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Abstract 
 
 
The NZ dairy industry has adopted an encompassing measure of performance, total factor 

productivity (TFP), as a target measure to guide on-farm improvements.       

 
Dairy farmers pay a levy in order to fund agricultural research and extension. Extension 

services and R&D will continue to be of critical importance to maintain and improve 

productivity at the farm level. Consequently, it is in the best interest of the dairy industry to 

adequately target R&D and extension funds and make the best use of resources. 

 

To date, the methodology employed to estimate productivity growth has some 

shortcomings that seriously hamper the ability of potential users to extract useful 

information from it. First, productivity growth has been reported as an aggregate for the 

entire dairy industry. Second, it makes no assumption about the efficiency with which 

resources are being used. Third, it implicitly assumes that all farms face the same 

technology.  

 

Productivity growth can be achieved either through better (more efficient) use of the 

technology applied, through the adoption of a new technology (technical progress) or a 

combination of both. Given that the sources of productivity change—technical progress 

and technical efficiency change—are fundamentally different phenomena, they are, in turn, 

influenced by different factors. This distinction is important for policy orientation because 

different instruments/tools may be required to address them. Furthermore, empirical 

evidence suggests that a variety of farming systems have emerged as a result of dairy 

farming geographical expansion. 

 

Farm-level panel data were used to estimate the Malmquist productivity change index. This 

index can provide additional insights since it can be decomposed into two additional 

components, one that measures changes in technical efficiency (i.e., whether firms are 

getting closer to the production frontier over time), and one that measures changes in 

technology (i.e., whether the production frontier is moving outwards over time). Hence, it 

provides individual (farm) estimates of TFP. Moreover, the methodology applied allows to 

test whether farms in the two regions considered in this study are operating under the same 
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technology. These two regions were the long-established dairy areas of Waikato-Taranaki 

and the newly developed dairy areas of Canterbury-Southland.  

 

Results for farms in Waikato-Taranaki indicate that annual TFP change is modest, ranging 

from 0.29% per annum to 0.59% per annum. Most importantly, technical progress is the 

only source of TFP change in all four models. Therefore, it is necessary to encourage 

investments in new R&D targeted to remove the technological constraints that impede the 

realisation of further productivity gains in the regions. However, important differences in 

the estimates of TFP, technical progress and change in technical efficiency between models 

were found for farms in Canterbury-Southland. Estimates of TFP change ranged from 

0.7% per annum to 2.8% per annum. Even though technical progress and change in 

technical efficiency contributed to total factor productivity growth (TFPG), the latter 

component was the most important contributor in three of the four models. Moreover, in 

two models the rate of technical progress was negative (i.e., technical regress).  

 
The analyses indicate that dairy farms in Canterbury-Southland were on average 10% more 

productive than farms in Waikato-Taranaki when farms in both regions faced the frontier. 

These results were consistent for all the input/output set chosen. Furthermore, the null 

hypothesis that the two regions do not face the same production technology (i.e., each 

region has it own production frontier) was accepted irrespective of the input/output set 

chosen. The rejection of the null hypothesis, that farms in traditional and non-traditional 

dairy regions were operating under the same underlying technology (and hence face the 

same production frontier), called for a review of the traditional approach to R&D in one 

central experimental station, strengthening the need for a local approach through the 

promotion of networks and synergies with universities and other research institutions.  

 

 

 

 

 

 

 

 



 
 

 iii 

Acknowledgements 
 
I would like to thank NZAID for funding my studies in Aoteroa. 

 

I am truly indebted to Sylvia Hooker and Susan Flynn from the International Student 

Office for their support and understanding. 

 

My appreciation to Phil Journeaux from MAF Policy (Hamilton) who kindly provided me 

with the farm-level data and who was also handy to answer any doubt. 

  

My deepest recognition to my supervisors Bill Bailey and Colin Holmes, as their guidance 

as supervisors and their advice and support to the person behind the thesis was greatly 

appreciated. 

 

I would also like to express my gratitude to Prof. Ruben Tansini from the Department of 

Economics at the Faculty of Social Sciences of the University de la República in Uruguay 

for his support and encouragement.  

 

To my fellows of the “Latin-American Society for the Development of the New Zealand 

Dairy Industry,” René and Matías: many thanks for the arguments, discussions and insights 

that improved my work. To all other members of the PDHutt, sorry about our noisy 

debates.  

 

Thanks to the Latin American community at Massey, to all of you. 

 

To my wife María, who resigned to many things following my dream…thanks and sorry. 

Talking about productivity and efficiency during the four-plus years that took me to write 

one thesis, she gave birth to our three children. There is not much to add. 

 

To my mother, brothers, sister, in-laws and all those that in one way or another allowed 

this acknowledgement to be written. 

 

Finally, against all odds. 

 



 
 

 iv 

 

 
 

 

 

To my wife María and our children 

Inés, Joaquín, Iñaki and Valentina… 

and the others who might want to come.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 v 

Table of contents 
 
Abstract ................................................................................................................................................ i 

Acknowledgements .......................................................................................................................... iii 

Table of contents ............................................................................................................................... v 

List of tables ...................................................................................................................................... ix 

List of figures .................................................................................................................................. xiii 

1 Introduction to the dairy industry and dairy farming in New Zealand ............................ 1 

1.1 Background ........................................................................................................................... 1 

1.2 Institutional changes ........................................................................................................... 3 

1.3 Dairy farming expansion .................................................................................................... 5 

1.4 Productivity growth as a policy objective ...................................................................... 11 

1.5 Productivity estimates for New Zealand dairy farms ................................................... 14 

1.6 Geography and technology .............................................................................................. 16 

1.7 Research objectives ........................................................................................................... 18 

2 The evolution of dairy farming in New Zealand with emphasis on key regions .......... 21 

2.1 Introduction ....................................................................................................................... 21 

2.2 The spatial distribution of dairy farming in New Zealand .......................................... 21 

2.3 Main differences between traditional and non-traditional dairy regions ................... 27 

2.4 Technological trajectories for selected regions in New Zealand ................................ 32 

2.5 Conclusion .......................................................................................................................... 34 

3 A review of previous studies on dairy farm efficiency and productivity ....................... 36 

3.1 Introduction ....................................................................................................................... 36 

3.2 Previous studies in dairy farm efficiency ........................................................................ 37 

3.2.1 The underlying assumption about technology ..................................................... 40 

3.2.2 The input/output variables used ............................................................................ 44 

3.2.3 Determinants of inefficiency .................................................................................. 47 

3.3 Previous studies in dairy farm total factor productivity ............................................... 51 

3.3.1 The underlying assumption about technology ..................................................... 56 

3.3.2 The input/output variables used ............................................................................ 56 

3.3.3 Determinants of inefficiency .................................................................................. 57 

3.4 Concluding comments ...................................................................................................... 58 

4 A review of methods and materials used in the present study ........................................ 79 

4.1 Introduction ....................................................................................................................... 79 



 
 

 vi 

4.2 Concepts and definitions .................................................................................................. 79 

4.3 A review of the approaches to estimate efficiency and productivity ......................... 85 

4.3.1 Technical efficiency .................................................................................................. 85 

4.3.2 Productivity growth .................................................................................................. 87 

4.4 Methodology ...................................................................................................................... 91 

4.4.1 Stochastic frontier analysis with panel data .......................................................... 91 

4.4.2 Estimation of the Malmquist TFP index with stochastic frontiers ................... 93 

4.5 The model specification .................................................................................................... 94 

4.6 The database ....................................................................................................................... 97 

4.6.1 Data limitations ......................................................................................................... 97 

4.6.2 Impact of data limitations ..................................................................................... 101 

4.7 Selection of input variables ............................................................................................ 106 

4.8 Empirical results .............................................................................................................. 109 

4.9 Concluding comments .................................................................................................... 110 

5 Results for Model J7 ............................................................................................................ 112 

5.1 Determination of the preferred functional form ........................................................ 112 

5.1.1 All data pooled across both regions ..................................................................... 112 

5.1.2 The Waikato-Taranaki sample .............................................................................. 114 

5.1.3 The Canterbury-Southland sample ...................................................................... 117 

5.1.4 Testing the existence of a common frontier....................................................... 119 

5.2 Waikato-Taranaki ............................................................................................................. 120 

5.3 Canterbury-Southland ..................................................................................................... 123 

5.4 Comparison of both regional models ........................................................................... 127 

6 Results for Model L8 ........................................................................................................... 130 

6.1 Determination of the preferred functional form ........................................................ 130 

6.1.1 All data pooled across both regions ..................................................................... 130 

6.1.2 The Waikato-Taranaki sample .............................................................................. 132 

6.1.3 The Canterbury-Southland sample ...................................................................... 134 

6.1.4 Testing the existence of a common frontier....................................................... 136 

6.2 Waikato-Taranaki ............................................................................................................. 137 

6.3 Canterbury-Southland ..................................................................................................... 140 

6.4 Comparison of both regional models ........................................................................... 145 

7 Results for Model Y5 ........................................................................................................... 148 

7.1 Determination of the preferred functional form ........................................................ 148 



 
 

 vii 

7.1.1 All data pooled across both regions ..................................................................... 148 

7.1.2 The Waikato-Taranaki sample .............................................................................. 150 

7.1.3 The Canterbury-Southland sample ...................................................................... 152 

7.1.4 Testing the existence of a common frontier....................................................... 155 

7.2 Waikato-Taranaki ............................................................................................................. 156 

7.3 Canterbury-Southland ..................................................................................................... 158 

7.4 Comparison of both regional models ........................................................................... 165 

8 Results for Model K9 .......................................................................................................... 168 

8.1 Determination of the preferred functional form ........................................................ 168 

8.1.1 All data pooled across both regions ..................................................................... 168 

8.1.2 The Waikato-Taranaki sample .............................................................................. 170 

8.1.3 The Canterbury-Southland sample ...................................................................... 172 

8.1.4 Testing the existence of a common frontier....................................................... 174 

8.2 Waikato-Taranaki ............................................................................................................. 175 

8.3 Canterbury-Southland ..................................................................................................... 177 

8.4 Comparison of both regional models ........................................................................... 183 

9 Total Factor Productivity Decomposition ....................................................................... 187 

9.1 Introduction ..................................................................................................................... 187 

9.2 Waikato-Taranaki ............................................................................................................. 188 

9.2.1 Technical efficiency change, as estimated by the four models ........................ 189 

9.2.2 Technical progress, as estimated by the four models ........................................ 192 

9.2.3 Total Factor Productivity change, as estimated by the four models ............... 193 

9.3 Canterbury-Southland ..................................................................................................... 197 

9.3.1 Technical efficiency change, as estimated by the four models ........................ 198 

9.3.2 Technical progress, as estimated by four models .............................................. 201 

9.3.3 Total Factor Productivity change ......................................................................... 204 

9.4 Conclusion ........................................................................................................................ 208 

10 Conclusion ............................................................................................................................ 212 

10.1 Introduction ................................................................................................................. 212 

10.2 Milking the productivity index .................................................................................. 212 

10.3 Main findings and policy implications ..................................................................... 213 

10.4 Limitations and future research ................................................................................ 216 

10.5 Final comments ........................................................................................................... 219 

Appendix 1 ..................................................................................................................................... 221 



 
 

 viii 

Appendix 2 ..................................................................................................................................... 225 

Appendix 3 ..................................................................................................................................... 233 

Bibliography ................................................................................................................................... 241 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 ix 

List of tables 

 
Table 1.1 - Structural change in New Zealand dairy farming…….………………….……11 

Table 2.1 - The number of herds in five subregions and the two Islands of NZ in 1990/91 

and 2004/05…………………………………………………………………….……….22 

Table 2.2 - Total dairy area in five subregions and the two Islands of NZ in 1990/91 and 

2004/05…………………………………………………………………………………23 

Table 2.3 - Total number of cows in five subregions and the two Islands of NZ in 1990/91 

and 2004/05…………………………………………………...………………………...24 

Table 2.4 - Milk production, annual growth rate and regional share in five subregions and 

the two Islands of NZ in 1990/91 and 2004/05…………………………………………25 

Table 2.5 - Average herd size and annual growth rate in five subregions and the two Islands 

of NZ in 1990/91 and 2004/05…………………………………………………………26 

Table 2.6 - Average farm area and annual growth rate in five subregions and the two 

Islands of NZ in 1990/91 and 2004/05……………….…………………………………26 

Table 2.7 - Milk production per hectare and fertiliser application in four subregions of 

NZ………………………………………………………………………………………27 

Table 3.1 - Summary of dairy efficiency studies………………………………………….38 

Table 3.2 - Summary of productivity studies in dairy farming ….………………………...52 

Table 3.3 - Studies that applied econometric methods…………………………………...60 

Table 3.4 - Studies that applied mathematical programming techniques………………….67 

Table 3.5 - Studies that applied mathematical programming and econometric methods….71 

Table 3.6 - Stochastic non-parametric a rara avis…………………………………………72 

Table 3.7 - Studies that aim to explain inefficiency…………..…………………………...73 

Table 3.8 - Total factor productivity studies in dairy farming……………………………75 

Table 4.1 - Characteristics of the whole sample (average values per farm)……………...100 

Table 4.2 - Characteristics of the sample by region; average values per farm in Region I 

(Waikato-Taranaki)…………………………………………….……………………….100 

Table 4.3 - Characteristics of the sample by region; average values per farm in Region II 

(Canterbury-Southland)………………………………………………………………...101 

Table 4.4 - Overview of empirical parametric studies on productivity and efficiency in dairy 

farms with panel data….………………………………………………………………..102 

Table 4.9 - Models estimated and variables used; X shows the variables that were included 

in each of the models………….………………………………………………………..109 



 
 

 x 

Table 5.1 – Model J7, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function………………113 

Table 5.2 - Data for Waikato-Taranaki: generalised likelihood-ratio tests of null hypotheses 

for parameters in the stochastic frontier production function……………………..……116 

Table 5.3 – Model J7, data for Canterbury-Southland: generalised likelihood-ratio tests of 

null hypotheses for parameters in the stochastic frontier production function……….…118 

Table 5.4 – Model J7, generalized likelihood-ratio tests of null hypothesis that regions share 

a common stochastic frontier production function……………………….…………….119 

Table 5.5 – Model J7, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale)….………….121 

Table 5.6 – Model J7, data for Canterbury-Southland: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale)…….……….124 

Table 5.7 - Model J7: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland …………………………………………………………………125 

Table 5.8 - Model J7: estimates of technical efficiency by year for Canterbury-

Southland………………………………………………………………………………126 

Table 5.9 - Model J7: comparison of factor input elasticity estimates at sample mean…..128 

Table 6.1 - Model L8, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function………………131 

Table 6.2 - Model L8: data for Waikato-Taranaki: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function………………133 

Table 6.3 - Model L8, data for Canterbury-Southland: generalised likelihood-ratio tests of 

null hypotheses for parameters in the stochastic frontier production function……….…135 

Table 6.4 - Model L8: generalised likelihood-ratio tests of null hypotheses that regions 

share a common stochastic frontier production function……………………………….136 

Table 6.5 - Model L8, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale)…….……….138 

Table 6.6 - Model L8, data for Canterbury-Southland: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale)….………….141 

Table 6.7 - Model L8: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland …………………………………………………………………143 

Table 6.8 - Model L8: comparison of factor input elasticity estimates at sample mean…146 

Table 6.9 - Model L8: average efficiency scores and farm efficiency distribution between 

regions …………………………………………………………………………………147 



 
 

 xi 

Table 7.1 - Model Y5, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function………………149 

Table 7.2 - Model Y5, data for Waikato-Taranaki: generalized likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function………………151 

Table 7.3 - Model Y5, data for Canterbury-Southland: generalised likelihood-ratio tests of 

null hypotheses for parameters in the stochastic frontier production function…….……154 

Table 7.4 - Model Y5, generalised likelihood-ratio tests of null hypotheses that regions 

share a common stochastic frontier production function……………...………………..155 

Table 7.5 - Model Y5, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale)……………..156 

Table 7.6 - Model Y5, data for Canterbury-Southland: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale)…………….159 

Table 7.7 - Model Y5: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland …………………………………………………………………161 

Table 7.8 - Model Y5: estimates of technical efficiency by year for Canterbury-

Southland………………………………………………………………………………164 

Table 7.9 - Model Y5: comparison of factor input elasticity estimates at sample mean….165 

Table 8.1 - Model K9, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function………………169 

Table 8.2 - Model K9, data for Waikato-Taranaki: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function………………171 

Table 8.3 - Model K9, data for Canterbury-Southland: generalised likelihood-ratio tests of 

null hypotheses for parameters in the stochastic frontier production function…….……173 

Table 8.4 - Model K9: generalised likelihood-ratio tests of null hypothesis that regions 

share a common stochastic frontier production function………...……………………..174 

Table 8.5 - Model K9, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale)….………….175 

Table 8.8 - Model K9: maximum likelihood estimates for parameters of the stochastic 

frontier production function for Canterbury-Southland………………………………...179 

Table 8.9 - Model K9: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland …………………………………………………………………180 

Table 8.10 - Model K9: estimates of technical efficiency by year for Canterbury-

Southland………………………………………………………………………………182 

Table 8.13 - Comparison of factor input elasticity estimates at sample mean …………..184 



 
 

 xii 

Table 9.1 - Waikato-Taranaki: summary of the four models…………………………….189 

Table 9.2 - Cumulative indices of technical efficiency change for Waikato-Taranaki region, 

estimated by the four models………………………………………………………….. 189 

Table 9.3 - Farm efficiency estimates and correlation of farm efficiency estimates given the 

alternative input/output sets for Waikato-Taranaki…………………………………..... 191 

Table 9.4 - Cumulative indices of change in technical progress for Waikato-Taranaki 

region, estimated by the four models……………………………………….…………..192 

Table 9.5 - Average annual change in TFP and its sources by model for Waikato-

Taranaki………………………………………………………………………………..194 

Table 9.6 - Descriptive statistics of technical efficiency over the period for Waikato-

Taranaki, estimated by four models…………………………………………………….196 

Table 9.7 - Canterbury-Southland: summary of the four models……….……………….197 

Table 9.8 - Cumulative indices of technical efficiency change for Canterbury-Southland 

region, estimated by the four models……………………………….…………………..198 

Table 9.9 - Farm efficiency estimates and correlation of farm efficiency estimates given the 

alternative input/output sets for Canterbury-Southland…………….…………………..200 

Table 9.10 - Cumulative indices of change in technical progress for Canterbury-Southland 

region, estimated by the four models………………………….………………………..201 

Table 9.11 – Farm average technical progress estimates and correlation of farm technical 

progress estimates given the alternative input/output sets for Canterbury-Southland…..203 

Table 9.12 - Cumulative indices of total factor productivity Canterbury-Southland region, 

estimated by the four models………………………………….………………………..204 

Table 9.13 - Average annual change in TFP and its sources by model for Canterbury-

Southland estimated by the four models……………………………………………….206 

Table 9.14 - Average annual change in TFP and its sources by model for both regions...209 

Table 9.15 - Average annual change in TFP and its sources by model for both regions...210 

Table 10.1 - Summary of technological differences between regions for all models…….214 

 

 
 
 
 
 
 
 
 
 



 
 

 xiii 

List of figures 
 
Figure 1.1 - Evolution of total number of herds, total number of dairy cows and national 

dairy area (1981-2005)………………. …………………………………………….  8 

Figure 1.2 - Average farm size and average herd size by island (1991-2005) ........................... 9 

Figure 1.3 - Annual growth rate in milk production per cow and cow numbers for the 

period 1990/91 and 2004/05 (selected regions)…………………………………… 10 

Figure 2.1 - Average monthly rain at four climate stations in New Zealand (mm) ............... 29 

Figure 2.2 - Average soil temperature at four climate stations in New Zealand (ºC, at 10 cm 

height)…………………………………………………………………………….. 30 

Figure 2.3 - Evolution of the productivity per cow in five subregions of NZ over the 

period 1996/97 and 2004/05………………………………………………………31 

Figure 2.4 - Evolution of the productivity per area in five subregions of NZ over the 

period 1996/97 and 2004/05………………………………………………………32 

Figure 2.5 - Regional technological trajectories for selected regions in NZ among 1991,  

1996 and 2001…………………………………………………………….……………..34 

Figure 4.1 – To illustrate productivity, technical efficiency and scale economies ................. 82 

Figure 4.2 - To illustrate productivity gains through technical progress ................................. 84 

Figure 4.3 - Malmquist productivity indices………………………...… ………………... 89 

Figure 4.5 - Average farm area for the sample farms and the region for Waikato-

Taranaki…………………………………………………………………………..103 

Figure 4.6 - Average herd size for the sample farms and the region for Waikato-

Taranaki…………………………………………………………………………..104 

Figure 4.7 - Average farm area for the sample farms and the region for Canterbury-

Southland…………………………………………………………………………104 

Figure 4.8 - Average herd size for the sample farms and the region for Canterbury-

Southland…………………………………………………………………………105 

Figure 5.1 - Model J7: efficiency scores for the individual farms in Waikato-Taranaki ...... 122 

Figure 5.2 - Model J7: Efficiency scores for the individual farms in Canterbury-

Southland(1)……………………………………………………………………... 127 

Figure 5.3 - Model J7: comparison of average efficiency score between Waikato-Taranaki 

and Canterbury-Southland………………………………………………………...129 

Figure 6.1 - Model L8: efficiency scores for the individual farms in Waikato-Taranaki .... 139 

Figure 6.2 - Model L8: annual rate of technical progress for Canterbury-Southland ......... 144 



 
 

 xiv 

Figure 6.3 - Model L8: efficiency scores for individual farms in Canterbury-Southland ... 145 

Figure 7.1 - Model Y5: efficiency scores for the individual farms in Waikato-Taranaki .... 158 

Figure 7.2 - Model Y5: annual rates of technical progress at the frontier for Canterbury-

Southland…………………………………………………………………………162 

Figure 7.3 - Model Y5: comparison of the annual rates of technical progress at the frontier 

for Model L8 and Y5 for Canterbury-Southland………………………….……….163 

Figure 7.4 - Model Y5: efficiency scores for the individual farms in Canterbury-

Southland(1)…………………………………………………………….……….. 164 

Figure 7.4 - Model Y5: comparison of farm efficiency score between Waikato-Taranaki and 

Canterbury-Southland…………………………………………………………….167 

Figure 8.1 - Model K9: efficiency scores for the individual farms in Waikato-Taranaki .... 177 

Figure 8.3 - Model K9: annual rate of technical progress at the frontier for Canterbury-

Southland…………………………………………………………………………181 

Figure 8.4 - Model K9: efficiency scores for individual farms in Canterbury-

Southland(1)……………………………………………………………….…….. 183 

Figure 8.7 - Model K9: annual rate of technical progress at the frontier for Waikato-

Taranaki and Canterbury-Southland………………………………………………185 

Figure 8.8 - Model K9: comparison of farm efficiency score between Waikato-Taranaki and 

Canterbury-Southland…………………………………………………………….186 

Figure 9.1 - Waikato-Taranaki: average efficiency scores and its range of the four 

models……………………………………………………………………………190 

Figure 9.2 - Cumulative indices of TFP change for Waikato-Taranaki region, estimated by 

the four models…………………………………………………………………...194 

Figure 9.3 - Canterbury-Southland: changes in the structural efficiency for the four models, 

over the 10 years……………………………………………….………………….199 

Figure 9.4 - Cumulative indices of technical progress for Canterbury-Southland region, 

estimated by the four models……………………………………………….……..202 

Figure 9.5 - Cumulative indices of TFP change for Canterbury-Southland region, estimated 

by the four models…………………………………………………………..…….205 

 

 
 
 
 
 
 



 
 

 1 

CHAPTER 1 
 

1 Introduction to the dairy industry and dairy 

farming in New Zealand 
 

1.1 Background 

 
 
The dairy industry is the most important agricultural industry in NZ, contributing around 

3.2% to NZ’s GDP (MAF, 2005). It is also the largest export industry, with export sales of 

processed milk and manufactured dairy products at $5.7 billion for the year ended June 

2005. This represented approximately one-fifth of all NZ exports (MAF, 2005). 

 

Total area devoted to dairy is 1.4 million hectares (LIC, 2005), accounting for less than 

10% of the area occupied by grassland, arable cropland, horticulture and forestry. 

According the 2001 census, dairy farming is the main occupation for 26,331 people. This is 

around 20% of primary agricultural industry’s employment population.  

 

NZ accounts for 3% of world milk production. At the same time, it exports over 80% of 

its milk production. Given that only 7% of total dairy production is traded internationally, 

NZ is a key player in international dairy markets, contributing 40% of total traded dairy 

products.  

 

NZ dairy production growth has been driven by improvements in farm and factory 

management and innovation, expansion and intensification of dairy farming and continued 

industry investment and restructuring. 

 

While NZ milk producers and processors exhibit strengths in developing and marketing 

differentiated dairy products, they also strongly compete in dairy commodity markets 

(Dobson, 1996). The latter competitive strength stems partly from production efficiencies. 

At the farm level, production costs are among the lowest in the world (Holmes, 2003). 

Dairy processing plants tend to be large and operate efficiently during months of high milk 
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production. However, the plants encounter inefficiencies because of the sharp reduction in 

milk throughput in the winter months (Holmes, 2003), offsetting some of the advantage 

they obtain from having access to low-cost milk (Dobson, 1996). 

 

The low cost of the raw material has become a core competitive advantage as well as a 

source of value (Mountfort, 2002). However, this major source of competitive advantage 

will fade as other competitors can also achieve low production costs by increasing the scale 

and scope of production or by adopting a superior technology that drives down production 

costs (e.g., new, more persistent pastures with higher production).  

 

The last two decades have witnessed profound changes to the internal and external 

environment in which the NZ dairy industry operates. These changes range from socio-

institutional and political to productive. 

 

Undoubtedly, the most important domestic change was the deregulation of the NZ 

economy in the 1980s that impinged on the relative profitability of agricultural industries, 

generating both the conditions for restructuring within the agricultural sector and the 

consequent changes in productive practices. (A comprehensive overview of NZ’s 

economic reforms can be found in Evans, Grimes, Wilkinson and Teece (1996) and 

Silverstone, Bollard and Lattimore (1996) and its implications to agriculture in Blandford 

and Dewbre (1994), Frengley and Engelbrecht (1998), Johnson, Sandrey and Scobie (1994) 

and Warren and Frengley (1994).) 

 

Changes in the international environment can be traced back to the developments of the 

Uruguay Round (UR) Agreement of the General Agreement on Tariffs and Trade (GATT), 

the liberalisation of trade, the re-organisation of dairy policies in developed countries aimed 

at reducing domestic support and the creation of the World Trade Organisation. 

 

MAF International Policy (2002) estimated that without the UR, lower world prices for all 

four dairy products (butter, cheese, WMP, SMP) would have caused a decline in the overall 

export revenue generated from dairy exports of $346.6 million for the year 2000.  

 

Among the new set of rules, special emphasis was put on the obligation of member 

countries to ensure that the activities of the State Trading Enterprises (STEs), referred to in 
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paragraph 1 of Article XVII of GATT 1994, are consistent with the general principles of 

non-discriminatory treatment prescribed in GATT 1994 for governmental measures 

affecting imports or exports by private traders (WTO). Following this, the interpretation of 

Article XVII was agreed upon, and in order to ensure the transparency of the activities of 

STEs, member countries shall name such enterprises. Additionally, the understanding 

provides a working definition of STEs: 

Governmental and non-governmental enterprises, including marketing boards, 

which have been granted exclusive or special rights or privileges, including statutory 

or constitutional powers, in the exercise of which they influence through their 

purchases or sales the level or direction of imports or exports. (WTO) 

 

Finally, it is worth mentioning that following the end of the UR, a worldwide wave of dairy 

industry consolidation took place (Zwanenberg, 2001). Zwanenberg (2001) identified some 

key driving forces behind the international consolidation of the dairy industry: growing 

demand for dairy products and increasing number of requirements from the consumer; 

increasingly powerful customers; milk supply growing more slowly than demand for dairy 

products and dairy politics (i.e., further developments of the WTO Rounds and EU 

enlargement). 

 

The consequences that such changes—domestic or international, policy or business 

driven—had, and still have, on the NZ dairy industry are clearly intertwined, making 

isolation of the effects difficult. A detailed review of its effects is well beyond the scope of 

this dissertation. However, some of the main events will be outlined, as they are relevant to 

an understanding of the recent evolution of the NZ dairy industry and the thoughts that 

gave rise to this work.  

 

1.2 Institutional changes  

 

The last two decades have witnessed a profound alteration of the internal and external 

environment for the NZ dairy sector. Over the years, and particularly beginning in the early 

1980s, the New Zealand Dairy Board (NZDB) evolved into a multinational dairy product 

firm, with active presence in more than twenty countries. As part of the economic reforms 

that began in the mid-eighties, the Board was divested of subsidies. However, it retained 

the statutory authority to be the single exporter of NZ’s manufactured dairy products. It 
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has been recognised (Dobson, 1998; Frampton, 2002 and Zwanenberg, 2001) that the 

statutory single exporter figure has contributed to the isolation of NZ from international 

takeovers. However, major changes have occurred inside its boundaries. An active process 

of mergers and acquisitions took place between the manufacturing cooperatives. The 

number of companies (cooperatives) has been reduced to four at the beginning of 2000, 

from sixteen in 1996, and thirty in 1980 (Holmes, 2003). 

 

Frampton (2002) gives a brief and concise review of the developments that occurred 

during the 1990s that were crucial in creating the NZ dairy industry as it exists today. (For a 

comprehensive review of international and domestic developments, see Dobson, 1998.) 

Following the corporatisation of the NZDB by dairy companies (to secure farm ownership 

of the Board’s assets) the larger shareholders demanded more efficiency (Dobson, 1998 

and Frampton, 2002). After a first study that suggested $250 million could be obtained 

from improvements in performance, McKinsey & Co. was commissioned by the dairy 

industry to undertake two studies. The first, in 1997, recommended options on how to get 

those efficiency gains, while the second, in 1999, developed a strategy for the dairy industry 

to decide the preferred structure. The final proposal signalled that a single company, 

incorporating the NZDB, should be adopted.      

 

The regulatory environment in which NZ farms operate changed with the approval of the 

Dairy Restructuring Act in 2001. The act allowed the merger of Kiwi and the New Zealand 

Dairy Group into a single company incorporating the New Zealand Dairy Board, thus 

creating a new cooperative called Fonterra.  

 

Some of the main ideas behind the consolidation were1

• Efficiencies of transport 

: 

• Economies of scale 

• To reduce personnel 

• To ensure New Zealanders, and not foreign customers, will take the benefits of those 

gains 

• To retain/gain market share and market power 

                                                 
1  Fonterra Cooperative Group. Annual Report 2001-02 

Open letter to the shareholders of New Zealand Dairy Group and Kiwi Co-operative Dairies (13 June 2001), 

John Roadley, Henry van der Heyden, Greg Gent. Dairy Industry letter to the Ministry about the Merger 
Package (5 January 2001) 



 
 

 5 

• To strengthen their innovative capacity 

• To improve their access to capital 

• To secure milk supply 

 

Even though Fonterra dominates the scene, two other cooperatives, Westland and Tatua, 

as well as many other smaller businesses, complement NZ’s dairy industry. 

 

Prior to the signature of the merger agreement, the Dairy Industry commissioned different 

studies in regard to the strategies to follow. Anderson and Johnson (2002) point out that 

the McKinsey Report (one of the studies commissioned) on the dairy industry identified 

the sluggish growth in on-farm productivity as an issue of concern. 

 

Declining on-farm productivity and the prospect of losing competitive advantage, given 

developments in other dairy-exporting countries, induced the NZDB to establish Dexcel 

with the sole objective of helping farmers achieve on-farm productivity improvements 

through research, extension and education for dairy farmers (Pringle, 2000 and 2002). A(n) 

(aspirational) target of 4% per annum increase was identified as “critical to ensuring the 

future growth and vitality of the dairy industry” (Bodeker and Anderson, 2001 and Pringle, 

2000). Funding was initially provided by the Board, and later, by a direct levy on all bovine 

milk producers. Levies are collected by dairy companies on behalf of their farmer suppliers 

and passed onto Dairy InSight, the agency responsible for the promotion and funding of 

dairy industry-good activities. 

 

1.3 Dairy farming expansion  

 

“Conversions” from sheep and beef units into dairy were a conspicuous feature of the 

years that followed the 1984 economic reforms (Jaforullah and Devlin, 1996; Johnston and 

Frengley, 1994 and Sandrey and Scobie, 1994). Bockstael (1996) affirmed that public 

policies might have a strong influence on the spatial pattern and distribution of land. The 

radical plan of economic reform, which included changes in monetary policy, fiscal policy 

and commercial policy, definitively modified business expectations, as resource allocation 

was to be determined by market forces (Johnson, 2000; Johnston and Frengley, 1994; 

Sandrey, 1991 and Sandrey and Scobie, 1994). The relative profitability of different 

agricultural industries was altered after deregulation, and as a result, the pattern of land use 
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changed. The process of economic deregulation was one factor, amid others, that had an 

influence on the expansion of dairy farming into new areas. Other factors may also have 

played roles in promoting conversions. Johnson (2000) mentioned the problems in the 

international wool market following the failure of the Australian Wool Board support 

scheme in 1991. Additionally, Jaforullah and Devlin (1996) highlighted the importance of 

the favourable outcome of the GATT/WTO Uruguay Round of trade negotiations.  

 

Prior to deregulation, wool and lamb production enjoyed a higher level of support than 

other agricultural economic activities, thereby encouraging sheep production (Johnston and 

Frengley, 1994 and Morrison et al., 2000). Morrison et al. (2000) provided evidence of the 

policy-induced changes in North Island Hill Country farms.  They found changes in output 

composition as the production of beef and deer increased relative to wool and especially 

lamb. Johnson (2000) and Johnston and Frengley (1994) pointed out that, following 

deregulation, sheep production was displaced by dairy and, where suitable, forestry. In the 

same vein, Ruaniyar and Parker (1999) observed that even in the presence of substantial 

development costs, conversions from sheep and beef farming into dairy were common. 

Kilsby et al. (1998), studying the cost of conversion for five farms in the North Island, 

reported values ranging from $1,894 per hectare to $6,188 per hectare. In four cases, dairy 

shed and building costs accounted for the majority of the total cost.   

 

Jaforullah and Devlin (1996), and Jaforullah and Whiteman (1999) recognised that hand in 

hand with the increase in the number of dairy farms, the rate of growth in average farm 

size also accelerated. Supported by evidence from the Southland region, they identified two 

factors behind the increases in farm size, namely, the involvement of publicly-listed 

companies in dairy farming and “conversions” of sheep and beef owner-operators into new 

dairy farms. They stated that these new land holdings and herds were typically larger than 

the existing “average” dairy farm. According to the researchers, corporate farms entering 

dairy production and conversion of sheep and beef farms and farmers mainly drove the 

expansion of dairy farming into the South Island. By 1997, Tasman Agriculture had 

developed 65 dairying operations in the South Island, with sharemilkers, area managers and 

farm consultants in charge of establishing production goals and running the business 

(McLean, 1997).  
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In Waikato, amalgamations were common in the search for bigger scale (Journeaux, 2002), 

while in Taranaki and Wairarapa, both acquisitions and conversions took place (Kilsby et 

al., 1998). Bigger farms introduced another type of problem (Parker, 2002). The trend 

towards older farm owners coupled with larger farms increased the need for hired staff, 

moving management away from farm operations. Similarly, it has been reported (MAF, 

2001) that recent growth in South Island dairying has occurred largely through 

“conversions” of sheep, beef and cropping farms.  

 

A long-term view of herd and area dynamics will help to explain the evolution of the 

industry and the magnitude of the changes that occurred during the nineties (Figure 1.1). 

During the eighties, total number of herds declined steadily, from 16 thousand herds to 

14.4 thousand in 1992. From 1992 onwards, the numbers increased until 1997, before 

declining again. Total dairy area, on the other hand, stayed constant during the eighties at 

approximately 940 thousand hectares. However, the area in dairying then increased by 

3.8% per annum for the period 1991 to 2005. Cow numbers, meanwhile, grew by 20% 

from 1981 to 1995 and by 61% from 1991 to 2005, annual growth rates of 1.4% and 4.2% 

respectively. 

 

It can be seen that years 1991 and 1992 represented an inflection point for the NZ dairy 

industry (Figure 1.1). During the eighties, the decline in herd numbers coupled with a 

stagnant total dairy area and the slow increase in cow numbers is synonymous with an 

industry that was having trouble competing with other land-based industries. Furthermore, 

there was intense competition within the industry for the available land. Conversely, the 

nineties saw an industry eager to expand its frontiers. It is worth noting that during the 

eighties, more than 90% of the dairy herds, dairy cows and total dairy area was located in 

the North Island. 
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Figure 1.1 - Evolution of total number of herds, total number of dairy cows and national 

dairy area (1981-2005) 
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Source: based on Livestock Improvement Corporation 

 

Over the period of 1991 to 2005, herd numbers declined from 14.6 thousand to 12.3 

thousand. However, this aggregate figure conceals the extent of the internal 

transformations. Whereas herd numbers in the North Island declined by 27% from 13.8 

thousand in 1991 to 10.0 thousand in 2005, the number of herds in the South Island 

increased by more than two fold in absolute terms. As a result, 18% of NZ herds are now 

located in the South Island, compared with only 6% in 1990/91. 

 

NZ’s total dairy area has increased by 53% since 1991, reaching 1.4 million hectares in 

2004/05. Since 1991, new area added to dairy in the South Island accounted for 63% of the 

490 thousand hectares of NZ’s new dairy area. Accompanying the geographical expansion 

in dairy area, cow numbers increased by 1.7 million, to 3.9 million in 2005 from 2.2 million 

in 1991, of which 728 thousand were in the North Island and 911 thousand were in the 

South Island.  

 

The long-term trend towards larger units continues. In 2005, an average farm in the South 

Island had a herd of 470 cows and an area of 171 hectares, compared to 170 cows and 84 

hectares in 1991. An average farm in the North Island had a herd of 166 cows and a 
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milking platform of 69 hectares in 1991, whereas in 2005, average herd size was 280 cows 

and average of area 102 hectares (Figure 1.2). 

 

Figure 1.2 - Average farm size and average herd size by island (1991-2005) 
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 Source: based on Livestock Improvement Corporation 

 

Milk production increases can be achieved through gains in milk production per cow, by 

increasing the number of cows or both. National average growth rate in cow numbers and 

milk production per cow was 4% for the period 1990/91 and 1.5% for the period 2004/05 

(blue lines in Figure 1.3). 

 

It is clear that, over the period, the drivers of milk production growth have been different 

among the major regions. Regions in the lower left (South Auckland and Taranaki) grew at 

lower rates than national average for both variables considered. Conversely, the upper-right 

quadrant comprises those regions that experienced faster-than-national-average growth 

rates in both variables. Regions in this quadrant are located in the South Island (North 

Canterbury, South Canterbury and Southland) and Hawkes Bay, all regions dominated by 

new dairy farms (Figure 1.3). 
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Figure 1.3 - Annual growth rate in milk production per cow and cow numbers for the 

period 1990/91 and 2004/05 (selected regions) 
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  Source: based on Livestock Improvement Corporation 

 

Interestingly, Northland experienced the same growth rates in milk production per cow as 

in cow numbers (the red line in Figure 2.1, which represents equal growth rates in both 

variables). All the other regions with different degrees emphasized the growth in cow 

numbers. This finding agrees with the assertion made by Ruaniyar and Parker (1999) that 

much of the increase in total milk production in the 1990s appears to have come from 

increases in the average number of milking cows per farm, partly sustained by increased 

used of supplementary feeding (number of herds grew more slowly than number of cows 

for all regions, Table 1.3). Still, it is not clear whether output growth reflects high real 

productivity or simply more input use. 

 

National milk production grew by 643 million kg milksolids (MS), reaching 1,215 billion kg 

MS in 2005, up from 572 million kg MS in 1991. The South Island contributed 53% of the 

increase in output. The outcome of the changes outlined above can be summarised by 

noting that in 1991, the South Island accounted for 8% of total dairy area, 7% of total 

number of cows and 7% of national milk output; whereas, by 2005, the South Island 

accounted for 27% of total dairy area, 27% of total number of cows and 30% of national 

milk output (Table 1.1). 
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Table 1.1 - Structural change in New Zealand dairy farming 

 

 Share in milk production Distribution of cows Share in total area 

 1991 2005 1991 2005 1991 2005 

North Island 93% 70% 93% 73% 92% 73% 

South Island 7% 30% 7% 27% 8% 27% 

Source: Livestock Improvement Corporation 
 

1.4 Productivity growth as a policy objective   

  

The NZ dairy industry has targeted TFPG at the farm level as a strategic policy objective2

 

 

in order to enhance its sustainable competitive advantage and to improve NZ dairy 

farmers’ profitability (Anderson and Johnson, 2002 and Bodeker and Anderson, 2001). 

TFP is the most comprehensive measure of productivity as it, ideally, includes all inputs 

and outputs used in the production process (Coelli et al., 1998 and Diewert and Lawrence, 

1999). TFPG is of paramount importance both to sustainability and profitability. A system 

is economically sustainable if it is capable of attaining “real cost reduction” (Harberger, 

1998). Tweeten (1992) claimed that the relative rate of productivity growth has a major 

influence on the international competitiveness of an industry. 

Miller (1984) claimed that productivity change would equal profitability change if there 

were no effects of prices. Balk (2003) demonstrated that TFPG is the “real” (as opposed to 

monetary or price-induced) component of profitability change. (Profitability is defined as 

the ratio of total revenue to total costs.) Similarly, Grifell-Tatjé and Lovell (1999) 

decomposed profit change (profit defined as firm revenue minus total cost) into a price 

effect and a quantity effect, which was, in turn, split into a productivity effect and an 

allocative and scale component. Semantics aside, TFP is a measure of “real” (physical or 

quantity) performance. 

 

                                                 
2 Even though TFP is an adequate measure of performance, it is not widely used and it is often 
misunderstood. To the best of my knowledge, the NZ dairy industry is the first institution using it as a target 
measure to guide on-farm improvements    
  



 
 

 12 

TFP is traditionally calculated as the ratio of total output to the weighted sum of inputs, 

i.e., the total sum of factors. As a consequence, the TFPG is measured as a ratio of the 

growth index of outputs to the growth index of inputs. Quite often, growth in TFP is 

interpreted as a shift of the production function. This interpretation is valid only if the 

farm is perfectly technically efficient in production, realising the full potential of the given 

technology. Technically efficient production can be achieved if farmers follow the best 

practice to apply the technology. To the extent that farmers do not produce with technical 

efficiency due to differences in their capacity to use new technological knowledge and due 

to differences in the motivation of farmers, technical progress is not the only source of 

TFPG. As will be shown later, changes in productivity3

 

 can be achieved through a better 

(more efficient) use of the technology applied, through technical innovation (technical 

progress) or a combination of both (Nishimizu and Page, 1982 and Färe et al., 1994).  

Technical efficiency change - the movement towards the “best-practice” frontier, which occurs 

as a result of either learning-by-doing (leading to the mastery of the technology4

 

), adoption 

of innovations, education or imitation. 

Technical  progress - the change (shift) in the “best-practice” production frontier (function) as 

a result of improvements in the design or quality of capital goods or intermediate inputs, 

discovery of new resources, new methods of doing things, better management and 

organisational change (e.g., better seeds, new design of milking parlours, cows with better 

genetic merits and new crop rotations). 

 

Some techniques allow decomposition of changes in productivity into these two parts, i.e., 

changes in technical efficiency and technical change. Common to such methods is the 

construction of a production frontier to which each observation is compared. Observations 

lying on the production frontier are considered to be technically efficient, whereas shifts in 

the production frontier are interpreted as changes in the technology.  

 

                                                 
3 Definitions of productivity, technical progress and technical efficiency change are presented in Section 4.2. 
 
4 Technology - the state of knowledge concerning ways of converting resources (inputs) into outputs 
(Griliches, 1987; Metcalf, 1969).  
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The decomposition of TFPG into technical progress and changes in efficiency provides 

more information about the application of production technology. From a policy 

perspective, this decomposition is important because without using the existing technology 

to its full potential, it may not be meaningful to embark on the introduction of new 

technologies. Resources are being wasted if technical efficiency is not attained by the firm 

(Diewert and Lawrence, 1999). From a management perspective, savings achieved through 

efficiency are translated into higher income and hence farms have a better chance to 

survive and prosper (Bravo-Ureta and Rieger, 1991).  

 

Productivity decomposition provides useful information and additional insight into the 

sources of growth (Brümmer et al., 2002 and Kim and Han, 2001). Given that the sources 

of productivity growth are, in turn, influenced by different factors, proposing adequate 

instruments for achieving the goal demands knowledge of the potential explanatory factors 

(determinants) (Coelli et al., 2003 and Perelman, 1995). 

 

For example, if the industry exhibits a low rate of technical progress, the recommendation 

should be to encourage investments in new R&D. In doing so, the industry will remove 

technological constraints that impede the realisation of further productivity gains 

(Perelman, 1995). On the other hand, if the industry exhibits small gains in technical 

efficiency, a policy directed to enhance the efficient use of current technology is required to 

close the gap with the best-practice frontier (Kim and Han, 2001). When a dynamic rate of 

technological progress coexists with low rates of change in technical efficiency, measures 

that facilitate adjustment are recommended (Brümmer et al., 2002). 

 

Closing the gap with (or even reaching) the production frontier depends on factors 

including: the accumulation of human capital either through formal education and training 

or learning by doing; the level of economic development; (regional) policy framework; an 

environment conducive to the diffusion of technological knowledge as well as adjustments 

to external shocks (Nishimizu and Page, 1982 and Tian and Wan, 2000). These activities, in 

turn, are clearly associated with an active extension policy in some cases and with policy 

changes in others. 
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1.5 Productivity estimates for New Zealand dairy farms   

  

Past trends in NZ dairy TFPG failed to achieve the target of 4% selected by the industry 

(Anderson and Johnson, 2002; Dexcel, 2005 and Johnson and Forbes, 2000). Philpott 

(1994) estimated annual TFPG for the NZ dairy industry at 0.8% for the period 1973 to 

1993. Pringle (2002) mentioned that on-farm productivity gains over the decade 1990 to 

2000 were in the range of 1.0% to 1.3%. Over the 1992–2002 decade, TFP for the dairy 

industry increased on average by 1.4% a year for owner-operated dairy farms and 2.1% a 

year for sharemilkers (Anderson and Johnson, 2002 and Johnson and Forbes, 2000).  

 

These studies adopted the conventional growth accounting approach and estimated TFPG 

using the index numbers approach (Törnqvist index and the Fisher Ideal index) (Anderson 

and Johnson 2002; Johnson and Forbes, 2000 and Philpott, 1994). Growth accounting 

represents a technique for estimating the contribution of different factors to economic 

growth. With the aid of marginal productivity theory, growth accounting decomposes the 

growth of output into growth of labour, land, capital, education, technical knowledge and 

other miscellaneous sources. In addition, growth accounting approach to TFP 

measurement is operationalized by finding the difference between growth of output and 

the growth of the weighted sum of all inputs to obtain output growth associated with 

technical change or “residual” (Coelli et al., 1998; Diewert and Lawrence, 1999 and Hulten, 

2001). 

 

Diewert (1976) has shown that the theory of index numbers is suitable for measuring 

productivity and various index number formulas are function-specific production. For 

example, the Törnqvist index can be derived assuming the underlying production function 

has the translog form and assuming producers are price taking revenue maximisers and 

price taking cost minimisers. The index number approach to productivity growth has some 

shortcomings. This methodology assumes that the level of production efficiency is 

constant and therefore the change in productivity is equivalent to technological change 

(Coelli et al., 1999). Defined this way, TFPG is at best a measure of Hicks-neutral 

disembodied technological change and at worst nothing more than “a measure of our 

ignorance” (Abramovitz, 1956 and Hulten, 2001). More importantly, failure to take account 

of inefficiency and TEC may produce misleading and biased TFP estimates: while high 
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rates of TP can coexist with deteriorating technical efficiency, relatively low rates of TP can 

also coexist with improving technical efficiency (Nishimizu and Page, 1982). 

 

Market economies restructure continuously as a response to changing conditions. Two 

sources of productivity gains drive aggregate efficiency over time. The adoption of new and 

better technologies and the implementation of more efficient production processes (i.e., 

technical progress) and the Schumpeterian creative destruction process through which 

resources are reallocated from less to more productive firms and the entry and exit process. 

Evidence based on the analysis of panel databases at the micro level suggests that 

productivity growth at the aggregate level is closely linked to the ability of the economy (or 

the industry) to efficiently reallocate inputs and outputs across firms (Balk, 2003; 

Bartelsman and Doms, 2000 and Foster et al., 2001). As will be shown later (Section 2.2), 

farm dynamics played an important role in the evolution of the NZ dairy industry. 

 

The NZ dairy industry is using TFPG as a target measure to guide on-farm improvements. 

Balk (2003) and Miller (1984) emphasised that any policy directed at increasing productivity 

needs to measure and understand the main sources of productivity change as a prerequisite 

of identifying opportunities for improvement. Aggregate industry-level estimates of TFPG 

tell us relevant information about the overall state of the industry; however, it impedes 

stakeholders from extracting applicable on-farm information. If the target is on-farm 

productivity, it is necessary to provide farmers (and the industry) with individual (farm-

level) information with which to benchmark and monitor their progress while retaining 

aggregate information. Succinctly, can TFP be used to guide policy decisions at an industry 

level and concurrently be an instrument for strategic management at the farm level?  

 

In this paper, I use a Malmquist index approach to examine interfarm dairy efficiency and 

productivity. In contrast to other index approaches, the Malmquist approach can 

distinguish between the two sources of productivity growth: changes in technical efficiency 

and technical change (Section 1.4). The Malmquist approach identifies the ‘best-practice’ 

farms in every period, which gives an efficient production frontier. The best-practice 

frontier is determined by the observations with the highest productivity. The Malmquist 

index measures each farm’s output relative to that frontier. How much closer an 

observation gets to the frontier is the efficiency change component; how much the frontier 

shifts captures the technical change component. 
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1.6 Geography and technology 

 

Estimates of productivity change at an aggregate industry level are based on some 

fundamental assumptions, such as the existence of an average “representative farm” and 

the assumption of optimal behaviour from economic agents, i.e., price taking and profit-

maximising behaviour on the part of farmers (Balk, 2003; Coelli et al., 1999 and Grifell-

Tatjé and Lovell 1996). Furthermore, it implicitly assumes that all farms face the same 

technology (Coelli et al., 1999). These assumptions are under challenge as a result of the 

geographical expansion of dairy farming and the exposition to different agronomic 

conditions. Since 1992, the spatial distribution of dairy production has changed, greatly 

adding to the heterogeneity of farming regions and practices. Given the biological nature of 

agricultural production, the spatial dimension is significant for agricultural technology 

(Alston, 2002). Soils, climate and landscape differ among regions, influencing, for example, 

the amount and type of feed grown, the opportunity cost of land and the level of scale 

economies (Sumner and Wolf, 2002). Additionally, soils, climate and landscape may impose 

some restriction on the selection and type of technology used. Moreover, the interaction of 

geophysical factors (location-specific) and the technology adopted may result in different 

outcomes, encouraging changes in the technology used, creating the basis for a 

differentiation. In the same way that the environment influences the expression of a 

genotype, a technology is shaped by the environment in which it is applied. 

 

Interestingly, even though most of the studies reviewed admit that location may influence 

the technology applied, only the study by Brümmer, Glauben and Thijssen (2002) actually 

tested whether the technology applied is different among countries. However, presuming 

the existence of different technologies is customary in inter-country comparisons. 

 

Kumbhakar, Biswas and Bailey (1989) related differences in technology applied to farm 

size. They found that small, medium and large Utah dairy farmers did not operate under 

the same technology. Mbaga, Romain, Larue and Lebel (2003) divided the sample of 

Quebec dairy farmers in two groups (non-maize and maize regions) to assure homogeneity 

of exogenous conditions. They then estimated the frontier for each sub-sample. However, 

they did not test whether technologies were different, even though some results pointed in 

that direction. 
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Bravo-Ureta and Rieger (1991) attempted to correct their efficiency estimates by 

introducing location dummies on a sample of dairy farmers from New England (US). 

Heshmati and Kumbhakar (1994) on Swedish dairy farms, Kumbhakar, Ghosh and 

McGuckin (1991) on US dairy farms, and Kumbhakar and Heshmati (1995) on Swedish 

dairy farms, introduced regional and size dummies to accommodate possible differences in 

productivity among different regions of varying size. Meanwhile, Kumbhakar and 

Hjalmarsson (1993), on Swedish dairy farms, explicitly accounted for farm-specific 

characteristics related to location, climate and land quality in an attempt to ensure that 

inefficiency would not be confounded with farm-specific characteristics. Hallam and 

Machado (1996), on a sample of Portuguese dairy farms, introduced dummies for location 

(coastal vs. inland), altitude and handicapped zones to determine whether they influenced 

technical efficiency. Results were conflicting, as one region that should have appeared to be 

less efficient turned out to be more efficient. However, as the estimates of technical 

efficiency obtained were relative to a common frontier, location differences in efficiency 

may have masked different technologies. 

 

The study by Fraser and Cordina (1999) was performed over dairy farms in Northern 

Victoria (Australia), assuring homogeneity of exogenous conditions (soils, climate and 

physical parameters) likely to affect efficiency. Similarly, Piesse, Thirtle and Turk (1996), 

examining a group of Slovenian dairy farms, mentioned that most of the sample farms had 

similar alpine terrain, which assured for homogeneity of exogenous conditions. In turn, 

Haghiri, Nolan and Tran (2004) pointed out that the selection of the regions for the inter-

country comparison (US-Canada) was done deliberately, given the similarities in production 

technology and geophysical conditions among the selected regions. 

 

Jaforullah and Devlin (1996) and Jaforullah and Whiteman (1999), analyzing the technical 

efficiency of NZ dairy farms, also assumed that the same technology was applied across 

NZ. This assumption may have been reasonably sound, because in 1992 (the year when the 

sample was taken), dairy farming was mostly performed in the North Island and 

particularly in the regions of Waikato and Taranaki (both regions accounted for more than 

50% of dairy cows).  

 

Comparing farms against the same frontier is valid if they are on the same production 

function (i.e., applying the same technology) but using different proportions of inputs 
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(Piesse, Thirtle and Turk, 1996). Tsionas (2002) reasoned that assuming farms share the 

same technology when they do not will result in biased measures of efficiency and 

confusion among technological differences. Battese et al. (2004) emphasised that farms 

operating under different technologies are not strictly comparable. In fact, given a set of 

inputs, inefficiency may be confused with the use of a different technology. 

 

1.7 Research objectives 

 

The main goal of this thesis is to study, evaluate and recommend methodologies for dairy 

farms’ productivity growth.  This goal is addressed by setting two main objectives:  

• to decompose TFP at the farm level  

• to evaluate regions’ production technologies 

 

The first objective was addressed by estimating TFPG at the farm level. As Balk (2003) and 

Miller (1984) asserted, any policy directed at increasing productivity needs to measure and 

understand the main sources of productivity change as a prerequisite of identification of 

opportunities for improvement. Understanding the sources of productivity growth and 

gauging its relative contribution would enhance the ability of researchers and extension 

personnel to identify technological constraints and to target education, training and 

learning programs to improve technical efficiency. Recommended TFP will be decomposed 

into its sources, i.e., changes in technical efficiency and technological progress (Chapter 9).  

 

The second objective was addressed by answering the question of whether farms in the two 

regions considered in this study were operating under the same technology.  These two 

regions were the long-established dairy areas of Waikato-Taranaki and the newly-developed 

dairy areas of Canterbury-Southland. Empirical evidence suggested that a variety of farming 

systems have emerged as a result of dairy farming geographical expansion. Therefore, it 

was important to ascertain whether different regions applied different technologies. 

Changes in geographic distribution may restrict the benefits of research conducted in one 

location, as results may not be entirely transferable to the new locations (McCunn and 

Huffman, 2000). This in turn has important implications to funding new R&D projects 

because scarce resources will be better exploited in projects that, other things being equal, 

have interregional spillover effects. To the best of the author’s knowledge, this is the first 
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study that tested for differences in technology between regions of the same country. This 

objective was addressed and achieved in Sections 5.1, 6.1, 7.1 and 8.1. 

 

There is no single study that has attempted to check the robustness of productivity growth 

and efficiency estimates to input/output variable selection. (See the literature review in 

Sections 3.2.2 and 3.3.2.) TFP as a comprehensive measure of productivity, theoretically, 

includes all inputs and outputs in the production process (Coelli et al., 1998 and Diewert 

and Lawrence, 1999). However, in real life, it is limited by the availability of data. Often 

aggregation of input and output variables is performed to keep the number of parameters 

manageable.  Bravo-Ureta (1986) cautioned that aggregation of inputs and outputs poses a 

limitation on production function analysis. The original database and the interest of the 

researchers in checking the behaviour of some input(s), or the aggregation of them, largely 

dictate the selection of the input/output set. Strictly, the input/output set chosen is a 

stylised characterisation of the technology applied.  

 

The present research contributes to knowledge along two lines:  

1. As it was demonstrated in the literature review (Sections 3.2.1 and 3.3.1), this is the 

first study that explicitly assumes and examines differences in technology between 

regions of the same country.  

2. This is the first study that attempts to shed light on the sensitivity of technical 

efficiency and productivity estimates to the selection of the input/output set, i.e., 

the characterisation of the technology. 

 
For the empirical analysis, the Malmquist index was used to estimate TFPG. This index, 

based on distance functions, has become extensively used in the measure and analysis of 

productivity (Brümmer, Glauben and Thijssen, 2002; Tauer, 1998 and Piesse, Thirtle and 

Turk, 1996). This index can be decomposed into two additional components, one that 

measures changes in technical efficiency (i.e., whether farms are getting closer to the 

production frontier over time) and one that measures changes in technology (i.e., whether 

the production frontier is moving outwards over time) (Färe et al., 1994). This method is 

discussed in depth and compared to similar methods in Section 3.3. Stochastic frontier 

analysis (SFA) was used to gauge the Malmquist productivity index (MPI). The preference 

of this analysis over the non-parametric Data Envelopment Analysis (DEA) will be 

discussed in Section 4.3. 
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This research has a number of limitations. The estimation of TFPG using the MPI requires 

farm-level (micro) panel data. MAF Policy supplied data. Each year, MAF monitors the 

production and financial status of farms to create “models.” Raw data from the actual 

farms were used to estimate the MPI. The data were collected for purposes other than the 

estimation of productivity. Hence, as mentioned above, the measurement of physical 

output and input data that are required to estimate productivity growth may be subject to 

some shortcomings discussed in Section 4.6 

 

This study showed how much more information can be obtained from farm-level data and 

how can it be used to help and guide farmers, researchers and policy makers in achieving 

the goals of increasing productivity at the farm level (See Sections 8.2–9.4).  
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CHAPTER 2 
 

2 The evolution of dairy farming in New Zealand 

with emphasis on key regions 
 

2.1 Introduction 

 

Deregulation of the NZ economy impinged on the relative profitability of agricultural 

industries, generating the conditions for restructuring within the agricultural sector. 

Undoubtedly the most important change, given its relevance to the economy, was the 

transformation of the dairy industry. Even though the number of herds declined slightly, 

the total size of the industry—as well as total milk output and size of the average farm—

increased dramatically. Amid these changes in production, there has been a profound and 

simultaneous shift in the spatial organisation of dairy production. A brief description of 

those changes at a national level was presented in the previous chapter (section 1.3). 

 

This chapter has three objectives. First, it will illustrate the magnitude of the changes in 

some key regions, namely traditional dairy regions (South Auckland and Taranaki) and 

emerging or non-traditional dairy regions (North Canterbury, South Canterbury and 

Southland). Given that the spatial dimension is significant for agricultural technology 

(Alston, 2002), the second objective will be to outline key differences in temperature, 

rainfall, some aspects of production (i.e., calving dates, dried-off, fertiliser use) and the 

evolution of productivity per cow and productivity per hectare among key regions. The 

third objective is to present empirical evidence suggesting that NZ dairy production 

technology has varied markedly over space and time (Figure 2.5). 

  

2.2 The spatial distribution of dairy farming in New Zealand 

 

Over the period 1991 to 2005, total herd numbers in NZ exhibited a small decline from 

13,421 in 1991 to 12,271 in 2005 (Table 2.1). Whereas herd numbers in the North Island 

declined by 13%, the number of herds in the South Island increased by more than two 
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fold. As a result, 18% of NZ herds are now located in the South Island, compared to only 

7% in 1990/91. 

 

Table 2.1 - The number of herds in five subregions and the two Islands of NZ in 1990/91 

and 2004/05  

 

 Number of herds Annual growth rate 
in number of herds 
(90/91) – (04/05) 

Regional share 

1990/91 2004/05 1990/91 2004/05 

South Auckland 5,141 3,924 -2.0% 38% 32% 

Taranaki 2,588 2,006 -1.9% 19% 16% 

North Canterbury 122 500 6.6% 1% 4% 

South Canterbury 50 154 6.2% 0% 1% 

Southland 175 629 8.3% 1% 5% 

      

North Island 12,527 10,010 -1.8% 93% 82% 

South Island 894 2,261 4.9% 7% 18% 

      

New Zealand 13,421 12,271 -1.2%   
Source: Livestock Improvement Corporation various years 
 

Herd numbers in the traditional dairy regions of South Auckland and Taranaki, even 

though they still account for about half of NZ dairy herds, declined by 23%, from 7,729 in 

1991 to 5,930 in 2005 (Table 2.1). In contrast, regions like North Canterbury, South 

Canterbury and Southland showed rates of growth ranging from 6.2% to 8.3%.  These 

regions now account for 10% of NZ dairy herds, whereas in the early nineties, they 

accounted for only 2% (Table 2.1). 

 

NZ’s total dairy area has increased by 53% since 1991, reaching 1.4 million hectares in 

2004/05 (Table 2.1). New area has been incorporated into dairy production in all regions. 

However, the pattern of dairy expansion has been uneven across regions. Since 1991, the 

new area added to dairy in the non-traditional dairy regions of North Canterbury, South 

Canterbury and Southland accounted for 43% of the 490 thousand hectares of NZ’s new 

dairy area (Table 2.2).  
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Table 2.2 - Total dairy area in five subregions and the two Islands of NZ in 1990/91 and 

2004/05 

 

 Total dairy area (Thousand ha) Dairy area as % of total 
grassland, arable land 

1990/91 2004/05 1990/91 2004/05 
South Auckland 327 370 40% 50% 
Taranaki 159 175 36% 46% 
North Canterbury 12 99 1% 5% 
South Canterbury 5 31 0% 3% 
Southland 13 111 1% 10% 
     
North Island 846 1026 14% 20% 
South Island 75 386 1% 5% 
     
New Zealand 921 1412 7% 12% 
Source: Livestock Improvement Corporation and MAF 

 

The participation of dairy in total grassland and arable land has also increased for all 

regions. However, during the period 1990/91 to 2004/05, the increments in absolute dairy 

area coincided with an absolute decline in grassland and arable land area because of forestry 

developments and, particularly, new investments in property development and lifestyle 

blocks (MAF, 2001). 

 

Cow numbers increased by 1.64 million, from 2.2 million in 1991 to 3.9 million in 2005 

(Table 2.3). The increase in cow numbers occurred across both islands of NZ as shown by 

the positive rates of growth. However, the rate of growth differs substantially from region 

to region and between islands. The growth rate in cow numbers for the South Island, at 

12.3% per annum, is six times faster than the growth in the North Island, at 2.0% per 

annum. Consequently, at the end of the period considered, more than one-quarter of NZ 

dairy cows are in the South Island, compared with only 7% in 1990/91.  

 

At the beginning of the nineties, South Auckland and Taranaki accounted respectively for 

40% and 18% of total cow numbers, but have declined significantly to 28% and 13% 

respectively in 2004/05. Cow numbers in Southland and North Canterbury grew rapidly to 

account for 16% of total NZ dairy cows in 2004/05, up from 2% in 1990/91 (Table 2.3).   
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Table 2.3 - Total number of cows in five subregions and the two Islands of NZ in 1990/91 

and 2004/05  

 

 
Number of cows Annual growth rate 

in number of cows 
(90/91) – (04/05) 

Regional share 

1990/91 2004/05 1990/91 2004/05 

South Auckland 901 1,087 1.2% 40% 28% 

Taranaki 398 492 1.3% 18% 13% 

North Canterbury 27 304 14.5% 1% 8% 

South Canterbury 10 98 14.6% 0% 3% 

Southland 25 300 16.5% 1% 8% 

      

North Island 2,073 2.804 2.0% 93% 73% 

South Island 152 1,063 12.3% 7% 27% 

      

New Zealand 2,225 3,867 3.7%   
Source: Livestock Improvement Corporation 
 

Strong growth in NZ milk production has been recorded in the traditional dairy-producing 

regions of the North Island. However, the process of expansion and consolidation of dairy 

production into the South Island, which began in the early nineties, was responsible for 

much of the increases in milk production over the last decade. National milk production 

grew at 5.4% per annum, reaching 1,215 million kgs MS in 2005, up from 572 million kgs 

MS in 1991 (Table 2.4).   

 

Despite a positive growth rate of 3.3% per year, the North Island’s contribution to total 

milk production has been declining steadily since the beginning of the period, falling from 

93% to 70% (Table 2.4). South Auckland and Taranaki increased their production at a rate 

below the North Island average. At the beginning of the period, the share of both regions 

in total milk output amounted to 59%. By 2005, their combined contribution decreased to 

40% of national milk output (Table 2.4). 

 

In contrast, South Island milk output has been growing at an annual rate of 14.5%, 

contributing to 30% of NZ’s milk output in 2005. North Canterbury and Southland have 

been robustly expanding their milk production at 17% and 18% a year respectively. As a 

result, they are rapidly approaching Taranaki’s share in milk production (Table 2.4). 
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Table 2.4 - Milk production, annual growth rate and regional share in five subregions and 

the two Islands of NZ in 1990/91 and 2004/05  

 

 

Milk production 

(‘000 ton. milksolids) 
Annual growth rate 
in milk production 
(90/91) – (04/05) 

Regional share 

1990/91 2004/05 1990/91 2004/05 

South Auckland 237 336.1 2.5% 41% 28% 

Taranaki 105 149.2 2.4% 18% 12% 

North Canterbury 7 111.7 17.5% 1% 9% 

South Canterbury 3 35.2 16.9% 0% 3% 

Southland 8 107.3 18.4% 1% 9% 

      

North Island 531 846 3.3% 93% 70% 

South Island 41 369 14.5% 7% 30% 

      

New Zealand 572 1,215 5.4%   
Source: Livestock Improvement Corporation 
 

The long-term trend towards larger units continues. Journeaux (2002) mentioned that over 

the period 1990 to 2001, average farm size in Waikato increased from 65 hectares and 171 

cows to 85 hectares and 240 cows. For Canterbury, farm averages icreased from 96 

hectares and 202 cows to 158 hectares and 451 cows over the same period. For all regions 

considered, both average herd size and average farm area have increased, albeit faster for 

herd size (Table 2.5 and Table 2.6). However, farm size increases have not been 

homogeneous across regions. Once again, growth rates for non-traditional dairy regions 

exceeded those of traditional dairy regions (Table 2.5 and Table 2.6). 
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Table 2.5 - Average herd size and annual growth rate in five subregions and the two Islands 

of NZ in 1990/91 and 2004/05  

 

 
Average herd size Annual growth rate 

1990/91 – 2004/05 1990/91 2004/05 
South Auckland 175 277 3.3% 
Taranaki 154 246 3.2% 
North Canterbury 224 609 8.0% 
South Canterbury 194 636 8.4% 
Southland 145 477 8.1% 
    
North Island 166 280 3.7% 
South Island 170 470 7.4% 
    
New Zealand  166 315 4.6% 
Source: Livestock Improvement Corporation 

 

Table 2.6 - Average farm area and annual growth rate in five subregions and the two 

Islands of NZ in 1990/91 and 2004/05  

 

 
Average farm area Annual growth rate 

1990/91 – 2004/05 1990/91 2004/05 
South Auckland 64 94 2.9% 
Taranaki 61 87 2.9% 
North Canterbury 99 198 5.7% 
South Canterbury 91 203 6.2% 
Southland 76 177 5.5% 
    
North Island 69 102 2.8% 
South Island 84 171 5.2% 
    
New Zealand  70 115 3.6% 
Source: Livestock Improvement Corporation 

 

South Auckland and Taranaki experienced a net loss in number of herds that totalled 1,799 

herds. Conversely, the three South Island regions showed evidence of a net gain in herd 

numbers of 936 herds (Table 2.1). Over the period, total dairy area increased by 59 

thousand hectares for South Auckland and Taranaki and by 221 thousand hectares for the 

three South Island regions (Table 2.2). Furthermore, South Auckland and Taranaki 
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experienced slower rates of growth in average herd size and average farm area than the 

three South Island regions (Table 2.5). Therefore, it seems that the predominant 

phenomenon for South Auckland and Taranaki was the exit of farms and the subsequent 

redistribution of cows and land among existing farms. Conversely, the three South Island 

regions showed the influence of new entrants, new farms and new herds that were larger 

than the average herd. 

 

2.3 Main differences between traditional and non-traditional dairy regions 

 

Milk production in NZ is still predominantly based on grazing. However, by 1998 most 

farms used some kind of “imported feeding,” either in the form of grazing-off or 

purchased feeds, whereas traditionally all farms had been self-contained for feed (Holmes, 

1998). Furthermore, some excess of enthusiasm even induced the use expensive 

supplementary feeding, such as grains and bypass protein (Holmes, 2003). 

 

Pasture production varies substantially among dairy regions, causing regional differences in 

productivity per unit of area (Holmes, 2003). Different agronomic conditions imply the use 

of different types and rates of fertiliser to maintain or increase pasture production. Wells 

(2001) reported statistically significant differences in fertiliser applications across NZ 

regions (Table 2.7). 

 

Table 2.7 - Milk production per hectare and fertiliser application in four subregions of NZ   

 

 Milk production (kg MS) Fertilizer application (kg/ha) 

Per hectare Per cow Nitrogen Potassium 

Waikato 804 288 † 69 63 

Taranaki 1024 ‡ 314 90 60 

Canterbury 981 ‡  366 ‡ 169 ‡  32 † 

Southland 927 388 ‡ 65 82 ‡ 

‡ significantly greater than the overall average 

† significantly less than the overall average 

Source: Wells (2001), page 55. 
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Pasture growth in Northland exhibits two low growth periods in winter and summer, 

creating problems to balance feed demand and supply (Robinson, 1999). Farmers have 

responded by implementing summer crops or by applying split calving (spring and autumn 

calving) to smooth feed demand. Summer crops are common in all of the North Island, 

and split calving adoption has increased over time, whereas winter crops are more common 

in the South Island (Robinson, 1999). 

 

Robinson (1999) emphasised the differences between Northland and other dairy regions 

when comparing winter pasture growth rates with the spring peak growth. In Northland, 

winter growth rates are half of the rate of the spring peak, at Ruakura, 27% and in 

Southland, 10%. On the other hand, Gaul and Hughes (1996) explained that pasture 

growth on the east coast of the South Island (Canterbury, North Otago) is more closely 

matched with the seasonal pattern of production of NZ dairy farmers. They pointed out 

that alternative feed resources are widely available, conferring a distinct characteristic to the 

Canterbury dairy systems. Additionally, irrigation has been applied throughout some 

regions, increasing the gap in pasture production among regions. Finally, they asserted that 

irrigation made dairy farming viable in Canterbury.  

 

Pasture production and pasture growth are determined by temperature and rainfall, among 

other things (Hodgson, 1999). Both characteristics display great variation among regions. 

In Canterbury, rainfall ranges from an average of 500 mm on the coast to 1,000 mm in the 

foothills. Generally, rainfall is evenly spread throughout the year (Gaul and Hughes, 1996) 

(Figure 2.3). Alternatively, research stations in Northland, Ruakura and Taranaki experience 

annual rainfalls of 1,324 mm, 1,330 mm and 1,182 mm respectively. Moreover, rainfall 

distribution over the year is relatively more even in Ruakura and Taranaki than in 

Northland, which is well-known for its wet winters and dry summers (Hodgson, 1999) 

(Figure 2.1).  
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Figure 2.1 - Average monthly rain at four climate stations in New Zealand (mm) 
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Source: NIWA 

 

Average soil temperature in Northland are above 10ºC and consistently higher than those 

recorded in Taranaki and Ruakura. Canterbury experiences up to 90 frosts in winter (Gaul 

and Hughes, 1996), while Northland has a few light frosts (Hodgson, 1999) (Figure 2.2). 

 

Calving dates also differ among the regions, with a north to south gradient observable 

(Holmes, 2003). The median calving date for Northland was August 5th and for the South 

Island, September 2nd. Also, average days in milk are reported to be longer in the South 

Island than in the North Island. Irrigation (in the South Island) ensures a good supply of 

pasture in summer, making it unnecessary to dry-off cows early (Gaul and Hughes, 1996). 
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Figure 2.2 - Average soil temperature at four climate stations in New Zealand (ºC, at 10 cm 

height) 
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Source: NIWA 

 

Over the period 1996/97 to 2004/05, differences in average regional productivity per cow 

increased significantly among regions. At the beginning of the period, productivity per cow 

ranged between 288 kg MS/cow for North and South Canterbury and 314 kg MS per cow 

for Taranaki. By the end of the period, average productivity was 367 kg MS/cow for North 

Canterbury and 303 kg MS/cow for Taranaki. Moreover, productivity per cow in both 

regions of the North Island showed a similar pattern of evolution, as did the three regions 

of the South Island. Over the period, growth rate in productivity per cow was 1.5% per 

annum for South Auckland and 0.7% per annum for Taranaki. Meanwhile, productivity per 

cow grew at an annual rate of 4% for Canterbury and 2.8% Southland (Figure 2.3). 
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Figure 2.3 - Evolution of the productivity per cow in five subregions of NZ over the 

period 1996/97 and 2004/05 
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 Source: Livestock Improvement Corporation 

 

Differences in productivity per hectare among regions increased over the period, albeit less 

significantly. At the beginning of the period, productivity per hectare ranged between 747 

kg MS/hectare for Southland and 864 kg MS/hectare for South Canterbury. By the end of 

the period, average productivity was at 1,145 kg MS/hectare for South Canterbury and at 

867 kg MS/hectare for Taranaki. Furthermore, productivity per hectare evolved similarly 

for North Canterbury and South Canterbury, showing strong growth and for South 

Auckland and Taranaki, presenting moderate growth. For Southland, the evolution of 

productivity per hectare showed a strong growth over the first half of the period (up to 

season 2000/01) and then a halt over the second period (Figure 2.4). Finally, over the 

period, growth rate in productivity per hectare was 2.5% per annum for South Auckland 

and 1.7% per annum for Taranaki, but 4.6% for Canterbury and 3.2% Southland (Figure 

2.4). 
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Figure 2.4 - Evolution of the productivity per area in five subregions of NZ over the 

period 1996/97 and 2004/05 
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 Source: Livestock Improvement Corporation 
 

Differences in dairying between the South Island and the North Island are well explained 

by northern dairy farmers who migrate south (Garret, 1993; Lee, 1993 and Topham, 1993). 

Gaul and Hughes (1996); Hodgson (1999); O’Flaherty (2000); Riddick (1991) and 

Robinson (1999) provide comprehensive information about regional differences in rainfall, 

temperature and soils across NZ. Wells et al. (1998) found significant differences in dairy 

farming input use across different regions of NZ. Finally, industry statistics (Livestock 

Improvement Corporation) showed a consistent divergence in productivity per cow and 

productivity per hectare among the subregions. 

 

2.4 Technological trajectories for selected regions in New Zealand 

 

As shown above, productivity per cow and productivity per hectare differed over time 

between traditional and non-traditional dairy regions. With input coefficients of the same 

dimension, a production technique may be represented by a point in a two-dimensional 

technology space (Farrell, 1957). Given that technical change is defined as an alteration in 
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the value of the input coefficients, it will appear in the technology space as a movement in 

the location of the representative point.  

 

The inputs selected were “cows” and “labour.” Cow numbers were taken from the 

Livestock Improvement Corporation Annual Report. Statistics New Zealand provided 

labour statistics for the census years 1991, 1996 and 2001. First, partial factor productivity 

measures were estimated for each region and input, i.e., kg milksolids produced either per 

cow or per worker. Next, following Farrell (1957), the reciprocal of the partial factor 

productivity measures was taken and multiplied by one thousand, transforming all 

measures into the quantity of cows needed to produce one tonne of milksolids and, 

similarly, the number of workers needed to obtain one tonne of milksolids. The estimation 

was performed for all regions and financial years 1990/91, 1995/96 and 2000/015

 

.  

The evolution of the production technology (for some regions to avoid cluttering) is 

portrayed below (Figure 2.5). Migration to the lower-left quadrant indicates improvements 

in both partial productivities. On the other hand, migration to the lower-right quadrant 

shows a decrease in productivity per cow. All regions showed improvements in both 

measures of productivity, except Southland between 1991 and 1996, which exhibited a 

decline in productivity per cow. 

 

In 1991, the limit of the distribution (the unit isoquant given the transformation of the 

data) of regional technologies was marked by Southland and South Auckland, while North 

Canterbury and Northland were far away from it. Also, the dispersion of the regions in the 

technology space is greater than in the other two years. The dispersion declined for 1996 as 

a result of the catch-up of Northland and North Canterbury on the other regions, coupled 

with the slow move of the regions that delimited the frontier (Southland and Taranaki). 

Technological dispersion increased in 2001 as a consequence of the relatively strong 

growth in productivity of Southland and North Canterbury vis-à-vis those experienced by 

other regions. Projecting the distance between any pair of points (of the same region) on to 

the horizontal axis allows comparing the improvement in productivity per cow among 

regions. It can be seen that between 1996 and 2001, productivity per cow increased 

relatively more for Canterbury and Southland than for South Auckland and Taranaki. 

                                                 
5 Years selected were determined by labour data availability. Census data from Statistics New Zealand were 
available for years 1991, 1996 and 2001.     
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It can be seen that both newly-developed dairy areas (Southland and North Canterbury) 

and the three traditional dairy regions (Taranaki, South Auckland and Bay of Plenty) 

conformed two separate clusters. Moreover, Northland and Wellington are more similar, 

from the technological standpoint, to the traditional dairy regions. 

 

Figure 2.5 - Regional technological trajectories for selected regions in NZ among 1991, 

1996 and 2001 

 

 
 Source: based on Livestock Improvement Corporation and Statistics New Zealand 
 

2.5 Conclusion 

 

The geographical expansion of dairy farming has brought challenges to understanding the 

representative NZ dairy-farming system. Traditional dairy regions in the North Island 

experienced a net reduction in herd numbers, but small gains in new area devoted to dairy. 

Conversely, emerging or non-traditional dairy regions experienced increases in new area 

devoted to dairy and the entrance of new, large herds. These, in turn, have encouraged an 

increasing divergence in farm and herd sizes across regions. Some authors (Jaforullah and 

Devlin, 1996; Jaforullah and Whiteman, 1999; Journeaux, 2002 and Kilsby et al., 1998) gave 

evidence of farm dynamics, the different processes leading to scale increases and the 

differences in both the organisational arrangements, as well as farmers’ backgrounds. 
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Others gave evidence of the differences in dairying between the South Island and the 

North Island (Garret, 1993; Lee, 1993 and Topham, 1993). There is comprehensive 

information about regional differences in rainfall, temperature and soils (Gaul and Hughes, 

1996; Hodgson, 1999; O’Flaherty, 2000; Riddick, 1991 and Robinson, 1999), as well as 

input use (Wells, 2000) across different regions of NZ. Furthermore, the growth rate in 

productivity per cow and productivity per hectare diverged between traditional and non-

traditional, favouring the latter. Finally, empirical evidence suggests the existence of 

different technological trajectories between traditional and non-traditional dairy regions.  

 

All these factors may have contributed to departures from the traditional paradigm of a 

common NZ farming system. Therefore, it may be argued that a variety of farming systems 

have emerged over time, increasing the heterogeneity of dairy farming across NZ. 
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CHAPTER 3 
 

3 A review of previous studies on dairy farm 

efficiency and productivity 
 

3.1 Introduction  

 

Empirical analysis of efficiency and productivity using frontier production functions is 

common in agriculture. Battese (1992) presented an excellent survey about frontier 

production functions and its empirical applications on agricultural economics. Coelli 

(1995), in turn, discussed the two primary methods for frontier estimation (econometric 

and mathematical programming) and provided a selected list of applications into 

agriculture, along with industries analysed and the methodology employed. 

 

The purpose of this review is to discuss those studies that focus on dairy farm efficiency 

and productivity. Only publications in major economic journals have been reviewed. 

Hence, the list is comprehensive but far from exhaustive. In order to allow a better 

discussion, the studies reviewed were classified depending on the objective of their analysis. 

Efficiency studies will be reviewed first, followed by those that aimed to estimate and 

decompose TFPG. 

 

Most studies focus their attention on the functional forms (Bravo-Ureta and Rieger, 1990; 

Dawson, 1986 and Mbaga, Romain, Larue and Lebel, 2003); alternative assumptions 

regarding the distribution of inefficiency (Battese and Coelli, 1988; Jaforullah and Devlin, 

1996 and Mbaga, Romain, Larue and Lebel, 2003); the characteristics of the inefficiency 

with respect to temporal variation (Cuesta 2000 and Heshmati and Kumbhakar, 1994) or 

its decomposition into a persistent and residual component (Kumbhakar and Heshmati, 

1995) and estimation methods (Hallam and Machado, 1996). Finally, Mbaga, Romain, 

Larue and Lebel (2003) compared the efficiency estimates obtained by both methodologies, 

parametric and non-parametric frontiers. 
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This review will be made along three lines not explored before: the underlying assumption 

about technology; the input/output variables introduced in the production function and 

the exogenous variables used as determinants of technical inefficiency among farms.      

 

3.2 Previous studies in dairy farm efficiency 

 

There have been a large number of studies of farm efficiency levels on dairy farms (Table 

3.1). Twenty-four articles were reviewed from 1985 up to 2004.  

 

According to the measurement approach, they can be divided into parametric or non-

parametric models. Fifteen studies applied parametric models (Table 3.3), seven studies 

applied non-parametric techniques (Table 3.4) and two studies applied both approaches 

(Table 3.5). Meanwhile, Haghiri, Nolan and Tran (2004) (Table 6) developed a new 

econometric methodology to estimate non-parametric stochastic frontier using the theory 

of General Additive Models (GAMs). The frontier was estimated through a backfitting 

algorithm. 

 

Given the focus of the present literature review and that the methods and measurement 

approaches employed to identify the frontier have been extensively reviewed before, only a 

brief outline will be presented here. (Readers are referred to Ali and Seiford, 1993; Førsund 

and Sarafoglou, 2002 and Seiford and Thrall, 1990 for DEA and to Bauer, 1990; 

Kumbhakar, 2000 and Green, 1993 and 1997 for econometric modelling for full reviews 

and discussions.) 

    

Those studies that applied econometric models to obtain efficiency estimates can be 

further divided into deterministic and stochastic. The difference between them relies on the 

treatment of the error term. The stochastic frontier models, unlike deterministic, 

decomposed the error term into two components: standard noise, and a one-sided non-

negative term reflecting departures from the frontier, i.e., inefficiency. Stochastic frontiers 

were applied in fourteen cases and deterministic frontiers in three. The most frequent 

method for the estimation of the parameters of the stochastic frontiers is Maximum 

Likelihood (ML).   
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Table 3.1 - Summary of dairy efficiency studies 

 

Author(s) Geographic 
scope (*) Methodology Database 

Ahmad and Bravo-Ureta (1996) State Econometric Panel 
Asmild et al. (2003) National DEA Cross section 
Battese and Coelli (1988) Regional Econometric Panel 
Bravo-Ureta (1986) Regional Econometric Cross section 
Bravo-Ureta and Rieger (1990) Regional Econometric Panel 
Bravo-Ureta and Rieger (1991) Regional Econometric Cross section 
Cloutier and Rowley (1993) Province DEA Cross section 
Cuesta (2000) Province Econometric Panel 
Dawson (1985) Regional Econometric Panel 
Dawson and White (1990) International  Econometric Panel 
Fraser and Cordina (1999) District DEA Cross section 

Haghiri, Nolan and Tran (2004) States (in 2 
countries) 

non-parametric 
Stochastic Panel 

Hallam and Machado (1996) Regional Econometric Panel 
Heshmati and Kumbhakar (1994) National Econometric Panel 
Jaforullah and Devlin (1996) National Econometric Cross section 
Jaforullah and Whiteman (1999) National DEA Cross section 
Kumbhakar, Biswas and Bailey 

(1989) State Econometric Cross section 

Kumbhakar, Ghosh and 

McGuckin (1991) National Econometric Cross section 

Kumbhakar and Heshmati (1995) National Econometric Panel 
Kumbhakar and Hjalmarsson 

(1993) National Econometric Panel 

Mathijs and Vranken (2001) National DEA Cross section 
Mbaga, Romain, Larue and Lebel 

(2003) Province Econometric/DEA Cross section 

Piesse, Thirtle and Turk (1996) National Econometric/DEA Panel 
Weersink, Turvey and Godah 

(1990) Province DEA Cross section 

(*) geographic dispersion of farms: district < state = province < regional < national 
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Three studies, out of fourteen that applied stochastic frontiers, used traditional panel data 

models to gauge (in)efficiency (Ahmad and Bravo-Ureta, 1996; Hallam and Machado, 1996 

and Piesse, Thirtle and Turk, 1996). The advantage of these methods in the estimation of 

the inefficiency effects is the relaxation of two assumptions of the stochastic frontier 

methodology. First, in traditional panel data methods, there is no need to specify a 

particular distribution for the inefficiency effects. Second, there is no need to assume that 

technical efficiency and variables (inputs) included in the model are uncorrelated. The first 

assumption implies that management does not affect the productivity of inputs. The 

drawback of traditional panel data methods vis-à-vis ML is that efficient and inefficient 

firms both have the same influence in the shape of the frontier (Coelli, Rao and Battese, 

1998; Greene, 1997 and Hallam and Machado, 1996).   

 

Stochastic frontier models by Heshmati and Kumbhakar (1994), Kumbhakar and Heshmati 

(1995) and Kumbhakar and Hjalmarsson (1993) mixed traditional panel data methods with 

ML methods. Kumbhakar and Hjalmarsson (1993) developed a method, using within 

transformation and the Expectation-Maximisation (EM) algorithm, to separate technical 

inefficiency from farm-specific characteristics like location, climate and land quality. 

Technical inefficiency is assumed to be identically and independently distributed over time 

and across farms. Heshmati and Kumbhakar (1994) presented a modified version (instead 

of the EM algorithm they applied ML) and decomposed the error term into a farm-specific 

component (assumed to be time invariant), technical inefficiency (allowed to vary over time 

and across farms) and a white noise term. Finally, Kumbhakar and Heshmati (1995), in a 

multi-step procedure, decomposed technical inefficiency into a persistent farm-specific 

component (time invariant) and a farm- and time-specific residual component. They 

applied random effects and ML. All three models are computationally cumbersome. 

 

The non-parametric approach (DEA) was applied in seven cases. DEA can be output- or 

input-orientated. In the first case, inefficiency arises because output can be increased 

without augmenting input quantities. Conversely, input-orientated DEA measures 

inefficiency as the amount by which input quantities can be proportionally reduced while 

still maintaining output quantity. DEA measures (input- or output-orientated) of technical 

inefficiency can be obtained under the assumption of constant returns to scale (CRS) or 

variable returns to scale (VRS). CRS assumption is valid if all farms operate at optimal 
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scale. VRS allows the assumption about optimal scale to be relaxed and permits the 

calculation of technical efficiency free from scale efficiency.  

 

In regard to the above typology, all the studies applied input-orientated analysis, with the 

exception of Fraser and Cordina (1999), who applied both orientations. The choice of 

orientation has minor influences on efficiency scores (Coelli, Rao and Battese, 1998). 

However, it may be argued that farmers are more willing to increase output given input 

quantities (output-orientated measure) than the reverse, i.e., given the output, reduce input 

use. Furthermore, given that some resources are fixed (in the short run), it is more 

appropriate to produce as much output as possible. 

 

3.2.1 The underlying assumption about technology 
 

According to the frontier approach, it is assumed that all farms are confronted with a single 

production frontier and therefore share the same underlying technology. Differences 

among farms arise in the efficiency with which technology is used. Assuming farms share 

the same technology when they do not will result in biased measures of efficiency and 

confusion among technological differences. 

 

Few studies on efficiency addressed the issue of technological differences among farms. 

One early example is Kumbhakar, Biswas and Bailey (1989). They divided the sample of 

Utah dairy farmers into three groups according to total value of sales. They then estimated 

the frontier of each group and the pooled frontier (all groups together). The likelihood-

ratio test (LR test) was used to test the null hypothesis that all farms operated under the 

same technology. They accepted the alternative hypothesis that production structure differs 

across farms of different sizes (p 601, footnote 4). Similarly, Hallam and Machado (1996) 

tested whether specialised6

 

 and non-specialised Portuguese dairy farms operated under the 

same technology. Hypothesis testing was performed by a Chow test for equality of 

parameters of frontiers estimated for both farm types. They accepted the null hypothesis 

that both sub-samples are confronted with the same production frontier. 

 

                                                 
6 Specialised and non-specialised referred to the share of dairy income in total farm income. 
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Mbaga, Romain, Larue and Lebel (2003) divided the sample of Quebec dairy farmers into 

two groups (non-maize and maize regions) to assure homogeneity of exogenous 

conditions. They then estimated the frontier for each subsample. However, they did not 

test whether technologies were different even when some results pointed in that direction.  

 

In practice, farms may adopt different technologies for a variety of reasons. Soils, climate 

and landscape differ across regions, influencing for example, the amount and type of feed 

grown, the opportunity cost of land and the level of scale economies (Sumner and Wolf, 

2002). In turn, these exogenous conditions may impose some restriction in the selection 

and type of technology used. Thurow and Holt (1997) stressed the importance of heritage 

and past investments in determining the type of technology that is most successful, as well 

as the management preferences of individual farmers. 

 

The evolutionary theory claims that technologies evolve along specific pathways or 

trajectories (Brennan and Wegener, 2003). Innovation is usually a continuous incremental 

process within a technological regime. Rather infrequently, innovation is radical, i.e., 

abandonment of a particular technological regime.  

 

Arthur (1989) asserted that a dominant technology could be progressively “locked-in,” 

seriously restricting the movements from one state to the next and confining innovation to 

a narrow corridor of developments. Adoption of a new capital good may require changes in 

existing equipment, bringing in additional cost of adjustment. In addition, existing 

management and labour skills may limit or even prevent innovations. This 

“interrelatedness” limits the scope of adoption (Brennan and Wegener, 2003).  

 

Other factors, like uncertainty about the performance of new, unproven technology, 

coupled with the irreversibility of some investments in fixed assets may restrict adoption 

decisions (Purvis, Boggess, 

 

Moss and Holt, 1995). Related to irreversibility, there is also the 

issue of the non-transferability to other uses (e.g., a milking machine can only be used for 

dairying).    

Therefore, at the regional level, innovation is incremental and strongly shaped by existing 

socioeconomic structures and the behaviour of their agents. Radical innovations, in turn, 

tend to appear in new areas and are less predetermined and dominated by successful 
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structures (Tödtling, 1992). Similarly, at any point in time, new firms entering the industry 

are confronted with different technologies. The choice of a particular technological regime 

is largely random and only through ex-post competition, can uncertainty about competing 

design be resolved (Arthur, 1989). Following the logic of the evolutionary theory, some 

educated guesses can be made about the outcomes of the choices the new firms face. New 

firms entering the industry in a well-established region will be prone to adopt the dominant 

paradigm. On the other hand, if the new entrant chooses a new location where a priori 

there is no dominant technological paradigm, it will be less conditioned and more able to 

adopt a different technology (Tödtling, 1992).   

 

The above-mentioned is particularly true in agricultural production, where the interaction 

of geophysical factors (location-specific) and the adopted technology may result in different 

outcomes. As Alston (2002) asserted, the biological nature of agricultural production 

implies that the spatial dimension is significant for agricultural technology. In fact, a 

successful technology applied in one location may not be entirely transferable to a new 

location.  

 

Given the spatial dimension of agricultural technologies, it is important when measuring 

efficiency to correctly identify the technology applied. Otherwise, inefficiency will be 

confused with using an inferior technology (Battese el al., 2004). Fraser and Cordina (1999) 

stressed the importance of assuring homogeneity of exogenous conditions (soils, climate 

and physical parameters) likely to affect efficiency. They asserted that such technical 

efficiency differences are the results of managerial ability. Presumably, they were stressing 

the importance of ensuring that all farms operate under the same technology in order to 

gauge the correct efficiency estimates.  

 

In view of the above-mentioned, it would be more accurate to say that assuring 

homogeneity of exogenous conditions (soils, climate and physical parameters) is crucial 

insofar as technology applied is likely to be the same (albeit with different rates of 

adoption) and hence true estimates of (in)efficiency may be obtained. Technical efficiency 

differences from a group of farms that share homogeneous exogenous conditions and 

operate under the same technology are, therefore, the result of managerial ability. 
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The geographical spread of the datasets of the papers reviewed is mixed. Only one study 

has a district scope (Fraser and Cordina, 1999). Six of them are based on provincial or state 

data and another six on regional data. The rest are classified as follows: one deals with 

farms in the province of Ontario, Canada and the state of New York, United States 

(Haghiri, Nolan and Tran, 2004), one pooled data from two countries (Dawson and White, 

1990), while nine have national/country coverage. 

 

Bravo-Ureta and Rieger (1991) attempted to correct their efficiency estimates by 

introducing location dummies to capture effects on the placement of the production 

technology. However, the coefficient of the slope parameters in the production function 

were the same for all farms, i.e., all farms face the same frontier. 

 

Haghiri, Nolan and Tran (2004) pointed out that the selection of the province and state for 

the inter-country comparison was done on purpose, given the similarities in production 

technology and geophysical conditions between them. Even though the non-parametric 

stochastic frontier was estimated for both samples independently, no formal test was 

conducted to check whether technology applied was the same.  

 

Regarding the studies at a country level, Piesse, Thirtle and Turk (1996) mentioned that 

most of the sample farms have similar alpine terrain, which assures homogeneity of 

exogenous conditions. Heshmati and Kumbhakar (1994), Kumbhakar, Ghosh and 

McGuckin (1991) and Kumbhakar and Heshmati (1995) introduced regional and size 

dummies to accommodate possible differences in productivity among different regions and 

size, but all farms face the same frontier. Kumbhakar and Hjalmarsson (1993) explicitly 

account for farm-specific characteristics related to location, climate and land quality, given 

that inefficiency should not be confounded with farm-specific characteristics.  

 

For the NZ studies (Jaforullah and Devlin, 1996 and Jaforullah and Whiteman, 1999), the 

authors assumed that all farms face the same frontier and hence, all farms applied the same 

technology.  
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3.2.2 The input/output variables used 
 

The availability and reliability of data largely dictate the selection of variables to estimate 

the frontier. Some authors reported inconsistencies in the measurement of the same 

variable across the dataset. Others found that relevant variables were not surveyed or that 

the aggregation precludes the extraction of accurate information. In some cases, variable 

selection is done deliberately to allow testing some hypotheses of interest. Aggregation of 

variables under different headings, such as capital, animal expenses, crop expenses and 

miscellaneous expenses, is common. However, none of the aggregates are comparable 

across studies. In summary, one can find as many input/output arrangements as studies 

performed. (Tables 3.3, 3.4, 3.5 and 3.6 list the variables included in each study.) 

 

An interesting finding of this review was that no single study attempted to check the 

robustness of efficiency estimates to selection of input/output variables. As Bravo-Ureta 

(1986) cautioned, aggregation of inputs and outputs poses a limitation on production 

function analysis.  

   

Bearing this in mind, the most common variables (input and output) included in the 

estimation of frontiers will be discussed below. Along the lines of this review, variables 

used for the estimation of parametric frontiers will be addressed first, followed by those 

used in DEA. 

 

Parametric estimation is restricted to a single output measure. In ten cases, output was 

measured using total milk production as the physical unit. In the other seven cases, total 

farm income (gross farm income) was the measure selected. 

 

Dairy farming, unlike other agricultural productions, has by-products. First and foremost, 

dairy cattle sales from culled cows, male calves and heifers not retained as replacements. In 

some countries, as in NZ, some male calves may be fattened on-farm and later sold. 

Second, some farmers produce their own feed (silage) and harvest grass surplus (forage). 

Both can be a source of revenue. 

 

Using farm income as the output variable has the disadvantage that inefficiency estimates 

may reflect not only technical efficiency, but allocative efficiency as well, a problem 

acknowledged by few authors (Jaforullah and Devlin, 1996). 
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Misleading estimates of efficiency can be obtained if output is measured in physical units 

but farms in the sample do not derive most of their income from dairy. One possibility is 

to correct input use by the share of dairy revenue or to restrict the sample to dairy farmers 

that derive most of their income from dairy. Mbaga, Romain, Larue and Lebel (2003) 

addressed the issue by restricting their sample to farmers who derive at least 80% of their 

revenue from dairy activities. 

 

Labour input was introduced in all the studies. Eleven studies measured it in physical units 

(total hours worked, total labour equivalent units) and five in monetary units. Each 

approach has its drawback. When labour is imputed in physical units, no distinction about 

the quality of labour can be made within the labourers in a farm and across farms. 

Moreover, it is implicitly assumed that family and hired labour are equally productive. 

When labour is measured in monetary units, it better reflects the quality of hired workers 

but a value for family work has to be imputed. 

 

Capital is the second input included most commonly. In eleven cases, capital input was not 

aggregated with other inputs. Three studies measured capital as total stock of capital 

(including land and improvements), while six used the “opportunity cost of capital” 

approach to measure it. They include depreciation, maintenance, insurance and interest on 

different types of capital. Some considered buildings and machinery, while others 

machinery only. A special case is Piesse, Thirtle and Turk (1996), where the service flow of 

capital was calculated by adding depreciation on buildings and machinery and running costs 

(fuel, electricity, repairs). Regarding this approach, comprehensive and disaggregated 

information is needed to allow for the application of differential depreciation rates.  

 

One study (Battese and Coelli, 1988) measured capital as the replacement value of plant 

and equipment depreciated by age, and another (Kumbhakar, Ghosh and McGuckin, 1991) 

used total dairy machinery hours corrected by horsepower as a proxy of capital. Ahmad 

and Bravo-Ureta (1996) included depreciation on building and equipment under 

miscellaneous expenses. In the remaining five cases, a measure of capital input was not 

included, although Cuesta (2000) used number of cows as a proxy of capital. 

 

Feed input, included in ten studies, is the next most commonly used input. Units of 

measurement differ markedly among studies. Some studies measured feed in physical units 
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and differentiated between concentrate and forage. Others only include expenditure on 

feed (i.e., “imported” feed). Finally, some studies used total cost on feed and combine the 

expenditure on imported feed and the cost of homegrown feed. 

 

Number of milking cows was included in seven studies. Total dairy herd was used as an 

input variable in one study, as the authors considered that it reflected better the output 

measure they were using (total farm income) (Jaforullah and Devlin, 1996). 

 

Land was included in physical units in four studies. Dawson (1985) and Dawson and White 

(1990) used rental value of land. In two other cases, land was included in the total stock of 

capital (Hallam and Machado, 1996 and Jaforullah and Devlin, 1996) 

  

Finally, animal expenses (veterinary, breeding and other animal expenses) and crop 

expenses (fertilizer, seed, repairs and maintenance, fuel) are mentioned three times each. 

 

DEA allows for the inclusion of multiple outputs. This possibility is very helpful in dairy 

farming, where several sources of revenue are present. However, most of the studies (six) 

included single output (milk) measured either in physical units or in monetary units. Only 

two studies adopted a multiple output approach. 

 

Labour input was incorporated in all the studies that applied DEA. Seven of the studies 

measured labour in physical units and only one measured labour in monetary units. 

 

Capital was included as an input in six cases. Three of the studies measured capital as the 

total value of assets. The other three studies adopted the capital cost approach, albeit using 

different ways to estimate it: 4% of all capital locked up in production (including land); 

interest paid plus return on equity multiplied by equity and intermediate inputs plus service 

flows from stock of genuine capital items. 

 

Feed input was included in five studies. Similar to the stochastic frontier studies, type of 

feed considered (forage/concentrate; “imported”/home-grown) and units of measure 

(physical/monetary) differ markedly. One interesting case is Fraser and Cordina (1999) that 

measured supplementary feeding in megajoules of metabolise energy (MJME) to reflect 

differences in energy content. 
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Cows were included in four cases. Measurement units were physical or monetary. One 

study used an adjusted measure of milking cows to account for differences in breed and age 

distribution of the herd. 

 

Total area, as an input, was used in five studies. Unlike the studies that applied the 

stochastic frontier approach, total area was measured in physical units, and only two of 

them adjusted area by quality (Mathijs and Vranken, 2001) or perennial pasture equivalent 

(Fraser and Cordina, 1999). 

 

Finally, animal expenses (veterinary, breeding and other animal expenses) were used as an 

input in three studies and fertilizer (expenditure on, or total volume applied) in two studies. 

 

As previously mentioned, the availability and reliability of data largely dictates the selection 

of variables to estimate the frontier. This was confirmed by the vast selection of the 

input/output sets found. None of the authors claimed superiority of one input/output 

arrangement over other. Similarly, as was said before, none of the authors considered the 

possibility that different ways of aggregate inputs may yield different efficiency estimates 

within the same sample. For example, some farms may not renew pastures or use 

homegrown silage. Therefore, an aggregate measure of input like “crop expenses” may not 

give due weight to these differences.    

 

3.2.3 Determinants of inefficiency 
 

Of the twenty-four studies reviewed, only four of them went further and investigated the 

determinants of (in)efficiency (Table 3.7). This is cause for concern, as determination of the 

causes of inefficiency is crucial; it is the building block of future actions to help farmers 

enhance their profitability by way of improving efficiency in resource use. However, 

gathering adequate data on possible determinants of inefficiency may be harder to achieve.   

 

Additionally, six studies reported interesting findings about the relationship of technical 

efficiency and some exogenous variables (Ahmad and Bravo-Ureta, 1996; Bravo-Ureta, 

1986; Bravo-Ureta and Rieger, 1990 and 1991; Dawson, 1985 and Kumbhakar, Biswas and 

Bailey, 1989). None of these papers assumed causality, but they mentioned some 
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associations and/or correlations between some of the variables used and technical 

efficiency. 

 

Ahmad and Bravo-Ureta (1996), based on the fixed effect estimator results, reported a 

significant inverse relationship between technical efficiency and herd size. They also found 

a strong and positive correlation between technical efficiency and “concentrate per cow” 

and “other expenses per cow,” and a positive but weak relationship with “animal expenses 

per cow” and “crop expenses per cow” and “labour per cow.” Bravo-Ureta (1986), using a 

Chi-square test, accepted the hypothesis that herd size and technical efficiency were 

statistically independent variables.   

 

Bravo-Ureta and Rieger (1990) divided the sample farms into three groups and used 

ANOVA and Kruskal-Wallis tests to analyze the relationship between socioeconomic 

characteristics and technical efficiency (TE), allocative efficiency (AE) and economic 

efficiency (EE). Results indicate that herd size and extension are positively related with TE, 

and negatively related with AE and EE. Experience, in turn, shows a negative relationship 

with EE and AE and no significant association with TE, whereas education does not have 

a significant association with efficiency. 

 

Bravo-Ureta and Rieger (1991) found a positive but weak association between herd size 

and TE. They also reported a strong positive correlation between variable costs per cow 

and TE. Dawson (1986), in turn, reported a positive and significant correlation between 

TE and land size. 

 

Finally, Kumbhakar, Biswas and Bailey (1989) reported similar findings in regard to size, 

i.e., large farms (by sales value) had better allocative and scale efficiencies. They also found 

that education had a strong and positive effect on labour and capital productivity and that 

off-farm income affected efficiency negatively.  

 

The following studies examined the determinants of (in)efficiency; Hallam and Machado 

(1996); Kumbhakar, Ghosh and McGuckin (1991); Mathijs and Vranken (2001) and 

Weersink, Turvey and Godah (1990). 
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Hallam and Machado (1996) investigated the relationship between technical efficiency 

estimates obtained by the Haussam-Taylor method and some farm characteristics using a 

simple OLS regression. They reported a positive association between size (measured in 

farm value added) and technical efficiency.  

 

Non-specialised7

 

 farms appear to be more efficient than specialised ones. Intensiveness in 

milk production is measured by feed per cow (positive and significant) and land per cow 

(positive but not significant). The stock of machinery and equipment per cow that was 

considered a proxy of capital-intensive production technology was positive but not 

significant. Evidence that family farms are more efficient than entrepreneurial farms is not 

conclusive. Finally, they introduced dummies for location (coastal vs. inland), altitude and 

handicapped zones, to determine whether technical efficiency is influenced by these 

factors. Results were conflicting, as one region that should appear to be less efficient 

turned out to be more efficient. However, as the estimates of technical efficiency obtained 

were relative to a common frontier, location differences in efficiency may have masked 

different technologies. 

Kumbhakar, Ghosh and McGuckin (1991) developed a single step procedure to estimate 

determinants of inefficiency. They assumed that technical inefficiency has a deterministic 

and a stochastic component and used farm-specific exogenous variables to explain the 

former. Before this single step procedure, most researchers investigated the determinants 

of technical inefficiency on a two-step approach. In the first step, estimates of technical 

inefficiency were obtained and then regressed on some farm-specific factors in the second 

step. Two problems were identified. First, inefficiency effects were assumed to be 

independently and identically distributed, while in the second step, they were not identically 

distributed, as they were assumed to be a function of farm-specific factors. Second, since 

technical inefficiency (the dependent variable) is bounded between 0 and 1, ordinary least 

squares may not be appropriate. They reported a positive association (causality given the 

methodology) between size and technical efficiency. Similarly, farms with a higher level of 

education have higher values of technical efficiency. 

 

Mathijs and Vranken (2001) used a Tobit regression model (as efficiency scores are 

truncated) to assess the sources of measured efficiencies. Farm-specific estimates of 

                                                 
7 Specialised and non-specialised refer to the share of dairy income in total farm income. 
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technical efficiency were used as the dependent variable and regressed on different 

explanatory variables. They performed the analysis for family farms, corporate farms and 

for the pooled data. Overall, they did not find a significant difference in technical efficiency 

between family and corporate farms.  

 

Mathijs and Vranken (2001) also reported a positive impact of education on technical 

efficiency for family farms. However, for corporate farms, human capital does not explain 

much of the differences in technical efficiency. This finding, although intriguing at first 

sight, is somehow expected. Corporate farms are able to select and hire human capital from 

a larger and more homogeneous pool. Conversely, family farms rely on at-home human 

capital. Hence, differences in human capital between family farms are amplified vis-à-vis 

those of corporate farms. For family farms, age has a negative effect on efficiency. Size as 

measured by total output, as well as specialisation, has a positive effect on efficiency both 

for family and corporate farms. 

 

Interestingly, Mathijs and Vranken (2001) found that off-farm work has a positive impact 

on efficiency, whereas Kumbhakar, Biswas and Bailey (1989) reported a negative 

association, which occurred because less time is spent on managerial activities improving 

farm efficiency. Mathijs and Vranken (2001) proposed an alternative view by suggesting 

that time off-farm allows information to be acquired that improves farmers’ managerial 

skills. Both results may be correct. The knowledge base of Utah dairy farmers (Kumbhakar, 

Biswas and Bailey, 1989) may be such that loosening of managerial activities cannot offset 

the benefits of acquiring extra information, whereas the reverse may be applicable to 

Hungarian dairy farmers.      

 

Weersink, Turvey and Godah (1990) also used a two-step approach to investigate factors 

affecting inefficiency. Given the independent factors, they used a censored regression to 

predict efficiency. Their model explains 46% of the variability in the overall technical 

efficiency. As in other studies, they found that herd size (measured in cows) has a positive 

effect on technical efficiency, but at a decreasing rate. They also reported that farming 

experience has a negative effect. Their explanation is based upon the assumption that 

younger farmers are more acquainted with advanced technologies. Milk production per 

cow, as well as butterfat content, has a positive effect on efficiency. The proportion of feed 

purchased, another management characteristic, has a negative effect on efficiency. They 
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concluded that quality and price of homegrown feed is better than that of purchased feeds. 

Debt to asset ratio, building per cow and horsepower of the largest tractor all have negative 

coefficients, implying that farms may be operating at less than full capacity and are 

overcapitalised. 

 

Finally, two other findings from Weersink, Turvey and Godah (1990) are worthy of 

mention. First, farm efficiency was found to be positively related to the infrastructure of 

services, which in turn is determined by the number of farms and the resource base. 

Second, corporate operations were not found to be more efficient than owner-operators. 

 

3.3 Previous studies in dairy farm total factor productivity 

 

Six studies focused their attention on dairy farm productivity (Tables 3.2 and 3.8).   

 

Productivity change is defined as the ratio of change in output to change in input. In the 

hypothetical case of a production unit using one input to produce one output, the measure 

of productivity is fairly simple to derive. However, production units use several inputs to 

produce one or more outputs, and under such circumstances, the primary challenge in 

measuring TFP results from the need to aggregate the different inputs and outputs. The 

aggregation of inputs and outputs is both conceptually and empirically difficult. Several 

methods to aggregate inputs and outputs are available, resulting in different approaches to 

measuring TFP. Such methods can be classified into three major groups: (a) econometric 

production models; (b) TFP indices; and (c) frontiers models (Coelli, Rao and Battese, 

1998). Methods in (a) and (b) are called non-frontier approaches to TFP measurement, as it 

is not necessary to identify the frontier of potential attainment. In contrast, frontier models 

do require the estimation of the production frontier. Further classification of TFP 

measurements is again done along non-parametric (index number) models and parametric 

(econometric approaches) models. Grosskopf (1993) provides a survey on productivity 

measurement and Hulten (2001) provides an excellent biography on productivity growth. 
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The approaches used to estimate TFP cover a vast range of methodologies, from index 

numbers (Anderson and Johnson, 2002) to distance functions (Brümmer, Glauben and 

Thijssen, 2002). 

 

Table 3.2 - Summary of productivity studies in dairy farming 

 

Author(s) Methodology Objective 

Ahmad and Bravo-

Ureta (1995) Econometric 
Decompose production growth into technical 
change, technical efficiency change and input-
growth 

Anderson and Johnson 

(2002) Index numbers Analyze trends in productivity growth 

Brümmer, Glauben 

and Thijssen (2002) Econometric 

Decompose TFP index into technical change, 
technical efficiency change, allocative 
efficiency regarding inputs and outputs, and 
scale component  

Kumbhakar and 

Hjalmarsson (1993) Econometric 
Examine technical efficiency and technical 
progress, after separating inefficiency from 
farm-specific effects 

Tauer (1998) Non- 
parametric  

Decompose TFP index into technical change 
and technical efficiency change, adjusting for 
apparent regressive technology 

Piesse, Thirtle and 

Turk (1996) 

Econometric 
Non- 

parametric 
Index numbers 

Study effects of ownership and control on 
productivity  

 

 

Anderson and Johnson (2002) and Piesse, Thirtle and Turk (1996) applied index number to 

estimate TFP on dairy farming in NZ and Slovenia respectively. The index number 

approach to measure TFP is a non-parametric non-frontier approach.  

 

TFP index is calculated from output and input indexes, which in turn are aggregations of 

detailed accounts of inputs used and outputs produced. Growth accounting represents a 

technique for estimating the contribution of different factors to economic growth. With 

the aid of marginal productivity theory, growth accounting decomposes the growth of 

output into growth of labour, land, capital, education, technical knowledge and other 

miscellaneous sources (Diewert and Lawrence, 1999; OECD, 2001 and Raa and Mohnen, 

2002). 
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The theory of index numbers is uniquely crucial to the aggregation of inputs and outputs. 

Three examples of indexes are Laspeyres index, Fisher index and Tornqvist index that 

approximates the Divisia index. The Laspeyres indexing procedure is believed to be exact 

for (or imply) a linear production function in which all inputs are perfect substitutes in the 

production process. Similarly, the Tornqvist index is concerned with the natural discrete 

approximation of productivity growth and is said to be exact for (or imply) a translog 

production function. Fisher index exacts Cobb-Douglas production function (Coelli, Rao 

and Battese, 1998 and Diewert and Lawrence, 1999). 

 
The use of index numbers imposes several strong assumptions about technology (Hicks-

neutral technical change, constant returns to scale and long-run competitive equilibrium). 

Notable shortcomings of the non-parametric non-frontier approaches include biased 

estimates of productivity growth because of the prevalence of inefficiency. Also, in the 

presence of allocative inefficiency, TFP index would be biased. It is likely that farmers are 

not using the various factors of production in the best proportions given the input prices, 

i.e., allocative inefficiency. Hence, using input shares to aggregate inputs also biased the 

TFPG estimates. Another disadvantage is that since index numbers are not statistically 

derived, statistical methods cannot be used to evaluate their reliability. Additionally, they 

have not been particularly informative in identifying sources of growth. Their advantage, of 

course, is that they can be derived regardless of the number of observations and hence they 

are relatively easy to calculate (Balk, 2003; Coelli, Rao and Battese, 1998; Grosskopf, 1993 

and OECD, 2001). 

 
Kumbhakar and Hjalmarsson (1993) developed a method to separate technical inefficiency 

from farm-specific characteristics (location, climate and land quality). Under this 

framework (based on a fixed effects production function), they examine technical efficiency 

change and technical progress at the frontier.   

 

Ahmad and Bravo-Ureta (1995) used the same framework, but alternative methods of 

estimation, fixed effects and ML. Technical efficiency was assumed to be time varying and 

time invariant, and in the case of ML estimation, to follow a half-normal and truncated 

normal distribution. 

 

They estimate a Cobb Douglas (CD) production function and decomposed output growth 

in technical progress plus changes in technical efficiency plus a size effect. Unlike 
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Kumbhakar and Hjalmarsson (1993), who allowed for non-neutral technical progress, 

Ahmad and Bravo-Ureta (1995) considered neutral technical change, using the coefficient 

on the time trend as a proxy for technical progress or time dummy variables (in the FE 

model). As a proxy for the size effect, they computed the difference in input use by each 

farm between periods. Technical efficiency change was estimated as the difference in 

technical efficiency of each farm between periods. The sum of the three components 

results in the output growth over the period considered. 

 

Brümmer, Glauben and Thijssen (2002), Tauer (1998) and Piesse, Thirtle and Turk (1996), 

in turn used the distance function approach to measure TFP.  Distance function, input- or 

output-orientated, is an alternative way (to production, cost or profit functions) to 

represent a technology. An output distance function measures the maximal proportional 

expansion of the output vector, given an input vector. Similarly, an input distance function 

considers the minimal proportional contraction of the input vector, given an output vector.  

The main advantages of representing a technology with a distance function is that multi-

input multi-output production technology can be described and, as information on prices is 

not necessary, there is no need to specify a behavioural objective (like cost minimization or 

profit maximization). Distance functions can be computed by different methods: DEA, 

parametric deterministic linear programming, corrected ordinary least squares or SFA. (See 

Coelli, Rao and Battese (1998) for the theoretical underpinnings of distance functions and 

Coelli and Perelman (1999) (2000) for estimation methods.) 

 

Tauer (1998) and Piesse, Thirtle and Turk (1996) estimated productivity using the non- 

parametric MPI. The Malmquist index is defined using distance functions. The estimation 

of the distances required to gauge TFP is computed within the DEA framework (Coelli, 

Rao and Battese, 1998). The main advantage of using DEA for the estimation of distance 

functions is that it does not require the specification of a functional form to the 

technology. Conversely, Brümmer, Glauben and Thijssen (2002), using a stochastic frontier 

approach, assumed a translog functional form for the parametric distance functions. The 

distinctive feature of their model is that they explicitly account for allocative efficiency 

regarding inputs and outputs to the decomposition of the TFPG index. Hence, they were 

able to decompose TFPG into technical change, technical efficiency change, allocative 

efficiency regarding inputs and outputs and scale component.  
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Caves, Christensen and Diewert (1982) introduced the MPI as a theoretical index based on 

distance functions (Coelli, Rao and Battese, 1998). Distance functions are functional 

representations of multiple-output, multiple-input technologies, which require data only on 

input and output quantities (Coelli, Rao and Battese, 1998 and Färe et al., 1992). This 

distance function was later incorporated into the production theory lending its use to the 

measurement of productivity. More importantly, the distance function on which the MPI is 

based happens to represent a value that is the inverse of technical efficiency defined by 

Farrell (1957). As a consequence, methodologies for technical efficiency measurement (like 

DEA or stochastic production frontiers) can be employed directly to calculate the MPI. 

 

The Malmquist TFP index is closely related to several other productivity indexes that have 

been proposed in the literature. For instance, the MPI is more general and includes the 

Törnqvist and Fisher indexes as its special cases (Coelli, Rao and Battese, 1998). It has been 

shown that the MPI is equivalent, under rather strong assumptions (technology is translog, 

second order terms are constant over time, firms are cost minimizers and revenue 

maximizers) to the Törnqvist index (Färe et al., 1994), which is the discrete counterpart of 

the Solow growth accounting model (Coelli, Rao and Battese, 1998). The Törnqvist index 

does not require estimation of distance functions, but rather aggregates inputs and outputs 

by weighting them by their shares (Diewert and Lawrence, 1999). As such, the MPI forms 

the basis for the Törnqvist and Fisher indexes. While the computation for the Törnqvist 

and Fisher indexes does not involve estimating distance functions and is thus less 

demanding, the MPI is much more instructive due to its capability of separating and 

identifying distinct sources for explaining productivity growth (Färe et al., 1994). 

 

Finally, it is worth mentioning studies by Cuesta (2000), Heshmati and Kumbhakar (1994) 

and Kumbhakar and Heshmati (1995). Even though the focus of attention of these studies 

relied on alternative assumptions about the inefficiency term, they estimated neutral 

technical progress. Meanwhile, Cuesta (2000) used time dummy variables and Heshmati 

and Kumbhakar (1994) and Kumbhakar and Heshmati (1995) captured the shift in the 

production frontier using time as a regressor.  
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3.3.1 The underlying assumption about technology 
 

Studies by Ahmad and Bravo-Ureta (1995), Kumbhakar and Hjalmarsson (1993) and 

Piesse, Thirtle and Turk (1996) have been discussed in section 3.2.1.  

 

With the exception of Brümmer, Glauben and Thijssen (2002), all the studies reviewed in 

this section assumed that farms operate under the same technology. Given that they 

compared countries, which among other things have different agricultural policy regimes, 

they estimated separate distance function for each country and a common frontier function 

(pooling the observations from all countries). The null hypothesis that all countries were 

operating under the same technology was rejected using the likelihood-ratio test. This 

common or pooled frontier helps to ascertain the potential for improvement by adopting a 

hypothetical best-practice for all countries.  

 

Tauer (1998) implicitly assumed that all farms operate under the same technology. This 

assumption may not be warranted on two counts. First, Kumbhakar, Ghosh and 

McGuckin (1991) demonstrated that small, medium and large Utah dairy farmers did not 

operate under the same technology. Second, Tauer (2001) found that for a sample of New 

York dairy farms, the costs of production (per kg milk) decreases with herd size. This in 

turn may be masking differences in technology applied among herds of different sizes. 

 

3.3.2 The input/output variables used 
 

Similar to the studies on efficiency, the output-input variables selected and particularly the 

aggregation of them is dictated by the databases and the interest of the researchers in 

checking the behaviour of some inputs or aggregation of them (Table 3.8). For example, 

Tauer (1999) considered an energy input (fuel and electricity) separately because of the 

increasing concern about the efficiency in energy use (p 248). 

   

Output was measured as milk volume in three papers. The other three papers used a 

quantity index of milk, an aggregate quantity index of all output produced and milk sales as 

output. Two studies included an aggregate measure of other outputs produced. The 

difference between both studies in the aggregation procedure relies on the price index used 

to deflate the value of each output. Meanwhile, Brümmer, Glauben and Thijssen (2002) 
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used individual prices received by farmers (where possible) to construct the index. Tauer 

(1999) used the same official price index for all farms. 

 

Regarding input variables, labour was included in all cases and always measured in physical 

units (hours or worker equivalent). Capital input was considered in five studies and 

measured in different ways. Anderson and Johnson (2002) and Kumbhakar and 

Hjalmarsson (1993) used the capital user cost approach. The study by Kumbhakar and 

Hjalmarsson (1993) included land and buildings, while the study by Anderson and Johnson 

(2002) only considered depreciation and interest on the stock of capital equipment. Piesse, 

Thirtle and Turk (1996) estimated the service flow of capital by adding depreciation on 

building and machinery and running costs (fuel, electricity and repairs).  

 

Brümmer, Glauben and Thijssen (2002), in turn, presented an aggregate measure of stock 

of capital (building, equipment and livestock deflated by their corresponding price index). 

Finally, Tauer (1999) included capital input using the cost approach, but under two 

different input aggregations: crop input (depreciation, repairs and interest on machinery) 

and real estate input (depreciation, repairs and interest on buildings plus fencing costs).   

 

Total area measured in physical units was used in three studies. Animal expenses 

(veterinary, breeding and other animal expenses) were used as an input on two occasions as 

well as crop expenses (fertiliser, seed and repairs and maintenance on machinery). Feed 

input was used twice, measured in physical units (concentrate in tons) and as expenditure 

on feed (i.e., “imported” feed). 

 

3.3.3 Determinants of inefficiency 
 

None of the six studies went further and investigated the determinants of (in)efficiency. 

Ahmad and Bravo-Ureta (1995), based on the results obtained from the fixed effects 

estimation method, explored the correlation between annual rate of growth in milk 

production and herd size, input use per cow and technical efficiency. They reported a 

significant positive relationship between annual rate of growth in milk production and herd 

size, and with some inputs per cow (concentrates, crop expenses and animal expenses), and 

a weak correlation with “other expenses per cow” and technical efficiency. “Labour per 
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cow” and the annual rate of growth in milk production exhibited a negative but non-

significant association. 

 

Technical efficiency, in turn, showed a strong positive correlation with “concentrate per 

cow” and “other expenses per cow,” and a positive but non-significant relationship with 

“animal expenses per cow” and “crop expenses per cow.” Conversely, technical efficiency 

and “labour per cow” showed a weak but negative correlation. Finally, Ahmad and Bravo-

Ureta (1995) found a significant inverse relationship between technical efficiency and herd 

size, but a positive and significant association between the rate of change in technical 

efficiency and herd size. 

 

3.4 Concluding comments  

 

Twenty-eight studies focusing on efficiency and productivity of dairy farming were 

reviewed. The review was done along three main lines not explored before: the underlying 

assumption about technology, the input/output variables introduced in the production 

function and the exogenous variables used as determinants of technical inefficiency among 

farms. 

 

Three studies (Brümmer, Glauben and Thijssen, 2002; Hallam and Machado, 1996 and 

Kumbhakar, Biswas and Bailey, 1989) investigated whether technology applied differed 

across dairy farms. The reasons behind the assumption that farmers operated under 

different technologies were different. Brümmer, Glauben and Thijssen (2002) tested 

whether dairy farmers in three different countries (Germany, Poland and the Netherlands) 

operated under the same technology, i.e., they faced the same frontier. Hallam and 

Machado (1996), in turn, analysed whether differences might arise due to ownership 

structure. Kumbhakar, Biswas and Bailey (1989) related them to farm size. As mentioned in 

section 1.7, the present study will investigate whether technology applied differed across 

dairy farms given to location. 

 

As shown by the literature review, no single study attempted to check the robustness of 

efficiency estimates to input/output variable selection. As Bravo-Ureta (1986) cautioned, 

aggregation of inputs and outputs poses a limitation on production function analysis. The 
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database obtained for the present study has an ample dis-aggregation of inputs, allowing 

any limitations imposed by input aggregation to be assessed.   

 

For the empirical analysis, the Malmquist index was used to estimate TFPG. The MPI, 

introduced by Caves et al. (1982) and based on distance functions, has become extensively 

used in the measure and analysis of productivity (Brümmer, Glauben and Thijssen, 2002; 

Kim and Han, 2001; Tauer, 1998 and Piesse, Thirtle and Turk, 1996). The reasons for 

choosing the MPI over the Törnqvist and Fisher indexes are numerous. First and foremost, 

the MPI can be decomposed into two components for explaining productivity sources: 

technical change and technical efficiency change (Färe et al., 1994). Second, the MPI does 

not require price data (it is based only on quantity data). Third, the MPI is capable of 

accommodating multiple inputs and outputs without worrying about how to aggregate 

them. Fourth, the MPI does not make any restrictive value/behaviour assumptions for the 

economic units like cost minimization or profit maximization, as required by the Törnqvist 

and Fisher indexes (Coelli et al., 1998; Grifell-Tatjé and Lovell, 1996). Therefore, this 

allows for gaining insight into the sources of productivity growth at a regional level. This in 

turn will allow comparing and assessing the relative importance of both sources of growth 

at a regional level. Further, the MPI will be calculated using methodologies for technical 

efficiency measurement (like DEA or stochastic production frontiers) providing, therefore, 

farm-level estimates of productivity growth, technical efficiency change and technical 

progress to guide on-farm improvements. 

 

Finally, the meagre attention given to the understanding of the causes of inefficiency in the 

literature is surprising. This type of information is vital for policy and extension purposes. 

Extension agencies would benefit, as it would help to target those farmers in need of 

assistance, thereby reducing the cost of extension programs. Policy makers in turn would 

gain insight in evaluating the impact of changes in sectoral policy (e.g., reduction of internal 

support) or national trade policy (e.g., reduction in tariff barriers that expose farmers to 

international competition). Regrettably, the database has no relevant information to address 

this issue. Advancing into the recommendations and areas for further research, future data 

collection needs to address this weakness. 
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Table 3.3 - Studies that applied econometric methods 

 

Authors Methodology Input/output variables 

Ahmad and Bravo-Ureta 

(1996) Vermont dairy farms 

(US) 

Fixed effects production functions and 

stochastic production frontiers with time 

varying and time invariant efficiency 

Output

Milk production (in hundredweight adjusted to a 3.5% butterfat basis) 

: 

Number of dairy cows 

Inputs 

Total labour in worker eq. 

Purchased concentrate (tons) 

Animal expenses (veterinary, breeding and other animal expenses) 

Crop expenses (fertiliser, seed, repairs and maintenance, fuel) 

Other expenses (electricity, depreciation and miscellaneous) 

Battese and Coelli (1988) 

Victoria and New South 

Wales dairy farmers 

(Australia) 

Stochastic frontier production function 

(FPF) 

Output

Total gross farm returns 

: 

Value of total farm labour   

Inputs 

Value of total cost of fodder, seed and fertiliser 

Value of the capital (average estimated replacement cost of structures plant and 

equipment depreciated by age) 
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Bravo-Ureta (1986) 

New England dairy farmers 

(US) 

Deterministic FPF 

probabilistic frontier approach 

Estimated by linear programming 

Output

Milk production (in hundredweight adjusted to a 3.5% butterfat basis) 

: 

Number of dairy cows 

Inputs 

Total labour in worker eq. 

Consumption of purchased concentrate (tons) 

Annual machinery capital services (depreciation, and repairs and maintenance 

on machinery and equipment in dollars) 

Dummy for breed (1= Holstein, 0 otherwise) 

Bravo-Ureta and Rieger 

(1990) 

New England and New York 

dairy farmers (US) 

FPF models: 

Deterministic 

(estimated by LP, COLS and ML) 

Stochastic (estimated by ML) 

Output

Milk production (in hundredweight adjusted to a 3.5% butterfat basis) 

: 

Total labour in worker eq. 

Inputs 

Consumption of purchased concentrate (tons) 

Animal expenses (veterinary, breeding and other animal expenses) 

Crop expenses (fertiliser, seed, repairs and maintenance, fuel) 

Bravo-Ureta and Rieger 

(1991) 

New England dairy farmers 

(US) 

Stochastic FPF to derive stochastic cost 

frontier that was subsequently 

decomposed in economic and allocative 

efficiency 

Output

Milk production (in hundredweight adjusted to a 3.5% butterfat basis) 

:  

Annual variable labour in full time worker eq.  

Inputs 
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Consumption of purchased concentrate (tons) 

Consumption of forage feed corrected by dry matter (tons) 

Milking technology (stanchion barn and a bucket and carry milking system=1; 

0) 

Farm location (Maine, Massachusetts=1; 0) and (Vermont=1; 0) 

Cuesta (2000) 

Dairy farms from Asturias 

region (northern Spain) 

Stochastic FPF that allows for firm-

specific temporal variation in technical 

efficiency  

Output

Milk production (thousand litres per year) 

:  

Total labour in full time worker eq.  

Inputs 

Land (total farm area, ha) 

Cows (average number of milking cows) 

Feedstuffs (only concentrate to dairy cows, tons per year) 

Dawson (1985) 

North-West of England 

Deterministic 

Three methods: 

Two-step OLS 

Analysis-of-covariance 

Linear programming  

Output

Total revenue 

:  

Total wage bill  

Inputs 

Livestock and crop costs 

Machinery costs 

General farming costs 

Rental value of land 
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Dawson and White (1990)  

Dairy farms from England 

and Wales 

Stochastic FPF 

Examine allocative and technical 

inefficiencies after production quotas 

were introduced 

Output

Milk output (litres) 

:  

Total labour cost   

Inputs 

Concentrate costs 

Forage costs 

Rent (on land) 

Machinery costs 

Herd replacement costs 

Hallam and Machado (1996) 

Dairy farms in northwest 

Portugal 

FPF  

Four approaches to estimate parameters: 

Within estimator 

Variance component (GLS) 

Haussman-Taylor 

Maximum Likelihood Estimator 

Output

Value of total gross farm production 

: 

Number of milking cows in equivalent units 

Inputs 

Total labour in equivalent units  

Value of total feed consumed (purchased plus self-produced (p+s-p)  

Total consumption of intermediate inputs: seed, fertilizer, energy, etc. (p+s-p)  

Capital stock (land and buildings, plant, machinery, equipment and circulating 

capital) 
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Heshmati and Kumbhakar 

(1994) 

Swedish dairy farms 

SPF, within transformation and ML  

Assumes technical inefficiency to be 

farm- and time-specific Separates farm-

specific effects (assumed to be time 

invariant) from technical efficiency (time 

varying) 

Estimation through multi-step 

procedure 

Output

Total farm income 

: 

Number of milking cows 

Inputs 

Total labour cost (family plus hired workers) 

Cost of concentrate fodder (purchased plus self-produced) 

Capital, user cost (depreciation, maintenance, insurance and interest) 

Miscellaneous (fertiliser, purchased cows, etc. use in dairy production) 

Regional dummies 

Size dummies  

Jaforullah and Devlin (1996) 

New Zealand dairy farms 

Stochastic FPF 

Three possibilities regarding the 

distribution of inefficiency  

Output

Total dairy farm revenue 

: 

Total dairy herd 

Inputs 

Total worker-hours per week (based on full time labour eq. units)  

Animal expenses (health, breeding and herd testing) 

Feed supplements expenditure (silage, hay, meal and grazing-off) 

Fertiliser expenditure   

Capital (closing book value of fixed assets, including land and buildings) 
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Kumbhakar, Biswas and 

Bailey (1989) 

Owner-operated dairy farms 

in Utah (US)  

Stochastic FPF system 

With endogenous and exogenous 

variables 

Decomposition of inefficiency into 

estimate technical, allocative and scale 

inefficiencies 

Output

Milk production (pounds) 

: 

Total hrs worked (family plus hired workers)  

Inputs: 

Capital, op. costs (depreciation and interest expenses on all capital) 

Land (ha) 

Education (operator) 

Exogenous variables: 

Off-farm income  

Dummies for size 

Kumbhakar, Ghosh and 

McGuckin (1991) 

US dairy farms  

Stochastic FPF 

Estimation ML based on a simultaneous 

system of equations 

To study profitability in relation to RTS 

and economic efficiency 

To identify determinants of inefficiency  

Output

Milk production (in hundredweight adjusted to a 3.5% butterfat basis) 

: 

Number of dairy cows 

Inputs: 

Total labour in man hrs eq. (family plus hired workers) 

Capital, flow (dairy machinery hrs adjusted by number of horsepower) 

Kumbhakar and Heshmati 

(1995) 

Swedish dairy farms 

SPF, random effects and ML  

To study the persistent and residual 

component of inefficiency 

Estimation through a multi-step 

Output

Total farm income 

: 

Number of milking cows 

Inputs: 
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procedure Total labour cost (family plus hired workers) 

Cost of concentrate fodder (purchased plus self-produced) 

Cost of grass fodder (adjusted by water content) 

Arable land (ha) 

Pasture land (ha) 

Capital, user cost (depreciation, maintenance, insurance and interest, all capital) 

Miscellaneous (fertiliser, purchased cows, etc. use in dairy production) 

Regional dummies 

Age of farmer (proxy of experience) 

Time (proxy for exogenous technical change) 

Kumbhakar and Hjalmarsson 

(1993) 

Swedish dairy farms 

SPF, fixed effects and EM algorithm  

To separate technical inefficiency from 

individual specific effects 

Estimation through a two-step 

procedure 

Output

Total sales per farm 

: 

Total labour (family plus hired workers in hrs) 

Inputs 

Arable land, adjusted for soil quality and climatic location (ha) 

Capital, user cost (depreciation and interest on the stock of capital equipment) 

Materials, cash expenditure (fuel, seed, pesticides, repairs and maintenance of 

capital equipment) 
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Table 3.4 - Studies that applied mathematical programming techniques 

 

Authors Methodology Input/output variables 

Asmild et al. (2003) 

Danish dairy 

farmers 

Multi-directional efficiency 

analysis and 

DEA 

VRS input-orientated 

 

Output

Gross returns  

: 

Building costs (book depreciation building investment plus cost of maintenance) 

Inputs 

Equipment costs (sum of book depreciation of inventory, equipment maintenance costs and 

contract operation costs) 

Capital costs (4% of all capital locked up in land, production buildings, livestock, inventory and 

stock) 

Labour costs (wages plus family labour payment) 

Miscellaneous costs (insurance, energy, water, etc.) 

Cloutier and Rowley 

(1993) 

Quebec dairy farms 

(Canada) 

DEA 

CRS input-orientated 

Outputs

Milk production (in litres) 

: 

Revenue from milk sales 

Other revenue      

Herd size 

Inputs 
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Total labour in annual worker eq. 

Cultivated land, including rented areas (ha) 

Animal feed  

Composite of other inputs  

Fraser and Cordina 

(1999) 

Irrigated dairy farms 

in Northern Victoria 

(Australia) 

DEA 

CRS and VRS input-orientated 

VRS output-orientated 

 

 

Output

Milk production (in kgs of milk fat and protein) 

: 

Number of cows adjusted for age distribution of the herd and breed 

Inputs 

Total labour (hrs) 

Milking area adjusted to a perennial pasture equivalent (ha) 

Irrigation water applied (Megalitres)  

Supplementary feeding (converted into megajoules of metabolisable energy) 

Fertiliser (aggregate of all in tons) 

Jaforullah and 

Whiteman (1999) 

New Zealand dairy 

farms 

DEA 

CRS, VRS, NRS (non-increasing 

returns to scale) input-orientated 

Outputs

Milk fat (kg) 

:  

Milk protein (kg) 

Milksolids (kg)  

Total dairy herd 

Inputs 

Total area (ha)  
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Total labour (hrs per week)  

Animal expenses (health, breeding and herd testing) 

Feed supplements expenditure (silage, hay, meal and grazing-off) 

Fertilizer expenditure   

Capital (closing book value of fixed assets, including land and buildings) 

Mathijs and 

Vranken (2001) 

Hungarian dairy 

farms 

DEA 

VRS, CRS, input-orientated 

Output

Gross output (physical production valued at fixed prices and corrected for own-produced feed 

used for animals) 

: 

Land (ha) (total cultivated area multiplied by a land quality index) 

Inputs 

Total labour annual working units (AWU) one AWU corresponds to 2,150 labour hrs or the 

number of hrs that a full-time worker can perform in one year 

Capital (estimated value of farm buildings, machinery, livestock and plantations) 

Intermediate inputs (expenditure on seeds, feed grains, roughage, concentrated feed, fertilisers, 

electric energy, gas, fuels and services plus the value of their inventories 
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Weersink, Turvey 

and Godah (1990) 

Ontario dairy farms 

(Canada) 

DEA 

CRS and non-constant returns to 

scale (NCRS) input orientated 

 

Decomposition of technical 

efficiency into purely technical, 

congestion and scale efficiency 

 

Output

Milk output (in hectolitres adjusted to a 3.6% butterfat content) 

: 

Livestock expenses (health and breeding, purchased cows and bulls and associated costs) 

Inputs 

Feed, value (all feed purchased plus change in inventories plus self-produced) 

Machinery expense (fuel, repair, insurance, services hired and depreciation) 

Building expense (repairs, property taxes, rental and depreciation) 

Capital, cost (interest paid plus return on equity multiplied by equity) 

Miscellaneous expenses (telephone, water, etc.) 

Labour in full time eq.  
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Table 3.5 - Studies that applied mathematical programming and econometric methods 

 

Authors Methodology Input/output variables 

Mbaga, Romain, 

Larue and Lebel 

(2003) 

Quebec dairy farms 

DEA 

VRS input orientated 

Stochastic FPF 

Different functional forms and 

distributional assumptions of 

inefficiency 

Output

Milk output/cow (in hectolitres adjusted for butterfat content) 

: 

Feed concentrate (kg per cow) 

Inputs: 

Forage (kg per cow) 

Total labour/full time eq. per year per cow) 

Capital (total value of asset per cow) 

Average weight (proxy for genetic merit) 

Piesse, Thirtle and 

Turk (1996) 

Dairy farms from 

Slovenia 

DEA 

FPF estimated through: 

OLS 

Fixed and random effects 

TSCS(*) model  

Study effects of ownership and 

control on productivity and 

efficiency 

Milk production (litres, not adjusted by fat content) 

Output: 

Total labour in hrs (without quality adjustment) 

Inputs: 

Land (ha) (not quality adjusted, most sample is similar alpine terrain) 

Capital (Intermediate inputs plus service flows from stock of genuine capital items) 

 

(*) time series cross section 
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Table 3.6 - Stochastic non-parametric a rara avis 

 

Authors Methodology Input/output variables 

Haghiri, Nolan and Tran (2004) 

Dairy farms from Ontario and New York  

Non-parametric stochastic frontier model Output

Milk production (in hundredweight)  

:  

Land (ha, total tillable area own and rented) 

Inputs 

Labour (total equivalent worker unit) 

Total feed cost  

 

 

 

 

 

 

 

 

 

 

 



 
 

 73 

Table 3.7 - Studies that aim to explain inefficiency 

 

Authors Method employed Determinants of inefficiency 

Hallam and Machado (1996) 

Dairy farms in northwest 

Portugal 

OLS regression of Haussman-Taylor 

technical efficiency estimates 

Size (value added) 

Dummy for specialisation 

Feed/cow 

Land/cow  

Stock machinery and equipment/cow 

Spatial dummies  

Dummy for family vs. entrepreneurial  

Dummy for rented farms  

Kumbhakar, Ghosh and 

McGuckin (1991) 

US dairy farms  

Simultaneous estimation of 

inefficiency determinants 

 

Dummy for size (cows) (small. medium, large) 

Regional dummies  

Dummy for education (3) 

Forage quality (protein content) 

Mathijs and Vranken (2001) 

 

2nd Stage Tobit regression of DEA 

efficiency levels 

Age 

Education 

Gender 

Land acquisition (proxy entrepreneurial ability) 

Investment dummy 
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Contract dummy (sales make on contract) 

Dummy sales (0=self-consumption, 1=sales) 
 
Specialisation (proxy farm organisation) milk in total output 

Feed production dummy (1=some own grown feed) 

Member/partner (1=one household member is 

a member of a cooperative or a partner in a company) 

Weersink, Turvey and 

Godah (1990) 

Ontario dairy farms (Canada) 

Use of censored regression to 

predict actual DEA level of 

efficiency  

Herd size 

Herd size square 

Experience (years in dairy farming) 

Cow yield 

Butterfat content 

Paid labour (share in total) 

Feed purchased (share in total) 

Debt to asset ratio 

Building per cow 

HP large tractor 

Regional dummies 

Dummies for business organisation 

Dummies for milking and manure system 
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Table 3.8 - Total factor productivity studies in dairy farming 

 

Author(s) 
Methodology Input/output variables 

Ahmad and Bravo-

Ureta (1995) 

Vermont dairy farms 

(US) 

Stochastic production 

frontiers with time varying 

and time invariant efficiency, 

with half-normal and 

truncated normal distribution 

Fixed effects production 

frontier with time varying 

and time invariant efficiency 

Output

Milk production (in hundredweight adjusted to a 3.5% butterfat basis) 

: 

Number of dairy cows 

Inputs 

Total labour in worker eq. 

Purchased concentrate (tons) 

Animal expenses (veterinary, breeding and other animal expenses) 

Crop expenses (fertiliser, seed, repairs and maintenance, fuel) 

Other expenses (electricity, depreciation and miscellaneous) 
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Anderson and 

Johnson (2002) 

NZ dairy faming 

Index numbers  Output

Total output index (milk sales and livestock sales deflated by their corresponding price index and 

then weighted by their share in total revenue to aggregate them) 

: 

Total labour in worker eq. 

Inputs 

Total input (all purchased inputs). Each input category is deflated by its own price index, and 

weighted by their share in total cost to bring all components together 

Capital use (deflated value of farm assets, land and buildings; equipment and livestock) 

Brümmer, Glauben 

and Thijssen (2002) 

Dairy farms in 

Germany, Netherlands 

and Poland 

Parametric translog output 

distance function that allows 

modeling a multi-output, 

multi-input technology 

Outputs

Implicit quantity index for milk 

: 

Implicit quantity index for other outputs 

Total on-farm family labour (in hrs, assuming 2,200 hrs per man year)  

Inputs 

Land (ha) 

Intermediate inputs (concentrate, roughage, fertilizer other intermediate inputs), an implicit quantity 

index was estimated for each input and then aggregated  

Capital stock (buildings, equipment and livestock) the same procedure was used for aggregation 

Note: if farm-level prices where available, they were used to calculate price index  
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Kumbhakar and 

Hjalmarsson (1993) 

Swedish dairy farms 

SPF, fixed effects and EM 

algorithm  

to separate technical 

inefficiency from individual 

specific effects. 

 

Output

Total sales per farm 

: 

Total labour (family plus hired workers in hrs) 

Inputs 

Arable land, adjusted for soil quality and climatic location (ha) 

Capital, user cost (depreciation and interest on the stock of capital equipment) 

Materials, cash expenditure (fuel, seed, pesticides, repairs and maintenance of capital equipment) 

Tauer (1998) 

New York dairy farms 

(US) 

Malmquist productivity index 

computed within the non-

parametric technique (DEA) 

Outputs

Milk production (in hundredweight adjusted to a 3.5% butterfat basis) 

: 

Other output (sales of cows and calves, crop sales, government payments, all deflated by their 

corresponding price index) 

Total labour in physical units (units not specified) 

Inputs 

Purchased feed (grains and concentrate, non-dairy feed, roughage) 

Crop (Fertiliser, seed, chemicals, machinery depreciation, interest on machinery, machinery repairs 

and parts, machinery hire)  

Livestock (purchased animals + interest on livestock, health and breeding, telephone insurance, 

marketing expenses and miscellaneous) 

Real estate (cash rent, building depreciation, interest on real estate, building and fence repair, real 

estate taxes) 
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Piesse, Thirtle and 

Turk (1996) 

Dairy farms from 

Slovenia 

Malmquist-DEA 

Time Series Cross Section 

model  

 

Milk production (litres, not adjusted by fat content) 

Output: 

Total labour in hrs (without quality adjustment) 

Inputs: 

Land (ha) (not quality adjusted, most sample is similar alpine terrain) 

Capital (Intermediate inputs plus service flows from stock of genuine capital items) 
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CHAPTER 4 
 

4 A review of methods and materials used in the 

present study 
 

4.1 Introduction 

 

The chapter is divided into five sections. Section 4.2 intends to give a concise review of the 

concepts and definitions of efficiency and productivity, as well as to explain the relevance 

of such measures for benchmarking and monitoring. In section 4.3 the principal methods 

of estimation of efficiency and productivity are introduced and compared. Section 4.4 fully 

describes the methodology to be applied in the analysis of the database. The database is 

introduced in section 4.5 and the variables selected in section 4.6. The final section, 4.7, 

fully describes the models to be applied in the analysis of the database.    

 

4.2 Concepts and definitions 

 

Assessing the performance of a firm can be done by comparing it to a set of similar firms. 

This analysis is called benchmarking. Similarly, the researcher may be interested in 

monitoring a firm, i.e., to assess its performance of a firm over time. When both activities, 

benchmarking and monitoring, are undertaken together the researcher is concerned with 

monitoring a group of firms over time. The selection of a performance measure to 

undertake interfirm and intertemporal comparisons depends on the objective of the 

exercise. Most frequently, such comparisons use productivity measures.   

 

There are many different types of “productivity measures.” The choice among them 

depends on the purpose of the productivity measure as well as on the availability of data. 

Broadly, productivity measures can be classified into three main categories. First, single or 

partial factor productivity (PFP) measures, which refer to the output attributable to a single 

input, e.g., milk/cow. Second, multifactor productivity (MFP) measures that relate a 

measure of output relative to a bundle of inputs, customarily capital and labour (OECD, 
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2001). Finally, we refer to TFP, or simply “productivity,” when all factors of production are 

involved. Therefore, TFP is the most comprehensive measure of productivity as it ideally 

includes all inputs used in the production process and all outputs produced (Diewert and 

Lawrence, 1999). 

 

Productivity - a measure of the efficiency of transformation of input(s) into output(s) within 

a production process, and hence the ratio of the output(s) that a firm produces to the 

input(s) that it uses (Diewert, 2001; Diewert and Lawrence, 1999; Coelli, Rao and Battese, 

1998 and Hulten, 2001 for a biography of TFP).  

 

Both partial and multifactor productivity measures have an important weakness, because 

not only do they not account for all the inputs used in production (OECD, 2001), but also 

because they will capture output changes attributable to levels of other inputs not included 

in those whose productivity is being calculated (Rae and Hertel, 1998). Craig and Harris 

(1973) cautioned about the fallacies of focusing on partial productivity measures, because 

the costs associated with increases in partial productivity is often ignored. Therefore, PFP 

or MFP will be biased measures of TFP, with the direction of the bias unknown in the 

absence of information about the degree of input substitution (Coelli, Rao and Battese, 

1998; Diewert and Lawrence, 1999 and Rae and Hertel, 1998). 

 

In production economics, the process of transformation of inputs into outputs is described 

by a production function (Coelli, Rao and Battese, 1998 and Green, 1997). The so-called 

“production function”—which depicts the relationship between inputs and outputs—

represents the available technology faced by the firm or industry (Balk, 2003; Greene, 

1997). 

 

Technology - the state of knowledge concerning ways of converting resources (inputs) into 

outputs (Griliches, 1987 and Metcalf, 1969) 

 

Conceptually, the “industry” production function determines the frontier of potential 

attainment for given input combinations (Førsund and Sarafoglou, 2002), and hence the 

denomination of “production frontier” or “frontier function.” 
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Production function (frontier) - the maximum set of output(s) that can be produced with a given 

set of inputs. Synonymous with production frontier, the technically efficiency part (outer 

bound) of a feasible production set, which is defined as the set of all input-output 

combinations that are feasible (but not necessary efficient) (Coelli, Rao and Battese, 1998). 

 

Farrell (1957) first envisioned the existence of a production frontier when he observed that:     

 

There exists some efficient function, from which all the observed points deviate 

randomly but in the same direction (p 263).  

 

He defined technical efficiency as the success of a firm in “producing maximum output 

from a given set of inputs.” Hence, a firm that is technically inefficient can increase its 

output level without absorbing further inputs, thereby increasing its productivity (TFP).  

 

Technically efficiency (full efficiency) - in an engineering sense, this means a production process 

has achieved the maximum amount of output that is physically achievable with current 

technology and given a fixed amount of inputs (Diewert and Lawrence, 1999). 

 

Productivity and technical efficiency are different concepts (Figure 4.1). The production 

function F(x) represents the maximum potential attainment for given input combinations 

(the production frontier). The slope (Y/X) of the ray through the origin to any data point 

measures the productivity of the firm at that point. Imagine one firm at point A, producing 

output quantity YA with input quantity X1. At point A, productivity is equal to YA/ X1. 

Given input X1 the firm is inefficient because it could be operating at point B, by 

producing output quantity YB. At point B, productivity is equal to YB/ X1

 

. It can be seen 

that the slope at point B is higher than at point A, hence the firm is increasing its 

productivity without absorbing further resources. Similarly, the firm may choose to operate 

at point D, decreasing input use and maintaining output constant. Again, the slope at point 

D is higher than that at point A, and productivity has been increased by a reduction in 

resources but no change in output (Figure 4.1). 
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Figure 4.1 – To illustrate productivity, technical efficiency and scale economies 
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Source: Coelli, Rao and Battese (1998) 

 
 

However, at points B or D the firm is still not achieving the optimum productivity. At 

point C, the ray is tangent to the production frontier and hence the slope is highest. By 

moving along the production frontier from any of these points B or D to point C, the firm 

is achieving the point of maximum possible productivity. The firm is exploiting scale 

economies. This explains why achieving technical efficiency is so important: if the firm 

does not attain technical efficiency, resources are being wasted (Diewert and Lawrence, 

1999).    

 

A digression: as Farrell (1957) recognised, it is also necessary to measure “the extent to 

which a firm uses the various factors of production in the best proportions,” given their 

prices or “price efficiency” (Farrel, 1957). In effect, not all combinations of inputs are 

equally profitable, even though they may be equally (technical) efficient. Allocative 

efficiency refers to the production of a given output at minimum costs by selecting the best 

input mix, given their prices. Farrell (1957) defined overall economic efficiency as the 

combination of price (allocative) and technical efficiency. It should be mentioned that 

allocative efficiency estimation is only possible when the firm’s input prices are known.   
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As stated above, when technical efficiency is not attained, resources are being physically 

wasted. Given technical efficiency, if allocative efficiency is not attained, profit is being 

wasted. Furthermore, Diewert and Lawrence (1999) claimed that individual allocative 

efficiency is a necessary condition for technical efficiency at a group level.  The argument is 

as follows: If a firm is not achieving allocative efficiency, which implies that it has not 

adequately chosen the optimum input-output mix, then resources could be reallocated to 

increase the production of at least one output by the group of firms without lowering the 

production of other outputs while still utilising the same total amounts of all inputs. 

Quoting Diewert and Lawrence (1999), “the lack of allocative efficiency at the level of the 

individual firm shows up as the technical inefficiency of a group of firms” (p 162). 

  

It is well known that methods of production improve over time. These improvements 

create an additional source of productivity change referred to as technical progress8

 

.  

Technical  progress - the result of improvements in the design or quality of capital goods or 

intermediate inputs, discovery of new resources, new methods of doing things, better 

management and organisational change (e.g., better seeds, new design of milking machines, 

cows with better genetic merits, new crop rotations). It may be represented by an upward 

change (shift) in the “best-practice” production frontier (function) (Green, 1997; Griliches, 

2001 and OECD, 2001). 

 

An example in the present case is development of the rotary milking machine or the 

introduction of a new variety of grass that increases pasture availability. In a graphical 

representation, it would appear as an outward shift of the production frontier from F(x) at 

time “t” to F(x) at time “t+1” (Figure 4.2). At time “t” a firm at point A (assuming perfect 

efficiency for simplicity of exposition) is producing output YA inputs X1. At time “t+1” the 

same firm would be able to operate at point B or C. At point B the firm increases output 

quantity to YB while maintaining input use at X1. Alternatively, it can operate at point C by 

reducing input use to X2 and keeping output quantity constant at YA

 

.  

It can be seen that following the shift of the production frontier, the slope of the rays 

through points B and C are higher than that at point A, hence the firm increases its 

                                                 
8 In the literature technical and technological change or technical (technological) progress are used 
interchangeably.  
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productivity. It can also be seen that point B is superior to point C by exploiting the scale 

economies. 

 

Figure 4.2 - To illustrate productivity gains through technical progress 
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Source: Coelli, Rao and Battese (1998) 

 

To summarise, a firm can improve its TFP from one period to another in different ways: 

by improving its technical efficiency (called technical efficiency change or change in 

technical efficiency), by exploiting scale economies, due to the effect of technical progress 

or some combination of these factors.    

 

Nishimizu and Page (1982) first addressed the need for a distinction between technological 

progress and the changes in the efficiency with which a known technology is applied. They 

emphasized that this distinction is particularly relevant because “given a level of 

technology, explicit resource allocation may be required to reach the best-practice level of 

technical efficiency over time” (p 921). They estimated a parametric (translog) production 

frontier using linear programming methods and obtained TFP change as “the rate of 

technical progress plus the rate of change in technical efficiency” (p 928). Färe, Grosskopf, 

Norris and Zhang (1994) decomposed productivity (TFP) change into technical progress 

and technical efficiency change but used a non-parametric programming method to 

compute Malmquist index of TFPG defined by Caves, Christensen and Diewert (1992). 

Both papers successfully attempted the decomposition of productivity change into two 
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mutually exclusive and exhaustive components, namely, technical progress (TP) and 

changes in technical efficiency (TE). 

 

Therefore, productivity change for a group of firms encompasses (Färe, Grosskopf, Norris 

and Zhang, 1994 and Nishimizu and Page, 1982): 

 

Technical progress - the upward shift in the “best-practice” production function (the 

production frontier). 

 

Technical efficiency change - the movements towards the “best-practice” frontier, which 

occurred as a result of either learning-by-doing (leading to the mastery of the technology), 

adoption of innovations, education or imitation. 

 

4.3 A review of the approaches to estimate efficiency and productivity 

 

4.3.1 Technical efficiency 
 

Given that technical efficiency is defined as the departure of the level of production from 

the maximum attainable output, measurement of inefficiency necessitates estimation of the 

production frontier. As Green (1997) asserted, gauging the efficiency of individual firms 

with respect to the “theoretical ideal” is the reason behind frontier estimation.  

 

The two primary methods of frontier estimation are stochastic frontiers and DEA (Coelli, 

1995 and Coelli, Rao and Battese, 1998). Both methods involve estimation of “best-

practice” frontiers, with the efficiency of a specific decision-making unit being measured 

relative to the frontier (Green, 1997). 

 

Stochastic frontiers require the specification of a functional form for the production 

frontier and some distributional assumption regarding the error terms (Coelli, 1995). 

Estimation is done by maximum likelihood method (ML). The term “stochastic” is 

motivated by the idea that failure to obtain maximum output might be associated with 

random disturbances not under the control of the firm (Battese, 1992; Bauer, 1990 and 

Coelli, 1995; Greene, 1993, 1997 for a review). 
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DEA is a mathematical programming technique to construct a piecewise linear convex hull 

of the data. By enveloping the data set, a “best-practice frontier” is obtained. Inefficiency is 

then computed as the distance of the firm from the “best practice” (lumps noise and 

inefficiency together; it is therefore deterministic) (Ali and Seiford, 1993; Coelli, 1995; 

Førsund and Sarafoglou, 2002 and Seiford and Thrall, 1990 for a review). 

 

Both approaches aim to envelope the data in different ways. The essential differences 

between the two methods can be summarised as follows: 

 

a) The stochastic approach is parametric as it relies on the specification of a functional 

form to the production frontier. The programming approach is non-parametric. 

 

b) DEA is less demanding than parametric frontiers even when the number of linear 

programming problems to be solved can be quite large. 

 

c) The parametric frontier approach is subject to specification error by the selection of the 

functional form, which can be avoided by selecting a flexible functional form at the 

cost of increasing multicollinearity. The specification error of DEA is minimal. 

 

d) The stochastic approach has a composed error term with a stochastic component (to 

account for random errors not under the control of the firm) and a deterministic 

component (that captures departures from maximum output, i.e., inefficiency). In the 

deterministic model (like DEA), deviations from the frontier (theoretical maximum) are 

attributed solely to inefficiency, i.e., lumps noise and inefficiency together. 

 

e) The stochastic approach allows for traditional hypothesis testing. 

 

Traditional panel data methods, like fixed effects or random effects, can be used to gauge 

inefficiency when panel data are available (Ahmad and Bravo-Ureta, 1995). Unlike 

stochastic frontiers, which rely heavily on assumptions about the error term to be able to 

separate inefficiency from noise, no assumptions about the distribution of the disturbance 

term (inefficiency) are required (Green, 1993, 1997). Further the fixed effect method allows 

for the correlation between inefficiency and the regressors, whereas the maximum 

likelihood method (ML) (used to estimate stochastic frontiers) explicitly assumes 
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independence between both (Green, 1993, 1997 for a discussion; applications of these 

methods can be found in Ahmad and Bravo-Ureta, 1995, 1996 and Hallam and Machado, 

1996). 

 

When panel data are available, some of the shortcomings of stochastic frontiers are 

overcome. First, the degrees of freedom for the estimation of the parameters increase. 

Second, there is no need to assume a specific distribution for the inefficiency term, and 

third, technical progress and changes in technical efficiency can be investigated 

simultaneously (Battese, 1992; Coelli, 1995 and Coelli, Rao and Battese, 1998). This later 

advantage leads on to productivity measurement using efficiency measurement methods. 

 

4.3.2 Productivity growth 
 

In the present study, the Malmquist TFP index will be used to estimate TFPG. Formally, 

the Malmquist index of TFPG, introduced by Caves, Christensen and Diewert (1992), is 

defined using distance functions9

 

. Later, Färe, Grosskopf, Norris and Zhang (1994) 

exploited the relationship between the distance functions and Farrell’s (1957) technical 

efficiency measures. They showed that the index breaks down changes in productivity into 

technical efficiency change and technical progress. This approach has the advantage that it 

is not biased in the presence of inefficiency. Furthermore, the decomposition into 

efficiency change and technical progress provides insights into the sources of productivity 

change (Färe, Grosskopf, Norris and Zhang, 1994 and Nishimizu and Page, 1982). This in 

turn has important policy implications, given that the two sources of productivity are 

driven by different factors (Nishimizu and Page, 1982). 

The Malmquist index measures productivity change of a firm between two periods by 

calculating the distances relative to a common technology. An output distance function is 

considered here. It measures the maximal proportional expansion of the output vector, 

given an input vector (Coelli, Rao and Battese, 1998). 

 

Färe, Grosskopf, Norris and Zhang (1994) factorized the Malmquist index into technical 

efficiency change (i.e., the change in the distance of the observed production from the 

                                                 
9 A review of distance functions is beyond the scope of this thesis. Interested readers are referred to Coelli, 
Rao and Battese (1998), Coelli and Perelman (1999) and Grosskopf (1993).  
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current maximum feasible production between years “s” (the base period) and “t”) and 

technical progress (the geometric mean of the shift in technology between the two periods 

evaluated at input use xs and xt

 

) (Figure 4.3). 

Hence four distances are required, as follows: 

i) the distance between observed output and maximum feasible output at input use xs

ii) the distance between observed output in period “s” (at input use x

 

and available technology at period “s” (inefficiency at base period) 

s and available 

technology at period “s”) and maximum feasible output at input use xs

iii) the distance between observed output and maximum feasible output at input use x

 and 

available technology at period “t” 

t

iv) the distance between observed output in period “t” (at input use x

 

in period “t” and available technology at period “t” (inefficiency at next period) 

t and available 

technology at period “t”) and maximum feasible output at input use xt

 

 and available 

technology at period “s” 

A graphical example will help to clarify these points. For simplicity of exposition, let us 

consider a constant return to scale technology with one output and one input (Figure 4.3). 

The firm is operating inefficiently in periods “s” (the base period) and “t.”  

 

At period “s,” the firm is operating at point A producing output quantity ys with inputs at 

xs. Maximum output with the prevalent technology at that period is at ya. Technical 

inefficiency is equal to the ratio ys/ya, which is equivalent to the distance between point A 

and the frontier (the maximum expansion of output given the input use xs

 

). That is the 

above point i). 

Similarly, at point B the firm’s technical inefficiency is equal to the ratio yt/yc, equivalent to 

the distance between point B and the frontier (the maximum expansion of output given the 

input use xt

 

). This in turn is the above-mentioned point iii). 
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Efficiency change between both periods is equal to the ratio of technical inefficiency at 

both periods: 

 

a

s

c

t

y
y

y
y

EC =  (1) 

 

The above-mentioned point ii) states: the distance between observed output in period “s” 

(at input use xs and available technology at period “s”), i.e., ys and maximum feasible 

output at input use xs and available technology at period “t,” i.e., yb. Hence the distance is 

defined as ys/yb

 

. 

Point vi) is as follows: the distance between observed output in period “t” (at input use xt 

and available technology at period “t”), i.e., yt and maximum feasible output at input use xt 

and available technology at period “s,” i.e., yb. Hence the distance is defined as yt/yb

 

.  

Figure 4.3 - Malmquist productivity indices 
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Source: Coelli, Rao and Battese (1998) 
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Finally, technical progress is defined as 
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The Malmquist (output-orientated) TFP change index between periods “s” and “t” is then: 
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Using the standard distance functions notation the Malmquist index is expressed as follows 

(Coelli, Rao and Battese, 1998): 
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A value of M(.) greater than one indicates positive TFPG from period “s” to period “t,” 

while a value less than one indicates TFP decline. 

 

Stochastic frontier and DEA (the method used by Färe, Grosskopf, Norris and Zhang, 

1994) can be used to compute the distance functions required to estimate the Malmquist 

TFP index (Coelli, Rao and Battese, 1998). Herein, the stochastic frontier approach will be 

used to gauge the MPI. It is easy to debate the relative merits of this way, including the 

grounding in economic theory, the flexibility of translog from, less sensitive to extreme 

observations and measurement error or other statistical noise in the data due to modelled 

distributions of errors and efficiency (Coelli, Rao and Battese, 1998). For the case of 

agricultural, where the data are heavily influenced by measurement error, SFA is likely to be 

more appropriate than DEA. 
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4.4 Methodology 

 

4.4.1 Stochastic frontier analysis with panel data 
 

Stochastic frontier model estimation with panel data has three main advantages. First, 

estimation of the parameters can be done with a larger number of degrees of freedom. 

Second, there is no need to assume a specific distribution for the inefficiency term and 

third, it permits the estimation of technical change and efficiency change simultaneously 

(Battese, 1992; Coelli, 1995 and Coelli, Rao and Battese, 1998).   

 

The time-varying model for the technical inefficiency effects in the stochastic frontier 

production function proposed by Battese and Coelli (1992) is considered. The model is 

defined by:  

 

itititit uvxfy −+= ),()ln( β   (5) 

 

      

[ ]{ } iit uTtu )(exp −−= η                   (6) 

 

 

 

i=1,..., N number of firms 

t=1,…, T time period 

where: 

yit

x

 is the output of the i-th firm, at the t-th time; 

it

β is a (k×1) vector of unknown parameters to be estimated; 

 is a (1×k) vector of (transformations of the) input quantities of the i-th firm, at the t-th 

time; 

The uit’s and vit

The v

’s jointly comprise the error term. 

it’s are random errors that are assumed to be identically and independently distributed 

and have N (0,σV
2) – distribution, vit’s are independently distributed from the uit

The u

’s. 

it’s represents technical inefficiency effects, and the ui’s are assumed to be i.i.d. non-

negative truncations of the N (µ,σ 2)-distribution; 
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η is an unknown scalar parameter to be estimated  

 

Given the specification of equation (6), if t=T (last period of the panel), then exp[-η(t-T)] 

equals one and hence uit = ui . So the random variable, ui

 

, can be considered the technical 

inefficiency effect of the i-th firm in the last period of the panel. The values of the technical 

inefficiency effects in the previous periods depend on the scalar η and the number of 

periods. 

Furthermore, the time-varying inefficiency model proposed by equation (6) imposes a rigid 

parameterisation in that technical inefficiency effects of the different firms at any given 

time period, t, are equal to the same exponential function of the last period inefficiency. 

Hence the ordering of the firms according to the technical inefficiency is going to be the 

same across all time periods of the panel. Given the exponential specification, technical 

efficiency increases at decreasing rates (for η>0) or decreases at an increasing rate (for 

η<0).  

 

A special case of particular interest arises when η=0 as the time-invariant model for the 

technical inefficiency effects is defined. Testing the null hypothesis of time-invariant 

inefficiency is important given the policy implications, and particularly because of the 

interest of the present study in decomposing TFPG into changes in technical progress and 

technical efficiency change. If we are in the presence of a time-invariant inefficiency model, 

then technical efficiency change would be zero. 

 

Finally, another hypothesis of interest given the general frontier model is H0: η=µ=0. This 

defines a frontier with time-invariant inefficiency effects with half-normal distribution (uit 

= ui ~ N (0,σ 2

 

)). 

The simultaneous estimation of the unknown parameters of the stochastic frontier with 

time-varying inefficiency effects will be done by the method of maximum likelihood 

implemented in the computer program FRONTIER, Version 4.1 (Coelli, 1994), which 

estimates the variance parameters in terms of the parameterisation 

 

γ = σ2/σs
2, where σs

2 = σ2 + σv
2

 

, so that γ is bounded between zero and one. 
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If the value of γ equals zero, the difference between farmer’s yield and the efficient yield is 

entirely due to statistical noise, i.e., there is no inefficiency error so the model is equivalent 

to the traditional average response function. On the other hand, a value of γ not 

significantly different from unity implies that the majority of the residual variation is due to 

the inefficiency effect, i.e., the stochastic term is approximately zero. Therefore, the 

stochastic frontier model is not significantly different from the deterministic frontier 

model.  

 

The null hypotheses are tested using the generalised likelihood-ratio test  

 

( )[ ] ( )[ ]{ }AHLHLLR lnln2 0 −−== λ  (7) 

 

where ln[L(H0)] and ln[L(HA

 

)] are the values of the likelihood function under the null and 

alternative hypothesis. If the null hypothesis is true, the generalised likelihood-ratio statistic 

has a chi-square distribution, with the degrees of freedom equal to the number of 

restrictions. For null hypothesis of no technical inefficiency effects (γ =0), critical values 

derived by Kodde and Palm (1986) from a mixed chi-squared distribution are used. 

4.4.2 Estimation of the Malmquist TFP index with stochastic frontiers  
 

As was mentioned above, the stochastic frontier will be used to estimate distance functions 

needed to obtain the Malmquist TFP index. 

  

Given the specification in (5) and (6) technical efficiency (TE) of the i-th farm at the t-th 

year is predicted by 

 

TEit = exp[(-uit)|(vit – uit)] = exp (-uit

 

)  (8) 

Technical efficiency change between two adjacent periods, s and t, is directly calculated as: 

 

TECit = TEit / TEis

An index of technical progress (TP) between the two periods s and t can be directly 

calculated for each farm from the estimated parameters of the stochastic production 

    (9) 
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frontier by evaluating the partial derivative of the production function with respect to time 

(at a particular data point). 

 

If TP is non-neutral, the index may vary with different input vectors. Hence, following 

Coelli, Rao and Battese (1998), a geometric mean should be used to estimate the TP index 

between the adjacent periods. The TP index is calculated as: 
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(10) 

The indices of TEC and TP obtained by using equations (9) and (10) respectively can be 

multiplied to obtain the Malmquist Total Factor Productivity Index: 

 

TFPit = TECit * TPit 

 

(11) 

To summarise, TP measures the shift of the production frontier; TP indicates how far a 

sample farm lags behind the best practice as represented by the production frontier; and, 

on the other hand, TEC can be interpreted as how fast a farm catches up with the best 

practice. Both components are mutually excludible and exhaustive.  

 

4.5 The model specification 

 

The stochastic frontier production function selected to represent the production 

technology of NZ dairy farms is of a translog form. The translog is a relatively flexible 

production functions, vis-à-vis the more traditional Cobb-Douglas, and adopting it 

minimizes the risk of errors in model specification. 

 

The frontier model is defined as follows: 
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where the subscripts i and t represent the i-th farmers and t-th year of observation 

respectively. 

 

In the extensive from: 
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 (13) 

 

where: 

Y denotes output 

x1 to x4

x

 represent the natural log of the factor input. The stochastic frontier model (SFM) 

was estimated for different combinations of factors inputs (Table 4) 

5 is the year of observation, where x5

DR is a dummy variable equal to 0 if the farm is in Waikato-Taranaki, and equal to 1 if the 

farm is located in the region conformed by Canterbury-Southland  

= 1 to 9 for the seasons 1996/97, 1997/98, 1998/99, 

1999/2000, 2000/01, 2001/02, 2002/03, 2003/04 and 2004/05 respectively  

DPch is a dummy variable equal to 0 for season 1996/97 to season 2000/01 and equal to 1 

from then onwards 

Vit and Uit

 

 are the random variables defined above 

The inclusion of time in the manner depicted in the stochastic frontier model (13) accounts 

for non-neutral technical change, as it includes terms involving the interaction of the factor 

inputs and time. Non-neutral or biased technical change implies that the movement of the 

function will be biased in favour of certain factor input(s) and against others. The existence 

and nature of technical change is examined using the generalised likelihood-ratio test (LR). 

Neutral technical change is present if the coefficients of the interaction between time and 

the factor inputs are jointly equal to zero, i.e., β i5 = 0, i = 1, 2, 3, 4. Similarly, if the 

coefficients of all variables involving year of observation were zero, i.e., β5 = β i5

Furthermore, the Cobb-Douglas functional form is nested into (a special case of) the 

translog. If all the coefficients of the second-order terms are zero, i.e., β

 = 0, i = 1, 

2, 3, 4, 5, then there would be no technical change among dairy farmers.     

jk = 0, j ≤ k = 1, 2, 

3, 4, 5, then a Cobb-Douglas functional form is defined. Hence, the functional form of the 



 
 

 96 

stochastic frontier model, in the present case, is determined by testing the adequacy of the 

Cobb-Douglas relative to the translog using a likelihood-ratio test.  

 

The regional dummy was included in the pooled model (all farms from both regions) to 

test whether regional differences exist. If the regional dummy is significantly different from 

zero, then it may be assumed that both regions are not operating under the same 

production frontier. Therefore, the estimation of separate frontiers for each region is 

needed in order to confirm the result advanced by the inclusion of the regional dummy. 

 

The DPch (dummy for policy change; equal to 0 for season 1996/97 to season 2000/01 

and equal to 1 from then onwards) was included to capture changes that may have arisen 

due to the change in the organisational structure of the dairy industry. Given the nature of 

the binary variable, it may also capture other changes that occurred between both sub-

periods, e.g., climate, market conditions (milk payout increased significantly following the 

merger). However, given that output in the production function was measured in physical 

units, it may be advanced that the effect of the increase in milk payout would not be 

significant. Regarding the climatic conditions, both sub-periods had good and bad seasons, 

but it is impossible to ascertain whether climatic conditions are, on average, even between 

sub-periods (as defined by the dummy).   

 

The null hypotheses (neutral technical change, no-technical change, and that the Cobb-

Douglas or the simplified translog functions are adequate) are tested using the LR test 

(equation 7), where ln[L(H0)] and ln[L(HA

 

)] are the values of the likelihood function under 

the null and alternative hypothesis. If the null hypothesis is true, the generalised likelihood-

ratio statistic has a chi-square distribution, with the degrees of freedom equal to the 

number of restrictions, i.e., 4 in the case of neutral technical change, 6 for no-technical 

change and 15 degrees of freedom to test whether the Cobb-Douglas function is an 

adequate representation of the production function. 

According to Coelli, Rao and Battese (1998), the Malmquist TFP index is best measured 

relative to a constant return to scale (CRS) technology. Given that TFP indices obtained 

through a VRS technology may not properly account for the influence of scale, all models 

were reestimated using a CRS technology. 
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Following Coelli, Rao and Battese (1998), the restrictions required to impose CRS upon 

equation (13) are: 
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In order to impose the restrictions, output and inputs were normalized by dividing them all 

by one of the inputs. The first input of each model was used for this purpose. Results are 

invariant to the choice of input (Coelli, Rao and Battese, 1998).  

 

The maximum likelihood estimates of the parameters of the stochastic frontier model 

under CRS for each region and input/output set are presented in Appendix 2. For some 

parameter estimates, the t-values are not reported, as they were calculated using the 

restrictions on (14). 

 

4.6 The database 

 

4.6.1 Data limitations 
 

Data availability was an important limitation when considering the scope of this thesis. As 

explained is section 1.7, the overriding interest of this thesis was to evaluate and examine 

TFPG at the farm level. Therefore, not only farm-level data were required. Most 

importantly, to examine the gains in TFP, data on the same group of farms over a number 

of years were required. Two sources of microdata on dairy farming were available: Dexcel 

and Ministry of Agriculture and Forestry (MAF). The Dexcel database gathers a vast 

amount of information on a large number of farms in different regions over a number of 

years. However, only a handful of farms are repeated over the years, making this database 

unsuitable for studies in productivity growth (at least at the farm level). The MAF database, 

in turn, requests less information from a limited number of farmers, often the same farms 
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over the years. Given that the dairy industry was interested in productivity gains at the farm 

level, the analysis was performed on the panel data (longitudinal data) gathered in the MAF 

database. 

 

The Dexcel database could have been used to ascertain whether farms in any one region 

share the same technology with farms in other regions for any given year. The focus would 

be on the cross section and the outcome would be a measure of the (in)efficiency with 

which each farm is applying the technology. Similarly, the robustness of efficiency 

estimates to variable selection could have been assessed. Furthermore, the vast amount of 

secondary information on herd characteristics, investment, social factors and weather 

variables could have been used to examine the determinants of inefficiency. The SFA 

model proposed by Battese and Coelli (1995) would have allowed examining both, i.e., 

technological differences between farms in different regions and determinants of 

inefficiency (more on this in section 10.3). 

 

The database obtained from MAF is used to monitor the production and financial status of 

farms in terms of their cash income and expenditure. Each year, MAF Policy published a 

“model” budget for different dairy regions. The “model” is based on the data from a 

survey of a number of commercial farms for each region10

 

. MAF contracts with farm 

consultants who select the properties based on a range of criteria (e.g., dairy farm within 

the required region, owner-operator and a commercial unit). The selection is therefore not 

entirely random, as the consultants tend to pick farms they know. The consultants visit the 

farms (in mid-May) and collect the financial information for the year ended (or just about 

to end) and for the new year starting. This is then collated together for the respective 

regions and provided to MAF. MAF then holds an “industry” meeting within each region 

that involves a cross section of people involved in the dairy industry (e.g., dairy company, 

bankers, accountants and some leading farmers) to discuss the information from the 

survey. The survey is then written up to include a published “model” budget for that 

region. 

MAF Policy supplied farm-level data for the seasons 1996–1997 to 2004–2005 for the 

present analyses. Two hundred and ten dairy farms were surveyed over the nine year period 

but the database contained only 861 observations. A balanced (complete) panel would 

                                                 
10 Phil Journeaux (MAF Policy, Hamilton), personnal communication.  
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contain a maximum of 1,890 observations (210 farms times 9 years), so the panel is not 

balanced, i.e., data for some farms on some years are missing. The time length of the MAF 

database was exploited. Hence, only farms that were surveyed at least in 1997 and 2005 

were selected. The number of dairy farms present in both these years totalled 36: 4 in 

Northland, 8 in Waikato and Taranaki, 9 in Canterbury and 7 in Southland. Data from 

Northland were discarded because the number of farms was too small to enable the 

production frontier to be modelled. Therefore, the final panel was comprised of 32 farms. 

A total of 264 observations remained in the panel, so 24 observations were missing because 

some farms were not surveyed in all 9 years. Given the number of data in each region, it 

was decided to pool the four regions into two regions. Region I (RI) includes Waikato and 

Taranaki, whereas Canterbury and Southland comprises region II (RII). Each region has 

the same number of farms, 16, with 125 and 139 observations respectively. This 

aggregation was preferred because it better reflects the commonalities between Waikato 

and Taranaki—the traditional dairy regions—and the relatively newer dairy regions of 

Canterbury and Southland (Section 2.6). 

 

The main characteristics of the whole sample are outlined below (Table 4.1, Table 4.2 and 

Table 4.3). Expenditures were converted into quantities by dividing by annual dairy farm 

expenses price index (1992/93=1000). Statistics New Zealand provides dairy farm 

expenses price index on a quarterly basis (Stats NZ). In order to match farm-level data, 

reported from June to May, the average of the period 2nd quarter 1992–1st quarter 1993 

was used as the base year to convert expenditures into 1992/1993 NZ dollars. It was 

assumed that all farms paid the same prices for each item in any given period. If some 

farms paid higher prices for a quality input, dividing by the same price converts these 

inputs into a quality-adjusted input. The deflated expenditures were aggregated into 

different inputs. 
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Table 4.1 - Characteristics of the whole sample (average values per farm) 

 

1997-2005 
Average Std Dev Max Min 

All farms (264 observations) 
Milk Production (total milksolids, kg) 140,509 114,062 725,000 30,000 
Factor inputs     
Cows in Milk (number) 385 273 1,600 104 
Area (milking platform, ha) 143 102 555 33 
Labour (total hrs per year) 5,044 3,195 22,180 2,250 
Feed (all purchased feed, NZ$ 92/93) 69 80 666 6 
Fertilizer (expenditure, NZ$ 92/93) 55 55 344 2 
Intermediate inputs (health, breeding, shed, feed 
and fertilizer expenses) 158 152 1,075 21 

K2 (depreciation and interest on buildings and 
machinery and expenditure on repairs and 
maintenance, NZ$ 92/93) 

76 65 470 17 

K9 (expenditure on: repairs and maintenance on 
buildings and machinery, fuel, electricity, rates 
and insurance, administration and miscellaneous, 
NZ$ 92/93) 

76 61 423 19 

 
 

Table 4.2 - Characteristics of the sample by region; average values per farm in Region I 

(Waikato-Taranaki) 

 

1997-2005 
Average Std Dev Max Min 

Waikato-Taranaki (125 observations) 
Milk Production (total milksolids, kg) 64,704 24,364 132,000 30,000 
Factor inputs     
Cows in Milk (number) 202 62 372 104 
Area (milking platform, ha) 67 23 153 33 
Labour (total hrs per year) 3,143 784 4,897 2,250 
Feed (all purchased feed, NZ$ 92/93) 28 18 98 6 
Fertilizer (expenditure, NZ$ 92/93) 23 11 55 2 
Intermediate inputs (health, breeding, shed, feed 
and fertilizer expenses) 67 31 191 21 

K2 (depreciation and interest on buildings and 
machinery and expenditure on repairs and 
maintenance, NZ$ 92/93) 

40 16 92 17 

K9 (expenditure on: repairs and maintenance on 
buildings and machinery, fuel, electricity, rates 
and insurance, administration and miscellaneous, 
NZ$ 92/93) 

40 13 82 19 
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Table 4.3 - Characteristics of the sample by region; average values per farm in Region II 

(Canterbury-Southland) 

 

1997-2005 
Average Std Dev Max Min 
Canterbury -Southland (139 observations) 

Milk Production (total milksolids, kg) 208,680 119,897 725,000 52,000 
Factor inputs     
Cows in Milk (number) 549 284 1,600 158 
Area (milking platform, ha) 212 98 555 49 
Labour (total hrs per year) 6,753 3,561 22,180 2,266 
Feed (all purchased feed, NZ$ 92/93) 106 95 666 12 
Fertilizer (expenditure, NZ$ 92/93) 84 62 344 13 
Intermediate inputs (health, breeding, shed, feed 
and fertilizer expenses) 240 170 1,075 48 

K2 (depreciation and interest on buildings and 
machinery and expenditure on repairs and 
maintenance, NZ$ 92/93) 

108 75 470 24 

K9 (expenditure on: repairs and maintenance on 
buildings and machinery, fuel, electricity, rates 
and insurance, administration and miscellaneous, 
NZ$ 92/93) 

107 70 423 33 

 

4.6.2 Impact of data limitations 
 

The number of observations, 125 for Waikato-Taranaki and 139 for Canterbury-Southland, 

is not representative of the population. Over the period of the analysis, there were more 

than 6,000 farms in Waikato-Taranaki and more than 1,200 farms in Canterbury-Southland 

(LIC). This issue imposes a restriction on the generalisation of the outcome of the analysis 

to their respective region. However, it does not invalidate the results themselves, as other 

studies applied SFA to estimate efficiency and productivity with a similar number of 

observations.  

 

Battese and Coelli (1992) proposed the time-varying model for the technical inefficiency 

effects in the stochastic frontier production function for panel data with a similar number 

of observations. Other studies focused on dairy farm productivity using a parametric 

approach were performed using a similar number of observations (Table 4.4). Studies using 

deterministic frontier models include the work by Alvarez and Gonzales (1999), Arias and 

Alvarez (1993), Hallam and Machado (1996), Maietta (2000), Piesse, Thirtle and Jurk 

(1996), and Turk (1995). Applications of stochastic production frontiers to dairy using 

panel data include the papers by Ahmad and Bravo-Ureta (1995 and 1996), Bailey et al. 
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(1989), Battese and Coelli (1988), Cuesta (2000), Heshmati and Kumbhakar (1994), 

Kumbhakar and Hjalmarsson (1993), Kumbhakar and Heshmati (1995), and Reinhard, 

Knox and Thijssen (1999). The number of observations ranges from 43 (Battese, 1988) to 

1,545 (Reinhard, 1999). Five of the studies mentioned used a lower number of observations 

than the present study (Ahmad, 1995; Arias and Alvarez, 1993; Bailey, 1989; Battese, 1988 

and Hallam and Machado, 1996).   

 

Table 4.4 - Overview of empirical parametric studies on productivity and efficiency in dairy 

farms with panel data 

 

 

Another issue of concern are the differences in average farm size between the sample and 

the population. The bias in average size of the farms (measured either in area or number of 

cows) of the sampled farms with respect to the population imposes a restriction to the 

generalisation of results to the region. Average farm size, measured by area of farm and 

number of cows, for sampled farms in Waikato-Taranaki was smaller than the regional 

average estimated using LIC database11

                                                 
11 Livestock Improvement Corporation “Dairy Statistics” various issues.  

 (Figure 4.5 and Figure 4.6). Conversely, average 

First Author  Year of  
Publication  Country  No.  

Observations  

Average  
Technical 
Efficiency  

Deterministic Frontier  
Alvarez, A.  1999 Spain 410 72.0 
Arias, C.  1993 Spain 112 73.0 
Hallam, D.  1996 Portugal 85 57.0 
Maietta, W.  2000 Italy 533 55.0 
Piesse, J.  1996 Slovenia 204 53.0 
Turk, J.  1995 Slovenia 272 77.1 
Stochastic Frontier  
Ahmad, M.  1995 USA 96 77.0 
Ahmad, M.  1996 USA 1,072 85.9 
Bailey, D.  1989 Ecuador 68 78.1 
Battese, G.  1988 Australia 43 70.1 
Cuesta, R.  2000 Spain 410 77.6 
Heshmati, A.  1994 Sweden 600 81.2 
Kumbhakar, S.  1993 Sweden 232 86.2 
Kumbhakar, S.  1995 Sweden 1,425 83.1 
Reinhard, S.  1999 Netherlands 1,545 89.4 
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farm size for sampled farms in Canterbury-Southland was higher than the regional average 

(Figure 4.7 and Figure 4.8). Furthermore, size differences tend to increase over the period 

for both regions. 

 

Average farm size, measured by area of farm and number of cows, for sampled farms in 

Waikato-Taranaki is smaller than the regional average estimated using LIC database12

 

 

(Figure 4.4 and Figure 4.5). Average size differences increased over the period. Meanwhile, 

difference in average farm size expanded from 13 ha to 22 ha and difference in average 

herd size, augmented to 50 cows at the end of the period from 15 cows at the beginning of 

the period. 

Figure 4.5 - Average farm area for the sample farms and the region for Waikato-Taranaki  
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12 Livestock Improvement Corporation “Dairy Statistics” various issues.  
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Figure 4.6 - Average herd size for the sample farms and the region for Waikato-Taranaki 
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Conversely, average farm size for sampled farms in Canterbury-Southland was higher than 

the regional average. Difference in average farm size increased from 30 ha to 45 ha. 

Similarly, average herd size rose from 45 cows to 78 cows.  

 
Figure 4.7 - Average farm area for the sample farms and the region for Canterbury-

Southland  
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Figure 4.8 - Average herd size for the sample farms and the region for Canterbury-

Southland  
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As mentioned above, the number of farms in the sample is not representative of the 

number of farms in the population for either of the two regions. Differences in average 

size between the sample and the population are by defect for Waikato-Taranaki (Figure 4.4 

and Figure 4.5) and by excess for Canterbury-Southland (Figure 4.6 and Figure 4.7). 

Therefore, TFP estimates should be taken with care, as they may not reflect the true 

situation in both regions. Average efficiency of the sample may be biased with respect to 

average efficiency of the region. Hallam and Machado (1996) and Kumbhakar, Ghosh and 

McGuckin (1991) reported that larger farms tend to be more efficient. Weersink, Turvey 

and Godah (1990) found that the level efficiency is positively associated with size but at a 

decreasing rate. Therefore, if results reported here are generalised to the region, they may 

understate average efficiency score for Waikato-Taranaki and overstate efficiency score for 

Canterbury-Southland. It is difficult to ascertain the impact of the bias in TFPG estimates. 

The author is not aware of any study that tested the dynamic relation between size 

increases and TFPG. 

 

Data in this field are always inadequate and incomplete, but this fact is not a sufficient 

reason for ignoring them or for proceeding to use an unsatisfactory model simply because 

good data are available for it and are not for a more powerful model. One of the important 
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attributes of good analysis is the effectiveness with which available data are used in the 

context of the most suitable model. An important task, then, is to use the data that are 

available in an effective model to see what they show. One must then be equipped to 

appraise the results in terms of whether they are significantly affected by the shortcomings 

of the data. This is a much more useful approach than that of using less powerful models 

(or no formal models) with better data. In the latter approach, the analyst will then have to 

try to decide the extent to which the results are defective due to the model or what the data 

mean when they are presented with no model to guide interpretation. 

 
 

4.7 Selection of input variables  

 

Milk production was selected as the output variable. Gross farm revenue can be used to 

aggregate the multiple outputs produced (milk, beef, excess forage sold, equipment hire) by 

a dairy farm, at the cost of capturing allocative and technical efficiency effects in the 

inefficiency term (Jaforullah and Devlin, 1996). Furthermore, in order to convert gross 

farm revenue into a “quantity,” it has to be deflated by the Consumer Price Index (CPI). 

This poses another problem. The milk price index and the CPI moved closely together 

between seasons 1996/97 to 1999/00. However, milk payout increased by 32% in nominal 

terms for season 2000/01, remained at the same level for two more seasons, and finally 

declined to the levels of 1996/97 in 2003/04.  Hence, deflating gross farm revenue by CPI 

would overestimate milk production. Given that the share of milk revenue in total farm 

revenue was greater than 78% for all farms in any given year, milk production per farm in 

physical units was preferred as the output variable. Ahmad and Bravo-Ureta (1995, 1996), 

Bravo-Ureta (1986), Fraser and Cordina (1999), Mbaga et al. (2003), Tauer (1998) and 

Piesse, Thirtle and Turk (1996) followed a similar approach. 

 

The number of cows in milk and effective farm area were chosen as variables. Output is 

measured in physical units, i.e., kgs of milksolids. Therefore, only cows in milk (following 

Ahmad and Bravo-Ureta, 1995, 1996; Bravo-Ureta, 1986 and Kumbhakar, Gosh and 

McGuckin, 1991) and effective farm area can be considered as inputs in the production 

process. As was explained in Chapter 2, cow numbers and farm area has increased at faster 

rates in Canterbury-Southland than in Waikato-Taranaki. Using “cows” and “area” as input 
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variables would allow the different pattern of expansion between regions to be shown. 

Furthermore, these two inputs are readily accessible.  

 

Labour input is measured as the total yearly hours worked by family and hired labour on 

the farm. As mentioned above, all the studies reviewed use labour as an input. The 

discussion, if any, was centred on how was it measured, physical or monetary. The database 

provides information on total wages but does not include the owners’ wages. In order to 

transform total wages into a physical unit (total hours worked), total wages was divided by 

the average hourly earnings reported by the Reserve Bank of New Zealand. Furthermore, 

given that the database precluded identifying farms that were owner-operated, and that 

most, if not all, owners are somehow involved in farming activities, it was decided to add 

the hours worked by the owner to all farms in the sample. The owners’ hours worked per 

year was assumed to be 58 hours per week as reported in the Economic Survey of New 

Zealand Dairy Farmers by Dexcel.  

 

Given the increasing use of feed supplements in NZ dairy farming, “feed expenditure” was 

considered separately and so was “fertiliser expenditure” to allow more technical details to 

be modelled (Ahmad and Bravo-Ureta, 1995, 1996). Regrettably, the dataset had no 

information on the type of supplementary feed purchased. Having this information would 

have enabled different strategies in feeding practices to be taken into account. For example, 

given the same feed expenditure for two different farms, the cost of supplementary feed 

purchased may be different. Therefore effective quantity of supplements purchased may be 

different, e.g., between all concentrate or all hay. Similarly, the database had no information 

about the amount of fertilizer used as feed supplement. An aggregate measure of 

“intermediate inputs” comprised of health, breeding, shed, feed and fertilizer expenditure 

was created à la Brümmer, Glauben and Thijssen (2002), albeit a slightly different approach 

to aggregate was taken. Expenditure on each input was deflated by the corresponding price 

index taken from the Farm Expenses Price Index for Dairy Farms (Statistics New 

Zealand). Aggregating inputs comes at the cost of sacrificing potentially useful information. 

 

Capital input (K2) was measured as the user cost, defined as the sum of depreciation and 

interest on the stock of capital (Ahmad and Bravo-Ureta, 1995; Heshmati and Kumbhakar, 

1994; Kumbhakar, Biswas and Bailey, 1989; Kumbhakar and Heshmati, 1995 and 

Kumbhakar and Hjalmarsson, 1993). The database included a stock measure of capital for 
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“land and buildings” and “vehicles and machinery.” However, an aggregate measure of 

capital for “land and buildings” does not allow different rates of depreciation to be applied 

depending on the intensity at which capital is used. Hence, the value of the “buildings” was 

set at 12% of the stock value of “land and buildings.” Depreciation for “buildings” was set 

at 4%  and for “vehicles and machinery” at 10%. The average interest rate of the 

government bond for the period, at 7%, as reported by the Reserve Bank of New Zealand, 

was chosen to proxy the opportunity cost of employing capital elsewhere. Depreciation on 

“buildings” was deflated by the average price of dairy farm land as estimated by Quotable 

Value New Zealand (Situation and Outlook for New Zealand Agriculture and Forestry, 

2006). “Vehicles and machinery” was deflated by the price index on repairs and 

maintenance. Meanwhile, interest was corrected by the corresponding price index from the 

Farm Expenses Price Index for Dairy Farms (Statistics New Zealand). 

 

Farm surveys do not usually include information about the capital stock on land, buildings 

and machinery. Conversely, expenditure on different items is always reported. Therefore, a 

different measure of capital input (K9) was estimated. It is comprised of the expenditure 

on electricity, freight, fuel, rates and insurance, repairs and maintenance on buildings, 

vehicles and machinery, administration and miscellaneous (à la Ahmad and Bravo-Ureta, 

1996), all deflated by the corresponding price index taken from the Farm Expenses Price 

Index for Dairy Farms (Statistics New Zealand). 

 

As mentioned in Chapter 2, the industrial organisation of the dairy industry changed 

dramatically in 2001 with the demise of the NZDB and the creation of Fonterra. 

Therefore, a dummy variable for policy change (DPch) was included to capture the impact 

of this change on the production frontier, if any.  

 

The models defined had alternative combination of factor inputs, and the same output. 

Model J7 was defined following Brümmer, Glauben and Thijssen (2002) and Kumbhakar 

and Hjalmarsson (1993).  Model L8 resembles input selection made by Cuesta (2000). The 

difference is that Cuesta (2000) used “cows” as a proxy of capital, while model L8 includes 

a measure of “capital.” Model Y5 followed Bravo-Ureta and Rieger (1990) and Tauer 

(1998). Model K9 was a variation of Model L8, where originally effective area was 

substituted by fertilizer and K2 by K9. The time trend and the dummy for policy change 

were included in all models (Table 4.9). 
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Table 4.9 - Models estimated and variables used; X shows the variables that were included 

in each of the models  

 

Variables Code 
Model 

J7 L8 Y5 K9 
Output (Milk Production) Y X X X X 
Factor inputs      
Cows in Milk (number) CW  X  X 
Area (milking platform, ha) A X X   
Labour (total hrs per year) L X X X X 
Feed (all purchased feed, NZ$ 92/93) FD   X  
Fertilizer (expenditure, NZ$ 92/93) FT   X X 
Intermediate inputs (health, breeding, 
shed, feed and fertilizer expenses) II X    

Depreciation and interest on: buildings 
and vehicles and machinery plus 
expenditure on repairs and 
maintenance (NZ$ 92/93) 

K2 X X X  

Expenditure on: repairs and 
maintenance on buildings and 
machinery, fuel, electricity, rates and 
insurance, administration and 
miscellaneous (NZ$ 92/93) 

K9    X 

Year Y X X X X 
Dummy for policy change  DPch X X X X 

 

Other aggregation of inputs and combinations of variables were tested. Some of them 

followed studies reviewed before, some not. The four models reported were those 

economically meaningful. For example, negative labour input elasticity implies excess 

labour. Common sense indicates that this cannot be the case in NZ dairy farming, where 

labour shortages are a huge problem. However, it can be logical in Africa for small family-

operated dairy farms, where excess labour at home is masking unemployment at a national 

level. So for the case of NZ, we might expect high labour elasticity.  

 

4.8 Empirical results 

 

For the sake of simplicity, each model will be introduced separately. For each model, the 

stochastic frontier for the pooled sample will be presented first. Results of regional 
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frontiers will be presented second. All stochastic frontiers are estimated using a variable 

return to scale (VRS) technology. 

 

Following each model, a series of hypotheses will be tested to determine the preferred 

functional form and to examine the existence and nature of technical change. Next, 

elasticities for each factor input will be estimated and average efficiency scores presented. 

Finally, values for the two regions will be compared. To conclude, regional estimates of 

TFPG, technological progress and technical efficiency change will be compared across 

models. 

 

4.9 Concluding comments 

 

This section introduces the approaches to estimate efficiency and productivity using 

frontier methods. Both SFA and DEA can be used to compute the distance functions 

required to estimate the MPI (Coelli, Rao and Battese, 1998). The parametric approach 

(SFA) was pursued rather than the mathematical programming approach (DEA) based on 

two important reasons. First, the SFA relies on the specification of a functional form for 

the production frontier and the estimation of parameters is required (Coelli, Rao and 

Battese, 1998). Therefore, this allows for traditional hypothesis testing, necessary to 

evaluate differences in technology between regions, which is required to achieve the 

objectives of the current study and is not available in DEA. Second, SFA has a composed 

error term with a stochastic component (to account for random errors not under the 

control of the firm) and a deterministic component (that captures departures from 

maximum output, i.e., inefficiency) (Battese and Coelli, 1992 and 1995). This would help to 

attenuate some of the shortcomings posed by the limited number of observations (data 

were collected for purposes other than the estimation of productivity and the number of 

observations are small). The number of observations impose a restriction on the 

transferability of results, however it does not invalidate the results themselves, as other 

studies applied SFA to estimate efficiency and productivity with a similar number of 

observations. 

 

As explained in section 1.7, one of the contributions to knowledge of the present thesis is 

to shed light on the sensitivity of technical efficiency and productivity estimates to the 

selection of the input/output set, i.e., the characterisation of the technology. All of the 
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studies reviewed (Chapter 3) reported only one input/output combination. Different 

input/output combinations were proposed following previous studies in dairy farm 

efficiency and productivity. Those four reported here had outcomes economically 

meaningful.  
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CHAPTER 5 
 
 

5 Results for Model J7 
 

5.1 Determination of the preferred functional form 

 

Model J7 was defined in terms of the following factor inputs: area (hectares), labour (hours 

worked), capital (K2, depreciation and interest on the stock of building and vehicles and 

machinery plus expenditure on repairs and maintenance deflated by the corresponding 

price index) and intermediate inputs (comprised by the aggregation of the expenditure on 

health, breeding, shed, feed and fertiliser deflated by the corresponding price index). 

Empirical results were obtained by using the stochastic frontier production model with 

time-varying inefficiency effects defined in Section 4.7. 

 

5.1.1 All data pooled across both regions 
 

Given the specifications of the stochastic frontier, various hypotheses were tested to 

determine the preferred functional form and the distribution of the random variables 

associated with the existence of technical inefficiency and the residual error term (Table 

5.1). The coefficient on the dummy introduced to capture the effects of the policy change 

was not significant (t<2). This result was confirmed by the LR test. 

  

The translog stochastic frontier production model was estimated first. The first null 

hypothesis that the Cobb-Douglas production function was an adequate representation for 

the NZ dairy data was rejected. Next, the null hypothesis that technical change is Hicks-

neutral was accepted. Similarly, the hypothesis of no technical change was also accepted. 

This refers to no time effects (or exogenous technical change) in the production frontier.  
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Table 5.1 – Model J7, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Loglikelihood 

function (LLF) 

LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 204.67    

A Cobb-Douglas 

function is adequate 
189.89 29.56 χ2

.05, 15 Reject Ho  = 25.00 

Technical change is 

neutral 
201.62 6.1 χ2

.05, 4 Accept Ho  = 9.49 

NO technical change  201.21 6.92 χ2
.05, 6 Accept Ho  = 12.6 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. No 

technical change) 

(γ=μ=η=0) 

174.58 53.27 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. No 

technical change) 

μ=η=0 

196.95 8.52 χ2
.05, 2 Reject Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. No 

technical change) 

μ=0 

201.19 0.04 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

No technical change) 

η=0 

196.97 8.48 χ2
.05, 1 Reject Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 

appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 

is taken from Kodde and Palm (1986). 
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Given the specifications of the translog stochastic frontier with no-technical change as 

preferred functional form, it is evident that the traditional average response function, in 

which farms are assumed to be fully technically efficient, is not an adequate representation 

of the data (i.e., the null hypothesis H0: γ=μ=η=0 is rejected). Similarly, the null 

hypotheses that time-invariant models for farm effects apply are also rejected (i.e., both H0: 

μ=η=0 and H0: η=0 are rejected), indicating that technical efficiency levels vary 

significantly over time (Table 5.1). Finally, the hypothesis that the technical inefficiency 

effects have a half-normal distribution (H0: μ=0) was accepted, i.e., the technical 

inefficiency effects have a N (0,σ2

 

) distribution.   

Next, the translog stochastic frontier model with no-technical change was estimated with 

the regional dummy. The value of the LLF was 204.636. The coefficient of the regional 

dummy has a value of 0.1097 (t-value=2.453) and it was significantly different from zero at 

5 %. This result was confirmed by the likelihood-ratio test (eq. 7, Section 4.4.1).  

 

The null hypothesis, that the regional dummy is zero, is the value of the LLF for the 

stochastic frontier model with no-technical change, i.e., 201.21 (Table 5.1). Meanwhile, the 

alternative hypothesis has a value of 204.636 (the value of the log-likelihood function for 

the translog stochastic frontier model with no-technical change and the regional dummy). 

Hence the LR-test statistic has a value of 6.852 [-2 * (201.21 – 204.636)], which is greater 

than the critical value defined by the chi-squared distribution with one degree of freedom 

(χ2
.05, 1

 

 = 3.84). Therefore, based on this result, there is a priori evidence that the stochastic 

frontier model differs between regions. Further, based on the sign of the dummy, it can be 

advanced that, given the production function defined by the input/output set, Canterbury-

Southland sampled farms are, on average, 10.97% more productive than sampled farms in 

Waikato-Taranaki, ceteris paribus. 

5.1.2 The Waikato-Taranaki sample 
 

The value of the log-likelihood function, for the translog stochastic frontier model with 

time varying inefficiency effects for Waikato-Taranaki, is 128.219. The coefficient of the 

dummy introduced to capture the effects of the policy change was not significant (t-

statistic<2). This result was confirmed by the LR test. Therefore, it may be argued that the 
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policy change13

 

 has no impact on the production function. However, the dummy for policy 

change may be also capturing other effects than the policy change itself. Therefore, more 

research is needed in order to disentangle other effects that may be influencing the results 

discussed here. Results of the different hypotheses tested are presented below (Table 5.2).  

The Cobb-Douglas production frontier is chosen based on the rejection of the translog as 

inadequate. This implies that the input elasticities are the same between farms. In contrast 

to the pooled sample, the hypothesis of no technical change was rejected. 

 

Given the specifications of the CD stochastic frontier with Hicks-neutral technical change 

as preferred functional form, it is evident that the traditional average response function, in 

which farms are assumed to be fully technical efficient, is not an adequate representation of 

the data (i.e., the null hypothesis H0: γ=μ=η=0 is rejected). Conversely, the null hypotheses 

that time-invariant models for farm effects apply are accepted (i.e., both H0: μ=η=0 and 

H0: η=0 are accepted), indicating that technical efficiency levels do not vary significantly 

over time (Table 5.2). Finally, the hypothesis that the technical inefficiency effects have a 

half-normal distribution (H0: μ=0) was accepted, i.e., the technical inefficiency effects have 

a N(0,σ2

 

) distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
13 Refers to the change in the institutional organization of the dairy industry, called for simplicity policy 
change 
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Table 5.2 - Data for Waikato-Taranaki: Generalised Likelihood-Ratio Tests of Null 

Hypotheses for Parameters in the Stochastic Frontier Production Function  

 

Null Hypothesis (Ho) Loglikelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 128.22    

A Cobb-Douglas 

function is adequate 
118.9 18.64 χ2

.05, 15 Accept Ho  = 25.00 

NO technical change  114.209 9.38 χ2
.05, 1 Reject Ho  = 3.84 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. No 

technical change) 

(γ=μ=η=0) 

98.27 41.26 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. CD) 

μ=η=0 

117.01 3.78 χ2
.05, 2 Accept Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. No 

technical change) 

μ=0 

117.89 2.02 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

No technical change) 

η=0 

117.6 2.6 χ2
.05, 1 Accept Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 

appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 

is taken from Kodde and Palm (1986). 
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5.1.3 The Canterbury-Southland sample 
 

Given the specification of the translog stochastic frontier production function with time 

varying inefficiency effects, for Canterbury-Southland farms, the value of the log-likelihood 

function is 118.98 (Table 5.3). As for Waikato-Taranaki, given the results of the LR test, 

the dummy for policy change was not significant. The null hypotheses that the Cobb-

Douglas is an adequate representation and that there is no technical change were rejected. 

However, the hypothesis of Hicks-neutral technical change was accepted (Table 5.3). 

 

Given the specifications of the Hicks-neutral translog stochastic frontier as the preferred 

functional form, it is evident that the traditional average response function, in which farms 

are assumed to be fully technical efficient, is not an adequate representation of the data 

(i.e., the null hypothesis H0: γ=μ=η=0 is rejected). Similarly, the null hypotheses that time-

invariant models for farm effects apply are also rejected (i.e., both H0: μ=η=0 and H0: η=0 

are rejected), indicating that technical efficiency levels vary significantly over time (Table 

5.3). Finally, the hypothesis that the technical inefficiency effects have a half-normal 

distribution (H0: μ=0) was accepted, i.e., the technical inefficiency effects have a N(0,σ2

 

) 

distribution. 
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Table 5.3 – Model J7, data for Canterbury-Southland: Generalised Likelihood-Ratio Tests 

of Null Hypotheses for Parameters in the Stochastic Frontier Production Function  

 

Null Hypothesis (Ho) Loglikelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 118.98    

A Cobb-Douglas 

function is adequate 
96.11 45.74 χ2

.05, 15 Reject Ho  = 25.00 

Technical change is 

neutral 
114.32 9.32 χ2

.05, 4 Accept Ho  = 9.49 

No technical change  103.57 30.82 χ2
.05, 6 Reject Ho  = 12.6 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. neutral 

translog) 

(γ=μ=η=0) 

99.83 28.74 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. neutral 

translog) 

μ=η=0 

102.75 23.14 χ2
.05, 2 Reject Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. 

translog) 

μ=0 

114.21 0.22 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

neutral translog) 

η=0 

101.53 25.58 χ2
.05, 1 Reject Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 

appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 

is taken from Kodde and Palm (1986). 



 
 

 119 

5.1.4 Testing the existence of a common frontier 
 

As was previously mentioned, the value of the coefficient of the regional dummy included 

in the pooled sample indicates that both regions may not be operating under the same 

technology. The appropriateness of dividing the sample into two regions is tested by a 

likelihood-ratio test (Table 5.4) (Battese, Rao, O’Donnell, 2004 and Kumbhakar, Biswas 

and Bailey, 1989). The null hypothesis of a single production function is the value of the 

log-likelihood function for the stochastic frontier obtained by pooling the data from both 

regions (preferred model in Table 5.1). The alternative hypothesis is obtained by adding the 

values of the log-likelihood functions for both regions (preferred models in Table 5.2 and 

Table 5.3).  

 

Table 5.4 – Model J7, generalized likelihood-ratio tests of null hypothesis that regions share 

a common stochastic frontier production function  

 

 
Log-likelihood 

(parameters 
estimated) 

LR-Test Statistic  
(degrees of freedom) 

Critical 
value 
(0.05) 

Decision 

Waikato-Taranaki 
Cobb-Douglas 
μ=η=0 

117.01 
(8)    

Canterbury-Southland 
TL with neutral 
technical change, 
 μ=0 

114.21 
(20)    

HA
∑ [Log-likelihood 
(WT)]+ [Log-
likelihood (CS)] 

: 
 231.2 
(28)    

Ho: 
Pooled sample 
TL with no-technical 
change, μ=0 

201.19 
(18) 

-2*(201.19-231.2) = 

60.02 

df. (28-18=10) 

χ2
.05, 10 Reject Ho  = 
18.3  

 

The degrees of freedom for the Chi-squared test are the difference between the number of 

parameters estimated under the alternative and the null hypotheses. Note that the number 

of parameters estimated for the non-neutral translog is 25: 21 parameters in the frontier 
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function (20+1 for the constant), 2 for the variance terms (sigma and gamma), 1 for the 

inefficiency effect (ui

 

) and 1 for the scalar η.  

The null hypothesis that both regions share the same underlying technology was rejected, 

confirming the a priori result obtained by using the regional dummy in the pooled stochastic 

frontier. Therefore, according to the log-likelihood ratio test, farm-level data in the two 

regions are not generated from a single production frontier and the same underlying 

technology. Hence, there are good reasons to estimate the stochastic frontier for each 

region separately to evaluate such differences. This outcome is expected considering the 

increasing divergence in productivity per cow and productivity per ha between regions in 

both islands of NZ over the period of study (Figures 2.1 and 2.2). Maximum likelihood 

parameter estimates for the stochastic production frontier of both regions are presented 

below. 

 

5.2 Waikato-Taranaki 

 

As was mentioned above (Table 5.2), the preferred functional form for the Waikato-

Taranaki region, given the results of the LR test, is a CD form with time invariant technical 

efficiency and a half-normal distribution. Estimates of the parameters associated with the 

stochastic frontier are reported below (Table 5.5).  

 

The coefficients on area, labour and intermediate input in the production function are 

significantly different from zero at 5%. Meanwhile, the coefficients on capital and on the 

time trend are not significant (Table 5.5). However, the LR test rejects the hypothesis that 

the coefficient of capital was zero. With respect to the time trend, when the constant return 

to scale (CRS) model was estimated to evaluate the productivity growth, the coefficient of 

the time trend was significantly different from zero. Hence, both variables, capital and time, 

were retained.   

 

The value of maximum likelihood estimate for γ is 0.7966 and is significant at 5%. This test 

statistic reinforces the notion that technical inefficiency in the Waikato-Taranaki sample is 

present but also that noise plays a role.  
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Table 5.5 – Model J7, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 5.2206 0 10.4498 *** 
Area (A) β 0.2827 1 5.3104 *** 
Labour (L) β 0.3104 2 5.4045 *** 
Capital (K2) β 0.0383 3 1.0054  
Intermediate input (II) β 0.4052 4 8.6861 *** 
Year (Y) β 0.0047 t 1.6940  
Variance parameters    
Sigma σ 0.0364 2 2.9192 ** 
Gamma Γ 0.7966 9.6539 *** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency Η Restricted to zero 
Loglikelihood function  117.01  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  

 

Given the function form, a Cobb-Douglas, the estimated coefficients are the output 

elasticities (Table 5.5). These are the same across all farms and over time. Over the period, 

the major determinant of dairy production growth was intermediate input, with an average 

output elasticity of 0.40, followed by labour at 0.31, area of farm at 0.28 and capital at 0.04 

(Table 5.5). On average for the period, a 1% increase in area of farm results in a growth of 

0.28% in milk production ceteris paribus. Similarly, the outcome of a 1% increase in capital is 

an expansion of 0.04% in milk production.  

 

The elasticity of scale is found to be 1.036, indicating increasing returns to scale in dairy 

farms, implying that a 1% increase in all input would result in a 1.036% increase in output. 

 

The frontier was shifting upwards (the region experienced technical progress) at a constant 

rate. The rate of exogenous technical progress is found to be increasing productivity by 

0.47% per annum. 
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Given that the estimate of the parameter η is zero, the technical efficiencies were constant 

over time. The mean overall technical efficiency is 87.1%. This result indicates that the 

volume of milk produced by the farms in the sample during the period could have been 

achieved with approximately 13% fewer resources, provided that all farms were technically 

efficient. For those farms with the lowest efficiency scores (WT4, WT3 and WT9) this 

implies that, over the period, the volume of milk produced could have been achieved with 

20% fewer resources, provided they applied the technology as successfully as farm WT8 

(Figure 5.1)  

 

The dispersion in technical efficiencies of dairy farmers is considerable, ranging between 

0.75 and 0.98. Furthermore, it can be seen that only two farms ranked high in technical 

efficiency (more than 95%), while four others have technical efficiencies lower than 80%. 

Given the small rate of technical progress and the high dispersion in technical efficiencies, 

it might be claimed that that there are important factors impeding the adequate use of the 

technology. 

 

Figure 5.1 - Model J7: efficiency scores for the individual farms in Waikato-Taranaki 
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5.3 Canterbury-Southland 

 

The preferred model for the Canterbury-Southland region is a translog with neutral 

technical change. Estimates of the parameters associated with the stochastic frontier are 

reported below (Table 5.6). The coefficients of the direct effects on labour and capital are 

significant at 10%. Three cross terms are significantly different from zero, confirming that 

there are some interactions among variables. Hence, the rejection of the Cobb-Douglas 

model as an adequate representation of the Canterbury-Southland region is justified. The 

sign of the coefficient of the time trend is negative. Meanwhile, the quadratic term on time 

is positive. Both coefficients are significant at 10%. 

 

Finally, given that all the coefficients of the parameters that include area of farm, except the 

cross term area of farm and intermediate input, were not significant, the model was re-

estimated with only three variables (labour, capital and intermediate input). Results indicate 

that the preferred functional form is still a translog with non-neutral technical change, time 

varying inefficiency and that inefficiency effects have a half-normal distribution. Given the 

results of the LR test, the hypothesis that area of farm can be excluded from the model was 

rejected at a 5% level of significance. The value of maximum likelihood estimate for γ is 

0.3271 and is significant at 10%, indicating that technical inefficiency in the Canterbury-

Southland sample is present but also that noise plays a significant role.  

 

Finally, as for the Waikato-Taranaki stochastic frontier, the estimated value of the 

parameter μ i

 

 is zero, indicating that technical inefficiency effects have a half-normal 

distribution. In contrast to the Waikato-Taranaki stochastic frontier, the value of maximum 

likelihood estimate for η is positive and significant, implying that technical efficiencies 

increase over time. 
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Table 5.6 – Model J7, data for Canterbury-Southland: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β -0.3833 0 -0.0980 
Area (A) β 0.2862 1 0.3224 
Labour (L) β 2.3087 2 1.8211 * 
Capital (K2) β -1.3234 3 -1.7941 * 
Intermediate input (II) β 0.7374 4 0.8792 
Year (Y) β -0.0274 t -1.8213 * 
(Year) β2 0.0016 tt 1.7696 * 
(A) β2 -0.2079 11 -0.9433 
(A) x (L) β -0.2273 12 -0.6051 
(A) x (K2) β 0.1871 13 0.5927 
(A) x (II) β 0.5560 14 1.8505 * 
(L) β2 0.0377 22 0.1257 
(L) x (K2) β 0.0861 23 0.2388 
(L) x (II) β -0.6968 24 -2.3305 ** 
(K2) β2 -0.1088 33 -0.5352 
(K2) x (II) β 0.3955 34 1.7866 * 
(II) β2 0.0438 44 0.2673 
Variance parameters    
Sigma σ 0.0127 2 3.7229 ** 
Gamma γ 0.3271 1.7703 * 
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η 0.2085 4.7200 *** 
Log-likelihood function  114.21  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  

 

Whereas in the Cobb-Douglas function the coefficients on the parameters are the output 

elasticities, for the translog the coefficients on the first order terms cannot be directly 

interpreted as the elastictities. It should be noted that these elasticities are both farm- and 

time-specific. In order to conserve space, elasticities are evaluated at the mean of the data 

for each year (Table 5.7). When the translog function is estimated using the mean- 

differenced variables (Coelli et al., 2003), output elasticities are the coefficients on the first 
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order terms. Estimates for parameters of the stochastic frontier under VRS using mean-

differenced variables are reported in Appendix 1. 

 

Over the period, labour appears to be the major determinant of dairy production growth 

with an average output elasticity of 0.39, followed by intermediate input at 0.29, capital at 

0.098 and area of farm at 0.097 (Table 5.7). Estimates of the coefficients on the first order 

terms after mean-differencing the variables data indicate that all the elasticities are 

significant at 5% (Appendix 1, Table A1.1). However, the coefficient on the time-trend 

variable indicates that there is technical regress (negative technological progress). The 

frontier was shifting backwards at an annual rate of 1.14% per annum, and the effect is 

non-linear as indicated by the significant coefficient on the quadratic term.  

 

On average for the period, a 1% increase in capital results in a growth of 0.1% in milk 

production ceteris paribus. Similarly, the outcome of a 1% increase in intermediate input14

 

 is 

an increase of 0.29% in milk production.  

Table 5.7 - Model J7: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland 

 

 

Output elasticities Returns 
to scale 

Rate technical 
change Area Labour Capital Intermediate 

input 
1996/97 0.0651 0.4693 0.0625 0.2358 0.8327 -0.0242 
1997/98 0.0405 0.4734 0.0635 0.2369 0.8144 -0.0211 
1998/99 0.0470 0.4750 0.0555 0.2684 0.8457 -0.0179 
1999/00 0.0752 0.4481 0.0715 0.2625 0.8573 -0.0148 
2000/01 0.1388 0.3843 0.0946 0.2872 0.9049 -0.0116 
2001/02 0.1584 0.3064 0.1355 0.3283 0.9286 -0.0085 
2002/03 0.1161 0.3315 0.1257 0.3252 0.8986 -0.0053 
2003/04 0.1031 0.3326 0.1243 0.3395 0.8995 -0.0022 
2004/05 0.1237 0.3011 0.1436 0.3324 0.9009 0.0010 
Average 0.0974 0.3891 0.0984 0.2919 0.8768 -0.0114 

Note:  average values of output elasticities are estimated at sample mean over all years. The average rate of 

technical change corresponds to cumulative growth over the period. 

 

                                                 
14 Inputs included are veterinary and shed expenses, fertilizer and feed 
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The elasticity of scale is found to be 0.87 indicating decreasing returns to scale. Returns to 

scale have been increasing over the period, from 0.83 to 0.90. Behind this development is a 

decline in the marginal elasticity of labour from 0.47 to 0.30, whereas the marginal output 

elasticities of area of farm, capital and intermediate input increase. The elasticity of area of 

farm increased from 0.065 to 0.12. Similarly, intermediate input and capital elasticities 

increased from 0.24 to 0.33 and from 0.06 to 0.14 respectively, confirming the positive 

coefficients of the interaction terms between these three variables (area of farm, capital and 

intermediate input).  

 

The rate of technological progress at the frontier was negative (productivity slowdown) at 

decreasing rates. The productivity slowdown was more pronounced at the beginning of the 

period (-2.42% per annum), and it ended with a very small rate of technological progress 

(0.1% per annum). On average over the period, the frontier was regressing at 1.14% per 

annum as indicated above.  

 

The mean overall technical efficiency is 88.4%. This result indicates that the volume of 

milk produced by the farms in the sample during the period could have been achieved with 

approximately 12% fewer resources, provided all farms were technically efficient. The 

positive sign on the coefficient on the parameter η implies that technical efficiencies 

increase over time (Figure 5.2). For the first season, average technical efficiency was 0.78 

ranging between 0.97 and 0.45. Meanwhile, average technical efficiency climbed to 0.95 for 

the last season ranging between 0.994 and 0.861 (Table 5.8). 

 

Table 5.8 - Model J7: estimates of technical efficiency by year for Canterbury-Southland 

 

 Mean Maximum Minimum St. deviation 
1996/97 0.778 0.967 0.451 0.142 
1997/98 0.815 0.973 0.524 0.132 
1998/99 0.846 0.978 0.592 0.109 
1999/00 0.877 0.982 0.653 0.088 
2000/01 0.898 0.986 0.708 0.075 
2001/02 0.911 0.988 0.755 0.064 
2002/03 0.927 0.990 0.796 0.053 
2003/04 0.940 0.992 0.831 0.044 
2004/05 0.951 0.994 0.861 0.036 
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The dispersion in technical efficiencies of dairy farmers is considerable at the beginning of 

the period and, according to the assumed exponential model for the time varying 

inefficiency effects, they converged over time. Furthermore, insofar as the region 

experienced technical regress, backward farms (farms CS7, CS4 and CS12) were able to 

catch up with the frontier firms.  

 

Figure 5.2 - Model J7: efficiency scores for the individual farms in Canterbury-Southland(1) 
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(1) Note: In years when particular farmers were not observed, no values of technical efficiency are calculated 

 

5.4 Comparison of both reg ional models 

 

The comparison of input elasticities and technical change across different regions is not 

straightforward because the production technologies are different for both regions. In fact, 

the pooled model was rejected in favour of a more general model that allows production 

technology to differ between regions (Section 1.1.4). Nevertheless, the marginal output 

elasticities evaluated at sample mean, the rate of technical progress and technical efficiency 

scores are presented.  

The most important difference is found to be in the production function that represents 

the underlying production technology. Whereas a Cobb-Douglas best represented the 
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production technology for Waikato-Taranaki farms, the more flexible translog function was 

the best representation of the Canterbury-Southland technology. 

 

For the Waikato-Taranaki data, the estimated input elasticities, returns to scale and 

technical progress do not differ among farms or over time. In contrast, in the Canterbury-

Southland data set, the estimated marginal elasticities, returns to scale and technical 

progress differ among farms and over time. 

 

The marginal output elasticity of area of farm is at 0.28 for Waikato-Taranaki and at 0.097 

for Canterbury-Southland. Labour contributes the most to output growth for Canterbury-

Southland. However, the marginal output elasticity of labour is similar between regions, 

although a bit higher in the southern region: 0.31 for Waikato-Taranaki and 0.39 for 

Canterbury-Southland. Meanwhile, capital output elasticity for Waikato-Taranaki is at 0.038 

and at 0.098 for Canterbury-Southland. Finally, intermediate input is the single most 

important contributor to output growth for Waikato-Taranaki, with a marginal output 

elasticity of 0.40, and the second-most important for Canterbury-Southland, with an 

elasticity of 0.29 (Table 5.9). In addition, Waikato-Taranaki is operating at increasing 

returns to scale (RTS) and Canterbury-Southland at decreasing returns to scale. However, 

RTS in Canterbury-Southland have been increasing over the period considered (Table 5.7).  

 

Table 5.9 - Model J7: comparison of factor input elasticity estimates at sample mean 

 

 

Output elasticities Returns to 
scale Area Labour Capital Intermediate 

input 
Waikato-Taranaki 0.2827 0.3104 0.0383 0.4052 1.036 
Relative contribution (%) 27% 30% 3% 39% 100% 
Canterbury-Southland 0.0974 0.3891 0.0984 0.2919 0.8768 
Relative contribution (%) 11% 44% 11% 33% 100% 

 

 

The elasticity of output with respect to time is interpreted as the rate of exogenous 

technical change, i.e., a shift in the production function over time, ceteris paribus. Meanwhile, 

sampled farms in Waikato-Taranaki experienced a constant rate of technical progress 

(Table 5.5). Sampled farms in Canterbury-Southland exhibited neutral technical regress at a 

declining rate that became a small technical progress for the last season (Table 5.7).  
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Another important difference is found in the behaviour of technical efficiency over time. 

For Waikato-Taranaki, farm technical efficiencies are constant over time (Figure 5.1), 

whereas farms in Canterbury-Southland exhibited a progressive improvement (Figure 5.2). 

Consequently, the dispersion in farm technical efficiencies remained constant over time in 

the former region, but decreased in the latter region. 

 

Average efficiency for Waikato-Taranaki farms was higher than Canterbury-Southland 

farms over the first three seasons of the period, but this was reversed in the last six years of 

the period (Figure 5.3). For the first season, average technical efficiency for Canterbury-

Southland was 0.78, ranging between 0.97 and 0.45. Meanwhile, for the last season, average 

technical efficiency climbed to 0.95, ranging between 0.994 and 0.861 (Table 5.8). In 

contrast, average efficiency for Waikato-Taranaki remained at 0.87, ranging between 0.75 

and 0.98 (Figure 5.1). 

 

Figure 5.3 - Model J7: comparison of average efficiency score between Waikato-Taranaki 

and Canterbury-Southland 
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The policy implications of the different technical change and the behaviour over time of 

the farm efficiencies will be discussed in Chapter 9 where the decomposition of TFPG is 

undertaken. 
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CHAPTER 6 
 
 

6 Results for Model L8 
 

 

6.1 Determination of the preferred functional form 

 

Model L8 was defined in terms of the following factor inputs: cows (number), labour 

(hours worked), area (hectares) and capital (K2, depreciation and interest on the stock of 

building and vehicles and machinery plus expenditure on repairs and maintenance and 

insurance).  

 

6.1.1 All data pooled across both regions 
 

Given the specifications of the stochastic frontier with time-varying inefficiency, various 

hypotheses were tested (Table 6.1). The translog production frontier was chosen based on 

the rejection of the Cobb-Douglas as inadequate. This implies that the input and 

substitution elasticities vary across farms. The hypothesis of no technical change and 

Hicks-neutral technical change were rejected, calling for the incorporation of a time trend 

(and its square term) and the time trend cross products with conventional factor inputs in 

the production function. The coefficient of the dummy introduced to capture the effects of 

the policy change was not significant (t<2). This result was confirmed by the LR test. 

 

Given the specifications of the translog stochastic frontier with non-neutral technical 

change as the preferred functional form, it is evident that the traditional average response 

function, in which farms are assumed to be fully technical efficient, is not an adequate 

representation of the data (i.e., the null hypothesis H0: γ=μ=η=0 is rejected). Similarly, the 

null hypotheses that time-invariant models for farm effects apply are also rejected (i.e., 

both H0: μ=η=0 and H0: η=0 are rejected), indicating that technical efficiency levels vary 

significantly over time (Table 6.1). Finally, the hypothesis that the technical inefficiency 

effects have a half-normal distribution (H0: μ=0) was rejected.   
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Table 6.1 - Model L8, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 244.17    

A Cobb-Douglas 

function is adequate 
230.48 27.38 χ2

.05, 15 Reject Ho  = 25.00 

Technical change is 

neutral 
237.56 13.22 χ2

.05, 4 Reject Ho  = 9.49 

NO technical change  233.12 22.1 χ2
.05, 6 Reject Ho  = 12.6 

Traditional average 

response function is 

adequate representation 

of the data  

(γ=μ=η=0) 

211.53 65.28 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant  

μ=η=0 

238.85 10.64 χ2
.05, 2 Reject Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution  

μ=0 

241.32 5.7 χ2
.05, 1 Reject Ho = 3.84 

Technical inefficiencies 

are time invariant  

η=0 

241.21 5.92 χ2
.05, 1 Reject Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 
appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 
is taken from Kodde and Palm (1986). 
 

Next, the translog stochastic frontier model with non-neutral technical change was 

estimated with the regional dummy. The coefficient of the regional dummy has a value of 
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0.154 and it was significantly different from zero at 5% (t-value=4.562). This result was 

confirmed by the likelihood-ratio test (LR). Therefore, and as reported for Model J7 

(Section 5.1.1), there is a priori evidence that the stochastic frontier model differs between 

regions. Furthermore, based on the sign of the dummy, it can be advanced that, given the 

production function defined by the input/output set, Canterbury-Southland sampled farms 

are, on average, 15.4% more productive than sampled farms in Waikato-Taranaki, ceteris 

paribus. 

 

6.1.2 The Waikato-Taranaki sample 
 

The value of the log-likelihood function, for the translog stochastic frontier model with the 

inefficiency effects for Waikato-Taranaki, is 128.53. The coefficient on the dummy 

introduced to capture the effects of the policy change was not significant as confirmed by 

the LR test. This result is similar to that of Model J7 (Section 5.1.2). Results of the different 

hypotheses tested are presented below (Table 6.2). 

 

The first null hypothesis that the Cobb-Douglas is an adequate representation of the data 

was accepted. The hypothesis of Hicks-neutral technical change was not rejected against 

the non-neutral translog. However, with respect to the Cobb-Douglas, the Hicks-neutral 

translog was rejected. That is, all the cross term effects were jointly zero. It is evident that 

the traditional average response function, in which farms are assumed to be fully technical 

efficient, is not an adequate representation of the data (i.e., the null hypothesis H0

 

: 

γ=μ=η=0 is rejected).  
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Table 6.2 - Model L8: data for Waikato-Taranaki: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 128.53    

A Cobb-Douglas 

function is adequate 
117.98 21.1 χ2

.05, 15 Accept Ho  = 25.00 

Technical change is 

neutral 
124.39 8.28 χ2

.05, 4 Accept Ho  = 9.49 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. Cobb-

Douglas) 

(γ=μ=η=0) 

113.44 9.08 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. Cobb-

Douglas) 

μ=η=0 

117.79 0.38 χ2
.05, 2 Accept Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. Cobb-

Douglas) 

μ=0 

117.969 0.022 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

Cobb-Douglas) 

η=0 

117.79 0.38 χ2
.05, 1 Accept Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 
appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 
is taken from Kodde and Palm (1986). 
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Conversely, the null hypotheses that time-invariant models for farm effects apply were 

accepted (i.e., both H0: μ=η=0 and H0: η=0), indicating that technical efficiency levels do 

not vary significantly over time (Table 6.2). Similarly, the hypothesis that the technical 

inefficiency effects have a half-normal distribution (H0: μ=0) was accepted, i.e., the 

technical inefficiency effects have an N (0,σ2

 

) distribution. 

6.1.3 The Canterbury-Southland sample 
 

Given the specification of the translog stochastic frontier production function with time-

varying inefficiency effects, for Canterbury-Southland sampled farms, the value of the log-

likelihood function is 149.06 (Table 6.3). As for Model J7, according to the LR test, the 

coefficient on the dummy introduced to capture the effects of the policy change was not 

significant.  

 

The null hypotheses that the Cobb-Douglas is an adequate representation, such that there 

is no technical change and that technical change is neutral were all rejected (Table 6.3), as 

was the case in the pooled sample and in the Waikato-Taranaki sample. 

 

Given the specifications of the non-neutral translog stochastic frontier as the preferred 

functional form, it is evident that the traditional average response function, in which farms 

are assumed to be fully technical efficient, is not an adequate representation of the data 

(i.e., the null hypothesis H0: γ=μ=η=0 is rejected). Conversely, the null hypotheses that 

time-invariant models for farm effects apply are accepted (i.e., both H0: μ=η=0 and H0: 

η=0 are rejected), indicating that technical efficiency levels do not vary significantly over 

time (Table 6.3). Finally, the hypothesis that the technical inefficiency effects have a half-

normal distribution (H0: μ=0) was accepted, i.e., the technical inefficiency effects have an 

N(0,σ2

 

) distribution. 
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Table 6.3 - Model L8, data for Canterbury-Southland: generalised likelihood-ratio tests of 

null hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 149.06    

A Cobb-Douglas 

function is adequate 
124.76 48.6 χ2

.05, 15 Reject Ho  = 25.00 

NO technical change  134.14 29.84 χ2
.05, 6 Reject Ho  = 12.6 

Technical change is 

neutral 
139.91 18.3 χ2

.05, 4 Reject Ho  = 9.49 

Traditional average 

response function is 

adequate representation 

of the data  

(γ=μ=η=0) 

131.49 35.14 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant  

μ=η=0 

147.54 3.04 χ2
.05, 2 Accept Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution  

μ=0 

148.90 0.32 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant  

η=0 

147.71 2.7 χ2
.05, 1 Accept Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 

appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 

is taken from Kodde and Palm (1986). 

 

 

 

 



 
 

 136 

6.1.4 Testing the existence of a common frontier 
 

As was previously mentioned, the value of the coefficient of the regional dummy included 

in the pooled sample indicates that both regions may not be operating under the same 

technology. The appropriateness of dividing the sample into two regions is tested by a 

likelihood-ratio test (Table 6.4). 

 

Table 6.4 - Model L8: generalised likelihood-ratio tests of null hypotheses that regions 

share a common stochastic frontier production function  

 

 
Log-likelihood 

(parameters 
estimated) 

LR-Test Statistic  
(degrees of freedom) 

Critical 
value 
(0.05) 

Decision 

Waikato-Taranaki 
Cobb-Douglas 
μ=η=0 

117.79 
(8)    

Canterbury-Southland 
Non-neutral technical 
change 
μ=η=0 

147.54 
(23)    

HA
∑ [Log-likelihood 
(WT)]+ [Log-
likelihood (CS)] 

: 
265.33 

(31)     

Ho: 
Pooled sample 
Non-neutral technical 
change  

244.17 
(25) 

-2*(244.17-265.33) = 

42.32  

df. (31-25=6) 

χ2
.05, 6 Reject Ho  = 
12.6 

 

 

Note that the number of parameters estimated for the pooled sample is 25: 21 parameters 

in the frontier function (20+1 for the constant), 2 for the variance terms (sigma and 

gamma), 1 for the scalar η and 1 for the inefficiency effects (u i). In turn, the number of 

parameters estimated for Waikato-Taranaki model is 8: 6 parameters in the frontier 

function (5+1 for the constant), 2 for the variance terms (sigma and gamma). Finally, the 

number of parameters estimated for Canterbury-Southland model is 23: 21 parameters in 

the frontier function (20+1 for the constant) and 2 for the variance terms (sigma and 

gamma).  
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The outcome of the test indicates that the two regional stochastic frontiers for dairy farms 

are not the same, confirming the a priori result obtained by using the regional dummy in the 

pooled stochastic frontier (Section 6.1.1). Therefore, according to the log-likelihood ratio 

test, farm-level data in the two regions are not generated from a single production frontier 

or from the same underlying technology.  

 

Maximum likelihood parameter estimates for both regions are presented below. 

 

6.2 Waikato-Taranaki 

 

As mentioned above, the preferred specification for the Waikato-Taranaki sample farms 

underlying technology is a Cobb-Douglas with non-neutral technical change, time invariant 

technical efficiency with a half-normal distribution (Table 6.2). Estimates of the parameters 

associated with the stochastic frontier are reported below. 

 

All the coefficients on the production function are significantly different from zero at 5 %, 

with the exception of the time trend, which is not significantly different from zero (Table 

6.5). The time-trend was deleted from the model, i.e., it was assumed that the parameters 

were time-invariant. The LR test confirmed the hypothesis that the parameters were time 

invariant. The coefficients on the parameters of the stochastic frontier remained unchanged 

to the third decimal place, i.e., factor input elastiticies do not vary. Furthermore, the 

hypotheses that η and μ i

 

 were zero (individually or jointly) were accepted. However, the 

hypothesis of γ=0 could not be rejected, indicating that even in the presence of no 

technical progress and time-invariant technical efficiencies, the stochastic frontier 

production function is significantly different from the average response model. When the 

CRS model was estimated to evaluate the productivity growth, the sign on the time trend 

coefficient not only changed but also was significant. Hence, it was decided to maintain the 

time trend in the VRS model.   

Both test statistics (σ2 and γ) are significantly different from zero. The value of maximum 

likelihood estimate for γ is 0.4155 and is significant at 5 %. This test statistic reinforces the 

notion that technical inefficiency in the Waikato-Taranaki sample is present but also that 
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noise plays a role. As indicated above, the estimated coefficients for η and μ i

  

 were restricted 

to zero.  

Table 6.5 - Model L8, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 4.6295 0 11.8959 *** 

Cow (C) β 1.0716 1 14.2902 ***  
Labour (L) β 0.1239 2 2.1232 ** 
Area (A) β -0.1517 3 -2.3206 ** 
Capital (K2) β 0.1217 4 2.8074 ** 
Year (Y) β -0.0004 t -0.1103 
Variance parameters    
Sigma σ 0.0133 2 3.8324 ** 
Gamma γ 0.4155 2.5716 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η Restricted to zero 
Log-likelihood function  117.79  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  

 

Given the function form, a Cobb-Douglas, the estimated coefficients are the output 

elasticities (Table 6.5). These are the same across all farms and over time. On average for 

the period, a 1% increase in the number of cows results in a growth of 1.07% in milk 

production ceteris paribus. Similarly, the outcome of a 1% increase in area of farm is a 

contraction of -0.15% in milk production ceteris paribus. The elasticity of scale is found to be 

1.16, indicating increasing returns to scale in dairy farms. 

 

Over the period, herd size appears to be the major determinant of dairy production 

growth, with an average output elasticity of 1.07, followed by labour at 0.12 and capital at 

0.12. Interestingly, the estimated elasticity for area of farm turns out to be negative (-0.15). 

This may be the result of a progressive expansion of dairy into less suitable areas. 
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Over the period, both regions experienced a small absolute increase in dairy area. However, 

this increment coincided with an absolute decline in grassland and arable land area because 

of forestry developments and, particularly, new investments in property development and 

lifestyle blocks (MAF, 2001). Also, investments in property development and lifestyle 

blocks took place mostly in suburban areas, displacing dairy farmers. In turn, areas close to 

those newly developed areas increased their value. High land prices and the prospect that, 

in the near future, surrounding areas would also be converted into property development 

may induce farmers to invest in new, less suitable areas. 

 

Given that the estimate of the parameter η is zero, the technical efficiencies were constant 

over time. This finding is not expected, given that the region experienced no technical 

progress. One possible reason may be that the time-varying inefficiency model used 

(Battese and Coelli, 1992, described in section 4.1, Chapter 4) is fairly restrictive in that it 

requires that the efficiencies of all firms follow a common trend, even though it allows for 

different levels. 

 

Figure 6.1 - Model L8: efficiency scores for the individual farms in Waikato-Taranaki 
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The mean overall technical efficiency is 0.943, ranging between 0.984 and 0.873 (Figure 

6.1). This result indicates that the volume of milk produced by the farms in the sample 
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during the period could have been achieved with approximately 6% fewer resources, 

provided all farms were technically efficient. 

 

It can also be seen that the dispersion in farm technical efficiency is low (the coefficient of 

variation is 3.7%). Furthermore, nine farms had a technical efficiency higher than 0.95, and 

only three had efficiency estimates lower than 0.90. This indicates that the technology 

defined by this input/output set is being used adequately. In turn, the fact that technical 

progress at the frontier was zero and that farm efficiency scores are high (i.e., technology is 

being applied adequately) leads to the conclusion that farms in the sample need a new 

technological paradigm to be able to increase productivity. 

 

6.3 Canterbury-Southland 

 

The preferred model for the Canterbury-Southland region is a translog with non-neutral 

technical change. Estimates of the parameters associated with the stochastic frontier are 

reported below (Table 6.6). Only one cross term is significantly different from zero as well 

as the square term on capital. The sign on the coefficient of the time trend is positive but 

not significant. Meanwhile, the square term on time is negative and not significant as well. 

Two of the interaction terms between time and factor inputs are significant at 5%. 

However, as mentioned above (Table 6.3), the Cobb-Douglas functional form was rejected 

in lieu of the translog, indicating that even though the individual coefficients might not be 

significant, taken together they have a better explanatory power. Furthermore, the 

simplified translog functional form was also rejected in favour of the translog. The 

simplified translog model assumes that inputs are separable from each other but not from 

time, i.e., the entire cross terms and the quadratic terms were assumed to be zero (Ahmad 

and Bravo-Ureta, 1996). 

 

The value of maximum likelihood estimate for γ is 0.7890 and is significant at 5 %, i.e., 

technical inefficiency is present. Finally, the estimated value of the parameter μ i

 

 is zero, 

indicating that technical inefficiency effects have a half-normal distribution and the value of 

maximum likelihood estimate for η is zero, i.e., technical efficiency is constant over time.  

 

 



 
 

 141 

Table 6.6 - Model L8, data for Canterbury-Southland: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 3.5331 0 1.1011 
Cow (C) β 0.0830 1 0.0617 
Labour (L) β 1.6128 2 1.1852 
Area (A) β 0.2342 3 0.3179 
Capital (K2) β -1.1469 4 -1.6092 
Year (Y) β 0.1079 t 1.2387 
(Year) β2 -0.0018 tt -1.2852 
(C) x (Y) β 0.0156 1t 0.5489 
(L) x (Y) β -0.0078 2t -0.4076 
(A) x (Y) β -0.0622 3t -4.1407 ** 
(K2) x (Y) β 0.0470 4t 3.0437 ** 
(C) β2 -0.0159 11 -0.0278 
(C) x (L) β 0.3081 12 0.4042 
(C) x (A) β -0.0604 13 -0.1125 
(C) x (K2) β -0.1355 14 -0.3078 
(L) β2 -0.2505 22 -0.6960 
(L) x (A) β -0.2201 23 -0.6626 
(L) x (K2) β 0.1149 24 0.3536 
(A) β2 -0.0900 33 -0.3434 
(A) x (K2) β 0.7282 34 2.6862 ** 
(K2) β2 -0.2182 44 -1.7955 * 
Variance parameters    
Sigma σ 0.0252 2 2.7570 ** 
Gamma γ 0.7890 9.6032 ***  
    
Technical inefficiency effect μ 0 i  
Time-varying inefficiency η 0  
Log-likelihood function  147.54  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  

 

Over the period, herd size appeared to be the major determinant of dairy production 

growth with an average output elasticity of 0.86, followed by area of farm at 0.26 and 

labour at 0.07. Interestingly, the marginal output elasticity of capital is negative at -0.14 
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(Table 6.7). It is worth mentioning that the same measure of capital yielded an output 

elasticity of 0.098 in Model J7 (Table 5.7). 

 

Average elasticities for herd size and area of farm are significant at 5%, capital elasticity is 

significant at 10% and finally, labour elasticity is not significant (Appendix 1, Table A1.2). 

However, insignificant estimates of labour elasticity have been reported before (Bravo-

Ureta, 1986 and Cuesta, 2000). The coefficient on the time-trend variable indicates that the 

frontier was shifting upwards at an annual rate of 2.18% per annum. The coefficient on the 

quadratic term on time was not significant (Appendix 1, Table A1.2).  

 

On average for the period, a 1% increase in the number of cows results in a growth of 

0.86% in milk production ceteris paribus. Similarly, the outcome of a 1% increase in capital is 

a reduction of 0.14% in milk production. The negative elasticity for capital suggests that 

there is considerable surplus in the use of this input. This particular finding may be related 

to the fact that this region is characterised by recently developed dairy farms that may have 

incurred significant initial capital investments. Another plausible explanation is related to 

the infrastructure of services, which is dictated by the number of farms. The small number 

of farms may be preventing the development of different services connected to dairy, for 

example, seeding, harvesting, silage, etc. Hence, farmers have to acquire all the machinery 

to perform those tasks, thereby increasing their expenditure of capital. However, more 

research is needed to endorse this assumption.   

 

The elasticity of scale is found to be 1.05, indicating increasing returns to scale in dairy 

farms. Furthermore, returns to scale have been increasing slightly over time. The marginal 

elasticity of herd size remained almost constant over the period. Conversely, the marginal 

output elasticity of area increased from 0.18 to 0.33 and the marginal output elasticity of 

labour declined from 0.08 to 0.03. Finally, the marginal output elasticity of capital dropped 

from -0.126 to -0.174 by season 2000/01 and increased over the second half of the period 

to -0.136. 
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Table 6.7 - Model L8: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland 

 

 

Output elasticities Returns to 
scale 

Rate of 
technical 
change Cows Labour Area Capital 

1996/97 0.8600 0.0841 0.1825 -0.1265 1.0001 0.0146 
1997/98 0.8651 0.0686 0.1795 -0.1081 1.0051 0.0120 
1998/99 0.8525 0.0878 0.2007 -0.1191 1.0220 0.0162 
1999/00 0.8522 0.1012 0.1911 -0.1272 1.0174 0.0224 
2000/01 0.8526 0.0948 0.2696 -0.1740 1.0430 0.0269 
2001/02 0.8596 0.0616 0.3239 -0.1633 1.0819 0.0291 
2002/03 0.8649 0.0467 0.3147 -0.1414 1.0848 0.0257 
2003/04 0.8636 0.0441 0.3239 -0.1349 1.0968 0.0253 
2004/05 0.8700 0.0339 0.3277 -0.1364 1.0952 0.0262 
Average 0.8602 0.0687 0.2590 -0.1371 1.0507 0.0218 

Note:  average values of output elasticities are estimated at sample mean. The average rate of technical change 

corresponds to cumulative growth over the period. 

 

The rate of technical change at the frontier was positive over the whole period. It gradually 

increased from 1.46% at the beginning of the period to 2.91% by season 2001/02 and then 

declined slightly to 2.62% by the last season (Figure 6.2). As a result, the rate of change of 

the production frontier was at 2.18% per annum. The small decline in the rate of technical 

progress at the frontier in season 1997/98 may be the result of the drought experienced by 

the region. 

 

The progressive increase in the rate of technical progress at the frontier from the beginning 

of the period up to season 2001/02 may be rooted in the need to increase productivity and 

hence improve profitability. The average milk payout in real terms from seasons 1996/97 

to 1999/00 was $4.15 per kg milksolids, whereas the historical milk payout in real terms 

was $4.27, from 1985 to 1999. The downturn over the last three seasons may be the 

consequence of the high profitability, due to unprecedented higher milk prices, which may 

have reduced the incentives to increase productivity. Higher milk prices induced an 

expansion in production sustained on more than proportional increase in input use, 

translated into a deterioration of the ratio output: input (productivity). The average milk 

payout for the period 2000/01 to 2004/05 milk price stood at $4.80 per kg milksolids, an 
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increase of 15.8% over the previous seasons of the period considered. Furthermore, season 

2001/02 marked the highest payout, in real terms, over the last 20 years. 

 

Figure 6.2 - Model L8: annual rate of technical progress for Canterbury-Southland 
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As indicated above, the technical efficiencies were time-invariant (the estimate of the 

parameter η was zero). However, the restrictions imposed by the model applied (Battese 

and Coelli, 1992, described in section 4.1, Chapter 4) may prevent the capture of efficiency 

improvements. Alternatively, it may be the result of the active annual rate of technical 

progress at the frontier. 

 

The mean overall technical efficiency is 0.89, ranging between 0.73 and 0.98 (Figure 6.3). 

On average, the volume of milk produced by the farms in the sample during the period 

could have been achieved with approximately 10% fewer resources, provided that all farms 

were technically efficient. 

 

 These data indicate that there exists considerable variation in the efficiencies of dairy 

farmers in Canterbury-Southland. The distribution of technical efficiency estimates by 

Model L8 illustrates that nine farms have efficiency estimates in the range 85%–90% 

(Figure 9.4). Average efficiency for those farms is 0.88. Distance from best-practice farms 
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is almost 10%, and from the next most efficient farm it is 5%. This implies that, on 

average, milk production from those farms could have been increased by 10% or 5%, with 

the same level of resources used, provided they improve their efficiency at least to the level 

where the other farms are operating. 

 

Figure 6.3 - Model L8: efficiency scores for individual farms in Canterbury-Southland 
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Relative to the underlying technology defined by Model L8, results seem to indicate that 

technical progress at the frontier is 2.18% per annum, and that many farms are still unable 

to apply this technology adequately, insofar as gains in technical efficiency change are nil 

and the dispersion of farm technical efficiency is relatively high (Figure 6.3).     

 

6.4 Comparison of both reg ional models 

 

Given that the production technology differs between regions (Section 6.1.4) the 

comparison of input elasticities and technical change across regions is not straightforward. 

However, the marginal output elasticities evaluated at sample mean, the rate of technical 

progress and technical efficiency scores are presented (Table 6.8).  
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The most important difference is found to be in the production function that represents 

the underlying production technology. A Cobb-Douglas for Waikato-Taranaki sampled 

farms best represented the production technology; the more flexible translog function was 

used to represent the Canterbury-Southland technology. 

 

For Waikato-Taranaki data set, the estimated input elasticities, returns to scale and 

technical progress are constant across farms and over time. Furthermore, there is no 

technical progress at the frontier. In the Canterbury-Southland data set, the estimated 

marginal elasticities, returns to scale and technical progress are all farm-specific and also 

vary over time. Moreover, technical progress at the frontier is non-neutral.    

 

Number of cows is the single most important input for both regions (Table 6.8). However, 

marginal output elasticity of cows is 1.07 for Waikato-Taranaki and 0.86 for Canterbury-

Southland. The marginal output elasticity of labour is 0.12 for Waikato-Taranaki and 0.068 

for Canterbury-Southland. Meanwhile, the marginal output elasticities of area of farm and 

capital have different signs in the two regions. 

 

Table 6.8 - Model L8: comparison of factor input elasticity estimates at sample mean 

 

 

Output elasticities Returns 
to scale Cows Labour Area Capital 

Waikato-Taranaki 1.0716 0.1239 -0.1517 0.1217 1.1655 
Relative contribution (%) 92% 11% -13% 10% 100% 
Canterbury-Southland 0.8602 0.0687 0.2590 -0.1371 1.0507 
Relative contribution (%) 82% 7% 25% -13% 100% 

 

The elasticity of area of farm is at -0.15 for Waikato-Taranaki and at 0.259 for Canterbury-

Southland. As explained above, the negative elasticity for area of farm in Waikato-Taranaki 

might be the result of the expansion of dairy into less suitable areas. Conversely, the 

positive elasticity for Canterbury-Southland might be indicating that expansion into new 

areas is still feasible. 

 

Capital output elasticity is 0.12 for Waikato-Taranaki and -0.137 for Canterbury-Southland. 

As explained above, the different sign in the capital output elasticity may be related to the 

degree of development of dairy farming in both regions. Most dairy farms in Canterbury-
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Southland have been recently developed with significant initial capital investments. For 

example, pasture irrigation is frequent in Canterbury. Another possible explanation of the 

different sign in capital elasticity is the degree of development of the infrastructure of 

services. The number of farms in Waikato-Taranaki is much higher than in Canterbury-

Southland. Hence, whereas in the former region, infrastructure of services may be well 

developed and services easily available, in the latter, farmers need to rely on their own 

machinery to perform the different tasks. Finally, both regions are operating at increasing 

returns to scale. However, Canterbury-Southland has been experiencing an increase in the 

returns to scale over the period considered (Table 6.7). 

 

Average efficiency for Waikato-Taranaki farms was higher than for Canterbury-Southland 

farms. Furthermore, farm efficiency estimates are less dispersed for the former region than 

for the latter (Table 6.9). The higher average efficiency and the lower dispersion exhibited 

by Waikato-Taranaki farmers may indicate that these long-established farms all have a 

better mastery of the technology applied (9 out of 16 have efficiencies higher than 0.95) 

than farmers in Canterbury-Southland, where only 5 farms ranked high. Alternatively, it 

may be the result of the active annual rate of technical progress at the frontier exhibited by 

Canterbury-Southland vis-à-vis Waikato-Taranaki that did not experience technical 

progress.  

 

Table 6.9 - Model L8: average efficiency scores and farm efficiency distribution between 

regions  

  

Efficiency 
range 

Number of farms 
Waikato-Taranaki Canterbury-Southland 

0.97-1 4 3 
0.95-0.97 5 2 
0.90-0.95 4 2 
0.85-0.90 3 7 
0.80-0.85  0 
<0.80  2 
Average  0.943 0.894 
Maximum 0.984 0.981 
Minimum 0.873 0.735 
Coeff. Var. 3.74% 7.77% 
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CHAPTER 7 
 
 

7 Results for Model Y5 
 

 

7.1 Determination of the preferred functional form 

 
Model Y5 was defined in terms of the following factor inputs: capital (K2, depreciation and 

interest on the stock of building and vehicles and machinery plus expenditure on repairs 

and maintenance), labour (hours worked), feed expenditure (deflated by the corresponding 

price index) and fertiliser and weed expenditure (deflated by the corresponding price 

index).  

 

7.1.1 All data pooled across both regions 
 

Empirical results were obtained by using the stochastic frontier production model with 

time-varying inefficiency effects defined above (Chapter 4) and various hypotheses were 

tested (Table 7.1). The translog production frontier was chosen based on the rejection of 

the Cobb-Douglas as inadequate. These imply that the input and substitution elasticities 

vary across farms. The hypothesis of no technical change and Hicks-neutral technical 

change were rejected, calling for the incorporation of a time trend (and its square term) and 

the time trend cross products with conventional factor inputs in the production function. 

 

Given the specifications of the translog stochastic frontier with non-neutral technical 

change as the preferred functional form, it is evident that the traditional average response 

function, in which farms are assumed to be fully technical efficient, is not an adequate 

representation of the data (i.e., the null hypothesis H0

 

: γ=μ=η=0 is rejected) (Table 7.1).    
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Table 7.1 - Model Y5, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 

With dummy for policy 

change  

183.799    

A Cobb-Douglas 

function is adequate 
166.206 35.18 χ2

.05, 15 Reject Ho  = 25.00 

Technical change is 

neutral 
178.02 11.56 χ2

.05, 4 Reject Ho  = 9.49 

NO technical change  176.02 15.56 χ2
.05, 6 Reject Ho  = 12.6 

Traditional average 

response function is 

adequate representation 

of the data  

(γ=μ=η=0) 

147.299 73.00 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant  

μ=η=0 

180.64 6.34 χ2
.05, 2 Reject Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution  

μ=0 

182.68 2.24 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant  

η=0 

181.71 4.18 χ2
.05, 1 Reject Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 
appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 
is taken from Kodde and Palm (1986). 
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Similarly, the null hypotheses that time-invariant models for farm effects apply are also 

rejected (i.e., both H0: μ=η=0 and H0: η=0 are rejected), indicating that technical efficiency 

levels vary significantly over time. Finally, the hypothesis that the technical inefficiency 

effects have a half-normal distribution (H0

 

: μ=0) was accepted (Table 7.1). 

The coefficient of the dummy introduced to capture the effects of the policy change15

 

 was 

significant under all the hypotheses tested. For the preferred specification, i.e., translog 

stochastic frontier with non-neutral technical change and time-varying inefficiency effects 

with half-normal distribution, the coefficient of the dummy was -0.084 and significant at 

5% (t=2.698). This latter result was further confirmed by the LR test. Therefore, relative to 

the base period 1996/97 to 2000/01 (prior to the creation of Fonterra), farms in the 

sample were, on average, 8.4% less productive in the period 2001–2005.   

Next, the regional dummy was incorporated into the model. The coefficient of the regional 

dummy has a value of 0.1831 and it was significantly different from zero at 5% (t-

value=4.8988). This result was also confirmed by the likelihood-ratio test (LR). Therefore, 

based on this result, there is a priori evidence that the stochastic frontier model differs 

between regions. Furthermore, based on the sign of the dummy, it can be advanced that, 

relative to Waikato-Taranaki sampled farms, Canterbury-Southland sampled farms are, on 

average, 16% more productive. Finally, the introduction of regional dummy changed 

slightly the coefficient on the dummy for policy change. The coefficient was -0.0711 and 

was significant at 5% (t= 2.3795), implying that relative to the base period (before the 

creation of Fonterra), farms in the sample were, on average, 7.11% less productive in 

2001–2005. 

 

7.1.2 The Waikato-Taranaki sample 
 

The value of the log-likelihood function for the translog stochastic frontier model with 

time varying inefficiency effects for Waikato-Taranaki is 106.27. Results of the different 

hypotheses tested are presented below (Table 7.2). 

 

                                                 
15 As mentioned above (Section 4.7), this dummy variable may also be capturing effects other than change in 
the institutional organization of the dairy industry, called for simplicity policy change.   
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Table 7.2 - Model Y5, data for Waikato-Taranaki: generalized likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 106.27    

A Cobb-Douglas 

function is adequate 
97.37 17.8 χ2

.05, 15 Accept Ho  = 25.00 

Technical change is 

neutral 
99.68 13.18 χ2

.05, 4 Reject Ho  = 9.49 

NO technical change  98.21 16.12 χ2
.05, 6 Reject Ho  = 12.6 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. Cobb-

Douglas) 

(γ=μ=η=0) 

78.778 37.18 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. Cobb-

Douglas) 

μ=η=0 

94.978 4.784 χ2
.05, 2 Accept Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. Cobb-

Douglas) 

μ=0 

94.99 4.76 χ2
.05, 1 Reject Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

Cobb-Douglas) 

η=0 

97.363 0.014 χ2
.05, 1 Accept Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 
appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 
is taken from Kodde and Palm (1986). 
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The Cobb-Douglas function was accepted in lieu of the translog to represent the 

underlying production technology. These imply that the input and substitution elasticities 

do not differ between farms or between periods. Both the hypotheses of no technical 

change and Hicks-neutral technical change were rejected. 

 

Given the specifications of the Cobb-Douglas stochastic frontier as the preferred 

functional form, it is evident that the traditional average response function, in which farms 

are assumed to be fully technical efficient, is not an adequate representation of the data 

(i.e., the null hypothesis H0: γ=μ=η=0 is rejected). The null hypotheses that time-invariant 

models for farm effects apply are accepted (i.e., both H0: μ=η=0 and H0: η=0 are 

accepted), indicating that technical efficiency levels do not differ significantly over time 

(Table 7.2). However, the hypothesis that the technical inefficiency effects have a half-

normal distribution (H0: μ=0) was rejected. Furthermore, given the hypothesis that the 

yearly time effects are time-invariant (H0

 

: η=0 is accepted), the half-normal distribution is 

not appropriate to define the distribution of the farm effects. Therefore, on the basis of 

these results, the hypothesis of time-invariant technical efficiencies was accepted. Finally, 

the coefficient of the dummy introduced to capture the effects of the policy change was 

not significant (t-statistic<2) either for the translog or the CD functional forms. Both were 

confirmed by the LR test.   

7.1.3 The Canterbury-Southland sample 
 

Given the specification of the translog stochastic frontier production function with time 

varying inefficiency effects, the value of the log-likelihood function is 121.288 for 

Canterbury-Southland sampled farms (Table 7.3). In contrast to the other region, the 

coefficient of the dummy for policy change was significantly different from zero (t-

statistic>2) and was confirmed by the LR test.  

 

The hypothesis that the Cobb-Douglas is an adequate representation of the production 

technology was rejected by the data (Table 7.3). These imply that the input and substitution 

elasticities differ among farms. Furthermore, the hypothesis of no technical change and 

Hicks-neutral technical change were rejected, calling for the incorporation of a time trend 

(and its square term) and the time trend cross products with conventional factor inputs in 

the production function. 
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Given the specifications of the translog stochastic frontier with non-neutral technical 

change as the preferred functional form, it is evident that the traditional average response 

function, in which farms are assumed to be fully technical efficient, is not an adequate 

representation of the data (i.e., the null hypothesis H0: γ=μ=η=0 is rejected). Similarly, the 

null hypotheses that time-invariant models for farm effects apply are also rejected (i.e., 

both H0: μ=η=0 and H0: η=0 are rejected), indicating that technical efficiency levels differ 

significantly over time. Finally, the hypothesis that the technical inefficiency effects have a 

half-normal distribution (H0

 

: μ=0) was accepted (Table 7.3). 

Given that the half-normal distribution was assumed appropriate to define the distribution 

of the farm effects, the maximum likelihood estimate for the coefficient on the dummy for 

the policy change was -0.0717 and was significant at 10% (t=-1.8384).  The coefficient was 

found to be different from zero by the LR test. Hence, the policy change was not neutral in 

regard to its effect on the sampled farms in Canterbury-Southland. Relative to the base 

period (before the creation of Fonterra), dairy farms in the sample were, on average, 7.17% 

less productive in 2001–2005. Finally, the coefficient of the dummy for policy change for 

sampled farms in Canterbury-Southland (-0.0717) conforms to that estimated for the 

pooled sampled with the regional dummy (-0.0711), suggesting that sampled farms in 

Waikato-Taranaki were not affected by the policy change. 
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Table 7.3 - Model Y5, data for Canterbury-Southland: generalised likelihood-ratio tests of 

null hypotheses for parameters in the stochastic frontier production function 

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 

With dummy for policy 

change  

121.288    

A Cobb-Douglas 

function is adequate 
91.35 59.87 χ2

.05, 15 Reject Ho  = 25.00 

Technical change is 

neutral 
115.27 12.036 χ2

.05, 4 Reject Ho  = 9.49 

NO technical change  112.01 18.556 χ2
.05, 6 Reject Ho  = 12.6 

Traditional average 

response function is 

adequate representation 

of the data  

(γ=μ=η=0) 

94.34 53.89 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant  

μ=η=0 

105.51 31.556 χ2
.05, 2 Reject Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution  

μ=0 

121.158 0.26 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant  

η=0 

105.72 31.14 χ2
.05, 1 Reject Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 
appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 
is taken from Kodde and Palm (1986). 
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7.1.4 Testing the existence of a common frontier 
 

As was previously mentioned, the value of the coefficient of the regional dummy included 

in the pooled sample indicates that both regions may not be operating under the same 

technology. For model Y5, the preferred stochastic frontier models are specified below 

(Table 7.4). Note that the number of parameters estimated for the pooled sample and for 

Canterbury-Southland model is 25 (21 parameters in the frontier function (20+1 for the 

constant), 2 for the variance terms (sigma and gamma), 1 for the scalar η and 1 for the 

dummy for policy change). In turn, the number of parameters estimated for Waikato-

Taranaki model is 9 (6 parameters in the frontier function (5+1 for the constant), 2 for the 

variance terms (sigma and gamma) and 1 for the inefficiency effects (ui

 

)). 

Table 7.4 - Model Y5, generalised likelihood-ratio tests of null hypotheses that regions 

share a common stochastic frontier production function  

 

 
Log-likelihood 

(parameters 
estimated) 

LR-Test Statistic  
(degrees of freedom) 

Critical 
value 
(0.05) 

Decision 

Waikato-Taranaki 
Cobb-Douglas  
η=0 

97.363 
(9)    

Canterbury-Southland 
Non-neutral technical 
change with dummy 
for policy change and 
μ=0 

121.158 
(25)    

HA
∑ [Log-likelihood 
(WT)]+ [Log-
likelihood (CS)] 

: 
 218.521 

(34)    

Ho: 
Pooled sample 
Non-neutral technical 
change with dummy 
for policy change 
μ=0 

182.685 
(25) 

-2*(182.685-218.521) 

= 71.67 

df. (34-25=9) 

χ2
.05, 9 Reject Ho  = 
16.9 

 

 

The outcome of the test indicates that the two regional stochastic frontiers for dairy farms 

are not the same, supporting the a priori result obtained by using the regional dummy in the 
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pooled stochastic frontier. Therefore, according to the log-likelihood ratio test, farm-level 

data in the two regions are not generated from a single production frontier and the same 

underlying technology. Maximum likelihood parameter estimates for both regions are 

presented below. 

 

7.2 Waikato-Taranaki 

 

As was mentioned above, the preferred model for the Waikato-Taranaki region is a Cobb-

Douglas with time-invariant inefficiency. All the coefficients are significantly different from 

zero at 5%, except the time trend that is significant at 10%. Both test statistics (σ2 and γ) are 

significantly different from zero, as well as the maximum likelihood estimate for μ i

 

. The 

value of maximum likelihood estimate for η is zero, i.e., technical efficiency is constant over 

time. Given the function form, a Cobb-Douglas, the estimated coefficients are the output 

elasticities (Table 5). These do not differ between farms or over time. Furthermore, 

technical progress is Hicks-neutral. 

Table 7.5 - Model Y5, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 6.3101 0 11.0010 *** 
Capital (K2) β 0.1647 1 2.9542 ** 
Labour (L) β 0.3913 2 5.2041 *** 
Feed (FE) β 0.2031 3 7.3520 *** 
Fertiliser (FT) β 0.2473 4 5.8596 *** 
Year (Y) β 0.0041 t 1.7706 * 
Variance parameters    
Sigma σ 0.0195 2 3.6873 ** 
Gamma γ 0.5195 4.6873 ** 
    
Technical inefficiency effect μ 0.2013 i 3.5231 ** 
Time-varying inefficiency η Restricted to zero 
Log-likelihood function  97.363  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Over the period, labour appears to be the major determinant of dairy production growth, 

with an average output elasticity of 0.39, followed by fertiliser at 0.25, feed at 0.20 and 

capital at 0.16. On average for the period, a 1% increase in hours worked results in a 

growth of 0.39% in milk production ceteris paribus. Similarly, the outcome of a 1% increase 

in capital is an expansion of 0.16% in milk production. The elasticity of scale was 1.0063, 

indicating constant returns to scale in dairy farms. 

 

The frontier was shifting upwards (the region experienced technical progress) at a constant 

rate. The rate of exogenous technical progress is found to be increasing productivity by 

0.41% per annum. 

 

Given that the estimate of the parameter η is zero, the technical efficiencies were constant 

over time. The mean overall technical efficiency is 0.81, ranging between 0.72 and 0.96 

(Figure 7.1). This result indicates that the volume of milk produced by the farms in the 

sample during the period could have been achieved with approximately 19% fewer 

resources, if all farms had been technically efficient. 

 

The dispersion in technical efficiencies among dairy farmers is considerable. Furthermore, 

it can be seen that only two farms ranked high in technical efficiency (more than 95%), 

while three others have technical efficiencies higher than 85%. Given the small rate of 

technical progress and the high dispersion in technical efficiencies and bearing in mind the 

restrictions imposed by the model, it appears that there are important factors impeding the 

adequate use of the technology. A similar conclusion was found for Model J7 (Section 5.2, 

Chapter 5).   
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Figure 7.1 - Model Y5: efficiency scores for the individual farms in Waikato-Taranaki 
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7.3 Canterbury-Southland 

 

The preferred model for the Canterbury-Southland region is a translog with non-neutral 

technical change, with a half-normal distribution of the farm effects (Table 3). 

Furthermore, the dummy for policy change was significant. In contrast to model J7 and L8 

for Canterbury-Southland (Section 5.3 and Section 6.3) in which the policy change had a 

neutral effect over production, the impact of the policy change on farm production, given 

the production technology defined in this model, is negative. As indicated above, it might 

be concluded that farms in Canterbury-Southland were, on average, 7% less productive 

after the policy change than before. However, more research is needed in order to 

disentangle other effects that may be influencing the results reported here16

 

.  

 

 

 

                                                 
16  As mentioned above (Section 4.7), this dummy variable may also be capturing effects other than change in 
the institutional organization of the dairy industry, called for simplicity policy change.   
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Table 7.6 - Model Y5, data for Canterbury-Southland: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 3.0702 0 0.6412 
Capital (K2) β -1.5138 1 -1.7808 * 
Labour (L) β 1.0935 2 0.7005 
Feed (FE) β 1.2215 3 2.6683 ** 
Fertiliser (FT) β 0.9874 4 1.7901 * 
Year (Y) β 0.1288 t 0.8887 
(Year) β2 0.0007 tt 0.3237 
(K2) x (Y) β 0.0518 1t 2.3463 ** 
(L) x (Y) β -0.0438 2t -2.0711 ** 
(FE) x (Y) β 0.0148 3t 1.5910 
(FT) x (Y) β -0.0150 4t -0.8421 
(K2) β2 -0.2483 11 -1.2263 
(K2) x (L) β 0.3682 12 1.0379 
(K2) x (FE) β 0.2959 13 1.7961 *  
(K2) x (FT) β 0.1323 14 0.6022 
(L) β2 0.0823 22 0.3122 
(L) x (FE) β -0.5651 23 -3.6621 ** 
(L) x (FT) β -0.3585 24 -1.4139 
(FE) β2 0.3220 33 4.8954 **  
(FE) x (FT) β -0.3675 34 -2.9669 ** 
(FT) β2 0.3029 44 2.5640 ** 
Dummy for policy change Dpc -0.0717 -1.8384 *  
Variance parameters    
Sigma σ 0.0122 2 3.6740 **  
Gamma γ 0.4028 2.4323 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η 0.2293 6.2736 *** 
Log-likelihood function  121.158  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  

 

Ten out of twenty-one coefficients are significant. Three coefficients of the direct effects 

are significant: feed at 5% and capital and fertiliser, both at 10%. Three cross terms are 

significantly different from zero as well as the quadratic terms on feed and fertiliser, 
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confirming that the function is non-linear in some dimensions (Table 7.6). The sign of the 

coefficient of the time trend, and the square term on time are both positive but not 

significant. Finally, two interaction terms are significant at 5%: (time *capital) and (time 

*labour) (Table 7.6).  

 

The value of maximum likelihood estimate for γ is 0.4028 and is significant at 5%, 

indicating that technical inefficiency in the Canterbury-Southland dairy farms is present but 

also that noise plays a significant role. Finally, the estimated value of the parameter μ i

  

 is 

zero, indicating that technical inefficiency effects have a half-normal distribution and the 

value of maximum likelihood estimate for η is positive, i.e., technical efficiencies increase 

over time (Table 7.6). 

Over the period, labour appears to be the major determinant of dairy production growth, 

with an average input elasticity of 0.61, followed by fertiliser at 0.21 and feed at 0.06. The 

marginal output elasticity of capital is negative at -0.12, indicating that there is excess use of 

capital (Table 7.7). A negative sign for capital output elasticity was reported for Model L8 

(Table 6.7, Section 6.3, Chapter 6), whereas a positive capital output elasticity was found 

for Model J7 (Table 5.7, Section 5.3, Chapter 5).  

 

Average elasticities for capital and feed are significant at 10%. Meanwhile labour and 

fertiliser elasticities are significant at 5% (Appendix 1, Table A1.3). The negative coefficient 

on the time-trend variable indicates that the frontier was shifting backwards at an annual 

rate of 1.68% per annum. The positive sign of the coefficient of the quadratic term on time 

indicates that the effect is non-linear, but this was small and not significant (Appendix 1, 

Table A1.3).  
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Table 7.7 - Model Y5: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland 

 

 

Output elasticities Returns 
to scale 

Rate technical 
change Capital Labour Feed Fertilizer 

1996/97 -0.3221 0.7227 0.0536 0.1721 0.6262 -0.0240 
1997/98 -0.2811 0.6845 -0.0076 0.2059 0.6017 -0.0279 
1998/99 -0.2468 0.6490 0.0227 0.2173 0.6423 -0.0228 
1999/00 -0.1402 0.5985 0.1680 0.0950 0.7213 -0.0158 
2000/01 -0.1178 0.6057 0.1176 0.2025 0.8081 -0.0129 
2001/02 -0.0605 0.6143 0.1268 0.2059 0.8865 -0.0082 
2002/03 -0.0279 0.5722 0.0539 0.2314 0.8295 -0.0128 
2003/04 0.0071 0.5381 0.0167 0.2668 0.8288 -0.0137 
2004/05 0.0746 0.5007 0.0157 0.2691 0.8601 -0.0146 
Average -0.1206 0.6083 0.0632 0.2081 0.7590 -0.0168 

Note:  average values of output elasticities are estimated at sample mean. The average rate of technical change 

corresponds to cumulative growth over the period. 

 

These values means that, on average for the period, a 1% increase in labour prompts a 

0.61% growth in milk production and a 1% increase in capital provokes a reduction of 

0.12% in milk production. The elasticity of scale is 0.76, indicating decreasing returns to 

scale. Returns to scale increased over time from 0.63 at the beginning of the period to 0.86 

by the end of the period. Behind this development is a decline in the elasticity of labour 

from 0.72 to 0.50, whereas capital output elasticity increased from -0.32 to 0.07. As in 

Model L8, the negative elasticity of capital at the beginning of the period may be related to 

significant initial capital investments or the inadequate development of services (Section 

6.3, Chapter 6). The marginal output elasticity of feed, which started at 0.05, climbed to 

0.17 by season 1999/2000 and then decreased to 0.016 by the last season. Fertiliser 

elasticity started at 0.17 and after reaching 0.22 two seasons later, decreased to 0.09 by 

season 1999/2000. The following season it recovered to 0.20 and increased to 0.27 by the 

last season. 
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Figure 7.2 - Model Y5: annual rates of technical progress at the frontier for Canterbury-

Southland 
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The regional frontier experienced technical regress over the whole period (Figure 7.2). The 

productivity slowdown was more pronounced at the beginning of the period (-2.40%), it 

improved gradually up to season 2001/02 where technical regress was at -0.82% and finally 

declined to -1.28% and further to -1.46% for the last season (Table 7.7 and Figure 7.2). On 

average over the period, the frontier regressed at 1.68% per annum. 

 

The small increase in the rate of technical regress at the frontier in season 1997/98 may be 

the result of the drought in the region. Model L8 also captured this. Furthermore, both 

Model Y5 and Model L8 identified season 2001/02 as the season with the highest rate of 

technical progress at the frontier (Figure 7.3). 

 

The progressive reduction in the rate of technical regress at the frontier from the beginning 

of the period up to season 2001/02 may be rooted in the need to increase productivity and 

hence improve profitability. The downturn over the last three seasons may be the 

consequence of the high profitability, due to unprecedented higher milk prices, which 

reduced the incentives to increase productivity. The same was reported for Models L8 

(Section 6.3, Chapter 6).  
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Finally, it can be seen that the annual rates of technical progress at the frontier differ 

significantly between Model L8 and Model Y5 (Figure 7.3). However, both models 

identified the high and low in the same seasons. Furthermore, the shape of the curve is the 

same. Both models differ in two inputs: herd size and area of farm in Model L8 and feed 

and fertiliser in Model Y5. One possible explanation for the negative values of technical 

progress in Model Y5 is that both inputs (feed and fertiliser) are measured in value terms. 

Since prices of both inputs have gone up (in real terms) substantially over the period, the 

effect of price changes over time might be responsible for the negative value of technical 

progress.     

 

Figure 7.3 - Model Y5: comparison of the annual rates of technical progress at the frontier 

for Model L8 and Y5 for Canterbury-Southland 
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The mean overall technical efficiency is 0.86. This result indicates that the volume of milk 

produced by the farms in the sample during the period could have been achieved with 

approximately 14% fewer resources, if all farms had been technically efficient. Technical 

efficiency averaged 0.72, ranging between 0.97 and 0.38 for season 1996/97. For the last 

season, mean technical efficiency was 0.94, ranging between 0.99 and 0.85 (Table 8). 

 

 



 
 

 164 

Table 7.8 - Model Y5: estimates of technical efficiency by year for Canterbury-Southland 

 

 Mean Maximum Minimum St. deviation 
1996/97 0.7230 0.9726 0.3786 0.1638 
1997/98 0.7735 0.9781 0.4619 0.1521 
1998/99 0.8124 0.9825 0.5410 0.1255 
1999/00 0.8551 0.9860 0.6135 0.0950 
2000/01 0.8820 0.9889 0.6781 0.0792 
2001/02 0.8964 0.9911 0.7342 0.0710 
2002/03 0.9162 0.9929 0.7822 0.0582 
2003/04 0.9325 0.9944 0.8226 0.0475 
2004/05 0.9457 0.9955 0.8561 0.0385 

 

In contrast to farm efficiencies for Waikato-Taranaki, which were constant over the period, 

the positive sign on the coefficient on the parameter η implies that technical efficiencies 

increase over time (Figure 7.2). The difference in efficiency between farms was much larger 

in the earlier years than in the latter years. This indicates that less efficient farms were able 

to catch up with the frontier.  

  

Figure 7.4 - Model Y5: efficiency scores for the individual farms in Canterbury-

Southland(1) 
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(1) Note: In years when particular farmers were not observed, no values of technical efficiency are calculated. 
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7.4 Comparison of both reg ional models 

 

As indicated previously (Sections 5.4 and 6.4), given that production technologies differ 

across regions, input elasticities and technical change are not strictly comparable. The most 

important difference is found to be in the production function that represents the 

underlying production technology. Whereas a Cobb-Douglas best represented the 

production technology for Waikato-Taranaki farms, the more flexible translog function was 

the best representation of the technology applied by farms in Canterbury-Southland. For 

the Waikato-Taranaki data set estimated input elasticities, returns to scale and technical 

progress do not differ between farms or over time. Furthermore, technical progress is 

neutral. In contrast, in the Canterbury-Southland data set, the estimated marginal 

elasticities, returns to scale and technical progress differ among farms and over time.     

  

For both regions, labour contributes significantly to output growth, as it is the single most 

important input (Table 7.9). However, the marginal output elasticity of labour is 0.39 for 

Waikato-Taranaki and 0.60 for Canterbury-Southland. Fertiliser is the second most 

important input for both regions. Interestingly, the fertiliser output elasticity is 0.25 for 

Waikato-Taranaki and 0.21 for Canterbury-Southland. 

 

Table 7.9 - Model Y5: comparison of factor input elasticity estimates at sample mean 

 

 

Output elasticities Returns to 
scale Capital Labour Feed Fertiliser 

Waikato-Taranaki 0.1647 0.3912 0.2031 0.2473 1.0063 
Relative contribution (%) 16% 39% 20% 25%  
Canterbury-Southland -0.1206 0.6083 0.0632 0.2081 0.7590 
Relative contribution (%) -16% 80% 8% 27%  

 

Feed is the third most important input. However, feed elasticity for Waikato-Taranaki is at 

0.20, almost 3.2 times higher than that estimated for Canterbury-Southland at 0.06. 

Therefore, a 1% increase in feed use increases milk production by 0.20% in the former 

region and by only 0.06% in the latter region. 

 

The most important difference is to be found in the value of the marginal output elasticity 

of capital. Whereas capital output elasticity for Waikato-Taranaki is at 0.16, the value for 
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Canterbury-Southland is negative, -0.16, indicating excess input use. As explained above 

(Sections 5.4 and 6.4), the different sign in the capital output elasticity may be related to 

differences in the initial levels of development of the infrastructure of services or to the 

significant initial capital investments in Canterbury-Southland. Finally, Waikato-Taranaki 

(smaller average farms) is operating at constant returns to scale (RTS), whereas Canterbury-

Southland (larger average farms) is operating at decreasing returns, albeit RTS have been 

increasing over the period (Table 7.7).  

 

Over the period, Canterbury-Southland exhibited technical regress at the frontier (Figure 

7.2), whereas Waikato-Taranaki experienced a constant rate of technical progress at the 

frontier (Table 7.5). In addition, technical change is non-neutral in the former region and 

Hicks-neutral in the latter.  

 

Another important difference is found in the behaviour of technical efficiency over time. 

For Waikato-Taranaki, farm technical efficiencies are constant over time, whereas farms in 

Canterbury-Southland exhibited a progressive improvement (Figure 7.4). Consequently, the 

dispersion in farm technical efficiencies is constant over time in the former region and 

decrease in the latter. 

 

Average efficiency for Waikato-Taranaki farms was higher than for Canterbury-Southland 

farms over the first two seasons of the period, but this was reversed in the last 6 seasons of 

the period. By the last period, average efficiency for Canterbury-Southland was at 0.94, 

ranging between 0.85 and 0.99, whereas for Waikato-Taranaki, average efficiency remained 

at 0.82, ranging between 0.72 and 0.96. 
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Figure 7.4 - Model Y5: comparison of farm efficiency score between Waikato-Taranaki and 

Canterbury-Southland 
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The policy implications of the differences in technical change and in farm efficiencies will 

be discussed in the next section where the decomposition of TFPG is undertaken. 
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CHAPTER 8 
 
 

8 Results for Model K9 
 

 

8.1 Determination of the preferred functional form 

 
Model K9 was defined in terms of the following factor inputs: cows, labour (hours 

worked), fertiliser expenditure (deflated by the corresponding price index) and capital (K9, 

expenditure on repairs and maintenance on vehicles and buildings, plus expenditure on fuel 

and electricity, plus rates and insurance, administration costs and miscellaneous expenses, 

deflated by the corresponding price index).  

 

8.1.1 All data pooled across both regions 
 

Empirical results were obtained by using the stochastic frontier production model with 

time-varying inefficiency effects defined above (Section 4.7). The coefficient on the dummy 

introduced to capture the effects of the policy change was not significant (t<2). This result 

was confirmed by the LR test. 

 

Given the specifications of the stochastic frontier, various hypotheses were tested to 

determine the preferred functional form and the distribution of the random variables 

associated with the existence of technical inefficiency and the residual error term (Table 

8.1). 

  

The translog stochastic frontier production model was estimated first. The first null 

hypothesis that the Cobb-Douglas production function is an adequate representation for 

the pooled data was accepted. However, the hypothesis of neutral technical change was 

rejected. 
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Table 8.1 - Model K9, data for both regions: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given pooled sample 248.288    

A Cobb-Douglas 

function is adequate 
238.39 19.796 χ2

.05, 15 Accept Ho  = 25.00 

Technical change is 

neutral 
242.58 11.416 χ2

.05, 4 Reject Ho  = 9.49 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. CD) 

(γ=μ=η=0) 

191.394 93.99 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. CD) 

μ=η=0 

231.63 13.52 χ2
.05, 2 Reject Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. CD) 

μ=0 

235.38 6.02 χ2
.05, 1 Reject Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

CD) 

η=0 

234.27 8.24 χ2
.05, 1 Reject Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 
appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 
is taken from Kodde and Palm (1986). 
 

Given the specifications of the Cobb-Douglas production function, it is evident that the 

traditional average response function, in which farms are assumed to be fully technical 

efficient, is not an adequate representation of the data (i.e., the null hypothesis H0: 

γ=μ=η=0 is rejected). Similarly, the null hypotheses, that time-invariant models for farm 
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effects are valid are also rejected (i.e., both H0: μ=η=0 and H0: η=0 are rejected), indicating 

that technical efficiency levels varied significantly over time (Table 8.1). Finally, the 

hypothesis that the technical inefficiency effects have a half-normal distribution (H0

 

: μ=0) 

was also rejected.   

The CD stochastic frontier model was estimated with the regional dummy. The value of 

the log-likelihood function was 242.87. The coefficient of the regional dummy has a value 

of 0.1082 and it was significantly different from zero at 5% (t-value=3.3657). This result 

was confirmed by the likelihood-ratio test (LR). Therefore, as for all the other models, 

there is a priori evidence that the stochastic frontier model differs between regions. 

Furthermore, given the production function defined by the input/output set, Canterbury-

Southland sampled farms are, on average, 10.82% more productive than sampled farms in 

Waikato-Taranaki. 

 

8.1.2 The Waikato-Taranaki sample 
 

The value of the log-likelihood function, for the translog stochastic frontier model with 

time varying inefficiency effects for Waikato-Taranaki, is 132.41. The coefficient of the 

dummy introduced to capture the effects of the policy change was not significant. Results 

of the different hypotheses tested are presented below (Table 8.2). The first null hypothesis 

that the Cobb-Douglas is an adequate representation of the data was accepted. However, 

the hypothesis of Hicks-neutral technical change was rejected. 

 

Given the specifications of the Cobb-Douglas production function, the hypothesis that the 

average response function is an adequate representation of the data was rejected. 

Conversely, the null hypotheses, that time-invariant models for farm effects are valid, were 

accepted (i.e., both H0: μ=η=0 and H0: η=0), indicating that technical efficiency levels did 

not vary significantly over time. Finally, the hypothesis that the technical inefficiency 

effects have a half-normal distribution (H0

 

: μ=0) was also accepted. 
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Table 8.2 - Model K9, data for Waikato-Taranaki: generalised likelihood-ratio tests of null 

hypotheses for parameters in the stochastic frontier production function  

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given Waikato-

Taranaki sample 
132.41    

A Cobb-Douglas 

function is adequate 
125.25 14.32 χ2

.05, 15 Accept Ho  = 25.00 

Technical change is 

Hicks-neutral 
127.28 10.26 χ2

.05, 4 Reject Ho  = 9.49 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. CD) 

(γ=μ=η=0) 

116.55 7.94 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. CD) 

μ=η=0 

125.07 0.36 χ2
.05, 2 Accept Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. CD) 

μ=0 

125.24 0.02 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

CD) 

η=0 

125.15 0.2 χ2
.05, 1 Accept Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 
appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 
is taken from Kodde and Palm (1986). 
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8.1.3 The Canterbury-Southland sample 
 

Given the specification of the translog stochastic frontier production function with time 

varying inefficiency effects, the value of the log-likelihood function is 145.23 for 

Canterbury-Southland sampled farms (Table 8.3). As for the other region, the coefficient of 

the dummy for policy change was not significantly different from zero by the LR test. The 

hypotheses that the Cobb-Douglas is an adequate representation and that technical change 

is Hicks-neutral were both rejected (Table 8.3). 

 

Given the specifications of the translog production function, the hypothesis that the 

average response function is an adequate representation of the data was rejected. Similarly, 

the null hypotheses that time-invariant models for farm effects are valid were rejected (i.e., 

both H0: μ=η=0 and H0: η=0), indicating that technical efficiency levels varied significantly 

over time. Finally, the hypothesis that the technical inefficiency effects had a half-normal 

distribution (H0

 

: μ=0) was accepted. 
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Table 8.3 - Model K9, data for Canterbury-Southland: generalised likelihood-ratio tests of 

null hypotheses for parameters in the stochastic frontier production function 

 

Null Hypothesis (Ho) Log-likelihood LR-Test 

Statistic (λ) 

Critical value 

(0.05) 

Decision 

Given Canterbury-

Southland sample 
145.23    

A Cobb-Douglas 

function is adequate 
122.64 45.18 χ2

.05, 15 Reject Ho  = 25.00 

Technical change is 

Hicks-neutral 
132.25 25.96 χ2

.05, 4 Reject Ho  = 9.49 

Traditional average 

response function is 

adequate representation 

of the data (w.r.t. TL) 

(γ=μ=η=0) 

121.36 47.74 χ2
.05, 3 Reject Ho  = 7.04 

Technical inefficiencies 

have a half-normal 

distribution and are time 

invariant (w.r.t. TL) 

μ=η=0 

140.80 8.86 χ2
.05, 2 Reject Ho  = 5.99 

Technical inefficiencies 

have a half-normal 

distribution (w.r.t. TL) 

μ=0 

145.22 0.02 χ2
.05, 1 Accept Ho = 3.84 

Technical inefficiencies 

are time invariant (w.r.t. 

TL) 

η=0 

140.87 8.72 χ2
.05, 1 Reject Ho = 3.84 

Note: Critical values for the hypotheses tests, except for testing inefficiency effects, are obtained from the 

appropriate chi-square distribution. The critical value for testing the null hypothesis of no inefficiency effects 

is taken from Kodde and Palm (1986). 
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8.1.4 Testing the existence of a common frontier 
 

As was previously mentioned, the value of the coefficient of the regional dummy included 

in the pooled sample indicates that both regions may not be operating under the same 

technology. For model K9, the preferred stochastic frontier models are specified below 

(Table 8.4).  

 

Note that the number of parameters estimated for the pooled sample is 10 (6 parameters in 

the frontier function (5+1 for the constant), 2 for the variance terms (sigma and gamma), 1 

for the scalar η and 1 for the inefficiency effects (u i

 

)). The number of parameters estimated 

for Waikato-Taranaki model is 8 (6 parameters in the frontier function (5+1 for the 

constant), 2 for the variance terms (sigma and gamma)). Finally, the number of parameters 

estimated for Canterbury-Southland model is 24 (21 parameters in the frontier function 

(20+1 for the constant), 2 for the variance terms (sigma and gamma), and 1 for the scalar 

η).  

Table 8.4 - Model K9: generalised likelihood-ratio tests of null hypothesis that regions 

share a common stochastic frontier production function  

 

 
Log-likelihood 

(parameters 
estimated) 

LR-Test Statistic  
(degrees of freedom) 

Critical 
value 
(0.05) 

Decision 

Waikato-Taranaki 
Cobb-Douglas, 
μ=η=0  

125.07 
(8)    

Canterbury-Southland 
TL with non-neutral 
technical change, 
 μ=0 

145.22 
(24)    

HA
∑ [Log-likelihood 
(WT)]+ [Log-
likelihood (CS)] 

: 
 270.29 

(32)    

Ho: 
Pooled sample 
Cobb-Douglas 

238.39 
(10) 

-2*(238.39-270.29) = 

63.8 

df. (32-10=12) 

χ2
.05, 12 Reject Ho  

=21.0  

 



 
 

 175 

The outcome of the test indicates that the two regional stochastic frontiers for dairy farms 

are not the same, confirming the a priori result obtained by using the regional dummy in the 

pooled stochastic frontier. Therefore, according to the log-likelihood ratio test, farm-level 

data in the two regions were not generated from a single production frontier or from the 

same underlying technology. Maximum likelihood parameter estimates for both regions are 

presented below. 

 

8.2 Waikato-Taranaki 

 

As was mentioned above, the Cobb-Douglas function best represents the underlying 

technology for the Waikato-Taranaki sampled farms. A similar result was found for Models 

L8 and Y5. Furthermore, the stochastic frontier has time-invariant inefficiency effects with 

half-normal distribution (Table 8.5). 

 

Table 8.5 - Model K9, data for Waikato-Taranaki: maximum likelihood estimates for 

parameters of the stochastic frontier under VRS (variable returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 4.8544 0 12.1562 *** 
Cows (CW) β 0.6694 1 7.2166 *** 
Labour (L) β 0.2447 2 2.7372 ** 
Fertilizer (FT) β 0.0833 3 2.3812 ** 
Capital (K9) β 0.1392 4 3.5904 ** 
Year (Y) β 0.0027 t 2.0854 ** 
Variance parameters    
Sigma σ 0.0145 2 3.4358 ** 
Gamma γ 0.5401 3.8086 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η Restricted to zero 
Log-likelihood function  127.07  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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All the coefficients on the production function are significantly different from zero at 5%. 

The estimated coefficients are the output elasticities. These are the same across all farms 

and over time. Furthermore, technical progress is Hicks-neutral. Both test statistics (σ2 and 

γ) are significantly different from zero. As indicated above, the estimated coefficients for η 

and μ i

 

 are zero. 

Herd size (number of cows) appears to be the major determinant of dairy production 

growth, with an average input elasticity of 0.67, followed by labour at 0.24, capital at 0.14 

and fertiliser at 0.08. On average for the period, a 1% increase in the number of cows 

results in a growth of 0.67% in milk production ceteris paribus. Similarly, the outcome of a 

1% increase in capital is an expansion of 0.14% in milk production. The elasticity of scale is 

found to be 1.1365, indicating increasing returns to scale. Increasing returns to scale have 

been found for Model L8, whereas constant returns were revealed for Model J7 and Model 

Y5.  

 

The frontier was shifting upwards (technical progress) at a constant rate. The rate of 

exogenous technical progress is found to be increasing productivity by 0.27% per annum. 

This value is slightly less than the one found for Model J7 (Section 5.2, Chapter 5) and for 

Model Y5 (Section 7.2, Chapter 7), where the frontier was shifting at 0.47% and 0.41% per 

annum respectively. Meanwhile, for Model L8 (Section 6.2, Chapter 6), no technical 

progress was found (technical progress was negative but not significant).  

 

Given that η=0, there is no change in technical efficiency over time. As for Model Y5, this 

result was not expected, given the sluggish rate of technical progress. However, as indicated 

above (Section 7.2), this may be the result of the restriction imposed by using the time-

varying inefficiency model. 

 

The mean overall technical efficiency is 0.933, ranging between 0.853 and 0.983 (Figure 

8.1). This result indicates that the volume of milk produced by the farms in the sample 

during the period could have been achieved with approximately 6.7% fewer resources, if all 

farms had been technically efficient. 

 

It can also be seen that the dispersion in farm technical efficiency is low (the coefficient of 

variation is 4.7%). Furthermore, seven farms had a technical efficiency higher than 0.95, 
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while four had efficiency estimates lower than 0.90 (Figure 8.1). Average technical 

efficiency and its range are similar to those reported for Model L8 (Section 6.2, Chapter 6). 

As for Model L8, this indicates that the technology defined by this input/output set is 

being used adequately. In turn, the fact that technical progress at the frontier was zero and 

that farm efficiency scores are high (i.e., technology is being applied adequately) leads to 

the conclusion that farms in the sample need a new technological paradigm to be able to 

increase productivity. 

 

Figure 8.1 - Model K9: efficiency scores for the individual farms in Waikato-Taranaki 
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8.3 Canterbury-Southland 

 

The preferred specification for the Canterbury-Southland region is a translog stochastic 

frontier with non-neutral technical change time-varying inefficiency effects with half-

normal distribution (Table 8.4). As for Model J7 and Model L8, and in contrast to Model 

Y5 (Section 7.3, Chapter 7), the impact of the policy change on the production technology 

defined in this model is neutral. That is, the LR test indicates that the coefficient of the 

dummy variable, incorporated to capture the policy change, was not different from zero. 
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Many individual parameter estimates are non-significant. although the overall explanatory 

power of the equation is acceptable (σ2

 

 and γ are both significantly different from zero). 

Furthermore, the individual estimates of elasticity of output with respect to labour are 

negative for some years (Table 8.9). These suggest that the model suffers from 

multicollinearity. The correlations between herd size, fertiliser and capital are high. Even 

though multicollinearity is not a concern for the measurement of technical efficiency 

(Hallam and Machado, 1996 and Jaforullah and Devlin, 1996) and hence the estimation of 

technical efficiency change, it may be a problem for the assessment of technical progress 

because this is estimated using the parameter estimates.      

The coefficient of the time trend is significant at 10%, but not the quadratic term on time. 

Furthermore, three cross terms of time with inputs are significant at 5%. Finally, the 

coefficient on the quadratic term of capital is significant (Table 8.8). Given that most of the 

coefficients on time were significant, whereas most of the cross terms were not significant, 

the simplified translog function (the cross terms between inputs were jointly zero) was 

tested but rejected at 5%.   

 

Given the specifications of the general frontier, the stochastic frontier has time varying 

inefficiency effects (the scalar η is significantly different from zero) with half-normal 

distribution (μ i

 

=0). The value of maximum likelihood estimate for γ is 0.49 and is 

significant at 5%, indicating that technical inefficiency in the Canterbury-Southland 

sampled dairy farms is present but also that noise plays a significant role. 
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Table 8.8 - Model K9: maximum likelihood estimates for parameters of the stochastic 

frontier production function for Canterbury-Southland 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β -0.3065 0 -0.0807 
Cows (CW) β -3.1137 1 -1.7745 
Labour (L) β 4.7116 2 2.2833 ** 
Fertiliser (FT) β 0.5801 3 0.7995 
Capital (K9) β -1.0972 4 -1.5537 
Year (Y) β -0.0392 t -1.9660 ** 
(Year) β2 -0.0025 tt -1.5779 
(CW) x (Y) β -0.0677 1t -1.8059 * 
(L) x (Y) β 0.0155 2t 0.5112 
(FT) x (Y) β 0.0457 3t 3.3195 ** 
(K9) x (Y) β 0.0322 4t 2.4836 ** 
(CW) β2 0.4270 11 0.4851 
(CW) x (L) β 0.2684 12 0.1757 
(CW) x (FT) β -0.3917 13 -1.1325 
(CW) x (K9) β 0.5883 14 1.2603 
(L) β2 -0.7177 22 -1.0179 
(L) x (FT) β 0.1071 23 0.2975 
(L) x (K9) β 0.1990 24 0.4638 
(FT) β2 0.0759 33 0.6096 
(FT) x (K9) β -0.1669 34 -0.8224 
(K9) β2 -0.2941 44 -2.4163 ** 
Variance parameters    
Sigma σ 0.0107 2 2.8941 ** 
Gamma γ 0.4902 2.7427 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η 0.1476 2.7810 ** 
Log-likelihood function  145.22  

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  

 

Over the period, number of cows appears to be the major determinant of dairy production 

growth, with an average input elasticity of 0.98, followed by labour at 0.03. The marginal 

output elasticity of capital is negative at -0.07 (Table 8.9). A negative capital elasticity, albeit 

on a different measure of capital, was reported for Model L8 (Table 6.7, Section 6.3) and 
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for Model Y5 (Table 7.7, Section 7.3). The negative elasticity of fertilizer is unexpected, as 

is the low value of labour elasticity, suggesting multicollinearity problems discussed above.  

 

Average elasticity for herd size was significant at 5%, while capital and fertilizer elasticities 

were significant at 10% and labour elastictity was not significant. The coefficient on the 

time-trend variable indicates that the frontier was shifting upwards at an annual rate of 

1.57% per annum. The coefficient of the quadratic term on time is small and negative but 

is not significantly different from zero (Appendix 1, Table A1.4). On average for the 

period, a 1% increase in the number of cows resulted in a growth of 0.98% in milk 

production. Similarly, a 1% increase in capital is associated with a reduction of 0.07% in 

milk production.  

 

Table 8.9 - Model K9: elasticity estimates, rate of technical progress and return to scale for 

Canterbury-Southland 

 

 

Output elasticities Returns 
to scale 

Rate technical 
change Cows Labour Fertilizer Capital 

1996/97 1.1488 0.0624 -0.2369 -0.2237 0.7506 0.0029 
1997/98 1.1122 0.0239 -0.1926 -0.1833 0.7601 0.0020 
1998/99 1.0762 0.0822 -0.1502 -0.1572 0.8509 0.0103 
1999/00 0.9755 0.0739 -0.1289 -0.1261 0.7944 0.0140 
2000/01 1.0060 0.0507 -0.0726 -0.0807 0.9034 0.0190 
2001/02 1.0010 -0.0013 -0.0483 -0.0238 0.9276 0.0267 
2002/03 0.9243 -0.0074 -0.0087 0.0131 0.9213 0.0244 
2003/04 0.8471 -0.0154 0.0330 0.0506 0.9154 0.0245 
2004/05 0.7900 -0.0258 0.0795 0.0881 0.9319 0.0284 
Average 0.9843 0.0297 -0.0782 -0.0687 0.8670 0.0157 

Note: Average values of output elasticities are estimated at sample mean. The average rate of technical change 

corresponds to cumulative growth over the period. 

 

The elasticity of scale was 0.87, indicating decreasing returns to scale. Returns to scale have 

been increasing over time from 0.75 at the beginning of the period to 0.93 by the end. 

Behind this development is the decline in the marginal elasticity of herd size from 1.15 to 

0.79, whereas the marginal output elasticities of fertilizer and capital increased from -0.24 

to 0.08 and from -0.22 to 0.09 respectively. Meanwhile, the marginal elasticity of labour 

started at 0.06 and declined to -0.026 (Table 8.9).  
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Figure 8.3 - Model K9: annual rate of technical progress at the frontier for Canterbury-

Southland 
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The regional frontier experienced technical progress over the whole period, more slowly at 

the beginning of the period (0.29%), but then improving gradually up to season 2001/02, 

where technical progress was at 2.67%. It then suffered a small deceleration before finally 

increasing to 2.84% for the last season (Table 8.9 and Figure 8.3). On average over the 

period, the frontier was progressing at 1.57% per annum, as indicated above. 

 

The small decline in the rate of technical progress at the frontier in season 1997/98 may 

have been associated with the drought experienced in Canterbury17

 

. Model L8 and Model 

Y5 also captured this. Both Model Y5 and Model L8 identified season 2001/02 as the 

season with the highest rate of technical progress at the frontier. However, for Model K9, 

the highest rate of technical progress was found for the last season. Nevertheless, this 

model also captured the high rate of technical progress for season 2001/02 (Figure 8.3).   

The progressive increase in the rate of technical progress at the frontier from the beginning 

of the period up to season 2001/02 may be rooted in the need to increase productivity and 

hence improve profitability. The small decline in the rate of technical progress for the next 

                                                 
17 There was a severe drought in Canterbury in 1997–99. Regional economic impacts of the 1997–1999 
Canterbury drought, MAF 2000.  
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two seasons may be the consequence of the high profitability, due to unprecedented higher 

milk prices, which reduced the incentives to increase productivity. The same was reported 

for Models L8 (Section 6.3, Chapter 6).  

 

The mean overall technical efficiency is 90%. This result indicates that the volume of milk 

produced by the farms in the sample during the period could have been achieved with 

approximately 10% fewer resources, provided all farms were technically efficient. The 

positive sign on the coefficient of the parameter η implies that technical efficiencies 

increase over time (Figure 8.4). For the first season, average technical efficiency was 0.83, 

ranging between 0.97 and 0.56. Meanwhile, for the last season, average technical efficiency 

climbed to 0.94, ranging between 0.99 and 0.84 (Table 8.10). 

 

Table 8.10 - Model K9: estimates of technical efficiency by year for Canterbury-Southland 

 

 Mean Maximum Minimum St. deviation 
1996/97 0.8353 0.9687 0.5651 0.1095 
1997/98 0.8593 0.9729 0.6111 0.1041 
1998/99 0.8753 0.9766 0.6538 0.0891 
1999/00 0.8936 0.9797 0.6930 0.0768 
2000/01 0.9071 0.9825 0.7287 0.0677 
2001/02 0.9154 0.9848 0.7610 0.0593 
2002/03 0.9264 0.9869 0.7901 0.0520 
2003/04 0.9359 0.9887 0.8160 0.0455 
2004/05 0.9444 0.9902 0.8391 0.0398 

 

The dispersion in technical efficiencies of dairy farmers was considerable at the beginning 

but converged over time (the standard deviation fell from 0.11 to 0.04 over the period) 

(Figure 8.4 and Table 8.10). Therefore, even though the region exhibited technical progress 

at the frontier, less efficient farms were able to catch up with the frontier farms. 
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Figure 8.4 - Model K9: efficiency scores for individual farms in Canterbury-Southland(1) 
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(1) Note: In years when particular farmers were not observed, no values of technical efficiency are calculated. 

 

8.4 Comparison of both reg ional models 

 

As indicated previously, given that production technologies differ across regions, input 

elasticities and technical change are not strictly comparable. As for Model J7, Model L8 and 

Model Y5, a Cobb-Douglas best represented the underlying production technology for 

farms in Waikato-Taranaki, whereas the more flexible translog function was used to 

represent the technology for farms inCanterbury-Southland. 

 

For both regions, herd size contributed significantly to output growth as the single most 

important input (Table 8.13). However, the marginal output elasticity of herd size was 

higher in the southern region: 0.66 for Waikato-Taranaki and 0.98 for Canterbury-

Southland. Meanwhile, the marginal output elasticity of labour is different across regions: 

0.24 for Waikato-Taranaki and 0.03 for Canterbury-Southland. 

 

The most important difference is to be found in the value of the marginal output 

elasticities of fertiliser and capital. Capital output elasticity for Waikato-Taranaki was 0.14, 

whereas Canterbury-Southland exhibited a significant input congestion with an elasticity of 
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-0.07. Finally, fertiliser output elasticity was 0.08 and -0.08 for Waikato-Taranaki and 

Canterbury-Southland respectively. As explained above (Sections 5.4, 6.4 and 7.4), the 

different sign in the capital output elasticity may be related to the degree of development of 

the infrastructure of services and to the significant investments incurred by farms located in 

the southern region. Finally, farms in Waikato-Taranaki were operating at increasing 

returns to scale. Conversely, Canterbury-Southland farms were operating at decreasing 

returns to scale. However, returns to scale have continuously increased over the period 

considered (Table 8.9).  

 

Table 8.13 - Comparison of factor input elasticity estimates at sample mean 

 

 

Output elasticities Returns to 
scale Cows Labour Fertilizer Capital 

Waikato-Taranaki 0.6694 0.2447 0.0833 0.1392 1.1366 
Relative contribution (%) 59% 22% 7% 12% 100% 
Canterbury-Southland 0.9843 0.0297 -0.0782 -0.0687 0.8670 
Relative contribution (%) 114% 3% -9% -8% 100% 

 

Both regions exhibited technical progress at the frontier. However, for farms in 

Canterbury-Southland, the rate of technical progress increased over the period, whereas 

sampled farms in Waikato-Taranaki experienced a constant rate of technical progress 

(Figure 8.7).  
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Figure 8.7 - Model K9: annual rate of technical progress at the frontier for Waikato-

Taranaki and Canterbury-Southland 
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The other relevant difference is found in the behaviour of technical efficiency over time. 

For Waikato-Taranaki, farm technical efficiencies are constant over time. Meanwhile, 

technical efficiency for farms in Canterbury-Southland exhibited a progressive 

improvement (Figure 8.8). Consequently, the dispersion in farm technical efficiencies is 

constant over time in the former region and decreases in the latter. 

 

Average efficiency for Waikato-Taranaki farms was higher than for Canterbury-Southland 

farms over most of the period. By the last season, average efficiency for Canterbury-

Southland was at 0.94, ranging between 0.85 and 0.99, whereas for Waikato-Taranaki, 

average efficiency remained at 0.93, ranging between 0.85 and 0.98. 

 

 

 

 

 

 

 



 
 

 186 

Figure 8.8 - Model K9: comparison of farm efficiency score between Waikato-Taranaki and 

Canterbury-Southland 
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CHAPTER 9 
 
 

9 Total Factor Productivity Decomposition  

 

9.1 Introduction 

 

In this chapter, TFP is decomposed into changes in the frontier (technical progress, TP) 

and changes in efficiency (technical efficiency change, TEC) for each model and region. As 

mentioned in the introductory chapter, the primary objective was to ascertain whether TFP 

estimates, and its components, are robust to the selection of the input/output set. This was 

studied in this thesis by comparing the estimates of TFP derived by four models that 

differed in their inputs, for farms in two regions. 

 

A stochastic frontier approach was used to construct indices of TFPG. A translog 

stochastic production function was specified and estimated for each region.  

In the extensive form: 
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(1) 

 

where: 

Y denotes output 

x1 to x4

x

 represent the natural log of the factor input. The stochastic frontier model (SFM) 

was estimated for different combinations of factors inputs (Chapter 4, Table 4.3) 

5 is the year of observation, where x5

DPch is a dummy variable equal to 0 for season 1996/97 to season 2000/01 and equal to 1 

for the latter years.   

= 1 to 9 for the seasons 1996/97, 1997/98, 1998/99, 

1999/2000, 2000/01, 2001/02, 2002/03, 2003/04 and 2004/05 respectively;  

Vit and Uit are the random variables defined above (Chapter 4, section 4.4) 
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As explained above, the Malmquist TFP index is best measured relative to a constant 

return to scale (CRS) technology, as TFP indices obtained through a VRS technology may 

not properly account for the influence of scale (Chapter 4). The results reported in the 

previous chapters (5, 6, 7 and 8) were estimated using a variable return to scale (VRS) 

technology. Estimates of the parameters associated with these models using a CRS 

technology are reported in Appendix 2. The parameters estimated using the CRS 

technology were used to calculate the Malmquist TFP index reported in this chapter.  

 

Indices of technical change and technical efficiency change were calculated for each farm 

between consecutive years using the procedure described in the methodology (Chapter 4, 

section 4.2) for each of the models estimated in the previous chapters. Following Coelli, 

Rao and Battese (1998), these indices were aggregated using geometric means and the 

resultant indices were converted into cumulative indices. Therefore, TEC, TP and TFP 

indices reported below correspond to the regional level. Farm-level estimates for technical 

efficiency, technical efficiency change, technical progress and total factor productivity at 

each time period and for each model are reported in Appendix 3. 

 

9.2 Waikato-Taranaki 

 

Before undertaking the decomposition of TFP, a descriptive summary of the four models 

estimated for Waikato-Taranaki is introduced. 
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Table 9.1 - Waikato-Taranaki: summary of the four models 

  

 Functional 

form 

Technical progress 

(at the frontier) 

Technical efficiency 

Mean (range) 

Model J7 Cobb-Douglas 
Hicks-neutral 

0.67% per annum 

Time-invariant 

0.87 (0.75-0.98) 

Model L8 Cobb-Douglas 
Hicks-neutral 

0.32% per annum  

Time-invariant 

0.94 (0.87-0.98) 

Model Y5 Cobb-Douglas 
Hicks-neutral 

0.39% per annum 

Time-invariant 

0.81 (0.72-0.96) 

Model K9 Cobb-Douglas 
Hicks-neutral 

0.56% per annum 

Time-invariant 

0.93 (0.85-0.98) 

 

9.2.1 Technical efficiency change, as estimated by the four models 
 

Farm technical efficiency estimated by all models (Model J7, Model L8, Model Y5 and 

Model K9) showed no changes over the period (technical efficiency was time-invariant, 

η=0). This implies that for all farms, their respective distance from the production frontier 

remained the same over the whole period. Therefore, the cumulative indices of technical 

efficiency change equal 1 over the whole period for all these models (Table 9.2).  

 

Table 9.2 - Cumulative indices of technical efficiency change for Waikato-Taranaki region, 

estimated by the four models 

 

 Model J7 Model L8 Model Y5 Model K9 
1996/97 
to 
2004/05 

1.0000 1.0000 1.0000 1.0000 

Cumulative (%) 0.0% 0.0% 0.0% 0.0% 
Note: 1.000= no change 

 

The average efficiency over the period, which is a measure of the structural efficiency 

(Kumbhakar and Hjalmarsson, 1992), was at 87% for Model J7, 94% for Model L8, 81% 

for Model Y5 and 93% for Model K9, indicating that on average over the period, milk 
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production could have been increased by 13%, 6%, 19% and 7% respectively, given the 

level of resources used provided all units were technical efficient (Table 9.1). 

 

Mean technical efficiency and its range are similar for Model L8 and Model K9, but these 

values differ significantly from the results of Model Y5 and Model J7 (Figure 9.1). 

Interestingly, farms WT6 and WT11 ranked highest and lowest respectively in technical 

efficiency for Model L8 and Model K9. For Model J7 and Model Y5, farm WT12 and farm 

WT8 ranked highest respectively. Meanwhile, farm WT9 ranked lowest for both models 

(Figure 9.1). 

 

Figure 9.1 - Waikato-Taranaki: average efficiency scores and its range of the four models  
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The average estimates of farm efficiency for all the models proposed are reported below 

(Table 9.3). All four models estimated for Waikato-Taranaki revealed that technical 

efficiency was time-invariant (Table 9.1). The adjacent column (in grey) shows the farm’s 

rank using each efficiency estimate. As shown (Table 9.3), there is a difference in the 

magnitude of the efficiency estimates. However, the Pearson correlation coefficient shows 

a significant correlation in efficiency scores among alternative models. For example, 

efficiency estimates from models L8 and K9 have a Pearson correlation coefficient of 0.885 
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(significant at 1%) while those from models J7 and Y5 have a Pearson correlation 

coefficient of 0.843. All the other Pearson correlation coefficients are also significant.  

 

Table 9.3 - Farm efficiency estimates and correlation of farm efficiency estimates given the 

alternative input/output sets for Waikato-Taranaki 

 

 Model 
 L8 J7 Y5 K9 

Farm  Av 
efficiency 

Rank Av 
efficiency 

Rank Av 
efficiency 

Rank Av 
efficiency 

Rank 

WT1 0,968 5 0,847 10 0,774 10 0,941 4 
WT2 0,938 11 0,844 11 0,805 7 0,902 10 
WT3 0,905 13 0,758 15 0,730 15 0,853 13 
WT4 0,962 7 0,759 14 0,759 13 0,929 6 
WT5 0,892 14 0,875 9 0,792 9 0,801 15 
WT6 0,984 1 0,947 4 0,877 3 0,986 1 
WT7 0,933 12 0,903 7 0,866 4 0,896 11 
WT8 0,977 3 0,954 3 0,960 1 0,907 7 
WT9 0,951 9 0,752 16 0,717 16 0,855 12 
WT10 0,891 15 0,792 13 0,760 12 0,812 14 
WT11 0,873 16 0,820 12 0,770 11 0,780 16 
WT12 0,960 8 0,981 1 0,950 2 0,957 3 
WT13 0,942 10 0,885 8 0,748 14 0,934 5 
WT14 0,974 4 0,911 6 0,796 8 0,903 9 
WT15 0,978 2 0,980 2 0,866 5 0,982 2 
WT16 0,964 6 0,930 5 0,821 6 0,904 8 
Pearson’s correlation coefficients 
L8 1  0,531  0,472  0,885*  
J7   1  0,843*  0,578  
Y5     1  0,487  
K9       1  
Spearman’s rank order correlation       
L8  1  0,571  0,503  0,903* 
J7    1  0,647  0,703* 
Y5      1  0,594 
K9        1 
* significant at 1% level 
 

The Spearman rank correlation18

                                                 
18 This test has been used previously by Ahmad and Bravo-Ureta (1996), Bravo-Ureta and Rieger (1990) and 
Mbaga et al. (2003) to examine the rankings of technical efficiency estimates.  

 coefficient was administered to determine how close the 

rankings of farms are among the different models (Table 9.3). The values of the Spearman 
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rank correlation coefficient ranged from moderate (between Model L8 and Model Y5) to 

high (between Model L8 and Model K9) and all were significant. Therefore, the hypothesis 

of equal rankings of farm technical efficiency could not be rejected for any of the 

comparisons (Table 9.3). These results suggest that both the precise value of technical 

efficiency and the farm ranking are not very dependent on the choice of the input/output 

set. However, more research in needed with a larger database, as correlations are weak.  

 

9.2.2 Technical progress, as estimated by the four models 
 

Technical progress increased by 2.6% for Model L8, 3.2% for Model Y5, 4.5% for Model 

K9 and 5.5% for Model J7 over the nine-year period (Table 9.4). For all models estimated 

for Waikato-Taranaki, the preferred functional form was a CD, hence, technical progress 

was Hicks-neutral and the rate of change was constant over the years (Table 9.1). The 

annual rate of technical progress over the period was at 0.32%, 0.39%, 0.56% and 0.67% 

per annum for Models L8, Y5, K9 and J7 respectively19

 

 (Tables A2.1; A2.3; A2.5; A2.7 

from Appendix 2). The Cobb-Douglas function was used to represent the underlying 

production technology in all of the models specified for Waikato-Taranaki (Sections 5.2, 

6.2, 7.2 and 8.2).  

Table 9.4 - Cumulative indices of change in technical progress for Waikato-Taranaki 

region, estimated by the four models 

 

 Model J7 Model L8 Model Y5 Model K9 
1996/97 1,000 1,000 1,000 1,000 
1997/98 1,007 1,003 1,004 1,006 
1998/99 1,013 1,006 1,008 1,011 
1999/00 1,020 1,010 1,012 1,017 
2000/01 1,027 1,013 1,016 1,022 
2001/02 1,034 1,016 1,020 1,028 
2002/03 1,041 1,019 1,024 1,034 
2003/04 1,048 1,023 1,028 1,040 
2004/05 1,055 1,026 1,032 1,045 
Cumulative (%) 5.5% 2.6% 3.2% 4.5% 
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Annual rates of technical progress for Waikato-Taranaki are very modest for all of the 

input/output sets proposed, but were highest for Model J7. Because the annual rate of 

technical progress is constant for all the models, differences among the models increased 

over the years when the cumulative index of technical progress is estimated (Table 9.4). 

 

Use of the Cobb-Douglas production function implies that technical change is identical 

across farms (all the cross terms are equal to zero). Therefore, even though technical 

progress at the frontier (and also for all farms) was different between alternative 

input/output sets, it was impossible to statistically assess the result. 

 

9.2.3 Total Factor Productivity change, as estimated by the four models  
 

When the amount of technical progress is combined with the technical efficiency change, a 

net increase in TFP is obtained for all models. Overall, the cumulative increases in TFP 

were 5.5% for Model J7, 2.6% for Model L8, 3.2% for Model Y5 and 4.5% for Model K9, 

over the nine-year period (Figure 9.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                               
19 The parameters estimated using the CRS technology were used to calculate the Malmquist TFP index 
reported in this chapter. 
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Figure 9.2 - Cumulative indices of TFP change for Waikato-Taranaki region, estimated by  

the four models 
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Average TFP change over the period was at 0.59%, 0.29%, 0.35% and 0.49% per annum 

for Models J7, L8, Y5 and K9 respectively (Table 9.5), which is much smaller than the 

target of 4% annual increase. Furthermore, for all models considered, technical progress is 

the sole contributor to TFP change, as technical efficiency change is nil (Table 9.5).  

 

Table 9.5 - Average annual change in TFP and its sources by model for Waikato-Taranaki 

 

 TFP TEC TP 

Model J7 0.59% 0% 0.59% 

Model L8 0.29% 0% 0.29% 

Model Y5 0.35% 0% 0.35% 

Model K9 0.49% 0% 0.49% 

 

Even though the time-varying inefficiency model (Chapter 4) used in this research is 

restrictive because it assumed that all farms follow a common trend, the absence of any 

change in technical efficiency was surprising, given the sluggish rate of technical progress 



 
 

 195 

estimated by all the four input/output sets. However, the results are consistent: all models 

exhibited a small rate of technical progress and no technical efficiency change. 

 

Model L8 (defined by herd size, labour, capital(K1) and area of farm) and Model K9 

(defined by herd size, labour, capital(K9) and fertiliser) probably best represent the 

traditional technology applied in NZ, and particularly in Waikato-Taranaki, reliant on the 

intensive use of grass. Given that this technology has been used for many years, most 

farmers are acquainted with it and hence their efficiency is high. Moreover, both models 

identify the same two farms to have minimum and maximum efficiency (Table 9.3). The 

comparison of the physical, biological and financial details of these farms are beyond the 

scope of this thesis.  

 

Model Y5 (defined by capital (K1), labour, feed and fertiliser) can be an adequate 

representation of the new technology, where feed (forage or supplements) is brought from 

outside the farm system. The mastery of this technology is limited, resulting in the lowest 

value of average efficiency (0.812) and a distribution skewed towards low levels of technical 

efficiency (Table 9.6). 

 

In turn, Model J7 (defined by area of farm, labour, capital1 and intermediate input20

 

) is 

intermediate between the other two representations. Average technical efficiency is high 

(closer to the value exhibited by the Models L8 and K9 representing the traditional 

technology) but, in contrast to Models L8 and K9, the dispersion of technical efficiencies is 

similar to Model Y5 (Table 9.6). 

 

 

 

 

 

 

 

 

 

                                                 
20 Mostly comprised of feed and fertiliser expenditure 
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Table 9.6 - Descriptive statistics of technical efficiency over the period for Waikato-

Taranaki, estimated by four models 

 

Technical 
efficiency range 
(%) 

Model J7  Model L8 Model Y5 Model K9 
Nº 

farms 
Range 
average 

Nº 
farms 

Range 
average 

Nº 
farms 

Range 
average 

Nº 
farms 

Range 
average 

> 95 3 0.97 5 0.97 2 0.96 3 0.97 
90/95 4 0.92 6 0.93   7 0.92 
85/90 2 0.88 2 0.87 3 0.87 3 0.87 
80/85 3 0.84 3 0.82 2 0.81 2 0.81 
75/80 4 0.77   6 0.78 1 0.78 
70/75     3 0.73   
         
Average  0.871  0.913  0.812  0.894 
Maximum  0.981  0.989  0.960  0.986 
Minimum  0.752  0.810  0.717  0.780 
Coef. of variation  9.0%  6.0%  9.0%  6.9% 

 

As a general remark, results for all models seem to indicate that TFP change is very 

modest, at least relative to the target of 4% annual increase proposed by the industry plan. 

As mentioned above, for all the models, technical progress is the sole contributor to TFP 

change (Table 9.5). Furthermore, the amount of technical progress is small for all models 

(Table 9.5), indicating that the adoption of new technology is taking place very slowly. On 

the other hand, the region also exhibits an average technical efficiency close to 90% (Table 

9.6), with the notable exception of Model Y5, whose average technical efficiency is closer 

to 80%.  

 

Confronted with the need to choose among different models, Model Y5 (defined by 

capital, labour, feed and fertiliser) would be the preferred options for Waikato-Taranaki. All 

parameters of the stochastic frontier under variable returns to scale are significant (Table 

7.5) and maximum likelihood estimates for parameters of the stochastic frontier under 

constant returns to scale and variables mean-differenced are significant (Table A2.5 

Appendix 2). Model K9 (defined by herd size, labour, capital and fertilizer) is another good 

option. All parameters of the stochastic frontier under variable and constant returns to 

scale are significant (Table 8.5 and Table A2.7). For Model Y5, capital is measured as the 

depreciation and interest on buildings, vehicles and machinery plus expenditure on repairs 

and maintenance, whereas for Model K9, capital is measured as expenditure on repairs and 
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maintenance on buildings and machinery, fuel, electricity, rates and insurance, 

administration and miscellaneous. Interesting to note, though, are the values of the Pearson 

correlation coefficient (0.478) and the Spearman rank order correlation (0.594) (Table 9.3), 

that are significant but weak.  

 

Finally, the fact that the region experienced very moderate to nil rates of technical progress, 

coupled with high values of structural efficiency (even though in some cases with high 

dispersion) suggest that new technologies are needed to shift the production frontier. 

However, the new technologies may not be available yet. Therefore, the industry requires 

investment in R&D or a shift in resources from current research into new areas. From a 

policy perspective, it is clear then that the recommendation should be to encourage 

investments in new R&D targeted to reduce the effects of technological constraints that 

impede the realisation of further productivity gains in the region.  

 

9.3 Canterbury-Southland 

 

Before undertaking the decomposition of TFP, a descriptive summary of the four models 

estimated for Canterbury-Southland is introduced. 

  

Table 9.7 - Canterbury-Southland: summary of the four models 

 

 Functional form Technical progress 
Technical efficiency 

(Structural efficiency) 

Model J7 Translog Neutral 
Time varying 

(0.88) 

Model L8 Translog Non-neutral 
Time-invariant 

(0.89) 

Model Y5 Translog Non-neutral 
Time varying 

(0.86) 

Model K9 Translog Non-neutral 
Time varying 

(0.90) 
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9.3.1 Technical efficiency change, as estimated by the four models 
 

Technical efficiency increased by 15.7% for Model J7, 31.7% for Model Y5 and 8% for 

Model K9 over the whole period (Table 9.8), equivalent to a geometric mean of about 

1.6%, 3.1% and 0.9% per annum for Models J7, Y5 and K9 respectively. Furthermore, for 

all models the annual rate of technical efficiency change was higher at the beginning of the 

period and declined gradually towards the end of the period. Conversely, Model L8 showed 

no changes in technical efficiency over the period (technical efficiency was time-invariant, 

η=0) (Section 6.3). Results for Models J7, Y5 and K9 indicate that Canterbury-Southland 

farms were catching up with the frontier over the whole period. It can also be seen that this 

process of catch-up is more active for Models J7 and Y5, as the average annual change in 

technical efficiency is at 1.6% and 3.1% per annum respectively. Given Models J7 and Y5, 

the region experienced technical regress (Table 9.9). Hence, as the frontier was shifting 

backwards, farms were able to catch up easier with the frontier. Conversely, for Model K9, 

this process is modest and relatively constant over the period. Estimates of average 

technical efficiency change differ significantly between models, resulting in cumulative 

changes ranging from nil (Model L8) to 31% (Model Y5). 

 

Table 9.8 - Cumulative indices of technical efficiency change for Canterbury-Southland 

region, estimated by the four models 

 

 Model J7 Model L8 Model Y5 Model K9 
1996/97 1,000 1,000 1,000 1,000 

1997/98 1,034 1,000 1,067 1,013 

1998/99 1,063 1,000 1,125 1,025 

1999/00 1,086 1,000 1,171 1,036 

2000/01 1,105 1,000 1,211 1,046 

2001/02 1,121 1,000 1,243 1,055 

2002/03 1,135 1,000 1,273 1,064 

2003/04 1,147 1,000 1,297 1,072 

2004/05 1,157 1,000 1,317 1,080 

Cumulative (%) 15.7% 0% 31.7% 8.0% 
Note: 1.000= no change 

 

Average technical efficiency, for each season, differed significantly among models at the 

beginning of the period. However, these differences were much smaller by the end of the 
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period (Figure 9.3). As expected, those models that experienced the lowest rates of 

technical progress (Model Y5 and Model J7) exhibited, in turn, the strongest improvement 

in structural efficiency over time. For example, in Model Y5, the structural efficiency 

climbed from 0.72 at the beginning of the period to 0.94 at the end of the period, whereas 

for Model K9, structural efficiency rose from 0.83 to 0.94 (Figure 9.3).  

 

Figure 9.3 - Canterbury-Southland: changes in the structural efficiency for the four models, 

over the 10 years 
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The average estimates of farm efficiency for all the models proposed are reported below 

(Table 9.9). The average estimates shown for each farm were calculated as the geometric 

mean of the farm’s annual efficiency measures obtain as per eq. 9 (Chapter 4). (Technical 

efficiency estimates for each farm at each time period and for each model are reported in 

Appendix 3.) The adjacent column (in grey) shows the farm’s rank using each efficiency 

estimate. It can be seen that there is a difference in the magnitude of the efficiency 

estimates. The Pearson correlation coefficient shows a significant correlation in efficiency 

scores among alternative models. For example, efficiency estimates from models L8, J7 and 

Y5 with those obtained through model K9 have a Pearson correlation coefficient close to 1 

and all are significant at 1%. All the other Pearson correlation coefficients are also 

significant. The Spearman rank correlation coefficients were all significant, and ranged 
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between 0.671 (for Models L8/Y5) to 0.962 (for Models J7/Y5) (Table 8.12). Similar to the 

results reported for Waikato-Taranaki, these results suggest that both the precise value of 

technical efficiency and the farm ranking are not very dependent on the choice of the 

input/output set. Even though correlations are stronger than for the case of Waikato-

Taranaki, more research in needed with a larger database. 

 

Table 9.9 - Farm efficiency estimates and correlation of farm efficiency estimates given the 

alternative input/output sets for Canterbury-Southland 

 

 Models 
 L8 J7 Y5 K9 

Farm  Av 
efficiency 

Rank Av 
efficiency 

Rank Av 
efficiency 

Rank Av 
efficiency 

Rank 

CS1 0,866 11 0,880 11 0,876 8 0,869 12 
CS2 0,981 1 0,976 2 0,952 2 0,974 3 
CS3 0,894 9 0,901 8 0,870 10 0,896 7 
CS4 0,896 8 0,735 15 0,714 14 0,845 14 
CS5 0,798 15 0,901 7 0,903 5 0,860 13 
CS6 0,855 12 0,893 9 0,873 9 0,873 11 
CS7 0,735 16 0,672 16 0,631 16 0,712 16 
CS8 0,880 10 0,867 13 0,840 13 0,882 10 
CS9 0,901 7 0,945 4 0,899 6 0,950 6 
CS10 0,902 6 0,864 12 0,824 12 0,888 9 
CS11 0,964 5 0,906 6 0,893 7 0,967 4 
CS12 0,853 13 0,774 14 0,682 15 0,831 15 
CS13 0,977 2 0,947 3 0,943 3 0,979 2 
CS14 0,975 3 0,984 1 0,987 1 0,965 5 
CS15 0,970 4 0,925 5 0,905 4 0,981 1 
CS16 0,851 14 0,901 10 0,865 11 0,891 8 
Pearson’s correlation coefficients 
L8 1  0,697  0,677  0,920*  
J7   1  0,978 *  0,890*  
Y5     1  0,862*  
K9       1  
Spearman’s rank order correlation  
L8  1  0,703  0,671  0,850* 
J7    1  0,962*  0,847* 
Y5      1  0,779* 
K9        1 
* significant at 1% level 
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9.3.2 Technical progress, as estimated by four models 
 

Technical progress declined in Models J7 and Y5 and increased in Models L8 and K9 over 

the period (Table 9.10). Overall, the decreases in technical progress were -8.1% in Model J7 

and -6.8% in Model Y5 over the nine-year period, equivalent to a geometric average of  

-0.94% and -0.78% per annum respectively. Conversely, technical progress in Models L8 

and K9 increased by 23.1% and 2.4% respectively over the nine-year period (Table 9.10 

and Figure 9.4), equivalent to geometric averages of 2.3% and 0.3% per annum 

respectively. 

 

Table 9.10 - Cumulative indices of change in technical progress for Canterbury-Southland 

region, estimated by the four models 

 

 Model J7 Model L8 Model Y5 Model K9 
1996/97 1,000 1,000 1,000 1,000 

1997/98 0.987 1,035 0.982 0.998 

1998/99 0.975 1,067 0.966 0.997 

1999/00 0.964 1,095 0.957 0.998 

2000/01 0.954 1,126 0.951 1,001 

2001/02 0.944 1,161 0.948 1,008 

2002/03 0.935 1,191 0.945 1,014 

2003/04 0.927 1,214 0.939 1,019 

2004/05 0.919 1,231 0.932 1,024 

Cumulative (%) -8.1% 23.1% -6.8% 2.4% 
 

With the exception of Model L8, all models showed a negative rate of technical progress 

during the first three seasons (Table 9.10 and Figure 9.4). The drop is more pronounced in 

Models J7 and Y5 than in Model K9.  This technical regress may be due to the drought 

experienced by Canterbury during the initial seasons of the period of study (MAF, 2000). 

After these years, technical progress resumed for Model K9 but not for the other two. In 

contrast, technical progress in Model L8 increased almost at a constant rate up to season 

2001/02 and kept on growing, albeit at decreasing rates over the second half of the period 

(Figure 9.4). 
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Figure 9.4 - Cumulative indices of technical progress for Canterbury-Southland region, 

estimated by the four models 
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The average estimates of farm’s technical progress for all the models proposed are reported 

below (Table 9.11). The average estimates shown for each farm were calculated as the 

geometric mean of the farm’s annual technical progress calculated as per eq. 19 (Chapter 4). 

(Technical progress estimates for each farm at each time period and for each model are 

reported in Appendix 3.) For example for Farm CS5, average technical progress over the 

period was 4.57%, 0.36%, 0.71%, 1.93% per annum given models L8, J7, Y5 and K9 

respectively. The adjacent column (in grey) shows the farm’s rank using each technical 

progress estimate. Farm CS5 is ranked 2nd for Model L8 and 1st for all other models. It 

can be seen that there is a difference in the magnitude of the TP estimates. The Pearson 

correlation coefficient shows a significant correlation in technical progress scores between 

alternative models, but the correlation is weak. For example, the Pearson correlation 

coefficient of technical progress as per model L8 with those obtained as per model J7 is 

0.3437 and for models J7 and Y5 is 0.9412 (significant at 1%). The Spearman rank 

correlation coefficients were all significant but weak, ranging from 0.5059 (for Models 

L8/J7) to 0.9412 (for Models J7/Y5) (Table 9.11). It is worth noting that for farm’s 

technical progress as per model L8, both the Pearson correlation coefficient and the 

Spearman rank correlation coefficient are lowest with respect to all other model estimates. 
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This confirms the concern about the suitability of the model for TP estimation due to the 

low statistical significance of some of the parameters as a result of multicollinearity. Results 

suggest that both the precise value of technical progress and the farm ranking are 

dependent on the choice of the input/output set. Given the weakness of the correlations, 

more research is needed with a larger database. 

 
Table 9.11 – Farm average technical progress estimates and correlation of farm technical 

progress estimates given the alternative input/output sets for Canterbury-Southland 

 
 Models 

 L8 J7 Y5 K9 
Farm  Av Tech 

Progress 
Rank Av Tech 

Progress 
Rank Av Tech 

Progress 
Rank Av Tech 

Progress 
Rank 

CS1 1,0390 3 0,9910 3 1,0004 4 1,0122 2 
CS2 1,0293 7 0,9757 10 0,9840 12 1,0084 6 
CS3 1,0326 4 0,9777 11 0,9938 8 0,9977 12 
CS4 1,0314 5 0,9945 2 1,0047 2 1,0142 3 
CS5 1,0457 2 1,0036 1 1,0071 1 1,0193 1 
CS6 1,0213 11 0,9654 13 0,9784 14 0,9919 14 
CS7 1,0623 1 0,9881 6 1,0037 3 1,0096 4 
CS8 1,0323 6 0,9957 4 1,0034 6 1,0103 5 
CS9 1,0235 10 0,9509 16 0,9681 16 1,0053 8 
CS10 0,9996 16 0,9721 12 0,9863 11 0,9812 16 
CS11 1,0215 12 0,9770 9 0,9881 10 1,0020 9 
CS12 1,0169 13 0,9540 15 0,9718 15 0,9937 13 
CS13 1,0068 15 0,9880 8 0,9941 9 1,0103 7 
CS14 1,0079 14 0,9874 5 0,9943 7 0,9998 11 
CS15 1,0271 9 0,9893 7 1,0019 5 1,0015 10 
CS16 1,0246 8 0,9522 14 0,9782 13 0,9803 15 
Pearson’s correlation coefficients 
L8 1  0,3437  0,4661  0,5726  
J7   1  0,9544 *  0,6949  
Y5     1  0,5951  
K9       1  
Spearman’s rank order correlation  
L8  1  0,5059  0,6176  0,6676 
J7    1  0,9412*  0,7706 
Y5      1  0,7029 
K9        1 
* significant at 1% level 
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9.3.3 Total Factor Productivity change  
 

When the amount of technical progress is combined with the technical efficiency change, a 

net increase in TFP is obtained for all models (Table 9.12 and Figure 9.5). TFP increased 

over the period by 6.3% for Model J7, 23.1% for Model L8, 22.8% for Model Y5 and 

10.6% for Model K9 (Figure 9.5), equivalent to geometric means of 0.7%, 2.3%, 2.3% and 

1.1% per annum for Models J7, L8, Y5 and K9 respectively (Table 9.13). All of these are 

well below the target measure of 4% annual increase, but Models L8 and Y5 give values 

closer to this target (TFP estimates for each farm at each time period and for each model 

are reported in Appendix 3). 

 

Table 9.12 - Cumulative indices of total factor productivity, Canterbury-Southland region, 

estimated by the four models 

 

 Model J7 Model L8 Model Y5 Model K9 
1996/97 1,000 1,000 1,000 1,000 

1997/98 1,007 1,003 1,004 1,006 

1998/99 1,013 1,006 1,008 1,011 

1999/00 1,020 1,010 1,012 1,017 

2000/01 1,027 1,013 1,016 1,022 

2001/02 1,034 1,016 1,020 1,028 

2002/03 1,041 1,019 1,024 1,034 

2003/04 1,048 1,023 1,028 1,040 

2004/05 1,055 1,026 1,032 1,045 

Cumulative (%) 5.5% 2.6% 3.2% 4.5% 
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Figure 9.5 - Cumulative indices of TFP change for Canterbury-Southland region, estimated 

by the four models 
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Even though the magnitudes of TFP change over the period differ slightly between Models 

J7 and K9 and between Models L8 and Y5, the sources of the change are different. For 

Model K9, both technical progress and technical efficiency change contributed to TFP 

change. Conversely, technical efficiency change is the most important source of TFP 

change in Model J7, as improvements in technical efficiency were able to offset the decline 

in technical progress (Table 9.13). In Model Y5, technical efficiency change was the main 

source of productivity gains, as improvements in efficiency overcame the decline in 

technical progress. In contrast, in Model L8, technical progress is the single source of 

productivity gain.  
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Table 9.13 - Average annual change in TFP and its sources by model for Canterbury-

Southland estimated by the four models 

 

 TFP TEC TP 

Model J7 0.68% 1.63% -0.94% 
Model L8 2.34% 0.00% 2.34% 
Model Y5 2.31% 3.11% -0.78% 
Model K9 1.12% 0.86% 0.26% 

 

 

Model L8 (defined by herd size, labour, capital and area of farm) and Model K9 (defined by 

herd size, labour, capital and fertilizer) probably represent best the traditional technology 

applied in NZ. Estimates of TFPG, technical progress and technical efficiency change by 

Model K9 suggested that the farms were adopting technology very slowly (technical 

progress is 0.26% per annum) and that technical efficiency change was modest (at an 

average of 0.86% per annum). Technical efficiency change and technical progress are 

mutually reinforcing in Model K9 and hence productivity gains accelerated slightly over the 

period (Table 9.13 and Figure 9.5). Conversely, technical progress is the only source of 

TFP gains for Model L8. 

 

Both Model L8 and Model K9 have two inputs in common: herd size and labour. The 

other two inputs in Model L8 are capital (K1, measured as the depreciation and interest on 

buildings, vehicles and machinery plus expenditure on repairs and maintenance) and farm 

area, whereas inputs for Model K9 are capital (K9, expenditure on repairs and maintenance 

on buildings and machinery, fuel, electricity, rates and insurance, administration and 

miscellaneous) and fertilizer expenditure. 

 

The correlation between area of farm and fertilizer expenditure is 0.75. However, the 

growth rate of fertilizer expenditure (in real terms, averaged over farms) over the period is 

almost twice the growth rate in average area of farm. Similarly, the correlation between 

both measures of capital is higher, 0.91, and the growth rate of capital over the period is 

higher in Model L8 than in Model K9. 
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The measure of capital in Model K9 is an aggregation (in value terms) of different inputs. 

Prices for those inputs have evolved differently over time, e.g., fuel increased from 100 in 

1996/97 to 147 in 2004/05, electricity from 100 to 137 and repairs and maintenance from 

100 to 123 over the same period. Given that not all farms used these inputs (aggregated in 

“capital”) in the same proportion, the measurement of capital can be responsible for the 

low values of technical progress. In addition, it was suggested that Model K9 suffers from 

multicollinearity and it may be a problem for the assessment of technical progress (Section 

8.3). 

 

Capital input (as measured in Model K9) was substituted by the measure of capital 

employed in model L8. Results of this model (defined by herd size, labour, K1 and fertiliser 

expenditure, results not included) suggested that a simplified translog production function 

was the best representation of the underlying technology. Even though results from this 

model also had problems of multicollinearity (albeit minor), technical progress (average for 

all sampled farms) was 2.1% per annum and technical efficiency was time-invariant. These 

values are closer to those estimated by Model L8. 

 

Similarly, capital input, K1 (as measured in Model L8), was substituted by the measure of 

capital K9, in Model L8. The new model was defined by herd size, labour, farm area and 

K9 (results not included). Results indicated that the translog production function was the 

best representation of the underlying technology and that technical efficiencies had a half-

normal distribution and were time invariant. Furthermore, the model had problems of 

multicollinearity (only 7 out of 21 coefficients were significant). Technical progress (average 

for all sampled farms) was 0.95% per annum. Both results suggest that the measurement of 

capital, K9, was responsible for the differences between models. 

 

Model Y5 (defined by capital, labour, feed and fertiliser) can be an adequate representation 

of the new technology, where feed (forage or supplements) is brought from outside the 

farm system. Model J7 (defined by area of farm, labour, capital and intermediate input21

                                                 
21 Mostly comprised of feed and fertilizer expenditure 

) is 

intermediate between the other two models (L8 andK9). Models J7 and Y5 are alike in that 

the main source of TFPG is technical efficiency change. Insofar as the frontier shifted 

backwards (negative technical progress for Models J7 and Y5), farms are able to catch up 

easier with the frontier; gains arising from changes in technical efficiency are easier to 
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achieve. Therefore, TFP grows at a decreasing rate (Table 9.13 and Figure 9.5). Technical 

regress can be due to unmeasured input, e.g., deterioration in the quality of natural 

resources such as land (OECD, 2001). Alternatively, a newly-adopted technology may 

reduce productivity as a consequence of non-neutral technical change (Coelli et al., 1998 

and Tauer, 1998), and any significant and sustained change in relative input prices are a 

possible source of measured productivity decline (Coelli et al., 2003 and OECD, 2001). 

Both models include feed and fertiliser as inputs in the production function, and the price 

index for both increased substantially over the period (Statistics NZ). Also, technical 

regress for Model Y5 was non-neutral. Why, then, is TP negative for CS and positive for 

WT? The quantities of feed and fertiliser used by farms in both regions are different. On 

average, WT dairy farms used 3.6 times less feed, fertiliser and intermediate input than CS 

dairy farms (Table 4.2 and Table 4.3). Furthermore, the ratio output to input is slightly 

higher for Waikato-Taranaki than for Canterbury-Southland. 

 

For Canterbury-Southland, Model Y5 (defined by capital, labour, feed and fertiliser) is 

preferred to other models, as relatively more parameters of the stochastic frontier under 

variable returns to scale (Table 7.6) and under constant returns to scale and variables mean-

differenced (Table A2.6 Appendix 2) are significant.  

 

From a policy perspective, the recommendation would be the same for Models J7 and Y5. 

It is necessary to encourage investments in new R&D targeted to remove the technological 

constraints that impede the realization of further productivity gains in the region. The same 

recommendation applies to Model K9. For Model L8, a dynamic rate of technological 

progress coexists with no change in technical efficiency. Furthermore, the dispersion of 

farm technical efficiency is considerable relative to other models. Therefore, a policy 

directed to enhance the efficient use of technology is required to close the gap with the 

best-practice frontier. 

 

9.4 Conclusion 

 

A stochastic frontier production model was applied to estimate the MPI. MPI allows for 

the decomposition of TFPG into technical progress (TP) and technical efficiency change 

(TEC), providing individual (farm) estimates of technical efficiency, technical efficiency 

change and technical progress (Reported in Appendix 3).  
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Over the period of study, the relative contribution of TP and TEC to TFPG was different 

between regions. Results for Waikato-Taranaki are consistent in that small gains in TP are 

solely responsible for the small improvements in TFP of 0.29% to 0.59% per annum 

because TEC was zero for all models (Table 9.14). Improvements in TFP for Canterbury-

Southland range from 0.68% (Model J7) to 2.34% (Model L8). Results showed that in three 

of the models, TEC was the main source of TFP improvements over the period of study. 

TEC was nil for one model and positive for the other three, differing significantly between 

0.86% per annum (Model K9) and 3.1% per annum (Model Y5). TP ranged from -1% per 

annum (Model J7) to 2.3% per annum (Model L8). Two of the models (Model J7 and 

Model Y5) revealed technical regress, whereas the other two showed technical progress 

(Table 9.14).  

 

Table 9.14 - Average annual change in TFP and its sources by model for both regions 

 

 Waikato-Taranaki Canterbury-Southland 

 TFP TEC TP TFP TEC TP 
Model J7 0.59% 0% 0.59% 0.68% 1.63% -0.94% 
Model L8 0.29% 0% 0.29% 2.34% 0.00% 2.34% 
Model Y5 0.35% 0% 0.35% 2.31% 3.11% -0.78% 
Model K9 0.49% 0% 0.49% 1.12% 0.86% 0.26% 

 

It is interesting to compare the results obtained here with those reported by other authors 

(Table 9.15). Even though not strictly comparable, Philpott (1994) estimated annual TFPG 

for the NZ dairy industry at 0.8% for the period 1973 to 1993. Pringle (2002) mentioned 

that on-farm productivity gains over the decade 1990 to 2000 were in the range of 1% to 

1.3%. Similarly, Anderson and Johnson (2002) and Johnson and Forbes (2000) estimated 

on-farm productivity growth averaging 1.4% per annum for owner-operated dairy farms 

and 2.1% per annum for sharemilkers during the nineties. On-farm productivity growth as 

reported by this thesis ranged from 0.29% to 0.59% per annum for Waikato-Taranaki and 

from 0.68% to 2.3% per annum for Canterbury-Southland for the period 1996/97 to 

2004/05. 
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Table 9.15 - Average annual change in TFP and its sources by model for both regions 

 

Author Period Methodology Annual TFPG 

Philpott (1994) 1973–1993 Index number 0.8% 

Pringle (2002) 1990–2000 Index number 1% to 1.3% 

Anderson and Johnson (2002) 

& Johnson and Forbes (2000) 
1990s Index number 

1.4% owners 

2.1% sharemilkers 

Laca-Vina (2007) 1997–2005 SFA-Malmquist 
0.29%–0.59% WT 

0.68%–2.3% CS 

 

Average efficiency for Waikato-Taranaki was almost the same for Model L8 (91%), Model 

K9 (89%) and Model J7 (87%). Average efficiency was lowest for Model Y5 (81%) (Figure 

9.3). Similarly, average efficiency for Canterbury-Southland was almost the same for Model 

L8 (89%), Model K9 (90%) and Model J7 (88%), and was lowest for Model Y5 (86%)  

(Table 9.7). Jaforullah and Devlin (1996), with farm-level data for 1991/92, estimated an 

average efficiency (using SFA) of 90% ranging from 76% to 96%. Present estimates of 

average efficiency for Waikato-Taranaki are comparable: 91% (for Model L8), 89% (Model 

K9) and 87% (Model J7); and so are the ranges 76% to 98% (Figure 9.4). Given the results 

of Model Y5, farm efficiency range is similar but average efficiency is significantly lower 

(81%). With respect to Canterbury-Southland average efficiency for the last season, the 

Jaforullah and Devlin (1996) estimate is comparable. Technical efficiency for individual 

farms ranged from a low of 76% to a high of 98% in both studies. 

 

The robustness of technical efficiency estimates (and hence, technical efficiency change) 

and technical progress estimates to the input/output set chosen was addressed by 

comparing farm-level estimates obtained by the different models using the Pearson 

correlation coefficient and the Spearman rank order correlation. Even though results are 

not conclusive, evidence suggests that efficiency estimates are not very sensitive to the 

choice of input/output set. Based on analysis of the two regions, it was found that the 

magnitude of technical efficiency estimates from the four models is different, but estimates 

are strongly correlated. Interestingly, evidence of the robustness of technical efficiency 

estimates to input/output set is stronger for estimates from Canterbury-Southland than for 

estimates from Waikato-Taranaki. Pearson correlation coefficient and Spearman rank order 
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correlation, even though significant, are higher for Canterbury-Southland (Table 9.9) than 

for Waikato-Taranaki (Table 9.3). For example, for Waikato-Taranaki, Pearson correlation 

coefficient ranges from 0.487 to 0.885 and the Spearman rank order correlation ranges 

from 0.503 to 0.903 (Table 9.3). For Canterbury-Southland, Pearson correlation coefficient 

ranges from 0.677 to 0.978 and the Spearman rank order correlation ranges from 0.671 to 

0.962 (Table 9.9). Therefore, if the interest of the researcher is measuring technical 

efficiency, estimates are similar regardless of the input/output set. 

 

Results about the sensitivity of technical progress estimates to alternative input/output sets 

are mixed. It is worth mentioning that no such analysis could be performed for Waikato-

Taranaki as the preferred functional form was of a Cobb-Douglas type and hence by 

definition all farms have the same rate of TP over all years. For Canterbury-Southland, 

Pearson correlation coefficient ranges from 0.3437 to 0.9544 and the Spearman rank order 

correlation ranges from 0.5059 to 0.9412 (Table 9.11). It seems that rankings tend to be 

more stable (less sensitive) to the choice of input/output set than magnitude. Evidence 

suggests that technical progress estimates will be influenced by input/output sets. Further 

analysis with a larger database is needed, as the sensitivity of technical efficiency estimates 

(and hence, technical efficiency change) and technical progress estimates to the 

input/output set remains an issue of contention. 
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CHAPTER 10 
 
 

10 Conclusion  

 

10.1 Introduction 

 

This chapter begins with a brief comment about the selection of the topic followed by an 

evaluation of the approach. The next section reviews the main findings of the research and 

their policy implications. The last section is dedicated to the “would-like-to-do list” and 

discussion of areas for further research.   

 

10.2 Milking the productivity index  

 

The NZ dairy industry is aiming for a 4% annual growth in on-farm TFP in order to secure 

its competitive advantage and enhance NZ dairy farmers’ profitability. Previous studies 

indicated that the industry was not achieving the target. TFP is an adequate measure of 

performance to benchmark and monitor farms. It is the most encompassing measure of 

performance, as it ideally includes all inputs and outputs used in the production process. It 

is the “real” (or “physical” as opposed to monetary) component of profitability. TFP is an 

ex-ante determinant of profitability change, rather than a consequence of it and unlike 

prices, quantities of inputs and outputs are, to some extent, under the control of 

management. It was clear, though, that the industry was unable to link the 4% annual 

growth in productivity to the farm level. The industry was not providing the farmers with 

any individual (farm level) indicator with which to benchmark and monitor their progress. 

Succinctly, can TFP be used to guide policy decisions at an industry level and concurrently 

be an instrument for strategic management at the farm level?   

 

The availability of panel data allowed the estimation of TFP using the MPI. The index is 

based on distance functions and is superior to alternative indexes of productivity growth 

(such as the Törnqvist index and the Fisher ideal index) because it is based only on quantity 

data and makes no assumptions regarding the firm’s behaviour. Furthermore, it can be 
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decomposed into technical efficiency change (whether farms are getting closer to the 

frontier) and technical change (whether the production frontier is shifting outwards over 

time). Both components are in turn driven by different factors, allowing then for a deeper 

view into productivity growth. At the same time, individual (farm) estimates of TFP, TC 

and TEC are obtained (Reported in Appendix 3). SFA was used to compute the distance 

functions required to estimate the Malmquist TFP index because it allows for traditional 

hypothesis testing, necessary to evaluate differences in technology between regions. Also, 

SFA has a composed error term with a stochastic component (to account for random 

errors not under the control of the firm) and a deterministic component (that captures 

departures from maximum output, i.e., inefficiency) that would help to attenuate some of 

the shortcomings of the data (data were collected for purposes other than the estimation of 

productivity and the number of observations are small). MAF Policy supplied panel data. 

Even though the number of observations was not the desired one (albeit sufficient) the 

relevance of the topic to the NZ dairy industry encouraged the author to continue.   

 

10.3 Main findings and policy implications  

 
Differences in technology between both regions (traditional vis-à-vis non-traditional) 

defined in this study were uncovered. First, a dummy variable was introduced in the pooled 

model, following the method of Bravo-Ureta and Rieger (1991), Hallam and Machado 

(1996) and Kumbhakar and Heshmati (1995). The regional dummy was included in the 

pooled model (all farms from both regions) to test whether regional differences exist 

(Section 4.7, Chapter 4).  

 

Farms located in Waikato-Taranaki were used as reference group. For all alternative 

input/output sets defined, the coefficient on the regional dummy was positive and 

significantly different from zero. Therefore, based on this result, there was a priori evidence 

that the stochastic frontier model differed between regions, indicating that both regions 

may not be operating under the same technology (Table 10.1). Furthermore, based on the 

sign of the dummy, it could be advanced that, for all the production functions defined by 

the input/output sets, Canterbury-Southland sampled farms were, on average, more 

productive than sampled farms in Waikato-Taranaki, ceteris paribus. 
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The value of the coefficient on the regional dummy ranged from 0.1082 for Model K9 to 

0.1831 for Model Y5, implying that sampled farms in Canterbury-Southland (non-

traditional dairy regions) were, on average, between 11% to 18% more productive than 

sampled farms in Waikato-Taranaki (traditional dairy regions), ceteris paribus. The value of 

the coefficient was fairly consistent across all alternative input/output sets, denoting the 

robustness of the result.    

 

Table 10.1 - Summary of technological differences between regions for all models 

 

Model 
Coefficient 

Regional dummy 
t-value 

LR test 

H0

J7 

: both regions share same technology 

0.1097 2.4537 ** Reject H0 (Section 5.1.4)

L8 
  

0.1540 4.5624 ** Reject H0

Y5 

 (Section 6.1.4) 

0.1831 4.8991 ** Reject H0

K9 

 (Section 7.1.4) 

0.1082 3.366 ** Reject H0

Note:  *** - significant at 1% level (p<0.01) 

 (Section 8.1.4) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  

 

As was previously mentioned, the value of the coefficient of the regional dummy included 

in the pooled sample indicated that both regions (traditional vis-à-vis non-traditional) might 

not be operating under the same technology. Following Battese, Rao and O’Donnell (2004) 

and Kumbhakar, Biswas and Bailey (1989) the appropriateness of dividing the sample into 

two regions was tested by a likelihood-ratio test for all the alternative input/output sets. 

The null hypothesis that both regions share the same underlying technology was rejected 

for all the alternative input/output sets, confirming the a priori result obtained by using the 

regional dummy in the pooled stochastic frontier. Therefore, according to the log-

likelihood ratio test, farm-level data in the two regions were not generated from a single 

production frontier and the same underlying technology (Table 10.1).  

 

It is worth mentioning that average size of Canterbury-Southland sampled farms is larger 

than average farm size of Waikato-Taranaki farms. Furthermore, average farm size of 

Canterbury-Southland sampled farms is larger than the regional average (LIC data). 

Conversely, average farm size of Waikato-Taranaki sampled farms is smaller than the 
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regional average. Therefore, more studies with a larger database are required to ascertain 

whether technological differences are due to location or to scale.  

 
None of the NZ dairy regions included in this analysis is achieving the 4% productivity 

target set by the dairy industry.  For Waikato-Taranaki, technical progress is the sole source 

of TFPG for all models, i.e., technical efficiency change is zero meaning that all farms 

considered maintain the same distance with respect to the frontier for all the period under 

study. Furthermore, the rate of technical progress and hence TFP (given that TEC is zero) 

is positive and small in all cases ranging from 0.29% per annum to 0.59% per annum.  

 

For Canterbury-Southland, estimates of TFP are positive for all models ranging from 

0.68% per annum to 2.34% per annum. However, results are mixed regarding to the 

sources of productivity change, showing great variability in the magnitude of both TP and 

TEC. In two cases, results indicate a negative rate of TP offset by TEC. In other case TP 

was the sole contributor to TFP. Finally, TP and TEC jointly contribute to TFPG for the 

last model. TP ranges from -0.94% to 2.34% per annum and TEC ranges from 0% to 

3.11% per annum.  

 

The most important implication for the NZ dairy industry and for those institutions 

responsible for helping the farmers to achieve the productivity target refers to the need of 

tailoring the approach and limiting the geographical scope of R&D projects. Findings 

described here support the results from farmers’ interviews reported by Massey et al. 

(2002), which suggested the need for an increase in applied location-specific research vis-à-

vis pure and strategic research carry-out in research stations.  

 

Given the high levels of farm technical efficiency in both regions, the NZ dairy industry 

cannot expect to achieve major productivity gains through technical efficiency change. 

Instead, a major concern is the meagre gain in technical progress experienced by both 

regions. The recommendation should be to encourage investments in new R&D. In doing 

so, the industry will remove technological constraints that impede the realisation of further 

productivity gains. Once-a-day-milking, new, more productive pastures with better quality 

and improvements in the digestibility of pasture are some of the elements that will certainly 

help to shift the technological frontier. OAD may certainly reduce productivity per cow; 

however, it increases labour productivity (same workers can milk another herd) and capital 

productivity (the milking shed can be used for another herd, i.e., cost sharing, fewer 
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inputs). The overall outcome on TFP is unknown. Interestingly, the methodology 

proposed to assess differences in technology between regions can be used to assess TFP 

differences among farms and also among cows as a result of OAD. 

 

The robustness of farm technical efficiency estimates (and hence technical efficiency 

change) and technical progress estimates to the input/output set chosen was addressed by 

comparing farm-level estimates obtained by the different models using the Pearson 

correlation coefficient and the Spearman rank order correlation. Even though results are 

not conclusive, evidence suggests that efficiency estimates are not very sensitive to the 

choice of input/output set. Conversely, results suggest that technical progress estimates will 

be influenced by input/output set. It seems that rankings tend to be more stable (less 

sensitive) to the choice of input/output set than magnitude. Further analysis with a larger 

database is needed, as the sensitivity of technical efficiency estimates (and hence technical 

efficiency change) and technical progress estimates to the output/output set remains an 

issue of contention. 

 

As mentioned before, none of the regions were able to achieve the growth target.  

However, some of the farms in Canterbury-Southland were able to achieve and even 

surpass the TFPG target. It can be seen that “average” measures either at regional or 

national level offer limited information. The MPI makes available a vast amount of 

information at the farm level that can be aggregated later, if desired. Therefore, if the 

objective of the NZ dairy industry is to improve farmers’ profitability and the target 

measure is productivity growth, the measurement instrument should be the MPI.   

 

10.4 Limitations and future research  

 

Although this study is the first attempt to investigate the productivity, technical progress 

and efficiency change for dairy farming in a regional context, there are several limitations 

that have to be taken into account when we try to interpret its results. These limitations, 

mainly due to data unavailability, can be addressed by future research. 

 

First, it is noted that the SFA model used in this study to estimate the MPI is capable of 

handling one output. It is well-known that dairy farms not only produce milk, but also beef 

and forage and in some cases, sell machinery services to fellow farmers. As such, future 
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research can look into these effects and examine whether the same results are obtained 

when more than one output is considered. Estimation of MPI through DEA would allow 

considering more than one output. This would also allow testing allocative inefficiency with 

regards to outputs. 

 

Second, due to data availability, the study was limited to 16 farms in Waikato-Taranaki and 

Canterbury-Southland. Other regions like Wellington, Wairarapa, Otago and Northland 

were not included in our study. These regions have been important players in the recent 

development of the NZ dairy industry. For instance, farm conversions in Wellington and 

Wairarapa increased over recent years. Northland has unique weather characteristics that 

can influence the transferability of research (Alston, 2001). Moreover, the higher variability 

observed for Canterbury-Southland estimates might be related to differences in production 

technology between Canterbury and Southland. Given the number of observation in the 

database, it was impossible to evaluate such a hypothesis. A similar hypothesis can be 

tested for Waikato-Taranaki, should enough data are available. 

 

As mentioned before, average size for farms in Canterbury-Southland is larger than for 

farms in Waikato-Taranaki (Chapter 2). Hence, the regional dummy may be capturing part 

of the size effect on productive differences. The small size of the database does not allow 

any effect of size to be separated from the location effect and hence to evaluate whether 

size differences between farms is partly responsible for differences in technologies. 

Therefore, further studies are required to assess whether scale of operation is responsible 

for differences in technology. 

 

As was said before, the database obtained to perform the study was collected for other 

purposes. Hence, some information that would have been helpful to better explain the 

results was not collected. The input “cows,” for example, has to be corrected for the 

improvements in the genetic merit of the cows, particularly when the period of the study is 

large. In the present case, if a 20% replacement rate were assumed, in nine years the herd 

would have changed almost twice. The technical change embodied in the new cows would 

not be capture unless a “corrected” number of cows is used. Similarly, the number of cows 

used has to be adjusted by weight, or instead of number of cows, the input “kgs of cows” 

has to be used. The fertiliser input has to be corrected, as part of it is used as feed input. In 

turn, the feed input should be normalised (homogenised) in terms of metabolised energy. 
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That way it would be possible to evaluate the substitution elasticity between alternative 

inputs in the diet: feed (concentrate, silage, other) and grass as a way to identify ongoing 

trends and the response of production to its use. 

 

It may be argued that sharemilkers have a higher incentive than owner-operators to achieve 

a higher productivity. In this way they could obtain more income, speeding up the process 

of becoming an owner. It might be useful to test whether sharemilkers achieve a higher 

productivity than owner-operators and ascertain the relative impact of sharemilking 

agreements on TFPG. If the impact is sizeable and sharemilkers are those pushing the 

technological frontier, the industry has to evaluate the impact of a slowdown in the 

sharemilking progression that high values of land can provoke. 

 

An important area of future research is related to the understanding of the causes of 

inefficiency. This type of information has to be collected at the same time as most of the 

variables that may explain inefficiency as either dynamic (age, size, etc,) or having a long-

term effect (education, investments, location, etc.). The MAF database does not give any 

information about farmers that can help to explain differences in efficiency. Similarly, it is 

also important to determine the drivers of TFP, TP and TEC change, i.e., the 

factors/determinants of their behaviour (Coelli, 1995 and Perelman, 1995). Both 

identifying the determinants of inefficiency and the drivers of TFP, TP and TEC are crucial 

for adequately target R&D and extension services. These would require gathering an 

extensive database. Given the costs of that kind of endeavour, it may pay off for 

stakeholders to act together.  

  

Finally, the original idea was to discuss results with Dexcel, MAF and people at Massey at 

different seminars at the University. Given the state of affairs described above, the 

discussion of the results took place at La Estanzuela, an experimental station of the INIA 

(National Institute of Agricultural Research) of Uruguay on September 2007. The core of 

dairy research in Uruguay takes place at the La Estanzuela experimental station. All the 

researchers of the group were present and the seminar spanned almost four hours. The 

high calibre of the audience was undoubtedly challenging, however the discussion was 

centred on technical aspects of productivity and policy implications and not on NZ dairy 

industry and regional characteristics. It is recognised that conclusions would have been 

richer would a discussion with NZ experts have taken place. 
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10.5 Final comments  

 

In the near future, changes in the geographical distribution of milk production will 

continue, perhaps intensifying the need for a regional approach to R&D. As mentioned 

earlier, if the pathway to increases in milk production differs across regions, then 

technological requirements will certainly be different. Alternatively, it might be the case for 

regions to be at a different stage in the development process, and therefore with unique 

technological needs. Whatever the case, it seems clear that it would demand increasing 

coordination and cooperation from R&D agencies and the extension services. 

 

Two characteristics made TFP an adequate measure of performance with which to 

benchmark and monitor a group of farms (Balk, 2003). First, unlike prices, quantities of 

inputs and outputs are, to some extent, under the control of management. Second, TFP is 

an ex-ante determinant of profitability change rather than a consequence of it. The MPI 

looks promising as an instrument to generate farm-level information to help farmers 

achieve the growth target. However, estimation of TFP at the farm-level requires data 

demanding detailed information on inputs used and output produced per farm.   

 

The recent launch of the dairy base can be used to set up a benchmarking and monitoring 

plan where those farms that achieve a higher efficiency and productivity could became case 

studies and trial farms to others interested in improving their productivity. Given the 

interest in identifying those farms that are performing best, DEA can be used to estimate 

the distance functions of the MPI. DEA is less stringent in terms of the calculations and it 

identifies peer farms with which to benchmark. The number of observation will be an 

issue, as at least 15% to 20% of the farms have to participate in the survey. However, it is 

difficult to draw up the boundaries of the amount and type of information to be asked, and 

based on what was done here, information has to come from four main areas: productive, 

financial, socio-cultural and geographical. Productive information refers to inputs and 

outputs used in the production process. An important refinement would be to gather 

information on individual prices paid for inputs. It would also be important to obtain good 

information about labour use (either in physical units or in monetary units) with special 

attention to owners’ dedication. Financial information about investments, interests paid 

and expenditure on repairs and maintenance would help to estimate a measure of capital, 

avoiding the use of book value of assets (which most of the time depends on taxation). 
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Socio-cultural information would allow analysing the causes of inefficiency and when 

gathered year after year would help track down and ascertain the impact of such a 

programme. Finally, geographical information        will complement socio-cultural variables 

in explaining inefficiency and in identifying local needs. For example, it was discussed that 

the number and proximity of dairy farms in Waikato-Taranaki permitted the development 

of a good network of services, reducing the use of own capital vis-à-vis Canterbury-

Southland. The selection of TFP as a target measure to guide on-farm improvements and 

the use of MPI open a wide range of interesting research opportunities, some of which 

have been mentioned above.       
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Appendix 1 
 
 
Results for Model J7 
 
 
Table A1.1 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model J7 under VRS (variable returns to scale), variables 

mean-differenced 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 0.2078 0 2.6398 ** 
Area (A) β 0.0974 1 1.9987 * 
Labour (L) β 0.3896 2 7.5026 *** 
Capital (K2) β 0.0984 3 2.0441 ** 
Intermediate input (II) β 0.2919 4 6.6302 *** 
Year (Y) β -0.0274 t -1.8212 * 
(Year) β2 0.0016 tt 1.7895 * 
(A) β2 -0.2079 11 -0.9337 
(A) x (L) β -0.2273 12 -0.5994 
(A) x (K2) β 0.1871 13 0.5939 
(A) x (II) β 0.5560 14 1.8478 * 
(L) β2 0.0377 22 0.1263 
(L) x (K2) β 0.0861 23 0.2466 
(L) x (II) β -0.6968 24 -2.2966 ** 
(K2) β2 -0.1088 33 -0.5596 
(K2) x (II) β 0.3955 34 1.2712 
(II) β2 0.0438 44 0.2562 
Variance parameters    
Sigma σ 0.0127 2 3.5560 ** 
Gamma γ 0.3270 1.7902 * 
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η 0.2085 4.6356 ** 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Results for Model L8 
 
 

Table A1.2 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model L8 under VRS (variable returns to scale), variables 

mean-differenced 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant β 0.0543 0 1.2323 
Cow (C) β 0.8602 1 6.1904 ** 
Labour (L) β 0.0687 2 1.5597 
Area (A) β 0.2590 3 3.0218 ** 
Capital (K2) β -0.1371 4 -1.7822 * 
Year (Y) β 0.0218 t 1.7885 * 
(Year) β2 -0.0018 tt -1.3041 
(C) x (Y) β 0.0156 1t 0.5571 
(L) x (Y) β -0.0078 2t -0.4195 
(A) x (Y) β -0.0622 3t -4.1176 ** 
(K2) x (Y) β 0.0470 4t 3.1163 ** 
(C) β2 -0.0159 11 -0.0278 
(C) x (L) β 0.3081 12 0.4055 
(C) x (A) β -0.0604 13 -0.1131 
(C) x (K2) β -0.1355 14 -0.3018 
(L) β2 -0.2505 22 -0.6986 
(L) x (A) β -0.2201 23 -0.6735 
(L) x (K2) β 0.1149 24 0.3583 
(A) β2 -0.0900 33 -0.3436 
(A) x (K2) β 0.7282 34 2.7059 ** 
(K2) β2 -0.2182 44 -1.5039 
Variance parameters    
Sigma σ 0.0252 2 2.7532 ** 
Gamma γ 0.7890 9.5645 *** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η Restricted to zero 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Results for Model Y5 
 
 
Table A1.3 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model Y5 under VRS (variable returns to scale), variables 

mean-differenced 

 
Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 0.2024 0 2.1977 ** 
Capital (K2) β -0.1019 1 -1.7935 * 
Labour (L) β 0.6376 2 5.0541 ** 
Feed (FE) β 0.0632 3 1.8167 * 
Fertilizer (FT) β 0.2081 4 2.0540 ** 
Year (Y) β -0.0168 t -1.7637 * 
(Year) β2 0.0007 tt 0.3406 
(K2) x (Y) β 0.0518 1t 2.4597 ** 
(L) x (Y) β -0.0438 2t -2.1404 ** 
(FE) x (Y) β 0.0148 3t 1.6000 
(FT) x (Y) β -0.0150 4t -0.8817 
(K2) β2 -0.2483 11 -1.2083 
(K2) x (L) β 0.3682 12 1.0268 
(K2) x (FE) β 0.2959 13 1.7877 * 
(K2) x (FT) β 0.1323 14 0.6134 
(L) β2 0.0823 22 0.3124 
(L) x (FE) β -0.5651 23 -3.8523 ** 
(L) x (FT) β -0.3585 24 -1.3723 
(FE) β2 0.3220 33 4.9163 ** 
(FE) x (FT) β -0.3675 34 -3.0092 ** 
(FT) β2 0.3029 44 2.5711 ** 
Dummy for policy change Dpc -0.0717 -1.8761 * 
Variance parameters    
Sigma σ 0.0122 2 3.8161 ** 
Gamma γ 0.4028 2.4458 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η 0.2293 6.3693 *** 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Results for Model K9 
 
 

Table A1.4 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model K9 under VRS (variable returns to scale), variables 

mean-differenced 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 0.1033 0 1.9385 * 
Cows (CW) β 0.9843 1 4.7702 ** 
Labour (L) β 0.0297 2 1.5265 
Fertilizer (FT) β -0.0782 3 -1.8809 * 
Capital (K9) β -0.0687 4 -1.8508 * 
Year (Y) β 0.0157 t 1.9358 * 
(Year) β2 -0.0025 tt -1.2809 
(CW) x (Y) β -0.0677 1t -1.9099 * 
(L) x (Y) β 0.0155 2t 0.5528 
(FT) x (Y) β 0.0457 3t 3.4547 ** 
(K9) x (Y) β 0.0322 4t 2.5298 ** 
(CW) β2 0.4270 11 0.5040 
(CW) x (L) β 0.2685 12 0.1817 
(CW) x (FT) β -0.3917 13 -1.1811 
(CW) x (K9) β 0.5882 14 1.2836 
(L) β2 -0.7177 22 -1.0531 
(L) x (FT) β 0.1071 23 0.3082 
(L) x (K9) β 0.1991 24 0.4833 
(FT) β2 0.0759 33 0.6255 
(FT) x (K9) β -0.1669 34 -0.8351 
(K9) β2 -0.2941 44 -2.5046 ** 
Variance parameters    
Sigma σ 0.0107 2 2.7812 ** 
Gamma γ 0.4902 2.7872 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η 0.1476 2.8781 ** 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Appendix 2 
 
Results for Model J7 
 
 
Table A2.1 - Data for Waikato-Taranaki: Maximum likelihood estimates for parameters of 

the stochastic frontier for Model J7 under CRS (constant returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 5.8599 0 30.7125 *** 
Area (A) β 0.2762 1  
Labour (L) β 0.2970 2 6.2569 *** 
Capital (K2) β 0.0273 3 0.5954 
Intermediate input (II) β 0.3995 4 8.1259 *** 
Year (Y) β 0.0067 t 2.0711 ** 
Variance parameters    
Sigma σ 0.0427 2 2.6078 ** 
Gamma γ 0.8284 11.3282 *** 
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η Restricted to zero 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Table A2.2 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model J7 under CRS (constant returns to scale), variables 

mean-differenced 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 0.1447 0 1.9097 * 
Area (A) β 0.1694 1  
Labour (L) β 0.3735 2 6.9291 *** 
Capital (K2) β 0.1118 3 2.2625 ** 
Intermediate input (II) β 0.3453 4 8.1929 *** 
Year (Y) β -0.0136 t -1.6588 
(Year) β2 0.0003 tt 1.1590 
(A) β2 -0.9056 11  
(A) x (L) β 0.4904 12  
(A) x (K2) β -0.0864 13  
(A) x (II) β 0.5016 14  
(L) β2 0.5096 22 1.7509 
(L) x (K2) β -0.1440 23 -0.3842 
(L) x (II) β -0.8560 24 -2.7529 * 
(K2) β2 -0.0367 33 -0.1760 
(K2) x (II) β 0.2671 34 0.8025 
(II) β2 0.0872 44 0.5241 
Variance parameters    
Sigma σ 0.0136 2 4.5401 ** 
Gamma γ 0.1683 0.9875 
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η 0.1960 2.5643 ** 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Results for Model L8 
 
 

Table A2.3 - Data for Waikato-Taranaki: Maximum likelihood estimates for parameters of 

the stochastic frontier for Model L8 under CRS (constant returns to scale) 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 5.7763 0 31.1246 *** 
Cow (C) β 1.0443 1  
Labour (L) β 0.0957 2 1.8516 * 
Area (A) β -0.1547 3 -2.0955 ** 
Capital (K2) β 0.0946 4 1.9618 * 
Year (Y) β 0.0032 t 1.8435 * 
Variance parameters    
Sigma σ 0.0229 2 2.7841 ** 
Gamma γ 0.6668 5.0527 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η Restricted to zero 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Table A2.4 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model L8 under CRS (constant returns to scale), variables 

mean-differenced 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 0.0278 0 0.7377 
Cow (C) β 0.7652 1  
Labour (L) β 0.1218 2 1.3622 
Area (A) β 0.2869 3 3.6248 ** 
Capital (K2) β -0.1740 4 -2.2893 ** 
Year (Y) β 0.0317 t 2.3703 ** 
(Year) β2 -0.0026 tt -2.0374 ** 
(C) x (Y) β 0.0303 1t  
(L) x (Y) β -0.0240 2t -1.4838 
(A) x (Y) β -0.0622 3t -4.8955 *** 
(K2) x (Y) β 0.0559 4t 3.9894 ** 
(C) β2 0.4397 11  
(C) x (L) β 0.1210 12  
(C) x (A) β -0.0342 13  
(C) x (K2) β -0.5266 14  
(L) β2 0.0516 22 0.1524 
(L) x (A) β -0.2206 23 -0.7383 
(L) x (K2) β 0.0480 24 0.1590 
(A) β2 -0.4371 33 -2.0373 ** 
(A) x (K2) β 0.6918 34 2.9424 ** 
(K2) β2 -0.2132 44 -1.4113 
Variance parameters    
Sigma σ 0.0217 2 2.9469 ** 
Gamma γ 0.7258 7.0961 *** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η Restricted to zero 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Results for Model Y5 
 
 
Table A2.5 - Data for Waikato-Taranaki: Maximum likelihood estimates for parameters of 

the stochastic frontier for Model Y5 under CRS (constant returns to scale), variables mean-

differenced 

 
Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 5.9958 0 27.6496 ***  
Capital (K2) β 0.1505 1  
Labour (L) β 0.4018 2 8.4004 ***  
Feed (FE) β 0.2063 3 6.9879 *** 
Fertilizer (FT) β 0.2414 4 5.8631 *** 
Year (Y) β 0.0039 t 1.7847 *  
Variance parameters    
Sigma σ 0.0199 2 3.4770 ** 
Gamma γ 0.5221 4.4991 *** 
    
Technical inefficiency effect μ 0.2039 i 3.7076 ** 
Time-varying inefficiency η Restricted to zero 

Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Table A2.6 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model Y5 under CRS (constant returns to scale), variables 

mean-differenced 

 
Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 0.2472 0 2.8440 ** 
Capital (K2) β -0.0902 1  
Labour (L) β 0.7768 2 7.2613 *** 
Feed (FE) β 0.0934 3 1.8152 * 
Fertilizer (FT) β 0.2199 4 2.5111 ** 
Year (Y) β -0.0089 t -2.0162 ** 
(Year) β2 -0.0006 tt -0.2940 
(K2) x (Y) β 0.0563 1t  
(L) x (Y) β -0.0542 2t -3.2161 ** 
(FE) x (Y) β 0.0097 3t 1.2012 
(FT) x (Y) β -0.0119 4t -0.7731 
(K2) β2 -1.5477 11  
(K2) x (L) β 0.6062 12  
(K2) x (FE) β 0.5972 13  
(K2) x (FT) β 0.3443 14  
(L) β2 0.2733 22 1.4912 
(L) x (FE) β -0.4947 23 -3.6643 ** 
(L) x (FT) β -0.3847 24 -1.9342 * 
(FE) β2 0.2337 33 3.5140 ** 
(FE) x (FT) β -0.3362 34 -2.7600 ** 
(FT) β2 0.3766 44 3.0166 ** 
Dummy for policy change Dpc -0.1094 -3.0324 ** 
Variance parameters    
Sigma σ 0.0151 2 3.3863 ** 
Gamma γ 0.4241 2.5029 ** 
    
Technical inefficiency effect μ Restricted to zero i 

Time-varying inefficiency η 0.2042 4.7590 *** 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Results for Model K9 
 

 

Table A2.7 - Data for Waikato-Taranaki: Maximum likelihood estimates for parameters of 

the stochastic frontier for Model K9 under CRS (constant returns to scale), variables mean-

differenced 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 5.7616 0 20.3629 ***  
Cows (CW) β 0.6021 1  
Labour (L) β 0.1847 2 1.9626 *  
Fertilizer (FT) β 0.1019 3 2.7469 ** 
Capital (K9) β 0.1112 4 2.6279 ** 
Year (Y) β 0.0056 t 2.0439 ** 
Variance parameters    
Sigma σ 0.0272 2 2.8179 ** 
Gamma γ 0.7649 8.4709 *** 
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η Restricted to zero 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Table A2.8 - Data for Canterbury-Southland: Maximum likelihood estimates for parameters 

of the stochastic frontier for Model K9 under CRS (constant returns to scale), variables 

mean-differenced 

 

Variables Parameter Coefficient t-value 
Stochastic Frontier    
Constant  β 0.1176 0 2.0860 ** 
Cows (CW) β 1.0456 1  
Labour (L) β 0.0783 2 0.5860 
Fertilizer (FT) β -0.0484 3 -0.8055 
Capital (K9) β -0.0756 4 -1.0990 
Year (Y) β 0.0038 t 0.2277 
(Year) β2 -0.0007 tt -0.5026 
(CW) x (Y) β -0.0511 1t  
(L) x (Y) β -0.0033 2t -0.1458 
(FT) x (Y) β 0.0240 3t 2.2061 ** 
(K9) x (Y) β 0.0304 4t 2.3387 ** 
(CW) β2 -0.7552 11  
(CW) x (L) β 0.3667 12  
(CW) x (FT) β 0.5447 13  
(CW) x (K9) β -0.1563 14  
(L) β2 -0.1777 22 -0.4246 
(L) x (FT) β -0.2745 23 -0.7390 
(L) x (K9) β 0.0856 24 0.2954 
(FT) β2 -0.2719 33 -2.2483 
(FT) x (K9) β 0.0018 34 0.0091 
(K9) β2 0.0689 44 0.5744 
Variance parameters    
Sigma σ 0.0186 2 2.3275 ** 
Gamma γ 0.6250 3.8690 **  
    
Technical inefficiency effect μ Restricted to zero i 

Time varying inefficiency η 0.0445 0.6234 
Note:  *** - significant at 1% level (p<0.01) 

 ** - significant at 5% level (p<0.05) 

 * - significant at 10% level (p<0.10)  
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Appendix 3 
 

Table A3.1- Data for Canterbury-Southland: farm technical efficiency estimates for all 

models 

 

Model L8 all years 
CS1 0,866 
CS2 0,981 
CS3 0,894 
CS4 0,896 
CS5 0,798 
CS6 0,855 
CS7 0,735 
CS8 0,880 
CS9 0,901 
CS10 0,902 
CS11 0,964 
CS12 0,853 
CS13 0,977 
CS14 0,975 
CS15 0,970 
CS16 0,851 
Note: Model L8 was time invariant. Hence, farms have the same efficiency over the entire period. 

 

 

Model 
J7 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 0,774 0,812 0,844 0,872 0,894 0,913 0,929 0,942 0,953 0,880 
CS2 0,953 0,962 0,969 0,975 0,979 0,983 0,986 0,989 0,991 0,976 
CS3 0,811 0,844 0,871 0,894 0,913 0,929 0,942 0,952 0,961 0,901 
CS4 0,541 0,607 0,667 0,720 0,765 0,805 0,838 0,867 0,890 0,735 
CS5 0,813 0,845 0,872 0,895 0,914 0,929 0,942 0,953 0,961 0,901 
CS6 0,798 0,833 0,862 0,886 0,907 0,923 0,937 0,949 0,958 0,893 
CS7 0,451 0,524 0,592 0,653 0,708 0,755 0,796 0,831 0,861 0,672 
CS8 0,720   0,838 0,866 0,890 0,910 0,926 0,939 0,867 
CS9 0,894 0,913 0,929 0,942 0,952 0,961 0,968 0,974 0,979 0,945 
CS10 0,747 0,789 0,825 0,855 0,881 0,902 0,920 0,934 0,946 0,864 
CS11 0,821 0,852 0,878 0,900 0,918 0,933 0,945 0,955 0,963 0,906 
CS12 0,602 0,662 0,715   0,836 0,864 0,888 0,908 0,774 
CS13 0,897 0,916 0,931 0,943 0,954 0,962 0,969 0,975 0,980 0,947 
CS14 0,967 0,973 0,978 0,982 0,986 0,988 0,990 0,992 0,994 0,984 
CS15 0,857 0,882 0,903 0,920 0,935 0,947 0,956 0,964 0,971 0,925 
CS16 0,798  0,861 0,886 0,906 0,923 0,937 0,949 0,958 0,901 
Note: empty space when observation was missing, i.e., farm data were not collected 
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Model 
Y5 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 0,757 0,801 0,838 0,869 0,894 0,915 0,932 0,945 0,956 0,876 
CS2 0,903 0,922 0,937 0,950 0,960 0,968 0,974 0,979 0,984 0,952 
CS3 0,745 0,791 0,830 0,862 0,889 0,910 0,928 0,942 0,954 0,870 
CS4 0,492 0,569 0,638 0,700 0,753 0,798 0,836 0,867 0,893 0,714 
CS5 0,806 0,842 0,872 0,897 0,917 0,933 0,947 0,957 0,966 0,903 
CS6 0,751 0,796 0,834 0,866 0,892 0,913 0,930 0,944 0,955 0,873 
CS7 0,379 0,462 0,541 0,614 0,678 0,734 0,782 0,823 0,856 0,631 
CS8 0,652   0,806 0,842 0,872 0,897 0,917 0,934 0,840 
CS9 0,799 0,836 0,867 0,893 0,914 0,931 0,945 0,956 0,965 0,899 
CS10 0,665 0,723 0,773 0,815 0,849 0,878 0,902 0,921 0,937 0,824 
CS11 0,788 0,827 0,860 0,887 0,909 0,927 0,941 0,953 0,962 0,893 
CS12 0,450 0,530 0,603   0,776 0,817 0,852 0,880 0,682 
CS13 0,884 0,906 0,925 0,940 0,952 0,961 0,969 0,975 0,980 0,943 
CS14 0,973 0,978 0,983 0,986 0,989 0,991 0,993 0,994 0,996 0,987 
CS15 0,811 0,846 0,875 0,900 0,919 0,935 0,948 0,959 0,967 0,905 
CS16 0,716  0,809 0,845 0,875 0,899 0,919 0,935 0,948 0,865 
Note: empty space when observation was missing, i.e., farm data were not collected 

 

 
 
Model 
K9 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 0,790 0,816 0,839 0,859 0,877 0,893 0,907 0,919 0,930 0,869 
CS2 0,957 0,962 0,967 0,972 0,976 0,979 0,982 0,984 0,986 0,974 
CS3 0,832 0,853 0,872 0,888 0,903 0,915 0,927 0,936 0,945 0,896 
CS4 0,754 0,783 0,810 0,834 0,855 0,873 0,890 0,904 0,917 0,845 
CS5 0,776 0,803 0,828 0,849 0,869 0,885 0,900 0,913 0,925 0,860 
CS6 0,797 0,822 0,844 0,864 0,881 0,897 0,910 0,922 0,932 0,873 
CS7 0,565 0,611 0,654 0,693 0,729 0,761 0,790 0,816 0,839 0,712 
CS8 0,791   0,860 0,878 0,894 0,908 0,920 0,930 0,882 
CS9 0,917 0,928 0,937 0,946 0,953 0,959 0,965 0,969 0,974 0,950 
CS10 0,819 0,841 0,862 0,879 0,895 0,909 0,921 0,931 0,940 0,888 
CS11 0,946 0,953 0,959 0,965 0,969 0,974 0,977 0,980 0,983 0,967 
CS12 0,732 0,764 0,793   0,861 0,879 0,895 0,909 0,831 
CS13 0,965 0,970 0,974 0,978 0,981 0,983 0,985 0,987 0,989 0,979 
CS14 0,942 0,950 0,957 0,963 0,968 0,972 0,976 0,979 0,982 0,965 
CS15 0,969 0,973 0,977 0,980 0,982 0,985 0,987 0,989 0,990 0,981 
CS16 0,814  0,858 0,876 0,892 0,906 0,918 0,929 0,939 0,891 
Note: empty space when observation was missing, i.e., farm data were not collected 
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Table A3.2- Data for Canterbury-Southland: farm technical efficiency change estimates for 

all models. 

 
Model 
J7 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0492 1,0398 1,0322 1,0261 1,0212 1,0172 1,0139 1,0113 1,0233 
CS2 1 1,0089 1,0073 1,0059 1,0048 1,0039 1,0032 1,0026 1,0021 1,0043 
CS3 1 1,0399 1,0323 1,0262 1,0213 1,0173 1,0140 1,0114 1,0092 1,0190 
CS4 1 1,1224 1,0984 1,0792 1,0639 1,0516 1,0417 1,0337 1,0273 1,0570 
CS5 1 1,0396 1,0321 1,0260 1,0211 1,0171 1,0139 1,0113 1,0092 1,0189 
CS6 1 1,0431 1,0349 1,0283 1,0229 1,0186 1,0151 1,0122 1,0099 1,0205 
CS7 1 1,1613 1,1291 1,1037 1,0834 1,0672 1,0542 1,0438 1,0354 1,0743 
CS8 1    1,0337 1,0273 1,0221 1,0179 1,0146 1,0192 
CS9 1 1,0211 1,0172 1,0139 1,0113 1,0092 1,0075 1,0061 1,0049 1,0101 
CS10 1 1,0563 1,0455 1,0368 1,0298 1,0242 1,0196 1,0159 1,0129 1,0266 
CS11 1 1,0375 1,0304 1,0247 1,0200 1,0162 1,0132 1,0107 1,0087 1,0179 
CS12 1 1,1001 1,0806    1,0343 1,0278 1,0225 1,0437 
CS13 1 1,0204 1,0166 1,0135 1,0110 1,0089 1,0072 1,0059 1,0048 1,0098 
CS14 1 1,0062 1,0050 1,0041 1,0033 1,0027 1,0022 1,0018 1,0015 1,0030 
CS15 1 1,0293 1,0238 1,0193 1,0157 1,0127 1,0103 1,0084 1,0068 1,0140 
CS16 1   1,0284 1,0230 1,0187 1,0151 1,0123 1,0100 1,0153 
 
 
 
 
Model 
Y5 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0585 1,0464 1,0367 1,0291 1,0231 1,0184 1,0146 1,0116 1,0263 
CS2 1 1,0210 1,0167 1,0133 1,0106 1,0084 1,0067 1,0053 1,0043 1,0096 
CS3 1 1,0619 1,0490 1,0388 1,0308 1,0244 1,0194 1,0154 1,0122 1,0278 
CS4 1 1,1562 1,1224 1,0962 1,0758 1,0599 1,0473 1,0375 1,0297 1,0685 
CS5 1 1,0450 1,0357 1,0284 1,0225 1,0179 1,0142 1,0113 1,0090 1,0204 
CS6 1 1,0602 1,0477 1,0378 1,0300 1,0238 1,0189 1,0150 1,0119 1,0271 
CS7 1 1,2199 1,1713 1,1340 1,1052 1,0828 1,0653 1,0516 1,0408 1,0949 
CS8 1    1,0451 1,0358 1,0283 1,0225 1,0178 1,0248 
CS9 1 1,0469 1,0372 1,0295 1,0234 1,0186 1,0148 1,0117 1,0093 1,0212 
CS10 1 1,0868 1,0685 1,0542 1,0429 1,0340 1,0269 1,0214 1,0169 1,0387 
CS11 1 1,0499 1,0395 1,0314 1,0249 1,0198 1,0157 1,0125 1,0099 1,0225 
CS12 1 1,1774 1,1388    1,0534 1,0422 1,0335 1,0724 
CS13 1 1,0254 1,0202 1,0161 1,0128 1,0102 1,0081 1,0064 1,0051 1,0116 
CS14 1 1,0057 1,0045 1,0036 1,0029 1,0023 1,0018 1,0014 1,0012 1,0026 
CS15 1 1,0437 1,0347 1,0275 1,0219 1,0174 1,0138 1,0110 1,0087 1,0198 
CS16 1   1,0441 1,0350 1,0277 1,0220 1,0175 1,0139 1,0228 
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Model 
K9 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0328 1,0282 1,0243 1,0210 1,0181 1,0156 1,0134 1,0116 1,0183 
CS2 1 1,0061 1,0052 1,0045 1,0039 1,0034 1,0029 1,0025 1,0022 1,0034 
CS3 1 1,0255 1,0220 1,0190 1,0164 1,0141 1,0122 1,0105 1,0091 1,0143 
CS4 1 1,0395 1,0340 1,0293 1,0252 1,0217 1,0187 1,0161 1,0139 1,0220 
CS5 1 1,0354 1,0305 1,0263 1,0226 1,0195 1,0168 1,0145 1,0125 1,0197 
CS6 1 1,0316 1,0272 1,0235 1,0202 1,0174 1,0150 1,0130 1,0112 1,0176 
CS7 1 1,0814 1,0699 1,0600 1,0516 1,0444 1,0382 1,0328 1,0283 1,0449 
CS8 1    1,0209 1,0180 1,0155 1,0134 1,0115 1,0132 
CS9 1 1,0119 1,0103 1,0089 1,0077 1,0066 1,0057 1,0049 1,0043 1,0067 
CS10 1 1,0277 1,0239 1,0206 1,0178 1,0153 1,0132 1,0114 1,0098 1,0155 
CS11 1 1,0076 1,0066 1,0057 1,0049 1,0042 1,0037 1,0032 1,0027 1,0043 
CS12 1 1,0436 1,0375    1,0207 1,0178 1,0154 1,0224 
CS13 1 1,0048 1,0042 1,0036 1,0031 1,0027 1,0023 1,0020 1,0017 1,0027 
CS14 1 1,0081 1,0070 1,0060 1,0052 1,0045 1,0039 1,0034 1,0029 1,0046 
CS15 1 1,0043 1,0038 1,0032 1,0028 1,0024 1,0021 1,0018 1,0016 1,0024 
CS16 1   1,0212 1,0183 1,0158 1,0136 1,0117 1,0101 1,0130 
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Table A3.3- Data for Canterbury-Southland: farm technical progress estimates for all 

models. 

 
Model 
L8 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0565 1,0455 1,0350 1,0392 1,0415 1,0334 1,0325 1,0292 1,0390 
CS2 1 1,0326 1,0226 1,0270 1,0295 1,0264 1,0220 1,0332 1,0409 1,0293 
CS3 1 1,0335 1,0301 1,0240 1,0271 1,0357 1,0452 1,0374 1,0279 1,0326 
CS4 1 1,0530 1,0314 1,0096 1,0432 1,0454 1,0229 1,0292 1,0170 1,0314 
CS5 1 1,0505 1,0557 1,0405 1,0171 1,0508 1,0689 1,0471 1,0360 1,0457 
CS6 1 1,0226 1,0177 1,0153 1,0251 1,0270 1,0232 1,0171 1,0222 1,0213 
CS7 1 1,0573 1,0651 1,0744 1,0664 1,0621 1,0662 1,0591 1,0482 1,0623 
CS8 1   1,0401 1,0401 1,0379 1,0345 1,0267 1,0150 1,0323 
CS9 1 1,0356 1,0170 0,9990 1,0162 1,0432 1,0396 1,0230 1,0152 1,0235 
CS10 1 1,0280 1,0304 1,0310 1,0122 0,9957 0,9805 0,9631 0,9591 0,9996 
CS11 1 1,0211 1,0258 1,0337 1,0322 1,0221 1,0155 1,0140 1,0078 1,0215 
CS12 1 1,0498 1,0443   1,0232 1,0014 0,9900 0,9941 1,0169 
CS13 1 1,0249 1,0212 1,0212 1,0124 1,0050 0,9965 0,9858 0,9884 1,0068 
CS14 1 1,0205 1,0101 1,0160 1,0242 1,0161 1,0022 0,9911 0,9838 1,0079 
CS15 1 1,0213 1,0168 1,0153 1,0315 1,0491 1,0436 1,0252 1,0149 1,0271 
CS16 1  1,0341 1,0197 1,0084 1,0183 1,0264 1,0339 1,0316 1,0246 
 
 
 
 
 
Model 
J7 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 0,9980 0,9971 0,9812 0,9791 0,9870 0,9946 0,9984 0,9928 0,9910 
CS2 1 0,9710 0,9601 0,9659 0,9750 0,9856 0,9807 0,9815 0,9863 0,9757 
CS3 1 0,9428 0,9690 0,9882 0,9852 0,9833 0,9831 0,9810 0,9901 0,9777 
CS4 1 0,9545 0,9605 0,9633 0,9834 1,0128 1,0277 1,0374 1,0203 0,9945 
CS5 1 0,9707 0,9919 1,0212 1,0197 1,0241 1,0119 0,9969 0,9933 1,0036 
CS6 1 0,9641 0,9548 0,9572 0,9690 0,9742 0,9741 0,9618 0,9685 0,9654 
CS7 1 0,9705 0,9691 0,9727 0,9896 1,0049 1,0074 1,0000 0,9915 0,9881 
CS8 1   1,0130 1,0090 0,9960 0,9891 0,9887 0,9788 0,9957 
CS9 1 0,9395 0,9368 0,9441 0,9562 0,9678 0,9644 0,9502 0,9482 0,9509 
CS10 1 0,9638 0,9718 0,9702 0,9794 0,9831 0,9694 0,9653 0,9736 0,9721 
CS11 1 0,9654 0,9683 0,9788 0,9726 0,9728 0,9840 0,9870 0,9874 0,9770 
CS12 1 0,9386 0,9395   0,9587 0,9566 0,9596 0,9717 0,9540 
CS13 1 0,9912 1,0040 0,9919 0,9709 0,9834 0,9956 0,9889 0,9783 0,9880 
CS14 1 1,0056 1,0084 0,9995 0,9888 0,9708 0,9611 0,9745 0,9913 0,9874 
CS15 1 0,9914 0,9885 0,9816 0,9893 1,0096 1,0072 0,9825 0,9651 0,9893 
CS16 1  0,9491 0,9488 0,9419 0,9428 0,9482 0,9629 0,9723 0,9522 
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Model 
Y5 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0111 1,0067 0,9922 0,9915 0,9979 1,0008 1,0031 1,0002 1,0004 
CS2 1 0,9805 0,9717 0,9785 0,9867 0,9889 0,9801 0,9877 0,9984 0,9840 
CS3 1 0,9696 0,9870 0,9971 0,9937 0,9953 1,0034 1,0004 1,0045 0,9938 
CS4 1 0,9815 0,9808 0,9836 1,0040 1,0160 1,0187 1,0325 1,0216 1,0047 
CS5 1 0,9767 0,9935 1,0174 1,0135 1,0245 1,0217 1,0073 1,0033 1,0071 
CS6 1 0,9724 0,9669 0,9707 0,9829 0,9871 0,9889 0,9785 0,9802 0,9784 
CS7 1 0,9821 0,9876 0,9986 1,0107 1,0153 1,0178 1,0118 1,0063 1,0037 
CS8 1   1,0273 1,0182 1,0018 0,9934 0,9928 0,9876 1,0034 
CS9 1 0,9633 0,9585 0,9581 0,9668 0,9797 0,9815 0,9710 0,9664 0,9681 
CS10 1 0,9742 0,9831 0,9922 0,9955 0,9954 0,9847 0,9806 0,9851 0,9863 
CS11 1 0,9761 0,9813 0,9894 0,9882 0,9887 0,9937 0,9947 0,9932 0,9881 
CS12 1 0,9633 0,9627   0,9753 0,9740 0,9747 0,9809 0,9718 
CS13 1 0,9967 1,0100 0,9987 0,9738 0,9871 1,0041 0,9965 0,9861 0,9941 
CS14 1 1,0060 1,0047 1,0012 1,0001 0,9861 0,9764 0,9853 0,9949 0,9943 
CS15 1 0,9936 0,9928 0,9918 1,0037 1,0265 1,0226 0,9991 0,9861 1,0019 
CS16 1  0,9663 0,9739 0,9730 0,9735 0,9788 0,9883 0,9936 0,9782 
 
 
 
Model 
K9 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0028 1,0114 1,0025 1,0054 1,0160 1,0248 1,0213 1,0141 1,0122 
CS2 1 0,9975 0,9936 0,9972 1,0029 1,0165 1,0202 1,0186 1,0216 1,0084 
CS3 1 0,9731 0,9882 0,9970 1,0013 1,0049 1,0047 1,0042 1,0085 0,9977 
CS4 1 0,9969 1,0095 1,0023 1,0117 1,0270 1,0266 1,0253 1,0146 1,0142 
CS5 1 1,0083 1,0159 1,0225 1,0229 1,0326 1,0269 1,0124 1,0130 1,0193 
CS6 1 0,9863 0,9840 0,9803 0,9892 0,9985 0,9973 0,9941 1,0060 0,9919 
CS7 1 1,0153 1,0050 0,9981 1,0005 1,0132 1,0197 1,0175 1,0079 1,0096 
CS8 1   0,9833 1,0025 1,0231 1,0259 1,0200 1,0078 1,0103 
CS9 1 0,9908 0,9947 0,9997 1,0115 1,0233 1,0168 1,0077 0,9986 1,0053 
CS10 1 0,9985 0,9943 0,9817 0,9860 0,9827 0,9624 0,9659 0,9783 0,9812 
CS11 1 0,9953 0,9987 1,0092 1,0027 1,0027 1,0051 0,9998 1,0029 1,0020 
CS12 1 0,9858 0,9863   0,9973 0,9930 0,9957 1,0044 0,9937 
CS13 1 1,0152 1,0255 1,0165 1,0161 1,0148 1,0023 0,9976 0,9951 1,0103 
CS14 1 0,9975 1,0066 1,0042 0,9955 0,9936 0,9940 0,9995 1,0078 0,9998 
CS15 1 1,0082 1,0062 0,9941 0,9947 1,0057 1,0069 0,9998 0,9966 1,0015 
CS16 1  0,9977 0,9691 0,9527 0,9687 0,9788 0,9949 1,0015 0,9803 
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Table A3.4- Data for Canterbury-Southland: farm total factor productivity estimates for all 

models. 

 
Model 
L8 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0565 1,0455 1,0350 1,0392 1,0415 1,0334 1,0325 1,0292 1,0390 
CS2 1 1,0326 1,0226 1,0270 1,0295 1,0264 1,0220 1,0332 1,0409 1,0293 
CS3 1 1,0335 1,0301 1,0240 1,0271 1,0357 1,0452 1,0374 1,0279 1,0326 
CS4 1 1,0530 1,0314 1,0096 1,0432 1,0454 1,0229 1,0292 1,0170 1,0314 
CS5 1 1,0505 1,0557 1,0405 1,0171 1,0508 1,0689 1,0471 1,0360 1,0457 
CS6 1 1,0226 1,0177 1,0153 1,0251 1,0270 1,0232 1,0171 1,0222 1,0213 
CS7 1 1,0573 1,0651 1,0744 1,0664 1,0621 1,0662 1,0591 1,0482 1,0623 
CS8 1   1,0401 1,0401 1,0379 1,0345 1,0267 1,0150 1,0323 
CS9 1 1,0356 1,0170 0,9990 1,0162 1,0432 1,0396 1,0230 1,0152 1,0235 
CS10 1 1,0280 1,0304 1,0310 1,0122 0,9957 0,9805 0,9631 0,9591 0,9996 
CS11 1 1,0211 1,0258 1,0337 1,0322 1,0221 1,0155 1,0140 1,0078 1,0215 
CS12 1 1,0498 1,0443   1,0232 1,0014 0,9900 0,9941 1,0169 
CS13 1 1,0249 1,0212 1,0212 1,0124 1,0050 0,9965 0,9858 0,9884 1,0068 
CS14 1 1,0205 1,0101 1,0160 1,0242 1,0161 1,0022 0,9911 0,9838 1,0079 
CS15 1 1,0213 1,0168 1,0153 1,0315 1,0491 1,0436 1,0252 1,0149 1,0271 
CS16 1  1,0341 1,0197 1,0084 1,0183 1,0264 1,0339 1,0316 1,0246 
 
 
 
 
 
 
Model 
J7 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0470 1,0368 1,0128 1,0047 1,0079 1,0116 1,0123 1,0040 1,0170 
CS2 1 0,9797 0,9671 0,9716 0,9797 0,9894 0,9838 0,9841 0,9884 0,9804 
CS3 1 0,9805 1,0003 1,0141 1,0062 1,0003 0,9969 0,9921 0,9992 0,9987 
CS4 1 1,0713 1,0550 1,0396 1,0462 1,0650 1,0705 1,0723 1,0481 1,0584 
CS5 1 1,0092 1,0237 1,0478 1,0412 1,0416 1,0260 1,0081 1,0024 1,0249 
CS6 1 1,0057 0,9882 0,9843 0,9912 0,9923 0,9888 0,9735 0,9781 0,9877 
CS7 1 1,1270 1,0943 1,0736 1,0722 1,0724 1,0621 1,0438 1,0266 1,0711 
CS8 1    1,0430 1,0232 1,0110 1,0065 0,9930 1,0152 
CS9 1 0,9593 0,9529 0,9573 0,9671 0,9768 0,9716 0,9560 0,9529 0,9617 
CS10 1 1,0181 1,0161 1,0060 1,0086 1,0069 0,9884 0,9806 0,9861 1,0012 
CS11 1 1,0016 0,9977 1,0029 0,9921 0,9886 0,9969 0,9976 0,9959 0,9967 
CS12 1 1,0326 1,0152    0,9895 0,9862 0,9936 1,0033 
CS13 1 1,0114 1,0206 1,0053 0,9815 0,9921 1,0028 0,9947 0,9830 0,9989 
CS14 1 1,0119 1,0135 1,0036 0,9921 0,9735 0,9632 0,9763 0,9927 0,9907 
CS15 1 1,0205 1,0121 1,0005 1,0048 1,0225 1,0177 0,9907 0,9717 1,0049 
CS16 1   0,9757 0,9636 0,9604 0,9625 0,9747 0,9819 0,9698 
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Model 
Y5 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0703 1,0534 1,0287 1,0203 1,0210 1,0191 1,0177 1,0118 1,0301 
CS2 1 1,0011 0,9880 0,9916 0,9971 0,9972 0,9867 0,9930 1,0026 0,9946 
CS3 1 1,0296 1,0353 1,0358 1,0243 1,0196 1,0229 1,0158 1,0167 1,0250 
CS4 1 1,1349 1,1009 1,0783 1,0801 1,0768 1,0669 1,0711 1,0520 1,0824 
CS5 1 1,0207 1,0290 1,0463 1,0363 1,0428 1,0362 1,0187 1,0123 1,0302 
CS6 1 1,0309 1,0130 1,0074 1,0123 1,0105 1,0076 0,9931 0,9919 1,0083 
CS7 1 1,1980 1,1567 1,1324 1,1171 1,0994 1,0843 1,0640 1,0473 1,1114 
CS8 1    1,0641 1,0377 1,0216 1,0152 1,0052 1,0285 
CS9 1 1,0085 0,9941 0,9864 0,9895 0,9979 0,9960 0,9824 0,9754 0,9912 
CS10 1 1,0588 1,0505 1,0459 1,0382 1,0292 1,0112 1,0015 1,0018 1,0294 
CS11 1 1,0248 1,0201 1,0204 1,0128 1,0083 1,0093 1,0071 1,0030 1,0132 
CS12 1 1,1342 1,0963    1,0260 1,0159 1,0137 1,0561 
CS13 1 1,0220 1,0304 1,0148 0,9863 0,9971 1,0122 1,0030 0,9912 1,0070 
CS14 1 1,0117 1,0092 1,0048 1,0030 0,9883 0,9781 0,9867 0,9961 0,9972 
CS15 1 1,0371 1,0272 1,0191 1,0257 1,0443 1,0367 1,0100 0,9947 1,0242 
CS16 1   1,0169 1,0071 1,0005 1,0003 1,0055 1,0074 1,0063 
 
 
Model 
K9 

1996/
97 

1997/
98 

1998/
99 

1999/
00 

2000/
01 

2001/
02 

2002/
03 

2003/
04 

2004/
05 

Geometric 
mean 

CS1 1 1,0357 1,0399 1,0269 1,0265 1,0343 1,0408 1,0350 1,0258 1,0331 
CS2 1 1,0035 0,9988 1,0017 1,0068 1,0199 1,0232 1,0211 1,0239 1,0123 
CS3 1 0,9979 1,0099 1,0159 1,0177 1,0191 1,0169 1,0148 1,0176 1,0137 
CS4 1 1,0362 1,0438 1,0317 1,0373 1,0494 1,0458 1,0419 1,0287 1,0393 
CS5 1 1,0440 1,0469 1,0494 1,0461 1,0527 1,0442 1,0271 1,0256 1,0419 
CS6 1 1,0175 1,0108 1,0033 1,0092 1,0160 1,0123 1,0070 1,0173 1,0116 
CS7 1 1,0979 1,0752 1,0580 1,0521 1,0581 1,0586 1,0509 1,0364 1,0608 
CS8 1    1,0234 1,0415 1,0419 1,0337 1,0195 1,0320 
CS9 1 1,0026 1,0049 1,0086 1,0192 1,0301 1,0226 1,0126 1,0028 1,0129 
CS10 1 1,0261 1,0181 1,0019 1,0035 0,9977 0,9751 0,9769 0,9879 0,9983 
CS11 1 1,0029 1,0053 1,0149 1,0076 1,0070 1,0088 1,0029 1,0056 1,0069 
CS12 1 1,0287 1,0233    1,0135 1,0134 1,0199 1,0198 
CS13 1 1,0200 1,0298 1,0202 1,0193 1,0175 1,0046 0,9996 0,9969 1,0134 
CS14 1 1,0056 1,0136 1,0102 1,0007 0,9981 0,9979 1,0028 1,0108 1,0050 
CS15 1 1,0126 1,0100 0,9973 0,9975 1,0082 1,0090 1,0016 0,9981 1,0043 
CS16 1   0,9897 0,9701 0,9840 0,9921 1,0066 1,0116 0,9923 
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