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Abstract

Modelling of volcanic ashfall has been attempted by volcanologists but very little
work has been done by mathematicians. In this thesis we show that mathematical
models can accurately describe the distribution of particulate materials that fall to
the ground following an eruption. We also report on the development and analysis
of mathematical models to calculate the ash concentration in the atmosphere during
ashfall after eruptions. Some of these models have analytical solutions.

The mathematical models reported on in this thesis not only describe the distribution
of ashfall on the ground but are also able to take into account the effect of variation
of wind direction with elevation. In order to model the complexity of the atmospheric
flow, the atmosphere is divided into horizontal layers. Each layer moves steadily and
parallel to the ground: the wind velocity components, particle settling speed and dis-
persion coeflicients are assumed constant within each layer but may differ from layer
to layer. This allows for elevation-dependent wind and turbulence profiles, as well as
changing particle settling speeds, the last allowing the effects of the agglomeration of
particles to be taken into account.
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Chapter 1

INTRODUCTION

modelling of volcanic ashfall is a process
so is life

the process of life

measures your sensitiveness and feelings

1.1 Volcanic activity in New Zealand

New Zealand is characterised by both a high density of active volcanoes and a high
frequency of eruptions compared with the rest of the world. To date, most of the
volcanic activity in New Zealand has occurred on the North Island. There are 48
volcanoes in the city of Auckland alone; luckily they are dormant. However, there are
three volcanoes (Ruapehu, Ngauruhoe and White Island) that are currently active in
New Zealand. Mount Tarawera, Tongariro, Mount Taranaki and Rangitoto are classed
as dormant, although still considered to be eventual hazards. Volcanic activity in the
Auckland area commenced around 150,000 years ago. Rangitoto was the last major
eruption, taking place just 600 years ago [42].

In the past many lives have been lost in New Zealand due to volcanic eruptions
(for example, in the 1886 eruption of Mount Tarawera, about 150 lives were lost).
Besides the threat to life and property, the economic development of the country is
also affected by volcanic eruptions. In the article “Under the volcanoes” [19] it is
stated that the eruption of Mount Ruapehu, from 1995 to 1996, cost New Zealand at
least $130 million.

There are 1500 potentially active volcanoes on Earth including New Zealand [45].
According to the report, “Space Volcano Observatory” [9], a third of them have been
active in the last century, seventy are currently erupting, and about 30,000 people
have died from volcanic eruptions in the past 50 years. It has been estimated that
ten percent of the world population are living in areas close enough to volcanoes that



they may be affected by eruptions.

1.2 General Review

According to Sparks et al. [46], volcanic plumes are key features of explosive volcanism
on Earth as they hold the potential for producing global environmental effects. Large-
scale explosive eruptions can inject massive quantities of particles and gases into the
atmosphere. The particles are basically fine-grained pyroclastic material composed
of tiny particles of solidified molten rock [51].

1.2.1 Physical nature of volcanoes

There are basically two types of volcanoes: shield volcanoes (e.g. Iceland, Hawaii
and Mount Etna) and strato (or composite) volcanoes (e.g. Mount St Helens, Mount
Shasta, Stromboli, Vesuvio and Fujiyama) [32].

- Shield volcanoes are much wider than they are high and the slope angle is often
less than 5°. The volcanoes are formed when the erupting lava has extremely low
viscosity and typically for enduring effusive volcanism.

- Strato (or composite) volcanoes are typically only a few times wider than high and
the slope angle is often much larger than 5°, sometimes reaching 35°. The volcanoes
are typically composed of alternating layers of lava and tephra (ejecta) indicating
alternating effusive and explosive activity.

1.2.2 Eruption styles
Eruption styles can be classified as Icelandic, Hawaiian, Strombolian, Vulcanian,

Plinian, Caldera and Phreatic [32] [46].

- Icelandic has large amounts of very low-viscosity lava is non-explosive and forms
plateaus.

- Hawaiian has low-viscosity lava is non-explosive and forms shield volcanoes.

- Strombolian has relatively small amounts of moderately high-viscosity lava and is
usually peaceful. It forms scoria or cinder cones.

- Vulcanian has high-viscosity lava, moderately violent eruptions, moderately high-
volatile content and moderately large eruption cloud.

- Plinian has very high-viscosity lava, violent eruptions, very high-volatile content
shoots tephra high into atmosphere, and has pyroclastic lows. Tephra alternating
with lava flows form strato-volcanoes.



- Calderas form after large amounts of magma have escaped from the magma chamber
and there is roof collapse due to loss of support.

- Phreatic is phreatomagmatic and hydrovolcanic; from Greek “phrear” for well. Wa-
ter interacts with lava to form vigorous eruptions.

In this thesis, eruptions which eject rock particles high into the atmosphere are mod-
elled. These eruptions would typically be classified as Vulcanian and Plinian according
to the list above. It is modelling the eventual deposition on the ground of these small
particles (volcanic ash) which is the main interest of this study.

1.2.3 Ashfall

According to Cox [18], volcanic eruptions vary from gentle to violent, depending on
the amount of gas in the magma. Ashfall is one of the main volcanic hazards to
communities located in volcanic regions. During volcanic eruptions, ash is carried
upward in volcanic plumes from heights of a few kilometers to a few tens of kilome-
ters above the volcano vent, and this material settles through and is dispersed by
the atmosphere. Within tens of kilometers of volcanic vents, accumulation can be
sufficient to completely devastate property. Column heights of buoyant plume ash
eruptions are typically in the range 1-30 km, with ash volumes of 0.5-500 km?3 and
areas of ashfall of 0.0005-20,000 km?, depending upon the scale of the eruption.

Many ash dispersion and deposit models rely on some modelling of the volcanic plume,
or eruption column, to simplify forecasts of ashfall accumulation as a function of
distance from the volcano. In this thesis, we develop solutions to model a variety
of source shapes, including a point source, a horizontal line source, a vertical line
source, a rectangle source and a circle source, and report the differences between
the deposits produced by these different source shapes. Each of these source shapes
may be related to some volcano plume structure, such as a strong plume (vertical
line source), umbrella cloud (circle source), or co-ignimbrite plume (horizontal line
source), or can be used to build a more complex plume structure (e.g. a series of circles
to represent a buoyant weak plume). The details for modelling different shapes of
source are presented in Chapter 4.

1.2.4 'Why model volcanic ashfall?

An erupting volcano ejects rock fragments into the atmosphere and further fragmen-
tation produces small ash particles. The falling ash is a hazard within the air as well
as causing destruction and pollution when it settles on the ground. Besides aircraft,
ash may also disrupt electricity and telephone networks [13]. Volcanic ash can travel
hundreds to thousands of kilometres, the distance travelled depending on its size,
the strength of the eruption and the physical condition of the atmosphere during the
eruption.



Figure 1.1 illustrates the importance of modelling volcanic ashfall. It shows a heli-
copter struggling through ash while landing in a devastated area. Though the ash is
microscopic it can be seen from Figure 1.1 that it poses a hazard to aircraft—the ash
is fine enough to penetrate the engines of aircraft and cause damage. A mathemati-
cal model may produce hazard maps, which indicate areas which will be affected by
ashfall.

Figure 1.1: A helicopter stirs up ash while trying to land in a devastated area. (Picture
from http://vulcan.wr.usgs.gov/Glossary/Tephra/description_tephra.html.)

This thesis develops mathematical models of ashfall to help volcanologists produce
better hazard maps more efficiently. It aims to develop models of the motion of the
fine ash highlighted by the box in Figure 1.2. Because fine ash can be carried by wind
over very long distances, it is important to know where it will be deposited in order
to warn the public in the affected area. The models developed in this research can
be used to determine the areas that would be covered by ash after an eruption.

1.3 Why mathematical models?

Suzuki [49] acknowledges that the mass of erupted material and thickness of tephra
fallout are primary factors in understanding volcanic eruptions. Moreover, he claims



Figure 1.2: Mount Ruapehu erupting in 1996. (Picture taken from
http://www.toursnz.com/nz/image/mtrua0l.jpg.)

that there is no general theoretical basis for modelling fallout so his formulas for mod-
elling eruptions were deduced from isopach/contour lines. Meteorological measure-
ments were used, along with his model, to determine the characteristics of eruption
patterns in order to predict the occurrence of the next eruption.

Although there are numerous approaches to modelling volcanic eruptions, Connor et
al. [15] have pointed out that mathematical models have the advantage of describing
the complex transport of particles explicitly. Consequently, mathematical models can
help to produce better hazard maps. The advection-dispersion equation for modelling
volcanic ashfall in this research is derived from the equation of conservation of mass.
This equation is described in Chapter 2.

1.4 Some Existing Models

Currently there are no detailed models for describing volcanic ashfall that have an-
alytic solutions. The existing models all require numerical solutions. Some existing
models are ASHFALL [25] [26] [27], the Calpuff model [4], the Connor et al. model



[17) and HAZMAP [7]. They all model volcanic ashfall from an instantaneous point
release. These models forecast ashfall accumulation on the ground for civil protection
purposes, such as giving public warnings and planning mitigation measures.

e ASHFALL was developed by Hurst et al. [25] [26] [27] based on the study of the
Pisa two-dimensional program by Armienti et al. [1] and Macedonio et al. [35]
[36]. It was developed to assess the ashfall hazard from Mount Ruapehu in New
Zealand, specifically to calculate the thickness of the ash. It uses wind speed
and direction at different levels and times along with volcanological information
such as the total volume of ashfall and distribution of fall velocities to calculate
the distribution of ashfall. The model was developed numerically and considers
particles smaller than a centimetre in diameter. The model does not allow for
the settling speed to vary with elevation.

Hurst et al. [26] claim that ASHFALL is a more realistic model than the Pisa
two-dimensional program [1] [35] [36] as it can take into account wind speed at
different heights and can quickly predict where and with what volume the ash
would fall for a volcanic eruption. Hurst et al. also claim that ASHFALL was
a better model than that of Glaze et al. [22] as Glaze et al. only modelled a
single wind pattern. On the other hand, Hurst et al. conceded that their model
has accuracy limitations. In the paper by Turner [27], the author highlights
that the accuracy of the prevailing wind direction is important as it affects the
distribution of ash predicted by ASHFALL.

e The Calpuff model [4] is a Lagrangian dispersion model that is used to simulate
the release of particulate materials and their transport in the atmosphere. Ac-
cording to one of the team members in the Calpuff project, Augusto Neri (pers.
comm.), the team are in the process of improving the model; the original code
assumed that the mixture emitted is composed only of gases obeying the ideal
gas law. The effectiveness of this model is still unknown at the time of writing
this thesis.

e Connor et al. [17] used an advection-dispersion model which was based on
Suzuki’s model [49]. To address the limitation of the long computation time
required for Suzuki’s model, the model simplified the atmospheric conditions in
several ways: the winds were assumed uniform with respect to height above the
volcanic vent and particle motion in the column was treated probabilistically
rather than deterministically. The resulting code was used to compile hazard
curves and hazard maps for the Cerro Negro volcano, Nicaragua [15] [23].

e HAZMAP [7] was developed as part of the emergency response programme for
the effects of volcanic ash. It was to test on the eruption of Soufriere Hills
Volcano from 1995 to 1999. The model is numerical. It models the dispersion
of the volcanic plume and the deposition of ash. The model was based on the
theory of Armienti et al. [1] and Macedonio et al. [36]. It was reported that
the predictions of HAZMAP are in good agreement with field data. However,



the model does not take into account the change in dispersion with respect to
elevation.

There are some assumptions that are common to the models ASHFALL [26] and
HAZMAP [7]. The vertical dispersion coefficient is assumed to be negligible, as
the vertical dispersion is small above 500 metres, and the horizontal dispersion was
considered isotropic and constant.

1.5 Purpose

Why our models?

The development of the advection-dispersion models discussed above required com-
putation and extensive programming knowledge. The process of volcanology is un-
doubtly very complex, however, despite its complexity we believe that mathematical
techniques and tools are able to capture and model these complicated processes.

The modelling of volcanic ashfall has been attempted by many volcanologists. All
used geological processes to explain the cause of volcanic activity. Koyaguchi [30]
observes that it is difficult to estimate the total amount of ejecta using geological
methods because fine particles are likely to be dispersed in the atmosphere and can-
not be accounted for in local deposits. Technically, the description of transport and
dispersion of ash particles should be modelled using mechanics and fluid dynamics.
Geologists have a good understanding of the deposition of large particles from an
ash cloud, however, the behaviour of fine ash particles is less well understood. This
is why Sparks [47] recognises that modelling of volcanic ashfall requires the collabo-
ration of applied mathematicians and earth scientists. Modelling of ashfall requires
understanding from many disciplines.

Similar to the existing models mentioned above, our models calculate the ash deposit
on the ground. Two kinds of atmosphere models are considered in the development
of our theory:

e Uniform atmosphere which assumes the parameters describing the atmosphere
are uniform throughout the process of ashfall;

e Layered atmosphere which assumes the parameters describing the atmosphere
are not uniform throughout the process of ashfall.

The rationale for this thesis is to extend the modelling of volcanic ashfall by using
simple and efficient mathematical models. We aim to develop simple deterministic
mathematical models which enable the effect of parameter variation to be explored
more readily.



Our models allow for the settling speed to change during the process of ashfall (unlike
the model ASHFALL [26]), take into account the expected changes in wind pattern
(which Connor et al. [15] do not consider) and take into account the expected change
in dispersion (assumed constant in HAZMAP [7]).

Figures 1.3 and 1.4 demonstrate the two kinds of atmosphere which are used in this
thesis. In a uniform atmosphere (Figure 1.3), the parameters are assumed constant
throughout the process of ashfall. A layered atmosphere model (Figure 1.4) is more
realistic as it allows the parameters to change with elevation in atmospheric condi-
tions, i.e. wind speed, settling speed and dispersion. In each horizontal layer there
may be a different wind speed or direction. The pattern and distribution of the ash
depends very much on the physical conditions of the atmosphere during the ashfall.
Holasek et al. [24] point out that the ash distribution is controlled by wind dispersal
and gravitational settling.

Release at (X, Y, H) Q release height z=H

Ground, z= 0 e TR s, b 2

Figure 1.3: A schematic of a uniform atmosphere.

1.6 Problem

A difficulty encountered in this thesis was obtaining real eruption data. Most vol-
canologists are quite reluctant to share their data. Dr Augusto Neri of the National
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Figure 1.4: A schematic of a layered atmosphere.

Institute of Geophysics and Volcanology (Istituto Nazionale di Geofisica e Vulcanolo-
gia) in Italy and Dr Henry Gaudru of the United Nations (the International Strategy
for Disasters Reduction (ISDR) adviser for volcanic risk mitigation) commented that
people who compiled eruption data are usually unwilling to share their data (pers.
comm.).

Due to the paucity of observational data from volcanologists, we found it very difficult
to test the models developed in this thesis. Some assumptions had to be made in order
to test our models. Fortunately, Prof. Chuck Connor of the Department of Geology
at the University of South Florida provided some data (Table 1.1) (pers. comm.).
Unfortunately, this data can only be used in our uniform atmosphere models. In
order to apply it to our layered atmosphere models we used his data to estimate the
required parameters (Table 1.2).



Table 1.1: Data of 1992 eruption of Cerro Negro Volcano, Nicaragua (from Prof. Chuck
Connor of the Department of Geology at the University of South Florida).

Parameter | Xo | Yo | H Q B LV YS N Dy N
Value 0 [ 07500251010 0] 1/]800] O

Table 1.2: Data used for some plots on layered atmosphere models.

Parameter Layer 1 | Layer 2 | Layer 3 | Layer 4

Xo 0

YO 0

H 7500

Q 285107

U 10 —10 10 —10
V 0 0 0 0

5 1 1 1 1

Dy, 800 800 800 800
by 0 0 0 0

1.7 Overview of the Thesis

Of the models discussed in Section 1.2, ASHFALL [25] [26] [27] is unable to take
into account any change in settling speed during the process of ashfall; Connor et
al. [17] do not consider any physical change in the atmosphere during the process of
ashfall and HAZMAP [7] does not allow for change in dispersion during the process
of ashfall. These are the areas which we address in this thesis.

The models developed in this thesis are based on ashfall from a point release, i.e. the
release source is a single point. Our research is mainly on modelling the consequent
distribution of ashfall on the ground and to obtain solutions that show the distribution
pattern of ashfall. As mentioned, this thesis uses two approaches for the modelling of
volcanic ashfall. One assumes a uniform atmosphere while the other assumes a layered
atmosphere. The dispersion and wind speed are assumed constant throughout the
ashfall in a uniform atmosphere whereas we allow for changes in dispersion, wind
velocity or settling speed with respect to height during the process of ashfall in a
layered atmosphere model.

The objective of this thesis is to develop three-dimensional models to calculate the
concentration of ash in the atmosphere as a function of time and to calculate the
deposit of ash on the ground for a three-dimensional atmosphere. We also make
every possible effort to solve the models analytically.
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This thesis reports on the development and analysis of our models. Chapters 2 and
3 describe the development of models using a uniform and a layered atmosphere,
respectively. Chapters 4 and 5 report on the analyses of deposits and parameters in
the advection-dispersion equation, respectively. Some work done on the estimation
of parameters of ashfall is discussed in Chapter 6. Finally Chapter 7 summarises the
thesis and gives conclusions and suggestions for future work. Some derivations and
proofs required in the development of our models are presented in the Appendices.
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Chapter 2

UNIFORM ATMOSPHERE
MODELS

uniform pattern may be dull or simple
but it is a base to explore

What is a uniform atmosphere model?

In a uniform atmosphere model, the atmospheric parameters (wind speeds, settling
speed, dispersion tensors) are assumed uniform throughout the process of ashfall. A
schematic of a uniform atmosphere is shown in Figure 1.3.

Although the preliminary aim is to model volcanic ashfall in a three-dimensional
atmosphere, some one- and two-dimensional models are investigated.

Four cases involving uniform atmosphere models are considered:
Case A - instantaneous release in the whole three-dimensional space;

Case B - instantaneous release in a three-dimensional half space bounded below by
the ground;

Case C - steady release in the whole three-dimensional space;
Case D - steady release in half space.

Practically, it is more realistic to model volcanic ashfall in the half space for 0 < z <
oo (z is the vertical axis in a three-dimensional Cartesian coordinate system, where
the = — y plane is horizontal) because the ground is usually set at z = 0. However, it
is not always possible to solve the advection-dispersion equation analytically on the
domain 0 < z < oo. Zoppou et al. [57] pointed that very few analytical solutions
have been found for the advection-dispersion equation and the analytical solutions
found are subject to various boundary conditions.

12



2.1 Modelling

The deposit of ashfall from volcanic eruptions, pollen distribution by the wind, seabed
contamination by dumping, and environmental pollution through airborne contam-
inants (solid or gaseous) can all be described by mathematical models which com-
bine advection and dispersion. The description that follows is set in the context of
volcanically-erupted ash (small rock particles), the analysis is the same for various
other air-borne or water-transported particles [39].

This thesis deals with heavier-than-fluid releases. It includes discussion of sample
results calculated from advection-dispersion models which take account of lateral
drift caused by the wind, settling of the released particles and turbulence in the
atmosphere.

At present, the accuracy of predictions are restricted by simplifying assumptions
about the wind velocity and dispersion coefficients which represent the air turbulence.
In practice, the precision will also be constrained by the inherent variability between
similar releases due to turbulent dispersion. The models in this thesis aim to recreate
a typical event (such aspects of variability have been explored in [50]).

The physical processes affecting the distribution of eruption materials are very com-
plicated and some simplification within the models is necessary. Some of the main
features captured by the models are [39]:

e At a given height, the wind is uniform in speed and direction, the settling speed
for any given particle is constant and the turbulence length scales are uniform.

@ The ground or bed surface is approximately horizontal - it is assumed that the
fluid flow is parallel to the surface and that variation of topography is not severe
enough to influence the average transport mechanisms.

e The material ejected by the volcano is released into the wind at a certain height.
Each particle quickly takes up a velocity which corresponds to the wind speed
laterally and the particle’s terminal speed (the ‘settling speed’) vertically down-
wards.

e At a given height, turbulence within the air flow is modelled as having a certain
characteristic length - since turbulence has a variety of scales, the length is a
typical mean value for the flow.

2.2 Why Advection-Dispersion Equation?

The advection-dispersion equation can be used to describe transport of particles by
wind and scattering by dispersion. It is widely applied to the study of solute transport
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phenomena. The advection-dispersion equation used in this thesis can also be applied
to the modelling of rainfall, pollution and water movement.

An early model developed by Suzuki [49] was a two-dimensional dispersion model. His
model only considered horizontal dispersion as he found that, although small particles
disperse in the atmosphere in both vertical and horizontal directions, the scale of
horizontal turbulence is much greater than that of vertical turbulence. However,
Connor et al. [15] considered Suzuki’s model too simplified. Carey [12] observes that
models using an advection-dispersion model describe ashfall better than the model
of Suzuki [49], because the advection-dispersion model takes into account wind speed
and direction along with altitude. Suzuki’s model was modified by Glaze et al. [22]
and has been tested against observation, with predicted mass distribution agreeing
well with observed distributions. Armienti et al. [1] developed a three-dimensional
advection-dispersion model, based on Suzuki’s model, which was numerically solved.

In our study, a Cartesian coordinate system (z,y, 2) is used, (z,y) measuring position
with respect to a fixed origin on the ground and z measuring the height above the
ground. As stated, it is assumed that the movement of the wind is horizontal, flowing
parallel to the ground with mean velocity u = (U,V,0), in the (z,y, 2) coordinate
system. In this chapter it is assumed that there is no variation in wind speed with
height so that U and V are constant (variation in the parameters is incorporated
into Chapter 3). The ash particles are assumed to be small and numerous, so that a
locally-averaged mass concentration (mass per unit volume) can be defined which we
denote ¢ = ¢(z,y, 2, t).

The advection-dispersion equation is derived from conservation of mass:

oc
é—t——v-m+M (2.1)

where
M - source mass rate (mass per unit time per unit volume) and

m — mass flux of particles per unit area, defined by

m = cu—cSk—D® Ve (2.2)
(where k = (0,0, 1) is a unit vector).

There are three distinct components to the specific mass flux m: the first is the mean
advective flux cu, caused by the movement of the wind; the second is the advective
flux —cSk, caused by the settling speed S; the third is the (mechanical) dispersive
flux —D ® Ve, caused by the atmospheric turbulence, which is quantified by the
dispersive tensor D and the concentration gradient.
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2.2.1 Advection due to the wind

Advection (cu) describes the horizontal transport of particles by the wind. This
thesis will consider only the movement of particles transported by the wind in z and
y-directions. The wind speed in the z-direction is assumed zero by volcanologists [1]
[6]. Because the wind does not flow through the ground, it is parallel to the ground
at the ground surface, and is assumed to be so at higher elevations as well. Suzuki
[49] assumed the horizontal wind speed to be a function of elevation z given in the
form:

W(z) = Wy (1—%)A

where W, is the speed at z = 0, H is the maximum height of the eruption column
and A is a constant.

2.2.2 Dispersion

The dispersion term, (—D ® Ve¢) in Equation (2.2), describes the spread of particles
hy the turbulence in the atmosphere.

Dll D12 0
In general, the dispersion tensor is of the form D = | Dy; Doy 0 . (2.3)
0 0 Das3
Y
!
Y
x’

V v i

u

0

. X
0 U

Figure 2.1: Horizontal plane of dispersion tensor coordinate system.
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If we assume that the dispersion tensor has principal axes (z’, %/, 2’) (see Figure 2.1),
z" and gy’ aligned parallel and perpendicular to the horizontal wind vector u, with the
parallel (downwind) component Dy, horizontal perpendicular (cross-wind) component
D,, and vertical component D,, then

D; 0 0
D=| 0 D, 0 (2.4)
0 0 D,

with respect to the (z/,v’,2’) coordinate system.

In the (z’,y/,2’) coordinate system, u = (W,0,0) is the wind vector, with wind
speed W and g = (0,0,—g). For the general coordinate system (z,vy,z) we have
u= (U,V,0) with U = Wcosf and V = W sin¥.

If the wind is blowing at an angle to both the z- and y-axes, D can only be diagonal
it Dy = D,, i.e. the dispersion tensor is isotropic with z — y plane. We write the
coefficients as (Dy, D., D,) = (D, Dy, D,). As volcanologists ([7], [15], [26]) assume
the dispersion tensor is isotropic within the z — y plane, i.e. D, = D,,, we make the
same assumption since there is little information about anisotropic dispersion.

The dispersion tensor is then written in the form D = |u|L where |u| is the mean
horizontal wind speed VU2 4+ V2 and L is a diagonal dispersion length tensor whose
elements are the dominant atmospheric turbulence length scales so

Dy =Ly, D, = Ly|ul, D= L;|ul.

Because dispersion is proportional to the wind speed, if there is no wind then there
is no dispersion, and the particles will therefore settle vertically to the ground.

2.2.3 Settling speed

The vertical falling speed of a particle depends on its mass and shape. In this study,
the particles are assumed to be approximately spherical and therefore their size is
defined by their radius. The speed v of a falling particle can be determined by
resolving the gravitational and air drag forces:

dv 1 2
moy = mg—ECspaAv . (12:6)

The drag coefficient C;, depends on both the radius of particle R and the settling
speed S. Perry [43] gives an expression for C; as follows:

24
G = E'(l + 0.14Re®™) for Re < 1000 and (2.6)
€
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Cs = 0.447 for Re > 1000 (2.7)

where

(2R
Re - Reynolds number, defined by Re = Pal )v;

Ha

Ha - dynamic viscosity of air (= 1.461 x 107° kg m~! s71);

R - radius of the particle (m);

pr - mass density of the particles (= 1000 kg m~3);
4
m - mass of a particle = volume x density = gWRS,Or (kg);

A - cross-sectional area of the particle = 7 R? (m?)

g - gravitational constant (= 9.81 m s~?);

pa - mass density of the air (= 1.225 kg m™3);

v(t) - falling speed of particles (m s71);

S - settling speed of particles (m s™!) = steady-state falling speed.

In general, for a particle which is moving vertically, the weight and air drag forces are
not in balance and the particle either accelerates or decelerates. However, a steady-

d
state is approached where 2L _ 0. When this happens the particle is falling at its
settling speed S. From Equation (2.5), S is given by

%Cs,oﬁlAS2 = lnb. (2.8)

In general, it is not possible to explicitly find the value of S from (2.8) unless Re =
20, RS

Ha

> 1000. For Re < 1000, the Equation (2.8) requires numerical solution.

A particle released from rest accelerates vertically downward according to Equation
(2.5). Figure 2.2 shows two examples of the falling speed versus time for particles of
radius R = 0.2 mm and R = 0.4 mm. Their settling speeds are calculated as 1.63 and
3.16 m/s respectively (indicated by * on the w-axis). Figure 2.3 shows the settling
speed versus radius of particle. The two * indicate the settling speed of particles size
R =02 mm and R = 0.4 mm (as in Figure 2.2).

17



351 e i
R=0.4mm
Q
é -
>
o
@O LT R A i R R e S AR H ek D SRR e e SR el
= ;
@ R=0.2mm
D
£ B
s
1.5 2 25 3 3.5 4

falling time, {(s)

Figure 2.2: Falling speed versus time. Settling speeds indicated by * on v-axis.
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Figure 2.3: Settling speed versus radius of particle. The arrow marks the point where the
Reynolds number is 1000. The larger the radius the larger the Reynolds number.
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2.2.4 Advection-dispersion model

From Equations (2.1) and (2.2), we obtain

%+V.(Cu—cSk—D®vc)=A1. (29)

Since we are only interested in circumstances in which atmospheric properties, and
properties of the particle, vary in the z-direction, the dispersion D and u are functions
of z, S may be a function of z because of agglomeration. With the use of an isotropic
dispersion tensor in the x —y plane, the advection-dispersion Equation (2.9) becomes

e dc de 0 9%c d%c
d de
5 (D)) = MGa ) (2.10)

The Equation (2.10) is difficult to solve analytically for even simple z-dependence
of the parameters. We therefore assume that all the parameters are constant. We
assume a total mass @ (kg) of volcanic ash with uniform particle size is released
at point (Xo, Yo, H) in the atmosphere. Here H is the release height, X, and Yj are
coordinates of x and y, respectively, at the release point (¢ = 0). Therefore, the source
M(z,y, 2,t) in Equation (2.10) is Qé(x — X0)d(y — Y0)d(z — H)5(t). The motion of
ash is affected by the physical conditions in the atmosphere: the wind speed and
direction and the turbulence which causes dispersion. U and V' are wind speeds in
the x and y directions, respectively, S is the settling speed in the z direction and D,,
D, and D, are the dispersion in the z, y and z directions, respectively, for the uniform
atmosphere model. It is assumed that the wind speed, dispersion and settling speed
are all constant. Since D, = D,, we will now write D, and D, as D (horizontal
dispersion coefficient). The three-dimensional advection-dispersion Equation (2.10)
becomes

de de de de &% d%c 0
i & A N o WA T - el
ot + UB:.," + V@y Sé)z "2 "2 o 024

= Qd(z — Xo)d(y — Yo)d(z — H)4(t). (2.11)

We will use Equation (2.11) for the models in this thesis.
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2.3 Case A: Instantaneous Release in Whole Space

In Case A, we define the downward flux as Sc+ DZ@ with respect to time, 0 < t < 00,
where the downward flux is assumed to pass throug;h the “ground” z = 0. The total
deposit f on the “ground” (z = 0) is determined by integrating the downward flux
with respect to time, 0 <t < o0,

flz,y) = ]:C [Sc+ Dﬁ] dt (2.12)

02,4

The unit of f is mass per unit area (kg m~2) in the three-dimensional atmosphere.

The determination of the function f(z,y), which is the deposit on the “ground”
from eruption is important in order to warn the public of the area affected by the
ashfall. The calculation of volumes of tephra deposits is difficult due to the nonlinear
dependence of thickness on area. The review of some methods on calculating the
deposit can be found in the paper [21].

The following sections describe the models for modelling the ashfall for instantaneous
releases in one-, two- and three-dimensional atmospheres.

2.3.1 One-dimensional model

In this section, we assume there is no horizontal wind, i.e. U =V =0 and D, = 0.
In this case, the three-dimensional model reduces to a one-dimensional model.

2
oc S@_Dac

=55 = Dugs = Q8= — H)S(2).

In this model, the release source is located at the point 2 = H. Alternatively, in three-
dimensions we may regard the release as being constant across a plane, (z,y, z) =

(z,y, H).

It is assumed that ¢ = 0 at time ¢ = 07, a total mass @ (kg m~?) is released at height
2=Handc—0as z— $o0.

The concentration ¢(z,t) can be determined by applying Fourier and Laplace trans-
formations, and is given by

s H1SH)2
ol s - LEEE

27Dt
The deposit f (2.12) on the “ground” (z = 0) is
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0= /oo (Sc(o,t)+DzacéO’t)>dt
0 2
= 0.

The result f = @ verifies that the total mass released falls through the surface z = 0.

(See Appendix A.6 for the working of the three-dimensional model, the same technique
is used for the one-dimensional model.)

2.3.2 Two-dimensional model

In this section, we assume there is no horizontal wind speed in the y-direction, i.e.
V = 0. In this case, the three-dimensional model reduces to a two-dimensional model.

2 2
v O oo e e

| ot "oz "0z 557 ~ Deg = Qo(x — Xo)d(2 — H)o(t).

‘ In this model, the release source is located at the point (z,y) = (Xo, H). In three-
dimensions the release corresponds to a line at (z,y, 2) = (Xo, y, H).

Similarly, it is assumed that ¢ =0 at time ¢ =07 and ¢ - 0 asx — oo or z — 00
with a total mass @ (kg/m) released at ¢ = X and 2z = H.

By applying Fourier and Laplace transformations we obtain,

Q _(a=Xg-Un? (z—H451)?

e 4Dpt 4Dzt

Using MATLAB, the corresponding deposit on the “ground” (z = 0), is found to be

flz) = /'x (S(’-}—Dz%) dt
0 82} ..

y J’.‘.'—)'2 L
S (H 5 et
2t '
0

00 2U — P
= f Q  3(3+52)-20 (?ﬁ%) et
0

e(z,2,t) =

1(E=XQU HS\ 9,5 [2H[ -
Q__ 4(=52+42)-200 [— e?ﬂﬁm(zaﬁ)+2562“5B’°(2“ﬁ)]

D;l U+{%) [SKB(Qaﬁ) + %Kl(Qaﬁ)]
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where K and K, are modified Bessel functions [44] of the second kind of order zero
and one, respectively, and

1 [(z— Xo)? H? 1[U2 s
= g0 N Z0)2 BN A= e e a ],
° \/4{ Do ™ P=\1|5 D

2.3.3 Three-dimensional model

For a three-dimensional whole space atmosphere, the three-dimensional advection-
dispersion equation (2.11) is used.

80+U80+V%_580_D820_D82c_ 0%c
ot ' 9r oy 09z "oz Thoyr T o

= Qd(z — Xo)d(y — Yo)o(2 — H)O(t).

With the initial and boundary conditions: ¢ = 0 at time ¢t = 0~ and ¢ — 0 as
x — 00, y — £00 or z — *oo. Now, the unit of () are in kg (the source is a point)
and is released at x = Xy, y = Yp and z = H.

By applying Fourier and Laplace transformations, the concentration at point (z,y, z)
after time ¢t is found to be

Q _(z=Xg-Ut)?  (y-Yp-vt)? (z—HisH?

C(I,‘y.z.t) - We a

1Dt ADpt 4Dzt . (2.13)

Again, the downward flux of ashfall is used to determine the deposit on the “ground”.

The downward flux of the ashfall at 2 = 0 is Sc(z, y, 0, t)—FDZQE(Eﬂ)’—Q

z
the downward flux with respect to time, 0 < ¢t < oo, the deposit f(z,y) on the
“ground” (2 = 0) in the three-dimensional atmosphere will be a function of z and y.

. Integrating

f(:r y) - Q e%(__ﬂ__(‘_[';‘;‘ ]U+(-—ﬂ--y_DYh]V+%)—2Q_3 |:(20:',!3 + l)H + QQ'QS:I (2 14)
’ 32w D/ D, o :
L [@—Xo)® , (y—Yo)? , H? [ v 9
h = = e d = = ) — — —_—.
where o \/4[ D, + Dn +Dz and 3 1 Dh+Dh+Dz

(See Appendix A.4 for the working of the solution 2.14)

We plotted equation (2.14) using the data in Table 1.1 but instead of taking D, = 0,
we used D, = 800 and D, = 1. We can see that the contour of deposition in Figure

22



2.4 has a elongated spread but not in Figure 2.6. With D, # 0, the ashfall will tend
to spread with respect to the wind direction, in this case, the z-direction as there is
no wind in the y-direction (V = 0). We will discuss the limit as D, — 0 in Chapter
4.

S

x 10

Figure 2.4: Contour of deposition at instantaneous release in three-dimensional uniform
whole space with D, = 800. The innermost contour has the highest deposit whilst the
outermost has the lowest deposit.

2.4 Case B: Instantaneous Release in Half Space

In this section, we discuss the three-dimensional model with a half space atmosphere
and an instantaneous release. We build up towards a three-dimensional model, begin-
ning with an one-dimensional atmosphere. The same advection-dispersion equation
(2.11) is used in the modelling of the half space:

oc oc oc oc 0%c d%c 0%c
9802 vl 8 Y gl
o Vet Ve o5 Pram  Prgp m Degn

= Qd(z — Xo)d(y — Yo)o(z — H)I(t).

There is a difference in the boundary conditions for the half space atmosphere, because
the range of z in half-space is 0 < 2z < oc.

Initial condition: c=0at t =0".

Boundary conditions: z = 0 is assumed to be the ground. As no material can

. ) . oc
penetrate the ground, there is zero downward dispersive flux at z = 0. Hence D,— =

0z
0 0
0 at z = 0. So either Dzzoor—C:Q but since Dz#Owetakea—C:Oatz=O.
2 iz
The same as the whole space model, we also take ¢ — 0 asz — *o00, y — *o0 or
2z — 00.

The ash particle size considered in this thesis is very tiny (less than 2 mm), so the
settling speed is small too. Even if the particle bounces up when it hits the ground,
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Figure 2.5: This is a scaled version of Figure 2.4 in order to label the values f (kg/m?)
for each contour lines. We show only this example in this thesis to explain the contour
lines. The contour plot is the top view of a three-dimensional plot. This figure shows
eight contour lines of deposition f (kg/m?), each contour line defines a different value of f
(kg/m?). From the figure, we see that the inner contour lines have larger values of f than
the outer contour lines. This illustrates (the inner contour line is close to) the centre of the
deposit which is more dense than the outer part of deposit, as the farther it spreads the
thinner the deposition, so the values of f are smaller towards the outer parts. The deposit
close to the centre is thicker so f is larger. The innermost contour has the highest deposit
whilst the outermost has the lowest deposit.

the bouncing force is insignificant due to the small settling speed, so that the bouncing
distance from the ground is small. Hence it will settle onto the ground very quickly.

2.4.1 One-dimensional model

Asin the whole space, in this one-dimensional atmosphere, ¢ is a function of z and t.
The one-dimensional advection-dispersion equation is
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Figure 2.6: Contour of deposition at instantaneous release in three-dimensional uniform
whole space with D, = 1. The innermost contour has the highest deposit whilst the
outermost has the lowest deposit.

Oc g Oc 0%c

o =S5~ Do = Qé(z— H)A(t).

Through applying a Green’s function, we obtain

52
( t) 0 € 4Dz —=2_(2—H) _E_Z;iiﬁ_l_ _z4H)? 9piiL — 2
c(z, = R OF- 7o e~ 4Dzt e~ 4Dzt | — 2e2D; ~iD;t
varD.,t
% s(g-H)_ (E+H)?
_|__S_ e 2Dz 4Dzt d&‘}
Dz 0

Q b/ SH 9 1 B 1 _(—f{;é‘f}zi

The derivation of this one-dimensional model’s concentration c¢(z,t) is given in more
detail in Appendix A.2.1.

Integrating the downward flux with respect to time, 0 < t < 00, to determine the
deposit f, on the ground we obtain

= SQ t[/SH 1 H? 1 _(—H+Sn)?
f = A {————4 ﬂ.Dz f [(DZ +2> 7-3/2 — Fzm e 4D, dT dt

The function f involves two integrals which we are not able to solve analytically.

2.4.2 Two-dimensional model

The same as in the two-dimensional whole-space modelling, the concentration ¢(z, z, t)
is a function of =, z and t, hence the advection-dispersion equation is
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Oc Oc oc 9% d%c
— —S5—— — = - 5(t).
5 Uaa: Saz Dh(9 > — D7 e = Qd(z — Xo)d(z — H)O(t)

Again, it is not possible to completely solve the two-dimensional model analytically.
The technique for solving the two-dimensional model is formulated based on the one-
dimensional model. The concentration is

( ) Q ——0—“‘XD‘””2 5; -S(z—H) | =(z—H)? —(z+H)?
clr,z,t) = ———e 4Dpt iD: ¢ ¢ 2D; e 4Dzt 4 e 4Dzt
4t/ DhD

SH _SE—H) _(&+H)? Q
—2e2D: ~ 49 T4 — 2D; 4Dzt ( S, R
f 5} 87/ Dy Dt

_(z=x-Ut)? 1 H? _ (=H4+S71)?
xe  4Dpt f [( +2) —_ — | e bz dr.
0 D, 2 D,r?

(See Appendix A.2.2.)

Integrating the downward flux with respect to time, 0 < ¢t < oo, to determine the
deposit, f(z), on the ground we obtain

x* SQ - Uh? /-r. [(SH ) 1 H? ] _(=H4S7)? }
z) = — =y +2) 5 — —| e Twr dr pdt.
=) fo { srvDiDt. . Jo I\D: 3 D¢ d

2.4.3 Three-dimensional model

Similarly, the three-dimensional model for modelling the half-space atmosphere is

Oc oc Oc Oc 0%c 0%c 0%¢
5 Vs TV, %o DPrgm  Drgr ~ Dign

— Qb(x — Xo)d(y — Yo)o(z — H)(2).

Using the same techniques as for the two-dimensional model (see Appendices A.2.2
and A.2.3), the concentration is given by
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c(z,y, 2 t)

Q _(z=Xg-Ut? (w=¥p-ve® 52 —s(z—H) [ -(-H)2 —(z+H)?
= —¢ 4Dpt 4Dt 4Dz ¢ ¢~ 2D: e 4Dzt 4 ¢ 4Dzt
8Dp\/m3D. 13
SH _ _H? S [* _se-H)_ (e+H)?

—2e2D; "Dzt 4 — e " 2D: 4Dt d£
zJ0
_(@-Xg-Ut? _w-Yp-v2 [t [/SH 1 2 —H+S7)?

e Q e aDpt ADpt +2 — H : e_%ﬂ“d

16Dyty/m3 D, 0 D, T2 Dyrz

Integrating the downward flux with respect to time, 0 < t < oo, to determine the
deposit f(z,y), on the ground we obtain

00 SQ _a=Xg-Ut)?  (y-vp-vt)?
x, =1 —— i -I.]'Jhl 4Dyt X
f(z) /0 { 16Dt /72D,

t1/SH ) 1 H? ] (—H+57)2 }
X +2) = — —| e” 4Dz dT1  dt. 2.15
./0 {( D, T3 Dt ( )

We cannot solve Equation (2.15) analytically. Numerical solutions displayed in Fig-
ures 2.7 and 2.8 show that the half space model gives very close results to those of
the whole space model (Figures 2.4 and 2.6).
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Figure 2.7: Contour of deposition at instantaneous release in three-dimensional uniform
half-space with D, = 800. The innermost contour has the highest deposit whilst the
outermost has the lowest deposit.

2.5 Case C: Continuous Release in Whole Space

This section presents the steady-state calculation of concentration when the ashfall

is released continuously from a point source. Under steady-state conditions, the term

oc
— is zero. The advection-dispersion equation (2.11) becomes

ot
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Figure 2.8: Contour of deposition at instantaneous release in three-dimensional uniform half-
space with D, = 1. The innermost contour has the highest deposit whilst the outermost
has the lowest deposit.

de dc dc 620 9% e
Uae tVay = %: ~ Praw ~ Prgyr ~ P

= qd(z — Xo)0(y — Yo)é(2 — H). (2.16)

The term QJ(t) in (2.11) has been replaced by ¢ which is the rate of mass release.

For release point (0,0, H), Equation (2.16) becomes

oc e e d%c d%c d%c o
o VR B B e e e B (B
et I/du S5~ Dz o~ Pegg qo(x)d(y)o(z — H). (2.17)

2.5.1 One-dimensional model

A one-dimensional model is obtained by assuming that there is no horizontal wind, so
that the ash only moves in the z-direction. The one-dimensional advection-dispersion
equation at steady state reduces to

de d?c i
~§% ~ D, = 4b(z — H).

We take ¢ — 0 as z — o¢, ¢ is bounded as z — —oo and ¢ is continuous at z = H.

Solving this second order differential equation, we obtain

o2) =+ (e

sts(r

—1) H(z—H)

where H is the Heaviside function.
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This means that if z < H then

-4
C(‘Z) - S
and if z > H o(2) = @ oS
2 5

2.5.2 Two-dimensional model

We construct a two-dimensional model by assuming that there is no horizontal wind
in the y-direction. The material is moving only in the x and z-directions. Hence the
two-dimensional advection-dispersion equation reduces to

2 2
U@—S%—D ac_DZQ_C
022

9k 5T hw =q()(.T—X0)(>(Z—H)

This can be solved in terms of a Bessel function [8] (see Appendix A.3.1) with bound-
ary conditions: ¢ — 0 as x — o0 or z — +o0, and ¢ is bounded when 2z — —o0.

For a release point (X, H),

q :.r(xl-jxu]-_S(z—H) 1 (UQ 52 ) ((-I - Xo)? , (2— H)z)
s B —— 2 2D; K _ G—— J
) S i TD i [2 D, " D. D, D

For a release point (0, H),

(z,z) 4__ -5, |- (W + 32) (1'2 w = HP)
c(r,z) = ———— z — —_— 4+ — _ — :
2nv/DyD, 12V \Dx» " D.) \Dx D,

Ko is a modified Bessel function of the second kind of order zero [44].

2.5.3 Three-dimensional model

The three-dimensional model is derived using the Equation (2.16):

de de dc &% d%c d%c _ . ;
Ua‘kvd—y — Sa —Dh@ = Dha;i —Dz@ —QO(.E—-XO)O(y—YE))O(Z—H).

The solution of ¢(z, y, 2) can be found by using the solution to the Helmholtz equation

[48] (see Appendix A.3.2) with boundary conditions: ¢ — 0 as * — Fo00, y — 00
or z — 400, and c¢ is bounded when z — —oo0.
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For release point at (X, Yo, H),

q U(.’t—.\'o}+V{U—Y(]J_Si:—Hj_kr

c(z,y,2) = 4_erh R e 2Pn * s
Z

— V _ X ¥ |
where k° = iD, -+ 1D, +4 : dndr_—\/ D, + D, + i

For a release point (0,0, H),

q B+ ot = S5~k
N, Y, 2) = ————F——=€*“"h h z
c(e:y,2) ArDp/ D,
) U-z V-z S? :r'z '9'2 (z - H)Q
'here k% = andr =4/ — + — + ———.
where 4Dh+4Dh+4Dz and r Dh+Dh+ Dz

We tested the three-dimensional model using the data in Table 1.1 with D, = 800
and D, = 1. We see that the concentration contour in Figure 2.9 has a elongated
spread compared to Figure 2.10. With D, = 800, the ashfall spreads with respect to

the wind direction, in this case, the z-direction as there is no wind in the y-direction
(V =0).

Figure 2.9: Contour of concentration at continuous release in three-dimensional uniform
whole space with D, = 800. The innermost contour has the highest concentration whilst
the outermost has the lowest concentration.

2.6 Case D: Continuous Release in Half Space

The same boundary conditions as Case B are applied. The surface z = 0 is assumed
to be solid ground, no material can penetrate through the ground so there is zero

c
downward dispersive flux at the ground, hence D,— = 0 at z = 0. So either D, = 0

0z

0
or % = 0, but since we take D, # 0 then a—z = 0at 2z =0. We also take ¢ — 0 as

g
T — *00, y — £00 or z — 0.
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Figure 2.10: Contour of concentration at continuous release in three-dimensional uniform
whole space with D, = 1. The innermost contour has the highest concentration whilst the
outermost has the lowest concentration.

However, we are able to solve only the one-dimensional model analytically. The two-
and three-dimensional models are solved numerically and are presented in Chapter 3.

2.6.1 One-dimensional model

We again construct a one-dimensional model by assuming that there is no horizontal
wind. The material is only moving in the z-direction to the ground (z = 0). Hence
the one-dimensional advection-dispersion equation at steady state is

Oc 0%
55, Dz

c
Using the conditions ¢ — 0 as z — oo and e = 0 on z = 0, we integrate the equation
z

with respect to z,

oo dc d’c =
/0 (—SE_DZE> dz = /0 QO(Z—H) dz

e =

The result is same as the one-dimensional model in the whole space for 2 < H (Section
250
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2.7 Summary

The half-space modelling is more realistic than the whole space modelling because
it takes into account that on the ground there is zero downward flux. In the whole

space model, the total downward flux is Sc¢ + D,—, whereas the downward flux in

e
0z
the half space model it is Sc because L 0at z=0.

0z

The results shown in this chapter allow for D, # 0. As we highlighted in Chapter
1, because most volocanologists assume D, = 0, we will show results for D, = 0 in
the following chapters in the thesis. In order to provide computed examples using
the formulas already calculated, very small values of D, are used to provide a close
approximation to the case D, = 0. The results shown in Figure 2.6 (whole space
deposit) and in Figure 2.8 (half space deposit) are almost identical. We will assume
that the results for D, =1 are close to those for D, = 0 in the following chapters in
the thesis.

As indicated in Chapter 1, the process of ashfall in the atmosphere is more compli-
cated than the simple model considered in this chapter as the wind profile, dispersion
coefficients and settling speed can vary with position and time. In Chapter 3, we
structure the atmosphere into horizontal layers providing a more realistic transport
model than a uniform atmosphere and allowing a more accurate description of the
physical behaviour during ashfall.
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Chapter 3

LAYERED ATMOSPHERE
MODELS

non-uniform pattern may be complicated
but it is the reality

What is a layered atmosphere model?

The analysis in Chapter 2 described ashfall in a uniform atmosphere. However, in
general the wind and turbulence profiles vary with elevation. Also the settling speed
of particles may change during their flight because of agglomeration, etc. Because
of these effects, a more realistic model allows the wind speed and direction, the
dispersion tensor and the profile settling speeds to vary with height. Atmospheric
conditions may also change with time, of course, but in this thesis, that aspect is not
considered.

It is important to include height-varying atmospheric flow as this aids volcanologists
in understanding the distribution of ashfall, patterns of deposits on the ground and
the area affected or covered by these deposits. In general once elevation-dependent
wind speed and velocity, dispersion and settling speed functions are included in the
mass conservation equation, it becomes intractable to obtain analytical solutions.
However, one method where some progress can be made is to use piecewise-constant
functions which reflect average values in separate layers. Then, the equation is linear
within each layer, and the solutions are matched with suitable boundary conditions
at the layer interfaces.

3.1 Modelling

The atmosphere is modelled as a horizontally-layered half-space (—oco < z,y < oo,
0 < 2 < o0) with where each layer interface corresponds to a change in atmospheric
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conditions such as wind speed, wind direction or dominant turbulent length scale.
The two types of model presented in this chapter are for instantaneous point releases
and continuous point releases at constant rate.

e For the modelling of an instantaneous release, the concentration in the layered
atmosphere during the process of ashfall is used to calculate the deposit on the
ground.

e For the modelling of a continuous release in a steady state, the model to calcu-
late concentration of ashfall in the layered atmosphere is obtained numerically.
In the continuous release the source is measured in kg/s. The deposit is cal-
culated per unit time and its distribution on the ground will be similar to the
distribution of the deposit in the case of instantaneous release.

The models in this chapter are developed using the same advection-dispersion equa-
tion as Chapter 2. As mentioned, most volcanologists assume that the vertical dis-
persion, D, is negligible because it is very small at the height of 500 metres or higher
(7] [25). With the assumption of D, = 0, the models for instantaneous release can be
solved analytically. The models for steady state continuous release still have to be
solved numerically.

Figure 3.1 is a schematic diagram showing how a layered atmosphere is structured.
The numbering of layers is from top to bottom in ascending order. The interfaces
between layers are also numbered from top to bottom in ascending order. For n
layers, there will be n — 1 interfaces and the interface height is represented by Z. For
example, at interface j, beneath layer j and above layer 7 + 1, the interface height is
Z;. If there are n layers, then the ground is z = Z,, = 0.

3.2 Advection-Dispersion Equation

3.2.1 A point source instantaneous release

Since D, = 0 is assumed, the advection-dispersion equation (2.11) becomes

dc de dc dc d%c d%c i i i i
_ . ‘/ _— —_ - _— _— = O —_ - - .
ot * U@x * dy S(?z Dh8x2 Dh3y2 Q0= = Xo)oly = Yo)o(= — H)o(t)

We have assumed U, V, S and Dy, to be constant within each layer, with values Uj,
Vj, S; and Dp; in the jth layer. The advection-dispersion equation is now re-written
as
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Release at (X, Y, H) ode Q

______________ TR i S s S S
S
Layer 1 _‘i’._.
z=2, .o.o. : °
Layer 2 52 %
z=2, o ®elee °

Ground, z=0 -

Figure 3.1: A schematic of a layered atmosphere.

Oc oc oc Oc d%c d%c;
ot tVige T Vigy 5 T Pgn P
— Qi — Xo)b(y — Yo)d(z — H)3(H) (31)

for Z; < 2 < Z;-4.

5}
When D, = 0, the downward flux Sc+ Dz—c becomes Sec. In this case, the downward

flux in a layered atmosphere, say in the ntzh layer, will be S,c. We assume that all
of the source material lands on the ground eventually and the downward flux is
continuous through each interface. Therefore if S is continuous (i.e. S; = Sz, S = S3
etc.) then c is continuous. We have the following conditions:

Initial condition: ¢(z,y, 2,t) = 0 when t = 0 except at (z, vy, 2) = (Xo, Yo, H).
Boundary conditions: the same as the Case B, the half space atmosphere in Chapter

2, c(z,y,2,t) = 0 when £ — +o00, y — oo or z — 400, and Dz—c = 0 on the

ground z = Z,, = 0 where n is the last layer of the atmosphere. However, since we
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de

take D, = 0 in this modelling, the condition DZ(9
z

=0onground z = Z, =0 is
automatically satisfied.

The deposit model is therefore formulated as (/ Spe(z, y, 0, 1) dt) where S, is the
0

settling speed in the last or bottom layer of the atmosphere.

3.2.2 A point source continuous release in steady state

The steady state advection-dispersion equation (2.16) is

de de dc 0%c 9%c; 0%c;
AT O NG 5 TG Ol O
s B 1[/:T(Siy 5; 0z " D2 "Gy 0022
= qd(z — Xo)d(y — Yo)d(z — H) (3.2)
in the jth layer.
It is also assumed that the downward flux | Sjc + Dzja—z is continuous through each

interface. However, we are only able to solve this model numerically. We wrote a
code for Equation (3.2) which assumed D, > 0. So we investigate the limit D, — 0.

The boundary conditions are: the same as the Case D, the half space atmosphere in

0
Chapter 2, c¢(z,y,2) = 0 when r — o0, y — £00 or z — 400 and D28—C =0 at
2

0
2 = Z, = 0 (where n is the last layer of the atmosphere). Since DZ—C = 0, either

0z

0
Dz=00r(—9£:0, but since we take D, # 0 then —C:0atz=0.
0z 0z

3.3 Instantaneous Release

This section describes the development of the models for a point source instantaneous
release in one-, two- and three-dimensional layered atmospheres.

3.3.1 The one-dimensional model

As in the uniform atmosphere model, there is no horizontal variation, only vertical
variation in the one-dimensional model. We construct the model by assuming that
there is no horizontal wind. The material is only moving in the z-direction towards
the ground (2 = Z, = 0). Equation (3.1) reduces to
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dc Oc
5 Sj& = Qd4(z — H)5(t)

for Z; < 2 < Z;_, (Z; is the interface height between the jth and (j + 1)th layers).

We assume the release is in layer 1 (the top layer), at z = H, and @ is in units of
kg/m?.

For one-dimensional modelling, a new layer is only required for a change in the set-
tling speed S. We obtain the solution ¢ (concentration) in layer 1 by using Fourier
and Laplace transformations and from layer 1 we model the concentration of the
subsequent layers.

The concentration in layer 1, j =1, for 0 <t <t = (H;—IZ‘} (or Zy = H — Sit;) is

c(z,t) = Qb(z — (H — Sit)) -

The corresponding concentration in layer 2 for t; < t < t,:

C(Z..f) - Qé(z = (Z] = Sg(f = f]))) %

We deduce that for layer j, the contribution of concentration to the layer j is:

c(z,t) = Q8(z — Z)

where Z7 = H — S5;t; — SQ(tQ = tl) SR S](t — t]'_l), t]'_l <t< t] Note that
Zj = Zj—l-

Then for an atmosphere with n layers, we compute the deposit f on the ground
(2 = Z, = 0) using the properties of § functions.

f = /DOG Snc(0,t) dt
_ / " 5.Q0(0 - Z) dt
0

> L Zn—l
= /0 SuQg0(t - Z5) dt.
Q.

3.3.2 Two-dimensional model

We construct a two-dimensional model by assuming that there is no horizontal wind
in the y-direction. The material is only moving in the z- and the z-directions. For
two-dimensional modelling, Equation (3.1) is reduced to
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dc dc dc e

— — — Si— — Dpi=— = Qd(x — Xo)d(z — H)(t

ot i+ UJBI SJ@Z hi G2 Qi(x 0)0(z )o(t)
where Z; < z < Z;_; (Z; is the interface height between the jth and (j +1)th layers).
We assume the release is in layer 1 (the top layer), at x = Xy and z = H, and Q is
in units of kg/m.

For two-dimensional modelling, a new layer is required for any change in wind velocity
U, settling speed S or dispersion Dj.

The concentration c is solved using Fourier and Laplace transformations.

b}

In layer 1, j = 1, for 0 < ¢ < t, = {20

Q _(@=Xg-U3)?
(z,2,1) = ———e Dt Y(z — (H — 5it)).
C(I ) gm ( ( 1 ))
At time t = ¢,
Q _(z=Xg-U;t1)?
2t = ——— =€ 1Dty 6 z—Z
) = S D oA

where Z, = H — S1t;.

When the initial release is at point (Xo, H), all of the mass is concentrated at time
t =t; in a sheet at height z = Z;.

Dividing the sheet into small source elements, then the mass concentration at point

(&, Z,) on the interface is now

Q _(6=Xg-Ujt1)?

_—p iDp;tg
2\/ ?TDhltl

We take a small source element d@Q; = q;(£) d€ on z = Z;; the corresponding concen-
tration in layer 2 for t; <t <ty is

q1(§) = c(§, 21, t) =

d _ (z=€=Up(t=t1))?
dC(IL‘, 2, t,f) = Ql € 4Dpa(t—t1) 5(2 = (Z] == Sg(t T tl)))
21/ ﬂ'DhQ(t — t;)
1 _(z—£=Uy(t—t1))? Q _(e=Xg-Ujt;)?

= e ADpo(t—ty)

2 ?TDhg(ff — tl) 2\/ ﬂ-Dhitl
X 8(z—(Z;— Sa(t—t1))) dE€.

e 4Dpth

The total mass concentration for ¢t; < t < ¢, is obtained by integrating over all such
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source elements &

@z, ) = / delz S8
3
/°° Q  (E=Xg-Uyt;)? 1  (z—E-Up(t—t1))?
= _¢ 4Dyt e 4Dpo(t—t1)
-0 2\/TFDh1t1 2\( T(Dhg(t o tl)
X 6(2 == (Zl —= Sg(t = tl))) d€
Taking
E=Xo+Uith L=x2—-Us(t—1)
B 1 - 1
=i " ADp(t — 1))
&= a&; + b, o ab(&; — &)?
*~ " a+b 3 a+b
we obtain
i Q —[(a+b)(6~€3)2+&4]
] 7t = € P .
C(I i ) /—oo 2\/ ?TDhlflg ?TDhg(t = tl)
X 8(z — (Z; — Sa(t — t1))) d€
and taking
‘ dp
pi = (a+b)(€ —&)* so dE= Tk
we obtain
> Q ~[pr+ed] 9P
el . mt) = e PITS ] ———§(z2 — (Z7 — Sot — t
ety /_oo Am\/t1(t — t1) D1 Dia Va+b (2= (Z1 = St = 1))
= Q 6_54 ﬁ (5(2 — (Zl i Sg(t — tl)))

Ar\/t1(t — t1)Dp1Dpo V/(a+b)

Q _[{r_(xo+ulfl+Uz(t—tln}2]
_ . WADp1t1+Dpa(t—11)) 5(z — (2, - Sg(t - tl)))
2\/’”(19}1]151 2 DhQ(t - tl))
7!1—.\')2
_ Q e 4 5(2 5 Z)

2\/71'143:

where Aj = Dhltl + Dhg(t — tl), X = Xo + U1t1 + UQ(t — tl), L — Zl o Sg(t — tl),
Jy<z< Zyand t; <t <t,.

We deduce that for layer j, the concentration is:

Q _(z-x)?2
ElTnzal) = e M 0(z-2)




where

Zj_] *-Zj ; H—21
—/—  Jfor7>2andt; =
Sj or j -~ 1 Sl

tj — tj_l‘l‘
A;j = Dpity + Dpa(ta — t1) + Daa(ts — t2) + ... + Dp;(t — t;-1)
X = Xg—l—Ult]+U2(t2—t1)-‘r'...-l—Uj(f—tj_l)
Z = H=St—8k—5)—m—8t—1%)

for tj_1<t<tj and Zj<Z<Zj_1.

Then for an atmosphere of n layers, we compute the deposit f(z) on the ground
(z = Z, = 0) using the properties of 4 functions.

o)y = / Snc(z,0,t) dt
0
® 8.0 _w-221 . 7. q
= o~ ahn— —G(t — dt
/0 2V A, S8~ g
_ @ e
2 7T;4f

where

Ay = Dpti+ Dpa(ta —t1) + Dpa(ts — t3) + ... + Dpn(tn — tn1)

Xf = Xo+ Ut + UQ(tQ = tl) + ...+ Un(tn = tn—l)
and t, is the time when the particles land on the ground.

Figures 3.2 illustrates the distribution of ashfall in a two-dimensional layered atmo-
sphere.

3.3.3 Three-dimensional model

We consider both horizontal and vertical variations in the three-dimensional model.
Therefore the advection-dispersion equation (3.1) is used

dc de dc dc c 9%
Lot g gt g SR g S
ot ax T gz T Pigy  Phgg T Phgge
where Z; < 2 < Z;_; (Z; is the interface height between the jth and (j+1)th layers).
We assume the release is in layer 1 (the top layer), at t = Xo, y = Yy and 2 = H,
and @ isin unit of kg.

= Q0(z — Xo)o(y — Yo)d(z — H)o(t)
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Figure 3.2: Distribution of ashfall for instantaneous release in two-dimensional layered
atmosphere. The graph also illustrates the thickness of deposits in three boundary layers
at three interfaces, the ash falls with respect to the wind direction and the spread of the
distribution is wider towards the ground. (* indicates the release point (Xo, H) = (0, 7500).
Data used for the plot are from Table 1.2.)

For three-dimensional modelling, a new layer is required for any change in wind
velocity U, V, settling speed S or dispersion Dj.

The concentration c is solved using Fourier and Laplace transformations.

Inlayerl,jzl,forOStStl:%,

Q _a=Xg-U3t)?  (u-Yp-Vit1)?
oy, 80 = TR D1ty Pttt §(z — (H — Sit)).
h1t]
At time t = t,,
Q _=Xo-Uyt?  w-Yp-vie)?
e(z, ¥, 2, t1) = me Dyt Dmt §(z — Z)
1lbl
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where Z] =H - Sltl.
At this time, all of the mass is concentrated in a sheet at height z = Z;.

As in the two-dimensional model, we divide the sheet into small source elements, then
the mass concentration at point (&, 7, Z;) on the interface is now

Q _(e=Xg-Uyt)?  (n-Yg-Vity)?

a1(&,n) = c(&,n, Z1,t1) = me 4Dp 1ty ADp1ty

We take a small source element d@, = ¢,(&,n)d€ dn on z = Z,, the corresponding
concentration in layer 2 for t; <t <ty is

d@, (z=E=Up(t=t;)%  (y=n=Vp(t—t;))?
dc(l‘, y, Za t; 5, T’) — e 4Dpa(t—t1) 4Dpa(t—t1) 6(2 — (Zl = S2(t — tl)))
4?TDh2(t = tl)
il (x=§=Up(t=t1))%  (y=n-Vu(t—t;))?
' 4Dpo(t—11) 4Dpo(t—t1)
4?I'Dh2(f - tl)
Q _E=(Xg+U1)? (= (Yp+Vi41))?
% — & iDy 1t 4Dy 4
4’/TDh1t1

X 5(2 =S (Zl — SQ(t - tl))) df dT) 8

The total mass concentration for ¢; < t < t; is obtained by integrating over all such
elements

00 e Q (XU N? (=Y +Vy))?
=y Tyt iD
el@,y, 2 f) = D¢ nitl U
—00 J —o0 L1
1 _(a—E=Upt—t1))2  (y=n=Va(t—t;))?
e 4Dpo(t—1q) 4Dh2(l—ll‘

* T Dpalt — ty)
X 6(2 — (Z] — Sg(f — tl))) dtg d?}

Taking
£1=X0+U151 €-2=.’L'—U2(t—t1)
1| b 1
a= =
4Dh]t1 4Dh2(t — tl)
E _ (I.é'l - 562 & _ ab(& C 52)2
37 T a+b 4 a+b
m=Yo+Viti m=y—-Vao(t—-1)
_ am + bnp _ ab(m — 12)?
n3 a+ b 4 a+ b 3
we obtain
= Q ~[(a+b)(€-&3)%+ —n3)?
) : 3)2+Eat+(a+b)(n—n) 2+ o
C(l" g ) [—oo ];oo 4‘?I'Dh1t14?TDh2(t — tl)e

X 6(z = (2 — Sa(t —t1))) d€ dn
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and taking
dp)

a+

pi=(a+b)(£—&)° dE=

d

dp
ps=(a+b)(n—m)? dn= =,
a+

]

we obtain

- /°° dp /°° dp2 Q
R oo Va+ b J_oo Va+b16mDpitymDpa(t — 1)

- e—[p§+§4+p§+fi4] 8(z = (Z1 = Sat — t1)))

Q —[eatma) T
B € —— (2 — (Z) = Sa(t — t1))).
167TDh1t17TDh2(t—t1) (a_+_b) ( ( 1 2( 1)))
Hence
= (Xg+U i & - - o (F— 2
gz t) = Q= (2= St - ) -|SERHERE e

47T(Dh1t1 + Dhg(t == tl))
Taking AQ = Dhltl +Dh2(t_t1), X = X0+ U1t1+U2(t—t1), Y = Y0+V1t1—+-V2(t—t1)
and Z = Z; — Sy(t — t1) where Zy < z < Zy and t; < t < ty, then

Q_-|=atunt

47TA2

c(z,y, 2, t) = ](5(2—2).

We deduce that for the layer j, the concentration is:

Q = [c:—X}z +w=Y)?

c(@pz i = 47rAJ-e M M sz - 2) (3.3)

where

by, = tj_l‘l'Zj_TS,j— & for j >2and t; = H;}‘Zl

Aj = Dpity + Dha(ta — t1) + Das(ts — t2) + ... + Dyj(t — tj-1)

X = Xo+Uti +Us(ta —t1) +... + Uj(t —t;_1)

Y = Yo+Viti+Va(te —t1) + ... + Vj(t — tj-1)

Z = H-S5it;—Sy(ta —t1) — ... — Si(t —t;-1)

for i <t<ity; and Z; <2< Zj.

From equation (3.3), for an atmosphere with n layers, we compute the deposit f on
the ground (2 = Z, = 0) using the properties of ¢ functions.
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f@y) = f Suclz,y,0,2) dt
fa_x)? AF g—vﬁ

$nQ - |
5(0—-Z2
/(; 47rA e
@=-x)2 | w-v)?
— f S Q -hij- 55 AAj _1'5(t -y Z‘R—]) dt
0 47TA Sn S‘i’l

Il

z-Xg)2  (y-Yp)2
_ @ ; -| S+ } (3.4)
4‘?I'Af '

where

Ay = Dpity+ Dyo(ta — t1) + Dra(ts — t2) + ... + Dan(tn — tj-1)
X; = Xo+Uiti+Uslts— 1) + e + Un(tn — ta_s)

Y, = Yo+Viti +Va(ta—t) +... + Valtn — ta1)
and t, is the time when the particles land on the ground.

Figures 3.3, 3.4, 3.5, 3.6 and 3.7 show the distribution of ashfall in a three-dimensional
layered atmosphere. Figures 3.4, 3.5, 3.6 and 3.7 are the top views of each boundary
layer and they show that the spread is wider toward the ground and consequently the
deposit is thinner towards the ground. These illustrate the farther the distance be-
tween the release point and the ground, the wider the spread of deposit; the travelling
time is longer and therefore there is more time to spread.
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Figure 3.3: Distribution of ashfall for instantaneous release in three-dimensional layered
atmosphere. The graph also illustrates the thickness of deposits in three boundary layers
at three interfaces, the ash falls with respect to the wind direction and the spread of the
distribution is wider towards the ground. (* indicates the release point (X, Yo, H) =
(0,0,7500). Data used for the plots are from Table 1.2.)
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Figure 3.4: Layer one of Figure 3.3. (* indicates the release point (X, Yo, H) = (0,0, 7500).
The innermost contour has the highest deposit whilst the outermost has the lowest deposit.)
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Figure 3.5: Layer two of Figure 3.3. The innermost contour has the highest deposit whilst
the outermost has the lowest deposit.
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Figure 3.6: Layer three of Figure 3.3. The innermost contour has the highest deposit whilst
the outermost has the lowest deposit.
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Figure 3.7: Layer four of Figure 3.3. The innermost contour has the highest deposit whilst
the outermost has the lowest deposit.
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3.4 A Continuous Release in Steady State

We now consider a source which is assumed to release continuously. Three models are
presented in this section. The one-dimensional model is developed analytically using
simple integration but the two- and three-dimensional models are solved numerically
using a Finite Difference method.

3.4.1 One-dimensional model

As in the uniform atmosphere model, there is no horizontal wind, only vertical vari-
ation in the one-dimensional model. The material is only moving in the z-direction
towards the ground (z = Z, = 0). Equation (3.2) reduces to

2

Tdz zj21?+q6(z—H)

where Z; < 2z < Z;_; (Z; is the interface height between the jth and (j+ 1)th layers).
We assume the release is in layer 1 (the top layer), at 2 = H, and ¢ is in units of
(kg/m?)/s. A new layer is required for a change in settling speed S.

In layer 1, 5 = 1, the source releases at point z = H and the flux down from z = H
to z = Zj is:

d?c

de .
—Si— = Dy— +qb(z— H).
Sldz D_1d22+Q( )

Integrating the equation,

o de e d’c >
/z’ (—Sla) ds = /z (Dzl‘@'i'QO(Z—H)) dz

de
SIC+DZIE = (

So

and we obtain

=51z8 omp .
q— Sic = eD=1 7'7' where Bj is a constant, ¢ — Sic > 0.
Hence
—Slz ]_ .
c = i + AeDa1, where A; = —e 5181
Sl Sl

We evaluate the constant A, later.

48



In layer 2 (Z, < 2z < Z1), we split the integral into two to obtain

A 00 oo
: dc d’c dc d?c
/Z (SQ—dZ + D”a—ﬁ) dz + /Z (Sl—dz + Dzl——d22> dz = / —qb(z — H) dz.

So

-1 dec]?
[Slc + DZI%] + ]:SQC + Dzz—i] =—q

and we obtain

d
0-— (SIC + Dz1@> T (SQC <E D22—6'> — <SQC+ D22@> =E==ai.
2] z dz ) 5 dz /

At the interface z = 7,

d d
(Slc + Dzl —C'> = (SQC + Dz2°—c) .
dz ) 4 dz ) ,

Hence, we obtain

de
Soc+ Do— = 3%
(S+DaZ) = 4 (3.5
and
1 =S2z_
o= W _ EeSy SZBZ, where B, is a constant
SQ SQ
—Soz
= Si + AQesz_, where A, is a constant .
2

Applying the technique used in layer 2 to layer 3, (Z3 < z < Z,) we obtain

—532 .
c= + Asze D=3, where Aj is a constant.

4
S3
Similarly, the concentration in layer 4 (Z; < z < Z3) is

q —ng X
¢ = —=— + Ase D=4, where Ay is a constant.

The concentration in layer j (Z; < z < Z;_1) is

-8z
a= Si + Aje_Dj'-, where A; is a constant .
J
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Collecting these together we have

-851z2
c = Aoe"ﬁill_ for 2> H
=512
g = SiJrAIeF:ll_ for Z1 <2< H
1
—Saz
c* = S£+Age?fz' for Z, < 2 < Z
2
—8Sa3z
¢ = Si+,43eﬁ%‘ for Z3 < z < Zs
3
—S4z
c = —‘g——I—ALleT:Af for Zy < 2 < Z3
4
q s
c = §+Aje 2 for Z; <2< Z;_,.
J

Recall that we use the boundary condition ¢(z — —oc¢) is a constant. Therefore
lim A; = 0 where n is the last layer, 2 = Z,, = 0 (the ground) and

j—mn

1imc=i.

j—m S

0
In the half space atmosphere, the boundary condition is B_Z =0at z=2,=0 (the

ground), so if 2 = Z, = 0 is the ground, then Equation (3.5) becomes

d
(SQC + DZQ —C) = q,
dz /),

and

SO

The concentration c in the last layer for both whole (2 = Z; — —o0) and half space
(2 = Z, = 0) atmosphere is the same.

Since the downward flux is assumed continuous, we solve for Ag, Ay, Ay, A3, Ay, ..., A;
by matching the concentration ¢ through each interface.
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At z=H,

At z = Zl,
-512) -S22;
"q"+Ale Dz = i-l—A-ze 22
Sl S‘2
522 qg q\ 54
A = Age P:2 + — — — | ¢ Da1
‘ ( ’ S, Sl)
At z = Zg
q —S22Z2 q -S32;
—_— A D.: = — + Aze D:3
S ae == S3 2
—fa % q q S222
A = A € Paa Fm——— g D;2
’ ( ’ S3 5'2)
At z = Zg
q —S323 q -5423
—+ Age P2 = —+ Age P
SS ’ S_] 2
—547Zq q q S3Zq
A = A D, + i P i D, .
’ ( e Sy -5'3) s
We deduce )
—-SI-Zi_l q q Si 1251
Aj—l = AJF’ D.j 4+ = ——1]e€ Dzj
Sj Sj—l

Here, we will demonstrate the solution procedure to find A; in a four layered atmo-
sphere, i.e. the fourth layer is the last layer of the atmosphere. As we have found the
concentration in the last layer is the release rate with respect to the settling speed in
the layer, so the concentration in the fourth layer is

c=21
-8
We obtain
q q S3Z3
A = u— € D,3
’ (54 53>
q q\ %% %% g q\ S22
Ay = — — — )ePx3e Pz 4+ — — — | eD:
’ <<S4 SB) 53 SQ)
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S32Z —SaZ S,Z -SoZ S$12
A = (((Si_si>e%:§‘e—oif+i_i>e%ﬁe—o§#+i_i>e%;‘
4 3

532 —S3Zy S>2Z. —S22,
AO — { [((i o i) e_g;fe D,3 _q_ . i) e_gz_zze Do
z

+
54 SB SB S?
q q Si2) ol q Bt
+— — —|ePaePa 4+ — 3eDla
Sy 51} Sl}

In jth layer, we generalise this and write

_S_._lz._l

g Fy SHar & 43 Sl
c=— e Pmn-or — — e Pz gDz
S; =t S; ' Si
where
-S:Z iy q q 5I_IZI_1
A]__l = A]-e Dzj 4 — — e Dz
5; 1Skl

and A; = 0 for the last layer of the atmosphere.

Figure 3.8 shows the concentration ¢ in a layered atmosphere during the process
of ashfall. There is no wind component in the model. In order to demonstrate
changes in the process of ashfall, coalescence is considered to change the settling
speed. The settling speeds are chosen to be S; = 1, S, = 1.5, S3 = 2, Sy = 4 (m/s)
in layers 1, 2, 3 and 4, respectively. These values are chosen is to reflect the case of
agglomeration, where particles may join and be held together by water droplets while
falling in the atmosphere; they therefore become heavier and so have larger settling
speed as they descend. The model shows how the flux is constant with elevation, the
concentration of ash decreases through the lower layers. Here, we cannot use D, = 0
as we used in the previous section (instantaneous release in layered atmosphere)
because of computing difficulty as previously, so we take D, = 0.1, which in practice
is close to zero, and take the release rate to be ¢ = 1 (kg/m?)/s.

3.4.2 Two-dimensional model

We consider horizontal variation in the z-direction and vertical variation. We con-
struct a two-dimensional model by assuming that there is no horizontal wind in the y-
direction. The material is only moving in the x and z-directions. For two-dimensional
modelling, Equation (3.2) reduces to

Oc de d%c d%c

i3y i, hjﬁ_ = gb(z — Xo)d(z — H)
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Figure 3.8: Atmospheric concentration for a continuous release in a steady state in a one-
dimensional layered atmosphere. It shows that the concentration is lower towards the
ground due to increase in settling speed from layer to layer. (* indicates the release point
H =10.)

where Z; < z < Z;_; (Z; is the interface height between the jth and (j+1)th layers).
We assume the release is in layer 1 (the top layer), at x = Xy and z = H, and ¢ is in
units of (kg/m)/s. A new layer is required for a change in wind velocity U or settling
speed S.

We were unable to solve the two-dimensional model analytically, a Finite Difference
method is employed using MATLAB [14]. Same as the one-dimensional model, we take
D, =0.1.

The following discretisations were used for the derivative operators in the model:

e central difference with error of second order O(h?) - this is used for computing the
flow within layers in the atmosphere.
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fla+h) — fla—h) hA?

Fla) = % —yll@
_ f(“+h)2‘!]_f(“'_h)+0(h2). (3.6)
play = L@ -V@ =l 2o,
_ f(a+h)—2};?gu)+f(a—h)+O(h2)_ (3.7)

The derivative operators (3.6) and (3.7) are used for calculating the flow inside the
region [, < z,y < Iy and 0 < z < I, where [l,, [, and [, are to be large enough to
capture the dynamic. This is because we consider both directions of flow within these
boundary.

_ —3f(a) +4f(a+h) — fla+2h)

oF + O(h?). (3.8)

f'(a)

The derivative operator (3.8) is used for calculating the concentration on the boundary
where z = 0. This is because we restrict all released particles to land on the ground
eventually and not go through beyond z = 0.

In the two- and three-dimensional modelling, we take 7 to represent the z direction,
J for y and k for 2. To avoid confusion, n is used to number the layers instead of j
which we used in the previous sections.

The advection-dispersion equation in the two-dimensional modelling is discretised as:

@z = e
dc Ci+1k — Ci-
U-aaz ~ U_ﬁim_x.—”i
¢ Ci k1 — Cik—
"522—; A _S_-M_LZTZMI-
D""g;i ~ D, SobkT QAC;;; + Cit1k
= . — . .
ngz-i ~ D, QAC;’Q‘ t Cikt1
gd(z — Xo)o(z — H) = A—fﬁgﬁi,ioénko

where Ar and Az are the step-sizes for z and z, respectively. At the release point
(Xo, H), we take 6;;,0kx, = 1; otherwise d;,0xk, = 0. (Xo is represented by iy and
H is represented by kg.)
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Hence, the advection-dispersion equation is expressed as

U Citlk — Ci-1k  oCik+l — Cik-1
2Ax 20z
p, Gi=lk — 2¢ik + Cit1k I 2¢i & + Cik+1 95 5
g h z .’. k'k .
Az? Az? DgAg "o
Rearranging this gives
—Cit+1k + Ci—1k Cik+1 — Cik—1 Ci—1k + Cit1,k
cixg = (U +S Dy
20x 2Az Az

Cik—1 1 Cik+1 q . Ax2AZ?
= > 51' ’ o )
e Azé T AzA; o k’ko) (2DhAz2 +2D,Ax?

c
For the boundary condition — = 0 on z = 0,

0z
dc(x,0)  —3c(z,0) + 4c(x,0 + h) — c(x,0 + 2h)
9z 2h
—3c¢(x,0) + 4c(x, 0+ h) — c(z,0 + 2h)
0 =
2h
and so 4 0+h 0+ 2h
o(z,0) ~ c(z,0+h) —c(z, ) |
3
Hence
_deip—cig
Cil— —o

3 bl
where k = 1 corresponds to the value on z = 0.

By matching the flux on the interface between the nth and (n +1)th layers, we obtain

ac de,
Sncn ‘+‘ .Dzn_n = Sn+lcn + ‘DZTE+1 —_I+]
0z 0z
—3¢n +4Cnt1 — 8. — b, ¢ £
Sncn +D., ( 3cn + 2(’A”‘|z"1 Cn+2) - Sn+1Cn I Dzn+l ( n ;T‘tﬁj +cn 2)
& Dzn+l(—4(‘n_1 p. C“_'z) g DZH(4cn+l = Cn+2)
n Ll

2A3(Sn = Sn—i—l) == 3(Dzn i Der—l)

where ¢, represents c; . on nth layer.

Figure 3.9 illustrates the concentration in a two-dimensional layered atmosphere dur-
ing the ashfall. As in the one-dimensional model, we use D, = 0.1 m? /s @nd gw==1
(kg/m)/s. For the wind speed in the z-direction U, we take U; = 10, U, = —10,
Us = 10 and Uy = —10 m/s for layer 1, layer 2, layer 3 and layer 4, respectively. We
take the dispersion in the z-direction as Dy = Dpy = Dp3 = Dpg = 800 m2/s for all
layers. The release point is situated at (Xo, H) = (0,1500).

The model is programmed to use step sizes (Ax and Az) in an iterative procedure.
The iterative process will repeat until the value of the flow in the bottom layer is
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unchanged. As we set the atmosphere into four layers, the ground flow in the last

oo
layer is S, / ¢ dzr. Also, in order to obtain convergence of the ground flow, we
—00

compute the concentration ¢ by under relaxation. We ran the program with various
ranges and mesh sizes. It is found that provided the z-range is large enough and the
mesh size small enough, all of the main features of the boundary conditions and the
solution detail are satisfied. Figure 3.9 is computed using a z-range from -40000 to
40000 and the z-range from 0 to 2000. The mesh is divided into 1000 grid points
horizontally and vertically (Az = 80000/1000 = 80 and Az = 2000/1000 = 2).

Mr—r T 1 r r & T T
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Figure 3.9: Concentration for a continuous release in a steady state in a two-dimensional
layered atmosphere. It shows that the ash falls with respect to the wind direction and that
the spread of the distribution is wider nearer the ground. The contour shows concentration
per unit length is smaller when it is towards the ground. The release point is (Xo, H) =
(0,1500). The innermost contour has the highest concentration whilst the outermost has
the lowest concentration.
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3.4.3 Three-dimensional model

We consider both horizontal and vertical variations in the three-dimensional model.
For three-dimensional modelling, Equation (3.2) is used

Oc V@ _g Oc d%c d%c 0%c

Vige iz~ Sigs ~ Drgp ~ Prig ~ Dugz

= g6(z — Xo)d(y — Yo)d(z — H)
where Z; < 2 < Z;_, (Z; is the interface height between the jth and (j+1)th layers).
We assume the release is in layer 1 (the top layer), at ¢ = Xo, y = Yy and z = H,

and q is in units of kg/s. A new layer is required for a change in wind velocity U or
V, settling speed S, or dispersion Dj,.

The terms in the advection-dispersion equation are discretised as follows:

C($, y’ Z) = Cl,],k
U@ ~ [Citlak = Cimlgk
or 2Ax
V% ~ yludtlk = Cij-Lk
oy Ay
—S@ ~ _gClidk+l = Cijk-1
0z 2Az
Dha—QC ~ D, Ci—1,4k — 2Cijk + Cit+1jk
or2 Ag?
Dt = D i,j—1,k i,j.k “1,§+ 1.k
d%c 2 B Cijk—1 — 2Cijx + Cijk+1
0.2 T ¢ Az?
q .
go(r — X0)o(y — Yo)o(z — H) = méa.m@j‘jnbk.m

where Az, Ay and Az are step-sizes for x, y and z, respectively. At the release point
(Xo, Yo, H), we take 8;;,0;,0kk, = 1; otherwise d;;,0;;,0kk = 0. (Xo is represented
by o, Yy is represented by j, and H is represented by ko.)

The advection-dispersion equation becomes

C-+11.vk _C'_lv-yk C7+11k B c‘vl_lvk Czy vk+1 — CA!‘vk_l
U 1, t—1,) +V .J 4J - S J %J
2Ax 2Ay 2Az
Ci—1,5k — 2Cijk + Cit1,5k
= Dy

Cij—1k — 2Cijk + Cijs1k

+ D
A2 h e
ci»j,k—l - QCi,j,k —+ ci,j,k+l q
T A2 ¥ Aonghs vidiidkk:
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Rearranging this equation, we obtain

. B (U—ci+l,j,k + Ci—1,jk " V_Ci,j+1,k + Cij-1k " Sci,j,k+1 — Ci,j k-1
i,k — 2A
x 2Ay 2Az
p, CimLik T Cittjk 5 Cij-Lk + Cij+1k 4 p, Gkl + Cijk+1
Azx Ay Az

45y Az Ay?A2?
tAzAyA, W0k | \ G A A LoD AP AR + 2D, AR )

... Oc
As in the two-dimensional model, the boundary condition — = 0 on z = 0 is written

0z
. —3c(z,y,0) + 4e(z,y,0 + h) — c(z, y,0 + 2h)
N 2h ‘
So
4c(x,y,0 + h) — c(z,y,0 + 2h)
C(l" y’ O) — 3 2
Hence

_dcije — G
Ci,j,l - 3 )

where k = 1 corresponds to the value on z = 0.

By matching the flux on the interface between the nth and (n+ 1)th layers, we obtain

de OCn 1
Sncn + Dzna_; = Sn+lcn + Dzn-H%
-3¢, + 4¢hy1 — G e, —4cn_) +Cpas
Sncn + Din ( 2 - A“ ”*2) = Sp+16n + Doy ( = Q"Az L

Dzn+l(_4cn—l + Cn—?) 1 Dzn(4cn+1 - Cn+2)
2AZ(Sn - Sn+l) - 3(Dzn =k D2n+l)

Cn =

where ¢, represents c; ; on nth layer.

Figure 3.10 illustrates the concentration in a three-dimensional layered atmosphere
during the ashfall. As in the two-dimensional model, we take D, = 0.1 m?/sand ¢ = 1
(kg/m)/s. For the wind speed in the z-direction, U, we take U; = 10, U, = —10,
Us = 10 and Uy = —10m/s. The wind speed in the y-direction Vi =V, = V3 =V, =0
m/s for layer 1, layer 2, layer 3 and layer 4, respectively. We take the dispersion in
the z- and y-directions as Dy; = Dpy = Dpz = Dpg = 800 m?/s for all layers. The
release point is situated at (Xo, Yo, H) = (0, 0,400).

The model is programmed with respect to step sizes (Az, Ay and Az) in an iterative
procedure. The iterative procedure runs until the ground flow in the last layer which

(e o] oo
is 54 / / ¢ dr dy has converged. Also, in order to obtain convergence of the
—o0J -0
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ground flow, we compute the concentration ¢ by under relaxation. We have run the
program with various ranges and mesh sizes. It is found that we are able to converge
if the x and y ranges are sufficiently large and the mesh size is sufficiently small.
Figure 3.10 is computed using the x and y ranges from -24000 to 24000 and the z-
range from 0 to 500, and the mesh is divided into 120 grid points horizontally and
vertically (Az = Ay = 48000/120 = 400 and Az = 500/120 = 4.1667).

Figure 3.10 shows the concentration for a continuous release in a three-dimensional
layered atmosphere. Figures 3.11, 3.12, 3.13 and 3.14 are top views of the contours at
each interface. We observe the effect of dispersion from the distribution of the ashfall.
The spread of ashfall is wider toward the ground and the thickness of the deposit is
thinner towards the ground. The contours shown in Figures 3.10, 3.11, 3.12, 3.13 and
3.14 are not as smooth as in the two-dimensional simulation because the mesh size
used in the two-dimensional model was finer.

R R

o ; i i i i i i
-5000 -4000 -3000 -2000 -1000 O 1000 2000 3000 4000 5000

Figure 3.10: Concentrations at the interface for a continuous release in steady state in a
three-dimensional layered atmosphere. It shows that the ash falls with respect to the wind
direction and the spread of the distribution is wider towards the ground. (* indicates the
release point (Xo, Yo, H) = (0,0, 400).)
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Figure 3.11: Interface one of Figure 3.10. (* indicates the release point (Xy, Yy, H) =
(0,0,400).) The innermost contour has the highest concentration whilst the outermost has
the lowest concentration.
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Figure 3.12: Interface two of Figure 3.10. The innermost contour has the highest concen-
tration whilst the outermost has the lowest concentration.
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Figure 3.13: Interface three of Figure 3.10. The innermost contour has the highest concen-
tration whilst the outermost has the lowest concentration.
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Figure 3.14: Ground level of Figure 3.10. The innermost contour has the highest concen-
tration whilst the outermost has the lowest concentration. The accumulation rate on the
ground (in kg/m?/s) is given by Sy times the value of c.
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3.5 Summary

In this chapter, we have presented analytical solutions for modelling an instantaneous
point release in a one-, two- and three-dimensional layered atmosphere based on the
condition of D, = 0 and a continuous point release in a one-dimensional layered
atmosphere with D, = 0.1.

We are unable t o solve the steady state continuous release in two- and three-dimensional
layered atmosphere analytically, so they are solved numerically. In order to achieve
convergence, under relaxation is used in computing the solutions with large x and
y ranges, and a small mesh grid. The advantage of analytical solutions is that they
allow the effect of parameter variation to be explored more readily. The graphs pro-
duced by both the analytical and numerical solutions show the expected distribution
pattern of ashfall. They illustrate that the spread is wider if the release point is
higher, as the dispersion time is longer.

Most volcanologists assume that D, = 0, so in the next chapter we investigate the
case D, = 0 in more detail on both whole and half space models. In particular, we
give more examples of deposits with D, = 0 for the case of instantaneous release. We
also use the data from Tables 1.1 and 1.2 to compute the deposits and illustrate them
graphically.
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Chapter 4

ANALYSIS OF DEPOSITS

cosmetics may not represent the personality

Why analyse deposits?

Suzuki [49] noted that the patterns of deposition vary between eruptions even though
the total mass released might be the same. The causes of the variation could be due
to differences in release height, eruption column height, wind speed and direction.
Therefore it is important to analyse the contours of deposition on the ground in order
to obtain information about the atmospheric conditions and release parameters during
eruption. This information will help volcanologists and geologists to make hazard
maps for future eruptions. The patterns of deposition will help to give approximate
values for data such as the release height, eruption column height, wind speed and
direction and eruption duration [11] [46]. For example, according to the report of
Hurst [25], the release height and the rate of eruption can be estimated by the spread
of the ashfall.

In addition to analysis of deposit patterns this chapter also demonstrates how the
thickness of the deposit and the ‘centre’ of the deposit can be determined. We inves-
tigate patterns of deposition in whole and half-spaces for both D, # 0 and D, = 0.
As mentioned at the end of the previous chapter most volcanologists assume that
D, = 0 because they find that D, is very small at the height of 500 metres and above
[7] [25].

4.1 Thickness of the Deposit

Here we will only consider very small particles which reach their settling speed in
a short time and distance. In general the size of particles deposited decreases with
increasing distance from the eruption. As mentioned in Chapter 2 the size of the
particles affects the settling speed. Small particles have low settling speeds so they
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have more time to travel before they reach the ground. Thus they travel further.
The location of the deposition also reflects the strength of the eruption. A stronger
eruption propels the particles higher and carries the particles farther than a weak
eruption.

The thickness of the deposit can be determined from the deposition density function
f(z,y) (defined in Chapters 2 and 3). This can be written

f(z,y) = pr(1 = d)h(z,y)

where p, is the density of individual particles, ¢ is the porosity of the deposit and
h(z,y) is the thickness of the deposit. Here, we consider many mass classes of par-
ticles, and ¢ is usually very small, because the deposit is composed of many particle
sizes. Therefore, we take

4.2 Centre of the Deposit

The ‘centre’ of the deposit is defined as the point where the deposit f(x,y) is a
maximum. It can be determined from the turning point of f(z,y) (2.14) due to
release from the point (X, Yo, H).

f(z,y)

= 30DuvD. ©

Q [4((ealt YV , 45 0] [(2aﬁ +1)H + 2a25}
aB

4 Dy, (37 il By B

Z

T T 2 2 2 2
whereaz\/l [([ Xo) +(y Yo) +%] and ,xﬁ‘z\/l [U +V—+S—]

It may be deduced from Equation (2.14) that the coordinates of the critical point, z.
and y,. satisfy y.U = z.V, This means that the centre of the deposit lies on the line

Vv :
through the origin with gradient ik i.e. downwind of the release point. The point

(z.,y.) where the deposit is maximum is found numerically.

4.3 Deposition from an Instantaneous Point Source
Release in a Uniform Whole Space

In this section two cases are considered, one is where vertical dispersion is significant
(D, # 0) and the other is when vertical dispersion is negligible (D, = 0).
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x 10° point release at (0,0,7500)

Figure 4.1: Deposition contours for instantaneous release in a uniform whole space with
D, = 800. The innermost contour has the highest deposit whilst the outermost has the
lowest deposit.

x 10° point release at (0,0,7500)
1 T .

> Op

Figure 4.2: Deposition contours for instantaneous release in a uniform whole space with
D, = 0.01. The innermost contour has the highest deposit whilst the outermost has the
lowest deposit.

4.3.1 The case D, #0

Equation (2.14) is used to calculate the deposit from a point source with instantaneous
release in a uniform whole space. Using the data from Table 1.1 we have

o) = g () [ (298 UH 4 2075
TLp o a
1[(z—Xo)2 (y—Yo)2 H? LTz ve g2
4 — b d i £ Lo ) o°
e \/4 [ ey a7 stk T ¥ e

in the two cases where D, = 800 and 0.01 m?/s.

The contours of deposition in Figure 4.1 have a more elongated profile whereas in
Figure 4.2 they are more rounded. This is because the higher vertical dispersion
when D, = 800 disperses the ash with respect to the wind direction.

Interestingly, the contour in Figure 4.2 looks very similar to the contour in Figure 2.6
which had D, = 1. This shows that vertical dispersion has little effect between the
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values D, = 0.01 and D, = 1.

The profile of the spread in Figure 4.1 also reflects that z. is directly proportional
to the wind speed U in the z-direction and y,. is directly proportional to the wind
speed V' in the y-direction (Section 4.2). Since the data we used were U = 10m/s but
V =0 m/s (no wind in the y-direction), the ashfall only disperses in the z-direction
and not in the y-direction.

4.3.2 Thecase D,=0
When D, = 0 the concentration is given by (2.13) which becomes

Q _(z=(Xg+Ut)?  (u=(Yp+V1)?

4Dt 4Dt Mz — H_St !
T " e 0(z — ( )

c(@yghed, =

The ash density on the ground (z = 0) at the point (z, y) is given by

flz,y) = _/0. Sc(z,y,0,t) dt
*Q

_E=(XgtU)?  w-(gtven?
= 5| pge o nr5(St — H) dt
0 ht
SQ @-xo+UudH)?  w-(o+vEH)?
= e % =T (4.1)

Alternatively, if deposit(2.14) is used, we may take the limit as D, tends towards zero
to obtain

SQ G-ty

e ap, B ap, &
4?TD;1H

f(z,y) =

Using the data from Table 1.1, the deposition contours in Figure 4.3 are very close
to the case in Figure 4.2 where D, = 0.01. This verifies the solution of the deposit
(4.1) with D, = 0.

The point (z.,y.) where the deposit is maximum in this case is (Xo + U, Yo+ V).
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x 10° point release at (0,0,7500)

Figure 4.3: Deposition contours for instantaneous release in a uniform whole space with
D, = 0. The innermost contour has the highest deposit whilst the outermost has the lowest
deposit.

4.4 Deposit from an Instantaneous Point Source
with Release in a Uniform Half-Space

In this section, we consider two cases, one in which vertical dispersion is significant
(D, # 0) and one in which vertical dispersion is negligible (D, = 0).

4.4.1 The case D, # 0

The deposit (2.15) is used to calculate the deposition from a point source with an
instantaneous release in a uniform half-space. Using the data from Table 1.1, we
consider the deposit:

o0 r—Xn—Ut)2 e 2
flzy) = [ e ' B e
0 lﬁDht\/ﬂ'dD:

¢ H 1 H? ~H457)?
xf KS +2) — — 5} e‘t fD:f} d.'r} dt
0 D, rz2 D72

with D, = 800 and D, = 0.01 m?/s.

The half-space deposit (2.15) is not solvable analytically and numerical methods are
used. Nevertheless, we see that the results, shown in Figures 4.4 and 4.5, using the
half-space deposit closely resemble the results from the whole space deposit (2.14).

Interestingly, the contour in Figure 4.5 resembles Figure 2.8 in which D, = 1. This
shows that the vertical dispersion has little effect between the values of D, = 0.01
and D, = 1. The profile of the spread in Figure 4.4 also reflects that the location of
z. is directly proportional to the wind speed U in the z-direction and the location of
Y. is directly proportional to the wind speed V' in the y-direction (Section 4.2). Since
the data we used were U = 10m/s but V' = 0 m/s (no wind in the y-direction), the
ashfall moves forwards in the z-direction and not in the y-direction.
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x 10° point release at (0,0,7500)

-1

% x 10°

Figure 4.4: Deposition contours for instantaneous release in a uniform half-space with

D, = 800. The innermost contour has the highest deposit whilst the outermost has the
lowest deposit.

x 10° point release at (0,0,7500)

Figure 4.5: Deposition contours for instantaneous release in a uniform half-space with
D, = 0.01. The innermost contour has the highest deposit whilst the outermost has the
lowest deposit.
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4.4.2 The case D,=0

When D, = 0, Equation (2.15) is used to calculate the deposit from a point source
with instantaneous release in a uniform half-space (see Appendix A.5 for the working).
We obtain

(z—(Xo+UHN2  (y-(vp+Vv H))?
SQ _ = - o

e 4Dy, & ADy %
47I'DhH

flz,y) =

which is the expression as for the whole space deposit (4.1) with D, = 0. This shows
that the deposits are identical in a whole space and a half-space models when D, = 0.

The vertical flux at z = 0 for the whole space is

vertical flux = (Sc + D2§> 2
0z z=0
and the vertical flux at z = 0 for half space is
vertical flux = (Sc),_,

0
because we assume DZ% =0 at z = 0 in the half space and if D, # 0 then a_c = ("
z z

If we take D, = 0, which most volcanologists do, then the vertical flux at z =0 is

vertical flux = (S¢),_, -

The vertical flux is the same for both whole and half space when D, = 0.

4.5 Deposition from Two Point Sources with In-
stantaneous Release in a Half-Space and D, = 0

Although our figures have shown that the observed contours of deposition with D, = 0
resembles concentric circles, in practice, the contours of deposition are not circular.
To obtain different deposition contours, we use two point sources instead of the single
point source considered in previous chapters and sections. This analysis investigates
possible causes for the shape of a deposit on the ground. The formula (3.4) describing
the deposit after fall through a layered atmosphere is used in this analysis.

Q _[u—x[fz (y—‘r[}?]
€

1A, T dAy
47TAf

flz,y) =
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Table 4.1: Experiment 1 - different release heights.

Source | Parameter | Layer 1 | Layer 2 | Layer 3

a U 10 10 10
V 0 0 0
S 1 1 1
Dy, 800 800 800

b U 10 10 10
|% 0 0 0
S 1 1 1
Dy, 800 800 800

where
Hn = H- S]h = Sg(tg p— tl) A Sﬂ(fn = tn—l)

Ay = Dpity + Dpa(ta —t1) + Dpa(ts — t2) + ... + Dpn(t, — tj-1)
Xy = Xo+Uiti +Us(ta —t1) + ... + Up(tn — th-1)

Yy = Yo+Viti+Valta—t1) + ... + Va(tn — th1)

and t, is the time when the particles land on the ground.

Note that under the substitution Uy = U, = ... =U;, Vi = Vo= .. =V, 5§, =5, =
... = 8§, Dp1 = Dpp = ... = Dy, the atmosphere is uniform and the deposit becomes
e X _pH2 —Y, _L.—H}z
SQ _le—Xp ;_:5'_] _-Yo Hg
:L., — e 4Dh? -'I.Dh-sr
f@9) = opa

which is the deposit formula (4.1) of the uniform atmosphere.

The data from Table 1.2 may alter in each experiment in this section. The two
point sources are denoted source-a and source-b where the release point of source-
a is (Xo, Yo, H) = (0,0,7000) and the release point of source-b is (Xo, Yy, H) =
(0,0,5000). The atmosphere for the two point sources is divided into three layers:
the first interface is at a height of 3000 metres from the ground and the second
interface is at 1000 metres from the ground. The two point sources release ash at
different values of time.

4.5.1 Experiment 1 - different release heights

The data for Experiment 1 shown are consistent with a uniform half-space atmosphere
as all the parameters are constant throughout all layers: wind speeds U = 10 m/s,
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Figure 4.6: Experiment 1 - Distribution of ashfall from different release heights. The
innermost contour has the highest deposit whilst the outermost has the lowest deposit.
Release point for source-a is at (0,0, 7000) and source-b is at (0,0,5000). Parameter values
given in Table 4.1.
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Table 4.2: Experiment 2 - larger dispersion.

Source | Parameter | Layer 1 | Layer 2 | Layer 3
a U 10 10 10
% 0 0 0
S 1 1| 1
I3 4000 4000 4000
b U 10 10 10
V 0 0 0
S 1 1 1
by, 4000 4000 4000

V =0 m/s, settling speed S = 1 m/s, and horizontal dispersion D; = 800 m?/s. The
purpose of Experiment 1 is to observe the deposition from two sources at different
release heights in a uniform atmosphere.

The bottom graph for Figure 4.6 of Experiment 1 shows that the ash from the two
point sources landed apart, because they were released at different heights. Source-b
landed closer to the release point, (Xo, Yp) = (0,0) because the release height is lower
than source-a and so the particulates had a shorter time to disperse. On the other
hand, the release height for source-a was higher so these particles had a longer time
to spread. Consequently, the ashfall from source-a (on the right in the top graph of
Figure 4.6) landed farther from (Xo,Yy) = (0,0) than that from source-b and the
resulting deposit also spread wider than that from source-b.

4.5.2 Experiment 2 - larger dispersion

Based on Experiment 1, we consider two sources, using the same data, but with a
larger horizontal dispersion, D, = 4000 m?/s throughout ashfall in Experiment 2.
The purpose of this experiment is to observe the shape of the deposit contour on the
ground. We again assume a uniform atmosphere.

The bottom graph of Figure 4.7 from Experiment 2 shows that the deposits from
the two sources overlap. We see that dispersion has an impact on the ashfall: even
though the two sources are released at different heights they can land close to each
other if the dispersion rate is high enough. From the top graph of Figure 4.7, we
see that the spread of the ashfall is wider than in Experiment 1 because dispersion is
larger. Again we see that the deposit from source-a is thinner than that from source-b
and wider than that from source-b as it is released from a higher point and so had a
longer time to fall and therefore more time to spread.
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Figure 4.7: Experiment 2 - Distribution of ashfall with larger dispersion. The innermost
contour has the highest deposit whilst the outermost has the lowest deposit. Release point
for source-a is at (0,0, 7000) and source-b is at (0,0, 5000). Parameter values given in Table
4.2
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Table 4.3: Experiment 3 - change in wind speeds.

Source | Parameter | Layer 1 | Layer 2 | Layer 3
a U 10 5 10
% 0 0 0
5 1 1l 1
Dy, 800 800 800
b U 10 10 10
% 0 0 0
S 1 1 1
Dy, 800 800 800

4.5.3 Experiment 3 - change in wind speeds

This time we change the wind speed in the z-direction to U = 5 in layer 2 of the
atmosphere for source-a, the remainder of the data remain as the Experiment 1. Hence
source-a is released in layered atmosphere but source-b is released into a uniform
atmosphere. Recall that the sources are released at different times.

The bottom graph of Figure 4.8 from Experiment 3 shows that the deposits from
the two sources overlap each other. The deposit is elongated as the wind speed was
changed to 5 m/s in the z-direction for source-a in layer two of the atmosphere and
then changed back to a wind speed of 10 m/s in layer one. This demonstrates that a
change of wind speed and direction during the fall will affect the resulting deposition.
From the top graph of Figure 4.8, we see that the spread of the ashfall is moving
towards the left when the wind speed reduces.

4.5.4 Experiment 4 - different settling speeds

We use the same data as in Experiment 3 except that the settling speed of source-b
is changed to 1.5 m/s, i.e. the particles in source-b are now larger in size than those
in source-a. Therefore they fall faster than those of source-a.

The bottom graph of Figure 4.9 from experiment 4 shows that the deposits from the
two sources are separated. This is due to their different settling speeds. Source-b has
a higher settling speed so deposits from it reach the ground faster than deposits from
source-a. Furthermore, source-b is released at a lower height than source-a. This is
because larger particles usually do not rise as high from an eruption as smaller ones.
Note that the settling speed formula (2.8) implies that settling speed is dependent
on the size of the particle (with larger particles having a higher settling speed). We
observe that the source with lower settling speed spreads wider than one with higher
settling speed. Particles with lower settling speed have more time to disperse, so
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Figure 4.8: Experiment 3 - Distribution of ashfall for change in wind speeds. The innermost
contour has the highest deposit whilst the outermost has the lowest deposit. Release point
for source-a is at (0,0, 7000) and source-b is at (0, 0,5000). Parameter values given in Table

4.3.

Table 4.4: Experiment 4 - different settling speeds.

Source | Parameter | Layer 1 | Layer 2 | Layer 3
a U 10 5 10
V 0 0 0
S 1 I 1
Dy, 800 800 800
b U 10 10 10
V 0 0 0
i 1.5 1.5 1.5
Dy, 800 800 800
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Figure 4.9: Experiment 4 - Distribution of ashfall with different settling speeds. The inner-
most contour has the highest deposit whilst the outermost has the lowest deposit. Release

point for source-a is at (0,0, 7000) and source-b is at (0,0, 5000). Parameter values given
in Table 4.4.

76



Table 4.5: Experiment 5 - different settling speeds with change in wind speed and direction.

Source | Parameter | Layer 1 | Layer 2 | Layer 3
a U 10 -5 10
V 0 0 0
D 1 1| 1
Dy, 800 800 800
b U 10 10 10
Vv 0 0 0
5 1.5 1.5 1.5
oy 800 800 800

the spread of the ash is wider. Particles with higher settling speed have less time to
disperse and hence the spread of the deposit on the ground is smaller.

4.5.5 Experiment 5 - different settling speeds with change in
wind speed and direction

Using the same data as in Experiment 4 except that wind direction in the z-axis is
changed to U = —5 m/s in layer 2 for source-a in Experiment 5.

Figure 4.10 shows that the deposits for the two sources overlap each other. We
observe that if the change in wind speed or direction is great enough during ashfall, it
affects the distribution of the deposit even though the size of the source particles are
different. Hence, changes in the physical conditions in the atmosphere exert strong
influence on the movement of particles. Again, particles with lower settling speed
have more time to disperse so the spread of the ash is wider and particles with higher
settling speed have less time to disperse and hence the spread of the deposit on the
ground is smaller.

4.6 Deposit for Sources of Different Shapes in a
uniform atmosphere with D, = 0

In this section we experiment with sources of different shapes and observe the shape of
the resulting deposit. We also investigate the effect of release height upon dispersion.
The atmosphere used in this analysis is based on the uniform model with D, = 0
(Equation (4.1)).

50 (e-Xg-UH)?2  (y-¥p-vH&)?
= o d

e ADp & -.m,l%;'r
4?FD;—,H

flz,y) =
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Figure 4.10: Experiment 5 - Distribution of ashfall with different settling speeds and a
change in wind speeds. The innermost contour has the highest deposit whilst the outermost
has the lowest deposit. Release point for source-a is at (0,0,7000) and source-b is at
(0,0,5000). Parameter values given in Table 4.5.
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The purpose of this analysis is to compare the results obtained using different source
shapes with the results obtained using the point source. For example, in order to
obtain a formula for a horizontal source, we allow Xg to vary and replace it by X for
a horizontal line source. We have to reformulate the model for each shape of source,
for example, for a horizontal line source releases in the direction of x, we write the
deposit as

@-Xx-UH)2 @-vo-vH)?
. _ SQ T T ap, B T ap H
f(I’yY ‘X) = 4 D H hs h's
TL/p

The work in this section is motivated by Prof. Chuck Connor of the Department
of Geology at the University of South Florida. At the conference [28] I gave a pre-
sentation on deposition of ashfall from a point source. Following this presentation,
Prof. Chuck Connor suggested that it would be useful to investigate the deposit from
a circular source. We followed this suggestion and also investigated the deposition
from other shapes of sources. The shapes of source we consider are: a horizontal line
segment, a vertical line segment, a rectangle and a circle. The data from Table 1.1
is used for this analysis. In the following subsections we calculate the deposit from
different shapes of source. The ash deposition from each shape of source is presented
graphically.

4.6.1 Release from a horizontal line

We consider a horizontal line source parallel to the z-axis on the interval (X; < z <

X3) with mass (X_B)T) kg per metre length released at ¢ = 0. By integrating the
deposit from each small segment d.X of the line source, namely [Q/(X2 — X)]dX, we
get

1 X SQ _tr—‘;'c—t;%n?_ty-:c‘;‘gﬂ
flz,y) = ox ~/;<1 7D ° Dy ¥ X
Q _w-Yo-vE)y
= e ADp 7
41qui'Dh%(X1 —XQ)
x ¢ erf (I—Xz‘_U%) — erf (x_Xan%)
2 Dh% 2 Dh_%

For a horizontal line source parallel to the y-axis on the interval (Y; < y < Y3), the
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deposit is given by:

(z-Xo-U )2
flay) = g e ¥
4\;?1'1);1%(}"1 - Y2)
-%-vH) _ [-vi-vE
2\/Dp4 2\/Dy4

x < erf

We consider two different lengths of horizontal line parallel to the z-axis and y-axis;
1500 m and 10000 m. We see from figures 4.11 and 4.12 that the deposit from the
shorter horizontal line source is similar to the ash deposit from a point source. If
the release height of the longer horizontal line is very large, the deposit appears no
different from the deposit due to a point source.

x 10* (@) line = =750 to 750m at H = 7500m
1 - -
> Of = A
1k e
0 2 4 6 8 10
X x 10
x 10" (b) line = -5000 to 5000m at H = 7500m

1 T 1 I 1

Figure 4.11: Contour of deposition from horizontal line source parallel to z-axis. The
innermost contour has the highest deposit whilst the outermost has the lowest deposit.
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Figure 4.12: Contour of deposition from horizontal line source parallel to y-axis. The
innermost contour has the highest deposit whilst the outermost has the lowest deposit.

4.6.2 Release from a vertical line

The vertical line source is worth investigating because eruptions sometime eject ash
into a column [54]. We consider a vertical line source parallel to the z-axis along the
interval (H, < H < H,). The deposit due to the vertical source is given by:

(2,2) L _f* )
f(z,y) = —— x,y; H)dH
= f(z,y
r—X —yHy2 y-Yp-V 2
_ 1 /Hz SQ e_l :f,hfrf] s :Dh::-frg} dH .
HQ—H1 H, 4?TD},H

We also consider two lengths of vertical line, 100 m and 2000 m. From Figure 4.13(a)
we see that the deposit from the shorter vertical line source is similar to the deposit

from a point source. Figure 4.13(b) shows an elongated distribution from the longer
vertical line.

Figure 4.14 is a vertical line source with a length 6000 m from 2500 to 8500 m, the
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Figure 4.13: Contour of deposition from a vertical line segment source above origin. (*
indicates the release point at (Xo, Yp) = (0,0) from the top view.) The innermost contour
has the highest deposit whilst the outermost has the lowest deposit.

Table 4.6: Data of the two vertical line sources in Figure 4.16.

Parameter | Xq | Yy | length of vertical line Q Uit & | Dal D2
Line 1 010 7500 to 9500 2.5 x 10" 11010 1 [ 800 | O
Line 2 010 7500 to 8500 25x10°° 110/ 0105|800 0

contour is a “fan” shape deposit, the right-hand-side of the contour is wider than
the left. The deposit on the left comes from ash released at the lower portion of the
vertical line source and the deposit on the right is from ash released in the upper
portion of the vertical line source. The higher the release (the upper portion) the
wider the spread as there is more time to spread farther. The lower the release (the
lower portion) the smaller the spread as there is less time to spread farther.

Figure 4.13(b) shows some similarities to the contours of deposition produced from
the Taupo eruption (see 4.15), though the contours produced from the Taupo eruption
are not as even as those in figure 4.13(b). This leads us to speculate that a vertical line
source may be a good model for the ejection of ash into the atmosphere following an
eruption. We continue the study of vertical line sources by considering two overlapping
(simultaneous) vertical line sources with different settling speeds representing two
different sizes of particles.
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x 10* vertical line = 2500 to 8500m

Figure 4.14: Contour of deposition for a longer vertical line source. The innermost contour
has the highest deposit whilst the outermost has the lowest deposit.

Figure 4.15: Contour of deposition from the Taupo eruption [53].
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Figure 4.16: Contour of deposition from two overlapping vertical line sources. The inner-
most contour has the highest deposit whilst the outermost has the lowest deposit (Table
4.6.)

Qualitatively, it appears that the deposit from two vertical line sources as shown
in figure 4.16 gives an elongated distribution similar to figure 4.15. It could be
that different sizes of particles released along the same column explain the observed
elongated distribution.
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4.6.3 Release from a rectangle

We assume a rectangular plane source with sides given by the intervals (X; < z < X3)
and (Y] <y <Y)). The deposition from the source is given by:

] Y ¥
(X2 — X1)(Y2— Y1) Y1
1
X1)

flz,y) = flz,y; X,Y)dX dY

X1
(e-X-UH )2 (y-y-vH)?

= - BE Ony dX dY
(% - X)) (%2 - ) Jy, f 4erhH ©
X H r—X,—-UXL
_ Q orf (z 2 —U3) — it ( 1—U%)
4(X, — Xo)(Y1 — Y2) ) Dh% 24 zDh%
y—-Y,— VX -, -Vv&
x < erf (y - S) —erf (U : S)
Dh% 2 Dh,s

We consider two sizes of rectangles (in fact squares) of dimensions 1500 m x 1500 m
and 15000 m x 15000 m. We see from figures 4.17(a) and 4.17(b) that the deposit
due to the smaller rectangular source is similar to the deposit due to a point source.
Considering the previous results, it seems that the shape of source is unimportant if
it is relatively small. If the release height of the larger rectangular source is very large
the resulting deposit appears no different from the deposit due to a point source.

4.6.4 Release from a circle

In this section we consider a circular source. The circular source is worth investigating
because eruptions sometime generate a circular cloud [54]. We consider a circular
source of radius R and centre (Xo, Y¥p). The model, in polar form, used to calculate
the deposition from this source is:

1 2
f@w) = = [ | feynowd

2w (:—.\’o—rcuse-!',-'-g-‘,lz (y—Yp—rsin E—V—"_—:-'—Iz
= 1D § e Dy % rdrdf
4mﬂmH[0/

We consider two circles: one of radius 750 m and one of radius 7500 m. From figures
4.18(a) and 4.18(b) we see, once again, that the deposition of ash from the smaller
source is similar to the deposit from a point source. The deposit forms a circle because
the horizontal dispersion is isotropic, however, the size of deposit from the smaller
circular source is similar to that from the point source. If the release height of the
larger circular source is very large the resulting deposit is no different from the deposit
due to a point source.
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Figure 4.17: Contour of deposition from a rectangular source. The release height for both
rectangular sources is at 7500 m. The innermost contour has the highest deposit whilst the
outermost has the lowest deposit.
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Figure 4.18: Contour of deposition from a circular source. The release height for both
circular sources is at 7500 m. The innermost contour has the highest deposit whilst the
outermost has the lowest deposit.
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4.7 Summary

In this chapter we have shown that the half-space and whole space deposits are the
same when there is no vertical dispersion (D, = 0). Though we are unable to solve
the half-space deposit analytically when the vertical dispersion is positive (D, > 0),
our numerical results show that it is very similar to the whole space deposit. Hence,
the whole space model can be used as the half space model.

From the results of the analyses using a point source, we conclude that the distribution
of ashfall is controlled by the wind speed, wind direction, dispersion, release height
and the settling speed. Our analyses show that particles with lower settling speed
have more time to disperse and therefore travel farther; hence the spread of the ashfall
is wider and the deposit on the ground is thinner.

Experiments with different shapes of source found that the resulting deposits are the
same as the deposit from a point source at the same release height if the deposit
source is small. If the release height is reasonably high , the contour deposition is
very similar to the point source releases at the same height. The result of a larger
source at a greater release height is similar to the point source at the same release
height.
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Chapter 5

ANALYSIS OF PARAMETERS

result presents the fact
analysis proves the fact

5.1 Analyses

Why analyse the parameters?

The purpose of this chapter is to develop an improved understanding of the impact of
the parameters in the advection-dispersion equation and to investigate the sensitivity
of results to variation in these parameters. For this analysis, we use the layered model
with no vertical dispersion and instantaneous release from a single point, given by
Equation (3.1). The mass distribution in kg/m? on the ground (the bottom of the
nth layer) is given by, formula (3.4):

(=X )2 (y=¥p)2
Q e'[Tf— + H—uf'—]

f(l',y) = 4‘.‘TAJr

where

Aj = Dpity + Dpo(ta — t1) + Das(ts — t2) + ... + Dpn(tn — tn-1)
Xy = Xo+Uiti + Us(ta —t1) + ... + Un(tn — tn1)

Yy = Yo+Viti +Va(ta—t1) +... + Va(tn — ta-1)

and ¢, is the time when the particles land on the ground.

We will investigate the effect of the parameters in both the uniform atmosphere and
the layered atmosphere models. We take the uniform atmosphere as the base case.
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We vary the parameters in the layered atmosphere model and compare it with the
uniform atmosphere model. For simplicity we consider only two layers for the layered
atmosphere (see Figure 5.1).

Several parameters are assumed to be the same for the two models (uniform atmo-
sphere and layered atmosphere):

- the release point is fixed at (0,0, H);
- the vertical dispersion is zero, D, = 0;

- the wind speed V in the y-direction is zero (V = 0), i.e. the wind is only in the
z-direction,;

- the horizontal dispersion (D) is isotropic;
- Dyj = L;jU; where L; is the turbulence length-scale;

where j = 1,2.

Release at ( X, Y,,H) Q
@

L,,D,, Layer 1
s‘l
U, X =2,
S;
L.; D Layer 2
u
: > ¥ Ground, z=0

Figure 5.1: A schematic illustration of a two-layered atmosphere.
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5.1.1 Uniform atmosphere

Based on the layered model (3.4), the deposit for the uniform atmosphere is

519 —maf
| S ap &
f(z,y) D H ! (5.2)

f(z,y) is of the form of two-dimensional normal distribution.

H
Based on the normal distribution model, the quantity 2Dh15— in the exponent can

1
be variance. The standard deviation is therefore identified as the

/ 5]
= 2Dh]§l.

The standard deviation [31] describes the spread of ashfall due to dispersion. The
dispersion is caused by turbulence, the “mixing” movement of air in the atmosphere.
The measure of the spread of ash is therefore o.

At the point (z,v) = (Zmaz, Ymaez) O0 the ground where f attains its maximum value
fmaz, Wwe have T = Typ, = U= and ¥y = yYmar = 0. We use T4, to study the distance

Sy
travelled by the ash.

From (5.2) the maximum deposit in a uniform atmosphere is

fo__S0Q
maz—47TDh1H‘

The three quantities we study for the uniform atmosphere are:

H
Tmax = (]15—1 (53)
. 5Q
Smaz = D H (5.4)

/ H
a = QDME . (55)

Using Equation (5.5), we may write Equation (5.4) as
Q

s = 27r(\/29h15ﬁ1)2
= 9 (5.6)
2702
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5.1.2 Two-layered atmosphere

Based on the layered formula (5.1) with the same assumptions as above, the deposit
in a two-layered atmosphere is given by

Q [t
= f
f(z,y) A (5.7)
where
A; = Dpity + Dpo(ta — t1)
Xf = Uyt + U2(t2 i tl)
H-Z VA
hh = - = =
Sl SQ
The three quantities for the two-layered atmosphere are:
H- 27, A
mazr U + Us—- 5.8
T 1 S 25.2 ( )
Q
fmaz = H—2 7 (59)
47 (Dhl“TL 5 5 Dh2§:‘)
H - Z, Z
= 2| Dpy—————+ Dpo— ) . 5.10
o \/ ( h1 S, *+ ;252 ( )
As was the case for the uniform atmosphere, we can write Equation (5.9) as
. Q
fmaz = BB (5.11)

We set up the analyses of Equations (5.3) to (5.5) and (5.9) to (5.11) as follows:

z-coordinate at f, ..
Tmaz(two — layered)

Tmaz ratio =

Tmaz(uniform)

maximum thickness:
frmaz(two — layered)

fmaz (uniform)

f mazx ratio —
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standard deviation:
o(two — layered)

Oratio = o(uniform)
We obtain
Z, S1U,
maa:raiozl__ l— —— .
T t 17 ( 32 U1 (5 12)
P = 1 (5.13)
maxr ratio 1 B gl_ (1 B éaéj_gz) .
H Ly Sa Uy
Z Ly S, Uy
ratio — L [ Lmim—e——=— | .
el \/ H ( L, 5. Uh (5815
L, U,

We study how the ratios Tmaz ratio, fmaz ratio @d Orqtio Vary with respect to —
51
52

also we study varlation of quantities (Zmax mtw, fmaz ratio a0d 0rqti0) With respect to

L
2L for the cases where —= U2 Sl <— 1/= ) all have values of 0.5, 1 and 1.5.

A
%
(— 1/= > for the cases where ﬁl has the values 0, 0.25, 0.5, 0.75 and 1; and

H L U1 52

Z
El =0 i.e. Z; = 0, therefore the atmosphere is completely dominated by layer 1.

ZL 0251 layer 1 is larger than layer 2, i.e. the vertical height of layer 1 is longer
than layer 2.

Zy : . : :

— = 0.5 i.e. layer 1 is same size as layer 2, i.e. layer 1 and layer 2 have the same
length in the vertical height.

Z
El = 0.75 i.e. layer 1 is smaller than layer 2, i.e. the vertical height of layer 1 is

shorter than layer 2.

7= 11ie. Z, = H, therefore the atmosphere is completely dominated by layer 2.

L

L—2 = 0.5 i.e. the turbulence length-scale in layer 1 is larger than in layer 2, L; > L.
1

L, . ‘ . .

.= 1 i.e. the turbulence length-scale in layer 1 is same as in layer 2, L; = L,.
1

93



L,

Uz : : : . :

T = 0.5 i.e. the wind speed in layer 1 is larger than in layer 2, U; > Us.
1

Us : : : . .

A =1 i.e. the wind speed in layer 1 is same as in layer 2, U, = Us.
1

Us . . : . .

A = 1.5 i.e. the wind speed in layer 1 is smaller than in layer 2, U; < U,.
1

S : : : . .

e 0.5 i.e. the settling speed in layer 1 is smaller than in layer 2, S; < S,.
2

S : : : : .

5= 1 i.e. the settling speed in layer 1 is same as in layer 2, S} = Ss.
2

Sy : : : : :

T 1.5 i.e. the settling speed in layer 1 is larger than in layer 2, S; > S;.
2

The analyses are illustrated in the following sections.

L U. B S %
In our analyses, we write L, = L—j, U. = i?’ Sy = S_; <: 1/§j> and Z, = ﬁl and

obtain

Tmaz ratio = - Zr (1 — STUT) (515)
I 1 (5.16)
mazr ratio — 1 — Zr (1 — LrSrUr) F
Oratio = \/1 - Zr (1 - LTSFUI’) . (517)
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Figure 5.2: Tmax ratio versus S,U, for various values of Z,.

9.1.3  Zyaz ratio Versus S,.U, for Z,=0, 0.25, 0.5, 0.75 and 1

In this analysis we investigate the impact of the parameters on ey ratio for Z,=0,
0.25, 0.5, 0.75 and 1. From Equation (5.15),

Tmaz ratio = 1 — Z; (1 - SrUr) s

we have
. . <=0 ifSrUr<1
IR — S,U, ~19 =0 i S,U; =1
A >0 if S,U, >1

%% increases. When the

lower layer wind speed is high and/or the settling speed there is small, then S,U, is
large and Z;nqz ratio increases for all values of Z,.. As the value of Z, increases, layer 2
occupies increasingly more space than layer 1, so the particles have more movement
in layer 2. When Z, = 0, Tz ratio = 1, because the atmosphere is dominated by

layer one and there is no flow in layer 2. The critical point at S,U, = 1 happens when
Sy U

S U

Figure 5.2 shows that Zjas retio increases when S.U, =
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Figure 5.3: fiu ratio versus L,.S,U, for various values of Z,.

5.1.4  fiaz ratio versus L, S,.U, for Z,=0, 0.25, 0.5, 0.75 and 1

This analysis investigates the impact of the parameters on finay ratio When Z,=0, 0.25,
0.5, 0.75 and 1. From Equation (5.16),

1
fmaz ratio — 1— Zr (1 =1 LrSrUr) s
we have
<0 if L,S,U;, > 1
dfmax‘ ratio = LrSrUf' - U if L S U =1
er [1 o= Zr (]. — LrSrUr)]z =0 Hf LrSrUr =l |

Figure 5.3 shows that fiez raetio 1S @ decreasing function of L,.S,U,. When the wind
speed is large, the turbulence is large and this disperses the particle farther; when
the settling speed is small, the particle’s size is small too and so the particles have
more time to travel. As the value of Z, increases layer 2 occupies increasingly more
space than layer 1, so the particles have more movement in layer 2, hence finu; ratio
increases. When Z, = 0, finaz ratio = 1, because the atmosphere is dominated by

layer one and there is no flow in layer 2. The critical point at L,S,.U, = 1 gives

dfmaz ratio . S? L2(/2 Dh?
—lrea TR0, 10 e =] h et = = &
iz, N s ¢ 1, which happens when S, LoU, _ Dn
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Figure 5.4: 0,qt;0 versus L. S.U, for various values of Z,.

5.1.5  0Orqtip versus L,.S,.U, for Z,=0, 0.25, 0.5, 0.75 and 1

This analysis investigates the impact of the parameters on o4 When Z,=0, 0.25,
0.5, 0.75 and 1. From Equation (5.17),

Oratio = \/]- - Zr (1 - LrSrUr) 3
we have

>0 HLSli:>1
draio redplip — . ey
Croly Sl =] =0 FLET.=1

dZ, 2y[1-2.(1-L:SU)] | <o it LS

Figure 5.4 shows that o4, is an increasing function of L, S, U,. When the wind speed
is large, the turbulence is large and so the spread is wide; when settling speed is small,
the particle’s size is small too and so the particles have more time to travel. The value
of Z, increases when layer 2 is occupying more space than layer 1, so the particles
have more movement in layer 2. When Z, = 0, g,4tio = 1, because the atmosphere is
dominated by layer one and there is no flow in layer 2. The critical point at L,.S, U, = 1
S, _ Ll _ Dia

S, L2Ui  Dw’

O ratio

dZ,

gives = 0, fmaz ratio = 1, which happens when
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Figure 5.5: Tmaz ratio versus Z, for various values of S,U,.

5.1.6  Zyu0z ratio Versus Z, for S,U,=0.5, 1 and 1.5

This analysis investigates the impact of the parameters on ez ratio for S,U,=0.5, 1
and 1.5 using Equation (5.15):

Tmaz ratio = 1 — Zr (1 - ST‘UT‘) .

Figure 5.5 and Equation (5.15) show that Zaz retio 1S an increasing function of Z,
if 5;U, > 1 because the wind speed is larger and settling speed is smaller in layer

2, therefore particles have more time to travel farther. Zaz ratio is uniform when
S U.

Z, increases for S,U, = 1, this happens when 5—2 = —U—2 Tmaz ratio 1S & decreasing
1 1

function of Z, when 0 < S,U, < 1. This is due to the wind speed being smaller

and settling speed being larger in layer 2, therefore particles have less time to travel

farther.
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Figure 5.6: f0z ratio versus Z, for various values of LS, U,.

5.1.7  finaz ratio versus Z, for L.S,.U,=0.5, 1 and 1.5

This analysis investigates the impact of the parameters on fiaz ratio for L,.S,U,.=0.5,
1 and 1.5. using Equation (5.16):

s vatio = :
mazx ratio — 1_ Zr(l — LTSTUT) 0

fmaz ratio 18 an increasing function of Z, if 0 < L, S, U, < 1, because the wind speed
and turbulence length-scale are smaller and settling speed is larger in layer 2, therefore
particles have less time to travel and so the dispersion is small and the spread is

smaller. fimaz ratio 1 a constant function of Z, when L,S,U, = 1, this happens when
S _ LY _ Dw

.Sl LU, Dy,
is due to the wind speed and turbulence length-scale are larger and settling speed is
smaller in layer 2, therefore particles have more time to travel and so the dispersion

is large and spread wider.

. fmaz ratio 18 a decreasing function of Z, when L.S,.U, > 1, this
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Figure 5.7: 0rqtio versus Z, for various values of L, S, U,.

5.1.8  0raip versus Z, for L,S,U,=0.5, 1 and 1.5

This analysis investigates the impact of the parameters on 0,4, for L,.S,.U,=0.5, 1
and 1.5 using Equation (5.17):

Oratio = V/1— Z, (1 — L, S, U,).

Oratio 18 an increasing function of Z, when L, S, U, > 1. The wind speed and turbulence
length-scale are larger and settling speed is smaller in layer 2, therefore particles have

more time to travel and so the dispersion is large and spread wider. o,4ti, is a constant

L
function of Z, when L, S,U, = 1, this again happens when & = 2Us = % O ratio
S1 LUy Dp

is a decreasing function of Z, when 0 < L,S;U, < 1, this is due to the wind speed and
turbulence length-scale are smaller and settling speed is larger in layer 2, therefore
particles travel have less time to travel and so the dispersion is small and the spread

is smaller.

100



12

10

max
(=]

Figure 5.8: fiaz versus o.

5.1.9 Deposition versus standard deviation

Equation (5.6) shows the relationship between f,,q., and o,

for both the uniform and layered atmospheres and also from Equations (5.13) and
(5.14), we have

1

fma:r ratio = 7
ratio

Figure 5.8 illustrates that the greater the standard deviation of the spread of particles,
the thinner the deposit and Figure 5.9 illustrates that the larger the fmaz ratios the
smaller the oratio-

5.2 Summary

From the equations for f,.., 0 and x4z, only the equation of z;,,, does not contain
L, this illustrates the particle is affected by the settling speed of particle, wind speed
and its direction. The analyses shows that parameters have more impact in the
larger layer. The results also show that particles with higher settling speed fall faster,
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Figure 5.9: fmaz ratio VEIrsus Oratio-

therefore having a shorter time to spread and a thicker deposit (and vice versa). The
greater the wind speed, the farther away the particle lands and the spread is wider
and hence the deposit is thinner.

We showed that the standard deviation is large with large wind speed, large turbulence
length-scale or small settling speed; the deposit is thinner with large wind speed, large
turbulence length-scale or small settling speed; the value of 4, (i.e. the point where
the deposit is maximum) is large (therefore farther from the release point in the z-
coordinate) with large wind speed, large turbulence length-scale or small settling
speed.

From the results of Tmazx ratios fma;,; ratio and Oratios W€ See that Tmazx ratio and Oratio give
similar results. This is because the larger the value for ., the wider the spread.
The results of fiaz ratio are opposite to those of Timaz ratioc and Orarie, because the
deposit is thinner because of the wider spread.
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Chapter 6

PARAMETER ESTIMATION

go inside the box
turn it inside out

6.1 Introduction

In Chapters 2 and 3 we considered the forward modelling of volcanic ashfall. To do
this we needed to know appropriate parameter values. In this chapter, we discuss a
method for estimating parameters of volcanic ashfall from data.

The initial aim of this thesis was inverse modelling of ashfall. It would be a great help
to volcanologists if information about a volcanic eruption could be extracted from the
deposit on the ground [12]. Volcanologists could use the information in forecasting
the future risk if a similar scale of volcanic eruption occurs.

Due to lack of data, we switched to forward modelling instead of inverse modelling.
Nevertheless, in this chapter we present our attempts at estimating parameters asso-
ciated with volcanic ashfall. As described in the previous chapters, the distribution
patterns of ashfall deposits on the ground are affected by the wind speed, wind di-
rection, particle settling speed, the atmospheric dispersion and the height of release.
In Chapters 2 and 3, we showed that the atmospheric concentration of ashfall and
the consequent deposit could be determined from these parameters. It is not easy to
determine these parameters from the measured output (concentration or deposit).

6.2 Analogy

There was only one published work on inverse modelling of volcanic ashfall found dur-
ing the study. The work was presented at the International Association of Volcanology
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and Chemistry of the Earth’s Interior conference in November 2004 in Chile [28], and
was implemented by Laura Connor [15] [16] [17] of the Department of Geology at
University of South Florida. This approach required intensive computing techniques,
it was executed on multiple processors and implemented using a combination of the
downhill simplex method and assessing the goodness of fit.

The information which needs to be extracted from the volcanic ashfall pattern includes
the dispersion in the horizontal (Dj) and vertical (D) directions, the wind speeds
(U,V) in (z,y) directions, the settling speed S, the release point (Xo,Ys) and the
release height H. There are eight unknown parameters (Dy, D,,U,V,S, Xy, Yy and
H) and therefore eight equations are required. We created eight moments for the
eight equations. The following subsections show how these moment equations are
created and solved using a numerical method, and some alternatives for simplifying
the moment equations.

We tried using a variety of numerical methods to determine the parameters. This
chapter will report on only one numerical method, which we found to be the best.
MATLAB [14] was the tool used for this work. Another advantage of using MATLAB
is that it has “ready-made” subroutines for some numerical methods, hence it saves
time in writing the codes manually.

6.2.1 Uniform whole space model

We first formulate eight moment equations based on the uniform whole space deposit
(2.14):

flz,y) = __._Q? e%(%‘”—v+%ﬁﬁ_‘-'+g_f)_2als |:(20(|:3 + 1)?’ el 2&25]
32?!'Dh Dz i
. 1 (.T - X0)2 (y o }/0)2 H?2 ~ L T2 V2 52
where a = \/ m [ Dh it D, =+ D, and 8 = 1D + = n =l

The moment equations are formulated with respect to the z and y coordinates of the
deposit (2.14):

2%y’ — moment = Mpayp = / % dx / Y’ dy f(z,y)

—00 oo
where a and b are positive integers.

The mass source () can be calculated from the zeroth moment:
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2%° — moment = M,o,0 = / / flz,y) dz dy
— 0

The eight moments are:

o0 o0
T — moment = M, = / / zf(x,y) dr dy
—o00 J —00
o0 o0
y — moment = M, = / / yf(z,y) dr dy
—00 —00
z? — moment = M,» / / flz,y) dz dy
o0 o0
y* — moment = M,; = / / v’ f(z,y) dz dy
P
o0 o0
ry — moment = M,, = / / zyf(z,y) dr dy
z® — moment = M,s / / f(z,y) dz dy
y® — moment = Mg / / f(z,y) dz dy

o0 o0
2’y — moment = M2, = / / 2?yf(z,y) dr dy

or alternatively
o0 o0
ry? — moment = M2 = / / ry?f(z,y) dr dy.
—

Using Equation (2.14), it is possible to find explicit expressions for these moments.
Some examples of the calculated procedure are given in the Appendix A.7. The eight
moments are:
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H D
szQ[X”U(S +§>]

= fnrv(5+2)]

H D,
M, =Q [Xz +2(XoU + D) (5 ' 32)
HQ 4HD::

602\
+U? (82 Ll 2)]

5t

M. = Q {YDQ -+ Q[YDV T Dh} ( 23)
HZ 4HD 6 :
+V (52 3 )

]

H D,
M, =Q [X0Y0 + (VXo+ UYp) <S ' 36)
H> 4HD, 6D
S4

+UV<S2 &

2

Mys=Q [XS’ +3(XoU +2XoDn) ( )
+3(XoU? + 2UDy) (E 3
Js (HS  OH?D, 36H Dy GODS
4 53 + q4

My = Q|3 + 303V +2v D) (5
H? 4HD 6D,
+3(YoV2 + 2V Dy) ( S
H® 9H?D,  36HD?
o 85 + 86

6003

+V? (53 T
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(6.6)



: H D,
Mz = Q [XéYa 3 (X2V +-2X,YoU 4 2Ya Dy,) (§ + ?)
H? 4HD, 6D?
et T

+(2XoUV + YoU? 4 2V Dy,) (

s H° . 9H?D, 36HDZ 60D
2 saii : z z
+U*V (53 B S + o5 + 56 )] (6.8)
or alternatively
2 2 H D,
ﬂ.f_.ryz = X(;YO = (YO U+ 2XpY,V + QX(}D;-,)(E + E)
H? 4HD, 6D?
+(2YoUV + XoV2 + Whilg+— +
H?®* 9H?’D 36HD? 60D?
HIWV g t——t+——+ |- (6.9)

(See Appendix A.7.1 for the working of a moment solution.)

The eight moment equations show an interesting sequential pattern. Unfortunately,
the moment Equations (6.1) to (6.8) are nonlinear and it is not possible to determine
the parameters analytically. Some numerical methods have been tried to solve the
eight equations. Methods such as Broyden’s, Newton’s and Steepest Descent methods
[20] [33] require a first guess for each parameter. However, none of these methods
gave accurate results if the guess was not close to the actual solution. Zheng et al.
[56] state that guessing a solution is not practical and is also time consuming; they
suggest that a practical way to tackle this kind of problem is to restrict the likely
range of the solution for each parameter.

We used Newton’s method to solve the moment equations with the suggestion given
by Zheng et al. using the ‘fsolve’ command in MATLAB. It is found that this is a
better approach than the other methods we experimented with.

We substitute the data from Table 1.1 into the moment equations to obtain the eight
moments and then tried using the values of the eight moments to find the eight
parameters.

We input the likely ranges of solutions for all parameters in the program instead of
guessing the solutions. The program goes through the input ranges and picks up the
solutions for the system. From Table 6.1, for example, the input range, 0:10:20 means
the start point starts from 0 to 20 with interval of 10; 0:10 means the range is from 0
to 10 with interval of 1. Hence from Table 6.1, there are 8 permutations for starting
point in Input range 1 and 8% permutations for Input range 2. Table 6.1 shows that
the program found two sets of solutions from Input range 1 but one set from Input
range 2. Thus if the range is too wide, we may obtain more than one solution. But,
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Table 6.1: Results by Newton’s method.

Parameter | actual solution | Input range 1 Result 1 Input range 2 | Result 2
Xo 0 0:1:2 0 0 0:1 0
Yo 0 0:1:2 0 0 0:1 0
H 7500 0:7500:150000 | 7500 | 7500 0:7500 7500
U 10 0:10:20 10 20 0:10 10
V 0 0:1:2 0 0 0:1 0
S 1 0:1:2 1 2 0:1 1
Dy 800 0:800:1600 800 | 1600 0:800 800
D, 0 0:1:2 0 0 0:1 0

if the range is not close to the actual solution, we obtain no solution; if the range is
small and close to the actual solution, we obtain the desired solution. This shows a
problem: that if we have no idea about the actual solutions and the program gives
more than one set of solution, we do not know which solution to pick. Also, if the
input range is wide, the program running time is long too.

Interestingly, we also see that there is a common ratio in the two sets of U, S and
Dy, from result 1. The U, S and Dy, in the second column are twice as large as the
first column ones. This is because Dy, is directly proportional to U (D, = UL) and
so if the wind is two times higher, the dispersion will be two times higher as well.
When the particle’s settling speed is double, the value of U needs also to be double
in order to land on the same point. So if any of U, S and D increases, the others
will increase proportionally in order to obtain the same output.

6.2.2 Uniform half space model

We formulate moment equations using the uniform half space deposit (2.15):

x SQ _(4:-‘,\'0—!'_.1'1}2_(y_yo_p“?
T, = —_——€ ADpt 1Dt
Je ~/0 { 16 Dpt\/m3D,

t 2 e
x/ [(§5+2)l3— - ]e—‘ fﬁi’d-r}dt.
0 Dz T2 DZ’T

As in the uniform whole space model, the mass source ) can be calculated from the
zeroth moment:

w3l
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o0 oo
2°y° — moment = Mo = / / f(z,y) dz dy

= Q.
Here are five of the moment equations:
/7 (- |
M,=Q {Xo—i—U(g-i-?)] (6.10)
H . D,
My=Q[Y0+V(§+§)] (6.11)

S 52
2 2
4:U° (i + 4sz + 4D3)] (6.12)

M, =Q [Xg + 2(XoU + Dy) (E + D”)

S? e St

H D.
Mgz =Q {Y;“ + 2(YoV + Dp) (g + —57)

H? 4HD 4D?
2 - z
+V (_32 + T )] (6.13)

H D,
A{xy = Q [XGYG + (X[)V + Y[)U) (§ - —S—;)
H? 4HD, 4D?

(6.14)

(See Appendix A.7.1 for the working of a moment solution.)

Again, we face the same difficulty as the uniform whole space moments. It appears
that Equations (6.1) and (6.2) of the uniform whole space model are same as Equa-
tions (6.10) and (6.11). It is also found that for D, = 0, the moment equations for
both uniform whole and half space models are the same.
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6.2.3 Simplification 1

In order to simplify the moment equations (the uniform whole space model), we group
some of the terms of the moments into a single variable.

M, = Q[Xo+ UA] (6.15)

M, =Q[Yo+ VA (6.16)

M2 = Q [XZ +2(XoU + Dy)A + U*B] (6.17)
My = Q [Y§ +2(YoV + Dy)A + V2B] (6.18)
My = Q [XoYo + (VXo + UYy)A + UV B (6.19)

Mas = Q [X§ + 3(X3U + 2XoDp)A + 3(XoU? + 2UDy) B + U°C)| (6.20)

My = Q [Yy +3(Y7V +2YDp)A + 3(YoV? + 2V Dy) B + V3(C] (6.21)

M2y = Q [X§Yo + (XZV +2XoYoU + 2Y,Dy) A

+(2XoUV + YoU? + 2V D) B +U?V C] (6.22)
heroa = HaDe g H?> 4HD, 6D? . H3+9H2Dz+36HD3+60D§
where A= gt P T m T Ta MY T m T T ER

However, we are not able to solve for the parameters explicitly. With the numerical
method, again, the initial guess is needed to be close to the actual solutions in order
to obtain the desired solutions.
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6.2.4 Simplification 2

We further simplify the moment equations (the uniform whole space model) and
write the parameters Xy, Yy, H and Dy, in term of U, V, S and D, explicitly. The

parameters Xo, Yy, H and D), are obtained from the z, y, 22 and zy moment equations
with @ = 1.

X0=Mx—U(£+&>

S b2
H D,

_ $°M,, S*M,M, 5D,

~ 2D, UV 2D,UV 2§

H

‘ 2 w Dg
M2 — X2 — U?(4; + 48D= 4 52:2)

T = i = XU
2% +55)
or
y ¢ ”'2 HD. GD?
D= M-V -VAG+ER+ )

2(4 + %)

We then substitute the four parameters into the other four moment equations. This
reduces the number of moment equations to four. However, we are unable to solve
explicitly for the other four parameters and we encounter the same difficulty with the
numerical method; the initial guess still needs to be close to the actual solution to
obtain the desired solution.

6.3 Discussion

We tried finding the parameter values with the “ready-made” subroutines based on
some well-known numerical methods provided by MATLAB. The attempts were un-
successful. My supervisor, Robert said, “It is like pouring a basket of ash onto the
ground and picking it up by hand.” It is hard to collect all the ash on the ground,
very likely we will collect less than we threw. We may collect more, which mean we
may include some other tiny particles on the ground together with the ash. In order
to retrieve the whole basket of ash on the ground we will need substantial time.

The desired solutions can be obtained provided that the initial guess is close to
the actual solutions. The suggestion from Zheng et al. [56] is helpful, but it takes
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substantial computing time if the system has many parameters or the range set for
each parameter is wide.

It appears that the system we created using moments is ill-posed and it is difficult
to solve. The inverse modelling of volcanic ashfall requires further investigation.
The work done by Laura Connor [16] is sophisticated and used intensive computing
techniques. Hence, further investigations may require substantial work and time.
Unfortunately, we are unable to attempt this within the given time frame of the
study.

A plan for future work is to investigate and develop a model to solve the eight param-
eters Dy, D,,U,V,S, Xo,Yy and H. More importantly, real data from ashfall deposit
depths and particle size distributions are needed to check the work.
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Chapter 7

DISCUSSION AND
CONCLUSIONS

all journeys will come to their destinations
but do not give them a full stop

share the experiences and pass them on
we came to the world empty-handed

we will leave the world empty-handed too

This aim of this thesis was to develop analytical models for modelling volcanic ash-
fall. We showed that, subject to some assumptions, it is possible to develop useful
analytical models of ashfall. We presented such analytical models and used them to
calculate the concentration of volcanic ashfall in the atmosphere and deposition of
ash on the ground.

The basic assumption which we used in our models was that the atmosphere could
be viewed either as being uniform or consisting of a few horizontal layers. The rea-
son for dividing the atmosphere into horizontal layers is to present a more realistic
transport model for the atmosphere; as the physical conditions, such as wind speed
and dispersion rate, are not constant throughout.

7.1 Summary

In summary, we considered the following basic models:
- instantaneous release in whole space uniform atmosphere;
- instantaneous release in half-space uniform atmosphere;

- continuous release in whole space uniform atmosphere;
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- continuous release in half-space uniform atmosphere;
- instantaneous release in half-space layered atmosphere;
- continuous release in half-space layered atmosphere.

The atmosphere modelled as a half-space (0 < z < oo) is more realistic than that
as a whole space (—oo < z < o0), the half-space model takes into account the zero
dispersive flux on the ground when z = 0 (in the half-space model the ground is
defined as z = 0). Nevertheless, the results from the whole space model, which can
be derived exactly, are very close to those of the half-space model with instantaneous
release in uniform atmosphere, for which we can only find an approximate analytical
solution.

Except for the continuous release model at steady state in a layered atmosphere and
the instantaneous release model in a non-steady state in a uniform half-space atmo-
sphere, all models were developed analytically. The advection-dispersion equation
has been used by many volcanologists to model volcanic ashfall, however, most exist-
ing models such as those of Ashfall [25] and Hazmap [7] were solved numerically. In
particular, in the modelling of instantaneous release in a layered atmosphere, we have
shown that our model can be written in an explicit form with the same assumptions
as the Ashfall and Hazmap models.

7.2 Analyses

Having developed our models we performed a number of simulations. The motivation
was to investigate the possible cause of different deposit contours. The experiments
we performed were:

- deposition from different shapes of source with instantaneous release in a uniform
atmosphere (this was suggested by Prof. Chuck Connor of the Department of Geology
at the University of South Florida);

- deposition from more than one point source with instantaneous release in layered
atmosphere;

- understanding the impact of the parameters in the advection-dispersion equation.

7.3 Conclusions

In conclusion, we observed that the results from both the half-space and whole space
models were very close even though the whole space does not give zero dispersive flux
on the ground. In addition, the resulting ash deposits are also very close regardless
of the shape of the release source if the release height is large or the release sources
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are small. This suggests that inverse modelling will be very difficult.

The model with instantaneous release and no vertical dispersion in a layered atmo-
sphere captures the changes in physical properties of the atmosphere during ashfall
and demonstrates patterns of ashfall and deposit explicitly and efficiently compared
with existing models, i.e. Ashfall [25] and Hazmap [7].

Compared to the existing models mentioned in Chapter 1, our models are highly
simplified, but they capture the essential physics of volcanic eruptions. Our models
can take into account: increases in settling speed during ashfall, which ASHFALL [26]
was not able to; changes in wind pattern, which Connor et al. [15] do not consider;
and expected changes in dispersion, which HAZMAP [7] does not consider.

In the experiments illustrated in Chapter 4 we investigate the effects of different ash
release geometries on the resulting deposits. Compared to the deposit pattern for a
point source release the only significant change is produced from either a tall vertical
column or a horizontal release geometry which is close to the ground compared to its
lateral dimension. If the release height is large compared to the lateral extent of the
release, then the deposit pattern is very close to that of a point source released at the
same height. Ashfall deposit variation is only caused by very large lateral spread of
the release shape closer to the ground.

The analysis of Chapter 5 shows that in a two layered atmosphere, the parameters in
the larger layer have a bigger effect on the deposition than those in the smaller layer.

7.4 Consideration for Publication as Papers

There are three chapters in this thesis which we are considering for publication as
papers after the completion of my PhD. They are the uniform atmosphere models
(Chapter 2), layered atmosphere models (Chapter 3) and the analysis of deposits
(Chapter 4).

In Chapter 2, we give an introduction of the advection-dispersion equation and how
it can be used to describe transport of particles by wind and scattering by dispersion.
We use it to develop simple models and give analytical solutions. The simple models
show that they are able to describe uniform or homogeneous atmosphere explicitly.

The layered atmosphere models are important as the models are more realistic as
they take into consideration that the wind and turbulence profiles may vary with ele-
vation. In particular, the model for an instantaneous release in the three-dimensional
atmosphere has analytical solutions. The advantage of analytical solutions is that
they allow the effect of parameter variation to be explored more readily.

The analysis of deposits was motivated by Prof. Chuck Connor (see acknowledgment)
at the conference [28] in Chile. He was interested in the deposits produced by different
source shapes and asked if this could be investigated. This investigation led us to
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want to find out the cause of different contours of deposition on the ground. This
investigation will help to obtain information about the atmospheric conditions and
release parameters during eruption. This information will help volcanologists and
geologists to make hazard maps for future eruptions. The patterns of deposition will
help to give approximate values for data such as the release height, eruption column
height, wind speed and direction and eruption duration.

During the course of this study, we also published a refereed conference paper [39].

7.5 Future Work

The model for ashfall with instantaneous release in a layered atmosphere can be
further extended to consider non-isotropic horizontal dispersions (D, # D,). Another
area to investigate is the vertical dispersion D, as here we assumed D, was zero for
modelling instantaneous release in a layered atmosphere. Also, variation in particle
size distributions would be useful.

Last, but not least, future research may consider the interesting problem of inverse
modelling. Due to time constraints, we were unable to carry on a deep investigation
of inverse modelling of ashfall. It is an area which needs to be addressed as it would
help volcanologists reconstruct information about volcanic eruptions. However, in-
verse modelling of volcanic ashfall is difficult and requires sophisticated computational
tools. To date inverse modelling has only been investigated by Laura Connor of the
Department of Geology at the University of South Florida [16].
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Appendix A

SOME WORKINGS

recording the history is not to live in the past
reading the history is to understand the difference
acknowledging the history is a token of sensitiveness
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Figure A.1: Three dimensional space
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A.1 Concentration for Instantaneous Release in Uni-
form Whole Space

A.1.1 Three-dimensional model (Section 2.3.3)

The governing equation is

Oc oc Oc Oe 0%c 0%c 0%c
< S e _goe  pEE piE s g
ot Ve TV, %5 Prge ~ Drgp D

= Q5(t)5(z — Xo)d(y — Yo)d(z — H)

with initial condition: ¢=0 when ¢t =0 for (z,y,z) # (Xo,Ys, H) and boundary
conditions: ¢ — 0 as x — o0, y — *00 or z — £00.

By applying successive Fourier and Laplace transforms, we obtain
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Rearranging the quadruple transform we obtain
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A.2 Concentration for Instantaneous Release in Uni-
form Half-Space

A.2.1 One-dimensional model (Section 2.4.1)

In this section, we outline how to obtain the solution ¢(z,t) for the governing equation

oc oc d%c

% _ 8% _p.%C _ 08z — H)S 1
o~ S~ D9 = Qd(z ~ H)(1) (A1)
with initial condition: ¢(2,07) = 0 and boundary conditions: c¢(co,t) = 0 and
oc(0,t) B

o =

We first do some preparatory calculations that will be useful later. We start the
solution procedure by following [34] and writing

s 52
c(z,t) = U(z,t) e 2:77i0:" (A.2)

Substituting this into Equation (A.1), we obtain

ou 02U
T Dzw = p(z,t) (A.3)

where
plat) = eBrtintQa(z — H)(1)
e Q5(2 — H)3(t). (A.4)
(Note, we have substituted 2z = H and t = 0.)
We now write
oU S

V = = A.
0z 2DZU {2da)

0 o?
and apply the operator | — — D,— | to (A.5) to obtain
ot 9e®

ov D62V 0 oU oU S oU (32_U

LR o N oo R, | b, L B i RO,
ot * 022 ‘z((":?t D“@z?) QD,:(@t ‘822)
op S
= —2—2sz (A.6)
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Writing

ap S
q= T 2_sz’ (A.7)
we solve (A.5) for U using the technique of integrating factor to obtain
e g ® -2 ¢
e :* U= | e M:5V(Et) dE+ D(t). (A.8)
0
Substituting z = 0 gives
U(0,t) = &(t).
Differentiating (A.8) with respect to t gives
_s ,0U 2 s 0V :
2DZZ — =5 ) z€
eriber T = [ e e der o (0 (A9)
and differentiating (A.5) with respect to z gives
ou_ s U _ov
022 2D,0z 0z
With the substitution of z = 0, (A.9) becomes
ou :
57 (0.:) =2 (). (A.10)
i PU S oU oV
w(oﬂf) = 2D28_z(0’t) i E(O’t)'
Now, with the substitution of z =0 in (A.3), we obtain
ou o%U
Oat = T\ = L Uy
P08 = 2200 -DI 001
: S U oV
= t)— D, | ——(0, —(0,t
W =Ds |op, 5 ) T )]
- SouU ov
= t) — =——(0,t) — D,—(0,1%) . A1l
b8~ 220 (0,6~ B2 (0,) (A1)
Then (A.8) becomes
U(0,t) = (t)
and with conditions: V(2,0) =0, V(0,t) = 0 and V(oo,t) =0, (A.5) becomes
2D, oU
U0,8) = =220, 4) .
0.6 =222
Hence U g
5,01 = QDZQ’(f)

126



and (A.11) becomes

52 oV
p(0,t) = @ (t) — 4Dz®( )= D, d—(0 t)
At t # 0, )
‘ S 1%
P (t) 1D, (t) = ng(&t)
> d oV
- lp-r@-’f@( )] D, —(o t)e iD:"
and

e b /D—Ore ap:" dr. (A.12)

2

At z = 0, the downward flux is given by Sc(0,t) = S e_sztU(O,t)

Therefore, the total flux is = Sf e -5 U(O t)dt

=Sf ET(I’
=S/ dt/De*D

@—D o*V _Op
ot 922 02 QDZ =4

( ,7) dr (by (A.12)).

From (A.6), we write

and scale = Di —zD,=zand 7 = 2 7D, = t and write V(z,t) = V(z, 1),

hence ’ )
oV o2V ’
g = W - qu(;r, 'r) . (A13)
Referring to [29], we have
V(x,7) =/ dé)/ q(7,0) Gy(z,&,7—0) dE (A.14)
0 0
where
e aien2
RO W S ( - e—a{rf:,,) _ (A.15)
4m(T — 0)
Since ¢q(z,t) = %(z,t) - le)zp(z,t) (from (A.7)), then
ia7) = Pla7) - 2, 7)
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and (A.14) becomes

Il
C\.,

L

)
—N —
=N

~~

OG- [ #en [S

Gi+—

o | ]

i s ) 0G, }
= - |
[aafo- [“aen |50+ |
0G1 1 g—€§ _@a T+ _feef
where D€ = gy [2(7__9)(3 ( )—+—2(T_0)e ( )}
and p(0,t) = p(oo, t) = 0.
Scaling (A.4), gives p(z,7) = —I%P%Hé(;r - Dﬁ)é(T)
Hence (A.16) becomes
Ve, 7) = fdﬁ"f p(&,0) [ G1+%(z—1-]d§
S BGl
- - fp [ e 5 360 g e
— __ezp,f / ) %

T _é' _(z=8)? T+ € _ (z+6)?
G+ e A= e -0
{ o ‘I—F(T = [2(T—9) 2(r — 0)
H .
When £ = F’H =0 (for (A.15)), we obtain
H 1 {r—ﬁ{-}z f.r+f;f7}2
Gz, —.,7) = e” " ar  —e T ar
BB = Ty
So,
- Q su (S H
V(:IT,T) = -—E—Ee?ﬂ; EGl(ls E'.'T)
—_H g2 o4 A e+ 402
+ : T o, e 41?_ +.r D e‘wféL
At 2T 2T
_H 2 - 2
_ _gengh; § 1 (e ( 4?2-’ _8_( +}§E‘
D2 2 ArT
H 2 H (2
s AL (e- +& -
AT 2T 2T
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Substituting r = o and 7 =

e dD;t _— ¢ 4Dzz)

V(zt) = -Qefo’i{g = (o o

e aD,t _|.. 2t

2t 2t
SH S 1 _(:—H12 _(z+H}2
2

(e iD,t — @ 4Dt )

1 {z—H _=H? z+ H _<z+H)2]}
+ e 4Dzt + e 4Dt .

vD. {z—H _e-w? z4+ H e_<z+H>2]}

2t 2t
Then

= 2 2
VG = =t {§; (65—& _e—*—’)

2\/4rD

1 .f H E-mp HF E+H {31;!!32
Y /D & 2% ;

- _QET{[S +§—H]E_L§4—D_f:gi+[_ S §+H]8_Eﬂiﬁ}

AD:t
TanDit 2D oD, | 2D

9z D. oarDi\ 4Dt ¢ o T Tapg ¢ ¢

iy [(59) (252

B Ae+-H)Y BT T L
e zt —e B == = )
2t 4D, t 2t 2t

ﬂ(z t) = _Q —D*L{ S (—2(2—1'1') _e-m? 2(z+ H) _{:_+!_1_'_13>

So

Hence (A.2) becomes

2
c(z,t) = e‘z_g?"m‘ U(z?t) — e iD:

tn

(2]

L]

EETY

c\l

£
r‘u
T
—
)
~
S—
2
Iy
+
KA

\f:../
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By (A.12), we obtain

2 t .2
c(z,t) = e‘ﬁ'/ e‘ﬁ%V(g,t)ngr Dze‘sz"’
0

=]

B 6_3%2_ z - Q " S(e=H) 1 § §E—H 5 (540”:2
B o D. 4rD,t | | 2 2t ~
S E+H| _en? ¢ _s2; Q s
+ [—§+ o ]e 4D;¢ }d£+/ D,e 4D: (—D—ze2
S 1 SH +1 H? u? J
i e D7 dT
VirD,r \2D,r v 2D,r?
Integrating by parts gives
Q -—it —L(Z—H) _5:—H}2 _(:+H]2
clz,t) = e 4D: (¢ 7D: >~ 4Dzt 4 iD:t
(%) vanrD,t 5 © ®
_292%"‘% .}.39_ e “ng:" —{i:adg}
z Jo

Q /t SH i H? 1 e if+$r}
4D, Jo D, +2 73/2 B:Tg,;g p:r dr. (A.17)

A.2.2 Two- and three-dimensional models (Section 2.4.2 and
2.4.3)

e The two-dimensional model for the half-space is developed from the one-dimensional
model (A.17). The governing equation for the two-dimensional model is:

de de de @2C d%c
= U— - SB,, d:I.‘Q — Dz@ = Qi(x — Xo)d(z— H)i(t). (A.18)

The solution to Equation (A.18) is

clzy 25%) = flagt) g(z.1)

_ (2=Xg-Ut)?
where f(z,t) = 2\/7?7“8 iDht with conditions f(z,0) = 0 and f(£oo,t) = 0,

and g(z,t) is the solution of the one-dimensional model (Section A.2.1) with Q@ =1,
ie.

99 909 . 0%
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Using the solution (A.17) from the one-dimensional model (A.1), we obtain

C(:L‘,Z,t) = —_—— 4Dt 4D; 202 e 4Dzt 4 g 4Dzt

dnt\/DyD,

_S(E=H) _ _§_> Q
-2 zD, lth o 2D, iDzt (], S S
€ + f 5} 8ty D Dt

(z-Xg-Ut)? SH 1 H? _(=H457)?
AD )t / —— g€ aDzr  dT.
T2 D,Tr2

e The three-dimensional model for the half-space is also developed from the one-
dimensional model (A.1). The governing equation for the three-dimensional model
is:

Q _(@=Xg-Ut)2 g2 { —S(z—H) [ —(z—H)? —g:+m?]
e

dc dc 0 d%c 3_20 B 3_20

c dc
AT TV %8 ~ Phge ~ Prge — Dagi
= Qd(x — X0)d(y — Y0)d(z — H)(t). (A.19)

The solution to Equation (A.19) is
C(I, y’ 2 t) - f(il', y7 t)g(za t)

Q _a=Xg-Ut?  (y=¥y-v1)?

D te Dt iDrt with conditions f(z, v, 0) =0,
TR

f(z, +oc,t) = 0and f(+oc,y,t) = 0, and g(z,t) isthe solution of the one-dimensional
model (Section A.2.1) with Q =1, i.e.

where f(z,y,t) =

% _g% _p %0

ot S5, Dy =0z H)).

The solution ¢(z,y, 2,t) for the three-dimensional model for the half-space is:

Q _-Xg-Ut? (y-¥p-vt? 52
C(‘T’ Y, 2, t) = e ————— 4D 4Dpt 4D

8Dy/m3D. 13

—8(z—H) —(z—H)?2 —(z+H)? SH __H?
X { e 2D: e 4Dzt 4 e 4D:t — 2e2D;  ID;t

" S f _S mmzdf} Q
D. J, ” ) 16Dyt/m3D,

_(m=Xg=Un?  (y=Yp-vt)?
Xe 4Dyt 4Dﬁ!

“[(SH 1 H? | _Hisn?
X +2)—= - =| e zr dr.
0 D, 72 D,r2
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We will show the detailed working for the verification of the three-dimensional solution
in the next section. The same technique can be used to verify the two-dimensional
model.

A.2.3 Verification of the three-dimensional model

We wish to verify that
0(1‘7 y’ z’ t) = f(x’ y’ t)g(z7 t)
which is

_(z=Xg-Ut?  (y=Yy-vt)?
iD,t aDgt
e h o g(z,)

d2,9:%8) = o5

is the solution of the governing equation

O ..0c ..0c 0c & e e d*c ; :
— —S——-Dp— ; D,— = r—X —Y0)d(z—H)d(t
5 TUa TV 5y~ 55, ~Prog~ Drgn— Dz = Qolz—Xo)dly—Yo)d(—H)S(t)
for
| 9 92
g 6‘9 9y
Straightforward calculation shows that
. 2-Xg-Ut)2 (y=Yp—Vt)?
%‘tf = m% 8-( -I\Dhtb} = f%,,: } g(z,t)
h
Q _=Xg-Ut)®  (y-Yp-vt)? & — Xig— Ut)2
+4_1?1’_§h_t % a Drtg(2,1) : 4 Dyt?
JB-Y%-V)? Ue-X-Ut) V-Y%-VY)
4Dy t? 2Dt 2Dt
9 FERdd e Oy
A Dyt ot
da @  ~emowk gaevp Uz — Xo — Ut)
Ve = mpa® Hg() 2Dyt
V% B 4_l?t e_(I_fgr:fmz‘{rf%;:r”zg(z,t)V(y —2;{);‘/‘5)
Y TUh h
gl _ _Q  leppetoespeve (99
0z 4w Dyt 0z
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0% —Q  _=Xg-U? _ (y-¥p-ve)?

Dh Or2 - 471'Dht € “Pe Pnt g(Z, t)2_t
_a=Xg-Ut? _ (-¥p-vt)? r— X, —=Ut)?
+4ﬂ_%ht e 4Bht 40Dht g(z, t) ( 4l;ht2 )
5?%c -Q _z=Xg=Ut)? (y-Yp-vt)? 1
D — e 4Dpt 4Dpt ’t i
" oy? 4w Dt 9z )2t
s Qe et (g Yo~ V)2
47TDht ' 4Dht2
2 i i 2 V.12 2
p & _ Qg et &g
022 A Dyt 022

We substitute the above into the governing equation gives

(z—Xg—-Ut)2 (y—Yp—-Vit)% 2
Qe {59 99 _ p &9

Ar Dt Tl 922

Integrating with respect to x and y we obtain

S D (z=Xg-Ut)2 (y—Yp—Vi)2 02
/ / { Q e_ 4Dh! —A¥ 4?th- ) [% — S@ — D ﬁ }dzdy

—/m " (Q8(z — Xo)o(y — Yo)b(z — H)3(2)} dxdy
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A.3 Steady State Concentration for a Constant
Release in a Uniform Whole Space

A.3.1 Two-dimensional model (Section 2.5.2)

The governing equation is

de de
Ua—Sa—D

d%c &c ; ’
ha‘a = D252—2 = qO(JT == Xn)()(z = H)
with boundary conditions: ¢ — 0 as x — 00 or 2z — +00, and ¢ is bounded when
z — —0Q.

z 2
Without loss of generality, we take Xq = 0 and write X = and Z = for
’ vDi VD,
C(X, Z) = c(z, 2) to give
U S q . H
Cxx +Czz — —Cx +—0Cz = — (X)(Z - —=). A.21
UX _ _Sz
Writing C(X, Z) = e>VPr 3Pz ¢(X, Z), then (A.21) becomes
UX _ Sz U? 52 q ) ) H
2\/D;,, 2vD: + S e S = — 0(X)o(Z — 5
€ |:¢XX ¢ZZ <4Dh 4Dz>¢:| m ( ) ( \/ﬁz)
% 2 s H
; ; q SH _
B i — | e e )il 020: §(X)d(Z —
xx + ¢zz (4Dh 402)05 \/mf’ (X)d( \/E)
and
V26 — k2¢ = ———d—e30: 5(X)6(Z — L ) (A.22)
DhD: vV DZ
0 0 U? 5P
2 _ /-
where V ————an-i————aZ2 and k ——4Dh+4Dz.
We convert Equation (A.22) into polar form to obtain
] 1 q SH - H
rt+ —Or + — _k2 = ————e2D:§(X))(Z — A.23
¢ 7‘¢ T2¢66 ¢ Dthe ( ) ( \/D_z) ( )

where r = \/;2 +(Z — \/lj)_Z)Q

We assume that ¢ is isotropic and is independent of rotation of angle ¥ in 6 where ¥
is arbitrary for 8 — 6 + 9. Therefore ¢(r,60) = ¢(r, 0 + 9) = (7).

134



1
From [8, page 43], we see that the equation ¢, + ~¢, — k¢ = 0 has the general
T

solution ¢ = Aly(kr) + BKo(kr) where I, is a modified Bessel function of the first
kind of order zero and Kj is a modified Bessel function of the second kind of order
ZEero.

From [8, figure 12 on page 42|, lim I5(z) = oo and lim Ky(z) = 0. In order for ¢ to
be bounded as kr — oo, then A = 0. Therefore we obtain ¢ = BKy(kr).

Integrating both sides of (A.23) with respect to a circular region A with centre

H
(X, Z) . (O,ﬁ

// (ff}rr % ld’r T k2¢) dA
A T

) with radius ra, we obtain

Il

| -

= ez .

V Do‘aDz

Since the function ¢(r) must satisfy ¢, + lgf)r — k%¢ = 0 away from r = 0, and Io(kr)
r

does not possesses the necessary singularity at r = 0, we require ¢(r) must behave
asymptotically like the Green’s function for the Laplacian operator near r = 0 [37].

With reference to [37], for A = {(X, Z) : 74 < €}, we take

lim {f/ ((bw +—-¢, — k ¢) dA + ff (Gﬁn + l@‘r — LQ(;&) dA]
e—0t A\At "

.I

W DhD '

so we obtain

1 . s
li 0 o+ =0, —k20) dA| = - 2D; |
;Tgh[ +f[A (“f’ 3¢ ¢) } oD

and

. 1, _ 32 - e —9 e
Ehr{g[/j};;(mr+¢r) dA k/f{@dA]— > ze :
i 2 'fl;{z
El_1~151+ {/f (r¢r), dA —k /:/ <,?‘)dA] 7DD e ]

So




Now dA = 27rdr gives

TA
eliré}+ [[e %[rff)r),. 2nrdr — k2/./( ) dA} = — iDze%’% :

For r = r5, we obtain

~tim L2 [T _ 9 st
2’/T7'¢T 6l_l’rél+ |:k ‘/j/A‘ ¢ dA:l = Dthe2D_ :
Thus
onkr BK!)(kr) — lim {.&2 f f q&dA] ez-qt%.
e—0+ DhD

1
Since K{}(kr)ﬁ—g for r — 0, and¢%lnrz>/ $pdA —0 as € — 0T,
Ae

this gives
q SH.
—2TB = ————e?2D: .
T Dthe
— 1 i
Q?T\/DhDZ
Therefore
C(X,2) = edin s\ vts) 4y k)
el TN T R
Hence,

__ 9 s _S(zzEZH) l U_Q 52 ﬂ
Ol 2] =g " Ko !2 . D Dh ¢ D. :

In a more general case, the release point is situated at the point (z,z2) = (X, H).
The governing equation is now

de de 0% 0%
UEE_S&Z dIQ_D"SQ qgé(x — Xo)é(2 — H).

Note, if we translate the z-axis by defining a new variable z* = z — X, so that release
point becomes (z*, z) = (0, H), we obtain equation

2 2
o0 _ 5% _p 2t p,2C stz - B).

G or* 0z o+ 022
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This is the same equation we solved earlier, with = replaced by x*. It follows that the
solution for the more general case is obtained by simply replacing = by = — X in the
previous solution. Thus we obtain

B q Ul;l—).\'Q}_S(ZzI;zH}_IK l U_z :_53 (:C —_ XO)'E (~ = H)Q
A i 12\ \D T D D. | D. '

For more information about the solution see [8], [37], [40], [41] and [48].
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A.3.2 Three-dimensional model (Section 2.5.3)

The governing equation is

de de e d%c d%c 9
UG+ Ve S5 DS~ DU~ 0.2 = aile — Xo)oly — Yo)d(a — B

with boundary conditions: ¢ — 0 as * — 400, y — 00 or z — +o00, and c is
bounded when z — —oo0.

5
Without 1 f lisation, take Xog = 0, Yo = 0 and write X = A
i ouy 0ss 0 generim isation, we take X o and write 75
Y = —2—and Z = — for C(X,Y, Z) = ¢(z,y, 2) to give
VD, /D )
U |% $
Cxx +Cyy +C + —==C
XX YY 7z — \/D_h \/D_h \/D—z z
q H
=— (X)o(Y)o(Z — A24
DD 0(X)d(Y)o( \/Fz) (A.24)
UX . VY $7
Taking C(X,Y,Z) = e?>VPn 2/Pn 2Dz (XY, Z), Equation (A.24) becomes
UX U? V2 32
avor T3ty 3P
e=v=n h [¢Ax+®n + ¢zz — (4D;,+4D;,+4Dz)¢]
- T H
= — X)(Y)o(Z — ;
X0 )3(Z ~ =)
So
_ U? V2 52 q SH z H
4 iy - 5 = — 20: §(X)5(Y)5(Z
¢xx + Pyy + @zz (4Dh i +4D2> ¢ Dhme )8(Y) ~ 7D
and
V26 — k2 = ——L__ ML 5(X)8(Y)(Z — =) (A.25)
Dth \% Dz
0 0 0 U? V? S
28 52—
Wierel V= s tate T i P B E e T i,
Converting Equation (A.25) to polar form [48] we obtain
1 2 1 2
ﬁ (T ¢r)r o) 9¢cpcp 9 (Sme ¢0) — k%9
9 (X)E(Y)E(Z — —2
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As for the two-dimensional model, we also assume that ¢ is independent of rotation
of angles 6 and ¢. For ¥ in 6 where ¢ is arbitrary for # — 6 + ¢ and ¢ in ¢ where ¢
is arbitrary for ¢ — ¢ + g, therefore ¢(r,6, ) = ¢(r).

—kr kr
By [55], the equation V?¢ — k?$ = 0 has the solution of ¢ = A% _.B where
4mr 4mr
U2 V2 - H)2
=2 —
k" = 1D, 4Dh D. and r \/ Dz .
kr
In order for ¢ to be bounded as 1 — oo, then B = 0 as — 00 as r — 00, therefore
r
—kr —kr —lcr
¢:—A47W,and or = Ak 4mr +A47rr2

Integrating both sides of (A.25) with respect to a spherical region V with centre
H

X,Y,2)=(0,0, ——

( )= ( 7D

f f (V%6 — k*¢) dV
]]/ Dh\/—‘”” 0(X)o(Y)o(Z — \/‘rj)_z) dX dY dZ.  (A.26)
///‘ V20 dV can be written as
///Vdiv(Vcﬁ) dV=//S(v¢). dS:/S¢’ dS = ¢, dmr?

for dS =dST.

) with radius 7y, we obtain

For the singularity at 7 = 0, we use the same approach as the two-dimensional model.
For the three-dimensional model, we take V., = {(X,Y, Z) : ry < €}.

Using the same techniques and arguments as the two-dimensional model, we consider
r = ry and obtain

2 o= q 5—”;
4rie —61_1.1[1)1* {ﬂ, //] (de] = Dh\/D_zem ;

Thus

A B g k2// padv| = ——3__uitt
4rr 472 -0+ : B Dh\/Dze o

Taking r — 0, we obtain




Then

¢ SH e kr
Dhpv D~ dnr )
Therefore ' k
C(X.,Y, Z)=ezm5h+2w. wpr__ 4 (e —
Dyv/D. 4mr
Thus e Wi
(.L‘ Y, z) mq—p'e“’h _J.-:_ 3D, kT
mr h
2 Y2 b H)?
k? = B |
A \/ "D,

In a more general case, the release point is situated at the point (z, v, 2) = (Xo, Yo, H).
The governing equation is now

de de e d%c d*c d%c . N
— —_—— ” — = s — Yy — o(z — :
Uar Vay Sd !d 5 DhaJ —D 532 qé(x — Xo)o(y — Yo)d(2 — H)

Note, if we translate the z-axis by defining a new variable z* = z — X and the
y-axis by defining a new variable y* = y — Y, so that the release point becomes
(z*,y*,2) = (0,0, H), we obtain equation

dc dc dc 0% 8% 0%

a:r* + Vay a~ ar*2 th *2 - D C) 2 qo(‘r )O(y )O(Z - )

U

This is the same equation we solved earlier, with = replaced by z* and y replaced

by y*. It follows that the solution for the more general case is obtained by simply

replacing ¢ by x — Xy and y by y — Y, in the previous solution. Thus we obtain
U{.r—,\'ﬂ}+\-’(y—Yo}_S(z-H}_kr

C(.T y 2Dy, 2Dy, 2D,

4?1'?"Dh\/

U? = S? (r—Xo)2 (y—Yo)? (2—H)?
2 = 0 0
where k* = o | 4D, and r \/ " + : + -

For more information about the solution see [55], [37], [40], [41] and [48].
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A.4 The Deposit for Instantaneous Release in a
Three-dimensional Uniform Whole Space with

D, # 0 (Section 2.3.3)

In this section we will show how the solution (2.14) is derived from the governing

equation
Oc Oc Oc Oc 820 d%c 0%c
—4+U—+V—=-5— - D - D,—
ot T Uaet oy °a:  Pram T~ Drgp 922
= Qd(z — Xo)d(y — Yo)d(z — H)(1) .
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Rearranging the expression in the exponent,
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A.5 The Deposit for Instantaneous Release in a
Three-dimensional Uniform Half-Space with

D, =0 (Section 4.4.2)

From Equation (2.15) and also in Section 4.4.1, we found that the total deposition

(mass per unit area) with D, # 0 is
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x/t[(8H+2)i— :|(’

z

Here, we will show how to obtain the solution in Section 4.4.2 in the limit D, — 0
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Now, expand I(¢) using the above expressions and taking D, — 0, we obtain
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A.6 Total Mass Deposit for Instantaneous Release
in a Three-dimensional Uniform Whole and
Half Spaces

In this section we show that the total mass deposited on the ground (z = 0) is the
same for both D, # 0 and D, = 0 in the three-dimensional uniform whole and half
spaces. These results are in Sections 2.3.3 an 2.4.3. We will show that the total mass
release will eventually land on the ground.

To find the total mass deposit on the ground, we write

Total mass :/ / f(z,y) dz dy

where f(x, ) =/ (Sc—+— DZ@> dt.
0 82 2=0

Since the deposition solutions are the same for both whole and half spaces with
D, = 0, we will only show the working for D, # 0 in the half space.

A.6.1 Whole space with D, # 0
The concentration for the uniform whole space with D, # 0 (Section 2.3.3) is
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We take the release point be (0,0, H), then
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Therefore, the total mass deposition on the “ground”:
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With the substitution of p =




Hence
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By doing the same substitution for the x term, we obtain
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Writing o = , the above expression becomes
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A.6.2 Whole space with D, =0

The concentration for the uniform whole space with D, = 0 (Section 4.3.2) is
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When the release point is at (0,0, H), we obtain
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Therefore, the total mass deposited on the “ground”:
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With the substitution of new variable p for both  and v,
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A.6.3 Half space with D, # 0

The concentration for the uniform half space with D, # 0 (Section 2.4.3) is
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and the deposit is given by
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With the substitution of new variable p for both x and v,
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Writing a =
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Taking 7 = t0 and dr = t df, (**) becomes
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A.7 Moment Equations

A.7.1 Uniform whole space (Section 6.2.1)

The deposit (2.14) for uniform whole space is

flary) = —2 H(SHR UGV 85) 2ap [(2aﬁ+ 1)H + 2(125}
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The moment equations are formulated using f(z,y) with respect to z and y coordi-

nates: . -
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where a and b are positive integers.

Here, we will only show the working of the z-moment M, equation with a = 1, the
same technique can be applied to other moment equations.
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(y— (Yo + V)
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then dy = 24/ Dyt dp, we obtain
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A.7.2 Uniform half space (Section 6.2.2)

Similar to the uniform whole space, the uniform half space moment equations are
formulated using the deposit (2.15):
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Here, we will only show the working of z-moment M, equation with a = 1, the same
technique can be applied to the rest of the moment equations.
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e r-moment (M)
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0 dZ z=0

L],
= /_oo/_oo/ooa:[Sc]z=0 dt dx dy

4Dpt

o0

00 00 SQ (a-Xg-Ut? _ (y-Yp-V1t)?
NN

—00 J —00 JO 16 ?TchDth

4Dpt

i 2 o )
5 [ S'H+2)_1?_ Hr]e“( fgzsr‘drdtd:cdy.
0

vz D2

— (Y4 t
Taking p=y—2(T%fV—) y=Yo+Vt+2
dp 1

dy = 23/Dit d
dy  avyDi Y it

Dntp

o0 =2 o8 z-Xg-Ut)?
M, = / d:r/ d.t./ — SQ :z:e_[ abpe P’
e 0 —oo  16v/T3t2DyDy D,
t 2 1 )2
/ [(SH +2) . } e~ =107 dr 2/Dat dp
0 D, 72 D,r2
o0 o9 T—AQ— c2
_ / dx/ __SQ =l
S 0 S\ZTi'zchDz
t 2 Fx )2
X [(SH+2)—1—3— Hﬁ]e_( D dr dt.
0 D, ra Dl
—(Xo+ Ut
Taking p:x 2(\/?3_;1?, ) x=Xog+ Ut + 2\ Dytp
d_p e sk de'= 2/ Dyt d
dr ~ 2y/Dnt "=

152




] _/ (qu+Ut+2m)e—p2

s chD

2
/DKD +2)i3— ] ] -2 o o /Datdp dt
z

5
72 D,T%

o SQ f‘ l(SH ) 1 H? ] _(=H+57)2
N LTS 2] e - TaD:m dr dt
_é 4/7D, ( o+ U%) 0 15 2 T T% D.72 g ’
H? SH (cH+S7)2
_— R, X t 4DzT
~1 '_?rD/ / [ 3 (Dz+ )T%]( o+ Ut)e” dr dt.

Now taking 7=t dr =tdf

2 H 1 (=H+5(10))?
—(S +2) ](Xo—kUt)e DAt 6 dt

4«/7rD Dz(t())% D, (t0)3
0o H? SH 1 _(=H+8(t9))?
do — +2 Xo+ Ut)e” aDzte) (¢t
4\/?9 / / [th%eg (Dz )t%()%}( o+ U)
H? SH 1
d9/ X — + 2
4\/7rD / { ’ [D 305 (Dz t%H%]
B
+U ( + 2) t—i] oSt
th§95 Dz 0z
H SV6
Substituting o = — = —
S 2y P avD

H? SH 1
M, = " o X o 0] o
= 4ver f { ’ [th%t?ﬁ (Dz )tiﬁﬁ]

2 —{—a+Ot
H;s—(SH'F?)“ e(!ﬁldt
D.tz02 D. 2

) U [ate~ (5 +2) i

+U

lu

Il

" 4yrD, J, D.63a \ D; 03
b5 (5 +2) 5 ()]
+U — — +2 do

[Dgaﬁ D, 65 \23

Sz T S 568
H D,
= Q[X0+U(S SQ)]

153

_SQ {4}(0 —8HU —SUDZ] 4o
1



