Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

METAL COCRDINATION STUDIES

<u>CF</u> SULPHUR IIGANDS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Fhilosophy in Chemistry at Massey University.

NIGEL GRANT LARSEN 1979

ACKNCWIEDGENENTS

The author is indebted to:

Drs. E.N. Baker and A.N. Prodie for their supervision and encouragement.

Drs. E.W. Ainscough and P. Anderson for many useful discussions.

Dr K.I. Frown, Chemistry Division, D.S.I.K., Fetone, for forwarding X-ray crystallographic data for [Cu(tbmpH)Er₂]₂, and for the use of the four-circle X-ray diffractometer.

Dr M. Weiner, The City College of the City University of New York, for recording and forwarding photoelectron spectroscopic data.

Mr A.A. Trow and Lr F.L. Jolley for recording nmr spectra.

Frcfessor R. Hodges for mass spectra.

Dr G.A. Bowmaker, Department of Chemistry, University of Auckland, for the use of the interferometer.

Ircfessor A.D. Campbell of Ctago University for microanalyses.

Eelinda Taylor, for typing this work. The award of a University Grants Committee Postgraduate Scholarship is gratefully acknowledged.

AESTRACT

Transition metal complexes of ligands containing thioether sulphur have been investigated. Section I, concentrates on Cu(II) complexes, and to a lesser extent Cu(I) complexes, of mixed sulphur-nitrogen ligands. Some complexes of Co(II) and the d^{ℓ} metal ions, Ni(II), Id(II) and It(II), have also been included. In Section II, complexes of the Group VIF metals (Cr(C), Fo(C), N(C)) are discussed.

SECTION I

All of the complexes have been investigated using infrared and electronic spectroscopy, with electronic spectra for some of the Cu(II) complexes also being recorded at SCK. The Cu(II) complexes have also been studied using electron spin resonance (esr) spectroscopy. For a variety of solvents at 77K, esr has been especially useful in revealing the complex behaviour of some of the compounds.

i) <u>Complexes of 2-(3,3-dimethyl-2-thiabutyl)pyridine (tbmp)</u>

The ligand has been used to prepare the Cu(II) complexes, $Cu(tbmp)_{n}X_{2}$ (n=1, X=Cl⁻, Br⁻; n=2, X=BF₄⁻, ClO₄⁻, Cl⁻, Er⁻), $[Cu(tbmp)_{2}X]BF_{4}$ (X=Cl⁻, Er⁻), and the Cu(I) complexes, $Cu(tbmp)_{n}Br$ (n=1,2) and Cu(tbmpH)X₂ (X=Cl⁻, Er⁻).

Crystallographic studies are reported for Cu(tbmp)Pr₂, Cu(tbmp)₂Er and Cu(tbmpH)Er₂.

 $Cu(tbmp)Br_2$ crystallizes as discrete, non-centrosymmetric dibromo-bridged dimers ($[Cu(tbmp)Pr_2]_2$), in which each Cu(II)centre has a distorted tetragonal pyramidal environment. The tetrahedrally distorted basal plane of each Cu(II) centre consists of one thioether sulphur ligand, (mean Cu(II)-S = 2.352(6) Å), one pyridyl nitrogen (mean Cu(II)-N = 2.06(2) Å) and two bromide ions [one terminal (mean Cu(II)-Br = 2.372(3) Å) and one bridging (mean Cu(II)-Er = 2.415(3) Å)]. The apex of each tetragonal pyramid is formed by a long bond to the bridging, basal bromide ion (mean Cu(II)-Er = 2.902(4) Å) of the second Cu(II) centre.

In monomeric, distorted tetrahedral $Cu(tbmp)_2 Br$, each Cu(I) ion is bound by a terminal tromine (Cu(I)-Fr = 2.426(2) Å), two thicether sulphur atoms (mean Cu(I)-S = 2.331(4) Å) and a pyridyl nitrogen (Cu(I)-N = 2.11(1) Å).

 $Cu(tbmpH)Br_2$ forms centrosymmetric dimers ($[Cu(tbmpH)Br_2]_2$), in which the distorted tetrahedral Cu(I) centres are bridged by two bromide ions (mean Cu(I)-Br = 2.597(1) Å). The two remaining coordinating positions of each Cu(I) ion are occupied by a terminal bromide ion (Cu(I)-Br = 2.363(1) Å) and a sulphur-bound (Cu(I)-S = 2.276 (2) Å) tbmpH⁺ cation.

The structural data for these and related complexes are used in attempting to understand the nature of Cu(I) and Cu(II) interactions with biologically relevant ligands.

The spectroscopic data suggests that the $Cu(tbmp)_2X_2$ complexes are <u>cis</u>-octahedral in the solid state, whereas the $[Cu(tbmp)_2X]BF_4$ complexes are tetragonal pyramidal.

An unstable deep blue species is formed by the addition of t-butyl thiolate to $Cu(thmp)_2X_2$, where X is ClC_4 or BF_4 . The displacement of thmp (by pyridine) from $Cu(thmp)_2X_2$ (X = Cl⁻, BF_4) is also discussed.

With Co(II) and Ni(II), the <u>cis</u>-octahedral $M(tbmp)_2X_2$ (X=Cl⁻, Br⁻) and $M(tbmp)_2(ClC_4)_2.nH_2C$ (n = 1,2) complexes have been characterized. The nature of paramagnetic metal ion $[\Sigma=Cu(II), Co(II)]$ interactions with thmp under hydrophobic conditions are investigated using ¹H nmr spectroscopy.

ii) <u>Complexes of 2-ethylthioethylamine</u> (etea)

The tetragonal complexes $Cu(etea)X_2$ (X=Cl⁻, Br⁻), $Cu(etea)_2X_2$ (X=BF₄⁻, ClC₄⁻, Cl⁻, Br⁻) and [Cu(etea)_2Cl]EF₄ have been characterized and the displacement of etea from $Cu(etea)_2(ClC_4)_2$ (by pyridine), is discussed.

iii) <u>Complexes of 2-methylthio-2-imidazoline</u> (mti)

In the reactions of mti with M(II), the tetragonal complexes $Cu(mti)_4X_2$ (X = BF₄⁻, Cl⁻, Br⁻) were successfully synthesized, together with a tetrahedral complex, $Co(mti)_3Cl_2$. In the latter, one mti molecule appears to remain uncomplexed.

With $Cu(mti)_4 (BF_4)_2$, the ligand is not displaced by an excess of pyridine. A ¹H nmr line broadening experiment provides good evidence for Cu(II) binding to mti via its non-protonated nitrogen.

iv) Complexes of 2-(3, 3-dimethyl-2-thiabutyl)quinoline (tbmg)

With this ligand, the pseudotetrahedral Cu(II) complexes, Cu(tbmq)X₂ (X = Cl⁻, Br⁻) and the Cu(I) complexes, Cu(tbmq)Br, Cu(tbmqH)Br₂ and Cu(tbmq)₂ClO₄, were synthesized. In contrast to tbmp and etea, tbmq does not form the sixcoordinate complexes, Cu(tbmq)₂X₂ (X = Cl⁻, Br⁻).

v) <u>Complexes of 3-(2-methylthiophenylimino)camphor</u> (1)

Although I is susceptible to hydrolysis, the successful isolation and characterization of the pseudo-tetrahedral $CuL(ClO_4)_2$.acetone.xH₂O (x = C,2) complexes was achieved from acetone solutions. A ¹H nmr line broadening experiment indicates that Cu(II)/S(thioether) interactions take place under hydrophobic conditions.

vi) <u>Complexes of 1,2-bis(pentafluorophenylthio)ethane (fpte)</u> and ethylthiopentafluorobenzene (C₆F₅SEt)

In order to determine the effects of the electronegative pentafluorcphenyl substituents, the spectroscopic data for <u>cis</u>-FtCl₂fpte, <u>cis</u>-FdCl₂fpte and <u>trans</u>-FtCl₂(C₆F₅SEt)₂ are compared with the data for some related thioether ligand complexes. The results can be explained by a comparison of the ionisation potentials of the sulphur lone-pair electrons of fpte (as determined by photoelectron spectroscopy) with those of 3,4-bis(alkylthio)toluene (alkyl = methyl, ethyl) and <u>meta</u>- and <u>para</u>-bis(methylthio)benzene.

SECTION II

All of the carbonyl complexes in this Section have been characterized by infrared and electronic spectroscopy and in most cases, ¹H nmr spectroscopy.

i) <u>Complexes of 3,4-bis(methylthio)toluene (bmtt) and</u> <u>3,4-bis(ethylthio)toluene</u> (bett)

The bridged-ligand complexes, $[M(CC)_5]_2$ bmtt and $[M(CO)_5]_2$ bett (M=Cr, W), and the chelated-ligand complexes, $M(CO)_4$ bmtt and $M(CC)_4$ bett (M=Cr, No, W) were characterized in this study. On the basis of force constant calculations and electronic spectra, it is apparent that for aryl thioether ligands such as bmtt and bett, the sulphur atom acts as a poorer σ -donor and, in general, a better Π -acceptor than it does in aliphatic thioether ligands. A similar conclusion is reached for C_6F_5 SEt (see above), with which unstable $M(CC)_5C_6F_5$ SEt (M=Cr, W) complexes were synthesized.

Reactivity studies are reported for $[W(CC)_5]_2$ bett and the mass spectra of $[W(CC)_5]_2$ bmtt and the $M(CC)_4$ bmtt (N=Cr, No, W) complexes are discussed.

¹³C nmr spectra were recorded for $["(CO)_5]_2$ bmtt, $M(CO)_4$ bett (N=Cr, W), Cr(CO)_4bmtt and the ligands. The ¹³CO chemical shifts for $["(CC)_5]_2$ bmtt and the $W(CO)_5$ I complexes of phosphorus and nitrogen ligands are correlated with their Cotton-Fraihanzel carbonyl force constants.

ii) <u>Complexes of 2-ethylthioethylamine (etea) and</u>

2-(3,3-dimethyl-2-thiabutyl)pyridine (tbmp)

Both the bridged-ligand $[N(CC)_5]_2$ etea (N=Cr,W) and the chelated-ligand $N(CC)_4$ etea (N=Cr, No, W) complexes were characterized for etea. However, only the chelatedligand complexes were isolated and characterized for tbmp.

¹³C nmr spectra for etea, $Cr(CC)_4$ etea and $Mo(CC)_4$ etea (the carbonyl complexes showing two distinct <u>trans</u>-¹³CO resonances) and reactivity studies for $[W(CC)_5]_2$ etea and $W(CC)_4$ etea, are also discussed.

iii) <u>Complexes of 2-methylthioaniline (mta), 2-methylmercapto-</u> benzimidazole (mmbi) and 2-methylthio-2-imidazoline (mti)

The combined spectroscopic data for the N(CC)₅L complexes of these ligands, shows that mmbi and mti prefer to bind to the zero-valent Group VIB metals via one of their nitrogen donors. Cn the other hand, mta prefers to bind via the thioether sulphur.

Although the complexes of mta could not be isolated in an analytically pure form, good evidence for their identities was provided by their infrared and mass spectra and the observed replacement of mta from %(CC)₅mta, by triphenylphosphite.

CONTENTS

GEN	ELAL INTROD	UCTICN	t
SEC Pd(. Sulj	FICK I Com II) and Ft(phur.	plexes of Cu(II), Cu(I), Co(II), Ni(II), II) with Ligands Containing Thicether	
		Introduction to Section I	3
<u>1</u>	Dimeric Cop 2-thiabuty1 dimethy1-2-	pper(II) Complexes of 2-(3,3-dimethyl- l)pyridine. Introduction Crystal Structure of Eis[dibromo(2-(3,3- -thiabutyl)pyridine)copper(II)] Spectroscopic Results and Discussion Experimental Syntheses	8 10 28 47 52
2	Bis [2-(3,3- Complexes.	-dimethyl-2-thiabutyl)pyridine] Copper(II) Introduction Spectroscopic Results and Discussion Interaction of Thicls with Cu(tbmp) ₂ X ₂ Reactivity Studies Paramagnetic ¹ H nmr Jine Breadening Syntheses	54 57 82 84 86 90
<u>3</u>	Copper(I) (pyridine an pyridinium dimethyl-2- 2-(3,3-dime	Complexes of 2-(3,3-dimethyl-2-thiabutyl)- and the 2-(3,3-dimethyl-2-thiabutyl)- Cation. Introduction General Chemistry Crystal Structure of Bromo-bis[2-(3,3- -thiabutyl)pyridine]copper(I) Crystal structure of Bis[dibromo(1-H- ethyl-2-thiabutyl)pyridine)copper(I)] Spectroscopic Results and Discussion Experimental Syntheses	93 96 97 104 108 117 121
<u>4</u>	Bis [2-(3,3- Cobalt(II) Experiment	-dimethyl-2-thiabutyl)pyridine] and Mickel(II) Complexes. Introduction Spectroscopic Results and Discussion Paramagnetic ¹ H nmr Jine Broadening	123 124 139
		Syntheses	141
5	M(II) Comp Cu(II)) and Co(II)).	<pre>lexes of 2-ethylthioethylamine (M(II)= d 2-methylthio-2-imidazoline (M(II)=Cu(II), Introduction Spectroscopic Results and Discussion Reactivity Studies Faramagnetic ¹H nmr Line Broadening</pre>	144 146 173 175
	and of function of	Syntheses	177

PAGE

				PAGE
<u>6</u>	Copper quinoli	Comj ne a	plexes of 2-(3,3-dimethyl-2-thiabutyl)- and 3-(2-methylthiophenylimino)camphor. Introduction Spectroscopic Results and Discussion Faramagnetic ¹ H nmr Line Broadening	182 183
	Experin	nent	Syntheses	192 194
7	Platinu 1,2-bis Flatinu benzene	um(II s(per um(II	[) and Falladium(II) Complexes of ntafluorophenylthio)ethane and a [) Complex of Ethylthiopentafluoro-	
	DellZelle	- ,	Introduction Spectroscopic Results and Discussion Analysis of the Electronegativity Effects Syntheses	198 199 205 207
Арре	endices	I II IV V	Ligand Syntheses, Preparations and Reactivity Studies Ceneral Synthesis of Complexes Experimental Details for Reactivity Studies Instruments and Recording of Spectra Solvents Miscellaneous Reactions Unsuccessful Reaction Attempts Studies on Cu(tbmp) ₂ X ₂ Melts Structure Factor Tables	210 216 218 220 221 223 224 225
SECI Mo((<u>CION II</u> D), W(C))) wi	Complexes of the Group VIB Metals (Cr(C), ith Ligands Containing Thioether Sulphur.	
			Introduction to Section II	239
<u>1</u>	Bridged toluene	l-lig e and	yand Complexes of 3,4-bis(methylthio)- 1 3,4-bis(ethylthio)toluene. Introduction Spectroscopic Results and Discussion Reactivity Studies Mass Spectra	243 244 260 265
2	Chelate	ed-li e (al	gand Complexes of 3,4-bis(alkylthio)- lkyl=methyl, ethyl). Introduction Spectroscopic Results and Discussion Mass Spectra Syntheses	267 268 281 283
<u>3</u>	Complex Sulphur	kes (r-Ni	of Monodentate and Bidentate trogen Donor Ligands. Introduction Spectroscopic Results and Discussion Reactivity Studies Mass Spectra Syntheses	289 290 310 315 317

PAGE

GENERAL DISCUSSION AND CONCLUSIONS

	Thioether Interactions with Zero-valent	
Metals.	The Dele of Sterie Interpotions in the	326
Complexes of	f tbmp, tbmq, I, etea and mti.	336
	Thioether interactions with Cu(I) and Cu(II).	341
	Flexibility of Cu S(thioether) Interactions.	345
	Structural Changes in Copper Froteins. The Crisin of the 600 nm. Absorption	345
in "Model" (Complexes and the "Blue" Froteins.	347
Appendices 1	I Ligand Syntheses	351
	Methylation of bmtt	353
	II General Synthesis of Carbonyl Complexes Characterization of Unstable C _c F ₅ SEt	354
	Complexes	355
	Experimental Details for Reactivity Studies	355
	III Instruments and Recording of Spectra	358
	Solvents	359
i.	IV Miscellaneous Reactions	360
1	V Force Constant Calculations for Carbonyl	
	Complexes	362

BIBLICGRAPHY

<u>tbmp</u>

<u>tbmq</u>

<u>bmtt</u>

mti

THIS WORK

tbmp	=	2-(3,3-dimethyl-2-thiabutyl)pyridine	
tbmpH+	=	2-(3,3-dimethyl-2-thiabutyl)pyridinium c	ation
etea	=	2-ethylthioethylamine	
mti		2-methylthio-2-imidazoline	
tbmq	=	2-(3,3-dimethyl-2-thiabutyl)quinoline	
tbmqH ⁺ is anal	ogoı	us to $tbmpH^{\dagger}$ (above)	
I	=3-	-(2-methylthiophenylimino)camphor	
fpte	=	1,2-bis(pentafluorophenylthio)ethane	
C ₆ F ₅ SEt	=	ethyl thi openta fluorobenzene	
bmtt	=	3,4-bis(methylthio)toluene	
bett	=	3,4-bis(ethylthio)toluene	
mta	=	2-methylthioaniline	
mmbi	=	2-methylmercaptobenzimidazole.	
		LITERATURE DATA	

A) <u>SECTICN I</u>

CHAPTER 1

dmen	=	N,N-dimethylethylenediamine
🗙 -pic	=	2-methylpyridine (🗙 -picoline)
tmen	=	N, N, N', N'-tetramethylethylenediamine
maep	=	2-(2-methylaminoethyl)pyridine
dth	=	2,5-dithiahexane
BBTE	=	5,8-dithiadodecane
pdto	=	1,8-bis(2-pyridyl)-3,6-dithiaoctane
EEE	=	1,8-diamino-3,6-dithiaoctane
1-MeIm	=	1-methylimidazole
I,o	=	3,4-bis(2-aminoethylthio)toluene
L ¹	=	N-(2-methylthiophenyl)(2-pyridyl)methylenimine

1 ²	=	bis(N,N-dimethylacetamido)thioether
L ³	=	1,4,8,11-tetrathiacyclotetradecane
I ⁴	=	2-methylthioethylamine
1 ⁵	=	[3,3'-ethylenedithiobis(o-phenyleneimino-
		methylidyne)bis(pentane-2,4-dionato)] ²⁻
r _e	=	tricyclo[17.5.5.5 ^{7,13}]tetraaza-1,7,13,19-dioxa-
		4,16-tetrathia-10,22,27,32-tetratriacontane
1 ⁷	=	1-oxa-4,13-dithia-7,10-diazacyclopentadecane
dmaep	=	2-(2-dimethylaminoethyl)pyridine
aep	=	2-(2-aminoethyl)pyridine
amp	=	2-aminomethylpyridine
pib	=	\mathbb{N}, \mathbb{N}' -tetramethylenebis(2-pyridinaldimine)
tu	=	thiourea
dip	=	2,2'-bipyridyl
tren	Ξ	tris(2-aminoethane)amine
bipy	н	2,2'-bipyridyl
tctd	=	1,4,8,11-tetrathiacyclotetradecane
F ₆ acac	=	[1,1,1,5,5,5-hexafluoro-2,4-pentanedionato]
		CHAPTER 2
trenNe ₆	Ξ	hexamethyl N-substituted tris(2-aminoethane)amine
trienR ₆	=	hexaalkyl N-substituted 1,4,7,10-tetraazadecane
en	Ħ	1,2-diaminoethane (ethylenediamine)
		CHAFTER 3
dto	=	3,6-dithiaoctane
14-ane-S ₄	=	1,4,8,11-tetrathiacyclotetradecane
py2S2	=	bis(2-pyridyl)disulphide
py2 ^{Et2S2}	=	bis[2-(2-pyridyl)ethyl]disulphide
pea	=	[2-(2-pyridyl)ethyl] bis[2-(ethylthio)ethyl]amine

tal-i-C	3 ^H 7	=	N-(2-thenylidene)isopropylamine
C8H8		=	cyclooctatetraere
DPFA		=	bis(diphenylphosphino)acetylene
tal-CH3		=	N-(2-thenylidene)methylamine
(Me2N)2	Et ₂ S ₂	=	bis[2-(N,N-dimethylamino)ethyl]disulphide
			CHAPTER 4
Hpymt		=	pyrimidine-2-thione
mmp		=	2-methylthiomethylpyridine
NSSN		1	1,6-bis(2-pyridyl)-2,5-dithiahexane
mmtq		=	2-methyl-8-methylthioguinoline
A		=	1, E-bis(2-pyridyl)-3, 6-dithiaoctane
			CHAPTER 6
N-R-sal		=	[N-salicylidenealkylaminato]
I ¹		1	N,N'-(1,7,7-trimethylbicyclo[2,2,1] heptane-
			2,3-diylidene)dianiline
			CHAPTER 7
dmedt		=	1,2-bis(methylthio)ethylene
dnxdt		=	2-methyl-4,5-bis(n-butylthio)toluene
dbedt		=	1,2-bis(benzylthio)ethylene
dmmnt		=	1,2-bis(methylthio)ethylene dinitrile
SN		=	1,2-bis(2-aminophenylthio)ethane
dpd		=	1,12-bis(phenylthio)dodecane
pms		=	phenylmethylsulphide
p-bmtb		=	1,4-bis(methylthio)benzene
B)	SECTION	II	
			CHAPTER 1
dmpe		=	1,2-bis(dimethylphosphino)ethane
o-bmtb		=	1,2-bis(methylthio)benzene
pte		=	1,2-bis(phenylthio)ethane

	benzyime inyisuiphide
11	1,3-bis(methylthio)benzene
=	3,8-dithiadecane
=	2,2,7,7-tetramethyl-3,6-dithiaoctane
=	1,2-bis(p-nitrophenylthio)ethane
=	1,12-diaminododecane
=	2,9-dithiadecane
	CHAFTER 2
=	1,2-bis(diphenylphosphino)ethane
=	1,2-tetrakis(methylthio)ethylene
=	1,2-tetrakis(ethylthio)ethylene
=	N, N, N', N'-tetramethylethylenediamine
=	1,2-bis(p-dimethylaminophenylthio)ethane
=	1,2-bis(p-methoxyphenylthic)ethane
=	$\mathbb{N}, \mathbb{N}, \mathbb{N}', \mathbb{N}'$ -tetramethylethylenediamine
=	trimethylenediamine
	CHAFTER 3
Ξ	benzimidazole

SECTION I

Figure		Page
1	Structure of [Cu(tbmp)Br ₂] ₂ .	11
2a,b	Electronic Spectra - [Cu(tbmp)X2]2 Dimers.	30
2c	Ligand Field Kaxima of 5-Coordinate Cu(II) Complexes.	31
3	ESR Spectra - [Cu(tbmp)X2]2 Dimers.	40
4	Far-IR Spectra - [Cu(tbmp)X2]2 Dimers.	45
5	Possible Structure, as Indicated by Fatterson Vectors.	49
6	Possible Structures for $Cu(tbmp)_2X_2$ and $[Cu(tbmp)_2X]BF_4$	
	Complexes.	55
7	Electronic Spectra - $Cu(tbmp)_2 Br_2$ and $[Cu(tbmp)_2 Br] BF_4$.	59
8	Electronic Spectra - $[Cu(tbmp)_2X]BF_A$ Complexes at 9CK.	64
9	ESR Spectra - Cu(tbmp) ₂ X ₂ Complexes.	68
10	Far-IR Spectrum - Cu(tbmp) ₂ Cl ₂ .	78
11	Electronic Spectrum (9CK) - Addition of t-Bus to	
	$Cu(tbmp)_2(ClC_A)_2$ in Methanol.	83
12	Electronic Spectra - Addition of pyridine to Cu(tbmp) ₂ Cl ₂	. 85
13a	¹ H nmr - Addition of Cu(II) to tbmp.	87
13b	¹ H nmr - Additicn of Co(II) to 2-methylpyridine.	88
14	Relationships Between $Cu(tbmp)_{n}Br$ (n = 1,2) and	94
	[Cu(tbmpH)Br ₂] ₂ .	95
15	Structure of Cu(tbmp) Br.	98
16	Structure of [Cu(tbmpH)Br].	105
17	IR Spectra - Cu(I) Complexes and Pyridinium Salts.	109
18	Spin-Allowed Transitions for $O_{\rm L}$ Co(II) and Ni(II).	124
19	Electronic Spectra - Co(tbmp),X, Complexes.	126
20	Electronic Spectra - Ni(tbmp),X, Complexes.	132
21	IR Spectra - \mathbf{V}_{2} Modes, $\mathbb{M}(\text{tbmp})_{2}(\text{ClO}_{1})_{2}.\text{nH}_{2}$ Complexes.	137
22	¹ H nmr - Addition of Co(II) to tbmp.	140
23	Electronic Spectra - Cu(etea)Br2.	147
24	Electronic Spectra - $Co(mti)_{Cl_2}$ and $Co(\ll -pic)_{Cl_2}$.	152
25a	Electronic Spectra - $Cu(etea)_2(BF_4)_2$.	153
25b	Suggested Structures for $Cu(etea)_2 X_2 (X=ClO_A, BF_A)$.	154
26	ESR Spectra - Cu(etea) X2 Complexes.	158
27	Cu(II) Species Formed in Presence of Excess etea.	160
28	ESR Spectra - $Cu(mti)_{4}X_{2}$ Complexes.	166

<u>IIST CF FICURES</u> (Cont'd)

Figure		Tage
29a	IR Spectra - ClO_4^- and $BF_4^- V_3^-$ Modes.	171
29b	Resonance Structures for Substituted Imidazolines.	172
30	¹ H nmr - Addition of Cu(II) to mti.	176
31	Electronic Spectra - Cu(tbmq)X ₂ Complexes.	184
32	ESR Spectra - $Cul(ClO_A)_2$.	189
33	¹ H nmr - Addition of Cu(II) to I.	193
34	Far-IR Spectra - <u>cis</u> -NCl ₂ fpte Complexes.	200
35	Froposed <u>trans</u> -Structure for FtCl ₂ (C ₆ F ₅ SEt) ₂ . <u>SECTION II</u>	201
1	3,4-bis(methylthio)toluene and 3,4-bis(ethylthio)-	
	toluene.	241
2	M(CC) ₅ L Carbonyl-Stretching Modes.	244
3	IR Spectra – $[M(CC)_5]_2$ bmtt Complexes.	245
4	M-Ligand and M-CO Bonding Schemes.	248
5	N.O. Diagram for N(CC) L Complexes.	252
6	Electronic Spectra - $[N(CC)_5]_2$ bett Complexes.	254
7	IR Spectra - [W(CO) ₅] ₂ bett Reactivity Studies.	261
8	cis-N(CO) ₄ L ₂ Carbonyl-Stretching Vodes.	268
9	IR Spectra - N(CC) ₄ L ₂ Complexes.	269
10a	13 C nmr - Cr(CC) ₄ bmtt.	276
10b,c	¹³ CO Chemical Shifts <u>vs</u> . CO Force Constants,	
	[W(CC)] _J L Complexes.	277
11	Postulated Structures for Cr(CC) ₂ L ⁺ Ions in Mass Spectra.	282
12	Bridged-ligand Complexes of etea.	290
13	1^{3} C nmr - Cr(CO) ₄ etea.	299
14	¹ H nmr - Aryl Frotons of mmbi.	303
15	IR Spectra - Reflux $[V(CO)_5]_2$ etea With Excess P(CPh) ₃ .	312
16	IR Spectra - Reflux $W(CO)_4$ etea With Excess $P(OPh)_3$.	314
	IIST_CF_TABLES	
	SECTION I	
Table		Page
1	Stability Constant Data.	7
2	Summary of Results - $[Cu(tbmp)X_2]_2$ Dimers.	9
3a	Structural Details for [Cu(tbmp)Br2]2.	12
3b	Atomic Displacements from Basal Planes.	17
3c,d	Atomic Coordinates and Thermal Farameters for	
	[Cu(tbmp)Br ₂] ₂ .	14

LIST CF TABLES (Cont'd)

Table		Pag
4a	Crystallographic Data; Bromc-bridged, Dimeric Cu(II)	
	Complexes.	23
4b,c	Cu(II)-S(thioether) and Cu(II)-N(pyridyl) Bondlength	
	Data.	26
5a	Electronic Spectra, [Cu(tbmp)X2]2 Complexes.	32
5Ъ	Electronic Spectra of 5-Coordinate Cu(II) Complexes.	33
5c	C.T. Assignments for $[Cu(tbmp)X_2]_2$ and $[Cu(PETE)X_2]_2$.	33
6	ESR Spectra, [Cu(tbmp)X2] Complexes.	43
7a	Crystal Data for [Cu(tbmp)Er2]2.	47
7Ъ	Data Collection for [Cu(tbmp)Br2]2.	48
7c	Nean least-Squares Flane Equations.	51
8	Miscellaneous Thysical Data (Chapter 1).	53
9	Summary of Results - Cu(tbmp)2X2 Complexes.	56
1 C	Electronic Spectra - $Cu(tbmp)_2 X_2$ and $[Cu(tbmp)_2 X] BF_4$	
	Complexes.	60
11	Electronic Spectra at SCK.	65
12	ESR Spectra - $Cu(ttmp)_2X_2$ and $[Cu(tbmp)_2X]BF_4$	
	Complexes.	73
1 3a	Some Far-IR Data for Cu(II) Complexes.	79
13b,c	IR Spectra - tbmp/Cu(II) Complexes.	80
14	Miscellaneous Fhysical Data (Chapter 2).	92
15a	Structural Details for Cu(tbmp)_Br.	100
15b.c	Atomic Coordinates and Thermal Farameters for	
	Cu(tbmp)_Br.	101
16	Cu(I)-S(thioether) and $Cu(I)-N(pyridyl)$ Bond Data.	103
17	Structural Details for [Cu(tbmpH)Br].	106
18a,b	IR Spectra, Cu(I) Complexes.	111
19	Electronic Spectra, Cu(I) Complexes.	114
2Ca	Crystal Data for Cu(tbmp) 2 Br.	117
2СЪ	Data Collection for Cu(tbmp), Br.	118
20c	Mean Least-Souares Flane Equations.	120
21	Miscellaneous Physical Data (Chapter 3).	122
22a	Reflectance Spectra, Co(II) Complexes.	127
22b	Electronic Spectra, Co(II) Complexes in MeOH.	128
22c	Electronic Spectra, T, Co(II) Complexes.	129
23a	Electronic Spectra, NiN ₂ S ₂ X ₂ Complexes.	133
2 3Ъ	Estimated Dq and B for Ni(II) Complexes.	134
	-	

e

<u> IIST CF TAFIES</u> (Cent'd)

Table		Fage
24	IR Spectra, Co(II) and Ni(II) Complexes.	138
25	Miscellaneous Fhysical Data (Chapter 4).	143
26	Summary of Results - Cu(etea) X2 Complexes (n=1,2).	145
27a	Electronic Spectra - etea/Cu(II) Complexes.	148
27b,c	Electronic Spectra - mti/Cu(II) Ccmplexes and	
	Co(mti) ₂ Cl ₂ resp.	150
27d	Electronic Spectra of etea Complexes at 90K.	156
28a,b	ESR Spectra, etea and mti Complexes resp.	163
29	IR Spectra, etea and mti Complexes.	169
30	Electronic Spectra - Addition of pyridine to	
	$Cu(mti)_{A}(BF_{A})_{2}$.	174
31	Miscellaneous Physical Data (Chapter 5).	181
32	Electronic Spectra, tbmq and L Complexes.	184
33a	ESR Spectra, tbmg and I Complexes.	187
330	ESR Spectra, Distorted T _d Cu(II) Complexes.	187
34a	IR Spectra, tbmq Complexes.	191
34b	IR Spectra, of $CuL(ClO_4)_2$.acetone.xH ₂ O.	192
35	Miscellaneous Physical Data (Chapter 6).	197
36	IR Spectra; Pt(II), Pd(II) Thioether Complexes.	199
37	Electronic Spectra, Pt(II) and Pd(II) Complexes.	202
38	Ionisation Fotentials for Dithioether Ligands.	204
39	Niscellaneous Physical Data (Chapter 7).	209
40	Ligand Froperties and Analytical Results.	213
	SECTION II	
1	Group VIB Metal Carbonyl Complexes of Thioether	
	Ligands.	240
2	Complexes of Sulphur-Nitrogen Donors.	242
3	$\mathbf{v}(\text{CO})$ Absorptions for $\left[\mathbb{M}(\text{CC})_{5}\right]_{n}$ L Complexes.	245
4	Cotton-Kraihanzel Force Constants, [M(CO)] _n I	
	Complexes (n=1,2).	250
5a	Electronic Spectra for [Cr(CC) ₅] ₂ L Complexes	255
	(L=bmtt, bett).	
5b	Electronic Spectra for [W(CC) ₅] ₂ L Complexes	255
	(L=bmtt, bett).	
6a, b	$1e \rightarrow 2a_1$ C.T. Transitions; $[N(CC)_5]_2 L$ Complexes.	256
7	H nmr Data, [M(CO) ₅] ₂ L Complexes of bmtt, bett.	259
8	'H nmr Spectrum, Reflux [W(CO) ₅] ₂ bett With PPh ₃ .	264

.

<u>LIST OF TABLES</u> (Cont'd)

Table		Page
9a	$\mathbf{v}(\text{CO})$ Absorptions for $\mathbb{M}(\text{CC})_4 \mathbb{I}_2$ Complexes.	270
9Ъ	Cotton-Kraihanzel Force Constants, N(CC)412	
	Complexes.	270
1Ca	Electronic Spectra for M(CO) ₄ I ₂ Ccmplexes.	273
1Cb	Electronic Spectra; lowest Energy Maxima,	
	M(CC) ₄ I ₂ Complexes.	273
11a	¹³ CO Chemical Shifts.	276
11b	¹³ C Chemical Shifts of bmtt, bett and Complexes.	279
12	¹ H nmr Data, $\mathbb{N}(\mathbb{CC})_{4}\mathbb{I}_{2}$. Complexes of bmtt, bett.	281
13	Miscellaneous Physical Data (Chapters 1 and 2).	288
14a	$\mathbf{v}(\text{CC})$ Absorptions for $\left[\mathbb{N}(\text{CC})_{c}\right]_{n}$ L Complexes.	291
14b	$\mathbf{V}(CO)$ Absorptions for $\mathbb{N}(CC)_4 \mathbb{I}_2$ Complexes	291
15	Cotton-Kraihanzel Force Constants, [N(CC) ₅] _n L	
	Complexes.	293
16a,b	IR Spectra, $\mathbf{V}(NH)$ and Heterocyclic King Absorptions.	297
17a,b	¹³ C Chemical Shifts, etea and N(CC) ₄ etea.	300
17c	5 C Chemical Shifts for $\mathbb{N}(\mathbb{CO})_{4}$ etea.	301
18a,b	H nmr Data, Complexes of etea, mta, mmbi,	
c,d,e	mti and tbmp.	302
1ºa	Electro ic Spectra - $[Cr(CO)_5]_n L$ Complexes.	307
19b	Electronic Spectra - $[W(CO)_5]_n I$ Complexes.	308
19c	Electronic Spectrum of No(CC) ₅ mta.	308
20	Electronic Spectra for $M(CO)_4 I_2$ Complexes.	309
21	Miscellaneous Physical Data (Chapter 3).	325
22	Structural Data for Cr(C) Complexes.	334
23	Ligand Properties and Analytical Results.	352

GENERAL INTRODUCTION

The wide distribution of copper containing proteins in plants and animals has stimulated interest ' in the chemistry of Cu(I) and Cu(II) interactions with ligands containing biologically relevant donor groups. The intrinsic instability of Cu(II) interactions with thioether-sulphur ligands (e.g. tetrahydrothiophene; $\log K_{cu^{2+}}^{cu^{2+}} \sim C.4)^2$ compared to nitrogen donor ligands (e.g. pyridine; $\log K_{cu^{2+}}^{Cu^{2+}} = 2.54$)³ and the instability of Cu(II) interactions with thiolate sulphur, have probably been partially responsible for a previous general lack of interest in the study of sulphur-ligand/Cu²⁺ chemistry. However, within the last five years or so, inorganic and bioinorganic chemists have become aware that coordinated cysteine thiolate and/or methionine thioether sulphur are probably responsible for the intense optical absorptions that are observed near 600 nm 4 in the "blue" copper proteins. The realisation that coordinated sulphur can impart such unusual optical properties on a Cu(II) chromophore, has thus resulted in a proliferation of studies into the chemistry of sulphur-ligand/Cu²⁺ interactions.

Widespread investigations into the chemical and physical properties of metal carbonyl complexes have arisen from attempts to understand and explain their bonding, spectroscopic and structural characteristics. However, there has also been an interest in the use of carbonyl complexes as catalysts in the chemical industry and as spectroscopic probes for the characterization and

comparison of ligand bonding properties. The bonding characteristics of a particular type of ligand are often more easily interpreted from the study of metal carbonyl complexes. This is because the influence of the ligand on the spectroscopic and chemical properties of the complex can be conveniently studied by a variety of techniques: for example, IR, Raman, electronic, ¹H nmr and ¹³C nmr spectroscopy, and crystallographic and reactivity studies.

Information obtained from the study of metal carbonyl complexes of biologically relevant ligands, can be used in considering the complexes of these or similar ligands with transition metal ions such as Cu(I) and Cu(II). Hence complementary studies, such as those that are described in this thesis, are of direct relevance in attempting to understand the behaviour of related ligands in biological systems.

SECTION I

CCMPLEXES CF Cu(II), Cu(I), Co(II), Ni(II), Pd(II) AND Pt(II) WITH LIGANDS CCNTAINING THICETHER SULPHUR.

SECTION I

INTRODUCTION

Physical and chemical investigations into the unusual spectroscopic properties of the "blue-copper" proteins have implicated the binding of at least two histidine nitrogens, a cysteine sulphur and a fourth ligand, which has been proposed to be a methionine thioether sulphur, a tyrosine phenolate or a deprotonated, backbone nitrogen.⁵ Furthermore, the results of both theoretical and "model" Cu(II)-complex studies suggested that a distorted tetrahedral Cu(II) geometry was likely.

The crystal structure analysis of oxidised, poplar-leaf plastocyanin⁵ which has been recently completed, shows that Cu(II) in this Type I protein⁴ has a distorted tetrahedral environment, consisting of two histidine nitrogens, a cysteine sulphur (thiclate) and a methionine sulphur (thioether). According to the Pearson classification of "hard" and "soft" acids and bases,⁶ these ligands thus compromise the requirements of the Cu(I) and Cu(II) oxidation states.

The existence of the distorted tetrahedral Cu(II)environment has led Freeman <u>et al</u>⁵ to suggest that the reduction of poplar-leaf plastocyanin can therefore proceed <u>without</u> significant changes in the coordination environment. On the other hand, the results of crystallographic studies on "model" Cu(II)/Cu(I) complexes have led Rorabacher <u>et al</u>⁷ to speculate that the reduction of Cu(II) in Cu-Zn superoxide dismutase

(in which Cu(II) has a square planar environment of four nitrogen donors⁸) may be accompanied by significant geometric rearrangements at the active site. In each of the three comparative, crystallographic studies that have been reported for Cu(II) and Cu(I) complexes of thioether-containing ligands,^{7,9,10,11}

it has been shown that a change in copper oxidation state is accompanied by significant structural changes. However this does not necessarily imply that such changes will be observed in the Cu-proteins because of the constraints that are imposed by the proteins' structure. Small changes may occur and these may be vital for the proteins' function. Such changes in the metal-ligand bonding and/or the coordination geometry of the metal ion (occurring for example, when it changes its oxidation state) may not be detectable by protein crystallography because of the limited resolution.¹⁰ The crystallographic study of low molecular weight complexes containing biologically relevant ligands, is thus important in trying to detect subtle structural changes.

Although transition metal complexes of mixed sulphur-nitrogen ligands have been intensively studied,¹²

little attention has been paid to ligands that will force Cu(II) into accepting a distorted geometry, particularly distorted tetrahedral. Despite the relative ease with which simple, bidentate thioether-sulphur/ nitrogen ligands can be synthesized, such studies have been been limited to 8-methylthioquinoline¹³ and 2-methyl-8-methylthioquinoline (mmtq)¹⁴.

suggested that the latter complexes $(Cu(mmtq)X_2 where X=Cl^,Br^)$ are distorted tetrahedral.¹⁴ No crystallographic studies have been reported for these complexes.

Studies on simple ligand systems such as the 2-alkylthioalkylpyridines, have been limited to some spectroscopic, preparative and stability-constant studies on the Cu(II) complexes of 2-methylthiomethylpyridine.^{3,15} No attempt has been made to manipulate the coordination geometry of potential Cu(II) complexes by putting bulky, thioether sidechains in these ligand systems.

The synthetic, crystallographic and spectroscopic studies that are presented in Section I of this thesis were thus carried out for the following reasons: i) to synthesize structurally distorted, low molecular weight Cu(II) and Cu(I) complexes, using suitably designed, biologically relevant, thioethernitrogen ligands. Stability constant measurements show that the Cu(II) complexes of both thioether-sulphur and nitrogen donor ligands can be stabilized by the use of the chelate-ligand effect (Table 1). This is a very important factor when trying to isolate stable, but structurally distorted, Cu(II) complexes;

ii) to carry out extensive spectroscopic studies on these complexes; and

iii) to carry out crystallographic studies on a suitable Cu(II)/Cu(I) pair of complexes having similar ligand sets. Before this work was started, no crystallographic studies

of this type had been carried out on the complexes of mixed thioether-nitrogen ligands. However, only very recently the crystal structures were reported for a Cu(II)/Cu(I) pair of complexes of 1,8-bis(2-pyridyl)-3,6-dithiaoctane."

The Cu(II) and Cu(I) complexes of the following ligands have thus been considered:

-	2-(3,3-dimethyl-2-thiabutyl)pyridine	tbmp
-	2-(3,3-dimethyl-2-thiabutyl)quinoline	tbmq
-	3-(2-methylthiophenylimino)camphor	I
-	2-ethylthioethylamine	etea

- 2-methylthio-2-imidazoline mti

Of these ligands, tbmp, tbmc and I have not been previously synthesized. Although etea and mti are extensively indexed in the chemical literature, the studies on these ligands have been confined to their utilisation in the photographic and pharmaceutical industries.

This study has concentrated on Cu(II) and Cu(I) complexes. However some complementary studies on the Co(II) and Ni(II) complexes of tbmp have also been carried out, in order to assist in the interpretation of the spectroscopic data for the analogous Cu(II) complexes.

Little is known about the effects of electronegative substituents on both the reactivity of thioether ligands and the spectroscopic properties of their transition metal ion complexes. Consequently the reactions of 1,2-bis(pentafluorophenylthio)ethane and ethylthiopentafluorobenzene (both are previously unreported ligands) have been briefly investigated, together with some of the spectroscopic properties of their Ft(II) and Fd(II) complexes.

STABILITY	CONSTANT DATA	
LIGAND	log K ^{Cu2+}	REFERENCE
Pyridine	2.54	3
Tetrahydrothiophene	<u>ca</u> C.4C	2
$\overline{\}$		
2-methylthiomethylpyridine	3.27	3
CH ₂ SMe		
2-methylthioethylamine	5.30	16
CH3SCH2CH2NH2		
2-aminomethylpyridine	<u>ca</u> 9.30	16
CH ₂ NH ₂		
2-(2-aminoethyl)pyridine	7.30	16

TABLE 1

CHAPTER I

DIMERIC COPPER(II) COMFLEXES

OF

2-(3,3-DIMETHYL-2-THIABUTYL)PYRIDINE (tbmp)

When tbmp is reacted with $CuCl_2.2H_2C$ or $CuFr_2$ in a 1:1 ratio, the dimeric Cu(II) complexes, $[Cu(tbmp)X_2]_2$ where X is Cl⁻ or Br⁻, are formed. 8

The structure of $[Cu(tbmp)Br_2]_2$ has been determined by X-ray crystallography and the Cu(II) ions are found to have distorted tetragonal pyramidal environments. Molecular weight measurements and electronic, electron spin resonance and far-infrared spectral data, suggest that $[Cu(tbmp)Cl_2]_2$ has a similar structure.

TAPIE 2

SUMMARY OF RESULTS - [Cu(tbmp)X₂]₂ DIMERS

COMPLEX	STATE	STRUCTURE	PHYSICAI TECHNIQUE
[Cu(tbmp)Cl ₂] ₂	solid	dist. tetrag. pyr. dimer	electronic, far-IR
	CH ₂ Cl ₂ (rm.temp.)	dist. tetrag.pyr. dimer	electronic, M.W. meas.
	(77K)	trig. bipyr. dimer	esr
	MeOH (rm.temp.)	Cu(tbmp)Cl ₂ .(MeOH) _n and	
		[Cu(tbmp)Cl.(MeCH) _n] ⁺	electronic, conductivity
	(77K,9CK)	tetrag.pyr. [Cu(tbmp) ₂ Cl] ⁺ +	
		Cu(MeOH) ²⁺	electronic, esr
	CH ₃ NO ₂ (77K)	trig.bipyr.dimer	esr
[Cu(tbmp)Br ₂] ₂	solid	dist.tetrag.pyr.dimer	X-ray
	CH ₂ Cl ₂ (rm.temp.)	dist.tetrag.pyr.dimer	electronic, N.W. meas.
	(77K)	dist.tetrag.pyr.dimer	esr
	MeOH (rm.temp.)	Cu(tbmp)Er2.(MeOH)n and	
		[Cu(tbmp)Br.(MeOH) _n] ⁺	electronic, conductivity
	(77K, 9CK)	tetrag.pyr. [Cu(tbmp) ₂ Br] ⁺ +	
		Cu(MeOH) _n ²⁺	electronic, esr

1.1 <u>CRYSTAI STRUCTURE OF</u> <u>BIS [DIBROMO(2-(3,3-DIMETHYL-2-THIABUTYL)PYRIDINE)-</u> <u>COPPER(II)</u>]

The experimental method that was followed in the elucidation of this structure, is outlined at the end of this Chapter. The observed and calculated structure factors can be found in the Appendices.

A. DESCRIPTION

The complex $[Cu(tbmp)Br_2]_2$ crystallizes as discrete,non-centrosymmetric, dibromo-bridged dimers. Each Copper(II) ion is bound by a chelated tbmp ligand and three bromide ions in a distorted tetragonal pyramidal environment (see Discussion below). The thioether sulphur and pyridyl nitrogen donors of tbmp, a terminal bromide ion and a bridging bromide ion, form the tetrahedrally distorted "basal plane" of each tetragonal pyramid. The apex of each pyramid is formed by a long bond to the bridging, basal bromide ion of the second Cu(II) centre (Figure 1a).

The t-butyl thioether side-chains are directed in such a manner as to apparently block the approach of a sixth ligand towards each Cu(II) ion.

The important structural details for $[Cu(tbmp)Br_2]_2$ can be found in Table 3a.

B. <u>DISCUSSICN</u>

<u>Tetragonal Pyramidal vs. Trigonal Bipyramidal</u> <u>Model</u>

Because the complex has a distorted structure, it is not a trivial matter to choose the model which best describes it.

FIGURE 1

<u>Structure_of [Cu(tbmp)Br2]</u>2

Ξ

TABLE 3a

STRUCTURAL DETAILS FOR [Cu(tbmp)Er2]2

				32	
FROM ATOM	TC ATCN	DISTANCE/Å	FRCN ATCM	TO ATCM	DISTANCE/Å
Cu1	Br11	2.412(3)	N2	C26	1.B1(3)
Cu1	Br12	2.356(3)	N 2	C22	1.36(3)
Cu1	Br21	2.965(4)	C11	C12	1.48(3)
Cu1	S1	2.353(5)	C12	C13	1.40(3)
Cu1	N1	2.04(2)	C13	C14	1.39(3)
Cu2	Br21	2.417(3)	C14	C15	1.42(3)
Cu2	Br22	2.388(3)	C15	C16	1.41(3)
Cu2	Br11	2.839(4)	C17	C18	1.54(3)
Cu2	S2	2.351(6)	C17	C19	1.56(3)
Cu2	N2	2.08(2)	C17	C110	1.55(3)
Cu1	Cu2	3.591(4)	C21	C22	1.51(3)
Br11	Br21	3.648(3)	C22	C23	1.4C(3)
51	C11	1.84(2)	C23	C24	1.38(3)
S1	C17	1.90(2)	C24	C25	1.41(3)
S 2	C21	1.81(2)	C25	C26	1.43(3)
S2	C27	1.84(2)	C27	C28	1.58(3)
N 1	C12	1.37(2)	C27	C29	1.58(3)
N1	C16	1.35(3)	C27	C210	1.54(3)
ANGLE	DEGR	EES	ANGIE	DEGRE	ES
Cu1-Br11-C	u2 85.9	(1)	C12-C11-S1	112(1)
Cu1-Br21-C	u2 83.C	(1)	N1-C12-C13	122(2)	
Br11-Cu1-S	1 166.	5(2)	N1-C12-C11	117(2)
Br11-Cu1-N	1 93.1	(5)	C13-C12-C11	121(2)	
Br12-Cu1-B	r11 93.9	(1)	C12-C13-C14	118(2)
Br12-Cu1-B	r21 1C3.	4(1)	C13-C14-C15	120(2)
Br12-Cu1-S	1 93.5	(2)	C14-C15-C16	119(2)
Br12-Cu1-N	1 153.	9(5)	C15-C16-N1	121(2)
Br21-Cu1-B	r11 84.8	(1)	C18-C17-C19	114(2)

Cu1-Br11-Cu2	85.9(1)	C12-C11-S1	112(1)
Cu1-Br21-Cu2	83.C(1)	N1-C12-C13	122(2)
Br11-Cu1-S1	166.5(2)	N1-C12-C11	117(2)
Br11-Cu1-N1	93.1(5)	C13-C12-C11	121(2)
Br12-Cu1-Br11	93.9(1)	C12-C13-C14	118(2)
Br12-Cu1-Br21	1C3.4(1)	C13-C14-C15	12C(2)
Br12-Cu1-S1	93.5(2)	C14-C15-C16	119(2)
Br12-Cu1-N1	153.9(5)	C15-C16-N1	121(2)
Br21-Cu1-Br11	84.8(1)	C18-C17-C19	114(2)
Br21-Cu1-S1	82.6(2)	C18-C17-C11C	108(2)
Er21-Cu1-N1	102.3(5)	C18-C17-S1	103(2)
S1-Cu1-N1	85.1(5)	C19-C17-C110	111(2)
Br21-Cu2-Br11	87.5(1)	C19-C17-S1	111(1)
Br21-Cu2-S2	92.3(2)	C11C-C17-S1	108(2)
Br21-Cu2-N2	171.C(5)	C22-C21-S2	113(2)
Br22-Cu2-Br21	92.7(1)	N2-C22-C23	120(2)
Br22-Cu2-Br11	125.3(1)	N2-C22-C21	119(2)
Br22-Cu2-S2	142.1(2)	C21-C22-C23	12C(2)
S2-Cu2-Br11	92.4(2)	C22-C23-C24	119(2)
S2-Cu2-N2	85.3(5)	C23-C24-C25	120(2)
N2-Cu2-Br11	83.9(5)	C24-C25-C26	118(2)
N2-Cu2-Br22	94.6(5)	C25-C26-N2	121(2)
C11-S1-C17	106.8(9)	C28-C27-C29	109(2)
C11-S1-Cu1	91.9(7)	C28-C27-C21C	1C8(2)
C17-S1-Cu1	109.7(7)	C28-C27-S2	108(2)
C21-S2-C27	104(1)	C29-C27-C210	113(2)
C21-S2-Cu2	95.4(7)	C29-C27-S2	1C5(2)
C27-S2-Cu2	106.9(7)	C21C-C27-S2	114(2)
C16-N1-C12	12C(2)		
C16-N1-Cu1	122(1)	<u>NOTE</u> : - estima	ted standard
C12-N1-Cu1	117(1)	deviat	ions are in
C26-N2-C22	122(2)	· parent	heses.
C26-N2-Cu2	120(2)		
C22-N2-Cu2	117(1)		

ATOMIC	CCCRDIMATES ANI	D ISCTROPIC TH	ERMAL PARAMETERS	FOR Cu(temp)Er22
ATCM	x/a	y/b	z/c	B/Å ²
Br11	0.7661(3)	0.8560(2)	0.796C(2)	
Br12	0.9556(4)	0.6713(3)	0.6397(2)	
Br21	1.0882(3)	1.C648(2)	0.7433(2)	
Br22	0.7929(3)	1.1728(3)	0.7329(2)	
Cu1	0.8202(3)	0.7898(3)	0.6291(2)	
Cu2	0.8929(3)	1.1144(3)	0.8388(2)	
S1	0.9C44(6)	0.7792(6)	0.4843(4)	
S2	1.0794(7)	1.2071(6)	0.9991(4)	
N1	0.625(2)	0.805(2)	0.574(1)	3.0
N2	0.720(2)	1.132(2)	0.922(1)	3.2
C11	C.8C3(2)	0.877(2)	0.482(2)	3.2
C12	0.640(3)	0.839(2)	0.503(2)	3.6
C13	0.508(3)	C.841(2)	0.453(2)	4.2
C14	0.364(3)	0.817(3)	0.483(2)	5.4
C15	C.348(3)	0.781(3)	0.556(2)	5.5
C16	0.482(3)	0.775(2)	0.599(2)	4.4
C17	0.783(3)	0.605(2)	0.363(2)	4.0
C18	0.906(3)	0.546(3)	0.349(2)	5.4
C19	0.617(3)	0.527(2)	0.376(2)	4.5
C110	0.748(3)	0.615(2)	0.269(2)	4.5
C21	0.921(3)	1.163(2)	1.058(2)	3.6
C22	0.763(3)	1.162(2)	1.021(2)	3.4
C23	0.656(3)	1.181(2)	1.083(2)	4.4
C24	0.507(3)	1.170(2)	1.044(2)	5.2
C25	0.462(3)	1.137(2)	0.941(2)	5.3
C26	0.577(3)	1.117(2)	0.881(2)	4.4
C27	1.165(3)	1.388(2)	1.069(2)	3.6
C28	1.272(4)	1.452(3)	1.184(2)	7.4
C29	1.284(4)	1.425(3)	1.008(2)	6.9
C210	1.034(3)	1.438(3)	1.079(2)	6.6

TABLE 3c

- estimated standard deviations are in parentheses.

TABLE 3d

	ANISUIRCFIC	211.211.112	THURSD' DI		232	
A TT OTM	B1 1	B22	B33	B12	B13	B23
Br11	0.0178	0.0124	0.0049	0.0088	0.0052	0.0063
Br12	0.0333	0.0230	0.0081	0.0223	0.0095	0.0112
Br21	C.0148	0.0143	C.CC52	0.0072	0.CO46	0.0000
Br22	C.0212	0.0152	C.CC63	0.0099	0.0030	0.0077
Cu1	0.0143	C.0126	C.CO46	0.0089	0.0041	C.0062
Cu2	0.0132	C.0136	0.0039	0.0081	0.0031	0.0056
S1	0.0106	0.0095	0.0037	0.0056	0.0027	C.0C40
52	0.0120	0.0128	0.0042	0.0075	0.0028	0.0056

ANISOTROPIC THERMAL PARAMETERS FOR [Cu(tbmp)Br2]2
i) <u>Cul Environment</u>: The angles that are subtended at Cul by any two of the <u>cis</u>-coordinated atoms in the Er11, Br12, S1, N1 basal plane, $[N1-Cu1-Br11 (93^{\circ}),$ N1-Cu1-S1 (85°), S1-Cu1-Br12 (93°) and Br12-Cu1-Br11(94°)] do not represent a large distortion from an ideal tetragonal pyramidal model. The long Cu1-Br21 bond (2.96 Å) and the displacement of Cu1 (-0.11 Å i.e. towards Br21) from the Er11, Br12, S1, N1 basal plane, (Table 3b) are consistent with Er21 being the apex of this tetragonal pyramid.

The equatorial planes that are possible for a trigonal bipyramidal Cu1 environment, are S1, Br21, Er11 and N1, Br 21, Br12 respectively. In the former "plane", S1-Cu1-Br11 (166°) and S1-Cu1-Br21 (83°) are both distorted by about 40° from an ideal geometry. In the N1, Br21, Br12 "plane", N1-Cu1-Br21 ($1C2^{\circ}$) and Br12-Cu1-Br21 (103°) are intermediate between ideal trigonal bipyramidal and square pyramidal geometries. However, N1-Cu1-Br12 (154°) is significantly distorted and the "axial" Cu1-Br11 bond 2.412(3)Å is longer than the "equatorial" Cu1-Br12 bond 2.356(3)Å . The latter observation is contrary to that which is expected for trigonal bipyramidal d⁹ complexes.^{17,18}

ii) <u>Cu2 Environment</u>: Similar arguments can be applied in considering the Br21, Br22, S2, N2 basal plane of a tetragonal pyramidal model, in which the long Cu2-Br11 bond [2.839(4) Å] forms the apex of the pyramid. The Cu2 atom is displaced by C.31 Å (Table 3b) out of the basal plane, towards Br11.

The most obvious equatorial plane of a trigonal bipyramidal model, would be defined by Er22, Br11 and S2. However, while $Br22-Cu2-Br11 (125^{\circ})$ is consistent with this model, $Er22-Cu2-S2 (142^{\circ})$ and $Br11-Cu2-S2 (92^{\circ})$ are very distorted. The angles subtended at Cu2 [$Pr22-Cu2-N2 (171^{\circ})$, $N2-Cu2-Br11 (84^{\circ})$, $Br21-Cu2-Br11 (87^{\circ})$] in the equatorial plane (Br21, Br11,N2) of the second trigonal bipyramidal model that is possible, are also very distorted.

The following discussion is thus based on the premise that the geometries of both Cu1 and Cu2 can be best described as being distorted tetragonal pyramidal.

Distortions in the Cu1 and Cu2 Environments

The extent of the tetrahedral distortions in the environments of Cu1 and Cu2 is shown by the dihedral angles*($w_1 = 28.9^{\circ}$ and $w_2 = 38.8^{\circ}$ respectively; these would be 0° for a square planar structure or 90° for a tetrahedral structure) and the displacements of the basal atoms from their mean least-squares planes (Table 3b).

* w₁ is defined by the planes through Cu1, S1, N1 and Br11, Br12, Cu1 while w₂ is defined by the planes through Cu2, S2, N2 and Br21, Br22, Cu2. See end of Chapter for equations.

TAPIE 3b

ATCNIC DISFJACEMENTS FROM BASAL FLANES

- <u>Plane 1</u>: Defined by Br11, Br12, S1, N1 Equation: -0.3836X-0.7707Y-C.5089Z = 8.4320
- <u>Plane 2</u>: Defined by Br21, Br22, S2, N2 Equation: -C.1179X-C.894CY-C.4323Z = 10.8696

BASAL FLANE DISFLACEMENTS FROM PLANE (Å)

Plane 1 Br11[-C.35C(3)], Er12[C.321(4)], Cu1[-C.112(3)], S1[-C.39C(7)], N1[C.42(2)], Br21[-3.C74(3)], Cu2[-2.729(3)] Plane 2 Br21[C.4CC(3)], Er22[-C.428(3)], Cu2[C.313(4)], S2[-C.476(8)], N2[C.5C(2)], Br11[3.C25(3)],

Cu1 [3.268(4)]

The displacement of Cu1 and Cu2 out of their respective basal planes, towards their apical bromide ligands, is a normal observation for tetragonal pyramidal Cu(II) complexes.¹⁹

Possible Reasons For These Distortions.

In most square pyramidal complexes, the basal donor atoms are either coplanar (with the Cu(II) ion being displaced out of this plane, towards the fifth ligand), or only moderate distortions from planarity are observed.^{19,20,21}

The large tetrahedral distortions that are seen in this complex are not unknown however. For example, in $[Cu(BBTE)Cl_2]_2^{18}$ (bis[dichloro(5,8-dithiadodecane)copper(II)]) deviations from 0.41 Å to 0.68 Å are observed.

Electronic and electron spin resonance spectral investigations (see 1.2 and 1.3 respectively) suggest

<u>1b</u>

that the distortions also exist in solution and in various glasses at 77K. These observations thus imply that crystal packing forces can be ruled out as the source of the distortions in the solid state. This is also suggested by the observation that there are only two intermolecular contacts of less than

3.6 Å. These are $Br12(x,y,z)...C18(1-x,\bar{y},\bar{z})[3.57 Å]$ and $C23(x,y,z)...C24(\bar{x},1-y,1-z)[3.59 Å.]$ Neither of these contacts could explain the distortions in the structure of $[Cu(tbmp)Br_2]_2$.

i) <u>The Cu1-Br21 Bond</u>: This bond (2.965(4) Å) is about C.13 Å longer than the corresponding Cu2-Br11 bond (2.839(4) Å) and it can be seen that its length will be limited by steric interactions between Br22 and C12 (Figure 1b) of the N1, C12-16 pyridyl ring. The Br22....C12 non-bonded contact (3.62 Å) in the present structure corresponds to the sum of the van der Waals radius of Br (1.95 Å)²² and the half thickness (1.7 Å) of an aromatic ring system.²² The two halves of the dimer cannot therefore, be brought any closer by a contraction in the Cu1-Br21 bond. Because the dimer is not symmetrical, there are no analogous steric restrictions on the length of the Cu2-Br11 bridging bond.

ii) <u>Tetrahedral Distortions in the Br11,Br12,S1,N1</u> <u>Basal Plane</u>

The Br11...C16 contact (3.30 Å) within the Cu1(tbmp)Br₂ monomer, is about 0.30 Å closer than the normal van der Waals contact (\underline{ca} 3.65 Å)²³

and it can be calculated that the Br11....C16 contact would be about 3.1 Å in an undistorted structure. Such a close contact (3.1 Å) would be quite unacceptable when it is considered that in $Cu(\sim-picoline)_2Cl_2^{24}$ an analogous Cl....C contact of 3.34 Å (van der Waals contact = 3.50 Å) results in significant distortions in the \propto -picoline ring that is involved.

It is apparent therefore, that the Cu1, S1, N1 plane in $[Cu(tbmp)Br_2]_2$ has twisted (Figure 1b) in order to minimize potential Br11....C16 interactions. The extent of this twisting is limited by the Br22....C12 contact that was discussed above. The corresponding twist of the Cu1, Br11, Br12 plane (in the opposite direction) thus also helps to bring the bridging Br11, closer to Cu2.

As a result of these distortions, N1-Cu1-Br21 (102°) is increased and S1-Cu1-Br21 (83°) is reduced from an ideal 90° while S1-Cu1-Br11 (166°) and N1-Cu1-Br12 (154°) are significantly reduced from an ideal 180° .

iii) <u>Tetrahedral Distortions in the Br21, Br22, S2,</u> N2 Basal Plane

The distortions are analogous to those that are observed in the Br11, Er12, S1, N1 basal plane. In an undistorted structure, the Br22....C26 contact (Figure 1a) would be about 3.C Å as opposed to 3.26 Å in the present structure. The Cu2, S2, N2 and Cu2, Br21, Br22 planes must therefore undergo tetrahedral distortions in order to reduce this interaction. The twisting of the Cu2, Pr21, Fr22 plane again helps to bring the bridging Fr21, closer to Cu1.

The result of these effects is that S2-Cu2-Br22 (142°) is significantly reduced from an ideal 180° and the Br22-Cu2-Br11 angle (125°) is increased by 35° . The remaining angles are only slightly distorted.

The tetrahedral distortions thus arise from attempts to minimise non-bonded contacts within each Cu(tbmp)Br₂ monomer. However, they also have the effect of bringing the bridging Er atoms (Br11 and Br21 respectively) closer to the opposing Cu atoms. <u>Other Intramolecular Contacts</u>

The Br....Er, Er....S, Br....N and Br....CH₃ contacts in this molecule can be ruled out as possible sources of major distortions.

i) <u>Br...Br contacts</u>: The closest Br...Br intramolecular contact (Br21...Br22, 3.48 Å) is about 0.5 Å less than the sum of the van der Waals radii (3.90 Å).²² However there is no evidence for anything other than a very minor effect on the Br22-Cu2-Br21 angle (93⁰). A comparable Br...Br contact (<u>ca</u> 3.40 Å) in the structure of dibromo-[2-(aminomethyl)pyridine]copper(II)²⁵ does not produce any major distortions either (Br-Cu-Br, 92⁰). ii) <u>Br...S contacts</u>: The closest Br...S contact (Br12...S1, 3.43 Å) would be about 3.33 Å (van der Waals contact, 3.80 Å)²² if the geometry about Cu1

was perfectly tetragonal pyramidal. However the difference (0.10 Å) is only minor. It is of interest to note that the Br21....S1 contact (3.54 Å) has been reduced from the 3.78 Å contact that would occur in an undistorted structure. This suggests that potential Br....S interactions do not play a very important role in determining the over all structure. iii) Br...N contacts: These have been observed in the range from 3.10 to 3.20 Å in complexes such as dibromobis(2-methylpyridine)copper(II),²³ dibromo [2-(2-aminoethyl)pyridine]copper(II),²⁶ and dibromobis(2, 3-dimethylpyridine)copper(II).27 On the basis of these observations, the closest Br....N contact (Br11....N1, 3.25 Å) in $[Cu(tbmp)Fr_2]_2$, can not be regarded as being severe. iv) <u>Br....CH₃ contacts</u>: The closest Br....CH₃ contact (Br12....C18, 3.86 Å) is not significantly less than the sum of the Br and CH_3 van der Waals radii $(3.95 \text{ Å})^{22}$ and it is comparable to the contacts (3.82 Å, 3.79 Å) that are observed for

dibromobis(2-methylpyridine)copper(II).²³

Other Structural Features

The Cu(II)-Br bonding within the Cu1

bridge (Table 3a) and the angles that are subtended at the bridging bromide ions $(Cu1-Br11-Cu2=85.9(1)^{\circ}$ and $Cu1-Br21-Cu2=83.0(1)^{\circ}$) appear to be normal for this type of tetragonal pyramidal dimer, as is the Cu1....Cu2 separation [3.591(4) Å]. Relevant comparisons are made in Table 4a.

The chelate bite $[85.2(5)^{\circ}]$ is slightly greater

TABLE 4a

CRYSTALLOGRAPHIC DATA; BROMC-BRIDGED, DIMERIC

Cu(II) CCMPLEXES

	COMPLEX	TERMINAL Cu-Br	BRIDCING Cu-Br	Cu-Êr-Cu	CuCu	REFERENCE
	[Cu(tbmp)Br ₂] ₂	2.356(3)	2.412(3)	85.9(1)	3.591(4)	This Work
		2.388(3)	2.417(3)	83.0(1)		
			2.965(4)			
			2.839(4)			
	[Cu(dmen)Br ₂] ₂	2.401(1)	2.463(2)	83.71(5)	3.570(3)	19
			2.868(2)			
	[Cu(~-pic)Br ₂] ₂	2.413(3)	2.426(3)	100.4(1)	4.926(6)	23
			3.872(5)			
	[Cu(tmen)Br ₂] ₂	2.40	2.42	95.6(5)	4.20	28
			3.20			
φ	[Cu(maep)Br ₂] ₂	2.4CC(3)	2.468(2)	92.14(9)	3.803(4)	29
			2.802(4)			

trigonal bipyramidal Cu(II), remaining complexes
 are tetragonal pyramidal.

- bondlengths are Å, angles in degrees.

than the chelate bite of 2-aminomethylpyridine in one of its Cu(II) complexes $[82.8(3)^{\circ}]^{25}$ but it is within the range $(74-86^{\circ})$ observed for other rigid five-membered chelate ring systems.²⁵

The chelate rings are puckered in a manner similar to that of the chelate ring in $Cu(tbmp)_2Br$ (see Chapter 3). In the Cu1, S1, N1, C11, C12 chelate ring, Cu1, N1, C11 and C12 are coplanar (see below), But S1 lies 0.851(6) Å out of the Cu1, N1, C11, C12 least-squares plane. Similarly, in the Cu2, S2, N2, C21, C22 chelate ring, S2 lies C.65C(8) Å out of the Cu2, N2, C21, C22 least-squares plane. Cu2, N2, C21 and C22 are also coplanar.

ATCMS IN PLANE		DE	AIVS	TIONS FROM	I PLAN	IE (Å)	
Eouation: 0.1C23X	_	0.6203Y	-	0.77772	=	-8.5448	
Cu1, N1, C11, C12		Cu1		N 1	C11	C12	S1
		0.014(3)		-0.03(2)	-0.02	2(2) 0.04(3)	0.851(6)
Ecuation: -0.0182X	-	0.9102Y	-	0.4138Z	=	-10.2334	
Cu2, N2, C21, C22		Cu2		N 2	C21	C22	S2
		-C.O14(4)		0.04(2)	0.02	(3) -0.04(3)	-0.650(8)

The Cu(II)-S Bonding

The Cu(II)-S bonds (mean 2.352(6) Å) in $[Cu(tbmp)Br_2]_2$ are within the range (2.3C3(1) - 2.488(3) Å) observed for equatorial Cu(II)-S (thioether) bonding. (Table 4b). The Cu1-S1

and Cu2-S2 bonds of $[Cu(tbmp)Br_2]_2$ can be regarded as being essentially single bonds as an equatorial Cu(II)--S(thioether) single bond is calculated to be about 2.34 Å [assuming the covalent radius of S to be 1.04 Å²² and the in-plane radius of Cu(II)³⁰ to be about 1.3(Å] . It is evident from Table 4b that Cu(II)-S bonds significantly longer than <u>ca</u> 2.34 Å are found. These may arise from unusual constraints that are imposed by specific ligands.

The mean of the equatorial Cu(II)-S bondlengths for Cu(II)-thioether complexes (Table 4b) is 2.342(2) Å. The difference between this mean and the Cu1-S1 (2.353(5) Å) and Cu2-S2 (2.351(6) Å) bonds of $[Cu(tbmp)Br_2]_2$, is insignificant.

Cn comparing the tetrahedrally distorted Cu(II)-S (thioether) bonding in $[Cu(tbmp)Br_2]_2$ and $[Cu(BBTE)Cl_2]_2$ (Cu(II)-S = 2.3C8(2), 2.369(2) Å)¹⁸

with that of other Cu(II)-thioether complexes, there is no evidence to suggest that the Cu(II)-S bonding could have been weakened as a result of the tetrahedral distortions in these structures. Hence although in complexes such as Cu(dth)₂(BF₄)₂ (mean Cu(II)-S = 2.317(2) Å), CuL³(ClO₄)₂ (mean = 2.303(1) Å), and [Cu(pdto)ClO₄]ClO₄ (mean = 2.313(2) Å), it is apparent that the Cu(II)-S bonds are shorter than in [Cu(tbmp)Br₂]₂ and [Cu(BBTE)Cl₂]₂, longer Cu(II)-S equatorial bonds are found in complexes such as CuL⁴(ClO₄)₂ (mean = 2.366(i) Å)³³ and CuL²Cl₂ (Cu(II)-S=2.410(5) Å).³²

	MEAN		
COMPLEX	Cu(II)-S	A STRUCTURE	REFERENCE
[Cu(tbmp)Br ₂] ₂	2.352(6)	Tetr. pyr.	This Work
Cu(dth) ₂ (BF ₄) ₂	2.317(2)	trans-tetr.	10
[Cu(1°)C1C104]2	2.438(6)	Dist.oct./dist.sq.pyr.	21
	2.587(6)	ax.	
Cul ¹ Cl ₂	2.341	Dist.tetr.pyr.	31
Cul ² Cl ₂	2.410(5)	Dist.sq.pyr.	32
Cul ³ (Cl0 ₄) ₂	2.3C3(1)	trans-tetr.	9
Cul ⁴ (ClO ₄) ₂	2.366(1)	trans-tetr.	33
[Cu(BBTE)C12]2	2.338(2)	Tetr.pyr.	18
[Cu(pdto)ClO ₄]ClO ₄	2.313(2)	Tetr.pyr.	11
$[Cu(EEE)(1-MeIm)](ClC_4)_2$	2.414(2)	Tetr.pyr.	34
	2.560(2)	ax.	
CuL ⁵	2.488(3)	Dist.tetr.	35
	2.6C7(2)	ax.	
[Cu ₂ 1 ⁶] ⁴⁺	2.318(1)	Dist.tetr.pyr.	36
[Cu17](C104)2	2.312(4)	Tetr.pyr.	37
NOTES: - ax. = axial.	all other	Cu(II)-S bonds are equatorial	lv

TABLE 4b Cu(II)-S(thioether) ECNDLENGTH DATA

NOTES: - X = chloroacetate; ax. = axial

disposed.

COMPLEX

[Cu(tbmp)Br₂]₂

[Cu(aep), Br] Br

Cu(dmaep)Cl₂

[Cu(pdto)ClO₄]ClC₄

Cu(aep)₂(Cl0₄)₂

Cu(∝-pic)₂Er₂

Cu(amp)Br₂

Cu(<-pic)X

TABLE 4 c Cu(II)-N(pyridyl) BCNDIENGTH DATA

STRUCTURE

Tetr.pyr.

Tetr.pyr.

Tetr.pyr.

Tetr.pyr.

trans-tetr.

Intermediate 5-coord.

Tetr.elongated oct. (pcly.)

Dist.tetrahedral

REFERENCE

This Work

38

39

11

40

23

25

41

MEAN Cu(II)-N

2.06(2)

2.065(3)

2.007(3)

2.01((5)

2.024(2)

1.982(6)

2.011(9)

2.16(1) ax.

26

In all of these complexes, the coordinated thioether sulphur atoms are either equatorially coplanar, or they are distorted by no more than C.C7 Å from their respective equatorial planes.

The Cu(II)-N Bonding

While the Cu1-N1 and Cu2-N2 bonds (mean,2.C6(2) Å) of $[Cu(tbmp)Br_2]_2$ are longer than those of other Cu(II) complexes of substituted pyridyl ligands (Table 4c), the differences are not statistically significant. The Cu(II)-N bonds in this structure can be regarded as being single bonds as the equatorial Cu(II)-N single-bond is calculated to be about 2.C4 Å (taking the in-plane radius of Cu(II) as 1.3C Å ³⁰ and the single-bond covalent radius of N as C.74 Å ²²).

As with the Cu(II)-S bonding, there is no evidence to suggest that the tetrahedral distortions seen here, have any significant effect on the Cu(II)-N bonding. This is supported by the fact that the Cu(II)-N bonds in the distorted tetrahedral monomer Cu(dmaep)Cl₂ (2.0C7(3) Å),³⁹ and in the tetragonal complex Cu(aep)Br₂²⁶ (2.C21(5) Å; the coordinated pyridyl-nitrogen atoms are distorted from the equatorial, mean least-squares plane by up to C.38 Å), are indistinguishable from those of complexes such as $[Cu(pdto)Clo_4]Clo_4"$ (2.011(5), 2.0C8(5) Å) and Cu(amp)Br₂ (2.011(9) Å).²⁵ The latter complexes exhibit planar, equatorial Cu(II)-N bonding.

1.2 EJECTRCNIC SPECTRA

The tentative assignments for the spectral maxima have been made by comparing the spectra of $[Cu(tbmp)X_2]_2$ with the spectra of the complexes that are discussed in subsequent chapters. Comparisons have also been made with published data, where they are relevant.

The spectra and the assignments are presented in Table 5a.

A) <u>LIGAND FIELD TRANSITIONS</u>

Introduction

The d° configuration of Cu(II) can theoretically give rise to a maximum of four d-d transitions but in the majority of complexes, it is usual for only one or two to be observed.42,43 The single, unpaired electron of the e_g ground state will usually be found in either the $d_{x^2-v^2}$ or d_{z^2} orbital, depending on the stereochemistry of the complex. The largest proportion of complexes have a $d_{x^2-y^2}$ ground state ³⁰ as these complexes have stereochemistries that can be derived from a basic tetragonal stereochemistry. However, considerable overlap occurs between the d-d transition energies of the various basic geometries and as a consequence, it is dangerous to draw conclusions about the structure of a complex on the basis of the electronic spectra alone.44,45 Where it is possible, additional physical data such as the esr spectra, which can give information on the electronic ground state with greater certainty, and infrared spectra should also be considered.

It is in the interpretation of the degree of tetragonal distortion, that d-d absorption energies become valuable. Increasing the tetragonal distortion shifts the centre of gravity of the transitions to higher energies.⁴⁴

The Spectra of [Cu(tbmp)Br2] and [Cu(tbmp)Cl2]

i) <u>Reflectance</u>: The crystal structure of $[Cu(tbmp)Br_2]_2$ shows that the Cu(II) ions have a very distorted tetragonal pyramidal environment in which the basal atoms have undergone significant tetrahedral distortions. As a consequence of these distortions, the ligand field maximum (840 nm) is at quite low energy when compared to other complexes of this type, such as Cu(\ll -picoline)₂Br₂ (604 nm).^{23,46}

While there are no other known examples of $CuSNX_3$ five-coordinate chromophores with which comparisons can be made, $[Cu(BETE).2Cl]_2$, (BETE = 5,8-dithiadodecane) which is a distorted tetragonal pyramidal CuS_2Cl_3 dimer, has a ligand field maximum at about 800 nm, (mull, 8CK).^{18,47}

 $[Cu(tbmp)Cl_2]_2$ has a reflectance spectrum similar to that of $[Cu(BBTE).2Cl]_2$ and $[Cu(tbmp)Br_2]_2$ and it is also dimeric in non-coordinating solvents. These observations are consistent with $[Cu(tbmp)Cl_2]_2$ having a structure similar to that of the bromide complex in the solid state.

The reflectance spectra of these complexes (Figure 2a), are in agreement with the criteria that were recently suggested for distinguishing between square pyramidal and trigonal bipyramidal

<u>FIGUEE 2</u> <u>Electronic Spectra - [Cu(tbmp)X₂] Dimers</u>

structures. From a study of $[CuN_5]^{2+}$ chromophores, Hathaway <u>et al</u>⁴⁸ noted that the lower energy transition of square pyramidal stereochemistries will be less intense than the main band, while in trigonal bipyramidal structures, the lower intensity shoulder will be blue-shifted in relation to the main absorption band as shown in Figure 2c.

FIGURE 2c

IIGAND FIELD MAXIMA CF FIVE-COORDINATE Cu(II) COMPLEXES.

It has also been suggested that d-d transitions for square pyramidal complexes are found in the general region from 55C-670 nm while for trigonal bipyramidal structures, they are found from about 8CO-850 nm.⁴⁹ However, a limited number of examples taken from the literature (Table 5b) show that there is an overlap between these two extremes.

ii) <u>Dichloromethane</u>: The spectra in this solvent (Figure 2b) are very similar to the reflectance spectra and the dimeric nature of the complexes in chloroform (Table 8) implies that the distorted five-coordinate structures are being retained.

On the basis of Hathaway's criteria, the $[Cu(tbmp)X_2]_2$ dimers are more likely to have distorted tetragonal pyramidal structures in dichloromethane.

TABLE <u>5</u>a

ELECTRONIC SPECTRA, [Cu(tbmp)X₂]₂ COMFLEXES

CCMPLEX	REFLECTANCE	ASSIGNMENT	<u>CH2C12 (e)</u>	ASSICNMENT	MeCH (E)	ASSIGNMENT	
[Cu(tbmp)Cl ₂] ₂			292(5452)	$apicalCl \rightarrow Cu(II)$		ĸ	
	372 4 33 85c†	$Cl^{-} \longrightarrow Cu(II)$ IF	<u>ca</u> 354(sh) 367(3CCC) 447(1133) 82C(3C8) [†]	$\sigma(S) \longrightarrow Cu(II)$ $C1^{-} \longrightarrow Cu(II)$ $C1^{-} \longrightarrow Cu(II)$ IF	357(1177) 85C(144) †	σ(S)→Cu(II) IF	
[Cu(tbmp)Br ₂] ₂	<u>ca</u> 370(sh) 420 560 84c †	$Br^{-} \rightarrow Cu(II)$ $Br^{-} \rightarrow Cu(II)$ LF	<u>ca</u> 32C(sh) 352(5C97) <u>ca</u> 415 582(631) 87C(391) [†]	apical $\operatorname{Er} \longrightarrow \operatorname{Cu}(II)$ $\sigma(S) \longrightarrow \operatorname{Cu}(II)$ $\operatorname{Pr} \longrightarrow \operatorname{Cu}(II)$ $\operatorname{Er} \longrightarrow \operatorname{Cu}(II)$ LF	309(2062) 358(1276) 850(267) [†]		
NOTES: - absorption maxima are nm.; extinction coefficients are l.mol. ⁻¹ cm. ⁻¹							

- sh = shoulder; LF = Ligand Field

t = asymmetric

- tbmp has intense intra-ligand charge transfer absorptions at about 265 nm.

ELECTRUNIC SPECIRA OF	5-COURDINATE	CU(II) COMPLEXE			
COMPLEX	LF MAXIMA	STATE	REFER	REFERENCE	
TETRAGCNAI FYRAMIDAL			X-Ray	Spectrum	
Cu(∝-pic) ₂ Cl ₂	517(sh),585, 625(sh)	Refl.	24	46	
$Cu(\propto -pic)_2 Br_2$	604	Refl.	23	46	
[Cu(tmen)Cl ₂] ₂	<u>ca</u> 675	Mull, 8CK	47	47	
[Cu(BBTE)Cl ₂] ₂	<u>ca</u> 800	Mull, 80K	18	47	
[Cu(tmen)S0 ₄ .(H ₂ 0) ₂].H ₂ 0	676	Null	50	50	
TRIGONAL EIPYRALIDAL					
Cu(pib)tu(ClO ₄) ₂	670	Refl.	51	52	
Cu(dip) ₂ tu(ClO ₄) ₂	770	Refl.	51	52	
[Cu(tren)NCS]SCN	680(sh),840	Refl.	53	54	
[Cu(bipy) ₂ 1] I	800	Refl.	55	56	
Cu(NH ₃) ₂ Ag(SCN) ₃	69C(sh),781	Refl. 8CK	57	54	
NOTES: - LF maxima are nm.					

TABLE 5b

ELECTRONIC SPECTRA OF 5-COORDINATE Cu(II) COMPLEXES

- sh = shoulder

TABLE 5c								
C.T. ASSIGNMENTS FOR [Cu(tbmp)X2] AND [Cu(BBTE)X2]2.								
COMPLEX	C.T. MAXIMA/nm	ASSIGNMENT						
[Cu(BBTE)Cl ₂] ₂	363 449	$C1^{-} \longrightarrow Cu(II)$ $\sigma(S) \longrightarrow Cu(II)$						
[Cu(tbmp)Cl ₂] ₂	<u>ca</u> 354(sh) 367 447	$\sigma(S) \longrightarrow Cu(II)$ $CI^{-} \longrightarrow Cu(II)$ $CI^{-} \longrightarrow Cu(II)$						
\$ [Cu(BETE)Br ₂] ₂	358(sh) <u>ca</u> 420 544	$Br^{-} \rightarrow Cu(II)$ $\sigma(S) \rightarrow Cu(II) + Br^{-} \rightarrow Cu(II)$	Cu(II)					
[Cu(tbmp)Br ₂] ₂	352 <u>ca</u> 415 582	$\sigma(S) \longrightarrow Cu(II)$ Br $\longrightarrow Cu(II)$ Br $\longrightarrow Cu(II)$						
NOTE: \$ mull data	(8CK) for this con	mplex, otherwise						

CH2Cl2 solution.

iii) <u>Methanol</u>: The disappearance of the charge transfer absorptions that are assigned to "in-plane" Cu-X (X=Cl⁻, Br⁻) bonding, (see below), indicates that the dimeric structure is not retained. Partially solvated species such as $Cu(tbmp)X_2 \cdot (MeOH)_n$ and $[Cu(tbmp)X.(MeOH)_n]^+$ would account for the low energy, ligand field maxima (850 nm for both complexes) and the partial electrolytic behaviour (Table 8) of the complexes in this solvent. Thus, $[Cu(tbmp)X_2]_2 \xrightarrow{MeCH} Cu(tbmp)X_2 \cdot (MeOH)_n$ and $[Cu(tbmp)X.(MeOH)_n]^+$ where n= 1 or 2.

B) <u>CHARGE TRANSFER TRANSITIONS</u> $(L \longrightarrow Cu(II))$ Introduction⁴³

Ligand \rightarrow Cu(II) charge transfer spectra are more easily interpreted and are better understood than $L\rightarrow$ Co(II) and $I\rightarrow$ Ni(II) charge transfer spectra. In the latter group, transitions to metal states that have different interelectronic repulsion parameters result in a greater number of overlapping $L\rightarrow$ M(II) charge transfer transitions.

Halogen ligands and thioether sulphur donors have σ and π -symmetry lone pair electrons and as a consequence, two types of L \rightarrow Cu(II) charge transfer absorption can theoretically be observed:

i) $\sigma \longrightarrow$ singly occupied Cu(II) d-orbital, and

ii) $\Pi \longrightarrow$ singly occupied Cu(II) d-orbital. If more than one ligand is bound to Cu(II) or if spin-orbit coupling is sufficient to lift the

degeneracy of some of the orbitals, several absorptions of a specific type may be observed.

Where the ligands do not have any **T-symmetry** orbitals (e.g. amine ligands), only $\sigma(L) \rightarrow Cu(II)$ charge transfer absorptions can occur. The Spectra of [Cu(tbmp)Br2] and [Cu(tbmp)Cl2] $X \longrightarrow Cu(II)$: Apical ligation of halide ions i) should result in "weak" $X^- \rightarrow Cu(II)$ charge transfer absorptions at relatively high energies 47 but the assignments of Schugar et al apply to mull spectra, for which the intensities are not known. In the spectra of $Cu(etea)_2Cl_2$ and $Cu(etea)_2Br_2$ (see Chapter 5), the absorptions that are assigned as apical $X \longrightarrow Cu(II)$ charge transfer transitions (CH₂Cl₂ solution) are reasonably strong, and are observed at 283 nm ($\epsilon = 6825 \text{ l.mol.}^{-1} \text{ cm}^{-1}$) and 327 nm respectively. Similar absorptions (Table 5a) are also observed (CH₂Cl₂ solution) for $[Cu(tbmp)Cl_2]_2$ and $[Cu(tbmp)Br_2]_2$ at 292 nm ($\epsilon = 5452$) and ca 320(sh) nm respectively and these are thus assigned as apical $X \rightarrow Cu(II)$ charge transfer absorptions.

The remaining $X \longrightarrow Cu(II)$ charge transfer absorptions are consistent with the equatorially disposed Cu(II)— X bonding that is shown by the structure of $[Cu(tbmp)Br_2]_2$ and they are in agreement with the assignments for square planar CuX_A^{2-} systems.^{58,59}

Support for these assignments comes from the

disappearance of the absorptions in methanol, the implication being that the dimeric structure is disrupted.

All of the $X^- \rightarrow Cu(II)$ charge transfer transitions will arise from Π -orbitals on the halide ions,⁵⁸ the $\sigma(X^-) \rightarrow Cu(II)$ absorptions being found only at very high energies, (<u>ca</u> 200 nm).

ii) $\sigma(S) \rightarrow Cu(II)$: These absorptions (Table 5a) remain relatively constant in going from dichloromethane $[X=Cl^-, ca 354(sh) nm; X=Br^-, 352 nm$ $(\epsilon = 5097)$] to methanol solution [357 nm ($\epsilon = 1177$) and 358 nm ($\epsilon = 1276$) resp.] and on changing the halogen.

iii) <u>Discussion</u>: The spectra of $[Cu(tbmp)Cl_2]_2$ and $[Cu(tbmp)Br_2]_2$ are very similar to those of the tetragonal pyramidal dimers, $[Cu BBTE.2X]_2$ (BBTE = BuSCH₂CH₂SBu, X = Cl⁻, Br⁻) whose spectra have been discussed by Schugar <u>et al</u>.⁴⁷ However their assignments differ from those of this work, being based on the assumption that the $\sigma(S) \rightarrow Cu(II)$ charge transfer absorption occurs near 440 nm as assigned for $Cu(BBTE)_2(ClO_4)_2$. The charge transfer absorptions for the $[Cu(tbmp)X_2]_2$ and $[CuBBTE.2X]_2$ complexes are compared in Table 5c. C) <u>ELECTRONIC SPECTRA AT 90K</u> (in 2C% Glycerol/MeCH)

The respective spectra are virtually identical to those of the $Cu(tbmp)_2X_2$ (X = Cl⁻, Br⁻) and $[Cu(tbmp)_2X]BF_4$ (X=Cl⁻, Br⁻) complexes (at 90K) that are discussed in Chapter 2. Hence the tetragonal pyramidal, $[Cu(tbmp)_2X]^+$ monomers (derived according to equation (i)) are probably responsible for these spectra (Table 11). The existence of a solvated Cu(II) species, $Cu(MeCH)_n^{2+}$, is apparent in the esr spectra (1.3) of the dimers in 20%-Glycerol/MeOH (at 77K), but this is not immediately obvious in the electronic spectra at 90K.

(i) $[Cu(tbmp)X_2]_2 \xrightarrow{nMeOH} [Cu(tbmp)_2X]^+ + Cu(MeOH)_n^{2+} + 3X^-$

1.3 ELECTRON SPIN RESONANCE SPECTRA

i) Introduction

Two of the most important factors that determine the esr spectrum of a Cu(II) complex, are the stereochemistry of the complex 30 and the ligand type. 60

Tetragonal Cu(II) stereochemistries that have a $d_{x^2-y^2}ground$ state, result in $|A_{||}|$ values that fall approximately in the range from 15C x 10⁻⁴ to 200 x 10⁻⁴ cm⁻¹ and $g_{||}$ is greater than g_{\perp} . Several studies have now successfully shown that, in agreement with theoretical predictions, distorting a square planar stereochemistry towards a tetrahedral stereochemistry generally results in a relative increase in $g_{||}$ and a decrease in $|A_{||}|$ for the same ligand donor sets.^{61,62,63} For a given geometry, smaller $g_{||}$ values can be achieved by substituting "hard" donor ligands with "soft" donor ligands and this is exemplified by the CuS_4^{2+} chromophores of $Cu(dth)_2(EF_4)_2$ ($g_{||} = 2.122$ and

 $Cu(tctd)(ClO_4)_2 (g_{\parallel} = 2.085).^{60}$

The spectral characteristics of the idealised five-coordinate Cu(II) complexes are also well established now. Trigonal bipyramidal Cu(II) complexes have a d_{τ^2} ground state and these are recognised by g_{\parallel} being <u>ca</u> 2.00 and $g_{\downarrow} > g_{\parallel}$, while $|A_{\parallel}|$ and $|A_{\parallel}|$ lie approximately in the range from 60 x 10^{-4} to 100 x 10^{-4} cm⁻¹.^{64,65} However, a complex where $|A_{\parallel}|$ is as low as 38 x 10^{-4} cm⁻¹ [Cu-Zn(F_6acac)₂H₂O], has been characterized.⁶⁶ While the Cu(II) complexes of thioether donor ligands can have g_{\parallel} values that are characteristic of a d_{σ^2} ground state 60 , trigonal bipyramidal complexes are easily recognised by their "reversed" spectra. An excellent example of this type, is the powder spectrum of Cu-Zn(F₆acac)₂.H₂O.⁶⁶ Square pyramidal complexes have a $d_{x^2} - v^2$ ground state and this usually results in the spectra and esr parameters being similar to those of tetragonal complexes.67,68

Intermediate five-coordinate geometries have received little attention, although criteria were recently suggested by Bencini <u>et al</u>,⁶⁴ for recognising these geometries in frozen solution spectra. Strong rhombic distortions, which result in one of the g values being less than 2.04, a more diffuse spectrum in the high field region and a normal tetragonal-like low field region, characterize these spectra.

ii) <u>The Spectra of $[Cu(tbmp)Br_2]_2$ and</u> $[Cu(tbmp)Cl_2]_2$

The calculation of the g and A parameters, and the experimental conditions, are described in the Appendices. The data for these complexes is given in Table 6, for various glasses at 77K.

Dichloromethane and Chloroform: Molecular weight measurements (Table 8) indicate that these complexes retain their dimeric nature in chloroform and this is reflected in the poorly resolved esr spectra ⁶⁹ (Figure 3). The broadening of the spectra is probably due to exchange-coupling effects.⁷⁰

The spectrum of $[Cu(tbmp)Br_2]_2$ in dichloromethane (Figure 3) could not be improved sufficiently to enable the calculation of g and A values. The diffuse nature of the spectrum at high fields would be consistent with a distorted five-coordinate structure.

Although the high-field region for $[Cu(tbmp)Cl_2]_2$ in dichloromethane is only weakly resolved (Figure 3) (which may be indicative of an intermediate fivecoordinate geometry),⁶⁴ the g (<u>ca</u> 2.000, <u>ca</u> 2.349) and A (<u>ca</u> 93, <u>ca</u> 71 x 10⁻⁴ cm⁻¹) values strongly suggest that its structure is trigonal bipyramidal.

<u>Nitromethane</u>: For $[Cu(tbmp)Cl_2]_2$, the spectrum (Figure 3) is quite well-resolved. The g value calculated for the weakly resolved peaks on the high-field of the major spectral line is consistent with a trigonal bipyramidal structure (g ~ 2.00, $|A| \sim 31 \times 10^{-4}$ cm⁻¹). However, the difference between the

Key to Figure 3

a	-	[Cu(tbmp)Cl ₂] ₂ in chloroform
<u>b</u>	-	[Cu(tbmp)Br ₂] ₂ in dichloromethane
C	-	[Cu(tbmp)Cl ₂] ₂ in dichloromethane
d	-	[Cu(tbmp)Cl ₂] ₂ in nitromethane
e	-	[Cu(tbmp)Br ₂] ₂ in methanol
<u>f</u>	-	Cu(II) in methanol

<u>NOTE</u>: In all of the esr spectra that are presented in this thesis, the 2800 Causs field line is given as a reference point.

				TABLE 6				
		ESR SP	ECTRA,	Cu(tbmp)X2]2	COMPLEXES			ă.
COMPLEX	SOLVENT			10^4 $ A_{\parallel} $ $/$ cm ⁻¹	gT	$10^{4} A_{1} / cm^{-1}$	g_iso	14 _N shfs —
[Cu(tbmp)Cl ₂] ₂	CH3NO2		<u>ca</u> 2.00	<u>ca</u> 31	2.227	1 35		
	CH ₂ Cl ₂		<u>ca</u> 2.00	<u>ca</u> 93	<u>ca</u> 2.34	9 <u>ca</u> 71		
	снсі3						2.115	
	A cetone						2.136	
	MeOH	a) b)	2.430 2.279	125 144				
	Glyc/MeOH	a) b)	2.426 2.270	123 143				<u>ca</u> 19 G
[Cu(tbmp)Br ₂] ₂	CH3NO2						2.104	
	CH ₂ Cl ₂						2.108	
	Acetone						2.131	
	MeOH	a) b)	2.425 <u>ca</u> 2.161	127 <u>ca</u> 151				<u>ca</u> 19 G
	Glyc/MeOH	a) b)	2.424 2.288	121 150				18 G
<u>NOTES</u> : - iso. = G = Gau - all spe - Glyc/Me	isotropic; ass; actra record 20H=20% Glyc	shfs = ed at erol/M	superhy 77K. ethanol	perfine splitt	ing; - i a b	n methanol glass) is Cu(MeOH) ²⁺) is tetragonal [Cu(tbmp) ₂ X] ⁺	es, speci while spe pyramidal	es cies

low-field and high-field |A| values (135 x 10⁻⁴ and 31 x 10⁻⁴ cm⁻¹ resp.) is greater than previously observed for trigonal bipyramidal complexes. According to these studies, $|A_{\parallel}|$ and $|A_{\perp}|$ should be of comparable magnitudes.⁷¹

<u>Methanol and 20% Glycerol/MeOH</u>: There are two major species present in these glasses (Figure 3). One of the species is solvated Cu(II) $[Cu(MeOH)_n^{2+}]$ as the g_{||} and $|A_{||}|$ parameters correspond to those that are measured for Cu(II) under the same conditions. For $[Cu(tbmp)Cl_2]_2$, the identity of the second complex is not immediately clear although the electronic spectra at 90K suggested that a tetragonal pyramidal $[Cu(tbmp)_2Cl]^+$ chromophore is present. The two high-field peaks in the esr spectra of $[Cu(tbmp)Br_2]_2$ correspond to those that are observed for Cu(tbmp)_2Er_2 and $[Cu(tbmp)_2Br]BF_4$ under the same conditions (see Chapter 2). Hence the tetragonal pyramidal monomer $[Cu(tbmp)_2Br]^+$, is probably present.

1.4 INFRARED SPECTRA

FAR INFRARED

In both spectra (Figure 4) there are two absorptions (X=Cl⁻; 282, 296 cm⁻¹: X=Br⁻; 227,244 cm⁻¹) that can be assigned as stretching vibrations of the "equatorial" Cu—X bonding, but there are no absorptions that can be readily assigned as stretching vibrations of the apical Cu—X bonding. The

X=Br v(Cu-Br) absorptions shown

assignments are in agreement with those of similar dimeric Cu(II) complexes, such as $[Cu(\sim -picoline)_2X_2]_2$ (X=Cl⁻; 3C5 cm⁻¹: X=Br⁻; 233 cm⁻¹) ^{23,24,72} and $[Cu(dmen)X_2]_2$ (X=Cl⁻; 3C2 cm⁻¹: X=Br⁻; 233 cm⁻¹).^{19,72}

EXPERIMENTAL

DETERMINATION OF STRUCTURE OF [Cu(tbmp)Br2]2

i) <u>General</u>

The approximate unit cell dimensions of the black crystals of [Cu(tbmp)Br₂]₂ were determined by preliminary oscillation, Weissenberg and precession photography. The crystals were prepared as described in the SYNTHESES. Density measurements and molecular weight determinations indicated that there were two dimers per unit cell, suggesting the space group Pī as the most logical choice. Accurate cell dimensions were calculated after a crystal had been aligned on a four-circle X-ray diffractometer. The least-squares analysis of the positions of twelve general reflections was used to define the crystal orientation.

CRYSTAL DATA	FOR Cu(tbm	<u>p)Br</u> 2]2
M.W.	809.30) g.
CRYSTAL SYST	EM Tricli	nic
SFACE GRCUP	Pī	
CELL DIMENSI	ONS a=9.04	.0(1)Å ∝ =120.26(1) [°]
	b=13.1	00(2) $\beta = 92.80(1)$
	c=15.4	55(2) 8 =111.31(1)
CELL VOLUME	U=1411	Å3
DENSITY	$D_{M}^{*} = 1$	$.896 \text{ g cm}^{-3}$
	$D_{CALC} =$	$= 1.905 \text{ g.cm}^{-3}(Z = 2)$
RADIATION	Mo – K	$\langle \boldsymbol{\prec} \rangle$
μ(Mo-Kα)	77.2 c	-1

NOTE: * Determined by flotation method. Measured in CH₃I/p-dibromobenzene/bromobenzene

TABLE 7a

ii) Data Collection and Reduction

The data was collected on a computer controlled Hilger and Watts four-circle X-ray diffractometer for a crystal which had dimensions of approximately $0.03 \times 0.01 \times 0.02$ cm and which was mounted about its <u>a</u> axis.

TABLE 7b

DATA COLLECTION FOR $[Cu(tbmp)Br_2]_2$ λ Mo-K0.7107 ÅBackground Count Time9 s. each sideCounting Steps30Counting Time/step1.5 s.Standard Reflections(-3, -1, C); (C, C, 8)

The checks that were made on the standard reflections did not reveal any significant , non-random, intensity changes. The data was collected (6341 measurements) for the hkl, $\bar{h}kl$, $\bar{h}kl$ and $h\bar{k}l$ reflections in two shells ($0^{\circ} < \theta < 20^{\circ}$ and $20^{\circ} < \theta < 26^{\circ}$). Equivalent reflections were then merged to give 5504 independent reflections of which 3070 had intensities greater than 2σ . Lorentz and polarization corrections were applied to the data, but no absorption corrections were made.

iii) Structure Solution and Refinement

Although it was apparent that quite a few of the major vectors in the Patterson vector map were related, the solution of this map was not obvious. The program DANFIG, a locally adapted version of ORTEP,⁷³ was used to calculate the distances of the major vectors from the origin, as well as the angles that are subtended at the origin, by these vectors. A copper atom was assigned to the origin and this gave a set of Cu-Br, Cu-Cu and Br-Br vectors that were consistent with a dimeric structure, such as that shown in Figure 5.

FIGURE 5

POSSIBLE STRUCTURE, AS INDICATED BY PATTERSON VECTORS

The coordinates of the two copper and four bromine atoms, that had been deduced from the Fatterson map, were used to calculate an electron density map phased on these atoms. The space group was assumed to be P1 and copper (1) was kept at the origin. This electron density map revealed the positions of the remaining copper and bromine atoms and also the sulphur and nitrogen atoms. The coordinates of all of the atoms that had been found gave reasonable environments for each of the four copper atoms in the unit cell.

On close examination of the atomic coordinates at this stage, it was noticed that pairs of atoms in both dimers were related by an apparent inversion centre centre. The space group thus appeared to be P1 as anticipated, and so the coordinates of the atoms were adjusted accordingly. A second electron density map was calculated after the new x,y,z parameters had been given one cycle of least-squares refinement. From this map, all of the remaining twenty carbon atoms were located.

The structure was refined using the full-matrix least-squares program, CUCLS.⁷⁴ The least-squares refinement was carried out on F, with the quantity $\leq w(|F_0| - |F_c|)^2$ being minimised and the weight (w) being $4(F_0)^2 / [\sigma (F_0)^2]^2$.

Four cycles of least-squares refinement, with all of the atoms being given isotropic temperature factors, reduced R to 0.174. A difference Fourier which was calculated at this stage, indicated that there were no unaccounted-for atoms in the unit cell. However, Er12 had a pair of peaks of about 10 $e.A^{-3}$ associated with it and the other heavy atoms had accompanying pairs of peaks of up to 7 e. $Å^{-3}$. This suggested that perhaps the unit cell was not truly centrosymmetric. Various attempts to break the apparent centre of symmetry were unsuccessful and so it was decided to retain the centrosymmetric space group. The bromine and copper atoms were given anisotropic temperature factors and refined. This was followed by a cycle in which anisotropic temperature factors were also given to the sulphur atoms and R was reduced to 0.080. Corrections for anomalous dispersion were applied to the bromine and copper atoms (as for Cu(tbmp)2Br) and two further least-squares refinement cycles resulted in R converging at 0.079 (R' = 0.097).

A difference Fourier indicated that there was
still some unaccounted-for density around the bromine, copper and sulphur atoms. The highest pair of peaks (<u>ca</u> 2.0 e.Å⁻³) was associated with Br22, the remaining heavy atoms having peaks of <u>ca</u> 1.8 - 1.0 e.Å⁻³.

No attempt has been made to locate or calculate the positions of the hydrogen atoms in this structure.

The anisotropic atoms have the following RNS components of thermal displacement along the principal axes, R:

ATOM	R = 1	R = 2	R = 3
Br11	0.1404 Å	0.2125	0.2624
Br12	0.1576	0.2208	0.3777
Br21	0.1652	0.2231	0.2737
Br22	0.1495	0.2612	0.2841
Cul	0.1339	0.1822	0.2599
Cu2	0.1370	0.1876	0.2660
S1	0.1550	0.1740	0.2221
S2	0.1398	0.1828	0.2575

TABLE 7c

MEAN LEAST-SQUARES PLANE EQUATIONS

ATCMS IN PLANE	EQUATION		
Cu1, S1, N1	-0.0930X-0.8299Y-0.5501 Z	=	-8.2009
Br11, Br12, Cu1	-0.5632X-0.6917Y-0.4521Z	=	-8.3277
Cu2, S2, N2	0.1568X-0.9658Y-0.2066Z	=	-8.0053
Br21, Br22, Cu2	-0.2934X-0.7205Y-0.6283Z	= -	-11.9320
Br11, Cu1, S1, N1	-0.0649X-0.9015Y-0.4279Z	=	-7.6152
Br12, Cu1, S1, N1	-0.2490X-0.6620Y-0.7070Z	=	-8.9242
Br22, Cu2, S2, N2	0.2030X-0.7943Y-0.5726Z	=	-11.2541
Br21, Cu2, S2, N2	0.1091X-0.9857Y-0.1287Z	=	-7.2846
N1, C12-16	0.1091X-0.6651Y-0.7388Z	=	-8.4952
N2, C22-26	0.0001X-0.9357Y-0.3527Z	=	-9.6056

SYNTHESES

General comments that relate to these syntheses can be found in the experimental section of the Appendices.

Bis[Dichloro-[2-(3, 3-dimethyl-2-thiabutyl)pyridine]copper(II)]

2 mmole of $CuCl_2.2H_2O(0.34C g.)$ were added to 2 mmole of ligand (0.363 g.) to give a dark green solution. Shiny dark green crystals were precipitated from this solution after it had been concentrated <u>in vacuo</u>.

YIELD: 0.418 g. (66%) Bis[Dibromo-[2-(3,3-dimethyl-2-thiabutyl)pyridine]-

copper(II)

With the solution volume at a minimum, 1 mmole of ligand (0.181 g.) was added to an <u>excess</u> of anhydrous $CuEr_2$ (> 0.223 g.). Cooling the black solution produced black crystals.

TABLE 8

MISCELLANEOUS PHYSICAL DATA

COMPLEX	COLOUR	M.P/ ^O C	ANALYS	ES:Calc	.(Found)	1%	CONDUCTI	VITY/ohm ⁻¹ mol ⁻¹ cm ²	M.W:Neas.(Calc)
			<u> </u>	H	N	Other	<u>CH</u> 3NO2	MeCH	
[Cu(tbmp)Cl ₂] ₂	d.green	128-130	38.04	4.79	4.44		4	67	CHCl ₃ -662 g.
			(38.24)	(4.8C)	(4.15)				Acetone-662 g. 3
[Cu(tbmp)Br ₂] ₂	black	108-110	29.68	3.74	3.46	Br39.50	10	74	CHC1 ₃ -785 g.
			(29.81)	(3.85)	(3.41)	(39.32)		Acetone-759 g.
NOTES: - mola	r conducti	vities at	25 ⁰ C: 1	Nitromet	thane 1:	1 (70-90), 2:1 (15	50-170)	
			I	[ethano]	L	(100-13	0), (21	IO-25C).	

- d = dark

CHAPTER 2

BIS [2-(3,3-DIMETHYL-2-THIABUTYL)PYRIDINE]

COPPER(II) CONFLEXES

The $\operatorname{Cu}(\operatorname{tbmp})_2 X_2$ complexes $(X=BF_4, \operatorname{ClO}_4, \operatorname{Cl}, \operatorname{Dr})$ that are described in this Chapter, are formed by the reaction of the respective $\operatorname{Cu}(II)$ salts with tbmp in a 1:2 ratio. In the solid state, far-infrared spectroscopic investigations $(X=Cl^-, \operatorname{Br}^-)$ suggest that these complexes have distorted <u>cis</u>-octahedral structures (Figure 6a) and the electronic spectral data is not inconsistent with these results. Molecular model studies also suggest that the binding of anions will be less sterically hindered if the tbmp ligands bind in a <u>cis</u> configuration.

In solution their behaviour is varied and the species that are formed can be both solvent and temperature dependent.

If LiBr and LiCl are reacted with $Cu(tbmp)_2(\mathbb{BF}_4)_2$ in 1:1 ratios, the respective $[Cu(tbmp)_2X]EF_4$ complexes (X=Cl⁻, Br⁻) are formed. These appear to have tetragonal pyramidal structures (Figure 6b) in the solid state and in non-ligating solvents.

$\frac{\text{FICURE 6}}{\text{Possible Structures for Cu(tbmp)}_2 X_2}$ and $\frac{[Cu(tbmp)_2 X]}{BF_4} \frac{\text{Complexes}}{Complexes}$

COMPLEX	STATE	STRUCTURE	PHYS ICAL TECHNIQUE
Cu(tbmp)2X2	solid	<u>cis</u> -octahedral	electronic
(X=BF ₄ ⁻ , ClO ₄ ⁻)	non-ligating solvent (rm.temp.) (77K)	<u>cis</u> - [Cu(tbmp) ₂] ²⁺ [Cu(tbmp) ₂] ²⁺ minor sp. without excess tbmp. Major species with excess tbmp.	electronic, conductivity esr
	ligating solvent (rm.temp.) (77K)	$ \begin{bmatrix} Cu(tbmp)_{2} \cdot (solvent)_{2} \end{bmatrix}^{2+} \\ Cu(tbmp)(solvent)_{n}^{2+} (n=2 \text{ or } 4, without excess tbm} \\ \begin{bmatrix} Cu(tbmp)_{2}(solvent)_{n} \end{bmatrix}^{2+} (n=0 \text{ or } 2, \text{ with excess tbmp} \end{bmatrix} $	electronic, conductivity p) esr)
Cu(tbmp) ₂ Cl ₂	solid	<u>cis</u> -octahedral	electronic, far-IR
	non-ligating solvent (rm.temp.) (77K) ligating solvent (rm.temp.)	dist.tetrag.pyr. $[Cu(tbmp)Cl_2]_2$ <u>cis</u> -Cu(tbmp) ₂ Cl ₂ with and without excess tbmp $Cu(tbmp)_2Cl_2 \stackrel{\longrightarrow}{\longrightarrow} [Cu(tbmp)_2Cl.(solvent)]^+ + Cl^-$	electronic esr electronic, conductivity
	(77K, 90K)	(In H ₂ O, both CI dissociate) tetrag.pyr. [Cu(tbmp) ₂ Cl] ⁺ with and without excess tbmp <u>cis</u> -Cu(tbmp) ₂ Cl ₂ in CH ₃ NO ₂ , with excess tbmp	electronic, esr esr
Cu(tbmp)2 ^{Br} 2	solid	<u>cis</u> -octahedral	electronic, far-IR
	(rm.temp.) (77K)	dist.tetrag.pyr. [Cu(tbmp)Br ₂] ₂ trig.bipyr. Cu(tbmp) ₂ Br ₂ or [Cu(tbmp) ₂ Br] ⁺	electronic esr
	(rm.temp.)	Cu(tbmp) ₂ Pr ₂ [Cu(tbmp) ₂ Br.(solvent)] + Br	electronic, conductivity
	(77K, 90K)	tetrag.pyr. [Cu(tbmp) ₂ Br] ⁺ (2 isomers)	electronic, esr
Cu(tbmp) ₂ X]BF ₄	solid	tetrag.pyr. $[Cu(tbmp)_2X]^+BF_4^-$	electronic , infrared
(X=Cl ⁻ , Br ⁻)	non-ligating solvent (rm.temp.) ligating solvent	tetrag.pyr. [Cu(tbmp)2X] ⁺	electronic
	(rm.temp.) (77K, 90K)	[Cu(tbmp) ₂ X.(solvent)] ⁺ tetrag.pyr. [Cu(tbmp) ₂ X] ⁺	electronic, conductivity electronic, esr

 $\frac{\text{TABLE 9}}{\text{SUMMARY OF RESULTS - Cu(thmp)_X_ COMPLEXES}}$

2.1 ELECTRCNIC SPECTRA

Where possible, the spectral maxima have been tentatively assigned, the assignments being based on comparions made within this series of complexes and according to arguments presented in the literature. The spectra and the assignments for $Cu(tbmp)_2X_2$ $(X=Clo_4^-, BF_4^-, Cl^-, Br^-)$ and $[Cu(tbmp)_2X] BF_4$ (X=Cl⁻, Br⁻) are presented in Table 10.

A) LIGAND FIELD TRANSITIONS

i) $Cu(tbmp)_2(ClO_4)_2$ and $Cu(tbmp)_2(BF_4)_2$

<u>Reflectance</u>: The ligand field maxima (600, 595 nm resp.) are consistent with the complexes having distorted tetragonal geometries where the anions are weakly coordinated and this is supported by the infrared spectra of these complexes. The spectra are very similar to those of the related complexes $Cu(mmp)_2(ClO_4)_2$ (mmp = 2-methylthiomethylpyridine)¹⁵ and $Cu(etmp)_2(BF_4)_2(etmp = 2-ethylthiomethylpyridine)^{75}$ which have been postulated to have tetragonal structures. The ligand field maxima of these two complexes are at <u>ca</u> 620 nm (shoulders at 600 and 710 nm) and 602 nm respectively.

<u>Solution</u>: The spectra are unchanged in dichloromethane and in nitrobenzene ($X=Clo_4^-$ only) and acetone, they move to slightly lower energies. A red-shift of 150 nm occurs in methanol, implying that a solvated, cationic complex such as $[Cu(tbmp)_2.(MeOH)_2]^{2+}$ is being formed.

ii) <u>Cu(tbmp)₂Cl₂ and Cu(tbmp)₂Br₂ Reflectance: Two absorptions are apparent</u> (X=Cl⁻; 730, <u>ca</u> 970(sh); X=Er⁻; 840 nm) although the low-energy shoulder in each spectrum is not clearly resolved. The spectra are consistent with the complexes having distorted six-coordinate geometries.¹⁵

The far-infrared spectra of these complexes suggest that the structures are distorted <u>cis</u>-octahedral.

Few distorted <u>cis</u>-octahedral Cu(II) complexes have been characterized and consequently it is uncertain whether or not there is a basic difference between the d-d absorptions of <u>cis</u>- and <u>trans</u>-tetragonal Cu(II) complexes. The most well known <u>cis</u>-octahedral complex, $[Cu(bipy)_2ONC]NO_3$, and a series of closely related complexes, have two distinct d-d maxima of about equal intensity at about 640-700 nm and 925-1090 nm in the solid state, at room temperature.⁷⁶ Similar distinctive splittings though, have been observed for <u>trans</u>-tetragonal complexes and related to the degree of tetragonal distortion.⁷⁷

Solution: In coordinating solvents such as methanol, two absorptions (Table 10, Figure 7) are readily apparent. It is probable that partial solvation is occurring as these complexes exhibit appreciable conductivities in nitromethane and methanol (Table 14) and in the latter solvent, the spectra are similar to those of the $[Cu(tbmp)_2X]BF_4$ complexes (X=Cl⁻, Br⁻) under the same conditions.

In deionised water the 2:1 electrolytic behaviour (Table 14) of Cu(tbmp)₂Cl₂ suggests that at least two

FICURE 7

Electronic Spectra - Cu(tbmp)2Br2 and [Cu(tbmp)2Br]BF4

	ELECTRONIC SPECTRA, Cu(tbmp) X AND [Cu(tbmp) X] BF, CCMPLEXES							
COPLEX	REFLECTA	NCE ASSIGNMENT	CH_C1_(€)	ASSIGNMENT	MeOH(€)	ASSIGNMENT	ACETCHE	CTHER
	1.7		2 2					ØN02
$Cu(tbmp)_2(ClO_4)_2$	420 <u>ca</u> 440(s)	$\sigma(S) \rightarrow Cu(II)$ $\sigma(S) \rightarrow Cu(II)$	390 [†]	$\sigma(S) \rightarrow Cu(II)$	346(1023)	σ(S)→Cu(II)	<u>ca</u> 38C(sh) 4C5(1562)
	600	LF	600	LP	750(6C) [†]	LF	635(389)	637(556)
$Cu(tbmp)_2(BF_4)_2$	407 ca 455(s)	$\sigma(S) \rightarrow Cu(II)$ $\sigma(S) \rightarrow Cu(II)$	<u>са</u> 37С(вh) 387	$\sigma(S) \rightarrow Cu(II)$ $\sigma(S) \rightarrow Cu(II)$	344(1C86)	σ(S)→Cu(II)	381 (31 66)
	 595	LF	595	LF	745(74) [†]	LF	612(379) <u>ca</u> 85С(вh)	
Cu(tbmp) ₂ Cl ₂			<u>ca</u> 286(537C) 368(2537)	apical Cl →Cu(II) mixed	361(1480)	mixed	<u>ca</u> 351(sh)	<u>H</u> 2Q 343(1€58)
	<u>ca</u> 410(s) 730	n) mixed LF	448(926) 812(195) [†]	Cl ⁻ →Cu(II) LF	810(209)	IF	448(1C61 82C(178)) 765(91) [†]
Cu(tbmp)2 ^{Br} 2	<u>ca</u> 970(87	1) IF	ca 320(sh)	apical Br → Cu(II)	$\frac{ca}{310(1892)}$	Br →Cu(II)	352(4078))
	<u>ca</u> 450(8)	a) mixed	<u>ca</u> 410(вh) 58C(546)	Br→Cu(II) Br→Cu(II)			<u>ca</u> 415(sh) 577(4C3)	/
	840	LF	862(327)	I.P	8CC(35C) <u>са</u> 94G(вh)	LP LF	875(318) ¹	
[Cu(tbmp) ₂ C1]BF ₄	<u>ca</u> 375	mixed	<u>са</u> 280(вh) 38C(17CO) [†]	Cl → Cu(II) mixed	363(1468)	mixed		<u>CH3N0</u> 2
	810 <u>ca</u> 960(st	LF) LF	76C(5CC) 1C2O(5C4)	LF LF	8CO(212) 95C(194)	LF LF		76C(467) 1C1C(476)
[Cu(tbmp) ₂ Br]BF ₄	419 [†]	mixed	365(2896) <u>са</u> 395(вh)	$\sigma(S) \rightarrow Cu(II)$ Fr $\rightarrow Cu(II)$	355(1610) [†]	mixed		
	840 t	LF	780(645) 1010(507)	L P LF	805(300) <u>ca</u> 950(вh)	LF LF		

TAPLE 10

NOTES: | asymmetric maxima, implying a second, unresolved maximum,

- where charge transfer maxima are assigned as being "mixed", maximum probably consists of $\sigma(S) \rightarrow Cu(II)$ and $X \rightarrow Cu(II)$ charge transfer maxima.
- $Cu(tbmp)_2X_2$ (where X is Clo_4^- and BF_4^-) were only partially soluble in CH_2Cl_2 .
- sh = shoulder; LF = Ligand Field; all maxima are in nm.
- extinction coefficients are l.mol.⁻¹cm⁻¹

of the Cu(II) coordination sites will be occupied by water molecules.

Possible equilibria are: $Cu(tbmp)_2X_2 \xleftarrow{} [Cu(tbmp)_2X.(solvent)]^+ + X^- (X=Cl^-, Er^-)$ where the solvent is methanol or nitromethane, but in water

 $Cu(tbmp)_2 X_2 - [Cu(tbmp)_2 (H_2 0)_2]^{2+} + 2X^{-}.$

In contrast, the spectra in the poorer ligating solvents, dichloromethane and acetone, show only slightly asymmetric d-d absorption envelopes (Figure 7). These are very similar both in energy (X=Cl⁻; 812 nm: X=Br⁻; 862 nm) and form, to those of the distorted five-coordinate $[Cu(tbmp)X_2]_2$ dimers (X=Cl⁻, Br⁻) in dichloromethane (Chapter 1) and the charge transfer absorption maxima are also very similar. These results suggest that the $Cu(tbmp)_2X_2$ (X=Cl⁻, Br⁻) complexes are dimerizing in dichloromethane and acetone;

- i.e. $2 \left[Cu(tbmp)_2 X_2 \right] \longrightarrow \left[Cu(tbmp) X_2 \right]_2 + 2tbmp.$
- iii) $\left[\frac{Cu(tbmp)_2Cl}{BF_4}\right]$ and $\left[\frac{Cu(tbmp)_2Br}{BF_4}\right]$

<u>Reflectance</u>: The infrared spectra (see 2.3) of these complexes give good evidence for the tetraflucroborate anion being unbound in the solid state and so the spectra are assigned to the five-coordinate chromophores $[Cu(tbmp)_2X]^+$. The form of the d-d absorption envelopes (Figure 7) (X=Cl⁻; 810, <u>ca</u> 96C(sh): X=Br⁻; 840(asym) nm) suggests that these chromophores are tetragonal pyramidal (see Chapter 1.2).

<u>Solution</u>: In dichloromethane (and nitromethane where $X=Cl^{-}$), these complexes have two, well-defined absorptions at 760-780 nm and 1010-1020 nm respectively

(Figure 7). Similar spectra are commonly observed for trigonal bipyramidal complexes such as $[Cu(trenNe_6)X]X$ in solution^{67,78,79} but they are also not unknown for square pyramidal complexes⁶⁷ where the maxima are observed at higher energy. A consideration of the conductivities (Table 14) and the infrared spectra (see 2.3) of the $[Cu(tbmp)_2X]BF_4$ complexes suggests that these spectra are due to five-coordinate, $[Cu(tbmp)_2X]^+$ chromophores. The intensity arguments (see 1.2) applied by Hathaway <u>et al</u>⁴⁸ imply that in dichloromethane and nitromethane, $[Cu(tbmp)_2C1]BF_4$ may assume an intermediate geometry as both absorptions are of about equal intensity. $[Cu(tbmp)_2Br]BF_4$ appears to retain a tetragenal pyramidal structure in dichloromethane.

B) CHARGE TRANSFER TRANSITIONS

i) <u>Cu(tbmp)</u>₂(ClO₄)₂ and Cu(tbmp)₂(BF₄)₂

The assigned $\sigma(S) \rightarrow Cu(II)$ charge transfer absorptions are in agreement with other studies on simple Cu(II)/thioether complexes where the absorptions have been specifically assigned ^{47,69,80} or recognised as being charge transfer arising from thioether ligands.⁸¹⁻⁸³

It is apparent from these studies that $\sigma(S) \rightarrow Cu(II)$ charge transfer absorptions will be found from about 300 nm to 460 nm.

The two $\sigma(S) \rightarrow Cu(II)$ charge transfer absorptions in the $Cu(tbmp)_2X_2$ (X=ClO₄, BF₄) reflectance spectra are indicative of a <u>cis</u>-ligand arrangement.^{60,80} The spectra in dichloromethane suggest that this ligand arrangement is retained.

ii) <u>Cu(tbmp)</u>₂Cl₂ and Cu(tbmp)₂Br₂

Poor resolution at the blue end of the visible region in the reflectance spectra does not allow specific assignments to be made. In dichloromethane solution, the charge transfer maxima of the $[Cu(tbmp)X_2]_2$ dimers that are formed are discussed in Chapter 1.

iii) $\left[\underline{Cu(tbmp)}_{2}\underline{C1}\right]\underline{BF}_{4}$ and $\left[\underline{Cu(tbmp)}_{2}\underline{Br}\right]\underline{BF}_{4}$

"In-plane" Cu(II)— Br bonding is implicated by the assignment of a Br \rightarrow Cu(II) charge transfer absorption at about 395 nm in dichloromethane, as it is probably too low in energy to have arisen from apical Cu—Br interactions (see Chapter 5.1(B)).⁴⁷ A similar structure is inferred from the spectra of $[Cu(tbmp)_2C1]BF_4$.

C) <u>ELECTRONIC SPECTRA AT 90K</u> (in 20% Glycerol/MeCH)

The spectra and assignments for these complexes are presented in Table 11 and typical spectra for the anions $X=C1^{-}$ and $X=Br^{-}$ are shown in Figure 8.

i) $Cu(tbmp)_2 X_2(X=ClO_4, Cl^{-}, Br^{-})$

<u>Ligand Field Transitions</u>: The net similarity of the two well resolved d-d absorptions suggests that the same type of species is responsible for each of these spectra. Where X is chloride and bromide, the spectra are identical to those of the five-coordinate $[Cu(tbmp)_2X]BF_4$ complexes (X=Cl⁻, Br⁻ respectively) in dichloromethane solution and this strongly implies that similar fivecoordinate chromophores are responsible for these spectra at 90K. Electron spin resonance evidence is consistent with both ligands remaining coordinated and the complexes

- spectra recorded for 20% Glycerol/KeCH glasses,
- for the respective anions, spectra of $[Cu(tbmp)X_2]_2$ and $Cu(tbmp)_2X_2$ are identical to these spectra.

64

TAELE 11

EI	ECTR	(]]])	C S	FEC	TRA.	ΑT	SCK
----	------	-------	-----	-----	------	----	-----

CCAPLEX	ABSORFTION/nm	e /1.mol. ⁻¹ cm ⁻¹	ASSIGNMENT
Cu(tbm.p) ₂ (ClO ₄) ₂	362(asym) 695 1020	142 81	σ(S)→Cu(II) LF LF
Cu(tbmp) ₂ Cl ₂	372(asym) 750 1010		mixed IF IF
[Cu(tbmp) ₂ C1] BF ₄	376(asym) 762 1C25	2449 455 631	mixed LF LF
[Cu(tbmp)Cl ₂] ₂	367(asym) 762 1C25	1 30 3 3 36 3 54	mixed LF LF
Cu(tbmp)2 ^{Br} 2	366 395(sh) 780 1020	2606 1796 914 862	σ(S)→Cu(II) Pr ⁻ →Cu(II) LF LF
[Cu(tbmp)Br ₂] ₂	369 390(sh) 785 1010		σ(S)→Cu(II) Er → Cu(II) I.F LF
[Cu(tbmp) ₂ Br] BF ₄	365 396(sh) 78C 1C2C	709 669	σ(S)→Cu(II) Er → Cu(II) IF LF

<u>NOTES</u>: - where extinction coefficients have not been given, they were considered to be unreliable.

- "mixed" implies that maximum probably consists of $\sigma(S) \longrightarrow Cu(II)$ and $CI \longrightarrow Cu(II)$ C.T. maxima.
- Cu(tbmp)₂(ClO₄)₂ appeared to be reducing
- sh = shoulder; asym = asymmetric, implying a second, unresolved absorption.
- E is uncorrected for contraction on cooling.

having tetragonal pyramidal structures under these conditions (see 2.2).

<u>Charge Transfer Transitions</u>: Thioether binding is implicated by the absorption at about 365 nm which appears in each of these complexes and is assigned as a $\sigma(S) \rightarrow Cu(II)$ charge transfer transition. In the chloride complex, this absorption probably overlaps a $Cl \rightarrow Cu(II)$ charge transfer transition, the analogous $Er \rightarrow Cu(II)$ transition being observed at 395 nm in $Cu(tbmp)_2Br_2$. The latter assignments are more consistent with in-plane Cu-X bonding.

ii) $\left[\frac{Cu(tbmp)}{2X} \right] BF_{4} = \left(\frac{X=Cl^{-}, Br^{-}}{2K} \right)$

The spectra at 9CK (Figure 8) are virtually identical to those of the respective complexes in dichloromethane at room temperature (Figure 7) and to those of $Cu(tbmp)_2X_2$ (X=Cl⁻, Br⁻ respectively) at 9CK (Table 11). Electron spin resonance spectra at 77K in 2C% Glycerol/MeOH are consistent with the $[Cu(tbmp)_2X]^+$ chromophores being closer to having tetragonal pyramidal structures rather than trigonal bipyramidal structures.

2.2 ELECTRON SPIN RESONANCE SPECTRA

The data for these complexes is given in Table 12, for various glasses at 77K.

i) $Cu(tbmp)_2(BF_4)_2$

<u>Acetone</u>: Two species are present, both having similar $|A_{\parallel}|$ values (169 x 10⁻⁴ and 165 x 10⁻⁴ cm⁻¹) but with different g_{\parallel} (2.264, 2.320 resp.) values (Figure 9). On adding excess ligand, a significant increase in the concentration of the minor species is observed (Figure 9) but there is no change in the g_{\parallel} and A_{\parallel} values of either complex. The spectral changes suggest that the $g_{\parallel} = 2.320$ complex is basically a $[Cu(tbmp)_2]^{2+}$ chromophore where tetrahedral distortions and/or decreased covalent bonding in the Cu(II) coordination sphere have increased g_{\parallel}^{60} .

<u>Nitromethane and Nethanol</u>: The complex also breaks down in these solvents and dramatic spectral changes (Figure 9) can be induced by adding excess ligand. In the absence of excess ligand, the spectra are probably due to a tetragonal solvated $[CuNS]^{2+}$ chromophore such as $[Cu(tbmp)(solvent)_n]^{2+}$ where n = 2 or 4. In methanol, a very small quantity of a species having similar g_{\parallel} (<u>ca</u> 2.3C) and $|A_{\parallel}|$ (<u>ca</u> 15C-165 x 10⁻⁴ cm⁻¹) values to one of the complexes in acetone, is also formed.

In the presence of excess ligand, the spectra are typical of a tetragonal Cu(II) chromophore, with or without nitromethane and methanol in the Cu(II) coordination sphere. The spectra are thus assigned to a $[Cu(tbmp)_2(solvent)_n]^{2+}$ species (n = 0 or 2).

ii) $Cu(tbmp)_2X_2$ (X=Cl⁻, Br⁻)

<u>Dichloromethane</u>: It was apparent from the electronic spectra that these complexes form $[Cu(tbmp)X_2]_2$ five-coordinate dimers in this solvent at room temperature but there is no esr evidence for the presence of these dimers at 77K. The addition of excess ligand gives a better resolved spectrum (Figure 9) where X is chloride, but the g_{\parallel} and $|A_{\parallel}|$ values suggest

FIGURE 9

ESR Spectra - $Cu(tbmp)_2 \frac{\chi}{2} Complexes$ (at 77K)

Key to Figure 9

- Cu(tbmp)2Er2 (+ excess tbmp) in dichloromethane a - Cu(tbmp)2Br2 in 20% Glycerol/VeCH b - Cu(tbmp)₂Cl₂ in methanol С - Cu(tbmp)₂Cl₂ in dichloromethane d - Cu(tbmp)₂Cl₂ (+ excess tbmp) in dichloromethane е - Cu(tbmp)₂(BF₄)₂ in nitrcmethane f E - Cu(tbmp)₂(BF₄)₂ (+ excess tbmp) in nitromethane - $Cu(tbmp)_2(BF_4)_2$ in acetone h - $Cu(tbmp)_2(BF_4)_2$ (+ excess tbmp) in acetone i

. . .

CCUPLEX	SOLVENT		10 ⁴ A	14 N SHF 3		10 ⁴ A
Cu(tbmp) ₂ (BF _A) ₂	CH NO2	2.189	169		-	-
2 7 2	+ excess L	2.264	190	14	<u>ca</u> 2.C55	
	Acetone	a) 2.264	169			
		ъ) 2.32С	165			
	+ excess L	a) 2.263	169			
		b) 2.312	163			
	NeOH	a) 2.296	150			
		b) 2.363	151			
	+ excess T	a) 2.252 b) 2.164	173			
	Class AtoON	-) 2 202	147			
	GIYC./B.CON	a) 2.295 b) 2.338	162			
	+ excess L	2.249	144			
Cu(thmn) (ClO)	CH NO.	2,180	172			
$(4) = (2) = (4)^2$	GN 62	2 2 24	162			
Cu(tomp/2C12		$\frac{ca}{2}$ 2.24	<u>ca</u> 162 157		ca 2 068	
	T EXCESS P		101		<u>ea</u> 2.000	
	CH3NO2	a) c_{a} 2.26 b) c_{a} 2.26	<u>ca</u> 100	<u>ca</u> 16		
	+ excess L	2.260	158	14	2.060	
	NoON	2 185	124	02.18		
	keon	2.109	124			
	Glyc./MeCH	2.179	124	17		
	+ excess I	2.100	115			
	H2 ⁰	2.120(Eiso)			
Cu(tbmp)_Pr	CH_Cl_	ca 1.95	ca 97		ca 2.23	ca 126
2 2	+ excess L	<u>ca</u> 1.94	<u>ca</u> 92	\underline{ca} 10(g,)	<u>ca</u> 2.26	ca 140
				<u>ca</u> 12(g)		
	CH NO2	2.1C4(Eiso)			
	L'eOH	a) ca 2.18	ca 142	19		
		b) <u>ca</u> 2.23	<u>ca</u> 1C4	.,		
	+ excess L	a) 2.191	1 36	20		
		b) <u>ca</u> 2.23	<u>ca</u> 104			
	Glyc./MeOH	a) <u>ca</u> 2.18	<u>ca</u> 144	<u>ca</u> 19		
		b) <u>ca</u> 2.23	<u>ca</u> 109			
[Cu(tbmp) ₂ Cl] EF ₄	CH3NO2	2.183	117	<u>ca</u> 17		
	+ excess L	2.183	117	<u>ca</u> 20		
	MeOH	2.183	133	<u>ca</u> 17		
	+ excess I	2.188	1 31	<u>ca</u> 17		
	Clyc./MeOH	2.191	126	18		
[Cu(tbmp)_Br] BF	CH NO2	a) 2.181	129	<u>ca</u> 20		
	5 2	ъ) 2.225	97			
	MeOH	<u>ca</u> 2.19	<u>ca</u> 138			
	+ excess L	a) 2.180	122	17		
		ъ) 2.22С	107			
	Clyc./MeOH	a) 2.18C	142	18		
		b) 2.225	104			
	+ excess L	a) 2.105 b) 2.225	1 30	19		
		0) 2.225	104			
NOTES: - units o	f A and A	are cm ⁻¹ ,				
- units o	f ¹⁴ N _{SHFS} are	Gauss,				
- iso = i	sotropic; shfs	= superhyperfir	ne splitting.			
- All sne	ctra recorded	at 77K				
		erol/l'etherel				
- 01yc./2.	con = zcz ulyc	14.				
- unless	otherwise indi	cated, N _{SHFS} 1	ines appear in	El region.		

TABLE 12

that the same complex, $(probably \underline{cis}-Cu(tbmp)_2Cl_2)$ is present both with and without excess ligand.

<u>Cis</u>-distorted octahedral complexes have a d_{z^2} ground state and should thus exhibit a lowest-g value of <u>ca</u> 2.00, however a lower than ideal geometry, which is likely to be the case here can raise this low g value.^{30,76} ESR parameters for what were deduced to be <u>cis</u> and <u>trans</u>- [Cu(bipyridyl)₂(solvent)₂]²⁺ systems have been reported recently ⁸⁴, but the dissimilarity between the studies described herein and those described by Marov <u>et al</u>, does not make a comparison very meaningful.

Under the same conditions, Cu(tbmp), Br, behaves differently than Cu(tbmp)₂Cl₂. With and without excess ligand, the spectra exhibit poorly resolved, low-field hyperfine structure (ε_{II}) and this is overlapped by a complicated ^{14}N superhyperfine structure in the presence of excess ligand (Figure 9). The number of species contributing to the spectra is difficult to determine. It is clear from the high-field region that the major contributor to the spectrum is a distorted trigonal bipyramidal species. This could be either [Cu(tbmp)2Br]+ or Cu(tbmp)₂Br₂ if one ligand is monodentate. The g for this complex (g₁ \sim 1.94) is characteristic of trigonal bipyramidal complexes containing coordinated halogens and it probably arises from a combination of spin-orbit coupling with a bromide ligand 67 and Cu(II)thioether interactions.⁶⁰

<u>Nitromethane</u>: Two species are apparent for Cu(tbmp)₂Cl₂ and the addition of ligand causes the

disappearance of one of these $(g_{\parallel} \sim 2.26; |A_{\parallel}| \sim 10 \text{Cx} 10^{-4} \text{cm}^{-1})$ leaving the spectrum of what is probably <u>cis</u>-octahedral Cu(tbmp)₂Cl₂.

The spectrum of Cu(tbmp)₂Br₂ is poorly resolved and neither the addition of excess ligand nor varying the concentration resulted in an improved spectrum.

<u>Methanol and 20% Glycerol/Methanol</u>: Cu(tbmp)₂Cl₂ gives identical spectra (Figure 9) to [Cu(tbmp)₂Cl] BF₄ in methanol, glycerol/methanol and nitromethane glasses and there is no change on adding excess ligand. The g_{\parallel} (<u>ca</u> 2.185) and $|A_{\parallel}|$ (<u>ca</u> 123 x 10⁻⁴ cm⁻¹) values are consistent with the complexes having tetragonal pyramidal geometries at 77K 67,68,85 where A has been lowered from typically tetragonal values by increased axial interactions.⁸⁵ These result in a concomitant increase in the 4s orbital population, compared to cisoctahedral Cu(tbmp), Cl, postulated in nitromethane (plus excess ligand) and dichlorcmethane glasses (above). The possibility that Cu(tbmp)₂Cl₂ is six-coordinate is ruled out by a consideration of its electronic spectrum in 20% Glycerol/MeOH at 9CK. (see 2.1(C)).

Superior resolution of the g_{||} lines for the two species arising from $Cu(tbmp)_2Br_2$ in methanol glass is achieved by adding excess ligand. No resolution problems are encountered with 20% Glycerol/MeOH. The spectra (Figure 9) are virtually the same as those of $[Cu(tbmp)_2Br]BF_4$ in methanol (plus excess ligand), 20% Glycerol/MeOH and nitromethane glasses, with two species being observed. Their relative concentrations are unaffected by excess ligand. Species (a) ($g_{\parallel} \sim 2.18$; $|A_{\parallel}| \sim 142 \times 10^{-4} \text{cm}^{-1}$) appears to be analogous to the tetragonal pyramidal monomer which is postulated to be responsible for the spectra of Cu(tbmp), Cl, and $[Cu(tbmp)_2Cl]BF_4$ in methanol containing glasses. Species (b) $(g_{\parallel} \sim 2.23; |A_{\parallel}| \sim 104 \times 10^{-4} \text{ cm}^{-1})$ may also have a tetragonal pyramidal stereochemistry although g_{\parallel} and $|A_{\parallel}|$ are equally consistent with a pseudotetrahedral $[CuN_2S_2]^{2+}$ chromophore where g_{\parallel} has been lowered by Cu(II)-thioether interactions.⁶⁰ However, the electronic spectra at 9CK do not support the latter suggestion. It is plausible that the esr spectra are due to two of the isomers that are possible for a tetragonal pyramidal [Cu(tbmp)₂Br]²⁺ species. The low $|A_{\parallel}|$ values for the two species rule out the interconversion, similar to that postulated for $CutrienR_6X_2$ (X=Cl⁻, Br⁻) complexes,⁶⁷ is occurring.

iii) $\left[\frac{Cu(tbmp)_2X}{BF_4}\right]$ $\left[\frac{X=Cl^{-}, Br^{-}}{Br_4}\right]$

<u>Methanol, 20% Glycerol/Methanol</u>: The spectra are virtually identical to the respective $Cu(tbmp)_2X_2$ complexes (where X is chloride and bromide) that were discussed above. There is one minor difference though, in that only one species is apparent for $[Cu(tbmp)_2Br]BF_4$ in methanol, the spectrum being poorly resolved.

<u>Nitromethane</u>: The spectra are similar to those of the respective complexes in methanol and 2C% Glycerol/MeCH (Table 12). However, they differ from those of $Cu(tbmp)_2$ -Cl₂ and $Cu(tbmp)_2 Pr_2$ in nitromethane glasses in which

the <u>cis</u>-octahedral $Cu(tbmp)_2X_2$ chromophores are probably predominant.

2.3 INFRARED SPECTRA

FAR-INFRARED (Cu(II)-halogen stretching)

One $\mathbf{v}(Cu-X)$ absorption (X=halogen) is expected for <u>trans</u>-tetragonal CuL_4X_2 complexes (D_{4h} symmetry) whereas two absorptions are expected for the <u>cis</u> complexes (C_{2v} symmetry).⁸⁶ The tbmp complexes will be of lower symmetry because of the asymmetrical nature of the ligands and so predictions regarding the expected number of $\mathbf{v}(Cu-X)$ absorptions, in the absence of more detailed structural information, can not be accurately made.

Some crystal structure-correlated far-infrared data for Cu(II) complexes is presented in Table 13a and this can be compared with the data for the Cu(tbmp)₂X₂ (X=Cl⁻, Er⁻) and [Cu(tbmp)₂X]EF₄ (X=Cl⁻, Er⁻) complexes in Table 13b. The tentatively assigned \mathbf{v} (Cu-X) absorptions of these complexes are consistent with equatorial Cu-X bonding and they can be compared with the low frequency \mathbf{v} (Cu-X) absorptions that have been assigned for the <u>trans</u>-tetragonal Cu(etea)₂X₂ complexes (Chapter 5.3, Table 29). Two \mathbf{v} (Cu-Cl) absorptions are observed for Cu(tbmp)₂Cl₂ (Figure 1C) and the spectrum is similar to those of Ni(tbmp)₂Cl₂ and Co(tbmp)₂Cl₂ for which distorted <u>cis</u>-octahedral structures also seem to be likely (Chapter 4).

GENEFAI INFRARED

i) <u>Anion coordination</u>: <u>Semi-coordination</u> of perchlorate and tetrafluoroborate anions results in a

- the two \mathbf{v} (Cu-Cl) absorptions (indicating that the chloride ions are <u>cis</u> with respect to each other) are shown.

TABLE 13a

SOME FAR-IR DATA FOR Cu(II) COMPLEXES

COMPLEX	STRUCTURE	REF.	$v(Cu-X)/cm^{-1}$	REF.
Cu(en)Cl ₂	Folymeric tetr.; briding Cl-	87	267	72
Cu(en)Er ₂	Isomorphous with Cu(en)Cl ₂	88	187	72
[Cu(en) ₂ Cl.H ₂ C]Cl	Tetr.; axial Cu-Cl and Cu-H ₂ O	89	<200 φ	90
[Cu(en) ₂ Br.H ₂ 0]Br	Tetr.; axial Cu-Br and Cu-H ₂ C	91,97	<200 φ	90
[Cu(dmen)Cl ₂] ₂	Dichloro-bridged, tetr.pyr. dimer	19	302	72
[Cu(dmen)Br ₂] ₂	Dibromo-bridged, tetr.pyr. dimer	19	233	72
Cu(∝ -pic) ₂ Cl ₂	Chloro-bridged, tetr.pyr. dimer	24	305	72
Cu(≪ -pic) ₂ Br ₂	Bromo-bridged, tetr.pyr. dimer	23	233	72
Cu(4-EtPy) ₂ Cl ₂	Tetr., long Cu-Cl br.sq.planar CuN ₂ Cl ₂	92	31 C	72
Cu(py) ₂ Cl ₂	Tetr., long Cu-Cl br.sq.planar CuN ₂ Cl ₂	93	295, 234	86
Cu(py) ₂ Br ₂	Tetr., long Cu-Br br.sq.planar CuN2Br2	94	256	86
Cu(β- isosparteine)Cl ₂	Distorted tetrahedral	95	282, 275	96

NOTES: - tetr. = tetragonal; pyr. = pyramidal; br. = bridging; sq. = square.

 ϕ ∇ (Cu-X) below the range of the instrument that was used.

TAPLE 13b

FAR-IR DATA, tbmp/Cu(II) COMPLEXES

	Best of the second seco	and a second s
COMPLEX	$v(Cu-X)/cm^{-1}$	PROPOSED STRUCTURE
Cu(tbmp)2Cl2	272,277(sh)	cis-octahedral,monomeric
[Cu(tbmp)Cl ₂] ₂	282,296	tetragonal pyramidal, dimeric
[Cu(tbmp) ₂ Cl] BF ₄	292	tetragonal pyramidal, monomeric
Cu(tbmp) ₂ Br ₂	184	cis-octahedral,monomeric
[Cu(tbmp)Br ₂] ₂	227,244	tetragonal pyramidal,dimeric (X-rayed)
[Cu(tbmp)2Br]BF4	183	tetragonal pyramidal, monomeric

<u>NOTES</u>: - spectra recorded for paraffin mulls, room temperature.
- structures proposed on basis of collective spectroscopic data.

GENI	ERAL IR DATA, tomp	/Cu(II) CCMFLEXES	
CCMPLEX	V(pyridyl ring)	$v_3(clc_4/BF_4)$	$\underline{v}_1 (\underline{\text{clo}}_4/\underline{\text{BF}}_4)$
tbmp	1593(s),1570(m)		
Cu(tbmp) ₂ (ClO ₄) ₂	1612(s),1576(w)	1090(vs),1050(vs)	933(w)
$Cu(tbmp)_2(BF_4)_2$	1611(m),1577(w)	1098(s),1061(s) 991(s)	φ
Cu(tbmp) ₂ Cl ₂	1607(s),1574(m)		
Cu(tbmp) ₂ Br ₂	1609(m),1566(w)		
[Cu(tbmp)Cl ₂] ₂	16C6(m)		
[Cu(tbmp)Br ₂] ₂	1599(m),1565(m)		
[Cu(tbmp) ₂ Cl]BF ₄	1605(s),1572(w)	1C54(vs)	φ
[Cu(tbmp) ₂ Br] BF ₄	1607(s),1569(w)	1C55(vs)	φ
NOTES: \$ strong 1	igand band occurs	at about 76C cm^{-1}	
- frequenc	ies are cm ⁻¹ , spe	ctra recorded for Nu	ijol Mulls.
-s = stro	ng; m = medium; w	= weak; v = very	_1
- ionic Cl	$0_4, v_3$ occurs at	<u>ca</u> 1100 cm ⁻¹ , V_1 at	<u>ca</u> 930 cm ⁻¹
- ionic BF	$\overline{\mathcal{N}}_{1}$, $\overline{\mathcal{N}}_{2}$ occurs at c	a 1100 cm ⁻¹ , v , at c	$a 760 \text{ cm}^{-1}$.

TABLE 13c

splitting of the intense \mathbf{V}_3 mode (found at about 1100 cm⁻¹) and there is an increase in the intensity of the weak \mathbf{V}_1 mode which is found at about 930 cm⁻¹ (perchlorate) and 760 cm⁻¹ (tetrafluoroborate) respectively.⁹¹ The \mathbf{V}_1 mode, which is formally infrared inactive in the unccordinated anions (\mathbf{T}_d symmetry), becomes infrared active as a result of the lower symmetry ($\mathbf{C}_{3\mathbf{v}}$) of the semi-coordinated anion and the previously degenerate \mathbf{V}_3 mode, loses some of its degeneracy.

The spectra of $Cu(thmp)_2(ClC_4)_2$ and $Cu(thmp)_2(EF_4)_2$ suggest that the anions are semi-coordinating (Table 13c) as a splitting of the V_3 mode is observed, however the single V_3 absorption in the spectra of $[Cu(thmp)_2Cl]EF_4$ and $[Cu(thmp)_2Pr]EF_4$ is good evidence for the non-coordination of the tetrafluoroborate anions.

ii) <u>Ring Stretching modes</u>: Two ring stretching modes are normally observed for 2-substituted pyridine ligands ⁹⁸ and the effects of ligand complexation to metal ions, on these frequencies, have been well documented.^{99,100} The strong, sharp absorption at 1578 cm⁻¹ for pyridine film ⁹⁹ is shifted to 1593 cm⁻¹ in tbmp and Gill <u>et al</u> report that it is this absorption (Band I) which shifts to higher frequencies in metalpyridine complexes. Cther workers have reported similar shifts in the complexes of substituted pyridine ligands.^{100,101} The Cu(tbmp)₂X₂ (X=ClC₄, EF₄, Cl⁻, Er⁻) and [Cu(tbmp)₂X]EF₄ (X=Cl⁻, Pr⁻) complexes exhibit shifts of up to 19 cm⁻¹ in Eand I (Table 13c) and these are consistent with pyridyl - Cu(II) coordination. The blue-shifts are greater than those observed in the carbonyl complexes, $N(CC)_4$ thmp (N=Cr, No, W) (Section II, Chapter 3,), but similar to those of the $[Cu(thmp)X_2]_2$ dimens (Chapter 1), which have also been included in Table 13c.

2.4 <u>INTERACTION OF THIOIS VITH Cu(tbmp)</u>₂X₂ (X=C1C₄, BF₄)

The addition of a few drops of a freshly prevared alcohol solution of $NaSC(CH_3)_3$ to methanol solutions of $Cu(thmp)_2X_2$ (X=ClC₄, PF₄) at dry-ice/acetone temperatures, produces a deep blue solution which goes colourless after abcut ten minutes. In ice-cold solutions, the colour disappears almost instantly. The character-ization of this deep blue species was attempted using electronic spectroscopy.

Electronic Spectra

The electronic spectrum (measured at 9CK) for the reaction of t-butylthiolate with $Cu(tbmp)_2(ClC_4)_2$ in methanol is shown in Figure 11.

A comparison of the spectrum (at room temperature) of $Cu(tbmp)_2(ClC_4)_2$ (Table 1C) with this system shows that at least three new absorptions appear in the latter spectrum. These are at 433, <u>ca</u> 487 and 625 nm, the latter not being a d-d maximum because of its greater relative intensity than the higher energy charge transfer absorptions. By analogy with $Cu(tbmp)_2(ClO_4)_2$, the 36C nm absorption can probably be assigned as a

 σ (thioether) \rightarrow Cu(II) charge transfer transition but the assignments of the other absorptions are not as obvious. A comparison with similar work on Cu(II) —

FIGURE 11

Electronic Spectrum (90K) - Addition of

t-BuS to Cu(tbmp)2(ClO4)2 in Methanol

thiolate interactions ⁸⁰ suggests that the 625 nm transition is probably a thiclate \rightarrow Cu(II) charge transfer absorption. The remaining two absorptions may also be derived from $S \rightarrow$ Cu(II) charge transfer.

2.5 REACTIVITY STUDIES

These were designed to test the stability of the towards replacement of pyridine.

i) Addition of pyridine to Cu(tbmr)2Cl2

Without pyridine, an ethanol solution of $Cu(ttmp)_2Cl_2$ exhibits two ligand field absorptions and the changes in the lower energy maximum can be followed in Figure 12. The changes on adding successive aliquots of pyridine are consistent with adduct formation when these spectra are compared with the spectrum of a dilute ethanol solution of $Cu(ttmp)_2Cl_2$. The adduct appears to be quite stable because even in the presence of a ten-fold excess of pyridine where a blue precipitate characteristic of $Cu(py)_2Cl_2$ forms, the d-d maxima of the solution remain unchanged. An ethanol solution of $CuCl_2$ and pyridine has a d-d absorption at about 662 nm.

ii) Addition of pyridine to $Cu(tbmp)_2(EF_4)_2$ (in acetone)

Although the initially green/black solution turns blue with the successive addition of aliquots of pyridine, a purple precipitate does not form until a ten-fold excess of pyridine is reached. The infrared spectrum and colour of this precipitate are consistent with it being $Cu(py)_4(PF_4)_2$.

iii) Discussion

These experiments show that chelated thmp is

FICURE 12

Electronic Spectra-Addition of pyridine to Cu(tbmp)2C12

- changes in the ligand field maxima are shown.

A	-	no pyridine	(green sclution)
В	. —	pyridine : Cu(II) = 1:1	
С	-	pyridine : Cu(II) = 3:1	
D	-	pyridine : Cu(II) = 6:1	
E	-	<pre>pyridine : Cu(II) = 10:1</pre>	(blue-green solution)
F	-	large excess of pyridine	(blue solution)

quite stable towards replacement by pyridine as relatively high pyridine : Cu(II) ratios are needed. This stability can be compared to the relative ease with which the displacement of 2,5-dithiahexane and 3,6-dithiaoctane can be achieved, ^{82,102} using a two-fold excess of pyridine, in polar solvents. 2.6 <u>FARAMACNETIC</u> ¹H nmr LINE PRCADENINC EXPERIMENT

¹H nmr line broadening experiments vsing paramagnetic ions such as Cu(II)¹⁰³, have become an important tool in determining the nature of metal ion interactions with thioether ligands in solution. This is especially so in studies of ligands that have more than one possible binding site, such as S-methyl-I-cysteine, L-methionine¹⁰⁴, S-2'-aminoethylcysteine¹⁰⁵ and (S)- β -(2-pyridylethyl)-I-cysteine.¹⁰⁶ Selective broadening of the ¹H nmr signals of protons close to the binding site of the ligand is caused by rapid $\mathbb{N}^{2+} + \mathbf{I} \rightleftharpoons \mathbb{NI}^{2+}$ exchange if \mathbb{N}^{2+} is paramagnetic.¹⁰⁷ This provides a means of determining the type of metalligand interaction that exists under the conditions of the experiment.

Discussion

The effect of adding Cu(II) to the ligand (tbmp) is illustrated by the changes in the signals of the \prec -proton and methylene protons. (Figure 13). The \prec -proton resonance disappears and the height of the methylene proton peak is significantly reduced in comparison to the slight changes observed for the TNS and methyl proton signals. In an experiment where CuCl₂.-2H₂O crystals were added to a CDCl₃ solution of the
FICURE 13a

FIGURE 13b

 $\frac{1}{H}$ nmr - Addition of Co(II) to 2-methylpyridine (in CH₂Cl₂)

<u>a</u> - 2-methylpyridine in absence of Co(II)
<u>b</u> - 2-methylpyridine in presence of Co(II)

ligands, the methylene protons' resonance disappeared. The paramagnetic effect is greater for Cu(II) than Co(II) and this is discussed in Chapter 4.

It is apparent from this experiment that Cu(II)exchange occurs at the pyridyl nitrogen. Ecwever, it is possible that the changes in the methylene protons' resonance are also due to this exchange. This can be demonstrated by adding Co(II) to a sample of 2-methylpyridine (Figure 13). It can be seen that the methyl protons' resonance is significantly affected by Co(II)pyridyl interactions. As a result of these observations, the presence or absence of Cu(II)-thioether interactions can not be confidently established. It is unlikely that the methyl protons of thmp will be perturbed by Cu(II) exchange at the thioether donor as similar studies with $PuSCH_2CH_2SBu$ show that only the $-CH_2SCH_2$ - protons are affected.⁴⁷

SYNTHESES

Some general comments that relate to all of these syntheses car be found in the experimental section of the Appendices.

<u>Diperchloratobis</u>[2-(3,3-dimethyl-2-thiabutyl)pyridine]copper(II)

1 mmole of $Cu(ClC_4)_2.6H_2O(C.371 \in.)$ was added to 2 mmcle of thmp (C.363 $\in.$) and this resulted in the immediate formation of a dark green precipitate. When it had been filtered and washed with Abs. EtCH, the <u>semi-dry</u> product was carefully transferred to a bottle to complete the drying <u>in vacuo</u>.

YIELD : C.424 g. (68%)

Ditetrafluoroboratobis 2-(3,3-dimethyl-2-thiabutyl)pyridine copper(II)

2 mmole of $Cu(FF_4)_2.6H_2O$ (C.69C g.) were added to 4 mmole of ligand (C.725 g.) to give a dark green precipitate.

YIELD : 0.845 g. (70%)

<u>Dichlorobis</u>[2-(3,3-dimethyl-2-thiabutyl)pyridine]copper(II)

2 mmole of $CuCl_2.2H_2O(C.34C \epsilon)$ were added to 4 mmole of ligand (C.725 g.) to give a dark green solution. This was concentrated <u>in vacuo</u> then cooled to yield a lime green precipitate. The precipitate was washed with a small quantity of Abs. EtOH and then ether, after it had been filtered.

YIELD : C.655 g. (66%)

Dibromobis 2-(3, 3-dimethyl-2-thiabutyl)pyridine copper(II)

1 mmole of anhydrous CuFr_2 (C.223 g.) was added to 2 mmole of ligand (C.363 g.) to give a green-black solution. The solution was reduced in volume and then cooled to precipitate a dark green solid. Ether was added to the filtrate to precipitate some more of the complex which was filtered off and washed with Abs. EtCH and then ether.

YIEID : (.365 g. (62%)

<u>Chlorobis</u> [2-(3,3-dimethyl-2-thiabutyl)pyridine]copper(II)tetrafluoroborate

1 mmole of anhydrous IiCl (C.C42 ε .) in ethanol-acetone was added to an <u>acetone</u> solution of 2 mmole of tbmp and 1 mmole of Cu(EF₄)₂.6H₂O. The lime green solution was concentrated and then cooled to crystallize impure, green [Cu(tbmp)₂Cl]EF₄. Fure [Cu(tbmp)₂Cl]EF₄ was isolated after recrystallizing the impure product from an Abs. EtCH solution at dry ice/acetone temperatures.

Bromcbis [2-(3,3-dimethyl-2-thiabutyl)pyridine] copper(II)tetrafluoroborate

An acetone solution (containing a few drops of triethylorthoformate) of 2 mmcle of tbmp and 1 mmcle of $Cu(BF_4)_2.6E_20$ was filtered before adding an Abs. EtCH solution of anhydrous LiPr. The light green solution was concentrated <u>in vacuo</u> and cooled. The lime green complex was crystallized by scratching the flask with a spatula.

YIEID : 0.076 g. (13%)

TABLE 14

MISCEILANEOUS PHYSICAL DATA

COMPLEX	COLOUR	M.P/ ^O C	ANALYSE	ES:Calc.(Found)%	2	CONDUCTI	VITY/ohm	¹ mol1 cm ²
			C	H	N	Cther	<u>CH</u> 3NO2	MeCH	Cther
Cu(tbmp) ₂ (ClO ₄) ₂	d.green	_	38.43 (38.95)	4.84 (4.96)	4.48 (4.60)	\$	1 65		ØNC ₂ : 28
Cu(tbmp) ₂ (BF ₄) ₂	d.green	149-150	40.05 (40.C5)	5.04 (5.16)	4.67 (4.68)		17C		ØNC ₂ : 30
Cu(tbmp)2 ^{Cl} 2	lime	89-90	48.32 (48.17)	6.08 (6.16)	5.64 (5.55)		22	65	∲NO ₂ : 4 H ₂ C:211 E+OH:16
Cu(tbmp) ₂ Br ₂	green	91-93	40.99 (41.07)	5.16 (5.30)	4.78 (4.87)		36	73	
[Cu(tbmp) ₂ C1] BF ₄	green	112-113	43.80 (43.32)	5.51 (5.56)	5.12 (4.85)		86	101	
[Cu(tbmp) ₂ Br] BF ₄	lime	123-124	4C.52 (40.61)	5.1C (5.16)	4.73 (4.65)	Er,13.48 (13.97)	92	100	
<u>NCTES</u> : - molar co	onductivit	ies at 25	^o C : Nitr Meth Nitr Etha	omethane anol obenzene ncl	1:1	(7C-9C), 2 (1CC-13C), (2C-3C) (6C-8C)	(210-2)	7(). 5().	
			Kate	r			(210 - 2)		

-d = dark

<u>CHAPTER 3</u> <u>COFFEE(I) CONPLEXES</u> <u>OF</u> <u>2-(3,3-DINETHYI-2-THIABUTYI)FYRIDINE</u> <u>AND THE</u> 2-(3,3-DIMETHYI-2-THIABUTYI)FYRIDINIUN CATION

The Cu(I) complexes Cu(tbmp)_nEr (n=1 cr 2) and $[Cu(tbmpH)X_2]_2$ (X = Cl⁻, Fr⁻), where tbmpH is the 2-(3,3-dimethyl-2-thiabutyl)pyridinium cation, were characterized in these studies. The spectroscopic properties of the distorted tetrahedral Cu(thmp)₂Er and $[Cu(tbmpH)Br_2]_2$ complexes, can be interpreted with reference to their crystal structures. Although the structural nature of Cu(tbmp)Fr is uncertain, $[Cu(tbmpH)Cl_2]_2$ probably has a structure which is similar to that of the bromide analogue.

Various attempts were made to isolate complexes such as $Cu(tbmp)_n Cl$ and $Cu(tbmp)_2 PF_4$, but these were unsuccessful.

FIGURE 14a

Relationships Between Cu(tbmp)Br and Cu(tbmp) Br

Absolute EtOH solution of CuBr, tbmp (1:1) and excess LiBr

Rapid precipitation induced

from a concentrated solution

 \downarrow

Cu(tbmp)Br

Composition determined by microanalysis. Opaque, microcrystalline sample melts at 135-136°C.

Slow heating gradually turns sample opaque. Melts sharply at 135⁰C. Slow crystallization allowed to take place from a concentrated solution <u>Cu(tbmp)2Br</u> Composition of clear crystals

determined crystallographically.

Pale yellow-white crystals of Cu(tbmp)_nBr (n=1 or 2)

3.1 <u>THE CHEMISTRY OF Cu(tbmp)</u>₂Br, Cu(tbmp)Br and [Cu(tbmpH)Br₂]₂

Cu(tbmp)Fr and [Cu(tbmpH)Er₂]₂ were prepared and analysed (see SYNTHESES) during the initial experimental work on the Cu(I) complexes of tbmp. $[Cu(tbmpH)Cl_2]_2$, which is quite susceptible to oxidation, was also prepared.

i) <u>Relationships Fetween Cu(thmp)Pr and Cu(thmp)2Pr</u>

For the crystallographic work, some clear almost cclourless crystals were slowly grown in solutions that were similar to those from which Cu(tbmp)Pr was criginally prepared (see SYNTHESES). These crystals were thought to be Cu(tbmp)Pr. but subsequent investigations indicated that the crystals were $Cu(tbmp)_2$ Pr. This was confirmed when the crystal structure (see 3.2) was solved. If a crystal of $Cu(tbmp)_2$ Pr is crushed and then slowly heated, a slow conversion to Cu(tbmp)Pr appears to occur. The relationships between Cu(tbmp)Pr and $Cu(tbmp)_2$ Pr that are apparent from these studies, are illustrated in Figure 14a.

ii) Relationships Between $[Cu(tbmpH)Pr_2]_2$ and $Cu(tbmp)_n Br (n = 1 \text{ or } 2)$

Yellow crystals of $[Cu(tbmpH)Pr_2]_2$ can be prepared by reducing a concentrated absolute ethanol solution of $Cu(tbmp)_2Pr_2$ (prepared <u>in situ</u>) with several drops of hypophosphorous acid (H_3PO_2) . It also became apparent that at least two complexes can be isolated from the reduced solutions. The second complex , which precipitates as pale yellow-white crystals, appears to be either Cu(tbmp)Pr or $Cu(tbmp)_2Pr$. These crystals are identified as $Cu(tbmp)_nPr$ (where n= 1 or 2) in Figure 14b, which summarizes the observations that were made during these investigations.

3.2 CRYSTAI STRUCTURE OF

BRONG-BIS 2-(3, 3-DIMETHYI-2-THIABUTYI) FYRIDINE COFFER(I)

The experimental method that was followed in the elucidation of this structure, is outlined at the end of this Chapter. The observed and calculated structure factors can be found in the Appendices.

DESCRIPTION

In this discrete Cu(tbmp)₂Br monomer, one tbmp ligand is chelated while the second is monodentate, binding via the sulphur atom, only. The Cu(I) ion is thus bound by a terminal bromine, two thioether sulphur atoms and the pyridyl nitrogen of the chelated tbmp ligand, in a distorted tetrahedral environment (Figure 15).

The non-coordinated pyridyl nitrogen of the monodentate thmp ligand does not participate in any bonding interactions within the molecule, or with any of the other molecules in the unit cell. There are no intermolecular contacts of less than 3.5 Å.

The important structural details for this complex are presented in Table 15a.

DISCUSSION

Cne of the features of the Cu(I) geometry, is the small S2-Cu-N2 chelate-bite angle [$85.4(3)^{\circ}$] which imposes a rather distorted environment on the Cu(I) ion (Table 15a). This observation is typical of the constraints that are imposed on Cu(I) complexes by the chelate-ligand effect.¹⁰

The remaining angles that are subtended at the Cu(I) centre are normal and range from $1(9.1(1)^{\circ}$ to $12(.7(1)^{\circ}$.

The dihedral angle^{*} (w) is 8.5° , close to the expected value of 9C^o for a tetrahedral complex.³⁹

^{*} w is defined by the planes through Cu,S2, N2 and Cu, S1, Fr respectively. See end of Chapter for equations.

Structure of Cu(tbmp)2Br

MASSEY UNIVERSITY

TABLE 15a

STRUCTURAL	DETAILS	FCR	Cu(thm	<u>), Pr</u>

FRCM ATCM	TC ATCN	DISTANCE/Å	FRCM ATCM	TO ATCM	DISTANCE/Å
Cu ·	Br	2.426(2)	C12	C13	1.42(2)
Cu	S1	2.304(3)	C1 3	C14	1.37(2)
Cu	S2	2.358(4)	C14	C15	1.34(2)
Cu	N2	2.11(1)	C17	C18	1.56(2)
S1	C16	1.85(1)	C17	C19	1.53(2)
S1	C17	1.86(1)	C17	C110	1.56(2)
S2	C26	1.85(1)	C21	C22	1.37(2)
S2	C27	1.87(1)	C21	C26	1.53(2)
N 1	C11	1.34(1)	C22	C23	1.4C(2)
N 1	C15	1.35(2)	C23	C24	1.43(2)
N2	C21	1.35(1)	C24	C25	1.42(2)
N2	C25	1.34(1)	C27	C28	1.56(2)
C11	C12	1.37(2)	C27	C29	1.54(2)
C11	C16	1.52(2)	C27	C21C	1.57(2)

. .

ANGIE	DEGREES	ANGIE	DECREES
Br-Cu-S1	109.1(1)	C14-C15-N1	124(1)
Br-Cu-S2	120.7(1)	C11-C16-S1	1C8.6(9)
Br-Cu-N2	112.9(3)	C18-C17-C19	113(1)
S1-Cu-S2	115.0(1)	C18-C17-C11C	109(1)
S1-Cu-N2	111.7(3)	S1-C17-C18	108.4(8)
S2-Cu-N2	85.4(3)	S1-C17-C19	105.9(9)
Cu-S1-C16	1C5.4(4)	S1-C17-C110	11C.3(8)
Cu-S1-C17	111.2(4)	C19-C17-C11C	11C(1)
C16-S1-C17	1CC.3(6)	N2-C21-C22	123(1)
Cu-S2-C26	93.9(4)	N2-C21-C26	118(1)
Cu-S2-C27	113.7(4)	C22-C21-C26	119(1)
C26-S2-C27	1C4.7(6)	C21-C22-C23	119(1)
C11-N1-C15	118(1)	C22-C23-C24	12((1)
Cu-N2-C21	117.0(8)	C23-C24-C25	117(1)
Cu-N2-C25	122.8(9)	C24-C25-N2	122(1)
C21-N2-C25	12C(1)	C21-C26-S2	112.1(9)
N1-C11-C12	121(1)	S2-C27-C28	1C2.6(9)
N1-C11-C16	118(1)	S2-C27-C29	109.4(9)
C12-C11-C16	121(1)	S2-C27-C210	111.5(9)
C11-C12-C13	119(1)	C28-C27-C29	112(1)
C12-C13-C14	118(1)	C28-C27-C210	110(1)
C13-C14-C15	119(2)	C29-C27-C21C	111(1)

TAPIE 15b

ATCMIC COORDINATES AND ISOTROPIC THERMAL PARAMETERS FOR Cu(tbmp)2Br

me		v/b	z/c	B/Å ²	
TUL.	$\frac{x/a}{(701)}$	(-23c1(2))	-(.0623(1))		
	C.75C3(1)	(45(4(2)))	(.0260(1))		
u .	$C_{7045}(2)$	$C_{36}(6(4))$	(.154C(2))		
	(-6826(2))	$C_{6546}(A)$	-0.0405(2)		
52	(.0020(2))	$C_{0} = 27 C(1)$	(3092(8))	5.16	
1	(.8823(7))	$C_{-2}(1)$	(-532(6))	3.00	
12	C.855C(6)	(.blc(1))	$C_{0} = 225 C(8)$	3 18	
211	C.8694(7)	C.233(1)	0.2290(0)	1 15	
012	C.9318(8)	0.219(1)	0.1799(0)	4.10	
013	1.0114(9)	0.252(2)	C.224(1)	5.25	
C14	1.C23(1)	C.295(2)	0.311(1)	5.97	
515	C.959(1)	0.306(2)	C.35C(1)	5.54	
C16	C.7848(7)	(.188(1)	C.182C(7)	3.24	
C17	C.6217(7)	0.279(1)	C.1316(7)	3.07	
C18	C.6C15(9)	C.221(2)	0.2209(9)	5.31	
C19	C.5658(S)	C.4C7(2)	C.0908(9)	5.28	
C11C	C.6174(8)	C.144(2)	0.0652(9)	4.87	
C21	C.8357(7)	c.755(1)	C.C399(7)	2.88	
C22	C.8916(8)	C.867(2)	C.C443(8)	3.91	
C23	(.9731(9))	C.829(2)	C.0651(9)	5.13	
C24	C.9958(8)	C.674(2)	0.0787(8)	4.61	
C25	C.9324(8)	C.568(2)	C.C724(8)	4.12	
0.26	0.7469(8)	C.798(1)	C.C247(8)	3.66	
020	(.6935(8))	C.690(2)	-C.1574(8)	4.10	
C28	0.6445(8)	0.558(2)	-C.2C83(9)	4.97	
0.20	$C_{-}6571(9)$	C.845(2)	-0.1871(9)	4.96	
C21C	0.7835(9)	C.68C(2)	-0.1686(9)	4.81	
0210					

- estimated standard deviations are in parentheses.

			PABLE 150			
	ANISOTROPIC	THERMAL	PARAMETERS	FOR Cu(tbm]	<u>)₂Br</u>	
ATON.	B11	B22	B33	B12	B13	B23
ATCh.	0.0048	0.0114	0.0040	0.0003	C.CO14	-0.0006
DI	0.0037	0.0095	0.0042	-0.0003	C.CC11	0.0009
Ju	0.0028	0.0003	0.0029	-0.0002	0.0002	C.0000
51	0.0020	0.0110	0.0038	0.0004	0.0010	C.CO15
32	0.0030	0.0116	0.0030	0.0004		

Some bondlength data for Cu(I) complexes of thioether and substituted pyridyl ligands is presented with the data for $Cu(tbmp)_2$ Fr and $[Cu(tbmpH)Fr_2]_2$ (see 3.3) in Table 16.

It can be seen that the Cu(I)-S2 bond (2.358(4) Å) is slightly longer than the mean of the Cu(I)-S bonds (2.312(3) Å) of other thioether complexes. This may be the result of the constraints that are imposed by the planar and therefore rigid, M2, C21, C26 backbone of the chelated ligand. This suggestion is supported by two observations. The first is, that the Cu(I)-S bondlengths of the monodentate tbmp (2.3C4(3) Å) and tbmpH⁺ ligands (2.276(2)Å) in this complex and $[Cu(tbmpH)Er_2]_2$ respectively (mean, 2.29C (3) Å), are significantly shorter than the Cu(I)-S2 bond. The second observation comes from a comparison of the Cu(I)-S (thioether) bonding in other five-membered chelatering systems such as those in Cu(dto) $_2EF_4^{10}$. In this complex, the mean Cu(I)-S bond (2.3C3(5) Å) is also significantly shorter than the Cu(I)-S2 bond of Cu(tbmp) $_2Er$.

Even though chelation may have some affect on the Cu(I)-S2 bonding, it is still shorter than the predicted Cu(I)-S single-bond length of 2.39 Å (if the Cu(I) covalent radius is taken as being about 1.35 Å²²). These observations imply that there may be π -components in the respective Cu(I)-S1 and Cu(I)-S2 bonds of $Cu(tbmp)_2Br$, thus supporting the conclusions that have been reached from other crystallographic studies of Cu(I)-S bonding ¹⁰.

The Cu(I)-N2 bond (2.11(1) Å) is slightly longer than in the Cu(I) complexes of bipyridine, pyridine and

Cu(I)-S(thioether) AND C	u(I)-N(pyridyl) BC	ND DATA
COMPLEX	Cu(I)-S	Cu(I)-N	REFERENCE
Cu(tbmp) ₂ Br	2.331(4)	2.11(1)	This Work
[Cu(tbmpH)Br ₂]	2.276(2)		This Work
[Cu(dth)Cl] _n	2.339(2)		108
[Cu(dto) ₂]EF ₄	2.3C3(5)		10
$Cu(14-ane-S_4)$	2.317(4)		7
Cu(pdto)PF ₆	2.345(1)	2.C42(5)	11
Cu(py2S2)2C102	2.417(3) ф	2.02(1)	109
Cu(py ₂ Et ₂ S ₂) ₂ C	2.322(1) ¢	2.(29(1)	110
Cu(bipy) ₂ ClO ₄		2.01(2)	111
Cu(pea) ⁺	2.295(1)	2.000(3)	112
$Cu(py)_4^+$		2.05(1)	113

TAELE 16

<u>NOTES</u>: - mean bondlengths (Å) have been given where more than one Cu(1)-L bond is involved,

Cu-SS(disulphide) bonds.

substituted pyridine ligands (<u>ca</u> 2.(C(2) - 2.C42(5) Å, Table 16,) being close to the predicted Cu(I)-N singlebond length of about 2.C9 Å (taking the single-bond covalent radius of N as C.74 Å ²²). This again may arise from the same constraints that give rise to the slight lengthening of the Cu(I)-S2 bond (above).

The puckered nature of the five-membered chelate ring is illustrated by the deviation of the S2 atom [C.743(3) Å] from the mean least-squares plane that is defined by Cu, N2, C21 and C26. The latter atoms are coplanar as expected.

Equation of Flane: C.2181X - C.CC82Y - C.9759Z = 2.3519

ATCMS IN PLANE	DE	VIATICNS F	RCM PIANE	(Ă)	
Cu,N2,C21,C26	Cu	N2	C21	C26	S2
	C.C23(2)	-0.056(9)	C.C7(1)	-C.C3(1)	(.743(3)

3.3 <u>CRYSTAI STRUCTURE_OF</u> BIS [DIBROMC(1-H-2-(3,3-DIMETHYL-2-THIAEUTYL)FYRIDINE)]-CCPFER(I)

The crystal structure of [Cu(tbmpH)Br₂]₂ was determined by Dr K.L. Brown¹¹⁴, using crystals that were prepared as described at the end of this Chapter.

DESCRIPTION

The two distorted tetrahedral Cu(I) centres of this centrosymmetric dimer are bridged by two bromide ions with the two remaining coordinating positions of each Cu(I) ion being occupied by a terminal bromide ion and a sulphurbound, 2-(3,3-dimethyl-2-thiabutyl)pyridinium cation (Figure 16).

Relevant structural details for $[Cu(tbmpH)Br_2]_2$ are presented in Table 17.

	STRUCTUR	L DETAILS	FCR [Cu(tbm	pH) Br ₂] ₂	
FROM ATCM	TO ATCM	DISTANCE	/Å FRCM	ATCM TO ATCM	DISTANCE/Å
Cu	Cu	3.18	N 3	нЗ	0.87
Cu	Br1	2.363(1)	N3	C4	1.32(1)
Cu	Br2	2.621(1)	C4	C5	1.35(1)
Cu	Br2'	2.573(1)	C5	C6	1.39(1)
Cu	S	2.276(2)	C6	C7	1.36(1)
S	C1	1.840(8)	C7	C2	1.38(1)
S	C8	1.844(7)	C 8	C9	1.53(1)
C1	C2	1.47(1)	C 8	C1 O	1.51(1)
C2	N 3	1.33(1)	C8	C1 1	1.54(1)
ANGLE	DEGREE	S	ANGIE	DEGREES	
Br1-Cu-Br2	110.90	1)	N3-C2-C7	117.1(7)	
Br1-Cu-Er2'	109.30	1)	C2-N3-C4	124.0(7)	
Br1-Cu-S	126.20	1)	N3-C4-C5	120.4(8)	
Br2-Cu-Br2'	104.4	1)	C4-C5-C6	117.8(8)	
Br2-Cu-S	97.20	1)	c5-c6-c7	120.3(8)	
Br2'-Cu-S	106.5	(1)	C6-C7-C2	120.3(8)	
Cu-Er2-Cu'	75.6	(1)	S-C8-C9	108.8(6)	
Cu-S-C1	106.3	(3)	S-C8-C10	111.8(6)	
Cu-S-C8	114.1	(2)	S-C2-C11	102.2(5)	
C1-S-C8	1C4.2	(4)	C9-C8-C10	112.7(7)	
S-C1-C2	109.8	(5)	C9-C8-C11	110.0(7)	
C1-C2-N3	117.7	(6)	C1C-C8-C11	11C.8(7)	
C1 - C2 - C7	125.2	(7)			

TABLE 17

DISCUSSION

The closest intermolecular contact is between the pyridinium proton (H3) and the Er2 atom of an adjacent molecule $(\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$, as shown below.

₩3<u>0.87Å</u>H3.2.46Å Br2

where N3.....Br2 is 3.30 Å and N3-Er2-H3 is 4.74°. Both the length of this contact and its geometry (i.e. almost linear N3—H3...-Br2 interactions) suggest that there is a significant degree of H3...-Er2 hydrogen bonding, The N3...-Br2 contact (van der Waals distance is 3.45 Å²²) may even be short enough for direct overlap of nitrogen and bromine orbitals as suggested for the structure of $[4-methylryridinium]^+[q_3FZnEr_3]^{-...15}$ In this latter complex, the Er...-N contact is 3.2 Å, while Br - H - N is $12C^{\circ}$. Weak NH-...-Er hydrogen bonding has been described for complexes such as Eisthiourea Pyridinium Bromide ¹¹⁶ (N----Br = 3.47 Å, N-H-Er = 144°) and $[4-EtpyH]^+[FeBr_4]^{-...7}$

The N3-H3----Br2 interaction in $[Cu(tbmpH)Br_2]_2$ could thus be described as being guite strong.

The Cu-Br2-Cu bridging angle for this complex (75.6(1)) is significantly smaller than the analogous bridging angles $(83.0(1)-100.4(1)^{\circ})$ of dibromo-bridged Cu(II) dimers (see Chapter 1). The reason for this appears to be the greater Pr2-Cu-Br2' angle that is imposed by the tetrahedral geometry of the Cu(I) ions. As a consequence of these effects, the Cu(I)----Cu(I) separation (3.18 Å) is significantly shorter than the shortest Cu(II)----Cu(II)

seraration (3.57((3) Å) thus far observed in the analogous Cu(II) complexes.¹⁹ It is interesting to note that the Cu(I)----Cu(I) separation is only (.5 Å greater than the sum (2.7(Å) of the tetrahedral Cu(I) covalent radii.²²

COMPARISONS BETWEEN Cu(tbmp)2 Br AND [Cu(tbmpH)Br2]2

It is apparent that the terminal Cu(I)-Br bond (2.426(2) Å) and the Cu(I)-S1 bond (2.3(4(3) Å,S1 belonging to the monodentate tbmp ligand) of $Cu(tbmp)_2$ Er are slightly longer than the corresponding Cu(I)-I bonds (2.276(2) Å) of $[Cu(tbmpH)Fr_2]_2$. The weak interactions between Cu(I) and the bridging bromide ions in the latter complex, probably allow stronger interactions between Cu(I)and its other ligands; namely the terminal bromide ion (Br1) and the sulphur atom of tbmpH⁺. Similar phenomena have been previously described for other Cu(I) complexes.^{108,118}

3.4 INFRARED SFECTRA

i) Far-Infrared

Some crystallographically correlated far-infrared data and data for complexes whose structures are inferred from other studies, is presented in Table 18a together with the data for Cu(tbmp)Br and $[Cu(tbmpH)X_2]_2$ (X=Cl⁻, Br⁻). There is a paucity of crystallographically correlated data for Cu(I) complexes that contain bromide ligands, although inferences can usually be drawn on the basis of other spectroscopic measurements.

 $\left[\underline{Cu(tbmpH)Er_2}\right]_2$: The $\mathbf{v}(Cu-Br)$ absorptions at 132 and 1CC cm⁻¹ are at very low energy (Figure 17a) but they are consistent with the long Cu(I) to bridging-bromine bonds that are found in the crystal structure of this

IR Spectra - Cu(I) Complexes and Fyridinium Salts

<u>17b</u> Far-IR : $[\underline{Cu(tbmpH)Cl}_2]_2$ $\nu(Cu-Cl)$ absorptions are shown.

FAR-IR DATA, Cu(I) COMPLEXES				
CCMPLEX	$v(Cu-X)/cm^{-1}$	STRUCTURE	REFERENCES	
X = Cl			IR data	X-ray
[Cu(Me ₃ PS)Cl] ₃	299	Terminal Cl	119,120	121
	275			
CuCl(dth)	271	Terminal Cl	82	108
(CuCl)tal-i-C3H7	194	Bridging Cl	122	n.a.
(CuCl)C ₈ H _{8 2}	254,222	Bridging Cl	123	124
[Cu(tbmpH)Cl ₂] ₂	204	Bridging Cl	This work	n.a.
	231	Terminal Cl		
$\underline{X} = Br$				
(CuBr) ₂ (DPPA) ₃	202	Terminal Br	125	n.a.
[Cu(Me3PS)Br]n	176	Bridging Br	119	n.a.
(CuBr)tal-CH3	152	Bridging Br	122	n.a.
CuBr[dth]	169,152	Bridging Br	82	n.a.
[Cu(tbmpH)Br ₂] ₂	182	Terminal Br	This work	This work
	132,100	Bridging Br		
Cu(tbmp)Br	182	Unassigned	This work	n.a.
<u>NOTES</u> : - n.a. =	not available	5		
appetra (this work) percended for perefin mulls of per-				

TABLE 18a

- spectra (this work) recorded for paraffin mulls, at room temperature.

TABLE 18b

Benefactory and the Barry of Last in which we	
COMPLEX	√(pyridyl ring)/cm ⁻¹
[Cu(tbmpH)Cl ₂] ₂	1618(s), 1531(m)
[Cu(tbmpH)Br ₂] ₂	1634(m), 1616(m), 1536(w)
Cu(tbmp)Br	1595(s), 1567(m)
NOTE: - spectra	recorded for Nujol mulls.

GENERAL IR DATA, Cu(I) COMPLEXES

complex. The absorptions are relatively strong and their assignment is supported by their non-appearance in the spectrum of $[Cu(tbmpH)Cl_2]_2$ (Figure 17b). The terminal V(Cu-Fr) absorption is tentatively assigned at 182 cm⁻¹.

 $[\underline{Cu(tbmpH)Cl_2}]_2: \text{ The } \mathbf{v}(Cu-Cl) \text{ absorption}$ at <u>ca</u> 2C4 cm⁻¹ is consistent with bridging chloride (Figure 17b), by analogy with the data that is presented in Table 18a. The absorption at 231 cm⁻¹ can probably be assigned as being due to terminal Cu-Cl stretching as there are no other bands in this spectrum that can be assigned as such. However, it should be noted that 231 cm⁻¹ is also within the range (<u>ca</u> 194 - <u>ca</u> 254 cm⁻¹) observed for bridging $\mathbf{v}(Cu-Cl)$ frequencies.

<u>Cu(tbmp)Br</u>: A $\mathbf{V}(Cu-Br)$ absorption is tentatively assigned at 182 cm⁻¹. It is not possible to confidently assign the absorption as arising from either terminal or bridging Cu-Br bonding, when the assignments for [Cu(tbmpH)Br₂]₂ are compared with those for other Cu(I) complexes, (Table 18a).

ii) General Infrared

 $\underline{V(N^+-H)}$ Absorptions: The bread absorptions between 24CC and 32CC cm⁻¹ in the mull spectra of the $[Cu(tbmpH)X_2]_2$ complexes (Figure 17c), are good evidence for the pyridyl nitrogen having been protonated. Similar absorptions, their frequencies depending on the degree of hydrogen bonding in the salts, were reported by Nuttall $\underline{et \ al}^{126}$, who assigned them as the symmetrical $V(N^+-H)$ modes for a series of pyridinium salts. For $[Cu(tbmpH)Fr_2]_2$, the broad absorption(s) occurs at higher frequencies than in a sample of $(tbmpH)^+Pr^-$ that was prepared for comparison (Figure 17c). This observation suggests that the N⁺—H----Br hydrogen bonding interactions are less⁹⁸in [Cu(tbmpH)Br₂]₂ than in $(tbmpH)^+Br^-$.

<u>17CC-15CC cm⁻¹ Absorptions</u>: In the Cu(I) complexes where tbmp has been protonated (i.e. $[Cu(tbmpH)X_2]_2$), the blue-shifts in the higher frequency ring stretching absorption (Table 18b) are generally greater (up to 25 cm⁻¹) than those which occur (up to 19 cm⁻¹) in the N(II) complexes (N=Cu, Ni, Co) of tbmp (Tables 13c and 24).

Gill <u>et al</u>⁹⁹ were able to show that the absorptions at about 16CC cm⁻¹ and 154C cm⁻¹ in the spectra of pyridinium salts are due to N-H deformation and combination modes. On the basis of these results, the medium-weak absorption at about 1532 cm⁻¹ in the spectra of $[Cu(tbmpH)X_2]_2$ and the $(tbmpH)^+X^-$ salts $(X = Br^-, PF_6^-)$, is probably one of these modes. The second mode has not been resolved in these spectra.

3.5 ELECTRONIC SFECTRA

Although the electronic spectra of the yellow Cu(I) complexes of disulphide ligands such as py_2S_2 and $(Me_2N)_2Et_2S_2$ (see Table 19) have been discussed by Seff et al,^{109,127} the yellow dimer $[Cu(tbmpH)Er_2]_2$, is the first coloured Cu(I) complex of a sulphur-coordinated thioether ligand, to be crystallographically characterized. It is probable that $[Cu(tbmpH)Cl_2]_2$ has a structure similar to that of the bromide complex as its reflectance spectrum is similar. Its far-infrared spectrum is not inconsistent with this proposal, either.

TABLE 19

ELECTRONIC SPECTRA, Cu(I) COMPLEXES REFERENCE STATE C.T. MAXIMA (nm) COMPLEX Cu(tbmp)Br CH2C12 <u>ca</u> 355(sh) This work [Cu(tbmpH)Cl₂]₂ CH2C12 <u>ca</u> 350(sh) This work 435(e=128)ca 370(sh) **†** Refl. <u>ca</u> 412(sh) **†** [Cu(tbmpH)Br₂]₂ ca 375(sh) **†** Refl. This work <u>ca</u> 415(sh) **†** Cu(tbmq)2ClO4 Refl. 378 This work 475 $[Cu(py_2S_2)_2]ClC_4$ 335(sh) **ф** Nujol mull 109 $\left[Cu((Me_2N)_2Et_2S_2)\right]_2$ Nujol mull 293 φ

> assigned as red-shifted disulphide absorption. Φ

NOTES: | maxima disappear in methanol,

127

The visible spectra of the Cu(I) complexes that are being studied in this thesis, are compared with those of the disulphide ligand complexes in Table 19.

Higher Energy Naxima

The absorption at about $365 \stackrel{+}{=} 10$ nm is common to the reflectance spectra of all of the Cu(I) complexes of thmp, thmpH⁺ and thmq (see Chapter 6). It is probably too high in energy to involve Cu(I) $\longrightarrow \pi^*(N)$ charge transfer (if the complexes of thmp and thmq contain chelated ligands) and the lack of major variations in the energy of this maximum (on changing the anion) suggests that it can not be assigned to Cu(I) $\longrightarrow X^-$ charge transfer. These observations are consistent with Cu(I) \longrightarrow S charge transfer being responsible for the <u>ca</u> 365 nm absorption , as Cu(I)-thicether interactions probably occur in all of these complexes.

Iower Energy Maxima

The second absorption (at about 414 nm) in the reflectance spectra of the $[Cu(tbmpH)X_2]_2$ dimers does not appear in the spectra of the Cu(I) complexes of tbmp and tbmq. This implies that this absorption is not likely to arise from $Cu(I) \rightarrow S$ charge transfer and because the reflectance spectra of the dimers are almost identical it can not be due to a $Cu(I) \rightarrow X^-$ transition. The very short and almost linear $Pr^- - H - N^+$ interaction that is described in 3.3, is consistent with this interaction having appreciable covalent bording character. This would facilitate $Cu(I) \rightarrow Br^- - H \rightarrow N^+$ charge transfer. The 414 nm absorption is thus assigned as being due to

charge transfer from the d-orbitals of Cu(I), to the

 Π^* -ortitals of the pyridinium ring, via the Fr----H — R⁺ "bridge". The positive charge on the pyridinium ring would thus be partially neutralised by this charge transfer and would also enhance it.

3.6 REACTION OF [Cu(tbmpH)Cl₂] 2 WITH Fh₄AsCl

The $[Cu(thmpH)X_2]_2$ complexes are both 1:1 electrolytes in nitromethane and methanol (based on the N.W of one $Cu(thmpH)X_2$ "monomer") and their electronic spectra in methanol (both complexes have an absorption at 305 nm, Table 19) show that they do not retain their solid state structures in this solvent. This conclusion is supported by the isolation of $[Ph_4As]CuCl_2$ from a methanol solution of $[Cu(thmpH)Cl_2]_2$ and Ph_4AsCl (see Appendices). There are at least two ways in which $[Cu(thmpH)Cl_2]_2$ (and $[Cu(thmpH)Pr_2]_2$) can break down in solution and both are consistent with the above observations:

i) the complexes can break down to give the CuX_{2}^{-} and tbmpH⁺ ion pairs, or

ii) complete decomposition can occur to yield solvated Cu(I), tbmpH⁺ and two halide ions. This possibility is favoured in hydrogen bonding solvents.¹²⁸

EXPERIMENTAL

DETERMINATION OF STRUCTURE OF Cu(tbmp)_Fr

i) <u>Ceneral</u>

The approximate unit cell dimensions of the almost colourless crystals of Cu(thmp)₂Er were determined by preliminary oscillation, Weicsenberg and precession photography. The crystals were prevared as described in 3.1. The space group F2₁/n was established from the systematic absences in the Weissenberg and precession photographs. Accurate cell dimensions were calculated after a crystal fragment had been aligned on a four-circle X-ray diffractometer. The least-squares analysis of the positions of twelve general reflections was used to define the crystal orientation.

TAPIE 2Ca

CRYSTAL DATA FOR CI	a(tbmp)2Er
M V	5(6.(3 g.
Crystal System	Nonoclinic
Space Group	F2 ₁ /n
Cell Dimensions	a = 16.927(3) Å
	$b = 8.867(1)$ $\beta = 100.61(1)^{\circ}$
	c = 15.371(2)
Cell Volume	$U = 2268 Å^{3}$
Density	$D_{m}^{\dagger} = 1.482 \text{ g. cm}^{-3}$
	$D_{calc} = 1.482 \text{ g. cm}^{-3}(Z=4)$
Radiation	N.O-K×
µ(Mo-K≪)	45.7 cm^{-1}
D	

<u>NCTE</u>: † Determined by flotation method. Measured in NaI/EtCH/H₂O.

ii) <u>Data Collection and Reduction</u>

A crystal fragment with maximum dimensions of about C.C2 x C.C2 x C.C2 cm was mounted about its \underline{k} axis for the data collection on a computer controlled Hilger and Watts fcur-circle X-ray diffractometer.

TAFIE 2Cb

DATA COLLECTICN FCR Cu(tbmp)2Er						
λ (MC-K \prec)	C.71C7 Å					
Background Count Time	2C s. each side					
Counting Steps	80					
Counting Time/Step	1 s.					
Standard Reflections	(7,3,C);(1,3,7);(1,5,-1)					

The data was collected from the $C^{\circ} \leq \theta \leq 26^{\circ}$ shell for the hkl and hkl reflections; the three standard reflections, which were checked after every 100 reflections, revealed no systematic intensity changes. After merging, the 4485 measurements were reduced to 4251 independent reflections, of which 2032 had intensities greater than 2σ . The usual Lorentz and polarization corrections were made, but absorption corrections were not applied to the data.

iii) <u>Structure Solution and Refinement</u>

An electron density map, phased on the bromine and copper atoms, was calculated after the coordinates of these two atoms had been determined from a Patterson vector map. The atoms were given arbitrary isotropic temperature factors of 3.5 Å^2 for the structure factor calculation. This map revealed the positions of another sixteen atoms and the remaining eight atoms were found after a second electron density map, phased on all of the previously located atoms, had been calculated.

The structure was refined using the full-matrix least-squares program, CUCIS.⁷⁴ The least squares refinement was carried cut on F, with the cuantity $\leq w(|F_0| - |F_0|)^2$ being minimised and the weight (w) being $4(F_0)^2 / [\sigma (F_0)^2]^2$. The conventional reliability index R, converged at C.C93 after six cycles of refinement for which all of the atoms were given isotropic temperature factors. Anisotropic temperature factors were then given to the bromine, copper and sulphur atoms and another three refinement cycles were carried out. Refinement converged at R = 0.072 for the 2032 reflections where $|F_c|^2 \ge 2.0 \sigma_{F_o}^2$. The final weighted R factor $R' = \leq w(|F_0| - |F_0|)^2 / \leq w(|F_0|)^2$ was C.C78. Anomalous dispersion corrections were applied to the bromine and copper atoms for the final cycle of refinement, but these did not affect R. The values of $\Delta f'$ and $\Delta f''$ were taken from Reference 290 and they were assumed to be constant for all values of C.

A difference map which was calculated after the refinement had converged, revealed the possible locations of some of the hydrogen atoms but these have not been included in any structure factor calculations and no attempts have been made to calculate the positions of the remaining hydrogen atoms.

The anisotropic atoms have the following RMS components of thermal displacement along the principal axes, R:

ATOM	R = 1	R = 2	R = 3
Br	0.1965 (Å)	0.2213	0.2619
Cu	0.1827	C.22C1	0.2339
S1	C.1787	0.1917	0.2067
S2	0.1832	C.2013	C.2373

TABIT 20c

MEAN LEAST-SQUARES FLAME EQUATIONS

ATCNS IN FLANE	EQUATION
Er, Cu, S1	-0.8873X-C.0376Y-C.4597Z = -11.6836
Cu, S2, N2	C.4331X-C.2161Y-C.8751Z = 4.3347
Er, Cu, S2	C.8743X+C.4631Y-C.1454Z = 12.9794
Cu, S1, N2	-C.67C7X+C.7411Y-C.C3C5Z = - 5.6344
N2, $C2_1 - 25$	0.1932X - C.1(81Y - 0.9752Z = 1.4(06)
N1, C11-15	-C.C61CX+C.9551Y-C.2898Z = C.1373

SYNTHESES

Bis Dichloro(1-H-2-(3, 3-dimethyl-2-thiabutyl)pyridine)copper(1)

1 mmole of $Cu(tbmp)_2Cl_2$ was prepared in Abs.EtCH and precipitated by the addition of ether. The solid was filtered, dissolved in about 150 cm³ of warm Abs.EtCH and then hypophosphorous acid (<u>ca</u> 1 cm³) was added to the solution. The resulting pale yellow solution was concentrated to about 5 cm³ and cooled. The yellow crystals that grew were filtered and washed with Abs.EtCH then ether. The complex has to be sealed <u>in vacuo</u> for prolonged storage.

YIELD: 0.245 g (77%)

Eis[Dibromo(1-H-2-(3, 3-dimethyl-2-thiabutyl)pyridine)copper(I)]

A few drops of hypophosphorous acid were added to a warm EtCH solution of 1 mmole of Cu(tbmp)₂Er₂ (prepared <u>in situ</u>). The reduced solution was filtered, concentrated and cooled to crystallize the yellow, air-stable complex.

YIEID: C.20C g. (45元)

Bromo [2-(3, 3-dimethyl-2-thiabutyl)pyridine copper(I)

1 mmole of anhydrous CuFr (0.143 g.) was dissolved in an Abs.EtCH solution of excess IiFr. The syrupy solution was vacuum filtered and 1 mmole of ligand (0.182 g.) in Abs.EtCH was added to give a light yellow solution. This was concentrated <u>in vacuo</u>, cooled and "scratched" to precipitate the almost colourless crystals.

YIELD: 0.243 g. (75%)

Bromo-bis [2-(3,3-dimethyl-2-thiabutyl)pyridine]copper(I)

These crystals can be isolated if a solution of 1 mmole of anhydrous CuEr, excess LiEr and 1 mmole of tbmp (i.e. the solution is similar to those used for preparation of Cu(tbmp)Br) is allowed to stand at 4 ^OC for a couple of days. The crystals were filtered and washed with Abs.EtCH.

TABLE 21

MISCELLANEOUS PHYSICAI DATA

CCMPLEX CCLOU	CCLOUR	R M.F/ ^O C	ANALYSES: Calc. (Found) / %			CONDUCTIVITY/ohm ⁻¹ mol. ⁻¹ cm ²		
			C	<u>H</u>	N	Other	CH, NO2	MeOH
[Cu(tbmpH)Cl ₂] ₂	yellow	1 2 3 - i2 5	37.92 (37.94)	5.C9 (5.23)	4.42 (4.26)	Cl,22.38 (22.45)	92 92	115
[Cu(tbmpH)Br ₂] ₂	yellow	138-140	29.61 (29.95)	3.58 (4.21)	3.45 (3.26)		84	123
Cu(tbmp)Pr	v.pale	1 37-1 38	36.98 (37.16)	4.66 (4.63)	4.31 (4.55)	Er,24.61 (24.69)	31	35
<u>NOTES</u> : - molar	conducti	vities at	25 ^o C: N N	itrometh ethanol	ane 1:1	(76–96), (160–136)		

- v = very
CHAPTER 4

BIS [2-(3,3-DINETHYL-2-THIABUTYL)PYRIDINE] COBALT(II) AND NICKEL(II) CONFLEXES

The synthesis and isclation of the $\mathbb{N}(tbmp)_2 \mathbb{X}_2$ complexes (M=Co(II), Ni(II); X=Cl⁻, Er⁻) is similar to that of the analogous Cu(II) complexes (Chapter 2) and likewise, they appear to have distorted <u>cis</u>-octahedral structures in the solid state. In the presence of perchlorate anions, the <u>bis</u>-complexes are isolated with either one or two water molecules in the $\mathbb{N}(II)$ coordination sphere, depending on whether or not the drying reagent TEOF (triethylorthoformate), is added to the reaction. The reflectance spectra of $[\mathbb{N}(tbmp)_2(\mathbb{H}_2\mathbb{C})_2](ClC_4)_2$ and $[\mathbb{N}(tbmp)_2\mathbb{H}_2\mathbb{C}.ClC_4]ClC_4$ are not inconsistent with these complexes also having distorted <u>cis</u>-octahedral structures.

In non-ligating solvents, only $Co(tbmp)_2Cl_2$ and $Co(tbmp)_2Br_2$ are sufficiently soluble to enable their electronic spectra to be measured and it is evident that tetrahedral species are predominant in solvents of this type. Although all of the complexes are soluble in methanol, they probably undergo extensive solvation.

4.1 EIECTRONIC SPECTRA

Three spin-allowed electronic transitions are expected for the high spin octahedral complexes of Co(II) and Ni(II).¹²⁹

For most complexes, spin-orbit coupling, which is only optically important for the T_{1g} and T_{2g} states⁴², and lower than O_h symmetry, lead to a splitting of the octahedral field states. With Co(II) complexes, spin-forbidden transitions to doublet states may also complicate the spectra.

FIGURE 18

 $\begin{array}{c} \underline{\text{SPIN-AJLOWED TRANSITIONS FOR COTAHEDRAL Co(II) and Ni(II)}}\\ \underline{\text{Co(II)}^{*}}\\ {}^{4}\text{T}_{1\varrho}(\text{F}) \longrightarrow {}^{4}\text{T}_{1\varrho}(\text{P})\\ {}^{4}\text{T}_{1\varrho}(\text{F}) \longrightarrow {}^{4}\text{A}_{2\varrho}\\ {}^{4}\text{T}_{1\varrho}(\text{F}) \longrightarrow {}^{4}\text{A}_{2\varrho}\\ {}^{4}\text{T}_{1\varrho}(\text{F}) \longrightarrow {}^{4}\text{T}_{2\varrho} \end{array} \right) \begin{array}{c} & \underline{\text{Ni(II)}^{*}}\\ {}^{3}\text{A}_{2\varrho} \longrightarrow {}^{3}\text{T}_{1\varrho}(\text{P})\\ {}^{3}\text{A}_{2\varrho} \longrightarrow {}^{3}\text{T}_{1\varrho}(\text{F})\\ {}^{3}\text{A}_{2\varrho} \longrightarrow {}^{3}\text{T}_{2\varrho}\\ {}^{3}\text{A}_{2\varrho} \longrightarrow {}^{3}\text{T}_{2\varrho} \end{array}$

Increasing Energy

* Reference: 129

* Reference: 129, 130

COBALT (II) COMPLEXES

i) <u>Reflectance</u>

The spectra appear to be consistent with those of other six-coordinate $\operatorname{CoN}_2 \operatorname{S}_2 \operatorname{X}_2$ complexes although in general, a greater number of absorptions are observed for each thmp complex (Table 22a). Some of these absorptions in the visible region may arise from doublet transitions that have been enhanced by mixing with spin-allowed transitions or the ${}^4T_{1g}(F)$ level may have been split by low symmetry ligand fields.¹³¹ Although in principle, the main near-infrared absorption can be assigned to the ${}^4T_{1g}(F) \longrightarrow {}^4T_{2g}$ transition and the main visible absorption can be assigned to the ${}^4T_{1g}(F) \longrightarrow {}^4T_{1g}(F)$ transition, 43 the wide range and multiplicity of the absorptions for these $Co(tbmp)_2 X_2$ complexes present some difficulties in making specific assignments. Cnly two of the three spin-allowed absorptions are normally observed for tetragonal Co(II) complexes as the weak ${}^4T_{1g}(F) \longrightarrow {}^4A_{2g}$ two-electron transition is often obscured by the nearby ${}^4T_{1g}(F) \longrightarrow {}^4T_{1g}(P)$ transition.¹³¹

No attempt has been made to assign the two-electron transition in these spectra.

It is apparent from the spectra (Figure 19a) that the centre of gravity of the visible region maxima moves to lower energy in the order $Co(tbmp)_2Cl_2 > Co(tbmp)_2Er_2$ as expected from the spectrochemical series.⁴² The unassigned absorptions at about 61C(sh) and 628nm for $[Co(tbmp)_2.ClO_4.H_2C]ClO_4$, move to higher energy (560nm) when another water molecule coordinates to give $[Co(tbmp)_2.2H_2C](ClO_4)_2$. It is probable then, that some of the unassigned transitions in Table22a are spin-forbidden quartet \longrightarrow doublet transitions as these too, are expected to move to higher energy when the ligand-field strength is increased.¹³¹

In complexes that are known or thought to exhibit distorted <u>cis</u>-octahedral symmetry, the near-infrared absorptions are split into at least two components while the remaining absorptions are similar to those of <u>trans</u>-tetragonal Co(II) complexes.⁴³ The electronic spectral data for the crystallographically characterized <u>cis</u>-octahedral complexes, Co[(CH₃)₃PO]₂(NO₃)₂ and Co(Hpymt)₂Cl₂, is also presented in Table 22a. The latter complex exhibits weak Co—S bonding to give a <u>cis</u>-CoN₂S₂Cl₂ chromophore. A distinctive splitting of the lowest energy maximum (<u>ca</u> 135Cnm) for the tbmp complexes is observed only for [Co(tbmp)₂.2H₂C](ClC₄)₂ (suggesting that it is distorted <u>cis</u>-octahedral) but this does not necessarily rule FIGURE 19a

Electronic Spectra-Co(tbmp) 2X2 Complexes (Reflectance)

TABLE 22a

REFLECTANCE SPECTRA, Co(II) COMPLEXES

CCMPLEX	$\xrightarrow{4}_{\underline{T}_{1g}}(\underline{F}) \longrightarrow \xrightarrow{4}_{\underline{T}_{1g}}(\underline{F})$	$\frac{4_{\rm T}}{1_{\rm E}({\rm F}) \longrightarrow 4_{\rm T}} 2_{\rm E}$	OTHER	REFERENCE
Co(tbmp) ₂ Cl ₂	470,542,590	1330	<u>ca</u> 630(sh), <u>ca</u> 675(sh)970	This work
Co(mmp) ₂ Cl ₂	465,540(sh),575			15
Co(NSSN)Cl ₂	555	1300,1515		132
Co(Hpymt) ₂ Cl ₂	580,640	1506,1808	950	133
Co(tbmp) ₂ Br ₂	<u>ca</u> 51C(sh),542		<u>ca</u> 355(sh) [†] , <u>ca</u> 64C(sh), <u>ca</u> 68C(sh), 705	This work
Co(mmp) ₂ Br ₂	490,530,615			15
Co(NSSN)Br ₂	555	1315,1471		132
Co(Hpymt) ₂ Er ₂	582,675	1710	870	133
[Co(tbmp)2.Cl04.H20]Cl04	<u>ca</u> 490(sh),507, <u>ca</u> 532(sh)		<u>ca</u> 610(sh),628,875	This work
[Co(tbmp) ₂ .2H ₂ 0](ClO ₄) ₂	<u>ca</u> 485(sh),508	<u>ca</u> 13(C(sh),141C	<u>ca</u> 560(br),875	This work
oco[(CH ₃) ₃ PO] ₂ (NO ₃) ₂	550,612(sh)	1310(asym)	83 5	134
NOTES: - all maxima are no	m.			

- sh = shoulder; br = broad; asym = asymmetric
- the high intensity of this shoulder suggests that it is possibly a $S \rightarrow Co(II)$ C.T. maximum¹³⁵
- all complexes are $\text{CoN}_2\text{S}_2\text{X}_2$ chromophores except φ
- $Co(NSSN)X_2$ complexes, also likely to have <u>cis</u>-octahedral structures

TABLE 22b

ELECTRINIC SPECTRA, Co(II) CONTLEXES IN NeCH

CCMPIEX	APSCRFTICN/nm	€ (1.mol. ⁻¹ cm ⁻¹)
Co(tbmp) ₂ Cl ₂	535	11
	<u>ca</u> 660	1
Co(tbmp) ₂ Er ₂	527	8
Co(tbmp) ₂ (ClC ₄) ₂	520	7
	<u>ca</u> 645	2

FIGURE 19b

Electronic Spectra - Tetrahedral Co(thmp)2X2 Species

- spectra recorded in non-ligating solvents.

TAFIE 22c

ELECTRONIC SPECTIA, TETRAHEDRAL CO(II) COMPLEXES

COMPLEX	<u> </u>	LIGANDS	STATE	$\frac{4}{\Lambda_2} \xrightarrow{4} \frac{1}{(\Gamma)/nm}$	REFERENCE
Co(tbmp) ₂ Cl ₂	2N, 2C1 ⁻ ?	CH ₂ Cl ₂	565, 667, 712 Φ (218)(3C1)(4C7)	This work
			ϕ NO ₂	564, <u>ca</u> 575, 662, 700, 708 (195) (328) (388)	
Co(mmp)	2 ^{C1} 2	2N, 2C1 ?	ϕ NO ₂	560, 610, 650, 680	15
Co(~- pi	c) ₂ Cl ₂	2N, 2C1 ⁻	CH2C12	588, 625, 637	This work
Co(Me ₃ P	s) ₂ Cl ₂	2S, 2C1 ⁻	CH ₂ Cl ₂	604, 659, 750	136
Co(mmtq)Cl ₂	N, S, 2C1	Refl.	560, 660	14
Co(tbmp) ₂ Er ₂	2N, 2Br?	CH ₂ Cl ₂	592, 69C, 718 (262)(492)(56C)	This work
* Col ₂ Br ₂		2N, 2Br	Refl.	586, 621, 636	137
Co(Me ₃ P	s) ₂ Br ₂	2S, 2Br	CH ₂ Cl ₂	631, 679, 756	136
Co(mmtq)Er ₂	N, S, 2Er	Refl.	580, 680	14
NOTES:	- for	tbmp complexes,	extinctior	coefficients are in parentleses	
	<pre> also </pre>	an absorption	at 1375(e	=37) nm.	
	t samp	le prepared by	method of A	allan <u>et al</u> ¹³⁸	
	* I' = 2	2-methylthio-3-	-methylimida	azole.	

out the assignment of distorted <u>cis</u>-octahedral geometries for the other $Co(tbmp)_2X_2$ complexes. Where X is chloride and bromide, the far-infrared spectra strongly support the assignment of distorted <u>cis</u>-octahedral symmetry to the complexes (see 4.2)

ii) <u>Solution</u>

<u>Nethanol</u>: The spectra of the $Co(tbmp)_2X_2$ complexes $(X=ClC_4, Cl^2, Br^2)$ (Table 22b) suggest that partial, if not complete, displacement of the ligands is occurring. The main absorption maximum of each of the pink solutions is quite weak and very close in energy to that of Co(II) in methanol.

Dichloromethane and Nitrobenzene: The spectra of the blue solutions that are formed by Co(tbmp)2Cl2 and Co(tbmp)2Br2 in these non-ligating solvents, are typical of tetrahedral $\mbox{Co(II)}$ 129 (Table 22c and Figure 19b), but the nature of the species of these solutions is not readily apparent. The formation of species such as $CoCl_{4}^{2-}$ and $[Co(tbmp)_{2}]^{2+}$ can be ruled out by the non-electrolytic behaviour of Co(tbmp)₂Cl₂ in nitrobenzene $(\Lambda = 2 \text{ ohm}^{-1} \text{mol.}^{-1} \text{cm}^2)$. Co(tbmp)₂Br₂ appears to behave similarly. While some spectral changes occur on adding excess ligand (Figure 19b), the spectra remain strongly suggestive of tetrahedral Co(II) and this implies that if an equilibrium such as (i) exists, it must lie strongly in favour of $Co(tbmp)_2X_2$. The behaviour of these complexes is in contrast to that of the analogous Cu(II) complexes, which appear to dimerize in dichloromethane (see Chapter 2).

(i) $Co(tbmp)_2 X_2 - Co(tbmp) X_2 + tbmp$

On the basis of these observations, it appears probable that the major species in these non-ligating solvents can be formulated as tetrahedral $Co(tbmp)_2X_2$, where both tbmp ligands are unidentate. Similar behaviour was reported for the related complex Co(mmp)₂Cl₂, where mmp is 2-methylthiomethylpyridine¹⁵

and for this complex, it was suggested that both mmp ligands are bound via the pyridyl nitrogen only.

NICKEL (II) COMPLEXES

(i) Reflectance

The reflectance spectra are consistent with the complexes being six-coordinate $NiN_2S_2X_2$ chromophores and the tentatively assigned ligand field maxima are presented in Table 23a. Although the Ni(tbmp)₂(ClC₄)₂.xH₂O (x=1,2) complexes do not exhibit any absorptions below 1000nm, this does not necessarily imply that they are square planar as the ${}^{3}A_{2g} \longrightarrow {}^{3}T_{2g}$ transition can be found over a wide range of wave-lengths (77(-143Cnm) in distorted octahedral Ni(II) complexes.⁴³ The infrared spectra (see 4.2) of the Ni(tbmp)₂(ClO₄)₂.xH₂O complexes suggest that the respective chromophores are $[Ni(tbmp)_2.Cl0_4.H_2C]^+$ and [Ni(tbmp)2.2H20].²⁺ The reflectance spectra are not inconsistent with these structures. The spectra of the Ni(tbmp) $_2X_2$ (X=Cl⁻,Br⁻) complexes (Figure 2C) and the Ni(tbmp)₂(ClC_4)₂.xH₂O complexes do not show the marked splitting of the ${}^{3}A_{2g} \longrightarrow {}^{3}T_{2g}$ and $^{3}A_{2g} \rightarrow ^{3}T_{1g}(F)$ maxima that characterizes <u>trans</u>-tetragonal Ni(II) complexes.¹⁴⁰ The electronic spectral evidence thus supports the far-infrared evidence (see 4.2) for the assignment of distorted <u>cis</u>-octahedral structures to these complexes.

It would be intuitively expected, from the similarities in their respective NS donor sets, that the relative ligand field strength of two tbmp ligands would be comparable in magnitude to the ligand field strength of quadradentate 1,8-bis(2-pyridy1)-3,6-dithiaoctane in its Ni(II) complexes. This expectation is confirmed by the estimates of the crystal field parameter Dq (Table 23b) for each of the complexes of these ligands. Hence Dq for Ni(tbmp)₂Cl₂ (1142cm⁻¹) is

FIGURE 20

Electronic Spectra - Ni(tbmp) $_2X_2$ Complexes (Reflectance)

TABLE 23a

	ELECTRONIC SFECTRA, NiN ₂ S ₂ X ₂ COMPLEXES						
CCMPLEX	STATE	$3_{A_{2E}} \rightarrow 3_{T_{1E}}(F)$	$\frac{3_{A}}{2\epsilon} \xrightarrow{3_{T}} \frac{3_{T}}{\epsilon} (F)$	$3_{A_{2\sigma}} \rightarrow 3_{T_{2\sigma}}$	REFERENCE		
Ni(tbmp) ₂ Cl ₂	Refl. MeCH	405 415(9), [490(1)]	645 77C(4)	1686, <u>ca</u> 1366(sh)	This work		
NiACl ₂	Refl.	425	720	1205	139		
Ni(mmp) ₂ Cl ₂	Refl.		630, 730(sh)	1CCC(br)	15		
Ni(NSSN)Cl ₂	Refl.		633	1111	132		
Ni(tbmp) ₂ Br ₂	Refl. MeOH	<u>ca</u> 41C(sh) 41C(8), [<u>ca</u> 465(2)]	690 . 780(2)	<u>ca</u> 11(((sh)	This work		
NiABr ₂	Refl.	425	725	1198	139		
Ni(mmp) ₂ Pr ₂	Refl.		65C, 75C(sh)	1000(br)	15		
Ni(ISSN)Br ₂	Refl.		645	1136	132		
[Ni(tbmp) ₂ .Cl0 ₄ .H ₂ 0]Cl0 ₄	Refl. MeCH	ca 39((sh) 405(7)	645 755(3)	9((This work		
Ni(tbmp) ₂ .2H ₂ C](ClO ₄) ₂	Refl.	365(sh), 390(sh)	63C	900	This work		
NiA(H ₂ 0) ₂](Cl0 ₄) ₂	Refl.	368	597		139		
<u>NOTES</u> : - for tbmp comp - Ni(NSSN)X ₂ cor []could be "form	lexes, e nplexes, cidden"	xtinction coefficient also likely to have ${}^{3}A_{2g} \longrightarrow {}^{1}A_{1g}$ transitio	s are in parenthe <u>cis</u> -octahedral st on ¹³⁹	ses ructures.			

TAPJE 23b

ESTIMATED Dq AND B FOR Ni(II) COMPLEXES

CCMPLEX	Dq/cm^{-1}	B/cm ⁻¹
Ni(tbmp) ₂ Cl ₂	1142	394
NiACl ₂	1 I 3C	232
Ni(tbmp) ₂ Br ₂	1168	253
NiABr ₂	1180	218
[Ni(tbmp)2.Cl04.H20]Cl04	1225	302
[Ni(tbmp) ₂ .2H ₂ 0](ClO ₄) ₂	1266	294
[NiA(H ₂ 0) ₂](Cl0 ₄) ₂	1274	375

NOTE: - see Table 23a for reference to NiAX₂ complexes.

comparable in magnitude to Dq for $NiACl_2$ (1130cm⁻¹), where A is 1,8-bis(2-pyridyl)-3,6-dithiaoctane and similarly for the remaining pairs of analogous complexes. The electronic spectra are compared in Table 23a.

 $Dq(\Delta_{o}=1CDq)$ and the Racah (interelectronic repulsion) parameter B, were estimated using Lever's graph procedure.¹⁴¹

(ii) <u>Sclution</u>

The weak maxima that are observed for the Ni(tbmp) $_2X_2$ complexes in methanol, show that tetragonal species exist in this solvent. Where X is chloride and bromide, the complexes are 1:1 electrolytes and where X is perchlorate, they are 2:1 electrolytes in methanol and this implies that partial solvation can occur. Fartial solvation and/or partial decomposition of the complexes is evident from the differences between the reflectance and methanol solution spectra (Table 23a). The complexes were insufficiently soluble to allow spectral studies in non-ligating solvents such as dichloromethane.

4.2 INFRARED SFECTRA

FAR-INFRARED (M(II)-halogen stretching)

The appearance of at least two $\mathbf{v}(N-X)$ vibrations in the spectra (Table 24) of the $M(tbmp)_2X_2$ complexes (M=Co(II), Ni(II); $X=Cl^-$, Br^-) suggests that the complexes have distorted <u>cis</u>-oct-ahedral structures⁸⁶ rather than the more common <u>trans</u> structures. In contrast to tetragonal Cu(II) complexes, Jahn-Teller distortions are not expected for tetragonal Ni(II) complexes¹²⁹. This means that <u>cis</u> and <u>trans</u> $\mathbf{v}(Ni-X)$ absorptions will be indistinguishable if the absorption frequencies alone are considered. Very little is known about the effects of Jahn-Teller distortion on tetragonal Co(II) complexes¹²⁹ and sc it is not possible to predict what

differences there will be, if any, between <u>cis</u> and <u>trans</u> \mathbf{v} (Co-X) absorption frequencies.

Co(II) Complexes

 $Co(Hpymt)_2Cl_2$ (Hpymt = pyrimidine-2-thione) has been shown to have a <u>cis</u>-distorted octahedral structure for which the V(Cc-Cl) absorptions are found at 232 and 246(sh)cm⁻¹.¹³³ These are similar to those observed for $Co(thmp)_2Cl_2$ (222, 249cm⁻¹) but for $Co(thmp)_2Pr_2$, the V(Co-Pr) frequencies (194, 210cm⁻¹) are slightly higher than those of $Co(Hpymt)_2Pr_2$ (176, 188(sh)).¹³³ <u>Trans</u>- $Co(py)_4Cl_2$ has a single V(Co-Cl)frequency at 230cm⁻¹ but in contrast to tetragonal complexes, the V(Co-X) frequencies of tetrahedral Co(II) complexes are substantially higher.⁸⁶

<u>Ni(II) Complexes</u>

While the $\mathbf{V}(\text{Ni-Cl})$ frequencies (23C, 253cm⁻²) of Ni(tbmp)₂Cl₂ are similar to those assigned for <u>trans</u>-tetragonal complexes such as Ni(3-picoline)₄Cl₂ (243cm⁻¹)¹⁴² and Ni(py)₄Cl₂ (246cm⁻¹),⁸⁶ both the $\mathbf{V}(\text{Ni-Cl})$ and $\mathbf{V}(\text{Ni-Br})$ frequencies of Ni(tbmp)₂X₂ (X=Cl⁻, Br⁻) are significantly lower than those of tetrahedral Ni(II) complexes.⁸⁶ As the latter also have two $\mathbf{V}(\text{Ni-X})$ absorptions, the Ni(tbmp)₂X₂ spectra are more consistent with the complexes having distorted <u>cis</u>-octahedral structures.

GENERAL INFRARED

(i) <u>Anion coordination</u>: It is probable that at least one of the perchlorate anions is semi-coordinated in $Co(tbmp)_2(ClC_4)_2$. H_2O and $Ni(tbmp)_2(ClC_4)_2$. H_2O as the splitting of the perchlorate V_3 mode (see 2.3) is quite pronounced (Figure 21, Table 24). However when a second water molecule is present, the V_3 mode of $Co(tbmp)_2(ClC_4)_2$. $2H_2O$ is broad and unsplit and in

- spectra recorded for Kujol mulls; frequencies are cm^{-1} .

TARIE 24

INFRARED SPECTRA, Co(II) AND Ni(II) COMPLEXES

	CCILPLEX	v (pyridyl ring)	$\underline{v}_3(\underline{clo}_4)$	$\underline{v}_1(\underline{clo}_4)$	$\mathbf{v}(\mathbf{M}-\mathbf{X});$ (X	=Cl ⁻ , Br ⁻)	
	Co(tbmp) ₂ Cl ₂	1605(s), 1571(w)		2.44.3	222, 249		
	Co(tbmp) ₂ Br ₂	1607(s), 1571(m)			192, 228		
	[Co(tbmp)2.ClC4.H20]ClO4		1123(vs), 1016(vs) 921(m)			
t	[Co(tbmp)2.2H20](Cl04)2		<u>ca</u> 1080(br)				
	Ni(tbmp) ₂ Cl ₂	1605(s), 1571(w)			230, 253		
	Ni(tbmp) ₂ Br ₂	16C8(s), 1573(m)			194, 210		
	[Ni(tbmp)2.Cl04.H20]Cl04	1611(s), 1576(w)	1126(vs), 1022(vs) 929(m)			
φ	[Ni(tbmp) ₂ .2H ₂ 0](ClO ₄) ₂	1611(s), 1578(w)	1090(vs), 1057(vs)			
	NOTES: - all spectra rec	corded for mulls; fre	equencies arc cm ⁻¹				
	- s = strong; m =	medium; w = weak; v	v = very; br = broad	đ			
- v (pyridyl ring) for uncoordinated thmp at 1593(s), 1570(m) cm ⁻¹							
- ionic Clo_4^- ; v_3 at <u>ca</u> 1100 cm ⁻¹ , v_1 at <u>ca</u> 930 cm ⁻¹ .							
	prepared by leaving [Co(tbmp)2.ClO4.H20]ClO4 exposed to air						
	$\phi v_3(Clo_4)$ only v	weakly split (see tex	ct)				

Ni(tbmp)₂(ClO₄).2H₂C it is weakly split. The weak splitting of the V_3 absorption may result from hydrogen bonding effects, which can also lower the symmetry of the anion.¹⁴³ It is more likely that the water molecules are bound to Ni(II) in the latter complex, rather than the weakly coordinating perchlorate anions.

(ii) <u>Ring Stretching Modes</u>: Similar trends in the shifts of the higher frequency pyridyl ring-stretching mode are observed for the Co(II) and Ni(II) complexes of thmp when they are compared with the Cu(II) complexes that were discussed in Chapter 2. Coordination of the pyridine ring has resulted in a blue-shift of this frequency for each of the complexes (Table 24).

4.3 PARAMAGNETIC ¹H nmr LINE BRCADENING EXPERIMENT

This experiment was carried out in a manner similar to that of the experiment that was discussed in Chapter 2 (see 2.6).

The effect of adding Co(II) to thmp is illustrated in Figure 22. The paramagnetic broadening of the \leftarrow -proton and methylene protons' resonances is not as dramatic as it is in the presence of Cu(II) and this can be attributed to the shorter relaxation time of Co(II) compared to Cu(II). Jine broadening effects thus decrease in the order Cu(II)> Co(II) \gg Ni(II).

¹⁴⁴ With Co(II), the heights of the ∝-proton and methylene protons' resonances are reduced while the TMS and methyl proton peaks are slightly enhanced. The former resonances also shift slightly downfield (<u>ca</u> C.C5 ppm). It is possible that the changes in the methylene protons' resonance are due solely to Co(II)-pyridyl interactions (see Chapter 2) and so while it can be confidently concluded that Co(II) exchange is taking place at the pyridyl nitrogen of tbmp, similar conclusions can not be drawn about exchange at the thioether sulphur.

<u>b</u> - tbmp in presence of Co(II) $[1.2 \times 10^{-3} \text{ mol.l.}^{-1}]$

SYNTHESES

Some general comments that relate to all of these syntheses can be found in the experimental section of the Appendices.

<u>Perchloratoaouobis</u> [2-(3,3-dimethyl-2-thiabutyl)pyridine] <u>cobalt(II)perchlorate</u>.

A pink solution results from the addition of 1 mmole of $Co(ClO_4)_2$ (C.258 g.) (plus a few drops of triethylorthoformate) to 2 mmole of ligand (C.363 g.). The mauve complex was isolated after concentrating the solution and cooling it. YIEID: C.144 g. (23%)

Dichlorobis [2-(3,3-dimethyl-2-thiabutyl)pyridine]cobalt(II)

The addition of 1 mmole of $CoCl_2.6H_2o$ ((.238 g.) to 2 mmole of ligand (0.363 g.) gave a deep blue solution which was concentrated to precipitate the mauve complex.

YIEID: C.312 g. (63%)

Dibromobis 2-(3, 3-dimethyl-2-thiabutyl)pyridine cobalt(II)

 $CoEr_2.6H_2O$ (C.5 mmole, C.163 g.) was slowly added to 1 mmole of the ligand (C.181 g.) to give a deep blue-purple solution. This was cooled to give a mauve precipitate and a second crop was isolated from the filtrate.

YIEID: 0.173 g. (59%)

<u>Perchloratoaouobis</u>[2-(3,3-dimethyl-2-thiabutyl)pyridine]nickel(II) perchlorate.

A solution of 1 mmole of $Ni(ClO_4)_2.6H_2C$ (plus triethylorthoformate) was added to 2 mmole of ligand to give a pale blue-green solution. The pale green complex was isolated after the solution had been reduced in volume and cocled.

YIEID: 0.121 g. (19%)

Diaquobis [2-(3,3-dimethyl-2-thiabutyl)pyridine] nickel(II) perchlorate.

A pale blue solution resulted from 1 mmole of $Ni(ClO_4)_2.6H_2C$ (C.366 g.) being added to 2 mmole of ligand. The solution was concentrated and "scratched" to precipitate the pale blue complex. It was then filtered off and washed with Abs. EtCH and then ether.

YIEID: (.25(g. (4(%)

Dichlorobis [2-(3,3-dimethyl-2-thiabutyl)pyridine] nickel(II)

1 mmole of NiCl₂.6H₂O (C.238 g.) was added to 2 mmole of the ligand to give a pale green solution. A pale bluegreen complex precipitated from this solution when it was concentrated <u>in vacuo</u>.

YIEID: (.320 g. (65%)

Dibromobis [2-(3, 3-dimethyl-2-thiabutyl)pyridine] nickel(II)

NiBr₂.3H₂O (C.5 mmole, C.136 g.) was added to 1 mmole (C.181 g.) of the ligand to give a green solution. Green crystals began to appear while the Ni(II) was being added. The solution was cooled and "scratched" to induce further crystallization.

YIEID: C.212 g. (73%)

TABLE 25

MISCELLANECUS PHYSICAL DATA

CCMFLEX	CCLCUR	M.P/ ^O C	ANALYSI	ES: Calc.	(Found)/%	CONDUCTIVIT	TY/ohm	1 _{mol.} -1 _{cm} 2
			С	Н	<u>IV</u>	CH3NC2	NeCH	Cther
Co(tbmp) ₂ (ClO ₄) ₂ .H ₂ O	mauve	-	37.62 (37.56)	5.C5 (5.C4)	4.39 (4.36)	168		
Co(tbmp) ₂ Cl ₂	mauve	152-155	48.78 (48.82)	6.14 (6.22)	5.69 (5.70)	22	126	ØNC ₂ : 2
Co(tbmp) ₂ Br ₂	mauve	148-150	41.32 (41.18)	5.2C (5.24)	4.82 (4.74)	26	1 38	
Ni(tbmp) ₂ (ClO ₄) ₂ .2H ₂ O	p.blue	-	36.6C (36.72)	5.22 (5.47)	4.27 (4.C3)	168		
Ni(tbmp) ₂ (ClO ₄) ₂ .H ₂ O	p.green	-	37.64 (37.61)	5.05 (5.2C)	4.39 (4.15)	169		
Ni(tbmp) ₂ Cl ₂	p.blue/green	212-213	48.8((48.68)	6.14 (6.24)	5.69 (5.53)	7	138	
Ni(tbmp) ₂ Er ₂	p.green	191-193	41.33 (41.36)	5.20 (5.3C)	4.82 (4.76)	20	145	
<u>NOTES</u> : - molar conduct	civities at 25 ⁰ C	: Nitrome Nethano Nitrobe	thane l nzene	1:1 (7C-) (1(C-) (2C-)	9C), 2:1 (-13C), (3C)	15(-17C) 21C-25C)		

- p = pale

CHAPTER 5

M(II) CONFLEXES OF

2-ETHYLTHICETHYLAMINE (M(II) = Cu(II))

AND

2-METHYITHIC-2-IMIDAZOTINE(M(II) = Cu(II), Co(II))

<u>Cu(II) Complexes</u>: The reactions of 2-ethylthioethylamine (etea) yield Cu(etea)X₂ (X=Cl⁻, Er⁻) and Cu(etea)₂X₂ (X=EF₄⁻, ClC₄⁻, Cl⁻, Er⁻). The former group appear to be tetragonal polymeric while in the latter group, the far-infrared spectra of Cu(etea)₂Cl₂ and Cu(etea)₂Er₂ indicate that the anions are bound <u>trans</u> to each other. Where X is ClC₄⁻ or EF₄⁻, the reflectance spectra suggest that the coordinated sulphur atoms are <u>cis</u> to each other, however in solution, they are probably <u>trans</u>.

 $[Cu(etea)_2Cl]BF_4 \text{ can be isolated from the 1:1 reaction} of IiCl with Cu(etea)_2(BF_4)_2 if care is taken to ensure that the co-precipitation of Cu(etea)_nCl_2 (n=1 or 2) and Cu(etea)_2-(EF_4)_2 does not take place. Its structure is probably similar to that of the other bis-complexes in the solid state, but in CH_2Cl_2 it is probably tetragonal pyramidal.$

Folymerization problems were usually encountered in the reactions of 2-methylthio-2-imidazoline (mti) and the isolation of the $Cu(mti)_4X_2$ (X= BF_4 , Cl⁻, Br^-) complexes was quite difficult. $Cu(mti)_4(BF_4)_2$ and $Cu(mti)_4Cl_2$ appear to be <u>trans</u>-tetragonal while the electronic spectral evidence suggests that $Cu(mti)_4Br_2$ may be <u>cis</u>-octahedral.

<u>Co(II)</u> <u>Complexes</u>: In the reaction of mti with CoCl₂.6H₂C, Co(mti)₃Cl₂ was isolated and this probably has a distorted tetrahedral structure in which one mti molecule remains uncoordinated. $Co(mti)_4(ClC_4)_2$ could not be isolated and a sample of "Co(mti)₄(EØ₄)₂" that was prepared, was impure.

TABLE 26

<u>SUMMARY OF RESULTS-Cu(etea) X_2 COMPLEXES</u> (n = 1,2)

STATE	STRUCTURE	PHYSICAL TECHNIQUE
solid	tetrag. $Cu(etea)_2 X_2$	electronic, infared
CH ₂ Cl ₂ (rm.temp.)	[Cu(etea) ₂] ²⁺	electronic
MeCH (rm.temp.,77K)	[Cu(etea) ₂ (MeCH) ₂] ²⁺	electronic, esr
solid	tetragonal	electronic, far-IR
CH ₂ Cl ₂ (rm.temp.,77K)	tetrag. Cu(etea) ₂ X ₂	electronic, esr
MeOH (rm.temp.)	[Cu(etea) ₂ X.NeON] ⁺	electronic, conductivity
(77K)	trig.bipyr. [Cu(ctea) ₂ X] ⁺	esr
solid	tetragonal	electronic, infrared
CH ₂ Cl ₂ (rm.temp.,77K)	tetrag.pyr. [Cu(etea) ₂ Cl] ⁺	electronic, esr
MeOH (rm.temp.)	[Cu(etea) ₂ Cl.NeOH] ⁺	electronic, conductivity
(77K)	$[Cu(etea)_2Cl.MeCh]^+$ and trig.bipyr. Cu(etea)_2Cl^+	esr
solid	tetrag. polymeric	clectronic, far-IR
MeOH (rm.tomp.)	polymeric structure broken up	electronic, conductivity
(77K) ·	major species is $Cu(MeCH)_n^{2+}$ (n=4 or 6)	esr
	(where X=Fr, minor species is	
	trig.bipyr.)	
	STATE solid CH ₂ Cl ₂ (rm.temp.) MeCH (rm.temp.,77K) solid CH ₂ Cl ₂ (rm.temp.,77K) MeOH (rm.temp.) (77K) solid CH ₂ Cl ₂ (rm.temp.,77K) MeOH (rm.temp.) (77K) solid MeOH (rm.temp.) (77K)	STATESTRUCTUREsolidtetrag. $Cu(etea)_2X_2$ CH_2Cl_2 (rm.temp.) $[Cu(etea)_2]^{2+}$ NeOH (rm.temp.,77K) $[Cu(etea)_2(EeCH)_2]^{2+}$ solidtetragonal $CH_2Cl_2(rm.temp.,77K)$ tetrag. $Cu(etea)_2X_2$ MeOH (rm.temp.) $[Cu(etea)_2X.FeOE]^+$ $(77K)$ trig.bipyr. $[Cu(etea)_2X]^+$ solidtetragonal $CH_2Cl_2(rm.temp.,77K)$ tetrag.pyr. $[Cu(etea)_2Cl]^+$ NeOH (rm.temp.) $[Cu(etea)_2C1.FeOE]^+$ $(77K)$ $[Cu(etea)_2C1.FeOE]^+$ $(77K)$ tetrag. polymericNeOH (rm.temp.) $polymeric$ structure broken up $(77K)$ $rig.polymeric$ $MeOH$ (rm.temp.) $polymeric$ structure broken up $(77K)$ $rig.polymeric$

5.1 ELECTRONIC SPECTRA

Where possible, tentative assignments have been made for these complexes and these are presented with the spectra, in Tables 27a and 27b. The assignments have been based on comparisons made within each series of complexes and according to the work of other authors.

A) <u>IIGAND FIELD TRANSITIONS</u>

2-ETHYITHICETHYIAMINE COMPLEXES

i) $Cu(etea)_2(ClO_4)_2$ and $Cu(etea)_2(BF_4)_2$

The reflectance ligand field maxima are consistent with the anions being weakly <u>trans</u>-coordinated in a manner similar to that of the complex $Cu(NH_2CH_2CH_2SCH_3)_2(ClO_4)_2$, which has been characterized crystallographically³³ and spectroscopically ⁴⁷. The maxima are virtually unchanged in dichloromethane sclution.

In methanol, the red-shifts of the ligand field maxima suggest that methanol is binding¹⁴⁵ and the predominant species is probably $[Cu(etea)_2(MeCH)_2]^{2+}$ for both anions.

ii) <u>Cu(etea)</u>₂Cl₂ and Cu(etea)₂Br₂

The ligand field maxima are red-shifted in relation to the spectra of $Cu(etea)_2(ClO_4)_2$ and $Cu(etea)_2(PF_4)_2$ and a low energy shoulder appears in the reflectance spectra. Both effects are consistent with the complexes having <u>trans</u>-tetragonal structures^{90,145} where the anicns occupy the axial coordination positions. This conclusion is supported by the far-infrared spectra.

These structures appear to be retained in dichloromethane but in methanol the 1:1 electrolytic nature of the complexes (Table 31) suggests that they may exist as the <u>trans</u>-tetragonal

FIGURE 23

Electronic Spectra - Cu(etea) Br2

- \underline{b} = MeCH solution
- $\underline{c} = CuPr_2$ in MeCH

147

	ELECTRCNIC SPECTRA, etea C(MTIEXES						
CCMFLEX	REFI ECTANCE	ASSIGNMENT	CH2C12(€)	ASSIGNMENT	MeOH(€)	ASSIGNTENT	CTHER
Cu(etea) ₂ (ClO ₄) ₂	355 ca 385(sh)	σ(S)→Cu(II) σ(S)→Cu(II)	250 345	σ(N)→Cu(II) σ(S)→Cu(II)	249(2148) 313(2893) [†] 385(1818)	σ(X)→Cu(II) σ(S)→Cu(II)	
	537 [†]	LF	560	LF	627(124)	LF	
$Cu(etea)_2(BF_4)_2$	360	σ(S)→Cu(II)	250 34 1	σ(N)→Cu(II) σ(S)→Cu(II)	251(23C4) 313(3213) [†]	σ(N)→Cu(II)	
	<u>ca</u> 390(sh) 535(br) [†]	σ(S)→Cu(II) LF	560	LF	386(2128) 627(123)	σ(S)→Cu(II) LP	
Cu(etea) ₂ Cl ₂			<u>ca</u> 254(4246) 283(6825)	$\sigma(N) \rightarrow Cu(II)$ apical Cl $\rightarrow Cu(II)$	253(2436)	σ(N)→Cu(II)	<u>Ats.EtCH</u> 275(343C) [†]
	<u>ca</u> 37C(br) 688 <u>ca</u> 112C(sh)	σ(S)→Cu(II) IF LF	<u>ca</u> 32C(sh) 750(238) [†]	LF	316(2800)' 375(1945) 765(288) [‡]	σ(S)→Cu(II) LF	352(2678) [†] 720(br; 314)
Cu(etea) ₂ Br ₂	405 [†] 647 ca 850(ab)	LF LF	265 327 <u>ca</u> 360(sh) 75C [†]	σ(№)→Cu(II) arical Fr→Cu(II) σ(S)→Cu(II) LF	251(2352) 313(br:2978) 375(sh:1451) 715(3 ^p 5)	σ(N)→Cu(II) σ(S)→Cu(II) LF	
[Cu(etea) ₂ Cl]BF ₄	<u>ca</u> 3 ^R 5(br) <u>ca</u> 68C(br) 812	σ(S)→Cu(II) LF LF	255(3182) 281(3666) 350(3348) 720(262)	$\sigma(N) \longrightarrow Cu(II)$ apical Cl \longrightarrow Cu(II) $\sigma(S) \longrightarrow Cu(II)$ I.F	252(2549) 314(3662) [‡] 385(1903) 690(110) [‡]	σ(N)→Cu(II) σ(S)→Cu(II) LF	
Cu(etea)Cl ₂	360 [†] 770 [†]	mixed LF			<u>ca</u> 357(990) 760(137) [†]	LF	CH3NO2 775(262)
Cu(etea)Br ₂	<u>ca</u> 455(sh) 79C [†]	Pr → Cu(II) LF			<u>ca</u> 34C(br) 775(215)	LF	<u>cn</u> 46C(sh) 75C(463) [‡]
Cu(etea) ₂ SO ₄					260(2262) 326(3121)	$\sigma(N) \rightarrow Cu(II)$	

665(137)

LF

TAPLE 27a

<u>NOTES</u>: - all maxima are nm; extinction coefficients $(1.mol.^{-1}cm^{-1})$ are in parentheses,

- sh = shoulder; br = broad; IF = Ligand Field

700

t asymmetric maxima, implying a second, unresolved maximum,

LF

- omission of extinction coefficients implies either partial solubility or the resolution is not good enough to enable accurate calculation. [Cu(etea)₂X.MeCH]⁺ species. The electronic spectra at room temperature (in methanol) are consistent with this proposal.

iii) [Cu(etea)₂C1] BF₄

The reflectance spectrum suggests that this complex has a <u>trans</u>-tetragonal structure and this is in agreement with the infrared spectra. (see 5.3)

In dichloromethane, the form of the ligand field absorption envelope implies that the $[Cu(etea)_2Cl]^+$ chromophore has a square pyramidal structure (see Chapter 2) but in methanol, the similarity of the entire spectrum with that of $Cu(etea)_2Cl_2$ in this solvent implicates the presence of a $[Cu(etea)_2Cl.MeCh]^+$ species.

iv) <u>Cu(etea)Cl₂ and Cu(etea)Er₂</u>

In the reflectance spectra, the ligand field maxima lie at energies between those reported for the tetragonal polymeric CuenX_2 (en = ethylenediamine)⁷² and CudtoX_2 (dto = 3,6-dithiaoctane)⁸² complexes. It is probable that the $\operatorname{Cu}(\text{etea})X_2$ complexes are also tetragonal polymers and this suggestion is supported by the relatively insoluble nature of these complexes.

The differences between the spectra in methanol and the reflectance spectra indicate that the polymeric structure is being broken on dissolution. If one of the species in solution is $[Cu(MeCH)_n]^{2+}$ (as indicated by the esr spectra at 77K), there should be an absorption at 900-912nm. However, such a peak is not at all obvious (Figure 23).

In nitromethane, a $Br^- \longrightarrow Cu(II)$ charge transfer absorption can be assigned for $Cu(\text{etea})Br_2$ and this indicates that the polymeric structure is not being completely broken up as in methanol.

TABLE 27b

ELECTRONIC SPECTRA, mti CCMPLEXES

CCMPLEX	REFLECTANCE	ASSIGNMENT	ACETONE	ASSIGNMENT	CH2C12	ASSIGNMENT	OTHER	
							EtOH	CH3NO2
$Cu(mti)_4(BF_4)_2$	492	$\sigma(S) \rightarrow Cu(II)$					<u>ca</u> 370(sh)	
	830	LF	665(78)				620(84)	663(98)
Cu(mti) ₄ Cl ₂					287	apical Cl→Cu(II)	EtOH	CH 3NO2
. –	367	$\sigma(N_{Im}) \rightarrow Cu(II)$	427(1055)	$\sigma(N_{Im}) \rightarrow Cu(II)$	418	$\sigma(N_{Im}) \rightarrow Cu(II)$	383(1243)	5 2
	675(br)	LF	825(150)	lf	<u>ca</u> 850(br)	LF	670(30)	815(51)
Cu(mti) ₄ Br ₂	<u>ca</u> 405(sh)	$\sigma(N_{Im}) \rightarrow Cu(II)$	<u>ca</u> 415(sh)	$\sigma(N_{Im}) \rightarrow Cu(II)$				
	475	$Br \longrightarrow Cu(II)$	<u>ca</u> 450(sh)	$Br \longrightarrow Cu('II)$	450	$Br \longrightarrow Cu(II)$		
	110	T L.	820	μľ	180	L ۲ [°]		

NOTES: - see Table 27a.

2-METHYLTHIC-2-IMIDAZCLINE CONFLEXES

i) $\underline{Cu(mti)}_{4}(\underline{BF}_{4})_{2}$

The ligand field maxima at 830 nm in the reflectance spectrum (Table 27b) suggests that there is little tetragonal distortion⁴⁴ in this complex, compared to complexes such as $Cu(benzimidazole)_4(ClC_4)_2$ (526, 641(sh) nm)¹⁴⁵ and $Cu(IMIZ)_4(FF_4)_2$ (526 nm), where IMIZ is 1,2-dimethylimidazole.¹⁴⁶

Cn dissolution in acetone, ethanol and nitromethane the ligand field maxima undergo a blue-shift to energies that are consistent with the presence of a <u>trans</u>-tetragonal $[Cu(mti)_4(solvent)_n]^{2+}$ species.

ii) <u>Cu(mti)₄Cl₂ and Cu(mti)₄Pr₂</u>

The reflectance spectra suggest that these complexes have six-coordinate geometries.

The conductivities of these complexes (Table 31) show that some dissociation is occurring on dissolution and the electronic spectra also undergo some changes. However it appears that the six-coordinate structure is probably being retained although there may be some differences in the degree of tetragonal distortion in $Cu(\pi ti)_4 Cl_2$, in going from the solid state to solution.

iii) <u>Co(mti)₃Cl</u>₂

The two spin-allowed transitions of tetrahedral Co(II) $({}^{4}A_{2} \rightarrow {}^{4}T_{1}(F) \text{ and } {}^{4}A_{2} \rightarrow {}^{4}T_{1}(F))$ appear as intense, multicomponent absorptions in the near infrared and visible regions respectively.^{43,129} The absorption maxima for Co(mti)₃Cl₂ are typical of such spectra (Figure 24) with quartet \rightarrow doublet transitions being responsible for the multiple absorptions on the higher energy side of the main

FICURE 24

Electronic Spectra - $Co(mti)_3Cl_2$ and $Co(\alpha - pic)_2Cl_2$

$$\underline{a} = Co(mti)_{3}Cl_{2} (reflectance)$$

$$\underline{b} = Co(\prec -pic)_{2}Cl_{2} (reflectance)$$

FIGURE 25a

- only one $\sigma(S) \rightarrow Cu(ff)$ C.T. absorption is

observed in NeCH solution (386 nm).

transitions. The spectral assignments are given in Table 27c.

Similarities between the spectrum of $Co(mti)_3Cl_2$ and the spectra of tetrahedral CcN_2Cl_2 complexes such as $Co(\sim -picoline)_2Cl_2$ (Figure 24) and $Col_2'Cl_2$, where I' is 2-methylthic-3-methylimidazole,¹³⁷ suggest that only two of the mti ligands are bound to Co(II) in $Co(mti)_3Cl_2$. It appears then, that this complex has a distorted tetrahedral CoN_2Cl_2 chromophore.

B) <u>CHARGE TRANSFEE TRANSITIONS</u> 2-ETHYLTHICETHYLANINE CONFLEXES

i) $Cu(etea)_2(ClC_4)_2 and Cu(etea)_2(EF_4)_2$

Two $\sigma(S) \longrightarrow Cu(II)$ charge transfer absorptions appear in the reflectance spectra (Table 27a, Figure 25a) but in solution, only one absorption is observed for each complex. By analogy with the $Cu(tbmp)_2X_2$ complexes (Chapter 2) and those discussed by other workers,^{60,80} the spectra suggest that the sulphur atoms are <u>cis</u> with respect to each other in the solid state but rearrange in solution to form the <u>trans</u>-structure (Figure 25t).

trans - (solution)

The $\sigma(N) \rightarrow Cu(II)$ charge transfer absorptions agree with the assignments that have been made for other Cu(II) complexes containing coordinated primary amines.^{47,274,275}

ii) <u>Cu(etea)₂Cl₂ and Cu(etea)₂Er₂</u>

In dichlorcmethane, the assignment of apical

 $X^- \rightarrow Cu(II)$ charge transfer absorptions is in agreement with the work of Schugar <u>et al</u>⁴⁷ and with the results of the far-infrared spectra. Schugar <u>et al</u> assigned apical $X^- \rightarrow Cu(II)$ absorptions for the ethylenediamine complexes $[Cu(en)_2 X.H_2 G]X$ where the apical ligation by X^- has been demonstrated crystallographically.^{89,91,97}

The single $\sigma(S) \rightarrow Cu(II)$ charge transfer absorption in the spectrum of $Cu(etea)_2 Pr_2$ (dichloromethane) is consistent with a <u>trans</u> ligand arrangement.

iii) [Cu(etea)_Cl] FF4

The apical Cl \rightarrow Cu(II) charge transfer absorption (dichloromethane solution) at 281 nm is very close in energy to the same transitions in $[Cu(Ne_2NCH_2CH_2NNe_2).2Cl]_2$ (<u>ca</u> 275 nm)⁴⁷ [Cu(en)₂.Cl.H₂C]Cl (<u>ca</u> 28C nm)⁴⁷ and Cu(etea)₂Cl₂ (283 nm, see above). The electronic spectrum is in agreement with the interpretation of the far-infrared spectrum for [Cu(etea)₂Cl]BF₄ (see 5.3).

The $\sigma(N) \rightarrow Cu(II)$ and $\sigma(S) \rightarrow Cu(II)$ charge transfer absorptions are consistent with the assignments for the other etea complexes in solution.

2-METHYLTHIC-2-IMIDAZCIINE COMPLEXES

i) $\underline{Cu(mti)}_{4}(\underline{BF}_{4})_{2}$

In the reflectance spectrum, the assignment of the absorption of 492 nm as a $\sigma(S) \rightarrow Cu(II)$ charge transfer transition is supported by the disappearance of this absorption in nitromethane, acetone and ethanol solutions. There is also an accompanying colour change as the almost black crystals dissolve to give green/yellow solutions. The infrared spectra (see 5.3) are consistent with all four ligands binding via one of the heterocyclic nitrogen atoms and they also rule out the possibility of strong $\mathrm{BF}_4^--\mathrm{Cu}(\mathrm{II})$

interactions which could account for the low tetragonal distortion suggested by the ligand field maxima. Strong axial interactions would be achieved by chelating two of the ligands to give the Cu(II) ion a $\underline{\mathrm{trans}}-\mathrm{N}_4\mathrm{S}_2$ environment.

(ii) <u>Cu(mti)₄Cl₂ and Cu(mti)₄Br₂</u>

For $\operatorname{Cu(mti)}_4\operatorname{Cl}_2$ in dichloromethane, the absorption at 287nm is consistent with apical ligation by the chloride ions but for $\operatorname{Cu(mti)}_4\operatorname{Pr}_2$ the low energy $\operatorname{Pr}^- \longrightarrow \operatorname{Cu(II)}$ charge transfer absorption (450nm) implies that the Pr^- Cu bonding is non-axial (see Chapter 1). Hence $\operatorname{Cu(mti)}_4\operatorname{Cl}_2$ probably has a <u>trans</u>-tetragonal structure while $\operatorname{Cu(mti)}_4\operatorname{Pr}_2$ may have a distorted <u>cis</u>-octahedral structure.

Few assignments of imidazole nitrogen \longrightarrow Cu(II) charge transfer absorptions have been made in the literature ¹⁴⁷ but the assignments presented in Table 27b are in general agreement with the observations of Freedman <u>et al</u> ¹⁴⁷ and the assignments for Cu(mmbi)₄(EF_4)₂.2H₂C (mmbi=2-methylmercaptobenzimidazole) and Cu(bi)₄(ClO₄)₂ (bi=benzimidazole).¹⁴⁸

From these studies it is apparent that $N_{Im} \rightarrow Cu(II)$ charge transfer absorptions will be found in the range from <u>ca</u> 33Cnm to 385nm in the solid state.

C) <u>EIECTRONIC SPECTEA AT 9CK</u>

The only complexes that did not decompose in 20% Glycerol/MeOH were Cu(etea)₂Cl₂ and Cu(etea)₂Er₂. The spectra and their assignments are presented in Table 27d.

TAPLE 27d

ELECTRCNIC SFECTRA OF etea CONFLEXES AT 9CK

CCMPIEX	ABSCRFTICN	(l.mol ⁻¹ cm ⁻¹)	ASSIGNMENT
Cu(etea) ₂ Cl ₂	366	1101	$\sigma(S) \longrightarrow Cu(II)$
	65C(br)	122	LF
Cu(etea) ₂ Br ₂	366	1129	$\sigma(S) \longrightarrow Cu(II)$
	<u>ca</u> 680(br)	138	IF
NCTE: - extinc	tion coeffici	ents are approx	imate.

There are no absorptions in the visible region that can be assigned as $X^- \longrightarrow Cu(II)$ charge transfer absorptions and this supports the suggestion from other spectroscopic data that the halogens are axially coordinated.

The ligand field maxima are broad and it is not possible to determine whether there are any shoulders on the main absorptions which would support the esr evidence for the existence of trigonal bipyramidal species at these temperatures (see 5.2).

5.2 ELECTRON SFIN RESONANCE SPECTRA

The g and A parameters for the Cu(II) complexes of 2-ethylthioethylamine and 2-methylthio-2-imidazoline are presented in Tables 28a and 28b respectively. All of the spectra were recorded at 77K.

2-ETHYITHIOETHYLAMINE COMPLEXES

i) $\underline{Cu(etea)}_2(\underline{ClO}_1)_2$

In acetone and methanol at 77K, g_{\parallel} and $|A_{\parallel}|$ are consistent with the proposed <u>trans</u>-tetragonal structure for this complex and Cu(etea)₂(BF₄)₂ (see 5.1). However, it is probable that the species that give rise to these spectra are either $[Cu(etea)_2]^{2+}$ or a solvated species such as $[Cu(etea)_2(solvent)_2]^{2+}$.

ii) <u>Cu(etea)₂Cl₂ and Cu(etea)₂Br₂</u>

<u>Dichloromethane</u>: The spectrum of $Cu(etea)_2Cl_2$ is in agreement with the proposed <u>trans</u>-tetragonal structure, $|A_{\parallel}|$ having a typical tetragonal value and the spectrum is normal (Figure 26).

Methanol and 20% Glycerol/methanol: The spectra (Figure 26) strongly suggest that these complexes adopt distorted five-coordinate structures (probably trigonal bipyramidal) at 77K. The lowest g value approaches the

FICURE 26

Key to Figure 26

a	-	Cu(etea) ₂ Cl ₂ in dichloromethane
<u>b</u>	-	Cu(etea) ₂ Cl ₂ in 20% Clycerol/NeCH
С	-	Cu(etea) ₂ Er ₂ in 20% Clycerol/MeCH
à	-	Cu(etea) ₂ Er ₂ (+ excess etea) in methanol
<u>e</u>	-	[Cu(etea) ₂ Cl] BF ₄ in nitromethane
L L	-	[Cu(etea) ₂ Cl] EF ₄ in methanol (2nd species is poorly resolved)
£	-	Cu(etea)Br ₂ in methanol
<u>}_</u>	-	Cu(II) in methanol

FICURE 27

Cu(II) Species Formed in Presence of Excess etea

Figure 27

		TAN	5 2fa			
	ESR SPECT	RA, e	eten CC!	TIEXES		
CONFLEX	SOLVENT	10	<i>E</i> ₁₁	10 ⁴ A	P1 104 1A1	Eino -
Cu(etea) ₂ (ClO ₄) ₂	MeCH + excess I	a) b)	2.187 2.22C 2.21C	151 197 170		
	Acetone		2.169	154		
Cu(etea) ₂ Cl ₂	∦eCH + excess l	a) b)	<u>ca</u> 2.C2 2.224 2.216	<u>ca</u> 71 193 17C	2.172 122	
	Glyc/MeCH		2.010	65	2.180 127	
	CH2C12 CH3NC2		<u>ca</u> 2.20	<u>ca</u> 175		2.C84
Cu(etea)2 ^{Er} 2	MeOH + excess I	a) b)	<u>ca</u> 2.C2 2.229 2.217	<u>ca</u> 90 190 166	<u>ca</u> 2.18 <u>ca</u> 114	
	Glyc/∑eC∺		2.030	83	2.178 127	
[Cu(etea) ₂ Cl] FF ₄	MeCH + excess I	a) b) a) b)	<u>ca</u> 2.(2 <u>ca</u> 2.2C 2.231 2.2C6	<u>ca</u> 71 <u>ca</u> 184 193 175	2.176 127	
	CH3NC2		<u>ca</u> 2.17	<u>ca</u> 142	<u>ca</u> 2.C7 <u>ca</u> 92	
	Acetone					2.095
	CH2C12		<u>ca</u> 2.27	<u>ca</u> 85	2.095	
Cu(etea)Cl ₂	№ eCH	a) b)	2.43C 2.372	125 133		
Cu(etea)Er ₂ <u>NCTES</u> : - units of - iso = iso	MeCH A _{ll} and . tropic	a) b)	2.436 <u>ca</u> 2.CC are cm	125 <u>ca</u> 47	<u>ca</u> 2.27 <u>ca</u> 146	
- all spect	ra were rec	orde	at 771	ĸ		

- Glyc./NeCH = 20% Elycerol/methanol

TA	FI	E	28b
_		-	

	ESE STE	CIFA, mti	CONFLEX	ES		
CCNFIEX	SCIVENT	£	104 A	E	14 _N shfs	Eisc-
Cu(mti) ₄ EF ₄) ₂	Acetone	2.253	184	<u>ca</u> 2.C5		
	CH3NO2	2.251	187	<u>ca</u> 2.C3	16(∉∦);16(∉ <u>)</u>)	
	EtCH	2.259	181	2.051	14(e1);17(e1)	
Cu(mti) ₄ Cl ₂	Acetcne				-	2.115
	CH3NC2	2.246	186			
	EtCH	2.265	175	<u>ca</u> 2.05	17(_{E1})	
	MeOH a) b)	2.269 2.276	178 131]	14-17(_{E1})	
Cu(mti) ₄ Br ₂	Acetone	<u>ca</u> 2.25	<u>ca</u> 184		16(_{E1})	
	CH3NC2	<u>ca</u> 2.23	<u>ca</u> 188			
NGTES: - unit	s of A _{ll} ar	re cm ^{−1} ,				
- iso	= isotropic;	l.fs = suj	perhyperi	fine spli	tting	
- unit	s of ¹⁴ N shfs	are Caus	З,			
- all	spectra were	recorded	at 77%.			
		4				

= region in which ${}^{14}\text{S}_{\text{shfs}}$ lines are observed is indicated in parentheses.

theoretical value of 2.00 required for trigonal bipyramidal complexes (d_{2^2} ground state) and the |A| values are similar to those normally observed for this type of complex. ^{64,65,67} Trigonal bipyramidal complexes are also typified by their "reversed" spectra and the spectra of $Cu(etea)_2Cl_2$ and $Cu(etea)_2Er_2$ fulfil this requirement (see Chapter 1).

Cn the basis of these observations and the 1:1 electrolytic behaviour (Table 31) of the complexes in methanol, the spectra are assigned to the trigonal bipyramidal $[Cu(etea)_2X]^+$ (X=Cl⁻, Br⁻) species.

iii) [Cu(etea)_Cl] BFA

<u>Dichloromethane and Nitromethane</u>: An intermediate distorted five-coordinate structure is probably responsible for the spectra (Figure 26) although the high field region is not as diffuse as has been reported for other intermediate five-coordinate complexes⁶⁴. Hence the [Cu(etea)₂Cl]⁺ chromophore may have more tetragonal pyramidal character than trigonal bipyramidal character.

<u>Methanol</u>: Two species are present, the major one probably being trigonal bipyramidal $[Cu(etea)_2Cl]^+$ as its peaks (Figure 26) are superimposable on the spectrum of $Cu(etea)_2Cl_2$ in this solvent. The minor species ($|A| \sim 180$ Gauss) may be tetragonal $[Cu(etea)_2Cl.MeCE]^+$, as the semicoordinated nature of the BF_4^- anion in the solid state (see 5.4) suggests that the sixth coordination site of $[Cu(etea)_2Cl]^+$ is relatively open and would allow solvation.

iv) <u>Cu(etea)Cl</u> and <u>Cu(etea)Br</u>2

In methanol, the major species in the spectrum of each complex corresponds exactly to the major species in the spectra

of $\operatorname{CuCl}_2.2\operatorname{H}_2\operatorname{C}$ and $\operatorname{Cu}(\operatorname{ClO}_4)_2.6\operatorname{H}_2\operatorname{O}$ under the same conditions (Figure 26). This implies that the polymeric $\operatorname{Cu}(\operatorname{etea})\operatorname{X}_2$ complexes are being broken up on dissolution, with $\operatorname{Cu}(\operatorname{NeOH})_n^{2+}$ (n=4 or 6) being the major contributor to the spectra. Where X is bromide, the minor species that is formed probably has a trigonal bipyramidal geometry as its lowest ε value is approximately 2.00 and the hyperfine splitting on the high-field side of the spectrum is very small (<u>ca</u> 47 x 10⁻⁴ cm⁻¹). The nature of the minor species where X is chloride, is not readily apparent.

v) <u>Addition of Excess Ligand to $Cu(etea)_2X_2$ and [$Cu(etea)_2C1$] BF_4 </u>

In methanol, two species are formed on adding excess ligand to any of the Cu(etea) $_2X_2$ complexes (X=ClC₄, Cl⁻, Er⁻) or to [Cu(etea) $_2$ Cl]EF₄. The spectra (Figure 26) and the g_{\parallel} and $|A_{\parallel}|$ values, are consistent with both complexes having tetragonal structures. The deep blue solutions are also formed in other solvents. In dichloromethane at room temperature the d-d maximum is at 642nm (ϵ =139) and a $\sigma(S) \rightarrow$ Cu(II) charge transfer absorption can be assigned at 341nm. A concentration dependent $\sigma(N) \rightarrow$ Cu(II) charge transfer absorption can be assigned at about 25Cnm and this assignment is supported by the appearance of ¹⁴N superhyperfine lines in the esr spectra (Figure 26).

The two most obvious types of complex that could be formed in the presence of excess ligand are shown in Figure 27 . 2-METHYLTHIC-2-IMIDAZOLINE COMPLEXES

i) $\underline{Cu(mti)}_{4}(\underline{BF}_{4})_{2}$

In acetone, nitromethane and ethanol, g_{\parallel} , g_{\perp} and $|A_{\parallel}|$ are normal for square planar CuN_4^{2+} or tetragonal $CuN_4^{X_2}$

systems involving imidazole and substituted imidazole ligands.

Nine ¹⁴N superhyperfine lines are observed in the lowest-field copper hyperfine line (Figure 28) in a nitromethane glass. The intensity pattern of these lines is very similar to that which is calculated, in computer simulation studies, for Cu(II) in an environment of four equivalent nitrogens.¹⁵⁰ A similar superhyperfine structure was also reported for Cu(DMIZ)₄Cl₂, where DMIZ is 1,2-dimethylimidazole, in an ethylene glycol-H₂C glass.¹⁴⁶

ii) <u>Cu(mti), Cl_ and Cu(mti), Br</u>2

The spectra are generally similar to those of $Cu(mti)_4^-$ (BF₄)₂ although in nitromethane glasses the ¹⁴N superhyperfine lines are not observed in ε_{\parallel} . In the spectrum of $Cu(mti)_4Cl_2$ in methanol, two species of about equal concentration are observed (Figure 28). One of these ($|A_{\parallel}| = 178 \times 10^{-4} \text{ cm}^{-1}$), is probably <u>trans</u>-tetragonal $Cu(mti)_4Cl_2$. The low $|A_{\parallel}|$ (131 x 10^{-4} cm^{-1}) of the second species suggests that it may be either a tetragonal pyramidal complex such as $[Cu(mti)_4Cl]^+$ or a tetrahedrally distorted $Cu(mti)_4^{2+}$ chromophore.

5.3 FAR-INFRARED SPECTRA

2-ETHYITHICETHYIAMINE COMPLEXES

i) <u>Cu(etea)</u>₂Cl₂ and Cu(etea)₂Br₂

In an extensive study of a series of CuL_2X_2 complexes (where I is $\operatorname{R}_2\operatorname{NCH}_2\operatorname{CH}_2\operatorname{NR}'_2$), Lever and Mantovani ⁹⁰ reported that the $V(\operatorname{Cu}-X)$ frequencies were below $2\operatorname{COcm}^{-1}$ and were outside the range of the spectrometer that they used. On the basis of crystallographic and electronic spectra studies, these complexes have been assigned <u>trans</u>-tetragonal structures. As a general guide then, $V(\operatorname{Cu}-X)$ absorptions will be found below 2(Ccm⁻¹ if the Cu(II)--X bonds are axial as in $[Cu(en)_2Cl.H_2C]Cl$ and $[Cu(en)_2Pr.H_2C]Pr.^{89,91,97}$

The absorptions for $Cu(etea)_2Cl_2$ (182, 188cm⁻¹) and $Cu(etea)_2Er_2$ (163cm⁻¹) respectively (Table 29) are consistent with these complexes having <u>trans</u>-tetragonal structures similar to the ethylenediamine complexes. The two absorptions that are observed for $Cu(etea)_2Cl_2$, may be due to the symmetry of this complex being lower than D_{4h} . Only one absorption is expected for this symmetry.⁸⁶

ii) [Cu(etea)_C1] EFA

This complex appears to have an axial Cu—Cl bond as the v(Cu=Cl) absorption frequency (<u>ca</u> 187(br)cm⁻¹) is very similar to the v(Cu=Cl) frequencies for Cu(etea)₂Cl₂ (Table 29). iii) <u>Cu(etea)Cl₂ and Cu(etea)Pr₂</u>

These complexes have polymeric tetragonal structures similar to those of $Cu(en)X_2$ and $Cu(py)_2X_2$ for which farinfrared data has been reported (Table 13a). The V(Cu-X)frequencies $[Cu(etea)Cl_2; 254, 285cm^{-1} \text{ and } Cu(etea)Br_2;$ 226 cm⁻¹] are also within the ranges $[V(Cu-Cl); 312-2Cccm^{-1}]$ and $V(Cu-Br); 233-187cm^{-1}]$ observed for other tetragonally distorted octahedral Cu(II) complexes.⁷²

2-NETHYLTHIC-2-IMIDAZCI INE CCMPLEXES

i) $\underline{Cu(mti)}_{4}\underline{Cl}_{2}$

The most prominent absorptions (Table 29) occur at 142 and $286 {\rm cm}^{-1}$ but a satisfactory spectrum, with which comparisons could be made, was not obtained for ${\rm Cu(mti)}_4 {\rm Br}_2$. The electronic spectrum of ${\rm Cu(mti)}_4 {\rm Cl}_2$ in dichloromethane suggested that the Cu-Cl bonding is axial (see 5.1) and the far-infrared absorption at 142cm⁻¹, if it is a $V({\rm Cu-Cl})$ absorption, would TAPLE 29

INFRARED SPECTRA, etea AND mti CC/PIEXES

CCMPLEX	∨ (N-H)	$\mathbf{v}(N-\mathbf{X})$	$\mathbf{v}(\mathbf{C}=\mathbf{N})$	$V_3(Ulc_A/BF_A)$
Cu(etea) ₂ (ClC ₄) ₂	3317(s),3268(s),3140(w)			1(97(s),i(52(s)
Cu(etea) ₂ (BF ₄) ₂	3333(s),3282(s),3147(w)			1052(s),1020(s)
Cu(etea) ₂ Cl ₂	3236(s),3210(s),3130(s)	182,189		
Cu(etea) ₂ Br ₂	3220(s),3198(s),3113(s)	163		
Cu(etea)Cl ₂	3277(s),3222(s),3143(s)	254,285		
Cu(etea)Br ₂	33C7(w),3252(m),32CC(m),3132(m)	226(sh)		
[Cu(etea) ₂ Cl] BF ₄	3342(s),32 ⁸ 7(m),3217(s),3132(s)	<u>ca</u> 187(br)		1100(s),1030(s)
Cu(mti) ₄ (BF ₄) ₂	3392(s)		1525(s)	1C5C(s),1C33(s)
Cu(mti) ₄ Cl ₂	3234(m)	142	1547(s)	
Cu(mti) ₄ Br ₂	3444(w),3422(w), <u>ca</u> 3247(m-br)		1526(5)	4
Co(mti) ₃ Cl ₂	<u>ca</u> 3167(br)	310,318	1532(s)	
NCTES: - all spec	tra recorded for mulls; frequencies are	cm_,		
- v(N-H) f	or etea: 3367(s-br),3304(s-br) [neat lig	and] and 3380	(s),331((m)), CHCl ₃ solution
$- \nu(N-H)$ f	or mti: <u>ca</u> 3093(br) [mul] and 3431(s)	[CHC1 3 soluti	.on],	
$- \mathbf{v}(\mathbf{C} = \mathbf{N})$	for mti: 1554(s) [mull],			
- s = stro	ng; m = medium; w = weak: br = bread,			
- ionic Cl	0, and BF_{1} , V_{2} at call 100 cm ⁻¹ .			,

be consistent with this structure. The axial chloride ions must be very weakly bound if this assignment is correct, because the absorption is about 40 cm^{-1} lower than in <u>trans</u>-tetragonal Cu(etea)₂Cl₂.

The absorption at 286cm^{-1} is consistent with it being a $\mathbf{v}(\text{Cu-N})$ absorption as these have been assigned in the region from about 242 to 292cm^{-1} in the Cu(II) complexes of 2-substituted imidazcles.¹⁴⁷

ii) <u>Co(mti)</u>₃Cl₂

The two \vee (Co-Cl) absorptions (310, 318cm⁻¹) that have been tentatively assigned (Table 29) agree with the proposal (5.1) that this complex has a distorted tetrahedral structure. The far-infrared spectra of tetrahedral CoN_2Cl_2 complexes have been thoroughly characterized.^{86,137,142}

5.4 GENERAL INFRARED SFECTRA

2-ETHYLTHICETHYLAN INE COMPLEXES

i) <u>ligand Coordination</u>: In contrast to the $[N(CC)_5]_2$ etea (N=Cr, W) and $N(CC)_4$ etea (N=Cr, No, W) complexes (Section II, Chapter 3), the V(NH) absorptions of the Cu(II) complexes show significant shifts (Table 29) to lower frequencies on coordination. Up to four absorptions are observed, compared to the two absorptions (due to the symmetric and asymmetric V(NH) vibrations¹⁵¹) in the spectra of the free ligand. ii) <u>Anion Coordination</u>: The weak splitting of the perchlorate and tetrafluoroborate V_3 modes in the spectra of $Cu(etea)_2X_2$ (X=ClO₄, BF₄) and [Cu(etea)_2Cl]BF₄ indicates that these anions are protably participating in weak, axial bonding in a manner analogous to Cu(en)_2(ClO₄)_2⁹¹ and Cu(en)_2(BF₄)_2 91

 $\underline{a} = Cu(\text{etea})_2(ClO_4)_2 \qquad \underline{c} = Cu(\text{mti})_4(BF_4)_2$ $\underline{b} = Cu(tbmp)_2(ClO_4)_2 \qquad \underline{d} = Cu(tbmp)_2(BF_4)_2$ (N = Nujol absorption)

The splitting of the V_3 mode in the spectra of the etea complexes is not as pronounced as in the spectra of $Cu(tbmp)_2(ClC_4)_2$ and $Cu(tbmp)_2(EF_4)_2$ (Figure 29a) and this suggests that in the latter complexes (Charter 2), the Cu(II)--- anion interactions are significantly stronger. <u>2-METHYITHIC-2-IN IDAZCIINE COMPLEXES</u>

i) <u>V(NH) Absorptions</u>: In an early study of some retal complexes of 2-substituted imidazoline ligands (e.g. 2-(2-pyridyl) -2-imidazoline), Freiser <u>et al</u>¹⁵² showed that the V(NH)frequency decreases on ligand coordination to N^{2+} . Hence although the metal probably binds to the imine nitrogen,^{152,153} a consideration of the two resonance structures for the imidazoline ligands, provides a mechanism by which the V(NH)frequency can be lowered (Figure 29b).

FIGURE 29b

Hydrogen bonding effects in the solid state spectrum of uncomplexed mti, result in a substantial lowering of the $\mathbf{V}(NH)$ absorption frequency compared to the spectrum in chloroform (Table 29). The $\mathbf{V}(NH)$ absorption in the spectra of $\operatorname{Cu(mti)}_4 X_2$ (X=BF₄, Cl⁻) is relatively sharp and this suggests that $\operatorname{Cu(II)}$ -ligand bonding and not hydrogen bonding, is responsible for the decrease in the $\mathbf{V}(NH)$ frequencies on complexation. $\operatorname{Cu(mti)}_4 \operatorname{Br}_2$ and $\operatorname{Co(mti)}_3 \operatorname{Cl}_2$ have relatively broad $\mathbf{V}(NH)$ absorptions. For the former complex, this may be due to its hygroscopic nature while for the latter complex, electronic and far-infrared spectroscopic investigations and conductivity measurements (Table 31) indicate that one of the mti ligands is uncomplexed.

ii) $\underline{V(C=N)}$ Absorptions: By analogy with other Cu(II)-imine complexes such as those of the N-(2-thenylidene)alkylamine ligands¹²², the $\overline{V(C=N)}$ frequency should decrease on complexation to Cu(II) or Co(II). Although for Cu(mti)₄Cl₂ the decrease is not very significant (Table 29), the decreases in the spectra of the remaining complexes provide enough evidence to conclude that the ligand is binding via one of the heterocyclic nitrogen atoms. More specifically, it is probably tinding via the imine nitrogen.^{152,153}

iii) Tetrafluoroborate Coordination in $Cu(mti)_4(BF_4)_2$.

The $\mathrm{BF}_4^- \, \mathbf{V}_3$ mode is weakly split (Figure29a) and this may be interpreted as indicating that the anions are weakly coordinating. However, only a very weak absorption is found at about 771cm⁻¹ where the \mathbf{V}_1 absorption is expected and this weak absorption is also found in the spectrum of $\mathrm{Cu(mti)}_4\mathrm{Cl}_2$. Cther studies have shown that the \mathbf{V}_1 mode (<u>ca</u> 76Ccm⁻¹) should be of medium intensity if the FF_4^- anion is semi-ccordinated ^{143,154}. These results suggest that the EF_4^- anicns remain uncoordinated in $\mathrm{Cu(mti)}_4(\mathrm{EF}_4)_2$.

5.5 REACTIVITY STUDIES

These were designed to test the stability of etea and mti towards replacement by pyridine.

i) Addition of Pyridine to $Cu(etea)_2(ClO_4)_2$

<u>In Ethanol</u>: With a 1:1 ratio of pyridine to Cu(II), the electronic spectrum provided no evidence for five-coordinate

adduct formation as the d-d maximum at 585nm remains unchanged. <u>In Acetone</u>: In the presence of excess pyridine the d-d maximum shifts from 570nm to 595nm and this implies that adduct formation may be taking place.

 $\left[Cu(etea)_2 \right]^{2+} \xrightarrow{excess tv} \left[Cu(etea)_2(py)_n \right]^{2+} (n = 1 \text{ or } 2) \right]$ $In Pyridine: The total replacement of etea from the Cu(II) coordination sphere is achieved on dissolving the perchlorate complex in pyridine. A mauve precipitate which was isolated from this reaction, was characteristic of <math>Cu(py)_4(ClO_4)_2$; its d-d maximum being at 585nm in the solid state. <u>NOTE</u>: In ethanol and acetone, the ligand-field absorption of $\left[Cu(py)_4 \right]^{2+}$ is at 700nm and 645nm respectively.

ii) Addition of pyridine to $Cu(mti)_4(EF_4)_2$

The changes in the energy of the d-d absorption (Abs.EtCH solution) on adding different ratios of pyridine, are shown in Table 30.

TABLE 3C

Cu(II):pyridine	d-d	maximum/nm
1:0	620	(green/yellow solution
1:1	622	
1:2	624	
1:4	625	
1:large Excess	65C	(blue/green sclution)

In the presence of a large excess of pyridine, the shift to 65(nm suggests that an adduct, such as $[Cu(mti)_4(py)_n]^{2+}$ (n = 1 or 2), is being formed. A green oil was isolated from this reaction, but it could not be crystallized.

iii) <u>Discussion</u>

The results of these experiments are similar to those involving the complexes of tbmp (Chapter 2) where the ligand

was shown to be quite stable towards replacement by pyridine.

In the complexes of the chelated N--S ligands thmp and etea, the presence of coordinated nitrogen appears to confer greater stability to the Cu(II)--S bonding as similar experiments have shown that the displacement of chelated dithioether ligands is readily achieved (see Chapter 2).

5.6 PARAMAGNETIC ¹H nmr LINE PRCADENING EXFERIMENT

The principles that are involved were discussed in Chapter 2 (see 2.6).

Cu(II) interactions with mti:

In Figure 30, it can be seen that the -NHresonance increases in intensity with an increase in the concentration of Cu(II) and this implies that there is a decrease in the rate of exchange of the -NH- proton.¹⁵⁵ This resonance also shifts upfield and this may be due to decreasing hydrogen bonding effects in solution.

As there is no significant effect on the resonance of the -SMe protons and there is no broadening of the -NHresonance, the results can be interpreted as meaning that the Cu(II) ions interact with the imine nitrogen under these conditions. In contrast to the spectra of the $N(CC)_5$ mti complexes (M = Cr, Mo, W) (see Section II, Chapter 3), the -CH₂- resonance is not split as a result of the Cu(II)--N interactions. This suggests that the rate of exchange of Cu(II) at the nitrogen binding site is too rapid for the -CH₂CH₂- protons to be "seen" as being inequivalent on the nmr time scale.

FICURE 30

¹<u>H</u> nmr - Addition of Cu(II) to mti (in CDC1₃)

 $\underline{a} = \text{mti}$ in absence of Cu(II) $\underline{b} - \text{mti}$ in presence of Cv(II) [8.9 x 10⁻⁴mcl.l.⁻¹]

SYNTHESES

Some general comments that relate to all of these syntheses can be found in the experimental section of the Appendices.

2-ETHYLTHICETHYLANINE CONPLEXES

Diperchloratobis(2-ethylthioethylamine)copper(II)

The addition of 1 mmcle of $Cu(ClO_4)_2.6H_2O$ (C.37C g.) to a slight excess of ligand (C.22C g.) have an intense, deep blue solution. A purple precipitate appeared when almost all of the Cu(II) had been added.

YIELD: C.298 g. (64%)

Ditetrafluoroboratobis(2-ethylthioethylamine)copper([])

 $\operatorname{Cu}(\operatorname{etea})_2(\operatorname{FF}_4)_2$ was isolated from an attempt to synthesize $\operatorname{Cu}(\operatorname{etea})_4(\operatorname{BF}_4)_2$. 1 mmole of $\operatorname{Cu}(\operatorname{FF}_4)_2.\operatorname{6H}_2\operatorname{O}$ (0.345 g.) was added to 4 mmole of the ligand (C.421 g.) to give an intense, deep blue solution. A blue cil was deposited after the solution had been concentrated and ether had been added to it. "Scratching" the cil gave a purple solid which was filtered and washed with Abs.EtCH and then ether.

YIEID: 0.15C g. (34%)

Bis(2-ethylthioethylamine)copper(II)sulphate

This complex was isolated from a qualitative attempt to synthesize $Cu(etea)_n SO_4$ (n= 3 or 4), in which some $CuSC_4.5H_2O$ was dissolved in neat ligand. The dark blue mixture was heated for about 1 minute and then ether was added to precipitate an oil. "Scratching" the oil induced solidification; the blue solid was filtered and then washed with Abs. EtOH and ether.

Dichlorobis(2-ethylthioethylamine)copper(II)

1 mmole of $CuCl_2.2H_2O(C.17C g.)$ was slowly added to an excess of the ligand (>C.21C g.) and the dark green solution was cooled. The precipitation of the blue complex was induced by "scratching" the flask.

YIELD: C.200 g. (58%)

Dibromobis(2-ethylthioethylamine)copper(II)

The same procedure as for $Cu(etea)_2Cl_2$ was followed, using 1 mmole of $CuBr_2$ (C.223 g.). Dark green flakes precipitated from the solution after about 1 minute.

YIEID: C.3C3 g. (7(%)

Dichloro(2-ethylthioethylamine)copper(II)

Cu(etea)Cl₂ was prepared by the qualitative addition of etea to an excess of CuCl₂.2H₂C in Abs. EtCH, to give a blue-green precipitate.

Dibromo(2-ethylthioethylamine)copper(II)

1 mmole of the ligand (0.105 g.) was slowly added to an excess of CuBr_2 (> 0.223 g.) to give 2 fine, dark green precipitate. This was filtered off, washed with Abs. EtCH and air-dried.

YIEID: 0.118 g. (36%)

Chlorobis(2-ethylthioethylamine)copper(II)tetrafluoroborate

1 mmole of $Cu(etea)_2(BF_4)_2$ was prepared <u>in situ</u> using an excess of etea and the solution was filtered to remove a small quantity of light blue precipitate. Slightly less than 1 mmole of anhydrous IiCl (<0.C42 g.) in Abs. EtCH/acetone was then added to this solution. The total volume at this stage should be about 5C-60 cm³ in order to avoid the precipitation of $Cu(etea)_2(FF_4)_2$ and $Cu(etea)_nCl_2$ (n= 1 or 2). The resulting light blue solution was concentrated <u>in vacuo</u> cooled and "scratched" to induce the precipitation of impure $[Cu(etea)_2Cl]BF_4$. This was recrystallized from a minimum volume of hot Abs. EtCH.

YIEID: 0.1C4 ε. (26%)

The filtrate yielded impure precipitates that contained dark blue $[Cu(etea)_2Cl]BF_4$ and what appeared to be $Cu(etea)Cl_2$ (green) and $Cu(etea)_2(BF_4)_2$ purple. <u>2-NETHYLTHIC-2-INIDAZOLINE CONFLEXES</u>

<u>N.B.</u> For the preparation of the $Cu(mti)_4 X_2$ complexes (X = BF₄, Cl⁻, Br⁻), it is essential to have the Cu(II): mti ratio as close to 1:4 as possible, otherwise large quantities of gelatinous precipitates will appear.

Tetrakis(2-methylthio-2-imidazoline)copper(II)tetrafluoroborate

1 mmole of $Cu(BF_4)_2 \cdot 6H_2C$ (C.345 g.) was <u>slowly</u> added (while filtering) to a warm solution of 4 mmole of mti (C.464 g.)^{*}. The solution was reduced in volume to about 1-2 cm³ than set aside at 4^oC. Iarge clumps of black crystals grew and these were filtered off and washed with Abs. EtCH and then sodium-dried ether.

YIELD: C.361 g. (51%)

* It may be necessary to filter the brown-black solution at this point, to remove a dark green gelatinous precipitate. <u>NOTES</u>: - forced precipitation with ether gave a complex that analysed as $Cu(mti)_4(BF_4)_2 \cdot xH_20$ (x = 1 or 2),

- the crystals of $Cu(mti)_4BF_4)_2$ decompose over a period of several months.

Dichlorotetrakis(2-methylthio-2-imidazoline)copper(II)

As for $Cu(mti)_4(BF_4)_2$, the complex should be allowed to crystallize slowly from a concentrated solution.

The <u>slow</u> addition of 1 mmole of $CuCl_2.2H_2O$ (C.17C g.) to 4 mmole of mti (C.464 g.) gave a green-black solution that had to be filtered in order to remove a small quantity of a gold-coloured precipitate. The solution was reduced in volume and cooled for a prolonged period to yield the blue, hygroscopic complex.

An ether-forced precipitation gave a yield of 14%. Dibromotetrakis(2-methylthio-2-imidazoline)copper(II)

1 mmcle of CuEr₂ (C.223 g.) was <u>slowly</u> added to 4 mmole of mti (C.464 g.) and the green-black solution was filtered in order to remove a gelatinous precipitate. The solution was then concentrated <u>in vacuo</u> and cooled for 2 days before the large clumps of tlack crystals (that are blue when they are broken open) that resulted were filtered and washed with a minimum of cold Abs. EtCH.

YIEID: C.266 g. (39%)

Dichlorotris(2-methylthio-2-imidazoline)cobalt(II)

 $Co(mti)_{3}Cl_{2}$ was isclated from an attempt to synthesize $Co(mti)_{4}Cl_{2}$. A solution of 1 mmole of $CoCl_{2}.6H_{2}O$ (C.238 g.) (plus triethylorthoformate) was added to 4 mmole of mti (C.464 g.) to give a deep blue solution. This was concentrated and navy blue crystals were grown at 4^oC. These were filtered and washed with a minimum volume of Abs. EtOH.

YIELD: C.188 g. (39%)

TAPLE 31 MISCELLANEGUS FHYSICAL DATA

COMPLEX	COLOUR	M.P/ ^O C	ANALYSE	S: Calc	.(Found)/	ħ	CONDUC	TIVITY	/ohm ⁻¹ mol ⁻¹ cm ²
			C	Н	N	Other	CH3NO2	MeCH	Other
$Cu(etea)_2(ClO_4)_2$	purple	-	20.76 (20.64)	4.79 (4.93)		Cl,15.32 (15.14)	127		
$Cu(etea)_2(BF_4)_2$	purple	175 -177	21.47 (21.59)	4.95 (5.23)	6.26 (6.31)		150		
Cu(etea) ₂ SO ₄	blue/green	178-180	26.69 (26.31)	6.16 (6.13)	7.78 (7.31)		Insol	•	
Cu(etea) ₂ Cl ₂	blue/green	114-116	27.86 (27.96)	6.43 (6.68)	8.13 (8.0C)		21	109	EtCH: 24
Cu(etea) ₂ Br ₂	d.green	115-118	22.15 (22.36)	5.11 (5.24)	б.46 (6.21)		39	116	
Cu(etea)Cl ₂	blue/green	122-123	20.05 (20.32)	4.63 (4.76)		C1,29.59 (29.25)	13		
Cu(etea)Br ₂	d.green	109-111	14.62 (14.41)	3.37 (3.54)	4.26 (4.33)				
[Cu(etea) ₂ Cl] BF ₄	blue	114-116	24.25 (23.73)	5.6C (5.53)	7.C7 (6.78)		76	136	
$Cu(mti)_4(BF_4)_2$	black	119-121	27.38 (27.19)	4.59 (4.84)	15.97 (15.49)		177		ØN0 ₂ : 51
Cu(mti) ₄ Cl ₂	blue	114-116	32.C7 (32.52)	5.38 (5.60)	18.70 (18.71)		64	144	Ac.: 20
Cu(mti) ₄ Fr ₂	black	101-103	27.92 (28.27)	4.69 (5.06)	16.29 (16.46)		90	144	Ac.: 36
Co(mti) ₃ Cl ₂	navy blue	138-14C	30.12 (30.C1)	5.06 (5.49)	17.57 (17.75)		31	119	
<u>NOTES</u> : - molar conduct.	ivities at 25 ⁰ C	Nitromo Methano Nitrobo Acetono Ethano	ethane ol enzene e	1:1	(70-90), (100-130), (20-30), (100-130) (60-80)	2:1(150 , (210 (45-	-17C) -25C) 55)		

- d = dark; Ac. = acetone

CHAPTER 6

COFFER COMPLEXES OF

2-(3,3-DIMETHYL-2-THIAEUTYL)CUINOLINE(tbmc)

AND

3-(2-METHYLTHIOPHENYLIMINO)CAMPHOR(1)

<u>2-(3,3-dimethyl-2-thiabutyl)ouinoline</u>: $Cu(tbmq)Cl_2$ and $Cu(tbmq)Fr_2$ were the only Cu(II) complexes that were isolated pure, even where the reactions involved a two-fold excess of the ligand. The electronic, far-infrared and electron spin resonance spectra are consistent with both complexes having flattened tetrahedral structures. In the reactions with $Cu(ClO_4)_2.6H_2O$, only very small quantities of an impure Cu(II) complex.

The Cu(I) complexes, Cu(thmq)Er, Cu(thmqH)Er₂ and Cu(thmq)₂ClC₄ are also briefly discussed in this Chapter. <u>3-(2-methylthiophenylimino)camphor</u>: This ligand is very susceptible to Cu(II) catalysed hydrolysis in protic solvents (e.g. EtCH) where a coordinating anion such as Cl⁻ is present. Consequently the only complexes that could be isclated, from a reaction in acetone, were CuI(ClC₄)₂.acetone.xH₂C (x = C or 2). The electronic spectra of these complexes suggest that they probably have flattened tetrahedral structures.

6.1 EIECTRCNIC SFECTRA

The tentative assignments for the Cu(II) complexes of these ligands are presented in Table 32.

2-(3,3-DINETHYI-2-THIAFUTYI) CUINCIINE COMPLEXES. Cu(II) COMPLEXES

i) <u>Ligand Field Transitions</u>

The two low energy, ligand field maxima in the reflectance spectra of $Cu(tbmq)Cl_2$ (85C, 12CC nm) and $Cu(tbmq)Fr_2$ (85C, 1462 nm) (Figure 31), are typical of distorted tetrahedral Cu(II) complexes⁴³ such as the well characterized bis(N-alkylsalicylaldiminato)copper(II) (R = isopropyl, t-butyl),¹⁵⁶ $Cu(dmaep)X_2$ (dmaep = 2-(N,N-dimethylamino)ethylpyridine)³⁹ and $Cu(\beta-isosparteine)X_2^{96}$

systems.

Cn dissolution in dichloromethane, the ligand field maxima move to higher energies and this is an indication that the complexes are not as distorted in solution.⁴³ The assignment of flattened, tetrahedral structures to $Cu(trmq)Cl_2$ and $Cu(trmq)Er_2$ is consistent with both the electronic and electron spin resonance spectral data.

ii) Charge Transfer Transitions

There is some uncertainty as to the assignment of the $\sigma(S) \rightarrow \text{Cu(II)}$ charge transfer transitions in these complexes because of the nearby $X^- \rightarrow \text{Cu(II)}$ absorptions. However, the assignment of the low energy $\text{Br}^- \rightarrow \text{Cu(II)}$ absorptions is consistent with the observations that have been reported for distorted tetrahedral Cu(II) complexes containing coordinated bromide ions.^{59,157} The low intensity $\text{Er}^- \rightarrow \text{Cu(II)}$ charge transfer absorption at 592 nm ($\epsilon = 564 \text{ l.mol}.^{-1} \text{ cm}^{-1}$)

FICURE 31

Electronic Spectra - Cu(tbmc)X2 Complexes (Reflectance)

TAPLE 32 ELECTRCNIC SPECTRA, then AND I COMPLEXES

CONFLEX	REFI ECTANCE	ASSIGNMENT	CH2C12(€)	ASSIGNMENT	ACETCNE(e)	ASSIGNMENT
Cu(tbmq)Cl ₂	<u>ca</u> 395(sh) <u>ca</u> 41C(sh) 540	$\sigma(S) \longrightarrow Cu(II)$ $C1^{-} \longrightarrow Cu(II)$ $\pi(S) \longrightarrow Cu(II)$	395(219C) <u>ca</u> 435(sh)	$\sigma(S) \longrightarrow Cu(II)$ Cl ⁻ \rightarrow Cu(II)		
	850	ÌF	<u>ca</u> 800(sh)	lf		
	1200	LF	1075(201)	lf		
Cu(tbmq)Br ₂	495 615 850 1462	$ \begin{array}{l} \operatorname{Er}^{-} \to \operatorname{Cu}(\operatorname{II}) \\ \operatorname{Er}^{-} \to \operatorname{Cu}(\operatorname{II}) \\ \operatorname{LF} \\ \operatorname{LF} \end{array} $	<u>ca</u> 362(sh) <u>ca</u> 45C(sh) 592(564) 77C(269) 115C(298)	$\sigma(S) \longrightarrow Cu(II)$ Br $\longrightarrow Cu(II)$ Er $\longrightarrow Cu(II)$ IF IP		
Cul(Cl0 ₄) ₂ .ac.	755 1 300	LF LF	<u>ca</u> 395(1075) 760(150) t	σ(S) → Cu(II) LF	<u>ca</u> 390(1666) <u>ca</u> 620(sh) 12CO (102)	σ(S)→ Cu(II) IF LF

NOTES: - sh = shoulder; LF = Ligand Field; all maxima are in nm.

- extinction coefficients are $1.mol.^{-1}cm^{-1}$

ø solutions contained triethylorthoformate

+ poorly resolved, weak shoulder on low energy side of 760 nm. maximum.

- ac. = acetone.

in dichloromethane may be a "forbidden" transition¹⁵⁷ and similar absorptions have been recognised as $Pr \rightarrow Cv(II)$ charge transfer maxima by other workers.^{47,82} The blue-shift that is exhibited by the $Pr \rightarrow Cu(II)$ absorptions in dichloromethane is also good evidence for $Cu(ttmq)Pr_2$ being less distorted in solution. Blue-shifts are expected as the $Cu(II) \rightarrow Pr$ bonds become more "in-plane". 43,59,157

The assignment of the absorption at 540 nm for $Cu(ttmq)Cl_2$ (reflectance), is in agreement with the assignments made by Schugar <u>et al</u>, for $\Pi(S) \rightarrow Cu(II)$ charge transfer transitions.⁴⁷ This absorption (540 nm) is too high in energy to be a ligand field component of a distorted tetrahedral complex ¹⁵⁷ and it appears to be too low in energy to be a $CI^- \rightarrow Cu(II)$ absorption. Even in tetrahedral $CuCl_4^{2-}$, the charge transfer absorptions are observed only as low as about 455 nm.¹⁵⁸

Cu(I) COMPLEXES

Although an interpretable reflectance spectrum cculd not be obtained for Cu(tbmqH) Br_2 , the spectrum of Cu(tbmq)_2- Clo_4 shows a distinct absorption at 378 nm and a lower intensity shoulder at about 475 nm. In methanol the former absorption shifts to 360 nm and the latter absorption disappears. The Cu(I) complexes of tbmp and tbmpH⁺ (see Chapter 3) also showed maxima at about 365 [±] 10 nm and these were tentatively assigned as being Cu(I) \rightarrow S charge transfer transitions.

By analogy with the Cu(I) complexes of 1,1C-phenanthroline ($\lambda_{max} = 435 \text{ nm}$)¹⁵⁹ and 2,9-dimethyl-1,1C-phenanthroline ($\lambda_{max} = 454 \text{ nm}$)¹⁶⁰ the shoulder at about 475 nm is probably a charge transfer transition from the Cu(I) d-orbitals to the ligand's empty π^* -orbitals.¹⁶¹ <u>3-(2-NETHYLTHICFHENYLININC)CANFHCR</u>

In both the solid state and in solution, the Cul²⁺ chromophore appears to have a flattened tetrahedral structure similar to that of the bis(N-alkylsalicylaldiminato)-copper(II) complexes, where that substituent is isopropyl or t-butyl,¹⁵⁶ and the complexes of related substituted camphorquinone ligands.^{162,163} The blue-shift of the ligand field maxima in acetone (Table 32) suggests that the complex is less distorted towards a tetrahedral geometry than it is in the solid state, as observed for the Cu(tbmq)X₂ (X = Cl⁻, Br⁻) complexes that were discussed above.

In acetone and dichloromethane, thioether binding is apparent, but this region (<u>ca</u> 390 nm) is poorly resolved in the reflectance spectrum.

6.2 ELECTRON SFIN RESONANCE SPECTRA

The g and A parameters for these complexes are presented in Table 33a. All of the spectra were recorded at 77K.

i) 2-(3,3-DINETHYL-2-THIABUTYI)CUINCLINE CONFLEXES Acetome: The spectra of Cu(tbmq)Cl₂ ($g_{\parallel} = 2.412$, $g_{\perp} = 2.102$; $|A_{\parallel}| = 143 \times 10^{-4} \text{ cm}^{-1}$) and Cu(tbmq)Er₂ ($g_{\parallel} \sim 2.412$, $g_{\perp} = 2.116$; $|A_{\parallel}| \sim 135 \times 10^{-4} \text{ cm}^{-1}$) are consistent with the complexes having flattened tetrahedral structures. The relatively high g_{\parallel} values suggest that the Cu(II)-ligand bonding in these complexes is less covalent⁶⁰ than in other distorted tetrahedral systems (Table 33b and this may be a result of steric effects imposed by the ligand.

					IAELE 33a				
		E	SR SPECTI	RA,	tbmg AND	L CC. PIEX	ES		
<u>CCI:</u>	FIEX		SCIVENT		E ₁₁ 10		11 <u> A </u>	<u>e_ 104</u>	
Cu(tbmq)Cl ₂		Acetone		2.412	143	169	2.108	
			CHC1 3		2.264	164	138		
		t	CH2C12					2.140	
Cu(tbmq)Br ₂		Acetone		<u>ca</u> 2.41	<u>ca</u> 135	179	2.116	
			CHC13		<u>ca</u> 2.4C	<u>ca</u> 144	169	2.115	
Cul	(Cl0 ₄) ₂ .ac.		Acetone	а) Ъ)	2.412 2.352	141 157	171 150		
			+ TECF	a) b)	2.414 <u>ca</u> 2.35	135 <u>ca</u> 159	179 <u>ca</u> 148		
		φ	CH3NO2	a) b)	2.381 2.342	1 33 142	179 165		
		φ	CH2C12	a) t)	2.426 <u>ca</u> 2.01	120 <u>ca</u> 94	2C2	2.194	82
		φ	MeCH		2.427	124		2.095	

NOTES: † isotropic spectrum; (g_{iso} = 2.14C),

 ϕ these solutions contained triethylorthoformate (TEOF),

- all spectra recorded at 77K,
- units of A_{\parallel} and A_{\pm} are ${\rm cm}^{-1}$,
- units of $g_{\parallel} / |A_{\parallel}|$ are cm.

	- M	DI	C .	2 21
_				

Base of the second s		And survey and And Andrew Statistics have			
COMPLEX	_E ₁₁	10 ⁴ A ₁₁	E _{II} /LA _{II} L	<u>E</u> 1	REFERENCE
Cu(N-t-butyl-sal) ₂	2.270	145	157	2.068	61
Cu(N-s-butyl-sal) ₂	2.253	156	144	2.055	61
Cul ¹ Cl ₂	2.303	127	181	2.085	162
Cul ¹ (BF ₄) ₂	2.259	139	165	2.073	162
Cu(dmaep)Cl ₂	2.305	99	235	2.118	39
Cu(dmaep)Br ₂	2.371	59	40.2	2.116	39
Cu(sparteine)Cl ₂	2.259	85	270	2.075	157
Cu(thioacetamide) ₄ ²⁺	2.152	87	247		164
Cu:tmtd	2.125	93	228	2.C21 2.C51	165
Cu(SPR2NPR2S)2	2.107	119	177	2.030	166
NCTES: - Cu:tmtd = C	u(II) đ	oped tetra	amethylthiou	ramdisulph	ide

ESR SPECTRA, DISTCHTED T, Cu(II) CONFLEXES

- units of $|A_{\parallel}|$ and $\epsilon_{\parallel} / |A_{\parallel}|$ are cm⁻¹ and cm. resp.

The ratio $\varepsilon_{\parallel} / |A_{\parallel}|$ has been suggested by Addison and Sakaguchi,⁶⁰ to be a possible guide in estimating the degree of distortion towards a tetrahedral geometry in four-coordinate Cu(II) complexes. For example, the distorted tetrahedral complexes Cu($(amaep)Cl_2^{39}$ and Cu(sparteine)Cl₂,⁹⁵ have $\varepsilon_{\parallel} / |A_{\parallel}|$ ratios of 236 cm and 270 cm respectively, while for square planar complexes, the ratio lies in the range from about 105 to 135 cm.⁶⁰ The ratios for Cu(thmq)Cl₂ (169 cm) and Cu(thmq)Er₂ (179 cm) lie at values that are consistent with the complexes being flattened tetrahedra.

<u>Chloroform</u>: The spectra (Table 33a) indicate that the complexes are less distorted towards tetrahedral geometries in this solvent, the $g_{\parallel}/|A_{\parallel}|$ ratios teing 138 cm (X=Cl⁻) and 169 cm (X=Er⁻).

ii) <u>3-(2-METHYLTHIOPHENYLININO)CANFHOR CONFLEXES</u> <u>Acetone</u>: Two species are present in the glasses of the $Cul(ClC_4)_2$ complexes. At least one of these species contains coordinated water and this is demonstrated by its almost complete disappearance (Figure 32) in the presence of the drying reagent, triethylorthoformate (TECF). The g_{\parallel} and $|A_{\parallel}|$ values of both species are consistent with them having flattened tetrahedral geometries, similar to those that have been proposed for other Cu(II) complexes (Table 32b) of this type.¹⁶²

<u>Nitromethane</u>: Two distorted tetrahedral species are observed as in acetone, except that the presence of TECF has no effect on their relative concentrations. This suggests that one of the complexes contains coordinated CH_3NO_2 , perhaps being a $[Cul(CH_3NO_2)]^{2+}$ species.

FICURE 32

ESR Spectra - Cul(ClO₄)₂ at 77K

<u>Dichloromethane</u>: Even in the presence of TECF, two species are evident in the spectra (Figure 32). The "reversal" of the spectrum at high-field ($g \approx 2.007$, $|A| \approx 94 \times 10^{-4} \text{ cm}^{-1}$) implies that one of the species has a trigonal bipyramidal structure. Complexes such as [CuI(ClC₄).H₂C]⁺ or

 $[Cul(ClC_4)_2]$ may have this type of structure. The second complex in these spectra probably has a distorted tetrahedral structure.

<u>Nethancl-TECF</u>: Direct evidence for the instability of this Cu(II)-ligand system in polar solvents is provided the esr spectrum, which is identical to that of Cu(II) in methanol. <u>Discussion</u>: It is not very clear from these results as to what the fourth ligand is, in the distorted tetrahedral species. In order to achieve a four-coordinate geometry, the complexes of this tridentate ligand have a choice of perchlorate ions, water or solvent molecules (if a ligating solvent is used), as potential ligands.

6.3 INFRARED SPECTRA

2-(3,3-DIMETHYL-2-THIABUTYL)QUINCI INE COMPLEXES

i) <u>Far-Infrared</u>: Although at least two V(Cu - X)absorptions are expected for tetrahedral Cu(II) complexes, ¹⁶⁷ only one could be assigned in each spectrum. For Cu(tbmq)Cl₂, a V(Cu - Cl) absorption is assigned at 268 cm⁻¹ and for Cu(tbmq)Br₂, a V(Cu - Br) absorption is assigned at 23C cm⁻¹. Both assignments are consistent with the spectra that have been reported for other distorted tetrahedral Cu(II) complexes such as the Cu(sparteine)X₂¹⁵⁷ and Cu(isosparteine)Cl₂⁹⁶ systems.

A satisfactory spectrum was not obtained for the Cu(I) complex, Cu(tbmg)Br.

ii) <u>Ceneral Infrared</u>: Four ring stretching modes are normally observed for 2-substituted quinoline ligands in the region from 17CO to 15CC cm⁻¹ % but very little is known about the effects of metal ion coordination on these absorptions.⁹⁸

<u>Cu(II) and Cu(I) Complexes</u>: The spectra (Table 34a) show that there is generally little change in the ring stretching frequencies (17CC-15CC cm⁻¹) of tbmq upon complexation. Cnly three absorptions are observed.

INFRARED SPECTRA - tbmc	CCMPLEXES (17CC-1500 cm ⁻¹)
CCI. PLEX	SPECTRUN (cm ^{-,1} Nujol Null)
tbmq	1613(w), 16C1(s), 156C(m)
Cu(tbmg)Cl ₂	1619(w), 16C4(m), 1565(w)
Cu(tbmq)Er2	1610(w), 1602(m), 1563(w)
Cu(tbmg)2ClC4	1615(m), 1594(s), 156C(m)
Cu(tbmg)Br	1620(m), 1601(s), 1562(m)
Cu(tbmcH)Er2	1617(w), 1597(s), 156C(w) [also 164C(w)]

TABLE 34a

iii) <u>Cu(I) Complexes, General Infrared</u>: The V_3 mode of the perchlorate anion in the spectrum of Cu(tbmq)₂ClO₄, is quite sharp (1084 cm⁻¹) and this shows that the anion is not coordinated (see Chapter 2).

In contrast to $[Cu(tbmpH)Cl_2]_2$ and $[Cu(tbmpH)Br_2]_2$ (see Charter 2), the spectra of $Cu(tbmqH)Br_2$ in Nujol Mulls do not show any broad absorptions that can be readily assigned as $V(N^+ - H)$ modes.

3-(2-METHYLTHIOPHENYLIMINO)CAMPHOR COMPLEXES

The hygroscopic Cu(II) complexes have almost identical

infrared spectra (Nujol Kulls), both showing broad \sim (OH) absorptions.

TABLE 34 D				
INFRARED SPECTRA OF Cul(ClO ₄) ₂ .acetone.xH ₂ C				
x=lamo1	$v(C=0)^{\phi}/cm^{-1}$	ν (C=N) ^{ϕ}	<u>v₃(clo₄)</u>	$\mathbf{v}_1 (\underline{\text{clo}_4})$
Ligand	1743(s)	1672(ms)		
Cul(ClO ₄) ₂ .acetone.2H ₂ 0	17C2(m)	1633(m)	1100(vs),1052(vs)	928(w)
CuL(ClO ₄)2.acetone	1701(m)	1627(m) [°]	1106(vs),1C71(vs)	936(w)

\$ Assignments are in agreement with Reference 168 .

The V(C=0) absorption, which also has a higher frequency shoulder, will also have an acetone V(C=0)absorption component as this is expected to be in the same region,¹⁵¹ depending on hydrogen bonding and other interference effects. The relative sharpness of the absorption in these spectra suggests that the ketone oxygen of the ligand may be bound to Cu(II).

Unambiguous shifts in the $\mathcal{V}(C=\mathbb{N})$ absorption are apparent and this is good evidence for the involvement of the imine nitrogen in the Cu(II) coordination sphere.

The perchlorate V_3 modes are broad and weakly split and the appearance of the V_1 mcde implies that at least cne of the perchlorate anions in each complex may be weakly bound.

6.4 <u>PARAMAGNETIC ¹H nmr IINE BROADENING EXPERIMENT</u> <u>Cu(II) interactions with 3-(2-methylthiophenylimino)-</u> <u>camphor</u>

When Cu(II) is added to a $CDCl_3$ solution of the ligand, the -SMe resonance absorption is significantly broadened (Figure 33) and this is good evidence for the

existence of Cu(II)-thioether interactions under these hydrophobic conditions.

SYNTHESES

For the synthesis of the thmc complexes, the general method is described elsewhere in this thesis (see Appendices). <u>Dichloro [2-(3, 3-dimethyl-2-thiabutyl)cuinoline]copper(II)</u>

In an attempt to synthesize $Cu(tbmq)_2Cl_2$, 1 mmole of $CuCl_2.2H_2O$ (C.17C g.) was added to 2 mmole of ligand to give a brown-green solution. The light brown complex that precipitated from this solution gave analyses corresponding to $Cu(tbmq)Cl_2$.

YIELD: 0.175 g. (48%)

Dibromo [2-(3, 3-dimethyl-2-thiabutyl) ouinoline] copper(II)

There was no change in the solution of 1 mmole of $CuEr_2(0.223 g.)$ as the ligand (1 mmole, 0.231 g.) was added. When all of the ligand had been added a black precipitate appeared. The mixture was left to stand for about 30 minutes and then it was filtered.

YIELD: 0.176 g. (39%)

Eromo [2-(3, 3-dimethyl-2-thiabutyl)ouinoline] copper(I)

1 mmole of ligand (C.231 g.) was slowly added to 1 mmole of anhydrous CuBr (C.143 g.), that had been dissolved in the presence of excess IiBr. This resulted in the deposition of yellow crystals.

YIEID: 0.194 g. (52%)

Bis [2-(3, 3-dimethyl-2-thiabutyl) ouinoline] copper(I) perchlorate

The addition of 1 mmole of $Cu(ClC_4)_2.6H_2O(0.370 \text{ g.})$ to 2 mmole of ligand (C.462 g.) gave a green solution which gradually turned brown while it was being filtered. The solution was concentrated <u>in vacuo</u> and cooled to give a brown-black oil. This was solidified (brown solid)
by prolonged "scratching" with a spatula. Clumps of brownish crystals were grown from an Abs. EtCH solution of the brown solid.

<u>NCTE</u>: The rate of reduction of the green solution depends on the age of the ligand. If freshly precipitated ligand is used, the green solution will persist for several hours. Attempts were made to isolate the pure Cu(II) complex, but the green solids that were obtained, were impure.

Bromo[2-(3,3-dimethyl-2-thiabutyl)cuinoline hydrobromide] copper(I)

Hypophosphorous acid (<u>ca</u> 5 drops) was added to 1 mmole of Cu(tbmo)Er₂ suspended in warm methanol. When the dissolution of the Cu(II) complex was complete, a yellow-gold complex precipitated out. This was filtered and washed with NeOH.

YIEID: C.C94 g. (25%)

Complexes of 3-(2-methylthiophenylimino)camphor

Two Cu(II) complexes were isolated from acetone using $Cu(ClO_4)_2.6H_2O$ as the Cu(II) source. However, if $CuCl_2.2H_2O$ is used (in Abs. EtCH) hydrolysis of the ligand occurs.

<u>Syntheses</u>: An acetone solution (plus TECF) of $Cu(ClC_4)_2.6H_2O$ (1.5 mmole, C.556 g.) was added while filtering, to a filtered acetone solution of the ligand. The solvent was removed (<u>in vacuo</u>) from the black solution to leave a black oil. The solidification of the oil was induced by thoroughly drying it <u>in vacuo</u> and then adding dry ether and working the residue with a spatula. A dark green hygroscopic solid $[CuL(ClO_4)_2.acetone.2H_2C]$ was isolated in this way. If TECF is added to the ether, a darker, almost brown hygroscopic solid $[CuL(ClO_4)_2.acetone]$ is isolated. Eoth complexes revert to the oil if they are washed with acetone.

YIELDS: $Cul(ClC_4)_2$.acetone.2H₂O : C.219 g. Cul(ClC_4)_2.acetone : C.C6C g.

ŝ

TAELE 35

MISCEIIANECUS PRYSICAI DATA

CCNPIEX	CCIOUR	M.P/C	ANATYS	ES: Cale	.(Found)	1%	CONDUCTIVITY/oh	$m^{-1}mol^{-1}cm^2$
			C	Ţ	N	Other	CH ₃ NC ₂	NeCH
Cu(tbmg)Cl ₂	l.brown	11C-112	45.97 (46.C2)	4.68 (4.61)	3.83 (4.C2)	Cl, 19.38 (19.10)	8	64
Cu(tbmq)Br ₂	black	99-101	36.98 (37.12)	3.77 (3.7C)	3.CE (3.35)	Er, 35.15 (35.44)	11	75
🌢 Cu(tbmq)Br	yellow	198–200	44.86 (44.58)	4.57 (4.44)	3.74 (3.88)			
Cu(tbmqH)Br ₂	gold	99-99	36.89 (36.9C)	3.67 (3.98)	3.21 (3.07)			
Cu(tbmq) ₂ ClC ₄	or./brown	-	53.75 (53.38)	5.48 (5.67)	4.48 (4.54)		81	85 ØNC ₂ : 27
Cul(Cl0 ₄) ₂ .Ac.2H ₂ 0	d.green	-	37.30 (37.80)	4.85 (4.56)	2.18 (2.29)			2
CuL(ClO ₄) ₂ .Ac.	br./green	-	39.51 (39.22)	4.48 (4.57)	2.3C (2.44)			
<u>NOTES</u> : - molar con	ductivities	at 25 ⁰ C :	Nitromet Nethanol	hane 1	:1 (7(-9)	() 13C)		
- l = light ϕ in chlore	; or. = oran	age: $d = d$	Nitroben ark; br. 660 c. C	zene = brown; alc. for	(2(-3) Ac. = a	C) cetone.	375 m. and 750 m.	resr.

CHAPTER 7

PLATINUM (II) AND FALLADIUM (II) CO.FLEXES

CF

1, 2-EIS(PENTAFIUCROPHENYLTHIO)ETHANE

AND A PIATINUL (II) COMPLEX

CF

CHYLTHICHENTAFINCE.CFENZELE

Although ethylthiopentafluorobenzene (C_6F_5SEt) forms the very unstable complexes $N(CC)_5C_6F_5SEt$ (N=Cr,W) (see Section (II), 1,2-bis(pentafluorophenylthic)ethane (fpte) is quite unreactive towards the Group VIE metal carbonyls, Cu(II) and Ni(II). The reactions of these ligands with Ft(II) and Fd(II) were thus investigated and as a consequence, the complexes <u>cis-NCl₂fpte (N=Ft(II),</u> Fd(II)) and <u>trans-FtCl₂(C_6F_5SEt)₂ have been characterized by far-infrared and electronic spectroscopy.</u>

There have been at least three recent investigations on related ligands where highly electronegative perfluoroalkyl or perfluorcaryl substituents are adjacent to the sulphur donor(s). As a result, crystallographic and/or nmr data is available for Ft(II) complexes of the pentafluorothiophenolate anion ^{169,170} and the ligands $CF_3SCH_2CH_2SCF_3$, $MeSCF_2CH_2SMe$ and $CF_3SCH_2CH_2SCF_3$.¹⁷¹ The electronic and far-infrared spectral properties (where appropriate) of these compounds, have not been investigated.

7.1 FAR-INFRARED SPECTRA

i) <u>cis-NCl_fpte (M=Pt(II), Fd(II)</u>

The spectra of $FtCl_2$ fpte and $FdCl_2$ fpte are quite similar (Figure 34) except for the strong, tentatively assigned, V(M--Cl) absorption in each spectrum (Table 36). In the absence of the spectra for the analogous NPr_2 fpte complexes, the second V(M--Cl) band that is expected for each spectrum,¹⁷² has not been identified.

ii) <u>trans-FtCl₂(C₆F₅SEt)</u>₂

The assignment of a <u>cis</u> structure to $FtCl_2(C_6F_5SEt)_2$ can be ruled out on the basis of the dissimilarity between the Pt-Cl stretching frequencies of this complex and $FtCl_2fpte$. Jigands of similar denor abilities are expected, on the basis of the <u>trans</u>-effect,¹⁷² to give rise to similar V(M-X) frequencies for their <u>cis-MX_2L_2</u> complexes.

In Table 36, the V(M-Cl) data for the <u>cis</u> and <u>trans</u> complexes are compared with the data for other thicether-M(II) (M=Pt, Fd) complexes.

TABLE 36

FAR INFRARED SPECTRA; Pt(II), Pd(II) THICETHER COMPLEXES

cis-CCMPLEXES	v (M-Cl)	REF.	trans-CONFLEXES	√(Pt-Cl)	REF.
PtCl ₂ (Me ₂ S) ₂	342,330	173	PtCl ₂ (Me ₂ S) ₂	344	173
PtCl ₂ (Et ₂ S) ₂	330,318	172	PtCl ₂ (Et ₂ S) ₂	34 3	175
PtCl_(FhSC_H_SPh)	317,312	174	PtCl ₂ (dpd)	346	176
PtCl_fpte	329	This Work	PtCl ₂ (C ₆ F ₅ SEt) ₂	342	This Work
PdCl_(FhSC_H_SFh)	277	174	PtCl ₂ (pms) ₂	341	177
PdCl_(PhSC_H_SFh)	278,262	174			
PdCl ₂ fpte	306	This Work			
<u>NOTES</u> : $-$ dpd =	1,12-bis(phenylthio)dodecane		
- pms =	phenylmet	hylsulphid	е		
			4		

- v(M-Cl) frequencies are in cm

- the $\mathbf{v}(\mathbb{N}-Cl)$ absorptions are shown.

DISCUSSION

<u>cis-Complexes</u>: The apparent increase in the N-Cl stretching frequencies for $PtCl_2fpte$ and $PdCl_2fpte$, when they are compared with the analogous complexes of the $PhS(CH_2)_nSFh$ ligands (n=2,3), is consistent with the general observation that as ligand electronegativities increase, the N-Cl stretching frequencies also increase.¹⁷²

The cause of this effect is discussed in 7.4. <u>trans-Complexes</u>: In their study of a wide variety of <u>trans-PtX₂L₂ complexes, Adams <u>et al</u>¹⁷² noted that $\mathbf{v}(\text{Ft-X})$ remains relatively constant compared to the variations that are observed for the corresponding <u>cis</u> complexes. For PtCl₂(C₆F₅SEt)₂ then, $\mathbf{v}(\text{Pt-Cl})$ is not inconsistent with this complex having a <u>trans</u> structure.</u>

> Figure 35 $L \rightarrow Pt$ $L = C_6F_5SEt$

7.2 EIECTRONIC SPECTRA

The outstanding features in the electronic spectra (34C-74C nm) of both the <u>cis</u> $C_6F_5SCH_2CH_2SC_6F_5$ and <u>trans</u> C_6F_5SEt complexes, are the red-shifts of the ligand field maxima (Table 37). These shifts imply that the net ligand field strengths at Pt(II) and Fd(II) are lower than in the complexes of the other thioether ligands.¹⁷⁸⁻¹⁸¹

The most probable explanation for the lower ligand field strengths of fpte and C_6F_5SEt , is the inductive electronegativity effect of the pentaflucrophenyl substituents on the sulphur denor atoms (see 7.4). Molecular model studies tend to rule out the possibility that steric

TABLE 37

ELECTRONIC SPECTRA, Pt(II) AND Dd(II) COMPLEXES

cis-COMPLEXES	$d_{xy} \rightarrow d_{x^2}^{182} - y^2$	SOIVENT	REFERENCE	trans-CONFLEXES	AFSCHPTICT	SCIVENT	NEFERINCE
PtCl ₂ (dmedt)	365	DNSO	183	<pre>FtCl2(dpd)</pre>	325,351 294,357	CH2C12 Refl.	176
PtCl ₂ (dnxdt)	372	DMSC	183	PtCl ₂ (pms) ₂	394,427	Null	177
PtCl ₂ (dbedt)	375	DMSC	183	PtCl ₂ (C ₆ F ₅ SEt) ₂	<u>ca</u> 405, <u>ca</u> 490	Acetone	This work
<pre>PtCl2(fpte)</pre>	397(223) 398	Acetone Refl.	This work		<u>ea</u> 417, <u>ea</u> 500	Refl.	
<pre>FdCl2(dmedt)</pre>	388	Acetone	183				
FdCl ₂ (dmmnt)	389	Acetone	183				
PdCl ₂ (dnxdt)	392	Acetone	183				
PdCl ₂ (SN)	392	Acetone	184				
PdCl ₂ (fpte)	422(1C77) 417	Acetone Refl.	This work				

MCTES: - all complexes are MS₂Cl₂ chromophores,

- maxima are nm.; extinction coefficients are in parentheses,

- shoulders are indicated by prefix ca,
- for $PtCl_2(pms)_2$, maxima assigned as Singlet $d_{xy} \rightarrow d_{x^2-y^2}(394 \text{ nm.})$ and Triplet $d_{xz}, d_{yz} \rightarrow d_{x^2-y^2}(427 \text{ nm.})$. Assignments probably analogous for other <u>trans</u>-complexes.

effects are responsible for the differences in the spectra.

7.3 THOTOEIECTRON SPECTRA OF foite, bmtt, bett and m-bmth

The U.V. photoelectron spectra* were measured for bmtt, bett, m-bmtb (see Section (II)) and fpte in an attempt to rationalize the apparent basicity differences between dithicethers such as bmtt, bett and m-bmtb, and the ligands that are the subject of this Chapter. However, the photoelectron spectrum of C_6F_5SEt could not be measured as it appeared to damage the instrument's detector. RESULTS

For thioether ligands such as R_2S (R=Me,Et etc), the highest occupied molecular orbital is largely localised on the sulphur atom and is perpendicular to the molecular plane ¹⁸⁶. Lowever, where a ligand contains two RSgroups (as in bmtt, bett, m-bmth. fpte), the highest occupied molecular orbitals on both sulphurs are courled to form a symmetric (n_g) and an antisymmetric combination.

<u>bmtt, bett and m-bmtb</u>: The antisymmetric combination interacts with the aryl π -orbital to give rise to IF1 and IF4 (Table 38). IF2 is largely due to the n_s combination and the orbital is localised on the sulphur atoms, while IP3 is derived mainly from the aryl π -orbital. IF5, which has more bonding character than IF2, arises from the "other" lone pair orbital on each sulphur (n_{σ}).

<u>fpte</u>: Only three bands were observed for this ligand. The first band is probably analogous to either IP1 or IP2 that were observed for the other thioether ligands.

^{*} The spectra were measured and analysed by Dr. Michael Weiner.¹⁸⁵

TABLE 38

ICNISATION POTENTIALS (eV) FOR DITHICETHER LIGANDS

<u>IIGAND</u>	IF1	IF2	IF3	IT4	LT5
bmtt	7.85	8.43	C.11	9.53	10.70
bett	7.78	8.28	9.01	S.79	16.45
m-1mtb	8.09	8.34	¢.66	16.23	10.00
p-bmtb*	7.93	33.3		<u>9.28</u>	10.10
fpte	Ç .(7	9.7C(b	r)	11.65
NCTES: -	* See R	eference	187.		

- br = brcad

- IF2 and IF5 are essentially lone pair orbitals, localised on sulphur.

DISCUSSICI:

In considering butt and bett, the inductive effects of the R=Ne and R=Et substituents parallel the observations for Ne_S and $\text{Et}_2\text{S}^{188}$. That is, the ionisation potentials of the sulphur lone pair electrons (IF2 and IT5) decrease in going from R=Ne to R=Et. When C6F5SCH2CH2SC6F5 is compared with the other dithioether ligands in Table 38, the ionisation potentials indicate that there are significant electronegativity effects on the energy of the sulphur lone pair orbitals. This is shown by the IP5 data, which suggests that the lone pair electrons are more tightly held than in the other dithioether ligands containing aryl substituents. Similar electronegativity effects have been reported for thicether ligands such as $(CH_2)(CH_2C1)S^{186}$ and for phosphine ligands such as PF₃,¹⁸⁹ the latter ligand having a significantly reduced σ -donor capacity compared to other substituted phosphine ligands. 189

7.4 ANAIYSIS OF THE EJECTRONEGATIVITY EFFECTS

In addition to the relatively high ionisation potentials of the sulphur lone pair electrons of fpte (see above), the effects of the electronegative pentafluorophenyl substituents are also reflected in the low pK_a of pentafluorothicphenol ($pK_a=2.68$) compared to thiophenol ($pK_a=6.43$).¹⁷⁰ The net result of these effects is that S--K σ -interactions are weakened. This is apparent in the red shifts of the ligand field maxima in the electronic spectra of the Ft(II) and Fd(II) complexes (see 7.2) and these effects may also help to explain why statle complexes are not formed in the reactions of these ligands with Cu(II), Fi(II) and the zero-valent Group VIE metals (E(C)=Cr, No, T).

The weakening of S-N(II) interactions (N=Pt,Fd) also explains why the N(II)- Cl stretching frequencies of the <u>cis-NCl</u> fpte complexes are higher than in the complexes of the related $FhS(CH_2)_nSTh$ (n=2,3) ligands (Table 36). As fewer electrons are placed in the N(II)molecular orbitals <u>trans</u> to the coordinated chloride ligands, the N(II)--Cl bonds are strengthened by an inductive mechanism.¹⁷²

<u>Conclusions</u>: The spectral investigations into the properties of these Ft(II) and Pd(II) complexes and the chemical studies into the "reactions" of fpte and C_6F_5SEt with other transition metals (see above and Appendices to Sections I and II) tend to suggest that N--S Π -backbonding is a relatively minor contributor to the net strength of

N-thioether interactions. Support for this conclusion comes from the results of crystallographic investigations into the Tt(II) complexes of $CF_3SCHPeCH_2SCF_3$ ¹⁷¹ and $(CF_3)_2TCH_2CH_2FFh_2$.¹⁹⁰ In the latter complex, there is a substantial shortening of the Ft--P(CF_3)_2 bond, but in the former complex, It--thioether

IT -interactions do not appear to be very significant.

SYNTHESES

<u>cis-Dichloro</u>[1,2-bis(pentafluorophenylthio)ethane]platinum(II)

1 mmole of $Pt(PhOE)_2Cl_2$ (C.472 g.) (see Reference 292) was added to a filtered toluene solution of 1 mmole of fpte (C.426 g.) and the mixture was refluxed for 20 minutes. A yellow precipitate appeared during the dissolution of the $Pt(PhOE)_2Cl_2$ and this was filtered off while the mixture was hot, washed with ether and dried <u>in vacuo</u>. The toluene filtrate was refluxed for a further 2C minutes to give a second crop of the yellow complex.

YIELD: 0.445 g. (64%)

cis-Dichloro [1,2-bis(pentafluorcphenylthic)ethane]palladium(II)

A methanol solution of 1 mmole of Na_2PdCl_4 (C.294 g.) was added to a suspension of 1 mmole of the ligand (C.426 g.) in methanol and the mixture was heated to dissolve the ligand. During the heating, an orange precipitate appeared. This was filtered off and then washed thoroughly with MeCH/H₂O, MeCH and ether respectively. A further quantity was isolated from the first MeCH filtrate, after it had been cooled. YIELD: C.283 g. (47%)

trans-Dichlorobis(ethylthiopentafluorobenzene)platinum(II)

Excess ligand (> C.228 g.) was added to a hot filtered solution of $Pt(PhCN)_2Cl_2$ (C.5 mmole, C.236 g.) in toluene. After 45 minutes of refluxing, the yellow solution was filtered, concentrated (<u>in vacuo</u>) to about 1-2 cm³ and then cooled to yield an orange

crystalline product. The orange, diethylether-soluble complex was washed with petroleum ether after filtering and then recrystallized from toluene.

> YIELD: 0.174 g. (48%) - before recrystallization.

CCNFIEX	COLOUR	M.P/ ⁰ C	ANATYSI	S: Calc	.(Found)//	
			С	Η	Ilalogen	S
<pre> FtCl2(fpte) </pre>	Yellow	>230	24.29 (25.11)	(.58	1(.24 (i(.3()	
FdCl ₂ (fpte)	Crange	>230	27.85 (27.77)	(67	11.75 (11.63)	1(.62 (13.04)
<pre>PtCl₂(C₆F₅SEt)₂</pre>	Crange	135-140	26.60 (27.64)	1.39 (1.87)	9.81 (9.80)	

TAPIE 39 NIGCELIANECUS PHYSICAI DATA

A although the complex was recrystallized from acetone and washed with hot toluene, the
 C and H analyses did not improve.

APPENDIX I

1) <u>IICAND SYNTHESES</u>

2-(3,3-dimethyl-2-thiatutyl)pyridine (tomp)

Sodium (C.4 mole, 9.196 g.) was discolved in about 300 cm^3 of Abs.EtCH and the resulting solution was cooled. 2-picolyl chloride hydrochloride (C.2 mole, 32.808 g.) and then t-butyl thicl (C.2 mole, 18.038 g.) were added to this solution. Refluring the solution (under N_2) caused the rapid precipitation of a large quantity of TaCl after about 30 minutes. This caused the solution to start bumping violently. After the mixture had been left to stand overnight, it was filtered and distilled water was added to precipitate a brown oil. This was extracted into ether. The ether extracts were dried with anhydrous MgSC_4 and filtered. After the mixture of the solvent (<u>in vacue</u>), the dark brown oil was distilled to yield the colourless ligand.

YIELD: 27.535 g. (76%)

2-(3.3-dimethyl-2-thiabutyl)quinoline (tbmq)

After sodium (C.140 mole, 3.220 g.) had teen dissolved in cold Ats.EtCH, 2-(chloromethyl)quineline hydrochloride (C.070 mole, 14.987 g.) was added to the solution. The slow addition of t-butyl thicl (C.070 mole, 6.313 g.), while agitating the flask, helped the 2-(chloromethyl)quineline to dissolve and MaCl was deposited. The resulting suspension was refluxed for 15 minutes, cooled and filtered. The filtrate was concentrated and distilled water was added to precipitate a brown oil. This was extracted into ether. The ether solutions were dried with anhydrous Ma_2SO_4 , filtered and the solvent removed in vacuo.

With some difficulty, small quantities of the pure, off-white, solid ligand can be isolated by cooling a concentrated Abs.EtCH solution of the impure oil* to dry ice/acetone temperatures. When solidification has been induced, the mixture must be filtered rapidly. The semi-dry solid must then be put under vacuum to dry.

The unstable ligand turns grey over a period of about a month.

* Extensive decomposition occurred during an attempt to distil this cil.

3-(2-methylthiophenylimino)camphor (I)

A slight excess of 2-methylthioaniline (> 1.392 g.), (-)camphorquincne (10 mmole, 1.662 g., presared as in Ref. 293) and a trace of dry ZnCl_2 (ca 5 mg.) were sealed in a teflon bomb and heated for 2 hours at 185 °C in an oven. The reaction products were then dissolved in dry ether. The solution was filtered through Kieselguhr before the ether was removed and the residue dried <u>in vacuo</u>. Fentane was added to the residue to precipitate yellow crystals. These were recrystallized from ligroin, washed with pentane and air dried.

YIEID: C.981 g. (34%)

NOTE: A 2 mole ratio of 2-methylthicaniline also results in the 1:1 condensation product being isolated. Frelonged heating reduces the yield and the presence of ZnCl₂ is essential.

1.2-his(nentafluorophenylthic)ethane (fpte)

Fentafluorothiophenol (C.(5C role, 10.006 g.) was added to a slight excess of sodium (>1.15C g.) dissolved in cold Abs.EtCE. 1,2-dibromoethane (C.025 mole, 4.697 g.) was then added to the yellow solution before it was refluxed (under N₂) for about 3C minutes. During this time, it lost its yellow colour and NaFr precipitated. Is the mixture was cooled, the ligand also precipitated. Distilled water (\underline{ca} 400 cm³) was added and the insoluble white ligand was filtered off. It was washed with distilled water and then Abs.EtCH before being dried in vacuo.

YIEID: 9.439 E. (890)

Ethylthicpentafluorobenzene (C₆F₅SEt)

A solution of sodium (C.C25 mole, C.575 g.) and pentafluorothiophenol (C.C25 mole, 5 g.) in Abs.EtCH was prepared, to which ethyl icdide (C.C25 mole, 3.899 g.) was added. This solution was refluxed (under N_2) for an hour and left to stand overnight. Distilled water was added to precipitate a light red cil. The cil was extracted into ether. The ether extracts were then dried with anhydrous Na_2CO_3 and filtered before the ether was removed <u>in vacuc</u>.

The oil was used without any further purification.

ii) <u>ligand preparations</u>

2-ethylthioethylamine (etea)

In a typical preparation, 2-ethylthioethylamine hydrochloride (C.C69 mole, 9.821 g.) was neutralised with a slight excess of 2.CM. NaCH. An orange oil which was isolated after several ether extractions, was distilled to give the colourless ligand.

YIELD: 6.33(g. (87%)

	LIGAND PR(PERTIES AND AMAI	ATICAL REDULTS
J.IGAND	AFPEARANCE	M.F/B.P/Other	ANALYSES: Calc. (Formd)/7/
tbmp	colourless oil	128-130 ^O C [12 mm.Hg]	C 66.25, H 8.34, N 7.73, S 17.63 (66.31) (8.43) (7.18) (17.1C)
tbmq	off-white solid	51-57 ⁰	C 72.68, H 7.41, N 6.C6, S 13.85 (72.48) (7.20) (6.05) (13.29)
fpte	white solid	i 27-1 30°	Mass Spect small C ₆ F ₅ 5=S peak (distiplide impurity)
C ₆ F ₅ SEt	p-le-red oil	-	¹ li nmr - weak impurity peaks at 3.5, 4.4 ppm downfield TNS
L	yellow solid	100-104 ⁰ [≪] _D =+218.79 ⁰ in Abs.EtCF	C 71.04, H 7.37, N 4.87, S 11.15 (71.04) (7.44) (4.54) (11.29)
etca	colourle::: oil	2. ⁰ [14 mm.llg]	¹ E nmar - no importantios
mti	white solid	7C-72 ⁰	¹ H nmr - no impurities

TABLE 40

2-methylthic-2-imidazoline (mti)

In a typical preparation, 2-rethylthic-2-imidazoline hydroiodide (C.(62 mole, 15 g.) was neutralised with a slight excess of NaCH. The white, flaky ligand was isolated after several ether extractions had been carried out, and dried in vacuo.

YIFIDS: 62-75%

iii) <u>DISTINIATICI CF LIGANDS</u>

All ligand distillations were carried cut under reduced pressure using quickfit microdistillation equipment. To prevent exidation of the ligands, exygen-free, dry dinitrogen was slowly bled through the system during each distillation.

iv) <u>JIGAND REACTIVITY STUDIES</u>

a) Ireraration of (tbmpH)PF6

The ligand (tbmp) was added to about 1-2 cm³ of 65% HFF₆ until the fuming ceased. After warming the solution for about 1 minute, Abs.EtCH (<u>ca</u> 10 cm³) was added to it. A white precipitate was isolated by adding ether to this solution.

b) <u>Preparation of (tbmpH)Pr</u>

Excess HBr was bubbled through an Abs.EtCH solution of thmp before removing the solvent. The addition of dry ether to the residue precipitated an oil. After being thoroughly dried <u>in vacuo</u>, the oil was crystallized (by "scratching") to give an off-white solid.

Infrared Spectra of (tbmpH)X salts

The frequencies of the $\nabla(N^+-H)$ absorptions (above 2000 cm⁻¹) are dependent on the counterion, X⁻. In general, $\nabla(N^+-H)$ decreases with increased ⁺NE----X⁻hydrogen bonding.⁹⁸ Irotenation of the pyridyl nitrogen also

increases the frequency of the pyridine ring vibration that is found at 1593 cm^{-1} in thep.

CCLFLEX	$v(N^+ - E)/cm^{-1}$	$v(pyr.ring)/cm^{-1}$
ttmp		1593
ttmpH)PF6	3252(w); 3172(w-sh);3110(s); <u>ca</u> 3042(s)	1622
ttmpH)Pr	<u>ca</u> 2707(n); <u>ca</u> 2557(n); <u>ca</u> 2381(n) (all troad)	1612

ICTE: - Nujol mull spectra.

c) <u>Frenaration of 3-(2-methylthiophenylamino)camphor</u> The C=N- bond of yellow 3-(2-methylthiophenylimino)camphor can be reduced by the method of Forster and

Therefore, ¹⁹¹ Distilled water was added to the colourless reduced solution to precipitate a white complex. This was extracted into pentane and the pentane solution dried with anhydrous $NgSO_4$. After filtering the mixture the pentane was removed in vacuo. Creamy flakes (N.F.= $84-88^{\circ}$) or stall-ized from the residue on "scratching".

YIEID: C.23C ε. (46%)

Infrared Spectrum (Nujol mull)

The medium intensity $\mathbf{v}(C=N)$ band at 1671 cm⁻¹ in the imine ¹⁶⁸ disappears on forming the white complex and a sharp, weak $\mathbf{v}(N-H)$ band appears at 3356 cm⁻¹.

¹<u>H</u> nmr Spectrum (in CDCl₃)

A sharp double (J=4 Hz) appears at 4.00 ppm in the spectrum of the reduced complex. This resonance is not present in the spectrum of the imine and it is assigned to the -NH- proton.

AIPENDIX II

i) <u>CENERAL SYNTHESIS OF CONTEXES</u>

Unless it is specifically stated otherwise, all ligands and metal salts were dissolved separately in a minimum of Abs.EtCL before mixing and each solution was filtered.

Upon isolation, each complex was carefully washed with Als.EtCH and thoroughly dried in yacuo.

In all cases where solvents were removed <u>in vacuo</u>, a rotary evaporator was used. There complexes or residues were dried <u>in vacuo</u>, an evacuated (<u>ca</u> 2-5 mm.Hg) drying line was used.

The melting joints of perchlorate salts were not determined.

ii) REACTIVITY STUDIES: EXTELL ENTAL DITAILS

a) Addition of tyridine to $Cu(tbmt)_2 X_2$ (X=EF_A and CI)

Both complexes were prepared (in situ) in their respective solvents (X= FF_4 , acetone; X= CI^- , Abs.EtCH) to give concentrations of 5 x $1C^{-3}$ mol.l.⁻¹. Successive aliquots of pyridime were added to these solutions as required.

b) Addition of pyridine to Cu(etea)2(ClC.)2

1 mmole of the complex was prepared (<u>in situ</u>) in about 100 cm³ of Als.EtCH. For a 1:1 ratic of pyridine:Cu(II). C.C8 cm³ of the base were used.

c) Addition of pyridine to $Cu(mti)_4(BF_4)_2$

(.5 mmole of Cu(mti)₄(BF₄)₂ was prepared (<u>in situ</u>) in Abs.EtCH. Successive aliquots of pyridine were added to this solution as required.

d) <u>Reaction of ThasCl with [Cu(theni)Cl</u>]

 $\operatorname{Fh}_{4}\operatorname{AsCl}$ (C.247 g., C.565 mmcle) was added to a solution of freshly prepared $[\operatorname{Cu}(\operatorname{thmpH})\operatorname{Cl}_{2}]_{2}$ (C.179 g. C.565 mmole) in warm FeCH. A couple of drops of $\operatorname{H}_{3}^{\mathrm{PC}}C_{2}$ were added to prevent exidation. The separation of small amounts of yellow and white crystals was effected by carefully removing the solvent <u>in vacuo</u>.

The white crystals had welting points and analyses corresponding to those required for [Fh4As]CuCl2.

The yellow crystals appeared to be impure $[Cu(tbrpH)Cl_2]_2$ as their N.F. (124-136°) was roughly similar to that required for a pure sample (123-125°).

	I.F/ ^O C	ALAIY.ES/2
White crystals	175-180	C 55.74, H 3.85, Cl 14.22
Fh ₄ As]CuCl ₂	176-178	(55.67) (3.89) (13.69)

ATTENDIX III

i) INSTRUMENTS AND RECORDING OF SPECTRA

<u>Electronic Spectra</u> were recorded on a Shimadzu

Reflectance spectra were recorded for either finely ground samples that had been diluted with magnesium oxide or the pure samples were crushed onto filter paper. The choice depended on the quality of the spectra that could be obtained.

The solution spectra (10 mm. quartz cells) were recorded, where possible, in solvents of varying ligating ability.

The recording of spectra at liquid air temperatures (SCM) in 20% Glycerol/VeCH (20 parts Clycerol/80 parts VeCM) depended on the Cu(II) compounds' stabilities in this solvent. Although several other solvent systems were tried, this system was consistently found to give uncracked, transparent glasses of good optical quality. However, care must be taken to ensure that the cuvettes are cooled slowly and that frost does not form on the cuvette windows. Standard 2 mm. acrylic cuvettes (Shimadzu) were used.

Electron spin resonance spectra were recorded on a Varian E1C4A spectrometer. The solutions were cocled to 77K using liquid nitrogen and all data is for this temperature.

Regular calibrations of the instrument (with DFPH) have shown that the single absorption peak of DFPH consistently falls at 3220 ± 5 Gauss. This value has been used in

calculating the g and A parameters from the spectra. The \mathcal{E}_{\parallel} , \mathcal{E}_{\perp} , \mathcal{A}_{\parallel} and \mathcal{A}_{\perp} lines were measured using the normal first-order perturbation procedures ¹⁹² and the parameters were calculated using formulae a) and b).

- a) $\varepsilon = \varepsilon_{\text{DFFH}} \times (\nabla_{\text{IFFF}} / \nabla_{\text{sample}})$ where $\nabla_{\text{MFFH}} = 3220$ Causs and $\varepsilon_{\text{DFFH}} = 2.0036$ b) $|A(\text{energy})| = \varepsilon \times |A(\text{Gaucs})| \times \beta$
 - where $\beta = 1.39969$ HHz/G. = C.46686 x 10⁻⁴ cm⁻¹/G.

Hence $|A| = g \times |A(Causs)| \times C.46686 \times 10^{-4} \text{ cm}^{-1}$ <u>NCTE:</u> DFFH = diphenyl picryl hydrazyl

Where isctropic spectra c uld not be improved the isotropic g has been reported.

<u>Infrared spectra</u> (4000-600 cm⁻¹) were recorded on a Feckman IR-20 spectrophotometer and calibrated with polystyrene film.

Far-infrared spectra (400-40 cm⁻¹) were obtained (using a Grubb-Farsons Cube FkII Interferemeter) at room temperature for petroleum jelly mulls on polythene dices. The $\mathcal{V}(N-X)$ absorptions were tentatively assigned by comparing the spectra where the halogen has been changed, and by intensity considerations.

<u>Conductivities</u> were measured (for <u>ca</u> 1 x 10^{-3} mol.l⁻¹ solutions at room temperature) using a Fhilips FR9500 conductivity meter, fitted with a Philips FW9510 cell.

¹<u>H nmr spectra</u> (paramagnetic studies) were recorded using a JECL C-60HL High Resolution NNK spectrometer. Tetramethylsilane (TNS) was used as an internal standard for all spectra. For each experiment, a concentrated solution of the ligand in CDCl_3 (CH₂Cl₂ for the Co(II)/tbmp experiment) was prepared. The spectrum was measured for a 1.0 cm³ sample with the required E(II) concentration.

Standard methanol solutions of CuCl₂.2H₂O and CoCl₂.6H₂C were used as the sources of Cu(II) and Co(II).

<u>Microanalyses</u> were performed by Frefessor A.D. Campbell and his staff at Ctago University.

<u>Nolecular weights</u> were determined using a Hitachi Perkin-Elmer 115 Nolecular Weight apparatus.

ii) <u>SCIVENTS</u>

a) <u>Spectroscopic Investigations</u>: All solvents were redistilled before use. Nitrorethane and nitrobenzene were stored over molecular sieves.

b) <u>Frerarative Tork</u>: Ethanol and methanol were redistilled: acetone was A.K. grade. Diethyl ether tas redistilled over Na wire.

AIFEEDIX IV

i) <u>FIGCEDIANECUS REACTIONS</u>

a) <u>Synthesis of dichloro 2-(3, 3-direthyl-2-thiabutyl)</u>pyridine zinc(II)

2 mmole of ligand (C.363 g.) were added to an <u>excess</u> of dry $ZnCl_2$ (>C.272 g.). The solution, after being concentrated and cooled, yielded the white crystalline complex.

YIEID: C.254 g. (35%)

N.P. = 188 - 189 °C

<u>Analyses</u>: Calc.(Fcund)/%: C 37.82, H 4.76, N 4.41 (38.08) (4.85) (4.20)

<u>Conductivity</u>: CH_3NC_2 ($\Lambda = 4$); NeCH ($\Lambda = 27$) <u>Far-IR</u>: ∇ (Zn-Cl) at 316, 33C cm⁻¹.

	¹ <u>H</u> nr	<u>r in (CT3)28</u>	C
	-CH3	-C ²³ 2S-	≪-H
tbmp	1.28	3.93	8.53d(4)
Zn(tbmp)Cl ₂	1.3C	3.87	8.45d(4)

- chemical shifts are ppm downfield from INS

- d = doublet; coupling constants are in parentheses (Hz)

The two \lor (Zn-Cl) abscrittions are consistent with this complex having a distorted tetrahedral structure in the solid state.²⁷³ However, in (CD₃)₂SO, the ¹H nmr spectrum is virtually unchanged from the free-ligand spectrum. This is in contrast to the significant downfield shifts that are observed for the \ll -H and -CH₂S- resonances in the $V(CO)_4$ tbmp (N=Cr,Nc,W) complexes (see Chapter 3, Section II).

The ¹H nmr spectrum thus suggests that the complex decomposes on dissolution (to yield the free ligand). Stability constant measurements for the related ligand, $2-(methylthiomethyl)pyridine^{3}$ [logK = $3.27(Cu^{2+})$, 2.06

(Ni²⁺), $\leq 1(2n^{2+})$] suggest that $Zn(tbep)Cl_2$ may not be very stable compared to the Cu(II) and Ni(II) complexes of thep.

b) <u>Cu(I) complex of cystemine hydrochloride</u>

The formation of an unstable, yellow-white complex from the reaction of $CuCl_2.2H_2O$ with cystempine hydrochloride (HSCH₂Ch₂HF₂.HOL) was first reported by Sanaka <u>et al</u> in 1970.¹⁹³ However, the complex was not analysed.

A ratio of 2 cysteamine hydrochloride to 1 Cu(II) was used in the following reaction.

The ligand was dissolved in a minisum of water and the pH of the solution was adjusted (with dilute acueous ammonia) to <u>ca</u> pH 8. The $CuCl_2.2H_2C$ was then added dropwise (aqueous solution) while stirring the solution. The white precipitate which appeared was filtered and washed with water and then Abs.EtCH. Care must be taken to ensure that the compound is not exposed to air.

The damp complex was dried <u>in vacuo</u> and scaled <u>in vacuo</u>. Frolonged exposure to light causes the complex to turn a darker yellow.

Two independent preparations both gave good analyses for Cu₂(SCH₂CH₂NH₂.HCl)Cl.

Calculated:	c 8.73,	₩ 2.56,	Cl 25.77,	S 11.65 🎾
Found:	(8.74)	(2.57)	(26.12)	(11.68)
	(9.00)	(2.99)	(26.12)	

c) <u>Reaction of Cu(BF₄)₂.6H₂C with mti (1:2)</u> In Abs.EtCH, a very fine, light blue complex precipitates on mixing the starting materials.

The complex gave analyses approximating

those required for $\operatorname{Cu}_2(\text{m+i})(\operatorname{BF}_1)_4.4\operatorname{H}_2\operatorname{C}$

Calculate	<u>a</u> :	C 7.25,	H 2.43,	Ř 1.23 7
Found	:	(7.21)	(2.88)	(3.69)

d) <u>Reaction of CuCl₂.2H₂C with mti (1:2)</u>

In acetone, an insoluble gold complex results. The complex gives reproducible analyses for $Cu_g(mti)_gCl_{12}$.

> <u>Calculated</u>: C 21.84, H 3.67, N 12.74, Cl 2i.49 <u>Found</u> : (21.71) (3.94) (12.74) (21.12)

A similar gold complex precipitated from Abs. EtCE, but its analyses were arbiguous.

ii) <u>UNEUCCESSEUL REACTION ALTENTES</u>

During the course of this work, the following unsuccessful reactions were investigated:

- synthesis of CuICl(I = thrp, thrq),

- reduction of $Cu(ttr)_2(EF_4)_2$ with E_3PC_2 and $Cu(tbmp)_2Cl_2$ with non-protic reducing agents,
- synthesis of $Cu(thrc)_2 X_2 (X = ClO_A, EF_A)$,
- reaction of Co(tbur) (ClC4) .HgC with IiCl (1:1),
- syntheses of Zn(tbmp) 2012 and Zn(mti)4(ClC4)2,
- reduction of Cu(etca)₂(ClO₄)₂ and Cu(mti)₄Cl₂
- reactions of etea with $Cu(NC_3)_2 \cdot 3H_2C$ and $Cu(CH_3CN)_4ClC_4$,
- isolation of $Co(mti)_4(ClC_4)_2$ and rure $Co(mti)_4(P I_4)_2$,
- reactions of fpte with Cu(II) and Ni(II),
- reactions of C6F5SEt with Na2FdCl4 in NeCH and EtCH,
- formation of imines from camphorquinone and methionine, methionine ethyl ester and etea,
- reactions of CuCl₂ with 3-(2-methylthiophenylimino) camplor and 3-(2-methylthiophenylamino)camplor,

- formation of iminus from sta and 2,(-diacety)syridine.

iii) <u>STULIES (I Cu(tbmr)₂X₂ (X = C1⁻, Er⁻) UEITS</u>

Ecth complexes give orange molts that do not crystallize on cooling. An insignificant loss of weight

on melting shows that there is no loss of volatile Hydrocarton derivatives such as (CH₃)₃CX.

In Abs.EtCH, the electronic spectra of both melts are consistent with their leing Cu(I) complexes. In the visible region, the spectra are dominated by an intense absorption at 465 nm.

The eer spectra (77K) are also consistent with the selts being Cu(I) complexes.

	K 76917460502347862456751256321042367955432104383650369024874123568754211776427410985
5041057 241057 241057 24132 11257 24132 11227 11227 11227 11221 1227 11277 11277 11277 11277 11277 11277 11277 112777 112777 112777 1127777 11277777777	
524655648 4390 1390 137	C * 242814757832512444835241315662771122635688906627020581216145324634136242255131246345
1111111111	
14 6314234	
20 47 52 57 57 57 57 57 57 57 57 57 57 57 57 57	120750762441400907969907433909800 * 884676467421162274712428666148707084145342989898466717
	44444488888888888888888888888888888888
	202020202012456789012654301245678901265420128457890764201284567802087654321123478908765456789010124567802096
17 52 35 24 71 67 113 44 36	4622004754420496644685143154486244152823207758761412151609416135875128121850854818948212245 1722222131368721214243228027641435134244717229466488121215160916135887122128508574850854818948212245 1722222213136872121424322802444552823207758761111111111111111111111111111111111
2585 239 71 1348 37	
* * * * * - 1 1 - 1 0 - 1 0 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	
4571345	1
= 2 17 19 17 36 80 4	23322245154357-5513214541-0014730741105700107070200657690743313117372335571244633142020000000000000000000000000 233222451554357-5513214541-0014730754110570010707074490000010097031211732235577244633142000000000000000000000000
**** 17 24 16 40 40 71 40	1544169880109105991398976912300253280053099034063410829037041731647074947222300246417540 235222451554215528005309903406341082903406417316470749472222300246417540

ALLEN IX V

STRICTURE BACTOR TAPEES

 $[Cr(torr)Br_2]_2$

998888888877777777777766666666666666666	H
	K
44104704 JUNO 6010100 PARANA CARANA CARANA BANA PARANA	UBS
0947372567676767474747474766724819867567977748147461407160140149111777777777777777777777777777777	CALC
	Н
	К
O 1 C 3 - O 1 C 3 - O 2 - O	0 5 S
3489771634768274131529558410039030254301517871091112252443109109109231142252457931090076305821570577389173119 31323112372241500 2741311229027111245542220256301513871091122252451305180931090076305821570577388917311222119	CALC
	444
	-12 -11 -10
	22
1076596608066131015042078804783076235502930208699076617569907226600253 * 30987100100559430000966661057 1111111111062248078942 1524647264 121112322252112124232402600253 * 20087100100559430000966661057	24 31 25
	-
00000000000000000000000000000000000000	6 = 5 6 = 4 6 = 2
2729101727618487677677677677677677677677677117977677117977677677677777777	26
11 10 U U V V V V V V V V V V V V V V V V V	26

	H 000000000000000000000000000000000000	
8765432101234678109876543201234653098654201309764321009764321022	K 112345678021098765432101234671098765432	
860100055087056780606207118800896567878605878921270587979797976587556 165455474748574712880662676772212165197472222478478478485767556 11 1 1 1	S 221000793021198910771922117622070348601000 1 1 1 1 1 1	
78918676496280908436b3795526481462051797925495545974159122790928 16444457147654211485334664708211121165285464223142318343264622790928	CALC 222109833007188063690079211653001444206789184420674944444444444444444444444444444444444	
80688888887777777777766666666666666655555555	77777788888888888888899999900000 * 0099998888888888	
- 1023457890-2211245897543240434589176532101245678187543211234		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21022020000000000000000000000000000000	
88993883528731614767654540377939577318375620000004401554251982 223152132114494213223524855011211211 7653093421223 25421912 11111 1	29936951044125442027250184 * 8269198899538 212225224523213235522250184 * 15169198899538 * 15112128889538	
	K 67819364321012345678765210134578987654	
553455749564556565441360053820577667766776677407183686404957927533 35300577124566667979279400507957401117109076967740244666797927921033103 1111111111111111111111111111111		
3004001244809084094094094095705814958891495889149159494141044400876159491411141411414114141141411414114141	CALC 3426710669977115414693544209508278306558 222 250679771115414693544209508278306558 1 10 10 22 20 327604 527830 5558	
	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	
	108765321126/43109765432105631098765434530 1111197654321056311098765434530	
「 していいのからいでもしいいのです。 していていっているでののとして、 していていているのでは、 していているのです。 していているのです。 していているのです。 していていているので、 していていているので、 していていているので、 していていているので、 していていていていていていていていていていていていていていていていていていてい	9177794794747474747474747474747474747474	
555308810510556581888882147487487689678648282 * 54959450550851589906 1 * 1 212228204242222452224522221446143572551112253212321222212222 1 * 1 21222452224522221124614357255511122532122222222 * 1 2122245222252245222221245222222222222	250562 21 836248536307076649267785890553088 192526319202111429350707084122485890553088 11111	

COLUMN 1 AT COLUMN	040502 20417900	H K C 0 6 1 -13	46 38 32 23	7 - 1 6 - 1	5 36 4 35 0 18 1 22 4 25 2 23	35 37 14 21 26 25	H K	085 41 35 27	CALC 40 33 23
	24078816773781	1 6 - 1 6 - 1 1 4 - 3 1 1 1	95715509867531 49715509867531	8 - 1 9 - 1 9 - 1 10 - 1 10 - 1 10 - 1	0987607509865	1076806271215 243422223212		07580787707 178078787 17948787 14878 94837 94837 9394 379094	073465 17535671736 12594736 12591736 12591736 12591736 1222
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-20890922926292792424642926579266666666666666666666666666666666	1 1 1 1 1 1 1 1 1 1 1 1 1 1	11155676585911658888325646233092789900740834053424594315101749586533335267478386 111216173147612331214456212248583597413211336431922565221 23724214712548653335267478386 111216175676585911476123312144562223537413211336431922565221 23724214712548653335267478386 2222222	**************************************	6 08813783177795429587140060176631707632404332090818306320426043110134540 = 2222232112222114420542321122221144212212434212124324711642121243245242432452443245245 = 22222232112222114442554222210123458643216687222114347116421212434212124324524243243243243243243245245 = 222222321122221124420542222101234586432101235609754321035890065532012367898765422123454540 = 222222222222222222222222222222222222	***************************************	111111111111111111111111111111111111	462817779409777894777897777777777777777777777	201751563651356241668624526577728516257772816267699985212526651565221565651565651565657772851656578285 1112121265252552571176526515655577778516557777851655257575699211121111111111111111111111111111111

* 0009999988886888877777777777666666666666	44444444444445555555555555555555555555
** 23422357521013796321012388754320123	5432107653024109865321013453219877821532109843086432213876498
7 230829816451304725790455380001574282 23512112243222221435345512001574282	01977783454804087147070777478099995675166661584010767844424442040 2022442522222222222222222222
*** 98906682112628520736445495128058098	491153617218055768941771931687034317146330968612776543218510 2214232635224213425344322112223525114132343921114522444242444444222
9876543210184560987643201878008785432	K 56651014518908767472890876787890876748908767240141111111111111111111111111111111111
51610450773648900763149747920579942152 16652810512211132435367451222351165278 11 21	5 671104295373673797839719884145770950544096255564757574417775 8 224555527412154551515151521528885522555667122255554675555554445755 0
161172921492235685577807143865151408590 1111122454257452211554408590 111111224542574522115524164565	C 479994926250555991588559956219934907578490951597 2228288 L 2223423437412154441131315151136854624586612128443644564454433221242
5 - 1 6 6 - 1 6 6 - 1 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	
12108754321598765432098765409 L 02023	619133****?******************************
1702774520197953375025416000444 d 21214	40568777777777777777777777777777777777777
	998888888888888777777766666668665555555555
245731098765430149764321014576087	5663210128767979797979797979797979797979797979797
21331225024249340084249452452679557 125524742365883222293 11 11	2421215152551115414125427655221104431515412201497625110061200 2421215152551115414125427655221122451541221221412945152061200 10256
1885423878426345807728039471410234 24423122572523432454243445425822234 11	92094789990887899808894111974247857874787797020067970101679887897970200079707 7477477477777777777777777777777

S 104993955545188755565451887555555555555555555555555555555555
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11111111111111111111111111111111111111
1222244111 * 437383582140755140775040740104546796546796780402102847726164142476145420202897804010974112 1222244111 * 2322222101041150607731041075115346796546796780289780284771215476104974010974511209028477104104010974112000111140176 1222244111 * 23222222000000000000000000000000000000
Nonumerce
777778888 * 9999888888888888888888888888
Control of the second of
9850974518 * 08504600618715764989081417076976718891057614891056667571487177744107667676767449714 127777771511

•
45260007508764246402056766769706767676767676767676767676767676
9084583310698111311124460362470878506650399395886160373945269317556701358122602247884844394058884 27711123735511151443232332 3621224592458151212458453250665032939358861603739452693175567013581226022478884844394058884
H 88899 * 999888887777771111111111111111111111111
S DDDDG 1 FYTTUNGDYTNYNYTYN AN TONNOFTNYN A DDDTTYNYN A DDTTYNYN A DDTTYNYN A DDTTYNYN A TANNOL DDTTYN A DDDTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
C 34366 * 0613161139493870162701222465475850002966667771285813301037839196154196811132979583140142 AL 22221 * 22512151252111574115223913211217254551260277512858135010378391961541968511132979583140142 C *
S 4757500405461445300577552415565730952015211294664751045597455974567530012553100042564573290561 8 89050000059410025550054010255130557309557100045664751041 300553047334111000974506753001055510004457330401040 0 1
C 7899568628300643420553922449049771821274461184007 05826245103197773578449417907818345821149534 A 8 5 J 2 20115541223165542 200514303634122246648512441 521662555554234111122 523516341241414141414555222412 C

.

	UNNNNNNNU UUUUUUUUUUUUUUUUUUUUUUUUUUUU	* 8877776000555555555	555555555666666677777888	13
23443109763102987	0196543210123764321231067423	*** L -11264322765432		к
222999634411417056	4 21 2 4 2 1 5 3 6 9 4 1 5 9 1 9 0 0 1 7 207 7 0 7 3 2 3 5 5 5 5 5 5 4 4 2 5 7 1 3 3 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	=1334/00000000000000000000000000000000000	210701107000000000000000000000000000000	C B S
76517195537411380	421281519409953108105967147 2432136544402505467147	**** 74322 1232 1232 1239 2239 2239 2392 2592 2592 2592 2592 2	2868441708851592910056846	CALC
1 1 1 1 1 1 1 1 1 1	475555556667 * 77666666555	NNN บบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ	000000000000000000000000000000000000000	н
120954321041095300		-31053211098754	00042	к
40793 88 80 28 J759 9 5	DUNDOGODUKA A ONAAANDONAVA	62323245522331256223	6957474190404902016466146 51146324125522575352257577	085
900014888589888471 N4722248888888871 N472224888888888888888888888888888888888	8283800660068 * 8365550636040 * 113355120NN	6391930350909419335 622223255522442425828	61704532021814753083588646 61246324223522553083588646	CALC
		000000000000000000000000000000000000000	33332222222222222222222222222222222222	н
0 17 	854310420987:6431310653554410	8765432098764314310	12333 -1121 -110 -76431 -111 -11097 -6431 -111 -11097 -5432 -111	к
=15 2222117 2222117 22223 22223 232525 2525 2525 2525 2525	58999400000901136957082659301 51112552251420052041202552500	15576388241795881847 1543438227043881847 1438432227043881247	8059890187131529882077379 82312222753652233225257379 823122227536522332252577379	CBS
**** 2304 3259 227 2324 3227 2324 324 501	89601814 691044 NU94183034443 112222251422252241222452820 122222251422252442228224522822452822	21127476972566024951 124343122064024951 144024951	4513400809130053460000054 3132337653050000054 20100000000000000000000000000000000000	CALC
				ł
	-110 -110 -1119 -1131 -1131 -1131 -1137 -1138 -1			I K
149 32 8259 9 1 37 24 47 0 241 33 232 24 4 32 24 47 0 241 35 23 24 4 52 24 47 0	00000000000000000000000000000000000000	653337323444622 65333732344622	3~>>000 + V< >>>000 + 1000 000 + 00000 + 000000	085
2461279041293456	201556304400339992 *** 6969204 *** 15259204 ***	20762094845944571359 2753343721442164571359	533260 3 5770-288235208708 221217277772-288235208708	CALC
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1111111110000001110000144	00000000000000000000000000000000000000	-10000001111111111111111111111111111111	н
-8 -8 -7598546686220	652165422U970965mm25mcf52020	-12 -10 -13 -13 -13 -13 -13 -13 -13 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	2109876531098763221987644	к
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DOTAD AND ANA WANNAN ANA NA NA AO	17864644020 = 1707901	<u>ᲢᲧ₦₦ᲜᲐᲝᲝᲢᲘ ᲑᲔᲢᲐᲣᲚᲘᲐᲝ ᲢᲣᲝᲐᲐᲦ</u> ᲐᲫᲠᲝᲡᲡ ᲝᲑᲐᲝᲓᲐᲜ ᲢᲣᲝᲐᲘᲝᲝ ᲐᲝᲑᲐᲜᲡ	065
21 **** 19 33 25 329 225 375 229 2257 220	8977886889588097738494858874749 79787977777777777777777777777777	24535766749 *** 24333 245322 257522 245322 245322 24522 2472 247	304 04 39 4975645454518844 28507 24558 23 42 2554502 2023 58 4 23507	CALC

.

.

L OBS CALC BBS 38 Н Н L CALC 36 .

 ¹
 ¹ 15 7 27 26 * * * К × 0 *** * * * * ĸ a 1 ź * * 4870722417778846175757524680175724680617579574680646817579757902460468175791579024680468046802468004680247579574680 187 109 105

Cu(thmp)2Er

੶ ੶ ੶	H 1111110000000000000000000000000000000
10345123457890346781234567123456789461234578912 111111 111111	L 12356234568901345423456780135671234567890134235788
nr 2r 2669 180209268040816399617458142716976141468 72212482267465253225151914134854343123231322251	0 8 9 9 9 9 9 9 9 9 9 9 9 9 9
132838131591989238102946321957114359095296560625 432124051591989238102946321957114359095296560625	CALC 41082605897593896401010026738838269490888858922071177 12926944211420564447536922071117 1292694544211420564447536922071117
* 988777776655555554444444444333333333333322222221	88888888888888888888888888888888888888
** 30213579272345679023467846246789345234683461	34567890-23455123567912345678912356843579123442200
2 039962359981664397064431270464593398880227663346 222112333211222242242241423232334334334311325532222	91062428897359110354949961709057868098608998559 153 826365412132413255442323251614221131132222222222222222222
*** 120075332809198461810533680897241727892173375 *** 120075332809198461810533680897241727892173375	82792629927061373364230159318019729908634886559843 622105412212423152443134241614221122132222222222222222222
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H. 111111111000000000009999999998888888888
1115 115 115 115 115 115 115 115 115 11	L 23793567801234556803455785790123456061234556890
193410860406509799650573517099170033587790888844 12222247920168981111217232225223322249233587790888844	S 679240868347975121127512222222222222222222222222222
432303563496075247829063685887823324493335719654 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C 1833489983104930379412739968868139496087404286213. C 4 2 344222115132113341212222352222222222224 C 4 2 2 3442221151321334422122223522222222222222
000001111111111111111111110000001111111	«««млтими»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»
11111 11111 111111 111111 111111 111111	11000000000000000000000000000000000000
> 2 6 9 3 0 4 3 0 3 9 3 1 3 8 4 1 8 7 7 4 2 4 0 9 6 7 5 5 4 1 6 4 8 6 6 1 9 9 6 7 2 1 7 3 1 4 2 3 2 5 7 9 4 3 0 3 8 1 3 2 2 3 3 5 9 2 7 2 2 3 2 2 3 2 2 5 7 9 4 3 0 3 8 1 3 2 2 3 3 5 9 2 7 2 2 3 2 2 3 2 2 1 1 2 3 2 2 3 3 5 9 2 7 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3	440808933733315222442752344015813231497822142537845978 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
07295103932355803906989173263241990588671566223 02721106731731423256844213813222419905886715662223 111	2265511080989055764848097801594685585216120667077440 1944015814222122121404015594685585216120667077440 11111111121212121212121212121212121212

* 18 - 17 - 17 - 16 - 16 - 16 - 16	17 18 18	H #44444 0000000000000000000000000000000
4 1 10 2 4 5 6	5 1 2	
= 3 224522 23222 2322 2232 2233 2222 2334	19 19 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2
**** 23 32 26 21 29 16 34	14 15 23	C 4737901014600803708611856700318836103434878578457845047354578458578857885788578857887857890999809097 AL 5124534034500141213116442854785401151405458545785784578457857845785784585788578
	-66	6555554444433333333333333322222222222222
150-2345789	12	8-27546802-11577945-1756780246-1756857-1757902455680-12778902470-17567-874560-1277802460-127746 11111111111111111111111111111111111
161 61 73 33 44 200 4	25	428415357735740730577577777577777777777777777
1 3 1 3 1 4 1 4 1 3 7 7 0	24	4205187641978806699109747676787879797979797979797979797979797979
~~~~~	222	
85 169 192 345 683	345	
17 36 23 125 118 57 30	1763	5 039815538635850974975226028546084986578479455134872952178759621459800081193008119300845755 B 22145028245455509749752722712811458152225184266555808785535227757596214528119300811712851 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 35 16 115 40 119 59 33 26	236342	C 3734956368580651376601995503457674764742593198441220535987753752989828051694804407935 L 21245272454545454545457671125523213213234257255863322773765962 311214 123533362566 C
-18 -166 -166 -16 -14 -13 -13 -13 -13	**	************************************
10040103	** K	01111111111111111111111111111111111111
2090 2130 2233 2233 2232 2232 2232 2232 223	= 4	45972456037193345943753053444333320711200194164003000004060044043003041000303110000040600 2350219160221643755355344433332051120002406363630000406004063232000408000004060030311000000040600 1 1 1
19 226 224 555 239 239 239 239 239 239 239 24 24 24 24 25 239 24 24 24 24 25 25 29 24 24 20 20 20 20 20 20 20 20 20 20 20 20 20	****	207621388272403744555374454422322321122122246505995226956027923223745555245505828279 23522926213882724655744555573820448902249902964001316505995228287879292223222112212224 1

H -13 -13 -13	L 7 9	0BS 21 38	CALC 15 39	- 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15 17 0 1	30:09	31 18 36 81	H 6	L 23	035 22 24	CALC 18 22	**************************************	10012	43325	5321
=13 =12 ~12 ~12 =11	130690	23	18 11 20 20		174560	429150	3932	66777	10	3774	138 138 138 138 138	=7	92357	303347	24222
= 1 1 = 1 1 = 1 1 = 1 1 = 1 1	12345	78 36 71 30	80 35 70 29	- 3 - 3 - 2 - 2	9 13 15 0	32 63 30 19	27	7777	56780	22332	3077		45680	5655	5 0.0
~11 ~11 ~11 ~11	6 7 10	3693	35 24 21 32	12222	200456	1057 057 355	62 77 52	7 7 8 8	13 15 1 2	33327	200 200 200 200 200 200 200 200 200 200	* <del>*</del> * 5	16013	24	1121
-10 -10 -10	156780	2222	34	-2227	7892	37	34	8 8 8 8	34567	40	35 41 24 31	~> =5 =5 5 5	4 67 13	14 20 22	11.213
-10	10 12 1 2	25 25 46 17	26 23 44 18		15013	137	10 49 50 139	9 9 9 9	27457	2745	25	-2	17	30 34 34 37	- 9 7 7 P. P.
-9999	34567	73 42 68 52	74 41 68 63		45678	49 141 21 72	49 143 22 77	9 10 10	9123	19200	201210	4444	5678	27 61 19 58	20100
	89020	52299	50 24 36 24		9 10 12 14	100000	18158228	1011	46123	37 16 64 17	34 14 44 21	1 1 1 1	10	20 104 14 70	1018
1111	22345	54849	51 15 35 21	0000	10123	101 103 94	68 103 44 102	11 12 12	46123	36 19 20 24 20	38 22 21 20 21	****	4568	18 36 37 10 34	13312
0.0000	8 9 10 12	47531456	49 53 32 56 53	00000	45679	39 59 17 21	42 63 20 13	12	46812	2635139	25 31 18 36	=3 =2 =2 =2	17 2 3 4	22 81 25	NAN MA
-8 -8 -8 -7	13 14 16 17 1	28 51 25 24 23	25 50 22 21 20	0000	10 12 13 15	19 22 18 17 28	20 22 14 12	1313	3412	30	26	~2 ~1 ~1	16 0 1 2	21 54 149 19	1 5 14 1
•7 •7 •7	23456	19839	17 36 53 41	1	56780	593453 853	63 36 90 61	14 14 14	#568 <del>4</del>	220	1215 12 12 12 12 12 12 12 12 12 12 12 12 12	= 1 = 1 = 1 = 1	13	50 17 1/ 26	05-1-2
-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	7 8 9	18 34 17 21	17	22	10	50 50	30 52 71	***	** K	= 5	****	-1	16 17 1 2	10 27 13 38	12
666	0 1 2 3	40 164 104 24	42 15 107 28	2222	3467	60 111 24	117 117 41 22	= 14 ~ 14 ~ 13 ~ 13	01667	10222	20 17 18 23 21	00000	54568	460000	45165
00000	5678	50 50 16 19	49	2222	121314	32 19 39 29 66	33 15 35 28 65	-13 -12 -12 -12	80246	204 21	154	0	10	74 48 113 14	8 4 11 1
66666	12	4224993	44 24 39 30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23468	50 22 31 41	46 22 30 37	-11 -11 -11 -11	15670	21	2347	1	4567	224424	24.24
1 1 1 1	17 19 0 1	31 24 28 18	29 19 29	100004	10 12 13	222	244	-11 -11 -10 -10	13 16 0 2	17007	20 2 71 08	12222	10125	22 64 67 29	-03 •2
15555	4678	33333340	34 35 36 38	4444	23456	32 111 30 98	29 110 29 99	-10 -10 -10 -10	4 6 8 1 0	55 72 68 32	56 74 72 41	22220	6 8 10 12	49 77 70 39	4 87 30
55544	9 12 13 0	314930	41 27 26 44	444	7 8 9 10	4333125	46	-9	1457	25 17 47 81	23	50 000	1234	113 31 111 16	11 11 11 1
4444	20045	12539	2533	255555555555555555555555555555555555555	3468	17 33 40	45 34 59	-9 -9 -8 -8	13 1 2 3	223222	00 24 19 32 32		56789	2425260	82511
4444	8913	02 29 23 26	02220	5556	10 12 13	32 31 30 32	33 31 33	- 8 - 8 - 8	4568	47 23 75	4526	344	15 1 3	22	1 221

**** K = 0000000000000000000000000000000	01 307 372 4 2 3 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	H 44444555555555555556666666777888888999900111111122
**** 90064044947866645550231823959004349837717996342	36 209 216 235	C 620246177259437486696251345157158134 C 8553 356312422465355421122234345157158134
1001235793513572450234679345012357245123462461231234 32222222222222222222222222222222		40123012345679245024678357661345679012 1 877776666666666655555555555555555555555
235367553239842224221124329111444223177264297970989789	638 376 184 225	4322341562293549101520762 <b>34344915989326</b> 2
1351877022300834816215401035406500742309029430810 1051877022360834816215401035406500742309029430810	639 37 322 20 21	331434155104669298217007743644369068083
**************************************	**: 1254 1154 1110	H 455555666677777778889999999001111133
568683201234705678241235780123678912357901230134567	⊧∗ K 3 6 1 3	L 82346782468234567821224567834124614
0401mm0146974190m00114095174404085174100ma05540665120m5m465 2222m2222m2212242222241mm2265422222mm225542665122m5m465	= 7	B 48747690-17557863479164625512288892312 C 461641222233422524251212223322221222222
1067 28515470227653639085714392253820020326056794062 221222122222222265363908571439222538200203260567948465	**** 19 20 24 23 24	C 472641300966383954069974100915886007
9999011111 * 2211100999888777777766666555555554444444444	567 6888999	99900000000000000000000000000000000000
345862345 K 5624701024024024679202461345790234508	161246812	93024626056789235752492837-0341241234
751284018 8 865519196560304800129466365030009288000 222223222232222322222222222222222	1690478041	₹₩₽₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩
820971951 * 72441768466802985097357136507397083173 ** 2222212322222222222222222222222222222	1054279494 1923222494	96550300538575253528389993208424291176 41452222245645752535283899932088424291176

Н	L	C 8 S	CALC	**** K	n 9	***	*** K	=10	***	
<b>&gt;&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt;</b> <b>&gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt;</b>	345612468222351356782246335791246245135723572572	20001221227067893711111672482468836734989512224896021 455522255522215251222242222545222212454222224896021	25109780671616555019087550575948024555777657754976679 425511465522215522142522115451552522455557762212245224579	45182456745674567890846402844612470121111111111111289888666666655555488888666665555548888666666555554	010404242450951445404990409849200031446422445555484680223146484 2222222222222222222222222222222222	109173931504960096168046506870859711841666615857040800964 201223312022221 1123211224224554142223222322211122211122111	766577077027024672 K 13430 ***		22110000000000000000000000000000000000	

## SECTICN II

THIOETHER IIGAND COLFICXES OF THE GROUP VIB METALS, Cr(C), No(C), W(C).

#### SECTION II

#### INTRODUCTION

There have only been two studies on the Group VIB metal carbonyl complexes of bidentate dithioether ligands where the sulphur donor atoms are attached directly to substituted aryl rings. These involved a series of ligands of the type  $RSCH_2CH_2SR$  where  $R=p-XC_6H_4^{-194}$  and the aryl dithioether ligands, 1,2-bis(methylthio)benzene and 1,8-bis(methylthio)naphthalene.¹⁹⁵

The bulk of the research into complexes of both monodentate and bidentate thioether ligands has concentrated on ligands where the sulphur donor is attached to an aliphatic carbon chain (Table 1) and little has been done to study the effects of the substituents on the donor properties of the ligands.

The studies on the Group VIB metal carbonyl complexes of 3,4-bis(methylthio)toluene (bmtt) and 3,4-bis(ethylthio)toluene (bett) that are reported in this section, were therefore instigated for the following reasons:

 (i) to study the chemical and physical properties of the complexes of these ligands so that direct comparisons can be made with other ligands;

(ii) to determine whether or not the aromatic ring that is attached to the thioether donor atoms, has any influence on the donor properties of the ligand; and

(iii) to carry out studies on the reactions of these ligands with the specific intention of synthesizing bridgedligand complexes. These were not reported in the study of the complexes of 1,2-bis(methylthio)benzene and 1,8-bis(methylthio) naphthalene.¹⁹⁵

2	4	0

TAPI	E	1
		<u> </u>

GRCLF	VIR	NETAI.	CARPCNYI	CCNFLEXES	CF	THI	CETHEE.	IIGANDS
			the second design of the secon	Contraction and the second sec				
the state of the s								

LIGAND TYPE	LIGAND SUBSTITUENTS	REFERENCES
	<u>n = 2</u>	
RS(CH ₂ ) _n SR	R = Me	196 - 198
2 11	R = Et	198,199
	R = t - Eu	194,198,200,201,
	$R = p - XC_6 H_4$	194
	<u>n = 3</u>	
	R = t-Bu	200,202
	$\underline{n} = 4$	
	R = Et	198
	n = 6	
	R = Me	198
R ₁ SR ₂	$R_1 = Ne, R_2 = PhCH_2$	198
	$R_1 = Et, R_2 = ThCH_2$	203
	$R_1 = Fh$ , $R_2 = FhCH_2$	204
	$R_1 = Fh$ , $R_2 = Ph$	204,205
	$R_1 = FhCH_2, R_2 = FhCH_2$	204
	$R_1 = Et, R_2 = Et$	203,204,186
	$R_1 = Me, R_2 = Me$	186,205
	$R_{1} = (CH_{2} = CH_{-}) = R_{2}$	186
	$R_{1} = CH_{3}, R_{2} = (CH_{2}Cl)$	186
	$R_1 = (Ph)(CH_3)CH-, R_2 = CH_3$	206
$o-C_{6}H_{4}(SR)_{2}$	R = Me	195
$1, 8 - (C_{10}H_{6})(SR)_{2}$	R = Ne	195
Tetrakis(thioalkyl)-		207

olefins

#### FIGURE 1



R=Me; 3,4-bis[methylthio]toluene [bmtt] R=Et; 3,4-bis[ethylthio]toluene [bett]

Most of the studies on the Group VIB metal carbonyl complexes of thioether ligands (Table 1), have been reported since this work was started.

There have been very few investigations into the Group VIB metal carbonyl complexes of mixed sulphur-nitrogen donor ligands (Table 2) and only two of these studies have involved ligands with both thioether sulphur and nitrogen donor atoms. With all of these ligands, it is not possible to form chelated-ligand complexes and bridged-ligand complexes have not been reported. Consequently, nothing is known about the chemical and spectroscopic properties of the chelated and bridged-ligand carbonyl complexes of mixed sulphur-nitrogen donor ligands.

Complexes of the following ligands, which contain both nitrogen and thioether sulphur donor atoms, are studied in this section.

LIGAND NAME	ABEREVIATION
2-ETHYLTHIOETHYLAMINE	etea
2-(3,3-DIMETHYL-2-THIABUTYL)PYRIDINE	tbmp
2-METHYLTHIO-2-IMIDAZCLINE	mti
2-METHYIMERCAPTOBENZIMIDAZOLE	mmbi
2-METHYLTHIOANII INE	mta

The reactions of these ligands have also been investigated in order to complement the studies on the Cu(II) complexes of sulphur-nitrogen ligands (Section I). Information on the metal coordinating sites in these ligands can be more conveniently

obtained from metal carbonyl complexes using infrared spectroscopy and nuclear magnetic resonance spectroscopy, as probes.

Bearing of the local data have been been and the		
LIGAND TYPE	BONDING MCDE	REFERENCES
Alkylthiocyanates	Cr-N (X-rayed)	208
RSCN	N-N	209
Thiazolidine-2-thione S=CNHCH_CH_S	M-thione(S)	210
Thicmorpholin-3-one	M-S	211
Benzothiazole (R=H)	M-N	212
ā		
2-methylbenzothiazole (R=CH ₃ ) <b>Q</b>	Cr-S, Cr-N [†] W-S, W-N	213
Isothiazole	Cr-N, W-N	213
þ	No-N, No-S	
Sulphurdiimines R-N=S=N-R	Mo-N <b>Φ</b>	214
5,6-dimethyl-2,1,3- benzothiadiazal	N−N �	214

## TABLE 2

CCMPLEXES OF SULPHUR-MITRCGEN DONORS

### c

NOTES:

-bonding modes deduced from spectroscopic studies except where indicated,

t linkage isomers

 $\Leftrightarrow$  in solution, the metal "glides" along N=S=N system.



#### CHAFTER 1

## BRIDGED-LIGAND COMPLEXES OF

## 3,4-BIS(METHYLTHIO)TCLUENE (bmtt)

#### AND

## 3,4-BIS(ETHYLTHIO)TCIUENE (bett)

Bridged-ligand complexes of the Group VIB metal carbonyls (M=Cr,Mo,W), consist of two  $M(CC)_5$  groups that are "bridged" by a bidentate ligand. This type of complex is generally synthesized in the reaction

 $2\mathbb{M}(\mathbb{CC})_5 \text{THF} + \mathbb{I} \longrightarrow \left[ (\mathbb{CC})_5 \mathbb{N} \leftarrow \mathbb{I} \rightarrow \mathbb{M}(\mathbb{CC})_5 \right]$ the  $\mathbb{M}(\mathbb{CC})_5 \text{THF}$  being synthesized by the ultraviolet irradiation of  $\mathbb{M}(\mathbb{CO})_6$  in tetrahydrofuran (THF) (Appendices). The bridgedligand complexes are designated as  $[\mathbb{M}(\mathbb{CO})_5]_2\mathbb{L}$  and it is implied that I is a bidentate ligand. Complexes of the type  $\mathbb{M}(\mathbb{CC})_5\mathbb{I}$ (see Chapter 3) are also referred to in this work.

The bridged-ligand complexes  $[M(CO)_5]_2$ bmtt (N=Cr,W) and  $[M(CC)_5]_2$ bett (M=Cr,W) that are discussed in this Chapter, were generally isolated from specific attempts to synthesize the chelated-ligand complexes  $M(CC)_4$ bmtt and  $M(CO)_4$ bett respectively (Chapter 2). The formation of both types of complex under the reaction conditions meant that careful and timeconsuming separations, using column chromatography, were required. Subtle solubility differences and subtle differences in the behaviour of the complexes on these columns added to the difficulties in their purification.

Bridged-ligand complexes were not formed in the reactions involving molybdenum carbonyls.

#### 1.1 INFRARED SPECTRA (CARBCNYL STRETCHING ABSORPTICNS)

Although the infrared and Raman-active carbonyl stretching modes can be theoretically derived from group theory, the assignment of these modes is not straightforward. Hence the spectral assignments are usually based on the arguments of Crgel²¹⁵, Cotton and Kraihanzel²¹⁶ and other workers.²¹⁷

The CO stretching modes that are expected for  $C_{4v}$ M(CC)₅I complexes are shown in Figure 2. The bridged-ligand complexes that are discussed in this Chapter can be regarded as being M(CO)₅I complexes when the CC frequencies are being considered, although because of the asymmetry of the ligands bmtt and bett, the complexes will actually have symmetries lower than  $C_{4v}$ .

#### FIGURE 2



Three infrared-active absorptions are expected for complexes of  $C_{4v}$  symmetry, but because the asymmetry of the ligands lifts the selection rules, the  $B_1$  mode becomes weakly infrared-active and four absorptions are normally observed²¹⁸ This asymmetry can also lead to a splitting of the E mode and this is observed in the spectrum of  $[W(CO)_5]_2$  bmtt in nitromethane (Figure 3a). The  $B_1$  mode in this spectrum has not been resclved, but in some cases it is possible, (e.g. for the series of  $M(CO)_5$ SPR₃ complexes), to observe five absorptions.²¹⁹

M(CO) JL CARBONYL STRETCHING MCDES

ΤA	PLE	3
		_

V(CO) ABSORPTIONS FOR [M(CO)_] L COMPLEXES

		L _			
COMPLEX	$A_1(II)/cm^{-1}$	B2	E	A (I) .	SCIVENT
$[Cr(CO)_5]_{2}$ bmtt	2C72(w)	1989(w)	1948(s)	1933(m)	a
[Cr(CO) ₅ ] ₂ bett	2C76(w)	1990(ms)	1948(s)	1938(sh)	a
[w(co) ₅ ] ₂ bmtt	2065(w)	1987(w)	1942(s)	1947(sh)	a
[W(CO) ₅ ] ₂ bmtt	2C82(m)	n.o.	1949(vs) 1934(vs)	1 <u>9</u> 14(vs)	Ъ
[W(CC)]2bett	2C74(w)	1986(w)	1947(s)	1936(sh)	а
Cr(CO) ₅ C ₆ F ₅ SEt	2C73(m)	t	1950(vs)	1954(s-sh)	a
w(co) ₅ c ₆ F ₅ SEt	2079(m)	t	1948(vs)	1942(sh)	а
NOTES: - a =	cyclohexane;	; b = nit:	romethane	9	
- w = sh	weak; m = me = shoulder,	edium; s =	= strong;	v = very;	
- n.o	. = not obser	rved,			

t intense  $N(CO)_6$  peak in this region.



<u>3b</u> - M = Cr, in cyclohexane

The carbonyl stretching absorptions for the bridged-ligand complexes  $[M(CO)_5]_2L$  (M=Cr,W; L=bmtt,bett) are given in Table 3 and a typical spectrum (recorded in cyclohexane solution) is shown in Figure 3b. The spectra are normal for this type of complex.^{194, 198}

For the complex  $[\mathbb{W}(CC)_5]_2$ bmtt, and  $B_1$  mode is observed in cyclohexane solution but not in nitromethane and this appears to be due to poorer resolution in the latter, more polar solvent. It is also observed for this complex that the  $A_1(I)$  mode undergoes a significant (33 cm⁻¹) shift to lower frequencies in nitromethane and this is consistent with previous observations for bridged-ligand complexes¹⁹⁴ . Iess significant shifts are observed for the  $A_1(II)$  and E modes. The effects of solvent polarities on the infrared spectra of carbonyl complexes have been discussed by Braterman²²⁰ and these can be related to interactions between solvent local multipoles and permanent dipoles in the carbonyl complex.

#### 1.2 FORCE CONSTANT CALCULATIONS

The force constant of a bond is a measure of the attractive forces between the atoms participating in the bond and by definition is related to the bond order. Thus as the bond order increases, the force constant for that bond also increases.¹²⁹

The calculation of approximate CO force constants from the carbonyl stretching frequencies of octahedral metal carbonyl complexes, has been the centre of controversy ever since Cotton and Kraihanzel published their approximate force constant method in 1962²¹⁶ . Much of the controversy has been related to the assumptions that are made in developing the approximate secular equations upon which the calculations are based. The assumptions are:

i) interactions between CO stretching and other deformations of the molecules are neglected;

ii) no attempts are made to correct for anharmonicity; and
 iii) approximations relating the stretch-stretch interaction constants must be made.

"Exact" calculations can be made where these three factors are taken into account, but either detailed isotopic enrichment data is needed or calculations employing iterative procedures must be carried out.²²¹ Although there may be differences between the absolute values of the force constants calculated by the "approximate" method and those calculated using the "exact" methods, the relative trends indicated are similar and the qualitative use of data calculated by the "approximate" method appears to be justified.²²⁰

Other factors such as solvent and environmental effects, differences in metal electronegativities and orbital following effects must also be taken into account.²²⁰ The first two factors can be eliminated by ensuring that the force constants are not calculated from spectra that have been measured in solvents of widely differing properties and that force constants are compared within a series of complexes of the same metal. Although the quantitative effects of orbital following in the CO bond are largely unknown, it is apparent that the "real" force constants will be lower than the calculated values and that comparisons should not be made between complexes of widely differing stereochemistries.²²⁰

The approximate CO force constants that are presented in Table 4 for the  $[M(CO)_5]_2L$  (M=Cr,W; L=bmtt,bett) complexes were calculated from the approximate secular equations presented

by Cotton and Kraihanzel²¹⁶ . The data for other complexes is also presented.

INTERFRETATION OF FORCE CONSTANT DATA

a) <u>Metal-Ligand and Metal-CC Bonding Schemes</u>

Using a simple, qualitative, molecular orbital approach,²²² the N-I and N-CO bonding in carbonyl complexes can be depicted as shown in Figure 4a and Figure 4b.



Empty M_{Eg} orbital, Full L orbital.

π-Bond



Full M_{T2g} orbital, Empty L d-orbital.

<u>FIGURE 4b</u> <u>or-Bond</u>

.....C-٠O

Empty M_{Eg} orbital, Lone-pair CO orbital.

π-Bond



Full M_{T2g} orbital, Empty CO π*-orbital.

#### b) General Effects of Metal-Ligand Bonding

With reference to these bonding schemes, it can be deduced that the bonding in the carbonyl groups of these complexes will be influenced in several ways by changes in the Metal-Ligand bonding:

i) A  $\pi$ -accepting ligand will strengthen the C-C bond(s) <u>trans</u> to it. Hence the <u>trans</u> CO force constant, K₁, will increase with increasing  $\pi$ -acceptance. This effect will be extended to the <u>cis</u> carbonyls, but to a lesser extent²¹⁶ ii) A good  $\sigma$ -donor ligand will increase metal back-donation to the carbonyl groups by an inductive mechanism. As this applies equally to all of the carbonyl groups, K₁ and K₂ will decrease with increasing  $\sigma$ -donation. iii) Ligand  $\sigma$ -donation also has two directional effects. A  $\sigma$ -<u>trans</u> effect lowers  $K_1$  by decreasing carbonyl  $\longrightarrow$  metal  $\sigma$ -donation²²³ and the Fenske direct-donation effect which decreases  $K_2^{224}$ . Various attempts have been made to quantify the  $\sigma$  and  $\pi$  bonding components of the metal-ligand bond using carbonyl force constant data^{225,226}. These attempts can not be really justified however, because so little is known about the relative effects of these bond components on the CO force constants.

As the <u>trans</u> CO force constant  $(K_1)$  is affected the most by changes in metal-ligand bonding,²¹⁶ the following discussion concentrates on comparisons between  $K_1$  for the complexes that are being considered.

- c) <u>Discussion</u>
- i) <u>Chromium Complexes</u>

There are no obvious trends in both the <u>cis</u> and <u>trans</u> force constants for  $[Cr(CO)_5]_2L$  and  $Cr(CO)_5L$  complexes where L is a thioether donor ligand, except for the complex  $Cr(CO)_5C_6F_5SEt$ . Although this complex was quite unstable and could not be isolated (Arpendix II), its infrared spectrum, from which these force constants were calculated, was successfully recorded. While there do not appear to be any significant differences between the complexes where L is an aryl thioether (bmtt, bett, o-bmtb, pte and  $S(Ph)_2$ ) and where L is an alkyl thioether (dto, bms,  $S(Et)CH_2Ph$  and  $S(Et)_2$ ), the effect of the strongly electronegative pentafluorophenyl group of  $C_6F_5SEt$  is readily apparent. The trans force constant (K₁) is significantly higher than previously observed for  $Cr(CO)_5$  thioether complexes and it is comparable to the values that are normally

	TAFI	E 4	
-KRATH	N727	ROFUE	CONSEL

COTTON-KEAIHANZEL	FCLUE	CONSTANTS
		The second design of the secon

	Cr(CC)	n CCMPIEX	ES	
CCMPLEX	DONOR	$K_1(N,m^{-1})$	<u>K₂(N.m⁻¹)</u>	REFERENCE
Cr(CC) ₅ C ₆ F ₅ SEt	S	1563	1601	This Work
Cr(CC) ₅ dmpe	P	1556	1578	<b>†</b> 234
Cr(CC) ₅ P(Ph) ₃	P	1551	1585	235
[Cr(CC) ₅ ] ₂ bett	S	1538	1600	This Work
[Cr(CC) ₅ ] ₂ pte	S	1533	1600	<b>†</b> 194
Cr(CO) ₅ S(Ph) ₂	S	1532	1597	<b>†</b> 204
[Cr(CC) ₅ ] ₂ o-bmtb	S	1532	1597	236
[Cr(CO) ₅ ] ₂ dto	S	1530	1592	<b>†</b> 198
Cr(CO) ₅ bms	S	1530	1592	<b>†</b> 198
Cr(CC) ₅ S(Et)CH ₂ Ph	S	1529	1584	203
[Cr(CC) ₅ ] ₂ bmtt	S	1529	1598	This Work
Cr(CO) ₅ S(Et) ₂	S	1528	1581	203
Cr(CC) ₅ mta	S	1528	1590	This Work
Cr(CC) 5 NH2 (C6H11)	N	1508	1 577	235
$Cr(CC)_5$ NH ₂ (C ₆ H ₅ )	N	1503	1582	237
Cr(CO) ₅ SP(Me) ₃	S	1494	1590	<b>†</b> 198
NOTES: - all spect	tra recor	ded in satu	rated hydrocar	bon solvents
t Force cor	nstants d	alculated f	rom published	data
- errors al	re ± 3 N.	$\pi^{-1}$ in K, as	nd K, except f	or

 $Cr(CO)_5 C_6 F_5 SEt (\pm 5 N.m^{-1})$ 

TABLE 4 (continued)

COTTON-K AIHANZEL FORCE CONSTANTS						
$\left[\frac{W(CO)}{5}\right]_n L$ <u>CCMFLEXES</u>						
CCMPLEX	DONCR	$\frac{K_{1}(N.m^{-1})}{1}$	$K_{2}(N.m^{-1})$	REFERENCE		
W(CO) ₅ [PPh ₂ (OBu)]	P	1571	1587	226		
W(CC) ₅ P(Ph) ₃	F	1557	1589	235		
W(CC) ₅ C ₆ F ₅ SEt	S	1556	1590	This Work		
[W(CC) ₅ ] ₂ bmtt	S	1556	1595	Tris Work		
[W(CC) ₅ ] ₂ o-bmtb	S	1556	1587	236		
W(CO) ₅ PhSH	S	1537	1596	226		
[w(cc) ₅ ] ₂ m-bmtb	S	1533	1576	236		
[W(CC) ₅ ] ₂ bett	S	1533	1594	This Nork		
[w(CO) ₅ ] ₂ dto	S	1531	1590	<b>†</b> 198		
W(CO) ₅ mta	S	1526	1589	This Work		
W(CO) 5(FhNH2)	N	1513	1580	226		
W(CC) 5NH2(C6H11)	·N	1513	1572	226		
NOTES: - as	for [Cr(CC)	5]nL complex	(es			

errors for  $W(CC)_5 C_6 F_5 SEt$  are  $\pm 5 N.m^{-1}$  in  $K_1$  and  $K_2$ 

observed for phosphine donors (Table 4). In this type of complex, an increase in  $K_1$  will be observed because the electronegativity effect will increase, by an inductive mechanism,  $Cr \longrightarrow S \quad \Pi$ - donation and decrease  $S \longrightarrow Cr$ 

 $\sigma$ - donation. The opposite of this effect is shown in the complex  $Cr(CC)_5 SP(Me)_3^{219}$  for which  $K_1$  (1494  $\pm$  3 N.m  $^{-1}$ ) is similar to that of amine donors where no M  $\longrightarrow$  N  $\Pi$ - interactions are possible.²²⁶ A crystallographic study on this complex  227  has shown that there is little or no Cr  $\longrightarrow$  S

 $\Pi$ - donation and this is thought to be due to the sulphur atom of SFMe₃ having a slight excess of negative charge.¹⁹⁹ None of these effects are apparent then, in the complexes  $[Cr(CC)_5]_2L$ where L is bmtt and bett and so from these results, the net basicities of these ligands <u>appear</u> to be similar to those of other thioether ligands when they are bound to chromium (0).

#### ii) <u>Tungsten Complexes</u>

It appears from the results presented in Table 4, that there is a greater  $\pi$ - component and/or a smaller  $\sigma$ - component in the W — S bond for the ligands bmtt, o-bmtb and  $C_6F_5SEt$  (as observed for the Cr complex) compared to the ligands m-bmtb, bett, PhSH and dto. For the former group of ligands, the <u>trans</u> CC force constants are comparable to  $K_1$  for triphenylphosphine which suggests that the net basicities of these ligands are similar to the phosphine donor in these complexes.

#### 1.3 ELECTRONIC SPECTRA

The basis for identifying the d-d and charge transfer transitions in  $M(CO)_5 I$  and <u>trans</u> -  $M(CO)_4 I_2$  complexes was recently proposed by Braterman, Milne and Walker²²⁸ in a detailed study of a series of these complexes. Assuming that the ligand I is a poorer  $\pi$ -acceptor and a better  $\sigma$ -donor than CO, the molecular orbital diagram for  $M(CO)_5L$  complexes can be derived (Figure 5). The possible mixing of d( $\sigma^*$ ) and vacant ligand orbitals can be ignored where the field of I is small.



The nature of the metal and the ligand's net donor ability will determine the energy of the  $M(d) \longrightarrow CO(\pi^*)$  charge transfer transitions. Braterman <u>et al</u> observed that the frequencies of the lowest energy charge transfer band (1e  $\rightarrow$  2a₁) follow the general sequences:

i) phosphite > phosphorous triamide > phosphine and ii) Cr > Mo > W

These observations were used as the basis for assigning the lowest energy charge transfer absorption as being a transition from metal orbitals. Transitions of pure d-d character were identified by their loss of intensity on cooling.

It is now recognised from this and earlier studies that  229,230 it is the lowest energy charge transfer transition (1e  $\rightarrow$  2a₁) which is sensitive to the nature of the ligands. Stronger metalligand interactions can naively be expected to stabilize the d-orbitals with a resulting increase in the energy of the 1e  $\rightarrow$  2a₁

transition. In general then, the energy of this transition will decrease in the order M-CO > M-P_{ligand} > M-S_{ligand} > M-N_{ligand} SFECTRA AND ASSIGNMENTS FOR [N(CO)₅]₂]

Typical spectra for the  $[Cr(CC)_5]_2L$  and  $[W(CO)_5]_2L$ (L=bmtt, bett) complexes are shown in Figures 6a and 6b and the results for these complexes are given in Tables 5a and 5b. Where possible, tentative assignments for the d-d,  $1e \rightarrow 2a_1$  and Singlet  $\rightarrow$  Triplet d-d transitions (tungsten complexes only) have been made. For the chromium complexes, the d-d and  $1e \rightarrow 2a_1$ transitions appear to be under the same low-energy envelope while for the tungsten complexes they occur as distinct absorptions in ethanol solution. The d-d and  $1e \rightarrow 2a_1$  absorptions in the latter complexes have been assigned on the basis of energy considerations. From Figure 5 it is apparent that the d-d absorptions will occur at lower energies than the  $1e \rightarrow 2a_1$ C.T. transition, although both absorptions will lie close to each other.²²⁸

#### DISCUSSION

i) Chromium Complexes

The 1e  $\rightarrow$  2a₁ C.T. transitions for  $[Cr(CO)_5]_2$ bmtt and  $[Cr(CO)_5]_2$ bett are compared with those of other  $Cr(CC)_5$ L complexes of phosphorus, sulphur and nitrogen donors, in Table 6a. The results for these complexes suggest that Crligand interactions are weaker for bmtt, bett and 2-methylthioaniline (which appears to bind via the thioether only see Chapter 3) than for the complexes of the alkyl thioethers (e.g. 3,8-dtd, dto and S(Et)₂) where the thioether donor is attached to an aliphatic carbon chain. For the former complexes the Cr—S interaction appears to be comparable in its strength to the Cr—Ligand interactions of amine ligands and where L is





#### TAELE 5a

	EIEC	TRCNIC SPECTR	A FCR Cr CCMPIEXES	
COMPIEX		ABSCRETICN (	nm) <b>e</b> (1.mol. ⁻¹ cm ⁻¹ )	) Assignment
[Cr(CC) ₅ ] ₂	bmtt	252	1€455	
<i>J</i>		300	326 <u>9</u>	
		445	1664	$1 e \rightarrow 2a_1/d - d$
[Cr(CO) ₅ ] ₂	bett	268	16503	
- )-L		288	7552	
		423	3161	1e→2a ₁ /d-d

TA	pJ	E	5	b

 $\begin{array}{c|c} \underline{\text{EJECTRCNIC SFECTRA FCR W CCNTJEXES}} \\ \underline{\text{CCMPIEX}} & \underline{\text{APSCRFTICN (nm)}} & \underline{\textbf{e}(1.mol.^{-1}cm^{-1})} & \underline{\text{ASSIGNMENT}} \\ \hline \begin{bmatrix} W(CO)_5 \end{bmatrix}_2 bmtt & 265 & 18372 \\ & 277(sh) & 7984 \\ & 298(sh) & 6279 \\ \hline \end{array}$ 

	395 [274] 417 [ <u>co</u> 382] 442(sh)	4186 4380 953	[3921] [3905]	1e→2a ₁ d-d (s-s) d-d (s-t)
[W(CO) ₅ ] ₂ bett	265	18846		
- )-2	281(sh)	7923		
	293(sh)	6385		
	3C6(sh)	4846		
	382 [ <u>ca</u> 376]	326 <u>9</u>	[4141]	1e→2a ₁
	411 [ca 376]	2677	[4141]	d-d (s-s)
	443(sh)	4 3C		d-d (s-t)

<u>NOTES</u>: - all spectra recorded for Abs. EtCH solutions except where given in parentheses ([], spectra recorded in n-hexane),

- sh = shoulder; extinction coefficients are approximate,
  - (s-s) denotes a singlet  $\rightarrow$  singlet transition,
- (s-t) denotes a singlet  $\rightarrow$  triplet transition

TA	FJ	E	6a
-	-		the same same is

<u>1e→2a</u> 1 <u>C.T.</u>	TRANSITI	ONS:	$\left[\underline{Cr(CC)}_{5}\right]_{n}$	CONTLEXES	
CONTLEX	<u>1e→2a</u> 1.	(nm)	SCIVEN	T T	REFERENCE

I = F donor			
Cr(CC) ₅ F(CFh) ₃	329	Hexane	230
Cr(CC) ₅ F(M'e ₂ ) ₃	34C	Hexane	230
Cr(CC) ₅ P(Fh) ₃	359	Hexane	230
I = S_donor			
Cr(CC) ₅ S(Et) ₂	393	Hexane	203
[cr(cc) ₅ ] ₂ (3,8-dtd)	395	Chloroform	198
Cr(CC) ₅ S(Et)CH ₂ Fh	395	Hexane	203
[Cr(CC) ₅ ] ₂ tmdto	356	Ethanol	194
<pre>[Cr(CC)₅]2dto</pre>	398	Ethanol	198
[Cr(CO) ₅ ] ₂ bett	423	Ethanol	This Work
t Cr(CO) ₅ SPMe ₃	424	Ethanol	198
	424	Hexane	This Work
<pre>t Cr(CC)₅SF(Me₂Ph)</pre>	425	Hexane	This Work
[Cr(CC) ₅ ] ₂ pte	4 3C	Etlanol	194
Cr(CC) ₅ mta	437	Ethanol	This Work
[Cr(CC) ₅ ] ₂ bmtt	445	Ethanol	This Work
[Cr(CC) ₅ ] ₂ nte	450	Ethanol	194
I = N donor			
Cr(CC) ₅ bi	405	Ethanol	This Work
Cr(CO) ₅ mmbi	406	Ethanol	This Work
Cr(CO) ₅ mti	407	Ethanol	This Work
[Cr(CO) ₅ ] ₂ en	4 1 C	Ethanol	198
$[Cr(CO)_5]_2$ dad	419	Chloroform	198
Cr(CC) ₅ HNC ₅ H _{1C}	426	Cyclohexane	230
I = S - N donor			
[Cr(CO) ₅ ] ₂ etea	412	Ethanol	This Work
NOTES: + Samples were	e gifts f:	rom Drs.E.W.Ainscough &	A.M. Brodie

.

TATIE 6b

e→2a, C.T.	TRANSITIONS;	[V. (CC)_	I COMPLEXES
		and the second s	

$1 e \rightarrow 2a_1 C.T$	. TRANSITIONS; [	<u>w(cc)</u> ₅ ] _n <u>I COMPLEX</u>	ES
CCMFIEX	<u>1e→2a₁ (nm)</u>	SCIVENT	REFERENCE
<u>L = F donor</u>			
W(CC) ₅ P(CMe) ₃	34 3	Nch: ip	228
$W(CO)_5 P(NNe_2)_3$	348	Nch:ip	228
W(CC) ₅ FBu ₃ ⁿ	351	Nch:ip	228
<u>I = S donor</u>			
[W(CO) ₅ ] ₂ tmdto	368	Chloroform.	198
[v:(cc) ₅ ] ₂ dto	371	Chloroform	198
[W(CC) ₅ ] ₂ (2,5-dtd)	372	Chloroform	198
W(CC) ₅ SPMe ₃	378	Ethanol	198
[W(CC) ₅ ] ₂ bett	382	Ethanol	This Work
W(CO) ₅ mta	<u>ca</u> 392	Ethanol	This Work
[W(CC) ₅ ] ₂ bmtt	395	Ethanol	This Work
["(CO) ₅ ] ₂ m-bmtb	<u>ca</u> 4C5	Ethancl	This Work
<u>L = N donor</u>			
W(CC) ₅ mmbi	352	Ethanol	This Work
W(CC) ₅ bi	395	Ethanol	This Work
[W(CC) ₅ ] ₂ en	397	Ethanol	198
W(CC) ₅ mti	358	Ethanol	This Work
[W(CC) ₅ ] ₂ dad	466	Benzene	198
<u>I = S-N donor</u>			
[W(CO) ₅ ] ₂ etea	39C	Ethanol	This Work

Mch:ip = methylcyclohexane:isopentane, NCTES: _

- sample prepared by method of Ainscough, Brodie and t Mathews,236
- complexes of mta, bi, mmbi, mti and etea are _ discussed in Chapter 3.

a substituted phosphine sulphide ligand,  $SPR_3$ . These results appear to disagree with the observations based on the calculation of force constants. It is apparent though, that direct perturbations of the metal d-orbitals will be more sensitive to changes in metal-ligand bonding than the effects of such changes on the more distant C — O bonding. Hence for these chromium complexes more significant differences between the ligand types are observed in the electronic spectra. The sensitivity of the visible absorption maximum to changes in metal-ligand bonding has also been demonstrated for a series of bridged ligand complexes of  $RSCH_2CH_2SR$ , where R is  $p-XC_6H_4$ .¹⁹⁴ In this study it was shown that where X is an electron withdrawing substituent such as  $-NO_2$ , the 1e  $\rightarrow 2a_1$  transition was red-shifted by up to 40 nm compared to the spectra where X is an electron donating group such as  $-NMe_2$ .

## ii) <u>Tungsten Complexes</u>

The 1e  $\rightarrow$  2a₁ C.T. transitions for  $[W(CC)_5]_2$  bmtt and  $[W(CC)_5]_2$  bett are compared with those of other  $W(CC)_5$ L chromophores in Table 6b.

The results are in agreement with the observations that were made for the analogous chromium complexes in that the 1e  $\rightarrow$  2a₁ C.T. transition energies are lower for bmtt and bett than in complexes of alkyl thioether ligands. The ligands 2-methylthioaniline (mta) and 1,3-bis(methylthio)benzene (m-bmtb) which also have aromatic rings attached to the thioether donor, exhibit a similar trend. The consistent results for both the chromium and tungsten complexes enable the ligands to be placed in the following order of decreasing net M—L bond strengths;

#### tmdto ~dto > bett > mta ~ bmtt

When the spectra of the tungsten complexes of bmtt, bett and m-bmtb are recorded in non-polar hydrocarbon solvents,

significant shifts in the visible maxima occur and as a consequence, the resolution is poorer (Figure 6c). Although the d-d absorptions should be largely insensitive to changes in solvent polarity,^{231,232} the observed shifts combined with the relatively high intensities of the absorptions in both the chromium and tungsten complexes, suggest that they have acquired some charge transfer character. This could cccur by a ligand-metal orbital mixing mechanism.²²⁹

1.4 NUCLEAR MAGNETIC RESONANCE STULIES

## ¹H nmr Spectra

It is generally observed that the chemical shifts of protons in close proximity to electron donating groups such as sulphur and nitrogen, move downfield (i.e. to higher ppm) on complexation of the ligand. This effect is due to the withdrawal of electronic charge from the hydrogen nuclei. The ¹H nmr spectral results for the bridged-ligand complexes  $[N(CC)_5]_2L$  (N=Cr, W and L=bmtt, bett) together with the data and assignments for the free ligands, are given in Table 7.

			TABLE 7				
	1 _{H :}	nmr DATA,	N(CO) 32 CO	MPLEXES CF	bmtt, be	ett	
	COMPLEX	-SCH3-	-SCH2CH3	-SCH2-	Ar-CH3-	Ar-H	
	bmtt	2.05			2.C2	6.9	
t	[Cr(CC) ₅ ] ₂ bmt	t 1.57			1.46	<u>ca</u> 6.7	
	[w(CO) ₅ ] ₂ bmtt	2.24			1.90	6.5	
	bett		1.18t(8)	2.81q(7)	2.22	6.8	
	[cr(CO)5]2tet	t	0.96t(8)	2.57t(6)	1.83	6.5	
	[W(CC) ₅ ] ₂ bett		0.92t(8)	2.81g(7)	2.00	6.7	
	NOTES: - s	pectra reco	orded in C ₆ D	5,			
	- t = triplet; q = quartet; coupling constants are in						
	parentheses (Hz),						
	- chemical shifts are ppm downfield from TMS,						
	- c	hemical sha	ifts for ary	l protons (	Ar-H) ar	e the centre	28
	C	of the obser	rved multipl	ets			
	to	omplex dec	omposed				

The results show that, except for  $[V(CC)_5]_2$  bmtt, the hydrogen nuclei adjacent to the thioether donors are effectively shielded on complexation to the bulky  $V(CC)_5$  groups as upfield shifts in the resonance frequencies are observed.

# ¹³C nmr Spectra

The ¹³C nmr spectrum was recorded for  $[w(CC)_5]_2$ bmtt and this is discussed in Chapter 2 along with the spectra of the chelated-ligand complexes,  $w(CC)_4 I$  (M=Cr,W and I=bmtt, bett).

#### 1.5 REACTIVITY STUDIES

The reactivity studies were designed to determine the ease with which the bridged-ligand complexes convert to the chelated ligand complexes and to determine the stability of the thioether metal bonding towards replacement by triphenylphosphine and triphenylphosphite. For the experiments,  $[w(CC)_5]_2$  bett was used and the experimental details are given in the Appendices.

# i) <u>Reflux [W(CC)5]</u> 2 bett in n-hexane

The IR spectrum of the solution after about one hour of refluxing shows that the conversion

 $[\mathbb{W}(CC)_5]_2$  bett  $\longrightarrow \mathbb{W}(CC)_6 + \mathbb{W}(CC)_4$  bett has occurred. The six carbonyl-stretching frequencies that are assigned to  $\mathbb{W}(CC)_4$  bett (Figure 7a) almost correspond to those observed for  $Cr(CO)_4$  bett (Chapter 2) for which the multiplicity (only four  $\mathbf{v}(CO)$  modes are expected) is postulated to be due to conformational isomerism. Cnly four peaks were observed in the spectrum (cyclohexane solution) of the photochemically synthesized  $\mathbb{W}(CC)_4$  bett (Chapter 2).

The conversion of the bridged-ligand complex to a chelatedligand complex was similarly observed for  $[W(CC)_5]_2$ dto, where dto is 3,6-dithiaoctane.¹⁹⁸

ii) <u>Reflux [W(CO)₅]₂bett with excess Triphenylphosphine</u> After 2.5 hours of refluxing in cyclohexane, an IR spectrum



Reflux with excess F(CPh)3



KEY TO FIGURE 7c

Species	Identity
<u>i</u>	[%(CO) ₅ ] ₂ bett
<u>ii</u>	$W(CO)_5 P(CFh)_3$
<u>iii</u>	W(CC) ₄ bett
<u>iv</u>	5:(CC) ₆
<u>v</u>	$\underline{\text{cis}}$ -W(CO) ₄ [P(CPh) ₃ ] ₂

On refluxing  $[W(CC)_5]_2$  bett with  $F(CPh)_3$ , two distinct processes are occurring:

a) Within the first 2C minutes, the complete breakdown of  $[W(CO)_5]_2$  bett occurs, via two competing pathways (below).

b) Cver a period of 2 hours, the complete conversion of  $W(CO)_4$  bett to <u>cis-W(CO)_4</u> [P(OPh)_3]_2 occurs.



 $\underline{cis}$ -W(CO)₄[P(OPh)₃]₂ + bett

	¹ H nmr SPECTRUM, REFIUX	[W(CO) ] 2 bett WITH ]	FFh ₃
PRCTONS	bett AFTER REFIUX	W(CC) ₄ bett	hett
Ar-CH ₃	2.46	2.42	2.35
-SCH ₂ C <u>H</u> 3	1.32, 1.45, 1.57 1.28, 1.40, 1.53	1.24, 1.35, 1.49	1.16, 1.2C, 1.30, 1.35, 1.43, 1.47
-SCH2-	3.C3, 3.14 [†]	2.99, 3.C7, 3.24 3.33	2.71, 2.75. 2.83, 2.86, 2.95, 2.98, 3.06, 3.09

TABLE 8

- spectrum recorded in CDCl₃; chemical shifts are NOTES: ppm downfield from TMS,

t only two peaks can be distinguished above the noise. The chemical shifts for bett after refluxing suggest that the ligand remains coordinated and that the tetracarbonyl complex that is apparent in the IR spectrum, is W(CC)₄bett.

and the ¹H nmr spectrum of the products indicated that the colourless solution contained  $V(CC)_5 PFh_3$ ,  $W(CC)_4$  bett and  $W(CC)_6$ . Figure 7b shows the IR spectra and the assignments while in Table 8, the ¹H nmr spectrum of the products is compared with the known spectra for the free ligand and  $W(CC)_4$  bett. The significance of these results is discussed below.

# iii) Reflux [W(CO)5] bett with excess Triphenylphosphite

The carbonyl complexes of  $P(CPh)_3$  exhibit  $\mathbf{v}(CC)$ absorptions that are sufficiently removed from those of the analogous thioether complexes to enable unambiguous assignments to be made.

The products from this reaction were monitored by infrared spectroscopy at regular intervals and the spectra and their assignments are shown in Figure 7c. The results can be interpreted as outlined in the flow diagram accompanying Figure 7c and this is referred to in the following discussion.

#### DISCUSSION

The observed conversion of  $W(CC)_4$  bett to  $cis-W(CC)_4[P(OPh)_3]_2$ in the presence of excess  $P(OPh)_3$  is consistent with  $P(OPh)_3$ being a stronger ligand than  $P(Ph)_3^{228}$  as the analogous conversion was not observed in the presence of an excess of the latter ligand. This supports the observation by Ainscough <u>et al</u> ¹⁹⁸ that chelated dithioether ligands are reasonably stable towards replacement by  $P(Ph)_3$ . Detailed kinetic and substitution studies on the replacement of chelated dithioether ligands (such as  $MeSCH_2CH_2SMe$  and  $tBuSCH_2CH_2StBu$ ) by phosphite ligands, indicate that substitution proceeds largely through a ringopening mechanism.^{197,201,202}

#### 1.6 MASS SFECTRAL STUDY

Although the mass spectra of metal carbonyl complexes appear, in principle, to be a convenient means of determining
the composition of a sample, an inherent danger is the assumption that the highest mass peak observed in the spectrum is a direct result of ionisation of the molecular species in the sample.²³³ This is particularly evident in the mass spectrum of  $[\mathbb{W}(CC)_5]_2$ bmtt which indicated that the <u>apparent</u> parent molecular ion has the composition  $[\mathbb{W}(CO)_4 \text{ bmtt}]^+$ . This ion undergoes successive CO loss in the normal manner²³³ to yield the ions  $[\mathbb{W}(CO)_3 \text{ bmtt}]^+$ ,  $[\mathbb{W}(CO)_2 \text{ bmtt}]^+$ ,  $[\mathbb{W}(CO) \text{ bmtt}]^+$  and  $[\mathbb{W} \text{ bmtt}]^+$ . The instability of Group VIE carbonyl complexes under the conditions of volatilisation and electron bombardment that are employed in mass spectral studies, has also been observed for complexes of  $\mathrm{RSCH}_2\mathrm{CH}_2\mathrm{SR}$  (R=p-XC₆H₄)¹⁹⁴and some monodentate bis-phosphine complexes,  $\mathbb{M}(\mathrm{CO})_5\mathrm{L}^{234}$ 

The most unusual feature of the spectrum is the appearance of peaks due to the ions  $[V_{(CO)}_{E}]^{+}$  and  $[W_{(CO)}_{7}]^{+}$ , although they are relatively lower in abundance than the highly abundant  $[W_{(CO)}_{6}]^{+}$  ion. A very weak feature at about m/e = 5.68 appears to be  $W_{(CO)}_{5}$ bmtt, but the origin of this species is unknown. It may be present as an impurity in the sample of  $[W_{(CO)}_{5}]_{2}$ bmtt but it is also possible that it could be formed from the decomposition of  $[W_{(CO)}_{5}]_{2}$ bmtt in the mass spectrometer.

### SYNTHESIS OF THE BRIDGED-LIGAND COMPLEXES

As these complexes were usually isolated in conjunction with the chelated-ligand complexes  $M(CC)_4$  bmtt and  $M(CC)_4$  bett, their syntheses are described in Chapter 2.

#### CHAPTER 2

#### CHELATED-LIGAND CCMPLEXES

#### CF

### 3,4-BIS(AIKYLTHIO)TOLUENE

### (ALKYL=METHYL, ETHYL)

The Group VIB metal carbonyl, chelated-ligand complexes have the basic structure

# (CO)4W<1>

and these are analogous to  $\underline{cis}$ -M(CC)₄L₂ complexes where L is a monodentate ligand. Both types are generally synthesized in the reaction,

 $M(CC)_5 THF + I \longrightarrow L (or 2L) \xrightarrow{\text{ultraviolet}} (CC)_4 M \overset{\text{L}}{\overset{\text{L}}} (or \underline{cis} - M(CC)_4 L_2)$ but the accompanying formation of bridged-ligand complexes  $([M(CO)_5]_2 I)$  or  $\underline{trans} - M(CC)_4 L_2$  if L is monodentate, requires the careful separation and purification of the products on silica-gel columns (see Introduction to Chapter 1). As the ligands that were used in this study are bidentate, the formation of the  $\underline{trans}$  complexes was eliminated.

The chelated-ligand complexes that are discussed in Chapter 2, are given the general designation  $\mathbb{M}(CO)_4 \mathbb{I}_2$  and it is implied that  $\mathbb{I}_2$  is a bidentate ligand, such as bmtt or bett.

#### 2.1 INFRARED SPECTRA (CARBONYL-STRETCHING ABSORFTIONS)

The stretching modes that are expected for  $C_{2v}$  $\underline{cis}$ -M(CO), L₂ complexes are shown in Figure 8 and the assignment of these modes follows from literature-presented arguments (see Chapter 1).

#### FIGURE 8

cis-M(CO)₄L₂ CARBONYL-STRETCHING MODES A,(1) B2 A,(11) Β,

The four IR-active absorptions that are predicted from group theory are generally observed in the spectra of chelatedligand complexes of dithioether ligands and in this respect the spectra of  $Cr(CO)_4$  bmtt,  $W(CO)_4$  bmtt and  $W(CC)_4$  bett are normal in cyclohexane solution. A typical spectrum is shown in Figure Sa. The spectra of Cr(CC)₄bett,  $Mo(CO)_4$  bett,  $Mo(CC)_4$  bmtt and  $W(CO)_4$  bett (synthesized by refluxing  $[W(CO)_5]_2$  bett in n-hexane:- see Chapter 1) though, are quite unusual in that an apparent splitting of at least one of the  $\mathbf{v}(\text{CO})$  absorptions below 2000 cm⁻¹ is observed. The spectrum of Cr(CC)₄ bett is shown in Figure 9b and an example of the Mo(CC)₄L₂ complexes in Figure 9c. The spectral assignments are given in Table 9a for all of the chelated-ligand complexes.

The splitting of the carbonyl-stretching modes in the spectra of <u>cis-M(CC)</u>, L₂ complexes has not been reported before and the spectra of the analogous  $M(CO)_4$  FDS complexes,¹⁹⁵ (M=Cr, No, W; FDS = o-bis(methylthio)benzene) were normal.





V(CO) APSCHITICNS FOR N(CO) 12 COMPLEXES

CONFIEX	$A_{1}(I)/cm^{-1}$	A1(II)	<u>B</u> 1	<u>B</u> 2
Cr(CC) ₄ br	ntt 2C2C(w)	192C(m)	19C8(s)	1888(s)
t Cr(CO) ₄ be	ett 2C2C(m)	1525(s) 1918(s)	19С9(в) 19С3(в)	1889(s)
t ⊮o(CO) ₄ br	ntt 2C27(m)	1925(sh)	1916(s) 1909(sh)	1894(s)
t Mo(CO)400	ett 2612(m)	1928(s)	1920(s) 1914(s)	1896(s)
W(CC) bm	tt 2(25(w)	1918(m)	1907(s)	1893(s)
W(CC) bet	tt 2C25(m)	1918(m)	19C5(s)	1891(s)
1	[2C27(m)]	[1924(m-s)] [1919(m-s)]	[19C7(s)] [19C3(s)]	[1895(s)]

NCTES: - all spectra recorded in cyclohexane solution,

- t these spectra also have very weak absorptions at 1859, 1862, and 1866  $\text{cm}^{-1}$  respectively,
- absorptions in parentheses ( [ ]) are for a sample of  $W(CO)_4$  bett that was prepared by refluxing  $[W(CC)_5]_2$  bett.

	C 2
	C D
TUTTU	

#### CCTTCN-KRAIHANZET FORCE CONSTANTS

<u> </u>						
CCMPLEX	$\underline{K}_1 (\underline{N.m}^{-1})$	$K_{2}(N.m^{-1})$	REFERENCE			
M=Cr						
Cr(CO) ₄ diphos	1492	1566	234			
Cr(CC) ₄ bmtt	1404	1542	This Work			
$Cr(CO)_{4}[I_{2}^{SMe}]$	1 398	1562	207			
Cr(CO) ₄ o-bmtb	1 396	1559	195			
Cr(CO) ₄ dto	1 386	1557	198			
Cr(CO) ₄ Me ₄ ed	1 338	1506	238			
M = W						
W(CC) ₄ diphos	14C4	1579	234			
W(CO) ₄ bmtt	1 397	1571	This Work			
W(CO) ₄ bett	1 393	1571	This Work			
W(CO) ₄ o-bmtb	1 388	1581	195			
$W(CC)_4[I_2^{SEt}]$	1 38 3	1594	207			
₩(CO) ₄ dto	1 367	1585	198			

M(CC), L. CCL'PLEXES

- NCTES: all spectra recorded in saturated hydrocarbon solvents,
  - except for complexes of bmtt and bett, all force constants were calculated from published IR data,

- estimated errors are  $\pm 4$  N.m⁻¹.

Neither the  $A_1(II)$  nor the  $B_1$  and  $B_2$  modes are degenerate in <u>cis-M(CO)</u>₄I₂ complexes and so for each complex the presence of at least two conformational isomers appears to be the most plausible explanation for the observed spectra. There is no support for this suggestion though, in the ¹H nmr and ¹³C nmr spectra where they have been recorded and this may be due to the rate of interchange between the conformational isomers being too rapid for the nmr time scales.

Conformational isomerism was observed in the complexes  $(h^5-C_5H_5)Fe(CO)_2(h^1-C_5H_5)$  and  $(h^5C_5H_5)Mo(CC)_2C_3H_5$  as a splitting of the carbonyl-stretching absorptions¹²⁹.

Another unusual feature of the spectra of  $M(CC)_4$  bett (M=Cr,Mo) and  $Mo(CC)_4$  bmtt, is the appearance of a weak carbonyl-stretching absorption at about 1860 cm⁻¹, coincident with the observation of the split absorption modes.

### 2.2 FCRCE CONSTANT CAICULATIONS

The calculation of Cotton-Kraihanzel approximate CO force constants for  $\underline{cis}$ -M(CO)₄L₂ complexes, and the interpretation of the resulting parameters, is analogous to that of the bridged-ligand complexes that were discussed in Chapter 1.

#### DISCUSSION

There is a paucity of infrared data for  $\underline{cis}-M(CC)_4L_2$  complexes in saturated hydrocarbon solvents, but as Table 9b shows, some trends are apparent.

### i) Chromium Complexes

There appears to be little difference between an alkyl dithioether ligand such as 3,6-dithiaoctane and the dithioether ligands 3,4-bis(methylthio)toluene, ortho-bis(methylthio)benzene and 1,2-tetrakis(methylthio)ethylene where  $\Pi$ -bonding systems are adjacent to the thioether donors. These results are in

agreement with the results for the bridged-ligand  $[Cr(CC)_5]_2I$  complexes that were discussed in Chapter 1.

### ii) <u>Nolybdenum Complexes</u>

The multiplicity of the carbonyl-stretching absorptions for the <u>cis-Mo(CC)</u>₄L₂ complexes (I=bmtt, bett) precludes the calculation of force constant data for these complexes, but  $K_1$  for Mo(CC)₄(ortho-bis(methylthio)benzene) is 14C8  $\pm$  4 N.m⁻¹ and this is similar to  $K_1$  (14C4  $\pm$  4 N.m⁻¹) for Mo(CC)₄(3,6dithiaoctane). The force constants were calculated from IR data published in References 195 and 198 respectively.

### iii) <u>Tungsten Complexes</u>

The complex W(CO)₄dto (dto=3,6-dithiaoctane) has a lower <u>trans</u>-carbonyl force constant (K₁) than the analogous complexes of bmtt, bett, ortho-bis(methylthio)benzene and 1,2-tetrakis (methylthio)ethylene. This suggests then, that the latter ligands are better  $\pi$ -acceptors and / or poorer  $\sigma$ -donors than dto in <u>cis</u>-W(CC)₄I₂ complexes.

### 2.3 ELECTRONIC SPECTRA

The weakness of the selection rules for complexes of  $C_{2v}$ symmetry does not make it possible for a simple molecularorbital model to be set up as in the case of the  $C_{4v}$  bridgedligand complexes (Chapter 1).²²⁸ Braterman <u>et al</u> suggest however, that the lowest frequency absorption found in <u>cis-M(CO)</u>₄I₂ complexes may have both charge transfer and d-d character. While this is consistent with the observation that where I is a substituted phosphine donor the absorptions occur at higher energies²²⁸ than where L is a substituted amine donor,²³⁹ it does not explain why the complexes of the dithioethers, bmtt, bett and dto, have absorption energies similar to that of a phosphine donor (Table 1Cb).

	<u>L</u> 2.	= bmtt	L_2	bett
METAL	ABSCRFTICN (nm)	$\epsilon$ (l.mol. ⁻¹ cm ⁻¹ )	APSCRFTICN	e
Cr	248	1 3663	24C	18974
	295(sh)	3514	331(sh)	2744
	333(sh)	1766	374(sh)	1 385
	374(sh)	1103		
No	252	18947	256	15714
	289(sh)	5842	296(sh)	6857
	3C7(sh)	3609	358	1736
	4C7	1188		
W	243	2C513	244	22281
	293(sh)	7872	25C(sh)	2114C
	368	1906	287(sh)	8860
			365	1991
			<u>ca</u> 397(sh)	-

### TAPLE 1Ca

ELECTRONIC SFECTRA FOR M(CO) 12 COMPLEXES

NOTES: - all spectra recorded for Abs. EtCH solutions,

- sh = shoulder; extinction coefficients are approximate.

#### TABLE 1Cb

LOWEST ENERGY MAXIMA, M(CO) 4L2 COMPLEXES					
COMPIEX	DCNCR	$\lambda_{max}(nm)$	SCIVENT	REFERENCE	
M=Cr					
Cr(CO) ₄ (PPh ₂ ) ₂ NMe	Р	373	Methanol	228	
Cr(CO) ₄ dto	S	372	Ethanol	246	
Cr(CO) ₄ bmtt	S	374 (sh	Ethanol	This Work	
Cr(CO) ₄ bett	S	374(sh)	Ethanol	This Work	
Cr(CO) ₄ dte	S	400	Ethanol	194	
Cr(CO) ₄ mte	S	4C4	Ethanol	194	
Cr(CO) ₄ en	N	424	Methanol	239	
$\underline{W} = \underline{W}$					
$W(CO)_4(PPh_2)_2^{NMe}$	P	363	Methanol	228	
W(CO) ₄ dto	S	364	Ethanol	246	
₩(CO) ₄ bett	S	365, <u>ca</u> 397(sh)	Ethanol	This Work	
W(CO) ₄ bmtt	S	368	Ethanol	This Work	
W(CC) ₄ en	. N	397, 45C(sh)	Methanol	239	
W(CO) ₄ tmeda	N	402, 45C(sh)	Eenzene	240	
W(CO) ₄ tn	Ν.	405, 450(sh)	Methanol	239	

### ELECTRONIC SPECTRA

NOTE: - where two maxima are recorded, tentative assignments are discussed in text. The electronic absorption maxima for the complexes  $M(CC)_4 I_2$  (M=Cr, Mo, W;  $I_2$  = bmtt, bett) are presented in Table 1Ca. It appears from a comparison with the spectra for  $W(CO)_4 I_2$  complexes, where  $I_2$  is a saturated, substituted diamine ligand ²³⁹ or I is a substituted pyridine ligand,²⁴⁰ that the weak, low energy shoulder in the spectrum of  $W(CC)_4$  bett can be assigned as the first singlet—triplet transition. This transition is "buried" in the tail of the 366 nm maximum in the spectrum of  $W(CO)_4$  bmtt, while for the amine complexes the main visible maximum (corresponding to the <u>ca</u> 365 nm absorption in the thioether complexes) was assigned as the singlet — singlet transition.²⁴⁰

### 2.4 NUCLEAR MAGNETIC RESONANCE STUDIES

# ¹³C nmr Spectra

#### Introduction

Carbon-13 nmr spectral studies on Group VIB carbonyl complexes have now firmly established that the extent of  $M\rightarrow CO$   $\Pi$ -backbonding is one of the most important factors determining the ¹³CO chemical shifts.²⁴¹ These studies have shown that as the  $\Pi$ -acceptor ability of the substituent ligands decreases, the ¹³CO resonances move progressively downfield. That is, the ¹³CO resonances are deshielded by an increase in the electron population at M. These effects consequently enable excellent correlations to be observed between ¹³CC chemical shifts and other physical measurements such as Cr-CO bond lengths,²⁴¹ IR stretching frequencies²⁴¹ and, for a series of  $W(CO)_5L$  complexes, Cotton-Kraihanzel force constants. ^{242,243}

Despite the advent of high resolution, pulse Fourier Transform techniques, there is a paucity of  $^{13}C$  nmr data for

both the monosubstituted and disubstituted Group VIB complexes of thioether ligands. This is primarily due to the often encountered problem of poor complex stabilities in the concentrated solutions that are required if the spectra are to be recorded in a reasonably short time.

The spectra of  $[W(CO)_5]_2$ bmtt,  $W(CO)_4$ bett and  $Cr(CC)_4I_2$ ( $I_2$ =bmtt, bett) were recorded in this study despite some of the problems that were encountered with unstable solutions. Results and Discussion

### i) ¹³CO Chemical Shifts

The <u>cis</u> and <u>trans</u> carbonyl groups (<u>trans</u> implies that the CC is <u>trans</u> to the ligand) are readily assigned as the latter are always deshielded with respect to the <u>cis</u> carbonyl groups. 244,245

The results for these complexes are summarized in Table 11a and a characteristic spectrum is shown in Figure 1(a. Some  ${}^{13}CO$  chemical shift data for  $W(CO)_5 L$  complexes has been plotted as a function of their Cotton-Kraihanzel force constants (K₁ and K₂) in Figure 1(b. Mann  243  has commented on the solvent dependence of both the IR spectra and the  ${}^{13}CO$  chemical shifts and this has been taken into account in the compilation of the data.

Both graphs show the trends in the net basicities of ligands that are expected on the basis of previously established results. Thus, in terms of the ability of a ligand to place electronic charge onto  $W(CC)_5$ , it can be seen that phosphite ligands place the least charge and this can be related to these ligands' superior  $\Pi$ -accepting ability (see Introduction). Although there is no other suitable data for  $W(CO)_5$ I complexes of thioether ligands, the graphs suggest that bmtt has a net

CCUPLEX	cis- 813co	trans-813co	SCLVENT	REFERENCE
M=Cr				
Cr(CO) ₄ bmtt	215.1	226.8	CDC1 3	This Work
Cr(CO) ₄ bett	215.4	226.6	CDC1 3	This Work
Cr(CO) ₄ L ^{SMe} 2	215.9	227.0	CD2C12	207
¥=₩				
W(CO) ₄ diphos	204.6	5 <del>4</del> 5		247
cis-W(CO)4[PEt3]2	204.4	204.7	CH2C12	243
W(CO) ₄ bett	200.4	207.7	CDC1 3	This Work
[w(CO) ₅ ] ₂ bmtt	196.9	199.9	CDC13	This Work

TABLE 11a 13<u>CO CHEVICAL SHIFTS</u>

NOTES: - Chemical shifts are ppm downfield from TMS,

- the  13 CO resonances for Cr(CO)₆ and W(CO)₆ are at 212.1 ppm  247  and 192.1 ppm  247  respectively,
- the data for some M(CC)₅L complexes of thioether ligands (in various solvents) can be found in References 204 and 206.

### FIGURE 10a





### FICURE 10b

trans-¹³CO Chemical Shifts vs. trans-CO Force Constants



- n = 1 for all complexes except that of bmtt (n = 2)

- for literature references, see Figure 1Cc.

<u>FIGURE 1(c</u> cis-¹³CO Chemical Shifts vs. cis-CC Force Constants

# [W(CC)₅]_nL Complexes



Ligand	$\underline{\text{Ref.}(\mathbf{\delta}^{13}\text{CO})}$	<u>Ref.</u> $(K_1 \text{ and } K_2)$
4-picoline	231	226
piperidine	231	2 26
C ₆ ^H ₁₁ ^{NH} ₂	242	226
P(Ph) ₃	242	2 2 6
P(Ph) ₂ OEu	242	226
bmtt	This work	This work
P(CBu) ₃	242	226
P(CPh) ₃	242	242

	C CH	EMICAL SHIFTS	OF LIGANDS AND	COMPLE	XES		
LIGAND/COMPLEX	-SCH3	-SCH2 CH3	-SCH2CH3	-CH3-	C1	<u>c3, c4</u>	C2, C5, C6
bmtt-in CI	DC1 ₃ 16.11,16.76			20.98	136.C7	133.22,137.93	126.49,126.98 127.86
Cr(CC) ₄ bmtt-in CI	30.55,30.80			2(.89	140.20	134.93,138.34	130.55,131.20 131.85
bmtt-in C ₆	5 ^D 6 15.75,16.48			2(.94	135.87	134.41,138.79	126.62,127.51 128.15
bett-in CI	0013	13.83,14.08	26.98,27.63	20.98	136.31	132.49,137.69	126.65,128.76 129.98
Cr(CO) ₄ bett-in CI	0013	13.18	41.35,41.51	20.89	140.20	134.60 [†]	13C.46,132.41 132.96
W(CC) ₄ bett-in CI	^{DC1} 3	13.67	44.19 <b>†</b>	20.81			
bett-in C ₆	^D 6	14.04,14.29	27.11,27.68	21.02	136.27	133.51,138.54	126.94,129.29 130.35

TABLE 11b

- chemical shifts are ppm downfield from TMS NOTES:

 $\boldsymbol{\varphi}$  assignments are non-specific

t only one resonance was observed. Ligand Carbon atoms are numbered as follows:

Me. 3/SR

basicity similar to that of phosphorus ligands in that the electronic charge on  $W(CO)_5$  is similar for both types of ligand.

The spectra of the  $Cr(CC)_4L_2$  complexes ( $L_2$ =bmtt, bett) indicate that there is very little difference between the net basicities of bmtt, bett and 1,2-tetrakis(methylthio)ethylene and this is supported by the infrared spectra of the ligands' respective complexes.

### ii) ¹³C Chemical Shifts of the Ligands

The assignments and chemical shifts of the  13 C resonances for the uncoordinated and coordinated ligands are summarized in Table 11b. As expected on complexation, most of the ligand  13 C resonances, including the aryl  13 C atoms, shift downfield. Downfield shifts are not observed though, for the Fh-CH₃ resonance of both ligands and for the -SCH₂CH₃ resonance of bett.

The criteria on which the spectral assignments were based, are summarized in the Experimental section of the Appendices.

### ¹H nmr Spectra

Unlike the bridged-ligand complexes that were discussed in Chapter 1, the resonance absorptions of the alkyl side-chains move downfield on ligand complexation. This is consistent with a removal of electronic charge from the thioether donors. For the  $M(CO)_4$  bmtt complexes (M=Cr, Mo, W) the spectral resolution is sufficient to observe the inequivalence of the -SCH₃ protons. The ¹H chemical shifts are recorded in Table 12.

	H nmr DATA,	$\underline{M(CC)}_{4\underline{I}_{2}}$ <u>CCMP</u>	LEXES CF bmtt,	bett	
COMPLEX	-SCH3	-SCH2CH3-	-SCH2-	Ar-CH3	Ar-H
bmtt	2.40,2.42			2.28	7.0
Cr(CO) ₄ bmtt	2.69,2.72			2.41	7.4
No(CO) ₄ bmtt	2.74,2.78			2.40	7.4
W(CO), bmtt	2.88,2.91			2.41	7.2
bett		1.3Ct(8)	2.89q(7)	2.35	6.9
		1.35t(8)	2.92q(7)		
Cr(CO), bett		.1.46t(8)	3.C9q(7)	2.47	7.4
Ko(CO) bett		1.5Ct(8)	3.14t(7)	2.56	7.4
W(CC) ₄ bett		1.35t(8)	3.16q(7)	2.42	7.3
NOTES: - sj	pectra record	led in CDCl ₃ , c	hemical shifts	are ppm	
đ	ownfield from	mis,			
- t	= triplet;	q = quartet; c	oupling constar	nts are in	

- chemical shifts for aryl protons (Ar-H) are the centres

TABLE 12

of the observed multiplets,

t complex decomposed.

parentheses (Hz),

#### 2.5 MASS SPECTRA

The mass spectral studies on  $Cr(CO)_4$  bmtt,  $Mo(CC)_4$  bmtt and  $W(CC)_4$  bmtt show that these complexes have a greater stability than  $[W(CO)_5]_2$  bmtt (Chapter 1). The expected parent molecular ions are observed for all three complexes but the presence of a very small quantity of [W(CC)5bmtt]+ was indicated for the sample of  $W(CO)_4$  bmtt. This molecular ion was also present in the mass spectrum of  $[V(CO)_5]_2$  bmtt (see Chapter 1).

An outstanding feature of the spectrum of  $Cr(CO)_{A}$  bmtt, is the absence of a peak for the ion  $[Cr(CC)_{3}bmtt]^{+}$ . The analogous ions are observed for the molybdenum and tungsten complexes. This phenomenon has been previously observed for chromium carbonyl complexes of ligands containing phenyl rings 234 and it was postulated that the absence of the ion  $[Cr(CC)_{3}I]^{+}$  is due to the preferential formation of a complex with the structure shown in Figure 11a.



A similar complex, possibly having one of the structures postulated in Figures 11b and 11c, may also explain the absence of the  $[Cr(CO)_3 bmtt]^+$  ion in the mass spectrum of  $Cr(CO)_4 bmtt$ .

The spectra of  $Mo(CC)_4$  bmtt and  $W(CC)_4$  bmtt show ion peaks with masses corresponding to  $Mo(CO)_7^+$  and  $W(CC)_7^+$ respectively. While  $W(CC)_4$  bmtt shows peaks which can be attributed to a  $W(CO)_8^+$  ion, the analogous ion for  $Mo(CO)_4$  bmtt is not observed. These ions have never been reported in the literature for other mass spectral studies of Group VIB carbonyl complexes.

#### SYNTHESES

The general photochemical method that is used in the synthesis of the Group VIB carbonyl complexes under consideration in Section II of this thesis, is described in the Appendices.

NCTE: In all preparations where solvent extractions are carried out, the extracts are filtered through Kieselguhr before continuing.

### <u>Tetracarbonyl(3,4-bis(methylthio)toluene)chromium(0)</u>

After the addition of 3 mmole (0.566 g.) of ligand (dissolved in THF) to 3 mmole (C.66C g.) of irradiated  $Cr(CO)_6$ , the irradiation was continued for 75 minutes. The THF was removed (rotary evaporator) and excess  $Cr(CO)_6$  was sublimed, <u>in vacuo</u>, from the residual oil. The IR spectrum (cyclohexane solution) of this oil showed the presence of both tetracarbonyl and pentacarbonyl species. Their separation was achieved on a silica-gel (100-200 mesh) column eluting with pentane and then benzene.

The tetracarbonyl complex (benzene fraction) was isolated by reducing the solvent volume and washing the resulting yellow crystals with cold pentane. They were recrystallized from pentane and air dried.

### YIELD : 0.436 g.(42%)

A shorter irradiation time (e.g. 60 minutes) gave a reduced yield (0.373 g.)

Decacarbonyl-µ-(3,4-bis(methylthio)toluene)dichromium(0)

The solvent was removed <u>in vacuo</u> from the pentane fraction obtained in the preparation of  $Cr(CO)_4$  bmtt (above). The resulting impure crystals were washed with pentane to give a dry, yellow product,  $[Cr(CO)_5]_2$  bmtt.

### YIELD : C.040 g. (5%)

 $[Cr(CO)_5]_2$ bmtt is better synthesized by using a 2:1 ratio of  $Cr(CO)_6$  to bmtt and stopping the irradiation after the addition of the ligand. On removing the THF, the residue was washed with pentane and the powdery, light yellow crystals were filtered off.

### YIELD : 57%

### <u>Tetracarbonyl(3,4-bis(methylthio)toluene)molybdenum(C)</u>

The ligand (3 mmole, C.566 g.) was added to an irradiated solution of  $Mo(CC)_6$  (3 mmole, C.752 g.) and the irradiation was continued for a further 1.5 hours. IR spectra of solution samples taken after 1C and 6C minutes of irradiation, showed a reduction in the concentration of a pentacarbonyl complex and a corresponding increase in the concentration of a tetracarbonyl complex. On removing the THF and residual  $Mo(CC)_6$  in vacuo, the residue was extracted into pentane and crystall-ized by concentrating and cooling the solution. The oil which remained after the pentane extraction, was purified on a silicagel column using a benzene-pentane eluent (7C:3C). The second yellow band which came off the column contained  $Mo(CC)_4$  bmtt and this was crystallized on extraction into pentane, as cutlined above.

### YIELD : 0.346 g. (29%)

### Tetracarbonyl(3,4-bis(methylthio)toluene)tungsten(0)

The ligand (2 mmole, 0.378 g.) was added to an irradiated solution of  $W(CO)_6$  (2 mmole, 0.704 g.) in THF and the irradiation was continued for 105 minutes. On removing the THF and unreacted  $W(CO)_6$ , the residue was extracted into pentane. Both penta- and tetracarbonyl complexes were present in the extracts and these were separated on a silica-gel column with a pentane-benzene (70:30) eluent. When the two bands on the

column were sufficiently separated, the benzene concentration was gradually increased until the second band was finally eluted with pure benzene. This band contained W(CC)₄bmtt which was recrystallized from a pentane solution.

YIEID : 0.161 g. (17%)

If, after adding the ligand, the irradiation time is decreased to about 75 minutes, the yield is 5% ((.C44 g.). <u>Decacarbonyl- $\mu$ -(3.4-bis(methylthio)toluene)ditungsten(0)</u>

The solvent was removed ( $\underline{in} \underline{vacuo}$ ) from the solution containing the first band from the column in the preparation of W(CC)₄bmtt and pentane was added to the residual oil. Cooling the mixture precipitated light yellow, powdery crystals.

YIELD : C.264 g. (32%)

### Tetracarbonyl(3,4-bis(ethylthio)toluene)chromium(C)

After the addition of 3 mmole of bett (C.636 g.) to 3 mmole of irradiated  $Cr(CC)_6$  (C.660 g.) in THF, the solution was irradiated for a further 45 minutes before the solvent and excess  $Cr(CO)_6$  were removed <u>in vacuo</u>. The crude product, which contained a pentacarbonyl "impurity", was crystallized from pentane extracts of the residual crystals and oil. The crystals of  $Cr(CO)_4$  bett were filtered off and washed with cold pentane, which removed the impurity.

YIELD : C.336 g. (30%)

### <u>Decacarbonyl- $\mu$ -(3,4-bis(ethylthio)toluene)dichromium(0)</u>

About 15 minutes after adding 2 mmole of bett to an irradiated solution of  $Cr(CC)_6$  (4 mmole), the THF was removed <u>in vacuo</u>. The residual, light yellow crystals were placed under vacuum for about 45 minutes, then washed with pentane and filtered.

### YIELD : 0.427 g. (36%)

### <u>Tetracarbonyl(3,4-bis(ethylthio)toluene)molybdenum(0)</u>

This complex was isolated from an attempt to synthesize  $[Mo(CO)_5]_2$  bett using a 2:1 ratio of  $Mo(CC)_6$  to bett and the same method as for  $[Cr(CO)_5]_2$  bett. Considerable decomposition occurred during the pentane extractions however, giving  $Mo(CO)_6$  and a brown material. These were filtered through Kieselguhr and the light yellow filtrates were concentrated then cooled to yield the pale yellow crystals of  $Mo(CC)_4$  bett. These were washed with cold pentane and vacuum dried.

YIELD : C.138 g. (22%)

### Tetracarbonyl(3,4-bis(ethylthio)toluene)tungsten(0)

A slight excess of bett (2.25 mmole) was used in an attempt to prevent the formation of  $[W(CC)_5]_2$  bett. The ligand was added to 2 mmole of irradiated  $W(CC)_6$  and the irradiation was continued for 9C minutes.

After removing the THF, hexane extracts of the residue were filtered through Kieselguhr, the solvent removed and the residual brown oil (containing penta- and tetracarbonyl complexes) left under vacuum overnight. The complexes were separated on a silica-gel column using toluene-hexane (50:50) eluent. The second band on the column (eluted with neat toluene) contained  $W(CO)_4$  bett which was crystallized from a cyclohexane solution.

### YIELD : 0.190 g. (19%)

In a second preparation where the solution was irradiated for 6C minutes after adding the ligand, the yield was only 5% (C.048 g.).

# $\underline{Decacarbonyl-\mu-(3,4-bis(ethylthio)toluene)ditungsten(0)}$

The same method as for the preparation of  $[Cr(CC)_5]_2$  bett was used, with a 2:1 ratio of  $W(CC)_6$  to bett. After the THF

was removed, the residual oil was left to crystallize under vacuum for 2 hours. The crystals were washed with pentane and dried under vacuum.

### YIELD : C.643 g. (75%)

### <u>PREPARATION CF UNSTABLE C₆F₅SEt CCMPLEXES</u> <u>Pentacarbonyl(ethylthiopentafluorobenzene)chromium(C)</u>

3 mmole of the ligand (C.685 g.) were added to 3 mmole of irradiated  $Cr(CC)_6$  (C.660 g.) and the solution was left to react for 15 minutes. While the THF was being removed, the solution showed signs of decomposition and the residues from cyclohexane extracts of the reaction products are also unstable. The decomposition products are green.

### Pentacarbonyl(ethylthiopentafluorobenzene)tungsten(C)

Using 2 mmole of ligand and 2 mmole of W(CC)₆ and the same preparative procedures as for the chromium complex, similar decomposition problems were encountered. The decomposition products are blue.

COMPLEX	CCLCUR	M.P/ ^O C	ANAI YSE	S: Calc.(F	ound)/%
			<u>C</u>	H	S
[Cr(CC) ₅ ] ₂ bmtt	yellow	1C4-1C7	46.20	2.13	11.28
			(40.39)	(2.39)	(11.45)
[Cr(CO) ₅ ] ₂ bett	pale yellow	94-97	42.30	2.71	1C.76
			(42.53)	(2.93)	(1C.45)
$[W(CO)_5]_2^{\text{bmtt}}$	pale yellow	108-111	27.45	1.45	7.71
			(27.88)	(1.95)	(8.86)
[W(CC) ₅ ] ₂ bett	pale yellow	96-97	2º.4C	1.88	7.46
-			(30.09)	(2.07)	(8.72)
Cr(CO), bmtt	yellow	81-82	44.80	3.47	18.4C
4			(44.93)	(3.53)	(18.71)
Mo(CO), bmtt	yellow	65-67	39.80	3.08	16.35
4			(40.09)	(3.18)	(16.25)
W(CO), bmtt	yellow	78-81	32.54	2.52	13.36
4			(31.48)	3.06)	(13.42)
Cr(CC), bett	pale yellow	72-74	47.86	4.28	17.C4
4			(47.82)	(4.54)	(17.25)
No(CC) ₄ bett	pale yellow	66-69	42.86	3.84	15.25
			(43.73)	(4.52)	(14.94)
W(CC), bett	pale yellow	83-88	35.47	3.17	12.62
*			(36.94)	(3.62)	(12.67)

TABLE 13 MISCELLANECUS PHYSICAL DATA

### CHAPTER 3

### COMPLEXES OF MONODENTATE AND BIDENTATE

### SULPHUR-NITROGEN DONOR LIGANDS

The  $M(CO)_4L_2$  complexes of 2-ethylthioethylamine (etea) and 2-(3,3-dimethyl-2-thiabutyl)pyridine (tbmp) are investigated in this Chapter together with the  $[M(CO)_5]_2L$  complexes of etea and some  $M(CC)_5L$  complexes of 2-methylthioaniline(mta), 2-methylmercaptobenzimidazole (mmbi), 2-methylthio-2-imidazoline (mti) and benzimidazole (bi).

The studies on the carbonyl complexes of etea and thmp are the first to involve mixed sulphur-nitrogen donor, bidentate ligands. The complexes of benzimidazole have been previously reported ²¹² but these were prepared so that they could be characterized under the same conditions as the  $M(CC)_5I$  complexes, thereby simplifying the interpretation of the results for the mta, mti and mmbi ligands.

While the general syntheses of the  $[M(CO)_5]_2$  etea and  $M(CO)_4 I_2$  ( $I_2$ =etea, tbmp) complexes were similar to those that were described in the introductions to Chapter 1 and 2 respect-ively, the  $M(CO)_5 I$  complexes were synthesized by reacting the ligand with  $M(CO)_5 THF$  in a 1:1 ratio.

3.1 <u>INFRARED SPECTRA</u> (CARBONYL STRETCHING VIBRATIONS)

# i) $\left[\underline{M(CO)}_{5}\right]_{n} \underline{L COMPLEXES (n = 1,2)}$

It was anticipated that the bridged-ligand complexes of 2-ethylthioethylamine (etea) would show split carbonyl-stretching absorptions due to bonding differences between the thioether and amine donors at the two  $N(CC)_5$  centres (Figure 12).



The spectra though, do not show these differences (Table 14a). It is apparent from this and other studies of mixed-donor Group VIB carbonyl complexes ^{248,249} that despite quite large differences in the bonding properties of the donors, "averaged" spectra are observed. Thus for the  $[N(CC)_5]_2$ etea complexes (N=Cr, W), the carbonyl-stretching absorptions lie between the extremes observed for bridged-ligand complexes of dithioether ligands and diamine ligands¹⁹⁸(Table 14a).

In the IR spectra of the  $M(CC)_5 L$  complexes (where I is 2-methylmercaptobenzimidazole, benzimidazole or 2-methylthio-2-imidazoline) that have been recorded in nitromethane solution, the B₁ mode is not generally observed. This appears to be a resolution phenomenon. A splitting of the E mode is also observed for most of these spectra and this can be related to the asymmetry of the ligands.²¹⁸

The  $M(CC)_5 L$  complexes (M=Cr, Mo, W) of 2-methylthioaniline appear to be normal in cyclohexane.

### ii) <u>cis-M(CO)₄L₂ COMPLEXES</u>

The spectra of the chelated-ligand complexes of

COMPLEX	$A_1(II)/cm^{-1}$	B1	E	A ₁ (I)	Solvent
[Cr(CC) ₅ ] ₂ etea	2C71(w)	1987(w)	1948(sh) 1940(s)	1926(m)	a
[W(CO) ₅ ] ₂ etea	2C76(w)	1988(m)	1945(s) 1933(s)	1927(sh)	а
[Cr(CO) ₅ mmbi].C.5mmbi	2C65(w)	n.o.	1938(vs) 1927(vs)	1883(s)	Ъ
W(CO) ₅ mmbi	2074(₩)	n.o	1932(sh) 1927(s)	1888(m)	Ъ
[Cr(CO) ₅ bi].0.5 bi	2071(m)	n.o.	194C(s-s) 1935(vs)	h)1887(s)	Ъ
W(CO) ₅ bi	2C73(m)	n.o.	1927(sh) 1918(vs)	1878(m)	Ъ
Cr(CO) ₅ mti	2C69(m)	n.o.	1934(vs)	1885(m)	Ъ
⊾o(CO) ₅ mti	2C7C(w)	n.o.	1937(sh) 1932(vs)	1888(m)	Ъ
W(CO) ₅ mti	2066(m)	n.o.	1924(vs) 1920(s-sh	188C(m) )	Ъ
Cr(CO) ₅ mta	2C71(m)	1984(w)	1945(vs)	1933(vs)	а
∑o(CO) ₅ mta	2C8C(w)	1987(m)	1951(s)	1934(s-sh	a) a
₩(CO) ₅ mta	2C76(m)	1983(m)	1945 (s-sh) 1941 (vs)	1931(s-sh	a) a

TABLE 14a

V(CC) ABSCRFTICNS FOR [M(CO), L COMPLEXES

NCTES: - a = cyclohexane; b = nitromethane, - w = weak; m = medium; s = strong; v = very; sh = shoulder - n.o. = not observed.

TABLE 14b

V(CO) ABSORFTICMS FOR M(CO	), L.	CCMPIEXES
----------------------------	-------	-----------

		4	-2		
COMPLEX	$A_1(I)/cm^{-1}$	A1(II)	<u>B</u> 1	<u>B</u> 2	SCIVENT
Cr(CC) ₄ etea	2C17(w)	19C5(m)	1889(s)	187C(m)	a
	2CC6(m)	1892(s-sh)	1881(s)	1848(s)	ъ
	2C13(m)	1898(s)	1879(s)	1841(s)	с
<b>Mo(C</b> C) ₄ etea	2019(m)	1883(sh)	1901(s)	1845(s)	с
W(CO) ₄ etea	2018(m)	1881(s)	1894(s)	1843(s)	с
Cr(CO) ₄ tbmp	2014(m)	1909(m)	1896(s)	1871(m) 1866(sh)	a
Mo(CC) ₄ tbmp	2C2C(w)	1913(ms)	1906(s)	1876(m)	a
W(CC) ₄ tbmp	2(15(w)	1905(m)	1894(s)	1874(m)	а

2-ethylthioethylamine are normal (Table 14b) for cis- $M(CO)_4 I_2$  complexes in chloroform.

In contrast to the spectra of the  $M(CC)_4$  etea complexes,  $Cr(CC)_4$  tbmp and  $W(CC)_4$  tbmp (tbmp=2-(3,3-dimethyl-2-thiabutyl)pyridine) show a shoulder on the B₂ absorption, but the other modes are normal. The spectrum of  $Mo(CC)_4$  tbmp is also normal (Table 14b).

One possible reason for the appearance of the  $P_2$ shoulder in the spectra of  $Cr(CC)_4$  tbmp and  $V(CC)_4$  tbmp, is that the t-butyl group can have two orientations with respect to the equatorial plane. That is, it can be either "up" or "down", to five two inequivalent conformational isomers.

### 3.2 FORCE CONSTANT CALCULATIONS

# i) $[\underline{M(CO)}_5]_n \underline{ICCMPLEXES(n=1,2)}$

<u>I=mmbi, mti</u>: The force constant data can be used for the complexes  $\mathbb{M}(\mathbb{CC})_5\mathbb{I}$  to determine whether the ligand is binding via the thioether donor or via one of the heterocyclic nitrogen donors. A comparison of the <u>trans</u>-carbonyl force constants for these complexes with those of  $[\mathbb{M}(\mathbb{CC})_5]_2$ en  $(\mathbb{M}=\mathbb{C}r, \mathbb{W})$  and  $\mathbb{M}(\mathbb{CO})_5$ bi  $(\mathbb{M}=\mathbb{C}r, \mathbb{W})$  where the ligands can only bind via nitrogen donors is found in Table 15. The results suggest that mmbi and mti bind to the metal via one of the heterocyclic nitrogens and not the thioether.

<u>L=mta</u>: A comparison of  $Cr(CC)_5$  mta with complexes containing thioether donors (Table 4) suggests that the ligand is bound via the thioether. However, similar comparisons for  $W(CO)_5$  mta ( $K_1 = 1526 \pm 3 \text{ N.m}^{-1}$ ), imply that there may be W-N interactions in solution as  $K_1$  is lower than normal for  $W(CO)_5$  thioether complexes. There is no evidence for this TABLE 15

COTTON-KRAIHANZEL FORCE CONSTANTS

[M(CO)₅]_nL COMPLEXES

	COMFLEX	$\frac{K_1(N.m^{-1})}{1}$	<u>K₂(N.m⁻¹)</u>
	<u>M=Cr</u>		
	Cr(CC) ₅ mti	1458	1578
	[cr(CC) ₅ mmbi].0.5mmbi	1455	1575
t	[Cr(CC) ₅ ] ₂ en	1451	1587
	Cr(CC) ₅ bi	1443	1584
	$\underline{M = W}$		
	[W(CC) ₅ ] ₂ bmtt	1499	1592
	w(CC) ₅ mmbi	1459	1575
	W(CC) ₅ mti	1446	1564
t	[W(CC) ₅ ] ₂ en	1444	1576
	W(CO) ₅ bi	1444	1567

NCTES: - all spectra recorded in nitromethane solution,

- all errors are  $\pm$  5 N.m⁻¹ in K₁ and K₂,
- see Table 4 for mta complexes,
- $K_1$  is the force constant of the CC's <u>trans</u> to L and  $K_2$  is the <u>cis</u> force constant,

t calculated from I.R. data, Ref. 198 .

suggestion though, in the ¹H nmr spectrum of this complex.

<u>L=etea</u> : It might be expected from the IR spectra that the <u>trans</u>-carbonyl force constants  $(K_1)$  for  $[Cr(CC)_5]_2$ etea  $(K_1=1519 \pm 3 \text{ N.m}^{-1})$  and  $[W(CC)_5]_2$ etea  $(K_1=1524 \pm 3 \text{ N.m}^{-1})$ will have values at about the mean of those calculated from the thioether and amine donor data (Table 15) and this is what is observed.

# ii) <u>cis-M(CO)₄L₂ CCMFLEXES</u>

<u>L=etea</u> :  $Cr(CO)_4$  etea, like the bridged-ligand complexes  $[M(CO)_5]_2$  etea, has a  $K_1$  (1366  $\pm$  4 N.m⁻¹) at about the mean of the typical values for thioether and amine denors in cyclohexane solution (Table 9). The spectra for  $Mo(CO)_4$  etea and  $W(CO)_4$  etea could only be obtained in chloroform and were therefore unsuitable for comparison with other complexes.

<u>L=tbmp</u>: In contrast to  $Cr(CC)_4$  etea,  $Cr(CC)_4$  tbmp and  $W(CC)_4$  tbmp have <u>trans</u>-carbonyl force constants  $(K_1=1385 \text{ and } 1379 \pm 4 \text{ N.m}^{-1} \text{ respectively})$  at values expected for thioether donors. This implies that the coordination of tbmp results in a lower electron density at M(C) than the coordination of etea. Such an effect may result from the lower basicity of the pyridyl donor of tbmp and/or enhanced  $M \rightarrow L \quad \Pi$ -backbonding in the M(CO)₄tbmp complexes, as both would lead to an increase in  $K_1$ .

Detailed studies on  $M(CC)_5 L$  complexes (M=Cr, W) of amine donor ligands ²²⁶ have shown though, that changes in the basicity of the amine have little effect on  $K_1$  and for  $W(CO)_5 L$  complexes of substituted pyridines, W->pyridyl

 $\Pi$  -backbonding also has no effect on the carbonyl stretching frequencies. The only other mechanism by which the electron density at M(O) can be decreased on coordination of thmp, is an increase in  $M \rightarrow$  thioether

 $\pi-$ backbonding. The reason for such an increase is not readily apparent.

#### 3.3 GENERAL INFRARED DATA

### i) <u>Complexes of 2-ethylthioethylamine</u> V(NH)<u>Absorptions</u>

The spectra were recorded for Nujol Mulls and then chloroform solutions to determine whether or not hydrogen bonding effects influence the frequencies observed in the mull spectra. The results show that there is little difference between the  $\nabla$ (NH) frequencies in the two media, except in the spectrum of the uncomplexed ligand (Table 16a).

Except in the case of  $[W(CO)_5]_2$ etea, the two V(NH) absorptions do not undergo significant shifts to lower frequencies on complexation to M(C), where M is Cr, No and W. This is in contrast to the shifts that are observed for the same ligand on complexation to Cu(II) (See Section I, Chapter 5) and to the shifts (50 - 120 cm⁻¹) observed for some primary amines in their  $W(CO)_5I$  and  $W(CC)_4L_2$  complexes.²⁵⁰ The V(NH)frequencies for the etea complexes are very similar to those reported for the complexes  $[M(CO)_5]_2$ en (M=Cr, W).¹⁹⁸

### ii) <u>Complexes of 2-methylthicaniline</u> V(NH)<u>Absorptions</u>

¹H nmr data suggests that the  $-NH_2$  group is not involved in ligand-metal interactions in the  $N(CC)_5$ mta complexes and this is coupled with the observation that there are no significant red-shifts of the  $\mathbf{v}(NH)$  frequencies. (Table 16a). Hence although the IR spectra may seem to be a reliable basis for deciding that the  $-NH_2$  group is not binding in each of the  $N(CC)_5$ mta complexes, the studies on the etea complexes (above) show that this is not so.

### iii) <u>Complexes of 2-methylmercaptobenzimidazole</u> and benzimidazole.

### a) $\mathbf{v}(NH)$ Absorptions

There is little or no shift in the  $\mathbf{V}(NH)$ frequencies of the ligands on complexation (Table 16a). The observations refer to chloroform solutions of the free ligands and their  $M(CC)_5 L$  complexes (N=Cr, W) as the  $\mathbf{V}(NH)$ frequencies were not observed for Nujol Mulls of the free ligands. The implication is therefore, that Cr(C) and W(C) are not bound to the pyrrole nitrogen of mmbi, but a consideration of the etea complexes suggests that the interpretation of  $\mathbf{V}(NH)$  frequency "shifts" is not a reliable criterion in carbonyl complexes.

### b) Heterocyclic Ring Absorptions

The characteristic absorptions  $(1700-1500 \text{ cm}^{-1})$  that are observed in Nujol Mulls of these complexes are presented in Table 16b and it can be seen that ligand coordination produces little or no change except for a splitting of the lowest frequency absorption in the benzimidazole complexes. The absorptions can probably be assigned as deformations of the plane of the ring nuclei, by analogy with the assignments that have been made for imidazole.²⁵¹ There will also be a weak S(NH) absorption in this region.¹⁵¹

### iv) Complexes of 2-methylthio-2-imidazoline.

### a) $\vee$ (NH) Absorptions

There are no red-shifts in these absorptions (chloroform solution) on complexation of the ligand even though the force constant data and ¹H nmr spectra suggest N - M coordination. Instead, small shifts to higher frequencies are observed (Table 16a). These observations are in

TAPIE 16a						
V(NH) ARSCRITICNS	[M(CC) ] n I and M(CO) 1	2 COMPLEXES				
CCMPIEX/IIGAND	CHC1 _ SOLUTION/cm ⁻¹	NUJCI MULL/cm ⁻¹	CC			
L = etea	338C(s)	3367(vs,br);3304(vs,br)	L			
[Cr(CO) ₅ ] ₂ etea		3363(m); 3322(m)	[Cr			
[W(CO) ₅ ] ₂ etea	3347(vw); 33C2(vw)		V: (			
Cr(CO) ₄ etea	3376(m); 3321(m)	3374(m), 3313(m)	<u>I.</u>			
Mo(CO) ₄ etea	3372(m); 3319(m)	3376(m); 3324(m)	[Cr			
W(CO) ₄ etea		3352(m); 3307(w)	₩ (			
L = mmbi	3460(m)		<u>I.</u>			
[Cr(CO) ₅ mmbi].0.5mmbi	3467(w)	3393(m)	Cr			
W(CO) ₅ mmbi	3482(w)	3374(m)	Mo			
$\underline{\mathbf{L}} = \mathbf{b}\mathbf{i}$	3485(s)		W (			
[cr(CO) ₅ bi].(.5bi	3472(w)	3452(s); 3417(s)	L			
w(cc)5pt	3454(w)	3436(w); 3392(w)	Cr			
<u>L = mti</u>	3431(m)	3C93(br)	Mic			
Cr(CO) ₅ mti	3452(m)	3452(w)	W. (			
Mo(CO) ₅ mti	346C(m)	3428(w)				
W(CO) ₅ mti	3474(w)	344O(m)	NC			
$L = mta^{\dagger}$	3461(s); 3364(s); <b>[</b> 319	2(w,br); 3C79(m);				
	3C3C(m); 3CC1(m)]					
Cr(CO) ₅ mta [†]	3472(m); 3387(m); <b>[</b> 3C9	2(w)]				
Ko(CO) ₅ mta [†]	338C(br,s); [307C(m)]					
W(CO) ₅ mta [†]	3466(s); 336C(s); [3C7	4 ( w )]				

	TAPLE 160	
HETEROCYCLIC RING	VIBRATICNS (1700 - 1500 cm ⁻¹ )	
CCMPLEX/LIGAND	RING VIBRATIONS (cm ⁻¹ ) - Nujol Mulls	
<u>I = mmbi</u>	1622(w); 1592(w); 1498(s)	
Cr(CC) ₅ mmbi].0.5mmbi	1621(w); 1592(w); 1496(m)	
W(CC) ₅ mmbi	1617(w); 1595(m); 1494(s)	
I = bi	1623(w); 159C(m); 1497(w)	
cr(CC) ₅ bi].C.5bi	1623(m); 1597(m); 15C3(s); 1497(s)	
W(CC) ₅ bi	1624(m); 1596(m); 15C2(s); 1496(s)	
I = mti [†]	1554(br)	
Cr(CC) ₅ mti	155C(m)	
Mo(CC) ₅ mti	1549(m)	
W(CO) ₅ miti	1533(m)	
L = tbmp	1593(s)	
Cr(CC) ₄ tbmp	1602(w)	
Mo(CO) ₄ tbmp	16C4(w)	
W(CC), tbmp	16(U(w)	

CTE: **†** for mti and its complexes, the absorption is assigned as  $\mathbf{v}(C=\mathbb{N})$  - see text.

NOTES: - br = broad,

t recorded as neat oils.

contrast to the significant shifts that are observed for the Cu(II) complexes of this ligand (this work) and in some M(II) complexes of other 2-substituted imidazolines.¹⁵² Because extensive intermolecular hydrogen bonding lowers the free ligand  $\mathbf{V}(NH)$  frequency in Nujol Mulls, the complexes show large shifts to higher frequencies for this absorption.

### b) V(C=N) Absorption

In contrast to the Cu(II) complexes of this ligand, there is a negligible red-shift in this absorption on complexation to the zero-valent metals, Cr(C), Mo(C) and W(O) (Table 16b) and this effect may be due to these metals being less positively charged than Cu(II) in its complexes.

The absorption was assigned by analogy with the 2-substituted thiazolines.⁹⁸

### v) Complexes of 2-(3,3-dimethyl-2-thiabutyl)pyridine

Complexation of pyridyl ligands is usually accompanied by a blue-shift of the highest frequency, ringstretching absorption (Section I, Chapter 2 ), but the shifts that are observed in Nujol Mulls of  $M(CC)_4$ tbmp (M=Cr, No, W) are not very significant (Table 16b). This absorption is not readily observed in the carbonyl complexes and this is due to it being "masked" by the broad and intense carbonyl stretching absorptions.

### 3.4 NUCLEAR MAGNETIC RESONANCE STUDIES

¹³C nmr Spectra of  $M(CC)_A$  etea (M=Cr, Mo) and etea.

i) ¹³CO Chemical Shifts

The outstanding feature of the spectra (Figure 13) is the appearance of two <u>trans</u> -  13 CO resonance peaks due to the inequivalence of the EtS- and -NH₂ donors in the complexes. The  13 CO resonances are thus assigned by



 $\frac{13_{\rm C}}{13_{\rm C}} = \frac{13_{\rm C}}{13_{\rm C}} = \frac{13$ 



- subscripts -SEt and  $-NE_2$  indicate  $trans-^{13}CC$  resonances.

recognising that  $\pi$ -backbonding to EtS- will result in a shielding of the CC group <u>trans</u> to this denor.

### TABLE 17a

13CO Chemical Shifts of M(CC) ₄ etea (M=Cr, Mo)					
CCMPLEX	<u>cis</u> - ¹³ CO	¹³ CC <u>trans</u> to EtS-	$^{13}CC$ trans to $-NH_2$		
Cr(CC) ₄ etea	216.06	226.45	227.9C		
Mo(CO) ₄ etea	207.03	219.05	219.50		
NCTES:	- measu	red in C ₆ D ₆			
	b maa -	ownfield from TNS			

Similar spectra have been observed in the study of some  $M(CO)_4L_2$  complexes (M=Cr, W) where  $L_2$  is a carbene - thio ligand.²⁰⁴

# ii) ¹³C Chemical Shifts of the ligand

Each of the four resonances that are observed for the free ligand can be readily assigned (Table 17b), but in the  $M(CO)_4$  etea complexes, the assignments are not obvious. Thus only the  $-SCH_2CH_3$  resonance has been assigned (Table 17c) and this appears to become slightly shielded on complexation.

			TAE	IE 17b				
	13 _{C Che}	emical	Shifts	for CH ₃	CH2SCH2CH	H ₂ <u>NH</u> 2		
SCLVE	ΝT	C1		C2	(	С 3	C4	_
CDC13		35.6	57	40.86	2	5.44	14.73	
C ₆ D ₆		35.7	1	41.39	2	5.58	15.02	
	NOTES:	- in	CDC1 3,	¹⁴ N qua	drupolar	effects	broaden	the
		C1	and C2	resonan	ces. ²⁵²			
	- other assignments based on the spectrum of							
		bet	t (Chan	ter 2).	and on	known spe	ctra of	

primary amines such as EtNH2.253

TABLE 17c

<u> </u>	Chemical Shifts	for M(CC) ₄ etea	<u>i</u> .	
CCMPIEX	C4	OTHER	CARBONS	
Cr(CC) ₄ etea	13.47	33.85,	, 34.41,	42.04
Mo(CC) ₄ etea	13.47	33.93,	34.90	42.37

NOTES: - measured in  $C_6 D_6$ 

- ppm downfield from TLS (and Table 17b) ¹³C nmr Spectrum of W(CO)₅benzimidazole

The spectrum was recorded in (CD₃)₂CO which meant that the <u>trans</u>- 13CO resonance could not be resolved at about 205 ppm. The cis-¹³CO chemical shift (198.85 ppm) can be compared with the analogous data for  $W(CC)_5S(CH_2)_3SCH_2$  $(197 \text{ ppm})^{204}$  and  $W(CO)_5 C_4 H_6 S (197.9 \text{ ppm})^{206}$ , where  $C_4 H_6 S$ is 2,5-dihydrothiophene, in the same solvent. The results are consistent with an increase in the electron population at tungsten, on replacing a thioether ligand with benzimidazole.

#### NUCLEAR MAGNETIC RESONANCE STUDIES 3.5

### ¹H nmr Spectra

#### i) Complexes of 2-ethylthioethylamine

When compared to the free ligand, both the methyl and methylene proton resonances have shifted downfield on the formation of  $[Cr(CO)_5]_2$  etea, but the -NH₂ resonance, which is quite strong in the uncomplexed ligand, was not observed (Table 18a). There is a broad absorption at about 2.C ppm and this has the appearance of an exchange-broadened  $-NH_2$  resonance, but the solution was decomposing and it is more likely that this resonance is due to a decomposition product.
#### TABLE 18a

#### ¹H nmr_DATA, COMFLEXES OF etea

CCMFIEX	-CH2SCH2CH2-	-CH3	-NH2-
etea	2.35,2.47,2.58,2.70	1.25t(8)	4.66
<pre>[Cr(CO)₅]₂etea</pre>	2.52,2.71,2.82	1.41t(7)	-
Cr(CC) ₄ eten	<u>ca</u> 2.5 (broad)	cal.4(broad)	

- <u>NCTES</u>: satisfactory spectra were not recorded for the other complexes,
  - spectra recorded in CDCl₃, chemical shifts in ppm downfield from TMS.

#### TABLE 18b

	H nmr DATA,	COMFIEXES OF mta
CONFLEX	-SCH 3	-NH2
mta	2.33	4.21
Cr(CO) ₅ mta	2.65	<u>ca</u> 4.2
W(CC) ₅ mta	2.89	<u>ca</u> 3.7

NOTES: - spectra recorded under same conditions as above,

- for Cr(CO)₅mta, -NH₂ resonance weak, poorly resolved,
- both carbonyl complexes showed weak impurity peaks.

#### TAPLE 18c

#### ¹H nmr DATA, CCMFIEXES OF mmbi

-SCH 3-	-NH-	Ar-H
2.72	3.00	7.2
2.87	<u>ca</u> 5.CO(br)	7.5
2.91.	3.14(br)	7.6
	<u>-SCH</u> 3 2.72 2.87 2.91	<u>-SCH</u> ₃ <u>-NH</u> - 2.72 3.(C 2.87 <u>ca</u> 5.CO(br) 2.91 3.14(br)

- <u>NCTES</u>: spectra recorded in (CD₃)₂CO, chemical shifts in prm downfield from TMS,
  - assignment of -NH- resonance confirmed for Cr complex by adding  $D_2O$  to solution. Resonance sharpened and moved upfield.

#### TAFIE 18d

#### H nmr DATA, COMFLEXES OF mti

CCMPLEX	-SCH 3	-CH2-	-NH-
mti	2.49	3.67	3.974(8)
Cr(CC) ₅ mti	2.44	3.57d(7),3.56d(7)	4.78
Mo(CO) ₅ mti	2.44	3.830(7), 3.590(7)	4.84
w(CC) ₅ mti	2.46		

		TAPLE 18e	
	¹ <u>H</u> nmr	DATA, COMPLEXES OF thmp	
CCMFLEX		-CH2S-	et –H
tbmp	1.36	3.94	٤.55d(6)
Cr(CC) ₄ tbmp [†]	1.3C	4.08	> 9
No(CO) ₄ tbmp	1.33	4.12	8.97d(5)
w(CC) ₄ tbmp [†]	1.33	4.28	> 0

#### MCTES(Tables 18d, 18e):

- t solutions decomposing
- all spectra recorded in CDCl₃, chemical shifts are ppm downfield from TNS,
- d = doublet; coupling constants are in parentheses(Hz).

# FICURE 14

¹H nmr - Aryl Trotons of mmbi



- spectra recorded in  $(CD_3)_2CO$ .

The  $-NH_2$  resonances were not observed for the  $[M(CC)_5]_2L$  complexes (M=Cr, W) of ethylenediamine and 1,12-diaminododecane, either.¹⁹⁸

#### ii) Complexes of 2-methylthioaniline

This ligand shows downfield shifts in the  $-SCH_3$  resonance, of 0.32 ppm and 0.56 ppm for  $Cr(CO)_5$ mta and  $W(CO)_5$ mta respectively (Table 18b). On complexation of this ligand, the  $-NH_2$  resonance has moved upfield and it is considerably weaker and broader than in the free ligand spectra. The evidence thus suggests that mta is binding via the thioether donor only.

# iii) Complexes of 2-methylmercaptobenzimidazole

 $Cr(CO)_{5}$ mmbi and  $W(CO)_{5}$ mmbi also show downfield shifts in the -SCH₃ resonance of the ligand (C.15 ppm and C.19 ppm respectively) however the larger downfield shifts of the -NH- resonance (<u>ca</u> 2.00 ppm and C.44 ppm respectively) indicate that the ligand is probably complexed via one of the heterocyclic nitrogens (Table 18c). This conclusion is also supported by the asymmetrical pattern (Figure 14) of the aryl-ring proton absorptions (and at least two of the peaks move downfield) in the complexes. The free ligand, in contrast, shows a symmetrical pattern (Figure 14). A similar asymmetry is also observed for the complexes of benzimidazole.

# iv) <u>Complexes of 2-methylthio-2-imidazoline</u>

The non-existence of any M-S interactions in the complexes of mti, is conclusively established by a comparison of the spectrum of the free ligand with the spectra of these complexes (Table 18d). While the -SCH₃ resonance is not significantly affected, the -NH- resonance moves C.81 ppm and 0.87 ppm downfield for M=Cr and M=Mo respectively.

The -NH- resonance was not observed for M=W and this may be the result of exchange broadening effects and solubility problems.

For the free ligand, the methylene protons' resonance is a single peak but on complexation, four peaks are observed where M=Cr and No. This implies that the methylene protons have become inequivalent through metal complexation to one of the nitrogen denors.

The ¹H nmr data thus supports the suggestion from the force constant calculations that 2-methylthio-2imidazoline binds to the zero-valent metals, Cr(0), Mc(C), and W(O), via one of the heterocyclic nitrogen donors and not the thioether substituent.

### v) <u>Complexes of 2-(3, 3-dimethyl-2-thiabutyl)pyridine</u>

In Table 18e, it can be seen that on the formation of the chelated-ligand complexes  $M(CO)_4$  tbmp, downfield shifts in the  $-CH_2S$ - resonance and the resonance of the proton <u>ortho</u> to the pyridyl nitrogen, result. There are no significant shifts in the t-butyl protons' resonance.

3.6 ELECTRONIC SPECTRA

# $[M(CO)_5]_n L Complexes (n=1,2)$

The spectra are assigned similarly to those of the bridged-ligand bmtt and bett complexes (Chapter 1). In the complexes of mmbi, bi and mti though,  $\mathbb{N} \longrightarrow \pi^*(\mathbb{I})$  charge transfer is also possible and in the tungsten complexes of these ligands this absorption has been tentatively assigned.

i) I = etea, n = 2.

Even though there are two distinctive  $M(CO)_5 I$ chromophores in these bridged-ligand complexes, the spectra are quite normal and there is no evidence of differences

between the thioether and amine donors. The point to note from the spectra is that the  $1e \rightarrow 2a_1$  charge transfer transition of both complexes (M=Cr,W) lies in the region more appropriate for amine donors than thioether donors.

The spectra and their assignments are shown in Tables 19a (M=Cr) and 19b (M=W) respectively and a comparison of the 1e  $\rightarrow$ 2a₁ charge transfer transitions of the  $[M(CC)_5]_n L$ complexes that are the subject of this chapter, together with other data from the literature, can be found in Tables 6a and 6b respectively (Chapter 1).

# ii) <u>L=mta, mmbi, mti (n=1)</u>

<u>L=mta</u>: The 1e $\longrightarrow$ 2a₁ charge transfer absorptions for Cr(CO)₅mta and W(CC)₅mta are similar to those of [Cr(CO)₅]₂bmtt and [W(CC)₅]₂bmtt (see Chapter 1) respectively and these observations provide additional evidence for a CH₃S $\longrightarrow$  M bonding mode in the complexes. The spectra for the M(CO)₅mta complexes (M=Cr, Mo, W) and the tentative assignments that have been made, are shown in Tables 19a (M=Cr), 19b (M=W) and 19c (M=Mo) respectively.

<u>I=mmbi</u>: The similarities between the spectra of  $Cr(CC)_{5}$ mmbi and  $W(CO)_{5}$ mmbi, and their respective, analogous complexes of benzimidazole (Tables 19a, 19b), support the infrared and nuclear magnetic resonance data for nitrogen  $\longrightarrow$  M(O) bonding in the complexes of mmbi. Further weight to this evidence is lent by the assignment of a  $W \longrightarrow \Pi^*(I)$  charge transfer transition at about 330 nm for both  $W(CO)_{5}$ mmbi and  $W(CC)_{5}$ bi. This medium intensity absorption is also observed for  $W(CC)_{5}$ mti, but not for  $W(CC)_{5}$ mta or any of the bridged-ligand complexes of bmtt, bett and etea. This assignment is supported by the assignment of a similar

	TAPLE 19a		
EIECTRCNIC_SPI	$CTRA = [Ur(CC)_5],$	L CCMPLEXES	
CCMFLEX	AESORPTICN(nm)	$\epsilon(1.mcl.^{-1}cm^{-1})$	ASCICMMENT
[Cr(CC) ₅ ] ₂ etea	<u>ca</u> 256	26660	
	332(sh)	3538	
	412	4528	$1e \rightarrow 2a_1/d-d$
Cr(CO) ₅ mta	214		
	302		
	437		1e→2a ₁ /d-d
[Cr(CC) ₅ mmbi].0.5mmbi	4C6	3124	1e→2a ₁ /d-d
[Cr(CC) ₅ bi].C.5bi	259	16212	
	271(sh)	14622	
	275	12318	
	405	2616	1e→2a ₁ /d-d
Cr(CC) ₅ mti	256	21525	
	4(7	2508	1e→2a,/d-d

	ELECTRONIC	SPECTRA - [W(CC)	5]nL COMPLEXES	
COMPLEX	AB	SCRFTICN(nm)	€(1.mol. ⁻¹ cm ⁻¹ )	ASSIGNMENT
[W(CO)5]2et	ea <u>ca</u>	260	19971	
		291(sh)	5058	*
		390	4620	1e→2a ₁
		397(sh)	4547	d-d (s-s)
		43C(sh)	905	d-d (s-t)
W(CO) ₅ mta	ca	250		
	ca	295		
		304		
		392		
w(CO) ₅ mmbi		257	21818	
		288	11405	
		331(sh)	1959	d→π*(L)
		392	3140	$1e \rightarrow 2a_1/d-d(s-s)$
		423(sh)	826	d-d (s-t)
₩(CO) ₅ bi		258	18125	
		268(sh)	1C417	
		279	7917	
		281	4333	
		324	1604	d <b>→</b> Π*(I)
		395	2799	$1e \rightarrow 2a_1/d-d(s-s)$
		426(sh)	792	d-d (s-t)
W(CO)5mti		258	20516	
		283(sh)	6242	
		336	1621	$d \rightarrow \pi^{*}(I)$
		398	3331	$1e \rightarrow 2a_1/d-d(s-s)$
		432(sh)	1C4C	d-d (s-t)

	TA	ΕI	Ε	1	сЪ
--	----	----	---	---	----

TABLE 19c

EIEC	TRONIC SPECTRUM OF Mo(	CC) ₅ mta
ABSORPTION(nm)	€ (1.mol. ⁻¹ cm ⁻¹ )	ASSIGNMENT
243	<u>ca</u> 15037	
309	<u>ca</u> 4889	
<u>ca</u> 385	<u>ca</u> 350	1e→2a ₁ /d-d

NOTES: (For Tables 19a, 19b, 19c)

- all spectra were recorded for Abs. EtCH solutions,

- sh = shoulder; extinction coefficients are approximate,

- (s-s) denotes a singlet  $\rightarrow$  singlet transition,

- (s-t) denotes a singlet  $\rightarrow$  triplet transition,

- solution of No(CC)5mta was decomposing.

	L ₂ = e	tea	L ₂ =	tbmp
METAL	ABSORPTICN (nm)	€(1.mol. ⁻¹ cm ⁻¹ )	ABSCRFTICN	e
Cr	244	16711	341	5578
	338	4578	372	5167
	425	1393		
Mo	<u>ca</u> 242	15615	30.3	0808
	<u>ca</u> 264	16577	362	5678
	305	8942		
	391	1673		
W	<u>ca</u> 260	12586		
	301	5916		
	390	1284		
	41C(sh)	535		

# TABLE 20

ELECTRONIC SPECTRA FOR M(CO)₄1₂ COMPLEXES

NOTES: - all spectra were recorded for Abs. EtCH solutions,

- sh = shoulder; extinction coefficients are approximate.

absorption for W(CO)₅pyridine at 334 nm.²³¹

<u>I=mti</u>: The spectra of  $Cr(CC)_5$ mti and  $W(CC)_5$ mti (Tables 19a and 19b) suggest that the thioether substituent of this ligand, like mmbi, does not participate in I $\rightarrow M(C)$ bending. It is probable that  $Mo(CC)_5$ mti (Table 19c) is similar to its chromium and tungsten analogues. <u>cis- $M(CO)_4$ I_2 COMPLEXES</u> (I_2=etea, tbmp)

The spectra are recorded in Table 2C, but as outlined in Chapter 2, specific assignments can not be made as yet. It is interesting to observe though, that the visible maxima for the etea complexes (K=Cr, Mo) are at lower energies than the same absorptions for the tbmp complexes. The visible maxima of the latter complexes are very similar to those of the bmtt and bett chelated-ligand complexes that were discussed in Chapter 2.

#### 3.7 REACTIVITY STUDIES

#### CCMPLEXES OF 2-ETHYLTHIOETHYLAMINE

These studies investigate the stability of  $[W(CC)_5]_2$ etea under reflux conditions and the stability of etea towards displacement by triphenylphosphite from  $[W(CO)_5]_2$ etea and  $W(CO)_4$ etea. The experiments were monitored by infrared spectroscopy.

# i) Reflux [W(CO)₅]₂etea in cyclohexane

After about 5 minutes of refluxing, the conversion to the chelated-ligand complex is almost complete, although even after 15 minutes, a small amount of a pentacarbonyl complex is still present. The identity of this pentacarbonyl complex is not clear. The spectra are dominated by an intense absorption, due to  $W(CO)_6$ , at 1986 cm⁻¹. Hence  $[W(CC)_5]_2$  etea  $\longrightarrow W(CC)_4 + W(CC)_4$  etea, under gentle reflux conditions.

ii) <u>Reflux [W(CC)</u>₅]₂etea in presence of excess P(OPh)₃

In cyclohexane solution after 5 hours of refluxing, the initially yellow solution is almost colourless. The interpretation of the infrared spectra (Figure 15) is not as readily apparent as for the analogous experiment with  $[W(CC)_5]_2$  bett (Chapter 1).

The following points can be noted though:

a) there is no apparent thermal conversion of  $[W(CC)_5]_2$  etea to  $W(CC)_4$  etea as observed in the above experiment. In the reaction of  $[W(CC)_5]_2$  bett with  $F(CPh)_3$ , some of the chelated-ligand complex was formed initially (Chapter 1).

b) the changes in the strong absorption at about 1934 cm⁻¹ during the refluxing, suggest that in the initial spectra the species that is responsible for this absorption is different than the species that gives rise to the absorption after 5 hours. The latter species appears to be <u>cis</u>-W(CO)₄[P(OPh)₃]₂ (see below) while the former could be an "intermediate".

iii) Reflux W(CO)₄ etea in presence of excess P(CPh)₃

In both cyclohexane and benzene, the conversion of  $W(CO)_4$  etea to <u>cis</u>- $W(CO)_4 [P(CPh)_3]_2$ , in the presence of a ten-fold excess of triphenylphosphite, can be followed relatively easily by infrared spectroscopy. For the cyclohexane solution, the presence of <u>cis</u>- $W(CO)_4 [P(CPh)_3]_2$  was indicated after only five minutes of refluxing. The changes over a period of 3C, 4C and 6C minutes can be followed in



Key to Figure 15

<u>i</u> (CC) ₆
<u>ii</u> W(CC) ₅ F(CFh) ₃
<u>iii</u> [W(CC) ₅ ] ₂ etea
$\underline{iv}$ $\underline{cis} - \mathbb{R}(CO)_4 [F(CFh)_3]_2$

Key to Figure 16

Species	Identity
<u>i</u>	W(CC) ₄ etea
<u>ii</u>	$\underline{\text{cis}}$ - $\mathbb{I}(\text{CC})_4 [\Gamma(\text{CTh})_3]_2$
iii	₩(C() ₆

Both reflux experiments were carried out in cyclohexane.



Figure 16 and it can be seen that the absorption at 1936 cm⁻¹ is quite broad in comparison to the narrow band that was observed (Figure 15) in the initial stages of refluxing  $[W(CC)_5]_2$ etea with  $F(CPh)_3$ .

In an experiment where a slightly greater than 1:1 ratio of  $P(CPh)_3$  to  $W(CO)_4$  etea was refluxed in cyclohexane, a similar conversion was observed. These experiments do not provide any insight though, into the nature of the postulated "intermediate" that was "observed" on refluxing  $[W(CO)_5]_2$  etea and excess  $P(CPh)_3$  in cyclohexane. <u>CCMPLEXES OF mta AND mti</u>

Attempts were made to isolate the HBr salts of  $Cr(CO)_5 mta$ ,  $W(CC)_5 mta$  and  $Cr(CC)_5 mti$ , but although reactions were observed, the products were unstable and could not be characterized.

3.8 MASS SPECTRA CF M(CO)₅mta (M=Cr, Mo, W)

Although these complexes could not be isolated analytically pure, the mass spectra of the oils that were isolated from the reactions of  $N(CC)_5$ THF with mta provide additional evidence for the identity of the principal components of these oils.

The identities of the complexes  $Cr(CC)_5$ mta and  $Mo(CC)_5$ mta were confirmed by the detection of the molecular ions  $[Cr(CC)_5$ mta]⁺ and  $[Mo(CC)_5$ mta]⁺, while the mass spectrum of  $W(CO)_5$ mta shows only a weak feature that can be attributed to  $[W(CC)_5$ mta]⁺. A stronger feature is observed at  $^{m}/_{e} = 435$  and this corresponds to  $[W(CC)_4$ mta]⁺. It appears then, that volatilisation and electron bombardment provide sufficient energy to convert  $W(CC)_5$ mta to  $W(CC)_4$ mta, but this could only be achieved to a very limited extent by refluxing %(CC)₅mta in cyclohexane.

There are no peaks in the spectra of  $Mo(CC)_5$  mta and  $W(CC)_5$  mta that can be attributed to  $[M(CC)_7]^+$  (M=Mo, W) or  $[W(CO)_8]^+$  in the latter spectrum.

#### SYNTHESES

The same general photochemical method that is used for the syntheses that were described in Chapter 2, is also used here.

# 1) <u>COMPLEXES OF 2-ETHYLTHIGETHYLAMINE</u>

# <u>Decacarbonyl- $\mu$ -(2-ethylthioethylamine)dichromium(C)</u>

The ligand (2 mmole, C.21( g.) was added to an irradiated solution of 4 mmole of  $Cr(CC)_6$  (C.88( g.). After allowing the solution to react for 1C minutes, the solvent was removed <u>in vacuo</u>. Excess  $Cr(CC)_6$  was sublimed from the yellow residue overnight and then the residue was extracted into benzene. The solution was concentrated, cooled and cyclohexane was added to precipitate an oil that contained both tetra- and pentacarbonyl complexes. The solvent was removed from the supernatant and a crystalline pentacarbonyl complex was precipitated from a cyclohexane solution of the residue. The  $[Cr(CC)_5]_2$ etea was recrystall-ized from benzene by the addition of cyclohexane.  $[Cr(CC)_5]_2$ etea was also precipitated from a cold benzene solution of the above oil, on adding cyclohexane.

Both samples were washed with cold cyclohexane after filtering and dried under vacuum.

# YIELD : 0.177 g. (18%)

# Decacarbonyl-µ-(2-ethylthioethylamine)ditungsten(0)

1 mmole of the ligand (C.1C5 g.) was added to an irradiated solution of 2 mmole of  $W(CO)_6$  (C.7C4 g.). The solution was allowed to react for 1C-15 minutes before the solvent was removed <u>in vacuo</u>. Excess  $W(CO)_6$  was sublimed from the residue, which was subsequently extracted into benzene. The yellow crystals of  $[W(CC)_5]_2$  etea precipitated from a

benzene-cyclohexane solution that had been left at  $4^{\circ}C$ overnight. After filtering, these were washed with cold cyclohexane then dried under vacuum.

## YIELD : C.312 g. (50%)

### <u>Tetracarbonyl(2-ethylthioethylamine)chromium(C)</u>

After the addition of 3 mmole of etea (C.316  $\varepsilon$ .) to the irradiated solution of 3 mmole of  $Cr(CC)_6$  (C.66(  $\varepsilon$ .), the irradiation was continued for a further 9C minutes. The THF and excess  $Cr(CC)_6$  were removed <u>in vacuo</u> and the crystalline residue was extracted into benzene. The solution was concentrated until the onset of precipitation and then cyclohexane was added and the mixture cooled. The yellow precipitate was filtered off and washed with cyclohexane.

# YIELD : 0.510 g. (63%)

#### Tetracarbonyl(2-ethylthioethylamine)molybdenum(0)

The same procedure as for  $Cr(CC)_4$  etea was followed using 3 mmole of etea (C.316 g.) and 3 mmole of  $Mo(CC)_6$ (C.792 g.).  $Mo(CC)_4$  etea was precipitated out of a concentrated benzene solution by adding a small quantity of cyclohexane and then cooling the solution.

## YIELD : C.667 g. (71%)

# Tetracarbonyl(2-ethylthioethylamine)tungsten(0)

Pale yellow  $W(CC)_4$  etea was synthesized by the same procedure as  $Cr(CO)_4$  etea and  $Mo(CC)_4$  etea. 2 mmole of etea (C.21C g.) and 2 mmole of  $W(CO)_6$  (C.7C4 g.) were used.

# YIELD : C.581 g. (72%)

# 2) <u>CCMPLEXES OF 2-(3,3-DIMETHYL-2-THIABUTYL)PYRIDINE</u> <u>Tetracarbonyl [ 2-(3, 3-dimethyl-2-thiabutyl)pyridine</u>]-<u>chromium(0)</u>

The ligand (2 mmole, C.363 g.) was added to the irradiated  $Cr(CO)_6$  (2 mmole, C.44C g.) and the irradiation continued for SC minutes. The solvent was removed <u>in vacue</u>, the residue extracted into benzene, then the solution concentrated and n-hexane added to crystallize the yellow complex. The  $Cr(CC)_4$  tbmp was recrystallized from hot n-hexane containing a small amount of benzene and the needle-like crystals were filtered off and dried under vacuum.

### YIELD : C.316 g. (46%)

# <u>Tetracarbonyl</u> [2-(3,3-dimethyl-2-thiabutyl)pyridine]molybdenum(0)

2 mmole of ligand (C.363 g.) and 2 mmole of  $Mo(CC)_6$ (C.528 g.) were used as for  $Cr(CC)_4$  tbmp. The tbmp/Mo(CC)_6 /THF solution was irradiated for cnly 6C minutes and then  $Mo(CC)_4$  tbmp was isolated and recrystallized as for  $Cr(CC)_4$  tbmp.

# YIELD : (.492 g. (63%)

# Tetracarbonyl [2-(3,3-dimethyl-2-thiabutyl)pyridine]tungsten(0)

The initial procedure was the same as for  $Cr(CC)_4$ tbmp using 2 mmole of tbmp and 2 mmole of  $W(CO)_6$  (C.7C4 g.). The removal of the THF left an oily residue that contained a black decomposition product. This was removed by adding n-hexane to the benzene extract then filtering the cloudy suspension through Kieselguhr. The orange filtrate was concentrated and filtered then hexane was added. The solution was cooled to precipitate  $W(CO)_4$ tbmp which was recrystallized from benzene as for  $Cr(CC)_4$ tbmp and  $Mo(CC)_4$ tbmp.

YIELD : C.248 g. (26%)

### 3) CCMPLEXES OF 2-METHYLTHIC-2-IMIDAZOLINE

# Pentacarbonyl(2-methylthio-2-imidazoline)chromium(0)

3 mmole of mti (C.349 g.) were added to 3 mmole of irradiated  $Cr(CO)_6$  (C.660 g.) when the THF was removed and

the residue extracted into benzene-pentane. This solution was concentrated to about 2 cm³ and pentane was added to precipitate yellow  $Cr(CC)_5$ mti. The product was filtered, washed with pentane and recrystallized from THF.

# YIEID : C.534 g. (58%)

# Pentacarbonyl(2-methylthio-2-imidazoline)molybdenum(C)

In this reaction, 3 mmole of mti and 3 mmole of  $Mo(CO)_6$  were used as in the preparation of  $Cr(CO)_5$ mti. The residue that remained after removing the THF was unstable in acetone, does not extract into benzene-pentane and in pure benzene, it has a low solubility. It was however, extracted into benzene, the solution filtered through. Kieselguhr, concentrated and filtered again. The solution was concentrated further to about 10 cm³, cooled and pentane was added to precipitate light yellow  $Mo(CC)_5$ mti. The product was filtered, washed with pentane and dried before recrystallizing from THF.

# YIELD : 0.382 g. (36%)

An unsuccessful attempt was made to convert  $Mo(CC)_5$ mti to  $Mo(CC)_4$ mti by refluxing the pentacarbonyl complex in THF for an hour. There was no infrared evidence for the formation of any  $Mo(CC)_4$ mti.

# Pentacarbonyl(2-methylthio-2-imidazoline)tungsten(0)

This was isolated from an unsuccessful attempt to synthesize the bridged-ligand complex  $[W(CO)_5]_2$ mti using 2 mmole of  $W(CO)_6$  (0.7C4 g.) and 1 mmole of mti (C.116 g.). The solution was allowed to react for 5 minutes after adding the ligand to the irradiated  $W(CO)_6$  solution and then the solvent was removed. The pentane-insoluble residue was extracted into hexane-benzene (5C:5C). The solvent was removed (<u>in vacuo</u>) from the extract, the residue dissolved in acetone and the mixture filtered to remove excess  $V_{4}(CO)_{6}$ . An impure product was isolated from this acetone solution and so it was purified on a silica-gel column, using an acetone eluent. The column fraction was taken to dryness and the residue put under vacuum for 24 hours. An infrared spectrum showed that the  $W(CO)_{6}$  had been removed from the  $W(CC)_{5}$ mti.

# 4) <u>COMPLEXES OF 2-METHYLMERCAPTCBENZIMIDAZCLE</u> <u>Pentacarbonyl(2-methylmercaptobenzimidazole)chromium(0)</u>. <u>0.5[2-methylmercaptobenzimidazole]</u>

A THF solution of the ligand (3 mmole, 0.493 g.) was added to 3 mmole of irradiated  $Cr(CO)_6$  (0.660 g.). The solvent was removed, the residue extracted into acetone and the solution concentrated. A precipitate which appeared dissolved on adding benzene. This solution was filtered concentrated and petroleum ether added to precipitate a yellow powder which was filtered and washed with benzene. YIELD : 0.656 g. (75%)

# Pentacarbonyl(2-methylmercaptobenzimidazole)tungsten(0)

A 1:1 ratio of mmbi to  $W(CO)_6$  was used as for the chromium complex. After the THF was removed, the residue was extracted with benzene and then the benzene insoluble residue was extracted into acetone. While the benzene extracts contained both pentacarbonyl and tetracarbonyl complexes, the acetone soluble fraction consisted mainly of  $W(CC)_5$ mmbi. The impure product was recrystallized twice from acetone solutions by the addition of cyclohexane.

An attempt was made to convert a sample of  $W(CC)_5$ mmbi to  $W(CO)_4$ mmbi by irradiating it in THF for 2 hours, but this was unsuccessful.

#### 5) COMPLEXES OF BENZIMIDAZOLE

 $Cr(CO)_5$ bi and  $W(CO)_5$ bi were first reported by Beck, Weis and Wieczorek²¹² who synthesized the complexes using the same photochemical techniques that have been described herein (see Appendices). The preparations that were used for this work differ in content though and in the synthesis of the chromium complex,  $[Cr(CC)_5 bi] \cdot C.5 bi$ 

was isolated instead of Cr(CC)₅bi as reported by Beck <u>et al</u>.

# Pentacarbonyl(benzimidazole)chromium(0). 0.5[benzimidazole].

3 mmole of the ligand (0.354 g.) in THF were added to an irradiated solution of 3 mmole of  $Cr(CC)_6$  (0.66C g.)The THF was removed, the yellow crystalline residue extracted into benzene and the solution concentrated. An impure product was precipitated by adding cyclohexane to the benzene solution. It was therefore dissolved in acetone, the solution was filtered and cyclohexane-pentane added. A yellow precipitate appeared when the solution was cooled and this was filtered, washed with cyclohexane and pentane, then dried <u>in vacuo</u>.

# YIELD : 0.581 g. (78%)

There is little change in the analyses for this complex on further recrystallization from THF.

#### Pentacarbonyl(benzimidazole)tungsten(0)

The same procedure as for  $[Cr(CO)_5 bi].0.5bi$  was initially followed, using 2 mmole of ligand (0.236 g.) and 2 mmole of  $W(CO)_6$  (0.704 g.). Yellow crystals were precipitated by adding cyclohexane to a concentrated benzene solution of the residue. These were filtered, washed with pentane and recrystallized from benzene.

YIELD : 0.725 g. (82%) - before recrystallization

# 6) <u>SYNTHESIS AND CHARACTERIZATION OF COMPLEXES OF</u> <u>2-METHYLTHIOANILINE</u>

The analytically pure complexes  $M(CO)_5$ mta (M=Cr,Mo,W), could not be isolated because of their reluctance to form crystalline products and because they rapidly decompose on silica-gel columns. Their existence and nature was however, inferred from IR, ¹H nmr and mass spectral studies (this chapter) and the investigations that are described in the following sections.

#### <u>Pentacarbonyl(2-methylthioaniline)chromium(0)</u>

After the ligand (3 mmole, 0.418 g.) had been added to an irradiated solution of  $Cr(CO)_6$  (3 mmole, 0.660 g.), the THF was removed and the green-yellow residual oil was extracted into n-hexane. A yellow oil de posited on removing the solvent from these extracts. The oil was "dried" for 20 hours under vacuum, but the analyses approximate those required for  $[Cr(CO)_5 mta].0.5(C_6H_{14})$ Calculated for  $[Cr(CO)_5 mta].0.5(C_6H_{14})$  : C 48.12%; H 4.30:N 3.74 Found : 48.90 ; 4.03; 3.69 An unsuccessful attempt was made to synthesize  $Cr(CO)_4 mta$ by irradiating  $Cr(CO)_5 mta$  in THF.

# Pentacarbonyl(2-methylthioaniline)molybdenum(0)

The same method as for the chromium complex was followed using 3 mmole of the ligand and 3 mmole of  $Mo(CO)_6$  (0.792 g.). A brown precipitate separated with the yellow oil, but it was carefully removed by dissolving in hexane. The presence of some  $Mo(CO)_6$  was indicated by the IR spectrum of the yellow oil.

### Pentacarbonyl(2-methylthioaniline)tungsten(C)

This was prepared by the same method as for the chromium and molybdenum complexes using 2 mmole of mta (0.279 g.) and 2 mmole of  $W(CC)_6$  (C.704 g.). A cloudy, yellow oil was isolated from the n-hexane extracts.

In a second preparation, a light yellow solid (MP. 70 - 72[°]) was isolated and this returned Carbon and Hydrogen analyses corresponding to those required for  $[W(CC)_5mta].0.25(hexane).$ 

Calculated for [W(CC)₅mta].0.25(hexane): C 33.45%; H 2.59 Found : 33.15; 2.75

# Further characterization of W(CO)5mta

i) After 10 minutes of refluxing  $W(CO)_5$  mta with a ten-fold excess of  $P(CPh)_3$ , all of the mta had been replaced by  $P(CPh)_3$ . An IR spectrum of the reaction products in chloroform provides good evidence for this conclusion.

Reaction Products :2084(s);1995(sh);1967(sh): 1952(vs)Literature  $W(CO)_5P(OPh)_3(Ref 291):2088(s);1997(sh);1968(sh);$  1955(vs)The observed formation of  $W(CO)_5P(OPh)_3$  is in itself, good evidence for the existence of a  $W(CO)_5mta$  complex.

ii)  $W(CC)_5$ mta was refluxed in a cyclohexane and this forced the formation of a small quantity of a tetracarbonyl complex, but the intensities of the IR absorptions after 8 hours of refluxing were the same as they were after 1 hour.

MISCELLANEGUS PHYSICAL DATA								
COMPLEX	COLOUR	M.P/ ^o C	ANALYSES: Calc. (Found)/%					
			С	Н	N	S		
[Cr(CO) ₅ ] ₂ etea	yellow	72-75	34.37 (34.27)	2.27 (2.95)		6.55 (6.12)		
[W(CO) ₅ ] ₂ etea	yellow	83-84	22.34 (22.55)	1.47 (1.65)		4.26 (4.99)		
Cr(CO) ₄ etea	yellow	114-117	35.69 (35.76)	4.12 (4.C9)		11.91 (12.38)		
Mo(CO) ₄ etea	yellow	117-118	3C.68 (3C.52)	3.54 (3.58)		10.24 (1C.18)		
W(CO) ₄ etea	pale yellow	150-151	23.95 (23.21)	2.76 (2.91)		7.99 (8.47)		
Cr(CO) ₄ tbmp	yellow	125-127	48.69 (48.98)	4.38 (4.67)	4.06 (3.94)			
Mo(CO) ₄ tbmp	yellow	134-136	43.19 (43.59)	3.88 (3.91)	3.60 (2.59)			
W(CO) ₄ tbmp	yellow	169-170	35.24 (35.57)	3.17 (3.29)	2.94 (2.89)			
Cr(CO) ₅ mti	yellow	dec. > 100	35.07 (35.3 ⁸ )	2.62 (2.68)	9.09 (9.09)			
Mo(CO) ₅ mti	pale yellow	dec.125	30.69 (30.84)	2.29 (2.36)	7.96 (8.94)			
W(CO) ₅ mti	yellow-orange	dec.167	24.56 (24.83)	1.83 (2.22)	6.37 (6.78)			
[Cr(CO) ₅ mmbi].0.5mmbi	yellow	> 230	46.57 (46.6c)	2.76 (3.17)	9.59 (9.22)			
w(CO) ₅ mmbi	pale yellow	167-169	31.98 (32.03)	1.65 (1.56)	5.74 (5.71)			
[Cr(CO) ₅ bi].0.5bi	pale yellow	dec.104	5C.42 (49.93)	2.46 (2.85)	11.38 (11.25)			
W(CO)501	yellow	146-150	32.61 (32.91)	1.37 (1.27)	6.34 (5.91)			

TABLE 21

# <u>GENERAL DISCUSSION</u> <u>AND</u> <u>CONCLUSIONS</u>

#### THIOETHER INTERACTIONS

### W.ITH

# ZERC-VALENT NETAIS

#### A) ARYL THICETHER AND ALKYL THICETHER LIGANDS

The  $[I:(CO)_5]_2I$  complexes (where N = Cr, N and I = bmtt, bett) that were characterized in this study are the first examples of bridged-ligand, Group VIP metal carbonyl complexes of dithioether-substituted, benzene-related ligands. This type of complex was not reported in an earlier study on the Group VIP metal carbonyl complexes of 1,2-bis(methylthio)benzene.¹⁹⁵ The formation of both bridged-ligand and chelated-ligand  $(I'(CC)_4I_2$  where I' = Cr, No, W and  $I_2 = bmtt$ , bett) complexes demonstrates the flexibility of these ligands towards transition retal coordination. Similar behaviour is observed for other dithioether ligands (such as the RS(CH₂)_nSR ligands; see Tatle 1).

# i) Interpretation of Electronic Spectra

The electronic spectra of the  $[N(CC)_5]_n I$  complexes of the aryl thioether ligands bmtt (n=2), bett (n=2), m-bmtb (n=2) and mta (n=1), are consistent with the N-S (thioether) bonding being weaker than in analogous complexes of alkyl thioether ligands such as  $RSCH_2CH_2SR$  (where R = t-Eu, Et). Similar differences between the bridged-ligand complexes of  $RSCH_2CH_2SR$  where R is  $p-XC_6H_4$  (X =  $NO_2$ , Cl, H, Me, CMe, NMe_2) ¹⁹⁴ and where R is t-Eu¹⁹⁴ are also apparent on examining the electronic spectral data for those complexes.

The electronic spectral results suggest that, in general, anyl thioether ligands [and phosphine sulphides such as SFNe₃ and SF(Me₂ $\notin$ )] have net  $\sigma$ -donor/  $\pi$ -acceptor

bonding characteristics similar to these of heterocyclic and alkyl amine ligands.

The electronic  $1e \rightarrow 2a_1$  C.T. transition (see Chapter 1, Section II) of  $Cr(CC)_5 SFWe_3$  occurs at energies similar to those of the  $[Cr(CO)_5]_n I$  complexes of anyl thioether ligands (see Table 6, Section II) such as brtt, bett, pte, nte (all n=2) and mta (n=1). This suggests that the overall strengths of the individual Cr-S bonds in all of these complexes are similar, and that the Cr-S bond(s) will be comparable in length to the Cr-S bond (2.51C(2) Å) of  $Cr(CC)_5 SFWe_3$ .²²⁷ That is, they should be longer than in  $Cr(CC)_5 S(Et) CH_2 Fh^{203}$  (2.458(2) Å), for which the  $1e \rightarrow 2a_1 C.T.$  transition energies are similar to those of the  $[Cr(CC)_5]_n I$  (n=1 or 2) complexes of other alkyl thioether ligands (see Table 6, Section II). Similar predictions are applicable to the  $[W(CC)_5]_n I$  complexes of aryl thioether ligands.

In the absence of knowledge about the electronic spectra of  $N(CC)_4 I_2$  complexes (see Chapter 2, Section II), it can not be said with any certainty that similar predictions apply to these complexes. That is, it can not be argued that the bonding behaviour of a specific bidentate ligand (e.g. bmtt,bett,o-bmtb,dto) will necessarily be similar in both its bridged- and chelated-ligand complexes. For example, in its chelated-ligand complexes, a ligand may act as a better

 $\pi$ -acceptor²²¹ (compared to its bridged-ligand complexes), simply because there is one less carbonyl group competing for the metals  $\pi$ -bonding, d-electrons. This means that although aryl dithioethers may exhibit weakened M-S bonding in their  $[M(CC)_5]_2$ L complexes (compared to alkyl dithioethers), this may not be apparent in their chelatedligand complexes. This point is evident from a comparison of the crystal structures of  $W(CC)_4$  o-bmth¹⁹⁵ and  $W(CC)_4$  (t-EuS(CH₂)_nSt-Bu)²⁰⁰ where n=2 and 3. In fact, for the former complex, the W-S bonds (mean 2.52(2) Å) may actually be slightly <u>shorter</u> that in the latter complexes (n=2, mean W-S = 2.562(5) Å and n=3, mean W-S = 2.578(5) Å.). However, the differences are not statistically significant and there is the possibility that steric interactions may have an effect on the W-S bonding in the latter complexes.

# ii) Force Constant Calculations

The information provided by the force constant calculations for the complexes of thioether ligands other than  $C_6F_5SEt$  is more difficult to interpret. For the chromium complexes (Tables 4 and 9b) there do not appear to be any major differences between the net  $\pi$ -acceptor/ $\sigma$ -donor bonding characteristics of the sulphur atoms in alkyl thioether ligands (e.g. dto, bms,  $S(Et)CH_2Ph, S(Et)_2$ ) and aryl thioether ligands (e.g. bmtt, bett, o-bmtb, mta,  $S(Ph)_2$ ) where RS- is adjacent to an aromatic  $\pi$ -orbital system. However, for the tungsten complexes (Tables 4 and 9b) there do appear to be some differences, especially in the  $W(CC)_4I_2$  complexes. The aryl thioether ligands generally appear to be better  $\pi$ -acceptors and/or weaker

 $\sigma$ -donors. It is not clear why such differences are more significant in the tungsten complexes. Factors such as energy differences between the M(C) d-orbitals and the acceptor/donor orbitals on the sulphur atoms, will be

important in determining net  $M \frac{\sigma/\pi}{S}$  overlap.

# iii) <u>Ceneral Conclusions</u>

Ever all, the results of these spectroscopic studies [and those of other authors]^{194,198} tend to suggest that aryl thioether ligands are poorer  $\sigma$ -donors and, in general, may act as better  $\pi$ -acceptors (particularly in chelated-ligand complexes) than alkyl thioether ligands. These conclusions are in agreement with the recently published results for a study on the electronic spectra of some Pt(II) and Fd(II) complexes of aryl thioether and alkyl thioether ligands.

The poorer  $\sigma$ -donor ability of aryl thioether ligands probably arises from delocalisation of the sulphur lone-pair electrons onto adjacent  $\pi$ -orbital systems (i.e.,  $n_s/\pi$ conjugation). These effects are enhanced by the presence of electron-withdrawing substituents. Fhotoelectron spectroscopic studies for ligands such as 1,4-bis(methylthio)tenzene, methylthiobenzene and 2-methylthionaphthalene ¹⁸⁷.

have shown this delocalisation to be real. It can also be used to explain the photoelectron spectra of bmtt, bett and m-bmtb (see Chapter 7, Section I).

It was concluded (This Work) from the spectroscopic properties of the Pt(II) and Pd(II) complexes of 1,2-bis(pentafluorophenylthio)ethane and ethylthiopentafluorobenzene (Pt(II) only), that the  $\Pi$ -component of the M-S (thioether) bonding is probably of only minor importance to its net strength. Other workers have come to similar conclusions ^{249,266} and further support for these conclusions is lent by the studies on the  $M(CO)_{EI}$  complexes of  $C_6F_5$ SEt. Hence although it is apparent from force constant calculations that the  $\pi$ -component of the N-S bonding (N = Cr, W) in these complexes is significantly greater than for other thioether ligands, a decrease in S $\rightarrow M$   $\sigma$ -donation (due to electronegativity effects) results in the complexes being quite unstable.

This study has shown that substituent effects can influence the  $\pi$ -acceptor/  $\sigma$ -donor properties of thioether ligands. The effects are manifested in the spectroscoric and chemical properties (e.g. the unstable nature of the  $M(CO)_5C_6F_5SEt$  complexes) of their Group VIB metal carbonyl complexes.

# B) <u>MIXED (THIOETHER)S-N LIGANDS</u>

The bridged and chelated ligand complexes of etea and the chelated-ligand complexes of tbmp, are the first examples of these types of Group VIB metal carbonyl complex involving sulphur-nitrogen donor ligands. Similar bridging and chelating roles have been observed in the metal carbonyl complexes of phosphorus-nitroger (e.g. 2-(diphenylphosphinoamino)pyridine ²⁴⁸ ) and phosphorus-sulphur ligands (e.g. (Fh)₂-PCH₂CH₂SMe²⁴⁹ ).

In the infrared spectra of the  $[M(CC)_5]_2$ etea complexes, averaged carbonyl stretching absorptions are observed. That is, there is no splitting of the carbonyl stretching absorptions as a result of bonding differences between the S(thioether) and N donors at the respective  $M(CC)_5$ I centres. The infrared spectra for the complexes of 2-(diphenylphosphinoamino)pyridine and  $(Ph)_2PCH_2CH_2SMe$  are similar in this respect.

For the ligands mti and mmbi, these studies have provided conclusive evidence for the preference of N-N interactions (over N-S interactions) in their  $M(CC)_5I$ complexes. In transition metal complexes of imidazole and benzimidazole, the ligand almost invariably binds via the pyridine nitrogen and not the pyrrole nitrogen (-NH-).¹⁵³ The latter will only kind if the proton is removed. There is no reason to suspect that mti and mmbi are any different in this respect. There is no indication, from the spectroscopic results, that M-S(thioether) interactions exist in the complexes of mti and mmbi with the zero-valent Crour VIR metals. These results are thus in general agreement with the interpretation of the spectroscopic data for the Cu(II) complexes of these ligands. (Cu(II)/mti complexes, see Chapter 5, Section I; Cu(II)/mmbi complexes, Ref. 148 ) and for a Co(II) complex of mti (Chapter 5, Section I).

From a consideration of the Fearson classification of acids and bases,⁶ it may be intuitively expected that Cu(II) would prefer to bind to one of the heterocyclic nitrogens of mti and mmbi. Similar reasoning would suggest that the "soft" zero-valent metals (Cr(C), No(O), W(C)) would prefer to bond to the "soft" thioether sulphur in these ligands. That this expectation is not observed may suggest that:

i) Steric considerations are important in
determining the nature of the N(C)-I interactions where I
is mti and mmbi. However, molecular model studies do not
provide any evidence to support this suggestion.

ii) Fyridyl N is a "softer" base than thioether S. Although this can be legitimately infered from the results of the carbonyl studies, the studies on the Cu(II) complexes of mti and mmbi do not support this suggestion.

iii)  $\pi$ -backbonding to the carbonyl groups of  $\mathbb{M}(\mathbb{CC})_5$  may cause  $\mathbb{M}(\mathbb{C})$  to act more as an "intermediate" acid and therefore, to prefer  $\mathbb{M}(\mathbb{C})-\mathbb{N}$  interactions on the formation of  $\mathbb{M}(\mathbb{CC})_5\mathbb{I}$  (I = mti, mmbi).

In contrast to mti and mmbi, it is apparent from the spectroscopic data for the  $N(CC)_5$  mta complexes, that mta prefers to bind via the thioether sulphur donor only. Chelated-ligand complexes of mta could not be isolated, ever though their presence was indicated in reflux and mass spectral studies.

The  $-NH_2$  group's reluctance to participate in tending to zero-valent Cr, Nc and W can be attributed to the low basicity of the aniline amino group. Aniline is a weaker base (due to electron delocalisation) than heterocyclic amines such as pyridine²⁶⁷ and imidazole.¹⁵³ Dennenberg and Darensbourg²³⁷ have previously commented on the unstable nature of Cr(CC)₅aniline in solution, which precluded further attempts to purify the complex.

Hence, even the extra stability that is usually imparted by chelation (see Introduction, Section I) does not appear to readily induce N(C)-amine interactions in mta.

# ECNDINC CHARACTERISTICS OF DIFFERENT LIGAND TYPES

C)

Before crystallographic data tecame available for Group VIB metal carbonyl complexes of thioether ligands, it was assumed ¹²⁹ that the  $\pi$ -acceptor ability of thioether sulphur is similar to that of related phosphine

ligands. However a comparison ¹⁹⁹ of the structures of complexes such as  $Cr(CC)_4$  diphos (diphos = 1,2-bis(diphenyl-phosphino)ethane)²⁶⁸ and  $Cr(CC)_4$  dto (dto = 3,6-dithia-octane)¹⁹⁹ indicated that thioethers have a <u>lower</u>

 $\Pi$ -acidity than phosphine ligands. In the former complex the Cr-P bonds (mean, 2.36C(2) Å) are significantly shorter than the Cr-S bonds (mean, 2.418(1) Å) of Cr(CC)₄dto, even though phosphorus is considered to have a greater covalent radius (1.1C Å)²² than sulphur (1.04 Å)²². The similarity of the <u>cis</u> and <u>trans</u> Cr-CC bondlengths in the respective complexes (Table 22) implies that the net electron densities at the respective chromium atoms are similar. The same argument applies to Cr(CC)₅P(Fh)₃ and Cr(CO)₅S(Et)CH₂Ph. Thus if phosphine ligands such as diphos and F(Fh)₃ are better  $\Pi$ -acceptors than thioethers such as dto and S(Et)CH₂Fh, they must also be better  $\sigma$ -donors.¹⁹⁹

TABLE 22

STRUCTURAL DATA FOR Cr(O) COMPLEXES

COMPLEX	cis-Cr-CC	<u>trans</u> -Cr-CO	Cr-L	REFERENCE
Cr(CC) ₆	1.909(3)			269
	1.914(2)			264
Cr(CC) ₅ P(CFh) ₃	1.896(5)	1.861(4)	2.309(1)	270
Cr(CC) ₅ P(Ph) ₃	1.88C(4)	1.844(4)	2.422(1)	270
Cr(CC) ₅ S(Et)CH ₂ Fh	1.88(1)	1.859(7)	2.458(2)	203
Cr(CC) ₅ SFMe ₃	1.9CC(4)	1.815(8)	2.51C(2)	227
Cr(CC) ₄ diphos	1.884(7)	1.831(7)	2.360(2)	268
Cr(CC) ₄ dto	1.887(3)	1.832(3)	2.418(1)	199
Cr(CC) ₄ I ^{SMe} ₂	1.886(9)	1.833(7)	2.379(2)	207
Cr(CC) ₃ (3NH-pd)		1.816(5)	2.185(4)	271

- 3NH-pd = 3-Azapentane-1,5-diamine

- all bondlengths are Angstroms.

Alkyl amine ligands do not have any  $\pi$ -acidity at all.²³² This is reflected in the short <u>trans</u>-Cr-CO bonds (Table 22) of Cr(CO)₃(3NH-pd). In the Group VIB metal carbonyl complexes, an increase in M  $\rightarrow$  I  $\pi$ -interactions results in an increase in the M-CO bondlengths. This effect is particularly evident in the <u>trans</u>-M-CO bonding (see Table 22 for Cr complexes)

In contrast to the alkyl amine ligands, aromatic heterocyclic amines have  $\pi^*$ -orbitals that are capable of participating in

 $\pi$ -bonding with filled d-orbitals on M(O).²³⁷ The effects of these  $\pi$ -interactions have been observed in a variety of studies (kinetics,²³⁷ photoelectron²³² and ¹³C nmr^{231,232} spectral studies, thermodynamic studies ²³¹) and they can be shown to influence the W-pyridine stretching frequencies in a series of W(CO)₅(4R-pyridine) complexes.²³¹ However, (in contrast to P and S ligands) these  $\pi$ -interactions have not been observed to have any significant influence on  $\nu(CC)$ ,^{231,237}  $\nu(W-C)^{231}$  and  $\delta(WCC)^{231}$  frequencies, and ¹³CO nmr chemical shifts.²³¹

The results of the spectroscopic investigations that have been presented in this thesis, when considered in conjunction with the work of other authors, allow various types of phosphorus, sulphur and nitrogen donor ligands to be placed in the following general order of decreasing  $\mathbb{M}(G)$ -L interactions:

phosphite > phosphine > alkyl thioether > aryl thioether ~ phosphine sulphur ~ pyridyl N ~ alkyl  $1^{ry}$ amine > aryl  $1^{ry}$ amine.

This series is derived primarily from the electronic spectroscopic data for  $[\mathbb{N}(CC)_5]_n I$  complexes (n = 1 cr 2).

In terms of decreasing  $\pi\text{-}\text{acceptor}$  ability, the general ligand sequence:

phosphite > phosphine > aryl thioether > alkyl thioether > phosphine sulphide ~ pyridyl N,

is consistent with crystallographic and infrared spectroscopic data.

Spectroscopic and crystallographic investigations into the nature of the Group VIB metal carbonyl complexes of thioether ligands, have thus provided a valuable insight into the bonding behaviour of these ligands. The comparison of relevant data with that for analogous complexes of phosphorus and nitrogen donor ligands, has been of particular importance to the interpretation of the results of these studies.

#### THE RCLE OF STERIC INTERACTIONS

# IN THE COMPLEXES OF

tbmp, tbmo, I, etea AND mti

### 1) <u>COMPLEXES OF the the the complexes</u>

The crystallographic and spectroscopic studies on the M(II) (N = Cu, Co, Ni) and Cu(I) complexes of thmp, have shown that their structural and behavioural diversity is broad and complex. A comparison with the complexes of other bidentate ligands, suggests that part of this diversity may be attributed to the influence of the bulky t-butyl groups that are attached to the coordinated sulphur atom.

i) On examination of the crystal structure of  $[Cu(tbmp)Er_2]_2$  (Chapter 1, Section I), the t-butyl groups appear to be responsible for blocking the approach of a sixth ligand to the remaining coordination site on each Cu(II). The complex therefore, exists as discrete dimers. Crystallographic studies on complexes such as  $Cu(aep)Cl_2^{272}$  (aep = 2-(2-aminoethyl)pyridine),  $Cu(amp)Br_2^{25}$  (amp = 2-(aminomethyl)pyridine) and  $Cu(en)Cl_2^{87}$  (en = ethylene-diamine), where the ligands' amino groups are unsubstituted show that Cu(II) prefers to adopt a tetragonal polymeric geometry. In order to do this, infinite chains of planar  $CuN_2X_2$  units, bridged by halide ions, are formed. Livingstone et al, in their work on 2-(methylthiomethyl)pyridine (mmp),¹⁵ concluded that  $Cu(mmp)Cl_2$  and  $Cu(mmp)Br_2$  also have tetragonal polymeric structures.

ii) The electronic and far-infrared spectroscopic studies provide good evidence for the preference of <u>cis</u>octahedral structures in the  $M(tbmp)_2X_2$  complexes (M=Cu(II), Co(II), Ni(II). Molecular model studies provide support for these conclusions and show that two isomers are equally
possible:

a) two sulphurs <u>cis</u>, two X⁻ <u>cis</u>, two nitrogens <u>trans</u>; b) two sulphurs <u>cis</u>, two X <u>cis</u>, two nitrogens cis. A structure in which the two sulphurs are cis and the two nitrogens are cis, but the two anions are trans, is ruled out by the molecular models. A trans tetragonal structure (2S trans, 2N trans, 2X trans), as adopted by complexes such as  $Cu(mtea)_2(ClO_4)_2^{33}$  (mtea = 2-methylthioethylamine),  $[Cu(en)_{2}X.H_{2}C]X^{B9,91,97}$  (X = Cl⁻, Br⁻) and Cu(aep)₂(ClC₄)₂ , does not appear to be possible for the  $M(tbmp)_2X_2$ complexes either. There would be excessive steric interactions between the t-butyl groups of one ligand and carbon 6 on the pyridyl ring of the second ligand, if this structure was adopted. The N(II) complexes therefore assume a cis-octahedral configuration in preference to undergoing tetrahedral distortions. These would effectively reduce steric interactions, too.

In contrast to tbmp, Livingstone <u>et al</u>¹⁵ report that mmp, on the basis of model studies, is able to coordinate in a <u>trans</u> square planar configuration.

### 2) <u>COMPLEXES OF thma</u>

This ligand can be considered to be disubstituted tbmp in that two R groups (the second aromatic ring) have been added to carbons 5 and 6. The effect of this "substitution" is quite dramatic. For Cu(II), only the distorted tetrahedral  $Cu(tbmq)X_2$  (X = Cl⁻, Br⁻) species could be isolated in pure form. Although there was some indication that a  $Cu(tbmq)_2(ClO_4)_2$  complex can be formed (Chapter 6, Section I), there was no evidence for the formation of 2:1 species with chloride and bromide anions. In contrast to the

 $[Cu(tbmp)Br_2]_2$  complexes,  $Cu(tbmq)Cl_2$  and  $Cu(tbmq)Fr_2$ are probably monomeric in the solid state. Thus tbmq can be compared with 2-methyl-8-methylthio-quinoline(mmtq) which also forms distorted tetrahedral complexes ¹⁴ of this type. Cn the other hand, the magnetic moments ( $\mu = 1.79-1.93$ ) for the 1:1 complexes of 8-methylthiocuinoline¹³

appear to be normal for square planar  $\operatorname{Cu}(II)$ . If the complexes of mmtq tried to adopt a planar structure, the 2-methyl group would interact with the other ligands in the equatorial plane.¹² Similar steric effects can explain the distortions in  $\operatorname{Cu}(\operatorname{tbmq})\operatorname{Cl}_2$  and  $\operatorname{Cu}(\operatorname{tbmq})\operatorname{Pr}_2$ . However, the calculation of  $\operatorname{g}_{\parallel} / |A_{\parallel}|$  ratios for the latter complexes (see Chapter 6, Section I), indicated that the distortions are not severe and their structures can be best described as being flattened tetrahedral.

### 3) <u>CONFLEXES OF L</u>

Nolecular models suggest that the three potential binding sites (imine N, thioether S, ketone O) of this ligand can not assume a planar configuration about a coordinating metal ion. Therefore, tetrahedral distortions must occur and this is indicated in the spectroscopic data. Erodie and Otsuka in their study of some related disubstituted camphorquinone ligands,¹⁶² suggested that the wide ligand bite will also be an important factor in forcing a tetrahedral geometry on the metal ion.

It was inferred from the infrared data for the  $CuI(ClC_4)_2$ .acetone.xH₂O (x = C.2) complexes (Chapter 6, Section I) that the ketone oxygen of J is coordinated to Cu(II). The crystal structure analysis¹⁶³ for a Cu(II)

complex of the monosubstituted imine formed by 3-hydroxymethylenecamphor and phenylalanine, showed that this oxygen can bind to Cu(II). It is relevant to note that in the latter complex, the "scuare planar" CuC₃N chromophore has undergone slight tetrahedral distortions.

### 4) <u>CCNFIEXES CF etea and mti</u>

In contrast to the  $Cu(tbmp)_2X_2$  complexes, the analogous complexes of etea, and  $Cu(mti)_4Cl_2$ , (Chapter 5, Section I) exhibit <u>trans</u> coordination of the anions. The observation of two  $\sigma(S) \rightarrow Cu(II)$  charge transfer absorptions in the electronic spectra of  $Cu(etea)_2(ClC_4)_2$  and  $Cu(etea)_2(BF_4)_2$  was interpreted as indicating that the coordinated -SEt groups are <u>cis</u> to each other. However, it could not be decided from the reflectance spectra, whether or not the chloride and bromide complexes have similar structures. For 2-methylthio-ethylamine (mtea), the analogous perchlorate complex has been shown ³³ to have a <u>trans</u>-tetragonal structure (the -SMe groups are <u>trans</u>) and only one  $\sigma(S) \rightarrow Cu(II)$  charge transfer absorption is evident in its mull spectrum.⁴⁷

The apparent preference of  $Cu(mti)_4 Br_2$  for <u>cis</u> anion coordination, suggests that with four mti ligands in the equatorial plane, there are steric reasons as to why both bromide ions can not bind in the axial positions. For the smaller chloride ions, however, axial coordination does take place.

The studies on the transition metal complexes that have been reported in Section I of this thesis, have shown that apparently simple systems, on close examination, can exhibit

remarkably varied structural and chemical behaviour. For studying the Cu(II) complexes, the sensitivity of electron spin resonance spectroscopy has been especially useful in interpreting their behaviour in various solvents.

Of particular importance to the interpretation of the spectroscopic data for the complexes of tbmp, tbmq and I, has been the comparison of the complexes of etea and mti. In general, the complexes that these latter ligands form, are similar to those which have been well characterized for ethylenediamine and imidazole.

These studies have thus shown that the synthesis of structurally distorted (quite apart from normal Jahn-Teller distortions) Cu(II) complexes can be readily achieved by the use of simple, but suitably designed ligands.

#### THICETHER INTERACTICNS

### WITH

### Cu(I) AND Cu(II)

An understanding of thioether sulphur/zero-valent metal bonding, can be extended to consider the possible characteristics of thioether sulphur interactions with other metals, such as copper in its +1 and +2 oxidation states.

## i) $Cu^{n+} \rightarrow S(\text{thioether}) \quad \pi - \text{interactions}$

In the Fearson classification of acids and bases, ⁶ Cu(I) is classed as a "soft" acid and Cu(II) as an "intermediate" acid. Also, the studies with the zero-valent Group VIB metals (see above) have shown that thioether sulphur is capable of participating in partial  $\pi$ -bonding interactions with the d-orbitals of "soft" metal atoms. Hence it is anticipated that Cuⁿ⁺ $\rightarrow$  S(thioether)  $\pi$ -backbonding will be more acceptable to copper in its +1 oxidation state, that it will be to copper in its +2 oxidation state.

An examination of the crystallographic data for Cu(II) and Cu(I) complexes of thioether ligands (see Chapter 1 and 3, Section I) enables some pertinent comparisons:

a) the mean equatorial Cu(II) - S(thioether) bondlength (Range, 2.3C3(1) - 2.488(3) Å) for all of the crystal structures that have been reported (Tatle 4b), is 2.342(2) Å. This corresponds to the predicted Cu(II)-S single bond of ca 2.34 Å (see Chapter 1).

b) The mean Cu(I)-S(thioether) bondlength (Range, 2.276(2) - 2.345(1) Å) for all of the crystal structures that have been reported (Table 16, Section I) is 2.315(3) Å. The predicted Cu(I)-S single bond is <u>ca</u> 2.39 Å. It is apparent therefore, that the <u>average</u> Cu(II)—S (thioether) bond represents an essentially single bond. In the cases where the Cu(II)—S bonds are shorter, for example in Cu(14-ane-S₄)(ClC₄)₂,⁹ (the mean Cu(II)—S is 2.3C3(1) Å) there may be some Cu(II)—S  $\pi$ -donation. However, in general, there appears to be little evidence to suggest that Cu(II)—S

 $\pi$ -donation is a normal feature of Cu(II)-thioether complexes. In contrast, the Cu(I)—S bonds in Cu(I)-thioether complexes are consistently shorter than the predicted single bond value; the average difference being <u>ca</u> C.C7 Å.

In accordance with the predicted behaviour (see above), the crystallographic data (in agreement with the conclusions of Eaker and Norris¹⁰) provides strong evidence for the existence of Cu(I) $\rightarrow$ S(thioether)  $\Pi$ -bonding. Seff and his co-workers have also provided crystallographic evidence for Cu(I) $\rightarrow$ S  $\Pi$ -interactions, from their studies on the complexes of disulphide ligands.¹¹⁰

ii) <u>Bondlength Differences Between Cxidation States</u>
 a) <u>Cuⁿ⁺ S Fonds</u>

In  $[Cu(tbmp)Br_2]_2$ , where both ligands are chelated (see Chapter 1, Section I), the Cu(II)—S bonds (2.353(5) and 2.351(6) Å) are identical to the Cu(I)—S bond (2.358(4) Å) of the chelated ligand in Cu(tbmp)₂Br (Chapter 3, Section I). These results are in general agreement with the comparative crystallographic studies of Paker and Norris,¹⁰

Rorabacher <u>et al</u>^{7,9} and Brubaker <u>et al</u>." In each of these studies it was found that on changing the Cu oxidation state, there is little change in the Cuⁿ⁺—S(thioether) bondlengths, despite the slightly greater

covalent radius of Cu(I) (1.35 Å) compared to Cu(II) (1.30 Å). Baker and Morris suggested that the similarities can be attributed to a greater  $\pi$ -component in the Cu(I)--S (thioether) bonding. The results for [Cu(tbmp)Br₂]₂ and Cu(tbmp)₂Br are in agreement with this conclusion.

However, on comparing "model" complexes where a specific ligand has changed its structural role (for example chelated <u>vs</u> monodentate), large differences in the  $Cu^{n+}$ -S bondlengths may be observed. This point is illustrated in the structures of  $Cu(tbmp)_2Br$  and  $[Cu(tbmpH)Er_2]_2$  (Chapter 3, Section 1). "where tbmp is monodentate in these complexes, the Cu(I)-S bonds are significantly shorter (2.3(4(3) and 2.276(2) Å resp.) than the  $Cu^{n+}$ -S bonds for the chelated thmp ligands of  $Cu(tbmp)_2Br$  (n = 1, Cu(I)-S = 2.352(4) Å) and  $[Cu(tbmp)Er_2]_2$  (n = 2, Cu(II)-S = 2.353(5), 2.351(6) Å). Hence care should be taken in making such comparisons.

b) <u>Cuⁿ⁺ N Bonds</u>

Although the Cu(I)-N(pyridyl) bond (2.11(1) Å)in  $Cu(tbmp)_2Br$  appears to be slightly longer than the Cu(II)-N(pyridyl) bonds (mean, 2.C6(2) Å) of  $[Cu(tbmp)Br_2]_2$ , the difference (C.C5(2) Å) is not statistically significant. Neither is there any significant difference between the means of the Cu(I)-N(pyridyl) bonds (mean, 2.C3(1) Å) and the Cu(II)-N(pyridyl) bonds (mean, 2.C21(8) Å) for the complexes in Tables 16 and 4c (see Section I). The predicted Cu(I)-Nand Cu(II)-N single bonds are <u>ca</u> 2.C9 Å and <u>ca</u> 2.O4 Å (Chapters 3 and 1, Section I) respectively.

In general, there is no indication that  $Cu(II) \rightarrow N(pyridyl)$  $\Pi$ -donation is significant. In contrast however, the crystallographic data suggests that some Cu(I) - N(pyridyl)

 $\Pi$  -donation may occur in the Cu(I) complexes of substituted pyridine ligands. Support for this possibility is provided by the studies (see earlier discussion) on the Group VIP metal carbonyl complexes of substituted pyridine ligands. Thus Cu(I) \rightarrow N(pyridyl)  $\Pi$ -donation (from the Cu(I) d-orbitals into the empty  $\Pi^*$ -orbitals of the ligand) would generally account for the similarities in the Cu(I)-N and Cu(II)-N bondlength data.

# FLEXIBILITY OF Cuⁿ⁺ --- S(thioether)

#### INTERACTIONS

It is apparent from the foregoing discussion, that thioether sulphur interactions with Cu(II) and Cu(I) are remarkably flexible:

i) low M.W. complexes of thioether ligands exhibit widely varying structural and chemical behaviour,

ii) geometry and oxidation changes are easily accommodated,

iii) crystallographic studies have shown that Cu(II)—S(thioether) bondlengths vary over a greater range (2.3C3(1)-2.6C7(2) Å; see Table 4b, Section I) than Cu(II)—N(pyridyl) bondlengths (<u>ca</u> 1.98C(6)-2.16(1) Å; Table 4c).

Fecause a wide variety of active site geometries and varying degrees of "site-structure rigidity" ²⁷⁶ will be encountered in different biological systems such as the copper proteins, this flexibility (or plasticity) implies that methionine thioether sulphur is an ideal inner coordination sphere ligand.

### STRUCTURAL CHANGES

# IN

#### CCPPER FROTEINS

### i) <u>General Discussion</u>

It is apparent from the above evidence that the biologically relevant donor groups, thioether sulphur (as in methionine) and pyridyl nitrogen (as in histidine), are capable of participating in  $\Pi$ -bonding with a "soft" metal such as Cu(I). This capability can explain the general observation (for "model" complexes) that there is little

or no change in Cuⁿ⁺ — S(thioether) and Cuⁿ⁺ — N(pyridyl) bondlengths on changing the Cuⁿ⁺ oxidation state. These structural features are therefore of direct relevance to the redox role of the Cuⁿ⁺ ion in the copper proteins. In these proteins, electron transfer would be facilitated if structural changes (both bonding and geometric) are minimised.¹⁰

A distorted tetrahedral Cu(II) geometry is not energetically favoured as ligand-field stability is maximised for square planar, four-coordinate Cu(II).²⁷⁶ Thus in the proteins where Cu(II) has a distorted tetrahedral geometry, site-structure rigidity ²⁷⁶ (imposed on Cu(II) by the protein) must overcome the tendency for Cu(II) to adopt a square planar structure and therefore allow oxidation state changes to proceed without severe geometry changes.

Earlier, (Chapter 1, Section I) it was argued that tetrahedral distortions in the geometry of a Cu(II) complex (containing coordinated thioether sulphur and pyridyl nitrogen) do not appear to affect the Cu(II)—S and Cu(II)—N bending either. This is despite the expectation ²⁷⁶ that changes in the Cu(II)—L bondlengths may arise from geometric distortions, as observed in the flattened tetrahedral and square planar forms of CuCl₄²⁻.²⁷⁷

### ii) <u>Conclusions</u>

The crystallographic data for "model"  $Cu^{n+}$  (n = 1,2) complexes containing thioether sulphur and pyridyl nitrogen as ligands, suggests that in proteins such as plastocyanin⁵

(and possibly azurin²⁷⁸) where methionine and histidine form part of the distorted tetrahedral, inner coordination sphere, oxidation state changes will be accompanied by little

or no change in the  $Cu^{n+}$  L (n = 1,2) bondlengths. This is not likely to be altered by the presence of coordinated cysteine thiolate sulphur (as in plastocyanin) as it too, is capable of participating in  $\Pi$ -bonding with Cu(I).

Cn the other hand, oxidation state changes for a protein such as Cu-Zn superoxide dismutase (if indeed they do occur) may be accompanied by rearrangements in the geometry of the active site.⁷ In the oxidised protein, Cu(II) has a distorted square planar  $N_4$  environment.⁸ That this is an unfavourable geometry for Cu(I) is evidenced by the structural differences that are almost invariably observed in crystallographic studies of low N.W. complexes. However in most "model" complexes, Cu(II) and Cu(I) are not subject to the same constraints that may be imposed by the site-structure rigidity of a protein.

# THE CRIGIN OF THE 600 nm. ABSORPTION

#### IN "MCDEL" COMPLEXES

#### AND THE "BLUE" PROTEINS

Before the crystal structure of poplar-leaf plastocyanin became known, several studies had implicated Cu(II)/cysteine thiol and/or Cu(II)/methionine thioether interactions as being responsible for the intense ( $e \sim 4CCC \ 1.mol.^{-1}cm^{-1}$ ) optical absorption that is observed near 6CC nm⁴ in the "blue" copper proteins.

### i) <u>Cu(II)-thiol Interactions</u>

Although the complex reactions between mercaptides and Cu(II) have been studied intensively,²⁷⁹ few systems exhibit the stability that would enable Cu(II) complexes of coordinated thiolate sulphur to be isolated. Three examples which have been successfully characterized crystallographically are the complex Cu(I)/Cu(II) clusters formed by D-penicillamine  $(HSC(CH_3)_2CHNH_2COCH)^{280,281}$  and  $\beta,\beta$ -dimethyl cysteamine  $(HSC(CH_3)_2CH_2NH_2)$ , ²⁸² and a trigonal bipyramidal  $CuN_4S$  complex formed by the addition of o-mercaptobenzoic acid to a Cu(II) complex of the macrocycle, [rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazocyclotetradecane].²⁸³

The Cu(I)/Cu(II) clusters both have intense absorptions at about 518 nm. ( $\epsilon$  =425C and 34CC resp.) and these have been assigned as  $\sigma(S^-) \rightarrow Cu(II)$  charge transfer transitions.²⁸² A peoply resolved absorption at <u>ca</u> 59C nm for the CuN₄S complex was assigned as a d-d transition.

The reaction of thiolates with Cu(II) complexes will often result in intensely blue, but usually unstable (e.g., the reaction of t-butyl thiolate with  $Cu(tbmp)_2(ClC_4)_2$ : Chapter 2, Section I) Cu(II)/thiolate species being formed. 80,135,284

In most cases, an intense absorption, that can be assigned as a  $\sigma(S^-) \rightarrow Cu(II)$  charge transfer transition,⁸⁰ is observed at about 6CC nm. The reactions of Cu(II) with ligands such as imidotetraphenyldithiodiphosphinate,¹⁶⁶ N-(2-thiophenyl)pyridine-2-aldimine²⁸⁵ and 3-ethoxybutan-1,2-onebis(thiosemicarbazone)²⁸⁶ also result in these intense absorptions being observed.

## ii) <u>Cu(II)-thioether Interactions</u>

Despite the rapid growth in the number cf spectroscopically and crystallographically characterized Cu(II) complexes of coordinated thioether sulphur, very few

exhibit the electronic absorption that is characteristic of "blue" copper. In those that do,  36,69,81  the absorptions are not as intense as those observed for the Cu(II)/thiolate complexes that were discussed above. The work of Schugar and his co-workers  47  enables these absorptions to be assigned as  $\pi(S) \rightarrow Cu(II)$  charge transfer transitions.

### iii) <u>General Discussion</u>

Early work by Cray and his colleagues  276,287 resulted in the <u>ca</u> 600 nm absorption, of plastocyanin and other "blue" copper proteins, being assigned to  $\sigma(S^-) \rightarrow Cu(II)$ charge transfer (arising from cysteine/Cu(II) binding). Considerable support for their assignment has come from the characterization of "model" Cu(II)/thiolate complexes (see above) and recent Raman spectroscopic investigations.²⁸⁸

However, as a result of this Raman work, Ferris <u>et al</u> concluded that  $\Pi(S) \rightarrow Cu(II)$  charge transfer may also make a minor contribution to the intensity of the 6CC nm absorption in the "blue" proteins where methionine also appears to be coordinated.

As the intense  $\pi(S) \rightarrow Cu(II)$  absorptions that can be produced by thioether coordination are observed only rarely, the conditions enabling these transitions to take place, are therefore, not readily attainable in most small molecule systems. Braithwaite, Rickard and Waters ⁶⁹ have concluded that the degree of copper-sulphur orbital overlap is an important factor in enabling these transitions to be observed However, as noted in the early work of Rorabacher <u>et al</u>, ^{81,289} the geometry of the Cu(II) chromophore is not important. Hence, of the various structurally divergent complexes that have been investigated in this thesis, only one  $[Cu(tbmq)Cl_2;$  see Chapter 6, Section I] showed an absorption (reflectance spectrum only) that can be assigned as a  $\Pi(S) \rightarrow Cu(II)$  charge transfer transition.

### AFFENDIX I

### i) <u>ligand syntheses</u>

<u>3,4-bis(methylthio)toluene and 3,4-bis(ethylthio)-</u> toluene

Although 3,4-bis(methylthio)toluene has previously been prepared and used in reactions with metal salts,²⁶¹ its preparation was not reported.

<u>General Procedure</u>: For both ligands, 10 cm³ (C.C86 mole) of toluene-3,4-dithiol were dissolved in about 100 cm³ of Abs.EtCH. To this, a slight excess of Na (4.C g.) was slowly added while the solution was being stirred and the respective alkyl icdides (11 cm³ of MeI, 14 cm³ of EtI) were then slowly added. After the solutions had been refluxed for about an hour, they were left to stand overnight.

# i) <u>3,4-bis(methylthio)toluene</u> (bmtt)

On shaking the solution that had been left to stand, white crystals precipitated. These were filtered, washed with distilled water and a further quantity of distilled water was added to the filtrate to precipitate a second crop. The two crops of crystals were dried under vacuum filtration (with N₂ passing over them). They were then combined and recrystallized from Abs.EtOH. A further crop was isolated after the filtrate was concentrated <u>in vacuo</u> and cooled at  $0^{\circ}$ C.

### YIELD: 13.883 g. (87%)

# ii) <u>3,4-bis(ethylthio)toluene</u> (bett)

Deionised water  $(2(C \text{ cm}^3) \text{ was} \text{ added to the}$ solution that had been left to stand overnight. An oil which precipitated after this solution had been cooled, was extracted into ether. After the cloudy, aqueous-ethancl fraction had been concentrated in <u>vacuo</u>, further ether extractions were carried out until the aqueous phase was clear. The ether extracts were then combined, concentrated and dried with anhydrous  $Na_2CO_3$  before the ether was removed in <u>vacuo</u>. The oil was distilled to give the colourless ligand.

YIEID: 8.090 F. (44%)

### Cther Ligands

The syntheses of ethylthiopentafluorobenzene and 2-(3,3-dimethyl-2-thiabutyl)pyridine are described in Appendix I, Section I, together with the preparations of 2-ethylthioethylamine and 2-methylthio-2-imidazoline. Benzimidazole, 2-methylmercaptobenzimidazole and 2-methylthioaniline were used as supplied.

### ii) <u>DISTILLATION OF LIGANDS</u>

The microdistillations were carried out as described in the Appendices to Section I.

### TAELE 23

### LIGAND PROPERTIES AND ANALYTICAL RESULTS

IIGAND	AFFEARANCE	M.P/B.P/Other	ANALYSES: Calc. (Found) /%
bmtt	white solid	38 °C	Ф С 57.4С, H 6.41, S 33.12 (57.48) (6.41) (33.12)
bett	colourless oil	12C-122 ⁰ [ <u>ca</u> 2C mm.Hg]	С 62.2С, Н 7.58, S 30.2С (62.52) (7.56) (30.28)
NOTES: <b></b>	calculated	for $[C_9H_{12}S_2]$ .	C.25(H ₂ 0)

- mass spectra indicated that bmtt loses a methyl group and then the two sulphurs. This implies that a methyl group is being transferred; i.e. ligand rearrangement is occurring.²⁵⁴ This does not occur in 1,2-bis(methylthio)benzene.²⁵⁵

### iii) <u>METHYLATION</u> OF bmtt

In the presence of a large excess of methyl iodide, an acetone solution of bmtt (C.944 g.) was left to stand for four weeks at 4  $^{\circ}$ C, under nitrogen. An almost plastic residue (C.122 g.) was isolated from the solution. The ¹H nmr spectrum (CDCl₃ solution) suggests that there is a mixture of the two species shown below.

'H	nmr	SFECTRUM;	METHYLATION	CF	bmtt

CCMPLEX	-SM.e		- <u>s(CH</u>	<u>}</u> 2	Ar-CH3		Ar-H
bmtt	2.4C,	2.42			2.28		7.C
bmtt/MeI products	2.66,	2.69	3.60,	3.85	2.53,	2.60	7.75

<u>NCTE</u>: - chemical shifts are ppm downfield from TNS - chemical shifts for aryl protons (Ar-H) are the

centres of the observed multiplets.



#### APPENDIX II

### i) <u>GENERAL SYNTHESIS CF CARECNYI COMPLEXES</u>

The Group VIB metal carbonyl complexes that are described in this thesis were synthesized  $usin_{\mathcal{E}}$  the Strohmeier photochemical technique²⁵⁶. Although other more direct, methods can be used, the Strohmeier method has the following advantages:

- thermally unstable complexes can be formed,
- the products are often more pure and are formed in better yields,
- less time is needed (compared with thermal substitution reactions) for the preparation of complexes.

For all of the syntheses that were described in Section II, a mixture of the parent hexacarbonyl  $(M(CC)_6, M = Cr, Mo, W)$  and tetrahydrofuran (THF) is irradiated for about one hour in an atmosphere of oxygenfree, dry dinitrogen. The THF is deoxygenated with dinitrogen before irradiating. The irradiation results in the formation of  $M(CO)_c$ THF, in two steps:

> 1)  $\mathbb{M}(\mathbb{CO})_{6} \xrightarrow{hv} [\mathbb{M}(\mathbb{CO})_{6}]^{*} \longrightarrow [\mathbb{M}(\mathbb{CO})_{5}] + \mathbb{CO}$ "excited" intermediate

2)  $[M(CO)_5] + THF \longrightarrow M(CO)_5 THF$ The irradiation is stopped at this point and the ligand is added to the solution. This results in an exchange reaction (3);

3)  $\mathbb{M}(\mathbb{CO})_5$ THF + Ligand  $\longrightarrow \mathbb{M}(\mathbb{CO})_5$ Ligand + THF and the individual complexes are isolated as described in the relevant Chapters. <u>NCTE</u>: - in all cases where solvents were removed <u>in vacuo</u>, a rotary evaporator was used. Where complexes or residues were dried <u>in vacuo</u> an evacuated (<u>ca</u> 2-5 mm. Hg) drying line was used. The sublimation of excess  $M(CC)_6$  was also carried out on this line.

# ii) <u>CHARACTERIZATION OF UNSTABLE C₆F₅SEt COMPLEXES</u>

The existence of the unstable  $\mathbb{N}(\mathbb{CC})_5^{C} \mathbb{C}_6^{F} \mathbb{S}^{SEt}$  complexes  $(\mathbb{M} = \mathbb{C}r, \mathbb{W})$  was inferred from IR studies on the products of the preparations that are described in Chapter 2. IR spectra (21CC-185C cm⁻¹) were recorded for freshly extracted (and filtered) cyclohexane solutions. The carbonyl stretching frequencies are reported in Table 3. A ¹H nmr spectrum (see below) which was recorded for a freshly extracted CDCl₃ solution (filtered under  $\mathbb{N}_2$ ) of the  $\mathbb{C}r(\mathbb{CC})_5^{THF/C} \mathbb{C}_6^{F} \mathbb{S}^{SEt}$  reaction products, supports the IP evidence for the existence of an unstable  $\mathbb{C}r(\mathbb{C}0)_5^{C} \mathbb{C}_6^{F} \mathbb{S}^{SEt}$  complex.

	' <u>H</u> nmr	SPECTRA (in CDC1	32
COMPLEX		-SCH2CH3-	-SCH2CH3-
C ₆ F ₅ SEt		2.96q(7)	1.29t(7)
Cr(CO)5 ^C 6 ^F	5 ^{SEt}	<u>ca</u> 3.1 m	<u>ca</u> 1.3 m
NOTES: -	m = mul	tiplet; t = trip	let; q = quartet,
-	chemica	al shifts are ppm	downfield from TMS,
-	couplir	ng constants are :	in parentheses (Hz),

## iii) REACTIVITY STUDIES; EXFERIMENTAL DETAILS

Where it was possible, either cyclohexane or n-hexane were used as solvents for the following reasons:

only moderate reflux temperatures (75[°] and 69[°] C respectively) are required,

- the carbonyl complexes are more stable in these solvents.
- superior IR spectral resolution is achieved.

All reactions were carried out under an atmosphere of oxygen-free, dry dinitrogen and IR spectra were recorded only for the  $\mathbf{v}(CC)$  region.

a) <u>Reflux [W(CO)</u>₅]₂bett in n-hexane

About 5C mg. of the complex were dissolved in 8C  $\rm cm^3$  of n-hexane.

b) <u>Reflux [%(CO)5]2bett with excess Triphenylphos</u>phine

A 6:1 ratio of  $\text{Fh}_3P$  (C.079 g.) to the carbonyl complex ((.(43 g.) was used. The solvent was cyclohexane.

c) <u>Reflux [W(CO)</u>₅]₂<u>bett with excess Triphenylphos</u>-<u>phite</u>

 $[W(CO)_5]_2$  bett (C.1 mmole, C.C86 g.) was refluxed for 2 hours (in cyclohexane) with 1 mmole of F(OPh)₃ (C.31C g.). Samples were removed for IR analysis after refluxing for 5, 2C, 3C, 6C and 12C minutes respectively.

> d) <u>Reflux [W(CO)</u>₅]₂<u>etea with excess Triphenylphos</u>-<u>phite</u>

The carbonyl complex (C.C65 mmole, O.C5C g.) was refluxed (in cyclohexane) with a ten-fold excess of  $P(OPh)_3$  (C.2C2 g.). Samples were removed for IR analysis after C.5, 1, 2 and 5 hours respectively.

e) <u>Reflux W(CO)4etea with excess Triphenylphosphite</u>

 $[W(CO)_5]_2$ etea (C.C65 mmole, C.O50 g.) was refluxed in cyclohexane to convert it to  $W(CC)_4$ etea. A ten-fold excess of P(CPh)₃ (C.2C2 g.) was then added and the refluxing was continued. Samples were removed for IR

analysis after 5, 3C, 4C and 6C minutes.

In benzene,  $W(CO)_4$  etea (C.2C mmole) was refluxed with 2 mmole of P(OPh)₃ over a period of 8 hours.

#### AFPENDIX III

i) INSTRUMENTS AND RECORDING OF SPECTRA

<u>Infrared spectra</u> were recorded on a Beckman IR-2C spectrophotometer and calibrated with polystyrene film. To record the spectra of solutions, 0.5 mm. NaCl cells were used.

<u>Electronic Spectra</u> were recorded on a Shimadzu MFS-5000 spectrophotometer, using 10 mm. quartz cells. The spectra were recorded immediately after the preparation of each solution.

¹<u>H nmr spectra</u> were recorded using a JECL C-6CHL High Resolution NMR spectrometer. Tetramethylsilane (TMS) was used as an internal standard for all spectra.

Decomposition problems were often encountered and these were minimised, or even eliminated, by filtering each solution under  $N_2$ .

Resonances were assigned for both the ligands and their complexes by a consideration of integrated peak areas, expected spin-spin coupling effects and symmetry effects (for bmtt and bett).

<u>1³C nmr spectra</u> (proton decoupled) were recorded on a JEOL JNM-FX6C Fourier Transform spectrometer, using TMS as an internal standard. Each carbonyl solution was filtered before use.

Relatively high concentrations ( $\underline{ca}$  5C-100 mg.cm⁻³) of the carbonyl complexes were used in order to minimise the data collection time. For each complex, the ligand resonances were recorded first. For the ¹³CO resonances 1-2 mg. of the inert, paramagnetic, relaxation reagent  $Cr(acac)_{3}^{257}$  were added to the solutions to give a ratio of about 1:1CO  $Cr(acac)_{3}$ :substrate.²⁵⁸ The resulting decreased relaxation times enabled the data to be collected in a shorter time (<u>ca</u> 30 minutes).

The longer spin-lattice relaxation times  $(T_1)$  of non-protonated carbon atoms²⁵⁸ enable the substituted aryl carbon atoms (C1, C3, C4; see Table 11b) of bmtt and bett to be easily distinguished from the other (C2, C5, C6) aryl carbon atoms. The former have relatively low intensities. C1 has been tentatively assigned by comparison with the spectra of some n-methylthiotoluene (n = 2,3,4) ligands.²⁵⁹

<u>Mass spectra</u> were recorded on an A.E.I. MS9 instrument.

ii) SOLVENTS

a) <u>Spectroscopic Investigations</u>: All solvents were of Spectroscopic Grade. Nitromethane was stored over molecular sieves.

b) <u>Preparative Work</u>: All hydrocarbon solvents were redistilled before use.

Acetone was A.R. grade.

Tetrahydrofuran was dried with anhydrous calcium chloride before it was distilled over Na wire. Cuprous chloride was added to the solution being distilled to destroy explosive peroxides. Care was also taken to ensure that the solution being distilled did not drop below a volume of about 200 cm³.

### APFENDIX IV

### MISCELLANEOUS REACTIONS

i)

Reaction of tetraethylthiuramdisulphide with Cr(CO)

Cn adding the ligand to irradiated  $Cr(CC)_{\ell}$  (in THF) there is immediate discolouration and decomposition gradually occurs through several stages. A stable carbonyl-free, violet complex (probably  $Cr(Et_2Dtc)_3$ ) was isolated from benzene extracts.

Na taran karaka karang pana panta karana kara karana kara kara kara kara	M.P/ ^O C	$IR/cm^{-1}$	REF.
Violet complex	253-255	1487	This work
Cr(Et ₂ Dtc) ₃	25C(dec)	1542 <b>-</b> 148C <b>¢</b>	N.F;Ref. 262 I.R;Ref. 263

Pand in this region due to V(C=N) mode of the C=NR₂ canonical form for dithiocarbamoto complexes.
Et₂Dtc is Et₂NC - S⁻ S

ii) Reaction of 1,4,8,11-tetrathiacyclotetradecane (TTP) with W(CO)₆

In an attempt to synthesize a bridged-ligand complex, 1 mmole of TTF (C.268 g.) was added to 2 mmole of irradiated  $W(CC)_6$  (C.7C3 g.) in THF. The mixture had to be irradiated for 3C minutes to dissolve most of the ligand and then it was filtered. A pale yellow precipitate (W.P 56-62°; Yield: C.13C g.) was isolated from acetone extracts of the reaction products.

The relative concentrations of the penta-and tetracarbonyl species of this solid are unaffected by attempts to separate the species on a silica-gel column.

Although the carbon and hydrogen analyses are close to those expected for  $W_2(CC)_QTTP$ , the sulphur analysis is too low.

Calculated for W₂(CO)₉TTP: C 25.69%; H 2.27; S 14.44 Found : 25.55 2.45 11.96 also12.06

The highest peak in the mass spectrum of the "complex" is  $[W(CC)_6]^+$ ; the ligand is observed intact. <u>IR Spectrum</u> (nitromethane solution) V(CC) assigned to  $W(CC)_4$  : <u>ca</u> 2(19(w) cm⁻¹ V(CO) assigned to  $W(CC)_5$  : 2C79(w); 1975(vw); 194C(s). V(CC) unassigned to  $W(CC)_5$  : 1916(ms); 19C6(ms);1872(m); 1862(m); 1848(m).

# iii) Reactions of $M(CO)_6$ (M=Mo, W) with fpte

Attempts were made to synthesize  $N(CC)_4$  fpte and  $[W(CC)_5]_2$  fpte respectively (fpte = 1,2-bis(pentafluoro-phenylthio)ethane) by the normal methods. However there was no evidence for the formation of any complexes with this ligand.

#### APPENDIX V

#### FORCE CONSTANT CALCULATIONS

#### FOR

#### CARBONYL COMPLEXES

The general solutions for the approximate secular equations given by Cotton and Kraihanzel²¹⁶ are outlined below. For these equations:

 $K_1$  is force constant of CO's <u>trans</u> to the substituent ligand (L)  $K_2$  is force constant of CO's <u>cis</u> to L.

K_i is an interaction constant.

 $\lambda = v^2 \ge 0.058890$  where V is frequency (cm⁻¹) of absorption.

μ = 0.14576

Force constants calculated from these equations have units of dyne  $cm^{-1}$ . To convert to N.m⁻¹, multiply K by 10⁻³.

i) Solution for C4 M(CO) L complex, using A1(I), B1 and E modes

$$\mathbf{K}_{1} = \left[ \left( \frac{4 \mu^{2} \mathbf{K}_{1}^{2}}{\mu \mathbf{K}_{2}^{+4} \mu \mathbf{K}_{1}^{-\lambda} - \lambda_{a'}} \right) + \lambda_{a'} \right] / \mu$$

where  $K_2 = \lambda_{B_1}/\mu$  and  $K_1 = (\mu K_2 - \lambda_E)/2\mu$ NOTE: To simplify the equations,  $A_1(I)$  is written as a' and  $A_1(II)$  is written as a'

ii) Solution for C4 M(CO) L complex, using A1(I), A1(II) and E modes

 $\begin{aligned} \kappa_{1} &= (-b + \sqrt{b^{2} - 4ac})/2a \end{aligned}$ where  $a &= -10\mu^{2}$  [Hence 2a = -0.424918]  $b &= 11\mu\alpha - 2\lambda_{E}\mu$   $[\alpha = \lambda_{d'} + \lambda_{d'}]$   $c &= 2\alpha\lambda_{E} - 9\alpha\lambda_{d'} + 9\lambda_{d'}^{2} - \lambda_{E}^{2} - \alpha^{2} \end{aligned}$ Using  $\kappa_{1}$ , then:  $\kappa_{2} &= (2\lambda_{E} - \mu\kappa_{1} + \alpha)/3\mu$ and  $\kappa_{1} &= (\mu\kappa_{2} - \lambda_{E})/2\mu$ 111) Solution for  $C_{2v} \frac{M(CO)}{4^{2}2} \frac{complex}{complex} \frac{using A_{1}(1)}{b_{1}} \frac{B_{1}}{and} \frac{B_{2}}{b_{2}} \frac{modes}{modes}$   $\kappa_{2} &= (-b - \sqrt{b^{2} - 4ac})/2a$ where  $a &= 2\mu^{2}$   $b &= \mu (3\lambda_{B_{2}} - 4\lambda_{B_{1}} - 4\lambda_{d'})$   $c &= \lambda_{d'}(2\lambda_{B_{1}} + \lambda_{B_{2}} + \lambda_{d'}) + \lambda_{B_{1}}(2\mu - \lambda_{B_{2}})$ Using  $\kappa_{2}$ , then:  $\kappa_{1} = (\mu\kappa_{2} - \lambda_{B_{1}})/2\mu$ 

and  $K_1 = (\lambda_{B_2} - \mu K_1)/\mu$ 

# BIBI ICGRAFHY

1	R. Malkin in "Inorganic Biochemistry", Vol. 2, Ed. G.I. Eichhorn, Elsevier, (1973).
2	H. Sigel, D.B. NcCormick, R. Criesser, B. Frijs, I.D. Wright, Biochem., <u>8</u> , (1969), 2687.
3	K. Kahmann, H. Sigel, H. Erlenmeyer, Helv. Chim. Acta, <u>47</u> , (1964), 1754.
4	J.A. Fee, Str. and Bonding, <u>23</u> , (1975), 1.
5	P.N. Colman, H.C. Freeman, J.V. Guss, N. Murata, V.A. Morris, J.A.N. Ramshaw, M.F. Venkatappa, Nature, <u>272</u> , (1978), 319.
6	R.C. Fearson, J. Chem.Ed., <u>45</u> , (1968), 581, 643.
7	E.R. Dockal, I.I. Diaddaric, M.D. Click, I.B. Rorabacher, J. Amer. Chem. Soc., <u>99</u> , (1977), 4530.
3	J.S. Richardson, K.A. Thomas, B.H. Rubin, D.C. Richardson, Proc. Natl. Acad. Sci. USA, <u>72</u> , (1975), 1349.
9	M.D. Glick, D.P. Cavel, I.I. Diaddaric, D.B. Korabacher, Inorg. Clem., <u>15</u> , (1976), 1190.
1 C	E.N. Eaker, C.E. Norris, J. Chem.Soc. Lalton, (1977), 877.
11	C.R. Brubaker, J.H. Brown, M.K. Yoo, K.A. Kinsey, T.M. Kutchan, E.A. Mottel, Inorg.Cher., <u>18</u> , (1979), 299.
12	M.A. Ali, S.E. Livingstone, Coord. Chem.Rev., 13, (1974), 101.
13	I.F. Lindoy, S.E. Livingstone, T.N. Lockyer, Aust. J.Chem., <u>19</u> , (1966), 1391.
14	F.S.K. Chia, S.E. Livingstone, Aust.J.Chem., <u>21</u> , (1968), 339.
15	F.S.K. Chia, S.E. Livingstone, T.N. Lockyer, Aust.J.Chem., <u>20</u> , (1967), 239.
16	The Chemical Society Iondon, "Stability Constants of Metal-Ion Complexes", (Supplement No. 1), (1971).
17	R.J. Gillespie, J. Chem. Soc., (1963), 4679.
18	B. Cohen, C.C. Cu, R.A. Ialancette, W. Borowski, J.A. Potenza, H.J. Schugar, Inorg. Chem., <u>18</u> , (1979), 217.
19	D.W. Phelps, W.H. Goodman, D.J. Hodgson, Inorg.Chem., <u>15</u> , (1976), 2266.
20	A. Mangia, M. Nardelli, C. Felizzi, G. Felizzi, J. Chem. Soc. Dalton, (1972), 2483.
21	A.C. Braithwaite, C.E.F. Rickard, T.N. Waters, J. Chem. Soc. Dalton, (1975), 1817.

22	I. Fauling, "The Nature of the Chemical Bond", 3rd Ed., Cornell University Fress, New York, (1960).
23	P. Singh, D.Y. Jeter, W.E. Hatfield, D.J. Hodgson, Inorg. Chem., <u>11</u> , (1972), 1657.
24	V.F. Duckworth, N.C. Stephenson, Acta Crystallogr., B <u>25</u> , (1969), 1795.
25	H.N. Helis, W.H. Goodman, R.B. Wilson, J.A. Morgan, D.J. Hodgson, Inorg. Chem., <u>16</u> , (1977), 2412.
26	F. Singh, V.C. Copeland, W.E. Hatfield, D.J. Hodgson, Inorg. Chem., <u>11</u> , (1972), 1826 .
27	W. Stählin, H.R. Cstwald, Acta Crystallogr., B <u>27</u> , (1971), 1368.
28	E. Luukkonen, A. Pajunen, Suom. Kemistil. B, <u>46</u> , (1973), 292.
29	R.B. Wilson, W.E. Hatfield, D.J. Hodgson, Inorg. Chem., 15, (1976), 1712.
30	B.J. Hathaway, D.F. Eilling, Coord. Chem. Rev., 5, (1970), 143.
31	A. Mangia, N. Mardelli, C. Pelizzi, G. Felizzi, J. Cryst. Mol. Struct., <u>1</u> , (1971), 139.
32	J. Coetzer, Acta Crystallogr., B <u>26</u> , (1970), 1414.
33	C.C. Cu, V.L. Miskowski, R.A. Ialancette, J.A. Fotenza, H.J. Schugar, Inorg. Chem., <u>15</u> , (1976), 3157.
34	J.F. Richardson, N.C. Payne, Inor $\epsilon$ . Chem., <u>17</u> , (1978), 2111.
35	C. Keturah, P.A. Tasker, J. Trotter, J. Chem. Soc. Dalton, (1978), 1057.
36	R. Iouis, Y. Agnus, R. Weiss, J. Amer. Chem. Soc., <u>100</u> , (1978), 3604.
37	F. Arnaud-Neu, M.J. Schwing-Weill, J. Juillard, R. Iouis, R. Weiss, Inorg. Nucl. Chem. Ietters, <u>14</u> , (1978), 367.
38	P. Singh, V.C. Copeland, W.E. Hatfield, D.J. Hodgson, J. Phys. Chem., <u>76</u> , (1972), 2887.
30	R.E. Wilson, J.R. Wasson, W.E. Hatfield, D.J. Hodgson, Inorg. Chem., <u>17</u> , (1978), 641.
4 G	D.I. Lewis, D.J. Hodgson, Inorg. Chem., <u>13</u> , (1974), 143.
41	G. Davey, F.S. Stephens, J. Chem. Soc. (A), (197C), 2803.
42	T.M. Dunn in "Modern Coordination Chemistry", J. Lewis, R.G. Wilkins Eds., Interscience, New York, (1967).
43	A.B.P. Lever, "Inorganic Electronic Spectroscopy", Elsevier, New York, (1968).

44	B.J. Hathaway, J. Chem. Soc. Dalton, (1972), 1196.
45	E.D. McKenzie, J. Chem. Soc. (A), (1970), 3095.
46	W. Iudwig, F. Casser, Helv. Chim. Acta, <u>52</u> , (1969), 107.
47	V.N. Miskowski, J.A. Thich, R. Solomon, H.J. Schugar, J. Amer. Chem. Soc., <u>98</u> , (1976), 8344.
48	N. Ray, I. Hulett, R. Sheahan, B. Hathaway, Inor $\varepsilon$ . Nucl. Chem. Letters, <u>14</u> , (1978), 305.
49	M.C. Styka, R.C. Smierciak, E.I. Blinn, R.E. DeSimone, J.V. Passariello, Inorg. Chem., <u>17</u> , (1978), 82.
50	J. Ealvich, K.P. Fivizzani, S.F. Favkovic, J.N. Brown, Inorg. Chem., <u>15</u> , (1976), 71.
51	N.E. Ferrari, A.E. Corradi, G.C. Fava, C.C. Falmieri, N. Nardelli, C. Pelizzi, Acta Crystallogr., B <u>29</u> , (1973), 1808.
52	A. Montenero, C. Felizzi, Inorg. Chim. Acta, <u>6</u> , (1972), 644.
53	F.C. Jain, E.C. Lingafelter, J. Amer. Chem, Soc., <u>89</u> , (1967), 724.
54	A.A.G. Tomlinson, B.J. Hathaway, J. Chem. Soc. (A), (1968), 1905.
55	G.A. Barclay, B.F. Hoskins, C.H.I. Kennard, J. Chem. Scc. (A), (1963), 5691.
56	H. Elliott, B.J. Hathaway, R.C. Slade, J. Chem. Soc. (A), (1966), 1443
57	Huang Jin-Ling, Li Jien Ming, Li Jia-Xi, Acta Chim. Sinica, <u>32</u> ,(1966), 162.
58	J. Demuynck, A. Veillard, U. Wahlgren, J. Amer. Chem. Soc., <u>95</u> , (1973), 5563.
59	G. Marcotrigiano, I. Menabue, G.C. Pellacani, Inorg. Chem., <u>15</u> , (1976), 2333.
60	U. Sakaguchi, A.W. Addison, J. Chem. Soc. Dalton, (1979), 600.
61	H. Yokoi, Bull. Chem. Soc. Japan, <u>47</u> , (1974), 3037.
62	G.A. Bowmaker, T.N. Waters, P.E. Wright, J. Chem. Soc. Dalton, (1975), 867.
63	H. Yokoi, A.W. Addison, Inorg. Chem., <u>16</u> , (1977), 1341.
64	A. Bencini, I. Bertini, D. Gatteschi, A. Scozzafava, Inorg. Chem., <u>17</u> , (1978), 3194.
65	R. Barbucci, A. Bencini, D. Gatteschi, Inorg. Chem., <u>16</u> , (1977), 2117.

Ï

66 J. Pradilla-Sorzano, J.F. Fackler JR., Inorg. Chem., 13, (1974), 38.67 R. Barbucci, A. Mastroianni, M.J.M. Campbell, Inorg. Chim. Acta, 27, (1978), 109. 68 A.W. Addison, M. Carpenter, L. K-M. Iau, M. Wicholas, Inorg. Chem., <u>17</u>, (1978), 1545. 69 A.C. Braithwaite, C.E.F. Rickard, T.N. Waters, Inorg. Chim. Acta, <u>26</u>, (1978), 63. R.C. Slade, A.A.C. Tomlinson, B.J. Hathaway, T.E. Billing, 7C J. Chem. Soc. (A), (1968), 61. 71 R. Barbucci, M.J.M. Campbell, Inorg. Chim. Acta, 15, (1975), L1 72 A.B.F. Lever, E. Mantovani, Inorg. Chim. Acta, 5, (1971), 429. 73 Adapted from the program CRTEF (C.K. Johnson, Cak Ridge National Laboratory, Cak Ridge, Tennessee) by the University of Canterbury. 74 Adapted from the program CRFLS (".R. Busing, K.C. Martin, H.A. Levy, Cak Ridge National Laboratory, Cak Ridge, Tennessee) by the University of Canterbury. 75 E.W. Ainscough, A.N. Brodie, N.R. Stevens, Fersonal Communication. 76 B.J. Hathaway, I.M. Frocter, R.C. Slade, A.A.G. Tomlinson, J. Chem. Soc. (A), (1969), 2219. 77 P.S. Eryan, E. Doomes, J. Coord. Chem., 6, (1976), 97. 78 N.N. Chary, B.A. Sastry, G. Ponticelli, G. Devoto, J. Inorg. Nucl. Chem., 40, (1978), 1442. M. Ciampolini, N. Nardi, Inorg. Chem., 5, (1966), 41. 79 28 A.R. Amundsen, J. Whelan, E. Fosnich, J. Amer. Chem. Soc., 99, (1977), 6730. 81 T.E. Jones, D.B. Rorabacher, L.A. Ochrymowycz, J. Amer. Chem. Soc., <u>97</u>, (1975), 7485. E.W. Ainscough, A.M. Brodie, K.C. Palmer, J. Chem. Soc. 82 Dalton, (1976), 2375. 83 Amer. Chem. Soc./Chem. Soc. Japan Chemical Congress, Honolulu, (1979), Abstracts (Inorg.) 290, 291. 84 I.N. Marov, V.K. Belyaeva, E.B. Smirnova, I.F. Dolmanova, Inorg. Chem., <u>17</u>, (1978), 1667. 85 R. Barbucci, M.J.M. Campbell, Inorg. Chim. Acta, 16, (1976), 113.86 R.J.H. Clark, C.S. Williams, Inorg. Chem., 4, (1965), 350.

87	B.J. Hathaway, F. Nicholls, I.N. Frocter, J. Chem. Soc. (A), (1969), 312.
88	V. Kupěik, S. Durovič, Kristallografiya, <u>4</u> , (1959), 921.
89	R.D. Ball, D. Hall, C.E.F. Rickard, T.N. Waters, J. Chem. Soc. (A), (1967), 1435.
90	A.B.P. Lever, E. Kantovani, Inorg. Chem., 10, (1971), 817.
<u>9</u> 1	I.M. Procter, B.J. Hathaway, P. Nicholls, J. Chem. Soc. (A), (1968), 1678.
92	M. Laing, C. Carr, J. Chem. Soc. (A), (1971), 1141.
93	J.D. Dunitz, Acta Crystallogr., <u>10</u> , (1957), 307.
94	V. Kupěik, S. Durovič, Czech. J. Phys., <u>10</u> , (1960), 182.
95	I.S. Childers, K. Folting, I.I. Merritt JR., W.E. Streib, Acta Crystallogr., B <u>31</u> , (1975), 924.
96	E. Boschmann, I.M. Weinstock, M. Carmack, Inorg. Chem., <u>13</u> , (1974), 1297.
97	F. Mazzi, Rand. Soc. Mineral Italiana, <u>9</u> , (1953), 148.
98	A.R. Katritzky, A.P. Ambler in "Physical Nethods in Heterocyclic Chemistry", Vol. II, A.R. Katritzky Ed., Academic Press, (1963).
<u>ç</u> ç	N.S. Gill, R.H. Nuttall, D.E. Scaife, D.N.A. Sharp, J. Inorg. Nucl. Chem., <u>18</u> , (1961), 79.
1 C O	P.E. Figgins, D.H. Busch, J. Phys. Chem., <u>65</u> , (1961), 2236.
1 C1	D.A. Baldwin, A.B.F. Iever, R.V. Farish, Inorg. Chem., <u>8</u> , (1969), 107.
1C2	K.C. Palmer, N.Sc. Thesis, Massey University, (1975).
103	K. Nakamoto, P.J. McCarthy, S.J., "Spectroscopy and Structure of Metal Chelate Compounds", John Wiley and Sons,(1968).
1 C 4	D.B. McCormick, H. Sigel, I.D. Wright, Biochim. Biorhys. Acta, <u>184</u> , (1969), 318.
105	C.V. Philip, D.W. Brooks, Inorg. Nucl. Chem. Letters, <u>10</u> , (1974), 739.
106	R.H. Fish, J.J. Windle, W. Caffield, J.R. Scherer, Inorg. Chem., <u>12</u> , (1973), 855.
1C7	H. Sigel, D.B. McCormick, J. Amer. Chem. Soc., <u>93</u> , (1971), 2041.
108	E.N. Baker, P.N. Carrick, J. Chem. Scc. Dalton, (1978), 416.
109	M.M. Kadooka, I.C. Warner, K. Seff, J. Amer. Chem. Soc., <u>98</u> , (1976), 7569.

- 110 I.G. Warner, T. Ottersen, F. Seff, Inorg. Chem., <u>13</u>, (1974), 2819.
- 111 P. Silan, N.Sc. Thesis, University of Auckland, (1979).
- 112 K.D. Karlin, F.I. Dahlstrom, N.I. Stanford, J. Zubieta, J. Chem. Soc. Chem. Comm., (1979), 465.
- 113 A.H. Lewin, R.J. Michl, P. Ganis, U. Lepore, C. Avitabile, J. Chem. Soc. Chem. Comm., (1971), 14CC.
- 114 K.I. Brown, Chemistry Division, D.S.I.R., Fetone, N.Z.
- 115 R.E. DeSimone, G.D. Stucky, Inorg. Chem., <u>1C</u>, (1971), 1808.
- 116 N.E. Truter, B.I. Vickery, Acta Crystallcer., B<u>28</u>, (1972), 387.
- 117 N.I. Hackert, R.A. Jacobson, Acta Crystallogr., B<u>27</u> (1971), 1658.
- 118 E.W. Ainscough, H.A. Bergen, A.M. Brodie, K.I. Brown, J. Chem. Scc. Dalton, (1976), 1649.
- 119 J. Kincaid, K. Nakamoto, J.A. Tiethof, D.W. Neek, Spectrochim. Acta, <u>3CA</u>, (1974), 2C91.
- 120 G.A. Bowmaker, R. Whiting, E.W. Ainscough, A.M. Brodie, Aust. J. Chem., <u>28</u>, (1975), 1431.
- 121 J.A. Tiethof, J.K. Stalick, D.W. Meek, Inorg. Chem., <u>12</u>, (1973), 117C.
- 122 H. Kuma, K. Motobe, S. Yamada, Bull. Chem. Soc. Japan, <u>51</u>, (1978), 2429.
- 123 B.W. Cook, R.G.J. Miller, F.F. Todd, J. Crganomet. Chem., <u>19</u>, (1969), 421.
- 124 N.C. Baenziger, G.F. Richards, J.R. Doyle, Inorg. Chem., 3, (1964), 1529.
- 125 A.J. Carty, A. Efraty, Inorg. Chem., <u>8</u>, (1969), 543.
- 126 R.H. Nuttall, D.W.A. Sharp, T.C. Waddington, J. Chem. Soc., (196C), 4965.
- 127 T. Ottersen, L.C. Warner, K. Seff, Inorg. Chem., <u>13</u>, (1974), 1904.
- 128 G.A. Bowmaker, L.D. Brockliss, R. Whiting, Aust. J. Chem., <u>26</u>, (1973), 29.
- 129 F.A. Cotton, C. Wilkinson, "Advanced Inorganic Chemistry", 3rd Ed., Interscience, (1972).
- 130 W. Levason, C.A. McAuliffe, F.P. McCullough, A.N. Werfalli, Inorg. Chim. Acta, <u>25</u>, (1977), 247.

- 131 A.B.F. Lever, D. Ogden, J. Chem. Soc. (A), (1967), 2041.
- 132 S.E. Livingstone, J.D. Nolan, Aust. J. Chem., <u>23</u>, (1970), 1553.
- 133 J. Abbot, D.M.L. Goodgame, I. Jeeves, J. Chem. Soc. Dalton, (1978), 88C.
- 134 F.A. Cotton, D.M.I. Gocdgame, R.H. Soderberg, Inorg. Chem., 2, (1963), 1162.
- 135 J.S. Thompson, T.J. Marks, J.A. Ibers, Proc. Natl. Acad. Sci. USA, <u>74</u>, (1977), 3114.
- 136 A.M. Brodie, S.H. Hunter, C.A. Rodley, C.J. Wilkins, J. Chem. Soc. (A), (1968), 2039.
- 137 N. Kheddar, J. Frotas, N. Le Baccon, R. Cuglielmetti, J-E. Guerchais, Bull. Soc. Chim. France, (1976), 803.
- 138 J.R. Allan, D.H. Brown, R.H. Nuttall, D.W.A. Sharp, J. Inor€. Nucl. Chem., <u>26</u>, (1964), 1895.
- 139 J.H. Worrell, J.J. Genova, T.D. DuBois, J. Inorg. Nucl. Chem., <u>40</u>, (1978), 441.
- 140 J.G. Gibson, E.D. McKenzie, J. Chem. Soc. (A), (1971), 1666.
- 141 A.B.P. Lever, J. Chem. Ed., <u>11</u>, (1968), 711.
- 142 A B.P. Lever, B.S. Ramaswamy, Can. J. Chem., <u>51</u>, (1973), 1582.
- 143 A.A.G. Tomlinson, M. Bonamico, G. Dessy, V. Fares, I. Scaramuzza, J. Chem. Soc. Dalton, (1972), 1671.
- 144 "NMR of Faramagnetic Molecules. Frinciples and Applications", G.N. La Mar, W.DeW. Horrocks JR., R.H. Holm Eds., Academic Press, (1973), 290.
- 145 M. Goodgame, I.I.B. Haines, J. Chem. Soc. (A), (1966), 174.
- 146 H.M.J. Hendriks, J. Reedijk, Inorg. Nucl. Chem. Letters, <u>14</u>, (1978), 27.
- 147 T.B. Freedman, J.S. Loehr, T.M. Loehr, J. Amer. Chem. Soc., <u>98</u>, (1976), 2809.
- 148 E.W. Ainscough, A.M. Brodie, R. Morrison, Frivate Communication.
- 149 D.M.L. Goodgame, N. Goodgame, G.W. Rayner Canham, Nature, <u>222</u>, (1969), 866.
- 150 R. Aasa, P. Aisen, J. Biol. Chem., <u>243</u>, (1968), 2399.
- 151 I.J. Bellamy, "The Infrared Spectra of Complex Molecules", 2nd Ed., Methuen, (1960).
- 152 H. Freiser, T.R. Harkins, C.E. Harris, J.I. Walter, J. Amer. Chem. Soc., <u>78</u>, (1956), 25C.
- 153 R.J. Sundberg, R.B. Martin, Chem. Rev., <u>74</u>, (1974), 471.

- 154 S. Buffagni, I.M. Vallarino, J.V. Quagliano, Inorg. Chem., 3, (1964), 671.
- 155 I.N. Jackman, S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd Ed., Pergamon Press, (1969).
- 156 I. Sacconi, M. Ciampolini, J. Chem. Soc., (1964), 276.
- 157 S-N. Choi, R.D. Bereman, J.R. Wasson, J. Inorf. Nucl. Chem., <u>37</u>, (1975), 2087.
- 158 A.B.P. Lever, J. Chem. Ed., <u>51</u>, (1974), 612.
- 159 D.H. Wilkins, A.A. Schilt, C.F. Smith, Anal. Chem., <u>27</u>, (1955), 1574.
- 160 G.F. Smith, W.H. McCurdy JR., Anal. Chem., <u>24</u>, (1952), 371.
- 161 R.J.F. Williams, J. Chem. Soc., (1955), 137.
- 162 A.M. Brodie, S. Ctsuka, J. Chem. Soc. Dalton, (1979), 199.
- 163 I. Casella, M. Gullotti, A. Pasini, G. Ciani, A. Manassero, A. Sironi, Inorg. Chim. Acta, <u>26</u>, (1978), I1.
- 164 U. Sakaguchi, A.V. Addison, J. Amer. Chem. Soc., <u>99</u>, (1977), 5189.
- 165 R.A. Palmer, W.C. Tennant, M.F. Dix, A.D. Rae, J. Chem. Soc. Dalton, (1976), 2345.
- 166 R.D. Bereman, F.T. Wang, J. Najdzionek, D.M. Braitsch, J. Amer. Chem. Soc., <u>98</u>, (1976), 7266.
- 167 J.R. Ferraro, "Low-Frequency Vibrations of Inorganic and Coordination Compounds", Flenum Press, (1971).
- 168 A. Daniel, A. Pavia, C.R. Acad. Sc. Paris, <u>t.263</u>, (1966), 643.
- 169 M.K. Cooper, N.J. Hair, D.W. Yaniuk, J. Crganomet. Chem., <u>150</u>, (1978), 157.
- 170 M.K. Cooper, D.W. Yaniuk, J. Crganomet. Chem., <u>164</u>,(1979), 211.
- 171 R.J. Cross, L. Manojlović-Muir, K.W. Muir, D.S. Rycroft, D.W.A. Sharp, T. Solomun, H.T. Miguel, J. Chem. Soc. Chem. Comm., (1976), 291.
- 172 D.M. Adams, J. Chatt, J. Gerratt, A.D. Westland, J. Chem. Soc., (1964), 734.
- 173 J.R.Allkins, P.J. Hendra, J. Chem. Soc. (A), (1967), 1325.
- 174 A.D. Westland, J. Pluscec, J. Chem. Soc., (1965), 5371.
- 175 R.J. Cross, T.H. Green, R. Keat, J. Chem. Soc. Dalton, (1976), 382.
- 176 C.A. McAuliffe, H.E. Soutter, W. Levason, F.R. Hartley, S.G. Murray, J. Organomet. Chem., <u>159</u>, (1978), C25.

177	O.A. Serra, I.R.M. Pitombo, Y. Iamamoto, Inorg. Chim. Acta, 31, (1978), 49.
178	J.P. Fackler JR., D. Coucouvanis, J. Amer. Chem. Soc., 88, (1966), 3913.
179	E.C. Alyea, D.W. Meek, Inorg, Chem. <u>11</u> , (1972), 1029.
18C	A. Fidcock, R.E. Richards, L.N. Venanzi, J. Chem. Soc. (A), (1968), 1970.
181	J. Chatt, G.A. Gamlen, I.E. Orgel, J. Chem. Soc., (1959), 1C47.
182	G.R. Van Hecke, W. DeW. Horrocks JR., Inorg. Chem., <u>5</u> , (1966), 1968.
183	R. Heber, E. Hoyer, Journal f.prakt. Chemie, <u>318</u> , (1976), 19.
184	R.D. Cannon, E. Chiswell, I.N. Venanzi, J. Chem. Soc. (A), (1967), 1277.
185	N. Weiner, Department of Chemistry, The City College of the City University of New York, New York 10031.
186	N. Weiner, N. Lattman, Inor $\varepsilon$ . Chem., <u>17</u> , (1978), 1084.
187	H. Bock, G. Wagner, Tetrahedron Letters, <u>4C</u> , (1971), 3713.
188	H. Bock, G. Wagner, Angew. Chem., <u>11</u> , (1972), 15C.
189	I.W. Yarbrough, II., N.B. Hall, Inorg. Chem., <u>17</u> , (1978), 2269.
190	I.D. MacLeod, L. Manojlović-Muir, D. Millington, K.W. Muir, D.W.A. Sharp, R. Walker, J. Organomet. Chem. <u>97</u> , (1975), 07.
191	N.C. Forster, T. Thornley, J. Chem. Soc., (1909), 942.
192	P.F. Knowles, D. Marsh, H.W.E. Rattle, "Magnetic Resonance of Biomolecules", John Wiley and Sons, (1976).
193	H. Sakurai, A. Yokoyama, H. Tanaka, Chem. Pharm. Bull., <u>18</u> , (1970), 2373.
194	J.A. Connor, G.A. Hudson, J. Chem. Soc. Dalton, (1975), 1025.
195	R. Ros, M. Vidali, R. Graziani, Gaz. Chim. Ital., <u>100</u> , (1970), 407.
196	H.C.E. Mannerskantz, G. Wilkinson, J. Chem. Soc., (1962), 4454.
197	G.C. Faber, G.R. Dobson, Inorg. Chem., 7, (1968), 584.
198	E.W. Ainscough, E.J. Birch, A.M. Brodie, Inorg. Chim. Acta, <u>20</u> , (1976), 187.
199	E.N. Baker, N.G. Larsen, J. Chem. Soc. Dalton, (1976), 1769.
200	G.M. Reisner, I. Bernal, G.R. Dobson, J. Crganomet. Chem., <u>157</u> , (1978), 23.
201	C.R. Dobson, I.D. Schultz, B.E. Jones, M. Schwartz, J. Inorg. Nucl. Chem., <u>41</u> , (1979), 119.

202	G.R. Dobson, I.D. Schultz, J. Organomet. Chem., <u>131</u> , (1977), 285.
203	H.G. Raubenheimer, J.C.A. Boeyens, S. Iotz, J. Crganomet. Chem., <u>112</u> , (1976), 145.
204	H.G. Raubenheimer, S. Lotz, H.W. Viljoen, A.A. Chalmers, J. Crganomet. Chem., <u>152</u> , (1978), 73.
205	N. Herberhold, G. Süss, J. Chem. Research(E), (1977), 2720-2743.
206	J.H. Eekhof, H. Hogeveen, R.M. Kellog, E. Klei, J. Organomet. Chem., <u>161</u> , (1978), 183.
207	N.F. Lappert, D.B. Shaw, G.M. McLaughlin, J. Chem. Soc. Dalton, (1979), 427.
268	B.J. Helland, M.H. Quick, R.A. Jacobson, R.J. Angelici, J. Organomet. Chem., <u>132</u> , (1977), 95.
209	M.H. Quick, R.J. Angelici, Inorg. Chem., <u>15</u> , (1976), 16C.
210	D. De Filippo, F. Devillanova, C. Preti, E.F. Trogu, P. Viglino, Inor£. Chim. Acta, <u>6</u> , (1972), 23.
211	C. Preti, D. De Filippo, J. Chem. Scc. (A), (1970), 1901.
212	W. Beck, J.C. Weis, J. Wieczorek, J. Crganomet. Chem., <u>30</u> , (1971), 89.
213	W. Beck, J.C. Weis, J. Crganomet. Chem., <u>44</u> , (1972), 325.
214	R. Meij, T.A.M. Kaandorp, D.J. Stufkens, K. Vrieze, J. Crganomet. Chem., <u>128</u> , (1977), 203.
215	I.E. Orgel, Inorg. Chem., <u>1</u> , (1962), 25.
216	F.A. Cotton, C.S. Kraihanzel, J. Amer. Chem. Soc., <u>84</u> , (1962), 4432.
217	D.M. Adams, "Metal-Ligand and Related Vibrations", Arnold, (1967).
218	P.S. Braterman, "Metal Carbonyl Spectra", Academic Press, (1975)
219	E.W. Ainscough, A.M. Brodie, A.R. Furness, J. Chem. Soc. Dalton, (1973), 2360.
220	P.S. Braterman, Str. and Bonding, <u>26</u> , (1976), 1.
221	R.T. Jernigan, R.A. Brown, G.R. Dobson, J. Coord. Chem., <u>2</u> , (1972), 47.
222	I.E. Orgel, "An Introduction to Transition-Metal Chemistry:- Ligand Field Theory", 2nd Ed., Methuen, (1967).
223	T.G. Appleton, H.C. Clark, I.E. Manzer, Coord. Chem. Rev., 10, (1973), 335.
224	R.F. Fenske, R.L. DeKock, Inorg. Chem., <u>9</u> , (1970), 1053.
225	W.A.G. Graham, Inorg, Chem., 7, (1968), 315.
226	R.A. Brown, C.E. Dobson, Inorg. Chim. Acta, <u>6</u> , (1972), 65.
------	---------------------------------------------------------------------------------------------------------------------------
227	E.N. Baker, B.R. Reay, J. Chem. Soc. Lalton, (1973), 2205.
228	P.S. Braterman, D.W. Milne, A.P. Walker, J. Chem. Research(M), (1977), 3301-334C.
229	F.A. Cotton, W.T. Edwards, F.C. Rauch, M.A. Graham, R.N. Perutz, J.J. Turner, J. Coord. Chem., <u>2</u> , (1973), 247.
230	P.S. Braterman, A.P. Walker, Disc. Faraday Soc., <u>47</u> , (1969), 121.
231	N.A.M. Meester, R.C.J. Vriends, D.J. Stufkens, K. Vrieze, Inorg. Chim. Acta, <u>19</u> , (1976), 95.
232	H. Daamen, A. Cskam, Inorg. Chim. Acta, <u>26</u> , (1978), 81.
233	J. Lewis, B.F.G. Johnson, Accounts Chem. Res., 1, (1968), 245,
234	J.A. Connor, J.F. Day, E.N. Jones, C.K. NcEwen, J. Chem. Soc. Dalton, (1973), 347.
235	N.Y. Darensbourg, D.J. Darensbourg, Inorg. Chem., 2, (1970), 32.
236	E.W. Ainscough, A.M. Brodie, R. Mathews, Frivate Communication.
237	R.J. Dennenberg, D.J. Darensbourg, Inorg. Chem., <u>11</u> , (1972), 72.
238	R. Poilblanc, Compt. Kend., <u>256</u> , (1963), 491C.
239	H. Saito, J. Fujita, K. Saito, Bull. Chem. Soc. Japan, <u>41</u> , (1968), 359.
24 C	H.B. Abrahamson, M.S. Wrighton, Inorg. Chem., <u>17</u> , (1978), 3385.
241	G.M. Bodner, I.J. Todd, Inorg. Chem., <u>13</u> , (1974), 1335.
242	C.A. Gansow, B.Y. Kimura, G.R. Dobson, R.A. Brown, J. Amer. Chem. Soc., <u>93</u> , (1971), 5922.
243	B.E. Mann, J. Chem. Soc. Dalton, (1973), 2012.
244	B.E. Mann, Adv. Organomet. Chem., <u>12</u> , (1974), 135.
245	L.J. Todd, J.R. Wilkinson, J. Crganomet. Chem., 77, (1974), 1.
246	E.W. Ainscough, E.J. Birch, A.N. Brodie, Private Communication.
247	P.S. Braterman, D.W. Nilne, E.W. Randall, E. Rosenberg, J. Chem. Soc. Dalton, (1973), 1027.
248	E.W. Ainscouch, A.M. Brodie, S.T. Wong, J. Chem. Soc. Dalton, (1977), 915.
249	E.P. Ross, G.R. Dobson, J. Inor $\varepsilon$ . Nucl. Chem., <u>3(</u> , (1968), 2363.
250	S.C. Tripathi, S.C. Srivastava, G. Prasad, R.P. Mani, J. Organomet. Chem., <u>86</u> , (1975), 229.

- 251 N.I.V. Soares, Rev. Port. Quim., <u>6</u>, (1961), 112.
- 252 K.W. Jolley, Frivate Communication.
- 253 H. Eggert, C. Djerassi, J. Amer. Chem. Soc., <u>95</u>, (1973), 371C.
- 254 R. Hodges, Private Communication.
- 255 C.A. McAuliffe, F.F. McCullough, R.D. Sedgwick, W. Levason, Inorg. Chim. Acta, <u>27</u>, (1978), 185.
- W. Strohmeier, Angew. Chem. internat. Edit., 3, (1964), 730.
- 257 C.A. Gansow, A.R. Burke, C.N. Ia Nar, J. Chem. Soc. Chem. Comm., (1972), 456.
- 258 S. Aime, I. Milone, Frogr. NME Spectroscopy, <u>11</u>, (1977), 183.
- 259 G.W. Buchanan, C. Reyes-Zamora, D.E. Clarke, Can. J. Chem., <u>52</u>, (1974), 3895.
- 260 G.R. Dobson, Inorg. Chem., 8, (1969), 90.
- 261 R. Backhouse, M.E. Foss, F.S. Nyholm, J. Chem. Soc., (1957), 1714.
- 262 D. Coucouvanis, Frogr. Incrg. Chem., <u>11</u>, (1970), 233.
- 263 J. Chatt, I.A. Duncanson, I.M. Venanzi, Nature, <u>177</u>, (1956), 1042.
- 264 B. Rees, A. Mitschler, J. Amer. Chem. Soc., <u>98</u>, (1970), 7918.
- 265 H. Bock, G. Wagner, J. Kroner, Chem. Ber., <u>105</u>, (1972), 3850.
- 266 N. Weiner, Private Communication.
- 267 J.D. Roberts, K.C. Caserio, "Modern Organic Chemistry", W.A. Benjamin Inc., (1967).
- 268 N.J. Bennett, F.A. Cotton, M.D. LaPrade, Acta Crystallogr., <u>B27</u>, (1971), 1899.
- 269 A. Whitaker, J.W. Jeffery, Acta Crystallogr., <u>23</u>, (1967), 977.
- 270 H.J. Plastas, J.M. Stewart, S.O. Grim, Inorg. Chem., <u>12</u>, (1973), 265.
- 271 F.A. Cotton, D.C. Richardson, Inorg. Chem., 5, (1966), 1851.
- 272 V.C. Copeland, W.E. Hatfield, D.J. Hodgson, Inorg. Chem., <u>12</u>, (1973), 134C.
- 273 G.E. Coates, D. Ridley, J. Chem. Soc., (1964), 166.
- 274 B.P. Kennedy, A.B.P. Lever. J. Amer. Chem. Soc., <u>95</u>, (1973), 6907.

374

275 H. Yokoi, T. Isobe, Bull. Chem. Soc. Japan, <u>42</u>, (1969), 2187. 276 E.I. Solomon, J.W. Hare, H.B. Cray, Proc. Natl. Acad. Sci. USA, <u>73</u>, (1976), 1389. 277 R.D. Willett, C.I. Liles JR., C. Michelson, Inorg. Chem., 6, (1967), 1885. 278 E.T. Adman, R.E. Stenkamp, I.C. Sieker, L.H. Jensen, J. Nol. Biol., 123, (1978), 35. 279 P. Hemmerich, in "The Biochemistry of Copper", J. Peisach, F. Aisen, W.E. Blumberg Eds., Academic Fress, (1966). 280 F.J.M.W.I. Birker, H.C. Freeman, J. Chem. Soc. Chem. Comm., (1976), 312. 281 P.J.M.N.I. Birker, H.C. Freeman, J. Amer. Chem. Soc., 99, (1977), 6890. H.J. Schugar, C.C. Cu, J.A. Thich, J.A. Potenza, R.A. Ialancette, W.J. Furey, J. Amer. Chem. Soc., <u>98</u>, 282 (1976), 3047.J.I. Hughey IV, T.C. Fawcett, S.M. Rudich, R.A. Jalancette, J.A. Potenza, H.J. Schugar, J. Amer. Chem. Soc., <u>1(1</u>, 283 (1979), 2617. 284 C.A. Reed, Private Communication. 285 A.C. Braithwaite, C.E.F. Rickard, T.N. Waters, Transition Met. Chem., 1, (1975/76), 5. 286 M.J.M. Campbell, A.J. Collis, R. Grzeskowiak, J. Inorg. Nucl. Chem., <u>38</u>, (1976), 173. 287 D.R. McMillin, R.C. Rosenberg, H.B. Gray, Froc. Natl. Acad. Sci. USA, 71, (1974), 476C. N.S. Ferris, W.H. Woodruff, D.B. Korabacher, T.E. Jones, 288 I.A. Ochrymowycz, J. Amer. Chem. Soc., <u>100</u>, (1978), 5939. 289 E.R. Dockal, T.E. Jones, W.F. Sokol, R.J. Engerer, D.B. Rorabacher, I.A. Ochrymowycz, J. Amer. Chem. Soc., <u>98,</u> (1976), 4322. 290 "International Tables for X-ray Crystallography", Vol. IV, Kynoch Press, (1952-62). 291 G.G. Nather, A. Pidcock, J. Chem. Soc. (A), (1970), 1226. N.S. Kharasch, R.C. Seyler, F.R. Mayo, J. Amer. Chem. Soc., 292 60, (1938), 882. 293 W.C. Evans, J.M. Ridgion, J.I. Simonsen, J. Chem. Soc., (1934), 137.

375