to constructs in a known language

then assumptions are made as to their function. This is where the programmer can make

incorrect mental model associations. Negative transfer of this type is very persistent

amongst programmers.

According to Scholtz and Wiedenbeck when learning new programmmg languages,

experienced programmers will effectively apply and transfer their past knowledge of

syntactic and semantic information.

26

1.5.3 Planning Activities

Planning is associated with the structure of a solution. It is associated with how the

programmer's mental model is put together. Soloway and Ehrlich (1984) identified

three levels of plan knowledge among expert programmers.

1.5.3.1 Strategic Plans

Strategic plans are language independent and are used by the programmer to form an

overall strategy for solving a problem. According to Scholtz et al. (1990) strategic

planning occurs at the very beginning of the problem solving process. An experienced

programmer is inclined to spend very little time forming strategic plans. This is because

experienced programmers will beneficially transfer a solution they have previously used

to help solve a similar problem.

For example, the same programmer who solved problem 1 is asked to solve problem 2,

However this time the target language is different to the target language of problem 1.

As the structure of the two problems is similar, the programmer may use the same

strategic plan (Figure 6).

Output the product of the fir s t three numbe r e ntere d b y a user

Problem 2

Problem 2

Initialise Variables Calculate Answer Output Answer

Figure 6 : Generic Strategic Plan for Solution to Problems I and 2

As can be seen from Figure 6, the programmer has beneficially transferred his

knowledge from a previous problem to help solve a new problem.

1.5.3.2 Tactical Plans

Tactical plans are language independent and are used by the programmer to form a local

strategy for solving a problem. Using problem 2 again as an example, the programmer

can beneficially transfer his tactical plan from problem 1 to help solve problem 2. All

27

that is necessary is for the programmer to 'fill in the gaps' to find the new solution

(Figure 7).

Initialise Variables

Counter <- 0
Total <- 0

Number <-

Problem 2

Calculate Answer

While Counter
<> Do

Total <­
Total

Output Answer

Output Total

Counter <­
Counter + I

Figure 7 : Generic Tactical Plan for Solution to Problems I and 2

In assuming the use of variables and iteration the programmer is also assuming a

similarity of target languages.

When creating tactical plans programmers make assumptions about the language in

which the solution will eventually be written. Experienced programmers will have, over

time, built up a reasonable number of tactical plans, so that, if one plan fails , another can

be selected.

This method, however, does have drawbacks. As the programmer is relying on tactical

plans for a given language, they maybe inappropriate in some situations.

Unlike strategic plans a programmer will often come back to re-evaluate their tactical

plans during implementation.

1.5.3.3 Implementation Plans

Implementation plans are language dependent and are used by the programmer to

determine how they will achieve their strategic and tactical plans in the target language.

Programmers spend the bulk of their planning time 'planning' the implementation stage.

The programmer will usually start their implementation plan by finding constructs with

a resemblance to constructs they have previously used. Implementation plans will go

smoothly if this is the case, but often programmers cannot find such constructs, and a

28

revision of their tactical plan is necessary. This is because even though tactical plans

should be language independent they often make language commitments. For this

reason there is a strong interaction between tactical and implementation planning.

When learning a new language, implementation planning and the interaction is has with

tactical planning is often the most difficult stage of the planning process for a

programmer. Figure 8 shows the interactions between the planning stages.

Strategic
Planning

Tactical
Planning

Plan

Revise Plan

Implementation
Planning

Figure 8 : Levels of Plan Knowledge Amongst Expert Programmers

As shown in Figure 8 , the programmer may move several times between the two stages,

until a solution is eventually reached.

This by-play between the two stages of planning eventually leads to a store of mental

models for the programmer.

29

1.6 OBJECTIVE

The objective of the present work is:

"to aid novice programmers in the cognitive construction of programs and the

acquisition of program plans".

This goal will be achieved by applying cognitive principles:

1. To the development of a simple programming language designed to enable

novice programmers to develop simple mental models.

2. To the development of an easy to use programmmg environment for this

language.

Creating simple mental models are beneficial to the novice programmer because they:

• can be used as building blocks, to build more complicated models.

• are easy to positively transfer to other languages.

Creating an easy to use environment will:

• Encourage the novice programmer to explore the programming language and

build up a store of strategic, tactical and implementation plans.

30

This page intentionally left blank

31

2. PROGRAMMING CONCEPTS

This chapter describes how cognitive principles are used to create the ZL language and

environment.

2.1 MENTAL MODELS AND THE ZL PROGRAMMING LANGUAGE

According to Bohrn and Jacopini (1966), in its very simplest form, a programming

language need only have two fundamental programming concepts in order for a

complete program to be written. These concepts are composition and iteration.

As the ZL language is designed to aid novice programmers with the learning of

computer programming languages in general, it must not only include the fundamental

concepts of composition and iteration, but also basic programming concepts found in

modern programming languages.

The ZL language exemplifies generic programming concepts common to some, if not

all, programming languages. These concepts are:

• Value Naming • Operator Application

• Composition • Pattern Matching

• Iteration • Nesting

• Conditionals • Recursion

2.1.1 Value Naming

Value naming is the binding of a name to a value. Once bound the name can be used to

represent its value in a program, i.e. the value can be manipulated through the use of the

name.

In ZL qualified expressions are used to name values. For example:

let
I
I

one <­
two <­
three<-

1
1 + 1
1 + 2 in on e + t wo + three

32

2.1.1.l Mental Model - Value Naming

Value naming is an important concept, as it can be likened to variable assignment,

which is a generic concept common to many imperative languages. Variable

assignment binds a variable to a value, just as value naming binds a name to a value.

It is not the exact details of the variable assignment concept that are important, but the

concept itself. Thus, if a novice programmer can form a mental model of the concept

variable assignment using a qualified expression then the objective has been achieved.

The above ZL example binds the values 1, 2, and 3 to the names one, two, and three

respectively. The goal is to aid the novice programmer with the association of the

names and values when they initially build their mental model. This is achieved by:

• Syntax - the symbol <- is a visual aid to the novice programmer, i.e. they are most

likely to have seen and used this symbol previously, the symbol is visually stating to

the user 'bind one to 1', 'bind two to 2', bind three to 3'.

• Hierarchical Structure - a value is named before it can be used in a program. A ZL

qualified expression ensures names are bound to values before they are referenced in

an executed expression, this feature aids the building of breadth in a novice's mental

model. Depth of a mental model is also aided by the consecutive binding of names to

values.

• Explicit Mapping - in a ZL qualified expression a link is formed through the word

'in' from the binding of the values to their names to the expression in which they are

used.

Figure 9 illustrates how a novice user from the previous example of a ZL qualified

expression can construct a mental model for value naming.

33

Value Naming

One <-
Use Values in Program

Two <- I+ I
One + Two + Three

I Three j <- 1+2

Figure 9: Mental Model ofa Value Naming

As shown in Figure 9, the mental model the novice user may create is generic, it will

beneficially transfer from the ZL programming language to most other programming

languages, i.e. the novice programmer will bind all names to values before the names

are used in the program.

2.1.2 Operator Application

A basic programming concept found in high level programming languages is operator

application. Operator application is where an operator is applied to one or more

operands. The operator can either be relational, e.g. <, >, => or it can be mathematical,

e.g. +, -, *. For example,

6 + (4 * 2)

2.1.2.1 Mental Model - Operator Application

The goal is not to build new mental models for operator applications, but to use existing

models already constructed by the novice programmer. This is achieved by:

• Deep Levels of Processing - As the precedence of all mathematical operators in ZL

follow conventional rules, evaluating an operator expression in ZL will not introduce

anything new to the novice programmer. Therefore, it is not necessary for the novice

programmer to create new mental models for operator applications, as these models

should already exist within the programmer.

34

Figure 10 illustrates a mental model that may be constructed by the novice programmer

from the previous example of an operator application.

+

6 *

4 2

Figure 10: Mental Model of an Operator Application

2.1.3 Conditionals

A conditional is a program phrase, which selects one of a number of possible phrases,

based on the value of an expression. For example:

if a> 0 t h e n
a * a

e l s e
a + l

2.1.3.1 Mental Model - Conditionals

The above example evaluates the expression a > o, the expression to next evaluate is

dependant upon the resulting value. If the resulting value is true expression a * a is

evaluated, if the resulting value is false expression a + 1 is evaluated.

The goal is to aid the novice programmer with the construction of a mental model which

is transferable and reflects the interaction between the three different expressions. This

is achieved by:

• Basic Recurring Pattern - the simple 'if then else' syntax used, is the same syntax

used in many other languages for conditionals. Using the same syntax in the ZL

language, increases the conditionals level of processing, which also increases the

transfer efficiency of the mental model from ZL to other languages.

• Well Connected - The if-then-else syntax is easily recognised from other languages.

It is also very comprehensible, i.e. it is very easy to understand and follow - if this is

35

true, then do this, else if this is not true, do something else. This ensures that the

mental model of the novice programmer is well connected, i.e. the interactions

between the three different expressions are clearly understood.

Figure 11 illustrates how a novice user from the above example of a ZL conditional

expression can construct a mental model for conditionals.

a > O

true false

a*a a+l

Figure 11 : Mental Model of a Conditional

As shown in Figure 11, the mental model a user may create in ZL should easily transfer

from ZL to other languages.

2.1.4 Nesting

Expression nesting is when an expression of one type is placed inside the body of

another expression of the same type. Function nesting is when one function is placed

inside the body of another different function. Nesting is a very important concept for

novice programmers to learn. This is because it is often the nesting of expressions and

functions which give a programmer's mental model the hierarchical structure.

In ZL both expressions and functions can be nested. For expressions, this includes both

tuple expressions and conditionals. For example:

fun compare (a, b) - >
if a= b then

else
1

if a> b
2

else
3

2.1.4.1 Mental Model - Nesting

fun swap (a, b) - >
if compare (a, b)

(b, a)
else

(a, b)

3 then

In the above example the compare function illustrates a nested conditional, and the swap

function illustrates a nested function in ZL. The goal is to aid the novice programmer

36

with the construction of a mental model that reflects the concept of nesting. This is

achieved by:

• Hierarchical structure - nested expressions and functions naturally have a hierarchical

structure, they literally force the novice programmer to include depth in their mental

model.

• Explicit Mappings - the links between the nested express10ns and the nested

functions are obvious to the novice programmer.

• Connection - nested functions are well connected. The simple interaction between

the nested function and the outer function aids the understanding of connections

within the novice programmer's mental model.

• Lazy Evaluation - ZL tuples use lazy evaluation, i.e. the elements within a tuple are

not evaluated until their values are needed. A tuple with n elements forces the novice

programmer to include breadth of at least size n. If the tuple ' s elements are not

evaluated until necessary, then the novice programmer's mental model must also

include depth for each tuple element. Thus, lazy evaluation of tuples aids the

hierarchical structure of novice programmer's mental models.

Figure 12 illustrates how a mental model for nesting can be constructed by a novice user

from the above examples of function nesting and conditional nesting.

swap (a, b)

compare (a, b) = 3 a=b

true false true false

(b, a) (a, b) a > b

true false

2 3

Figure 12 : Mental Model of Nesting

37

2.1.5 Iteration and Recursion

Recursion is where a function has the ability to call itself during the course of execution.

Iteration is the repeated execution of a particular block of code, thus iteration can be

defined as a simpler form of recursion.

As recurs10n 1s often the most natural way of expressing solutions to problems

(Harrison, 1989) ZL directly supports recursion. As iteration is viewed as a less

powerful form of recursion, it is only indirectly supported through the use of recursion.

For example:

fun Fib (n) - >
if n <= 2 then

1
else

Fib (n-1) + Fib (n-2)

2.1.5.1 Mental Model - Iteration and Recursion

The above ZL example will return the fibonacci value of the number n, e.g. the

fibonacci values of numbers 1 .. 9 are:

1, 1, 2 , 3 , 5, 8 , 13, 21 , 34

The fibonacci function stops after it returns one solution. However, to achieve a

solution for a number> 2 it was necessary for the fibonacci function to call itself. This

is the concept of iteration that it is necessary to convey to the novice programmer.

The goal is to the aid the novice programmer with the construction of a mental model

which reflects the 'repetition' concept and can be easily transferred by the novice

programmer from ZL to any other language. As stated earlier, it is the concept of

'repetition' that is important, not how it is achieved (through recursion in this case).

In ZL, the concept of 'recursion' is achieved by:

• Grounding - (refer to 1.3.1.5 Well Grounded) recursive functions are naturally well

grounded, i.e. recursive code is local to the recursive function - there isn't any need

to hunt for it.

38

• Strategic Planning - recursive functions require more thought and preparation than

simple iteration. The novice programmer therefore has to prepare a strategic plan

before they can code a solution (implementation plan). The strategic plan is naturally

language independent, thus promoting beneficial transfer to other languages.

• Hierarchical Structure - physically placing the name of the function in the actual code

aids the hierarchical structure of the novice programmer's mental model. This is

because the novice programmer will place the mental model they have created for the

function inside or below the mental model they are presently creating - their models

will end up with a layered effect, i.e. one function on top of another.

• Explicit Mappings - physically placing the name of the function in the actual code

not only aids the hierarchical structure of a mental model, but it also aids the links

between the layers of the mental model, i.e. directly naming the function, directly

names the links or ' loops' in this case.

Figure 13 illustrates how a user might construct a mental model for recursion using the

ZL function Fib.

Fib (n)

n <= 2

true false

Fib (n - 1) + !._____F_ib_(.:._n_-_2);.....,-_____,

I
n <= 2

true false

Fib (n - 1) +! ._ _F_ib_(...... n_-_2_) __.

I

Figure 13 : Mental Model of Recursion

39

Note: the above illustration is only an assumption on the type of mental model created

by a novice user. Each user is different, and, it must be stressed that the model used

may differ from one user to another.

2.1.6 Pattern Matching

Pattern matching matches together the types and values of two patterns. A pattern

match can either be successful or unsuccessful. If a pattern match is successful then

some form of operation occurs, if it is unsuccessful then an error may result. ZL uses

pattern matching specifically in qualified expressions and functions.

For example, the fibonacci function from section 2.1.5 Iteration and Recursion, can be

rewritten using pattern matching:

fun Fib (n) - >
if n <= 2 then

1
else

Fib(n-1) + Fib(n-2)

2.1.6.1 Mental Model - Pattern Matching

fun Fib
(1) - > 1
(2) - > 1
(n) - > Fib(n-1) + Fib(n-2)

The above ZL example shows the fibonacci function rewritten using pattern matching.

Both functions take exactly the same arguments and both output exactly the same result.

The goal is to aid the novice programmer with the construction of a mental model which

reflects the concept of pattern matching. This is achieved by:

• Planning - as shown in the above example, the fibonacci function can be coded in ZL

by using pattern matching or by using a conditional expression. In this case, the

novice programmer is forced to making a decision on which is the best solution.

This promotes both the strategic and implementation stages of planning.

• Syntax - the symbol - > is a visual aid to the novice programmer, i.e. it visually states

'from o return 1 ', 'from 1 return 1', etc .. .

40

• Semantics - pattern matching is clear and simple to understand. Novice programmers

can easily identify with the concept of 'matching', which aids the novice programmer

in forming a mental model of the pattern matching concept.

• Strict Evaluation - a pattern type can only contain elements of a basic or pattern type

(refer to section 3.2 Types). Therefore, if the value of an expression is to be bound to

a pattern element, then the expression must first be evaluated. Ensuring that the

expression is evaluated before pattern matching begins, helps focus the novice

programmer on the concept of pattern matching and not on the evaluation of

express10ns.

Figure 14 illustrates how a mental model for pattern matching can be constructed by a

novice user from the above example of a ZL fibonacci function with pattern matching.

Fib

I

~ •... - '----..---'

~ Fib(n-1)+
Fib(n-2)

Figure 14: Mental Model of Pattern Matching

41

2.2 MENTAL MODELS AND THE ZL ENVIRONMENT

Figure 15 shows a screen shot of the ZL environment.

~ - loop_to_ten l!!llil El
file ,E.clit :£jew .Qptions ~indow !:!elp

(10) -> 10
(count] -> loop_to_lO(count + 1]

Figure 15 : The ZL Environment

The ZL environment is designed to be functional, yet easy to use. This was achieved by:

• Stationary Windows

• Microsoft Standard

• Relating Iconic Pictures to Tool Bar Button Functions

• Separate Window for each ZL Function

2.2.1 Stationary Windows

There are only four different windows used in the ZL environment:

• The Expression Box

• The Output Box

• The Function Window

• Message Bar

42

Three of the above four windows remain stationary and cannot be moved around the

screen by the user. Keeping the windows stationary has three benefits:

• A voids confusion about the function of each window, i.e. the window at the

bottom of the screen will always be the message window, the novice user cannot

confuse it with any other window.

• Places emphasis on the only moveable window - the function window, thus

emphasizing the perceived importance of that window, i.e. 'Open', 'Save', and

'Print', from the file menu, refer to the function window.

• A voids unnecessary clutter. Many programmmg environments tend to over

clutter a computer screen with too much information, this can lead to confusion

for novice users.

2.2.2 Microsoft Standard

The ZL environment is designed for use on an IBM compatible Personal Computer

(PC). Most PC's use a common software brand, Microsoft, which has its own standard,

or rules, for designing software environments. The ZL environment conforms to the

Microsoft standard in the areas of:

• Tool bar buttons

• Menu Titles and Menu Items

• Window minimisation icons

There are other areas of the ZL environment m which the Microsoft standard 1s

followed, however only the above are the most obvious to novice programmers.

The Microsoft standard is followed in the ZL environment because as previously stated

it is commonly known among IBM compatible PC users. This means that the Microsoft

icons and menus should already be deeply encoded within the programmer's memory

(from using other products such as Microsoft Word, Microsoft Excel, etc). Using the

43

same Icons and menus in the ZL environment IS, therefore, an advantage as they

promote recall about the behaviour of the buttons and menus, and they also give the ZL

environment a nice friendly feeling.

2.2.3 Relating Iconic Pictures to Toolbar Button Functions

All but three of the tool bar buttons on the main tool bar use standard Microsoft icons.

These three buttons are the hide button, the debug button, and the run button.

Figure 16: The Hide, Debug, and Run Buttons

As shown in Figure 16, the three buttons have iconic pictures which match their names

to their tasks. Matching iconic pictures to button tasks promotes recall about button

behaviour.

• Hide Button: icon - a mask. Used for hiding function windows from the user's view.

• Debug Button: icon - a bug. Used for 'debugging' functions. The button is actually

responsible for doing much more than simply removing errors from functions.

However, from the user' s perspective, the only action performed is the identification

of 'bugs' in their functions - hence the name 'debug'.

• Run Button: icon - running stick man. This button is used for executing or ' running'

an express10n.

44

2.2.4 Separate Window for each ZL Function

Although the ZL environment was designed specifically to be simple and easy to use, it

also indirectly aids the novice programmer with the construction of their mental models.

This is because a unique feature of the ZL environment is that each function has its own

window, i.e. one function one window. Placing functions in separate windows

encourages the novice programmer to form breadth in their mental model. It also

ensures that the user maintains functions as separate entities, which in turn aids the

identification of basic recurring patterns in mental models.

Function l + Function 2 + Function 3 ZLExpression

Function l Function 2 Function 3 ZLFunctions

Figure 17 : ZL Expressions and Functions in a Novice Programmer's Mental Model

45

3. THE ZL LANGUAGE

3.1 OVERVIEW

An algorithm describes how a task is accomplished. With respect to a computer, an

algorithm describes the operations a computer performs to complete a task.

The functional programming paradigm views an algorithm as a mathematical function

from its input to its output (Goldschlager & Lister, 1988). For example, an algorithm to

add two numbers (n1 and n2) can be regarded as a mathematical function 'sum' with

input and output.

input output

.__ __ n.;:.;.1,_n.;;;..2 -~>----•._! __ s_um---'-(n_1_, n_2'""") _ __.----•._! __ n_1_+---'n2;;.___.

Figure 18 : Functional Perspective of the Sum Algorithm

The ZL language is a functional language, which similar to the above example, maps

input values to output values through the use of functions and expressions.

3.2 TYPES

Every value in the ZL language has a type. Types are not declared in ZL, they are

instead derived from assumptions made about ZL values.

3.2.1 Basic Types

ZL has two basic types; number and boolean. The domains of the basic types are:

number
boo lean

the integers,
the boolean values true and false.

In ZL any value which falls within either of the above domains is given the type of that

domain, i.e. if a value is within the domain of integers, then that value will have the type

'number'. Conversely, if a value is within the boolean domain, then that value will have

the type 'boolean'.

46

3.2.2 Tuple Types

A tuple type is the product of n ~ 2 types. The number of elements contained within a

tuple is referred to as the tuple's size. It is possible to create tuples within tuples. For

example, these are all tuple types:

(number x number)
(number x boolean x number)
(number x (boolean x number

3.2.3 Pattern Types

- an integer tuple of size 2 .
- a mix ed t ype tuple of size 3.

x numbe r))
- a mixed type t uple of size
2 , wher e the second type is
mixed type tuple of size 3 .

a

A pattern type is a product of n ~ 1 basic or pattern types, i.e. a pattern can contain basic

types and other pattern types. For example, these are all pattern types:

number
(boolean)
(number x number)
(number x (boolean x number))

The pattern type differs to the tuple type because the pattern type's elements must either

be of basic or pattern type. The pattern type can also contain only one element in

comparison to the two elements necessary for a tuple type.

3.2.4 Function Types

Function types have both a domain and a range:

<funct ion type>

Where type1 is the domain and type 2 is the range. The domain of a function type is a

pattern type of size n. The range of the function type can be any ZL type. For example:

number - > boolean
(number x number) - > number
(number x (numbe r x number)) - > number

3.3 EXPRESSIONS

There are three classes of expression in the ZL language: simple expressions, qualified

expressions, and application expressions:

<expression> <s imple>
<quali tied>
<application >
'(' <expression> ') '

3.3.1 Simple Expressions

Simple expressions denote numbers, booleans, and tuples:

<expression>
<simple >

3.3.1.1 Literal Constants

<simple>
<litera l >
<tuple >

Literal constants denote numbers and booleans:

<literal>

<integer literal>
<boolean literal >

<integer literal>
<boolean literal>
{0111 .. 19)+
true I false

47

ZL does not contain a character type, therefore character literals cannot be included as

simple expressions. Integer literals denote values of type number. If x is an integer

literal then x has the type number:

x: number

Boolean literals denote values of type boolean:

Examples of Literal Constants:

9 , 4 67
true, false

3.3.1.2 Tuple Expressions

true boolean
false : boolean

Tuples contain two or more elements. They are constructed using parentheses, where

each element within the tuple is separated by a comma.

<t uple > ' (' <expression1> { ',' <expressionn>} + ') '

The type of the tuple expression is the product of the types of the argument expressions.

The rule has n a premises.

A f- expression1 : 01 .. . A f- expression0 : o 0

A ~ (expression1 , expressionnl : o 1 x . .. x On

ZL tuples use lazy evaluation, where the elements of a tuple are not evaluated until it is

necessary to use their values.

Examples of Tuple Expressions:

(true , false)
(1 + 2, 4)
(sqr(7), (false, true, (6, 9)))
(let a= sqr(7) in a*a, let b = sqr(b) in b*b)

48

3.3.2 Qualified Expressions

Qualified expressions allow values to be given a name. A qualified expression 1s

constructed in ZL using a 'let' expression:

<qualified>
<let exp>

<le t element>

<l et exp>
'let' <letelement1>

{ ' & ' <letelernentn> } *
'in' <expression1>

<pattern> '<-' <expression2 >

Both the pattern (refer to section 3.4 Patterns) and the expression of a let element must

be of the same type, i.e. e xpression2 must have the same number and type of elements

as pattern:

A f- expression2 : o A f- pattern : o

A F (pattern<- expression2) : o

Qualified expressions are strict, i.e. letelement 1 and letelementn are evaluated before

e xpressioni, e.g. e xpression2 is evaluated and the resulting value is bound to

pattern before expression1 can be evaluated. When expression1 is evaluated each

pattern variable (identifier) within e xpression1 is replaced with its associated bound

value.

The type of the pattern, and thus the types of the elements within the pattern are

deduced from the type of express i on2, refer to section 3.4, for a more detailed

description of pattern. The type of the let expression is given by the type of the

A b expression2 : o A . pattern : o b e xpress i on1 : ,

A f- (let pattern <- expression2 in expression1) : t

Examples of Qualified Expressions:

let a <- 5
in sqr(a)

l e t sqra <- let a <- 5
in sqr(a)

in sqr(sqra)

let (a , b) <- (sqr (2), s qr (4))
& (c , d) <- (s qr (4), sqr (2))

in isEql ((a , b) ' (b, c))

3.3.3 Application Expressions

There are five different classes of application expression:

<application> <conditional >
<funapplication>
'-' <expression1>
'not ' <expression1>
<opapplication>

The type of argument n to ' -' and its result must be number:

A ~ n : number

A ~ (-n) : number

The type of argument n to 'not' and its result must be boolean:

A ~ n : boolean

A ~ (not n) : boolean

49

The value of the resulting expression for the above operators'-' and 'not' is obtained by

evaluating argument n and applying this result to the operator.

Examples:

not true
- 37

3.3.3.1 Conditional Expressions

<conditional> .- 'i f ' <expression 1>
' then ' <expression 2 >
' else ' <expression3>

The type of expression 1 must be boolean. The types of expression 2 and

expression 3 must be the same. The type of the conditional expression is that of

expressions 2 and 3:

boolean 1

A F (if exp 1 then exp2 else exp3) 1

A conditional expression will first evaluate the boolean expression and the either

express i on2 or expression3• If the boolean expression (expression1) evaluates true,

then expression2 is evaluated. If the boolean expression evaluates false, then

expression 3 is evaluated.

50

Examples of Conditional Expressions:

0 then a else a - 1 if a
if a 0 then true else a - 1 - illegal , as the then and

else expressions are not of
the same type

3.3.3.2 Function Applications

A function application is constructed using an identifier (the name of the function) and

an expression (the argument for the function):

<funapplication> <identifier> <expression>

The identifier has a function type, where the domain type is the type of the

expression and the range type is the type of the function application:

A t identifier : o - > t A t express i on 0

A r (identifier expression) : 1

The expression 1s evaluated first, before the function named by identifier. The

value of e xpression is then used as an argument to the function (identifier) . The

function is then evaluated and the resulting value is given to the function application.

Examples of Function Applications:

sqr(2)
sum(sqr(2), 2)

3.3.3.3 Operator Applications

An operator application applies an operator to two expressions.

<opapplication> <expression1> <operator> <expression2>

The o perator is associated with two types; the domain type and the range type. The

types of expression1 and expression2 are determined from the operator domain type.

The type of the operator application expression is determined by the operator range type.

For example, the operator expression '1 + 2' has both a domain and range type of

number.

A r operator A r expz 02

A r (exp1 operator exp2) 1

51

Table 1 lists the domain and range types for operators within ZL:

Table I : Operator Domain and Range Types

Operator Domain Range
+ number X number number
* number X number number
I number X number number
- number X number number
< number X number boolean
> number X number boo lean
= number X number boolean

<> number X number boolean
<= number X number boolean
>= number X number boolean

and boolean x boolean boolean
or boolean X boolean boolean

The value of the operator application is the resulting value of applying the operator to

expressionl and expression2. The usual precedence rules apply to operators within

ZL.

In ZL, operators which have a domain type and range type of number can not only be

applied to simple expressions, but also to tuple expressions. However, both tuple

expressions applied to the operator must have the same tuple type. The resultant tuple

type is that of the expressions, for example:

<opappl ication > <t uple 1> <operator> <t uple 2>

(e\ , ... , e\) op (e \ , ... , e\) => (e\ op e\, e 1 n op e 2 nl

The value of the operator application in the above case, is a tuple of evaluated tuple

elements. The expressions (or elements) within tuple 2 are evaluated first, then the

expressions within tuple1 • Each evaluated expression within tuple 2 is then applied

together with the operator to the corresponding evaluated expression within tuple 1 to

obtain the resulting tuple. For example:

Expression to be evaluated:

Evaluate the tuple elements:

Evaluate resulting tuple:

Result:

(sqr(2), 6) + (3, 4 + 5)

(4, 6) + (3, 9)

(4 + 3, 6 + 9)

(7, 15)

52

Examples of Operator Applications:

1 + 1 - 3
(3, 4) + (4, 3)
(((7 * 9), (6 * 7)) - (2, 3))

3.4 PATTERNS

Similar to the syntax of a tuple, a ZL pattern is constructed using parentheses, where

each element within the pattern is separated by a comma:

<pattern>
<patelement >

[(] <patelement 1> { ',' <patelementn> l* [)]
<literal >
<identifier>
<pattern>

A ZL pattern can contain multiple literals of the same value, however, multiple

identifiers of the same name are not allowed, i.e. each identifier within a pattern must be

umque.

Patterns are used in qualified expressions and function declarations. The scope of an

identifier within a qualified expression is the expression on the right hand side of the

qualified expression, i.e. <expression1> - the expression succeeding 'in'. Thus, if

there are multiple letelements in a qualified expression, then each identifier contained

within each letelement pattern must be unique. For the scope of identifiers in function

declarations refer to 3.5 Functions.

The type of the pattern is the product of the types of the pattern elements. The rule has n

premises.

A ~ patelement 1 : o 1 • • . A ~ patelementn : On

A ~ (patelement 1 , patelement n) : 01 x .. . x On

3.4.1 Pattern Matching

Pattern matching is used to match a pattern to an expression. A match between the

pattern and expression occurs if the expression type is a specialisation of the pattern

type. Pattern matching occurs in ZL qualified expressions and ZL functions.

53

Pattern matching is used in qualified expressions to match the elements of pattern to

expression2 :

<let exp>

<letelement >

'let' <letelement 1>
{ ' & ' <letelementn> } *
'in' <expression1 >

<pattern> ' <-' <expression2>

Pattern matching is used in functions to match the elements of an expression m a

function application to a pattern in a function:

<funapplicati o n > ·=
<function>

<fune lement >

<identifier> <expression>
'fun' <identifier> <funelement 1>

{ 'I' <funeleme nt n> } *
<pattern> '- > ' <expres sion>

For more information on functions refer to section 3.5 Functions.

To pattern match a pattern to an expression it is necessary to:

1. Find the pattern type, this includes finding the type of each element and

subpattern contained within the pattern. If the pattern contains an identifier

element, then the identifier receives an unknown type, i.e. its type is set to

unknown.

2. Find the type of the expression.

3. Unify the pattern with the expression. Unifying the pattern to the expression

involves matching of the pattern elements to the type of the expression:

<patelement > <literal>

If the pattern element 1s a literal then a match will succeed against the

expression if the value of the expression is the same as the value of the literal.

<patelement > <identifier>

If the pattern element is an identifier then a match will succeed against the

expression for any value. Once matched the type and value of the identifier is

bound to the type and value of the expression.

54

<pat e l e ment > <p a ttern>

If the pattern element is another pattern then a match will succeed against the

expression if each subpattem element of the pattern matches that of the

express10n.

3.5 FUNCTIONS

A ZL function definition has an identifier (the function name) and one or more pattern

based definitions known as function elements. Each function element (funelement)

consists of a pattern and an expression.

<function >

<fune l e ment>

' f u n ' <identifier > <funelement 1>
{ 'I' <fune l e mentn> } *

<p attern > '->' <expression >

A function element has a function type, where pattern type is the domain and the type

of expression is the range:

A t pattern : o A t expression 1

A f- (pattern - > e xpre s s i on) : o - > 1

The scope of an identifier contained m a funelement pa t tern 1s the funelement

expression.

Each function element within a ZL function may contain different values but they must

all have the same function type. Therefore, all function elements within a function are

unified before the function is evaluated. The type of i dentif i er and the actual

function is the same as the function elements:

A f- fune l emen ti : a - > 1 A f- f uneleme nt n : o - > 1

A f- (f un i denti f i er fun e l ementi . f une l ementn l a - > 1

Although a ZL function may have many function elements, each with its own

expression, only one of these expressions will ever be evaluated through a function

application.

55

The decision on which expression to evaluate is made by pattern matching the function

application's expression to each function element's pattern (starting from the topmost

funelement):

<funapplication> .­
<function>

<identifie r > <expression>
'fun' <identifier>

<pattern> '- >' <express ion>
<pattern> '- >' <expression>
<pattern> '- >' <expression>
<pattern> '- > ' <expression>

The first function element found which possesses a pattern that matches the function

application's expression will have its associated expression evaluated. The result of the

evaluated expression is the final value of the function.

Examples of Function Definitions:

fun sqr
a - > a*a

fun loop to 10 -
10 - > 10
count - > l oop to l O(count + 1) - -

fun fac
0 - > 1
n - > n * fac(n -1)

fun fac2
(0 , n) - > n
(n, m) - > fac2 (n-1, n*m)

56

This page intentionally left blank

57

4. THE ZL ENVIRONMENT

4.1 OVERVIEW

~ · loop_lo_len l!lml f3
file .E_dit Yiew Qptions y,!indow !:!elp

- > 1
n -> n * fac(n-1)

r Status Bar

Ready

Figure 19 : The ZL Environment

Figure 19 shows a typical screen shot of the ZL environment, describing a state in which

several functions have been loaded, some of which have been iconised. The current

function is being edited, and the output window shows the results of a previous

evaluation.

Some of the features of the ZL environment include:

• Menubar • Function Toolbar

• Toolbar • Expression Bar

• Status Bar • Message Bar

58

4.1.1 The Menubar

The menubar for the ZL Application contains six pull-down menus, Figure 20 .

.Eile f_dit ~iew .Qptions Window .!:::!.elp

Figure 20 : The Menubar

The 'File' menu contains the following options:

• New: creates a new function window.

• Open: opens an existing function.

• Close: closes the active function.

• Save: saves the active function.

• Save As: saves the active function with a new name.

• Print: prints the active function.

• Print Setup: printer settings.

• Exit: exits the ZL Application

The 'Edit' menu contains the following options, these options apply to the function

window and the expression bar:

• Undo: undo the previous edit command.

• Cut: cut the selected text and place it in the clipboard.

• Copy: copy the selected text to the clipboard.

• Paste: paste the text from the clipboard at the correct insertion point.

The 'View' menu contains options to display and hide the tool, status, function,

expression, and message control bars.

The 'Options' menu contains the following options:

• Debug: debug the active function, i.e. check for errors.

• Run: evaluate the current expression in the expression bar.

59

The 'Window' menu contains the following options:

• Hide: hides the currently active function window from the user's view.

• Cascade: arranges all open function windows in an overlapping format.

• Tile: arranges all open function windows in a non-overlapping format.

• Arrange Icons: arranges all iconic function windows.

The 'Help' menu contains only one item - 'About ZL'. This item displays an 'About

box', showing the current version of the ZL Application.

4.1.2 The Toolbar

As shown in Figure 21 the main toolbar from the ZL environment uses standard icons.

a. b. c. d. e. f. g. h. 1. J. k. 1.

Figure 21 : The Main Toolbar

Each tool bar button provides quick access to an item in one of the pull-down menus:

a,b,c The New, Open, and Close buttons, correspond to the New, Open and Close

options in the File menu.

d. The Hide button, corresponds to the Hide option in the Window menu.

e. The Save button, corresponds to the Save option in the File menu.

f,g,h. The Cut, Copy, and Paste buttons, correspond to the Cut, Copy and Paste options

in the Edit menu.

1. The Print button, corresponds to the Print option in the File menu.

j ,k. The Debug and Run buttons, correspond to the Debug and Run options in the

Options menu.

1. The Help button, corresponds to the Help button in the help menu.

60

Each button within the main tool bar contains a tooltip. A tooltip is a small piece of text

that describes the function of the button. The tooltip is displayed to the user when the

mouse moves over the button.

4.1.3 Status Bar

The ZL environment contains a Status Bar, located at the very bottom of the main

window, Figure 22.

I Ready

Figure 22 : The Status Bar

When a toolbar button, or a menu item is selected, the status bar will display simple

messages that briefly explain the function of this selection. The status bar also displays

functions which the application may be carrying out in the background, e.g. 'Opening

... ' or ' Autosaving .. .'.

The status bar also contains three small boxes (Figure 22). These boxes indicate

whether the ' Caps Lock', 'Num Lock', or 'Scroll Lock' buttons have been selected on

the keyboard.

4.1.4 Function Toolbar

The task of the Function Tool bar is to maintain and display a list of the currently active

functions. These are the user-defined ZL functions available for use.

• Function2

Figure 23 : The Function Toolbar

When a function is created, the name of the function is placed in the function list. The

function name remains in the list, until the window containing the function is closed.

If a function is selected from the toolbar, the window containing the function is made

the current window, i.e. given the 'input focus'. If the window is either hidden or

iconised, then it is redisplayed, activated, and made the current window.

61

4.1.5 Expression Bar

The Expression Bar contains two text boxes, Figure 24.

I sqr(5) 25

Figure 24 : The Expression Bar

The text box on the left-hand side is the expression box. This is used to enter ZL

expressions. The text box on the right-hand side is the output box. This is used to

display the result of an evaluated expression.

The output box is cleared when the 'run button' from the toolbar is selected. It will not

show any output unless an expression has been correctly evaluated.

4.1.6 Message Bar

The Message Bar is used to convey messages to the user. These include error messages

from the lexer, parser, typechecker and evaluator.

The message bar is permanently anchored to the bottom of the main window, Figure 25

Ready

Figure 25 : The Message Bar

The message bar is cleared when either the ' run ' or ' debug' buttons from the toolbar are

selected.

4.1. 7 Function Window

A Function Window is used to enter and display a single ZL function.

62

fw1 sqr
(a) -> a"' a

Figure 26 : The Function Window

To ensure that a function is error free, it must be debugged before it is used. This can be

achieved by either selecting the 'debug' button on the toolbar or by selecting 'debug'

from the 'Options' menu.

4.2 USING THE ZL ENVIRONMENT

The next section describes how the user interacts with the system 111 evaluating an

expression.

4.2.1 Entering and Evaluating an Expression

4.2.1.1 Entering an Expression:

• Select the expression box in the expression bar.

• Enter an expression into the expression box.

4.2.1.2 Evaluating an Expression

• Select the 'Run' button on the toolbar, or select the 'Run' option from the

' Options' menu.

63

• Fix any error messages displayed 111 the message bar and re-evaluate the

expression.

Right bracket m1ss1ng

• View the result in the output box.

4.2.2 Entering and Evaluating a Function

Each function requires its own function window. Thus, 111 order to create a new

function it is necessary to create a new function window.

4.2.2.1 Creating a New Function

• Select the ' New' button on the toolbar, or select the 'New' option from the

' File ' menu.

Note: when the ZL Application 1s started, an empty function window 1s

automatically created.

64

• Enter the new function into the new function window

!lfll loop_with_flag l!!llil Ei
fun fac ;

0 -> 1
n -> n * fac(n-1)

.. :J

4.2.2.2 Debugging a Function

• Select the ' Debug' button on the toolbar, or select the 'Debug' option from

the 'File' menu.

• Fix any error messages displayed in the message bar and again debug the

function

Note: A function cannot be evaluated until it has been correctly debugged.

This ensures that it has no static errors.

4.2.2.3 Using a Predefined Function

• Select the 'Open' button on the toolbar, or select the ' Open' option from the

'File' menu.

• Using the 'Open' dialog box provided, select the desired function.

• Select the 'Debug' button on the toolbar, or select the 'Debug' option from

the 'File' menu to debug the function.

65

Note: Although an existing function may have been previously debugged, it is necessary

to debug that function again before it can be used in the present ZL session. This is to

ensure that the function has not changed in any form since its previous use and to

guarantee it is error free.

66

This page intentionally left blank

67

5. IMPLEMENTATION

5.1 INTRODUCTION TO DESIGN METHODOLOGY

The Unified Method (Booch and Rumbaugh, 1995) is the design methodology used to

design the implementation of the ZL programming language and the ZL environment.

As many of the diagrams and illustrations for ZL contain symbols and elements which

are unique to the Unified Methodology a brief overview of the methodology follows.

5.1.1 The Unified Method

The Unified Method is a method for specifying, visualising, and documenting the

aiiifacts of an object-oriented system under development (Booch & Rumbaugh 1995).

The Unified Method was chosen over other object oriented methodologies, as it unifies

the two most popular object oriented design methods - OMT (Rumbaugh, 1991) and

Booch (Booch, 1991).

Below is a brief description of some of the basic concepts from the Object Oriented

Methodology and the Unified Method (Version 0.8).

5.1.1.1 Classes

Booch and Rumbaugh (1995) describe a class as being 'a definitional entity that has

instances with identity'. For example, a car and a boat are both instances of the class

' transport vehicle'.

Transport Yeh icle

Boat Car

Figure 27 : Class Diagram

Figure 27 illustrates a class diagram for the class transport vehicle. The class diagram

is used to show a generic description of a system.

Classes are represented in the diagram by solid-outline rectangles, which show an

inherited relationship between the subclasses (boat and car) and their superclass

68

(transport vehicle). This indicates that the subclasses inherit the attributes and

behaviour of the superclass.

5.1.1.2 Objects

An object, also known as an instance, is a particular occurrence of a class. It

encapsulates both state and behaviour. For example, a Honda City is a car and a Suzuki

Alto is a Car.

Messages are used to convey control and information between objects. Objects and

messages are represented together in the Unified Method as Object Message Diagrams

(Figure 28).

Increase Speed -"?

<E-0 Speed Increased

Figure 28 : Object Message Diagram

An object message diagram shows a sequence of messages that implement an operation

or transaction. Objects are represented in the diagram by a hexagon, messages are

represented by arrows, where a small circle at the end of an arrow indicates a returning

value. Thus, in Figure 28, the object 'car' sends a message to the object 'engine' to

'increase speed'. The engine object then returns a message to the car confirming that

speed has increased.

5.1.1.3 Aggregation

Aggregation is the 'whole-part' or 'has a' relationship between classes, it is where one

object has 'ownership ' of another object. For example, a car 'has a' door, and a boat

' has a' propeller. Aggregation is represented in the Unified Method by a hollow

diamond.

Transport Vehicle Engine

Propeller Boat Car Door

Figure 29 : Aggregation

69

Figure 29 states that every boat 'has a' propeller, while every car 'has a' door. Both cars

and boats (assume motor boat) have an engine, thus the superclass transport vehicle has

the engine association. The association is inherited by the two subclasses, boat and car,

implying that cars and boats both have engines.

5.2 OVERVIEW

There are five major components which interact together to evaluate an expression in

the ZL environment:

• Interface

• Lexical Analyser

• Parser

• Typechecker

• Evaluator

Each of these components is represented in the implementation by an object. To

evaluate an expression it is necessary for these objects to pass messages between each

other. If an expression contains a reference to a function, then that function must have a

parse tree contained in the global function table. Figure 30 shows an object message

diagram of the messages passed between the interface, lexer, parser, and typechecker

objects to create a parse tree for a ZL function.

70

?{Symbol = FUNSYM} :
AddElement(ParseTree)

~

Definition() t

Parse Tree~

t Create()

Create() ~

<E-0 ParseTree

FindDeffype ~
(Parse Tree)

<E-0 Symbol

GetSymbol() ~

Figure 30 : Creating a Parse Tree for a ZL Function

The interface object (illustrated as a dotted hexagon in Figure 30) is a composite object,

i.e. it is comprised of other objects. Figure 30 shows two such objects, the debug button

object and the function frame object. To create a parse tree the user selects the debug

button from the toolbar. This causes the debug button object to send the message

' OnBug' to the function frame object. The function frame object reacts to the 'OnBug'

message by creating a parser object, which then creates a Jexer object. When both the

Jexer and parser objects are created, the function frame object sends the message

'Definition' to the parser object to create a parse tree.

When the parser object returns the parse tree to the function frame object, the function

frame object creates a typechecker object, and sends it the message 'FindDefrype'

which causes the typechecker object to typecheck the parse tree.

Once the parse tree has been typechecked and returned to the function frame object, the

function frame object wi ll store it in the global function table for any future references

to the function.

71

Figure 31 shows an object message diagram for evaluating an expression.

Create() ~

OnRun()~

<E-0 Ya!Struct

EvalDef(ParseTree) ~

Figure 31 : Evaluating an Expression

Figure 31 again shows the interface object as a composite. To evaluate an expression

the user se lects the run button from the toolbar. This causes the run button object to

send a message ' OnRun' to the mainframe object. The mainframe object will create and

typecheck a parse tree for the expression using the same method as the function frame

object. When the typecheck object returns the typed parse tree of the expression, the

mainframe object wi ll create an evaluation object. This object wi ll then be sent the

message ' Eva!Def by the mainframe object. The evaluator object will react to the

message by evaluating the parse tree. Once the evaluator object has evaluated the parse

tree, it will return the result (Va!Struct) to the mainframe object. This result will then be

displayed to the user.

5.3 INTERFACE

The ZL environment uses ten primary classes to create and maintain screen objects for

the interface:

• Application • Expression Bar

• Mainframe • Message Bar

• Toolbar • Function Document

• Function Toolbar • Function View

• Status Bar • Function Frame

5.3.1 Application Class

The application class is a subclass of the Microsoft Foundation Class (MFC)

'CWinApp'. It is responsible for initialising, executing, and terminating the application

object.

72

Initialising the application includes:

• creating the mainframe object

• initialising the function window

The application class is also responsible for the creation of new function windows and

maintaining a link to the mainframe class. Figure 5.2, illustrates a class diagram of the

application class.

CWinApp

Application

Mainframe Function Window

Figure 32 : The Application Class

5.3.2 Mainframe Class

The Mainframe Class is a subclass of the MFC class CMDIFrameWnd. There is only

one instance of this class created in the ZL environment.

The mainframe class represents the bounding application frame window. It includes the

menu bar and all control bars (Figure 33).

Mainframe ,__ _ _, Global Function Table

Toolbar Status Bar Function Toolbar Expression Bar Message Bar

Figure 33 : The Mainframe Class

73

The Mainframe class is responsible for:

• sizing and positioning of the application window

• initialising and managing the control bars

• managing messages between the function window and the function toolbar

• initialising the global function table

5.3.3 Control Bars

CContro!Bar is the MFC superclass for all toolbars, status bars, and dialog bars in the

ZL environment. Excluding the main toolbar and the status bar there are three other

control bars used in the ZL environment, the function toolbar, the expression bar, and

the message bar. The mainframe class, Figure 34, manages all five of these control bars.

CContro!Bar

Tool bar CStatus Bar Function Toolbar Expression Bar Message Bar

Mainframe

Figure 34 : Contro l Bars in the ZL Environment

Of the five control bars, only one is a direct instance of a MFC class - CStatusBar. All

functions used by this class are standard Microsoft functions, thus this class is discussed

no further.

5.3.3.1 Toolbar

Each button and menu item has an associated message handler and command target

class. If a menu item and a toolbar button perform the same command then they will

share the same message handler and command target class. The message handler

contains the function to be performed when a button is selected. The command target

class is the class that contains the message handler. Table 2 lists the command target

classes and the responsibilities of the message handlers for the various tool bar buttons.

74

Table 2: Command Target Classes and Handlers for Toolbar Buttons

Toolbar Button Command Target Responsibility of Message Handler
Class

New Application Opens a new function window, and sends a
message to the function toolbar to display the
name of the new function.

Open Application Opens an existing function in a new function
window, and sends a message to the function
toolbar to display the name of the new function .

Close Application Closes the currently active function window, and
sends a message to the function toolbar to remove
the name of the closed function.

Hide Application Hides the currently active function window from
the user's view.

Save Function Document Saves the function in the currently act ive function
window.

Cut Function View Removes the selected text, and copies it to the
Microsoft clipboard.

Copy Function View Copies the selected text to the Microsoft
clipboard.

Paste Function View Pastes the contents of the Microsoft clipboard to
the current cursor position.

Print Function View Prints the currently active function.
Debug Function Frame Sends a message to the function frame class to

create a parse tree from the currently active
function.

Run Mainframe Sends a message to the mainframe class to create
a parse tree and evaluate it.

Help Application Displays an 'About' box, showing the current
version of the ZL Application.

5.3.3.2 Function Toolbar

The prime task of the function toolbar 1s to display and maintain a list of functions.

This list is known as the 'function list' . The function toolbar contains routines that

update the function list, however, these routines are only activated through messages

sent by tool bar buttons and menu items, e.g. the Open tool bar button.

5.3.3.3 Expression Bar

The expression bar class contains two MFC edit control classes. An edit control is used

for entering and editing small amounts of text. The edit controls contained 111

expression bar are named expression box and output box respectively (Figure 35).

75

Expression Bar

Expression Box Output Box

CEdit

Figure 35 : The Expression Bar

The expression box is used for entering ZL expressions. The output box is used for

displaying the results of evaluated expressions. Each edit control is responsible for

updating and maintaining its own display.

5.3.3.4 Message Bar

The message bar class contains one MFC CListBox class (Figure 36).

CListBox

Figure 36 : Message Bar

The list box is used to display error messages sent by the parser and typechecker to the

user.

5.3.4 Function Window

The function window is constructed by the combining together three classes: Function

Document, Function View, and Function Frame.

5.3.4.1 Function Document Class

The function document class is a subclass of the MFC CDocument class. It holds the

actual function data that is entered by the user.

CDocument

Function Document

Figure 37 : The Function Document Class

76

The function document class is responsible for :

• opening a function file

• saving a function to a file

5.3.4.2 Function View Class

The function view class is a subclass of the MFC CEditView class. It is the blank area

inside the function window frame which acts as an intermediary between the user and

the function document class. Any keyboard or mouse events are interpreted by the

function view and passed to the function document.

CEditView

Function View

Figure 38 : The Function View Class

The function view class is responsible for:

• interpreting keyboard and mouse events for the function document class

• displaying data for a function document class on the screen

• printing data from a function document class

5.3.4.3 Function Frame Class

The function frame class is a subclass of the MFC class CMDIChildWnd. The function

frame is the actual 'frame' that bounds the function window. It does not have its own

menu, toolbar or status bar like the mainframe class, instead it shares those components

from the mainframe.

CMDIChildWnd

Function Frame

Figure 39 : The Function Frame Class

The function frame class is the command target class for the 'OnBug' message handler,

and as such it is responsible for managing the parsing and typechecking of the function

held in the function document class.

77

The function frame class is responsible for:

• positioning the function window in relation to the mainframe class

• managing the "OnBug" message handler

5.4 LEXICAL ANALYSER

The lexical analyser (or lexer) is responsible for breaking down a ZL expression into

tokens and their values. An instance of the lexer class is created when a parser object

sends a message.

Create() ~

GetSymbol() ~

Symbol

Figure 40 : Creating the Lexer Object

t GetNextChar()

~ char

When initially created, the lexer object reads the text contained in the expression box of

the expression bar. However, it does not return a token until requested by the parser

object.

78

Get Symbol ,__ __ ., Lexlnfo ~ NULL

convert to lower case

add to word total

get next char

alphanumeric
char is 1

Symbol ~reserved word

is reserved
word

char is alpha

Symbol <E-iDENT

Symbol ~symtype

._____.! get next char
~--~-1~-~

Lex Info~ Symbol info

char is digit

Symbol ~ number

convert char to int

add to digit total

get next char

char is digit

error unknown symbol

Figure 41 : Retrieving a Symbol from the Jexer - activated by message Get Symbol()

5.4.1 Tokens

Each token object contains a symbol and some data, i.e. it is more than just a token. For

this reason, and to avoid confusion, the token object is known as the lexinfo object.

Figure 42 shows the structure of the lexinfo object.

lexinfo

Symbol Data

····-~ ·-·· or

Identifier Number Boolean

Figure 42 : Structure of Jexinfo (token)

79

'Symbol' contains the type of the token created by the lexer, and 'data' contains the

value of the symbol. If the created token is a reserved symbol or operator, data is set to

empty.

For example:

fun sqr
(a) - > a * a

The above example is lexically analysed into the following symbols:

FUNSYM !DENT LBRACKET !DENT RBRACKET FUNPTR !DENT MULTSYM !DENT

For each symbol a lexinfo object is created, where lexinfo.symbol would contain the

type of the symbol, and lexinfo.data would either contain an identifier name or remain

blank.

5.5 PARSER

A parser object is created by the 'OnBug' message for parsmg a function , or the

'OnRun' message for parsing an expression. The creation of this object automatically

triggers the creation of a lexer object (Figure 43).

Create() ~
CreateLexer()

Message()~

Definition() ~

Definition

Figure 43 : Creating the Parser Object

Once both the parser and lexer objects are created, a message is sent to the parser to

create the parse tree.

5.5.1 Parse Tree

The parse tree is a combination of objects from different classes formed together in an

aggregate hierarchy.

80

There are eleven classes which can used to form the parse tree:

Definition
Function
Funelement
Pattern

5.5.1.1 Definition Class

Expression
Tuple
Letexp
Letelement

Lexinfo
Apply
Patelement

The definition class is the topmost class of a ZL parse tree. It contains the parse tree of

an expression or function, i.e. a definition object either ' has a' function or it ' has an'

express10n.

or

Function Expression

Figure 44 : The Definition Class

5.5.1.2 Function Class

A function object contains a funelement object, which inturn contains a pattern object

and an expression object.

1..•~----~
Function Fun Element Expression

Pattern

Figure 45 : The Function Class

5.5.1.3 Pattern Class

A pattern object contains one or more patelement objects, which inturn contains either a

pattern object or a lexinfo object.

81

Pattern

or

I..*

Lex info

Figure 46 : The Pattern C lass

5.5.1.4 Expression Class

An expression object, contains either a tuple object, an application object, a lexinfo

object, or a qualified expression object.

Tuple Letexp

or

Figure 47 : T he Expression Class

5.5.1.5 Qualified Expression Class

A qualified expression object, or ' let ' expression object, contains one or more

letelement objects, which each inturn contain a pattern object and an expression object.

Expression

I. .*

LetExp LetElement Pattern

Figure 48 : The Qualified Expression Class

5.5.1.6 Tuple Expression Class

A tuple expression object contains two or more expression objects.

82

L...

_ _ J_:1_e!_e_----'~-1 _______ 2_ .. _*_'--~-----' rsv- Expression

Figure 49 : The Tuple Expression Class

5.5.1.7 Application Class

An application object contains an attribute 'symbol ' and a tuple object. The symbol

holds the name of the function to be applied to the expressions contained in the tuple

object.

. __ T_u_p-le-----'F

1

_ Symbo l _

I..*
Expression

Figure 50 : The Application Class

Figure 51 shows a class diagram of the full ZL parse tree.

Definition
or

I. .*

LetElement Pattern

or ~ -->.<'-------'--
I..*

Lexlnfo Pat Element

Figure 51 : The ZL Parse Tree

Figure 52 shows the chain of messages used to create a full ZL parse tree.

Create() ~

<E-0 Definition

Create() ~

<E-0 Expression

?{Symbol=
1

FUNBAR}: t
Create()

Expression 6

~ LetExp

Create() j

?{Symbol= FUNSYM} :
Create()
~

<E-0 Function

t Create()

FunElement 6
~ Create()

Expression

'i? Expression

Pattern 6
Create() ~

<ED Pattern

t Create()

t Create()

* (i = I .. n) :
?{Symbol = IF I NOT I MINUS} :

Create(4

?{Symbo l =
LBRACKET}:

Create()
~

«) Apply

Create() t 6 Tuple

°"7
Expression

* (i = I .. n) :
Add(Expression)

6 Tuple

t Create()

?{Symbo l = COMMA} :
Create()

Figure 52 : Object Message Diagram for the ZL Parser

83

* (i = I .. n)
?{Symbol=
FUNBAR} : t Create()

6 FunElement

)' Pattern

?{Symbol =
LBRACKET}:

I Create()

Figure 52 shows the object message diagram used to create the full ZL parse tree,

however, in most cases a full parse tree would not be created. For example:

fun sqr
(a) - > a * a

The chain of messages passed through the ZL objects to create a parse tree from the

above function is shown in Figure 53.

84

? {Symbol= FUNSYM } :

Create() -'?

Create()
-'?

<E-0 Definition <E-0 Function

FunElement ~

~ Create()

Expression 07

1 Create()

Apply 6

Tuple 6 1 Create()

Pattern ~

PatElement
6

* (i = I .. 2) :
Create()

07
Expression

* (i = I .. 2):
Add(Expression)

Figure 53 : Creation of a Parse Tree for ZL Function 'sqr'

1 Create()

1 Create()

1 Create()

A definition object is created by the parser to store the parse tree of function 'sqr'.

FUNSYM indicates that the object is a function. Each function object contains one or

more funelement objects, therefore a funelement object is automatically created. In the

current example the funelement class consists of:

(a) - > a * a

Each funelement object has both a pattern object and an expression object. In the above

example '(a)' is the pattern and 'a * a' is the expression. The pattern in the example

contains only one element, so only one instance of the patelement class is created. This

patelement object also holds the lexinfo information for the pattern element.

85

The operator '*' indicates an application expression, therefore an application object is

created. This intum causes the creation of a tuple instance. The tuple contains two

express10ns, 'a' and 'a'. These objects will contain the lexinfo information for the

express10ns.

Figure 54 shows the resulting parse tree created from the object message diagram m

Figure 53.

Definition Function

Fun Element

Pattern

PatElement

Lex Info Express ion Lex Info

Figure 54 : Parse Tree for ZL Function 'sqr'

As seen from Figure 53 and Figure 54, the structure of the parse tree reflects that of the

object message diagram.

5.6 TYPE CHECKER

A typechecker object is created by either a mainframe object or a function frame object,

using the ' OnRun' and 'OnBug' messages respectively, Figure 55.

Message()~

FindDeffype() ~
«)

Definition

Figure 55 : Creating a Typechecker Object

86

A typechecker object is only used to typecheck the current parse tree. Thus, once a

parse tree is evaluated its corresponding typechecker object is destroyed.

The typechecker is used to add a type to each object in the parse tree. A type is the

'type' of the object. As stated in section 3.2 Types, there are just two primitive types:

number and boolean; and three structured types: tuple type, pattern type and function

type.

5.6.1 Tables

In order to typecheck a parse tree, the typechecker object utilises three tables: the

operator table, the identifier table, and the global function table.

5.6.1.1 The Operator Table

The operator table is 'owned ' by the mainframe object (refer to section 5.3.2

Mainframe Class) and lasts for the life of the interaction, i.e. it is created when a user

starts the ZL application, and it is destroyed when the user exits the ZL application.

The operator table is used to store the types of operators. Figure 3 .13 shows the

structure of an operator table element.

OpTableElement

Symbol Domain Range

Figure 56 : Structure of an Operator Table Element

Each operator table element contains:

• Operator: the operator name,
• Domain: the type of the domain,
• Range: the type of the Range.

For example:

Operator Domain Range

PLUS number x number number
EQUAL number x number boolean

AND boolean x boolean boolean

87

5.6.1.2 The Identifier Table

The identifier table is owned by the parse tree and lasts for the life of the parse tree. The

identifier table is used to store identifiers, their types and their values. Figure 57 shows

the structure of an identifier table element.

ldTableElement

ldentifer ZLType ValStruct

Figure 57 : Structure of an Identifier Table Element

Each identifier table element contains:

• Identifier: the identifier name,
• ZLType: the identifier type,
• ValStruct: the identifier value (refer to section 5.7 Evaluator).

When the typechecker locates an identifier, it will check that the identifier is not already

contained in the table. If it isn't, then a new table element is created (containing the

identifier information) and added to the table.

5.6.1.3 The Global Function Table

The global function table is ' owned' by the mainframe object (refer to section 5.3.2

Mainframe Class) and lasts for the life of the interaction, i.e. it is created when a user

starts the ZL application, and it is destroyed when the user exits the ZL application.

The global function table is used to store the parse trees of functions available to the

user. When a function is parsed and typechecked, its parse tree is placed in the global

function table. This parse tree is then available for use by other typechecker and

evaluator objects.

5.6.2 Typechecking a Parse Tree

Once a typechecker object has successfully created, it is sent a message to typecheck a

parse tree.

Figure 58 illustrates an object message diagram of the typechecking process.

88

SetType(Type)
?{Symbol= FUNSYM}:

FindFunType() SetType(FunEleType)

FindDefType() ~

<E-0 Definition

FindExpType() ~

?{Symbol = LET}: t
FindLetType()

ExpType t

LetExpType

FindExpType(Yj'

~

<E-0 FunType

t FindExpType()

FunEleType t
~ FindExpType()

ExpType°"7

~ ExpType

FindPatType() ~

SetType
(Exp Type)

* (i = 1 .. n) : FindL~leType()

SetType(ExpType) FindPat t
EleType()

SetType(Type)

t *(I = 1 .. n) :
FindFunEleType()

SetType(Exp Type)

t FindPatType()

SetType(Tuple)

?{Symbol=
Pattern} : f

FindPatType()

?{Symbol = LEAF} t O
FindLeafType() 'V LeafType SetType(Type)

SetType(Tuple)

?{Symbol = TUPLE}
~ FindTupleType()

TupleType

ExpType

~
* (i = I .. n) :

FindExpType()

?{Symbol = APPLY}
FindApplyType() ~

ApplyType

Figure 58 : Object Message Diagram of the ZL Typechecker

SetType
(RangeType)

?{Symbol =
FUNAPP}: t

FindFunDef()

The objects LetExp and FunElement (Figure 58) both send multiple messages to other

objects. The order in which these messages are sent is irrelevant. For more information

89

on how the returning types of these messages are unified, refer to sections 3 .4.1 Pattern

Matching and 3 .5 Functions.

Figure 58 illustrates how the typechecker object uses the Function Table. When an

application expression of type function application is received, the function definition

used in the application object is located in the function table. The parameters of the

application object are unified with those of the function definition to ensure that the

types are compatible.

Figure 58 shows the object message diagram used to typecheck a full ZL parse tree,

however, as stated in the previous section, it is unlikely that a full parse tree would ever

be created. For example:

fun sqr
(a) - > a * a

Section 5.5.1 showed how a parse tree for the ZL function 'sqr' is created. The function

of the typechecker object is to assign a type to the expression that the parse tree

represents, Figure 59.

According to the type rules for the ZL grammar, the typechecker recursively moves

through the parse tree assigning a type to each object in the ZL function 'sqr', Figure 59.

Once the parse tree for a function definition has successfully been typed it is placed into

the global function table to be later used for typechecking and evaluating other

expressions.

90

SetType(Type)

FindDeffype() ~

~ Definition

SetType(Type)

FindFunType()
~

~ FunType

FunEleType ~

<E- FindExpType()

ExpType~

SetType(Type)
ApplyType ~ t FindApplyType()

ExpType ~

<E-*(i = I .. 2) :
FindExpType()

V'indLeaffype() SetType(Type)

Leaffype SetType(Type)

FindPat t
EleType()

<E-FindLeaffype(

Leaffype ~

SetType(Type)

rindFunEleType()

SetType(Type)

t FindPatType()

SetType(Type)

SetType(Type) SetType(Leaffype)

Figure 59 : Typechecking the ZL Function 'sqr'

5.7 EVALUATOR

Although the function frame can create a parser and typechecker object, it cannot create

an evaluator object. An instance of the evaluator class can only be created by the

mainframe by an 'OnRun' message. This is because functions are only evaluated

through the use of expressions, therefore it is not necessary for function frame objects to

have the ability to create evaluator objects.

An evaluator object is specifically created to evaluate only one expression. Once the

expression is evaluated, the evaluator object and the expression parse tree object are

destroyed. Any function parse trees used by the evaluator to evaluate expressions,

remain complete in the global function table.

91

5.7.1 Value Structure

A value structure is used to store the value of an object (Figure 60).

ValStruct

Type Data

·····~ ···· or

Number Boolean Tu pie

Figure 60 : Value Structure

Each value structure contains a value (the actual data) and the type of that value.

5.7.2 Evaluating the Parse Tree

When the evaluator object is created, a message is sent to it from the mainframe object

to evaluate a parse tree. Figure 61 presents an object message diagram of the evaluation

process.

As shown in Figure 61, the evaluator descends through the parse tree, until a terminal

(lexinfo) is located. The terminal is evaluated and its value passed back up the tree.

For example:

fun sqr
(a) - > a * a

sqr(S)

92

EvalDef--"7

AddTail(ValStruct) * (i = I .. n) EvalExp() t

ValStruct

~ ValStruct

ValStruct 07
--"7 ?{Symbol= LET}:

EvalLetExp
~ ?{Symbol= Tuple} :

EvalTuple() f EvalExp()
EvalExp()

t * (i = I .. n) MatchParam() ValStruct ~
ValStruct

Match Leaf() :---7
?{Symbol= PAT} : t EvalPattern()

MatchParams() f MatchParams()

* (i = I .. n) MatchParams()
--"7

Found

~ Expression

? {Found} : Get Exp() f

~ Found

t,{Symbol = FUNA
EvalFun() t EvalExp()

~ ValStruct

?{Symbol= APPLY}:
EvalApply()

ValStruct

~ ValStruct

~ Function * (i = I .. n)evalExp()

t ?{Symbol = FUNAPP}: GetFun()

* (i = I .. n) EvalPatEle()t

t ?{Symbol =PAT}:
EvalPattern() EvalLeaf() t

YalStruct ~

~ ValStruct
YalStruct ~

?{ Symbol = LEAF} : EvalLeaf(t

Figure 61 : Object Message Diagram for Evaluating a ZL Parse Tree

The parse tree for the previous expression, sqr (s), is shown in Figure 62.

93

Definition Expression

Expression

Figure 62 : Parse Tree for the ZL Express ion 'sqr (5)'

EvalDef~

~ Va lStruct

Function

Ref A ! J

ValStruct 6

va!Exp()

RefB

Figure 63 : Evaluating the ZL Expression 'sqr(5)'

94

Figure 63 shows the links of messages created by the evaluator to evaluate the parse tree

from Figure 62.

The evaluator descends through the parse tree until it encounters the function

application object, where upon it evaluates the expression '5' and searches the global

function table for the parse tree of function ' sqr'. The evaluator then proceeds to

evaluate the parse tree by matching the parameters of expression 'sqr(5)' to the pattern

object of the first funelement for function 'sqr' (Ref A. in Figure 63). As the first

funelement object of the function 'sqr' is a match for the expression 'sqr(5)', the

associated expression object for this funelement is evaluated (Ref B. in Figure 63).

The right hand side of figure 3.20, shows the evaluator matching the user entered

parameters to the function's funelements. If there is a successful match, the expression

of the successful funelement is evaluated - illustrated on the left-hand side of figure 3.2.

In this instance the successful match will be the expression 'a*a'. This expression is

evaluated using the user-entered parameter of ' 5' . The result is then passed back up the

tree and displayed to the user.

95

6. TESTING THE OBJECTIVE

Chapter I described the types of cognitive models that are thought to characterise expert

programmer skills. Chapter 2 linked these models to specific programming concepts.

Subsequent chapters described the ZL system and its implementation. It remains then to

argue that the ZL system is well suited to supporting the development of the appropriate

mental models in the novice. This is the goal of the current chapter.

6.1 IDENTIFYING OBJECTIVES

The most general objective of the ZL programming language and environment is to aid

the novice programmer in the cognitive construction of computer programs. We

hypothesize that the ZL language and environment can achieve this general objective by:

• Improving the ability of novice programmers to acquire the mental model

characteristics of experts.

• Increasing the novice programmer's ability to beneficially transfer

programming skills from ZL to another language.

• Focusing on the importance and order of the three planning stages involved in

program design.

• Highlighting simple and generic programming concepts that are common to

most, if not all, programming languages.

• Having a functional and easy to use programming environment.

The current chapter hypothesizes the ways in which the features of the ZL language and

environment achieve some of these objectives. It does this by outlining two

experiments to test the hypothesis. Both experiments are described in the following

way, by outlining:

• The objective of the experiment

• The subjects required for the experiment

• An experimental procedure suitable for testing the objective

• The positive results expected from running the experiment

96

6.2 TESTING OBJECTIVES

6.2.1 The Construction of Mental Models for Generic Programming Concepts

The objective is to test whether ZL improves the construction of mental models for

generic programming concepts. Specifically, we test whether ZL improves the novice

programmer' s ability to acquire the five expert mental model characteristics that were

identified in section 1.3.1. These are:

• Hierarchic Structure: the depth and breadth of a mental model.

• Explicit Mappings: the links between a model's hierarchically structured

layers.

• Basic Recurring Patterns: mental models for frequently recurring situations.

• Well Connected: how parts of a mental model interact together.

• Well Grounded: information on the physical location of program structures

and operations.

6.2.1.1 Subjects

Four groups of subjects are required for the experiment. Two of novices and two of

experts. One group of novices and one group of experts will form the ZL sample. The

remainder will form the control group.

6.2.1.2 Procedure

Both groups are given the same problem to solve. The ZL sample will use the ZL

system. The control group will use some other programming system, for example,

Pascal or C.

Fix et.al. (1993) identified eleven comprehension questions designed to show

differences between the characteristics of expert programmers' mental models and

novice programmers ' mental models. Table 3 outlines these comprehension questions

together with the corresponding model characteristic they are designed to test.

97

Table 3 Comprehension Questions

Q No. Question Model
Characteristics

l Match function calls to fun ction Hierarchical
definitions Structure

2 List function names Hierarchical
Structure

3 Write description of goals of selected Explicit Mappings
functions

4 Write description of principal goals of Explicit Mappings
program

5 Label complex code segments with plan Recurring Patterns
labels

6 Label simple code segments with plan Recurring Patterns
labels

7 List names used for same data objects Well Connected
in different functions

8 List important value names Well Connected
9 Fill in names of functions in a Well Grounded

skeleton outline of the program
10 Match argument values in a call to Well Grounded

parameter names in a definition
11 Indicate the location of keywords in Well Grounded

the program

After performing the task subjects are questioned along the lines developed by Fix et.al.

The plan is to use a version of Fix's generic questionnaire to assess the degree to which

subjects are able to comprehend the important hierarchy, mappings , patterns and so on

that are present in the given problem.

Hierarchical Structure

Hierarchical structure is tested with questions of type 1. Questions of type 2 are

designed to test a subject's memory, e.g. their ability to list function names. Thus, if

there is no significant difference between expert and novice responses to questions of

type 2, then this suggests that differences in results from questions of type 1 are

explained by factors which are more than just good memory.

Explicit Mappings

The ability to make explicit mappings is tested by questions of type 3. The ability to

write a description of a selected goal (e.g. a function call) within the sample program is

a plausible measure of a subject's ability to map between program code and program

goals. If a subject further describes the actual calculated steps taken to achieve the goal,

98

then this also shows that their mental model includes methods on how goals are

achieved. In contrast, questions of type 4 demonstrate the ability to write a description

of the principal goals of a sample program. Questions of this type might show that a

subject comprehends the goal of a program as a whole, but their mental model may still

lack the explicit links between code segments and sub-goals.

Recurring Patterns

The ability to identify recurring patterns can be tested using questions 5 and 6. The

ability to label code segments with their semantic role, e.g. "Function Call", is evidence

of an ability to identify patterns in a subject's mental model. Questions 5 and 6 differ

only on the complexity of the code segments given to the subjects.

Well Connected

Questions of type 7 can be used to test the 'connectedness' of a programmer' s mental

model. Providing different names shared by the same value through a sample program

is a way of testing that a subject understands how that value is used in the program.

Simply listing value names , as with questions of type 8, shows knowledge of program

components. However, questions of this type do not demonstrate knowledge of

component interconnectedness.

Well Grounded

Questions 9, 10 and 11, can be used to test the degree to which a mental model is well­

grounded. Subjects are given a skeleton outline of a sample program and asked to fill in

the gaps (questions of type 9 and 10). This is a way of assessing how well grounded a

subject's mental model is . It indicates whether or not a subject has an overall idea of

where program structures occur in the program code. Questions of type 11 identify the

location of keywords (e.g. where a ' fun ' or 'begin' statement is located) , questions of

this type indicate that a subject knows the basic structure of a program. However,

questions of type 11 alone, do not indicate that the subject's mental model is well

grounded.

99

6.2.2 Hypothetical Test Results

Fix et.al. identified six questions from their question template questionnaire which

showed a significant difference between novice and expert mental model characteristics.

If ZL does aid novice programmers by improving their ability to gain an expert model ,

we hypothesize that the significant difference between expert and novice users in the ZL

sample should be less than the significant difference between expert and novice users in

the control group.

Hierarchical Structure

It is claimed that the mental models of expert programmers display a higher degree of

hierarchical structure than do those of novices. Thus, the results of question 1, for both

the control group and the ZL sample should reflect this statement. However, a difference

in the ZL sample that is significantly smaller than that of the control group might

reasonably be taken as evidence of a positive benefit. As question 2 is merely a memory

test no significant difference between experts and novices is expected in either group.

Explicit Mappings

Question 4 requires subjects to describe the principal goal of an example program. As

subjects should be able to extract this information from value and function names, there

should be little difference between experts and novices in either sample. For question 3,

however, a significant difference between expert and novice programmers from the

control group is expected, as this question is intended as a test of a subject's ability to

model explicit mappings. For the ZL sample, a difference between experts and novices

is also expected, but this difference should be smaller than the difference for the control

group.

Recurring Patterns

Expert programmers from both the ZL and control groups should obtain higher results

than novice programmers for question 5. However, it is also expected that the gap

between novices and experts in the ZL sample will be smaller than the gap in the control

group. As question 6 uses simpler code segments the differences in the gaps for this

question should be correspondingly smaller.

100

Well Connected

It is expected that experts from both the ZL and control samples would obtain higher

results than novices for question 7. However, a smaller difference between novices and

experts in the ZL sample, as compared to the control group, might be taken as evidence

of a positive learning effect. No significant difference between novices and experts in

both groups is expected for question 8.

Well Grounded

There should be no significant difference between experts and novices in either group

for question 11. It is expected that experts from both the ZL and control groups would

obtain higher results than novices for questions 9 and 10. However, similar to question

8, a smaller difference between novices and experts in the ZL sample, as compared to

the control group, might indicate that ZL has a positive learning effect.

6.2.3 Planning and the Transfer of Mental Models

Chapter 2, Programming Concepts , described generic programming concepts

exemplified by ZL. A brief description of each concept was given together with some

assumptions about the type of mental model used by the novice in comprehending the

concept. It was argued that the mental models created by the novice when using ZL are

generic and easily transferred to other programming languages.

The objective of this experiment 1s to test whether ZL increases the novice

programmer's ability to beneficially transfer programming skills across programming

paradigms. To be more precise, transferring skills learnt in the functional programming

family to another programming family, e.g. imperative or logical. Transfer is an elusive

concept and can be very difficult to measure. Therefore it follows that the present

experiment, which aims to measure transfer, is more complicated than the first

experiment described in this chapter.

The three levels of plan knowledge identified by Soloway and Ehrlich (1984) can be

used as a base for testing the transfer of programming knowledge (Scholtz and

Wiedenbeck, 1990). The three levels of plan knowledge are:

IOI

• Strategic Plans: language independent plans used by the programmer to form

an overall strategy for solving a problem.

• Tactical Plans: language independent plans used by the programmer to form

a local strategy for solving a problem.

• Implementation Plans: language dependent plans used by the programmer to

determine how to achieve their strategic and tactical plans in the target

language.

Scholtz and Wiedenbeck (1990) studied the problem of learning second programming

languages and the problems associated with transfer. The following experiment follows

their guidelines by using planning levels to study the effects ZL has on transfer in novice

programmers.

6.2.3.1 Subjects

Two groups of novice programmers are required; a ZL sample and a control group.

6.2.3.2 Procedure

Both the ZL sample and the control group are given a problem (problem 1) to solve.

This problem:

• is the same for both groups.

• requires generic programming concepts common to the two languages.

To solve problem I:

• the ZL sample will use the ZL system.

• the control group will use some other programming system which belongs to

the same programming paradigm as ZL.

Both groups are asked to verbalise their thoughts as they are working on the problem.

This process is known as thinking-aloud. While subjects are solving the problem their

thoughts are recorded.

When a subject has achieved a solution to problem! (or a specified time period has

elapsed) they are asked to work on a second problem (problem2) using a new

programming language. The new programming language will be:

102

• nonfunctional, i.e., not in the functional paradigm.

• the same for both the ZL and control groups.

Problem2 should:

• be different to problem 1, but

• require the same generic concepts as required by problem 1.

It must be stressed that the two problems used in the experiment should be of a similar

level of complexity, otherwise any results obtained will be inconclusive. For example:

or

• Problem 1: Calculate the greatest common divisor of a and b .

• Problem 2: Calculate the least common multiple of a and b.

• Problem 1: Write a function to convert a temperature from Celsius to

Fahrenheit.

• Problem 2: Write a function to convert a measurement from inches to

centimetres .

Analysing the Data

To find the time taken for each subject to complete each planning stage it will be

necessary to decompose each subject' s ' thoughts' into different episodes. Where each

episode represents a distinct behaviour. A distinct behaviour can be defined as either:

• a change in physical activity, e.g. switching from entering text at the keyboard

to drawing diagrams on a piece of paper, or

• a change in attention focus, e.g. switching between programming concepts

(Scholtz & Wiedenbeck 1992).

The time taken to complete each episode can then be recorded. Each episode can then

be categorised into one of the three planning stages. The total time for each subject to

complete each solution will also be recorded.

103

We hypothesize that if ZL increases beneficial transfer then the ZL sample will spend

less time at the tactical and implementation planning stages than the control group when

solving problem2.

6.2.4 Hypothetical Test Results

Strategic Planning - Problem!

It is expected that both the ZL sample and the control group will spend an equal amount

of time at the strategic planning stage. This is because both sample groups contain

novice programmers of an approximately equal skill level. Scholtz and Wiedenbeck

used experienced programmers in a similar study and classified only 3.5% of total

planning episodes in their study as strategic. However, as this experiment will use

novice programmers it is expected that subjects will spend considerably more than 3.5%

of their total planning episodes at this stage.

Strategic Planning - Problem2

It is again expected that both the ZL sample and the control group will spend an equal

amount of time at the strategic planning stage for solving problem2. However, the total

time for both groups at the strategic planning stage for the second problem, will be less

than the total time spent at the strategic planning stage for problem 1. This is because

subjects from both groups will already have been exposed through problem 1 to the

strategies required to solve problem2.

Problems 1 and 2 are different problems. However, for a solution to problem2, the same

concepts used to solve probleml are required. For example, if one of the generic

concepts used to solve problem 1 is a conditional choice, then the subject needs to:

a. discover the existence of conditionals,

b. construct a mental model (basic recurring pattern) for conditionals, and

c. tailor the mental model so it is applicable for solving problem 1.

The above steps will take time to complete. To achieve a strategic plan for a conditional

choice to solve problem2, a subject has to complete neither step 'a' nor step 'b'.

Therefore, if the existing model for a conditional choice is reused, then it is plausible

104

that the total time on strategic planning taken by subjects for solving problem2 will be

less than the total time taken for solving problem 1.

Tactical Planning - Probleml

It is expected that both the ZL sample and the control group will spend an equal amount

of time at the tactical planning stage for probleml. As both groups contain novice

programmers, subjects will have previously had little practice using the generic concepts

involved in solving probleml. Thus, subjects from both groups will need to build new

tactical plans for each use of the concepts. The total time spent by subjects from both

groups at this stage in planning will be greater than the time spent by subjects at the

strategic planning stage.

Tactical Planning - Problem2

It is expected that subjects from the ZL sample will spend less time at the tactical

planning stage than subjects from the control group, for the following reasons :

• The tactical plans the ZL sample formed when solving problem! should be

beneficially transferred to help solve problem2.

• Even though tactical plans should be language independent, subjects from the

control group will use tactical plans that are more appropriate to the language

in which they solved problem! (section 1.5.3.2 Tactical Plans).

• It is expected that subjects in the control group should find it necessary to

revise their tactical plans once they discover they do not work at the

implementation planning stage.

In a similar study conducted by Scholtz and Wiedenbeck (1990) subjects often returned

to revise and modify their tactical plans after discovering at the implementation stage,

that their plans were too dependent upon previously used languages.

Implementation Planning - Probleml

It is expected that both the ZL sample and the control group will spend an equal amount

of time at the implementation planning level. Again, this is because both groups contain

novice programmers. As both groups of subjects should be unfamiliar with the

105

languages they are using it should take them a considerable amount of time to find

constructs which can be used to carry out their tactical plans. In Scholtz and

Wiedenbeck's (1990) study 79% of the time subjects spent planning was at the

implementation planning stage. A similar result would be expected in this experiment.

Implementation Planning - Problem2

It is expected that subjects from the ZL sample will spend less time at the

implementation planning stage than subjects from the control group. This is because

tactical plans should beneficially transfer from ZL to the new language. Therefore,

subjects from the ZL sample should successfully be able to create implementation plans

from their tactical plans. Subjects from the control group may spend more time at the

implementation planning stage for the following reasons:

• Tactical plans created by subjects in the control group will most likely make

language commitments to the language used in solving problem 1 and

therefore will not work at the implementation stage (section 1.5.3.2 Tactical

Plans).

• When implementation plans of incorrect tactical plans do not work the

implementation plans themselves will also have to be revised.

Figure 64 illustrates the time spent by subjects from both groups at each of the three

planning stages for solving problem 1.

Time

0
Strategic Tactical Implementation

Figure 64 : Problem I - Time spent by ZL and Contro l Groups at the Planning Stages

106

As illustrated in Figure 64, there should be no significant time difference between the

ZL sample and the control group at each of the planning stages

Figure 65 illustrates the time spent by subjects from both groups at each of the three

planning stages for solving problem2.

Time

0
Strategic Tactical Implementat ion

Key:

0 ZL

Control

• ZL and Cont rol

Figure 65 : Problem2 - Time spent by ZL and Control Groups at the Planning Stages

Figure 65 illustrates the differences between the time taken for each group to solve

problem2. As shown, it is expected that the control group will spend more time at both

the tactical and implementation stages of planning than the ZL sample. If this is the

case, then it is evidence that the mental models created by the ZL sample in solving

problem 1 transfe1Ted to the solution of problem2 in the new language.

6.2.5 Difficulties of Measuring Transfer

Transfer is a fundamental concept in the psychology of learning information technology.

We have already mentioned the difficulties of measuring it. In this section, we look in

more detail at some of the potential difficulties raised by this design.

The Think-Aloud Method

The think-aloud method is a widely used technique for accessing concept formation.

However, it has previously drawn criticism, particularly in the following areas:

• Verbalising thoughts can affect the performance of a subject. This can be both a

positive and negative factor. In the negative, it can lead a subject to focus on a

particular mental model or planning stage more than they normally would. In the

107

positive it can make subjects work more carefully and concentrate more on their

work.

• Verbalising thoughts can affect the accuracy of the subject's account of the cognitive

processes they are using. It has been suggested that some cognitive processes are

unconscious and therefore, by definition, a subject cannot give an accurate account of

them.

In spite of these drawbacks the think-aloud method has been used successfully many

times previously for accessing concept formation. Scholtz and Wiedenbeck also used

the method in their 1990 study of transfer and obtained promising results. The think­

aloud method also allows access to thought processes which aren't available to anyone

other than the individual (Matlin 1989). For these reasons, the think-aloud method has

been used in the transfer experiment.

Construct Confusion

Careful consideration must be given to the choice of language used to solve problem2.

The language must contain constructs which are sufficiently different from both the

languages used to solve problem 1 so as the transfer problem is made a significant part of

the novice's task.

If constructs contained in the programming language used to solve problem2 too closely

resemble constructs used previously by subjects to solve problem 1, then the

implementation plans could be affected. Subjects could confuse the use of constructs,

i.e. subjects will assume a construct performs a certain task, when in reality, it performs

a totally different, unrelated task . Therefore, it must be stressed that before the transfer

test is implemented, careful consideration would be necessary in choosing the languages

involved.

ZL Versus Imperative Languages

This particular transfer experiment does not test the effectiveness of ZL against more

commonly used learning languages, which in most cases are imperative. Alternative

experimental designs may be explored for this purpose. For example, the control group

108

could use an imperative language (i.e. a common learning language like Pascal) to solve

the first problem. Thereby, we could test whether ZL or the common learning language

was more beneficial to novices in the transfer of programming skills across paradigms.

109

7. CONCLUSION

The objective of the present work was to:

"to aid novice programmers in the cognitive construction of programs and the

acquisition of program plans".

This goal was achieved by:

• Applying cognitive principles to the development of a simple programming

language that enables novice programmers to develop simple uncomplicated

mental models.

• Applying cognitive principles to the development of an easy to use

programming environment for the programming language.

To gain an insight into the way programming knowledge is storage and retrieved, three

theories of human memory storage were discussed.

• The Atkinson-Schiffrin Model: Atkinson and Schiffrin believed that human

memory was comprised of three different storage areas: Sensory memory,

which is a large capacity storage system for recording information from all

senses . Short term memory which contains only the relevant information

processes 111 sensory memory. Long term memory which is the long term

storage of human memory.

• Levels of Processing: Craik and Lockhart proposed that deep processing of

knowledge leads to better recall and retention of information, as deeper

levels of encoding extract more of a stimulus.

• The Episodic and Semantic Model: Tulving categorised memory into two

areas: episodic and semantic. Where episodic memory contains information

about time-date events and semantic memory contains information about

110

organised knowledge of the world. Anderson proposed that this type of

memory was stored as a netlike organisation of propositions in memory.

The cognitive structure of the storage of programming knowledge was also discussed.

Letovsky suggested that mental models were used to help form the basis of a

programmer's cognitive model. Holt et.al. suggested that programmers formed this

mental model from a program's structure and function.

Mental models of expert programmers were discussed to gain an insight into the type of

knowledge necessary for a novice programmer to form an expert programmer's mental

model. Fix et.al. suggested five abstract characteristics which exist in an expert's

mental representation that do not appear in a novice's mental representation:

• Hierarchic Structure: the depth and breadth of a mental model.

• Explicit Mappings: the links between a mental model's hierarchically

structured layers.

• Basic Recurring Patterns: mental models for frequently recurring situations.

• Well Connected: how parts of a mental model interact together.

• Well Grounded: information on the physical location of program structures

and operations.

The difficulty of transferring mental models from one programming language to another

was also discussed. It was discovered that two types of transfer can occur: negative

transfer and beneficial transfer. Negative transfer occurs when the learning of a new

skill is in direct conflict with a skill already well known. Beneficial transfer occurs

when an old skill aids the learning of a new skill.

To aid novice programmers with the learning of a new programmmg language the

learning activities of expert programmers was discussed. Scholtz and Wiedenbeck

discovered three learning activities associated with the learning of a new programming

language.

111

1. Language Syntax: very little time 1s spent by experienced programmer to

learn the syntax of a new language.

2. Language Semantics: as negative transfer often occurs when assumptions are

made about language semantics, experienced programmers will concentrate

more on learning the semantics of a new language than on the syntax.

3. Planning: planning is associated with how the levels of a mental model are

put together. Soloway and Ehrlich identified three levels of plan knowledge

among expert programmers:

• Strategic Plans: language independent plans used by the programmer to

form an overall strategy for solving a problem.

• Tactical Plans: language independent plans used by the programmer to

form a local strategy for solving a problem.

• Implementation Plans: language dependent plans used by the programmer

to determine how to achieve their strategic and tactical plans in the target

language.

To aid the novice programmer with the construction of mental models, generic concepts

common to some, if not all , programming languages were implemented in the

programming language ZL.

The generic concepts and the cognitive principles they use are outlined in Table 4.

112

Table 4 : Cognitive Principles used to aid the Novice Programmer form Mental Models
of Programming Concepts

Concept Cognitive Principles
Operator Application • Deep Levels of Processing
Value Naming • Syntax

• Hierarchical Structure

• Explicit Mapping
Conditionals • Well Connected
Nesting • Hierarchical Structure

• Explicit Mappings

• Well Connected

• Lazy Eva luation
Iteration/Recursion • Grounding

• Strategic Planning

• Hierarchical Structure

• Explicit Mappings

Pattern Matching • Strategic Planning

• Implementation Planning

• Syntax

• Semantics

• Strict Evaluation

Encouraging novices to use and learn the ZL programming language was achieved by

applying cognitive principles to the development of the ZL environment.

The ZL environment was designed to be functional, yet easy to use. This was achieved

by:

• Stationary Windows: Keeping three of the four window types stationary

avoids confusion about the function of each window, places emphasis on the

only moveable window, and avoids screen clutter.

• Using the Microsoft Standard: The Microsoft standard is deeply encoded

within IBM PC compatible users, therefore using standard icons and names

promotes button and menu behaviour recall.

• Relating Iconic Pictures to Toolbar Button Functions: Toolbar buttons unique

to ZL have iconic pictures which match their names to their tasks. Matching

iconic pictures to button tasks promotes recall about button behaviour.

113

• Separate Window for each ZL Function: The ZL environment also indirectly

aids the novice programmer with the construction of their mental model by

placing functions in separate windows. As the separation of functions

encourages novice programmers to form breadth in their mental model, which

aids the identification of basic recurring patterns.

Two experiments and their hypothetical results were discussed to demonstrate that the

ZL system is well suited to supporting the development of mental models in novice

programmers. The objective of the experiments were to test whether:

• ZL improves the construction of mental models for generic programming

concepts. Specifically, to test whether ZL improves the novice

programmer's ability to acquire the five expert mental model characteristics

identified by Fix, Wiedenbeck, and Scholtz (1993).

• ZL increases the novice programmer's ability to beneficially transfer

programming skills across programming paradigms. To be more precise,

transferring skills learnt in the functional programming family to another

programming family.

The mam objective of the present project was to aid novice programmers with the

cognitive construction of programs and the acquisition of program plans. This goal was

achieved by researching the cognitive principles involved in:

• The storage and retrieval of programming knowledge.

• The cognitive structure of stored programming knowledge.

• The effects of transferring cognitive structures from one programmmg

language to another.

• The learning activities involved with learning a new programming language.

These principles were then applied to the development and implementation of the

programming language ZL and the ZL programming environment.

114

This page intentionally left blank

115

8. REFERENCES

Ackermann, D., Stelovsky, J., & Greutmann, T. (1990). Action regulation and the
mental operational mapping process in human-computer interaction. In Cognitive
ergonomics: Understanding, learning and designing human-computer
interaction., Falzon, P. Ed. London: Academic Press, 107-132.

Anderson, J. (1983). The architecture of cognition. In Cognition, M.W. Matlin, Ed. New
York: Holt, Rinehart and Winston, 196-200.

Anderson, J. (1985). Cognitive Psychology and Its Implications (2nd ed.) New York:
W.H. Freeman and Company.

Atkinson, R.C, & Schiffrin, R.M. (1968). Human memory: A proposed system and its
control processes. In The psychology of learning and motivation: Advances in
research and theory (2nd ed.). New York: Academic Press.

Bohm, C. and Jacopini, G. (1966). Computational Linguistics: Flow Diagrams, Turing
Machines and Languages with only two formation rules. Communications of the
ACM, Vo! 9(5), 366-371.

Booch, G. (1991). Object Oriented Design with Applications. California: Benjamin­
Cummings.

Booch, G., & Rumbaugh, J. (1995). Unified method: Overview version 0.8. Rational
Software Corporation.

Campbell, R.L., Brown, N.R. & DiBello, L.A. (1992). The programmers burden:
Developing Expertise in Programming. The psychology of expertise: cognitive
research and empirical A, Hoffman, R.R Ed. NewYork: Springer-Verlag, 269-
294.

Cardelli, L. (1984). Basic polymorphic type checking. Science of computer
programming, Vo! 8(2), 147-172.

Craik, F.I.M, & Lockhart, R.S. (1972). Levels of processing: A framework for memory
research . Journal of verbal learning and verbal behaviour, Vo! 11 , 671-684.

DeTienne, F. (1990). Program understanding and knowledge organisation: The
influence of acquired schemata. In Cognitive ergonomics: Understanding,
learning and designing human-computer interaction. , Falzon, P. Ed. London:
Academic Press, 245-256.

Fix, V., Wiedenbeck, S. & Scholtz, J. (1993). Mental representations of programs by
novices and experts. lnterchi '93, 74-79.

Goldschlager, L., & Lister, A. (1988). Computer Science A Modern Introduction (2nd

ed.). London: Prentice Hall.

116

Harrison, R. (1989). Abstract Data Types in Modula-2. Chichester, England: John
Wiley & Sons.

Holt, R.W., Boehm-Davis, D.A. , & Schultz, A.C. (1987). An analysis of the online
debugging process. Jn Emprical Studies of Programmers: Second Workshop,
G.M. Olson, S. Sheppard, and E. Soloway, Eds., Norwood, NJ: Ablex, 33-46.

Kieras, D.E. , & Bovair, S. (1990). The role of a mental model in learning to operate a
device. In Human-computer interaction, Preece, J. & Keller, L. Eds., Cambridge,
Prentice Hall.

Letovsky, S. (1986). Cognitive processes in program comprehension. In Emprical
Studies of Programmers, E. Soloway & S. Iyengar, Eds., Norwood, NJ : Ablex,
58-79.

Luchins, A.S. (1942). Mechanization in problem solving. Psychological Monographs,
54(Whole No. 248).

MacLennan, B. J. (1989). Functional Programming: Practice and Theory. Reading,
Massachusetts : Addison-Wesley.

Matlin, M.W. (1989). Cognition (2nd ed.). New York: Holt, Rinehart and Winston.

Nanja, M. & Cook, C.R. (1987). An analysis of the online debugging process. In
Emprical Studies of Programmers: Second Workshop, G.M. Olson, S. Sheppard,
and E. Soloway, Eds., Norwood, NJ: Ablex, 295-341.

Pe1mington, N. (1987). Comprehension strategies in programming. In Emprical Studies
of Programmers: Second Workshop, G.M. Olson, S. Sheppard, and E. Soloway,
Eds. , Norwood, NJ: Ablex, 100-11 3.

Perkins, D.N. , & Martin, F. (1986) . Fragile Knowledge and Neglected Strategies in
Novice Programmers. In Emprical Studies of Programmers, E. Soloway & S.
Iyengar, Eds., Norwood, NJ: Ablex, 213-229.

Perry, N. (1992). Massey Hope +c, Version 1.0. Department of Computer Science,
Massey University.

Reed, K.R. (1988). Cognition: Theory and applications (2nd ed.). Pacific Grove,
California: Brooks/Cole.

Rumbaugh, J. , Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. (1991). Object­
Oriented Modelling and Design. New Jersey: Prentice Hall.

Samurcay, R. , (1990). Understanding the cognitive difficulties of novice programmers: a
didactic approach. In Cognitive ergonomics: Understanding, learning and
designing human-computer interaction, Falzon, P. Ed. London: Academic Press.

117

Scholtz, J. & Wiedenbeck, S. (1990). Learning second and subsequent programming
languages: a problem of transfer. International Journal of Human-Computer
Interaction, 2(1), 51-72.

Singley, M.K., & Anderson, J.R. (1985). The transfer of text-editing skill. International
Journal of Main-Machine Studies, 22, 403-423.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, 10, 595-609.

Terry, P.D. (1986). Programming Language Translation; A Practical Approach.
Wokingham, England: Addison-Wesley.

Tulving, E. (1972). Episodic and semantic memory. In Organisation o,f memory, E.
Tulving and W. Donaldson, Eds. New York: Academic Press.

Van der Veer, G.C., Wijk, R., & Felt, M.A.M., (1990). Metaphors and
metacommunication in the development of mental models. In Cognitive
ergonomics: Understanding, learning and designing human-computer
interaction, Falzon, P. Ed. London: Academic Press.

Waern, Y. (1990). Human learning of human-computer interaction: An introduction. In
Cognitive ergonomics: Understanding, learning and designing human-computer
interaction., Falzon, P . Ed. London: Academic Press, 69-84.

118

This page intentionally left blank

9. APPENDIX A: THE ZL GRAMMAR

The standard BNF notation used to describe the ZL language is as follows:

<definition>

<funct ion>

<funelement>

<pattern>

<patelement>

<e xpression>

<simple>

<tuple>

<qualified>
<let exp>

<lete lement>

<application>

<condit ional>

'symbol'
<item>
{ .. . }
+
*
[...]
I

<funapplication>

<opapplication>

is defined as
terminal symbol
non-terminal symbol
used for grouping
one or more of the previous item
zero or more of the previous item
optional item
or

<function>
<express ion>

' fun ' <ident ifier> <fune lement>
{ ' I ' <funelement> } *

<pattern> '- >' <expression>

<patelement>
' (' <patelement> { ',' <patelement>)* ') '
<literal>
<identifier>
<pattern>

<simple>
<qualified>
<application>
' (' <expression> ') '

<literal>
<tuple>

' (' <expression> { ' ,' <expression>}+ ') '

<let exp>
' let ' <letelement> ' &' <letelement> }*

' in ' <expression>
<pattern> ' <-' <expression>

<conditional>
<funapplication>
'-' <expression >
' not ' <express ion>
<opapplication>

' if ' <expression>
' then ' <expression>
' else ' <expres sion>

<identifier> <expression>

<expression> <operator > <expression>
<t uple> <opera t or> <tupl e>

119

120

<litera l >

<integer literal>
<boolean literal>

<operator>

<arith_op>
<rel op>
<logic op>

<identifier>

<char literal>

<integer literal >
<boolean literal>
{ 0 I 11 .. I 9) *
true
false

<arit h op>
<rel op>
<logic op>

I + I

I < 1 I > I

' and '
' or '

I* I

' = '
I I '
' <> ' ' <= ' ' >= '

<character literal> {<integer literal >
I <character literal >)*

a I z I A I I Z

121

10. APPENDIX B: THE ZL TYPE RULES

The ZL type calculation rules are as follows:

Integer Literal:

x number

Boolean Literal :

true boolean
false boolean

Tuple Expressions:

A ~ expression 1 : o 1 ... A ~ expressionn : On

A ~ (expression 1 , ... , expressionn) : o 1 x ... x On

Qualified Expression:

A ~ expression2 : o A ~ pattern : o

A F (pattern <- expression 2) a

A ~ expression 2 : o A . pattern : o ~ expression, : 1

A ~ (let pattern <- expression2 in expressioni) : 1

Unary Expression:

A t x : number

A ~ (- x) : number

'Not' Expressions:

A ~ x : boolean

A ~ (not x) : boolean

Conditional Expressions:

A ~ exp 1 boolean 1

A F (if exp1 then exp2 else exp3) 1

Function Applications:

A t identifier : o - > 1 A t expression a

A ~ (identifier expression) : 1

122

Operator Applications:

Patterns:

Functions:

A ~ operator o - > t A ~ exp 1 : o A ~ exp2 0

A F (exp1 operator exp2) t

A ~ patelement 1 o 1 .. . A ~ patelementn : On

A ~ (patelement 1 patelementnl : o 1 x . . . x On

A t pattern : o A t expression t

A ~ (pattern - > expression) : o - > t

A ~ funelementi : o - > t A ~ funelementn : o - > t

A ~ (fun identifier funelementi funelementnl o - > t

