Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Static and Dynamic Imaging using Magnetic Field Gradients

静态与动态核磁成像

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Physics at Massey University

by

Yang Xia

夏阳

1988

Abstract

The theory and techniques of NMR imaging are described together with a detailed description of the Filtered Back Projection (FBP) technique used in an existing NMR imaging system.

The existing 'static' NMR imaging system has been modified to be capable of performing 'dynamic' NMR imaging experiments, as well as better 'static' NMR imaging experiments.

The potential of NMR microscopy in the imaging of both the static spin distribution $P(\mathbf{r}_0)$ and the dynamic spin correlation function $P(\mathbf{r}_0|\mathbf{r},t)$ has been investigated. Both homogeneous and inhomogeneous systems have been studied. Detailed theoretical analysis and experimental considerations of dynamic imaging experiments have been given.

A transverse resolution of 15 μ m for a 1 mm slice thickness is obtained from a static imaging experiment of a phantom using the modified system. The rabbit trachea imaging experiment has revealed the asymmetrical collapse of tracheas under negative pressures, a collapse which had previously been considered as symmetrical process.

The Poiseuille flow experiment has involved the first simultaneous measurement of flow and diffusion at the microscopic level. Maps of two dimensional distribution functions of flow and diffusion are given by this experiment, highlighting this totally non-invasive dynamic imaging technique.

As an example of dynamic imaging, the wheat grain experiment has displayed the flow and diffusion maps within a single wheat grain *in vivo*.

Acknowledgments

First, I would like to thank my parents for their constant encouragement from the early years of my education by creating an environment conducive to study and thinking.

I wish to express my sincere gratitude to my supervisor, Professor Paul Callaghan, for providing continuing theoretical and technical guidance and careful instruction, for his great enthusiasm and patience while this manuscript has been written.

I would also like sincerely to thank the following people who have contributed to this work:

Dr Craig Eccles, now doing post-doctoral research at ETH, Switzerland, for his invaluable advice and great help during his time at Massey University.

The mechanical workshop staff for manufacturing parts of the gradient power supply.

The electronic workshop staff for providing technical assistance on a number of occasions.

Dr Rod Lambert of Physics and Biophysics Department and Dr Roger Pack of Physiology and Anatomy Department for their advice in the rabbit trachea experiment.

Dr Colin Jenner of the Waite Research Institute, Adelaide for his advice in the wheat grain experiment.

Dr Ian Brooking of the Plant Physiology Division of the DSIR for supplying the wheat samples used in the *in vivo* experiment.

Dr John Skipworth of Botany and Zoology Department for identifying the plant used in the static imaging experiment.

The academic, technical and clerical staff of Physics and Biophysics Department for their kindness and help.

Fellow post graduate students, Peter Daivis, James Conway, Peter Saunders and Mark Huirua for their friendship and support.

Massey University for providing financial support in the form of a Graduate Assistantship.

Finally I would like to express my deep appreciation of the unfailing encouragement and support given to me by my wife, Ping.

Contents

Abstract i Acknowledgments i Contents i List of Figures i List of Tables i List of Symbols i	i iii v viii ix
Chapter 1 Introduction 1.1 Introduction 1.2 Organisation of the Thesis	1 1 2
Chapter 2 Theory of NMR Imaging 2.1 NMR Theory 2.1.1 Nuclear Magnetism 2.1.2 Macroscopic Magnetization 2.1.2 Macroscopic Magnetization 2.1.3 Relaxation Processes 2.1.4 Bloch Equation 2.1.5 The Signal to Noise Ratio 2.1.5 The Signal to Noise Ratio 2.2.2 Static NMR Imaging Theory 2.2.1 The Field Gradient 2.2.2 Selective Excitation 2.2.2 Selective Excitation 2.2.3 Filtered Back Projection Reconstruction 2.2.4 NMR Microscopy 2.2.5 S/N and Resolution 2.3 Dynamic NMR Imaging Theory 2.3.1 Pulse Gradient Spin Echo Technique 2.3.2 Stejskal Equation 2.3.3 Combined PGSE-Imaging Experiment 2.3.4 Interpreting the Velocity and Diffusion Digits 2.3.5 Uncertainty of Velocity and Diffusion Data	3 3 4 9 13 16 18 19 24 29 31 33 34 33 4 1
Chapter 3 NMR Imaging System and Its Development 4 3.1 NMR Imaging System 4 3.1.1 Static Magnetic Field Unit 4 3.1.2 Field Gradients Unit 4 3.1.3 RF Pulse Field Unit 4 3.1.4 Experimental Controller 4 3.1.5 Pulse Programmer Unit 4 3.1.6 RF Coil and Its Tuning Circuit 4 3.1.7 Receiver Unit 4 3.1.8 Image Processing and Display Unit 4 3.2 Small RF Coil (\$ 2.1 mm) and Its Tuning Circuit 5 3.2.1 Design and Constructions 5 3.2.2 Calibration of the RF Coil 5 3.2.3 System Performance 6 3.3 Y Gradient Power Supply 6 3.3.1 Effects of Ripple on Gradients 6 3.3.2 KEPCO Power Supply and Its Ripple 6 3.3.3 Reconstruction 6 3.3.4 Performance 6	48 48 50 51 52 52 53 55 55 55 55 63 63 63 63 66 68
3.4 Y Gradient Coil	70

 3.4.1 Some Considerations	70 71 74 81 81 82 86 89 90 90
Chapter 4Static Imaging Experiments4.1Experimental Considerations for Static Imaging.4.2Three-Tube Phantom Image4.3Plant Stem Image4.4Rabbit Trachea Images4.4.1Experimental Arrangement4.4.2Results and Discussions4.5T1 Contrast Imaging	95 95 98 100 102 102 105 114
Chapter 5 Dynamic Imaging Experiments 5.1 Experimental Considerations for Dynamic Imaging 5.2 Poiseuille Flow Images 5.2.1 Experimental Arrangement 5.2.2 Results and Images 5.2.3 Discussions and Conclusions 5.3 Wheat Grain Images 5.3.1 Experimental Arrangement 5.3.2 Results and Images 5.3.3 Discussions	117 117 118 118 122 122 130 130 133 139
Chapter 6 Summary and future work	140
Appendix A Software for Flow and Diffusion ExperimentsA.1DREAD.ASMA.2DWRITE.ASMA.3VD.ASMA.4Description of NMR.LIBA.5FLOW.FORA.6TI 980A Software ModificationsA.7FLOWD.FOR	141 141 144 149 152 162 168 175
Appendix B Software for Simulating the Gy Field Gradient Uniform	nity
B.1Program to Calculate G_y (Z-X Plane)B.2Program to Calculate G_x (Z-X Plane)B.3Program to Calculate G_z (Z-X Plane)	188 188 190 192
Appendix C Publications	194
Bibliography	195

List of Figures

Figure 2.1 Figure 2.2	A Spin j = 1/2 System A Semiclassical Description of the Macroscopic Magnetization Vector	4 6
Figure 2.3	A Rotating Frame ($\gamma > 0$)	7
Figure 2.4	Motion of Magnetization in the Laboratory Frame	8
Figure 2.5	Motion of Magnetization in the Rotating Frame	9
Figure 2.6	$90^{\circ}l_{x'} - \tau - 180^{\circ}l_{y'}$ Pulse Sequence and Spin Echo	11
Figure 2.7	$90^{\circ} _{x'} - \tau - 180^{\circ} _{x'}$ Pulse Sequence and Spin Echo	12
Figure 2.8	Motion of $M_x(t)$	14
Figure 2.9	Motion of $M_y(t)$	14
Figure 2.10	Motion of $M_z(t)$	14
Figure 2.11	Time and Frequency Domain Signals in NMR	14
Figure 2.12	The Transverse Magnetization Vector in Two Frames	15
Figure 2.13	The Effect of Field Gradient in NMR	18
Figure 2.14	Magnetic Field Gradients (along the axes)	19
Figure 2.15	Transverse Magnetization at Time 2t as a Function of Position due to Selective Excitation	20 21
Figure 2.17 Figure 2.18	The Larmor Frequency is a Function of the Position The Rotating Frames and the Magnetization	22 22 22
Figure 2.20	Filtered Back Projection Reconstruction	26
Figure 2.21	Time Domain Signal and k Space	27
Figure 2.22	The Interpolation Process in FBP	27
Figure 2.23	Data Processing Sequence of FBP	28
Figure 2.24	Spin Echo and Field Gradient	31
Figure 2.25	Pulse Gradient Spin Echo Technique	32
Figure 2.26	the PGSE Technique	36 37
Figure 2.28 Figure 2.29 Figure 2.30	Discrete Time and Frequency Domains Possible Error of FWHM due to the Software	39 39 41
Figure 2.31	Experimental Data and its Equivalents	42
Figure 2.32	Decomposition of FT Data	43
Figure 2.33	Simulating the Effect of A ₀ being Halved	44
Figure 2.34	Simulating the Effect of Finite Base Line	45
Figure 2.35	Effect of Zero-filling in Dynamic Imaging	45
Figure 2.36	Simulating the Effect of Zero-filling	46
Figure 2.37	Oscillation due to Data Truncation	47
Figure 3.1	Block Diagram of an NMR Imaging System	48
Figure 3.2	Massey NMR Imaging System	49
Figure 3.3	The Coordinates of the NMR Imaging System	50
Figure 3.4	Structure of the Probe (without the side pcbs)	50
Figure 3.5 Figure 3.6 Figure 3.7 Figure 3.8 Figure 3.9	 φ 2.1 mm RF Coil Construction RF Tank Circuit RF Coils System RF Response Curve Tip Angle as a Function of DAC Level 	55 56 57 59 60

Figure 3.10 Figure 3.11	Circuit Diagrams of Duplexer	61
Figure 3.12	Power Supply	64
Figure 3.13	KEPCO ATE 75-15M Power Supply The Internal Layout of the Reconstructed KEPCO	65
Figure 3.14	Power Supply	66 67
Figure 3.15	Output Waveforms of the Reconstructed KEPCO Power Supply	69
Figure 3.16	Dimension of the Probe	70
Figure 3.17	Planar Coil Geometry	71
Figure 3.18	Magnetic Field Strength	72
Figure 3.19	Schematic Percentage Variations in Gy Gradient	76
Figure 3.20	Percentage Variations in G _v Gradient	77
Figure 3.21	Percentage Variations in G _x Gradient due to G _x	
Ū	Orthogonal Gradient	78
Figure 3.22	Percentage Variations in G _z Gradient due to G _z	-
T: 2.02	Orthogonal Gradient	79
Figure 5.25	New Gy Coll and the Probe	00
Figure 3.24	Flow Chart for Dynamic Imaging Experiments	81
Figure 3.25	Floppy Disk Format	83
Figure 3.26	Flow Chart for Disk Reading Program	84
Figure 3.27	Flow Chart for Disk Writing Program	85
Figure 3.28	Information Position on File Directory	80
Figure 3.29	Methods for Searching Peak and Calculating FWHM	8/
Figure 3.30	Effect of Finite Base Line	87
Figure 3.31	Flow Chart for the Program Searching Peak and	00
Eiman 2 22	Calculating FWHM	00
Figure 3.52	Memory Map for Dynamic Imaging Experiments	00
Figure 3 34	Flow Chart for the Program Analyzing Dynamic Image Data	90
I Iguie 5.54	(a) General	91
	(b) Menu Loon	92
	(c) Mode Loop and Function Loop(i)	93
	(d) Parameter Adjustment Loop and Function Loop(ii)	94
F: 4.1		05
Figure 4.1	Pulse Sequence for Static Imaging Experiments	95
Figure 4.2	Microsophie NMD Income of the Three Tube Disectory	98
Figure 4.5	Microscopic NMR Image of the Infee-Tube Phantom	101
Figure 4.4	Sample Holder Assembly for Publit Traches Experiment	101
Figure 4.5	Sample Assembly in Pabbit Trachea Experiment	100
Figure 4.0	Experimental Set Up for Rabbit Trachea Experiment	105
Figure 4.8	NMR Spectra in Rabbit Trachea Experiment	106
Figure 4.0	T. Measurement	107
Figure 4.10	T. Measurement	107
Figure 4.10	12 Measurement	1107
Figure 4.11	Interpretations of the Rabbit Trachea Image	111
Figure 4.12	Images from the Defiation Sequence of Trachea #2	112
Figure 4.15	Images from Trachea #8 showing	112
11guie 4.14	the Collapsing Process in Detail	113
Figure 4 15	Pulse Sequence for T ₁ Contrast Imaging Experiment	114
Figure 4 16	Proton Signals through a Line of T ₁ Contrast Images	116
115010 4.10	rioton orginals intolign a bine of 11 contrast images	
Figure 5.1	Pulse Sequence for the Poiseuille Flow Imaging	118

v i

Figure 5.2	Sample System for Poiseuille Flow Experiment	119
Figure 5.3	Fluid Flow in a Pipe	120
Figure 5.4	Calibration of the Poiseuille Flow System	121
Figure 5.5	Data Images of the Poiseuille Flow Experiment	123
Figure 5.6	Velocity and Diffusion Images of Poiseuille Flow	124
Figure 5.7	Stacked Plots of the Poiseuille Flow Image	125
Figure 5.8	Velocity Profiles of the Poiseuille Distribution	126
Figure 5.9	Noise Effect in Diffusion Calculation	128
Figure 5.10	Schematic Diagram of a Wheat Ear	130
Figure 5.11	Experimental Preparation for Wheat Grain Imaging	131
Figure 5.12	Experimental Arrangement for the Wheat Grain Imaging	132
	a) A Wheat Grain Sample	132
	b) Sample and NMR Imaging System	132
Figure 5.13	Transection of a Wheat Grain	133
Figure 5.14	Pulse Sequence for the Wheat Grain Imaging	134
Figure 5.15	Velocity and Diffusion Maps of a Wheat Grain	135
Figure 5.16	Central Regions of the Wheat Grain Velocity Images	136
Figure 5.17	Central Regions of the Wheat Grain Diffusion Images	137
Figure 5.18	Stacked Plots of the Wheat Grain Images	138
Figure A.1	Flow Chart for the TI 980A Modifications	168

а.

List of Tables

Table 3.1	Characteristics of RF Coils	56
Table 3.2	RF Pulse Amplitudes	58
Table 3.3	System Performance	62
Table 3.4	The Ripple Measurements	66
Table 3.5	Comparison of the Ripple	68
Table 3.6	Performance of the Gradient Power Supplies	68
Table 3.7	Calculations of the Unit Gradients	74
Table 3.8	Characteristics of the Gradients	75
Table 4.1	Imaging Parameters for Static Imaging Experiments	97
Table 4.2	Relaxation Times of Rabbit Trachea	108
Table 5.1	Imaging Parameters for Dynamic Imaging Experiments	117
Table 5.2	Velocity Rate	127

List of Symbols

a	RF coil radius	29
a _{mj}	Complex admixture amplitudes of a spin system	3
A	An operator representing an observable quantity	5
A	Cross sectional area	108
A B m	Effective field in the rotating frame	7
B	Magnetic field	6
Bo	Amplitude of the main magnetic field	3
B ₀	Main magnetic field directed along the z axis	3
D 0	A multiple of the transverse of field $\mathbf{P}_{i}(t)$	7
\mathbf{D}_{1}	Amplitude of the transverse if field $\mathbf{b}_{\mathbf{I}}(t)$	7
$B_1(t)$	RF field (in the transverse plane)	1
D	Self-diffusion coefficient	32
D	Self-diffusion tensor	33
De	Extra broadening due to velocity spread	4/
$E(m_j)$	Energy eigenvalues of a spin system	3
f F	Spectrometer frequency	29
	Noise figure of the spectrometer	10
	sin transform of the function in []	23
	sin transform of the function in ()	23
r _{c(})		20
g	Amplitude of PGSE gradient	32
g	Maximum gradient employed in dynamic imaging	10
Sm	A surling a c Call and line	40
G	Field gradient	10
\mathbf{G}	Fourier transform of fracuency domain function H(f)	38
H.	Imaginary part of the discrete function H	42
H.	Real part of the discrete function H	42
H(f)	Fourier transform of time domain function h(t)	38
H	Hamiltonian operator	3
$\mathcal{H}_1(t)$	Perturbation term in Hamiltonian operator	7
		1
1	$(-1)^{1/2}$	4
I Imp[]	Function selected in dynamic imaging analysis program	91
im[]	Spin quantum number	30
J	Spin angular momentum operator	3
J k	Frequency domain (digital) variable	38
k	Static reciprocal space vector	24
k _R	Boltzmann constant	5
ĸ	Numerical factor in the calculation of S/N	16
1	Length of the pipe in Poiseuille sample system	119
L	Length of the conductor	16
m _i	Azimuthal quantum numbers	3
M	Macroscopic magnetization vector	5
M ₀	Magnitude of M in the equilibrium state	6
M_{\perp}	Transverse component of M	9
n	Time domain (digital) variable	38
n _p	Maximum number of data images	36
nı	A constant in the 'tube law'	109

N N N p P P N acc p P P 1 P s P P Q Q q	Number of spins per unit volume Total number of digits in time domain Number of hydrogen nuclei per unit volume Number of projections Number of accumulations per projection Perimeter of the conductor Transmural pressure difference Constant asymptotic pressure Self-correlation function of the nuclear spin Filtered profile Quality factor of the coil Volume amount of fluid Dynamic reciprocal space vector	5 38 16 29 25 16 109 33 25 16 120 34
r R Re[] S S(t) S*	Position vector	18 33 120 24 33 24 25
s t _p t _{me}	Duration of the pulse	25 9 25
T T T_{c} T_{s} T_{1} T_{2}	Absolute temperature of a spin system Time domain sampling interval Sampling time in imaging experiments Probe temperature Sample temperature Spin-lattice relaxation time Spin-spin relaxation time	5 38 96 16 16 10 10
T2 [*] Tr() U _E (t)	Transverse relaxation time Trace of the operator in () Evolution operator	10 4 4
$U_{Rz}(\theta)$ V_{C} V_{S} W	Rotation operator Velocity of fluid flow Volume of the coil Sample volume Weight of the fluid	4 33 16 16 120
α	A variable in discrete Fourier transform	38
Ŷ	Gyromagnetic ratio	3
0	Duration of the PGSE pulse	32
η n	Praction of the coll volume occupied by the sample	10
η.	Dynamic viscosity of the fluid	120
2	Wave length	9
	Permeability of free space	16
μ0 	Magnetic moment vector	2
μ V	Kinematic viscosity of the fluid	110
F	Complex FID signal	35
5	complex i iD signal	55

ρ	Density operator	4
ρ	Density of the fluid	119
ρ_{I}	Imaginary part of nuclear spin density	35
ρ_R	Real part of nuclear spin density	35
ρ_{T}	Resistivity of the conductor	16
ρ(r)	Nuclear spin density	24
σ	RF coil proximity factor	16
σ (n)	Noise function	127
τ	Short time interval	10
ω	Larmor precession frequency	7
ω ₀	Larmor precession frequency due to \mathbf{B}_0	4
ω_1	Larmor precession frequency due to B ₁	8
ω_{eff}	Precession frequency in the rotating frame	7
Δ	Separation of the PGSE pulses	32
φ	Projection angle in imaging experiment	24
lj m _j >	Basis eigenket set of a spin system	3
Ιψ>	General quantum state of a spin j system	3
<a>	Ensemble average of the observable quantity A	4
la _{mj} 2	Normalized population in the eigenstate $ j\ m_j>\ \ldots$	5
Δf	Bandwidth of the receiver	16
Δh	Height difference	120
	Transverse resolution	47 29
ΔZ	Slice thickness	29
ΔE	Energy difference between the two adjacent states	7
ΔP	Pressure difference along the length of the pipe	119
Δφ	Step angle in imaging experiment	25
VD0	Deserves and light	19
٧P	Pressure gradient	119
μ	Planck's constant divided by 2π	3

xi

Chapter 1 Introduction

1.1 Introduction

Nuclear Magnetic Resonance (NMR) Imaging is a non-invasive technique which gives the spatial distribution of the NMR signal intensity or other NMR parameters in a heterogeneous sample. The first experimental demonstration of the feasibility of macroscopic NMR imaging was given by Lauterbur in 1972 (1,2).

In conventional NMR it is usual to place the sample, which is homogeneous and small, in a very uniform magnetic field, so that the resonant frequency depends upon the external field modified slightly by the local environment. NMR spectra obtained in this way yield details of the local molecular environment.

By contrast, NMR Imaging concerns a sample which is heterogeneous, and usually not small. Furthermore, the sample is placed in a deliberately non-uniform magnetic field, which enables the hetero-structure of the sample to be derived and displayed.

Many different techniques have been described for NMR Imaging^(3,4,5). Among these the Projection Reconstruction technique, originally from X-ray Tomography, is the most sensitive one⁽⁶⁾.

The proton (¹H) is the most commonly used nucleus when doing imaging experiments, Hydrogen being the most abundant element in the living systems. ¹H is isotopically almost 100% abundant, and has the highest magnetic moment among stable nuclei, thus yielding optimum sensitivity. ¹⁹F and ³¹P nuclei are next in sensitivity and have some practical interest. Other nuclei are, in practice, difficult to image.

Traditionally NMR imaging reveals some stationary distribution functions of a nuclear spin system, for example, the spin density distribution. Such imaging is termed 'static' NMR imaging in this thesis.

By incorporating the Pulse-Gradient-Spin-Echo (PGSE) technique, the NMR imaging can describe time-dependent functions. This technique is termed 'dynamic' NMR imaging. Simultaneous imaging of flow and diffusion at the microscopic level can be performed using this new technique, which has been demonstrated by some imaging experiments in this work.

1.2 Organisation of the Thesis

This thesis is divided into 6 chapters.

Chapter 2 provides a description of NMR and NMR imaging. One of the most commonly used imaging techniques, Filtered Back Projection (FBP), is described in detail. The theory of dynamic imaging is discussed extensively in this chapter.

In Chapter 3 a brief description of an existing static NMR microscopic imaging system is given first, followed by some developments and modifications to this system which form part of the present work. These have improved this system and enabled the performance of the flow and diffusion imaging experiments.

The static imaging experimental results are presented in Chapter 4, while the dynamic results are in Chapter 5.

A brief summary and some comments about possible future work are given in Chapter 6.

Appendix A gives the complete software listings for the flow and diffusion imaging experiments. Appendix B gives the software listings for the simulating the uniformity of G_v field gradient.