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Abstract 

Modelling of volcanic ashfall has been attempted by volcanologists but very little 
work has been done by mathematicians. In this thesis we show that mathematical 
models can accurately describe the distribution of particulate materials that fall to 
the ground following an eruption. We also report on the development and analysis 
of mathematical models to calculate the ash concentration in the atmosphere during 
ashfall after eruptions. Some of these models have analytical solutions. 

The mathematical models reported on in this thesis not only describe the distribution 
of ash fall on the ground but are also able to take into account the effect of variation 
of wind direction with elevation. In order to model the complexity of the atmospheric 
flow, the atmosphere is divided into horizontal layers. Each layer moves steadily and 
parallel to the ground: the wind velocity components, particle settling speed and dis­
persion coefficients are assumed constant within each layer but may differ from layer 
to layer. This allows for elevation-dependent wind and turbulence profiles, as well as 
changing particle settling speeds, the last allowing the effects of the agglomeration of 
particles to be taken into account . 
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Notation 

c particle mass concentration in the atmosphere [kg m-3] 
Cs drag constant 
Dc cross-wind dispersion [m2 S-l] 
Dd downwind dispersion [m2 S-l] 
Dh horizontal dispersion in x - y plane [m2 S-l] 
Dv vertical dispersion [m2 S-l] 
Dx horizontal dispersion in x direction [m2 S-l] 
Dy horizontal dispersion in y direction [m2 S-l] 
Dz vertical dispersion [m2 S-l] 
9 gravity [m S-2] 
H z-coordinate of the release point [m] 
L turbulence length scale [m] 
M source mass rate [kg m-3 S-l] 
Q mass release [kg] 
q rate of mass release [kg S-l] 
R particle radius [m] 
Re Reynolds number 
S settling speed [m S-l] 
U mean horizontal wind speed in x direction [m S-l] 
V mean horizontal wind speed in y direction [m S-l] 
t time [s] 
Xo x-coordinate of the release point [m] 
x x-coordinate [m] 
Yo y-coordinate of the release point [m] 
y y-coordinate [m] 
z z-coordinate [m] 
Zj interface height [m] 
Ma dynamic viscosity of the air [kg m-I S-l] 
Va kinematic viscosity of the air [m2 S-l] 
Pa mass density of the air [kg m-3] 
Pr mass density of the particles [kg m-3] 
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Chapter 1 

INTRODUCTION 

modelling of volcanic ashfall is a process 

so is life 

the process of life 

measures your sensitiveness and feelings 

1.1 Volcanic activity in New Zealand 

New Zealand is characterised by both a high density of active volcanoes and a high 
frequency of eruptions compared with the rest of the world. To date, most of the 
volcanic activity in New Zealand has occurred on the North Island. There are 48 
volcanoes in the city of Auckland alone; luckily they are dormant . However, there are 
three volcanoes (Ruapehu, Ngauruhoe and White Island) that are currently active in 
New Zealand. Mount Tarawera, Tongariro, Mount Taranaki and Rangitoto are classed 
as dormant , although still considered to be eventual hazards. Volcanic activity in the 
Auckland area commenced around 150,000 years ago. Rangitoto was the last major 
eruption, taking place just 600 years ago [42] . 

In the past many lives have been lost in New Zealand due to volcanic eruptions 
(for example, in the 1886 eruption of Mount Tarawera, about 150 lives were lost ) .  
Besides the threat to  life and property, the economic development of the country is 
also affected by volcanic eruptions. In the article "Under the volcanoes" [ 19] it is 
stated that the eruption of Mount Ruapehu, from 1995 to 1996, cost New Zealand at 
least $130 million. 

There are 1500 potentially active volcanoes on Earth including New Zealand [45] . 
According to the report , "Space Volcano Observatory" [9] , a third of them have been 
active in the last century, seventy are currently erupting, and about 30,000 people 
have died from volcanic eruptions in the past 50 years. It has been estimated that 
ten percent of the world population are living in areas close enough to volcanoes that 
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they may be affected by eruptions. 

1.2 General Review 

According to Sparks et al. [46] , volcanic plumes are key features of explosive volcanism 
on Earth as they hold the potential for producing global environmental effects .  Large­
scale explosive eruptions can inject massive quantities of particles and gases into the 
atmosphere. The particles are basically fine-grained pyroclastic material composed 
of tiny particles of solidified molten rock [51 ] . 

1 . 2 . 1  Physical nat ure o f  volcanoes 

There are basically two types of volcanoes: shield volcanoes (e.g. Iceland, Hawaii 
and Mount Etna) and strato (or composite) volcanoes (e.g. Mount St Helens, Mount 
Shasta, Stromboli, Vesuvio and Fujiyama) [32] . 

- Shield volcanoes are much wider than they are high and the slope angle is often 
less than 5°. The volcanoes are formed when the erupting lava has extremely low 
viscosity and typically for enduring effusive volcanism. 

- Strato (or composite) volcanoes are typically only a few times wider than high and 
the slope angle is often much larger than 5°, sometimes reaching 35° . The volcanoes 
are typically composed of alternating layers of lava and tephra (ejecta) indicating 
alternating effusive and explosive activity. 

1 .2 .2  Eruption styles 

Eruption styles can be classified as Icelandic, Hawaiian, Strombolian, Vulcanian, 
Plinian, Caldera and Phreatic [32] [46] . 

- Icelandic has large amounts of very low-viscosity lava is non-explosive and forms 
plateaus. 

- Hawaiian has low-viscosity lava is non-explosive and forms shield volcanoes. 

- Strombolian has relatively small amounts of moderately high-viscosity lava and is 
usually peaceful . It forms scoria or cinder cones. 

- Vulcanian has high-viscosity lava, moderately violent eruptions, moderately high­
volatile content and moderately large eruption cloud. 

- Plinian has very high-viscosity lava, violent eruptions, very high-volatile content 
shoots tephra high into atmosphere, and has pyroclastic flows. Tephra alternating 
with lava flows form strato-volcanoes. 
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- Calderas form after large amounts of magma have escaped from the magma chamber 
and there is roof collapse due to loss of support . 

- Phreatic is phreatomagmatic and hydrovolcanic ; from Greek "phrear" for well. Wa­
ter interacts with lava to form vigorous eruptions. 

In this thesis, eruptions which eject rock particles high into the atmosphere are mod­
elled. These eruptions would typically be classified as Vulcanian and Plinian according 
to the list above. It is modelling the eventual deposition on the ground of these small 
particles (volcanic ash) which is the main interest of this study. 

1 . 2 .3  Ashfall 

According to Cox [18] , volcanic eruptions vary from gentle to violent, depending on 
the amount of gas in the magma. Ashfall is one of the main volcanic hazards to 
communities located in volcanic regions. During volcanic eruptions, ash is carried 
upward in volcanic plumes from heights of a few kilometers to a few tens of kilome­
ters above the volcano vent , and this material settles through and is dispersed by 
the atmosphere. Within tens of kilometers of volcanic vents, accumulation can be 
sufficient to completely devastate property. Column heights of buoyant plume ash 
eruptions are typically in the range 1-30 km, with ash volumes of 0.5-500 km3 and 
areas of ashfall of 0 .0005-20,000 km2 ,  depending upon the scale of the eruption. 

Many ash dispersion and deposit models rely on some modelling of the volcanic plume, 
or eruption column, to simplify forecasts of ashfall accumulation as a function of 
distance from the volcano. In this thesis, we develop solutions to model a variety 
of source shapes, including a point source, a horizontal line source, a vertical line 
source, a rectangle source and a circle source, and report the differences between 
the deposits produced by these different source shapes. Each of these source shapes 
may be related to some volcano plume structure, such as a strong plume (vertical 
line source) ,  umbrella cloud (circle source) ,  or co-ignimbrite plume (horizontal line 
source) , or can be used to build a more complex plume structure (e.g. a series of circles 
to represent a buoyant weak plume) .  The details for modelling different shapes of 
source are presented in Chapter 4. 

1 . 2 .4 Why model volcanic ashfall? 

An erupting volcano ejects rock fragments into the atmosphere and further fragmen­
tation produces small ash particles. The falling ash is a hazard within the air as well 
as causing destruction and pollution when it settles on the ground. Besides aircraft , 
ash may also disrupt electricity and telephone networks [13] . Volcanic ash can travel 
hundreds to thousands of kilometres, the distance travelled depending on its size, 
the strength of the eruption and the physical condition of the atmosphere during the 
eruption. 
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Figure 1 . 1  illustrates the importance of modelling volcanic ashfall. It shows a heli­
copter struggling through ash while landing in a devastated area. Though the ash is 
microscopic it can be seen from Figure 1 . 1 that it poses a hazard to aircraft-the ash 
is fine enough to penetrate the engines of aircraft and cause damage. A mathemati­
cal model may produce hazard maps, which indicate areas which will be affected by 
ashfall. 

Figure 1 . 1 : A helicopter stirs up ash while trying to land in a devastated area. (Picture 
from http://vulcan.wr. usgs.gov /Glossary /Tephra/description_tephra.html. ) 

This thesis develops mathematical models of ashfall to help volcanologists produce 
better hazard maps more efficiently. It aims to develop models of the motion of the 
fine ash highlighted by the box in Figure 1 . 2 . Because fine ash can be carried by wind 
over very long distances, it is important to know where it will be deposited in order 
to warn the public in the affected area. The models developed in this research can 
be used to determine the areas that would be covered by ash after an eruption. 

1.3 Why mathematical models? 

Suzuki [49] acknowledges that the mass of erupted material and thickness of tephra 
fallout are primary factors in understanding volcanic eruptions. Moreover, he claims 
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Figure 1 .2 :  Mount Ruapehu erupting in 1 996. (Picture taken from 
http://www.toursnz.com/nz/image/mtrua01 .jpg.)  

that there is no general theoretical basis for modelling fallout so his formulas for mod­
elling eruptions were deduced from isopach/ contour lines. Meteorological measure­
ments were used, along with his model, to determine the characteristics of eruption 
patterns in order to predict the occurrence of the next eruption. 

Although there are numerous approaches to modelling volcanic eruptions, Connor et 
al. [ 15] have pointed out that mathematical models have the advantage of describing 
the complex transport of particles explicitly. Consequently, mathematical models can 
help to produce better hazard maps. The advection-dispersion equation for modelling 
volcanic ashfall in this research is derived from the equation of conservation of mass. 
This equation is described in Chapter 2 .  

1.4 Some Existing Models 

Currently there are no detailed models for describing volcanic ashfall that have an­
alytic solutions. The existing models all require numerical solutions. Some existing 
models are ASHFALL [25] [26] [27] , the Calpuff model [4] , the Connor et al. model 

5 



[1 7] and HAZMAP [7] . They all model volcanic ashfall from an instantaneous point 
release. These models forecast ashfall accumulation on the ground for civil protection 
purposes, such as giving public warnings and planning mitigation measures. 

• ASHFALL was developed by Hurst et al. [25] [26] [27] based on the study of the 
Pisa two-dimensional program by Armienti et al. [1] and Macedonio et al. [35] 
[36] . It was developed to assess the ashfall hazard from Mount Ruapehu in ew 
Zealand, specifically to calculate the thickness of the ash. It uses wind speed 
and direction at different levels and times along with volcanological information 
such as the total volume of ashfall and distribution of fall velocities to calculate 
the distribution of ashfall. The model was developed numerically and considers 
particles smaller than a centimetre in diameter. The model does not allow for 
the settling speed to vary with elevation. 
Hurst et al. [26] claim that ASHFALL is a more realistic model than the Pisa 
two-dimensional program [1 ]  [35] [36] as it can take into account wind speed at 
different heights and can quickly predict where and with what volume the ash 
would fall for a volcanic eruption. Hurst et al. also claim that ASHFALL was 
a better model than that of Glaze et al. [22] as Glaze et al. only modelled a 
single wind pattern. On the other hand, Hurst et al. conceded that their model 
has accuracy limitations. In the paper by Turner [27] , the author highlights 
that the accuracy of the prevailing wind direction is important as it affects the 
distribution of ash predicted by ASHFALL. 

• The Calpuff model [4] is a Lagrangian dispersion model that is used to simulate 
the release of particulate materials and their transport in the atmosphere. Ac­
cording to one of the team members in the Calpuff project ,  Augusto Neri (pers. 
comm. ) , the team are in the process of improving the model; the original code 
assumed that the mixture emitted is composed only of gases obeying the ideal 
gas law. The effectiveness of this model is still unknown at the time of writing 
this thesis. 

• Connor et al. [ 17] used an advection-dispersion model which was based on 
Suzuki 's model [49] . To address the limitation of the long computation time 
required for Suzuki's model, the model simplified the atmospheric conditions in 
several ways: the winds were assumed uniform with respect to height above the 
volcanic vent and particle motion in the column was treated probabilistically 
rather than deterministically. The resulting code was used to compile hazard 
curves and hazard maps for the Cerro Negro volcano, Nicaragua [1 5] [23] . 

• HAZMAP [7] was developed as part of the emergency response programme for 
the effects of volcanic ash. It was to test on the eruption of Soufriere Hills 
Volcano from 1995 to 1999. The model is numerical. It models the dispersion 
of the volcanic plume and the deposition of ash. The model was based on the 
theory of Armienti et al. [1 ]  and Macedonio et al. [36] . It was reported that 
the predictions of HAZMAP are in good agreement with field data. However, 
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the model does not take into account the change in dispersion with respect to 
elevation. 

There are some assumptions that are common to the models ASHFALL [26] and 
HAZMAP [7] . The vertical dispersion coefficient is assumed to be negligible, as 
the vertical dispersion is small above 500 metres, and the horizontal dispersion was 
considered isotropic and constant. 

1.5 Purpose 

Why our models? 

The development of the advection-dispersion models discussed above required com­
putation and extensive programming knowledge. The process of volcanology is un­
doubtly very complex, however, despite its complexity we believe that mathematical 
techniques and tools are able to capture and model these complicated processes. 

The modelling of volcanic ashfall has been attempted by many volcanologists. All 
used geological processes to explain the cause of volcanic activity. Koyaguchi [30] 
observes that it is difficult to estimate the total amount of ejecta using geological 
methods because fine particles are likely to be dispersed in the atmosphere and can­
not be accounted for in local deposits. Technically, the description of transport and 
dispersion of ash particles should be modelled using mechanics and fluid dynamics. 
Geologists have a good understanding of the deposition of large particles from an 
ash cloud, however, the behaviour of fine ash particles is less well understood. This 
is why Sparks [47] recognises that modelling of volcanic ashfall requires the collabo­
ration of applied mathematicians and earth scientists. Modelling of ashfall requires 
understanding from many disciplines. 

Similar to the existing models mentioned above, our models calculate the ash deposit 
on the ground. Two kinds of atmosphere models are considered in the development 
of our theory: 

• Uniform atmosphere which assumes the parameters describing the atmosphere 
are uniform throughout the process of ashfall; 

• Layered atmosphere which assumes the parameters describing the atmosphere 
are not uniform throughout the process of ashfall. 

The rationale for this thesis is to extend the modelling of volcanic ashfall by using 
simple and efficient mathematical models. We aim to develop simple deterministic 
mathematical models which enable the effect of parameter variation to be explored 
more readily. 
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Our models allow for the settling speed to change during the process of ashfall (unlike 
the model ASHFALL [26] ) ,  take into account the expected changes in wind pattern 
(which Connor et al. [ 15] do not consider) and take into account the expected change 
in dispersion (assumed constant in HAZMAP [7] ) .  

Figures 1 . 3  and 1 .4 demonstrate the two kinds of atmosphere which are used in this 
thesis. In a uniform atmosphere (Figure 1 . 3 ) ,  the parameters are assumed constant 
throughout the process of ashfall . A layered atmosphere model (Figure 1 .4) is more 
realistic as it allows the parameters to change with elevation in atmospheric condi­
tions, i .e .  wind speed, settling speed and dispersion. In each horizontal layer there 
may be a different wind speed or direction. The pattern and distribution of the ash 
depends very much on the physical conditions of the atmosphere during the ashfall. 
Holasek et al. [24] point out that the ash distribution is controlled by wind dispersal 
and gravitational settling. 

s 

u 

Ground, Z=O 

Figure 1 .3 :  A schematic of a uniform atmosphere. 

1.6 Problem 

A difficulty encountered in this thesis was obtaining real eruption data. Most vol­
canologists are quite reluctant to share their data. Dr Augusto Neri of the National 
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Figure 1 .4:  A schematic of a layered atmosphere. 

Institute of Geophysics and Volcanology (Istituto azionale di Geofisica e Vulcanolo­
gia) in Italy and Dr Henry Gaudru of the United ations (the International Strategy 
for Disasters Reduction (ISDR) adviser for volcanic risk mitigation ) commented that 
people who compiled eruption data are usually unwilling to share their data (pers. 
comm. ) . 
Due to the paucity of observational data from volcanologists, we found it very difficult 
to test the models developed in this thesis. Some assumptions had to be made in order 
to test our models. Fortunately, Prof. Chuck Connor of the Department of Geology 
at the University of South Florida provided some data (Table 1 . 1 )  (pers. comm. ) . 
Unfortunately, this data can only be used in our uniform atmosphere models. In 
order to apply it to our layered atmosphere models we used his data to estimate the 
required parameters (Table 1 .2 ) .  
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Table 1 . 1 :  Data of 1992 eruption of Cerro Negro Volcano, Nicaragua (from Prof. Chuck 
Connor of the Department of Geology at the University of South Florida) . 

Parameter Xo Yo H Q u V S Dh Dz 
Value 0 0 7500 2 .5 x lOlU 10  0 1 800 0 

Table 1 .2 :  Data used for some plots on layered atmosphere models. 

Parameter Layer 1 Layer 2 
Xo 0 
Yo 0 
H 7500 
Q 25 x 10!:! 
U 10 
V 0 
S 1 

Dh 800 
Dz 0 

1. 7 Overview of the Thesis 

-10 
0 
1 

800 
0 

Layer 3 Layer 4 

10 - 10  
0 0 
1 1 

800 800 
0 0 

Of the models discussed in Section 1 .2 ,  ASHFALL [25] [26] [27] is unable to take 
into account any change in settling speed during the process of ashfall; Connor et 
al. [ 1 7] do not consider any physical change in the atmosphere during the process of 
ashfall and HAZMAP [7] does not allow for change in dispersion during the process 
of ashfall. These are the areas which we address in this thesis. 

The models developed in this thesis are based on ashfall from a point release, i .e .  the 
release source is a single point. Our research is mainly on modelling the consequent 
distribution of ashfall on the ground and to obtain solutions that show the distribution 
pattern of ashfall. As mentioned, this thesis uses two approaches for the modelling of 
volcanic ashfall. One assumes a uniform atmosphere while the other assumes a layered 
atmosphere. The dispersion and wind speed are assumed constant throughout the 
ashfall in a uniform atmosphere whereas we allow for changes in dispersion, wind 
velocity or settling speed with respect to height during the process of ashfall in a 
layered atmosphere model. 

The objective of this thesis is to develop three-dimensional models to calculate the 
concentration of ash in the atmosphere as a function of time and to calculate the 
deposit of ash on the ground for a three-dimensional atmosphere. We also make 
every possible effort to solve the models analytically. 
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This thesis reports on the development and analysis of our models. Chapters 2 and 
3 describe the development of models using a uniform and a layered atmosphere, 
respectively. Chapters 4 and 5 report on the analyses of deposits and parameters in 
the advection-dispersion equation, respectively. Some work done on the estimation 
of parameters of ashfall is discussed in Chapter 6. Finally Chapter 7 summarises the 
thesis and gives conclusions and suggestions for future work. Some derivations and 
proofs required in the development of our models are presented in the Appendices . 
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Chapter 2 

UNIFORM ATMOSPHERE 

MODELS 

What is a uniform atmosphere model? 

uniform pattern may be dull or simple 

but i t  is a base to explore 

In a uniform atmosphere model, the atmospheric parameters (wind speeds, settling 
speed, dispersion tensors) are assumed uniform throughout the process of ashfalL A 
schematic of a uniform atmosphere is shown in Figure l .3 . 
Although the preliminary aim is to model volcanic ashfall in a three-dimensional 
atmosphere, some one- and two-dimensional models are investigated. 

Four cases involving uniform atmosphere models are considered: 

Case A - instantaneous release in the whole three-dimensional space; 

Case B - instantaneous release in a three-dimensional half space bounded below by 
the ground; 

Case C - steady release in the whole three-dimensional space; 

Case D - steady release in half space. 

Practically, it is more realistic to model volcanic ashfall in the half space for 0 ::; z < 
00 (z is the vertical axis in a three-dimensional Cartesian coordinate system, where 
the x - y plane is horizontal) because the ground is usually set at z = O. However, it 
is not always possible to solve the advection-dispersion equation analytically on the 
domain 0 ::; z < 00. Zoppou et al. [57] pointed that very few analytical solutions 
have been found for the advection-dispersion equation and the analytical solutions 
found are subject to various boundary conditions. 
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2.1 Modelling 

The deposit of ashfall from volcanic eruptions, pollen distribution by the wind, seabed 
contamination by dumping, and environmental pollution through airborne contam­
inants (solid or gaseous) can all be described by mathematical models which com­
bine advection and dispersion. The description that follows is set in the context of 
volcanically-erupted ash (small rock particles) ,  the analysis is the same for various 
other air-borne or water-transported particles [39] . 

This thesis deals with heavier-than-fluid releases. It includes discussion of sample 
results calculated from advection-dispersion models which take account of lateral 
drift caused by the wind, settling of the released particles and turbulence in the 
atmosphere. 

At present , the accuracy of predictions are restricted by simplifying assumptions 
about the wind velocity and dispersion coefficients which represent the air turbulence. 
In practice, the precision will also be constrained by the inherent variability between 
similar releases due to turbulent dispersion. The models in this thesis aim to recreate 
a typical event (such aspects of variability have been explored in [50] ) .  

The physical processes affecting the distribution of eruption materials are very com­
plicated and some simplification within the models is necessary. Some of the main 
features captured by the models are [39] : 

• At a given height , the wind is uniform in speed and direction, the settling speed 
for any given particle is constant and the turbulence length scales are uniform. 

• The ground or bed surface is approximately horizontal - it is assumed that t he 
fluid flow is parallel to the surface and that variation of topography is not severe 
enough to influence the average transport mechanisms. 

• The material ejected by the volcano is released into the wind at a certain height. 
Each particle quickly takes up a velocity which corresponds to the wind speed 
laterally and the particle 's terminal speed (the 'settling speed' )  vertically down­
wards. 

• At a given height, turbulence within the air flow is modelled as having a certain 
characteristic length - since turbulence has a variety of scales, the length is a 
typical mean value for the flow. 

2 . 2  Why Advection-Dispersion Equation? 

The advection-dispersion equation can be used to describe transport of particles by 
wind and scattering by dispersion. It is widely applied to the study of solute transport 
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phenomena. The advection-dispersion equation used in this thesis can also be applied 
to the modelling of rainfall, pollution and water movement. 

An early model developed by Suzuki [49] was a two-dimensional dispersion model. His 
model only considered horizontal dispersion as he found that , although small particles 
disperse in the atmosphere in both vertical and horizontal directions, the scale of 
horizontal turbulence is much greater than that of vertical turbulence. However, 
Connor et al. [ 15] considered Suzuki's model too simplified. Carey [12] observes that 
models using an advection-dispersion model describe ashfall better than the model 
of Suzuki [49] , because the advection-dispersion model takes into account wind speed 
and direction along with altitude. Suzuki's model was modified by Glaze et al. [22] 
and has been tested against observation, with predicted mass distribution agreeing 
well with observed distributions. Armienti et al. [ 1 ]  developed a three-dimensional 
advection-dispersion model, based on Suzuki's model, which was numerically solved. 

In our study, a Cartesian coordinate system (x, y, z) is used, (x, y) measuring position 
with respect to a fixed origin on the ground and z measuring the height above the 
ground. As stated, it is assumed that the movement of the wind is horizontal, flowing 
parallel to the ground with mean velocity II = (U, V, 0) , in the (x, y, z ) coordinate 
system. In this chapter it is assumed that there is no variation in wind speed with 
height so that U and V are constant (variation in the parameters is incorporated 
into Chapter 3) . The ash particles are assumed to be small and numerous, so that a 
locally-averaged mass concentration (mass per unit volume ) can be defined which we 
denote e = e(x, y, z ,  t) . 
The advection-dispersion equation is derived from conservation of mass: 

where 

ae - = -V·m+M at 

M - source mass rate (mass per unit time per unit volume) and 

m - mass flux of particles per unit area, defined by 

m = ell - eSk - D 0 Vc 
(where k = (0, 0 , 1 )  is a unit vector) .  

(2. 1 )  

(2 .2) 

There are three distinct components to the specific mass flux m: the first is the mean 
advective flux ell, caused by the movement of the wind; the second is the advective 
flux -eSk, caused by the settling speed S; the third is the (mechanical) dispersive 
flux -D 0 Vc, caused by the atmospheric turbulence, which is quantified by the 
dispersive tensor D and the concentration gradient. 
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2 .2 . 1  Advection due t o  the wind 

Advection (ell) describes the horizontal transport of particles by the wind. This 
thesis will consider only the movement of particles transported by the wind in x and 
y-directions. The wind speed in the z-direction is assumed zero by volcanologists [1 ]  
[6] . Because the wind does not flow through the ground, it is parallel to the ground 
at the ground surface, and is assumed to be so at higher elevations as well .  Suzuki 
[49] assumed the horizontal wind speed to be a function of elevation z given in the 
form: 

W (z) = Wo (1 _ �) A 

where Wo is the speed at z = 0, H is the maximum height of the eruption column 
and A is a constant . 

2 .2 .2  D ispersion 

The dispersion term, (-D 0 'Vc) in Equation (2 .2) , describes the spread of particles 
by the turbulence in the atmosphere. 

In general, the dispersion tensor is of the form D = [�o�� ��� � J. (2 .3)  o D33 

y 

y' 

x' 

v --------------------------------
u 

{} ------��--�----------�-------x 
u 

Figure 2 . 1 :  Horizontal plane of dispersion tensor coordinate system. 
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If we assume that the dispersion tensor has principal axes (x', y', z') (see Figure 2. 1 ) ,  
x' and y' aligned parallel and perpendicular to  the horizontal wind vector u, with the 
parallel (downwind) component Dd, horizontal perpendicular (cross-wind) component 
Dc, and vertical component Dv, then 

(2.4) 

with respect to the (x' , y', z') coordinate system. 

In the (x', y', z') coordinate system, U = (W, 0, 0) is the wind vector, with wind 
speed W and g = (0, 0, -g). For the general coordinate system (x, y, z ) we have 
U = (U, V, O) with U = wcose and V = Wsine. 

If the wind is blowing at an angle to both the x- and y-axes, D can only be diagonal 
if Dd = Dc, i .e .  the dispersion tensor is isotropic with x - y plane. We write the 
coefficients as (Dd, Dc, Dv) = (Dx ,  Dy , Dz ) ' As volcanologists ( [7] , [ 15] , [26] ) assume 
the dispersion tensor is isotropic within the x - y plane, i .e .  Dx = Dy, we make the 
same assumption since there is little information about anisotropic dispersion. 

The dispersion tensor is then written in the form D = lulL where lul is the mean 
horizontal wind speed VU2 + V 2 and L is a diagonal dispersion length tensor whose 
elements are the dominant atmospheric turbulence length scales so 

Because dispersion is proportional to the wind speed, if there is no wind then there 
is no dispersion, and the particles will therefore settle vertically to the ground. 

2 .2 .3  Settling speed 

The vertical falling speed of a particle depends on its mass and shape. In this study, 
the particles are assumed to be approximately spherical and therefore their size is 
defined by their radius. The speed v of a falling particle can be determined by 
resolving the gravitational and air drag forces: 

dv 
m - = dt (2 .5) 

The drag coefficient Cs, depends on both the radius of particle R and the settling 
speed S. Perry [ 43] gives an expression for Cs as follows: 

24 
Re ( 1 + 0. 14Reo.70 ) for Re::; 1000 and (2.6) 
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0.447 for Re > 1000 

where 
Pa (2R)v Re - Reynolds number, defined by Re = ; J1a 

J1a - dynamic viscosity of air (= 1 .461 x 10-5 kg m-I s-I ) ;  

R - radius of the particle (m) ; 

Pr - mass density of the particles (= 1000 kg m -3 ) ; 
4 m - mass of a particle = volume x density = 37r R3 Pr (kg) ; 

A - cross-sectional area of the particle = 7r R2 (m2 ) 
9 - gravitational constant (= 9 .81 m S-2 ) ;  
Pa - mass density of the air (= 1 . 225 kg m-3 ) ;  

v(t) - falling speed of particles (m  S-I); 
S - settling speed of particles (m S-I ) = steady-state falling speed. 

(2 .7) 

In general, for a particle which is moving vertically, the weight and air drag forces are 
not in balance and the particle either accelerates or decelerates. However, a steady­dv state is approached where dt = o. When this happens the particle is falling at its 
settling speed S. From Equation (2 .5 ) , S is given by 

mg. (2 .8) 

In general, i t  is  not possible to explicitly find the value of S from (2 .8) unless Re = 
2PaRS h E · ( ) . . . --- > 1000. For Re < 1000, t e quatlOn 2.8 reqUlres numencal solutlOn. J1a 
A particle released from rest accelerates vertically downward according to Equation 
(2 .5) . Figure 2 .2 shows two examples of the falling speed versus time for particles of 
radius R = 0 .2 mm and R = 0.4 mm. Their settling speeds are calculated as 1 .63 and 
3 . 16 m/s respectively (indicated by * on the v-axis) .  Figure 2.3 shows the settling 
speed versus radius of particle. The two * indicate the settling speed of particles size 
R = 0.2 mm and R = 0.4 mm (as in Figure 2 .2 ) . 
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Figure 2 .2 :  Falling speed versus time. Settling speeds indicated by * on v-axis. 
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Figure 2.3 :  Settling speed versus radius of particle. The arrow marks the point where the 
Reynolds number is 1000. The larger the radius the larger the Reynolds number. 
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2 .2 .4  Advection-dispersion model 

From Equations (2 . 1 )  and (2 .2) , we obtain 

ae 
- + \7 . (eu - eSk - D (:9 \7 e) = M .  at - (2 .9 ) 

Since we are only interested in circumstances in which atmospheric properties, and 
properties of the particle, vary in the z-direction, the dispersion D and u are functions 
of z, S may be a function of z because of agglomeration. With the use of an isotropic 
dispersion tensor in the x - y plane , the advection-dispersion Equation (2 .9) becomes 

(2 . 10) 

The Equation (2 . 10) is difficult to solve analytically for even simple z-dependence 
of the parameters. We therefore assume that all the parameters are constant . We 
assume a total mass Q (kg) of volcanic ash with uniform particle size is released 
at point (Xo, Yo, H) in the atmosphere. Here H is the release height , Xo and Yo are 
coordinates of x and y, respectively, at the release point (t = 0) . Therefore, the source 
M (x, y, z, t) in Equation (2 . 10) is Q<5(x - Xo)<5(y - Yo)<5(z - H)<5(t) . The motion of 
ash is affected by the physical conditions in the atmosphere: the wind speed and 
direction and the turbulence which causes dispersion. U and V are wind speeds in 
the x and y directions, respectively, S is the settling speed in the z direction and Dx, 
Dy and Dz are the dispersion in the x, y and z directions, respectively, for the uniform 
atmosphere model. It is assumed that the wind speed, dispersion and settling speed 
are all constant . Since Dx = Dy ,  we will now write Dx and Dy as Dh (horizontal 
dispersion coefficient ) . The three-dimensional advection-dispersion Equation (2 . 10) 
becomes 

(2 . 1 1 ) 

We will use Equation (2 . 1 1 ) for the models in this thesis. 
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2 . 3  Case A:  Instantaneous Release in Whole Space 

8c In Case A,  we define the downward flux as Sc+ Dz 8z with respect to time, 0 � t < 00 ,  

where the downward flux is  assumed to pass through the "ground" z = O. The total 
deposit f on the "ground" (z = 0) is determined by integrating the downward flux 
with respect to time, 0 � t < 00 ,  

(2 . 12) 

The unit of f is  mass per unit area (kg m-2 ) in the three-dimensional atmosphere. 

The determination of the function f(x, y) , which is the deposit on the "ground" 
from eruption is important in order to warn the public of the area affected by the 
ashfall .  The calculation of volumes of tephra deposits is difficult due to the nonlinear 
dependence of thickness on area. The review of some methods on calculating the 
deposit can be found in the paper [2 1 ] .  
The following sections describe the models for modelling the ashfall for instantaneous 
releases in one-, two- and three-dimensional atmospheres. 

2 . 3. 1 One-dimensional model 

In this section, we assume there is no horizontal wind, i .e . U = V = 0 and Dh = O. 
In this case, the three-dimensional model reduces to a one-dimensional model. 

Bc 8c 82c - - S- - Dz - = Q8(z - H)8(t) . 8t 8z 8z2 
In this model, the release source is located at the point z = H. Alternatively, in three­
dimensions we may regard the release as being constant across a plane, (x, y, z) = 
(x, y , H) . 
I t  i s  assumed that c = 0 at time t = 0- , a total mass Q (kg m-2 ) i s  released at height 
z = H and c -----+ 0 as z -----+ ±oo . 

The concentration c(z, t) can be determined by applying Fourier and Laplace trans­
formations, and is given by 

The deposit f (2. 12) on the "ground" (z = 0) is 
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f 100 (sc(O, t) + Dz 8c�; t) ) dt 
Q . 

The result f = Q verifies that the total mass released falls through the surface z = O. 

(See Appendix A.6 for the working of the three-dimensional model, the same technique 
is used for the one-dimensional model. )  

2 .3 .2  Two-dimensional model 

In this section, we assume there is no horizontal wind speed in the y-direction, i .e .  
V = O. In this case, the three-dimensional model reduces to a two-dimensional model. 

8c 8c 8c 82c 82c 
- + u- - S- - Dh- - Dz- = Qb(x - Xo)b(z - H)b(t) . 8t 8x 8z 8x2 8z2 

In this model, the release source is located at the point (x, y)  = (X 0 ,  H). In three­
dimensions the release corresponds to a line at (x, y, z) = (X 0, y, H) . 
Similarly, it is assumed that c = 0 at time t = 0- and c ----+ 0 as x ----+ ±oo or z - ±oo 
with a total mass Q (kg/m) released at x = Xo and z = H. 
By applying Fourier and Laplace transformations we obtain, 

Using MATLAB , the corresponding deposit on the "ground" (z = 0) , is found to be 
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where Ko and Kl are modified Bessel functions [44] of the second kind of order zero 
and one, respectively, and 

Q =  - + - an -1 [ ( x - X 0 F H2 ] 
d (3 _ 

4 Dh Dz 

2 .3 .3  Three-dimensional model 

For a three-dimensional whole space atmosphere, the three-dimensional advection­
dispersion equation (2 . 1 1 )  is used. 

8c 8c 8c 8c 82c 82c 82c - + U- + V- - S- - Dh- - Dh- - D  -8t 8x 8y 8z 8x2 8y2 z 8z2 
= Qb(x - Xo)b(y - Yo)b(z - H)b(t) . 

With the initial and boundary conditions: c = 0 at time t = 0- and c ---+ 0 as 
x ---+ ±oo, y ---+ ±oo or z ---+ ±oo. Now, the unit of Q are in kg (the source is a point) 
and is released at x = Xo, Y = Yo and z = H. 
By applying Fourier and Laplace transformations, the concentration at point (x , y , z) 
after time t is found to be 

(2 . 13) 

Again, the downward flux of ash fall is  used to determine the deposit on the "ground" . 

h d fl f hf . 5 ( ) 8c(x, y, 0, t) . T e ownward ux 0 the as all at z = 0 IS C x, y, 0, t +Dz 8z . Integratmg 
the downward flux with respect to time, 0 � t < 00 ,  the deposit f(x, y) on the 
"ground" (z = 0) in the three-dimensional atmosphere will be a function of x and y. 

where Q = � [ (x - XoF + (y - YoF + H2 ] and (3 = 

4 Dh Dh Dz 
(See Appendix A.4 for the working of the solution 2 . 14) 

(2 . 14) 

We plotted equation (2 . 14) using the data in Table 1 . 1  but instead of taking Dz = 0, 
we used Dz = 800 and Dz = 1 . We can see that the contour of deposition in Figure 
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2 .4 has a elongated spread but not in Figure 2 .6. With Dz =1= 0, the ashfall will tend 
to spread with respect to the wind direction, in this case, the x-direction as there is 
no wind in the y-direction (V = 0). We will discuss the limit as Dz -+ 0 in Chapter 
4 .  

Figure 2 .4: Contour of  deposition at instantaneous release in three-dimensional uniform 
whole space with Dz = 800. The innermost contour has the highest deposit whilst the 
outermost has the lowest deposit. 

2 .4  Case B :  Instantaneous Release in Half Space 

In this section, we discuss the three-dimensional model with a half space atmosphere 
and an instantaneous release. We build up towards a three-dimensional model, begin­
ning with an one-dimensional atmosphere. The same advection-dispersion equation 
(2 . 1 1 )  is used in the modelling of the half space: 

8c 8c 8c 8c 82c 82c 82c - + U- + V- - S- - Dh- - Dh- - D  -8t 8x 8y 8z 8x2 8y2 z 8z2 
= Qb(x - Xo)b(y - Yo)b(z - H)b (t) . 

There is a difference in the boundary conditions for the half space atmosphere, because 
the range of z in half-space is 0 ::; z < 00 .  

Initial condition: c = 0 at t = 0- . 
Boundary conditions: z = 0 is assumed to be the ground. As no material can 
penetrate the ground, there is zero downward dispersive flux at z = O. Hence Dz �: = 

8c . 8c o at z = O. So either Dz = 0 or 8z = 0, but smce Dz =1= 0 we take 8z = 0 at z = O. 
The same as the whole space model, we also take c -+ 0 as x -+ ±oo, Y -+ ±oo or 
z -+ 00 .  

The ash particle size considered in this thesis is very tiny (less than 2 mm) , so the 
settling speed is small too. Even if the particle bounces up when it hits the ground, 
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Figure 2 .5 :  This is a scaled version of Figure 2 .4  in order to label the values f (kg/m2) 
for each contour lines. We show only this example in this thesis to explain the contour 
lines. The contour plot is the top view of a three-dimensional plot . This figure shows 
eight contour lines of deposition f (kg/m2) ,  each contour line defines a different value of f 
(kg/m2) .  From the figure, we see that the inner contour lines have larger values of f than 
the outer contour lines. This illustrates (the inner contour line is close to) the centre of the 
deposit which is more dense than the outer part of deposit, as the farther it spreads the 
thinner the deposition, so the values of f are smaller towards the outer parts. The deposit 
close to the centre is thicker so f is larger. The innermost contour has the highest deposit 
whilst the outermost has the lowest deposit. 

the bouncing force is insignificant due to the small settling speed, so that the bouncing 
distance from the ground is small. Hence it will settle onto the ground very quickly. 

2 .4. 1  One-dimensional model 

As in the whole space, in  this one-dimensional atmosphere, c is a function of z and t . 
The one-dimensional advection-dispersion equation is 
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Figure 2.6 :  Contour of deposition at instantaneous release in three-dimensional uniform 
whole space with Dz = 1 .  The innermost contour has the highest deposit whilst the 
outermost has the lowest deposit .  

Bc 8c 82c - - S- - Dz- = QO(z - H)O(t) . 8t 8z 8Z2 

Through applying a Green's function, we obtain 

c(z, t) 

The derivation of this one-dimensional model 's concentration c(z, t ) i s  given in more 
detail in Appendix A.2 . 1 .  

Integrating the downward flux with respect t o  time, 0 :::; t < 00 ,  t o  determine the 
deposit f, on the ground we obtain 

100 { SQ lt [ (SH ) 1 H2 1 ] (-H+Sr)2 } 
f = - - + 2  - --- e - 4Dz r  dT dt. 

4 r:;;-FID D T3/2 D T5/2 o y 11 L/z 0 Z Z 

The function f involves two integrals which we are not able to solve analytically. 

2 .4 .2  Two-dimensional model 

The same as in the two-dimensional whole-space modelling, the concentration c(x, z , t) 
is a function of x ,  z and t, hence the advect ion-dispersion equation is 
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OC OC Oc 02C 02C - + U- - S- - Dh- - Dz- = Qb(x - Xo)b(z - H)b(t) . at ox oz OX2 OZ2 
Again, it is not possible to completely solve the two-dimensional model analytically. 
The technique for solving the two-dimensional model is formulated based on the one­
dimensional model. The concentration is 

C(x, z, t) 

(See Appendix A.2 .2 . ) 
Integrating the downward flux with respect to time, 0 :s; t < 00 ,  to determine the 
deposit, f(x) , on the ground we obtain 

2 .4 .3  Three-dimensional model 

Similarly, the three-dimensional model for modelling the half-space atmosphere is 

OC oc oc OC 02 C 02 C 02 C - + U- + V- - S- - Dh- - Dh- - D  -at ox ay oz ox2 oy2 z OZ2 
= Qb(x - Xo)b(y - Yo)b(z - H)b(t) . 

Using the same techniques as for the two-dimensional model (see Appendices A .2 .2  
and A.2 .3) , the concentration is  given by 
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c(x, y , z, t) 
[ _ (z_H)2 _ ( Z + H )2 ] 

e 4Dz t + e 4Dz t 

Integrating the downward flux with respect to time, 0 � t < 00, to determine the 
deposit f(x, y) , on the ground we obtain 

f(x, y) 

4Dz r dT dt. (-H+Sr)2 } (2 . 1 5) 

We cannot solve Equation (2 . 15) analytically. Numerical solutions displayed in Fig­
ures 2 . 7  and 2.8 show that the half space model gives very close results to those of 
the whole space model (Figures 2 .4  and 2 .6) . 
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Figure 2 .7 :  Contour of deposition at instantaneous release in three-dimensional uniform 
half-space with Dz = 800. The innermost contour has the highest deposit whilst the 
outermost has the lowest deposit .  

2 .5  Case C :  Continuous Release in Whole Space 

This section presents the steady-state calculation of concentration when the ashfall 
is released continuously from a point source. Under steady-state conditions, the term 
�� is zero. The advection-dispersion equation (2 . 1 1 )  becomes 
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Figure 2.8: Contour of deposition at instantaneous release in three-dimensional uniform half­
space with Dz = 1 .  The innermost contour has the highest deposit whilst the outermost 
has the lowest deposit .  

(2 . 16) 

The term Qb(t) in (2 . 1 1 )  has been replaced by q which is the rate of mass release. 

For release point (0 , 0 , H), Equation (2. 16) becomes 

2 . 5 . 1  One-dimensional model 

A one-dimensional model is obtained by assuming that there is no horizontal wind, so 
that the ash only moves in the z-direction. The one-dimensional advection-dispersion 
equation at steady state reduces to 

de d2e -8-
- Dz - = qb (z - H) . dz dz2 

We take e --7 0 as z --7 00, e is bounded as z --7 - 00  and e is continuous at z = H. 
Solving this second order differential equation ,  we obtain 

q q ( S(Z-H) ) 
e(z) = 8 + 8 e - -V-;- - 1 H(z - H) 

where H is the Heaviside function. 
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This means that if z < H then 

and if z > H 

q c(z) = S 

2 .5 .2 Two-dimensional model 

We construct a two-dimensional model by assuming that there is no horizontal wind 
in the y-direction. The material is moving only in the x and z-directions. Hence the 
two-dimensional advection-dispersion equation reduces to 

Bc Bc B2c B2c U Bx -

S Bz - Dh Bx2 - Dz BZ2 = q8 (x - Xo )8 (z - H ) . 

This can be solved in terms of a Bessel function [8] (see Appendix A .3 . 1 ) with bound­
ary conditions: c ---7 0 as x ---7 ±oo or z ---7 +00, and c is bounded when z ---7 -00.  

For a release point (Xo, H), 

q U(x-Xo) _ S(z-H) [ 1 
c(x, z) = e 2Dh 2Dz Ko -2�VDhDz 2 

For a release point (0, H ) , 

q Ux S(z-H) [ 1 c(x , z) = e 2Dh -� Ko -2�VDhDz 2 
Ko is a modified Bessel function of the second kind of order zero [44] . 

2 .5 .3 Three-dimensional model 

The three-dimensional model is derived using the Equation (2. 16) : 

The solution of c(x, y ,  z) can be found by using the solution to the Helmholtz equation 
[48] (see Appendix A.3 .2) with boundary conditions: c ---7 0 as x ---7 ±oo, Y ---7 ±oo 
or z ---7 +00, and c is bounded when z ---7 -00. 
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For release point at (Xo, Yo , H) , 

For a release point (0, 0, H) , 

We tested the three-dimensional model using the data in Table 1 . 1  with Dz = 800 
and Dz = 1 .  We see that the concentration contour in Figure 2.9 has a elongated 
spread compared to Figure 2 . 10 .  With Dz = 800 , the ashfall spreads with respect to 
the wind direction, in this case, the x-direction as there is no wind in the y-direction 
(V = 0) . 

� J : �+I�=+? j 
o 2 4 6 8 1 0  1 2  1 4  1 6  

x x 1 0
4 

Figure 2.9: Contour of concentration at continuous release in three-dimensional uniform 
whole space with Dz = 800. The innermost contour has the highest concentration whilst 
the outermost has the lowest concentration. 

2 .6 Case D: Continuous Release in Half Space 

The same boundary conditions as Case B are applied. The surface z = 0 is assumed 
to be solid ground, no material can penetrate through the ground so there is zero 

Bc 
downward dispersive flux at the ground, hence Dz Bz = 0 at z = O. So either Dz = 0 

Bc Bc or Bz = 0, but since we take Dz =I 0 then Bz = 0 at z = O. We also take c --t 0 as 
x --t ±oo, y --t ±oo or z --t 00 .  
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Figure 2 . 10 :  Contour of concentration at continuous release in three-dimensional uniform 
whole space with Dz = 1 .  The innermost contour has the highest concentration whilst the 
outermost has the lowest concentration. 

However, we are able to solve only the one-dimensional model analytically. The two­
and three-dimensional models are solved numerically and are presented in Chapter 3 .  

2 .6 . 1  One-dimensional model 

We again construct a one-dimensional model by assuming that there is no horizontal 
wind. The material is only moving in the z-direction to the ground (z = 0) . Hence 
the one-dimensional advection-dispersion equation at steady state is 

f}e f}2e -S- - D - = q6(z - H) f}z z f}z2 . 

f}e 
Using the conditions e ---7 0 as z ---7 00 and f}z = 0 on z = 0, we integrate the equation 
with respect to z , 

-S- - Dz- dz 100 ( de d2e) 
o dz dz2 

[-Se _ Dz 
de ] 00 
dz 0 

e(O) 

100 q6(z - H) dz 

The result is same as the one-dimensional model in the whole space for z < H (Section 
2 .5 . 1 ) .  
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2 . 7  Summary 

The half-space modelling is more realistic than the whole space modelling because 
it takes into account that on the ground there is zero downward flux. In the whole 

space model, the total downward flux is Se + Dz �:, whereas the downward flux in 
. . 8c the half space model It IS Se because OZ = 0 at z = o. 

The results shown in this chapter allow for Dz =1= o. As we highlighted in Chapter 
1 ,  because most volocanologists assume Dz = 0, we will show results for Dz = 0 in 
the following chapters in the thesis. In order to provide computed examples using 
the formulas already calculated, very small values of Dz are used to provide a close 
approximation to the case Dz = O. The results shown in Figure 2 .6 (whole space 
deposit) and in Figure 2 .8 (half space deposit) are almost identical. We will assume 
that the results for Dz = 1 are close to those for Dz = 0 in the following chapters in 
the thesis. 

As indicated in Chapter 1 ,  the process of ashfall in the atmosphere is more compli­
cated than the simple model considered in this chapter as the wind profile, dispersion 
coefficients and settling speed can vary with position and time. In Chapter 3, we 
structure the atmosphere into horizontal layers providing a more realistic transport 
model than a uniform atmosphere and allowing a more accurate description of the 
physical behaviour during ashfall. 
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Chapter 3 

LAYERED ATMOSPHERE 

MODELS 

non-uniform pattern may be complicated 

but it is the reality 

What is a layered atmosphere model? 

The analysis in Chapter 2 described ashfall in a uniform atmosphere. However, in 
general the wind and turbulence profiles vary with elevation. Also the settling speed 
of particles may change during their flight because of agglomeration, etc. Because 
of these effects ,  a more realistic model allows the wind speed and direction, the 
dispersion tensor and the profile settling speeds to vary with height. Atmospheric 
conditions may also change with time, of course, but in this thesis, that aspect is not 
considered. 

It is important to include height-varying atmospheric flow as this aids volcanologists 
in understanding the distribution of ashfall, patterns of deposits on the ground and 
the area affected or covered by these deposits. In general once elevation-dependent 
wind speed and velocity, dispersion and settling speed functions are included in the 
mass conservation equation, it becomes intractable to obtain analytical solutions. 
However, one method where some progress can be made is to use piecewise-constant 
functions which reflect average values in separate layers. Then, the equation is linear 
within each layer, and the solutions are matched with suitable boundary conditions 
at the layer interfaces . 

3.1 Modelling 

The atmosphere is modelled as a horizontally-layered half-space (-00 < x, y < 00, 
o ::::; z < 00) with where each layer interface corresponds to a change in atmospheric 
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conditions such as wind speed, wind direction or dominant turbulent length scale . 
The two types of model presented in this chapter are for instantaneous point releases 
and continuous point releases at constant rate . 

• For the modelling of an instantaneous release, the concentration in the layered 
atmosphere during the process of ashfall is used to calculate the deposit on the 
ground . 

• For the modelling of a continuous release in a steady state, the model to calcu­
late concentration of ashfall in the layered atmosphere is obtained numerically. 
In the continuous release the source is measured in kg/so The deposit is cal­
culated per unit time and its distribution on the ground will be similar to the 
distribution of the deposit in the case of instantaneous release. 

The models in this chapter are developed using the same advection-dispersion equa­
tion as Chapter 2. As mentioned, most volcanologists assume that the vertical dis­
persion, Dz is negligible because it is very small at the height of 500 metres or higher 
[7] [25] . With the assumption of Dz = 0, the models for instantaneous release can be 
solved analytically. The models for steady state continuous release still have to be 
solved numerically. 

Figure 3 . 1  is a schematic diagram showing how a layered atmosphere is structured. 
The numbering of layers is from top to bottom in ascending order. The interfaces 
between layers are also numbered from top to bottom in ascending order. For n 
layers, there will be n - 1 interfaces and the interface height is represented by Z. For 
example, at interface j ,  beneath layer j and above layer j + 1 ,  the interface height is 
Zj . If there are n layers, then the ground is z = Zn = O. 

3 .2  Advection-Dispersion Equation 

3 .2 . 1 A point source instantaneous release 

Since Dz = 0 is assumed, the advection-dispersion equation (2. 1 1 ) becomes 

oc oc oc oc 02C 02C - + U- + V- - S- - Dh- - Dh- = Qc5(x - Xo)c5(y - Yo)c5 (z - H)c5(t) . ot ox oy oz ox2 oy2 

We have assumed U, V, S and Dh to be constant within each layer, with values Uj ' 
Vj , Sj and Dhj in the jth layer. The advection-dispersion equation is now re-written 
as 
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Release at (XOI Yas H) tJ. Q 
- - - - - - - - - - - - - - .� - - - - - - - - - - - - - - - - - - - - - - - -

Layer 1 
51 

U1 
, 

Z=Z1 . -- . ••• •  

Layer 2 1S2 u2 
, 

••• 
Z=Z2 • •• • • 

�G�no�u=n�d�,�z�=_O� ____________ �� ..... ... .. 

Figure 3 . 1: A schematic of a layered atmosphere. 

OC oc oc OC 02C 02Cj - + u - + v - - s - - Dh o- - Dh o­ot J ox J oy J OZ J ox2 J oy2 
�6(x - )Co)6(y - 17o)6(z - }{)6(t) (3. 1 ) 

OC When Dz = 0, the downward flux Sc+Dz OZ becomes Sc. In this case, the downward 
flux in a layered atmosphere, say in the nth layer, will be Snc. We assume that all 
of the source material lands on the ground eventually and the downward flux is 
continuous through each interface. Therefore if S is continuous (i .e .  SI = S2 , S2 = S3 
etc. ) then c is continuous. We have the following conditions: 

Initial condition: c(x, y, z, t) = 0 when t = 0 except at (x, y, z) = ()Co , 170 , }{).  
Boundary conditions: the same as the Case B ,  the half space atmosphere in Chapter 

OC 2, c(x, y, z ,  t ) = 0 when x --t ±oo, Y --t ±oo or z --t +00, and Dz OZ = 0 on the 
ground z = Zn = 0 where n is the last layer of the atmosphere. However, since we 
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DC take Dz = 0 in this modelling, the condition Dz DZ = 0 on ground Z = Zn = 0 is 
automatically satisfied. 

The deposit model is therefore formulated as (100 SnC(X, y, 0, t) dt) where Sn is the 

settling speed in the last or bottom layer of the atmosphere. 

3 .2 . 2 A point source continuous release i n  steady state 

The steady state advection-dispersion equation (2 . 16) is 

in the jth layer. 

It is also assumed that the downward flux (SjC + Dzj �:) is continuous through each 

interface. However, we are only able to solve this model numerically. We wrote a 
code for Equation (3 .2)  which assumed Dz > O. So we investigate the limit Dz � O. 
The boundary conditions are: the same as the Case D ,  the half space atmosphere in 

DC Chapter 2, c(x, y, z) = 0 when x � ±oo, y � ±oo or Z � +00 and Dz DZ = 0 at 

Z = Zn = 0 (where n is the last layer of the atmosphere ) . . DC . Smce Dz DZ = 0, eIther 
DC DC Dz = 0 or OZ = 0, but since we take Dz =I- 0 then DZ = 0 at Z = O. 

3 .3  Instantaneous Release 

This section describes the development of the models for a point source instantaneous 
release in one- , two- and three-dimensional layered atmospheres. 

3 .3 . 1 The one-dimensional model 

As in the uniform atmosphere model, there is no horizontal variation, only vertical 
variation in the one-dimensional model. We construct the model by assuming that 
there is no horizontal wind. The material is only moving in the z-direction towards 
the ground (z = Zn = 0) . Equation (3 . 1 )  reduces to 
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Bc Bc - - S·- = Q<5(z - H)<5(t) Bt J Bz 

for Zj < z < Zj-l (Zj is the interface height between the jth and (j + l )th layers) .  
We assume the release is in layer 1 (the top layer) ,  at z = H, and Q i s  in units of 
kg/m2 . 

For one-dimensional modelling, a new layer is only required for a change in the set­
tling speed S. We obtain the solution c (concentration) in layer 1 by using Fourier 
and Laplace transformations and from layer 1 we model the concentration of the 
subsequent layers. 

The concentration in layer 1 ,  j = 1 ,  for 0 :S t :S tl = (H;lZl ) (or Zl = H - Sltd is 
c(z, t) = Q<5(z - (H - SIt) ) . 

The corresponding concentration in layer 2 for t l < t < t2 : 

We deduce that for layer j ,  the contribution of concentration to the layer j is: 

c(z, t) = Q<5(z - Z) 
where Z = H - Sltl - S2 (t2 - tl ) - . . .  - Sj (t - tj- l ) ,  tj- l < t < tj . ote that 
Zj < Z < Zj-l . 
Then for an atmosphere with n layers , we compute the deposit f on the ground 
(z = Zn = 0) using the properties of <5 functions. 

3.3 .2 Two-dimensional model 

We construct a two-dimensional model by assuming that there is no horizontal wind 
in the y-direction. The material is only moving in the x- and the z-directions. For 
two-dimensional modelling, Equation (3 . 1 )  is reduced to 
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where Zj < Z < Zj- l (Zj is the interface height between the jth and (j + l )th layers) .  
We assume the release is in layer 1 (the top layer) , at x = Xo and z = H , and Q is 
in units of kg/m. 

For two-dimensional modelling, a new layer is  required for any change in wind velocity 
U, settling speed S or dispersion Dh. 
The concentration c is solved using Fourier and Laplace transformations. 

In layer 1 ,  j = 1 ,  for 0 � t � tl = (H�lZl ) ,  

At time t = t l , 

where Zl = H - Sl tl . 
When the initial release is at point (Xo , H) , all of the mass is concentrated at time 
t = t l in a sheet at height z = Zl . 
Dividing the sheet into small source elements, then the mass concentration at point 
(�, Zl ) on the interface is now 

We take a small source element dQI = ql (�) d� on z = Zl ; the corresponding concen­
tration in layer 2 for tl < t < t2 is 

dc(x, z, t ; �) = 

The total mass concentration for t l � t � t2 is obtained by integrating over all such 
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source elements � 

c(x, z, t) = i dc(x, z, t ; �) 

Taking 

we obtain 

b =  
1 

4Dh2 (t - t 1 ) 
ab(6 - 6)2 �4 = 

a + b ' 

c(x, z, t) 100 
Q e- [(a+b) (�-�3 )2H4] 

-00 2V7r Dhl t1 2V'TrDh2 (t - td 

and taking 

we obtain 

c(x, z, t) = 

x b(z - (Zl - S2 (t - td) ) d� 

100 
Q e-[piH4] dPl b(z - (Zl - S2(t - t1 ) ) )  -

00 
47rVtl (t - tdDhlDh2 va + b 

Q e-�4 ft b(z - (Zl - S2 (t - t1 ) ) ) 47rVtl (t - h )Dh1Dh2 v(a + b) 

Q e - [ (X-4\����1�lD:��it��l?))2 ] 8(z - (Zl - S2 (t - t1 ) ) ) 2V7r(Dhltl + Dh2 (t - t 1 ) ) 
Q (x_X)2 

--==e -4Aj 8(z - Z) 2V7rAj 
where Aj = Dhlt l + Dh2(t - t1 ) ,  X = Xo + U1t 1 + U2 (t - h ) ,  Z = Zl - S2 (t - td , 
Z2 < z < Zl and tl < t < t2 -
We deduce that for layer j ,  the concentration is: 

c(x, z, t) Q (x_X)2 
--==e -4Aj 8(z - Z) 2V7rAj 
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where 

x 

Z 
for tj-I < t < tj and Zj < z < Zj-I . 

Then for an atmosphere of n layers, we compute the deposit f(x) on the ground 
(z = Zn = 0) using the properties of r5 functions. 

where 

f(x) 100 
SnC(X, 0, t) dt 
-== e 4An - u t - -- t 

100 SnQ - {x_X)2 1 � ( Zn- I ) d 
° 2VnAn Sn Sn 

Q _ (x-Xf)2 --== e 4Af 2JnAf 

XI Xo + UIt l + U2 (t2 - t l ) + . . .  + Un(tn - tn-d 
and tn is the time when the particles land on the ground. 

Figures 3 .2 illustrates the distribution of ashfall in a two-dimensional layered atmo­
sphere. 

3.3 .3 Three-dimensional model 

We consider both horizontal and vertical variations in the three-dimensional model. 
Therefore the advection-dispersion equation (3 . 1 )  is used 

Bc Bc Bc Bc B2c B2c - + u · - + v - - S ·- - Dh ·- - Dh ·- = Qr5(x - Xo)r5(y - Yo)r5(z - H)r5(t) Bt J Bx J Bz J Bz J Bx2 J By2 
where Zj < z < Zj-I (Zj is the interface height between the jth and (j + 1 )th layers) . 
We assume the release is in layer 1 (the top layer) ,  at x = Xo, Y = Yo and z = H, 
and Q i s  in  unit of kg. 
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Figure 3 .2 :  Distribution of ashfall for instantaneous release in two-dimensional layered 
atmosphere. The graph also illustrates the thickness of deposits in three boundary layers 
at three interfaces, the ash falls with respect to the wind direction and the spread of the 
distribution is wider towards the ground. (* indicates the release point (Xo, H) = (0, 7500) . 
Data used for the plot are from Table 1 .2 . )  

For three-dimensional modelling, a new layer is required for any change in wind 
velocity U, V, settling speed S or dispersion Dh· 
The concentration c is solved using Fourier and Laplace transformations. 

In layer 1 ,  j = 1 ,  for 0 � t � tl = (H�lZI l ,  

c(x, y , z ,  t )  

At time t = t l , 
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where Zl = H - Sltl -
At this time, all of the mass is concentrated in a sheet at height z = Zl -
As in the two-dimensional model, we divide the sheet into small source elements, then 
the mass concentration at point (�, ry, Zd on the interface is now 

We take a small source element dQl = ql (�' ry)d� dry on z = Zl , the corresponding 
concentration in layer 2 for t l < t < t2 is 

dc(x, y , z , t ; � , ry) = 
dQl _ (X-{-U2( t-tJ » 2 (Y-1I-V2(t-t) )2 

-----:----:- e 4Dh2 ( t-t J ) 4Dh2 ( t-tJ l  b(z - (Zl - S2 (t - t 1 ) ) ) 47rDh2 (t - td 
1 (X-{-U2( t-tJ » 2 (Y-lI-V2(t-tJ » 2 

----,-----,- e 4Dh2 ( t  t) 4Dh2 ( t  t) 
47rDh2 (t - t l ) 

Q _ (�- (XO+UJ tJ » 2 (lI- (YO+ VJ tJ » 2 

x e 4Dh) t) 4Dh) t) 47r Dhltl 
X 8(z - (Zl - S2 (t - t l ) ) )  d� dry _ 

The total mass concentration for t l  < t < t2 is obtained by integrating over all such 
elements 

c(x, y, z, t) 

Taking 

we obtain 

c(x, y, z, t) 

b =  
1 

4Dh2 (t - td 
ab(6 - 6)2 �4 = a + b 

42 



and taking 

we obtain 

pi = (a + b) (� - 6) 2 d� = dPl 
va + b 

p� = (a + b) (7] - 7]3 )2 d7] = �, 

c(x, y, z ,  t) 100 dPl 100 dP2 Q 
-00 Ja + b - 00 va + b 167rDhl tl7rDh2 (t - t 1 ) 

x e- [pi+(4+P�+7]4l 6(z - (Zl - S2 (t - t 1 ) ) )  

Hence 

c(x, y, z, t ) 

Q 
e-[�4+7]41 7r 6(z - (Zl - S2 (t - td) ) . 167rDhltl7rDh2 (t - t 1 ) (a + b) 

Q6(z - (Z - S (t - t )) ) _ [ (X- (XO+Ultl+U2(t-tl» ) 2 + (y- (YO+V1t1 +V2(t- t1» )2 ] 
= 

1 2 1 
e 4(Dh 1 t l+Dh2 (t t l » 4(Dh1 tl +Dh2 (t t J } ) 

47r(Dhltl + Dh2 (t - t 1 ) ) . 

Taking A2 = Dhl tl + Dh2 (t - td ,  X = XO+ U1t 1 + U2 (t - td ,  Y = Yo+ Vlt l + V2 (t - td 
and Z = Zl - S2 (t - td where Z2 < z < Zl and tl < t < t2 , then 

Q _ [ ( x_X)2 + (y_ y )2 ] 
c(x , y, z, t) = 47r A2 

e 4A2 4A2 6(z - Z) . 
We deduce that for the layer j ,  the concentration is: 

Q _ [ (X_X )2 + (y_y)2 ] 
c(x , y, z, t) = 47r A e 4Aj 4Aj 6(z - Z) 

J 
(3 .3) 

where 

X 
Y 
Z 
for 

From equation (3 .3) , for an atmosphere with n layers , we compute the deposit f on 
the ground (z = Zn = 0) using the properties of 6 functions. 
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f (x, y) 

(3.4) 

where 

and tn is the time when the particles land on the ground. 

Figures 3 .3 ,  3 .4 ,  3 .5 ,  3 .6  and 3 .7 show the distribution of ashfall in a three-dimensional 
layered atmosphere. Figures 3.4, 3 .5 ,  3 .6 and 3 .7  are the top views of each boundary 
layer and they show that the spread is wider toward the ground and consequently the 
deposit is thinner towards the ground. These illustrate the farther the distance be­
tween the release point and the ground, the wider the spread of deposit ; the travelling 
time is longer and therefore there is more time to spread. 
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Figure 3 .3 :  Distribution of ashfall for instantaneous release in three-dimensional layered 
atmosphere. The graph also illustrates the thickness of deposits in three boundary layers 
at three interfaces, the ash falls with respect to the wind direction and the spread of the 
distribution is wider towards the ground. (* indicates the release point (Xo, Yo, H) = 

(0, 0 , 7500) . Data used for the plots are from Table 1 .2 . )  
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Figure 3.4 :  Layer one of Figure 3 .3 .  (* indicates the release point (Xo ,  Yo , H) = (0, 0, 7500) . 
The innermost contour has the highest deposit whilst the outermost has the lowest deposit . ) 
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Figure 3 .5 :  Layer two of Figure 3.3 .  The innermost contour has the highest deposit whilst 
the outermost has the lowest deposit .  
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Figure 3.6: Layer three of Figure 3.3. The innermost contour has the highest deposit whilst 
the outermost has the lowest deposit . 
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Figure 3 .7 :  Layer four of Figure 3.3 .  The innermost contour has the highest deposit whilst 
the outermost has the lowest deposit .  
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3 .4 A Continuous Release in Steady State 

We now consider a source which is assumed to release continuously. Three models are 
presented in this section. The one-dimensional model is developed analytically using 
simple integration but the two- and three-dimensional models are solved numerically 
using a Finite Difference method. 

3.4. 1 One-dimensional model 

As in the uniform atmosphere model, there is no horizontal wind, only vertical vari­
ation in the one-dimensional model. The material is only moving in the z-direction 
towards the ground (z = Zn = 0) . Equation (3 .2) reduces to 

dc d2c -S - = Dz '- + q8(z - H) J dz J dz2 

where Zj < z < Zj-l (Zj is the interface height between the jth and (j + l ) th layers ) .  
We assume the release is in  layer 1 (the top layer) ,  at z = H, and q i s  in units of 
(kgjm2 ) js .  A new layer is required for a change in settling speed S. 
In layer 1 ,  j = 1 ,  the source releases at point z = H and the flux down from z = H 
to z = ZI is: 

Integrating the equation, 

So 

and we obtain 

dc -SI­dz 

()Q ( d2c 
) }z Dzl dz2 + q8(z - H) dz 

- 51 z -s B e Dz l  1 1 , where BI i s  a constant , q - SIC > O . 
Hence 

We evaluate the constant Al later. 
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In layer 2 (Z2 < Z < Zd , we split the integral into two to obtain 

t (S'�� + D.'��) dz + f (SI�� + Dd��) dz � r -q8(z - H) dz . 

So 

and we obtain 

0 - (SIC + D.I ��) 
Z

, + (S'C + D.,�) z, - (S'C + D.,��) . � -q . 

At the interface z = Zl , 

Hence, we obtain 

and 

c 

q 

q 1 -
52Z S B - - -e Dz2 - 2 2 ,  where B2 is a constant 82 82 q -SF - + A2e Dz2 where A2 is a constant . 82 ' 

Applying the technique used in layer 2 to layer 3 ,  (Z3 < z < Z2) we obtain 

q - 53Z C = 83 + A3e Dz3 , where A3 is a constant . 

Similarly, the concentration in layer 4 (Z4 < z < Z3 ) is 
q -54Z C = 84 + A4e Dz4 , where A4 is a constant . 

The concentration in layer j (Zj < Z < Zj- l ) is 
q - siz 

• 

C = - + Aje Dj , where Aj IS a constant . 8j 
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Collecting these together we have 

c 
c 

c 

c 

c 

c 
- s · Z  q + A  ---r - · e ZJ S J J 

for z >  H 
for Zl < z < H 

for Zj < z < Zj- l . 

Recall that we use the boundary condition c(z -----+ - 00 ) is a constant . Therefore 
lim Aj = 0 where n is the last layer, z = Zn = 0 (the ground) and J->n 

1 · q Im c =  -S . J-+n n 

In the half space atmosphere, the boundary condition is �� = 0 at z = Zn = 0 (the 
ground) , so if z = Z2 = 0 is the ground, then Equation (3 .5)  becomes 

(S2C + Dz2 ��) a = q , 

and 

so 

c 

Hence, in the half space atmosphere, the concentration at z = Zn = 0 is 
q c = Sn . 

The concentration c in the last layer for both whole (z = Zj -----+ - 00) and half space 
(z = Zn = 0) atmosphere is the same. 
Since the downward flux is assumed continuous, we solve for Aa , AI , A2 , A3 , A4 , . . .  , Aj 
by matching the concentration c through each interface. 
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At z = H, 

Ao 

At z = Zl , 

At z = Z3 

We deduce 

Here, we will demonstrate the solution procedure to find Aj in a four layered atmo­
sphere, i.e . the fourth layer is the last layer of the atmosphere. As we have found the 
concentration in the last layer is the release rate with respect to the settling speed in 
the layer, so the concentration in the fourth layer is 

We obtain 

q C = - . S4 

( q q ) � A3 = S4 - S3 
e Dz3 

( (  q q ) � � q q ) � A2 S4 - S3 
e Dz3 e Dz3 + S3 - S2 

e Dz2 
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( ( ( q q ) � � q q ) � � q q ) � Al S4 
-
S3 

e Dz3 e Dz3 + S3 - S2 
e Dz2 e Dz2 + S2 

- SI 
e Dzl 

and 
{ [ ( (  q q ) � � q q ) � � 

Aa S4 - S3 
e Dz3 e Dz3 + S3 

-
S2 

e Dz2 e Dz2 

+- - - e Dzl e Dzl + - e Dzl . q q 1 � -SlH q } � 
S2 SI SI 

In jth layer, we generalise this and write 

where ( -SiZi- l q q ) Si- l Zi- l 
Aj- l = Aje Dzj + - - -- e Dzj_ 1  

Sj Sj- l 
and Aj = 0 for the last layer of the atmosphere. 
Figure 3.8 shows the concentration c in a layered atmosphere during the process 
of ashfall. There is no wind component in the model. In order to demonstrate 
changes in the process of ashfall , coalescence is considered to change the settling 
speed. The settling speeds are chosen to be SI = 1, S2 = 1 .5 , S3 = 2, S4 = 4 (m/s) 
in layers 1 ,  2 , 3 and 4, respectively. These values are chosen is to reflect the case of 
agglomeration, where particles may join and be held together by water droplets while 
falling in the atmosphere; they therefore become heavier and so have larger settling 
speed as they descend. The model shows how the flux is constant with elevation, the 
concentration of ash decreases through the lower layers. Here, we cannot use Dz = 0 
as we used in the previous section (instantaneous release in layered atmosphere) 
because of computing difficulty as previously, so we take Dz = 0 . 1 ,  which in practice 
is close to zero, and take the release rate to be q = 1 (kg/m2 ) /s . 

3.4.2 Two-dimensional model 

We consider horizontal variation in the x-direction and vertical variation. We con­
struct a two-dimensional model by assuming that there is no horizontal wind in the y­
direction. The material is only moving in the x and z-directions. For two-dimensional 
modelling, Equation (3 .2) reduces to 

8c Bc 82c 82c u·- - S · - - Dh ·- - Dz - = q8 (x - Xa)b(z - H) J 8x J Bz J 8x2 J 8z2 
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Figure 3.8: Atmospheric concentration for a continuous release in a steady state in a one­
dimensional layered atmosphere. It shows that the concentration is lower towards the 
ground due to increase in settling speed from layer to layer. (* indicates the release point 
H = 10 . )  

where Zj < Z < Zj- l (Zj is the interface height between the jth and (j + l ) th layers) . 
We assume the release is in layer 1 (the top layer) ,  at x = Xo and z = H, and q is in 
units of (kg/m)/s. A new layer is required for a change in wind velocity U or settling 
speed S. 
We were unable to solve the two-dimensional model analytically, a Finite Difference 
method is employed using MATLAB [ 14] . Same as the one-dimensional model, we take 
Dz = 0 . 1 .  
The foHowing discretisations were used for the derivative operators in the model : 

• central difference with error of second order O(h2) - this is used for computing the 
flow within layers in the atmosphere. 
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f' (a) f(a + h) - f(a - h) 
_ 
h2 fll, ( ) 2h 3! a + . . .  

f(a + h ) ;f(a - h) + O(h2) .  

f"(a) f(a + h) - 2f (a) + f (a - h) _ h2 flll ( ) - h2 12 a + . . .  

(3 .6) 

_ f(a + h) - 2��a) + f(a - h) + O(h2 ) . (3 .7) 

The derivative operators (3 .6) and (3 .7) are used for calculating the flow inside the 
region la < x, y < lb and 0 < z < le where la , lb and le are to be large enough to 
capture the dynamic . This is because we consider both directions of flow within these 
boundary. 

f' (a) = 
-3f (a) + 4f(a � h) - f(a + 2h) + O(h2 ) .  (3.8) 

The derivative operator (3 .8) is used for calculating the concentration on the boundary 
where z = O. This is because we restrict all released particles to land on the ground 
eventually and not go through beyond z = O. 
In the two- and three-dimensional modelling, we take i to represent the x direction, 
j for y and k for z. To avoid confusion, n is used to number the layers instead of j 
which we used in the previous sections. 

The advection-dispersion equation in the two-dimensional modelling is discretised as: 

C(x, z) 
U oc 

� ox 
_s oc 

� oZ 
02C Dh OX2 � 

02C Dz OZ2 � 

q6(x - )Co)6(z - ll) 

Ci,k 
UCi+l ,k - Ci- l ,k 

2�x 
_SCi,k+l - Ci,k-l 

2.6.z 
D Ci-l k - 2Ci k + Ci+l k h ' �;2 ' 

D Ci,k-l - 2Ci,k + Ci,k+l 
z �Z2 q 

�x�z 6i,io6k,ko 
where �x and �z are the step-sizes for x and z, respectively. At the release point 
()Co ,  ll) , we take 6i,io6k,ko = 1; otherwise 6i,io 6k,ko = O. ()Co is represented by io and 
II is represented by ko . )  
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Hence, the advection-dispersion equation is expressed as 

UCi+ 1 ,k - Ci- l ,k _ SCi,k+1 - Ci,k- l 
2.6.x 2.6.z 
C -l k - 2c - k + C-+l k c - k- l - 2c - k + C k+l q = Dh � , .6.�2 � , + Dz �, .6.�2 �, + .6.x.6.z 6i,io6k,ko . 

Rearranging this gives 

(u -cHl ,k + Ci- l ,k + SCi,k+l - Ci,k- l D Ci- l ,k + cHl ,k Ci,k = 2.6.x 2.6.z + h .6.x2 
Ci,k-l + Ci,k+ l q ) ( .6.x2.6.z2 ) + Dz �Z2 + .6.x.6.z 6i,io6k,ko 2Dh.6.Z2 + 2Dz�X2 

For the boundary condition �: = 0 on z = 0, 

and so 

Hence 

OC(x, O) -3c(x, 0) + 4c(x, 0 + h) - c(x, 0 + 2h) 
� OZ 2h 

o � 
-3c(x, 0) + 4c(x, 0 + h) - c(x, 0 + 2h) 

2h 

( ) 4c(x, 0 + h) - c(x, 0 + 2h) C x, 0 � 3 . 

4c - 2 - C - 3 't ,  '1.,  Ci, l = 3 ' 
where k = 1 corresponds to the value on z = O. 
By matching the flux on the interface between the nth and (n + 1 )th layers, we obtain 

Cn = 

where Cn represents Ci,k on nth layer. 
Figure 3.9 illustrates the concentration in a two-dimensional layered atmosphere dur­
ing the ashfall. As in the one-dimensional model, we use Dz = 0 .1 m2 Is and q = 1 
(kgl m) Is. For the wind speed in the x-direction U, we take U1 = 10, U2 = -10, 
U3 = 10 and U4 = -10 m/s for layer 1 ,  layer 2, layer 3 and layer 4, respectively. We 
take the dispersion in the x-direction as Dhl = Dh2 = Dh3 = DM = 800 m2 Is for all 
layers. The release point is situated at (Xo , H) = (0, 1 500) . 
The model is programmed to use step sizes (.6.x and .6.z) in an iterative procedure. 
The iterative process will repeat until the value of the flow in the bottom layer is 
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unchanged. As we set the atmosphere into four layers, the ground flow in the last 
layer is 54 [: c dx . Also, in order to obtain convergence of the ground flow, we 

compute the concentration c by under relaxation. We ran the program with various 
ranges and mesh sizes. It is found that provided the x-range is large enough and the 
mesh size small enough, all of the main features of the boundary conditions and the 
solution detail are satisfied. Figure 3.9 is computed using a x-range from -40000 to 
40000 and the z-range from 0 to 2000. The mesh is divided into 1000 grid points 
horizontally and vertically (�x = 80000/ 1000 = 80 and �z = 2000/ 1000 = 2 ) .  
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Figure 3 .9 :  Concentration for a continuous release in a steady state in a two-dimensional 
layered atmosphere. It shows that the ash falls with respect to the wind direction and that 
the spread of the distribution is wider nearer the ground. The contour shows concentration 
per unit length is smaller when it is towards the ground. The release point is (Xo, H) = 

(0, 1 500) .  The innermost contour has the highest concentration whilst the outermost has 
the lowest concentration. 
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3.4.3 Three-dimensional model 

We consider both horizontal and vertical variations in the three-dimensional model. 
For three-dimensional modelling, Equation (3 .2 ) is used 

8c 8c 8c 82c 82c 82c UJ 8x + VJ 8z - SJ' 8z - Dh - - Dh ,- - Dz '- = q8(x - Xo)8 (y - Yo)8(z - H) ) 8x2 ) 8y2 ) 8Z2 
where Zj < z < Zj-1 (Zj is the interface height between the jth and (j + l )th layers ) .  
We assume the release is in  layer 1 (the top layer) ,  at x = Xo, Y = Yo and z = H, 
and q i s  in  units of kg/so A new layer i s  required for a change in  wind velocity U or 
V, settling speed S, or dispersion Dh . 
The terms in the advection-dispersion equation are discretised as follows: 

c(x, y, z) 
U 8c � 8x 
V 8c � 8y 

_S8c � 8z 
82c Dh 8x2 � 
82c Dh 8y2 � 
82c Dz 8z2 � 

q8(x - Xo)8(y - Yo)8(z - H) 

Ci,j,k 
C '+l ' k  - C' 1 ' k U � ,), �- ,), 

26.x 
VCi,j+1,k - Ci,j- 1 ,k 

6.y 
_SCi,j,k+1 - Ci ,j,k- 1 

26.z 
D Ci- 1 j  k - 2Ci j k + CH1 j k  h " ��; 

" 

where 6.x, 6.y and 6.z are step-sizes for x, y and z , respectively. At the release point 
(Xo , Yo , H) , we take 8i,io6j,jo6k,ko = 1 ; otherwise 6i ,io6j,jo6k,ko = O. (Xo is represented 
by io , Yo is represented by jo and H is represented by ko . ) 
The advection-dispersion equation becomes 

C +1 ' k  - C l ' k C '+1 k - C" 1 k C' ' k+ l - C - ' k  1 U � ,), �- ,J, + V �,) , �,)- , - S �,) , �,), -
26.x 26.y 26.z 

c ' l '  k - 2c ' ' k  + C l ' k C" 1 k - 2c' ' k  + c ' , 1 k 
= D �- ,), �,), �+ ,), + D �,J- , �,), �,)+ , h 6.x2 h 6.y2 

C ' ' k  1 - 2c ' k  + c ' ' k+l q +D �,J, - �,), �,), + £ £ £ 
z 6.z2 6.x6.y6.z Ui,io Uj,joUk,ko . 
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Rearranging this equation, we obtain 

Ci,j,k = U t+ ,J ,  t - ,J, + V t,J , t,J - , + S t,J, t,J, -( -C . 1 . k + C 1 · k -c· ·+ 1 k + C· . 1 k C · . k+ l - C · . k 1 
2�x 2�y 2�z 

C· l · k + C l · k C · · l k + C  ·+l k  C · · k  I + C· · k+ l +D t- ,J, t+ ,J, + D t,J - , t,J , + D t,J, - t,J, h �X2 h �y2 z �Z2 

q ) ( �X2�y2�Z2 ) + 6· . 6 · . 6k k �x�y�z t,to J,Jo , 0 2Dh�y2�z2 + 2Dh�X2�Z2 + 2Dz�x2�y2 

8c 
As in the two-dimensional model, the boundary condition 8z 

= 0 on z = 0 is written 

o 

So 

Hence 

-3c(x, y, 0) + 4c(x, y, 0 + h) - c(x, y, 0 + 2h) 
2h 

C(x, y, 0) 4c(x, y, 0 + h) - c(x, y, 0 + 2h) 
3 

4c · · 2  - C· · 3  t ,l , t,), C · · 1  -t,J, - 3 ' 
where k = 1 corresponds to the value on z = o. 

By matching the flux on the interface between the nth and (n + 1 )th layers, we obtain 

Cn = 

where Cn represents Ci,j,k on nth layer. 

8Cn+l Sn+lCn + Dzn+l----a;-
S D ( 3cn - 4Cn-l + Cn-2 ) n+l Cn + zn+l 2�z 
Dzn+l (-4Cn-l + Cn-2) - Dzn( 4Cn+ l - Cn+2) 

2�z(Sn - Sn+d - 3(Dzn + Dzn+d 

Figure 3. 10 illustrates the concentration in a three-dimensional layered atmosphere 
during the ashfall .  As in the two-dimensional model, we take Dz = 0. 1 m2/s and q = 1 
(kg/m)/s .  For the wind speed in the x-direction, U ,  we take U1 = 10, U2 = -10, 
U3 = 10 and U4 = -10 m/so The wind speed in the y-direction VI = V2 = 113 = 114 = 0 
m/s for layer 1 ,  layer 2, layer 3 and layer 4, respectively. We take the dispersion in 
the x- and y-directions as Dhl = Dh2 = Dh3 = Dh4 = 800 m2/s for all layers. The 
release point is situated at (Xo , Yo , H) = (0, 0 , 400) . 
The model is programmed with respect to step sizes (�x, �y and �z) in an iterative 
procedure. The iterative procedure runs until the ground flow in the last layer which 
is S4 I: I: C dx dy has converged. Also, in order to obtain convergence of the 
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ground flow, we compute the concentration c by under relaxation. We have run the 
program with various ranges and mesh sizes. It is found that we are able to converge 
if the x and y ranges are sufficiently large and the mesh size is sufficiently small. 
Figure 3 . 10 is computed using the x and y ranges from -24000 to 24000 and the z­
range from 0 to 500, and the mesh is divided into 120 grid points horizontally and 
vertically (�x = �y = 48000/ 120 = 400 and �z = 500/ 120 = 4. 1667) . 
Figure 3. 10 shows the concentration for a continuous release in a three-dimensional 
layered atmosphere. Figures 3 . 1 1 , 3 . 12 , 3 . 1 3 and 3 . 14 are top views of the contours at 
each interface. We observe the effect of dispersion from the distribution of the ashfall. 
The spread of ashfall is wider toward the ground and the thickness of the deposit is 
thinner towards the ground. The contours shown in Figures 3 . 10 , 3 . 1 1 , 3 . 12 , 3 . 13 and 
3 . 14 are not as smooth as in the two-dimensional simulation because the mesh size 
used in the two-dimensional model was finer. 
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Figure 3 . 10 :  Concentrations at the interface for a continuous release in steady state in a 
three-dimensional layered atmosphere . It shows that the ash falls with respect to the wind 
direction and the spread of the distribution is wider towards the ground. ( * indicates the 
release point (Xo ,  Yo , H) = (0, 0, 400) . )  

59 



�OO.---r---�--�--'----.---.---.---.----.-� 

1 500 

1 000 

500 

• - - - - - - - - - - - - - - - - - - - - - __ �_ - - - - - .1. _ _ _ _ _  .1. _ _ _ _ _ _  ... _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ 
I I I I , , 
I I I I - - - - - - - - - - - - - - - - - - - - - - - - �- - - - - - -:- - - - - - -:- - - - - - -:-- - - - - - - - - - - - - - - - - -
, , , 

>-. 0 - - - - - - - - - - - - - - . ' - - , -- - - --

-500 

-1 000 

-1 500 

, 

, - - - - - - - - - - - - - - - - - - ., - - - - - - .,- - - - - - -,- - - - - - -,- - - - - - - r- - - - - - - r  - - - - - - - - - - -
t I I I , I 

, , 
- - - - - - - _ _ _ _ _  - _ _ _ _ _  '4 _ _ _ _ _ _  � _ _ _ _ _ _ _  1 _ _ _ _ _ _ _  1 _ _ _ _ _ _ _  � _ _ _ _ _ _  � _ _ _ _ _ _ _ _ _ _  _ 

" ' I  I 
I I I I 
I I I I 
I I , I 
I I I I 

-2°�2000 -1 500 -1 000 -500 o 500 1 000 1 500 2000 2500 3000 
x 

Figure 3 . 1 1 :  Interface one of Figure 3 . 10 .  (* indicates the release point (Xo , Ye, H) = 
(0, 0, 400) . )  The innermost contour has the highest concentration whilst the outermost has 
the lowest concentration. 
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Figure 3 . 12 :  Interface two of Figure 3 . 10. The innermost contour has the highest concen­
tration whilst the outermost has the lowest concentration. 
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Figure 3 . 13 :  Interface three of Figure 3. 10. The innermost contour has the highest concen­
tration whilst the outermost has the lowest concentration. 
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Figure 3 . 14 :  Ground level of Figure 3. 10. The innermost contour has the highest concen­
tration whilst the outermost has the lowest concentration. The accumulation rate on the 
ground (in kg/m2 Is) is given by 54 times the value of c. 
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3 .5  Summary 

In this chapter, we have presented analytical solutions for modelling an instantaneous 
point release in a one- , two- and three-dimensional layered atmosphere based on the 
condition of Dz = 0 and a continuous point release in a one-dimensional layered 
atmosphere with Dz = 0. 1 .  

We are unable t o  solve the steady state continuous release i n  two- and three-dimensional 
layered atmosphere analytically, so they are solved numerically. In order to achieve 
convergence, under relaxation is used in computing the solutions with large x and 
y ranges, and a small mesh grid. The advantage of analytical solutions is that they 
allow the effect of parameter variation to be explored more readily. The graphs pro­
duced by both the analytical and numerical solutions show the expected distribution 
pattern of ashfall . They illustrate that the spread is wider if the release point is 
higher, as the dispersion time is longer. 

Most volcanologists assume that Dz = 0, so in the next chapter we investigate the 
case Dz = 0 in more detail on both whole and half space models. In particular, we 
give more examples of deposits with Dz = 0 for the case of instantaneous release. We 
also use the data from Tables 1 . 1  and 1 .2 to compute the deposits and illustrate them 
graphically. 
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Chapter 4 

A NA LYSIS OF DEPOSITS 

cosmetics may not represent the personality 

Why analyse deposits? 

Suzuki [49] noted that the patterns of deposition vary between eruptions even though 
the total mass released might be the same. The causes of the variation could be due 
to differences in release height , eruption column height , wind speed and direction. 
Therefore it is important to analyse the contours of deposition on the ground in order 
to obtain information about the atmospheric conditions and release parameters during 
eruption. This information will help volcanologists and geologists to make hazard 
maps for future eruptions. The patterns of deposition will help to give approximate 
values for data such as the release height , eruption column height , wind speed and 
direction and eruption duration [ 1 1] [46] . For example, according to the report of 
Hurst [25] , the release height and the rate of eruption can be estimated by the spread 
of the ashfall. 

In addition to analysis of deposit patterns this chapter also demonstrates how the 
thickness of the deposit and the 'centre' of the deposit can be determined. We inves­
tigate patterns of deposition in whole and half-spaces for both Dz =f. 0 and Dz = O . 
As mentioned at the end of the previous chapter most volcanologists assume that 
Dz = 0 because they find that Dz is very small at the height of 500 metres and above 
[7] [25] . 

4.1 Thickness of the Deposit 

Here we will only consider very small particles which reach their settling speed in 
a short time and distance. In general the size of particles deposited decreases with 
increasing distance from the eruption. As mentioned in Chapter 2 the size of the 
particles affects the settling speed. Small particles have low settling speeds so they 
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have more time to travel before they reach the ground. Thus they travel further. 
The location of the deposition also reflects the strength of the eruption. A stronger 
eruption propels the particles higher and carries the particles farther than a weak 
eruption. 

The thickness of the deposit can be determined from the deposition density function 
f(x, y) (defined in Chapters 2 and 3) . This can be written 

f(x, y) = Pr ( 1 - cp)h(x, y) 
where Pr is the density of individual particles, cp is the porosity of the deposit and 
h(x, y) is the thickness of the deposit . Here, we consider many mass classes of par­
ticles, and cp is usually very small, because the deposit is composed of many particle 
sizes. Therefore, we take 

h( ) = f(x, y) x, y . Pr 

4.2  Centre of the Deposit 

The 'centre' of the deposit is defined as the point where the deposit f(x, y) is a 
maximum. It can be determined from the turning point of f(x, y) (2 . 14) due to 
release from the point (Xo , Yo , H) . 

Q [ l ( X-XO)U + (y-Yo)V + HS ) -2a{3] [ (20J3 + 1
0
)H
3 + 

2028 ] f(x, y) = e 2 Dh Dh Dz 
327rDh� 

where 0 = 

It may be deduced from Equation (2 . 14) that the coordinates of the critical point , Xc 
and Yc satisfy ycU = XC V, This means that the centre of the deposit lies on the line V through the origin with gradient U ' i .e .  downwind of the release point . The point 
(xc, Yc) where the deposit is maximum is found numerically. 

4.3 Deposition from an Instantaneous Point Source 

Release in a Uniform Whole Space 

In this section two cases are considered, one is where vertical dispersion is significant 
(Dz =1= 0) and the other is when vertical dispersion is negligible (Dz = 0) . 
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Figure 4 . 1 :  Deposition contours for instantaneous release in a uniform whole space with 
Dz = 800. The innermost contour has the highest deposit whilst the outermost has the 
lowest deposit. 

x 1 0
4 point release at (0,0,7500) 

>- : t 0 l -1 
0 5 1 0  1 5  

x x 1 0
4 

Figure 4.2 :  Deposition contours for instantaneous release in a uniform whole space with 
Dz = 0 .0 1 .  The innermost contour has the highest deposit whilst the outermost has the 
lowest deposit .  

4 .3 . 1  The case Dz i- 0 

Equation (2. 14) is used to calculate the deposit from a point source with instantaneous 
release in a uniform whole space. Using the data from Table 1 . 1  we have 

Q [l ( (X-XO)U + (y-Yo)V + HS ) _2Qf3] [ (2a{3 + 10:)H3 
+ 2a2S ] f (x , y) = e 2 Dh Dh Dz 

327rDhVIJ; 

where 0: = - + + - an {3 =  1 
[
(X - Xo)2 (y - Yo)2 H2 ] d 4 Dh Dh Dz 

in the two cases where Dz = 800 and 0.01 m2/s . 
The contours of deposition in Figure 4. 1 have a more elongated profile whereas in 
Figure 4.2 they are more rounded. This is because the higher vertical dispersion 
when Dz = 800 disperses the ash with respect to the wind direction. 

Interestingly, the contour in Figure 4.2 looks very similar to the contour in Figure 2.6 
which had Dz = 1 . This shows that vertical dispersion has little effect between the 
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values Dz = 0 .01 and Dz = 1 .  

The profile of the spread in Figure 4 . 1  also reflects that Xc is directly proportional 
to the wind speed U in the x-direction and Ye is directly proportional to the wind 
speed V in the y-direction (Section 4 .2 ) .  Since the data we used were U = 1 0m/s but 
V = 0 m/s (no wind in the y-direction) ,  the ash fall only disperses in the x-direction 
and not in the y-direction. 

4.3.2 The case Dz = 0 

When Dz = 0 the concentration is given by (2 . 13 ) which becomes 

Q ( x- (XO+Ut) )2 
c(x, y , z, t )  = D e- 4Dht 

47r ht 
( Y- (YO+Vt» 2 

4Dht b(z - (H - St) )  . 

The ash density on the ground (z = 0) at the point (x, y) is given by 

f(x, y) 

(x- (XO+U 1f ) )2 
4Dh� (4. 1 ) 

Alternatively, if deposit(2. 14) is used, we may take the limit as Dz tends towards zero 
to obtain 

Using the data from Table 1 . 1 ,  the deposition contours in Figure 4 .3 are very close 
to the case in Figure 4.2 where Dz = 0.01 . This verifies the solution of the deposit 
(4. 1 )  with Dz = O. 
The point (xe , Ye) where the deposit is maximum in this case is (Xo + U� ,  Yo + V�) .  
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Figure 4.3: Deposition contours for instantaneous release in a uniform whole space with 
Dz = O. The innermost contour has the highest deposit whilst the outermost has the lowest 
deposit . 

4.4 Deposit from an Instantaneous Point Source 

with Release in a Uniform Half-Space 

In this section, we consider two cases, one in which vertical dispersion is significant 
(Dz i- 0) and one in which vertical dispersion is negligible (Dz = 0) .  

4.4 . 1  The case Dz =I 0 

The deposit (2. 15 )  is used to calculate the deposition from a point source with an 
instantaneous release in a uniform half-space. Using the data from Table 1 . 1 ,  we 
consider the deposit :  

f(x, y) 

with Dz = 800 and Dz = 0.01 m2 Is .  

( x-Xo-Ut)2 (y_ YQ_ Vt)2 
4Dh t 4Dht X 

The half-space deposit (2. 15) is not solvable analytically and numerical methods are 
used. Nevertheless, we see that the results , shown in Figures 4.4 and 4.5 ,  using the 
half-space deposit closely resemble the results from the whole space deposit (2 . 14) .  

Interestingly, the contour in Figure 4.5 resembles Figure 2 .8 in which Dz = 1 .  This 
shows that the vertical dispersion has little effect between the values of Dz = 0.01 
and Dz = 1. The profile of the spread in Figure 4.4 also reflects that the location of 
Xc is directly proportional to the wind speed U in the x-direction and the location of 
Ye is directly proportional to the wind speed V in the y-direction (Section 4.2 ) .  Since 
the data we used were U = 1 0mls but V = 0 mls (no wind in the y-direction) ,  the 
ashfall moves forwards in the x-direction and not in the y-direction. 
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Figure 4.4: Deposition contours for instantaneous release in a uniform half-space with 
Dz = 800. The innermost contour has the highest deposit whilst the outermost has the 
lowest deposit . 
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Figure 4.5 :  Deposition contours for instantaneous release in a uniform half-space with 
Dz = 0.0 1 .  The innermost contour has the highest deposit whilst the outermost has the 
lowest deposit . 
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4.4.2 The case Dz = 0 

When Dz = 0, Equation (2. 15 ) is used to calculate the deposit from a point source 
with instantaneous release in a uniform half-space (see Appendix A.5 for the working) . 
We obtain 

f(x, y) = 
SQ --- e 47rDhH 

(x- (Xo+V * ) )2 ( y- (Yo+ V "* ) )2 
4Dh¥ - 4Dh1J 

which is the expression as for the whole space deposit (4 . 1 ) with Dz = O. This shows 
that the deposits are identical in a whole space and a half-space models when Dz = O. 
The vertical flux at z = 0 for the whole space is 

vertical flux = (sc + Dz �: ) z=o ' 
and the vertical flux at z = 0 for half space is 

vertical flux = (Sc) z=o 
oc . oc 

because we assume Dz oz = 0 at z = 0 in the half space and If Dz i:- 0 then oz = O. 
If we take Dz = 0, which most volcanologists do, then the vertical flux at z = 0 is 

vertical flux = ( Se) z=o . 

The vertical flux is the same for both whole and half space when Dz = O. 

4.5 Deposition from Two Point Sources with In­

stantaneous Release in a Half-Space and Dz = 0 

Although our figures have shown that the observed contours of deposition with Dz = 0 
resembles concentric circles, in practice, the contours of deposition are not circular. 
To obtain different deposition contours, we use two point sources instead of the single 
point source considered in previous chapters and sections. This analysis investigates 
possible causes for the shape of a deposit on the ground. The formula (3 .4) describing 
the deposit after fall through a layered atmosphere is used in this analysis. 

f(x, y) 
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where 

Table 4. 1 :  Experiment 1 - different release heights. 

Source Parameter Layer 1 Layer 2 Layer 3 
a U 10 10 10 

V 0 0 0 
5 1 1 1 
Dh 800 800 800 

b U 10 10 10 
V 0 0 0 
5 1 1 1 
Dh 800 800 800 

Yf Yo + Vltl + V2 (t2 - tl )  + . . . + Vn(tn - tn-l )  
and tn is the time when the particles land on the ground.  

Note that under the substitution Ul = U2 = . . .  = Uj , VI = V2 = . . . = Vj, 51 = 52 = 
. . .  = 5j , Dhl = Dh2 = . . . = Dhj , the atmosphere is uniform and the deposit becomes 

5Q 
f(x , y) = 47r DhHe 

{ X - Xo - U1f ) 2 

4Dh 1} 

which is the deposit formula (4 . 1 )  of the uniform atmosphere. 

The data from Table 1 .2 may alter in each experiment in this section. The two 
point sources are denoted source-a and source-b where the release point of source­
a is (Xo,  Yo , H) = (0, 0, 7000) and the release point of source-b is (Xo,  Yo , H) = 
(0, 0 , 5000 ) . The atmosphere for the two point sources is divided into three layers: 
the first interface is at a height of 3000 metres from the ground and the second 
interface is at 1000 metres from the ground. The two point sources release ash at 
different values of time. 

4. 5 . 1  Experiment 1 - different release heights 

The data for Experiment 1 shown are consistent with a uniform half-space atmosphere 
as all the parameters are constant throughout all layers: wind speeds U = 10 m/s, 
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Figure 4.6: Experiment 1 - Distribution of ashfall from different release heights. The 
innermost contour has the highest deposit whilst the outermost has the lowest deposit .  
Release point for source-a is  at (0, 0, 7000) and source-b is  at  (0, 0, 5000) .  Parameter values 
given in Table 4 . 1 .  
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Table 4 .2 : Experiment 2 - larger dispersion . 

Source Parameter Layer 1 Layer 2 Layer 3 
a U 10 10 10 

V 0 0 0 
S 1 1 1 
Dh 4000 4000 4000 

b U 10 10 10 
V 0 0 0 
S 1 1 1 
Dh 4000 4000 4000 

v = 0 mls ,  settling speed S = 1 mls, and horizontal dispersion Dh = 800 m2 Is .  The 
purpose of Experiment 1 is to observe the deposition from two sources at different 
release heights in a uniform atmosphere. 

The bottom graph for Figure 4.6 of Experiment 1 shows that the ash from the two 
point sources landed apart , because they were released at different heights. Source-b 
landed closer to the release point , (Xo ,  Yo ) = (0, 0) because the release height is lower 
than source-a and so the particulates had a shorter time to disperse. On the other 
hand, the release height for source-a was higher so these particles had a longer time 
to spread. Consequently, the ashfall from source-a (on the right in the top graph of 
Figure 4.6) landed farther from (Xo, Yo) = (0 , 0) than that from source-b and the 
resulting deposit also spread wider than that from source-b. 

4 . 5 . 2  Experiment 2 - larger dispersion 

Based on Experiment 1 ,  we consider two sources, using the same data, but with a 
larger horizontal dispersion, Dh = 4000 m2 Is throughout ashfall in Experiment 2 . 
The purpose of this experiment is to  observe the shape of  the deposit contour on  the 
ground. We again assume a uniform atmosphere. 

The bottom graph of Figure 4.7 from Experiment 2 shows that the deposits from 
the two sources overlap. We see that dispersion has an impact on the ashfall: even 
though the two sources are released at different heights they can land close to each 
other if the dispersion rate is high enough. From the top graph of Figure 4.7 , we 
see that the spread of the ashfall is wider than in Experiment 1 because dispersion is 
larger. Again we see that the deposit from source-a is thinner than that from source-b 
and wider than that from source-b as it is released from a higher point and so had a 
longer time to fall and therefore more time to spread. 
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Figure 4 .7 :  Experiment 2 - Distribution of ashfall with larger dispersion. The innermost 
contour has the highest deposit whilst the outermost has the lowest deposit . Release point 
for source-a is at (0, 0, 7000) and source-b is at (0, 0, 5000) . Parameter values given in Table 
4.2. 
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Table 4.3 :  Experiment 3 - change in wind speeds. 

Source Parameter Layer 1 Layer 2 Layer 3 
a U 10 5 10 

V 0 0 0 
S 1 1 1 
Dh 800 800 800 

b U 10 10 10 
V 0 0 0 
S 1 1 1 
Dh 800 800 800 

4 . 5 . 3  Experiment 3 - change i n  wind speeds 

This time we change the wind speed in the x-direction to U = 5 in layer 2 of the 
atmosphere for source-a, the remainder of the data remain as the Experiment 1 .  Hence 
source-a is released in layered atmosphere but source-b is released into a uniform 
atmosphere. Recall that the sources are released at different times. 

The bottom graph of Figure 4.8 from Experiment 3 shows that the deposits from 
the two sources overlap each other . The deposit is elongated as the wind speed was 
changed to 5 m/s in the x-direction for source-a in layer two of the atmosphere and 
then changed back to a wind speed of 10 m/s in layer one. This demonstrates that a 
change of wind speed and direction during the fall will affect the resulting deposition. 
From the top graph of Figure 4 .8 ,  we see that the spread of the ashfall is moving 
towards the left when the wind speed reduces. 

4 . 5 . 4  Experiment 4 - different settling speeds 

We use the same data as in Experiment 3 except that the settling speed of source-b 
is changed to 1 . 5 m/s, i .e . the particles in source-b are now larger in size than those 
in source-a. Therefore they fall faster than those of source-a. 

The bottom graph of Figure 4.9 from experiment 4 shows that the deposits from the 
two sources are separated. This is due to their different settling speeds. Source-b has 
a higher settling speed so deposits from it reach the ground faster than deposits from 
source-a. Furthermore, source-b is released at a lower height than source-a. This is 
because larger particles usually do not rise as high from an eruption as smaller ones. 
Note that the settling speed formula (2 .8) implies that settling speed is dependent 
on the size of the particle (with larger particles having a higher settling speed) . We 
observe that the source with lower settling speed spreads wider than one with higher 
settling speed. Particles with lower settling speed have more time to disperse, so 
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Figure 4 .8 :  Experiment 3 - Distribution of ashfall for change in wind speeds. The innermost 
contour has the highest deposit whilst the outermost has the lowest deposit . Release point 
for source-a is at (0, 0 , 7000) and source-b is at (0, 0, 5000) .  Parameter values given in Table 
4 .3 .  

Table 4 .4 :  Experiment 4 - different settling speeds. 

Source Parameter Layer 1 Layer 2 Layer 3 
a U 10 5 10 

V 0 0 0 
S 1 1 1 
Dh 800 800 800 

b U 10 10 10 
V 0 0 0 
S 1 . 5  1 . 5  1 . 5  
Dh 800 800 800 
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Figure 4.9: Experiment 4 - Distribution of ashfall with different settling speeds. The inner­
most contour has the highest deposit whilst the outermost has the lowest deposit . Release 
point for source-a is at (0, 0 , 7000) and source-b is at (0, 0, 5000) . Parameter values given 
in Table 4.4. 
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Table 4 .5 :  Experiment 5 - different settling speeds with change in wind speed and direction. 

Source Parameter Layer 1 Layer 2 Layer 3 
a U 10 -5 10 

V 0 0 0 
S 1 1 1 
Dh 800 800 800 

b U 10 10 10 
V 0 0 0 
S 1 .5 1 .5 1 .5 
Dh 800 800 800 

the spread of the ash is wider. Particles with higher sett ling speed have less time to 
disperse and hence the spread of the deposit on the ground is smaller. 

4. 5 . 5  Experiment 5 - different settling speeds with change in 

wind speed and direction 

U sing the same data as in Experiment 4 except that wind direction in the x-axis is 
changed to U = -5 m/s in layer 2 for source-a in Experiment 5. 
Figure 4. 10 shows that the deposits for the two sources overlap each other. We 
observe that if the change in wind speed or direction is great enough during ashfall, it 
affects the distribution of the deposit even though the size of the source particles are 
different . Hence, changes in the physical conditions in the atmosphere exert strong 
influence on the movement of particles. Again, particles with lower settling speed 
have more time to disperse so the spread of the ash is wider and particles with higher 
settling speed have less time to disperse and hence the spread of the deposit on the 
ground is smaller. 

4.6 Deposit for Sources of Different Shapes in a 

uniform atmosphere with Dz = 0 

In this section we experiment with sources of different shapes and observe the shape of 
the resulting deposit . We also investigate the effect of release height upon dispersion. 
The atmosphere used in this analysis is based on the uniform model with Dz = 0 
(Equation (4 . 1 ) ) .  

f (x, y) SQ { X - X o - U-!f)2 

4Dh� 
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Figure 4 . 10: Experiment 5 - Distribution of ashfall with different settling speeds and a 
change in wind speeds. The innermost contour has the highest deposit whilst the outermost 
has the lowest deposit .  Release point for source-a is at (0, 0, 7000) and source-b is at 
(0, 0 , 5000) .  Parameter values given in Table 4.5 .  

78 



The purpose of this analysis is to compare the results obtained using different source 
shapes with the results obtained using the point source. For example, in order to 
obtain a formula for a horizontal source, we allow Xo to vary and replace it by X for 
a horizontal line source. We have to reformulate the model for each shape of source, 
for example, for a horizontal line source releases in the direction of x, we write the 
deposit as 

f(x, y; X)  

The work in  this section i s  motivated by Prof. Chuck Connor of the Department 
of Geology at the University of South Florida. At the conference [28] I gave a pre­
sentation on deposition of ashfall from a point source. Following this presentation, 
Prof. Chuck Connor suggested that it would be useful to investigate the deposit from 
a circular source. We followed this suggestion and also investigated the deposition 
from other shapes of sources. The shapes of source we consider are: a horizontal line 
segment , a vertical line segment , a rectangle and a circle. The data from Table 1 . 1  
is used for this analysis. I n  the following subsections we calculate the deposit from 
different shapes of source. The ash deposition from each shape of source is presented 
graphically. 

4.6 . 1  Release from a horizontal line 

We consider a horizontal line source parallel to the x-axis on the interval (Xl ::; x ::; 
X2) with mass (X2�Xl )  kg per metre length released at t = O. By integrating the 
deposit from each small segment dX of the line source, namely [Q/(X2 - XI )]dX, we 
get 

f(x, y) 
( y - Yo - V! ) 2 

4Dh¥ dX 

For a horizontal line source parallel to the y-axis on the interval (YI ::; y ::; Y2) , the 
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deposit is given by: 

f (x, y) = 

We consider two different lengths of horizontal line parallel to the x-axis and y-axis; 
1500 m and 10000 m. We see from figures 4. 1 1  and 4 . 12 that the deposit from the 
shorter horizontal line source is similar to the ash deposit from a point source. If 
the release height of the longer horizontal line is very large, the deposit appears no 
different from the deposit due to a point source. 

X 1 0
4 (a) l ine = -750 to 750m at H = 7500m 
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Figure 4 . 1 1 :  Contour of deposition from horizontal line source parallel to x-axis. The 
innermost contour has the highest deposit whilst the outermost has the lowest deposit. 
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Figure 4. 1 2: Contour of deposition from horizontal line source parallel to y-axis. The 
innermost contour has the highest deposit whilst the outermost has the lowest deposit .  

4 . 6 . 2  Release from a vertical line 

The vertical line source is worth investigating because eruptions sometime eject ash 
into a column [54] . We consider a vertical line source parallel to the z-axis along the 
interval (HI ::; H ::; H2) '  The deposit due to the vertical source is given by: 

f(x, y ) = 

(X- Xo- U1f)2 
4Dh� 

( Y-Yo- V1f )2 

4Dh� dH . 

We also consider two lengths of vertical line, 100 m and 2000 m. From Figure 4. 13(a) 
we see that the deposit from the shorter vertical line source is similar to the deposit 
from a point source. Figure 4 . 13 (b) shows an elongated distribution from the longer 
vertical line. 

Figure 4 . 14  is a vertical line source with a length 6000 m from 2500 to 8500 m, the 
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Figure 4 . 13 :  Contour of deposition from a vertical line segment source above origin. (* 
indicates the release point at (Xo ,  Yo) = (0, 0) from the top view. ) The innermost contour 
has the highest deposit whilst the outermost has the lowest deposit .  

Table 4.6: Data of the two vertical line sources in Figure 4 . 16 .  

Parameter Xo Yo length of vertical line Q U V S Dh Dz 
Line 1 0 0 7500 to 9500 2 .5  x 1010 10 0 1 800 0 
Line 2 0 0 7500 to 8500 2 .5  x 1010 10 0 1 . 05 800 0 

contour is a "fan" shape deposit , the right-hand-side of the contour is wider than 
the left . The deposit on the left comes from ash released at the lower portion of the 
vertical line source and the deposit on the right is from ash released in the upper 
portion of the vertical line source. The higher the release (the upper portion) the 
wider the spread as there is more time to spread farther . The lower the release (the 
lower portion) the smaller the spread as there is less time to spread farther. 

Figure 4. 13 (b) shows some similarities to the contours of deposition produced from 
the Taupo eruption (see 4. 15) , though the contours produced from the Taupo eruption 
are not as even as those in figure 4. 13(b) . This leads us to speculate that a vertical line 
source may be a good model for the ejection of ash into the atmosphere following an 
eruption. We continue the study of vertical line sources by considering two overlapping 
(simultaneous) vertical line sources with different settling speeds representing two 
different sizes of particles. 
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Figure 4 .14 :  Contour of deposition for a longer vertical line source. The innermost contour 
has the highest deposit whilst the outermost has the lowest deposit . 
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Figure 4 . 15 :  Contour of deposition from the Taupo eruption [53] . 
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Figure 4 . 16 :  Contour of deposition from two overlapping vertical line sources. The inner­
most contour has the highest deposit whilst the outermost has the lowest deposit (Table 
4.6 . )  

Qualitatively, it appears that the deposit from two vertical line sources as shown 
in figure 4 . 16 gives an elongated distribution similar to figure 4. 15 . It could be 
that different sizes of particles released along the same column explain the observed 
elongated distribution. 
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4 . 6 . 3  Release from a rectangle 

We assume a rectangular plane source with sides given by the intervals (Xl :::; X :::; X2) 
and (Yl :::; y :::; Y2) .  The deposition from the source is given by: 

f(x, y) = 
(y_ y _ V¥ ) 2 

4Dh{r dX dY 

We consider two sizes of rectangles (in fact squares) of dimensions 1500 m x 1500 m 
and 15000 m x 1 5000 m. We see from figures 4. 17(a) and 4 . 1 7(b) that the deposit 
due to the smaller rectangular source is similar to the deposit due to a point source. 
Considering the previous results, it seems that the shape of source is unimportant if 
it is relatively small. If the release height of the larger rectangular source is very large 
the resulting deposit appears no different from the deposit due to a point source. 

4.6.4 Release from a circle 

In this section we consider a circular source. The circular source is worth investigating 
because eruptions sometime generate a circular cloud [54] . We consider a circular 
source of radius R and centre (Xo ,  Yo) .  The model, in polar form, used to calculate 
the deposition from this source is: 

f (x, y) = R
1 
2 1

R 1
2
7r f(x , y ; r, O)rdrdO 7r r=O 0 

SQ 
lR 1

27r - ( x-xo-r cos;-u¥ )2 _ (y-Yo-r sin 9- V¥ )2 

e 4Dh -s- e 4Dh 1J rdrdO . 4Dh7r2 R2 H r=O 0 

We consider two circles: one of radius 750 m and one of radius 7500 m. From figures 
4. 18 (a) and 4 . 18 (b) we see, once again, that the deposition of ash from the smaller 
source is similar to the deposit from a point source. The deposit forms a circle because 
the horizontal dispersion is isotropic, however, the size of deposit from the smaller 
circular source is similar to that from the point source. If the release height of the 
larger circular source is very large the resulting deposit is no different from the deposit 
due to a point source. 
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Figure 4 . 1 7: Contour of deposition from a rectangular source. The release height for both 
rectangular sources is at 7500 m. The innermost contour has the highest deposit whilst the 
outermost has the lowest deposit . 
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Figure 4. 18 :  Contour of deposition from a circular source. The release height for both 
circular sources is at 7500 m. The innermost contour has the highest deposit whilst the 
outermost has the lowest deposit .  

87 



4.7  Summary 

In this chapter we have shown that the half-space and whole space deposits are the 
same when there is no vertical dispersion (Dz = 0) . Though we are unable to solve 
the half-space deposit analytically when the vertical dispersion is positive (Dz > 0) , 
our numerical results show that it  is  very similar to the whole space deposit . Hence, 
the whole space model can be used as the half space model. 

From the results of the analyses using a point source, we conclude that the distribution 
of ashfall is controlled by the wind speed, wind direction, dispersion, release height 
and the settling speed. Our analyses show that particles with lower settling speed 
have more time to disperse and therefore travel farther; hence the spread of the ashfall 
is wider and the deposit on the ground is thinner. 

Experiments with different shapes of source found that the resulting deposits are the 
same as the deposit from a point source at the same release height if the deposit 
source is small. If the release height is reasonably high , the contour deposition is 
very similar to the point source releases at the same height. The result of a larger 
source at a greater release height is similar to the point source at the same release 
height . 
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Chapter 5 

A NALYSIS OF PA RA METERS 

5 .1 Analyses 

Why analyse the parameters? 

result presents the fact 

analysis proves the fact 

The purpose of this chapter is to develop an improved understanding of the impact of 
the parameters in the advection-dispersion equation and to investigate the sensitivity 
of results to variation in these parameters. For this analysis ,  we use the layered model 
with no vertical dispersion and instantaneous release from a single point , given by 
Equation (3 . 1 ) .  The mass distribution in kg/m2 on the ground (the bottom of the 
nth layer) is given by, formula (3 .4) : 

f(x, y) (5 . 1 )  

where 

and tn is the time when the particles land on the ground. 

We will investigate the effect of the parameters in both the uniform atmosphere and 
the layered atmosphere models. We take the uniform atmosphere as the base case. 
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We vary the parameters in the layered atmosphere model and compare it with the 
uniform atmosphere model. For simplicity we consider only two layers for the layered 
atmosphere (see Figure 5 . 1 ) .  
Several parameters are assumed to  be  the same for the two models (uniform atmo­
sphere and layered atmosphere) : 

- the release point is fixed at (0, 0, H) ; 
- the vertical dispersion is zero, Dz = 0 ; 
- the wind speed V in the y-direction is zero (V = 0) , i .e. the wind is only in the 
x-direction; 

- the horizontal dispersion (Dh) is isotropic ; 

- Dhj = LjUj where Lj is the turbulence length-scale; 

where j = 1 , 2 . 

Layer 1 

.. z =  z., 

Layer 2 

Ground, z =  0 

Figure 5 . 1 :  A schematic illustration of a two-layered atmosphere. 
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5 . 1 . 1 Uniform atmosphere 

Based on the layered model (3 .4) , the deposit for the uniform atmosphere is 
(X-Ul /:; )2 

f( ) = 
SlQ - 4Dh1* X, Y 4nDhlHe 

f (x, y) is of the form of two-dimensional normal distribution. 

(5 .2) 

H 
Based on the normal distribution model, the quantity 2Dhl SI in the exponent can 
be variance. The standard deviation is therefore identified as the 

(J = V2Dhl � . 
The standard deviation [3 1 ] describes the spread of ashfall due to dispersion. The 
dispersion is caused by turbulence, the "mixing" movement of air in the atmosphere. 
The measure of the spread of ash is therefore (J. 

At the point (x, y) = (xmax , Ymax ) on the ground where f attains its maximum value 
H fmax , we have x = Xmax = Ul SI and Y = Ymax = O. We use Xmax to study the distance 

travelled by the ash. 

From (5 .2) the maximum deposit in a uniform atmosphere is 
SIQ fmax = 47rDhlH 

The three quantities we study for the uniform atmosphere are: 
H Xmax = Ul SI 

Using Equation (5 .5) , we may write Equation (5.4) as 

fmax = Q 
27r ( J2Dhl �) 2 
Q 

27r(J2 . 
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5 . 1 . 2 Two-layered atmosphere 

Based on the layered formula (5 . 1 )  with the same assumptions as above, the deposit 
in a two-layered atmosphere is given by 

Q _ [ (X_Xj)2 L] 
f(x, y) - -- e 4Aj + 4Aj 

47rAf 
where Af Dhlt l + Dh2 (t2 - t l ) 

Xf Ultl + U2 (t2 - td 

tl H - Zl Zl 
51 t2 = 52 ' 

The three quantities for the two-layered atmosphere are: 

xmax 

fmax Q 

(J 

As was the case for the uniform atmosphere, we can write Equation (5 .9) as 

Q fmax = -2 2 ' 7r(J 

(5 .7) 

(5.8) 

(5.9) 

(5. 10) 

(5. 1 1 )  

We set up the analyses of Equations (5 .3) to (5.5) and (5.9) to (5 . 1 1 ) as follows: 

x-coordinate at f max : 

maximum thickness: 

xmax (two - layered) Xmax ratio = ( ' C ) Xmax unl10rm 

f . -
fmax (two - layered) max ratw - f ( . C ) max unl10rm 
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standard deviation: 
(Jratio = 

(J (two - layered ) 
(J ( uniform) 

We obtain 

Z1 ( S1 U2 ) Xmax ratio = 1 - H 1 - S2 U1 (5. 12 ) 

(5. 13 ) 

(Jratio = (5. 14) 

We study how the ratios Xmax ratio, fmax ratio and (Jratio vary with respect to L2 , U2 L1 U1 S1 ( S2 ) Z1 and S2 
= 1/ S1 for the cases where H has the values 0, 0.25, 0.5, 0 .75 and 1 ;  and 

also we study variation of quantities (Xmax ratio , fmax ratio and (Jratio ) with respect to 
Z1 L2 U2 S1 ( S2) 
H ' for the cases where L1 ' U1 and S2 = 1 /  S1 all have values of 0.5 , 1 and 1 .5 . 
Z � = 0 i .e. Z1 = 0, therefore the atmosphere is completely dominated by layer 1 .  
Z1 . 
H = 0.25 1 .e . layer 1 is larger than layer 2 , i .e .  the vertical height of layer 1 is longer 
than layer 2 . 
Z � = 0.5 i .e. layer 1 is same size as layer 2 , i.e. layer 1 and layer 2 have the same 
length in the vertical height . 

Z � = 0.75 i .e. layer 1 is smaller than layer 2 , i .e .  the vertical height of layer 1 is 
shorter than layer 2. 
Z � = 1 i .e .  Z1 = H, therefore the atmosphere is completely dominated by layer 2 . 
L 
L� = 0.5 i .e .  the turbulence length-scale in layer 1 is larger than in layer 2, L1 > L2 . 
L2 = 1 i .e .  the turbulence length-scale in layer 1 is same as in layer 2 , L1 = L2 . L1 
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L 
L: = 1 . 5 i .e .  the turbulence length-scale in layer 1 is smaller than in layer 2 ,  Ll < L2 . 

�: = 0 .5 i .e . the wind speed in layer 1 is larger than in layer 2, Ul > U2 . 

�: = 1 i .e . the wind speed in layer 1 is same as in layer 2 ,  Ul = U2 . 

�: = 1 . 5 i .e .  the wind speed in layer 1 is smaller than in layer 2, Ul < U2 . 
S 
S: = 0 .5 i .e . the settling speed in layer 1 is smaller than in layer 2, SI < S2 . 
S 
S: = 1 i .e . the settling speed in layer 1 is same as in layer 2, SI = S2 · 
S 
S: = 1 .5 i .e . the settling speed in layer 1 is larger than in layer 2, SI > S2 . 
The analyses are illustrated in the following sections. 

. L2 U2 SI ( S2 ) In our analyses, we wnte Lr = -, Ur = -, Sr = -S = l/-S Ll Ul 2 1 

ZI and Zr = 

H
and 

obtain 

Xmax ratio = 1 - Zr ( 1 - SrUr )  (5. 15 ) 

1 fmax ratio = 1 - Zr ( 1  - LrSrUr) (5 . 16) 

(5 . 17) 
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Figure 5.2 :  Xmax ratio versus SrUr for various values of Zr · 

5 . 1 . 3  Xmax ratio versus SrUr for Zr=O, 0 . 2 5 ,  0 . 5 ,  0 . 75 and 1 

In this analysis we investigate the impact of the parameters on Xmax ratio for Zr=O, 
0 .25, 0 .5 , 0 .75 and 1 .  From Equation (5. 1 5) ,  

Xmax ratio = 1 - Zr ( 1  - SrUr ) , 

we have 

. . SI U2 . FIgure 5 .2  shows that Xmax ratio mcreases when SrUr = S2 Ul 
mcreases. When the 

lower layer wind speed is high and/or the settling speed there is small, then SrUr is 
large and xmax ratio increases for all values of Zr . As the value of Zr increases, layer 2 
occupies increasingly more space than layer 1 ,  so the particles have more movement 
in layer 2. When Zr = 0, Xmax ratio = 1 ,  because the atmosphere is dominated by 
layer one and there is no flow in layer 2. The critical point at SrUr = 1 happens when 
S2 U2 
SI Ul ' 
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Figure 5.3 :  fmax ratio versus LrSrUr for various values of Zr . 

5 . 1 . 4 fmax ratio versus Lr SrUr for Zr=O, 0 . 2 5 ,  0 . 5 ,  0 . 75 and 1 

This analysis investigates the impact of the parameters on fmax ratio when Zr=O, 0 . 25 ,  
0 .5 , 0 . 75 and 1 .  From Equation (5 . 16) , 

1 fmax ratio = 1 - Zr ( 1  - LrSrUr )  , 

we have 

Figure 5 .3 shows that fmax ratio is a decreasing function of LrSrUr ·  When the wind 
speed is large, the turbulence is large and this disperses the particle farther; when 
the settling speed is small, the particle 's size is small too and so the particles have 
more time to travel. As the value of Zr increases layer 2 occupies increasingly more 
space than layer I ,  so the particles have more movement in layer 2 , hence fmax ratio 
increases. When Zr = 0, fmax ratio = I ,  because the atmosphere is dominated by 
layer one and there is no flow in layer 2 .  The critical point at LrSrUr = 1 gives 
dfmax ratio . S2 L2U2 Dh2 

dZr = 0 ,  fmax ratio = I ,  whIch happens when SI 
= L2Ul = Dhl ' 
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5. 1 . 5  (Jratio versus LrSrUr for Zr=O, 0 . 2 5 ,  0 . 5 ,  0 . 75 and 1 

This analysis investigates the impact of the parameters on aratio when Zr=O, 0 .25, 
0 .5 , 0 .75 and 1. From Equation (5 . 17) ,  

aratio = VI - Zr ( 1  - LrSr Ur) , 

we have 

Figure 5.4 shows that aratio is an increasing function of LrSrUr . When the wind speed 
is large, the turbulence is large and so the spread is wide; when settling speed is small, 
the particle's size is small too and so the particles have more time to travel. The value 
of Zr increases when layer 2 is occupying more space than layer 1 ,  so the particles 
have more movement in layer 2. When Zr = 0, aratio = 1 ,  because the atmosphere is 
dominated by layer one and there is no flow in layer 2. The critical point at LrSrUr = 1 

. daratio . S2 L2U2 Dh2 gIves dZr = 0, fmax ratio = 1 ,  whIch happens when SI 
= L2Ul = Dhl ' 
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Figure 5.5: Xmax ratio versus Zr for various values of BrUr ·  

5 . 1 .6 Xmax ratio versus Zr for SrUr=O.5, 1 and 1 . 5  

This analysis investigates the impact of the parameters on Xmax ratio for SrUr=O.5, 1 
and 1 . 5  using Equation (5. 15 ) :  

Xmax ratio = 1 - Zr ( 1  - SrUr )  

Figure 5 . 5  and Equation (5 . 1 5) show that Xmax ratio is an increasing function of Zr 
if SrUr > 1 because the wind speed is larger and settling speed is smaller in layer 
2 , therefore particles have more time to travel farther. Xmax ratio is uniform when 

. S2 U2 . . Zr increases for SrUr = 1 , thIS happens when SI Ul ' Xmax ratio IS a decreasmg 
function of Zr when 0 < SrUr < 1 .  This is due to the wind speed being smaller 
and settling speed being larger in layer 2, therefore particles have less time to travel 
farther. 
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Figure 5 .6 :  fmax ratio versus Zr for various values of LrSrUr ·  

5 . 1 .  7 fmax ratio versus Zr for LrSr Ur=O .5, 1 and 1 . 5  

This analysis investigates the impact of the parameters on fmax ratio for LrSrUr=O.5, 
1 and 1 .5 .  using Equation (5 . 16) : 

1 f max ratio = Z ( L S U ) . 1 - r 1 - r r r  

fmax ratio is an increasing function of Zr if 0 < LrSrUr < 1 ,  because the wind speed 
and turbulence length-scale are smaller and settling speed is larger in layer 2, therefore 
particles have less time to travel and so the dispersion is small and the spread is 
smaller. fmax ratio is a constant function of Zr when LrSrUr = 1 ,  this happens when 
S2 L2U2 Dh2 . . . . -S = L U = -D . fmax ratio IS a decreasmg functlOn of Zr when LrSrUr > 1 ,  thIS 

1 2 1 h I  
is due to the wind speed and turbulence length-scale are larger and settling speed is 
smaller in layer 2, therefore particles have more time to travel and so the dispersion 
is large and spread wider. 
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Figure 5 .7: O'ratio versus Zr for various values of LrSrUr .  

5 . 1 .8 O'ratio versus Zr for LrSrUr=O. 5 ,  1 and 1 . 5  

This analysis investigates the impact of the parameters on O'ratio for LrSrUr=0.5, 1 
and 1 . 5  using Equation (5. 1 7) :  

O'ratio = J1 - Zr ( 1  - LrSrUr )  . 

O'ratio is an increasing function of Zr when LrSrUr > 1 .  The wind speed and turbulence 
length-scale are larger and settling speed is smaller in layer 2, therefore particles have 
more t ime to travel and so the dispersion is large and spread wider. O'ratio is a constant 

. . .  S2 L2U2 Dh2 functIOn of Zr when LrSrUr = 1 , thIS agam happens when -S = L U = -D . O'ratio I 2 I h I 
is a decreasing function of Zr when 0 < LrSrUr < 1 ,  this is due to the wind speed and 
turbulence length-scale are smaller and settling speed is larger in layer 2, therefore 
particles travel have less time to travel and so the dispersion is small and the spread 
is smaller. 
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5 . 1 . 9 Deposition versus standard deviation 

Equation (5.6) shows the relationship between fmax and (J, 

Q fmax = 
-2 2 7r(J 

for both the uniform and layered atmospheres and also from Equations (5 . 13 ) and 
(5. 14) , we have 

1 fmax ratio = -2- · (Jratio 

Figure 5 .8 illustrates that the greater the standard deviation of the spread of particles, 
the thinner the deposit and Figure 5.9 illustrates that the larger the fmax ratio, the 
smaller the (Jratio. 

5 .2  Summary 

From the equations for fmax , (J and Xmax , only the equation of Xmax does not contain 
L, this illustrates the particle is affected by the settling speed of particle, wind speed 
and its direction. The analyses shows that parameters have more impact in the 
larger layer. The results also show that particles with higher settling speed fall faster, 
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Figure 5 .9 :  fmax ratio versus (Tratio ·  

therefore having a shorter time to spread and a thicker deposit (and vice versa) . The 
greater the wind speed, the farther away the particle lands and the spread is wider 
and hence the deposit is thinner. 

We showed that the standard deviation is large with large wind speed, large turbulence 
length-scale or small settling speed; the deposit is thinner with large wind speed, large 
turbulence length-scale or small settling speed; the value of Xmax (i .e .  the point where 
the deposit is maximum) is large (therefore farther from the release point in the x­
coordinate) with large wind speed, large turbulence length-scale or small settling 
speed. 

From the results of Xmax ratio , fmax ratio and CJratio , we see that xmax ratio and CJratio give 
similar results. This is because the larger the value for Xmax the wider the spread. 
The results of fmax ratio are opposite to those of Xmax ratio and (Tratio , because the 
deposit is thinner because of the wider spread. 
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Chapter 6 

PA RAMETER ESTIMATION 

6 .1 Introduction 

go inside the box 

turn it inside out 

In Chapters 2 and 3 we considered the forward modelling of volcanic ashfall. To do 
this we needed to know appropriate parameter values . In this chapter, we discuss a 
method for estimating parameters of volcanic ashfall from data. 

The initial aim of this thesis was inverse modelling of ashfall. It would be a great help 
to volcanologists if information about a volcanic eruption could be extracted from the 
deposit on the ground [ 12] . Volcanologists could use the information in forecasting 
the future risk if a similar scale of volcanic eruption occurs. 

Due to lack of data, we switched to forward modelling instead of inverse modelling. 
Nevertheless, in this chapter we present our attempts at estimating parameters asso­
ciated with volcanic ashfall .  As described in the previous chapters, the distribution 
patterns of ashfall deposits on the ground are affected by the wind speed, wind di­
rection, particle settling speed, the atmospheric dispersion and the height of release. 
In Chapters 2 and 3, we showed that the atmospheric concentration of ashfall and 
the consequent deposit could be determined from these parameters. It is not easy to 
determine these parameters from the measured output (concentration or deposit ) . 

6 .2  Analogy 

There was only one published work on inverse modelling of volcanic ashfall found dur­
ing the study. The work was presented at the International Association of Volcanology 
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and Chemistry of the Earth's Interior conference in ovember 2004 in Chile [28] , and 
was implemented by Laura Con nor [ 1 5J [16J [ 1 7J of the Department of Geology at 
University of South Florida. This approach required intensive computing techniques, 
it was executed on multiple processors and implemented using a combination of the 
downhill simplex method and assessing the goodness of fit . 

The information which needs to be extracted from the volcanic ashfall pattern includes 
the dispersion in the horizontal (Dh) and vertical (Dz )  directions, the wind speeds 
(U, V) in (x, y) directions, the settling speed S, the release point (Xo, Yo) and the 
release height H. There are eight unknown parameters (Dh ' Dz , U, V, S, Xo, Yo and 
H) and therefore eight equations are required. We created eight moments for the 
eight equations. The following subsections show how these moment equations are 
created and solved using a numerical method, and some alternatives for simplifying 
the moment equations. 

We tried using a variety of numerical methods to determine the parameters. This 
chapter will report on only one numerical method, which we found to be the best . 
MATLAB [ 14J was the tool used for this work. Another advantage of using MATLAB 
is that it has "ready-made" subroutines for some numerical methods, hence it saves 
time in writing the codes manually. 

6 . 2 . 1  Uniform whole space model 

We first formulate eight moment equations based on the uniform whole space deposit 
(2 . 14) :  

where ex = 
� [ (x - Xo)2 (y - YO) 2 H2 ] d (3 _ 

4 D + D + D 
an -

h h z 

The moment equations are formulated with respect to the x and y coordinates of the 
deposit ( 2 . 14 ) :  

where a and b are positive integers. 

The mass source Q can be calculated from the zeroth moment : 
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The eight moments are: 

x - moment = Mx 

y - moment = My 

xy - moment = Mxy 

y3 _ moment = My3 

or alternatively 

I: I: xf(x, y) dx dy 

I: I: yf (x, y) dx dy 

I: I: y2 f(x ,  y) dx dy 

I: I: xyf(x, y) dx dy 

xy2 - moment = Mxy2 = I: I: xy2 f(x, y) dx dy . 

Using Equation (2. 14) , it is possible to find explicit expressions for these moments. 

Some examples of the calculated procedure are given in the Appendix A.7.  The eight 

moments are : 

105 



Mx = Q [XO + U (� + �; ) 1 (6. 1 ) 

(6.2 )  

(6 .3 )  

(6.4) 

Mxy = Q [XOYO + (VXo + UYo ) (� + �;) 
(H2 4HD 6D2 ) ] +UV S2 + S3 Z + S4

Z (6. 5 )  

(6.6) 

(6. 7) 
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(6 .8) 

or alternatively 

(6 .9) 

(See Appendix A .7 . 1  for the working of a moment solution. ) 
The eight moment equations show an interesting sequential pattern. Unfortunately, 
the moment Equations (6. 1 )  to (6.8) are nonlinear and it is not possible to determine 
the parameters analytically. Some numerical methods have been tried to solve the 
eight equations. Methods such as Broyden's ,  Newton's  and Steepest Descent methods 
[20] [33] require a first guess for each parameter. However, none of these methods 
gave accurate results if the guess was not close to the actual solution. Zheng et al. 
[56] state that guessing a solution is not practical and is also time consuming; they 
suggest that a practical way to tackle this kind of problem is to restrict the likely 
range of the solution for each parameter. 

We used Newton's method to solve the moment equations with the suggestion given 
by Zheng et al. using the ' fsolve' command in MATLAB. It is found that this is a 
better approach than the other methods we experimented with. 

We substitute the data from Table 1 . 1  into the moment equations to obtain the eight 
moments and then tried using the values of the eight moments to find the eight 
parameters. 

We input the likely ranges of solutions for all parameters in the program instead of 
guessing the solutions. The program goes through the input ranges and picks up the 
solutions for the system. From Table 6. 1 ,  for example, the input range, 0 : 10 :20 means 
the start point starts from 0 to 20 with interval of 10 ;  0: 10 means the range is from 0 
to 10  with interval of 1 .  Hence from Table 6. 1 , there are 83 permutations for starting 
point in Input range 1 and 82 permutations for Input range 2. Table 6 . 1  shows that 
the program found two sets of solutions from Input range 1 but one set from Input 
range 2. Thus if the range is too wide, we may obtain more than one solution. But , 
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Table 6. 1 :  Results by Newton's method. 

Parameter actual solution Input range 1 Result 1 Input range 2 Result 2 
Xo 0 0: 1 : 2 0 0 0: 1 0 
Yo 0 0 : 1 : 2  0 0 0: 1 0 
H 7500 0 :7500 : 150000 7500 7500 0 :7500 7500 
U 10 0: 10:20 10 20 0: 1 0  1 0  
V 0 0: 1 :2 0 0 0 : 1  0 
S 1 0 : 1 : 2  1 2 0 : 1  1 
Dh 800 0:800 : 1600 800 1600 0:800 800 
Dz 0 0: 1 :2 0 0 0 : 1  0 

if the range is not close to the actual solution, we obtain no solution; if the range is 
small and close to the actual solution, we obtain the desired solution. This shows a 
problem: that if we have no idea about the actual solutions and the program gives 
more than one set of solution, we do not know which solution to pick. Also, if the 
input range is wide, the program running time is long too. 

Interestingly, we also see that there is a common ratio in the two sets of U ,  S and 
Dh from result 1 .  The U, S and Dh in the second column are twice as large as the 
first column ones. This is because Dh is directly proportional to U (Dh = U L) and 
so if the wind is two times higher, the dispersion will be two times higher as well. 
When the particle 's settling speed is double, the value of U needs also to be double 
in order to land on the same point . So if any of U ,  S and Dh increases , the others 
will increase proportionally in order to obtain the same output . 

6 .2 .2  Uniform half space model 

We formulate moment equations using the uniform half space deposit (2. 15 ) : 

f(x, y) 

As in the uniform whole space model, the mass source Q can be calculated from the 
zeroth moment: 
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o 0 M x y - moment = XOyO 

Here are five of the moment equations: 

1:1: f(x, y) dx dy 
Q . 

Mx = Q [Xo + U (� + �; ) ] 

(See Appendix A .7. 1 for the working of a moment solution. ) 

(6. 10) 

(6. 1 1 ) 

(6. 1 2 ) 

(6 . 13 ) 

(6. 14) 

Again, we face the same difficulty as the uniform whole space moments. It appears 
that Equations (6 . 1 ) and (6 .2 ) of the uniform whole space model are same as Equa­
tions (6 . 10) and (6. 1 1 ) . It is also found that for Dz = 0, the moment equations for 
both uniform whole and half space models are the same. 
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6 .2 .3  Simplification 1 

In order to simplify the moment equations (the uniform whole space model) , we group 
some of the terms of the moments into a single variable. 

Mx = Q [Xo + U A] (6. 15)  

My = Q [Yo + V A] (6. 16) 

Mxy = Q [XoYo + (VXo + UYo)A + UVB] (6 . 19 )  

Mx2y = Q [XJYo + (XJV + 2XoYoU + 2YoDh)A 
+(2XoUV + YoU2 + 2V Dh) B  +U2VC] (6.22) 

H Dz H2 4HDz 6D; H3 9H2Dz 36HD; 60D� 
where A = S + S2 ' B = S2 + S3 + 54 and C = S3 + S4 + S5 + ---g6' 
However, we are not able to solve for the parameters explicitly. With the numerical 
method, again, the initial guess is needed to be close to the actual solutions in order 
to obtain the desired solutions.  

1 10 



6 .2 .4 Simplification 2 

We further simplify the moment equations (the uniform whole space model) and 
write the parameters Xo, Yo, H and Dh in term of U, V, S and Dz explicitly. The 
parameters Xo, Yo , H and Dh are obtained from the x, y, x2 and xy moment equations 
with Q = 1 .  

or 

(H Dz ) Xo = Mx - U S + S2 

(H Dz ) Yo = My - V S + S2 

S3 MxMy _ _  5D_z 
2DzUV 2S 

We then substitute the four parameters into the other four moment equations. This 
reduces the number of moment equations to four. However, we are unable to solve 
explicitly for the other four parameters and we encounter the same difficulty with the 
numerical method ; the initial guess still needs to be close to the actual solution to 
obtain the desired solution. 

6.3  Discussion 

We tried finding the parameter values with the "ready-made" subroutines based on 
some well-known numerical methods provided by MATLAB. The attempts were un­
successful. My supervisor, Robert said, "It is like pouring a basket of ash onto the 
ground and picking it up by hand." It is hard to collect all the ash on the ground, 
very likely we will collect less than we threw. We may collect more, which mean we 
may include some other tiny particles on the ground together with the ash. In order 
to retrieve the whole basket of ash on the ground we will need substantial time. 

The desired solutions can be obtained provided that the initial guess is close to 
the actual solutions. The suggestion from Zheng et al. [56] is helpful, but it takes 
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substantial computing time if the system has many parameters or the range set for 
each parameter is wide. 

It appears that the system we created using moments is ill-posed and it is difficult 
to solve. The inverse modelling of volcanic ashfall requires further investigation. 
The work done by Laura Connor [16] is sophisticated and used intensive computing 
techniques. Hence, further investigations may require substantial work and time. 
Unfortunately, we are unable to attempt this within the given time frame of the 
study. 

A plan for future work is to investigate and develop a model to solve the eight param­
eters Dh, Dz , U, V, S, Xo, Yo and H. More importantly, real data from ashfall deposit 
depths and particle size distributions are needed to check the work. 
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Chapter 7 

DISCUSSION A ND 

CONCLUSIONS 

all journeys will come to their destinations 

but do not give them a full stop 

share the experiences and pass them on 

we came to the world empty-handed 

we will leave the world empty-handed too 

This aim of this thesis was to develop analytical models for modelling volcanic ash­
fall . We showed that , subject to some assumptions, it is possible to develop useful 
analytical models of ashfall. We presented such analytical models and used them to 
calculate the concentration of volcanic ashfall in the atmosphere and deposition of 
ash on the ground. 

The basic assumption which we used in our models was that the atmosphere could 
be viewed either as being uniform or consisting of a few horizontal layers. The rea­
son for dividing the atmosphere into horizontal layers is to present a more realistic 
transport model for the atmosphere; as the physical conditions, such as wind speed 
and dispersion rate, are not constant throughout . 

7.1 Summary 

In summary, we considered the following basic models : 

- instantaneous release in whole space uniform atmosphere; 

- instantaneous release in half-space uniform atmosphere; 

- continuous release in whole space uniform atmosphere; 
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- continuous release in half-space uniform atmosphere; 

- instantaneous release in half-space layered atmosphere; 

- continuous release in half-space layered atmosphere. 

The atmosphere modelled as a half-space (0 ::; Z < 00) is more realistic than that 
as a whole space (-00 < Z < 00) , the half-space model takes into account the zero 
dispersive flux on the ground when Z = 0 ( in the half-space model the ground is 
defined as z = 0) . evertheless, the results from the whole space model, which can 
be derived exactly, are very close to those of the half-space model with instantaneous 
release in uniform atmosphere, for which we can only find an approximate analytical 
solution. 

Except for the continuous release model at steady state in a layered atmosphere and 
the instantaneous release model in a non-steady state in a uniform half-space atmo­
sphere, all models were developed analytically. The advection-dispersion equation 
has been used by many volcanologists to model volcanic ashfall ,  however, most exist­
ing models such as those of Ashfall [25] and Hazmap [7] were solved numerically. In 
particular, in the modelling of instantaneous release in a layered atmosphere, we have 
shown that our model can be written in an explicit form with the same assumptions 
as the Ashfall and Hazmap models. 

7.2 Analyses 

Having developed our models we performed a number of simulations. The motivation 
was to investigate the possible cause of different deposit contours. The experiments 
we performed were: 

- deposition from different shapes of source with instantaneous release in a uniform 
atmosphere (this was suggested by Prof. Chuck Connor of the Department of Geology 
at the University of South Florida) ; 

- deposition from more than one point source with instantaneous release in layered 
atmosphere; 

- understanding the impact of the parameters in the advection-dispersion equation. 

7.3 Conclusions 

In conclusion, we observed that the results from both the half-space and whole space 
models were very close even though the whole space does not give zero dispersive flux 
on the ground. In addition, the resulting ash deposits are also very close regardless 
of the shape of the release source if the release height is large or the release sources 
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are small. This suggests that inverse modelling will be very difficult . 

The model with instantaneous release and no vertical dispersion in a layered atmo­
sphere captures the changes in physical properties of the atmosphere during ashfall 
and demonstrates patterns of ashfall and deposit explicitly and efficiently compared 
with existing models, i .e .  Ashfall [25] and Hazmap [7] . 

Compared to the existing models mentioned in Chapter 1 , our models are highly 
simplified, but they capture the essential physics of volcanic eruptions. Our models 
can take into account : increases in settling speed during ashfall, which ASHFALL [26] 
was not able to; changes in wind pattern, which Connor et al. [ 15] do not consider; 
and expected changes in dispersion, which HAZMAP [7] does not consider. 

In the experiments illustrated in Chapter 4 we investigate the effects of different ash 
release geometries on the resulting deposits. Compared to the deposit pattern for a 
point source release the only significant change is produced from either a tall vertical 
column or a horizontal release geometry which is close to the ground compared to its 
lateral dimension. If the release height is large compared to the lateral extent of the 
release, then the deposit pattern is very close to that of a point source released at the 
same height . Ashfall deposit variation is only caused by very large lateral spread of 
the release shape closer to the ground. 

The analysis of Chapter 5 shows that in a two layered atmosphere, the parameters in 
the larger layer have a bigger effect on the deposition than those in the smaller layer. 

7.4 Consideration for Publication as Papers 

There are three chapters in this thesis which we are considering for publication as 
papers after the completion of my PhD. They are the uniform atmosphere models 
(Chapter 2 ) ,  layered atmosphere models (Chapter 3) and the analysis of deposits 
(Chapter 4) .  

In  Chapter 2 , we give an introduction of the advection-dispersion equation and how 
it can be used to describe transport of particles by wind and scattering by dispersion. 
We use it to develop simple models and give analytical solutions. The simple models 
show that they are able to describe uniform or homogeneous atmosphere explicitly. 

The layered atmosphere models are important as the models are more realistic as 
they take into consideration that the wind and turbulence profiles may vary with ele­
vation. In particular, the model for an instantaneous release in the three-dimensional 
atmosphere has analytical solutions. The advantage of analytical solutions is that 
they allow the effect of parameter variation to be explored more readily. 

The analysis of deposits was motivated by Prof. Chuck Connor (see acknowledgment ) 
at the conference [28] in Chile . He was interested in the deposits produced by different 
source shapes and asked if this could be investigated. This investigation led us to 
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want to find out the cause of different contours of deposition on the ground. This 
investigation will help to obtain information about the atmospheric conditions and 
release parameters during eruption. This information will help volcanologists and 
geologists to make hazard maps for future eruptions. The patterns of deposition will 
help to give approximate values for data such as the release height , eruption column 
height, wind speed and direction and eruption duration. 

During the course of this study, we also published a refereed conference paper [39] . 

7 .5  Future Work 

The model for ashfall with instantaneous release in a layered atmosphere can be 
further extended to consider non-isotropic horizontal dispersions (Dx =I Dy ) .  Another 
area to investigate is the vertical dispersion D z as here we assumed D z was zero for 
modelling instantaneous release in a layered atmosphere. Also, variation in particle 
size distributions would be useful. 

Last , but not least , future research may consider the interesting problem of inverse 
modelling. Due to time constraints, we were unable to carry on a deep investigation 
of inverse modelling of ashfall. It is an area which needs to be addressed as it would 
help volcanologists reconstruct information about volcanic eruptions. However, in­
verse modelling of volcanic ashfall is difficult and requires sophisticated computational 
tools. To date inverse modelling has only been investigated by Laura Connor of the 
Department of Geology at the University of South Florida [ 16] . 
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A ppendix A 

SOME WORKINGS 

o 

z 

recording the history is not to live in the past 

reading the history is to understand the difference 

acknowledging the history is a token of sensitiveness 

x 

Figure A . I :  Three dimensional space 
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A . I  Concentration for Instantaneous Release in U ni­

form Whole Space 

A . I . 1  Three-dimensional model (Section 2 .3 .3) 

The governing equation is 

oc ac oc oC 02C 02C 02C - + U- + V- - S- - Dh- - Dh- - D -ot ax oy oz ox2 oy2 z OZ2 
= Qb(t)b(x - Xo)b(y - Yo)b(z - H) 

with initial condition: C = 0 when t = 0 for (x , y , z) =I- (Xo , Yo , H) and boundary 
conditions: C ---+ 0 as x ---+ ±oo, y ---+ ±oo or z ---+ ±oo. 

By applying successive Fourier and Laplace transforms, we obtain 

..et : c(x, y, z, t) ---+ c(x, y, z, s) 

�x : c(x, y , z , s) ---+ �(w , y, z , s) 
- - � � ::: -iXw . ::: Bc Bc 2 ::: a c 0 c SC - Qe b(y - Yo)b(z - H) + 1,wUC + V- - S- = -w Dhc + Dh- + Dz-

�y : �(w, y , z , s) ---+ �(w, p, z , s) 

v - -

�z : �(w, p, z , s) ---+� (w, p, q , s) 

ay az ay2 OZ2 

v v v v v -- .... -- -- .... """ 

s � _ Qe-iXw-iYP-iIIq + iwU � +ipV � -iqS � = _w2 Dh� - p2 Dh� - q2 Dz � .  
Rearranging the quadruple transform we obtain 

v Q -iXw-iYp-iHq - e 
c (w, p, q , s) = 2 2 ' s + iwU + ipV - iqS + w2Dh + p  Dh + q Dz 

Inversion gives: 
V 

..etl : 2- (w, p, q, t) = Qe-iXW-iYp-iHqe-(iwU+ipV-iqS+w2Dh+p2Dh+q2Dz ) t  

v Qe-iYp-iHq _ (x- (XO+Ut) )2 . . 2 2 '7;' - 1 . C (x P q t) = e 4Dht e-(�pV-�qS+p Dh+q Dz )t D x ' ' "  2 .. ./rrDht 
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Thus 

1 24 

( Y- (YO+Vt» 2 ( z- (H-St» 2 
4Dht 4Dzt 

(Y- ( YO+Vt» 2 
4Dh t  

(z- (H-St» 2 
4Dzt 



A.2 Concentration for Instantaneous Release in Uni­

form Half-Space 

A . 2 . 1 One-dimensional model (Section 2 .4. 1 )  

In this section, we outline how t o  obtain the solution c(z, t )  for the governing equation 

ac ac a2c 
at - s az - Dz az2 = Qb(z - H)b(t) (A. l )  

with initial condition: c(z, O- ) = 0 and boundary conditions: c (  00, t) 0 and 
ac(O, t) = 0 az . 
We first do some preparatory calculations that will be useful later. We start the 
solution procedure by following [34] and writing 

Substituting this into Equation (A. l ) ,  we obtain 

where 

p(z, t) 5 52 
e 2Dz z+ 4Dz tQb(z - H)b(t) 
e 2�z HQ8(z - H)b(t) . 

( ote ,  we have substituted z = H and t = 0 . ) 
We now write 

( a 02 ) 
and apply the operator at - Dz az2 to (A.5) to obtain 
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(A.3) 
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Writing 

ap s q = az - 2DzP , 

we solve (A.5) for U using the technique of integrating factor to obtain 

Substituting z = ° gives 
U(O, t) = <I>(t) . 

Differentiating (A.8) with respect to t gives 

e- 2Dz z - = e- 2Dz �-(� t) d�+ <I> (t) s au lz s av . 
at 0 at ' 

and differentiating (A .5) with respect to z gives 

az2 2Dz az az . 

With the substitution of z = 0, (A .9) becomes 

Then 

au . 
7)t(O, t) =<I> (t) . 

a2u s au av -a 2 (0, t) = -D -a (0, t) + -a (0 , t) . z 2 z z z 
ow, with the substitution of z = ° in (A .3 ) , we obtain 

p(O, t) 

Then (A.8) becomes 
U(O, t) = <I>(t) 

and with conditions: V(z, O) = 0, V(O, t) = ° and V(oo, t) = 0, (A.5) becomes 

Hence 

2Dz aU U(O, t) = S az (0, t) . 
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and (A. 1 1 )  becomes 

. 52 av p(O, t) = <I> (t) - -D 
<I>(t) - Dz � (O, t) . 

4 z uZ 

At t =I- 0, 

so 

and 

S2 
At Z = 0, the downward flux is given by 5c(0, t) = 5 e- 4Dz tU(O, t) 

Therefore, the total flux is 

(A. 12) 

(by (A. 12) ) . 

z t -
and scale x = -

D 
----t xDz = z and T = - ----t TDz = t and write V(z , t) = V(X, T ) , 

z Dz 
hence 

Referring to [29] , we have 

V(X, T) = 1T dB 100 ij(T, B) Gl (X, � , T  - B) d� 
where 

. ap 5 Smce q(z, t) = a)z, t) -
2Dz 

p(z, t) (from (A.7) ) ,  then 

ij(x, T) = �P (x, T) - 5 p(x, T) uX 2 
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and (A . 14) becomes 

V(x, r) lT dB 100 [p�(x, r) - �p(x, r)l Gl (x, �, r - B) d� 

lT dB { [P(�, B)Gl l� - 100 p(�, B) [� Gl + a�l ] �} 
lT dB { (0) - 100 p(�, B) [� Gl + a�l l  d�} (A. 16) 

where - = e 4(.,--0) + e 4(.,--0) aGl 1 
[ 

x - � _� x + � _�] a� J47r(r - B) 2(r - B) 2 (r - B) 
and p(O, t) = p(oo, t) = O. 

Scaling (A.4) , gives p(x, r) = Q2 e 2�z Hc5(x - � )c5(r) . Dz Dz 

Hence (A. 16) becomes 

V(x, r )  

H When � = D ' B = 0 (for (A. 15) ) ,  we obtain 
z 

So, 

V(x, r) 
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8 b · · Z d t u stltutmg x = -
D 

an T = - gives 
z Dz 

V(z , t) = 

Then 

V(�, t )  

and 

80 

Hence (A.2) becomes 

Q .2!... { s VD; _ (z_H)2 _ (z+H )2 
- -e 2Dz - --(e 4Dzt - e 4Dzt ) 

D; 2 J47ft 
VD; [z - H _ (z _ H)2 Z + H - (Z+H)2 ] } +-- e 4Dzt  + e 4Dzt 
J47ft 2t 2t 

- -e 2Dz - (e- 4Dzt - e- 4Dzt ) Q SH { S 1 (z_ H)2 (z+H)2 

Dz 2 J47fDzt 

+ e 4Dzt + e 4Dzt 
1 [z - H _ (z_H)2 Z + H _ (Z+H)2 ] } 

J47fDzt 2t 2t 
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By (A.12 ) , we obtain 

Integrating by parts gives 

(A. 1 7) 

A . 2 . 2  Two- and three-dimensional models (Section 2 . 4 . 2  and 

2 . 4 . 3) 

.. The two-dimensional model for the half-space is developed from the one-dimensional 
model (A. 17 ) .  The governing equation for the two-dimensional model is: 

Q8(x - Xo)8(z - H)8(t) . (A . 18 )  

The solution to Equation (A. 18 )  is 

c (x,  z, t) = f(x, t)g(z, t) 

Q (x-Xo-Ut)2 
where f(x, t) = -j1fl'5Je - 4Dh t with conditions f(x, O) = 0 and f(±oo, t) = 0, 

2 7rDht 
and g(z , t) is the solution of the one-dimensional model (Section A .2 . 1 ) with Q = 1 ,  
i .e .  

og og 02g - - S- - Dz- = 8(z - H)8(t) . at oz OZ2 
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Using the solution (A. 17) from the one-dimensional model (A. l ) ,  we obtain 

c(x, z, t) = 

• The three-dimensional model for the half-space is also developed from the one­
dimensional model (A. l ) .  The governing equation for the three-dimensional model 
IS: 

oc Gc oc oC 02C 02C 02C - + U- + V- - S- - Dh- - Dh- - D  -ot OX oy OZ ox2 oy2 z OZ2 
= Qt5(x - Xo)t5(y - Yo)t5(z - H)t5(t) . 

The solution to Equation (A. 19)  is 

C(x, y , z, t) = f(x, y, t)g(z, t) 

Q ( x-Xo- Ut )2 

where f(x, y , t) = 4 D e - 4Dht 
7r ht 

(Y-YO- Vt )2 
4Dht with conditions f(x, y, 0) = 0, 

(A. 19) 

f(x, ±oo, t) = ° and f(±oo, y, t) = 0, and g(z , t) is the solution of the one-dimensional 
model (Section A . 2 . 1 )  with Q = 1 ,  i .e . 

og og 02g - - S- - Dz - = t5(z - H)t5(t) . ot OZ OZ2 
The solution c(x, y, z, t) for the three-dimensional model for the half-space is: 

c(x, y, z, t) (x-Xo-Ut)2 (y- Yo-Vt)2 
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We will show the detailed working for the verification of the three-dimensional solution 
in the next section. The same technique can be used to verify the two-dimensional 
model. 

A . 2 . 3  Verification o f  the three-dimensional model 

We wish to verify that 

c(x, y, z, t) = f(x, y, t)g(z, t) 
which is 

is the solution of the governing equation 

for 

Straightforward calculation shows that 

ac 
at 

u ac 
ax 

v ac 
ay 

s ac 
az 

-Q 
-- e 47rDht 
--_Q- e 47rDht 

Q e 47rDht 
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4Dht g(z, t) 

6(z - H)6(t) . (A. 20) 



-Q _ ( x-XO-Ut)2 _ ( Y-YO-Vt)2 1 
--- e 4Dht 4Dht g(z t)-4nDht ' 2t 

Q _ ( x-XQ-Ut)2 (Y-Yo-Vt)2 (x - Xo - Ut)2 + e 4Dht 4Dht g(z t)-=----------'--4n Dht ' 4Dht2 
-Q _ ( x-Xo-Ut)2 _ ( Y-YO- Vt)2 1 

--- e 4Dht 4Dht g(z t)-4nDht ' 2t 

We substitute the above into the governing equation gives 

Q (x-Xo- Ut)2 (Y-YO-Vt)2 { 89 8g 82g } -4n-D-h-t e
- 4Dht 4Dht -8t - S-8z - DZ-OZ-2 = Q8(x - Xo)8(y - Yo)b(z - H)b(t) . 

Integrating with respect to x and y we obtain 

100 100 {_Q-e - (x-:g�tUt)2 (Y_����t)2 [_Og 
_ s_og 

_ D _82_g ] } dxdy 
-00 -00 4n Dht ot 8z Z 8z2 

= I: I: {Qb(x - Xo)b(y - Yo)b(z - H)b(t) } dxdy 

og og 82g - - s- - Dz- = b(z - H)b(t) . ot 8z 8z2 
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A.3 Steady State Concentration for a Constant 

Release in a Uniform Whole Space 

A.3 . 1 Two-dimensional model (Section 2 . 5 . 2) 

The governing equation is 

with boundary conditions: c ---t 0 as x ---t ±oo or z ---t +00, and c is bounded when 
z ---t - 00. 

x z 
Without loss of generality, we take Xo = 0 and write X = rrI and Z = rrI for 

y Dh y Dz 
C(X, Z) = c(x, z ) to give 

ux sz 
Writing C(X, Z) = e 2.jDh- 2mz cjJ(X, Z) , then (A.2 1 )  becomes 

(A.21)  

e 2.jDh- 2mz cjJxx + cjJzz - - + - cjJ = - q 6(X)6(Z - -- ) . ux sz [ ( U2 S2 ) 1 H 
4Dh 4Dz V DhDz VD; 

So 

and 

2 2 q SH H V cjJ - k cjJ = - e 2Dz 6(X)6(Z - - ) 
VDh Dz VD; 

8 8 U2 S2 where '12 = 8X2 + 8Z2 and k2 = 
4Dh 

+ 
4Dz · 

We convert Equation (A.22) into polar form to obtain 

1 1 2 q SH H cjJrr + -cjJr + 2cjJ()() - k cjJ = - e 2Dz 8(X)6(Z - - ) r r VDhDz VD; 

where r � JX2 + (Z  - �)' . 

(A.22) 

(A.23) 

We assume that cjJ is isotropic and is independent of rotation of angle '!3 in e where '!3 
is arbitrary for e ---t e + '!3. Therefore cjJ(r, e) = cjJ(r, e + '!3) cjJ(r) . 
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1 
From [8, page 43] , we see that the equation cjJrr + -cjJr - k2cjJ = 0 has the general r 
solution cjJ = Alo (kr) + BKo(kr) where 10 is a modified Bessel function of the first 
kind of order zero and Ko is a modified Bessel function of the second kind of order 
zero. 

From [8, figure 12 on page 42] , lim Io (z) = 00 and lim Ko (z) = O. In order for cjJ to 
Z-+OO Z-+OO 

be bounded as kr ----+ 00, then A = O. Therefore we obtain cjJ = BKo (kr) .  
Integrating both sides of (A.23) with respect to a circular region A with centre 

H (X, Z) = (0 ,  j"'f) ) with radius rA , we obtain yDz 

- Jf q eNizb(X)b(Z - �) dX dZ ...jDhDz .;D; 
q ..§JL - e 2Dz ...jDhDz . 

Since the function cjJ(r) must satisfy cjJrr + �cjJr - k2cjJ = 0 away from r = 0, and Io (kr) r 
does not possesses the necessary singularity at r = 0,  we require cjJ(r) must behave 
asymptotically like the Green 's function for the Laplacian operator near r = 0 [37] . 

With reference to [37] , for AE = { (X, Z) : r A < t } ,  we take 

so we obtain 

and 

So 
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Now dA = 27rrdr gives 

For r = rA , we obtain 

Thus 

27rr<Pr - lim [k2 Je r cjJ dAJ - -
q e 2S� 

€-+o+ lA< - VDhDz 
. 

Since K�(kr) � -:
r 

for r � O, and cjJ � ln r �  Jl
<
cjJ dA � O  as € � O+ ,  

this gives 

Therefore 

Hence, 

q SH B = e 2Dz • 

27rVDhDz 

ux S (z H ) q C(X, Z) = e 2.j75h- 2J['5; - 7D.  Ko(kr) . 
27rVDh Dz 

q Ux S( z-H) [ 1 c(x z) = e 2Dh - 2Dz Ko -
' 27rVDhDz 2 

In a more general case, the release point is situated at the point (x, z) = (Xo ,  H) . 
The governing equation is now 

Note, if we translate the x-axis by defining a new variable x* = x - Xo so that release 
point becomes (x* , z) = (O, H) , we obtain equation 

8c 8c 82c 82c * U 8x* - S 8z - Dh 8X*2 - Dz 8z2 = qb(x )b(z - H) . 
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This is the same equation we solved earlier, with x replaced by x* . It follows that the 
solution for the more general case is obtained by simply replacing x by x - Xo in the 
previous solution. Thus we obtain 

c(x z) = e 2Dh 2Dz Ko -
q U(x-Xo) S(z-H )  [ 1 , 27f-J DhDz 2 

For more information about the solution see [8] , [37] , [40] , [41] and [48] . 
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A.3. 2 Three-dimensional model (Section 2 . 5 . 3) 

The governing equation is 

with boundary conditions: c ----+ 0 as x ----+ ±oo, y ----+ ±oo or z ----+ +00, and c is 
bounded when z ----+ - 00. 

Without loss of generalisation, we take Xo = 0, Yo = 0 and write X 
Y = '!n-- and Z = � for C(X, Y, Z) = c(x, y ,  z ) to give yDh yDz 

U V 5 Cxx + Cyy + Czz - --Cx - --Cy + --Cz � � ..[J5; 
�6(X)6(Y)6(Z - !-) . Dh Dz yDz 

...J!.1L + � _ 2L 
Taking C(X, Y, Z) = e 2,fDh 2JDh 2VDz <fy(X, Y, Z) , Equation (A.24) becomes 

and 

\12<fy - k2cjJ = - q e 2si/. 6(X)6(Y)6 (Z - �) vi DhDz ..[J5; 
a a a u2 v2 52 

where \12 
= aX2 + ay2 + aZ2 and k2 = 4Dh + 4Dh + 4Dz '  

Converting Equation (A.25) to polar form [48] we obtain 

� [ (r2<fyr) r + �e<fy'P'P + �e (sin e <fyo)o] - k2<fy r sm sm 

q SH H --= e 2Dz 6(X)6(Y)6(Z - - ) . 
D h ..[J5; ..[J5; 
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As for the two-dimensional model, we also assume that I/J is independent of rotation 
of angles e and cp. For {) in e where {) is arbitrary for e ---+ e + {) and Cl in cp where Cl 
is arbitrary for cp ---+ cp + Cl, therefore I/J(T, e, cp) = I/J(T) . 

e-kr ekr 
By [55] , the equation \72I/J - k2I/J = 0 has the solution of I/J = -A- - B- where 

47fT 47fT 
x2 y2 (z - H)2 - + - + . 
Dh Dh Dz 

ekr 
In order for I/J to be bounded as T ---+ 00 ,  then B = 0 as - ---+ 00 as T ---+ 00, therefore 

47fT e-kr e-kr e-kr 
I/J = -A 

47fT
' and I/Jr = Ak 

47fT 
+ A 

47fT2 . 

Integrating both sides of (A.25) with respect to a spherical region V with centre 
H 

(X, Y, Z) = (0, 0 ,  rn- ) with radius TV , we obtain 
y Dz 

(A.26) 

J J i \72I/J dV can be written as 

J J i div (\7 I/J) dV = J Is (\7 I/J) . dS = J Is I/Jr dS = I/Jr 47fT2 

for dS = dS r. 

For the singularity at T = 0,  we use the same approach as the two-dimensional model. 
For the three-dimensional model, we take V 0 = { (X, Y, Z) : TV < E } .  
Using the same techniques and arguments as the two-dimensional model, we consider 
T = Ty and obtain 

Thus 

47fT2 (Ak 
e-kr 

+ A 
e-k:) _ lim [k2 ff" r I/J dV] 

47fT 47fT 0-+0+ lYE 

Taking T ---+ 0, we obtain 
q SH A = - e 2Dz • 

Dh.;rJ; 

139 



Then 

Therefore 

Thus 

cp = e 2Dz --q SH ( e-kT ) 
DhVJ'Jz 4?rr · 

In a more general case, the release point is situated at the point (x, y, z) = (Xo ,  YD ,  H) .  
The governing equation is now 

Note, if we translate the x-axis by defining a new variable x* = x - Xo and the 
y-axis by defining a new variable y* = y - Yo so that the release point becomes 
(x* , y* , z) = (0, 0 ,  H) , we obtain equation 

U 8c + V 8c _ 5 8c _ Dh 
82c 

_ D 82c D 82c �( * ) �( * ) �( H) � � 2 h �y*2 - Z �Z2 = qu X u y u Z - . 8x* uy* uz 8x* u u 
This is the same equation we solved earlier, with x replaced by x* and y replaced 
by y* . It follows that the solution for the more general case is obtained by simply 
replacing x by x - Xo and y by y - Yo in the previous solution. Thus we obtain 

u2 V2 52 
where k2 = -D + 4D + -D and r = 

4 h h 4 z 

For more information about the solution see [55] , [37] , [40] , [41 ]  and [48] . 
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A.4 The Deposit for Instantaneous Release in a 

Three-dimensional Uniform Whole Space with 

Dz � 0 (Section 2 .3 .3 )  

In this section we will show how the solution (2. 14) is derived from the governing 
equation 

8c 8c 8c 8c 82c 82c 82c - + U- + V- - S- - Dh- - Dh- - D  -8t ox 8y 8z ox2 8y2 z 8z2 
= Q8(x - Xo)8(y - Yo)8(z - H)8(t) . 

From A . 1 . 1 ,  we found that the concentration is 
(z-(H-St» 2 

4Dz t 

Rearranging the expression in the exponent , 

where a = 

Hence 

f(x, y ) 

[_ (x - Xo - Ut)2 (Y - Yo - Vt? _ (-H + St)2 j 4�t 4�t 4�t 
� ( (x - Xo)U + (y - Yo)V + HS) _ ( t2{32 + 0:2 ) 
2 Dh Dh Dz t 
� ( (X - Xo)U + (y - Yo)V + HS) _ 20:{3- ({3t - 0:)2 
2 Dh Dh Dz t 

� [ (x - Xo)2 (y - YoF H2 ] d (3 -
4 Dh + Dh + Dz an -
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A.5 The Deposit for Instantaneous Release in a 

Three-dimensional Uniform Half-Space with 

Dz = 0 (Section 4.4 .2 )  

From Equation (2 . 15 )  and also in Section 4.4. 1 ,  we found that the total deposition 
(mass per unit area) with Dz i=- 0 is 

f(x, y) = 

Here, we will show how to obtain the solution in Section 4.4.2 in the limit Dz ---> O. 
We write 

-H + ST 

Using Maple, 

and we only take the positive T, 

Again using Maple, 

and 
1 S 
T� J2p2Dz + HS + 2Jp2Dz (p2Dz + HS) 
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Now, expand J(t) using the above expressions and taking Dz ---t 0, we obtain 

J(t) 

Hence, 

f(x, y) 
(x- ( Xo+u1fl l2 (y- (Yo+v # l l2 

4Dh¥ - 4Dh¥ 
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A.6 Total Mass Deposit for Instantaneous Release 

in a Three-dimensional Uniform Whole and 

Half Spaces 

In this section we show that the total mass deposited on the ground (z = 0) is the 
same for both Dz -=I- ° and Dz = ° in the three-dimensional uniform whole and half 
spaces. These results are in Sections 2 .3 .3 an 2.4 .3 . We will show that the total mass 
release will eventually land on the ground. 

To find the total mass deposit on the ground, we write 

Total mass = I: I: f(x, y) dx dy 

where f(x, y) = 100 
(se + Dz ��) z=o dt . 

Since the deposition solutions are the same for both whole and half spaces with 
Dz = 0, we will only show the working for Dz -=I- ° in the half space. 

A.6 . 1 Whole space with Dz =1= 0 

The concentration for the uniform whole space with Dz -=I- ° (Section 2 .3.3) is 

We take the release point be (0, 0 ,  H) , then 

Therefore, the total mass deposition on the "ground" : 

100 
J
oo 100 Q (H S ) [_ (X-Ut)2 _ (y_Vt )2 _ (-H+St )2 j 5" + 3"" e 4Dht 4Dh t 4Dz t dt dx dy . -00 -00 0 16Dh\hr3 Dz t'i t'i 

With the substitution of p = (y;;;;,) , 2 Dht 

Y = Vt + 2JDhtp =* d
dP = J.w =* dy = 2JDhtdp . y 2 Dht 

144 



Hence 

I: I: f(x, y) dx dy 
Q 100 100 100 [H S ] (x-Ut )2 2 (-H+St)2 

----'-==3= 
5" + 3"" e - ---;ro,;r- -P - 4Dz t 2y'Dht dp dx dt 16Dh\hr Dz 0 -00 -00 (2 t'i 

Q {OO 100 [� + S] e -
(X4�?2 

-(-:;z�t )2 dx dt . 87rV DhDz lo -00 t t 
By doing the same substitution for the x term, we obtain 

H S Writing et = rn and {3 = rn ' the above expression becomes 2yDz 2yDz 
Q 100 [H S ] ( -H+St )2 

3"" + 1 e- 4Dz t  dt 4V7r Dz 0 t'i t2 
Q {OO [� + �] e 

( - ,,�.et)2 dt 4V7r Dz lo t'i t'i 
� [H2Vf); S2Vf);] 
4Vf); H + 

S 
- Q . 

A.6 .2  Whole space with Dz = 0 

The concentration for the uniform whole space with Dz = 0 (Section 4.3 .2) is 
Q ( x- (Xp+Ut» 2 

c(x, y, z , t) = D e-
4Dht 

47r ht 
(y_ (Yp+Vt » 2 

4Dht 5(z - (H - St)) 

and the deposit 

f(x, y) = SQ (x-(Xp+U * » 2 

4Dh¥ 

When the release point is at (0, 0, H) , we obtain 

f(x, y) = 
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Therefore, the total mass deposited on the "ground" : 

100 100 SQ - ( x-U"f/ (y-vt)2 

= e 4Dh "S" 4Dh "S" dx dy . -00 -00 471" DhH 
With the substitution of new variable p for both x and y, 

and 

we obtain 

y - Vlf 
p =  s 

2JDh� 
dp 1 

- --== dy 2JDhl} 

x - Ulf 
p =  s 

2JDhl} 
dp 1 
dx 

I: I: f(x, y)dxdy 

dy = 2V Dh � dp 

dx = 2) Dh � dp , 

A.6 .3  Half space with Dz -# 0 

The concentration for the uniform half space with Dz =J. 0 (Section 2.4 .3) is 

c(x, y, z, t) 
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and the deposit is given by 

f(x, y) = 

Therefore, the total mass deposition on the ground is 

With the substitution of new variable p for both x and y , 

and 

we obtain 

y - (Yo + Vt) p = 2yiDht 
dp 1 
dy 2yiDht 

x - (Xo + Ut) 
P = 2yiDht 

dp 1 
dx 2yiDht 

dy = 2JDht dp 

x = Xo + Ut + 2J Dhtp 

dx = 2JDht dp , 
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The working for the inner integral of (*) : 

H S 
Writing 0: = rn and f3 = rn ' we obtain 

2y Dz 2y Dz 
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Taking T = te and dT = t dB, (**)  becomes 

H sve We take a = VD:O and f3 = IT') to obtain 2 DzB 2y Dz 
_ 

SQ foo dB t)Q [ H2 _ (SH + 2) _1_] e_(-C>�!3t)2 dt 
4 . ./rrDz 1 lo DzdB� Dz dB� 

_ SQ foo 
[
� Vi _ (SH + 2) � Vi] dB 4.J7r Dz 1 DzB� a Dz B� f3 

SQ foo 
[ H2 2VD:O (S H ) 1 2VDz

] dB - 4VDz 1 DzB� H - Dz + 2 B� sve foo 
1 

Q 
1 B2 dB 

Q [�1 ] � 
Q . 
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A.7  Moment Equations 

A.7. 1  Uniform whole space ( Section 6 .2 . 1 )  

The deposit (2 . 14) for uniform whole space is 

� [ (x - Xo)2 (y - YO)2 H2 ] 
_ where et = 4 Dh + Dh + Dz and j3 -

The moment equations are formulated using f(x, y) with respect to x and y coordi­
nates: 

Mxayb = 1: xa dx 1: yb dy f(x, y) 
where a and b are positive integers. 

Here, we will only show the working of the x-moment Mx equation with a = 1 ,  the 
same technique can be applied to other moment equations . 

• x-moment Mx 

dy x f(x, y) 
100 A [H S ] _ (x-(Xo+Ut) )2 dy x- 5 + :3  e 4Dht 

o 2 f2 tz 
( Y- (YO+Vt ) )2 

4Dht 
(-H+St)2 

4Dzt dt . 

(X - (Xo + Ut) ) � dp 1 
Taking p = then x = Xo + Ut + 2y Dht p, -d = VW 

2) Dht x 2 Dht 
and dx = 2 J  Dht dp, we obtain 
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( -H+St)2 
4Dzt 



· . (y - (Yo + Vt)) ;-n-; Agam, we wnte p = ri"'\i then y = Yo + Vt + 2y Dht P 2yDht 
and dp 

= � then dy = 2jDht dp, we obtain dy 2 Dht 

A.7.2 Uniform half space (Section 6 .2 .2 ) 

Similar to the uniform whole space, the uniform half space moment equations are 
formulated using the deposit (2 . 15 ) : 

f (x, y) 

Here, we will only show the working of x-moment Mx equation with a = 1, the same 
technique can be applied to the rest of the moment equations. 
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• x-moment (Mx )  

Mx 1: 1: xf(x, y)dxdy 

1: 1: 100 x [se + Dz �: L=o 
dt dx dy 

1: 1: 100 x [ScL=o dt dx dy 

Taking 

Taking 

y - (Yo + Vt) p = 2JDht 
dp 1 
dy 2JDht 

x - (Xo + Ut) 
P = 2JDht 

dp 1 
dx 2JDht 
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(x-Xp-Ut )2 _ (y- YO-Vt)2 
4Dh t 4Dht 

y = Yo + V t + 2 V Dhtp 

dy = 2yI5;i dp 

x = Xo + Ut + 2VDhtp 

dx = 2yI5;i dp 



Now taking T = te dT = tdB 

SQ 100 100 [ H2 (SH ) 1 1 (-H+S(tll))2 
-

5 - - + 2 --3 (Xo + Ut)e- 4Dz (tll) t dB dt 
4·./rrDz 0 1 Dz (tB) 'i Dz (tB ) 'i  SQ 100 100 [ H2 (SH ) 1 ] (-H+S(tll))2 

- dB 3 5 - - + 2 -1-3 (Xo + Ut)e- 4Dz (tll) dt 4V7fDz 1 0 Dzt'i  B'i Dz t'i B 'i  

- dB Xo - - + 2 --SQ 100 100 { [ H2 (SH ) 1 ] 
4V7fDz 1 0 DzdB�  Dz dB� [ H2 (SH ) d 1 } (-H+S(tll ) )2 

+U 1 5 - - + 2 -3 e - 4Dz (tll) dt . 
Dzt'i B'i  Dz B'i  

H Substituting a = --== 
2VDzB 
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