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Abstract

Zero-point energy is the energy of the vacuum. Disturbing the vacuum results in a

change in the zero-point energy. In 1948, Casimir considered the change in the zero-

point energy when the vacuum is disturbed by two parallel metal plates. The plates dis-

turb the vacuum by restricting the quantum fluctuations of the electromagnetic field.

Casimir found that the change in the zero-point energy implies that the plates are at-

tracted to each other. With the recent advances made in the experimental verification

of this remarkable result, theoretical interest has been rekindled. In addition to the

original parallel plate configuration, several other boundaries have been studied. In

this thesis, two novel boundaries are considered: elliptic-cylindrical and spheroidal.

The results for these boundaries lead to the conjecture that zero-point energy does

not change for small deformations of the boundary that preserve volume. Assuming

the conjecture, it is shown that zero-point energy plays a stabilizing role in quantum

chromodynamics, the leading theory of the strong interaction.
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Nomenclature

In this thesis, Dirac’s constant ħ and the speed of light c are both unity. The signature

of the Minkowski metric is taken to be (1,−1,−1,−1).
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Chapter 1

Introduction

Zero-point energy is the energy of the vacuum. If the vacuum is disturbed, then con-

sequently there is a change in the zero-point energy. In 1948, Casimir considered the

disturbance when two parallel metal plates are placed in the vacuum [1]. He found the

change in the zero-point energy per unit transverse area to be

E =− π2

720a3
, (1.1)

where a is the separation between the plates. Figure 1.1 shows a plot of Casimir’s re-

sult. Because the energy monotonically decreases as the separation between the plates

decreases, the plates are mutually attracted to each other. This attractive force has not

only been observed qualitatively, but also experimentally verified quantitatively.

Given the small size of the force, which is of the order of millipascals for separa-

tions of the order of microns, and the challenge in maintaining parallel plates, it is

not surprising that the early experiments were rather unsuccessful. In 1958, Sparnaay

confirmed the presence of the force but could not verify its dependence on the separa-

tion between the plates [2]. Much better success has been achieved in the last decade.

Measuring the related force between a plate and a sphere, theory and experiment now

agree spectacularly well [3–5]. The plate and sphere arrangement makes alignment

much simpler. The zero-point energy is related to the zero-point energy of parallel

plates by the proximity force theorem [6], which is reasonably accurate providing that

the radius of the sphere is much greater than the separation between the plate and

the sphere. The theoretical result is also modified to account for finite conductivity,

nonzero temperature and surface roughness. Recently, the parallel plate arrangement



2
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Figure 1.1: Casimir’s result for the zero-point energy of parallel plates.

was considered again [7]. For further information regarding the experimental verifica-

tion of Casimir’s result, and zero-point energy in general, see the 2001 review by Bor-

dag, Mohideen and Mostepanenko [8]. More up-to-date results can be found in the

2005 report by Lamoreaux [9].

Casimir obtained his result by modeling the plates with perfectly-conducting bound-

ary conditions on parallel planes. The boundary conditions affect the quantum fluctu-

ations of the electromagnetic field and consequently the zero-point energy. However,

some authors argue that such ideal boundary conditions are unphysical; for example,

the charge on the electron does not appear in Casimir’s result (1.1). An alternative

approach is to model the plates with an external field, one that strongly couples to

the electromagnetic field and that is sharply concentrated on the plates. This field-

theoretical approach has been studied by Bordag et al. [10, 11], and again by Graham

et al. [12–14]. In addition to recovering Casimir’s result in the appropriate limit, the

field-theoretical approach offers an insight into the dependence of the zero-point en-

ergy on the coupling and, therefore, the physical properties of the plates. However,

the field-theoretical approach is not followed in this thesis; Casimir’s approach is fol-

lowed. The main reason is that only ideal boundaries are considered, for which the

field-theoretical approach offers no advantage.

Zero-point energy is not restricted to the situation considered by Casimir. Several
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generalizations have been considered. Some generalizations, such as finite conduc-

tivity and nonzero temperature [15], are important in the experimental verification of

Casimir’s result. Other generalizations, such as massless and massive scalar, spinor

and colour fields [16–18], other dimensions [19–21], and dynamical boundaries [22],

are of theoretical interest. For more information on these and other generalizations,

see the 2001 monograph by Milton [23].

A particularly interesting generalization, and the main focus of this thesis, is the

geometry of the boundary. Only a handful of boundaries have been studied because

calculating zero-point energy requires solving the field equation analytically, and this

can only be done for certain boundaries that are highly symmetrical. Examples in-

clude wedges [24], cuboidal boxes and rectangular cylinders [19]; however, the three

boundaries that have received the most attention are parallel planes and spherical and

cylindrical boundaries.

In 1956, motivated by his result for parallel planes, Casimir proposed that zero-point

energy might play a stabilizing role in the Abraham-Lorentz model of the electron [25].

In the Abraham-Lorentz model, the charge on the electron is evenly distributed over

the boundary of a sphere of radius R. An attractive force is required to balance the

Coulombic repulsion. The change in the zero-point energy for a spherical boundary

was calculated by Boyer in 1968 [26]. Surprisingly, the result implies a repulsive force,

invalidating Casimir’s proposal. The result has been confirmed by many authors [27–

30],

E = 0.04617. . .

R
, (1.2)

where R is the radius of the sphere.

The cylindrical boundary was first studied by DeRaad and Milton in 1981 [31]. They

calculated the change in the zero-point energy per unit longitudinal length to be

E =−0.01356. . .

R2
, (1.3)

where R is the radius of the cylinder. DeRaad and Milton’s result implies an attractive
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force.

From the results for parallel planes and spherical and cylindrical boundaries, it is

clear that zero-point energy is highly dependent on the boundary. It follows that study-

ing new boundaries is useful in understanding zero-point energy. In this thesis two

novel boundaries are studied: elliptic-cylindrical and spheroidal.

An elliptic cylinder is a cylinder whose cross-section is an ellipse. The ellipticity of

an elliptic cylinder is measured in terms of eccentricity, which ranges from zero to one.

When the eccentricity is zero, the elliptical cylinder is a circular cylinder. In the limit as

eccentricity tends to one, the elliptical cylinder becomes parallel planes.

Spheroids come in two varieties: prolate and oblate. Prolate spheroids are formed

by rotating an ellipse about its major axis; oblate spheroids are formed by rotating

an ellipse about its minor axis. Depending on the eccentricity, the limiting cases of

a prolate spheroid are a sphere and a circular cylinder; the limiting cases of an oblate

spheroid are a sphere and parallel planes.

While it is possible to write down an expression for the zero-point energy of an ar-

bitrary boundary [28], evaluating this expression can be impossible. In this thesis the

zero-point energy of the elliptic-cylindrical and spheroidal boundaries is evaluated in

terms of a formal series in terms of small eccentricity. Formal series allow operations

such as differentiation and integration to be performed term-wise. There is, however,

no guarantee that the results will converge for all eccentricity. In fact, the results may

only hold asymptotically as eccentricity tends to zero. Nevertheless, using formal se-

ries is a well-established mathematical technique, similar to perturbation theory.

This thesis is arranged as follows. In chapter 2 the different methods used to calcu-

late zero-point energy are discussed. Particular attention is paid to the Green-function

and zeta-function methods, which are the main methods used in this thesis. Sev-

eral detailed examples are included. The elliptic-cylindrical boundary is considered

in chapter 3. Then in chapter 4 the spheroidal boundary is considered. The spheroidal

boundary is continued in chapter 5, where it is considered together with quantum
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chromodynamics. Concluding remarks are made in chapter 6. Finally, an appendix

is included on the special functions associated with elliptic-cylindrical and spheroidal

boundaries.
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Chapter 2

Zero-point energy

2.1 Introduction

The main methods used in this thesis to calculate zero-point energy are the Green-

function and the zeta-function methods. The purpose of this chapter is to introduce

these methods. The chapter concludes with two detailed examples. These examples

not only illustrate how each method is used in practice, but also form the foundation

on which later results are built. First, zero-point energy is formally defined.

2.2 Formal definition

The zero-point energy of a quantum field is given by the expectation value of the Hamil-

tonian operator H with respect to the vacuum state |0〉; that is, 〈0|H |0〉. Suppose that

the vacuum is disturbed by the presence of some boundary ∂V . Let 〈0|H |0〉
∂V denote

the zero-point energy of the disturbed vacuum and 〈0|H |0〉0 denote the zero-point en-

ergy of an equal volume of the undisturbed vacuum. The change in the zero-point

energy is formally given by

E = 〈0|H |0〉∂V −〈0|H |0〉0 . (2.1)

Expression (2.1) is not well-defined; in fact, it is indeterminate. This is now shown for

a massless real scalar field φ; the analysis for other fields is similar [32].
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Consider the Lagrangian density for the scalar field

L = 1

2
∂µφ∂

µφ . (2.2)

Applying the Euler-Lagrange equation,

∂L

∂φ
−∂µ

∂L

∂(∂µφ)
= 0, (2.3)

yields the Klein-Gordon field equation

∂µ∂
µφ= 0. (2.4)

The Hamiltonian density is given by

H =π∂0φ−L , (2.5)

where π = ∂0φ is the conjugate momentum field. Using the field equation (2.4), the

Hamiltonian density can also be given by

H = 1

2

(
∂0φ∂

0φ−φ∂0∂
0φ

)+ 1

2
∇· (φ∇φ) . (2.6)

The Hamiltonian H for a region V is the integral of the Hamiltonian density over that

region. Using Gauss’s theorem,

H = 1

2

∫
V

d 3x
(
∂0φ∂

0φ−φ∂0∂
0φ

)+ 1

2

∫
∂V

dSφn ·∇φ , (2.7)

where n is the outward unit normal to the boundary ∂V .

The analysis so far has been for a classical field. The transition to quantum field

theory is made by promoting the fields φ and π to Hermitian operators that satisfy

certain equal-time commutation relations.

Suppose that, for example, φ = 0 on the boundary ∂V . The condition φ = 0 on the

boundary is called the homogeneous Dirichlet condition. Inside V ,φ can be expanded

such that

φ=∑
k

1

2ωkV

(
ak exp(−i k · x)+ak

† exp(i k ·x)
)

, (2.8)
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where ωk = |k| are the eigenenergies of the classical field equation subject to the ho-

mogeneous Dirichlet boundary condition. It follows from the commutation relations

satisfied by φ and π that the creation and annihilation operators, ak
† and ak respec-

tively, satisfy

[ak, ak′
† ] = 2ωkV δkk′ , (2.9)

where δ is the Kronecker delta, and all other commutators vanish. In terms of the

creation and annihilation operators, the Hamiltonian, now an operator, becomes

H = 1

2

∑
k

1

2ωkV
ωk

(
2ak

† ak + [ak, ak
† ]

)
. (2.10)

The vacuum state is defined by ak|0〉∂V = 0 and normalized such that 〈0|0〉
∂V = 1. It

follows that the expectation value of the Hamiltonian operator is

〈0|H |0〉∂V = 1

2

∑
k
ωk . (2.11)

Clearly, the energy of the disturbed vacuum is divergent. Similar analysis shows that

the energy of an equal volume of the undisturbed vacuum is also divergent. In order

for the change in the zero-point energy to be well-defined, regularization and renor-

malization are required. These concepts are now discussed within the context of an

example.

Example 1A (Two Dirichlet points; direct-summation method). Consider a massless

real scalar field in one spatial dimension that satisfies the homogeneous Dirichlet con-

dition at two points separated by a distance a. The eigenenergies of the disturbed vac-

uum are given byωn =πn/a, where n = 1,2, . . .. The zero-point energy of the disturbed

vacuum is

〈0|H |0〉∂V = π

2a

∞∑
n=1

n . (2.12)

This divergent sum can be regulated by inserting a regulating exponential factor,

〈0|H |0〉∂V = π

2a

∞∑
n=1

n exp(−εn) . (2.13)
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The regulated expression (2.13) formally agrees with the original expression (2.12) when

the regulating parameter ε is zero. However, if ε> 0, then

〈0|H |0〉∂V = π

8a
csch2

( ε
2

)
. (2.14)

Treating ε as a complex variable, and making a Laurent expansion about ε= 0,

〈0|H |0〉∂V = π

2a

1

ε2
− π

24a
+O(ε2) . (2.15)

The zero-point energy of an equal volume of undisturbed vacuum is given by

〈0|H |0〉0 =
π

2a

∫ ∞

0
dx x . (2.16)

Inserting the same regulating exponential factor,

〈0|H |0〉0 =
π

2a

∫ ∞

0
dx x exp(−εx) . (2.17)

If Re(ε) > 0, then

〈0|H |0〉0 =
π

2a

1

ε2
. (2.18)

The renormalized zero-point energy is given by the limit as the regulating parameter

tends to zero of the difference of the two regulated expressions (2.15) and (2.18). The

result is

E =− π

24a
. (2.19)

In the simple one-dimensional example above, the indeterminate expression for the

change in the zero-point energy was made well-defined by first regulating the expres-

sions for the energy of the disturbed and undisturbed vacuum, and then renormaliz-

ing the difference. The generalization of this procedure is taken to be the definition of

zero-point energy used in this thesis.
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Definition. The change in the zero-point energy is the regulated and renor-

malized difference of the energy of the disturbed vacuum with respect to the

energy of an equal volume of the undisturbed vacuum.

Since the difference is always taken with respect to an equal volume of the undisturbed

vacuum, often ‘the change in’ is taken as understood and the renormalized difference

is referred to as simply the zero-point energy.

This section is concluded with a brief discussion on two methods that are similar

to the direct-summation method: the Euler-Maclaurin method and the Abel-Plana

method. Both of these methods replace the difference between the summation and

its corresponding integral with a new expression that can then be evaluated.

Example 1B (Two Dirichlet points; Euler-Maclaurin method). For the one-dimensional

example, the renormalized zero-point energy can be given by

E = lim
ε→0

( ∞∑
n=1

f (n)−
∫ ∞

0
dx f (x)

)
, (2.20)

where f (x) = πx exp(−εx)/(2a) . The difference between the summation and integra-

tion can be evaluated using the Euler-Maclaurin formula [33],

∞∑
n=1

f (n)−
∫ ∞

0
dx f (x) = f (∞)+ f (0)

2
+

∞∑
k=1

B2k

(2k)!

(
f (2k−1)(∞)− f (2k−1)(0)

)
, (2.21)

where B2k are the Bernoulli numbers. The only term that survives in the limit as ε tends

to zero is f (1)(0) =π/(2a). Therefore,

E =− π

4a
B2 . (2.22)

The result (2.19) follows immediately, since B2 = 1/6.

Example 1C (Two Dirichlet points; Abel-Plana method). The result can also be ob-

tained using the Abel-Plana method. Recall that, formally,

E =
∞∑

n=1
f (n)−

∫ ∞

0
dx f (x) , (2.23)
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where f (x) = πx/(2a). The Abel-Plana method replaces the difference between the

sum and integral with another integral,

E = f (0)

2
+ i

∫ ∞

0
dz

f (i z)− f (−i z)

exp(2πz)−1
. (2.24)

There is no need for the regulating exponential factor; the renormalization is hidden

in the derivation of the Abel-Plana method, which uses the argument theorem. With

f (x) =πx/(2a),

E =−π
a

∫ ∞

0
dz

z

exp(2πz)−1
. (2.25)

Scaling z by a factor of 1/(2π),

E =− 1

4πa

∫ ∞

0
dz

z

exp(z)−1
. (2.26)

This integral can be evaluated in terms of the Gamma function and Riemann zeta func-

tion,

E =− 1

4πa
ζR (2)Γ(2) . (2.27)

Again, the result (2.19) follows immediately, since ζR (2) =π2/6 and Γ(2) = 1.

2.3 Green-function method

Recall that the Hamiltonian is given by

H = 1

2

∫
V

d 3x
(
∂0φ∂

0φ−φ∂0∂
0φ

)+ 1

2

∫
∂V

dSφn ·∇φ . (2.28)

Assuming that the field φ is suitably well-behaved at spatial infinity, the total Hamilto-

nian, the Hamiltonian for all space, reduces to

H = 1

2

∫
d 3x

(
∂0φ∂

0φ−φ∂0∂
0φ

)
. (2.29)

Let x and x ′ be non-coincident events. The total Hamiltonian can be formally recov-

ered by

H = 1

2

∫
d 3x lim

x ′→x

(
∂0∂

′0 −∂′0∂′0
)
φ(x)φ(x ′) . (2.30)
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After making the transition to quantum field theory, the expectation value of the total

Hamiltonian operator is

〈0|H |0〉 = 1

2

∫
d 3x lim

x ′→x

(
∂0∂

′0 −∂′0∂′0
)〈0|φ(x)φ(x ′)|0〉 . (2.31)

The integrand is related to the Feynman Green function G [34]. In particular, for t > t ′,

〈0|φ(x)φ(x ′)|0〉 = 1

i
G(x, x ′). (2.32)

The Feynman Green function satisfies

∂µ∂
µG(x, x ′) = δ4(x −x ′) . (2.33)

In practice, the reduced Green function g is often used. The reduced Green function is

related to G by

G(x, x ′) =
∫

dω

2π
exp(−iωτ)g(x,x′) , (2.34)

where τ= t − t ′ and the dependence of g onω has been suppressed. Let g
∂V denote the

reduced Green function for the disturbed vacuum and g0 denote that for the undis-

turbed vacuum. The change in the zero-point energy is given by

E = lim
τ→0

1

2πi

∫
dω exp(−iωτ)

∫
d 3xω2 g(x,x) , (2.35)

where g(x,x) = g
∂V (x,x)−g0(x,x).

It is easy to show that the Green-function method is equivalent to regulating the

sum of the classical eigenenergies with an oscillating exponential. Suppose that the

vacuum is disturbed by the presence of some boundary ∂V . Let ωk and φk denote

the eigenenergies and eigenfunctions, respectively, of the scalar Helmholtz differential

equation subject to the boundary condition. Assuming that the eigenfunctions are

normalized such that∫
d 3xφk(x)φk′

∗ (x) = δkk′ (2.36)

and complete in the sense that

∑
k
φk(x)φk

∗(x′) = δ3(x−x′) , (2.37)
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the reduced Green function can be formally given by [35]

g∂V (x,x′) =∑
k

φk(x)φk
∗(x′)

ω2
k −ω2

. (2.38)

Using the normalization (2.36), the spatial integral of the reduced Green function be-

comes∫
d 3xω2 g∂V (x,x) =∑

k

ω2

ω2
k −ω2

. (2.39)

Introducing the dimensionless variable z =ωa, where a is a positive length scale,

〈0|H |0〉∂V = lim
δ→0

1

a

∑
k

1

2πi

∫
C1

dz
z2 exp(−i zδ)

z2
k − z2

, (2.40)

where δ= τ/a. To avoid the poles of the integrand on the real axis, the integration path

is deformed. For the Feynman Green function, the integration path is deformed to lie

just below the negative real axis and just above the positive real axis. Let C1 denote this

contour. Figure 2.1 shows the contour C1 and another contour C2. The contour C2 is a

semicircular arc in the lower half plane. Since τ > 0, the integral along C2 vanishes in

the limit as the radius of the arc tends to infinity. Therefore, the energy of the disturbed

vacuum can be given by the integral around C : the join of C1 and C2. The integrand is

meromorphic throughout the complex plane with simple poles at z =−zk and z = zk.

The contour C encloses only the latter. Using Cauchy’s theorem,

1

2πi

∫
C

dz
z2 exp(−i zδ)

z2
k − z2

= 1

2
zk exp(−i zkδ) . (2.41)

Therefore,

〈0|H |0〉∂V = lim
δ→0

1

2a

∑
k

zk exp(−i zkδ) . (2.42)

Example 1D (Two Dirichlet points; Green-function method). Consider the simple

one-dimensional example again. The reduced Green function for the disturbed vac-

uum is [23]

g∂V (x, x) =−sin(|ω|(x +a/2))sin(|ω|(x −a/2))

|ω|sin(|ω|a)
. (2.43)



14

Re(z)

Im(z)

C1

C2

-

	

Figure 2.1: The contours C1 and C2.

The spatial integral is∫ a/2

−a/2
dxω2 g∂V (x, x) = 1

2
− |ω|a

2
cot(|ω|a) . (2.44)

The first term is independent of a and therefore does not depend on the boundary.

Consequently, this term may be omitted. Introducing the dimensionless variable z =
ωa, ∫ a/2

−a/2
dxω2 g∂V (x, x) =−|z|

2
cot(|z|) . (2.45)

The corresponding result for the undisturbed vacuum is∫ a/2

−a/2
dxω2 g0(x, x) = i |z|

2
. (2.46)

The zero-point energy is

E = lim
τ→0

1

a

1

2πi

∫
dz exp(−i zτ/a)

(
− |z|

2
cot(|z|)− i |z|

2

)
. (2.47)

In this case, the regulating parameter may be set equal to zero; that is,

E = 1

a

1

2πi

∫
dz

(
− |z|

2
cot(|z|)− i |z|

2

)
. (2.48)

Now the integrand is even with respect to z. Consequently, the integral can be given

by twice the integral over positive z, and the absolute values can be dropped. To avoid

the poles of the integrand, z is treated as a complex variable and the integration path



15

Re(z)

Im(z)

C1

C2

C3

-

? I

Figure 2.2: The contours C1, C2 and C3.

is deformed to lie just above the positive real axis. Let C1 denote this contour. Suppose

that this contour is closed in the first quadrant, as shown in figure 2.2. The contour

C2 is a quarter-circular arc in the first quadrant. The contour C3 is along the positive

imaginary axis. Let C denote the join of the three contours C1, C2 and C3. The inte-

grand has no poles within or on C . Consequently, using Cauchy’s theorem, the integral

around C is zero. It is straightforward to show that in the limit as the radius of the arc

tends to infinity the integral along C2 is zero. It follows then, that the zero-point energy

can be given by an integral along the positive imaginary axis,

E =− 1

2πa

∫ ∞

0
dy

(
y coth(y)− y

)
. (2.49)

This procedure is sometimes called a Euclidean or Wick rotation. Expressing the hy-

perbolic cotangent in terms of the exponential function,

E =− 1

4πa

∫ ∞

0
dy

y

exp(y)−1
, (2.50)

which agrees with equation (2.26), from which the result (2.19) follows.

Related to the Green-function method is the method of images [36]. In this method

the reduced Green function for the disturbed vacuum is constructed from a series of

reduced Green functions for the undisturbed vacuum.
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Example 1E (Two Dirichlet points; method of images). Consider the simple one-

dimensional example again. Let x and x ′ be two noncoincident points inside the bound-

ary. The reduced Green function between these two points is given by the reduced

Green function for the undisturbed vacuum,

g0(x, x ′) = i exp(i |ω||x −x ′|)
2|ω| . (2.51)

Now consider a path between the two points that includes a reflection at one of the

boundary points. This path is equivalent to the path between one of the points and

the image of the other. A path that includes a double reflection is equivalent to the

path between one point and the image of the image of the other; and so on. For this

example, only even reflections contribute to the zero-point energy [36]. The sum of all

the even reflections is

g∂V (x, x ′) =
∞∑

n=−∞
g0(x, x ′−2an) . (2.52)

Since the summation is even with respect to n,

g∂V (x, x ′) = g0(x, x ′)+2
∞∑

n=1
g0(x, x ′−2an) . (2.53)

Removing the reduced Green function for the undisturbed vacuum, and letting the

spatial points coincide,

g(x, x) =
∞∑

n=1

i exp(2i |ω|an)

|ω| . (2.54)

Following the Green-function method, the spatial integral is∫ a/2

−a/2
dxω2 g(x, x) = i |ω|a

∞∑
n=1

exp(2i |ω|an) (2.55)

This expression is even with respect to ω. Again, the frequency integral is replaced by

twice the integral over positive frequency. This, in turn, is expressed in terms of an

integral along the positive imaginary axis. The result is that the zero-point energy is

E =− 1

πa

∫ ∞

0
dy

∞∑
n=1

y exp(−2yn) . (2.56)



17

Interchanging the order of summation and integration, and performing the straight-

forward integration,

E =− 1

4πa

∞∑
n=1

1

n2
. (2.57)

Recognizing the summation as ζR (2) =π2/6, the result (2.19) is recovered.

The method of images is restricted to simple boundaries such as parallel planes. A

similar method that can be used for more complicated boundaries is the multiple-

reflection method. The multiple-reflection method is similar to the method of images

in that the reduced Green function for the disturbed vacuum is expanded in terms

of the reduced Green function of the undisturbed vacuum. The expansion is in the

form of a series of iterated integrals over the boundary. Each term in the series corre-

sponds to including another reflection. In principle, the multiple-reflection expansion

is exact; however, that also means that, in general, it offers no computational advan-

tage. The multiple-reflection method is useful because reasonable approximate results

can be obtained by truncating the series [28]. The multiple-reflection method can also

be used for boundaries that are not separable. For the one-dimensional example the

multiple-reflection method is equivalent to the method of images.

Another reasonably accurate approximation can be made by including only optical

paths; that is, ignoring diffraction [37]. Again, for the one-dimensional example the

optical-path approximation is equivalent to the method of images.

2.4 Zeta-function method

Recall that the energy of the disturbed vacuum is given by

〈0|H |0〉∂V = 1

2

∑
k
ωk , (2.58)

where ωk are the eigenenergies of the classical field equation. Let

ζ(s) =µs
∑

k
ω−s

k , (2.59)
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where s is a complex variable and µ is a positive mass scale. Then, expression (2.58)

can be formally recovered by

〈0|H |0〉∂V = 1

2
µζ(−1) . (2.60)

Typically, the zeta function (2.59) only converges for sufficiently large Re(s). Continua-

tion is used to get to a neighbourhood of s =−1. Any divergence is removed using the

principal-part prescription [38]. Practically, performing the principal-part prescription

picks out the constant term in the Laurent expansion of the zeta function about s =−1.

In terms of the principal-part prescription, the zero-point energy is

E = 1

2
pp

s=−1
µζ(s) . (2.61)

Example 1F (Two Dirichlet points; zeta-function method). The zeta function for the

one-dimensional example can be written in terms of the Riemann zeta function,

ζ(s) =
(
µa

π

)s

ζR (s) . (2.62)

The Riemann zeta function can be continued meromorphically to the entire complex

plane. In this case, the principal-part prescription is not needed; the zero-point is

E = π

2a
ζR (−1) . (2.63)

The result (2.19) follows from the fact that ζR (−1) =−1/12.

Related to the zeta function is the Poisson kernel [39]. The Poisson kernel T can be

defined by

T(t ) =∑
k

exp(−tωk/µ) , (2.64)

where t is a dimensionless variable that should not be confused with time. Again, µ is

a positive mass scale. The Poisson kernel is sometimes called the cylindrical kernel. In
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terms of the Poisson kernel, the zero-point energy is

E =−1

2
pp
t=0

(
µT′(t )

)
, (2.65)

where the prime denotes differentiation with respect to t .

Example 1G (Two Dirichlet points; Poisson-kernel method). For the one-dimensional

example,

T(t ) =
∞∑

n=1
exp

(
− πtn

µa

)
. (2.66)

If Re(t ) > 0, then

T(t ) = 1

exp
(
πt
µa

)−1
. (2.67)

This expression can be easily continued to other t . The derivative is

T′(t ) =− π

4a
csch2

(
πt

2µa

)
. (2.68)

Treating t as a complex variable, and making a Laurent expansion about t = 0,

T′(t ) =−µa

π

1

t 2
+ π

12µa
+O(t 2) . (2.69)

The principal-part prescription picks out the term independent of t , and the zero-

point energy (2.19) is recovered.

The Poisson kernel and the zeta function are related through the expression

ζ(s)Γ(s) =
∫ ∞

0
dt t s−1 T(t ) . (2.70)

The Poisson kernel has a well-known expansion for small t [39]. The coefficients of

the expansion depend on the type of field, the boundary, and the boundary condition.

Using the relation (2.70), the divergence of the zeta function can be studied in terms

of the coefficients of the Poisson-kernel expansion. In fact, it is this relationship with

the zeta function that is the primary use of the Poisson kernel. It is only because the
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one-dimensional example is so simple that it could be used to calculate the zero-point

energy.

Some authors prefer to define the zeta function by

ζ(s) = (µ)2s
∑

k
ω−2s

k . (2.71)

Rather than the Poisson kernel, this zeta function is related to the heat kernel K through

the expression

ζ(s)Γ(s) =
∫ ∞

0
dt t s−1 K(t ) . (2.72)

The heat kernel can also be expanded for small t , offering another way that the diver-

gence of the zeta function can be studied.

This section is concluded with a brief discussion of the dimensional-regularization

method. As the name suggests, the dimensional-regularization method uses the num-

ber of dimensions as the regulating parameter. It is included in this section because,

like the zeta-function method, it uses continuation. The zero-point energy is evaluated

for dimensions such that the generalized expression is well-defined. The result is then

continued to the desired number of dimensions, such as the physical three spatial di-

mensions.

Example 1H (Two Dirichlet points; dimensional-regularization method). Recall that

for the simple one-dimensional example, the eigenenergies are given by ωn = πn/a.

Generalizing to parallel hyperplanes with D transverse dimensions, the eigenenergies

are given by

ωk =
√

k2 + (πn/a)2 . (2.73)

where k2 = k2
1 +k2

2 +·· ·+k2
D . Assuming that the hyperplanes are large compared with

the separation between them, the summations over k1, k2, . . . , kD can be replaced with

integrals; that is,

E = LD

2πD

∞∑
n=1

∫
d Dk

√
k2 + (πn/a)2 . (2.74)
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Let E denote the energy per unit transverse hyperarea, E = E/LD . Scaling k by a factor

of π/a,

E = π

2aD+1

∞∑
n=1

∫
d Dk

√
k2 +n2 . (2.75)

Using [19]∫
d Dk f (k) = 2π

D
2

Γ
(D

2

) ∫
dk kD−1 f (k) , (2.76)

the zero-point energy becomes

E =−π
D+1

2 Γ
(− D+1

2

)
2D+2aD+1

∞∑
n=1

nD+1 . (2.77)

Recognizing the summation as the Riemann zeta function,

E =−π
D+1

2 Γ
(− D+1

2

)
ζR (−D −1)

2D+2aD+1
. (2.78)

With D = 0 the result (2.19) is recovered.

2.5 Further examples

Example 2 (spherical boundary; Green-function method). In this example, the Green-

function method is used to calculate the zero-point energy of a massless real scalar

field that satisfies the homogeneous Dirichlet condition on the boundary of a sphere

of radius R. Without any loss of generality, the boundary can be given by (x, y, z) ∈ R3

such that

x2 + y2 + z2 = R2 . (2.79)

It is convenient to work in spherical coordinates (r,θ,ϕ), which are related to Cartesian

coordinates by

x = r sin(θ)cos(ϕ) , (2.80)

y = r sin(θ)sin(ϕ) , (2.81)

z = r cos(θ) . (2.82)
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The domains are 0 ≤ r < ∞, 0 < θ < π and 0 < ϕ < 2π. In spherical coordinates, the

boundary (2.79) is given by r = R. The boundary separates space into two regions. Let

region I denote inside the boundary and region II denote outside the boundary.

The reduced Green function for this example in the interior of the boundary is [35]

gI,D(x,x′) =−i |ω|
∞∑

l=0

l∑
m=−l

Ym
l (θ,ϕ)Ym∗

l (θ′,ϕ′)
hl (|ω|R)

jl (|ω|R)
jl (|ω|r ) jl (|ω|r ′) , (2.83)

where Ym
l are the spherical harmonics, jl are the spherical Bessel functions of the first

kind, and hl = h(1)
l are the spherical Hankel functions of the first kind. The superscripts

on the reduced Green function refer to region I and the Dirichlet condition, respec-

tively. The reduced Green function for the exterior of the boundary is identical except

that the spherical Bessel and spherical Hankel functions are interchanged.

For simplicity, the regulating parameter is set equal to zero; any divergence is re-

moved using continuation. With δ= 0,

E D = 1

2πi

∫
dω

∫
d 3xω2 g(x,x) . (2.84)

The spatial integral, which is the integrand of the frequency integral, is an even func-

tion of the frequency. Consequently, the frequency integral can be given by twice the

integral over positive frequencies, and the absolute values in the reduced Green func-

tion can be dropped. Splitting the spatial integration into region I and region II, and

scaling r by a factor of 1/ω,∫
d 3xω2 g(x,x) =−i

∞∑
l=0

l∑
m=−l

∫ 2π

0
dϕ

∫ π

0
dθ sin(θ)Ym

l (θ,ϕ)Ym∗
l (θ,ϕ)

×
(

hl (ωR)

jl (ωR)

∫ ωR

0
dr r 2( jl (r )

)2 + jl (ωR)

hl (ωR)

∫ ∞

ωR
dr r 2(hl (r )

)2
)

.

(2.85)

The angular integration can be performed using the normalization of the spherical

harmonics [40]. The radial integration can be performed using the recurrence relations

of the spherical Bessel and spherical Hankel functions. Introducing the dimensionless

variable z =ωR, and simplifying,∫
d 3xω2 g(x,x) =−

∞∑
l=0

2l +1

2

(z j′l (z)

jl (z)
+ z h′

l (z)

hl (z)
+1

)
, (2.86)
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where the prime denotes differentiation with respect to z.

The last term in the brackets is independent of z and therefore independent of R.

Since this term does not depend on the boundary, it can be omitted from the expres-

sion for the zero-point energy. However, not only is this constant term kept, but also

doubled for later convenience.

The zero-point energy is

E D(R) =− 2

R

∞∑
l=0

2l +1

2

1

2πi

∫
dz

(z j′l (z)

jl (z)
+ z h′

l (z)

hl (z)
+2

)
. (2.87)

The two in the prefactor is because the integration is over positive frequency only. Fol-

lowing the same argument as in example 1D, this integral can be expressed in terms of

an integral along the positive imaginary axis. To avoid the poles of the integrand, z is

treated as a complex variable and the integration path is deformed to lie just above the

positive real axis. The contour is then closed in the first quadrant; see figure 2.2. Let C

denote the join of the three contours C1, C2 and C3. Since the integrand has no poles

within or on C [40], the integral around C is zero. It remains to show that the integral

along C2 is also zero.

The contour C2 is a quarter-circular arc of radius ρ, where ρ→∞. For large |z| with

Im(z) > 0 [40],

jl (z) ∼ i l+1 exp(−i z)

2z

(
1− i l (l +1)

2

1

z
+O(z−2)

)
, (2.88)

hl (z) ∼ (−i )l+1 exp(i z)

z

(
1+ i l (l +1)

2

1

z
+O(z−2)

)
. (2.89)

These expansions are known as Hankel expansions. Using the Hankel expansions, it

follows that the behavior of the integrand along the contour C2 is

z j′l (z)

jl (z)
+ z h′

l (z)

hl (z)
+2 ∼O(z−2) . (2.90)

Approximating the integral,∣∣∣∣ 1

2πi

∫
C2

dz

(z j′l (z)

jl (z)
+ z h′

l (z)

hl (z)
+2

)∣∣∣∣∼O(ρ−1) , (2.91)
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which vanishes in the limit as ρ→∞. Since the integral along C2 is zero, and the inte-

gral around C is zero, the zero-point energy can be written in terms of an integral along

the positive imaginary axis. With z = iνy , where ν= l +1/2,

E D(R) =− 1

πR

∞∑
l=0

∫ ∞

0
dy ν2

( y i′l (νy)

il (νy)
+ y k′l (νy)

kl (νy)
+2

)
, (2.92)

where the prime denotes differentiation with respect to y .

For large l [40],

il (νy) ∼ t exp(νη)

2ν(1− t 2)1/4

(
1+ 3t −5t 3

24

1

ν
+ 81t 2 −462t 4 +385t 6

1152

1

ν2
+O(ν−3)

)
, (2.93)

kl (νy) ∼ t exp(−νη)

ν(1− t 2)1/4

(
1− 3t −5t 3

24

1

ν
+ 81t 2 −462t 4 +385t 6

1152

1

ν2
+O(ν−3)

)
, (2.94)

where

t = 1√
1+ y2

, (2.95)

η= 1

t
+ 1

2
ln

(
1− t

1+ t

)
. (2.96)

These expansions are known as Debye expansions. Using the Debye expansions, it

follows that the behaviour of the integrand for large l is

ν2
( y i′l (νy)

il (νy)
+ y k′l (νy)

kl (νy)
+2

)
∼ 1

1+ y2
ν2 − 4y2 −10y4 + y6

4(1+ y2)4
+O(ν−2) . (2.97)

The first two terms are subtracted from the integrand and then added back as a sepa-

rate integral as follows

E D(R) =− 1

πR

∞∑
l=0

∫ ∞

0
dy

(
ν2

( y i′l (νy)

il (νy)
+ y k′l (νy)

kl (νy)
+2

)
−

(
1

1+ y2
ν2 − 4y2 −10y4 + y6

4(1+ y2)4

))
− 1

πR

∞∑
l=0

∫ ∞

0
dy

(
1

1+ y2
ν2 − 4y2 −10y4 + y6

4(1+ y2)4

)
. (2.98)

Since the Debye expansions are uniform with respect to y [40], the first integral is

O(ν−2) for large l . Consequently the subsequent summation converges by the com-

parison test. The second integral is straightforward; the subsequent summations can
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be expressed in terms of the Hurwitz zeta function ζH using

∞∑
l=0

ν−s = ζH (s,1/2) , (2.99)

which is valid for Re(s) > 1. Using continuation, ζH (−2,1/2) = 0 and ζH (0,1/2) = 0,

which leaves

E D(R) =− 1

πR

∞∑
l=0

∫ ∞

0
dy

(
ν2

( y i′l (νy)

il (νy)
+ y k′l (νy)

kl (νy)
+2

)
−

(
1

1+ y2
ν2 − 4y2 −10y4 + y6

4(1+ y2)4

))
. (2.100)

Evaluating this expression,

E D(R) = 0.00281. . .

R
, (2.101)

which agrees with the result obtained by Bender and Milton [20].

If the result in example 1H, with D = 2, is multiplied by two, to take into account the

two polarization states of the electromagnetic field, then Casimir’s result is recovered.

The same is not true for this example; multiplying the result (2.101) by two does not

recover Boyer’s result. For both boundaries, the electromagnetic field can be sepa-

rated into two modes: transverse electric and transverse magnetic. These modes are

equivalent to massless real scalar fields that satisfy certain conditions on the bound-

ary. In the parallel planes case, the transverse electric mode satisfies the homogeneous

Dirichlet condition on the boundary; the transverse magnetic mode satisfies the ho-

mogeneous Neumann condition on the boundary. The eigenenergies are the same for

both boundary conditions. Consequently, combining the two modes is equivalent to

simply multiplying the result for the Dirichlet boundary condition by two. For a spher-

ical boundary, the eigenenergies of the two modes are different, which explains why

Boyer’s result can not be recovered so simply.

Example 3 (cylindrical boundary; zeta-function method). In this example, the zeta-

function method is used to calculate the zero-point energy of a massless real scalar
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field that satisfies the homogeneous Dirichlet condition on the boundary of a cylinder

of radius R. Without any loss of generality, the boundary of a cylinder of radius R and

infinite longitudinal length can be given by (x, y, z) ∈R3 such that

x2 + y2 = R2 . (2.102)

It is convenient to work in cylindrical coordinates (r,θ, z), which are related to Carte-

sian coordinates by

x = r cos(θ) , (2.103)

y = r sin(θ) , (2.104)

and z is unchanged. The domains are: 0 ≤ r <∞, 0 ≤ θ < 2π and −∞< z <∞. In cylin-

drical coordinates the boundary (2.102) is given by r = R. Again, let region I denote

inside the boundary and region II denote outside the boundary.

The field equation, the scalar Helmholtz differential equation, is separable in cylin-

drical coordinates [35]. The general expression for the field in the interior of the bound-

ary is

φI =
∫ ∞

−∞
dk

2π
exp(i kz)

∞∑
m=−∞

Am(k) Jm(λr )exp(i mθ) , (2.105)

where λ=
p
ω2 −k2, Am are arbitrary functions of the longitudinal momentum k, and

Jm are the Bessel functions of the first kind.

The field satisfies the homogeneous Dirichlet conditions when

Jm(λR) = 0. (2.106)

Let λmn denote the positive solutions to (2.106). For sufficiently large Re(s), the zeta

function for this problem can be given by

ζI,D(s,R) =µs
∫ ∞

−∞
dk

2π

∞∑
m=−∞

∞∑
n=1

ω−s
mn , (2.107)

where ωmn =
√
λ2

mn +k2. The integration with respect to k is straightforward. Using

the relation∫ ∞

−∞
dk

2π

(
λ2

mn +k2)−s/2 = 1

2π
B

(
s −1

2
,

1

2

)
λ1−s

mn , (2.108)
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Figure 2.3: The five contours C1 to C5.

where B is the beta function, and introducing the dimensionless variable z = λR, the

zeta function becomes

ζI,D(s,R) = 1

2π
B

(
s −1

2
,

1

2

)
µs

R1−s

∞∑
m=−∞

∞∑
n=1

z1−s
mn . (2.109)

The zeros of the Bessel function are even with respect to m, so

ζI,D(s,R) = 1

2π
B

(
s −1

2
,

1

2

)
µs

R1−s

∞∑
m=0

(2−δm0)
∞∑

n=1
z1−s

mn . (2.110)

The summation with respect to n is absolutely convergent for Re(s) > 2 [41]. Using

the argument theorem [33],

∞∑
n=1

z1−s
mn = 1

2πi

∫
C

dz z1−s J′m(z)

Jm(z)
, (2.111)

where C is a closed contour, taken in the positive sense, that encloses all the positive

zeros of the Bessel function and avoids the branch cut of the power function along the

negative real axis. Figure 2.3 shows a suitable contour C made from the join of the

five contours C1 to C5. The contours C1 and C5 are quarter-circular arcs of radius ρ,

where ρ→∞. The contour C3 is a semicircular arc of radius ε, where 0 < ε< min(zm1).

The contours C2 and C4 are straight lines along the imaginary axis, joining the other

contours. Each contour is now considered separately.

Using the Hankel expansion, the behaviour of the integrand along the contour C1 is

z1−s J′m(z)

Jm(z)
∼−i z1−s − 1

2
z−s +O(z−1−s) . (2.112)
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Approximating the integral,∣∣∣∣ 1

2πi

∫
C1

dz z1−s J′m(z)

Jm(z)

∣∣∣∣∼O(ρ2−s) , (2.113)

which, since Re(s) > 2, vanishes in the limit as ρ→∞.

The Hankel expansion (2.112) is also used for the integral along the contour C2. The

first two terms are subtracted from the integrand and them added back as a separate

integral; that is,

1

2πi

∫
C2

dz z1−s J′m(z)

Jm(z)
= 1

2πi

∫
C2

dz

(
z1−s J′m(z)

Jm(z)
−

(
− i z1−s − 1

2
z−s

))
+ 1

2πi

∫
C2

dz

(
− i z1−s − 1

2
z−s

)
. (2.114)

On the imaginary axis z = i y . In the limit as ρ→∞,

1

2πi

∫
C2

dz z1−s J′m(z)

Jm(z)
=− i−s

2π

∫ ∞

ε
dy y1−s

(
I′m(y)

Im(y)
−

(
1− 1

2y

))
− i−s

2π

(
ε1−s

2(1− s)
− ε2−s

2− s

)
, (2.115)

where Im are the modified Bessel functions of the first kind.

The analysis for the integrals in the lower half plane is similar. Like the C1 integral,

the C5 integral vanishes. The C4 integral differs from the C2 integral only by a phase.

Combining all the contributions together,

1

2πi

∫
C

dz z1−s J′m(z)

Jm(z)
=− 1

π
cos

(
πs

2

)∫ ∞

ε
dy y1−s

(
I′m(y)

Im(y)
−

(
1− 1

2y

))
− 1

π
cos

(
πs

2

)(
ε1−s

2(1− s)
− ε2−s

2− s

)
+ 1

2πi

∫
C3

dz z1−s J′m(z)

Jm(z)
. (2.116)

The first term is holomorphic for Re(s) > 0, the second term is meromorphic for all s,

and the third term is holomorphic for all s. Expression (2.116) is therefore the contin-

uation of the sum (2.111) to Re(s) > 0.

Now suppose that s is restricted to the strip 0 < Re(s) < 1, and consider the limit as

ε→ 0. For 0 < Re(s) < 1, the second term vanishes in the limit as ε→ 0. The third term
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can be evaluated by

lim
ε→0

1

2πi

∫
C3

dz z1−s J′m(z)

Jm(z)
=−1

2
res
z=0

z1−s J′m(z)

Jm(z)
. (2.117)

Using the Taylor expansion of the Bessel functions of the first kind [40],

z1−s J′m(z)

Jm(z)
= m z−s +O(z2−s) . (2.118)

For 0 < Re(s) < 1, it follows that the residue is zero, and consequently the third term

vanishes in the limit as ε→ 0. The only remaining term is the first term. Therefore, for

0 < Re(s) < 1,

∞∑
n=1

z1−s
mn =− 1

π
cos

(
πs

2

)∫ ∞

0
dy y1−s

(
I′m(y)

Im(y)
−1+ 1

2y

)
. (2.119)

Return now to the zeta function. Separating out the m = 0 contribution,

ζI,D(s,R) = 1

2π
B

(
− 1− s

2
,

1

2

)
µs

R1−s

( ∞∑
n=1

z1−s
0n +2

∞∑
m=1

∞∑
n=1

z1−s
mn

)
. (2.120)

Consider the m = 0 contribution. Using the meromorphic continuation (2.119),

∞∑
n=1

z1−s
0n =− 1

π
cos

(
πs

2

)∫ ∞

0
dy y1−s

(
I′0(y)

I0(y)
−1+ 1

2y

)
. (2.121)

The behaviour of the integrand for large y is

I′0(y)

I0(y)
−1+ 1

2y
∼−1

8

1

1+ y2
− 1

8

1

(1+ y2)3/2
+O(y−4) . (2.122)

Subtracting the first two terms from the integrand and then adding them back as a

separate integral,

∞∑
n=1

z1−s
0n =− 1

π
cos

(
πs

2

)∫ ∞

0
dy y1−s

(
I′0(y)

I0(y)
−1+ 1

2y
−

(
− 1

8

1

1+ y2
− 1

8

1

(1+ y2)3/2

))
− 1

π
cos

(
πs

2

)∫ ∞

0
dy y1−s

(
− 1

8

1

1+ y2
− 1

8

1

(1+ y2)3/2

)
. (2.123)

The first integral is holomorphic for −2 < Re(s) < 1. For 0 < Re(s) < 1, the second inte-

gral can be evaluated in terms of beta functions, which can be easily continued. The

result is an expression for the m = 0 contribution that is valid in a neighbourhood of

s =−1.
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The analysis for the m 6= 0 contribution is similar. Since m 6= 0, y can be scaled by a

factor of m,

2
∞∑

m=1

∞∑
n=1

z1−s
mn =− 2

π
cos

(
πs

2

) ∞∑
m=1

m2−s
∫ ∞

0
dy y1−s

(
1

m

I′m(my)

Im(my)
−1+ 1

2my

)
,

(2.124)

where the prime denotes differentiation with respect to y . Using the Debye expansion

for the modified Bessel functions of the first kind [40],

1

m

I′m(my)

Im(my)
−1+ 1

2my
∼

√
1+ y2 − y

y
+ 1

2y(1+ y2)

1

m

+ y(4− y2)

8(1+ y2)3/2

1

m2
− y(4−10y2 + y4)

8(1+ y2)4

1

m3

+ y(64−560y2 +456y4 −25y6)

128(1+ y2)11/2

1

m4
+O(m−5) .

(2.125)

In terms of integration, it is sufficient to subtract and add back only the first four terms

of this expansion; however, to ensure that the subsequent summation with respect to

m converges, it is necessary to subtract and add back at least the first five terms. Again,

the result is an expression that is valid in a neighbourhood of s =−1.

Making a Laurent expansion of the zeta function about s =−1,

ζI,D(s,R) =− 1

315πµR2

1

s +1
+ 0.00066. . .

µR2
− ln(µR)

315πµR2
+O(s +1) . (2.126)

Using the principal-part prescription, the zero-point energy is

E I,D(R) = 0.00033. . .

R2
− ln(µR)

630πR2
. (2.127)

The analysis for the field in the exterior of the boundary is similar. The general ex-

pression for the field in the exterior of the boundary is identical to that in the inte-

rior (2.105) except that the Bessel functions of the first kind are replaced with Hankel

functions of the first kind. Repeating the analysis above, the result for the zero-point

energy is

E II,D(R) = 0.00028. . .

R2
+ ln(µR)

630πR2
. (2.128)
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The total zero-point energy is the sum of the interior and exterior contributions,

E D(R) = 0.00061. . .

R2
, (2.129)

which agrees with the result in [42].

The results for the zero-point energy in the interior and exterior of the boundary, (2.127)

and (2.128) respectively, each contain a logarithmic term that depends on the mass

scale µ. This remnant of the renormalization process should be regarded as a warning

that in these cases the zero-point energy is in fact divergent. Only by considering both

the internal and external contributions together is the total zero-point energy unam-

biguous.

The proper analysis for the field in the exterior of the boundary is considerably more

complicated than what was presented here. Simply replacing the Bessel functions of

the first kind with Hankel functions of the first kind leads to the eigenenergies being the

zeros of the Hankel functions, which are complex. The more rigorous approach is to

include another cylinder, concentric to the first and of larger radius. The eigenenergies

in the annulus are then real. As the radius of the second cylinder tends to infinity,

the result (2.128) is recovered. Since the results of the two approaches agree, only the

simpler approach is discussed in this thesis.
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Chapter 3

Elliptic-cylindrical boundary

3.1 Introduction

An elliptical cylinder is a cylinder whose cross-section is an ellipse. Without any loss of

generality, the boundary of an elliptical cylinder can be given by (x, y, z) ∈R3 such that

x2

a2
+ y2

b2
= 1, (3.1)

where the semimajor axis a is greater than the semiminor axis b, and both are nonzero.

It is convenient to work in elliptic-cylindrical coordinates. Using the notation in

Abramowitz and Stegun [40], elliptic-cylindrical coordinates (u, v, z) are related to Carte-

sian coordinates by

x = f cosh(u)cos(v) , (3.2)

y = f sinh(u)sin(v) , (3.3)

x

y

b

a

Figure 3.1: Cross-section of an elliptical cylinder.
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where f =
p

a2 −b2, and z is unchanged. The domains are 0 ≤ u <∞, 0 ≤ v < 2π and

−∞< z <∞. In elliptic-cylindrical coordinates, the boundary (3.1) is given implicitly

by

cosh(u) = 1

e
, (3.4)

where e = f /a is the eccentricity. To avoid confusion between eccentricity and the

exponential function, the full form of the exponential function, exp, is used throughout

this thesis.

Eccentricity can be thought of as a measure of how elliptical the elliptic-cylindrical

boundary is. When the eccentricity is zero, the boundary reduces to that of a circu-

lar cylinder of radius a. In the opposite limit, as the eccentricity tends to one, the

boundary becomes two parallel planes separated by a distance b. Because the limiting

boundary is topologically different, it is likely that there is a discontinuity in the zero-

point energy as the eccentricity tends to one. Consequently, only small eccentricity is

considered.

The goal of this chapter is to calculate the change in the zero-point energy of the

electromagnetic field subject to perfectly-conducting conditions on the boundary (3.1).

First, a scalar field is considered.

3.2 Scalar field

3.2.1 Zeta-function method

Consider a massless real scalar field that satisfies the homogeneous Dirichlet condition

on the boundary of the elliptical cylinder (3.1). Let region I denote the interior of the

boundary and region II denote the exterior. The field equation, the scalar Helmholtz

differential equation, is separable in elliptic-cylindrical coordinates [35]. The general
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expression for the field in the interior of the boundary is [43]

φI =
∫

dk

2π
exp(i kz)

( ∞∑
m=0

Am(k)Mc(1)
m (u, q)cem(v, q)

+
∞∑

m=1
Bm(k)Ms(1)

m (u, q)sem(v, q)

)
, (3.5)

where q = f 2λ2/4, λ2 =ω2 −k2; Am and Bm are arbitrary functions of the longitudinal

momentum k; Mc(1)
m and Ms(1)

m are the even and odd modified Mathieu functions of

the first kind, respectively; and cem and sem are the even and odd Mathieu functions,

respectively. Mathieu functions are reviewed in appendix A.

The field satisfies the homogeneous Dirichlet condition on the boundary (3.4) when

Mc(1)
m (arccosh(1/e), z2e2/4) = 0, (3.6)

Ms(1)
m (arccosh(1/e), z2e2/4) = 0. (3.7)

Here, z = λa is a dimensional variable that should not be confused with the Cartesian

coordinate. It follows that the zeta function for this problem, in the contour integral

representation, is

ζI,D(s, a,e) = 1

2π
B

(
s −1

2
,

1

2

)
µs

a1−s

∞∑
m=0

1

2πi

∫
C

dz z1−s
(

Mc(1) ′
m (arccosh(1/e), z2e2/4)

Mc(1)
m (arccosh(1/e), z2e2/4)

+ Ms(1) ′
m (arccosh(1/e), z2e2/4)

Ms(1)
m (arccosh(1/e), z2e2/4)

)
, (3.8)

where the prime denotes differentiation with respect to z. For simplicity, let the con-

tour C be the same contour used in example 3 in chapter 2. Using the results in ap-

pendix A, the formal expansion of the integrand is

z1−s
(

Mc(1) ′
m (arccosh(1/e), z2e2/4)

Mc(1)
m (arccosh(1/e), z2e2/4)

+ Ms(1) ′
m (arccosh(1/e), z2e2/4)

Ms(1)
m (arccosh(1/e), z2e2/4)

)
∼ (2−δm 0)

(
z1−s J′m(z)

Jm(z)
+ 1

4

(
(1− s)z1−s J′m(z)

Jm(z)
−

(
z2−s J′m(z)

Jm(z)

)′)
e2 +O(e4)

)
.

(3.9)

The leading term reproduces the integrand for a circular-cylindrical boundary of ra-

dius a (2.111). The first part of the next-to-leading term is proportional to the leading
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term. The second part of the next-to-leading term is continuous throughout C , has an

antiderivative, and consequently, since the contour is closed, does not contribute to

the zeta function. Integrating termwise,

ζI,D(s, a,e) ∼ ζI,D(s, a,0)

(
1+ 1− s

4
e2 +O(e4)

)
. (3.10)

The analysis for the field in the exterior of the boundary is similar. The general ex-

pression for the field in the exterior of the boundary is identical to that for the field

in the interior of the boundary (3.5), except that the even and odd modified Mathieu

functions of the first kind are replaced with those of the third kind. The subsequent

analysis is also similar, except that Bessel functions of the first kind are replaced with

Hankel functions of the first kind. The result for the zeta function is

ζII,D(s, a,e) ∼ ζII,D(s, a,0)

(
1+ 1− s

4
e2 +O(e4)

)
. (3.11)

The total zeta function is given by the sum of the internal and external contribu-

tions. Since the eccentricity expansion is the same in both regions,

ζD(s, a,e) ∼ ζD(s, a,0)

(
1+ 1− s

4
e2 +O(e4)

)
. (3.12)

The prefactor is the total zeta function for a massless scalar field that satisfies the ho-

mogeneous Dirichlet condition on the boundary of a circular cylinder of radius a,

which was shown in example 3 in chapter 2 to be well-behaved at s = −1. Therefore,

in this case, the principal-part prescription simplifies to straightforward substitution.

The zero-point energy per unit longitudinal length of an elliptical cylinder is

E D(a,e) ∼ E D(a,0)

(
1+ 1

2
e2 +O(e4)

)
. (3.13)

This result agrees with the work by Kvitsinsky [44], as shown in [45].

The result is now confirmed using a method that uses conformal mapping.
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3.2.2 Conformal-map method

The elliptic-cylindrical boundary is inherently two-dimensional. If the longitudinal

contribution is factored out, then the field equation reduces to

(∇2 +λ2
m

)
φm = 0, (3.14)

where the Laplacian is the two-dimensional Laplacian, and the homogeneous Dirich-

let condition is imposed on the boundary of the ellipse (3.1).

Let us treat the Cartesian x y-plane as the complex z = x + i y plane. The aim of this

subsection is to map the problem in z-space onto one whose boundary is a circle of

radius R. Such a map exists and is given by [46]

w(z) = R
p

k sn

(
2K(k2)

π
arcsin

(
zp

a2 −b2

))
, (3.15)

where sn is the Jacobi elliptic function, K is the complete elliptic integral of the first

kind and k, which should not be confused with momentum, depends on the semiaxes

in terms of theta functions

k =
(
ϑ2(h)

ϑ3(h)

)2

, (3.16)

h =
(

a −b

a +b

)2

. (3.17)

Figure 3.2 shows how the conformal map maps z-space onto w-space.

Using the conformal map (3.15), the field equation in w-space is

(|w ′|2∇2 +λ2
m

)
φm(w) = 0, (3.18)

where the prime denotes differentiation with respect to z, and the Dirichlet condition

is now imposed on the boundary of a circle of radius R. The problem in w-space is now

considered for small eccentricity.

For small eccentricity,

k ∼ e2 +O(e4) . (3.19)



37

Re(z)

Im(z)

Re(w)

Im(w)

Figure 3.2: The conformal map.
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Suppose that R =p
ab. Then, using properties of the complete elliptic integral of the

first kind and the Jacobi elliptic function [40],

w(z) ∼ z − z3

4R2
e2 +O(e4) . (3.20)

Differentiating with respect to z,

w ′(z) ∼ 1− 3z2

4R2
e2 +O(e4) . (3.21)

Using the inverse of the conformal map (3.15), z(w) ∼ w +O(e2), and with w in polar

coordinates, w = r exp(iθ),

|w ′|2 ∼ 1− 3r 2 cos(2θ)

2R2
e2 +O(e4) . (3.22)

Now, let

φm(w) ∼φ(0)
m (w)+φ(2)

m (w)e2 +O(e4) , (3.23)

λm ∼λ(0)
m +λ(2)

m e2 +O(e4) . (3.24)

At leading order, the field equation is

(∇2 + (λ(0)
m )2)φ(0)

m (w) = 0. (3.25)

Using continuity, the eigenfunctions are

φ(0)
m (w) ∝ exp(i mθ) , (3.26)

where m is an integer.

At next-to-leading order,(
3r 2 cos(2θ)

2R2
∇2 +2λ(0)

m λ(2)
m

)
φ(0)

m (w)+ (∇2 + (λ(0)
m )2)φ(2)

m (w) = 0. (3.27)

Since the eigenfunctions φ(0)
m are complete in the sense that

φ(2)
m (w) = ∑

n 6=m
cnφ

(0)
n (w) , (3.28)
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equation (3.27) can be rewritten as

2λ(0)
m λ(2)

m φ(0)
m (w) = 3r 2 cos(2θ)

2R2
(λ(0)

m )2φ(0)
m (w)

+ ∑
n 6=m

cn

(
(λ(0)

n )2 −λ(0)
m )2)φ(0)

n (w) . (3.29)

Multiplying both sides by exp(−i mθ) and integrating over θ from 0 to 2π, it follows that

λ(2)
m = 0. Therefore,

λm ∼λ(0)
m +O(e4) . (3.30)

Since the eigenvalues do not change up to O(e4), the zero-point energy does not change

up to O(e4) either; that is,

E (a,e) ∼ E (R,0)
(
1+O(e4)

)
, (3.31)

Using a = R(1−e2)−1/4, the result from the zeta-function method is recovered.

3.2.3 Remarks

The major result of this section is equation (3.13). However, in many respects, equa-

tion (3.31) is more interesting. It states that the zero-point energy of the elliptical cylin-

der (3.1) is equal, up to O(e4), to that for a circular cylinder of radius R =p
ab. Because

R is the geometric mean of the semiaxes, it follows that the volume per unit longi-

tudinal length of the circular cylinder is equal to that of the elliptical cylinder. This

observation is recast as a conjecture:

Conjecture. Zero-point energy does not change for small deformations of

the boundary that preserve volume.

The conjecture is deliberately vague. In the present case it should be read as follows:

(the change in the) zero-point energy (of a massless real scalar field subject to the

Dirichlet condition on the boundary of an elliptical cylinder) does not change (up to

O(e4)) for small (O(e2)) deformations of the boundary that preserve volume (per unit
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longitudinal length). However, its vagueness allows the conjecture to be tested in other

situations. For example, since only continuity is used in the conformal-map method,

the conjecture is independent of the condition imposed on the boundary of an ellipti-

cal cylinder.

It should be mentioned that the conjecture can be restated in terms of small de-

formations of the boundary that preserve lateral surface area [47]. The two versions of

the conjecture differ at the next-to-next-to-leading order in the eccentricity expansion.

Unfortunately, calculating the zero-point energy beyond the next-to-leading order is

considerably more difficult, and is not considered in this thesis. It may be that neither

conjecture is valid beyond O(e2) deformations of the boundary.

3.3 Vector field

Quantizing the electromagnetic field is considerably more complicated than quantiz-

ing a massless real scalar field [34]. However, the result for the energy of the disturbed

electromagnetic vacuum is very similar [32],

〈0|H |0〉∂V = 1

2

∑
k,λ

ω(λ)
k . (3.32)

The only difference is that the sum over the classical eigenenergies now includes the

polarization states λ.

The classical Lagrangian density for the electromagnetic field is

LEM =−1

4
FµνFµν , (3.33)

where Fµν = ∂µAν−∂νAµ. Applying the Euler-Lagrange equations, the field equations

are

∂µFµν = 0. (3.34)

In terms of the electric and magnetic fields, E = −∇A0 −∂A/∂t and B = ∇×A respec-

tively, and with the time dependence given by exp(−iωt ), the field equations (3.34)



41

become Maxwell’s equations

∇·E = 0, (3.35)

∇·B = 0, (3.36)

∇×E = iωB , (3.37)

∇×B =−iωE . (3.38)

Perfectly-conducting conditions are given by n×E = 0 and n ·B = 0 on the boundary,

where n is the outward unit normal to the boundary. For the elliptical cylinder (3.1),

the perfectly-conducting conditions become Ev = 0, Ez = 0 and Bu = 0 on the boundary

cosh(u) = 1/e.

Maxwell’s equations are separable in elliptic-cylindrical coordinates [43]. There are

two solutions, corresponding to the two polarization states. For the first solution, the

general expression for the z component of the electric field in the interior of the bound-

ary is

E I
z =

∫
dk

2π
exp(i kz)

( ∞∑
m=0

Am(k)Mc(1)
m (u, q)cem(v, q)

+
∞∑

m=1
Bm(k)Ms(1)

m (u, q)sem(v, q)

)
. (3.39)

This expression is identical to the general expression for a massless scalar field (3.5).

Furthermore, the perfect-conducting boundary condition for this component, Ez = 0,

is identical to the homogeneous Dirichlet condition. The boundary condition is satis-

fied when

Mc(1)
m (arccosh(1/e), z2e2/4) = 0, (3.40)

Ms(1)
m (arccosh(1/e), z2e2/4) = 0, (3.41)

where z = λa is a dimensionless variable. The other two boundary conditions are au-

tomatically satisfied because E I
v and B I

u each contain the same vanishing factors as E I
z .

The second solution to Maxwell’s equations follows from the principal of duality [48].

Now B I
z has the general expression (3.39). Since E I

v ∝ ∂B I
z/∂u, the boundary condition
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Ev = 0 is satisfied when

Mc(1)′
m (arccosh(1/e), z2e2/4) = 0, (3.42)

Ms(1)′
m (arccosh(1/e), z2e2/4) = 0, (3.43)

where z =λa and the prime denotes differentiation with respect to the first argument.

The second solution is equivalent to a massless real scalar field subject to the homoge-

neous Neumann condition on the boundary.

The zero-point energy of the electromagnetic vacuum is given by the sum of the

zero-point energies of the two polarization states. Since the two solutions are both

equivalent to a massless real scalar field, and the first solution is subject to the Dirichlet

condition on the boundary and the second solution is subject to the Neumann condi-

tion on the boundary,

E (a,e) = E D(a,e)+E N(a,e) . (3.44)

Using the fact that the eccentricity expansion of the zero-point energy does not depend

on the boundary condition, the zero-point energy of the electromagnetic vacuum is

E (a,e) ∼ E (a,0)

(
1+ 1

2
e2 +O(e4)

)
, (3.45)

where E (a,0) = E D(a,0)+E N(a,0). The prefactor E (a,0) is the zero-point energy of the

electromagnetic field subject to perfectly-conducting conditions on the boundary of a

cylinder of radius a (1.3).
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Chapter 4

Spheroidal boundary

4.1 Introduction

In this chapter the boundary of a spheroidal is considered. Without any loss of gener-

ality, the boundary of a spheroidal can be given by (x, y, z) ∈R3 such that

x2

a2
+ y2 + z2

b2
= 1, (4.1)

where a and b are both nonzero. Figure 4.1 shows a prolate spheroid, for which a > b.

Figure 4.2 shows an oblate spheroid, for which a < b.

The zero-point energy of an oblate spheroid can be formally obtained from that

for a prolate spheroid; therefore, unless stated otherwise, the boundary is a prolate

spheroid.

It is convenient to work in prolate-spheroidal coordinates. Using the notation in

x

y

b

a

Figure 4.1: Rotating this ellipse about the x-axis yields a prolate spheroid.
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x

y
b

a

Figure 4.2: Rotating this ellipse about the x-axis yields an oblate spheroid.

Abramowitz and Stegun [40], prolate-spheroidal coordinates (ξ,η,ϕ) are related to Carte-

sian coordinates by

x = f ξη , (4.2)

y = f
√

(ξ2 −1)(1−η2)cos(ϕ) , (4.3)

z = f
√

(ξ2 −1)(1−η2)sin(ϕ) , (4.4)

where f =
p

a2 −b2. The domains are 1 ≤ ξ<∞, −1 ≤ η≤ 1 and 0 ≤ϕ< 2π. In prolate-

spheroidal coordinates, the boundary (4.1) is given by

ξ= 1

e
, (4.5)

where e = f /a is the eccentricity.

As in the previous chapter, only small eccentricity is considered. The reason is the

same: as the eccentricity tends to one, the boundary of the prolate spheroid becomes

a circular cylinder, which is topologically different.

4.2 Scalar field

4.2.1 Zeta-function method

Consider a massless real scalar field that satisfies the homogeneous Dirichlet condition

on the boundary of the prolate spheroid (4.1). Much of the following analysis is similar
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to that for the elliptic-cylindrical boundary. The general expression for the field in the

interior of the boundary is [35]

φI =
∞∑

l=0

l∑
m=−l

Am
l Sm(1)

l (ξ,γ2)psm(1)
l (η,γ2)exp(i mϕ) , (4.6)

where γ= f ω, psm(1)
l are the angular prolate-spheroidal functions of the first kind and

Sm(1)
l are the radial prolate-spheroidal functions of the first kind. Spheroidal functions

are reviewed in appendix A.

The field satisfies the homogeneous Dirichlet condition on the boundary (4.1) when

Sm(1)
l (1/e, z2e2) = 0, (4.7)

where z =ωa is a dimensionless variable. The zeta function for this problem is

ζI,D(s, a,e) = (µa)s
∞∑

l=0

l∑
m=−l

1

2πi

∫
C

dz z−s
Sm(1)′

l (1/e, z2e2)

Sm(1)
l (1/e, z2e2)

. (4.8)

Using the results in appendix A, the formal expansion of the integrand is

z−s
Sm(1)′

l (1/e, z2e2)

Sm(1)
l (1/e, z2e2)

∼ z−s
j′l (z)

jl (z)
− l 2 + l +m2 −1

4l 2 +4l −3

(
sz−s

j′l (z)

jl (z)

+
(

z1−s
j′l (z)

jl (z)

)′)
e2 +O(e4) , (4.9)

where the prime denotes differentiation with respect to z. The leading order repro-

duces the integrand for a spherical boundary of radius a. The first part of the next-

to-leading term is proportional to the leading term. The second part of the next-to-

leading term is continuous throughout C , has an antiderivative, and consequently,

since the contour is closed, does not contribute to the zeta function. The contour inte-

gration is performed termwise. The leading term has no m dependence; the summa-

tion with respect to m of the leading term is 2l +1. The prefactor of the next-to-leading

term does depend on m. Using the relation,

l∑
m=−l

l 2 + l +m2 −1

4l 2 +4l −3
= 2l +1

3
(4.10)

the formal expansion of the zeta function is

ζI,D(s, a,e) ∼ ζI,D(s, a,0)

(
1− s

3
e2 +O(e4)

)
. (4.11)



46

By similar analysis, the result for the zeta function in the exterior of the boundary is

ζII,D(s, a,e) ∼ ζII,D(s, a,0)

(
1− s

3
e2 +O(e4)

)
. (4.12)

The total zeta function is given by the sum of the internal and external contribu-

tions. Since the eccentricity expansion is the same in both regions,

ζD(s, a,e) ∼ ζD(s, a,0)

(
1− s

3
e2 +O(e4)

)
. (4.13)

The prefactor is the total zeta function for a massless scalar field that satisfies the ho-

mogeneous Dirichlet condition on the boundary of a sphere of radius a, which can be

shown to be well-behaved at s = −1 [30]. Using the principal-part prescription, the

zero-point energy is

E D(a,e) ∼ E D(a,0)

(
1+ 1

3
e2 +O(e4)

)
. (4.14)

This result is now confirmed using the Green-function method.

4.2.2 Green-function method

The reduced Green function for this problem, in the interior of the boundary, is [35]

gI,D(x,x′) =−iω
∞∑

l=0

l∑
m=−l

Xm
l (η,ϕ,γ2)Xm∗

l (η′,ϕ′,γ2)

× Sm(3)
l (1/e,γ2)

Sm(1)
l (1/e,γ2)

Sm(1)
l (ξ,γ2)Sm(1)

l (ξ′,γ2) . (4.15)

where

Xm
l (η,ϕ,γ2) =

√
2l +1

4π

(l −m)!

(l +m)!
psm(1)

l (η,γ2)exp(i mϕ) . (4.16)

The reduced Green function in the exterior of the boundary is identical except that the

radial prolate-spheroidal functions of the first and third kinds are interchanged.

The spatial integral is

I (z,e) =
∫

d 3xω2 gD(x,x) . (4.17)
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In prolate-spheroidal coordinates,

I (z,e) =
∫

dξdηdϕ f 3(ξ2 −η2)ω2 gD(x,x) . (4.18)

Using the reduced Green function, and scaling ξ by a factor of ze,

I (z,e) =−i
∞∑

l=0

l∑
m=−l

∫ 2π

0
dϕ

∫ 1

−1
dη Xm

l (η,ϕ, z2e2)Xm∗
l (η,ϕ, z2e2)

×
(Sm(3)

l (1/e, z2e2)

Sm(1)
l (1/e, z2e2)

∫ z

ze
dξ (ξ2 −η2z2e2)

(
Sm(1)

l (ξ, z2e2)
)2

+ Sm(1)
l (1/e, z2e2)

Sm(3)
l (1/e, z2e2)

∫ ∞

z
dξ (ξ2 −η2z2e2)

(
Sm(3)

l (ξ, z2e2)
)2

)
. (4.19)

The spatial integral is now expanded for small eccentricity,

I (z,e) ∼I (0)(z)+I (2)(z)e2 +O(e4) . (4.20)

The leading order term is simply the spatial integral for the same problem on the bound-

ary of a sphere of radius a. The next-to-leading order term is given by

I (2)(z) = lim
e→0

1

2!

∂2

∂e2
I (z,e) . (4.21)

Because one of the integration limits depends on the eccentricity, Leibniz’s rule is used.

After simplifying,

I (2)(z) = 1

3
I (0)(z)− 1

3

(
zI (0)(z)

)′ , (4.22)

where the prime denotes differentiation with respect to z. When integrating over z,

the total derivative vanishes. Effectively, the next-to-leading order term is equal to

one-third the leading order term, which agrees with the result using the zeta-function

method.

4.2.3 Remarks

Consider a sphere whose volume is equal to that of the prolate spheroid (4.1). The

radius of the the sphere is R = a(1−e2)1/3. Substituting this into the result for the zero-

point energy (4.14),

E D(a,e) ∼ E D(R,0)
(
1+O(e4)

)
. (4.23)
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In other words, the result in this section supports the conjecture that zero-point energy

does not change for small deformations of the boundary that preserve volume.

The zero-point energy for an oblate-spheroidal boundary can be obtained using the

following formal argument. Oblate eccentricity e ′ is formally related to prolate eccen-

tricity by

1

e2
+ 1

e ′2 = 1. (4.24)

Substituting this relationship into the result for a prolate-spheroidal boundary, and

expanding for small oblate eccentricity, yields

E D(a,e ′) ∼ E D(a,0)

(
1− 1

3
e ′2 +O(e ′4)

)
. (4.25)

This result for an oblate spheroidal boundary can be easily confirmed using the zeta-

function and Green-function methods.

4.3 Vector field

The homogeneous vector Helmholtz differential equation is not separable in prolate-

spheroidal coordinates [35]; the Robertson condition on the Stäckel determinant fails.

Since solutions to Maxwell’s equations also satisfy the homogeneous vector Helmholtz

differential equation, it follows that Maxwell’s equations are not separable in prolate-

spheroidal coordinates. Consequently, the zeta-function and Green-function methods

cannot be used to calculate the zero-point energy of the electromagnetic field subject

to perfectly-conducting conditions on the boundary of a prolate spheroid.

There is, however, an exception: if the electromagnetic field is axially symmetric,

then Maxwell’s equations are separable in prolate-spheroidal coordinates [49]. In 2006,

Kitson and Signal proposed that the zero-point energy could be obtained by suitably

weighting the zeta function of the axially-symmetric, or zonal, components [50]. How-

ever, it is now shown that this zonal approximation is poor. The analysis is for a scalar

field, for which the exact result is known and can therefore be compared with.
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Recall that the zeta function for a massless real scalar field that satisfies the homo-

geneous Dirichlet condition on the boundary of a prolate spheroid is

ζI,D(s, a,e) = (µa)s
∞∑

l=0

l∑
m=−l

1

2πi

∫
C

dz z−s
Sm(1)′

l (1/e, z2e2)

Sm(1)
l (1/e, z2e2)

, (4.26)

where Sm(1)
l are the radial prolate spheroidal functions of the first kind. Also recall that

the formal eccentricity expansion of the integrand is

z−s
Sm(1)′

l (1/e, z2e2)

Sm(1)
l (1/e, z2e2)

∼ z−s
j′l (z)

jl (z)
− l 2 + l +m2 −1

4l 2 +4l −3

(
sz−s

j′l (z)

jl (z)

+
(

z1−s
j′l (z)

jl (z)

)′)
e2 +O(e4) , (4.27)

where the prime denotes differentiation with respect to z. The zonal approximation

is made by setting m = 0 in the integrand and replacing the summation with respect

to m with 2ν, where ν = l +1/2. Let the zeta function for the zonal approximation be

denoted by ζ̃. For simplicity, set the mass scale µ equal to 1/a. Suppose that the zeta

function for the zonal approximation is expanded for small eccentricity

ζ̃(s, a,e) ∼ ζ̃(0)(s, a)+ ζ̃(2)(s, a)e2 +O(e4) . (4.28)

At the leading order, the familiar zeta function for a spherical boundary is recovered,

ζ̃(0)(s, a) =
∞∑

l=0

2ν

2πi

∫
C

dz z−s
j′l (z)

jl (z)
. (4.29)

The Laurent expansion of the leading order about s =−1 is [51]

ζ̃(2)(s, a) = 1

315π

1

s +1
−0.00889. . .+O(s +1) . (4.30)

At the next-to-leading order,

ζ̃(2)(s, a) =−s
∞∑

l=0

5−4ν2

16(1−ν2)

2ν

2πi

∫
C

dz z−s
j′l (z)

jl (z)
. (4.31)

Continuing the contour integral to −1 < Re(s) < 0,

ζ̃(2)(s, a) =−s
∞∑

l=0

5−4ν2

8(1−ν2)
ν2−s 1

π
sin

(
πs

2

)∫ ∞

0
dy y−s

(
1

ν

i′l (νy)

il (νy)
−1+ 1

2νy

)
. (4.32)
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Then, continuing to a neighborhood of s =−1 and Laurent expanding,

ζ̃(2)(s, a) = 3

64π

1

(s +1)2
− 2561−1890γ−5670ln(2)

40320π

1

s +1
−0.03421. . .+O(s +1) ,

(4.33)

where γ= 0.57721. . . is the Euler-Mascheroni constant.

The zero-point energy is obtained using the principal-part prescription. Factoring

out the leading order,

Ẽ I,D(a,e) ∼ Ẽ I,D(a,0)
(
1−3.85312. . .e2 +O(e4)

)
. (4.34)

This does not compare well with the exact result,

E I,D(a,e) ∼ E I,D(a,0)
(
1+0.25759. . .e2 +O(e4)

)
. (4.35)

The next-to-leading-order term is not only of the wrong order of magnitude, but also

has the wrong sign. In addition, the Laurent expansion of the zeta function for the

zonal approximation contains a double pole, which contradicts the Poisson-kernel

method. In conclusion, the zonal approximation is a poor approximation.

On the other hand, using the boundary-deformation conjecture,

E I,D(a,e) ∼ E I,D(a,0)

(
1+ 1

3
e2 +O(e4)

)
. (4.36)

Comparing this with the exact result (4.35), the next-to-leading-order term has the cor-

rect sign and is of the right order of magnitude.
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Chapter 5

Quantum chromodynamics

5.1 Introduction

Quantum chromodynamics, QCD for short, is the leading theory of the strong force.

The theory describes how quark and gluon fields behave. QCD is a gauge theory with

gauge group SU(3). Because the gauge group is non-Abelian, the field equations are

highly nonlinear and, in general, too difficult to solve analytically.

The strong force has two particularly interesting properties. The first is asymptotic

freedom: at high energies the coupling between the fields decreases. Asymptotic free-

dom can be derived from QCD [52, 53]. The other interesting property is confinement:

at low energies, the coupling between the fields increases. One possible model for con-

finement is the dual-Meissner effect [54]. In electrodynamics, the Meissner effect is the

expulsion of magnetic fields from superconductors. The dual of this is the expulsion of

colour-electric fields, which forms flux tubes between coloured charges.

QCD is typically studied in one of three ways: perturbatively in the asymptotic free-

dom region, numerically on a lattice, or with models. One popular model is the MIT

bag model, developed at the Massachusetts Institute of Technology [55, 56]. In the MIT

bag model, hadrons, which are made up of quarks and gluons, are represented by bags.

Inside the bag, the Lagrangian density for the MIT bag model is given by

LMIT =LQCD −B , (5.1)

where LQCD is the QCD Lagrangian density and B is the so-called bag constant. The
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Lagrangian density for QCD is [32]

LQCD =∑
f
ψ̄ f

(
iγµDµ−m f

)
ψ f −

1

4
G a
µνG aµν . (5.2)

Focusing on the first term, ψ f are the quark fields, which come in six flavours, each

with a different mass m f ; ψ̄=ψ†γ0, where the dagger denotes the Hermitian conjugate

and γ0 is one of the Dirac matrices γµ; and the covariant derivative

Dµ = ∂µ+ i g
λa

2
Aa
µ , (5.3)

where λa are the Gell-Mann matrices and Aa
µ are the eight massless gluon fields. The

quark and the gluon fields are coupled together by g , which should not be confused

with the reduced Green function. Focusing on the second term in the QCD Lagrangian

density,

G a
µν = ∂µAa

ν−∂νAa
µ− g f abc Ab

µAc
ν , (5.4)

where the structure constants f abc are related to the Gell-Mann matrices by the com-

mutation relations[
λa

2
,
λb

2

]
= i f abc λ

c

2
. (5.5)

It is assumed in the MIT bag model that the fields inside the bag can be treated

perturbatively. In the zero-coupling limit, when g = 0, the field equation for the quarks

reduces to the free Dirac equation

(
iγµ∂µ−m

)
ψ= 0, (5.6)

subject to the condition
(
1+ i n ·γγγ)

ψ= 0 on the boundary, where n is the unit outward

normal. The field equations for the gluons become

∂µGµν
a = 0, (5.7)

subject to the conditions n ·Ea = 0 and n×Ba = 0 on the boundary. Because of the

inclusion of the bag constant in the MIT Lagrangian, the fields are also subject to the
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nonlinear condition

−1

2
nµ∂µψ̄ψ− 1

4
G2 = B , (5.8)

which is important for Lorentz invariance.

The total energy of a bag of volume V is [57]

E = Eq +Eg +BV , (5.9)

where Eq is the contribution to the energy from the quarks and Eg is the contribution

from the gluons. The bag constant stabilizes the bag; without the bag constant, the

most favourable energy corresponds to a bag of infinite volume. Solving the model for

a spherical bag of radius R, reasonable fits can be made to the masses of the lightest

hadrons if an additional term of the form −Z /R, where Z ∼ 2, is included in the total

energy [57],

E ′ = E − Z

R
. (5.10)

About half of Z can be accounted for by centre-of-mass corrections [58]; the possibility

that the other half can be explained by zero-point energy has been considered by many

authors.

5.2 Spherical bag

In 1976, Bender and Hays calculated the zero-point energies of massless quarks and

gluons in the zero-coupling limit of the MIT bag model for a spherical bag [59]. Be-

cause there are no external fields in the MIT bag model, they found that the zero-point

energies are divergent.

In 1980, Milton used the Green-function method to calculate the zero-point ener-

gies beyond the leading divergence [16, 17, 60]. Milton argued that the divergent terms

can be renormalized by adding additional phenomenological terms to the total energy



54

of the bag (5.10). If the divergent terms are renormalized, then the remaining finite

part is

E ∼ 0.7

R
, (5.11)

where R is the radius of the bag. A similar result was also obtained by Romeo using

the zeta-function method [61]. While the contribution to Z is of the correct order of

magnitude, it is of the wrong sign.

It is perhaps not surprising that the calculated value for Z in the zero-coupling limit

does not agree with the value from the mass fits. This is because the mass fits sug-

gest that the coupling is large, g ∼ 2, which implies that nonperturbative effects are

important. Recently, some progress has been made in including some of the nonper-

turbative behaviour. In 2005 Oxman et al. considered modifying the reduced Green

function [62]. The following is a simplification of their argument; for full details see

their paper.

Referring to studies of the Schwinger-Dyson equation, Oxman et al. consider the

following modified reduced Green-function,

g̃(k2) = (−k2)λ

(−k2 +Λ2)λ+1
, (5.12)

where kµ is momentum, Λ = O(ΛQCD) and λ > 0. For large k2, the modified reduced

Green function reduces to g(k2) =−1/k2, which is the unmodified reduced Green func-

tion. However, the small k2 behaviour is very different, g(k2) ∼ (−k2)λ. The modified

reduced Green function can be written in terms of the unmodified reduced Green func-

tion,

g̃(k2) = g(k2)−λg(k2 −Λ2)λ+1 . (5.13)

Using Cauchy’s theorem, it is straightforward to show that zero-point energy can be

given by

E =−1

2

∑
k

1

2πi

∫
dω ln

(
g(ω2 −ω2

k)
)

, (5.14)
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where k is an index. Replacing the unmodified reduced Green function with the mod-

ified one, expanding the logarithm and integrating termwise,

Ẽ =−λE(0)+ (λ+1)E(Λ2) , (5.15)

where E is the zero-point energy for the unmodified reduced Green function. The sec-

ond term corresponds to the zero-point energy for the field with mass Λ, which is as-

sumed to be small. Neglecting the second term,

Ẽ ∼−λE(0) . (5.16)

Using Milton’s result (5.11) and λ ∼ 1, which corresponds to a typical value in the

Schwinger-Dyson studies,

Ẽ ∼−0.7

R
. (5.17)

The crucial minus sign implies that the calculated zero-point energy now agrees with

the mass fits.

5.3 Spheroidal bag

Lattice QCD is the numerical study of QCD on a finite lattice. The finite spacing be-

tween the lattice points acts as the regulating cutoff. As the lattice becomes finer, the

approximation to QCD becomes better. Because of the complexity of the underlying

QCD field equations, lattices are small, typically of the order of 163×32, and even then

calculations require supercomputers.

However, with the ever-increasing power of computing, dramatic pictures of the

QCD vacuum are starting to emerge. The figures in this chapter are used with the kind

permission of Derek Leinweber; they are a series of stills from animations that can

be found on his website [63]. Figure 5.1 shows a lattice simulation of a meson. The

depression in the sheet represents the reduction of the vacuum action. The flux tube

joining the quark and antiquark is the region of space where the vacuum is maximally

expelled.
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Figure 5.1: Lattice simulation of a meson.
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This simulation is artificial in the sense that dynamical quarks are not included. If

dynamical quarks are included, then separating the quark and antiquark eventually

introduces so much energy that the hadron splits, forming new hadrons in a process

known as hadronization. Consequently, in the following analysis, only small separa-

tions are considered.

For small separations, the flux tube can be modeled by a prolate spheroid. A small

increase in the separation corresponds to a small increase in the eccentricity while

holding the semiminor axis b fixed. The zero-point energy of this flux tube is now

considered. Assuming the boundary-deformation conjecture, and using the modified

Green function result for the spherical bag (5.17), the zero-point energy for a prolate-

spheroidal bag is

E ∼−0.7

a

(
1+ 1

3
e2 +O(e4)

)
. (5.18)

Using the relationship between a and b, a = b(1−e2)−1/2,

E ∼−0.7

b

(
1− 1

6
e2 +O(e4)

)
. (5.19)

With b fixed, the energy increases as the eccentricity increases.

Figure 5.2 shows a lattice simulation of a baryon. For small separations of the three

quarks, the flux tube can be modeled by an oblate spheroid. A small increase in the

separation corresponds to a small increase in the oblate eccentricity while holding the

semiminor axis a fixed. The zero-point energy for an oblate-spheroidal bag is

E ∼−0.7

a

(
1− 1

3
e ′2 +O(e ′4)

)
. (5.20)

With a fixed, the energy increases as the oblate eccentricity increases.

Both results imply that a spherical bag is most stable; deforming a spherical bag

into either a prolate or oblate spheroidal bag results in an increase in the energy. The

results are also consistent with results that show that the energy per unit length of the

flux tube is constant [64].
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Figure 5.2: Lattice simulation of a baryon.
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Chapter 6

Conclusion

In chapter 3, the zero-point energy of an elliptic-cylindrical boundary was considered.

Using the zeta-function method, the zero-point energy of a massless real scalar field

was evaluated in a formal series in terms of small eccentricity. The result was con-

firmed using a method that used a conformal map to map the problem onto the sim-

pler problem of a circular cylinder. The result for the zero-point energy led to the con-

jecture that zero-point energy does not change for small deformations of the bound-

ary that preserve volume. Because no boundary condition other than continuity was

used in the conformal-map method, the conjecture is independent of the condition

imposed on the field on the boundary of the elliptical cylinder. The zero-point energy

of a vector field was also considered. It was shown that the zero-point energy for the

vector field reduced to the sum of the zero-point energies of two scalar fields satisfy-

ing different conditions on the boundary. Since the boundary-deformation conjecture

is independent of the boundary condition, and therefore the eccentricity expansion is

independent of the boundary condition, the result for the vector field was obtained

immediately.

In chapter 4, the zero-point energy of a spheroidal boundary was considered. Again,

the zeta-function method was used to evaluate the zero-point energy of a massless real

scalar field, and again the result was expanded in a formal series in terms of small ec-

centricity. The result was confirmed using the Green-function method. The result for

the zero-point energy supported the boundary-deformation conjecture. No exact re-

sult was obtained for the zero-point energy of a vector field because the field equations
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are not separable in spheroidal coordinates.

The spheroidal boundary was considered again in chapter 5, where it was used to

model flux tubes between quarks in hadrons. Assuming the boundary-deformation

conjecture, it was found that the zero-point energy of the flux tubes increases as the

quarks are separated, and therefore zero-point energy plays a stabilizing role in quan-

tum chromodynamics.

The work in this thesis could be extended in many ways. For example, the boundary-

deformation conjecture could be tested by calculating the next term in the eccentricity

expansion. Or perhaps the Poisson-kernel method, with its strong connection with

geometry, could be used to study the conjecture theoretically. The conjecture could

also be tested for spinor fields and fields with mass.

It is tempting to relate the work in this thesis with the work of Ambjørn and Wolfram

on cuboidal boxes [19]. However, their results, showing the change in the zero-point

energy as a cubic box is deformed into a cuboid, are only calculated for the field inside

the box, and therefore dependent on the renormalization method. The method they

use is the zeta-function method, which hides the fact that their results are technically

divergent. Neglecting the divergent part, as Ambjørn and Wolfram do, the results show

the zero-point energy changing sign as the cubic box is deformed. A result such as

this for a boundary whose zero-point energy can be calculated unambiguously, such

as spheroids, would be of considerable interest.
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Appendix A

Mathieu and spheroidal functions

A.1 Mathieu functions

A.1.1 Separation of variables

In elliptic-cylindrical coordinates (u, v, z), the scalar Helmholtz differential equation is(
2

f 2(cosh(2u)−cos(2v))

(
∂2

∂u2
+ ∂2

∂v2

)
+ ∂2

∂z2
+ω2

)
φ= 0, (A.1)

where f =
p

a2 −b2. The semimajor axis a is greater than the semiminor axis b, and

both are nonzero. Suppose that φ = U(u)V(v)Z(z). Then, Z satisfies the differential

equation(
d 2

dz2
+k2

)
Z = 0, (A.2)

where k is a separation constant. The equations for U and V are, respectively,(
d 2

du2
−a +2q cosh(2u)

)
U = 0, (A.3)(

d 2

dv2
+a −2q cos(2v)

)
V = 0, (A.4)

where q = f 2λ2, λ2 =ω2−k2, and a, which should not be confused with the semimajor

axis, is another separation constant. In general, a depends on q and another param-

eter m; this is written am(q). Solutions to equation (A.3) are the modified Mathieu

functions; solutions to equation (A.4) are the Mathieu functions.
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A.1.2 Mathieu functions

For the field φ to be continuous, it is necessary that the solutions to equation (A.4) are

periodic with respect to v . The periodic solutions are often separated into those that

are even with respect to v and those that are odd. The even periodic Mathieu functions

are denoted by cem . They are normalized such that

1

π

∫ 2π

0
dv cem(v, q)cem′(v, q) = δmm′ , (A.5)

where δ is the Kronecker delta. The odd Mathieu functions are denoted by sem and are

normalized in a similar fashion.

In this thesis, the behaviour of the Mathieu functions for small q is of interest, as this

corresponds to small eccentricity. This behaviour is studied by formally expanding the

Mathieu functions in terms of q .

Consider the even Mathieu function ce0. Suppose that

ce0(v, q) ∼ ce(0)
0 (v)+ce(1)

0 (v) q +O(q2) , (A.6)

a0(q) ∼ a(0)
0 +a(1)

0 q +O(q2) . (A.7)

At leading order, it is easy to show that a(0)
0 = 0 and, after normalizing, ce(0)

0 (v) = 1/
p

2.

At next-to-leading order, the Mathieu differential equation (A.4) implies that

ce(1)′′
0 (v)+ a(1)

0p
2
−p

2cos(2v) = 0, (A.8)

where the primes denote differentiation with respect to v . The general solution to

equation (A.8) is

ce(1)
0 (v) = c0 + c1v − a(1)

0

2
p

2
v2 − cos(2v)

2
p

2
, (A.9)

where c0 and c1 are arbitrary constants. Since ce0 is periodic, c1 and a(1)
0 must be zero.

The normalization condition (A.5) implies that c0 is zero. Therefore,

ce0(v, q) ∼ 1p
2

(
1− 1

2
cos(2v) q +O(q2)

)
. (A.10)
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Similarly,

ce1(v, q) ∼ cos(v)− 1

8
cos(3v) q +O(q2) (A.11)

and, for m > 1,

cem(v, q) ∼ cos(mv)+ (m +1)cos((m −2)v)− (m −1)cos((m +2)v)

4(m2 −1)
q +O(q2) .

(A.12)

The analysis for the odd Mathieu functions is similar. The results are

se1(v, q) ∼ sin(v)− 1

8
sin(3v) q +O(q2) (A.13)

and, for m > 1,

sem(v, q) ∼ sin(mv)+ (m +1)sin((m −2)v)− (m −1)sin((m +2)v)

4(m2 −1)
q +O(q2) .

(A.14)

There is no odd Mathieu function for m = 0.

A.1.3 Modified Mathieu functions

There are four kinds of modified Mathieu functions. Only the first and third kinds in-

plies the correct behaviour to the fieldφ at the origin and infinity, respectively [65]. The

even modified Mathieu functions of the first kind are denoted Mc(1)
m . They are normal-

ized such that, for large u′ = 2
p

q cosh(u),

Mc(1)
m (u, q) ∼ Jm(u′) , (A.15)

where Jm are the Bessel functions of the first kind. The odd modified Mathieu functions

are denoted by Ms(1)
m and are normalized in a similar fashion.

Consider the even modified Mathieu function of the first kind Mc(1)
0 . Solving equa-

tion (A.3) formally in terms of q while holding u′ fixed, and using the result from the

previous subsection that a0(q) ∼O(q2),

Mc(1)
0 (u, q) ∼ J0(u′)+ J1(u′)

u′ q +O(q2) . (A.16)
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Making the substitutions u = arccosh(1/e) and q = z2e2/4 gives the formal eccentricity

expansion

Mc(1)
0 (arccosh(1/e), z2e2/4) ∼ J0(z)+ z

4
J1(z)e2 +O(e4) . (A.17)

Similarly, for m > 0,

Mc(1)
m (arccosh(1/e), z2e2/4) ∼ Jm(z)− z

4

(
J′m(z)− δm1

2
J0(z)

)
e2 +O(e4) , (A.18)

where the prime denotes differentiation with respect to z, and δ is the Kronecker delta.

The analysis for the odd modified Mathieu functions of the first kind is similar. For

m > 0,

Ms(1)
m (arccosh(1/e), z2e2/4) ∼ Jm(z)− z

4

(
J′m(z)+ δm1

2
J0(z)

)
e2 +O(e4) . (A.19)

There is no odd modified Mathieu function for m = 0.

Figure A.1 shows Mc(1)
0 and its formal eccentricity expansion up to O(e4) for several

values of z. It can be seen that the eccentricity expansion is reasonably good for small

eccentricity, and best for small z. This trend holds for the other even and odd modified

Mathieu functions.

The even and odd modified Mathieu functions of the third kind are denoted by Mc(3)
m

and Ms(3)
m , respectively. Their eccentricity expansions are identical to those of the first

kind except that Bessel functions of the first kind are replaced with Hankel functions of

the first kind.

A.2 Spheroidal functions

A.2.1 Separation of variables

The scalar Helmholtz differential equation is separable in both prolate-spheroidal and

oblate-spheroidal coordinates. Since oblate-spheroidal functions can be expressed
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−1

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

e1

1

−1
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e1

1

−1

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

Figure A.1: These three plots compare the modified Mathieu function Mc0, the solid

line, with its formal eccentricity expansion up to O(e4), the dotted line. From top to

bottom, z is 4, 8 and 16.
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in terms of prolate-spheroidal functions [40], only prolate-spheroidal coordinates are

considered here.

Suppose that φ =Ξ(ξ)H(η)Φ(ϕ), where (ξ,η,ϕ) are prolate-spheroidal coordinates.

It follows from the scalar Helmholtz differential equation that the equation forΦ is(
d 2

dϕ2
+m2

)
Φ= 0, (A.20)

where m is a separation constant. For the field φ to be continuous, it is necessary that

Φ is periodic with respect to ϕ. Suitable solutions for Φ are exp(imϕ), where m is an

integer. The equations for Ξ and H are, respectively,(
(ξ2 −1)

d 2

dξ2
+2ξ

d

dξ
−λlm(γ2)+γ2(ξ2 −1)− m2

ξ2 −1

)
Ξ= 0, (A.21)(

(1−η2)
d 2

dη2
−2η

d

dη
+λlm(γ2)−γ2(1−η2)− m2

1−η2

)
H = 0, (A.22)

where γ = f ω, and λ is another separation constant. Solutions to equation (A.21) are

the radial prolate-spheroidal functions; solutions to equation (A.22) are the angular

prolate-spheroidal functions.

A.2.2 Angular prolate-spheroidal functions

There are two kinds of angular prolate-spheroidal functions. Only the first kind are

considered here, as only the first kind are well-behaved at η = −1 and η = 1 [40]. The

angular prolate-spheroidal functions of the first kind are denoted psm (1)
l . Here l is a

positive integer such that |m| ≤ l . There are several normalization schemes for the an-

gular prolate-spheroidal functions; the normalization used in this thesis is the Meixner

and Schäfka normalization [65],∫ 1

−1
dη psm (1)

l (η,γ2)psm (1)
l ′ (η,γ2) = 2

2l +1

(l +m)!

(l −m)!
δl l ′ . (A.23)

Formally expanding for small γ2,

psm (1)
l (η,γ2) ∼ Pm

l (η)+
(

(l +m −1)(l +m)

2(2l −1)2(2l +1)
Pm

l−2(η))

− (l −m +1)(l −m +2)

2(2l +1)(2l +3)2
Pm

l+2(η

)
γ2 +O(γ4) . (A.24)
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where Pm
l are the associated Legendre functions of type I.

A.2.3 Radial prolate-spheroidal functions.

As for the modified Mathieu functions, there are four kinds of radial prolate-spheroidal

functions. Only the first and third kinds are of interest in this thesis. The radial prolate-

spheroidal functions of the first kind are denoted Sm (1)
l . They are normalized such that,

for large γξ,

Sm (1)
l (ξ,γ2) ∼ jl (γξ) , (A.25)

where jl are the spherical Bessel functions of the first kind.

Formally expanding for small eccentricity,

Sm (1)
l (1/e, z2e2) ∼ jl (z)−

(
l 2 + l +m2 −1

4l 2 +4l −3
z j′l (z)− l 2 + l −3m2

8l 2 +8l −6
jl (z)

)
e2 +O(e4) .

(A.26)

The eccentricity expansion of the radial prolate-spheroidal functions of the third

kind Sm (3)
l is identical to that of the first kind except that spherical Bessel functions of

the first kind are replaced with spherical Hankel functions of the first kind.
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