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- Abstract -

Caking, and the associated loss of flowability, have for a long time been a problem in
the sugar industry, causing difficulties during conveying and making the product
unacceptable to consumers. There are many factors that are thought to contribute to
this problem, including relative humidity, compaction and packing of the crystals, and
particle size.

In order to determine if particle size did have an effect, a series of samples containing
different sized crystals, and different proportions of fine crystals were created. These
samples then had their water vapour sorption isotherms measured by equilibrating
samples over saturated salt solutions. Caking tests were also carried out using the
friability test and the blowtest. No significant difference was found on either the
isotherms or the friability test. The blowtest, however, was found to be much more
sensitive to the small differences in caking occurring between samples. It was found
that only fines less than 150 pm had any effect on caking, and even then, only when
they were present in large quantities. In addition, the smaller the particles, the smaller
the amount required for caking to occur. For example, the critical water activity for
standard sugar was found to be 0.61. For a sample of 100% 212-315 pm particles this
decreases to 0.55 and for a sample of 0-75 pm this decreases even further, to 0.22.

No additional effect was found to be caused by crystal damage, over and above the
effect of decreased particle size.

It is proposed this increase in caking in fine particles is due to capillary condensation.
The smaller the crystals, or the greater the proportion of fines small crystals present,
the more contact points between particles. Between each of these contact points
capillary condensation can occur, which means more moisture can be absorbed at a
lower water activity, therefore, the amount of water needed for caking to occur is also
reached at a lower water activity. This effect is very small, and neither the isotherms
nor the friability test was able to detect these changes, but the blowtester was able to.

Some of these fine crystals will originate in the crystallisation process, however many
of the fine crystals are a product of attrition. It was found that this was a problem
when sugar was conveyed using a screw conveyor, but not when a redler chain
conveyor was used. In addition, there were no differences found in the amount of
attrition occurring when conveyors are run at less than full loads. It is recommended
that in future construction and modification of the plant, chain redlers be considered
rather than screw conveyors.
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Chapter 1

- Project Overview -

1.1 Introduction

Caking in bulk sucrose is a major problem in the sugar industry. Not only are caking
problems costly, but they also cause frustrations to customers, and with this, the
potential loss of trade. At New Zealand Sugar it has been found that these adverse
effects of caking are most severe when bulk sugar is transported to customers some
distance from the refinery in Auckland. In extreme cases, 20 tonnes of bulk sugar has

set into a single lump, requiring manual intervention to allow sugar to flow.

Recent studies at New Zealand Sugar have quantified the effects of temperature
gradients on induced caking in bulk sucrose and it is now known what water activity
the sugar needs to be when it is packed and transported in order to avoid caking
problems (Billings, 2002). Caking problems can also be minimised by conditioning,
the blowing of dehumidified air through the bulk sugar before packing, and also by
insulating the walls of the sugar container after packing to minimise temperature

gradients (Rastikian & Capart, 1998).

There is anecdotal evidence that fines are instrumental in the caking problem. Some
of these fines are produced in the crystallisation process, however most are thought to

be the result of attrition as the sugar crystals are conveyed.



1.2 Caking

Caking is the formation of solid lumps from formally free flowing powder. These
lumps are caused by temperature gradients in the bulk material. This causes
fluctuations in interstitial air relative humidity since warm air holds more moisture
than cooler air. Moisture migrates to restore the equilibrium, creating moisture
concentration gradients. In areas of high relative humidity, moisture is adsorbed and
condenses onto particle surfaces. This causes the dissolution of the particle surface,
and the formation of liquid bridges consisting of solution. As the equilibrium changes
again these liquid bridges dry out, creating a solid bridge between crystals particles.
In addition, capillary condensation caused by surface tension effects may cause

caking to occur at a lower humidity.

There have been conflicting reports published in literature as to whether the presence
of fine crystals in sucrose increases the potential for caking to occur (Roge &
Mathlouthi, 2000, 2003), or whether the bulk sucrose is so soluble that this effect does
not exist (Johanson & Paul, 1996).

1.3 Attrition

Attrition can be defined as the unwanted breakage of particles, resulting in a decrease
in particle size. This breakage can take two forms — abrasion or fracture. The first of
these, abrasion, occurs when edges or corners are removed, resulting in a number of
very small particles and a slight decrease in size of the parent particle. Fracture,
meanwhile, occurs when the parent particle splits into at least two particles that are of

a comparable size.

Damage occurs to crystals when particles hit each other at high velocity, such as in a
pneumatic conveyor, or when particles are subject to shear. At the New Zealand
Sugar factory crystals are conveyed using both screw conveyors and chain redler

conveyors. It is thought that the latter caused more damage, since particles are subject
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to shear forces, both between the blades and the casing of the conveyor, and between

the blades and other particles.

1.4 Project Objectives

The aims of this project were as follows:

- To identify if fine crystals have an affect on caking

. To determine what mechanism caking is occurring by

- To identify where in the New Zealand Sugar plant damage to crystals is
occurring

- To identify if crystal damage has any affect on caking apart from that

related to size
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