
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Novel Lightweight Ciphertext-Policy Attribute-Based

Encryption for IoT Applications

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Information Science

 at Massey University, Auckland, New Zealand

Ping LI

2018

 ii

iii

iii

Abstract

As more sensitive data are frequently shared over the Internet of Things (IoT) network,

the confidentiality and security of IoT should be given special consideration. In addition,

the property of the resources-constraint nodes raises a rigid lightweight requirement for

IoT security system. Currently, the Attribute-Based Encryption (ABE) for fine-grained

access control is the state-of-the-art technique to enable the secure data transmission and

storage in the distributed case such as IoT. However, most existing ABE schemes are

based on expensive bilinear pairing with linear size keys and ciphertexts. This results in

the increase of the memory and computational requirement on the devices, which is not

suitable for the resource-limited IoT applications.

Leveraging on the advantages offered by the Ciphertext-Policy ABE (CP-ABE), this

thesis proposes two constructions of lightweight no-paring cryptosystems based on

Rivest–Shamir–Adleman (RSA). One realized work is a construction of AND-gate CP-

ABE to achieve both constant-size keys and ciphertexts. The result of the evaluation

shows that it reduces the storage and computational overhead. The other construction

supports an expressive monotone tree access structure to implement the complex access

control as a more generic system. Both have respective advantages in different contexts

and are provably secure to guarantee the sharing of data, as well as more applicable and

efficient than the previous scheme. In this thesis, practical issues are also described about

implementations and evaluations of both proposals.

 iv

 Acknowledgments

I would like to thank my supervisor Associate Professor Julian Jang-Jaccard of Massey

University for making the IoT projects possible and supervising my research. Her

extensive industry and academic experiences have been extremely valuable in

contributing to the successful completion of my projects and thesis. I also want to express

my appreciation to Associate CISSP Tim McIntosh for reviewing my thesis.

v

v

Table of Contents

Acknowledgments .. iv

Table of Contents .. v

List of Tables... vii

List of Figures .. viii

Chapter 1 Introduction .. 1

1.1 IoT Ecosystem ... 1

1.2 Research Scope and Objectives .. 2

1.3 Structure of the Thesis .. 4

Chapter 2 Cryptography Background ... 5

2.1 ABE Basics ... 5

2.2 What is CP-ABE? ... 5

2.3 Summary of Related CP-ABE Schemes ... 7

Chapter 3 Literature Review ... 10

3.1 ECC-Based CP-ABE ... 10

3.2 RSA-Based CP-ABE ... 17

3.3 Hardness Assumptions Relative to RSA ... 24

Chapter 4 RSA-based CP-ABE Scheme with Constant-size Keys and Ciphertexts on

AND-gate Access Structure ... 26

4.1 Preliminary .. 26

4.2 Description of Construction .. 30

4.3 Security Analysis .. 33

4.4 Implementation ... 38

4.5 Evaluation ... 55

4.6 Discussion ... 59

Chapter 5 RSA-based Access-Tree CP-ABE Scheme .. 60

 vi

5.1 Background ... 60

5.2 Proposed Construction .. 62

5.3 Security analysis ... 64

5.4 Implementation ... 67

5.5 Evaluation ... 82

5.6 Discussion ... 84

Chapter 6 Conclusion .. 85

References or Bibliography .. 87

Appendix 1. List of Abbreviations .. 92

vii

vii

List of Tables

Table 1. Euclidean Algorithm ... 17

Table 2. Extended Euclidean algorithm .. 22

Table 3. Algorithm 1 Setup Algorithm in CSKCT ... 43

Table 4. Algorithm 2 Key Generation Algorithm in CSKCT ... 47

Table 5. Comparison of Communication Cost .. 56

Table 6. Running Environment for Measurement... 57

Table 7. Execution Time for Various Parameters ... 57

Table 8. Comparison of Computational Cost .. 58

Table 9. A Comparative Summary on Computational Cost from the Experiment 59

Table 10. Algorithm 3 Key Generation Algorithm in Access-Tree CPABE 72

Table 11. Observation of Encryption Time Depending on the Number of Attributes 83

 viii

List of Figures

Figure 1. ECC Key Size in a PBC Running Case ... 16

Figure 2. Function for Serializing an Element .. 41

Figure 3. Deserialization Function of an Element .. 42

Figure 4. Step 1 of Setup Algorithm in CSKCT ... 44

Figure 5. Function for Parsing Attribute Set of Setup Algorithm in CSKCT 45

Figure 6. Step3 of Setup Algorithm in CSKCT .. 46

Figure 7. Step4 of Setup Algorithm in CSKCT .. 46

Figure 8. Step1 of Key Generation algorithm in CSKCT ... 48

Figure 9. Step2 of Key Generation Algorithm in CSKCT .. 49

Figure 10. Step3 of Key Generation Algorithm in CSKCT .. 49

Figure 11. Encryption Procedure in CSKCT .. 50

Figure 12. Function for Parsing Policy Language .. 51

Figure 13. Step2 of Encryption Algorithm in CSKCT ... 51

Figure 14. Step3 of Encryption Algorithm in CSKCT ... 52

Figure 15. Decryption Procedure in CSKCT .. 53

Figure 16. Step1 of Decryption Algorithm in CSKCT ... 53

Figure 17. Step2 of Decryption Algorithm in CSKCT ... 54

Figure 18. Step3 of Decryption Algorithm in CSKCT ... 55

Figure 19. Policy Tree for the Integer Comparison “age < 30” 68

Figure 20. Example Usage of the cp-abe Toolkit ... 70

Figure 21. Step1 of Key Generation Algorithm in Access-Tree CPABE 73

ix

ix

Figure 22. Encryption Procedure of Policy in Access-Tree CPABE 74

Figure 23. Function for Building up an Access Tree in Access-Tree CPABE 75

Figure 24. Decryption Procedure of Policy in Access-Tree CPABE.............................. 77

Figure 25. Function for Checking the Satisfiability in Access-Tree CPABE 78

Figure 26. Function for Picking the Minimized Node in Access-Tree CPABE 80

Figure 27. Function for decryption of the nodes in Access-Tree CPABE 81

Figure 28. the Trend of Encryption Time Depending on the Attributes 83

1

Chapter 1
Introduction

1.1 IoT Ecosystem

Due to the vigorous development of ubiquitous IoT, IoT application is prevalent in the

physical world, from e-health and e-home to smart city, etc. In numerous intelligent

applications, IoT is characterized by smart devices and tags connecting sensors to the

internet [16]. These sensing nodes work cooperatively to enable the interconnections

among the ubiquitous IoT, and between cyber and real world as well. IoT is the innovative

technology to facilitate users to access, exchange and store data. Therefore, IoT will be

considered as the crucial infrastructure building smart society in the forthcoming era.

Security Challenges of IoT

Since the IoT devices play the key role in transferring the collected data via network, it

could bring many challenges to the confidentiality and availability of data. The rise of

cloud computing makes the data management more complex in the distributed

environments, where servers increasingly provide services across many sites. In this case,

IoT devices become vulnerable targets of malicious attacks and information theft [1]. The

various attacks including eavesdropping, Denial of Service Attack (DOS) and fabrication

could result in serious loss. Additionally, in the event of server device compromise

described in [2], possibly, as a result of a software vulnerability exploit, information theft

or leak is at a high risk. Hence, with continuously emerging threats, security in the context

of IoT requires great attention.

Furthermore, security challenge faced by such devices is escalated by the surge in recent

aggregated attacks. Any sensitive data collected, distributed and transmitted in plaintext

form will be vulnerable to be attacked. Given the variety, amount, and importance of

information stored on these devices, there is concern that personal data could be

compromised [2]. From a security standpoint, sensitive data should be stored in encrypted

forms so that it will remain confidential even if a server is compromised. Since the

purpose of cryptography [17] involves confidentiality, integrity, authentication, access

control and so on, data confidentiality and security thus can be accomplished using

cryptographic encryption techniques.

2

Lightweight Security for IoT System

IoT usually consists of resource-starving devices with limited memory, CPU, low power

and battery capacity, etc. Examples include mobile devices and digital electronics with

Radio Frequency Identification (RFID) tags have been well-known among them. With

the popularity and availability of lightweight devices, this has given the increasing

demand for designing efficient cryptographic scheme on encipherment and decipherment

to offer the lightweight security for IoT systems.

From the survey depicted above, it is imperative to address these issues so that the security

of the data in IoT will be significantly enhanced.

1.2 Research Scope and Objectives

Similar to the traditional (wire or wireless) networks, data security in IoT [22] also

includes confidentiality, integrity, authenticity and privacy. However, traditional methods

[2] on the basis of access control lists need to rely on the storage server for preventing

unauthorized data access. This deployment is of limited usage and not particularly

suitable for the cloud-based network, where the server is not fully trusted by user. This

issue motivates many academic achievements on the technology innovation. A novel

cryptographic technique known as ABE approach was proposed to employ data sharing

systems at fine-grained level in cloud computing. In ABE systems, secret keys or

ciphertexts are associated with a set of attributes composed of descriptive strings. In

particular, ABE systems have the property that user can decrypt the ciphertext as long as

it satisfies the required attributes, which makes it promising for access control. [11]

Instead of trusting and depending on service providers, data owners can enforce selective

access control to a particular group of users themselves.

In addition, since most IoT devices are resource-limited, a lightweight cryptographic

method is more desirable to implement on a cost-efficient system for encryption and

decryption. For instance, in a mobile cloud setting, where internet-enabled devices used

to access the cloud services are generally resource-constrained (e.g. limited memory,

CPU), it is indispensable to cut down the computation cost and storage overhead (e.g.

lengths of ciphertext). Consequently, to alleviate these concerns for plenty of IoT

applications, it is obvious that the lightweight ABE cryptosystem is one appealing scheme.

3

Yang et al. [6] claimed that lightweight security enforcement in cyber-physical systems

should achieve three key properties, namely: system lightweightness, outsourcing of

expensive computations, and selective protection of critical data. Rather than taking a

whole-of-system approach, this thesis focus on developing lightweight cryptographic

primitives of the research interest.

As one variant of ABE, CP-ABE allows the data owner to encrypt data with an encoding

access policy, whereby only authorized data users with the desired attributes are able to

decrypt data. The decoding process is performed after fulfilling the access policy. Clearly,

its manifest advantage is more practical for IoT. Unfortunately, it is difficult to implement

the existing CP-ABE scheme on the IoT device due to the shortage of the lightweight

feature. The lightweight feature [22] implies that it should be more efficient and feasible

than traditional solutions in terms of memory capacity and power consumption. But most

existing CP-ABE schemes have not been designed taking into consideration energy

efficiency. Also, the length of the ciphertext depends on the number of attributes and

grows linearly in most previous CP-ABE schemes. Many IoT devices, like sensors and

actuators, cannot apply CP-ABE because of their resource limitations.

Although some academic efforts have been made at the expense of incremental

computation or resource, they may not be the fit-for-purpose. To the best of my

knowledge, a lightweight no-pairing CP-ABE scheme pioneered by Odelu et al. [5] is the

only scheme based on RSA algorithm to address these issues on IoT. This thesis discusses

the issues of lightweight security techniques to protect data confidentiality, integrity and

authentication for IoT local systems. It will consider the lightweight properties of the

encryption systems on both communication overhead and computational overhead.

Based on the former research result [5], a novel lightweight CP-ABE encryption system

with constant-size keys and ciphertexts is constructed to reduce the usage of storage space.

Besides that, a CP-ABE scheme based on access-tree structure is proposed to build up the

complex access policies for large systems. Meanwhile, RSA algorithm is used as the

underlying cryptographic primitive in the cryptosystems. It improves the efficiency based

on no-pairing RSA algorithm instead of pairing-based cryptography. This technology

promotes efficient sharing of data and reduce computational overhead.

4

1.3 Structure of the Thesis

The rest of this paper is structured as follows. In Chapter 2 the author introduces necessary

cryptography background and definitions about ABE and CP-ABE. Then, the author

discusses the literature review on applied cryptographic techniques in Chapter 3. Next,

the author proposes the two cryptosystems and gives their proofs of security in Chapter 4

and Chapter 5 respectively, as well as provides the implementation and the performance

measurement of both cryptosystems. Finally, the author generalizes the work of this paper

and concludes in Chapter 6.

5

Chapter 2
Cryptography Background

2.1 ABE Basics

The concept of ABE was presented by Sahai and Waters [3], which is motivated by

Identity-Based Encryption (IBE). Unlike an IBE system [3] or Hierarchical Identity-

Based Encryption (HIBE) system [18] associated with simple identities, in an ABE

system, keys and ciphertexts are labeled with more complex objects – sets of descriptive

attributes and access formulas. A secret key can decrypt a particular ciphertext only if

there is a match between the attributes of the ciphertext and the secret key. Different users

are allowed to decrypt different pieces of ciphertext using their secret keys. This

effectively eliminates the requirement that rely on the storage server for the security of

data access. It shows that ABE has the advantage for the applicability of IoT. As a result,

ABE has become a preferable solution to solving the problem of the data access control.

At present, ABE is mainly used to prevent malicious or unauthorized access to sensitive

data in the cloud. Cloud computing is one of main popular settings requiring secure data

transmission in the application of IoT. In the ABE system, there are two categories, Key-

Policy ABE (KP-ABE) and CP-ABE according to different role of attributes and access

structure. KP-ABE (SW[2],GPSW[3]) is a scheme in which the access structure is

specified in the private key while the ciphertexts are simply labeled with a set of

descriptive attributes. This contrasts with CP-ABE, in which an access structure (i.e.

policy) would be associated to each ciphertext while a user’s private key would be

associated with a set of attributes. Both KP-ABE and CP-ABE cryptosystems are useful

in different contexts.

2.2 What is CP-ABE?

In the common set as shown in [4], it can be critical that the person in possession of the

secret data be able to determine an access policy based on given knowledge of the

underlying data. Moreover, this data owner may not know the exact identities of all other

people who should be entitled to access the data, but rather the data owner may only be

able to describe them in light of their attributes or credentials.

Traditionally [4], this type of expressive access control is enforced by employing a trusted

server to store data locally. Access control relies on software checks to ensure that only

6

the accredited users can access the records or files. Nevertheless, in a large-scale system,

it is not easy to identify every potential recipient, acquire and store their public keys.

Therefore, it is more desirable to be able to encrypt the data without the complete list of

intended recipients in this scenario.

CP-ABE is an emerging approach to deal with this case and ensure user authentication.

It can identify whether the user is legitimate when he requests to perform an operation on

stored data by checking if the user’s attributes fulfill the access policy. Access control

policies facilitate granting various access rights to a set of users and provide flexibility in

specifying the access privileges for individuals [2]. By using flexible access policies in

CP-ABE, a data owner is able to encrypt the data even without the exact information of

possible receivers.

Bethencourt et al. [4] introduced the first construction of CP-ABE, as referred to BSW,

which present the more expressive models of encrypted access control. In their system, a

user’s private key is associated with an arbitrary number of attributes expressed as strings.

A party encrypting data selectively specifies a policy for who can be granted to decrypt.

The eligible user is able to disclose the data contents if and only if his decryption key

satisfies the access policy.

An example of CP-ABE is demonstrated below. Suppose in a computer science faculty

of a university, the CP-ABE cryptosystem is being used to provide the privacy for the

access of confidential documents. The data administrator might want to encrypt some

documents to some of executive team members of this faculty under an access policy,

such as “CS” AND “executive_team” AND “admin_level > 5”. Accordingly, any user

who possesses all of these attributes that satisfies the policy could access the documents,

whereas any other members are unable to access these files. For example, Bob who has

attributes {“CS”, “staff_team”}, cannot decrypt the documents.

A ciphertext-policy attribute-based encryption scheme [4] consists of four fundamental

algorithms: Setup, Encrypt, KeyGeneration, and Decrypt.

Setup (1λ). The setup algorithm takes input of the implicit security parameter 1λ and the

universe of attributes. It outputs the public parameters PK and a master key MK.

Encrypt (PK, M, 𝔸). The encryption algorithm takes as input the public key PK, a

message M, and an access structure 𝔸 over the universe of attributes. The algorithm will

7

encrypt M under 𝔸 and output a ciphertext CT such that only a user that has a set of

attributes that satisfies the access structure will be able to decrypt the message. We will

assume that the ciphertext implicitly contains 𝔸.

KeyGeneration (MK, S). The key generation algorithm takes as input the master key MK

and a set S of descriptive attributes. It generates a private key SK that associated with the

set S.

Decrypt (PK, CT, SK). The decryption algorithm takes as input the public parameters

PK, a ciphertext CT, which contains an access policy 𝔸, and a private key SK, which is a

private key for a set S of attributes. If the set S of attributes satisfies the access structure

𝔸, then the algorithm will decrypt the ciphertext and return a valid message M.

2.3 Summary of Related CP-ABE Schemes

CP-ABE schemes can be further classified into various categories based on access

structures. This paper assumes to talk about monotonic access structures (without negated

attributes in the policy). They subsume AND-gates access structure ZHW[8], CN[12]

and Threshold access structure for short ciphertexts (see [9], Pirretti et al. [24]). For

general access structure, there are some CP-ABE schemes based on Monotone Tree

access structure which support AND gates, OR gates and threshold ([2], [22]), and based

on LSSS (Linear Secret Sharing Scheme [26]).

A threshold access policy was introduced by Sahai and Waters [3], who propose that a

user secret key and the ciphertext are both associated with attribute sets. Decryption

would only work if the overlap between the two sets is at least as large as the globally

defined threshold value. For example, for a set with a total of n attributes, a (t, n)-

Threshold gate means that there are any t or more user attributes in a secret key satisfy

the required attributes in ciphertext policy. One approach usually uses Secret-Sharing

Schemes (SSS) with a variable threshold value t as a (t, n)-Threshold gate. SSS [2] are

used to divide a secret among a number of entities. The information assigned to a party is

known as the secret share [2] for that party. Every SSS realizes a Threshold-gate access

structure that defines the set of parties who should be able to reconstruct the secret by

combining their shares.

https://www-sciencedirect-com.ezproxy.massey.ac.nz/science/article/pii/S0920548916300368?via%3Dihub#bb0115
https://www-sciencedirect-com.ezproxy.massey.ac.nz/science/article/pii/S0920548916300368?via%3Dihub#bb0070
https://www-sciencedirect-com.ezproxy.massey.ac.nz/science/article/pii/S0920548916300368?via%3Dihub#bb0050
https://www-sciencedirect-com.ezproxy.massey.ac.nz/science/article/pii/S0920548916300368?via%3Dihub#bb0065

8

An access structure of AND-gates is the same as an (n, n)-Threshold access structure.

This essentially means that all shares need to be present, then a single AND-gates with n

attributes was used. Thus, it is also called (n, n)-Threshold. Because the attributes in

AND-gates access structure can be multi-valued (wildcards), this leads to the realization

of Hidden Vector Encryption and non-monotonic access structures. Nevertheless, it

means that the required attributes in the access structure and the set of user attributes must

be the exact same. This restriction doesn’t meet the motivation of CP-ABE for fuzzy

decryption.

The Tree access structure is comprehensive approach that consist of Threshold gates and

AND-gates, which was first described in Goyal et al [2]. It is a way of sharing a secret

element across the attributes of a policy in KP-ABE or CP-ABE, which can then be

reconstructed with Lagrange interpolation (see [2], [4]). The construction of Goyal et al.

permits not only AND and OR gates, but arbitrary threshold gates with SSS for every

node of the tree. Although the Tree access structure may be a generic model for

expressing a complicated policy, it is not easy to build up the access tree for a large-scale

system.

A Linear Secret Sharing Scheme (LSSS) works on a matrix, where the rows are labelled

with attributes of the policy, to produce shares from a secret element s hold by a third

party called dealer [21]. This party distributes the shares of s to other parities such that s

can be reconstructed by a linear combination of the shares of any authorized set. This

could be the same as the outcome for the Tree access structure.

With the rapid growth of IoT application, people also focus on the applicability in IoT,

whereby research on the size of ciphertexts and keys is booming. There exist some

schemes with constant-size keys property (GSWV [13]) or constant-size ciphertext

property (DJ[10]). Considering the practical application scenarios where resource-

constrained devices with less sufficient energy and memory are deployed in the IoT

network, most of the previous CP-ABE schemes provide linear size keys and ciphertexts ,

which usually grow with the number of attributes. When there are multiple attributes in

the attribute set, this may make severe efficiency shortcomings even fail to work due to

the shortage of resources. However, IoT devices using these CP-ABE schemes with

constant-size keys and ciphertexts do not need to suffer from the linearly increasing

computational and communication overhead. This should be ideal even if the number of

9

attributes is huge, it will only increase slightly in computation, and will be no storage

growth. Under this setting, user also do not require to have to set the maximal number of

attributes for successful decryption in terms of the capacity of CPU and storage.

Several CP-ABE schemes support both constant size and secret keys, ZZCLL[11], [14]

and EMNOS [7]. The EMNOS scheme [7] offers AND-gates CP-ABE with constant-size

key on multi-valued attributes structure. However, the access structure is in effect (n, n)-

threshold, which requires that the attributes in the access structure need to be completely

identical to the set of user attributes.

Nevertheless, with the exception of Odelu et al. [5] and Yao et al. [22], they are all based

on bilinear pairing of Elliptic Curve Cryptography (ECC). More precisely, majority of

the existing ABE schemes are all based on bilinear maps, which is computational

overhead for energy-limited IoT devices. This design drawback for IoT prevents the

deployment of CP-ABE schemes on IoT.

10

Chapter 3
Literature Review

The most existing CP-ABE schemes are built with bilinear pairing of ECC. Only few are

based on no-pairing ECC or no-pairing RSA. Their security strengths are determined by

the underlying cryptographic algorithms, which in turn is determined by the bit-length of

the parameters used.

3.1 ECC-Based CP-ABE

All implementation of pairing-based cryptosystems is constructed with elliptic curves.

Apart from ECC based CP-ABE with the pairing cryptosystems, to the best of our

knowledge, the solution of Yao et al. [22] is an exclusive no-pairing ECC based CP-ABE.

In cryptography, an elliptic curve E is defined being over a field of prime order. Compared

with other public key cryptography, elliptic curve cryptography uses points on E instead

of elements of some finite field 𝐹∗. The group of points on the elliptic curve is able to be

selected for paring, and the group operation is point addition rather than modular

multiplication.

3.1.1 Elliptic Curves

An elliptic curve E over such a field K = 𝐹𝑞 of prime order q can be determined by a cubic

equation as the form y2 = x3 + ax + b, where a, b ∈ 𝐹𝑞. Let ∆ = 4𝑎3 +27𝑏2 [27], be the

discriminant of the cubic in x. Then E is singular if ∆ = 0 and nonsingular otherwise. This

thesis always considers nonsingular elliptic curves, whereby supersingular curves is one

particular breed that are not singular instead.

The basic operations on the elliptic curves are point operations, where the group operation

is built. For elliptic curves E, one takes some subgroup G of the group of points E(K)

(E(𝐹𝑞)) with prime order r and the operations mainly refer to point addition and point

scalar multiplication. An exponentiation is also performed as point multiplication. For

any field, K= 𝐹𝑞𝑘 define E(𝐹𝑞𝑘) to be the set of all solutions of E over 𝐹𝑞𝑘 [27], called the

finite points along with a special point at infinity denoted O. The number of elements of

E(K) is denoted as #E(K) or |E(K)|, where K = 𝐹𝑞 or 𝐹𝑞𝑘. To evaluate the amount of #E(K),

This thesis quotes a well-known Hasse theorem on an elliptic curve.

11

Theorem (Hasse [35]). Let t = 𝑞𝑘+ 1−#E(𝐹𝑞𝑘). Then |t| ≤ 2p𝑞𝑘. Thus, the number of

points on an elliptic curve over a finite field is on the same order as the size of the given

field. The quantity t is called the trace of Frobenius.

3.1.2 Elliptic Curve Cryptography

The elliptic curve group operation means that every point on E generates a cyclic group

G. Then G can be used for cyclic group cryptography provided that its order is prime. The

implementation of pairing-based cryptosystems depends on cyclic groups with particular

properties. Roughly speaking, bilinear maps, or pairings, offer cyclic groups additional

properties.

A. Bilinear Pairings

Definition (Bilinear Pairing [14]). Let r be a prime. Let G1, G2, GT be cyclic groups of

order r. Assume 𝑔1 be a generator of G1 and 𝑔2 be a generator of G2. A bilinear map e is

a computable function e : G1 × G2 → GT with the next three properties:

• Bilinear: ∀a, b ∈ ℤ𝑟, e(𝑔1
𝑎, 𝑔2

𝑏) = e(𝑔1, 𝑔2) 𝑎𝑏.

• Non-degenerate: e(𝑔1, 𝑔2) ≠ 1.

• Efficiency: e(𝑔1, 𝑔2) is a generator of GT and is efficiently computable.

For ECC [27], G1 and G2 (or G) are always groups of points on an elliptic E curve over a

field 𝐹𝑞, and GT is always a subgroup of a multiplicative group of a finite field. Both G1

and G2 are the group of points E(𝐹𝑞), which contains a subgroup G of order r by defining

G = E(𝐹𝑞) [r].

Depending on the scheme, certain mathematical problems may be assumed to be hard in

both G1 and G2, or a combination of the two. For example, assume that given 𝑔1, 𝑔1
𝑥 ∈

G1 and 𝑔2 ∈ G2, there is no efficient algorithm to compute 𝑔2
𝑥.

B. Weil and Tate Pairings

In ECC cryptography, cryptographic pairings are derived from functions known as the

Tate and Weil pairings [27]. Pairing-friendly ECC algorithms are able to be selected to

12

yield cryptographically secure pairings. The Weil and Tate pairings take r-torsion points

as input, can be defined using rational functions. They output an element of a finite field

that is an rth root of unity. Several related definitions need to be introduced here.

1. Torsion Points [27]

Let K be a finite field of characteristic q, so that K = 𝐹𝑞𝑚 for some natural number m. Let

E be an elliptic curve defined over K, containing n points. Suppose a point P ∈ E(K)

satisfies rP = O such that P has order r or a factor of r. We define P an r-torsion point and

denote the set of r-torsion points of E(K) by E(K)[r].

For the curves considered in [27], n and q are always coprime thus r is also coprime to q

since r | n (r dividing n). It can be proved that for some integer k≥1, E(𝐹𝑞𝑘)[r] contains

exactly r2 points and is in fact the direct product of two cyclic groups of order r, that is,

isomorphic to ℤ𝑟×ℤ𝑟. The set of r-torsion points in E is written as E[r] = E(𝐹𝑞𝑘)[r] .

Thus the above isomorphism may be written as E[r] ≅ ℤ𝑟×ℤ𝑟.

2. Rational Functions [27]

Let E be an elliptic curve y2 = x3 + ax + b over 𝐹𝑞𝑘. E(X, Y) takes two variables X, Y is a

polynomial for such cubic equation. The polynomial E(X, Y) with coefficients in 𝐹𝑞𝑘 is

denoted by 𝐹𝑞𝑘[E] = 𝐹𝑞𝑘[X, Y]. If there exists a polynomial f(X, Y) is a multiple of E(X,

Y), it satisfies f(X, Y) = 0 whenever E(X, Y) = 0. Define 𝐹𝑞𝑘(E) to be the field of fractions

of 𝐹𝑞𝑘[E]. Elements in 𝐹𝑞𝑘(E) can be shown to be of the form f(X, Y)/g(X, Y) where f and

g are polynomials in two variables X, Y.

When considering the quotient of two polynomials f(X)/g(X), the zeroes are called the

roots of f and the poles are the roots of g, and f/g is completely determined up to a

constant by its zeroes and poles and their multiplicities. Extending this idea for f(X,

Y)/g(X, Y), the zeroes are the zeroes of f and the poles of g, and the poles are the poles

of f and the zeroes of g.

Divisors are defined in [27] to notate zeroes and poles and their multiplicities, or orders.

Let D be the divisor with zeroes and poles P1, ..., Pn of multiplicities a1, ..., an. D shall be

represented as D = (𝑝1)𝑎1...(𝑝𝑛)𝑎𝑛.

13

Thus, by using (f) to denote the divisor of f, in the notation for any rational functions f, g

we have (f)(g) = (fg).

3. Weil Pairings

In the case of the Weil pairing, both inputs are r-torsion points. It produces an rth root of

unity.

Definition (Weil pairing [42]). Let E be an elliptic curve over a field 𝐹𝑞 and n = #E(𝐹𝑞).

Let G be a cyclic subgroup of E(𝐹𝑞) of order r with r and q coprime. Let k be the smallest

positive integer such that E(𝐹𝑞𝑘) contains all of E[r]. The definition of the Weil pairing

f : E[r]×E[r] → 𝐹𝑞𝑘 is as follows.

For a pair of points P, Q ∈ E[r], select any R, S ∈ E[𝐹𝑞𝑘] such that S ≠ R, P+R, P+R−

Q, R−Q. Let 𝑓𝑝 be a rational function with divisor (𝑓𝑝) = (P + R)𝑟/(R)r. In standard

notation this is r(P+R) – r(R), where r zeroes are at P +R and r poles are at R. and

similarly let 𝑓𝑄 be a rational function with divisor (𝑓𝑄) = (Q + S)𝑟/(S)r. Define f(P, Q)

is quotients as [42].

f(P, Q) =
𝑓𝑝(𝑄+𝑆)/ 𝑓𝑝(𝑆)

𝑓𝑄(𝑃+𝑅)/ 𝑓𝑄(𝑅)

From this definition, it can be shown that choosing R, S and finding explicit expressions

for these functions are not easy for producing cryptographically useful pairings.

4. Tate Pairing

Let E be an elliptic curve containing n points over a field 𝐹𝑞. Let G be a cyclic subgroup

of E(𝐹𝑞) of order r with r, q coprime. Let k be the smallest positive integer such that r |

𝑞𝑘 −1. An equivalent characterization is that K = 𝐹𝑞𝑘 is the smallest extension of 𝐹𝑞

containing the rth roots of unity. The Tate pairing is defined as follows [41].

Let 𝑓𝑝 be a rational function with divisor (𝑓𝑝) = (𝑃)𝑟. Choose an R ∈ E(K) such that R ≠

P, P −Q, O, −Q. Define f(P, Q) as

f(P, Q) = 𝑓𝑝 (Q + R)/𝑓𝑝(R)

14

“The Weil pairing is a bilinear map takes pairs of elements from E[r] and outputs an rth

root of unity in 𝐹𝑞𝑘. The Tate pairing is similar but only the first input is from E(𝐹𝑞)[r]

(see [27]).” By defining G1 = G, G2 = E[r], and GT to be the rth roots of unity in 𝐹𝑞𝑘, the

Weil pairing and the Tate pairing are in accordance with the abstract definition of a

bilinear pairing given above.

C. Embedding Degree of the Curve

Recall that the Tate pairing and the Weil pairing described above must be defined and

computed in some field extension L of K. In order for the Tate pairing and the Weil pairing

to be efficiently computed, operations must be efficient in L. Thus, the fields L needs to

be small enough so that field operations are fast. It turns out that such a field L will always

contain the nth roots of unity. Then, the embedding degree on the elliptic curve is defined.

It can be viewed as measuring the size of L compared to the field K.

Definition (Embedding degree of the curve [27]). Let E be an elliptic curve defined over

K = 𝐹𝑞. Let G ⊆ E(𝐹𝑞) be a cyclic group of order r. Let k be the smallest positive integer

such that r | 𝑞𝑘−1 holds. Then we have that the embedding degree of G is k.

From such definition, the aim seems to seek the minimized embedding degree, so that L

is as close as possible to K. In practice, the embedding degree of G shall often be

determined by finding the smallest integer k such that n | 𝑞𝑘−1, where n = #E(𝐹𝑞). In this

way [27], for a cyclic subgroup G ⊂ #E(𝐹𝑞) the embedding degree k of E(𝐹𝑞) may not be

the smallest positive integer such that r | 𝑞𝑘−1. However, in general [27], when we use

such a group G and r is a large prime factor of #E(𝐹𝑞) it is almost always the case that

𝐹𝑞𝑘 is the smallest field extension that allows the computation of the pairing. In other

words, when r is a large prime factor of #E(𝐹𝑞), the embedding degree k is always

preferred. At this point, an embedding degree of a curve E(𝐹𝑞) implies the embedding

degree of the subgroup of E(𝐹𝑞) of order r, where r is the largest prime dividing #E(𝐹𝑞).

Because a desired embedding degree is k > 1, both the Tate pairing and the Weil pairing

may be computed by performing field arithmetic in 𝐹𝑞𝑘 . By carefully tailoring the

complex multiplication method of constructing elliptic curves, the curves of a certain

embedding degree can be produced. From an efficiency standpoint, choosing the input

15

groups to be certain subgroups is desirable for all pairings. As stated in [27], supersingular

curves are guaranteed to have a small embedding degree and are easy to construct. They

have been completely classified. Operations on some of them can be efficiently processed

by optimization.

D. ECC Key Generation

To generate a public and private key pair for ECC communications, an entity would

perform the following steps [35]:

1) Find an elliptic curve E(K), where K is a finite field such as 𝐹𝑞, and choose point Q

of order n on E(K).

2) Choose a pseudo random number x such that 1 ≤ x ≤ (n - 1).

3) Compute point P = xQ.

4) ECC key pair is (P, x), where P is the public key, and x is the private key.

Elliptic curve cryptography depends on the ability to compute a point multiplication.

Their key strength derives from a computational hard problem called the Elliptic Curve

Discrete Logarithms (ECDL).

E. ECDL

Definition (ECDL [22]). For elliptic-curve-based protocols, it is assumed that no the

discrete logarithm of a random elliptic curve element with respect to a publicly known

base point has ever been discovered; this is the infeasibility to compute the x such that P

= xQ if given points Q and P on the elliptic curve. The security of ECC is based on the

intractability of ECDLP. The size of the elliptic curve determines the difficulty of such

problem.

3.1.3 Key Size in the Implementations of ECC-Based CP-ABE

To the best of author’s knowledge, all full developed instances of CP-ABE with the

pairing (e.g. Bethencourt et al. [39]) are built on Pairing-Based Cryptography (PBC [40])

encryption scheme integrated ECC.

16

It is stated that PBC with some appealing features can offer a desired security level using

smaller key size as the general ECC. In practice, this conclusion made directly from one-

sided theoretical analysis is not accordance with the physical world. More precisely, the

security of ECC is working on the computational complexity of ECDL. Since the

intractable level of ECDL defines the security level of ECC, it requires that the order n of

the base point P satisfying n > 2160. This means the underlying field need larger enough

so that the DL (Discrete Logarithms) in 𝐹𝑞
∗ is considered intractable. On the other hand,

it requires to ensure the efficiency of pairing computations in PBC. In a word, in a running

case [25] PBC has to work with the key size of 1024-bits, instead of that of 160-bits input

as supposed, in order to offer 80 bits security level. An example of this is shown in Figure

1. In this example, PBC works on a fast curve over 512-bits cyclic group. It will produce

the element of 1024-bits size taken as representation of the key as shown because a point

(x, y) in the curve is composed of x and y of 512-bits each.

Figure 1. ECC Key Size in a PBC Running Case

In addition, a core operation in PBC is to compute a bilinear pairing (e.g. the Weil or the

Tate pairing), which is computationally expensive but often used. From the above two

points of view, PBC is losing its significant advantage over ECC although it looks ideal.

17

3.2 RSA-Based CP-ABE

The RSA algorithms, in addition to be the first publicly known examples of high-quality

public-key algorithms, have been among the most widely used. In such a cryptosystem,

the encryption key is public while the decryption key is kept secret (private). RSA

encryption and decryption relies on modular arithmetic and not bilinear maps.

In an RSA cryptosystem, a composite number N is picked from the product of two large

prime p and q. Let ℤ𝑁 (ℤ/nℤ) be the set of congruence classes of the integers modulo N.

An RSA key pair ((N, e), d) can be generated using the multiplicative inverse of an integer

e modulo N if given e being co-prime to φ(N) in ℤ𝑁. φ(N) is Euler's totient function which

gives the order of the multiplicative group of integers modulo N. Euler's totient function

is also called Euler's phi function. For a prime n, we have the value of φ(n) = n-1, since

all positive integers less than n are coprime to it.

In number theory, even if knowing e and N it can be extremely difficult to find the private

key d, which is also defined as the modular inverse of e modulo N. The inverse exists if

and only if gcd(N, e) = 1, which means that value 1 is the largest number to divide both

N and e. The gcd is called the greatest common divisor. If gcd(m, n) = 1 then we say that

m and n are coprime or relatively prime. An efficient method of computing the gcd of two

integers is called Euclidean algorithm. The algorithm is shown below in the Table 1.

Euclidean Algorithm Computing the Great Common Divisor of Two integers([37])

Input: two non-negative integers m and n with m ≥ n

Output: the greatest common divisor of m and n

Procedure Euclidean_gcd(m, n)

While n > 0, do

Set temp_r = m mod n

m = n

n = temp_r

return m

Table 1. Euclidean Algorithm

RSA uses groups whose order must be unknown to the attacker. An RSA-based scheme

uses residues of integer modulus rather than bilinear pairing. Furthermore, an RSA

cryptosystem arises for finite fields, where one picks a prime e and uses a subgroup G of

18

ℤ𝑁
∗ of prime order φ(N). Thus, the group operation in such RSA cryptosystem is field

multiplication.

3.2.1 Textbook RSA Cryptosystem

A classic RSA cryptosystem is called the “textbook” RSA cryptosystem. The term

“textbook” indicates that, although the RSA cryptosystem as presented below appears in

many papers and books, there definitely exits some differences with the RSA used in the

deployed systems. In particular, public key encryption is most often used to securely

transmit symmetric keys (the functionality is often called key encapsulation), rather than

to encrypt data.

A basic principle behind RSA is the observation that it is practical to find three very large

positive integers e, d and N such that with modular exponentiation for all integer m (with

1 ≤ m < N), (𝑚𝑒)𝑑 ≡ m (mod N) holds. In addition, for some operations it is convenient

that the order of the two exponentiations can be changed and that this relation also implies

(𝑚𝑑)𝑒 ≡ m (mod N). This works because multiplication is commutative.

The RSA algorithm includes four procedures: key generation, key distribution, encryption

and decryption.

a. Key Generation Algorithm

An RSA public and private key pair can be generated using the practical algorithm below.

1) Choose two random prime numbers p and q, of approximately equal size such that

their product N = pq is of the required bit length, e.g. 1024 bits.

2) Compute N = pq and φ(N) = (p – 1)(q – 1).

3) Choose a random integer e such that e < φ(N) and gcd(e, φ(N)) = 1.

4) Compute the secret integer d such that ed ≡ 1 mod φ(N).

5) (N, e) is the public key, and d is the private key, where N is known as the modulus, e

is known as encryption exponent or public exponent and d is known as the decryption

exponent or secret exponent.

This step may require trusted third parties and public key infrastructures to perform.

19

b. Key Distribution [36]

Suppose that Alice’s RSA public key is the pair of integers (N, e) and her private key is

the integer d. Bob wants to send message to Alice. If they decide to use RSA, Bob must

know Alice's public key to encrypt the message and Alice must use her private key to

decrypt the message. To enable Bob to send his encrypted messages, Alice transmits her

public key (N, e) to Bob via a reliable, but not necessarily secret channel. Alice's private

key (d) is never distributed.

c. Encryption

To encrypt a message to Alice, sender Bob does the following.

1) Obtains the recipient Alice's public key (N, e).

2) Encodes the plaintext message as a positive integer m with 1< m < n. Note that in

practice one may assume that m ∈ (ℤ/𝑛ℤ)∗.

3) Computes the ciphertext as c = 𝑚𝑒 (mod N).

4) Transmits the ciphertext c to Alice.

d. Decryption

Recipient Alice does the following.

1) Uses her private key (d) to compute m = 𝑐𝑑 (mod N).

2) Decodes to obtain the plaintext from the message representative m.

This thesis will explore the above RSA algorithm in depth. The value m is not usually an

actual message or document (which might be huge) but a short integer that is the output

of some (non-injective) compression function (such as a hash function). Sometimes m is

called a message digest as defined in [36]. The idea is that exponentiation to the power e

modulo N is a one-way function: a function that is easy to compute but such that it is hard

to compute pre-images. Indeed, exponentiation modulo N is a one-way permutation on

(ℤ/𝑛ℤ)∗ when e is co-prime to φ(N). The private key d allows the permutation to be

efficiently inverted and is called a trapdoor [36]. Therefore, RSA is often described as a

trapdoor one-way permutation. The RSA system can also be used as a digital signature

algorithm.

20

e. Signing [36]

When sending a message to Bob, Sender Alice does the following.

1) Creates a message digest for the message to be sent.

2) Represents this digest as an integer m between 1 and n−1.

3) Uses her private key (N, d) to compute the signature as s = 𝑚𝑑(mod N)

4) Sends this signature s to the recipient, Bob.

f. Verification [36]

When Bob receives (m, s) he obtains an authentic copy of Alice’s public key and then

verifies as follows.

1) Uses Alice's public key (N, e) to compute integer v = 𝑠𝑒 (mod N).

2) Independently computes the message digest H' of the information that has been

signed.

3) Computes the expected representative integer v' by encoding the expected message

digest H'.

4) If the verification equation v = v' holds, the signature is valid, then Bob believes that

the message m does come from Alice.

From a mathematical point of view, decryption and signing are identical as both use the

private key. Similarly, encryption and verification both use the same numerical operation

with the public key, where m = (𝑚𝑒)𝑑 = (𝑚𝑑)𝑒 (mod N).

3.2.2 Notes on RSA Practical Applications

To indicate some of the applications of the “textbook” RSA cryptosystem as described

above, this thesis presents several simple practical issues below.

1. Random Number Generator

To generate the primes p, select a random number of bit length k/2, where k is the required

bit length of the modulus N; set the low bit (this ensures the number is odd) and set the

two highest bits (this ensures that the high bit of N is also set); check if prime using the

21

algorithm of prime test; if not, increment the number by two and check again until you

find a prime. Repeat for q starting with a random integer of length k−k/2. Alternatively,

instead of incrementing by 2, just generate another random number each time.

2. Choices for e

In practice [36], to speed up encryption common, choices for e are 3, 5, 17, 257 and 65537

(216 +1). These particular values are chosen because they are primes and make the

modular exponentiation operation faster, having only two bits of value 1. Now suppose it

is tempting to use small encryption exponents, such as e = 3. The sender A is only sending

a very small message 0 < m <𝑁1/3 to recipient B; Then c = 𝑚3 in ℤ𝑁, i.e., no modular

reduction has taken place. An adversary can therefore compute the message m from the

ciphertext c by taking cube roots in N using numerical analysis techniques. The usual

choice for e is as large as 65537 = 0x10001. Also, having chosen e, it is simpler to

determinate whether gcd(e, p−1)=1, and gcd(e, q−1)=1 while generating and testing the

primes p and q. Values of p or q that fail this test can be rejected there.

3. Security of RSA Algorithm

A good encryption scheme should make it possible that an adversary to learn absolutely

nothing about a message from the ciphertext. Nevertheless, some sorts of attacks may be

serious for certain applications. Hence, the security of RSA cryptosystems is based on

integer factorization as well as cryptosystems based on the discrete logarithm problem.

In addition, to secure RSA against attacks of various form, one effective work as far as

the mathematics concerned is making the encryption process randomized. The other is

feasible by using padding schemes that encode short messages as sufficiently large

integers.

4. Extended Euclidean Algorithm

The modular inverse d of an integer e is defined as the integer value such that ed ≡ 1

mod φ(N). It only exists if e and φ have no common factors. To obtain the value for a

large number d, the Extended Euclidean Algorithm is used to calculate a modular

inversion written as d = 𝑒−1 mod φ(N). As present in [37], the idea of this algorithm is

that if we need to find d = 𝑒−1 mod N and we can find integers x and y such that ex + Ny

= 1, then the inverse d is the value of x. The Extended Euclidean Algorithm is a novel

22

way of doing what the Euclidean algorithm did above. It comprises using three extra

values to compute mx + ny = gcd(m, n) described in the Table 2.

Extended Euclidean Algorithm Computing the Polynomial Great Common Divisor ([37])

Input: two non-negative integers m and n with m ≥ n

Output: d = gcd(m, n), and the coefficients x, y satisfying mx + ny = d

Procedure Extended_Euclidean_gcd(m, n)

If n = 0, then

Set d = m

Set x = 1 and y = 0

return (d, x, y)

 Set coeff_ x2 = 1 and coeff_ x1 = 0

Set coeff_ y2 = 0 and coeff_ y1 = 1

While n > 0, do

q = floor(m/n)

tmp_r = m – qn

x = coeff_ x2 – q.coeff_ x1

y = coeff_ y2 – q.coeff_ y1

Set m = n and n = tmp_r

coeff_ x2 = coeff_ x1

 coeff_ x1 = x

 coeff_ y2 = coeff_ y1

 coeff_ y1 = y

 Set d = m

Set x = coeff_ x2 and y = coeff_ y2

return (d, x, y)

Table 2. Extended Euclidean algorithm

5. Using the Chinese Remainder Theorem (CRT) with RSA

When using RSA algorithm, a practical issue needs to be considered: Is the cryptosystem

efficient in the sense of computation time and ciphertext size? Key generation is only

carried out occasionally and so computational efficiency is less of an issue. In the

encryption and decryption, the basic calculation is known as modular exponentiation. The

time to carry this out increases with the number of bits in the exponent. For encryption,

an appropriate choice of e can reduce the computational effort required for the modular

exponentiation using the binary left-to-right method. However, as stated in [37], it is not

secure to contrive a specific value in bits set to one for the decryption exponent d. So,

decryption using the standard method of modular will take longer than encryption.

23

With the RSA cryptosystem one can decrypt the ciphertext c with RSA private key (d) by

computing 𝑐𝑑 (mod N). This comes to calculate the modular exponentiation that is

computationally expensive in the resource-limited devices. Assume a modulus N of k bits,

the private exponent d will also be of similar length, with approximately half being '1'.

The cost to compute the exponent is proportional to 𝑘3, which have a lot computational

overhead. This can be computed efficiently using the Chinese Remainder Theorem (CRT).

The Chinese Remainder Theorem [37]. Let 𝑛1, 𝑛2 ..., 𝑛𝑟 be positive integers such that

gcd(𝑛𝑖, 𝑛𝑗)=1 for i ≠ j. Then the system of linear congruence

x ≡ 𝑐1 (mod 𝑛1); x ≡ 𝑐2 (mod 𝑛2); ... ; x ≡ 𝑐𝑟 (mod 𝑛𝑟)

has a simultaneous solution which is unique modulo 𝑛1𝑛2…𝑛𝑟.

CRT states that there is a unique solution yet actually no telling about how to solve it.

Another Gauss’s algorithm will be needed to solve simultaneous linear congruence from

number theory.

Gauss's algorithm [37]. Let N=𝑛1𝑛2…𝑛𝑟 , then x ≡ 𝑐1𝑁1 𝑑1 + 𝑐2𝑁2𝑑2 + ... + 𝑐𝑟𝑁𝑟𝑑𝑟

(mod N), where 𝑁𝑖= N/𝑛𝑖 and 𝑑𝑖≡ 𝑁𝑖-1 (mod 𝑛𝑖).

The latter modular inverse 𝑑𝑖 is easily calculated by the extended Euclidean algorithm.

The details of CRT algorithm from [38] are as below.

a) Given p, q with p > q, precompute the following values.

dP = (1/e) mod (p-1)

dQ = (1/e) mod (q-1)

qInv = (1/q) mod p

, where the expression (1/e) notation means the modular inverse, also written as 𝑒−1, and

x is any integer that satisfies ex ≡ 1 (mod N). In this case, where N = n = pq, we use the

unique value x in ℤ𝑁.

b) Given c, compute the message m to do

𝑚1 = 𝑐𝑑𝑝 mod p

 𝑚2 = 𝑐𝑑𝑄 mod q

24

 h = qInv . (𝑚1 − 𝑚2) mod p

 m = 𝑚2 + h.q

The private key is stored as the quintuple (p, q, dP, dQ, qInv).

The CRT representation of numbers in ℤ𝑁 can be used to perform modular exponentiation

about four times more efficiently using extra variables precomputed from the prime

factors of N.

3.2.3 Key Length

Generally, the key length of an RSA key refers to the length of the modulus N in bits. The

minimum recommended key length for a secure RSA transmission is currently at least

1024 bits. A key length of 512 bits is no longer considered secure, although cracking it is

still not a trivial task for the non-cryptanalyst. Typical bit lengths are k=1024, 2048, 3072,

4096, ..., with increasing computational expense for larger values.

The longer the key is used, the stronger the encrypted information would be kept secure.

Note RSA can’t encrypt anything larger than its modulus, which is generally less than or

equal 4096 bits. When defining the key length, one convention, sometimes used, is that

the key length is the number of bytes needed to store N multiplied by eight, i.e.

(log256(𝑛 + 1))×8.

3.3 Hardness Assumptions Relative to RSA

Cryptographic algorithms are designed around certain computational hardness

assumptions, rendering such algorithms hard to break in practice by any opponent. A

computational problem is specified by the input in a form and an output of certain

properties related to the input.

Integer Factorization (IF) Assumption

Public-key algorithms are based on the computational hardness of various problems. The

most famous of cryptographic hardness assumptions (see [37]) is integer factorization

(e.g., the foundation of RSA algorithm). The presumed difficulty is at the heart of RSA

algorithm based on a problem relative to large integer factoring. The integer factorization

problem states, given a composite number n, find two primes p and q such that their

https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Integer_factorization

25

product is n, more generally, find primes 𝑝1,…,𝑝𝑘 such that n = ∏ 𝑝𝑖𝑖 . It is a major

challenge to find an effective algorithm for solving large integer factorization that runs

in polynomial time.

Diffie–Hellman Problem (DHP)

Diffie–Hellman problem is a computational assumption about a certain problem

involving discrete logarithms. In cryptography, the discrete log problem is the most

important, for if it could be solved, all other relevant problems could also be solved. Much

public-key cryptosystem concerns numerical algorithms is built on top of this

computational problems. Given two group elements 𝑔 and h, the discrete logarithm

problem ([27]) finds an integer 𝑥 such that h = 𝑔𝑥. Compared the discrete log problem

with integer factorization, their computational complexities are closely related.

Most cryptographic protocols related to the discrete log problem actually rely on the

stronger Diffie–Hellman problem [27]: Given group elements 𝑔, 𝑔𝑥 and 𝑔𝑦, where 𝑥 and

𝑦 are random integers, the DHP is to compute 𝑔𝑥𝑦 . For certain groups, the DHP is

difficult to be solved efficiently.

26

Chapter 4
RSA-based CP-ABE Scheme with Constant-size Keys and

Ciphertexts on AND-gate Access Structure

At present, in pairing-based CP-ABE schemes, the length of the keys and ciphertexts

depend on the number of attributes. Building on an earlier work of [5], this paper

generalizes its technology and yields a new variant of RSA-based CP-ABE scheme with

constant-size keys and ciphertexts. Moreover, to improve the efficiency, the complexity

of the original primitive is reduced to make it feasible in the infrastructure of IoT.

Nevertheless, there will always exist a tradeoff between efficiency and reliability. Under

the factoring assumption and computationally hard problem, this CP-ABE scheme was

provably secure against adaptive Chosen Ciphertext Attack (CCA) and collusion attack.

This paper introduces the new algorithm with efficient property to implement both

constant-size keys and ciphertexts.

4.1 Preliminary

The existing conventional cryptography based solutions are employed by combining

public key cryptography and symmetric cryptography, which are called hybrid

cryptosystems. This CP-ABE scheme follows the implementation of hybrid cryptosystem

[20], in which the less efficient public-key cryptosystem is most often used to securely

deliver symmetric key, while the bulk of the work in encryption/decryption is

accomplished by the more efficient symmetric algorithm. To be precise, the generated

ciphertext is composed of two parts: One is the encrypted file (data) and the other is the

access policy in cipher concatenated as the header. Because Advanced Encryption

Standard (AES) was developed as a secure and efficient alternative to the resource

intensive Data Encryption Standard (DES) [19], for efficient encryption, the plaintext file

is encrypted by AES using a random AES key, which is encoded by the CP-ABE scheme.

Only if the access policy for the ciphertext is satisfied, the random AES key is extracted

and the cipher file encrypted with AES is able to be decrypted.

AND-gate Access Structure

Formally, this section starts with the definitions of the attribute. Let U = {𝐴1, 𝐴2, ···, 𝐴𝑛}

be the universe of n attributes, where 𝐴𝑖 is one attribute with subscript i, i = 1, 2, ···, n.

https://en.wikipedia.org/wiki/Hybrid_cryptosystem
https://en.wikipedia.org/wiki/Hybrid_cryptosystem

27

An attribute set of a user is denoted by A ⊆ U, and A is represented with an n-bit string

a1a2···an defined as follows [5]:

 {
𝑎𝑖 = 1, if 𝐴𝑖 ∈ A
𝑎𝑖 = 0, if 𝐴𝑖 ∉ A

For example, assume n = 4 and A = {𝐴1, 𝐴3, 𝐴4}, the 4-bit string corresponding to A

would be 1011. In this scheme, the AND gate access structure is utilized to specify an

access policy P composed of attributes in U, and P is represented with an n-bit string

b1b2···bn defined as follows:

 {
𝑏𝑖 = 1, if 𝐴𝑖 ∈ P
𝑏𝑖 = 0, if 𝐴𝑖 ∉ P

For example, for n = 4, P with the set of the attributes {𝐴1, 𝐴3} is denoted by the string

1010.

Definition 1 [5]. Suppose that attribute set A is labeled with an n-bit string a1a2···an, and

the access policy P is associated with an n-bit string b1b2···bn. Then, P ⊆ A if and only if

ai ≥ bi, for all i from 1 to n. We call that the attribute set A fulfills the access policy P if

and only if P ⊆ A.

Complexity Assumptions

This scheme is based on the following two computational problems: Integer Factorization

Problem (IFP) and Computational Diffie-Hellman Problem (CDHP). The complexity

assumptions are stated below.

Definition 2 (IFP [5]). Suppose that RSA modulus N = pq, where p and q are unknown

ρ-bit primes. Let B be a polynomial-time algorithm which takes an input N with 1ρ and

outputs (p, q). Integer factorization problem related to B states that given N, it is

computationally infeasible problem to derive p and q, except with negligible probability.

Definition 3 (CDHP [5]). The problem of breaking the Diffie-Hellman scheme dependent

on an RSA modulus N =pq and base g is equivalent to the problem of computing a value

of the following function: CDHP(N, 𝑔, 𝑔𝑥, 𝑔𝑦)= 𝑔𝑥𝑦 (mod N). As claimed in [29], any

algorithm that will break the CDHP for a non-negligible proportion of the possible inputs

can be used to factor the modulus N. This implies any algorithm that will break the CDHP

28

for a given modulus N can also be used to break the original Diffie-Hellman scheme for

the desired element relatively prime to N in the group ℤ𝑁.

Key Construction on Defined Access Structure

In this section, the key construction in the defined access structure will be discussed. It is

inspired by the scheme [28], which is proven secure against key recovery attacks. The

basic idea is that consider ℤN be the set of congruence classes of the integers modulo N =

pq, where p and q are RSA secure primes with p≠q. For any non-zero integer a ∈ ℤN

chosen relatively prime to N, that is gcd(a, N) = 1, there exists a multiplicative inverse b

for a (mod φ(N)) if and only if ab ≡ 1 (mod φ(N)) or b ≡ a−1 (mod φ(N)) holds. In modular

arithmetic, multiplicative inverse can be computed efficiently using the extended

Euclidean gcd algorithm, where 1 ∈ ℤN is the multiplicative identity. The elements with

a multiplicative inverse form a finite group that can be viewed as a subgroup of ℤN under

multiplication modulo N, denoted ℤ𝑁
∗ . The key construction in this CP-ABE scheme is to

choose RSA key pairs corresponding to the attributes Ai that are (𝑒𝑖 , 𝑑𝑖). The key

construction is described below.

Pick a secure prime number 𝑒𝑖 with gcd(𝑒𝑖,φ(N)) =1, ∀i=1,2,··· ,n, to each attribute Ai ∈U.

Then, compute the inverse 𝑑𝑖 of 𝑒𝑖 such that 𝑒𝑖𝑑𝑖≡1 (mod φ(N)), where 𝑒𝑖 ≠ 𝑒𝑗 if and

only if i ≠ j. Let {φ(N), 𝑑1,···, 𝑑𝑛} be secret parameters, and make {N, 𝑒1,···, 𝑒𝑛} public

parameters. Since factoring the product N = pq is computationally hard problem described

by [5], computing φ(N) = (p − 1)(q − 1) without the knowledge of secure primes p and q

is also computationally infeasible. This implies that computing the secret primes 𝑑𝑖 using

the corresponding public prime 𝑒𝑖 is based on the integer factorization problem, and as a

result, computing the prime 𝑑𝑖 such that 𝑒𝑖𝑑𝑖≡1 (mod φ(N)) is also computationally hard

problem. This joint RSA-pair generation based on a subset product construction also

makes it possible to implement the system of encryption and decryption.

Proposition and Proof

Choose a random number g satisfying 2 < g < N – 1 and gcd(g, N) = 1, and compute the

secret keys KA and KP associated with the attribute set A and access policy P, respectively,

as follows:

KA = 𝑔𝑑𝐴 (mod N),

29

KP = 𝑔𝑑𝑃(mod N),

where dA = ∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1 , 𝑎𝑖 ∈ A, and dp = ∏ 𝑑𝑖
𝑏𝑖𝑛

𝑖=1 , 𝑏𝑖 ∈ P.

 Proposition 1 [5]

The attribute set A fulfills access policy P (that is, P ⊆ A) if and only if
𝑒𝐴

𝑒𝑃
 is an integer,

where 𝑒𝑃 = ∏ 𝑒𝑖
𝑏𝑖𝑛

𝑖=1 , 𝑏𝑖 ∈ P corresponding to the access policy P, 𝑒𝐴 = ∏ 𝑒𝑖
𝑎𝑖𝑛

𝑖=1 , 𝑎𝑖 ∈

P corresponding to the user attribute set A. In this case,
𝑒𝐴

𝑒𝑃
 written as

𝑒𝐴

𝑒𝑃
 = ∏ 𝑒𝑖

𝑎𝑖−𝑏𝑖𝑛
𝑖=1

is an integer, and KP = 𝑘𝐴

𝑒𝐴
𝑒𝑃 (mod N).

Proof [5]. Suppose that A does not fulfill P, that is, P ⊈ A. Then, 𝑎𝑖 − 𝑏𝑖 ∈{−1,0,1} as

𝑎𝑖, 𝑏𝑖 ∈{0,1}.This implies that in the fraction
𝑒𝐴

𝑒𝑃
 at least one inverse term exists, such as

𝑒𝑗
−1, and thus, computing 𝑒𝑗

−1 without factoring N = pq is a hard problem. As a result,
𝑒𝐴

𝑒𝑃

cannot be an integer when P ⊈ A.

 Proposition 2

Let an attribute set A of a user is represented with an n-bit string 𝑎𝐴, written as a1a2···an,

where 𝑎𝑖 = 1, if 𝐴𝑖 ∈ A, and 𝑎𝑖 = 0, if 𝐴𝑖 ∉ A. Let an access policy P is represented

with an n-bit string 𝑏𝑝, written as b1b2···bn, where 𝑏𝑖 = 1, if 𝐴𝑖 ∈ P, 𝑏𝑖 = 0, if 𝐴𝑖 ∉ P.

The attribute set A fulfills access policy P (that is, P ⊆ A) if and only if 𝑎𝐴 & 𝑏𝑝 = 𝑏𝑝 and

𝑎𝑖 ≥ 𝑏𝑖,for all i = 1, 2, ···, n.

Proof. Suppose that A fulfill P, that is, P ⊆ A. Then, 𝑎𝑖 & 𝑏𝑖 = 𝑏𝑖 as 𝑎𝑖 ≥ 𝑏𝑖, and 𝑎𝑖, 𝑏𝑖

∈{0,1}. Thus 𝑎𝐴 & 𝑏𝑝 = 𝑏𝑝 holds.

 Deduction 1

 On the other hand, if P ⊆ A, the secret key Kp is generated as follows.

KP = 𝑘𝐴

𝑒𝐴
𝑒𝑃 (mod N)

 = (𝑔𝑑𝐴 (𝑚𝑜𝑑 𝑁))

∏ 𝑒𝑖
𝑎𝑖𝑛

𝑖=1

∏ 𝑒𝑖
𝑏𝑖𝑛

𝑖=1 (mod N)

 = 𝑔(∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1)(∏ 𝑒𝑖
𝑎𝑖−𝑏𝑖𝑛

𝑖=1) (mod N)

30

 = 𝑔(∏ 𝑑𝑖
𝑎𝑖−𝑏𝑖+𝑏𝑖𝑛

𝑖=1)(∏ 𝑒𝑖
𝑎𝑖−𝑏𝑖𝑛

𝑖=1) (mod N)

 = 𝑔(∏ 𝑑𝑖
𝑏𝑖𝑛

𝑖=1)(∏ (𝑒𝑖𝑑𝑖)𝑎𝑖−𝑏𝑖𝑛
𝑖=1) (mod N)

 = 𝑔(∏ 𝑑𝑖
𝑏𝑖𝑛

𝑖=1) (mod N)

 = 𝑔𝑑𝑃 (mod N)

And return the result.

Notations List:

N = pq RSA modulus with large primes p and q, p ≠ q

ℤN Set of congruence classes of integers modulo N

ℤ𝑁
∗ Multiplicative group of integers modulo N

φ(.) Euler’s phi (totient function) φ(N) = (p-1)(q-1)

n Number of attributes in attribute set U |U|

U Attribute Universe U = {𝐴1, 𝐴2, ···, 𝐴𝑛}

A Set of user attributes A ⊆ U

P Access policy P ⊆ A

M Random chosen AES key

4.2 Description of Construction

This scheme provides constant-size secret keys and ciphertexts without using bilinear

maps. That is no prime order pairing and instead the group ℤ𝑁 is a group of congruence

classes of integers modulo N where N = pq. The RSA-based CP-ABE cryptosystem works

on ℤ𝑁 and its subgroup written in multiplication notation as ℤ𝑁
∗ or (ℤ/𝑛ℤ)∗, which is

called multiplicative group of integers modulo N. The key pair generation is constructed

on the integer factoring. This encryption scheme is also designed to be based on discrete

log problem. The idea is that exponentiation to the power e modulo N is easy to compute

but such that it is hard to compute pre-images. In fact, exponentiation modulo N is a one-

way permutation on ℤ𝑁
∗ when e is co-prime to φ(N). Exponentiation and Modular

multiplication are most frequent operations in the discrete log-based scheme.

A. SETUP PHASE

31

Let U = {𝐴1 , 𝐴2 , ···, 𝐴𝑛 } be the universe of attributes. Additionally, the security

parameter ρ as input will determine the bit size of the groups. This setup algorithm

consists of the following steps.

A1. Choose two RSA primes p and q with p≠q, and compute N = pq. Then, randomly

select the RSA public exponent 𝑒𝑖 with gcd(𝑒𝑖,φ(N)) = 1, and compute 𝑑𝑖 such that 𝑒𝑖𝑑𝑖

≡ 1 (mod φ(N)) corresponding to each attribute Ai ∈ U, ∀i = 1,2,··· ,n. Further, pick two

system private keys k and x that satisfy gcd(k, φ(N)) = 1 and gcd((k+x), φ(N)) = 1. Next,

select a random number g such that gcd(g, N)=1 and 2 < g < N −1.

A2. Compute the public parameters DU = 𝑔𝑑𝑈 , Y = 𝑔𝑥 and R = 𝑔𝑘, where dU =∏ 𝑑𝑖𝐴𝑖∈𝑈 .

A3. Finally, publish the master secret key MSK and master public key MPK, where

MSK = {φ(N), k, x, 𝑑1, ···, 𝑑𝑛}, MPK = {N, n, 𝑒1, ···, 𝑒𝑛, Y, R, DU}.

B. ENCRYPT PHASE

The new algorithm takes an access policy P ⊆ U, where |P|≠0, the master public key

MPK and a hidden message M (e.g., random chosen AES key) as inputs. The value M is

not usually an actual plaintext message or document (which might be huge) but a short

integer that is the output of some element or function. The ciphertext C = {Ep , E, Ym ,

Rm} is output using the following computations.

B1. Compute Ep = {ep, 𝑏𝑝}, ep = ∏ 𝑒𝑖
𝑏𝑖𝑛

𝑖=1 , 𝑏𝑖 ∈ P corresponding to the access policy P,

𝑏𝑝 is the n-bit string b1b2···bn.

B2. Calculate Km as Km = 𝐾𝑝
ℎ = 𝐷𝑢

ℎ
𝑒𝑈
𝑒𝑃

= (𝑔𝑑𝑈)
ℎ

𝑒𝑈
𝑒𝑃 = 𝑔𝑑𝑃ℎ,

From Deduction 1, KP is computed as KP = 𝐷𝑢

𝑒𝑈
𝑒𝑃 = (𝑔𝑑𝑈)

𝑒𝑈
𝑒𝑃 = 𝑔𝑑𝑃

B3. Choose a number h at random from ℤ𝑁, compute:

E = MKm =M𝐾𝑝
ℎ = M𝑔𝑑𝑝ℎ dp = ∏ 𝑑𝑖

𝑏𝑖𝑛
𝑖=1 , 𝑏𝑖 ∈ P

32

Ym = 𝑔𝑥ℎ, Rm = 𝑔𝑘ℎ

In the end, output the ciphertext C as C = {Ep, E, Ym, Rm}

C. KEYGEN PHASE

In this phase, the key generation algorithm takes a user attribute set A, master public key

MPK and master secret key MSK as inputs, and then generates a user secret key KU as

follows.

C1. Compute dA = ∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1 , 𝑎𝑖 ∈ A, where 𝑎𝑖= 1 if 𝐴𝑖 ∈ A and 𝑎𝑖=0 if 𝐴𝑖 ∉ A;

EA = {eA, 𝑎𝐴}, eA = ∏ 𝑒𝑖
𝑎𝑖𝑛

𝑖=1 , 𝑎𝑖 ∈ A corresponding to the user attribute set A, 𝑎𝐴 is

an n-bit a1a2···an.

C2. Use k and x in master public key MPK to compute the inverse of (k+x) as inv=
1

𝑘+𝑥

(mod φ(N)), and K1 = inv*𝑑𝐴 (mod φ(N)). KU is then published as {EA, K1}.

D. DECRYPT PHASE

The decryption algorithm takes the secret key KU = {EA, K1} corresponding to the user

attribute set A and ciphertext C = {Ep , E, Ym , Rm} corresponding to the access policy P,

and outputs the hidden message M doing the following:

D1. From Proposition 2, 𝑎𝐴 & 𝑏𝑝 = 𝑏𝑝 holds, if and only, if P ⊆ A. In this case, compute

Km = (𝑌𝑚𝑅𝑚)
𝑘1

𝑒𝐴

𝑒𝑝

 = (𝑔𝑥ℎ𝑔𝑘ℎ)
𝑑𝐴

(𝑘+𝑥)

𝑒𝐴

𝑒𝑝

 = (𝑔ℎ𝑑𝐴)
𝑒𝐴

𝑒𝑝

 = 𝑔ℎ𝑑𝑃 = 𝐾𝑃
ℎ

Otherwise, 𝑎𝐴 & 𝑏𝑝 is not equal to 𝑏𝑝;
𝑒𝐴

𝑒𝑃
 is not an integer, thus, computation of Km

is infeasible.

D2. Compute M = 𝐸 𝑘𝑚⁄ to obtain M (the AES key), otherwise, output null (⊥).

33

4.3 Security Analysis

In this section the author proceeds to analyze the model of security for proposed RSA-

Based CP-ABE with constant-size keys and ciphertexts (CPABE-CSKCT) encryption.

Selective security for CP-ABE aims at the indistinguishability of messages and the

collusion-resistance of secret keys, which implies that attackers cannot generate a new

secret key by combining their secret keys see ([12]).

Security Model for CP-ABE

A selective-set model in [4] was defined for proving the security of CP-ABE schemes.

Init The adversary declares the set of attributes γ that he wishes to be challenged upon.

Setup The challenger runs the setup algorithm of CP-ABE and publishes the public

parameters to the adversary.

Phase 1 The adversary is allowed to issue queries for repeated private keys corresponding

to sets of attributes γ1…, γq, γj ∈ γ for all j.

Challenge The adversary submits two equal length messages M0 and M1. Additionally,

he gives a challenge access structure 𝔸 such that none of the sets γj from Phase 1 satisfy

𝔸 .The challenger flips a random coin ν and encrypts Mν with access structure 𝔸. The

ciphertext is passed to the adversary.

Phase 2 Phase 1 is repeated with the condition on the event that none of sets of attributes

γj ∈ γ satisfy the access structure 𝔸 for all j.

Guess The adversary outputs a guess ν' of ν.

The advantage of an adversary A in this game is defined as Pr[ν' = ν]−
1

2
 and this security

model can easily be extended to handle chosen-ciphertext attacks by allowing for

decryption queries in Phase 1 and Phase 2.

Definition 4 An attribute-based encryption scheme is secure in the Selective-Set model

of security if all polynomial-time adversaries have at most a negligible advantage ϵ in

such game.

34

From the definition 4, the author notes that the advantage of an adversary A in this game

is ϵ := |Pr[ν'= ν]−
1

2
|. Thus, we have Pr[ν' = ν] =

1

2
 + ϵ. Now the author defines the model

of security for the proposed RSA-Based CPABE-CSKCT.

Security Definitions and Proofs of the Model

In [29], They declare a variation of the Diffie-Hellman key distribution scheme working

on the multiplicative group ℤ𝑁
∗ with composite n that in effect combines the security of

the original scheme with the difficulty of factoring large integers. It proves a precise

theorem concerning the system security, from which it follows that any algorithm that

will break the Computational Diffie-Hellman (CDH) scheme for a non-negligible

proportion of the possible inputs can be used to factor the modulus N. With this mind,

this paper proposes the model of n-IF-CDH of security as follows.

A. Security Definitions of IF and CDH

For a probabilistic polynomial-time (PPT) algorithm ℬ, the factoring advantage is defined

by the following factoring hardness assumption. Let Gen be an algorithm which takes an

input 1ρ and outputs (N, p, q). For an algorithm ℬ, its factoring advantage follows that of

[30] as

 𝐴𝑑𝑣1𝐺𝑒𝑛.ℬ
𝐼𝐹𝑃 (ρ) := Pr[(N, p, q) ← IGen(1ρ) : ℬ(N) = {p, q}].

Define that for ℬ, (tIFP, ϵIFP)-IF holds if ℬ runs in time tIFP and 𝐴𝑑𝑣1𝐺𝑒𝑛.ℬ
𝐼𝐹𝑃 (ρ) ≤ ϵIFP(ρ).

The factoring assumption (with respect to ℬ) states that 𝐴𝑑𝑣1𝐺𝑒𝑛.ℬ
𝐼𝐹𝑃 (ρ) is negligible in ρ

for every PPT ℬ.

Assume the advantage of adversary 𝒜 in solving the CDH is: 𝐴𝑑𝑣𝑍𝑁.𝒜
𝐶𝐷𝐻 (ρ)= Pr[𝒜(N,

g, 𝑔𝑎, 𝑔𝑏)=𝑔𝑎𝑏]. We say that (tCDH,ϵCDH)-CDH assumption holds if 𝐴𝑑𝑣𝑍𝑁.𝒜
𝐶𝐷𝐻 (ρ) ≤ ϵCDH,

for any sufficiently small ϵCDH > 0, with its running time at most tCDH.

The (t,ϵ)-Hard n-IF-CDH problem defines as follows. A t-polynomial time algorithm ℬ,

which outputs a bit γ ∈{0,1}, has an advantage 𝐴𝑑𝑣𝑍𝑁.ℬ
𝐼𝐹−𝐶𝐷𝐻(ρ) = ϵ in solving the n-IF-

CDH problem in ℤ𝑁, where

𝐴𝑑𝑣𝑍𝑁.ℬ
𝐼𝐹−𝐶𝐷𝐻(ρ) = Pr[ℬ(N, 𝑒1, …, 𝑒𝑛, g, 𝑔𝑘, 𝑔𝑥,𝑔𝑘ℎ, 𝑔𝑥ℎ, 𝑔𝑑𝑃 , 𝑔𝑑𝑃ℎ) = T], T=𝑔𝑑𝑃ℎ ∈ ℤ𝑁.

35

Then, n-IF-CDH problem reduces to decide whether T is equal to 𝑔𝑑𝑃ℎ or a random

element in ℤ𝑁.

B. Security Assumption on the Specific Construction of Secret keys

In this scheme, the valid secret user key KU corresponding to the attribute set A consists

of dA = ∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1 , where 𝑎𝑖 ∈ A, which could be derived from the inverse 𝑑𝑖 of 𝑒𝑖 modulo

φ(N). Assume ∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1 ≠ ∏ 𝑑𝑗
𝑎𝑗𝑛

𝑗=1 , 𝑎𝑖 ∈ A, 𝑎𝑗 ∈ A' for A ≠A'. If there exist A and A'

(A ≠A') such that ∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1 = ∏ 𝑑𝑗
𝑎𝑗𝑛

𝑗=1 , 𝑎𝑖 ∈ A, 𝑎𝑗 ∈ A', a user with the attribute list A'

can decrypt a ciphertext associated with P, where P ⊈ A' and P ⊆ A.

Remark1 that the assumption holds with overwhelming probability
𝑁(𝑁−1)…(𝑁−(𝑎−1))

𝑁𝑎 >

(𝑁−(𝑎−1))𝑎

𝑁𝑎 = (1 −
𝑎−1

𝑁
)𝑎 > 1−

𝑎(𝑎−1)

𝑁
 > 1−

𝑎2

𝑁
 , where a := ∑ 𝑎𝑖

𝑛
𝑖=1 , 𝑎𝑖 ∈ A. Therefore, if

each secret key 𝑑𝑖 is chosen at random from ℤ𝑁, then the assumption is naturally hold.

C. Proof of Security

Theorem 1 This scheme satisfies the indistinguishability of messages under the n-IF-

CDH assumption.

Proof. Suppose that the adversary 𝒜 wins the selective game for CP-ABE with the

advantage ϵ. We can then construct an algorithm ℬ that breaks the IF-CDH assumption

with the advantage
ϵ

2
(1−

𝑎2

𝑁
), where a := ∑ 𝑎𝑖

𝑛
𝑖=1 , 𝑎𝑖 ∈ A ,𝑎𝑖= 1 if Ai ∈ A and 𝑎𝑖=0 if Ai ∉

A is the number of expressed attributes for a user’s attribute set.

The adversary 𝒜 is allowed to issue queries on the set of attributes for private keys. ℬ

responds them with the valid decryption keys that don’t satisfy access policy P'. In the

challenge phase of the selective game, the adversary 𝒜 will submit two challenge

messages 𝑚0 and 𝑚1 to the algorithm ℬ. ℬ flips a fair binary coin ν and computes a

ciphertext of 𝑚𝑣. The ciphertext is output as: C' ={ Ep', E' = 𝑚𝑣𝐾𝑚
′ , 𝑌𝑚

′ , 𝑅𝑚
′ }, where 𝐾𝑚

′ =

𝑔
𝑑

𝑝′ℎ′

, 𝑑𝑝′= ∏ 𝑑𝑖
𝑏𝑖𝑛

𝑖=1 , 𝑏𝑖 ∈ P', corresponding to the challenged access policy P'. Since

h' is a random number in 𝑍𝑁, and all 𝑑𝑖 will be chosen independently at random as in the

construction. Therefore, 𝐾𝑚
′ = 𝑔

𝑑
𝑝′ℎ′

 is a random group element and the ciphertext is a

valid random encryption of message mν. Also, the challenged ciphertext C' is

36

indistinguishable with a real ciphertext. The adversary outputs a guess v' of v and wins

the game if ν' = ν. In this case, there exists A' such that ∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1 = ∏ 𝑑𝑗
𝑎𝑗𝑛

𝑗=1 , 𝑎𝑖 ∈ A',

𝑎𝑗 ∈ P' holds. According to the above result of Remark 1, this probability is at most
𝑎2

𝑁
.

Otherwise, 𝐾𝑚
′ = 𝑔

𝑑
𝑝′ℎ′

is a random element in ℤ𝑁.

Furthermore, the advantage of algorithm ℬ in solving the CDH problem in the RSA group

ℤ𝑁 is 𝐴𝑑𝑣𝑍𝑁.𝐵
𝐶𝐷𝐻 (ρ). Let S be an event that the adversary 𝒜 queries an element 𝑔

𝑑
𝑝′ℎ′

∈

ℤ𝑁. Then, Pr[S] follows ℬ’s advantage in the CDH game [3]is

Pr[S] =
1

2
(Pr[ℬ →1|ν' = ν]+ Pr[ℬ →0|ν' ≠ ν])−

1

2
 =

1

2
(

1

2
 + ϵ) +

1

2
*

1

2
 -

1

2
 =

1

2
ϵ

From the above analysis, ℬ knows the private keys, which do not satisfy the challenge

ciphertext C'. Then, 𝑔
𝑑

𝑝′ℎ′

can be computed only if the CDH problem can be solved in

the RSA group ℤ𝑁.When ℬ chooses randomly a set of random element corresponding to

the queried attributes in the query list, the probability that a t-polynomial time algorithm

ℬ gains the information about v is equal to 𝑔
𝑑

𝑝′ℎ′

given by solving the n-IF-CDH

problem. Consequently, the overall advantage of ℬ is given by (1−
𝑎2

𝑁
)Pr[s], that is,

𝐴𝑑𝑣𝑍𝑁.ℬ
𝐼𝐹−𝐶𝐷𝐻(ρ) =

ϵ

2
(1−

𝑎2

𝑁
). Hence, the theorem 1 is proved.

Theorem 2. Under the hardness of solving the integer factorization problem, this scheme

is secure against an adversary (also a legitimate user u) for deriving the valid user secret

key KU corresponding to the attribute set A with P ⊈ A.

Proof: Assume that a group of users 𝑢𝑖 with t numbers of attributes, i = 1,···, t,

corresponding to the attribute set 𝐴𝑖 collaborate among each other and try to derive the

system private key pair (k, x) using their valid secret keys 𝑘𝑈𝑖
= (𝐾1

𝑖), where

𝑘1
𝑖 = inv(k+x) .𝑑𝐴𝑖 (mod φ(N)) (1)

From the KEYGEN algorithm of this scheme, we have

𝑑𝐴𝑖
 = ∏ 𝑑𝑖

𝑎𝑖𝑛
𝑖=1 (mod φ(N)) (2)

Proof. It is clear that if 𝑑𝐴𝑖 is unknown, it is impossible to solve k and x. To compute 𝑑𝐴𝑖

, the adversary 𝒜 can randomly choose 𝑑𝑖 in ℤ𝑁, and module φ(N) in their product. From

37

the security assumption on the secret key, Equation (2) is computationally infeasible and

requires to randomly guess t + 1 unknowns under the hardness of solving the IF problem.

Moreover, to compute the value 𝑘𝑈𝑖
, 𝒜 requires the system private key pair (k, x) and

RSA secret 𝑑𝐴𝑖
 from Equation (1). Even if 𝑑𝐴𝑖

 is known, it will have infinitely many

solutions to produce the original value of k and x. Furthermore, because Equation (1) and

(2) depend on the Euler’s totient function φ(N) = (p−1)(q−1). Thus, generating the valid

user secret key KU is computationally infeasible problem for 𝒜 due to the intractability

of the IFP. Hence, it is computationally infeasible problem for the user u to derive the

valid secret key KU corresponding to the attribute set A.

Theorem 3. Under the hardness of solving n-IF-CDH problem, this scheme is secure

against deriving the secret 𝐾𝑚 from a ciphertext C = {Ep, E, Ym , Rm} by a group of

collaborative unauthorized users 𝑢𝑖, who use their corresponding attribute sets. Hence,

the scheme has the property of collusion resistance. That is, attackers are not able to

generate a new user secret key by combining their secret keys (see [7]).

Proof. This paper proves this theorem for any pair of users and the same argument is then

extended for a group of users. Suppose 𝑢1 and 𝑢2 be two users corresponding to the

attribute sets A and B, respectively, and try to decrypt the cipher C = {Ep, E, Ym, Rm},

where P ⊈ A and P ⊈ B, and P ⊆ (A OR B) = D. From Theorem 2, It follows that it is

computationally infeasible for both 𝑢1 and 𝑢2 to derive the valid secret key 𝑘𝑈𝑖

corresponding to the attribute policy D such that P ⊆ D. However, they can derive 𝑔𝑑𝐴ℎ

and 𝑔𝑑𝐵ℎ using their own secret keys 𝑘𝑈1
 and 𝑘𝑈2

 respectively. Let 𝑔1= 𝑔ℎ, and then we

have 𝑔𝑑𝐴ℎ = 𝑔1
𝑑𝐴 and 𝑔𝑑𝐵ℎ = 𝑔1

𝑑𝐵. Since solving the CDH problem in ℤ𝑁 is as hard as

solving factorization of RSA modulus N = pq, then no collaborative users can compute

the secret 𝐾𝑚 as follows:

𝑔1
𝑑𝐴𝑑𝐵 ← CDHP(𝑔1, 𝑔1

𝑑𝐴 , 𝑔1
𝑑𝐵), 𝑘𝑚 = 𝑔1

𝑑𝑃 = ((𝑔1
𝑑𝐴𝑑𝐵)𝑒𝐶)

𝑒𝐷
𝑒𝑃,

where C = A AND B.

It turns out that computing the valid 𝐾𝑚 is computationally infeasible for the adversary

𝒜. Therefore, the theorem 3 is obtained under n-IF-CDH assumption, and the security of

this proposed scheme is proved.

38

4.4 Implementation

This section will detail the implementation of the CPABE-CSKCT scheme proposed in

section 4.2, including the process of programming and a description of the developed

toolkit. This cryptosystem is built with C programming language under Ubuntu platform.

Only command line is available for the user interface in this system at present. The

implementation mainly uses the GNU Multiple Precision arithmetic library (GMP) that

is a high-performance arbitrary precision arithmetic toolkit appropriate for cryptography.

Additionally, few functions in PBC library are also invocated for the usage of element

operations of finite group.

The AES 128-bit (AES-128) in Cipher Block Chaining (CBC) mode is used for the

payload encryption. As described in [22], the key size of 128-bit is securely sufficient for

most of the objects in the IoT paradigm. The implementation uses OpenSSL library for

AES encryption.

The cpabe Toolkit

For the sake of convenient usage, the construction of section 4.2 has been implemented

as a set of tools that provides four shell commands as below.

A. cpabe-setup [OPTION ...]

Takes as input file path of an attribute universe, publishes a public key and a master key

with respect to the attribute universe.

Options are not mandatory arguments.

-h, --help print this message.

-p, --output-public-key FILE write public key to FILE.

-m, --output-master-key FILE write master secret key to FILE.

-u, --universe FILE read attribute universe from FILE.

B. cpabe-keygen [OPTION ...] PUB_KEY MASTER_KEY ATTR [ATTR ...]

Given a master secret key, a public key and the listed attributes, generates a private key

for the certain set of user attributes declared.

39

 Command-line parameters description

PUB_KEY: file for a public key

MASTER_KEY: file for a master secret key

ATTR arbitrary number of attributes string.

Attributes come in the form of non-numerical. Non-numerical attributes are simply any

string of letters, digits, and underscores beginning with a letter.

 Options are listed as follows.

-h, --help print this message.

-o, --output FILE write user private key to FILE.

C. cpabe-enc [OPTION ...] PUB_KEY FILE [POLICY]

Given a public key and a file, encrypts the file under a specified access policy on AND-

gate structure. If the access policy is not specified, the policy will be read from stdin.

Command-line parameter is described as below.

PUB_KEY: file for a public key

FILE: the original file for encryption

POLICY: attribute strings with 'and' delimiter.

The keywords 'and' is reserved for the policy language and may not be used for either

type of attribute. The whitespace around the attribute is optional.

 Options are not mandatory arguments.

-h, --help print this message.

-o, --output FILE write the ciphertexts to FILE.

D. cpabe-dec [OPTION ...] PUB_KEY PRIV_KEY FILE

Given a public key and a private key, decrypts an encrypted file.

 Command-line parameters

PUB_KEY: file for a public key

PRIV_KEY: file for a user private key

40

 Options

-h, --help print this message.

-o, --output FILE write output to FILE.

The GMP Library

The GMP library that performs the mathematical operations has a rich set of functions

with regular interface. GMP defines the mpz_t type for multiple precision integer, mpq_t

for rational and so on. Some important features in using GMP [43] are:

 Output arguments generally precede input arguments.

 The same variable can be used as input and output in one call.

 Before a variable may be used it must be initialized exactly once. When no longer

needed it must be cleared.

 In general, in GMP, if a function modifies an input variable, that variable remains

modified when control result is returned to the caller.

 GMP variables automatically allocate memory when needed. By default, malloc() is

called but this can be changed.

 GMP functions are mostly reentrant. A reentrant function can be safely called

recursively or from multiple tasks.

Serialization and Deserialization

In the cryptosystem, all generated keys and ciphertexts are of file form stored under

specific directory. Accordingly, process instances are dependent on these files to

conveniently pass the information. However, how to organize the file operation seems a

problem as no such built-in function is available. To conduct this operation, the functions

of serialization and deserialization have to be designed and written manually.

Serialization is the process of writing a data structure to a format, a sequence of bytes,

which can be stored in a file, a memory buffer or transmitted over a network. On the other

hand, deserialization is instead the reconstruction from this format back into the data

structure.

41

GByteArray structure type is used to generate arrays of arbitrary bytes which grow

automatically as elements are added. A sequence of bytes in C is represented by a byte

array, i.e. an array of uint32_t. Note that serialization is hardware dependent as the

endianness of the architecture might differ. Functions for serializing element can be seen

in Figure 2 and are described as follows.

Figure 2. Function for Serializing an Element

A serialization function frequently used is serialize_element designed for element data

type. The number of bytes it will write can be determined from calling the function

element_length_in_bytes. It also makes the length of an element serialized as the head

byte array to indicate the following amount of allocation. Then a result array of the

necessary size is allocated. Next, it converts the element to byte, writes the result into the

buffer. In the end, a byte array for the sequence is produced and appended to a block of

storage.

/* Serialization of an element.

* vector b: byte array where the serialized element will be

* stored;

* e: element data

*/

void serialize_element (GByteArray* b, element_t e)

{

 uint32_t len;

 unsigned char* buf;

 /* length in bytes the element will take to represent

*/

 len = element_length_in_bytes(e);

/* serialize the length of an element as the head*/

 serialize_uint32(b, len);

 buf = (unsigned char*) malloc(len);

/* Converts element to byte, writing the result into

* the buffer */

 element_to_bytes(buf, e);

 /* Adds the given bytes to the end of the GByteArray */

 g_byte_array_append(b, buf, len);

 free(buf);

}

42

The process of deserialization shown in Figure 3 needs to initialize the element group and

ℤ𝑁 group before reconstructing the element in them.

Figure 3. Deserialization Function of an Element

As an example of deserialization, unserialize_element is to read the number of data of

bytes from the given byte array and then copy the data in this number of bytes to a

allocated buffer. Eventually, it generates the element in the form of binary data using

element_from_bytes, which needs to set the element of group with limb space. A limb

means the part of a multi-precision number that fits in a single machine word.

Algorithm Description

A. Setup Algorithm

In the setup algorithm, argument vector for input is null or document path of attribute

universe. Output arguments are a public key and a master key. To use the results, put the

output in the files indicated the keys. The algorithm is present in Algorithm 1.The detailed

process proceeds in the following steps.

/* Deserialization of an element

* Vector b, byte array containing the serialized element;

* e: element data

*/

void unserialize_element (GByteArray* b, int* offset,

element_t e)

{

 uint32_t len;

 unsigned char* buf;

 /* Deserialization of the length of element in bytes */

 len = unserialize_uint32(b, offset);

 buf = (unsigned char*) malloc(len);

 memcpy(buf, b->data + *offset, len);

 *offset += len;

 /* Reads e from the buffer data */

 element_from_bytes(e, buf);

 free(buf);

}

43

Algorithm 1: Setup Algorithm in CSKCT

Procedure CSKCT_setup(k, universe)

1 begin

2 Select a prime value of k/2 bits for p and q

3 N = pq

4 phi_n = (p-1)(q-1)

5 Initialize(pubkey, mskkey)

6 repeat do

7 g ← random()

8 until gcd(g, N)==1

9 Read universe into attr_buf

10 Parse attr_buf into attr_shm

11 repeat do

12 k ← random()

13 until gcd(k, phi_n) == 1

14 repeat do

15 x ← random()

16 until gcd(x, phi_n) == 1

17 foreach Ai ∈ {A1, Ai, ···,An} do

18 repeat do

19 pub_exponent[i] ← random()

20 until gcd(pub_exponent[i], phi_n) == 1

21 prv_inverse[i] ← inverse(pub_exponent[i])

22 end

23 foreach Ai ∈ {A1, A2, ···, An} do

24 du ← du * prv_inverse [i] mod phi_n

25 end

26 Write serialize(pubkey) to pub_file

27 Write serialize(mskkey) to msk_file

28 Output pub_file msk_file

29 end

Table 3. Algorithm 1 Setup Algorithm in CSKCT

A1. (see 1-8 of Algorithm 1). If no input, the program will take a default path of document

for attribute universe as input file. The main code for this step is in Figure 4.

44

Figure 4. Step 1 of Setup Algorithm in CSKCT

1) For the 1024 group size, randomly select RSA prime p and q be 512 size using inner

random number generator, which read them from the Linux kernel’s /dev/urandom

in given size.

2) The algorithm needs the test to find a random g who satisfy the greatest common

divisor of g and N is only 1. This is accomplished by calling mpz_gcd function

through a while loop.

A2. (see 9-10 of Algorithm 1). First, to parse the attributes from the input file, the

algorithm needs to read the file into a string buffer allocated the actual size of attribute

file. Then, the parse_attribute_list function depicted in Figure 5 is used to collect all of

attributes from the given file of attribute universe. It takes the buffer of attribute universe

stored in string form as input parameter.

/* process 1). select prime p and q*/

pbc_mpz_randomb(p, k/2); /* random number with k/2 bits length*/

pbc_mpz_randomb(q, k/2);

mpz_nextprime(p, p); /*identify prime and set*/

mpz_nextprime(q, q);

mpz_mul(N, p, q); /* N=pq */

/* start 2). find g*/

do {

element_random(g); /*randomly chosen g*/

 element_to_mpz(mpz_g, g);

 mpz_gcd(divisor, mpz_g, N);

} while (mpz_cmp_d(divisor, 1)); /*decide the gcd == 1?*/

45

Figure 5. Function for Parsing Attribute Set of Setup Algorithm in CSKCT

The function processes all strings by squeezing out the ‘\n’ and blank such that every

string is formalized and extracted into a list by using parse_attribute function. Next,

formalized strings in the list will be sorted by size. In the end, a fixed-length array of

string objects is allocated to place the attribute strings in order.

Shared memory is the fastest form of IPC (Interprocess Communication) because the data

does not need to be copied between the processes. Consequently, the setup algorithm

places the array of attribute strings into a shared memory region until the shared memory

segment will be detached in the next setup running.

A3. (see 11-22 of Algorithm 1).The procedure of this step can be seen in Figure 6.

/* Parse every attribute stored in the string buffer */

* Vector attrs_str pointing to the sting buffer of attributes

*/

int parse_attribute_list(char * attrs_str)

{ ...

 /* formalize all strings by squeezing out the ‘\n’ and

blank*/

 squeeze(attrs_str, '\n');

 if ((substr = strtok(attrs_str, BLANK))== NULL)

 parse_attribute(&attrlist, substr);

 while(substr){

 parse_attribute(&attrlist, substr);

 substr = strtok(NULL, BLANK);

 }

 /* strings in the list will be sorted by string

comparisons*/

 attrlist = g_slist_sort(attrlist, comp_string);

 n = g_slist_length(attrlist);

 attrs = malloc((n + 1) * sizeof(char*));

/* a fixed-length array of string where the attribute

strings will be placed in order */

 for(ap = attrlist; ap; ap = ap->next)

 attrs[i++] = ap->data;

 attrs[i] = 0;

}

46

Figure 6. Step3 of Setup Algorithm in CSKCT

A loop for each attribute is used to randomly select the RSA public exponent 𝑒𝑖 and

compute the multiplicative inverse 𝑑𝑖 of 𝑒𝑖 by calling mpz_invert function. Further, pick

two system private keys k and x that satisfy the greatest common divisor between them

and φ(N) is only 1. This is implemented by calling pbc_mpz_random and mpz_gcd

functions, respectively through a while loop.

A4. (see 23-29 of Algorithm 1).The procedure of this step is displayed in Figure 7.

Figure 7. Step4 of Setup Algorithm in CSKCT

for (i=0; i< num_attrs; i++) {

do {

 pbc_mpz_random(pub->ei[i], N); /*random chosen 𝑒𝑖*/

 mpz_gcd(divisor, pub->ei[i], phi_n);

 }while (mpz_cmp_d(divisor, 1)); /*decide the gcd==1?*/

 /*compute the multiplication inverse*/

mpz_invert(msk->di[i], pub->ei[i], msk->phi_n);

}

/*select random k with gcd(k, phi_n) = 1 */

do {

pbc_mpz_random(msk->k, N);

/*compute the gcd(k, phi_n)*/

 mpz_gcd(divisor, msk->k, phi_n);

}while (mpz_cmp_d(divisor, 1));

/*compute the component dU */

for (i=0; i< num_attrs; i++) {

mpz_mul(du, du, msk->di[i]);

mpz_mod(du, du, msk->phi_n);

}

element_pow_mpz(pub->gk, g, msk->k); /*compute Y = 𝑔𝑥 */

element_pow_mpz(pub->gx, g, msk->x); /*compute R = 𝑔𝑘 */

element_pow_mpz(pub->g_du, g, du); /*compute DU */

/*output public key file and master key file*/

spit_file(pub_file, cskct_pub_serialize(pub),1);

spit_file(msk_file, cskct_msk_serialize(msk),1);

47

Multiply all 𝑑𝑖 together to compute dU so that calculate the component DU of the public

parameters with the base g and the element_pow_mpz function. Other public parameters

Y = 𝑔𝑥 and R = 𝑔𝑘 are computed in the same way. Eventually, the algorithm serializes

the public key and master secret key to the associated file and outputs this file.

B. Key generation algorithm

In the key generation algorithm, public key, master private key associated files and

attributes strings are all necessary input variables. Output is user private key file indicated

by -o option. If -o option for the output argument is not input, the default file name will

be used by the name of input file with the extension ending in .cpabe. The process is

described in Algorithm 2 below.

Algorithm 2: Key Generation Algorithm in CSKCT

Procedure CSKCT_keygeneration(pub_file, msk_file, user_attrs)

1 begin

2 attrstr array, num_attrs ← shmget()

3 userattr array ← parse_arguments()

4 foreach userattr[index] ∈ {Aindex | 0 < index < num_attrs} do

5 foreach attrstr ∈ {A1···Ai} do

6 If userattr[index] == attrstr[i] then

7 Set ea = attribute bitmap ← 1

8 ai[i] ← 1

9 end

10 end

11 end

12 pubkey ← deserialize(read_file(pub_file))

13 mskkey← deserialize(read_file(msk_file))

14 prvkey ← InitPrvParams(pubkey)

15 foreach attrstr ∈ {A1···Ai} do

16 If ai[i] == 1 then

17 mul_diai = mul_diai * prv_inverse[i] mod phi_n

18 ea = ea * pub_exponent[i] mod phi_n

19 end

20 end

21 add (k, x)

22 Compute invert(k+x) mod phi_n

23 prv_key1 = invert(k+x) * mul_diai mod phi_n

24 Output(serialize(prvkey))

25 end

Table 4. Algorithm 2 Key Generation Algorithm in CSKCT

48

K1. (1-14 of Algorithm 2). The function first obtains the data of attribute universe from

the shared memory. In this way, multiple processes are able to communicate one another.

The process needs to map the attribute universe into its address spaces so as to access

shared attributes memory.

1) After parsing the array of attributes string, this can be compared with that of user

attributes input to compute the bitmap of user attributes. This detail can be seen in

Figure 8.

Figure 8. Step1 of Key Generation algorithm in CSKCT

2) Then it executes the deserialization of public key file and master secret key file to

obtain the public key and master key; initialize mpz_t variables in the private key

parameters by calling the mpz_init function for an integer initialization.

K2. (15-20 of Algorithm 2). The procedure is shown in Figure 9. For each bit with a value

of 1 in the string bitmap, multiply the corresponding 𝑑𝑖 with a loop together using the

functions for multiplication and modulus.

/* process 1). compare the attributes universe with user

attributes to obtain the bitmap of user attributes. */

for(i=0; i<num_userattr; i++)

{

for(index=0; index<num_attrs; index++) {

 if (!strcasecmp(user_attrs[i], attrs[index])){

 attrmap |= 1<<index; /*set attributes bitmap*/

 abit[index] = 1;

break;

 }

 }

}

/* start 2). read the input file and deserialize the public key

and master key*/

pub = cskct_pub_unserialize(suck_file(pub_file),1);

msk = cskct_msk_unserialize(suck_file(msk_file),1);

/*initialize mpz_t variable in the private key parameters */

prv = init_prv_params(pub);

prv->ea = attrmap;

49

Figure 9. Step2 of Key Generation Algorithm in CSKCT

Hereafter, we obtain the result of dA = ∏ 𝑑𝑖
𝑎𝑖𝑛

𝑖=1 , if 𝑎𝑖 ∈ A and 𝑎𝑖= 1. Again, we could

compute the EA = eA = ∏ 𝑒𝑖
𝑎𝑖𝑛

𝑖=1 , 𝑎𝑖 ∈ A corresponding to the user attribute set A in the

same way.

K3. (21-25 of Algorithm 2). The process can be seen in Figure 10.

Figure 10. Step3 of Key Generation Algorithm in CSKCT

To compute the inverse of (k+x) as inv=
1

𝑘+𝑥
 (mod φ(N)), k and x in master public key

MPK are used to perform the addition and inverse operations. If no inverse exists the

return value is zero, this algorithm exits with prompt of that. The component K1 of the

user’s secrete key is computed with multiplication result of inv and 𝑑𝐴 modulo φ(N). The

user’s private key is then derived as {EA, K1} and written into the corresponding file by

serializing.

C. Encryption Algorithm

/* use the multiplication and modulus for each bit == 1 in

the string bitmap. multiply the corresponding the inverse

𝑑𝑖 to compute dA, multiply the corresponding the inverse 𝑒𝑖

to compute eA,*/

for(i =0; i< num_attrs; i++)

{

if (abit[i] == 1) {

 mpz_mul(prv->mul_diai, prv->mul_diai, msk->di[i]);

 mpz_mod(prv->mul_diai, prv->mul_diai, msk->phi_n);

 mpz_mul(prv->ea, prv->ea, pub->ei[i]);

 mpz_mod(prv->ea, prv->ea, msk->phi_n);

 }

}

/*compute inv = 1/k+x mod φ(N)*/

mpz_add(tmp, msk->k, msk->x);

if (! mpz_invert(prv->inv_kx, tmp, msk->phi_n))

 return -1;

/*compute user private key K1 */

mpz_mul(prv->k1, prv->inv_kx, prv->mul_diai);

/* serialize user private key, write into the output file*/

spit_file(out_file, cskct_prv_serialize(prv),1);

50

The necessary argument vector consists of a public key and an input file that will be

encrypted. If the access policy is not specified, the policy will be read from standard input.

The encrypted file will be output, and the original file will be removed. The following

flowchart in Figure 11 describes the entire process of encryption algorithm.

Encryption procedure

parse_args Init_cph_param encrypt_filecompute_cph_param

Start

Encrypt file using

AES-CBC-128

with the random

AES key

Syntax error

Decision

Read shared

memory and

input file

Yes

No

End

Parse_policy_lang

executes parsing and

a quick sort

Prompt syntax

error

Element

initialization

Choose random m

and h; compute the

components of

ciphertexts

Ciphertexts

serialization

Figure 11. Encryption Procedure in CSKCT

E1. The function parse_polocy_lang calls yyparse to conduct parsing. This function reads

tokens, executes actions, and ultimately returns when it encounters end-of-input or an

unrecoverable syntax error.

51

Figure 12. Function for Parsing Policy Language

This function returns a value of 0 if the input it parses is valid according to the given

grammar rules. It returns 1 if the input is incorrect and error recovery is impossible. A

quick sort for arrays of string objects is implemented according to string comparisons.

E2. This program of main steps is shown in Figure 13. Each element of the ciphertext

structure needs to be initialized before using.

Figure 13. Step2 of Encryption Algorithm in CSKCT

After initializing, compute KP and Ep corresponding to the access policy P. It assigns

uniformly random elements to m and h. The element m is thought as the concealed AES

key. Subsequently, the component E, Ym, Rm in the ciphertext are computed with

/* execute policy language parsing, return the formalized policy

* Vector s, current policy buffer

*/

char* parse_policy_lang(char* s)

{

 cur_string = s;

 /* reads tokens, parse syntaxes and executes actions */

 yyparse();

 /* execute a quick sort for arrays of string */

 tidy(parse_policy);

 parsed_policy = format_policy_postfix(parse_policy);

 ...

}

cph->ep = attrmap;

/* randomly choose the element m as AES key and h */

element_random(m);

element_random(h);

for(i =0; i< num_attrs; i++)

if (bbit[i] == 0)

 mpz_mul(eu_div_ep, eu_div_ep, pub->pi[i]);

/* compute KP */

element_pow_mpz(cph->m_kph, pub->g_du, eu_div_ep);

element_pow_zn(cph->m_kph, cph->m_kph, h);

element_mul(cph->m_kph, cph->m_kph, m); /* compute E */

52

exponentiation operation, where the base g will exponentially power elements or mpz_t

data.

E3. The file encryption processing reads the input file into arrays of bytes and passes it

as one input parameter to Aes-cbc-128-encrypt function for encryption. The key for the

AES-128 in CBC mode is taken from random element m. The AES-128 function returns

the buffer stored encrypted file, whose size is identical to that of the original file. The

algorithm runs the serialization for the ciphertexts, which writes the access control in

cipher and the encrypted file into the output file. The implementation of this step can be

seen in Figure 14.

Figure 14. Step3 of Encryption Algorithm in CSKCT

D. Decryption Algorithm

Decryption algorithm takes a public key, a user private key and an encrypted file as input.

It output the decrypted file. If the name of this encrypted file is X.cpabe, the decrypted

file will be written as X and the encrypted file will be removed. Otherwise the file will be

decrypted in place. The usage of the -o option overrides this behavior. The entire process

of encryption algorithm is shown in the flowchart of Figure 15.

/* serialize the cyphertext policy*/

cph_buf = cskctabe_cph_serialize(cph);

cskct_cph_free(cph);

/*read the input file into a buffer that will be encrypted*/

plt = suck_file(in_file);

file_len = plt->len;

/* use AES to encrypt file */

aes_buf = aes_128_cbc_encrypt(plt, m);

write_cpabe_outfile(out_file, cph_buf, file_len, aes_buf);

53

Decryption procedure

dec_unserialize policy_fulfill encrypt_filedec_policy

Start

Read the

encrypted file

to data buffer

Decryption key

fulfills policy?
Initialization

No

End

Deserialization of

public key, private

key and ciphertext

Prompt no

matching policy

Compute with a

decryption key to

obtain m (AES

key)

Decrypt the data

buffer with AES

key m

Yes

Figure 15. Decryption Procedure in CSKCT

D1. The algorithm executes a series of deserialization for public key, user secret key and

ciphertext, whereby are assigned and restored to their structure. Next, it initializes element

and mpz_t variables that will be used in the decryption by calling initialization function

for element and integer. The main steps can be seen in Figure 16.

Figure 16. Step1 of Decryption Algorithm in CSKCT

/* deserialization of public key, user secret key and ciphertext*/

pub = cskct_pub_unserialize(suck_file(pub_file), 1);

prv = cskct_prv_unserialize(suck_file(prv_file), 1);

cph = cskct_cph_unserialize(cph_buf, 1);

/* initialization of element and mpz_t data in the decryption*/

element_init(m, Zn);

mpz_init_set_ui(ea_div_ep, 1);

mpz_init(dp);

element_init(kph, Zn);

54

D2. In this step, we will decide whether the decryption key fulfills access policy through

bitwise operation. The execution procedure refers to Figure 17.

Figure 17. Step2 of Decryption Algorithm in CSKCT

To be specific, the AND operation is performed on 𝑏𝑃 and 𝑎𝐴, corresponding to the access

policy P and the user attribute set A, respectively. If the operation result is identical to the

𝑏𝑃, this means decryption key satisfies the access policy. Otherwise the access policy is

not satisfied, and the decryption process will terminate with indication of that.

Then, the algorithm performs exponentiation and multiplication operations to decrypt the

random AES key m. It computes Km with three times exponentiation operation.

Subsequently, it uses element_div function to obtain the random m (the AES key) by

computing m as 𝐸 𝑘𝑚⁄ .

/* perform AND operation on the access policy and the user

attribute set */

ai_bi = prv->ea & cph->ep;

/*decide whether decryption key satisfies the access policy */

if (ai_bi != cph->ep) {

 printf("No matching policy, decryption fail.\n");

 return -1;

}

ai_bi = prv->ea ^ cph->ep;

...

mpz_mul(dp, prv->mul_diai, ea_div_ep);

mpz_mod(dp, dp, pub->phi_n); /* compute dp */

element_mul(kph, cph->gkh, cph->gxh);

element_pow_mpz(kph, kph, prv->inv_kx);

element_pow_mpz(kph, kph, dp); /* compute Km */

element_div(m, cph->m_kph, kph);

55

Figure 18. Step3 of Decryption Algorithm in CSKCT

D3. The decryption processing in Figure 18 reads the encrypted file into array of bytes.

AES-cbc-128-encrypt function takes as input the data buffer in array of bytes for

decryption. The decryption key for the AES-128 in CBC mode is taken from random

element m. The AES-128 decryption function decrypts the blocks one by one and returns

the buffer stored the decrypted data, which will finally be output as file.

4.5 Evaluation

This section will evaluate this proposed CP-ABE scheme on two aspects of

communication overhead and computational overhead. In order to illustrate the

distinguished feature of the proposed scheme, this scheme is compared with the previous

CP-ABE schemes in these two aspects.

This paper first proceeds the evaluation on the size of private keys and ciphertexts in the

several relevant CP-ABE systems with constant-size keys or ciphertexts.

Storage overhead

In table 5, storage cost comparison is made in terms of the size of the decryption key and

the ciphertext within the following schemes.

/*read the encrypted file into array of bytes will be stored

in aes_buf */

read_cpabe_file(in_file, &file_len, &aes_buf);

cskct_cph_free(cph);

/*use AES to decrypt the encrypted file store in aes_buf*/

plt = aes_128_cbc_decrypt(aes_buf, m);

g_byte_array_set_size(plt, file_len);

g_byte_array_free(aes_buf, 1);

/*output the decrypted file*/

spit_file(out_file, plt, 1);

unlink(in_file);

56

Scheme Length of decryption key Length of ciphertext

EMNOS [7] 2G 2G + Gt

GSWV [31] 2G (n − |p| + 2)G + Gt

ZH [33] (|A| + 1)G 2G + Gt

ZHW [8] (2n + 1)G 2G + Gt

ZZCLL [11] (n + 1)G 2G + Gt

This scheme G 3G

Table 5. Comparison of Communication Cost

In Table 5, the notation G is an element in a group. For public key bilinear pairings, G

represents the element of G1 and G2, which are elliptic curve groups. Let Gt be

multiplicative pairing group with prime order. For the no-pairing scheme, G stands for an

element in ℤ𝑁
∗ . The table demonstrates the comparative schemes that provide either

constant size secret keys or ciphertexts. The ZZCLL scheme [11], the ZH scheme [33]

and the ZHW scheme [8] fail to provide constant size keys for the users. Although the

GSWV scheme [31] is lightweight with shorter constant secret keys, but it cannot offer

constant size ciphertexts. From the table 5, it is clear that the EMNOS scheme [7] and

this proposed scheme are uniquely designed to have constant size for both secret keys and

ciphertexts. However, the EMNOS scheme provides only (n, n)-threshold access

structure, which does not meet the requirement of CP-ABE for flexible access control.

In this scheme, the private key contains exactly an element and an integer for describing

user attributes and one group member of ℤ𝑁
∗ . Practically, the size of each element on ℤ𝑁

∗

is around 128 bytes for the 1024-bits group. Thus, the ciphertext head is bounded within

352 bytes. The proposed CP-ABE CSKCT scheme provides lightweight property on the

length of ciphertexts and keys, which are constant and do not depend on the number of

attributes. Accordingly, decryption is computationally constant too. Consequently, the

CPABE-CSKCT scheme is easily deployed on IoT devices.

Computational overhead

57

This paper will evaluate the computational overhead based on the benchmark experiments

for the CPABE-CSKCT operations. The benchmark was performed on a workstation

which has Intel Core Xeon(R) CPU E5 and 1GB memory running Ubuntu operating

system. The running environment taken the measurements displays in Table 6.

CPU Intel Core Xeon(R) CPU E5 @ 2.40GHz

RAM 1GB DDR3

OS Ubuntu 16.04.09

Compiler gcc version 5.4.0

Language C

Library
GMP 6.1.2 OpenSSL 1.0.2g

Table 6. Running Environment for Measurement

To the best of author’s knowledge, the prior ABE schemes are almost all based on bilinear

paring of ECC. In the performance evaluation, PBC is used for pairing, and the

implementation selects a 160-bit elliptic curve group based on the fast supersingular curve

𝑦2=𝑥3+x over a 512-bit finite field G. On the test machine, the PBC library can perform

a pairing in approximately 1.2ms, exponentiations in G and Gt take about 1.6ms and

0.2ms respectively. Each of operation is run 10 times and the average value is rated as

performance result listed in Table 7

Parameter Time-Consuming

𝑇𝑒 1.20 ms

𝑇𝐺 1.62 ms

𝑇𝐺𝑡
 0.19 ms

𝑇𝑍𝑁
 0.48 ms

Table 7. Execution Time for Various Parameters

58

Let 𝑇𝐺 be time to execute a point exponentiation in the group G and 𝑇𝐺𝑡
 be time to execute

an exponentiation in the pairing group Gt. Also, 𝑇𝑒 is time to execute a bilinear map.

Additionally, the computational exponentiation time over multiplicative group ℤ𝑁
∗ (|N| =

1024) denoted by 𝑇𝑍𝑁
 requires 0.48ms in the experiment. According to this, the author

summarizes the computational overhead among this scheme and other oriented schemes.

The comparison results are shown in Table 8.

Scheme Encryption Decryption

EMNOS [7] (n + 1)𝑇𝐺 + 2𝑇𝐺𝑡
 2𝑇𝐺𝑡

+ 2𝑇𝑒

GSWV [31] (2(n − |P|) + 2) 𝑇𝐺 2(|A|− |P|)𝑇𝐺+ 𝑇𝐺𝑡
+ 3𝑇𝑒

ZH [33] 2𝑇𝐺 (2|P| +1) 𝑇𝑒

ZZCLL [11] 3𝑇𝐺 2𝑇𝑒

This scheme 3𝑇𝑍𝑁
 3𝑇𝑍𝑁

Table 8. Comparison of Computational Cost

As Demonstrated in table 8, this scheme is the only one to provide efficient encryption

and decryption with 𝒪 (1) time-complexity without pairing. For the measurements,

assume the total number of attributes in the system be n = 50. Also, |P| = 20 and |A| = 25

are the number of attributes associated with access policy P and user attribute set A,

respectively. Table 9 displays performance measurements of encryption time and

decryption time produced on the related schemes.

59

Scheme Encryption (ms) Decryption (ms)

EMNOS [7] 16.08 2.86

GSWV [31] 100.44 19.99

ZH [33] 3.24 49.20

ZZCLL [11] 4.86 2.4

This scheme 1.46 1.10

Table 9. A Comparative Summary on Computational Cost from the Experiment

From the table 9, it is observed that this scheme takes only 1.46ms and 1.10ms for

encryption and decryption. The execution of the CPABE-CSKCT encryption algorithm

takes minimal time for both encryption and decryption, requires lowest computational

cost in comparison with other related CP-ABE scheme.

Overall, the experiment results are accordance with the author’s expectation and analysis.

This lightweight feature makes it feasible for practical deployment in IoT setting.

4.6 Discussion

Although the proposed scheme has remarkable advantages in efficiency, it still has some

limitations, which would be discussed as follows.

1. It only provides AND-gate access policy without multiple values. A CP-ABE scheme

supporting multi-valued AND-gate can reduce the number of attributes. Designing a

CP-ABE scheme based on AND-gate with multiple values is the future research.

2. Similar to most of the CP-ABE schemes, this scheme is not flexible enough in

revoking and adding attributes, which means that it does not provide to change the

attributes set after Setup phase. If a user wants to decrypt a ciphertext on an access

structure including newly changed attributes, then the user has to obtain a new secret

key corresponding to the new attributes set.

Further work will include implementing this CPABE-CSKCT scheme in the IoT devices

(e.g. Raspberry Pi) with the aims of further fine-tuning the scheme for real application.

60

Chapter 5
RSA-based Access-Tree CP-ABE Scheme

5.1 Background

Most existing public key encryption schemes allow for data encryption by a restrictive

policy. But their access policies are unable to efficiently enforce more expressive types

of access control. In Bethencourt’s work [4], they provided the first construction of a CP-

ABE with a monotonic “access tree”, where the interior nodes of the access structure were

composed of threshold gates and the leaves were associated with descriptive attributes.

Bethencourt et al. [4] noted that AND-gates could be constructed as n-of-n threshold gates

and OR gates as 1-of-n threshold gates; more complex access controls such as numeric

ranges can be handled by converting them to small access trees. At a higher level, the

work of this proposed scheme is similar to their design. Therefore, the access structure of

this scheme supports AND, OR gates and the comparison of numerical attributes.

In the design pattern, private keys will be identified with an arbitrary number of user

attributes. A party that wishes to encrypt a message will specify a policy through an access

tree structure, which private keys must satisfy for decryption. A user will be able to

decrypt a ciphertext with a private key if and only if the given key contains all of attributes

assigned to the leaves of the tree such that the tree is satisfied. This paper uses the same

notation as [2] to describe the access-tree structure.

Tree Access Structures Definition

Access Structure [2]. Let {P1, P2, ..., Pn} be a set of parties. A collection 𝔸 ⊆ 2{𝑝1𝑝2,…,𝑝𝑛)

is monotone if ∀B, C : if B ∈ 𝔸 and B ⊆ C then C ∈ 𝔸. An access structure (respectively,

monotone access structure) is a collection (respectively, monotone collection) 𝔸 of non-

empty subsets of {P1, P2, ..., Pn}, i.e., 𝔸 ⊆ 2{𝑝1𝑝2,…,𝑝𝑛)\{∅}. The sets in 𝔸 are called the

authorized sets, and the sets not in 𝔸 are called the unauthorized sets.

In this scheme, the attributes will describe the role of the participants. The access structure

𝔸 will be labelled different encrypted data with the authorized sets of attributes, denoted

n attributes as 𝔸 = {𝐴1, 𝐴2, ···, 𝐴𝑛}, where 𝐴𝑖 is an attribute with the ordering of i =1,2,···

,n. The author restricts the attention to monotone access structures in this paper. However,

as noted in [4], it is also possible to (inefficiently) realize general access structures using

61

the extension of this scheme by having the ‘not’ of an attribute as a separate attribute

altogether. If doing in this way, the number of attributes in the system will be doubled.

Construction for Access Tree

Access tree T [4]. Let T be a tree representing an access structure. Each non-leaf node of

the tree represents a threshold gate, described by its children and a threshold value.

Suppose that numx is the number of children of a node x and kx is its threshold value, then

0 < kx ≤ numx. When kx = 1, the threshold gate is an OR gate and when kx = numx, it is an

AND-gate. Each leaf node x of the tree is associated with a descriptive attribute and its

threshold value kx = 1. To facilitate working with the access trees, this paper defines a few

functions below.

parent(x) denotes the parent of the node x in the tree

att(x) is defined only if x is a leaf node and denotes the attribute associated with the leaf

node x in the tree.

order(x) is defined only if x is a leaf node and denotes the index of the attribute associated

with the leaf node x in 𝔸.

index(x) defines an ordering between the children of every node, that is, each children of

a node x is associated with a number from 1 to num called an index value. The index

values are uniquely assigned to nodes in the access structure for a given key in an arbitrary

manner.

Satisfying an access tree [4]. Let T be an access tree with root r written as Tr. The subtree

of T rooted at the node x is denote by Tx. If a set of attributes γ satisfies the access tree Tx,

it is denoted as Tx(γ) = 1. Tx(γ) is computed recursively as follows. If x is a non-leaf node,

evaluate Tx' (γ) for all children x' of node x. Tx(γ) = 1 if and only if at least kx children

return 1. If x is a leaf node, then Tx(γ) = 1 if and only if att(x) ∈ γ.

Lagrange polynomials [34] are used for polynomial interpolation. Given a set of k data

points (𝑥0, 𝑦0), ⋯, (𝑥𝑗, 𝑦𝑗), ⋯, (𝑥𝑘, 𝑦𝑘), where no two 𝑥𝑗 are the same, the Lagrange

polynomial is the polynomial of lowest degree that assumes at each value 𝑥𝑗 the

corresponding value 𝑦𝑗. The interpolating polynomial of the least degree is unique. An n

degree polynomial in the Lagrange form is a linear combination.

62

P(x) = ∑ (∏
𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗
0≤𝑗≤𝑛,𝑗≠𝑖

𝑛
𝑖=0)𝑦𝑗

According to this definition, we also define the Lagrange coefficient ∆𝑖,𝑆 for i ∈ ℤ𝑛 and a

set, S, of elements in ℤ𝑛: ∆𝑖,𝑆(x) = ∏
𝑥−𝑗

𝑖−𝑗𝑗∈𝑆,𝑗≠𝑖 . The method to construct the Lagrange

polynomial is known as polynomial interpolation, the polynomial P(x) is called Lagrange

interpolation polynomial. Suppose that the polynomial P(x) is in the form:

P(x) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0.

Polynomial interpolation [34] is to find a polynomial p of lowest possible degree with

the property P(𝑥𝑖) = 𝑦𝑖 for all i ∈{0,1,⋯,n}.

5.2 Proposed Construction

Comparable to the prior CP-ABE scheme based on less efficient bilinear map of ECC,

this proposal is constructed with no-pairing RSA on a group ℤ𝑁 , which is of congruence

classes of integers modulo N where N = pq. This RSA-based CP-ABE cryptosystem

works on ℤ𝑁 and its subgroup written in multiplication notation as ℤ𝑁
∗ or (ℤ/𝑛ℤ)∗, which

is called multiplicative group of integers modulo N. The generation of key pair is built

on the integer factoring. This encryption scheme is also designed to be based on discrete

logarithm problem.

A. SETUP PHASE

The authorized set of attributes in the system is 𝔸 = {𝐴1, 𝐴2, ···, 𝐴𝑛} and the mapped

ordering of attributes is defined as {1, 2, …, n}. The setup algorithm will take the security

parameter ρ and 𝔸 as inputs. This algorithm consists of the following steps:

1) Choose two RSA primes p and q with p≠q, and compute N = pq. Next, pick system

private key k that satisfy gcd(k, φ(N)) = 1. Then, randomly select the RSA public

exponent 𝑒𝑖 with gcd(𝑒𝑖,φ(N)) = 1, and compute 𝑑𝑖 such that 𝑒𝑖𝑑𝑖 ≡ 1 (mod φ(N))

corresponding to each attribute Ai ∈ A, ∀i = 1,2,··· ,n. Further, select a random integer

g with gcd(g, N) = 1 and 2 < g < N −1.

2) Compute the public parameter R = 𝑔𝑘.

63

3) Finally, generate the following master secret key MSK and master public key MPK,

where MSK = {φ(N), k, 𝑑1,···, 𝑑𝑛}, MPK = {N, R, 𝑒1,···, 𝑒𝑛}.

B. ENCRYPT PHASE

The encryption algorithm encrypts a message M (here is random chosen AES key) under

the tree access structure T. The algorithm first chooses a Lagrange polynomial 𝑞𝑥 for each

node x (including the leaves) in the tree T. These polynomials are chosen in the following

way in a top down manner [2], starting from the root node R. For each node x in the tree,

the degree dX of the polynomial 𝑞𝑥 is set to be one less than the threshold value kX of that

node, that is, dX = kX − 1. Now, for the root node R, the algorithm chooses a random s ∈

ℤ𝑁 and sets 𝑞𝑅(0) = s. Then, it chooses dR other points of the polynomial qR randomly to

define it completely. For any other node x, it sets 𝑞𝑥 (0) = 𝑞parent(𝑥) (index(x)) and

chooses dX other points randomly to completely fix 𝑞𝑥 . The ciphertext CT is then

computed by giving the tree access structure T as follows.

1) The algorithm first chooses a random s ∈ ℤ𝑁, and sets 𝑞𝑅(0) = s. Then, constructs a

polynomial 𝑞𝑥 for each non-leaf node x in the tree T. Let, Y be the set of leaves in T.

2) Next, random h ∈ ℤ𝑁 and compute Ym = 𝑔𝑘ℎ, CT : E = MRhs = M𝑌𝑚
𝑠

∀x ∈ Y : Ex = H(att(x)) ∙ 𝑞𝑥(0) ∙ 𝑒𝑖 where i= {order(x): x ∈ Y}

Ultimately, output the ciphertext as CT = {T, E, Ym, {EX}∀X∈Y}.

C. KEYGEN PHASE

The key generation algorithm will take as input a set of attributes S and output a key that

identifies with that set. it computes H(att(x)) for each attribute x ∈ S. assign the key as

SK = {kX = H(attr(x))/ 𝑑𝑖 , x ∈ S, i={order(x)}}

D. DECRYPT PHASE

The algorithm begins by simply calling the function on the root node R of the tree T If the

tree is satisfied by a set S of attributes. This paper specifies the decryption procedure as a

recursive algorithm. For ease of explanation, the author presents the simplest form of the

decryption algorithm. First define a recursive algorithm DecryptNode(CT, SK ,x) that

takes as input a ciphertext CT ={T , E, Ym, {EX}∀X∈Y }, a private key SK, which is

64

associated with the set S, and a node x in T . Let the node x be a leaf node and define as

follows: If i ∈ S, i={order(x)}, then

DecryptNode(CT, SK, x) =
𝐻(att(x)) ∙ 𝑞𝑥(0) ∙ 𝑒𝑖

𝐻(att(x))/𝑑𝑖
 = 𝑞𝑥(0)

If i ∉ S, then define DecryptNode(CT, SK, x) = ⊥.

 Now consider the recursive case when x is a non-leaf node. The algorithm

DecryptNode(CT, SK, x) then proceeds as follows [2]: For all nodes z that are children of

x, it calls DecryptNode(CT, SK, z) and stores the output as Fz. Let 𝑠𝑥 be an arbitrary kx-

sized set of child nodes z such that Fz ≠⊥. If no such set exists then the node was not

satisfied and the function returns ⊥. Otherwise, compute

FZ = ∑ 𝑞𝑧(0) .𝑧∈𝑠𝑥
∆𝑖,𝑠𝑧

(0) , where i=index(z), 𝑠𝑧= {index(z):z∈ 𝑠𝑥}

 = ∑ 𝑞𝑝𝑎𝑟𝑒𝑛𝑡(𝑧)(𝑖𝑛𝑑𝑒𝑥(𝑧)) .𝑧∈𝑠𝑥
∆𝑖,𝑠𝑧

(0) (by construction)

 = ∑ 𝑞𝑧(𝑖) .𝑧∈𝑠𝑥
∆𝑖,𝑠𝑧

(0)

 = 𝑞𝑥(0) (using polynomial interpolation)

 = s

And return the result.

The last equality FZ is derived from using polynomial interpolation in the sum. Thus,

instead of exponentiating at each level, for each node x ∈ S, Lagrange polynomial

interpolation can be computed by doing multiplication in ℤ𝑁.

Now that the function DecryptNode have been defined, the decryption algorithm can be

implemented by calling the function on the root node R of T. If the tree is satisfied by S,

then set A= DecryptNode(CT, SK, R) = s. The algorithm now decrypts by computing.

 E/𝑌𝑚
𝐴 = E/𝑔𝑘ℎ𝑠 = M

5.3 Security analysis

The proposed scheme is proven secure under two assumptions, Integer Factorization

Problem (IFP) and Computational Diffie-Hellman Problem (CDHP). If the published

keys are chosen large enough as to render both problems intractable using current

65

algorithms, then the system with two secure properties will remain secure so long as at

least one of the two problems remains intractable.

The following theorem gives a lower bound on the advantage of a generic adversary in

breaking the proposed CP-ABE scheme. Let α be a union bound on the total number of

group elements it receives from queries it makes and from its interaction with the CP-

ABE security game. A random oracle model is also given to represent the hash function

H.

Theorem 4 For any adversary 𝒜 who can attack the scheme during a polynomial time,

the negligible advantage of 𝒜 in the CP-ABE security game is at most 𝒪(α2∕N).

if an adversary that acts generically on the construction underlying this scheme can break

the security of this scheme with a reasonable probability, then a stimulator ℬ can be

constructed to break the DH problem with a non-negligible advantage.

Proof. The author follows a selective-set model in [2] here.

Init The stimulator ℬ choose the attributes set S, which is the adversary 𝒜 wish to

challenge. Assume that the access tree associated with the S is Γ.

Setup The stimulator sets k co-prime to φ(N) at random from ℤ𝑁
∗ (range from 1 to N-1)

and sets public parameter 𝑒𝑖 associate with each attribute in S by choosing random

integers co-prime to φ(N). It calculates the value 𝑑𝑖 of multiplicative inverse of 𝑒𝑖. The

public key parameters R = 𝑔𝑘, 𝑒𝑖, i ∈{1, …, |S|} are assigned and sent to the challenger.

Phase1 The adversary 𝒜 makes many requests for private keys where the attributes may

be set overlap between the attributes for each requested key. When the adversary makes

its j’th key generation query for the set Sj of attributes, any value 𝑑𝑖
(𝑗)

 for every i ∈ Sj is

chosen independently at random from ℤ𝑁. In addition, when the adversary asks for the

evaluation of H hash function on any string i, a new random number is chosen from ℤ𝑁,

and the stimulation assigns a value 𝑡𝑖 as the response to H(i). Random oracle [32] are

typically used as an output of cryptographic hash functions in schemes where strong

randomness assumptions are needed.

66

 The simulator then computes Ki = H(i)∕ 𝑑𝑖 = 𝑡𝑖 ∕ 𝑑𝑖 and passes the assignments to the

adversary 𝒜.

In the key generation phase, the solution randomizes the key value 𝑑𝑖 such that they

cannot be combined. Therefore, collusion attacks will not succeed since the blinding

values have the property of strong randomness for the private key of a particular user.

Challenge The adversary will submit two messages 𝑀0, 𝑀1 ∈ ℤ𝑁, and the access tree 𝒯

to the stimulator ℬ. ℬ flips a fair binary coin ν and does the following in order to returns

an encryption of 𝑀𝑣. First, it chooses a random value s corresponding to the root node r

of 𝒯 ∈ Γ from ℤ𝑁. Thereafter, it needs to define a polynomial Qx of degree dx for each

node x in the access tree 𝒯 so as to construct the access structure for all relevant attributes.

It sets 𝑞𝑥(0) and rest of the nodes uniformly and independently at random from ℤ𝑁. In

this way, the process is performed recursively until 𝑞𝑥 are completely set up for each node

of 𝒯. Finally, the simulation chooses a random h ∈ ℤ𝑁, and built the encryption message

as E =M𝑅ℎ𝑠, Ym = 𝑔𝑘ℎ and Ei = H(i) ∙ 𝑞𝑖(0) ∙ 𝑒𝑖 for each relevant attribute i. The ciphertext

is passed to the adversary. Obviously, in order to decrypt, an attacker need recover 𝑅ℎ𝑠

blinded by some values, 𝑔𝑘ℎ and 𝑞𝑥(0). The value of 𝑞𝑥(0) need be extracted out using

polynomial interpolation if and only if the correct key component Ki of the user satisfy

the component Ei embedded in the ciphertext.

Phase 2 The simulator and the adversary acts exactly as they did in Phase 1.

Guess The adversary outputs a guess 𝜈′ of 𝜈 to the stimulator. When 𝜈 ≠ 𝜈′ , the

adversary cannot gain any information about 𝜈.

It will show that with probability of 1−𝒪(α2∕N), the simulation can be considered secure.

The adversary in turn has the advantage of at most 𝒪(α2∕N) in the game.

In the encryption, the simulator takes over the random oracle model and the random

choice of the variable values. It employs a hash function 𝐻: {0, 1}∗→ ℤ𝑁
∗ modeled as a

random oracle. The function will map any attribute described by a binary string to a

random unique group element, whose size equals the size of the RSA modulus. Random

oracles have long been considered in computational complexity theory, and many

schemes have been proven secure in the random oracle model. In general, to break the

67

random oracle assumption, attacker must discover some unknown and undesirable

property of the applied hash function, where such properties are yet believed unlikely.

Recall that the setup of access structure 𝒯, when a polynomial 𝑞𝑟 of degree dr is defined

for the root node r, the procedure chooses a random integer θ and set 𝑞𝑟(0) = θ. Then it

recursively defines polynomial 𝑞𝑥 for each node x of 𝒯 . Lagrange coefficients from

various levels of access tree are chosen uniformly at random from ℤ𝑁 in the secret way,

where 𝑞𝑥 is decided for each node x. For the adversary, final polynomial Qx(.) = y𝑞𝑥(.) is

built for each node x in the tree. Notice that this sets Qr(0) = y𝜃. The ciphertext component

Ei corresponding to each leaf node is given using its polynomial, Ei = 𝑡𝑖 ∙ 𝑞𝑥(0) ∙ 𝑒𝑖, where

i = attr(x). Ei will be a random element of ℤ𝑁 and contains no information about 𝑞𝑥(0).

Under the factoring hardness assumption and computationally hard problem, it is hard to

break Ei using known approach.

From the adversary view, an oracle query 𝑅ℎ𝑠 can be viewed as an algebraic expression

𝜈 = λμ. Let 𝜈0, 𝜈1 be two random encodings of the group ℤ𝑁. Here this paper will keep

track of two queries to illustrate an unexpected collision. When an adversary makes a

query to the group oracles, there are N distinct values in the range of both 𝜈0 and 𝜈1

corresponding to two distinct rational functions λμ, λ′μ′. Due to the random choices of

these variable’ values, a collision occurs only if λμ = λ′μ′. The probability of this event

is 𝒪(1/N). Accordingly, the same argument is then extended for a union bound. The

author can conclude that the probability that any such collision happens in this scheme is

at most 𝒪(α2∕N), as stated. The theorem 4 is proved.

5.4 Implementation

This section now discusses the implementation for the RSA-based access-tree CP-ABE

scheme. This cryptosystem is programmed with C language under Ubuntu platform. The

development mainly uses the GMP arithmetic library that is suitable for cryptography.

Additionally, few functions in PBC library are also invocated for the usage of element

operations of finite group.

Policy Tree

Each non-leaf node of the access tree is a threshold gate and the leaves are described by

a set of attributes. In this scheme, a (t, n)-Threshold gate can be simply expressed as t of

68

n, instead using complex expressions. A tree with “AND” and “OR” gates can be

represented by using respectively n of n and 1 of n threshold gates.

To handle and compile a numerical attribute “a = k”, for some n-bit integer k it can be

converted into a “bag of bits” representation described in [4], producing n (non-numerical)

attributes which specify the value of each bit in k. For instance, to describe a secret key

with the 4-bit attribute “a = 11”, this paper would instead involve such “a: 1***”, “a:

*0***”, “a: **1*”, and “a: ***1” in the key.

age:0XXXXX age:0XXXXXX age:0XXXXXXX

age:0XXXX age:X0XXX age:XX0XX age:XXXX0

Figure 19. Policy Tree for the Integer Comparison “age < 30”

The policy languages of AND and OR gates can then be used to implement integer

comparisons over such numerical attributes, as illustrated for “age < 30”in Figure 19.

The numerical comparisons are handled into their gate-level implementation. There is a

direct correspondence between the bits of the constant 30 and the choice of gates. Policies

for ≤, >, ≥, and = can be implemented in a similar way with at most n gates, or possibly

fewer depending on the value of constant.

cp-abe Toolkit

The author has developed cp-abe toolkit for the user interface that provides command line

tools. The toolkit supports the numerical values and integer range queries described as

below.

A. cp-abe-setup [OPTION ...]

Generate system parameters, a public key, and a master secret key for the use with cp-

abe-keygen, cp-abe-enc, and cp-abe-dec.

69

Output will be written to the files "pub_key" and "master_key" unless the --output-public-

key or --output-master-key options are used.

options are set.

-h, --help print this message.

-p, --output-public-key FILE write public key to FILE.

-m, --output-master-key FILE write master secret key to FILE.

-u, --universe FILE read attribute universe from FILE.

B. cp-abe-keygen [OPTION ...] PUB_KEY MASTER_KEY ATTR [ATTR ...]

Generate a key with the listed attributes using public key PUB_KEY and master secret

key MASTER_KEY. Output will be written to the file related to private key unless the -

o option is specified.

 Command-line parameters are listed below.

PUB_KEY: file for a public key

MASTER_KEY: file for a master secret key

ATTR arbitrary number of attributes string.

 Options are set.

-h, --help print this message.

-o, --output FILE write resulting key to FILE.

C. cp-abe-enc [OPTION ...] PUB_KEY FILE [POLICY]

Encrypt FILE under the decryption policy POLICY using public key. The encrypted file

will be written to FILE.cpabe unless the -o option is used.

 Command-line parameters are shown as below.

PUB_KEY: file for a public key

FILE: the original file for encryption

POLICY: attribute strings with 'and', `or', and `of' delimiter.

The keywords 'and', 'or', and 'of', are reserved for the policy language and may not be used

for either type of attribute.

70

 Options are set as.

-h, --help print this message.

-o, --output FILE write resulting key to FILE.

D. cp-abe-dec [OPTION ...] PUB_KEY PRIV_KEY FILE

Decrypt an encrypted file using a given public key PUB_KEY and private key

PRIV_KEY. The -o option specifies the name of the decrypted file. Otherwise If the name

of FILE is X.cpabe, FILE will be decrypted and removed. The decrypted file will be

written as X.

 Command-line parameters

PUB_KEY: file for a public key

PRIV_KEY: file for a user private key

 Options

-h, --help print this message.

-o, --output FILE write output to FILE.

Also, the cp-abe toolkit provides a flexible policy language to specify access policies.

These features are illustrated in the sample usage session of the following Figure 20.

Figure 20. Example Usage of the cp-abe Toolkit

In this example, two private keys are issued for both employees, “Sara” and “Carol”, with

various sets of attributes (normal and numerical) using cp-abe-keygen tool. A document

$ cp-abe-keygen -o sara_priv_key pub_key master_key \

 female it_department ‘age = 32’ ‘admin_level = 1’

$ cp-abe-keygen -o carol_priv_key pub_key master_key \

 male executive_team ‘age = 35’ ‘admin_level = 7’

$ cp-enc -o pub_key enc_report.pdf \

((executive_team or it_department) and age < 30) or

‘admin_level > 5’

71

is encrypted under a complex policy using cp-abe-enc. As demonstrated by the above

example, the police language allows the general threshold gate of the underlying scheme,

but also provides AND and OR gates for convenience. Members of the executive team or

IT department may decrypt the encrypted report if their age is less than 30. In addition to

that, anyone whose administration level is larger than 5 also can decrypt. In this case,

Carol would be able to use his key stored as carol_priv_key to decipher the enciphered

report, whereas Sara would not be able to use hers to decrypt the document.

Algorithm Description

A. Setup Algorithm

The procedure is similar to the setup algorithm in CSKCT scheme refers to Section 4.4

B. Key Generation Algorithm

Argument vector is composed of public key, master private key associated files and

attributes strings. A user secret key will be written to the file of the default name as output

unless the -o option is specified. Numerical attributes are specified as `attr = N', where N

is a non-negative integer less than 264 and `attr' is another string. The process of the key

generation is displayed in Algorithm 3 and Figure 21.

72

Algorithm 3: Setup Algorithm in Access-Tree CPABE

Procedure Tree_CPABE_keygeneration(pub_file, msk_file, user_attrs)

1 begin

2 * user_attrs ← parse_arguments()

3 pubkey ← deserialize(read_file(pub_file))

4 mskkey← deserialize(read_file(msk_file))

5 prvkey ← init_prv_params(pubkey)

6 foreach user_attrs[i] ∈ {A1···Ai} do

7 initialize(dp)

8 initialize(hash_attr)

9 initialize(invert_attr)

10 Map user_attrs[i] to element hash_attr

11 Invert hash_attr to invert_attr

12 dp ← multipy(invert_attr, prv_inverse[i])

13 Add dp to prvkey comparions structure

14 end

15 prvkeybuffer ← serialize(prvkey)

16 Write to prvkeybuffer prv_file

17 Output prv_file

18 end

Table 10. Algorithm 3 Key Generation Algorithm in Access-Tree CPABE

73

Figure 21. Step1 of Key Generation Algorithm in Access-Tree CPABE

1) The function first calls the deserialization of public key file and master secret key file

to obtain the public key and master key. Then user private key structure is allocated

and every parameter in the structure is initialized.

2) Next, each declared attribute string need be mapped to one element of the finite

group. For each attribute in the loop, Secure Hash Algorithm 1 (SHA1) hash function

is used to hash an arbitrary string to a value. The function element_from_hash is used

to generate an element e deterministically from the bytes number stored in the data

buffer. To add elements to a byte array, g_array_apend_val is used to append the

/* process 1).deserialization of public key and master secret

key file */

parse_args(argc,argv);

pub = treecpabe_pub_unserialize(suck_file(pub_file),1);

msk = treecpabe_msk_unserialize(suck_file(msk_file),1);

/* user private key structure is allocated and initialized.*/

prv = init_prv_params(pub);

/*start 2). compute private key*/

while (*user_attrs) {

 treecpabe_prv_comp_t c;

 element_t h_attr, inv;

 c.attr = *(user_attrs ++);

 element_init(c.dp, Zn);

 element_init(h_attr, Zn);

 element_init(inv, Zn);

 /* map each attribute string to one element of the finite
group */

 element_from_string(h_attr, c.attr);

 element_invert(inv, h_attr);

 element_mul_zn(c.dp, inv, msk->di[i]); /*compute k1 */

 element_clear(h_attr);

 element_clear(inv);

/*append the generated elements to bytes of array in the

key structure */

 g_array_append_val(prv->comps, c);

}

/* serialize private key, writing into the output file */

spit_file(out_file, treecpabe_prv_serialize(prv),1);

74

generated elements to the private key structure. After completing this process, the

user decryption key is then derived and serialized into the output file.

C. Encryption Algorithm

For the encryption, this paper only focuses on the encryption procedure of access policy.

The procedure of policy encryption is depicted in the following Figure 22.

procedure of access policy encryption

Le
af

Fi
ll

P
o

lic
yF

il
l

N
o

de
Fi

ll

Start

Leaf node decision?

k == 1?

PolyRand defines

polynomial

Compute process with

multiplication function

element_mul

PolyEval sets up polynomials

for each child node

Yes

End

No

attributes map to

element

Figure 22. Encryption Procedure of Policy in Access-Tree CPABE

The encryption algorithm defines the following function, namely, PolicyFill (𝕋x, γ, pub,

s) described in Figure 23.

75

Figure 23. Function for Building up an Access Tree in Access-Tree CPABE

1) This procedure sets up the polynomials for the nodes of an access subtree with

satisfied root node. The function takes an access tree 𝕋x (with root node x) as input

along with a set of attributes γ and a random integer s. It first calls the function

PolyRand(deg, zero_val) to set up a polynomial of kx-1 degree for the node x, where

kx is its threshold value. The function PolyRand sets 𝑞𝑥 (0) = s and Lagrange

coefficient of rest of the points at random to completely define 𝑞𝑥. Then for the non-

leaf nodes, the function PolicyFill calls PolyEval(𝕋x, 𝑞𝑥(index(x)) to set polynomials

for each child node x′ of x by recursively invocate the procedure PolyEval(𝕋𝑥
′ ,

/* set up the polynomials for the nodes of an access subtree

* vector p: access policy represents access tree

* pub: public key

* e: random element

*/

void PolicyFill(treecpabe_policy_t* p, treecpabe_pub_t* pub,

element_t e)

{

 /* set up a polynomial of k-1 degree for the node. set 𝑞𝑥(0) =

s and Lagrange coefficient of rest of the points at random to

completely define q */

 p->q = PolyRand(p->k - 1, e);

 if(p->children->len == 0) /* process 2 for leaf node */

 {

 element_init(p->cp, Zn);

 element_from_string(h, p->attr);

 element_mul(p->cp, h, p->q->coef[0]);

 element_mul(p->cp, p->cp, ch);

 }

 else /* process 1) for internal node */

 for(i = 0; i < p->children->len; i++)

 {

 element_set_si(r, i + 1);

 /* set polynomials for each child node

recursively */

 PolyEval(t, p->q, r);

 PolicyFill(g_ptr_array_index(p->children, i),

 pub, t);

 }

}

76

𝑞𝑥(index(x′)). Notice that in this manner, for each child 𝑞𝑥′(0) = 𝑞𝑥(index(x′) for each

child node x′ of x and the polynomial for the access tree 𝕋x is built.

2) As for the leaf node, the corresponding attribute needs to be mapped to an element

of the group using the function element_from_string. It uses SHA1 hash algorithm

to produce the hash values corresponding to the attribute strings. Every attribute

string is mapped to a 160-bit message digest stored in the data buffer. Then it

invocates the function of element_from_hash to generate an element in the group

structure deterministically from the buffer data. The addition and multiplication

functions perform addition and multiplication operations in the field group.

D. Decryption Algorithm

The decryption processing is shown in Figure 24.

77

 Procedure of access policy decryption

Sa
ti

sf
yC

h
ec

k
D

e
cr

yp
tN

o
d

e
P

ic
kM

in
Le

a
ve

s

Start

satisfiable number of nodes

== threshold value ?

Internal node recursive traversal;

compute Lagrange coefficient

node recursive traversal;A quick

sort for the children of node x;

select the satisfied minimal node

to add

Internal node recursive

traversal

No

End

Attribute string

comparison; set

satisfiable flag

Leaf node decision?

k == 1?

No

Yes

satisfiable number of nodes

== threshold value ?

Leaf node decision?

k == 1?

Set flag to the leaveYes

Yes

No

No

Leaf node decision?

k == 1?

No

DecryptLeafNode

leaf node traversing to

compute interplolation

polynomial

Return the value of

random element s
Yes

Yes

Figure 24. Decryption Procedure of Policy in Access-Tree CPABE

78

The decryption algorithm begins with a series of deserialization and initialization. In this

phase, the author only concentrates on the decryption procedure of access policy. First it

checks whether the decryption key SK satisfies the access tree Tx by the SatisfyCheck(P,

prv) function. This function is recursively run as follows, displayed in Figure 25.

Figure 25. Function for Checking the Satisfiability in Access-Tree CPABE

If x is a leaf node, perform string comparison to determine if it is satisfied. The function

sets the satisfiable flag for the leaf node if and only if the attribute string in the decryption

key is equal to that attached in this leaf node. If x is an internal node, then evaluate Tx' for

all children x' of node x. The function statistics the satisfiable number of the nodes and

/*check whether the key SK satisfies the access tree Tx

* vector p: access policy represents access tree

* prv: decryption key

*/

void SatisfyCheck (treecpabe_policy_t* p, treecpabe_prv_t* prv)

{

 if(p->children->len == 0) /* leaf node */

 {

 for(i = 0; i < prv->comps->len; i++)

if(!strcmp(g_array_index(prv->comps,

treecpabe_prv_comp_t, i).attr, p->attr))

 {

 p->satisfiable = 1;

 p->attri = i;

 break;

 }

 } else { /* internal node */

 for(i = 0; i < p->children->len; i++)

 SatisfyCheck(g_ptr_array_index(p->children,

i),prv);

 /* statistics the satisfiable number of the nodes */

 for(i = 0, l=0; i < p->children->len; i++)

if(((treecpabe_policy_t*)g_ptr_array_index(p->chi

ldren, i))->satisfiable)

 l++;

 if(l >= p->k)

 p->satisfiable = 1; /* set satisfiability */

}

79

returns 1 if and only if at least kx (threshold value) children are satisfied. Otherwise it

returns 0 and the decryption algorithm exits with prompt of that.

For the decryption algorithm, one important idea stated in [2] is to selectively tailor the

access tree relative to the ciphertext attributes before it makes cryptographic

computations. At the very least the algorithm should first discover which nodes are not

satisfied without performing cryptographic operations on them. Apart from this, the

algorithm may find out which leaf nodes should be used in order to minimize the number

of computations as follows [2].

For each node x, define a set Sx. if x is a leaf node, then Sx = {x}. For non-leaf node x, let

k be the threshold value of x. From among the child nodes of x, choose k nodes x1, x2, …,

xk such that 𝑆𝑥𝑖
 (for i = 1, 2, …, k) are first k sets of the smallest size. If x is a non-leaf

node, then Sx = {x′ : x′ ∈ 𝑆𝑥𝑖
, i=1, 2, …, k}. The set Sr corresponding to the root node r

denotes the set of leaf nodes that should be used in order to minimize the number of

computations. PickMinLeaves(𝑃γ , prv) function is designed for this process shown in

Figure 26.

80

Figure 26. Function for Picking the Minimized Node in Access-Tree CPABE

In this function, A tree policy is taken as inputs, which contains an access tree 𝕋 with root

r and a set of attributes γ satisfies it. Let S be a subset of the nodes in an access tree 𝕋.

This function is to pick a set S such that the number of leaves in s is minimized. In other

words, no internal node has more children than its threshold k. This is easily accomplished

with a recursive algorithm that makes a single traversal of the tree.

/* find out k sets of the smallest size satisfies the access tree Tx

* vector p: access policy represents access tree

* prv: decryption key

*/

void PickMinLeaves (treecpabe_policy_t* p, treecpabe_prv_t* prv)

{

 if(p->children->len == 0) /* leaf node */

 {

 p->min_leaves = 1;

 } else { /* recursively make a traversal of internal node */

 for(i = 0; i < p->children->len; i++)

 if(((treecpabe_policy_t*)g

_ptr_array_index(p->children, i))->satisfiable)

 PickMinLeaves (g_ptr_array_index(p->children, i),

 prv);

 qsort(c, p->children->len, sizeof(int), leaves_cmp_int);

 p->satl = g_array_new(0, 0, sizeof(int));

 for(i = 0,l = 0; i < p->children->len && l < p->k; i++)

 if(((treecpabe_policy_t*) g_ptr_array_index(p->children,

c[i]))->satisfiable)

 {

 l++;

p->min_leaves += ((treecpabe_policy_t*)

g_ptr_array_index(p->children, c[i]))->min_leaves;

 k = c[i] + 1;

 g_array_append_val(p->satl, k);

 }

}

}

81

As shown in Figure 27, the decryption algorithm proceeds by simply calling a recursive

function DecryptNode defined in section 5.2.

Figure 27. Function for decryption of the nodes in Access-Tree CPABE

If x is a non-leaf node, the algorithm DecryptNode then proceeds as follows: For all nodes

z that are children of x, it computes the Lagrange coefficient ∆𝑖,𝑆 for i ∈ ℤ𝑛 and a set s of

elements in ℤ𝑛 as ∆𝑖,𝑆(x) = ∏
𝑥−𝑗

𝑖−𝑗𝑗∈𝑆,𝑗≠𝑖 . Then, we have ∆𝑖,𝑠𝑧
(0) = ∏

−𝑗

𝑖−𝑗𝑗∈𝑆,𝑗≠𝑖 according

to definition, and recursively call DecryptNode to make a traversal of children node.

Now consider the recursive case when the node x is a leaf node, it executes the function

DecryptLeafNode to compute interpolation polynomial and stores the result in the sum.

In the end, it returns the sum as output, which is the value of random element s by using

polynomial interpolation. Since E = M𝑌𝑚
𝑠 , the decryption algorithm simply divides out

𝑌𝑚
𝑠 and recovers the message M.

void DecryptNode (element_t r, element_t exp,

 treecpabe_policy_t* p, treecpabe_prv_t* prv)

{

 if(p->children->len == 0)

 DecryptLeafNode (r, exp, p, prv);

 else

 DecryptInternalNode (r, exp, p, prv);

}

void DecryptInternalNode (element_t r, element_t exp,

 treecpabe_policy_t* p, treecpabe_prv_t* prv)

{

 for(i = 0; i < p->satl->len; i++)

 {

 /* computes the Lagrange coefficient ∆𝑖,𝑆 */

 lagrange_coef(t, p->satl, g_array_index(p->satl,

int, i));

 element_mul(expnew, exp, t); /* num_muls++; */

 /* recursively call to pass through all children*/

 DecryptNode (r, expnew, g_ptr_array_index

 (p->children, g_array_index(p->satl, int, i)-1), prv);

 }

}

82

5.5 Evaluation

This paper now considers the efficiency of this scheme in terms of ciphertext size, private

key size, and computation time for decryption and encryption. Both storage cost and

computational cost are taken into account.

Storage cost

The public parameter and master secret parameter in the system will be of size linear with

the number of attributes defined by the universe. The storage cost on these parameters

grows linearly depending on the number of attributes in the universe.

User’s private key will consist of a group element associated with every attribute.

Accordingly, user’s private key in size grows linearly with the size of the attributes set

used to identify this user. The total number of group elements that compose a user’s

private key may be more than the number of attributes in the ciphertext.

 The ciphertext overhead will be approximately one group element for every leaf in the

access tree. Finally, the size of a ciphertext grows linearly with the number of leaf nodes

in the access tree.

Computational Cost

This evaluation experiment was performed by using a workstation with Ubuntu 16.04.09

on Intel Core Xeon(R) CPU E5 and 1GB memory. The details of execution setting refer

to Table 6 in section 4.5. In performance measurement, BSW scheme that is an ECC

based public key cryptosystem using PBC with a fast curve over 512-bits cyclic group is

compared with the RSA-based access-tree CP-ABE encryption system. Both systems are

based on comparable monotone tree access structure. A series operation of encryption

conducted on both schemes to produce the running time displayed in TABLE 11, and the

increasing tendency of encryption time with respect to number of attributes is shown in

Figure 28.

83

Table 11. Observation of Encryption Time Depending on the Number of Attributes

Figure 28. the Trend of Encryption Time Depending on the Attributes

As expected, the encryption execution of this scheme takes a particularly small amount

of time and grows slightly with the number of attributes. Encryption in this system is

significantly efficient than that in the CP-ABE cryptosystem based on bilinear pairing of

ECC.

 The time to encrypt is also precisely linear with respect to the number of leaf nodes in

the access policy but remains much slower increase than that of BSW scheme. This is

because polynomial operations on the tree in this scheme amount to a modest number of

multiplications and do not significantly contribute to the running time. Through the

evaluation, this proposed scheme is quite feasible for even the larger system instances.

82.56

137.51

202.83

269.11

337.17

4.75 5.75 6.78 8.27 9.95

0

50

100

150

200

250

300

350

400

3 6 9 12 15

en
cr

y
p

ti
o
n

 t
im

e
(m

s)

Number of Attributes

Trend of Encryption Time

ECC(512-bits group) Our(1024-bits group)

 Number of Attributes

 Scheme 3 6 9 12 15

ECC(512-bits group) 82.56 137.51 202.83 269.11 337.17

Our(1024-bits group) 4.75 5.75 6.78 8.27 9.95

84

5.6 Discussion

To the best of our knowledge, this scheme is the first attempt to design such a new

lightweight CP-ABE system on access-tree structure using RSA. In the future, it would

be appealing to consider that access-tree CP-ABE systems will provide more familiar

language of expression with which to specify different forms of policy such that more

complex and flexible applications could be created.

85

Chapter 6
Conclusion

IoT is a recent widespread paradigm which comprises of various smart devices

interconnected over the internet. As they require the frequent communication of sensitive

information, the privacy and security of IoT are of great importance. Presently, IoT

technology draws many research attentions on its security. Lightweight security

technique is of the best choice to the lightweight encryption system which aims to achieve

the practicality and feasibility for IoT.

This thesis presents two novel lightweight RSA-based CP-ABE encryption schemes. The

first proposed construction can be viewed as an extension of the previous techniques,

further provide an efficient CP-ABE cryptosystem with constant-sizes keys and

ciphertexts, regardless of the number of attributes. To gain more efficient, the encryption

algorithm is simplified so as to reduce the complexity of computation. The thesis also

demonstrates its implementation, as well as proves the model of security against attacks.

As regards the evaluation results, as expected, the decryption key is mainly composed of

one group elements only and the size is constant with 1024 bits each under 80-bit security

requirement. The scheme has lightweight property appropriate for IoT.

Apparently, the AND-gate access structure of this primitive is lack of flexibility on the

expression, seems to limit its applicability to larger systems. For the enforcement of

comprehensive access control in some particular cases, again the author developed an

RSA-based Access-Tree CP-ABE Scheme on generic access structure. The second result

has a certain value as a heuristic work on the complex access model. The performance

evaluation shows that the CP-ABE system based on no-pairing RSA is significantly

efficient than other CP-ABE cryptosystem based on bilinear pairing of ECC.

These results suggest that the systems using public key encryption at sensors are feasible.

The first scheme has the lightweight property on storage and computational overhead; the

second one can achieve greater efficiency in the IoT scenarios where flexible access

policies need be set.

86

87

References or Bibliography

[1] Bhardwaj, I., Kumar, A., & Bansal, M. (2017, September). A review on lightweight

cryptography algorithms for data security and authentication in IoTs. In Signal

Processing, Computing and Control (ISPCC), 2017 4th International Conference

on(pp. 504-509). IEEE.

[2] Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006, October). Attribute-based

encryption for fine-grained access control of encrypted data. In Proceedings of the

13th ACM conference on Computer and communications security (pp. 89-98). Acm.

[3] Sahai, A., & Waters, B. (2005, May). Fuzzy identity-based encryption. In Annual

International Conference on the Theory and Applications of Cryptographic

Techniques (pp. 457-473). Springer, Berlin, Heidelberg.

[4] Bethencourt, J., Sahai, A., & Waters, B. (2007, May). Ciphertext-policy attribute-

based encryption. In Security and Privacy, 2007. SP'07. IEEE Symposium on (pp.

321-334). IEEE.

[5] Odelu, V., Das, A. K., Khan, M. K., Choo, K. K. R., & Jo, M. (2017). Expressive CP-

ABE scheme for mobile devices in IoT satisfying constant-size keys and

ciphertexts. IEEE Access, 5, 3273-3283.

[6] Yang, Y., Lu, J., Choo, K. K. R., & Liu, J. K. (2015, September). On lightweight

security enforcement in cyber-physical systems. In International Workshop on

Lightweight Cryptography for Security and Privacy (pp. 97-112). Springer, Cham.

[7] Emura, K., Miyaji, A., Nomura, A., Omote, K., & Soshi, M. (2009, April). A

ciphertext-policy attribute-based encryption scheme with constant ciphertext length.

In International Conference on Information Security Practice and Experience(pp. 13-

23). Springer, Berlin, Heidelberg.

[8] Zhou, Z., Huang, D., & Wang, Z. (2015). Efficient privacy-preserving ciphertext-

policy attribute based-encryption and broadcast encryption. IEEE Transactions on

Computers, 64(1), 126-138.

[9] Ge, A., Zhang, R., Chen, C., Ma, C., & Zhang, Z. (2012, July). Threshold ciphertext

policy attribute-based encryption with constant size ciphertexts. In Australasian

88

Conference on Information Security and Privacy (pp. 336-349). Springer, Berlin,

Heidelberg.

[10] Doshi, N., & Jinwala, D. C. (2014). Fully secure ciphertext policy attribute‐based

encryption with constant length ciphertext and faster decryption. Security and

Communication Networks, 7(11), 1988-2002.

[11] Zhang, Y., Zheng, D., Chen, X., Li, J., & Li, H. (2014, October). Computationally

efficient ciphertext-policy attribute-based encryption with constant-size ciphertexts.

In International Conference on Provable Security (pp. 259-273). Springer, Cham.

[12] Cheung, L., & Newport, C. (2007, October). Provably secure ciphertext policy ABE.

In Proceedings of the 14th ACM conference on Computer and communications

security (pp. 456-465). ACM.

[13] Guo, F., Mu, Y., Susilo, W., Wong, D. S., & Varadharajan, V. (2014). CP-ABE with

constant-size keys for lightweight devices. IEEE transactions on information

forensics and security, 9(5), 763-771.

[14] Odelu, V., Das, A. K., Rao, Y. S., Kumari, S., Khan, M. K., & Choo, K. K. R.

(2017). Pairing-based CP-ABE with constant-size ciphertexts and secret keys for

cloud environment. Computer Standards & Interfaces, 54, 3-9.

[15] Salomaa, A. (2013). Public-key cryptography. Springer Science & Business Media.

[16] Ning, H., Liu, H., & Yang, L. (2013). Cyber-entity security in the Internet of

things. Computer, 1.

[17] Agrawal, M., & Mishra, P. (2012). A comparative survey on symmetric key

encryption techniques. International Journal on Computer Science and

Engineering, 4(5), 877.

[18] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., & Waters, B. (2010, May). Fully

secure functional encryption: Attribute-based encryption and (hierarchical) inner

product encryption. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques (pp. 62-91). Springer, Berlin, Heidelberg.

89

[19] Simmons, G. J. (1979). Symmetric and asymmetric encryption. ACM Computing

Surveys (CSUR), 11(4), 305-330.

[20] Hofheinz, D., & Kiltz, E. (2007, August). Secure hybrid encryption from weakened

key encapsulation. In Annual International Cryptology Conference (pp. 553-571).

Springer, Berlin, Heidelberg.

[21] Beimel, A. (1996). Secure schemes for secret sharing and key distribution.

Technion-Israel Institute of technology, Faculty of computer science.

[22] Yao, X., Chen, Z., & Tian, Y. (2015). A lightweight attribute-based encryption

scheme for the Internet of Things. Future Generation Computer Systems, 49, 104-

112.

[23] Oualha, N., & Nguyen, K. T. (2016, August). Lightweight attribute-based encryption

for the internet of things. In Computer Communication and Networks (ICCCN),

2016 25th International Conference on (pp. 1-6). IEEE.

[24] Pirretti, M., Traynor, P., McDaniel, P., & Waters, B. (2010). Secure attribute-based

systems. Journal of Computer Security, 18(5), 799-837.

[25] Cao, Zhengjun, and Lihua Liu. "On the Disadvantages of Pairing-based

Cryptography." IACR Cryptology ePrint Archive2015 (2015): 84.

[26] Waters, B. (2011, March). Ciphertext-policy attribute-based encryption: An

expressive, efficient, and provably secure realization. In International Workshop

on Public Key Cryptography (pp. 53-70). Springer, Berlin, Heidelberg.

[27] Lynn, B. (2007). On the implementation of pairing-based cryptosystems (Doctoral

dissertation, Stanford University).

[28] Akl, S. G., & Taylor, P. D. (1983). Cryptographic solution to a problem of access

control in a hierarchy. ACM Transactions on Computer Systems (TOCS), 1(3), 239-

248.

[29] McCurley, K. S. (1988). A key distribution system equivalent to factoring. Journal

of cryptology, 1(2), 95-105.

90

[30] Hofheinz, D., & Kiltz, E. (2009, April). Practical chosen ciphertext secure encryption

from factoring. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques (pp. 313-332). Springer, Berlin, Heidelberg.

[31] Guo, F., Mu, Y., Susilo, W., Wong, D. S., & Varadharajan, V. (2014). CP-ABE with

constant-size keys for lightweight devices. IEEE transactions on information

forensics and security, 9(5), 763-771.

[32] Koblitz, N., & Menezes, A. J. (2015). The random oracle model: a twenty-year

retrospective. Designs, Codes and Cryptography, 77(2-3), 587-610.

[33] Zhou, Z., & Huang, D. (2010, October). On efficient ciphertext-policy attribute

based encryption and broadcast encryption. In Proceedings of the 17th ACM

conference on Computer and communications security (pp. 753-755). ACM.

[34] Berrut, J. P., & Trefethen, L. N. (2004). Barycentric lagrange interpolation. SIAM

review, 46(3), 501-517.

[35] Koblitz, N., Menezes, A., & Vanstone, S. (2000). The state of elliptic curve

cryptography. Designs, codes and cryptography, 19(2-3), 173-193.

[36] Galbraith, S. D. (2012). Mathematics of public key cryptography. Cambridge

University Press.

[37] Katz, J., Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook

of applied cryptography. CRC press.

[38] Kaliski, B., & Staddon, J. (1998). PKCS# 1: RSA cryptography specifications

version 2.0 (No. RFC 2437).

[39] Bethencourt, J., Sahai, A., & Waters, B. (2013). Advanced crypto software

collection. The cpabe toolkit, http://acsc. cs. utexas. edu/cpabe.

[40] Lynn, B. (2010). The pairing-based cryptography (PBC) library,

http://crypto.stanford.edu/pbc/

91

[41] Miller, V. S. (1985, August). Use of elliptic curves in cryptography. In Conference

on the theory and application of cryptographic techniques (pp. 417-426). Springer,

Berlin, Heidelberg.

[42] Boneh, D., Lynn, B., & Shacham, H. (2001, December). Short signatures from the

Weil pairing. In International Conference on the Theory and Application of

Cryptology and Information Security (pp. 514-532). Springer, Berlin, Heidelberg.

[43] Granlund, T. (1991). GMP, the GNU multiple precision arithmetic library.

92

Appendix 1. List of Abbreviations

ABE Attribute-Based Encryption

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CCA Chosen Ciphertext Attack

CDH Computational Diffie-Hellman

CDHP Computational Diffie-Hellman Problem

CP-ABE Ciphertext-Policy Attribute-Based Encryption

CPABE-CSKCT CP-ABE with Constant-size Keys and Ciphertexts

CRT Chinese Remainder Theorem

DES Data Encryption Standard

DHP Diffie–Hellman Problem

DOS Denial of Service Attack

ECC Elliptic Curve Cryptography

ECDL Elliptic Curve Discrete Logarithms

GMP GNU Multiple Precision arithmetic library

HIBE Hierarchical Identity-Based Encryption

IBE Identity-Based Encryption

IF Integer Factorization

IFP Integer Factorization Problem

IoT Internet of Things

KP-ABE Key-Policy Attribute-Based Encryption

LSSS Linear Secret-Sharing Schemes

PBC Pairing-Based Cryptography

93

RFID Radio Frequency Identification

RSA Rivest–Shamir–Adleman

SHA1 Secure Hash Algorithm 1

SSS Secret-Sharing Schemes

