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Abstract

In this dissertation, we present the research pathway to the design and implementation
of a real-time vision-based gesture recognition system. This system was built based
on three components, representing three layers of abstraction: i) detection of skin and
localization of hand and face, ii) tracking multiple skin blobs in video sequences and
finally iii) recognition of gesture movement trajectories.

The adaptive skin detection, the first component, was implemented based on our
novel adaptive skin detection algorithm for video sequences. This algorithm has two
main sub-components: i) the static skin detector, which is a skin detection method
based on the hue factor of the skin color, and ii) the adaptive skin detector which
retrains itself based on new data gathered from movement of the user. The results of
our experiments show that the algorithm improves the quality of skin detection within
the video sequences.

For tracking, a new approach for boundary detection in blob tracking based on the
Mean-shift algorithm was proposed. Our approach is based on continuous sampling
of the boundaries of the kernel and changing the size of the kernel using our novel
Fuzzy-based algorithm. We compared our approach to the kernel density-based
approach, which is known as the CAM-Shift algorithm, in a set of different noise
levels and conditions. The results show that the proposed approach is superior in
stability against white noise, and also provides correct boundary detection for
arbitrary hand postures, which is not achievable by the CAM-Shift algorithm.

Finally we presented a novel approach for gesture recognition. This approach
includes two main parts: i) gesture modeling, and ii) gesture recognition. The gesture
modeling technique is based on sampling the gradient of the gesture movement
trajectory and presenting the gesture trajectory as a sequence of numbers. This
technique has some important features for gesture recognition including robustness
against slight rotation, a small number of required samples, invariance to the start
position and device independence. For gesture recognition, we used a multi-layer
feed-forward neural-network. The results of our experiments show that this approach
provides 98.71% accuracy for gesture recognition, and provides a higher accuracy
rate than other methods introduced in the literature.

These components form the required framework for vision-based real-time gesture
recognition and hand and face tracking. The components, individually or as a
framework, can be applied in scientific and commercial extensions of either vision-
based or hybrid gesture recognition systems.
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