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Abstract 

This paper reports on work undertaken to use a large data set of hyperspectral data measured 

on dry soil samples to obtain regression analysis which allows predictions of pH and Olsen 

P to be obtained from an independent data set. The large data set was obtained from 3,190 

soil samples taken from the Ravensdown Primary Growth Partnership to a depth of 7.5cm. 

The spectra were measured using an Analytical Spectral Device which recorded 2,150 

wavebands of 1nm resolution between 350nm and 2,500nm. Values for Olsen P and pH 

were provided from chemical analysis by Analytical Research Laboratories. The spectra 

were regressed using “R” statistical software which has the power to handle the data and 

report the wavebands with the most significance for the model. The data set for the 

prediction came from a stratified nested, grid soil sampling exercise which was used to find 

Olsen P stability at varying depths. This set had 400 samples from each of two data sets 

from different areas on Patitapu Station using a grid sample protocol. The 100 most 

significant wavebands from the PGP data set were used to regress the Patitapu data which 

were combined. These were regressed using “R” (Version 3.41, The R Foundation) and 

Statdata (Palisade, New York), which produced the same result. The partial least square 

regression of pH was very significant and was predicted well. Olsen P had a very significant 

correlation which was quite noisy, correlating the log10 of Olsen P was also undertaken and 

it would appear something is being measured that is associated with Olsen P. This work 

shows that it is possible to measure soil nutrient by proximal hyperspectral analysis which 

is transferable to an independent data set. 
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Introduction 

This work aims to examine the possibility of using proximal hyperspectral sensing to 

measure sol nutrient status of soil samples by seeing if a relationship could be established 

for either Olsen P or pH. 

 

A large data set of chemically analysed soil samples was married to proximal hyperspectral 

data measured at the same laboratory. The work was undertaken by Analytical Research 

Laboratories Ltd. (ARL) an International Accreditation New Zealand (IANZ) accredited 

laboratory which is also (ISO 17025) certified. Spectra were measured between 350nm and 

2,500nm at 1nm resolution using a Fieldspec 4 (ASD, Analytical Spectral Devices, Malvern 
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Panalytical, Malvern, U.K.). This type of device has been used for spectral analysis of soil 

cores in other work (Viscarra Rossel and Behrens, 2010; Nocita, et al., 2014; Roudier, et 

al., 2015). The data is a subset of soil samples taken at 7.5cm depth for the Ravensdown, 

Ministry of Primary Industries Primary Growth Project (PGP) and was supplied by 

Ravensdown. This data set had 3,189 samples. 

 

A second independent data set of soil samples taken from a stratified, nested grid sample in 

an independent exercise (soil sampling depths; 3cm, 3-15cm, 15-30cm) at Patitapu Station 

near Alfredton, in the Central North Island ( Kaul, et al., 2017, Kaul and Grafton, 2017) was 

also analysed. This data set was analysed for Olsen P and pH at Massey University. The 

Olsen P was measured as per the method described in (Kaul and Grafton, 2017) and pH by 

a digital reading from a 10g dried sample in distilled water. These samples were also 

independently measured for spectra using an ASD probe at Massey University. This data set 

had 883 samples. Dry soil samples were analysed to avoid the effects of water on the spectra 

(Minasny, et al. 2011). 

 

It was hypothesised that a partial least square regression (PLSR) could be undertaken on one 

data set and the equation derived would give a good prediction on an independent data set, 

to derive Olsen P and pH. 

 

Materials and methods 

A PLSR was undertaken using “R” version 3.41 (R, 2016; Mevik and Wehrens, 2007) on 

the larger data set. Powerful statistical software was required as the data set had 2,151 

columns and 3,190 rows. From this analysis the 100 columns which represented the 

wavebands that were most significant for Olsen P and pH were found. These were used to 

undertake a PLSR using both “R” and StatTools (Pallisade, NY, U.S.A.) which is a 

statistical software plug in for Excel. StatTools has a limit of 100 independent variables for 

a PLSR. The regression was undertaken in both packages to ensure that the same result was 

obtained. For practical purposes and to avoid autocorrelation and co-linearity 100 

independent variables was considered a maximum. This becomes the case if the number of 

rows in the data is less than the number of columns used in the regression. A PLSR in 

StatTools was undertaken on both data sets for pH and Olsen P, using 100 independent 

variables for each. 

 

The PLSR equation derived from the smaller data set was used to predict values of pH and 

Olsen P on the larger data set. These predictions from the equation were graphed as a second 

series overlay on the PLSR scatter plot of the larger data set. 

 

The pH data from both sets had a normal distribution that meets the requirement of a 

regression analysis. Whereas the Olsen P data have Chi2 distributions, which reduces the 

accuracy of regression analysis. This is also the reason the standard deviation for Olsen P is 

high as the data has a skewed distribution. To improve the normality requirement a log10 

distribution of Ravensdown Olsen P data was regressed. 
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Results 

The mean and standard deviations of the data are displayed in Table 1. 

 

Table 1. Mean and standard deviations of the two data sets. 

 

Data set Mean Standard Deviation 

Massey Olsen P 18.1 13.9 

Massey pH 5.55 0.33 

Ravensdown Olsen P 23.1 15.4 

Ravensdown pH 5.72 0.32 

 

 

The statistical summary of the PLSR provided a clear correlation for all regressions; 

although the results for Olsen P had much more noise, see Table 2. All analyses were 

statistically significant, the probability of results being random was less than 0.0001. 

 

Table 2. Summary of regression analyses. 

Data set R2 Adj. R2  Std. error F P value 

Ravensdown Olsen Pa 0.8273 0.4706 11.21 2.319 <2.2 x 10-16 

Ravensdown pHa 0.9064 0.7131 0.17 4.688 <2.2 x 10-16 

Massey pHb 0.4828 0.4167 0.25 7.3 <2.2 x 10-16 

Massey pHc 0.4828 0.4167 0.25 7.3 <.0001 

Massey Olsen Pc 0.6051 0.5546 9.03 11.99 <.0001 

Ravensdown pHd 0.4427 0.4247 0.24 24.53 <.0001 

Ravensdown Olsen Pd 0.2887 0.2656 13.21 12.53 <.0001 

Ravensdown Log OPd 0.3607 0.34 9.03 17.42 <.0001 
a R regression 2,148 and 1,040 degrees of freedom; b R regression 100 and 782 degrees of freedom; 
c StatTools regression 100 and 782 degrees of freedom; d StatTools regression 100 and 3088 degrees of 

freedom. 

 

Figures (1 -4) displays the PLSR from the StatTools scatter plots. 

 
Figure 1: Linear regression of Olsen P using Massey data 

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Fi
t

Olsen P

Scatterplot of Fit vs Olsen P

Massey Olsen P



4  

 
Figure 2: Linear regression of pH using Massey data 

 

 

 
Figure 3: Ravensdown data PLSR of Olsen P and with predictions using the equation 

from the Massey PLSR 

 

 

 

4.0

4.5

5.0

5.5

6.0

6.5

4.0 4.5 5.0 5.5 6.0 6.5 7.0

Fi
t

pH

Scatterplot of Fit vs pH

Regression of pH Massey Data

Linear (Regression of pH Massey Data)

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Fi
t

Olsen Sol. P ug/mL

Scatterplot of Fit vs Olsen Sol. P ug/mL

Regress Ravensdown data

Massey equation prediction

Linear (Regress Ravensdown data)

Linear (Massey equation prediction)



5  

 
Figure 4: Regression of Ravensdown pH and prediction derived from Massey pH PLSR 

 

The linear nature of the regression is more obvious for pH than for Olsen P, as per the summary in 

Table 1. The equations developed from the PLSR of the Massey data although at different gradients to 

the regression trend lines however do bisect the data points in the scatter plots evenly. A PLSR of the 

logs of Olsen P was undertaken as it appeared the relationship may be non-linear. The summary is in 

Table 1 and the scatter plot of the PLSR appears in Figure 5.  

 

 
Figure 5: Scatter plot of Log of Olsen P of Ravensdown data 

 

Discussion 

This work demonstrates that there is potential to use proximal hyperspectral sensing to measure 

nutrients in soils. The PLSR of pH was linear and less variable than Olsen P; this reflects that 
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the pH data met the normality test. The wavebands used for the analyses were gleaned from 

the Ravensdown data set; which were the 100 most significant found by a regression on 2,150 

wavebands on 3,189 soil samples. 

 

The selected wavebands for Olsen P and pH produced statistically very significant relationships 

in the Massey data; and the equations derived from the PLSR, proved to be nearly as well 

correlated as the PLSR on the Ravensdown data. 

 

The shape and variance in the Olsen P data results from the spectral data having a Chi2 

distribution rather than a normal distribution, which results in a less, linear relationship. This 

appears to be the case as the linear relationship improves when the logs of Olsen P were fitted. 

However, the data is still variable so the PLSR may be finding a relationship with soil 

components that have a relationship with phosphorus. 

 

Conclusion 

This work with large data sets shows there is promise in using proximal sensing to measure 

soil nutrients. This may lead to more intensive soil testing at a cheaper cost to the farmer and 

provide an opportunity to deliver fertiliser more efficiently based on better information. 
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