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ABSTRACT 

Several decades worth of public health research has shown that characteristics of 

people’s environment are associated with health-related behaviours and outcomes. 

Much of this research has used the concept of a residential neighbourhood to 

delineate the relevant environment. However, there is no uniformity in the 

neighbourhood delineation methods used in the literature and little consideration is 

given to whether they adequately capture people’s exposure to the environmental 

characteristics under investigation, or whether the choice of delineation methods 

influences results. This dissertation has addressed these issues and suggested some 

methods researchers may use to delineate spatial context more precisely.  

The first part of the thesis used data from a study of neighbourhood environment and 

physical activity in adults to examine the impact of different methodological choices 

on modelling results.  Both neighbourhood delineation method and scale were shown 

to determine whether significant associations were found between the built 

environment and physical activity. Modelling results also varied depending on the 

built environment and outcome measures used. A detailed exploration of different 

methods of operationalising the road network buffer demonstrated that, even for a 

single neighbourhood delineation method, methodological choices can alter the 

results.  

The second part of the thesis used GPS data from a study of children’s physical 

activity and independent mobility to examine how well a number of road network 

buffers and activity space delineation methods represented exposure to the 

environment. Results showed less than half of children’s seven-day activity was 
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captured by residential road network buffers at a range of scales. Most activity space 

delineations were better representations of where children spent time than road 

network buffers. However, the measures of activity space commonly used in health 

research - the convex hull and standard deviation ellipse – were poor representations 

of exposure. 

Activity space delineations require detailed location data that is not always available. 

Therefore, there is a need for delineation methods that do not require this data. Five 

enhancements to standard road network buffers were proposed. One enhancement - 

including school and home in the buffer - was tested and shown to be an 

improvement on standard road network buffers.   
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Chapter 1. Introduction 

Over the past three decades, public health researchers have generated a significant 

body of literature examining the associations between environment and health. Much 

of this literature has conceptualised the environment as a residential neighbourhood 

and then gone on to examine whether variations in environmental attributes at the 

neighbourhood level predict differences in the health-related behaviours or 

outcomes. In doing so, residential neighbourhood boundaries have come to be used 

as proxies for exposure to the environment. 

There are two problems with this approach. First, a number of methods – such as 

census areas and circular buffers – have been used to delineate the residential 

neighbourhood boundary.  However, while there is evidence that the choice of 

delineation method and the size of the neighbourhood boundary can change research 

results (James et al. 2014, Parenteau and Sawada 2011, Prins et al. 2014, Colabianchi 

et al. 2014, Veugelers, Kim and Guernsey 2000), it is not clear which of the many 

delineation methods and scales are optimal.  

The second, more important, problem lies in the conflation between the core 

concepts of ‘neighbourhood’ and ‘exposure.’ Although these concepts are often used 

interchangeably, they have different meanings. Neighbourhood denotes an area in the 

vicinity of something; for instance, a residential neighbourhood refers to the area 

near home. Exposure, on the other hand, refers to the external influences an 

individual is subjected to in a particular location.  

Clearly, as a number of researchers have noted, the residential neighbourhood does 

not usually represent an individual’s total exposure to the environment (Matthews 
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2008, Chaix et al. 2009, Cummins et al. 2007). Conversely, there are likely to be a 

number of locations within a residential neighbourhood that individuals rarely visit, 

and so little or no exposure occurs. Ultimately, individuals may be exposed to 

locations beyond a residential ‘neighbourhood’ and may not be exposed to locations 

within that neighbourhood.  This distinction between the potential exposure of a 

neighbourhood and actual exposure is not always explicitly acknowledged, yet it is 

an important consideration when interpreting research results, and selecting and 

developing appropriate delineation methods. 

Together, these issues suggest that public health researchers’ interest in assessing 

exposure to the environment is outpacing the development of appropriate methods to 

delineate both the residential neighbourhood and exposure to the broader 

environment. Furthermore, they indicate a need to pay attention to the definition of 

place related concepts (Matthews and Yang 2013) and critically consider the 

operationalisation of these concepts to ensure that we are measuring what we think 

we are measuring. 

1.1 Dissertation goals and aims 

This dissertation addresses the challenge of delineating boundaries in environment 

and health research by: 1) exploring how different methodological decisions in 

delineating the residential neighbourhood influence research findings; 2) determining 

how well the current best practice method of delineating the residential 

neighbourhood captures the places people travel and spend time; and 3) exploring 

and proposing new delineation methods that better capture potential and actual 

exposure to the environment.  
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While this work is relevant to the wider neighbourhoods and health literature, the 

data used in the analyses come from studies of the relationship between the built 

environment and physical activity in New Zealand adults and children. The built 

environment and physical activity literature is substantial and, due to the work 

around increasing sedentary behaviour and rising obesity rates, it is one of the main 

areas in which health researchers are investigating the issue of boundary delineation.  

PhD Goals:  

1) Provide evidence to assist in appropriate selection and delineation of 

boundaries in environment and health research. 

2) Propose new/improved methods of delineating boundaries that better 

represent actual and potential exposure to the environment. 

PhD Rationale:  

Contribute to more robust measurement of the neighbourhood – and, therefore, the 

environment - individuals are exposed to. 

PhD Aims and Research Questions: 

1) Review existing delineation methods and the effect of these on built environment 

and health research results. 

2) Explore the influence of analysis choices on residential neighbourhood 

delineation and relationships between the built environment and physical activity 

in New Zealand adults. 

a. How do different delineation methods and scale choices change research 

results? 

b. How does the choice of outcome measure interact with different 

delineation methods to change research results? 

c. Does the choice of buffering algorithm change the size of the boundary 

and resulting measures of the built environment? 

3) Determine how well road network buffers – the current best practice method of 

delineating residential boundaries - represent actual exposure to the environment. 
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4) Determine whether different activity spaces improve on road network buffers as a 

method of delineating exposure to the environment. 

5) Propose, develop, and test enhanced road network buffer delineations to capture 

exposure to the environment. 

1.2 Thesis Structure 

Chapter Two reviews existing methods of delineating boundaries, summarises the 

literature investigating the effect of different neighbourhood definitions on study 

results, reviews approaches for identifying the optimal neighbourhood boundaries, 

and discusses theoretical issues that arise when delineating boundaries.  

Chapter Three addresses the second aim of the thesis, which is to explore the 

influence of methodological choices on residential neighbourhood delineation and 

relationships between the built environment and physical activity in New Zealand 

adults. The three research questions comprising this aim are addressed in this chapter 

using data from the Understanding the Relationship between Physical Activity and 

Neighbourhood (URBAN) study; an investigation of the association between built 

environment and physical activity in New Zealand adults.  

Chapter Four describes relevant methods and data from the Kids in the City (KITC) 

study; a study of the relationship between the built environment and New Zealand 

children’s independent mobility and physical activity. Demographic, Geographic 

Information Systems (GIS), and Global Positioning System (GPS) data from this 

study are used in the analyses presented in Chapters Six, Seven, and Eight. 

Chapter Five provides detailed methods and descriptive analyses related to GPS 

inclusion/exclusion criteria. This is an essential step in ensuring that the GPS data 

used in subsequent chapters is as robust as possible. 
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Chapter Six addresses the third aim of the thesis. GIS analysis is used to calculate 

the overlap between road network buffers (potential residential exposure) and actual 

exposure as measured by seven-day GPS data. Limitations of road network buffers 

are identified. 

Chapter Seven addresses the fourth aim of the thesis. GIS analysis is used to 

calculate the overlap between different methods of delineating activity spaces and 

actual exposure as measured by seven-day GPS data. 

Chapter Eight draws on the limitations of road network buffers to propose five 

enhancements that may allow road network buffers to represent actual and potential 

exposure around both residential addresses and general life spaces more accurately. 

One enhancement – the inclusion of school in the buffer delineation – is tested with 

the KITC data and compared to standard road network buffers. Potential methods of 

implementing the other four enhancements are described. 

Finally, Chapter Nine links the dissertation in a discussion and conclusion. 

Appendix A is a detailed statement of candidate contributions to the two research 

studies used in this thesis. Appendices B-C contain supplementary descriptive 

statistics and modelling results. 

1.3 General statement of candidate contributions 

This doctoral dissertation uses data from two studies of the built environment and 

physical activity conducted in New Zealand: the URBAN study, and the Kids in the 

City study. The candidate was an investigator and a member of the research team on 

both studies. Candidate contributions to each study are summarised in the relevant 

chapters with additional detail provided in Appendix A. 
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A part of the research undertaken for this dissertation has been submitted as a journal 

article and is currently under review:  

Mavoa, S., Bagheri, N., Koohsari, M.J., Kaczynski, A.T., Lamb, K.E., O’Sullivan D., 

Witten, K. (under review). The influence of different neighbourhood definitions on 

the relationship between the built environment and physical activity. 

The candidate conceived the idea for the manuscript in collaboration with 

dissertation supervisors (Witten and O’Sullivan), conducted all GIS and statistical 

analyses, and wrote the first draft of the manuscript. Co-authors contributed to the 

development of the research idea, the choice of statistical methods, interpretation of 

results, and editing the manuscript. Bagheri and Lamb provided advice on the 

statistical methods and interpretation of model results. The research in this 

manuscript is a major component of Chapter 3, Sections 3.1-3.3. The analysis and 

interpretation of the different physical activity outcome measures and all other 

sections of Chapter 3 – namely the analysis of different algorithms (Section 3.4), and 

the commentary on methodological issues arising from these analyses (Section 3.5), 

are solely the candidates work.
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Chapter 2. Literature review: Delineating 
neighbourhood and exposure 

2.1 Introduction 

An essential step in any research investigating relationships between the environment 

and health is conceptualising and operationalising/delineating the spatial extent of 

the area of interest (Diez Roux 2001). This chapter reviews the public health 

literature on the delineation of neighbourhood and exposure to the environment, and 

- where appropriate - draws on relevant research from other fields.  

The next two sections explore the related concepts of ‘neighbourhood’ and 

‘exposure’, defining the use of these terms within this thesis. The following sections 

review existing methods of delineating boundaries, investigate whether different 

neighbourhood definitions and delineations make a difference to results, review 

approaches for identifying the optimal neighbourhood boundaries, and identify and 

discuss theoretical issues that arise when delineating boundaries. The final section 

summarises the chapter. 

2.2 Neighbourhood 

A focus of research on the built environment and health has been whether 

neighbourhood influences health, independent of an individual’s characteristics (Diez 

Roux 2007). While neighbourhood is a fundamental concept, it is rarely defined 

explicitly and there is no clear, single definition of what it means (Hipp, Faris and 

Boessen 2012, Stein 2014, Ross, Tremblay and Graham 2004, Stafford, Duke-

Williams and Shelton 2008). The Oxford English Dictionary gives a variety of 
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definitions of neighbourhood, ranging from the purely spatial - “a district or portion 

of a town, city, or country” or “the vicinity or surrounding area” - to those that 

include people, for instance, “the people living near to a certain place or within a 

certain range; neighbours collectively” or “a community”  (Oxford English 

Dictionary).  

These definitions reflect the fact that neighbourhoods can be both spatial and social 

spaces (Lupton 2003). As such, neighbourhoods can be conceptualised as spatial or 

socio-spatial units (Guo and Bhat 2007, Sawicki and Flynn 1996).   

Researchers’ definitions of neighbourhood have reflected this spatial versus socio-

spatial distinction. For example, Lebel et al. (2007), define neighbourhood as “a 

place characterized by a specific collection of spatially-based features that can be 

found at a specific geographic scale.” Whereas for Chaskin (1995), neighbourhood is 

a “geographically bound unit in which the residents share proximity and the 

circumstances within that proximity” (p. 1).  

While consideration of neighbourhoods as socio-spatial units is important - and 

starting to receive attention in broader neighbourhoods research (Hipp et al. 2012, 

Hipp and Boessen 2013) - within health research, neighbourhoods are most 

commonly viewed as purely spatial units (Dietz 2002, Guo and Bhat 2007, 

Macintyre, Ellaway and Cummins 2002, Spielman and Yoo 2009). Perhaps one of 

the most complete definitions of neighbourhood as a spatial feature is Galster’s 

(2001), in which a neighbourhood is “the bundle of spatially based attributes 

associated with clusters of residences, sometimes in conjunction with other land 

uses” (p. 2112). For the remainder of the dissertation neighbourhoods are considered 

as spatial units only. 
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In the literature, ‘neighbourhood’ often appears to refer to a number of concepts 

related to place, such as ‘context’,  ‘place’, ‘neighbourhood’, ‘neighbourhood 

environment’, ‘local area’, ‘small area’, and ‘local environment’. These terms are 

often used interchangeably (Gauvin et al. 2007), despite the fact some are used in 

reference to the residential neighbourhood alone, whereas others, such as ‘context’ 

and ‘place’, could refer to locations beyond the residential. Within this dissertation, 

the term ‘neighbourhood’ will be used to refer to the residential neighbourhood. 

2.3 Towards improved conceptualisation of context: From 

neighbourhood to exposure 

Neighbourhoods and health research has primarily focused on residential 

neighbourhoods. Yet other spatial contexts may have implications for health (Diez 

Roux 2001).  Cummins et al. (2007), have argued that a relational view of place – 

one that acknowledges people are mobile and allows for dynamic and fluid 

definitions of area - is essential to improve our understanding of the relationships 

between place and health.  They labelled the problem of focusing solely on the local 

as the ‘local trap’. Chaix et al. (2009), later refined the concept of the ‘local trap’, 

coining the phrase ‘residential trap’, to refer to the problem of focusing solely on the 

residential environment. Given the loosening of our dependency on residential 

locations (Matthews and Yang 2013), both the local and residential traps are likely to 

be an increasing problem for researchers aiming to delineate and measure the 

environment.  

These critiques of delineations of context that focus solely on the residential 

neighbourhood represent a conceptual shift from neighbourhood to exposure. While 

residential neighbourhoods are still pertinent, researchers are increasingly interested 
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in developing a more nuanced understanding of exposure that goes beyond the 

residential.  

Exposure can be defined as “the state or fact of being subjected, to any external 

influence” (Oxford English Dictionary). Public health research already has an 

interest in exposure when the external influences – whether social, or chemical, 

physical, and biological as in exposure science (Lioy and Smith 2013) - are 

associated with health behaviours and outcomes.  

Since residential neighbourhoods are unlikely to be an adequate proxy for exposure 

(Madsen et al. 2014), researchers have called for better conceptualisation and 

measurement of human exposure (Matthews and Yang 2013, Kwan 2012a, Chaix 

2009, Cummins et al. 2007). This desire for greater precision in the delineation of 

context aligns with a general move towards greater specificity in built environment 

and health research (Giles-Corti et al. 2005). 

2.4 Operationalising context 

Operationalisation, or delineation, of the spatial extents (i.e., boundaries) of both 

neighbourhood and exposure is an essential part of environment and health research. 

However, delineating the spatial extents of both the residential neighbourhood (Ross 

et al. 2004), and exposure (Cummins et al. 2007) are unresolved and interrelated 

challenges. 

The delineation of boundaries is typically undertaken using GIS software.  There are 

numerous methods that can be used to delineate a spatial extent, and the choice of 

method can produce boundaries of different sizes and shapes. Furthermore, 
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measuring the environment within these different areas can lead to different research 

results.  

Table 1 presents existing delineation methods and groups them within four 

categories: territorial; ego-centric; location-centric; and activity space. This 

categorisation is based on the work of Chaix et al. (2009) - who reviewed theoretical 

issues relating to the delineation of ego-centric neighbourhoods - and has been 

extended to capture a broader range of delineation methods used in the literature.   

Table 1. Main types of delineation methods. 

Type of 
delineation 

Delineation method Examples 

Territorial  Administrative units Morland et al. (2002) 
Smith et al. (2008) 

Aggregated administrative units 
(zones) 

Riva et al. (2009) 
Sabel et al. (2013) 

Buffered administrative units Frank et al. (2012) 
Environmentally defined areas 
(natural neighbourhoods) 

Cutchin et al. (2011) 
Stafford et al. (2008) 
Ross et al. (2004) 

Ego-centric Euclidean buffers  
 

Bell, Wilson and Liu (2008) 
Lovasi et al. (2009) 

Network buffers 
 

Badland et al. (2009) 
Frank et al. (2007) 

Participant defined neighbourhoods Basta, Richmond and Wiebe (2010) 
Coulton et al. (2001) 
Smith et al. (2010) 

Location-centric Euclidean buffers Parks and Schofer (2006) 
 Network buffers Pearce et al. (2008) 

Activity space Convex hull Shareck, Kestens and Gauvin (2013) 
Villanueva et al. (2012) 
Yin et al. (2013) 

 Standard deviation ellipse 
 

Hirsch et al. (2014) 
Kamruzzaman and Hine (2012) 
Zenk et al. (2011) 

 Daily path area Hirsch et al. (2014) 
Lipperman-Kreda et al. (2015) 
Zenk et al. (2011) 
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The list of delineation methods was obtained from recent theoretical articles and 

literature reviews that specifically consider the delineation of boundaries (Brownson 

et al. 2009, Carter and Dubois 2010, Schaefer-McDaniel et al. 2010, Feng et al. 2010, 

Chaix et al. 2009, Wong, Faulkner and Buliung 2011), and supplemented by journal 

articles describing empirical studies.  

Figure 1 (on the following page) illustrates a few of the different types of 

delineations for a single residential address with hypothetical GPS data. The 

delineation methods are discussed in detail below. 

2.4.1 Territorial units 

Territorial units are mutually exclusive “entities that have a social consistence 

independent of a specific individual” (Chaix et al. 2009, p. 1306). Administrative and 

census areas are examples of territorial units. Territorial units have most often been 

used to represent residential neighbourhoods, but they can be used to represent 

context beyond the residential (e.g.,  Wong and Shaw 2011). Four common types of 

territorial units are described below. 

2.4.1.1  Administrative units 

Until recently, the majority of health research delineated neighbourhoods used pre-

existing administrative units such as meshblocks, census tracts, enumeration districts 

and suburb boundaries. The use of administrative units to represent where 

participants live is still popular, presumably because they are predefined, relatively 

simple to use, and readily available. In addition, and perhaps more importantly, 

secondary data sources, such as census data, are often defined at an administrative 

unit level, making it easy to include such data in research (Diez Roux 2007, Pickett 

and Pearl 2001).  
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Figure 1. Examples of delineation methods for a theoretical individual. 
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Examples of empirical studies that used administrative units to delineate the 

environment include Smith et al. (2008) who measured neighbourhood walkability 

within census tracts, and Morland et al. (2002) who measured food accessibility 

within census tracts. 

2.4.1.2  Aggregated administrative units (zones)  

To delineate boundaries using aggregated administrative units, small administrative 

units - typically the smallest available census area - are used as building blocks to 

form larger aggregated administrative units. Relatively few researchers have used 

aggregated administrative units, perhaps because it requires the additional step of 

creating new zones, which is not always straightforward. 

Automated zone design techniques provide methods of aggregating administrative 

units. Cockings and Martin (2005), took enumeration districts - the smallest census 

unit in the UK - and designed a zoning system at different scales and aggregation 

levels in order to explore the relationship between neighbourhood deprivation and 

health in a UK county. Riva et al. (2009), designed zones for Montreal based on 

Canadian dissemination areas. They designed their zones to be homogenous over the 

exposure variable of ‘active living potential’. 

While most researchers have used small administrative units as the 

zone/neighbourhood building blocks, Sabel et al. (2013), recently developed an 

experimental automated zone design method, using a small tessellated cell as a basic 

building block, to create new synthetic neighbourhoods in France. They found 

correlations between asthma and deprivation were higher for their new zones than 

French census areas of a similar size. As a result, they argued that the careful 
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construction of neighbourhoods can aid our understanding of relationships between 

the social and physical neighbourhood environment and health. 

While some researchers have aggregated units based on homogeneity of a particular 

characteristic (Riva et al. 2009), others have argued against using homogeneity as a 

criteria to create zones (Chaix et al. 2009, Pickett and Pearl 2001, Ross et al. 2004). 

Although homogeneity may be relevant for defining sampling units or implementing 

interventions, it may not be relevant as the sole criteria with which to delineate areas 

an individual is exposed to. In other words, a zone/neighbourhood need not be 

homogenous to affect the lives of residents. 

2.4.1.3  Buffered administrative units 

The use of buffered administrative units is a response to boundary problems. 

Boundary problems – also called edge effects – are where study areas such as 

neighbourhoods are bounded by a discrete border, yet the spatial processes are not 

(Fotheringham and Rogerson 1993). For instance, if a participant lives on the edge of 

a neighbourhood, the characteristics of the adjacent neighbourhood may be more 

relevant than the characteristics of the neighbourhood the participant resides in. 

Boundary problems are particularly relevant for territorial units. Techniques to 

address them have long been discussed in geography, but are still new in health 

research. 

Recently, Frank et al. (2012), have used buffered administrative units in a study of 

the environment and adolescents physical activity. In this study, a census block 

group buffered by a 0.25 mile radius was used as the residential neighbourhood.  
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2.4.1.4  Natural neighbourhoods 

Some researchers have suggested that neighbourhoods need to be ‘natural’, or 

‘ecologically meaningful’ (Pickett and Pearl 2001). These terms describe functional 

neighbourhood units that are delineated to better represent the local-level activity 

spaces of individuals by ensuring they contain the appropriate composition of 

physical and social characteristics (Bissonnette et al. 2012).  

Researchers have taken different approaches to the delineation of natural 

neighbourhoods. Some create ‘natural’ neighbourhoods by aggregating 

administrative units based on homogeneity of variables (Parenteau and Sawada 

2011). Natural neighbourhoods created in this way are the same as aggregated 

administrative units. 

Another approach has been to create natural neighbourhoods by drawing on local 

knowledge.  Ross et al. (2004), for example, have delineated natural neighbourhoods 

using a combination of housing district maps, historical documents, census data, 

local perceptions, and consultations with real estate agents. This type of approach 

may also end up creating neighbourhoods based on aggregated administrative units. 

A small number of studies have delineated natural neighbourhoods based on physical 

features of the environment, such as roads, rivers and areas of parkland (Stafford et 

al. 2008, Cutchin et al. 2011). Because physical features play an important role in 

daily life - for example, most people have to travel around a lake - it is likely that 

physical features are an important component in determining realistic neighbourhood 

boundaries. As such, a consideration of physical features might have the potential to 

improve boundary delineation; either alone, or in combination with other methods. 
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2.4.2  Ego-centric delineations 

In contrast to territorial units, ego-centric delineations are individually defined. 

These types of spatial extents are unique for each individual, although spatial extents 

for different individuals can overlap (Chaix et al. 2009). Delineating ego-centric 

boundaries around locations relevant to individuals (e.g., home, workplace) is 

becoming more common and there are several methods to achieve this.  

2.4.2.1  Euclidean buffers  

Euclidean buffers – also called ‘straight-line buffers’, or ‘radial buffers’ - are created 

by drawing a circle centred on a point relevant to an individual participant, with a 

radius/scale defined by the researcher (Oliver, Schuurman and Hall 2007). Euclidean 

buffers assume that every part of the circle is as accessible as every other part. In 

other words, they ignore barriers (e.g., water, private property) and travel routes and 

paths (Chaix et al. 2009, Oliver et al. 2007). Therefore, Euclidean buffers may not be 

the most appropriate method of delineating exposure to the environment for certain 

types of environmental measures (e.g., access to destinations and services) and 

behaviours (e.g., commuting to work). However, for some kinds of environmental 

exposures (e.g., air pollution, noise) and for behaviour that is less restricted (e.g., 

children’s roaming beyond official networks), Euclidean buffers may be appropriate 

representations of neighbourhood and exposure. 

Examples of the use of Euclidean buffers include Bell et al. (2008), who calculated 

greenness within a 1 km Euclidean buffer around residential addresses, and Lovasi et 

al. (2009), who used a 1 km Euclidean buffer to represent the residential 

neighbourhood, in a study that measured neighbourhood walkability.  
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2.4.2.2  Network buffers 

Network buffers are calculated by measuring a distance over a network from a point 

of interest, with the distance/scale determined by the researcher (Oliver et al. 2007). 

The most common network used in the creation of network buffers is the road 

network. Numerous researchers have used road network buffers at a range of scales 

to represent the residential neighbourhood (e.g., Badland et al. 2009, Frank et al. 

2007, Adams et al. 2014, Villanueva et al. 2014, Thornton, Lamb and Ball 2013). 

However, the creation of neighbourhoods based solely on road networks assumes 

that people only travel along roads. In reality, people may also travel along 

pedestrian paths/tracks or alleyways, as well as through buildings, parks and public 

open space.  

Little research has examined the impact of including or excluding pedestrian paths 

when creating road network buffers, and none has explicitly examined the impact on 

network buffer size and shape. The two existing studies that have compared street 

networks with and without pedestrian paths have demonstrated that excluding 

pedestrian routes from road network buffers can result in different measures of street 

connectivity (Chin et al. 2008, Tal and Handy 2012). Therefore, it is likely that the 

inclusion or exclusion of pedestrian routes in street networks will influence the size 

and shape of network buffers. 

The accuracy of road network buffers is also dependent on the accuracy of the 

underlying road network data. Research into the accuracy of commercially available 

road data in the United States has highlighted issues with completeness, currency and 

accuracy (Zandbergen and Ignizio 2011, Frizzelle et al. 2009). However, unless 

researchers go through the time-consuming process of creating a customised road 
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network for each study (e.g., Frizzelle et al. 2009), they are reliant on existing road 

network data. Therefore, it is important to be aware of the impact that the quality of 

this data can have on network buffers. 

Other issues can arise in the calculation of road network buffers. These include the 

algorithm and software used to calculate the buffer (Forsyth et al. 2012), and whether 

the distance from a location to the road centreline is taken into account in the buffer 

calculation. 

Despite these issues, in many cases road network buffers represent a conceptual 

advance on neighbourhoods defined by Euclidean buffers, since network buffers are 

seen as a better representation of places people can travel to. However, road 

networks may not be as appropriate as Euclidean buffers when assessing exposure or 

behaviour that is not limited by roads. 

2.4.2.3  Euclidean and network buffers around different locations (home, work, 
school, and travel routes) 

Euclidean and road network buffers have most commonly been calculated around 

home addresses. To date, very little environment and health research has been 

conducted around non-residential locations. Inagami et al. (2007), found that 

including non-residential exposure increased the magnitude and significance of the 

association between residential neighbourhoods and health and could explain why 

other studies have not found strong associations between neighbourhoods and health. 

More recently, Hurvitz and Moudon (2012), found differences between the 

residential and non-residential neighbourhoods. 

Researchers have also started to demonstrate significant differences between home 

and work environments. Burgoine and Monsivais (2013), found that the food 
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environments around homes and workplaces were very different and that the levels 

of relative exposure between residential and work and commuting environments 

were poorly correlated. Others have demonstrated significant associations between 

the work environment characteristics and health-related outcomes such as 

cardiovascular disease (CVD) risk (Chum and O' Campo 2013), and usual travel 

mode to work  (Dalton et al. 2013). 

Regardless of the type of buffer used, or the non-residential location examined, all 

these methods are still examples of ego-centric methods, since each location is 

relevant to an individual. Additionally, these methods - that start to look at 

delineations around locations other than home - may have some overlap with activity 

space methods (see Section 2.4.4). 

2.4.2.4  Participant defined neighbourhoods 

A number of studies have asked participants to delineate their own neighbourhood 

boundaries (e.g., Basta et al. 2010, Coulton et al. 2001, Smith et al. 2010). 

Comparison of these perceived neighbourhood boundaries with territorial units has 

shown they do not match (Robinson and Oreskovic 2013, Colabianchi et al. 2014, 

Vallée et al. 2015). Furthermore, the degree to which residents agree on 

neighbourhood boundaries differs across locations (Colabianchi et al. 2014). This 

suggests that the discrepancy between researcher and resident-defined 

neighbourhoods is a possible source of bias in neighbourhood effects studies 

(Coulton et al. 2001). In addition, many researchers have observed variation in the 

size and shape of participant defined neighbourhood boundaries (Basta et al. 2010, 

Colabianchi et al. 2014, Coulton et al. 2001, Coulton and Jennings 2013, Vallée et al. 

2015), suggesting that individuals living in the same vicinity perceive their 

neighbourhood differently.  
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Studies have found that the areas of perceived neighbourhoods differ from the areas 

of road network buffers (Crawford et al. 2014) and that there is little overlap between 

perceived neighbourhoods and road network buffers  in adults (Smith et al. 2010), 

adolescents (Colabianchi et al. 2014) and children (Villanueva et al. 2012). 

While perceived neighbourhood boundaries are of interest for many research 

questions, they may not be an appropriate mechanism for delineating areas of 

exposure to the environment.  Indeed, the extent to which perceived and objective 

neighbourhoods represent actual exposure are unanswered questions. Some of the 

first work to explore these questions has used GPS data to show that perceived 

neighbourhood boundaries better captured where youth spent time and were 

physically active than census tracts (Robinson and Oreskovic 2013). 

2.4.3  Location-centric 

Location-centric delineations use ego-centric methods, but create buffers around pre-

defined locations that do not specifically relate to an individual. For example, Parks 

and Schofer (2006), defined neighbourhoods by creating circular (i.e., Euclidean) 

buffers around centres of activity such as concentrations of commercial land. 

Network buffers have also been calculated around administrative unit centroids 

(Pearce et al. 2008, Sharkey and Horel 2008). This approach has some of the benefits 

of using network buffers, in that it more accurately represents paths that people can 

move along within their neighbourhood, and partially addresses edge effects. 

However, the extent to which these location-centric buffers represent the territorial 

unit will depend on the scale of analysis, and the method used to create 

administrative unit centroids (e.g., geometric centroids versus population weighted 

centroids; Thornton, Pearce and Kavanagh 2011). 
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2.4.4  Activity spaces 

An activity space has been defined as “the space within which people move about or 

travel in the course of their daily activities” (Vallee et al. 2010, p. 838). It includes 

both the places people visit and the places people travel through but don’t visit 

(Schönfelder and Axhausen 2003).  

The places that comprise an activity space can be thought of in the context of 

Oldenburg’s (1989) theorising on third places, community environments that enable 

social interaction. In this framework, home is conceptualised as an individual’s first 

place, and workplace/school as their second place. Third places can be further 

categorised as destinations (e.g., parks, shops), thresholds (e.g., driveways, front 

porches) and transitory spaces (e.g., roads, pathways; Carroll et al., 2015). An 

activity space encapsulates the first, second and third spaces frequented by an 

individual and the routes between these destinations. 

Activity spaces have a long history in transport, geography and other social sciences. 

Over the past few years, they have been adopted by health researchers. For example, 

activity spaces have recently been examined in relation to exposure to food (Kestens 

et al. 2010), mental health (Vallee et al. 2011), alcohol outlets (Basta et al. 2010) and 

the built environment (Colabianchi et al. 2014). 

As with the delineation of neighbourhoods, there are numerous methods of 

delineating activity spaces and the choice of method determines both the shape and 

area of the activity space (Sherman et al. 2005). Just as the activity space concept has 

been adopted from other fields, so too have many of the activity space delineation 

methods. This is potentially problematic, since the purpose of delineating activity 

spaces differs between research fields. For instance, in the transport field, activity 
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spaces are used as a measure of mobility, with the size of the activity space polygon 

indicating the degree of mobility (Schönfelder and Axhausen 2003).   

While some health researchers have used activity spaces to assess mobility (e.g., 

Hirsch et al. 2014, Villanueva et al. 2012), others have used activity spaces to 

delineate exposure to the environment. These researchers have measured the 

characteristics of the environment within the activity space and then modelled 

associations with various health-related outcomes (e.g., Zenk et al. 2011, Shearer et 

al. 2015, Lipperman-Kreda et al. 2015, Christian 2012, Crawford et al. 2014, 

Colabianchi et al. 2014). This approach can be problematic if the activity space 

delineation contains large areas that participants never visit – as is the case with two 

of the common activity space methods discussed below – or if they exclude areas 

participants do visit. For instance, Figure 1 (above) illustrates the potential for this 

problem to arise when using activity space measures such as convex hulls and 

standard deviation ellipses (SDE). 

The most common methods of delineating activity spaces are discussed below. 

2.4.4.1  Standard deviation ellipses 

The standard deviation ellipse (SDE) is a bivariate statistical measure that 

geographically describes areal point data (Yuill 1971). SDEs capture the spatial 

distribution of points around a mean centre and create an ellipse at one or two 

standard deviations from this centre. Therefore, a 1-standard deviation ellipse (1-

SDE) contains approximately two-thirds of the points (Arcury et al. 2005). An SDE 

requires points as input and these points can be weighted, for example, by activity 

duration or frequency (Sherman et al. 2005). 
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Historically, SDEs have been used to delineate activity spaces (Sherman et al. 2005). 

Initially, SDE based activity spaces were created around point locations of regular 

destinations obtained through surveys (Sherman et al. 2005), participatory mapping 

(Townley, Kloos and Wright 2009) or activity diaries (Kamruzzaman and Hine 

2012). However, since the adoption of GPS technology, researchers have 

increasingly calculated SDEs using GPS data (e.g.,  Zenk et al. 2011, Hirsch et al. 

2014, Madsen et al. 2014) or mobile phone data (e.g., Järv, Ahas and Witlox 2014). 

Modifications of the SDE have included SDE’s created using only GPS points 

located within the residential neighbourhood (Boruff, Nathan and Nijenstein 2012), 

and calculating time-weighted SDEs (Crawford et al. 2014). 

The main limitation of the SDE is that it is an abstract representation of where people 

go. As a Euclidean measure, it does not account for actual spatial arrangements of 

geographic or human features. Furthermore, SDE’s typically include large areas that 

are not visited (Wong and Shaw 2011).There can also be technical challenges – such 

as an unusual spatial distribution of destinations, or too few visited destinations  - 

that make it difficult to calculate the ellipse (Wong and Shaw 2011). However, the 

SDE provides a better indicator of individual access than distance alone, and is now 

relatively easy to generate with available software. 

2.4.4.2  Convex hulls 

Convex hulls - also called minimum convex polygons - are the smallest convex 

polygons that enclose a set of points (Galton and Duckham 2006). Therefore, like the 

SDE, convex hulls require a dataset of points as input. When using convex hulls to 

delineate activity spaces researchers have used commonly visited destinations 

(Shareck et al. 2013, Villanueva et al. 2012) and GPS points (Boruff et al. 2012, 

Shareck et al. 2013, Yin et al. 2013) as input.  
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The limitations of convex hulls are similar to those of the SDEs. Convex hulls 

include large areas that people do not visit (Wong and Shaw 2011, Chaix et al. 

2012), and with certain numbers or configurations of points they can be difficult to 

create (e.g., if all destinations are in a straight line). 

2.4.4.3  Daily path areas 

The daily path area is a method of activity space delineation adapted from Kwan 

(1998). The daily path area takes GPS points as an input and buffers them to create 

the activity space. A number of recent studies have delineated activity spaces using 

daily path areas (e.g., Zenk et al. 2011, Hirsch et al. 2014, Lipperman-Kreda et al. 

2015) and the buffer distances used to create the daily path areas have ranged from 

50 m (Shearer et al. 2015) to a half mile (i.e., approximately 800 m; Zenk et al. 

2011).  

2.4.5  Other delineation methods 

The methods described above represent the most commonly used delineation 

methods.  However, a small number of methodological studies have proposed the use 

of alternative methods of delineating both neighbourhood and exposure. In a 

statistical approach similar to the SDE method, Buliung and Kanaroglou (2006), 

delineated a standard distance circle around a mean centre, with the radius being the 

standard distance of activity locations. In an approach based on territorial units, 

Wong and Shaw (2011), identified visited locations using travel survey data and 

delineated the activity space by combining all census tracts that contained visited 

locations. Kestens et al. (2010), also used travel survey data, however they delineated 

activity spaces using kernel density estimation (KDE). 
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Boruff et al. (2012), have suggested modifications to the SDE, convex hull and road 

network buffers, based on the location of common walking trip destinations. Using 

GPS data, they identified common walking trip destinations within 1 km of the 

residence and created an SDE and convex hull using only these destinations as input. 

Their modified road network buffer comprised the shortest network distances from 

the residence to each destination. They also proposed the use of a variable width 

buffer based on a raster cost-surface approach commonly used in ecology (Boruff et 

al. 2012). When testing the alternate buffering methods, they found these techniques 

provided better model fit when modelling the relationship between land use and 

walking.   

Finally, Madsen et al. (2014), have pointed out that while activity space methods are 

useful, activity spaces rely on detailed location data (e.g., GPS), which may not 

always be available. They noted there is still a need to develop better buffers that do 

not require such data. To address this problem they created two types of buffers 

oriented towards the central business district (CBD). The first were buffers based on 

the shortest network distance between home and the CBD, and the second were 

elliptical buffers oriented between the home and the CBD. While these methods are 

an important advance they still have limitations. Shortest network distance buffers 

exclude other potential routes and focus on journeys between destinations rather than 

activity at destinations. The elliptical buffers suffer from the same limitation as the 

convex hull and SDE; namely, they can include large areas not visited by 

participants. 

While many of these novel delineation approaches are promising, no other 

researchers have tested or adopted them to date. 
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2.5  Does the choice of delineation method affect research results? 

Given the numerous delineation methods available, researchers are increasingly 

testing the impact of their choice of delineation method and scale on research results. 

Table 2 summarises these findings.   

Table 2 has shown the impact of different delineation methods and scales for a range 

of exposures, outcomes, and population groups. The first thing to note is that there 

was little consistency in the neighbourhood delineation approaches and scales 

compared in these studies. For example, some studies only compared territorial units, 

while others only compared ego-centric methods; some investigated multiple scales, 

and others used a single scale.  

The final column of Table 2 indicates whether the different delineation methods 

made a difference to results. Again, there was no standard method employed to 

identify meaningful differences. Therefore, the results in the difference column were 

based on the conclusions of each individual study.  

Almost all the studies in Table 2 concluded that different neighbourhood delineation 

methods and/or scales made a difference to results. However, there were three 

exceptions. Ross et al. (2004) concluded that their natural neighbourhoods were 

‘remarkably similar’ to census tracts. Given the very similar estimates produced by 

the fully adjusted models – 0.98501 (p< 0.01) for the natural neighbourhoods and 

0.98578 (p<0.01) for census tracts – their conclusion appears valid. The two models 

do not appear to be meaningfully different. This similarity could be because the 

natural neighbourhoods and census tracts were created using the same administrative 

unit building blocks (i.e., enumeration areas). Furthermore, both the exposure and 

outcome measures were measured using enumeration areas.  
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The second study to conclude that neighbourhood delineation methods did not make 

a difference to results also compared neighbourhoods created using the same 

building blocks (i.e., enumeration districts; Jones et al. 2010). Again, the use of the 

same base units may have contributed to the similarity of results for the different 

delineation methods. 

Finally, in a study of associations between walkability and walking in four different 

age groups at four different scales, Villanueva et al. (2014), concluded there was no 

difference between different sized road network buffers. Their conclusion was based 

on results indicating that, for most – but not all - age groups examined, there was 

some evidence to suggest higher walkability was associated with more walking. 

However, their results also produced different odds ratios at different scales, and for 

some population groups the scale of the road network buffer determined whether a 

significant association was detected. This is an example of the inconsistency in 

approaches for determining what constitutes a meaningful difference between 

delineation methods. If the criteria used in some of the other studies were applied, 

here, this study would have concluded the choice of scale did make a difference to 

the results. 

The studies in Table 2 employed a total of six main approaches to identify whether 

delineation methods and scales differed. In some cases, more than one of these 

comparison techniques has been used.  

The first, and simplest, approach was a comparison of the areas of spatial extents 

produced by the different delineation method (e.g., Crawford et al. 2014). Second, 

some studies examined whether the territorial neighbourhood a participant resides in 

predicted an outcome (e.g., Riva et al. 2009, Jones et al. 2010). Third, some studies



 

 

29 

 Ta
bl

e 
2.

 R
es

ea
rc

h 
co

m
pa

rin
g 

th
e 

ef
fe

ct
 o

f d
iff

er
en

t d
el

in
ea

tio
n 

m
et

ho
ds

. 

So
ur

ce
 

E
xp

os
ur

e 
m

ea
su

re
s 

O
ut

co
m

e 
m

ea
su

re
s 

Po
pu

la
tio

n 
 

D
el

in
ea

tio
n 

m
et

ho
ds

 
D

iff
er

en
ce

 

B
as

ta
 e

t a
l. 

(2
01

0)
 

A
lc

oh
ol

 o
ut

le
ts

 
- 

M
al

e 
ad

ol
es

ce
nt

 v
ic

tim
s o

f 
as

sa
ul

t (
n 

= 
55

) 
Pa

rti
ci

pa
nt

 d
ef

in
ed

 
C

en
su

s u
ni

t (
ce

ns
us

 tr
ac

t) 
Y

es
 

B
oo

ne
-H

ei
no

ne
n 

et
 a

l. 
(2

01
0)

 
B

ui
lt 

en
vi

ro
nm

en
t 

Ph
ys

ic
al

 a
ct

iv
ity

  
A

do
le

sc
en

ts
 a

ge
d 

11
-2

2 
(n

 =
 

20
,7

45
) 

Eu
cl

id
ea

n 
bu

ff
er

s (
1,

 3
, 4

, 8
.0

5 
km

) 
Y

es
 

B
or

uf
f e

t a
l. 

(2
01

2)
 

La
nd

 u
se

 
W

al
ki

ng
  

R
et

ire
m

en
t v

ill
ag

e 
re

si
de

nt
s 

( n
 =

 7
4)

 
Eu

cl
id

ea
n 

bu
ff

er
 (1

 k
m

) 
R

oa
d 

ne
tw

or
k 

bu
ff

er
 (1

 k
m

 li
ne

 b
as

ed
)  

R
oa

d 
ne

tw
or

k 
bu

ff
er

 (1
 k

m
 p

ol
yg

on
 b

as
ed

) 
R

IC
 li

ne
 b

uf
fe

r  
R

IC
 p

ol
yg

on
 b

uf
fe

r 
R

IC
 S

D
E 

Y
es

 

B
ur

go
in

e 
an

d 
M

on
si

va
is

 
(2

01
3 )

 
Fo

od
 e

nv
iro

nm
en

t 
- 

W
or

ki
ng

 a
ge

 a
du

lts
 (n

 =
 

2,
69

6)
 

R
es

id
en

tia
l E

uc
lid

ea
n 

bu
ff

er
 (1

 m
i) 

R
es

id
en

tia
l n

et
w

or
k 

bu
ff

er
 (1

 m
i)  

W
or

k 
Eu

cl
id

ea
n 

bu
ffe

r (
1 

m
i) 

W
or

k 
ne

tw
or

k 
bu

ffe
r (

1 
m

i) 
C

om
m

ut
e 

ro
ut

e 
(1

00
, 5

00
 m

 b
uf

fe
r a

ro
un

d 
th

e 
sh

or
te

st
 ro

ut
e 

be
tw

ee
n 

ho
m

e 
an

d 
w

or
k 

de
pe

nd
en

t 
on

 m
od

e)
 

Y
es

 

C
hr

is
tia

n 
(2

01
2)

 
Fo

od
 e

nv
iro

nm
en

t 
D

ie
ta

ry
 in

ta
ke

 
Fo

od
 p

ur
ch

as
in

g 
O

be
si

ty
 

A
du

lts
 a

ge
d 

18
-6

5 
re

si
di

ng
 in

 
a 

si
ng

le
 c

en
su

s t
ra

ct
 ( n

 =
 1

21
) 

C
en

su
s t

ra
ct

 
G

PS
 d

ai
ly

 p
at

h 
ar

ea
 (0

.5
 m

i r
ad

iu
s)

 
Y

es
 

V
eu

ge
le

rs
 e

t a
l. 

(2
00

0)
 

B
ui

lt 
en

vi
ro

nm
en

t 
A

ct
iv

e 
tra

ve
l 

A
du

lts
 1

5 
ye

ar
s a

nd
 o

ve
r (

n 
= 

1,
85

5)
 

U
ns

pe
ci

fie
d 

bu
ffe

rs
 (2

00
, 3

00
, 4

00
, 5

00
, 6

00
, 

80
0,

 1
00

0,
 1

60
0 

m
).  

G
rid

s (
20

0,
 4

00
, 8

00
, 1

60
0 

m
). 

C
en

su
s u

ni
ts

 (c
en

su
s t

ra
ct

, d
is

se
m

in
at

io
n 

ar
ea

) 

Y
es

 



  

C
oc

ki
ng

s a
nd

 M
ar

tin
 (2

00
5)

 
D

ep
riv

at
io

n 
Lo

ng
 te

rm
 il

ln
es

s 
C

en
su

s p
op

ul
at

io
n 

(n
 =

 N
A

) 
A

gg
re

ga
te

d 
ce

ns
us

 u
ni

ts
 b

as
ed

 o
n 

ED
 

C
en

su
s u

ni
ts

 (w
ar

ds
) 

Y
es

 

C
of

fe
e 

et
 a

l. 
(2

01
3)

 
W

al
ka

bi
lit

y 
C

ar
di

om
et

ab
ol

ic
 

ris
k 

A
du

lts
 a

ge
d 

18
 y

ea
rs

 a
nd

 o
ve

r 
(n

= 
4,

04
1)

 
C

en
su

s u
ni

ts
 (C

C
D

, s
ub

ur
b)

 
N

et
w

or
k 

bu
ffe

r (
50

0,
 1

00
0,

 1
60

0 
m

) 
Y

es
 

C
ol

ab
ia

nc
hi

 e
t a

l. 
(2

01
4)

 
B

ui
lt 

en
vi

ro
nm

en
t 

Ph
ys

ic
al

 a
ct

iv
ity

 
O

ve
rw

ei
gh

t  
O

be
si

ty
 

U
rb

an
 m

in
or

ity
 a

do
le

sc
en

ts
 (n

 
= 

12
5)

 
C

en
su

s u
ni

t (
ce

ns
us

 tr
ac

t) 
N

et
w

or
k 

bu
ffe

r  
(0

.7
5 

m
i)  

A
ct

iv
ity

 sp
ac

e 
(c

on
ve

x 
hu

ll)
  

Y
es

 

C
ou

lto
n,

 C
oo

k 
an

d 
Ir

w
in

 
(2

00
4)

 
So

ci
al

 in
di

ca
to

rs
 

- 
Po

pu
la

tio
n 

(n
 =

 7
,4

96
) 

C
en

su
s u

ni
t (

ce
ns

us
 b

lo
ck

) 
Pa

rti
ci

pa
nt

 d
ef

in
ed

 
Y

es
 

C
ra

w
fo

rd
 e

t a
l. 

(2
01

4)
 

Fo
od

 e
nv

iro
nm

en
t 

- 
Lo

w
 in

co
m

e 
w

om
en

 o
f 

re
pr

od
uc

tiv
e 

ag
e 

(n
 =

 3
4)

 
Pa

rti
ci

pa
nt

 d
ef

in
ed

  
N

et
w

or
k 

bu
ffe

rs
 (0

.5
, 1

, 1
.5

, 2
 m

i) 
A

ct
iv

ity
 sp

ac
e 

(1
-S

D
E)

 

Y
es

 

D
un

ca
n 

et
 a

l. 
(2

01
4)

 
To

ba
cc

o 
ou

tle
ts

 
- 

Y
ou

th
 (n

  =
 1

,2
92

) 
Eu

cl
id

ea
n 

bu
ff

er
s (

40
0,

 8
00

 m
) 

N
et

w
or

k 
bu

ffe
rs

 (4
00

, 8
00

 m
)  

C
en

su
s u

ni
ts

 (t
ra

ct
, b

lo
ck

 g
ro

up
) 

Y
es

 

Et
m

an
 e

t a
l. 

(2
01

4)
 

B
ui

lt 
en

vi
ro

nm
en

t 
W

al
ki

ng
 fo

r 
tra

ns
po

rt  
O

ld
er

 p
er

so
ns

 a
ge

d 
65

 y
ea

rs
 

an
d 

ov
er

 a
nd

 re
si

di
ng

 in
 th

e 
co

m
m

un
ity

 (n
 =

 4
08

) 

N
et

w
or

k 
bu

ffe
rs

 (4
00

, 8
00

, 1
20

0,
 1

60
0 

m
) 

Y
es

 

Fl
ow

er
de

w
, M

an
le

y 
an

d 
Sa

be
l 

(2
00

8)
 

C
en

su
s  

Se
lf-

re
po

rte
d 

he
al

th
 

C
en

su
s p

op
ul

at
io

n 
(n

  =
 N

A
) 

A
gg

re
ga

te
d 

ce
ns

us
 u

ni
ts

 b
as

ed
 o

n 
ED

 
Y

es
 

G
uo

 a
nd

 B
ha

t (
20

07
) 

C
en

su
s  

B
ui

lt 
en

vi
ro

nm
en

t  
R

es
id

en
tia

l l
oc

at
io

n 
ch

oi
ce

 
H

ou
se

ho
ld

s (
n 

= 
4,

79
1)

 
C

en
su

s u
ni

ts
 (t

ra
ct

, b
lo

ck
, b

lo
ck

 g
ro

up
) 

Eu
cl

id
ea

n 
bu

ff
er

s (
0.

25
, 1

, 2
 m

i)  
N

et
w

or
k 

bu
ffe

rs
 (0

.2
5,

 1
, 2

 m
i) 

Y
es

 

C
ha

sk
in

 (1
99

5)
 

B
ui

lt 
en

vi
ro

nm
en

t 
M

V
PA

 
A

du
lts

 a
ge

d 
21

 –
 5

9 
(n

 =
 5

5)
 

U
ns

pe
ci

fie
d 

bu
ffe

rs
 (5

0,
 2

50
, 5

00
 m

) 
G

rid
s (

10
0,

 5
00

, 1
00

0 
m

) 
Y

es
 

Ja
m

es
 e

t a
l. 

(2
01

4)
 

B
ui

lt 
en

vi
ro

nm
en

t 
W

al
ki

ng
 

B
M

I 
Fe

m
al

e 
nu

rs
es

 a
ge

d 
25

-5
2 

(n
 

= 
17

,4
33

) 
Eu

cl
id

ea
n 

bu
ff

er
s (

40
0,

 8
00

, 1
20

0,
 1

60
0 

m
) 

N
et

w
or

k 
bu

ffe
r s

(4
00

, 8
00

, 1
20

0,
 1

60
0 

m
) 

Y
es

 

Jo
ne

s e
t a

l. 
(2

01
0)

 
N

ei
gh

bo
ur

ho
od

 
Ph

ys
ic

al
 a

ct
iv

ity
 

C
hi

ld
re

n 
ag

ed
 1

1 
ye

ar
s (

n=
 

3,
93

5)
 

C
en

su
s u

ni
t (

ED
) 

A
gg

re
ga

te
d 

ce
ns

us
 u

ni
ts

 v
er

si
on

 1
 

A
gg

re
ga

te
d 

ce
ns

us
 u

ni
ts

 v
er

si
on

 2
 

N
at

ur
al

 n
ei

gh
bo

ur
ho

od
 

N
o 

 



  

Le
ar

ni
ha

n 
et

 a
l. 

(2
01

1)
 

W
al

ka
bi

lit
y 

W
al

ki
ng

 fo
r 

tra
ns

po
rt  

W
al

ki
ng

 fo
r 

re
cr

ea
tio

n 

A
du

lts
 m

ov
in

g 
in

to
 n

ew
 

ho
m

es
 ( n

= 
1,

81
1)

 
C

en
su

s u
ni

ts
 (C

C
D

, s
ub

ur
b)

 
N

et
w

or
k  

bu
ffe

r (
15

 m
in

ut
e 

w
al

k 
at

 6
.4

4 
km

/h
r)

 
Y

es
 

Li
pp

er
m

an
-K

re
da

 e
t a

l. 
(2

01
5)

 
To

ba
cc

o 
ou

tle
ts

 
To

ba
cc

o 
us

e 
A

do
le

sc
en

ts
 a

ge
d 

14
-1

8 
(n

 =
 

11
)  

H
om

e 
Eu

cl
id

ea
n 

bu
ffe

r (
80

0 
m

) 
Sc

ho
ol

 E
uc

lid
ea

n 
bu

ff
er

 (8
00

 m
)  

G
PS

 d
ai

ly
 p

at
h 

ar
ea

 (5
0,

 1
00

 m
 ra

di
i) 

Y
es

  

M
ad

se
n 

et
 a

l. 
(2

01
4)

 
- 

- 
R

eg
ul

ar
 c

yc
lis

ts
 (n

 =
 7

8)
 

SD
Es

 (1
-S

D
E,

 2
-S

D
E)

 
N

et
w

or
k 

bu
ffe

rs
 (1

, 2
 k

m
)  

Sh
or

te
st

 ro
ut

e 
bu

ff
er

s (
50

0,
 7

50
, 1

00
0 

m
 ra

di
i) 

El
lip

se
 b

et
w

ee
n 

ho
m

e 
an

d 
C

B
D

 (5
00

, 7
50

, 1
00

0 
m

 ra
di

i) 
V

ar
ia

bl
e 

bu
ff

er
 

Y
es

 

M
es

se
r, 

V
in

ik
oo

r-
Im

le
r a

nd
 

La
ra

ia
 (2

01
2 )

 
Ph

ys
ic

al
 in

ci
vi

lit
y 

W
al

ka
bi

lit
y  

So
ci

al
 sp

ac
es

 

Pr
eg

na
nc

y 
re

la
te

d 
be

ha
vi

ou
rs

 a
nd

 
ou

tc
om

es
 

W
hi

te
 a

nd
 b

la
ck

 w
om

en
 w

ho
 

de
liv

er
ed

 si
ng

le
to

n 
in

fa
nt

s (
n=

 
no

t r
ep

or
te

d)
 

C
en

su
s u

ni
ts

 (c
en

su
s t

ra
ct

, c
en

su
s b

lo
ck

 g
ro

up
) 

N
at

ur
al

 n
ei

gh
bo

ur
ho

od
s (

se
co

nd
ar

y 
po

ly
go

ns
, 

te
rti

ar
y 

ne
ig

hb
ou

rh
oo

ds
) 

Y
es

 

M
itr

a 
an

d 
B

ul
iu

ng
 (2

01
2)

 
B

ui
lt 

en
vi

ro
nm

en
t 

A
ct

iv
e 

sc
ho

ol
 

tra
ns

po
rt  

C
hi

ld
re

n 
ag

ed
 1

1 
– 

12
 (n

 =
 

2,
52

0)
 

Eu
cl

id
ea

n 
bu

ff
er

s (
25

0,
 4

00
, 8

00
, 1

00
0 

m
) 

C
en

su
s u

ni
t (

di
ss

em
in

at
io

n 
ar

ea
)  

Tr
af

fic
 a

na
ly

si
s z

on
e 

Y
es

 

M
oo

re
 e

t a
l. 

(2
01

3)
 

SE
S 

So
ci

al
 e

nv
iro

nm
en

t, 
Ph

ys
ic

al
 e

nv
iro

nm
en

t 

B
M

I 
W

or
ke

rs
 (n

 =
 1

,5
03

) 
R

es
id

en
tia

l E
uc

lid
ea

n 
bu

ff
er

 (1
 m

i) 
W

or
k 

Eu
cl

id
ea

n 
bu

ffe
r (

1 
m

i)  
Y

es
 

Pa
re

nt
ea

u 
an

d 
Sa

w
ad

a 
(2

01
1)

 
N

O
2 

co
nc

en
tra

tio
ns

 
R

es
pi

ra
to

ry
 d

is
ea

se
 

C
en

su
s a

du
lts

 1
5 

ye
ar

s a
nd

 
ov

er
 ( n

= 
N

A
) 

C
en

su
s u

ni
t (

ce
ns

us
 tr

ac
t) 

A
gg

re
ga

te
d 

ce
ns

us
 u

ni
ts

 
N

at
ur

al
 n

ei
gh

bo
ur

ho
od

s 

Y
es

 

Pr
in

s e
t a

l. 
(2

01
1)

 
B

ui
lt 

en
vi

ro
nm

en
t 

M
V

PA
 

A
do

le
sc

en
ts

 (n
 =

 2
77

) 
Eu

cl
id

ea
n 

bu
ff

er
s (

40
0,

 8
00

, 2
00

0 
m

) 
Y

es
 

R
iv

a 
et

 a
l. 

(2
00

9)
 

C
en

su
s  

W
al

ki
ng

 
A

du
lts

 4
5 

ye
ar

s a
nd

 o
ve

r (
n 

= 
2,

71
6)

 
A

gg
re

ga
te

d 
ce

ns
us

 u
ni

ts
  b

as
ed

 o
n 

D
A

s 
Y

es
 

R
ob

in
so

n 
an

d 
O

re
sk

ov
ic

 
(2

01
3 )

 
- 

M
V

PA
 

A
do

le
sc

en
ts

 a
ge

d 
11

-1
4 

(n
= 

32
)  

 

C
en

su
s u

ni
t (

ce
ns

us
 tr

ac
t) 

Pa
rti

ci
pa

nt
 d

ef
in

ed
 

Y
es

 

R
os

s e
t a

l. 
(2

00
4)

 
C

en
su

s 
H

ea
lth

 st
at

us
 

A
du

lts
 2

5-
64

 (n
= 

16
94

) 
N

at
ur

al
 n

ei
gh

bo
ur

ho
od

 b
as

ed
 o

n 
en

um
er

at
io

n 
ar

ea
s 

C
en

su
s u

ni
t (

ce
ns

us
 tr

ac
t) 

N
o 



  

Sh
ea

re
r e

t a
l. 

(2
01

5)
 

Fo
od

 e
nv

iro
nm

en
t 

D
ie

ta
ry

 in
ta

ke
 

A
do

le
sc

en
ts

 a
ge

d 
12

-1
6 

(n
 =

 
38

0)
 

N
et

w
or

k 
bu

ffe
r (

1 
km

) 
G

PS
 d

ai
ly

 p
at

h 
ar

ea
 (5

0 
m

 ra
di

us
) 

Y
es

 

Ta
ta

lo
vi

ch
 e

t a
l. 

(2
00

6)
 

C
en

su
s  

- 
C

hi
ld

re
n 

(n
 =

 5
,7

63
) 

C
en

su
s u

ni
t (

ce
ns

us
 b

lo
ck

) 
M

in
im

um
 b

ou
nd

in
g 

re
ct

an
gl

es
 

Y
es

 

Th
or

nt
on

 e
t a

l. 
(2

01
3)

 
Fo

od
 e

nv
iro

nm
en

t 
D

ie
ta

ry
 b

eh
av

io
ur

 
W

om
en

 a
ge

d 
18

-6
5 

(n
 =

 
1,

55
5)

 
H

om
e 

ne
tw

or
k 

bu
ffe

rs
 (0

.8
, 2

 k
m

) 
W

or
k 

ne
tw

or
k 

bu
ffe

rs
 (0

.8
, 2

 k
m

)  
 

Y
es

 

V
al

lé
e 

et
 a

l. 
(2

01
5)

 
H

ea
lth

 re
so

ur
ce

s 
- 

A
du

lts
 (n

= 
65

3)
 

Eu
cl

id
ea

n 
bu

ff
er

 (3
67

 m
) 

Pa
rti

ci
pa

nt
 d

ef
in

ed
 

Y
es

 

va
n 

Lo
on

 e
t a

l. 
(2

01
4)

 
B

ui
lt 

en
vi

ro
nm

en
t 

So
ci

al
 e

nv
iro

nm
en

t 
M

V
PA

 
C

hi
ld

re
n 

ag
ed

 8
 –

 1
1 

(n
 =

 
36

6)
 

N
et

w
or

k 
bu

ffe
rs

 (2
00

, 4
00

, 8
00

, 1
60

0 
m

) 
Y

es
 

V
ill

an
ue

va
 e

t a
l. 

(2
01

2)
 

- 
- 

C
hi

ld
re

n 
ag

ed
 1

0 
– 

12
 (n

  =
 

1,
48

0)
 

N
et

w
or

k 
bu

ffe
r s

 (8
00

, 1
60

0m
) 

A
ct

iv
ity

 sp
ac

e 
(c

on
ve

x 
hu

ll)
 

 

Y
es

 

V
ill

an
ue

va
 e

t a
l. 

(2
01

4)
 

W
al

ka
bi

lit
y 

in
de

x 
Se

lf-
re

po
rte

d 
w

al
ki

ng
 

A
du

lts
 a

ge
d 

18
-2

9 
(n

 =
 

1,
66

3)
, 3

0 -
44

 (n
 =

 2
,5

46
), 

45
-

64
 ( n

 =
 4

,7
03

), 
65

 a
nd

 o
ve

r (
n 

= 
3,

61
1)

 

N
et

w
or

k 
bu

ffe
rs

 (2
00

, 4
00

, 8
00

, 1
60

0)
 

N
o 

 

Ze
nk

 e
t a

l. 
(2

01
1)

 
B

ui
lt 

en
vi

ro
nm

en
t 

D
ie

ta
ry

 b
eh

av
io

ur
 

Ph
ys

ic
al

 a
ct

iv
ity

 
(n

= 
12

1)
 

N
et

w
or

k 
bu

ffe
r (

0.
5 

m
i) 

SD
E 

(1
-S

D
E)

 
G

PS
 d

ai
ly

 p
at

h 
ar

ea
 (0

.5
 m

i) 

Y
es

 

 R
IC

 =
 re

ta
il,

 in
st

itu
tio

na
l, 

an
d 

co
m

m
er

ci
al

 la
nd

 u
se

s.
 

ED
 =

 E
nu

m
er

at
io

n 
di

st
ric

t (
U

K
). 

C
D

 =
 C

en
su

s c
ol

le
ct

io
n 

di
st

ric
t (

A
us

tra
lia

). 
M

V
PA

 =
 M

od
er

at
e-

vi
go

ro
us

 p
hy

si
ca

l a
ct

iv
ity

. 
SE

S 
= 

So
ci

o-
ec

on
om

ic
 st

at
us

. 
N

O
2 

= 
N

itr
og

en
 d

io
xi

de
. 

D
A

 =
 D

is
se

m
in

at
io

n 
ar

ea
 (C

an
ad

a)
.



 

33 

compared characteristics of the delineated areas (e.g., Christian 2012, Zenk et al. 

2011).  

The fourth, and increasingly popular, approach was to model associations between 

the environment measured within the different delineations and health-related 

outcomes (e.g., Veugelers et al. 2000, Boone-Heinonen et al. 2010, James et al. 

2014, Prins et al. 2011, Colabianchi et al. 2014, Jones et al. 2010, Parenteau and 

Sawada 2011, Ross et al. 2004). These studies varied in how they identified optimal 

models and delineations. Some studies assessed whether statistical significance was 

reached (e.g., Colabianchi et al. 2014, Zenk et al. 2011, James et al. 2014); some 

compared the strength of associations (e.g., Boone-Heinonen et al. 2010, van Loon et 

al. 2014, James et al. 2014); and others examined model fit statistics (e.g., Parenteau 

and Sawada 2011).   

Fifth, a small number of researchers assessed the extent of the spatial overlap 

between the areas created by the different delineation methods (e.g., Villanueva et al. 

2012, Colabianchi et al. 2014).  

Finally, even fewer researchers used GPS data to compare how well delineation 

methods captured where participants travelled and spent time (e.g., Madsen et al. 

2014). This last type of comparison is the only approach that compares delineation 

methods with actual exposure. While it is informative to explore how different 

delineation approaches change modelling results, it is perhaps more useful to select 

delineation methods based on how well they capture exposure.  The lack of such 

evidence is a notable gap in research around delineation methods. 

None of the studies in Table 2 offered a definitive conclusion about a single optimal 

delineation method or scale. Indeed, researchers frequently acknowledged this 
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limitation (Chaskin 1995, Veugelers et al. 2000, Boone-Heinonen et al. 2010, James 

et al. 2014, Cockings and Martin 2005) and the need for future research to address 

this issue. Several researchers identified strategies to mitigate this limitation, such as 

reporting at multiple scales (Boone-Heinonen et al. 2010), and use of zone design 

techniques (Cockings and Martin 2005, Flowerdew et al. 2008, Riva et al. 2009, Riva 

et al. 2008, Jones et al. 2010). 

2.6  Theoretical considerations 

This section describes additional theoretical considerations that are important when 

delineating neighbourhood and exposure. While some of these considerations are 

drawn from the list provided by Chaix et al. (2009), additional considerations of 

scale, time, the Modifiable Areal Unit Problem (MAUP), and the Uncertain 

Geographic Context Problem (UGCoP) have been added.   

2.6.1  Scale 

Appropriate choice of scale is important for both territorial and ego-centric 

delineation methods. For territorial delineation, since the scale of the administrative 

units used is usually predefined, the choice consists of deciding which sized units are 

most appropriate. For example, meshblocks versus census area units in New Zealand; 

census tracts versus census blocks in the United States; and enumeration districts 

versus census output areas in the United Kingdom. 

When creating Euclidean and network buffers, however, the scale or distance is 

defined by the researcher. While scales used to delineate buffers range from 100 m to 

8050 m (Brownson et al. 2009), they are most commonly based on rules of thumb 

(e.g., 400 m 800 m, and 1600 m). These distances are commonly cited as the distance 

people can walk within 5, 10 and 20 minutes, respectively (Yang and Diez-Roux 
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2012, Austin et al. 2005). The 1600 m distance also represents the distance a person 

walks in 15 minutes at the speed suggested by the U.S. Surgeon General as being 

required to achieve ‘moderate’ intensity physical activity (Giles-Corti et al. 2005).  

Despite their apparent foundation in common-sense, these distances may not 

adequately represent actual distances people travel. Evidence from household travel 

surveys conducted in Brisbane, Australia and the US suggests that walking distances 

to destinations were greater than the distances typically used when generating buffers 

(Burke and Brown 2007, Yang and Diez-Roux 2012). Similarly, a pilot study by 

Smith et al. (2010), showed participant defined neighbourhoods did not match the 1.6 

km Euclidean or network buffers defined by researchers. Furthermore, using GPS 

data, researchers have demonstrated that older adults walk distances beyond the 

commonly used 400 and 800 m scales (Prins et al. 2014, Boruff et al. 2012). 

Scale is a less obvious issue for activity space methods. For instance, when 

calculating convex hulls or SDEs the researcher has no direct control over scale. 

However, scale can be accounted for in these methods by calculating activity spaces 

for subsets of the input dataset. For instance, creating local SDEs by only using 

points within a defined distance of home (Boruff et al. 2012), or creating local 

convex hulls in space and space-time (Lyons 2014). Scale is also relevant to daily 

path areas when choosing the buffer size for the GPS points. 

2.6.1.1  Multi-scale vs single-scale 

An additional problem relating to scale is that appropriate scales will likely differ for 

different locations, activities and population groups (Lupton 2003, Macintyre et al. 

2002). Unfortunately, it can be difficult to determine the relevant boundary and size 

(Carter and Dubois 2010). One approach that has been suggested as a way of 
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overcoming this issue is to use sensitivity analyses to compare effects of variables at 

different scales (Chaix et al. 2005). However, Spielman and Yoo (2009) found this 

approach to be ineffective, with little difference in the overall fit of their model 

across a range of neighbourhood sizes. They suggest that theoretical questions about 

how people interact with their environment and at what scales should be answered 

before analytical approaches are used.  

While theoretical consideration of appropriate scales is essential,  given the sparse 

theory on the spatial scale relevant to specific health outcomes, exploratory analysis 

at multiple scales is still important (Diez Roux 2007). Until the choice of scale is 

theoretically or empirically grounded it has been recommended that researchers 

report their results at multiple scales of neighbourhood (Brownson et al. 2009). 

2.6.1.2  Individual-specific vs uniform scale 

Boundaries are typically delineated using a uniform scale for all participants, yet it is 

possible the size of a neighbourhood or exposure area is shaped by individual 

characteristics and may vary across individuals (Chaix et al. 2009). Vallée et al. 

(2015), have called this the ‘constant size neighbourhood trap’ and investigated this 

issue by comparing the number of health resources within perceived neighbourhoods 

and Euclidean neighbourhoods. Their findings showed a large variation in the size of 

perceived neighbourhoods and they concluded that using spatial units of constant 

size is a relatively inaccurate way of estimating the actual number of healthcare 

resources in a neighbourhood. 

Further research is needed to explore this issue and determine how well perceived 

neighbourhoods capture exposure to the environment. We also need to consider and 

whether the differences found by Vallée et al. are due to the difference between 
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perceived and objective neighbourhoods, the difference between activity space and 

residential approaches, individual-specific scales, or some combination of these 

factors.  

Lastly, activity space methods may assist in automatically addressing the constant 

size neighbourhood trap.  

2.6.2  Fuzzy vs clear-cut  

Neighbourhoods and exposure are inherently vague concepts.  It is likely that most 

ego-centric boundaries are fuzzy, yet current methods of delineation use clear-cut 

boundaries (Chaix et al. 2009). Ideally, delineation methods would allow for fuzzy 

boundaries, however there are currently no standard methods for achieving this 

within GIS. 

2.6.3  Oriented vs isotropic 

Ego-centric delineation methods usually assume the neighbourhood/exposure area 

spreads out equally in all directions. In other words, the spatial extents are assumed 

to be isotropic. Yet this is unlikely to reflect the reality of individual travel and 

behaviour (Chaix et al. 2009, Matthews 2012). The areas that individuals travel to – 

and, therefore, are exposed to - are likely to be oriented in the direction of commonly 

visited destinations.  

Delineating oriented buffers is a challenging task. Activity space methods 

automatically account for anisotropy, but there is still a need to develop oriented ego-

centric neighbourhoods especially as activity spaces require detailed location data 

that is not always available. To date, only one study has proposed an oriented 

neighbourhood that does not require detailed location data. Madsen et al. (2014), 
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proposed the use of ellipses oriented between home and the central business district 

as a way of delineating buffers for cyclists. 

2.6.4  Time 

Time is a consideration not mentioned by Chaix et al. (2009). Most neighbourhood 

effects on health studies are cross-sectional (Macintyre et al. 2002) and most 

delineation methods ignore the temporal element. Yet human behaviour – and 

consequently, exposure to the environment - is dynamic and has both a spatial and 

temporal component.  

Temporal issues in environment and health research include: the time lag between 

exposure and outcome (e.g., taking into account changes in residence; Blakely and 

Woodward 2000); the effects of cumulative exposure to the environment; and the 

amount of time spent in different environments. There is an acknowledged need for 

longitudinal research on environment and health, and researchers have been calling 

for greater consideration  of individual space-time behaviour when investigating 

environmental impacts on health (Saarloos, Kim and Timmermans 2009, Kwan 

2013, Rainham et al. 2012, Matthews and Yang 2013).   

Research is only just beginning to address temporal issues related to exposure to the 

environment. A growing number of longitudinal studies on the environment and 

health account for change over longer time periods and across the life course 

(Villanueva et al. 2013, Giles-Corti et al. 2013, Sarkar, Gallacher and Webster 2013). 

Similarly, a few studies have explored temporal issues over shorter time frames; for 

example, through the use of individual mobility data (Wiehe et al. 2008, Shoval et al. 

2010). 
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2.6.5  The modifiable areal unit problem and the uncertain geographic context 

problem 

Two theoretical problems are relevant to the delineation of neighbourhood and 

exposure in health research: the Modifiable Areal Unit Problem (MAUP); and the 

Uncertain Geographic Context Problem (UGCoP).  

The MAUP highlights how results can vary depending on the division of the study 

area, either through the zonation - or aggregation - effect (Gold 2006), or the scale 

effect (Flowerdew et al. 2008). The MAUP has received substantial attention in the 

geographic literature, and is increasingly acknowledged in the health literature. 

While the MAUP is concerned with differences in results with different delineation 

methods, it is not concerned with the question of whether the delineation method 

adequately captures context.  

Whether or not a delineation method captures the true context is the focus of Kwan’s 

UGCoP, which acknowledges that associations between geographic variables and 

outcome variables may be affected by the precise delineations of an area. 

Furthermore, it is likely that the delineations in common use deviate from the true 

geographic context (Kwan 2012a, Kwan 2012b). 

2.7  Summary 

This chapter provided a broad overview of the literature around the delineation of 

neighbourhood and exposure; the methods in common use and limitations associated 

with their application in environment and health research. Later chapters include a 

more detailed account of literature relevant to the findings reported and discussed in 

the particular chapter. 
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As this review has shown, there are numerous existing delineation methods, and the 

choice of method and scale can make a difference to research results. Yet it is still 

unclear which of these methods are most appropriate to use in specific 

circumstances. Therefore, Chapter 3 compares methodological choices in delineation 

of the residential neighbourhood in a study of the built environment and physical 

activity.  

Another gap identified in this review has been the lack of evidence as to how well 

different delineation methods capture exposure to the environment. Therefore, 

Chapters 5, 6, 7, and 8 explore this question in the context of a study of children’s 

mobility.  

Finally, this review has identified a need for delineation methods that better capture 

exposure, yet are not reliant on detailed mobility data (e.g., GPS). Therefore, Chapter 

9 proposes several enhancements to the road network buffer that address some of the 

theoretical issues identified in the literature review and throughout this dissertation. 
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Chapter 3. The influence of methodological 
choices on neighbourhood delineation and 
relationships between the built environment 
and physical activity 

3.1  Introduction 

Physical activity is of interest to health researchers because an inactive lifestyle is a 

risk factor for cardiovascular disease, diabetes mellitus, obesity and other negative 

health outcomes (Lee et al. 2012). Physical activity is also thought to be a 

mechanism through which built environments  - that is, the places built or designed 

by humans – can affect chronic disease  (Sallis et al. 2012).  Therefore, many recent 

studies have investigated associations between the built environment and physical 

activity, with evidence accumulating on the health benefits of living in higher density 

neighbourhoods with well-connected street networks and pedestrian access to a range 

of amenities (Sallis et al. 2012). Recent reviews have found that various 

characteristics of the objective built environment were consistently associated with 

physical activity (including walking) in children (Davison and Lawson 2006), youth 

(Ding et al. 2011), and adults (McCormack and Shiell 2011), yet inconsistently 

associated with physical activity in older adults (Van Cauwenberg et al. 2011).  

As is the case with much built environment and health research, the magnitude of the 

associations between the built environment and physical activity are small in 

comparison to associations between individual factors and physical activity (Bauman 

2005). Giles-Corti et al. (2005) have suggested that there is a lack of specificity in 

measurement in these studies and that the predictive ability of models could be 
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improved if “behaviour-specific measures of the environment were used to predict 

context-specific behaviours” (p. 175).  

An important aspect of increased specificity is improved delineation of 

neighbourhood and exposure. For instance, many built environment and physical 

activity studies have modelled relationships between the characteristics of the 

residential built environment (e.g., operationalised as an 800 m road network buffer 

around the residential address) with physical activity measured in all locations visited 

by the participant over the data collection period. This mismatch between context 

and behaviour may mask the true effect of exposure to various environmental 

characteristics. Since - as Kwan’s UGCoP states - the true context is often unknown, 

researchers who want to better delineate context may be required to capture more 

detailed exposure data (e.g., GPS, travel surveys) and/or conduct sensitivity analyses 

on a range of context delineation methods and scales. This is further complicated by 

the fact that the appropriate scale and delineation method is likely to vary by 

population group, location, outcome measure, and the built environment 

characteristic of interest (Brownson et al. 2009, Moudon et al. 2006). 

This chapter addresses the second aim of this dissertation, which is to explore the 

influence of different analysis choices on neighbourhood delineation and the 

relationships between the built environment and physical activity in New Zealand 

adults. It does this in two ways.  

First, it  compares seven different delineation methods/scales for a specific 

population group (adults) and location (New Zealand), with five measures of 

physical activity and three built environment characteristics (dwelling density, street 

connectivity, and neighbourhood destination accessibility). While some findings 
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from this analysis may be specific to the sample, other findings may be relevant to 

other locations and populations and are likely to be useful in the translation of 

research results into policy and practice and facilitate more effective policy 

interventions (Learnihan et al. 2011). For example, it is not sufficient for urban 

designers and planners to know that more shops are associated with higher levels of 

walking, they also need to know where the shops need to be located – in other words 

at what distance/scale (Koohsari, Badland and Giles-Corti 2013).  

Second, this chapter goes on to focus on road network buffers, comparing different 

buffering algorithms to determine whether the choice of algorithm makes a 

difference to results. This builds on work by Forsyth et al. (2012), who compared 

different network buffering algorithms in a study of the food environment. They 

noted that different GIS software and different versions of the same software could 

produce buffers of different shapes and sizes even when using the same scale. They 

proposed a ‘sausage buffer’ method of creating road network buffers and 

demonstrated that the sausage buffer produced similar results to other buffering 

algorithms when measuring variables associated with the food and physical activity 

environments and also when measuring the correlations between these variables and 

relevant outcomes such as physical activity and food purchasing. They also observed 

that the commonly used ArcGIS (ESRI, Redlands) service area functions are a black 

box that can change between versions and are not replicable.  

The analysis in this chapter adds to Forsyth et al.’s work in a number of ways: 1) it 

uses different built environment and outcome variables, 2) it uses a greater range of 

scales, and 3) it determines the impact on the results of statistical models of the 

association between the built environment and physical activity. 
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This chapter uses data from the URBAN study. Therefore, the next section provides 

an overview of the URBAN study methods common to all analyses undertaken in 

this chapter. It ends with a description of the candidate’s contributions to the study.   

3.2  URBAN Study methods 

3.2.1  Overview of the URBAN Study 

The URBAN study was funded by the Health Research Council of New Zealand 

(07/356) to explore the relationship between the neighbourhood built environment 

and physical activity in New Zealand. It was a cross-sectional, mixed methods study 

that was part of a larger twelve country study that used comparable methods to  study 

this relationship internationally (Kerr et al. 2012). The twelve country study was run 

by the International Physical activity and Environment Network (IPEN).  

The URBAN study methods were informed by IPEN protocols for neighbourhood 

selection, data collection, and the calculation of GIS-based built environment 

measures. While the study methods have been published elsewhere (Badland et al. 

2009), methods and data sources relevant to this thesis are described below and 

include more detail than in the published manuscript. Ethical approval was granted 

by Auckland University of Technology and Massey University ethics committees.  

3.2.2  Study area and neighbourhood selection 

The URBAN study was conducted in four New Zealand cities – North Shore City, 

Waitakere City, Wellington City, and Christchurch City – between April 2008 and 

September 2010.  A total of 48 neighbourhoods were selected on the basis of a 

walkability index and levels of Māori population, which was used as a proxy for 

socio-economic status.  
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A walkability index was calculated for all urban meshblocks in the study cities. A 

meshblock is the smallest census area unit used by Statistics New Zealand and urban 

meshblocks contained approximately 110 people (Statistics New Zealand 2007). 

Urban meshblocks were initially defined using the 2006 Urban/Rural profile 

(Statistics New Zealand 2006) and were further refined using zoning data from 

territorial local authorities. All meshblocks that contained any area zoned ‘rural’ 

were excluded.  

The walkability index comprised four measures – residential density, street 

connectivity, land use mix, and retail floor area ratio – and was based on methods 

described in Leslie et al. (2007) and the IPEN GIS templates (Adams et al. 2012).  

Residential density was calculated by dividing the number of private occupied 

dwellings by the area in residential land use. Meshblock-level dwelling data were 

obtained from the 2006 New Zealand census and the area in residential land use was 

estimated using territorial authority zoning data.  

Street connectivity was calculated by dividing the number of 3-or-more-way 

intersections by the area of the meshblock. To minimise edge effects, the meshblock 

was buffered by 20 m for this measure only. Intersections were derived from road 

datasets provided by territorial authorities.  

Zoning data were used to categorise areas into five different land uses: commercial, 

residential, industrial, open space, and other. Land use mix was calculated using an 

entropy equation (D'Sousa et al. 2006), where 0 indicates homogeneity of land use, 

and a value closer to 1 indicates greater heterogeneity of land use.  
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Retail floor area ratio was calculated by dividing the area of the footprint of 

buildings located in retail zones by the land area of the parcels in retail zones. This 

measure was intended to distinguish between car dominant retail  

such as big block retail (smaller ratio resulting from a larger land parcel area 

dedicated to car parking) and pedestrian dominant retail such as strip shopping. 

However, the utility of the measure is heavily reliant on suitable data. Land use data 

were not available at a sufficient resolution to identify many of the smaller 

pedestrian-friendly retail land uses, such as corner shops in suburban 

neighbourhoods. Therefore, the retail floor area ratio measure was only used in 

neighbourhood selection and excluded from further analyses. Building footprint and 

zoning data were sourced from territorial authorities.  

The raw measures of residential density, street connectivity, land use mix, and retail 

floor area ratio were converted into deciles and summed to create the walkability 

index. Within each city the urban meshblocks were divided into deciles based on the 

walkability index. Deciles 1-3 were defined as ‘low walkability’ and deciles 8-10 

were defined as ‘high walkability.’ 

The percentage Māori population was assessed for each urban meshblock using 2006 

data from the New Zealand census. Within each city the urban meshblocks were 

divided into deciles based on the percentage Māori population. Deciles 1-3 were 

defined as ‘low Māori’ and deciles 8-10 were defined as ‘high Māori.’ 

The study aimed to select three neighbourhoods within each city in each of the 

following quadrants:  low walkability/low Māori; low walkability/high Māori; high 

walkability/low Māori; high walkability/high Māori. A neighbourhood was defined 

as five contiguous meshblocks falling within the same walkability/Māori quadrant.  
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In order to achieve the required sample size of 42 adults per neighbourhood, and 

assuming a 60% response rate, the neighbourhoods also needed to contain a 

minimum population of 100 dwellings.  

The following process was used to create neighbourhoods from contiguous 

meshblocks. First, clusters of urban meshblocks with the same walkability/Māori  

quadrant were created. Meshblocks belonging to clusters with fewer than five 

contiguous neighbouring meshblocks were excluded from further analyses. Second, a 

meshblock was randomly selected from the remaining list of eligible meshblocks. 

Next, the four neighbouring meshblocks with the closest walkability score were 

sequentially combined with the selected meshblock to form a neighbourhood. These 

five meshblocks were removed from the eligible meshblocks and the process 

repeated from the second step until twelve neighbourhoods, three in each quadrant, 

were selected for each city. 

3.2.3  Participant sampling strategy 

Participants were recruited by trained interviewers via a door-to-door strategy. GIS 

was used to generate a random start point within each neighbourhood, and a walking 

route was defined using a consistent set of rules. Maps were created for the 

interviewers showing start points, walking routes, and instructions to approach every 

nth household. The household sampling rate was calculated by dividing the dwelling 

density by the estimated response rate (60%). 

42 households were selected in each neighbourhood with one adult (20 - 65 years) 

recruited in each household. Additional details on participant recruitment and data 

collection are available in Badland et al. (2009).  
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3.2.4  Participants  

The URBAN study recruited a total of 2033 adults aged between 20 and 65 years of 

age with a response rate of 44.8%. Residential addresses were geocoded using 

ArcGIS software. 44 participant’s residential addresses could not be located, leaving 

a total of 1989 participants. Participants provided informed consent/assent.  

3.2.5  Demographics, neighbourhood preference, and neighbourhood 
deprivation 

Participants completed a face-to-face computer-assisted personal interview whereby 

demographic data and self-reported physical activity were collected. Preference for 

living in a more or less walkable neighbourhood was measured using items 

developed by Levine et al. (2012). A full description of neighbourhood preference 

measures in the URBAN study is available elsewhere (Witten et al. 2012). 

Neighbourhood deprivation was measured using the New Zealand Deprivation Index 

2006 provided at the meshblock level (Salmond, Crampton and Atkinson 2007). 

3.2.6  Physical activity measures 

Objective physical activity was measured using Actical accelerometers (Mini-Mitter, 

Sunriver, OR, USA), which participants wore on their hips for seven consecutive 

days during waking hours. The accelerometers recorded physical activity every 30 

seconds and participants completed a travel and compliance log for the accelerometer 

data collection. 

The raw output from the accelerometer is called a count (Coulton et al. 2004), with 

higher counts indicating more intense physical activity.  Periods of greater than 59 

minutes of consecutive zero counts or where the accelerometer was worn for less 

than 60 minutes were excluded from analysis.  
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Two objective measures of physical activity were created based on the accelerometer 

data: mean number of accelerometer counts recorded per hour worn and, percentage 

time spent in moderate-vigorous physical activity (MVPA). MVPA was determined 

using a cut-point of 1500 counts per minute.  

Self-report physical activity data were collected using the International Physical 

Activity Questionnaire – Long Form (IPAQ-LF) (Craig et al. 2003). Three self-

reported measures of physical activity measures were created based on this 

questionnaire: self-reported walking for transport, self-reported walking for 

recreation, and total self-reported minutes walking for all purposes.   

3.2.7  URBAN dataset and spatial data sources 

Elements of the URBAN dataset used in this dissertation are presented in Table 3. 

Spatial data collected to conduct GIS analyses for the URBAN study are presented in 

Table 4 . 
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Table 3. Relevant items from the URBAN dataset. 

Item Description Categories 

Identifiers 

Participant ID Unique participant ID  

Neighbourhood Unique neighbourhood ID  

City Unique city ID  

Socio-demographic (individual level) 

Age  1=15-29, 2=30-44, 3=45-54, 4=55-65 

Sex  1=male, 2= female 

Ethnicity  1=Māori, 2=non-Māori 

Highest qualification  1= no qualification, 2=school, 3=post 
school diploma, 4=tertiary 

Marital status  1=never married, 2=married, 
3=previously married 

Income Combined annual 
household income 

1=<$ 40,000, 2=$ 40,001-60,000, 3= $ 
60,001-80,000, 4=$ 80,001-100,000, 
5= >$ 100,000 

Employment status Employment status for 
main occupation 

1=full time, 2= part time, 3=unpaid 

Vehicle access  1=unrestricted, 2=restricted, 3=no car 
access 
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Socio-demographic (area level) 

Neighbourhood deprivation Meshblock level 
deprivation index 

quintiles: 1=less deprived, 5=most 
deprived. 

Neighbourhood preference  1=strongly prefer walkable, 
2=moderately prefer walkable, 
3=neutral, 4=moderately prefer less 
walkable, 5=strongly prefer less 
walkable 

Physical activity   

Self-reported walking for 
transport 

Self-reported walking for 
recreation 

Self-reported walking 

 
Accelerometer measured 
physical activity 

Moderate-vigorous physical 
activity (MVPA) 

Total minutes walking for 
transport 

Total minutes walking for 
recreation 

Total minutes walking for 
all purposes 

Mean accelerometer 
counts/hour over a week 

Percentage time spent in 
MVPA 
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Table 4. URBAN study spatial data and sources. 

Dataset Source Year of data collection 
Road network North Shore City Council 

Waitakere City Council 
Wellington City Council 
Christchurch City Council 

2008 
2008 
2008 
2008 

Planning Zones North Shore City Council 
Waitakere City Council 
Wellington City Council 
Christchurch City Council 

2008 
2008 
2008 
2008 

Cadastre Olivier Consulting 2009 
Address points Olivier Consulting 2009 
Building outlines North Shore City Council 

Waitakere City Council 
Wellington City Council 
Christchurch City Council 

2008 
2008 
2008 
2008 

Parks North Shore City Council 
Waitakere City Council  
Wellington City Council 
Christchurch City Council 

2008 
2008 
2008 
2008 

Public transport 
stops 

Auckland Transport Authority 
Wellington City Council 
Environment Canterbury 

2008 
2008 
2008 

Destinations North Shore City Council 
Waitakere City Council  
Wellington City Council 
Christchurch City Council  
Ministry of Education 
Ministry of the Environment and Land 
Ministry of Health 
Liquor Licensing Authority 
Internet 
GeoSmart 
Terra Link International 

2008 
2008 
2008 
2008 
2008 
2005 
2008 
2008 
2005, 2008 
2008 
2005 

 

3.2.8  Candidate contributions to the URBAN study 

The candidate was a named investigator on the URBAN study. Key contributions 

included: 

 Contribution to the study design and grant application. 

 Responsibility for GIS methods, data and analyses. 
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 Liaison with the IPEN study coordinating centre and modification of IPEN 

GIS protocols for New Zealand data. 

 Contribution as an author/co-author on reports and publications, notably the 

URBAN study methods paper (Badland et al. 2009), a report for territorial 

authorities describing the GIS methods used (Mavoa et al. 2009), the IPEN 

study GIS methods paper (Adams et al. 2014), the main URBAN study 

results papers (Witten et al. 2012, Oliver et al. 2015b, Hinckson et al. under 

review), and other papers arising from the study (Hinckson et al. 2014, 

McGrath et al. under review, Badland et al. 2012, Oliver et al. 2014a). 

Further details of candidate contributions to the URBAN study are provided in 

Appendix A.  

3.3  Do different neighbourhood delineations change the results of 

models of the relationship between the built environment and 

physical activity? 

This section describes the methods and results from the first set of analyses. It 

compares how model results vary when using different delineation methods/scales, 

different built environment measures, and different physical activity measures. 

3.3.1  Methods 

3.3.1.1  Neighbourhood definitions 

Two types of neighbourhood definitions – administrative units and road network 

buffers – were used in this study. Circular buffers were not investigated since they 

are less appropriate for the built environment measures calculated here. Overall, 

seven different neighbourhood definitions were created for each participant at a 

range of scales. Three of the seven areas were based on administrative units: the 
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meshblock; the census area unit, which is comprised of meshblocks in urban areas 

and contains between 3,000 – 5,000 people (Statistics New Zealand 2007); and the 

URBAN study neighbourhoods. 36 of the 48 URBAN neighbourhoods were 

aggregations of five contiguous meshblocks with similar walkability scores. The 

remaining 12 URBAN neighbourhoods were expanded during participant 

recruitment to reach the required sample size of 42 adults per neighbourhood. 

Despite varying numbers of meshblocks, all URBAN neighbourhoods were a similar 

size. 

The four remaining neighbourhood definitions were road network buffers centred on 

participants’ residential addresses and calculated at four scales commonly used in 

built environment and health research: 500, 800, 1000, and 1500 m (Brownson et al. 

2009, Adams et al. 2012). The road network buffers were created using the Service 

Area function in ArcGIS 9.3 (ESRI, 2013). The road network was supplied by 

territorial authorities and excluded pedestrian-only paths. Roads that were 

inaccessible to pedestrians (i.e., motorways and motorway on and off ramps) were 

removed prior to analysis. The relative sizes of the neighbourhoods are illustrated in 

Figure 2, which shows neighbourhood definitions for a single participant. 
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Figure 2. Neighbourhood boundaries for an example participant. 

3.3.1.2  Built environment measures 

Three built environment measures – residential dwelling density, street connectivity, 

and destination accessibility – were calculated for every participant for each of the 

seven neighbourhood definitions. These three measures have been associated with 

physical activity across different contexts (Sundquist et al. 2011, Kligerman et al. 

2007, Witten et al. 2012, Van Dyck et al. 2010). 

Dwelling density and street connectivity were calculated as described in the 

walkability index methods above. Since meshblock boundaries align with all 

administrative neighbourhoods, the number of private occupied dwellings was easily 
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calculated for this type of neighbourhood delineation. However, meshblock 

boundaries do not align with road network buffer boundaries. Therefore, the number 

of private occupied dwellings within each road network buffer was estimated by 

calculating a weighted average based on the land area of contributing meshblocks. 

Destination accessibility was assessed using the Neighbourhood Destination 

Accessibility Index (NDAI; Witten, Pearce and Day 2011). The NDAI is a measure 

of access to 31 neighbourhood destinations in eight domains: education, transport, 

recreation, social and cultural, food retail, financial, health, and other retail. Each 

domain was assigned a score based on either the presence or density of destinations 

within a neighbourhood. The NDAI was calculated by summing the weighted 

domain scores, producing a value between 0 and 31, with a higher score representing 

better walking access to services and amenities.  Since the NDAI was based on 

presence/absence of destinations, it is expected to increase with increased 

neighbourhood size. 

3.3.1.3  Statistical analyses 

The relationships between the built environment and physical activity measures were 

modelled using linear multi-level mixed effect models to take into account the 

clustering of individuals within neighbourhoods (defined as the URBAN Study 

neighbourhood) and cities (neighbourhoods and cities are specified as random 

effects).  

All outcome variables were log transformed to approximate a normal distribution. 

Therefore, the regression coefficients when exponentiated are the ratio or relative 

change in the outcome measure for each unit change in the exposure variable.  
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The relationship between each of the three built environment measures and the five 

activity measures, were modelled separately for each of the seven neighbourhood 

definitions (a total of 105 distinct models). Each relationship was assessed by 

adjusting for individual level factors (sex, age, ethnicity, marital status, education, 

income, employment, and car access), neighbourhood socio-economic deprivation, 

and neighbourhood preference (i.e., fixed effects).  

The goodness-of-fit of each model was estimated by calculating the marginal R2 

(proportion of variance explained by fixed effects alone) and conditional R2 

(proportion of variance explained by both fixed and random effects; Nakagawa and 

Schielzeth 2013). 

Statistical analyses were conducted in R (R Development Core Team 2008) using the 

‘lmer’ function in the ‘lme4’ package (Bates et al. 2015) to fit the linear mixed 

models and the ‘MuMIn’ package to calculate goodness-of-fit  (Bartoń 2015). 

3.3.2  Results 

Descriptive statistics for the size of the seven neighbourhood delineations are shown 

in Table 5. The meshblock is the smallest neighbourhood, with a median area almost 

one quarter the size of the next smallest area (500 m road network buffer). The 

URBAN study neighbourhood is closest in size to the 500 m road network buffer 

(RNB), and the census area unit falls between the 1000 m and 1500 m road network 

buffers.  
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Table 5. Neighbourhood boundary size descriptive statistics. 

Boundary type Neighbourhood 

boundary 

N Median 

(km2) 

Range 

(km2) 

Interquartile 

range 

(km2) 

Administrative unit Meshblock 272 0.05 1.43 0.05 

Contiguous 

administrative units 

URBAN neighbourhood 48 0.30 1.03 0.20 

Administrative unit Census area unit 67 1.83 8.96 1.37 

Road network 

buffer 

500 m road network 

buffer 

1,989 0.28 1.03 0.13 

Road network 

buffer 

800 m road network 

buffer 

1,989 0.64 0.98 0.31 

Road network 

buffer 

1000 m road network 

buffer 

1,989 1.00 1.63 0.51 

Road network 

buffer 

1500 m road network 

buffer 

1,989 2.26 3.41 0.95 

 

Table 6 displays the descriptive statistics for the built environment measures for each 

of these neighbourhood delineations. For the road network buffers, the median street 

connectivity and dwelling density measures decrease consistently with increasing 

neighbourhood size. As expected, NDAI measures consistently increase with 

increasing neighbourhood size.  
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Table 7 presents descriptive statistics for the physical activity outcome measures. On 

average, participants in the study spent more time walking for transport than they did 

for recreation. Mean accelerometer counts per hour had a median value of 8,291.59 

and ranged from 281.0 to 30,917.9, with an inter-quartile range of 5,478.5. To put 

these numbers into context, a participant who is washing dishes for an hour might 

record counts in the order of 600 (~ 10 counts per minute), while a participant who is 

continuously playing basketball for an hour might record counts in the order of 

282,000 (~ 4,700 per minute; Puyau et al. 2004).   

Table 7. Descriptive statistics for the physical activity outcome measures. 

Physical activity outcome Mean Median SD 

Self-reported walking for transport (total minutes) 25.7 20 54.1 

Self-reported walking for recreation (total minutes) 29.4 20 47.0 

Self-reported overall walking  (total minutes) 55.1 20 73.3 

Mean accelerometer counts per hour 9068.7 8291.9 4476.9 

% time spend in MVPA 12.4 11 6.8 

 

Table 8 presents the results from each of the 105 fully adjusted models comparing 

the seven different neighbourhood definitions for three built environment measures 

and five physical activity measures. Results are reported as the percentage change in 

physical activity for a one-unit increase in the built environment. 
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Shaded cells indicate results where the built environment measure was significantly 

associated with physical activity; that is, where the confidence intervals did not cross 

zero. The marginal and conditional R2s are shown in italics and indicate the 

percentage of variance explained by the model. The magnitudes of the percentage 

changes reported in Table 8 are not directly comparable across the different physical 

activity measures. They are, however, comparable between the different built 

environment measures.  

As a general observation, it is worth nothing that effect sizes were small for all 

models. This is common in built environment research since individual outcomes are 

more strongly associated with individual predictors. Some of these effect sizes 

appear meaningful. For instance, for a one dph increase in dwelling density the 

estimates ranged from a 2.25% to 6.53% increase in walking for transport minutes, 

which correspond to a 1-2 minute increase in transport walking minutes over a seven 

day period. Other effect sizes may be less meaningful. For example, 0.27% to 0.45% 

increases in mean accelerometer counts were associated with increasing the street 

connectivity by one intersection per square kilometre. However, the main purpose of 

conducting these analyses was not to identify effect sizes, but to determine whether 

results differ for the different neighbourhood buffers. 

The results for dwelling density show that, for all seven neighbourhood buffers, there 

was evidence to support an association between dwelling density and two of the 

physical activity measures: mean accelerometer counts and walking for transport 

minutes.  When examining walking for recreation and total walking measures, there  
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was evidence of an association with dwelling density for all neighbourhood 

definitions except the census area unit. However, when percentage time spent in 

MVPA was the outcome measure, there was only evidence of an association with 

dwelling density when measured within a meshblock, a census area unit, a 500 m 

road network buffer, or an 800 m road network buffer.  

When street connectivity was measured within the meshblock there was no evidence 

of an association with any of the five physical activity measures. Evidence of an 

association between street connectivity and both mean accelerometer counts and total 

walking minutes was consistent across the remaining six neighbourhood definitions. 

When modelling associations with MVPA there was no evidence of an association 

for the largest road network buffer (1500 m). Conversely, when modelling 

associations with walking for transport and walking for recreation, there was no 

evidence of an association for the smaller road network buffers (500 and 800 m in 

the case of walking for transport and 500 m for recreational walking). 

NDAI measured within the two smallest administrative neighbourhoods (meshblock 

and URBAN) was not associated with any of the physical activity measures. In 

general, associations between NDAI and physical activity were more likely to be 

detected when NDAI was measured within larger neighbourhoods. There was only 

one neighbourhood definition where NDAI was associated with recreational walking: 

the census area unit.  

The number of models that resulted in associations between the built environment 

and physical activity differed by built environment measure. Dwelling density was 

most consistently associated with physical activity with 30 out of the 35 models 

resulting in evidence of an association. 26 of 35 street connectivity models detected 
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an association with physical activity. NDAI was the least consistently associated 

with physical activity, since only 16 of the 35 NDAI models produced statistical 

evidence of an association. In general, this suggests that the association between 

dwelling density and physical activity may be more robust than the associations 

between street connectivity or NDAI and physical activity.  

There was no single neighbourhood definition that resulted in statistical evidence of 

an association between all built environment and physical activity measures. The 

meshblock, 500 m, and 800 m road network buffers consistently resulted in evidence 

of an association between dwelling density and all five physical activity measures. 

For street connectivity, it was the URBAN neighbourhood, census area unit, and 

1000 m road network buffer that produced consistent evidence of an association with 

physical activity. In contrast, there was no single neighbourhood definition that 

resulted in consistent evidence of an association between NDAI and all five physical 

activity measures. The neighbourhood definitions where NDAI was most 

consistently associated with physical activity were the census area unit, 800 m road 

network buffer, and 1000 m road network buffer. 

When comparing models with the same built environment and physical activity 

measure, the marginal and conditional R2s were similar. This indicates that the 

choice of neighbourhood delineation did not meaningfully change the amount of 

variance explained by the models. 

Although there was no statistical evidence to show that the magnitudes of the 

association differed for different neighbourhoods, there were scale trends in the point 

estimates. For example, when looking at the dwelling density and street connectivity 

models, as the neighbourhood increased in size the magnitude of the effect size also 
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increased for both the administrative unit and road network buffers. In contrast, the 

scale trend for the NDAI models appears to be nonlinear. 

3.3.3  Discussion 

The aim of this first part of the chapter was to determine whether different 

neighbourhood delineations changed results of models of the relationship between 

built environment and physical activity.  As has been suggested in the literature the 

results of these analyses were influenced by the choice of neighbourhood delineation; 

different delineations produced different results when modelling the relationship 

between the built environment and physical activity.  

The clearest finding from this study is that the choice of neighbourhood definition, 

built environment measure, and physical activity measure can all determine whether 

there is evidence of an association or not. A neighbourhood delineation that is 

appropriate for one built environment measure may not be appropriate for all built 

environment measures. Similarly, different delineations may be more appropriate for 

different physical activity outcome measures. Therefore, it is important to choose 

neighbourhood definitions carefully, and to report results at a range of scales 

(Brownson et al. 2009).  

The results did not clearly identify a single ideal neighbourhood definition for use in 

built environment and physical activity research. However, they do suggest the 

commonly used 800 m road network buffer appears to be an appropriate choice 

across a range of built environment and physical activity measures, at least for adults. 

It is also apparent care needs to be taken with the smaller scale neighbourhoods (i.e., 

smaller than the 800m road network buffer), especially when measuring street 

connectivity and destination accessibility.  
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While it is not clear why there was a lack of evidence of associations between street 

connectivity and physical activity at smaller scales, the lack of evidence at the 

smaller scales makes sense for the NDAI. Given that neighbourhoods in this study 

had a minimum population criterion, we would expect residential dwellings to be the 

most common feature in the study neighbourhoods. The presence of destinations is 

less guaranteed and may explain why the NDAI measure, which was based on the 

presence of destinations, was not associated with physical activity at smaller scales.  

There may be other explanations for the lack of evidence of associations at the 

smallest scales. Smaller neighbourhoods are likely to have narrower exposure 

gradients, making it more difficult to detect effects (Long and Nelson 2013). 

Additionally, positional accuracy issues – for instance, geocoding and spatial data 

precision and error – are more influential at smaller scales (Healy and Gilliland 

2012). Finally, it is possible that smaller scale neighbourhoods are more relevant to 

population groups not considered in this study (e.g., non-drivers compared to drivers 

or children compared to adults). For instance, in a study of geographic area and scale 

on the relationship between food environment and behaviour, Thornton et al. (2012)  

found that their smallest neighbourhood (400 m road network buffer) was not 

significant for the full sample yet reached significance when only households without 

cars were assessed. This finding is consistent with travel survey data that shows 

people in non-car households are more likely to use active transport modes than 

households with access to a car (Barton, Horswell and Millar 2012, Dieleman, Dijst 

and Burghouwt 2002, Scheiner 2010). 

The results of the models of associations between NDAI and recreational walking are 

also noteworthy. There was only evidence of an association when NDAI was 
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measured within the census area unit (the largest neighbourhood boundary). This 

could be a spurious result, especially since destination accessibility has not been 

consistently associated with walking for recreation (Saelens and Handy 2008, 

McCormack, Giles-Corti and Bulsara 2008, Sugiyama et al. 2012). Alternatively, it 

could suggest that the scales at which destinations are associated with recreational 

walking are larger than the scales at which destinations are associated with walking 

for transport. 

It was difficult to determine whether neighbourhood delineation made a difference to 

the magnitude of the association. Comparing neighbourhoods of different scales 

revealed different descriptive trends in effect size for the three built environment 

measures and five physical activity measures. However, these trends were only 

evident for the point estimates of this sample and there was no statistical evidence 

that effect sizes vary by neighbourhood definition. In addition, the very small 

differences in effects sizes were not practically meaningful.  

As mentioned earlier, it has been recommended that researchers report GIS-based 

built environment measures at a range of scales (Brownson et al. 2009), and the 

results from this chapter support this recommendation. Reporting at a range of scales 

would assist with greater consistency and comparability across studies. It would also 

help identify optimal built environment thresholds to support health behaviour for a 

range of built environment measures, population groups and health behaviours and 

outcomes (Koohsari et al. 2013).  

While it is a worthwhile goal, reporting results at a range of scales may be difficult 

from a practical perspective. Calculating GIS-based measures of the built 

environment requires technical staff, specialist software, and sufficient computing 
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power. This can make the calculation of built environment measures at a range of 

scales prohibitively difficult and expensive. Possible solutions to this problem 

include sharing GIS resources and knowledge (e.g., sharing scripts and GIS-based 

models that automatically calculate built environment measures), and the provision 

of open source tools to calculate built environment measures (Giles-Corti et al. 

2014). These mechanisms could reduce the workload and cost for researchers to 

report results at a variety of scales, and increase comparability of built environment 

measures between studies. 

Reporting results at a range of scales does not preclude the need to determine what 

scales and ranges are appropriate. An important first step is to consider available 

theoretical and conceptual models that could assist with decisions about what scales 

are likely to be most relevant (Diez Roux 2007).  Other data - such as time use data 

(Millward, Spinney and Scott 2013), travel survey data (Yang and Diez-Roux 2012, 

Burke and Brown 2007), GPS data (Boruff et al. 2012, Zenk et al. 2011), and studies 

on perceived neighbourhood sizes (Smith et al. 2010) - can also be used to inform the 

choice of scale by providing information on distances people travel and places they 

spend time.  

When considering the different physical activity measures, the two most general 

measures – mean accelerometer counts per hour and total walking minutes – were 

most consistently associated with the built environment across all three built 

environment measures and all seven neighbourhood delineations. It is likely the 

mean accelerometer counts and total walking measures will both capture most 

activity in the residential neighbourhood, whereas the other three physical activity 

measures are more likely to exclude within-neighbourhood activity. For example, 



 

71 

percentage time spent in MVPA was a measure of vigorous physical activity and is 

the measure most likely to capture physical activity from sport participation and 

fitness related activities that do not necessarily occur within the residential 

neighbourhood and may also occur indoors (e.g., working out at a fitness centre).  

3.3.3.1  Strengths and limitations 

One of the strengths of the analyses presented in this chapter was the comparison of 

five different physical activity measures, including two objective measures of 

physical activity. The self-reported walking measures suffer from issues such as poor 

respondent memory and under-estimation of incidental activities (Dollman et al. 

2009). While the objective physical activity measures did not suffer from these 

issues, they had a different limitation. It was challenging to determine whether effect 

sizes are meaningful when the outcome measure is accelerometer counts per hour 

since it is difficult to envision what this measure means in real life. Likewise, this 

difficulty in interpretation also makes it harder to determine whether the difference in 

effect size between neighbourhood definitions is consequential.  

A limitation relevant to all outcome measures was that the built environment was 

assessed for the residential neighbourhood, yet the physical activity could have taken 

place within or beyond the residential neighbourhood.  

Another limitation of this analysis is that it did not go beyond the 1500 m scale. It is 

possible that the built environment is also associated with physical activity at larger 

scales. However, as the scale increases, the reduced heterogeneity can lead to 

difficulty detecting effects (Thornton et al. 2012, Long and Nelson 2013). 

A further methodological limitation concerns the incomplete representation of where 

people can travel. When creating road network buffers, road network data were used 
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to represent where people can travel. However, as discussed in Chapter 2, this is an 

incomplete representation of potential travel paths because it excludes non-road 

networks that people commonly travel along (e.g., pedestrian only paths, cycle 

trails). Therefore, the neighbourhood delineations based on road network buffers are 

likely only subsets of the environment experienced by participants. 

Finally, this analysis was limited by imprecise representation of destination data. The 

location of each destination was represented by a single point, whereas in reality, 

destinations cover areas of varying sizes. Furthermore, large destinations such as 

parks and schools, are likely to have several access points. Future analyses would 

benefit from better representation of destinations and some methods to achieve this 

have recently been proposed in the literature (Higgs, Fry and Langford 2012, Mavoa 

et al. 2014). 

3.4  Do different buffering algorithms change the neighbourhood 

definitions? 

This section presents the second set of analyses – a comparison of road network 

buffering algorithms. General URBAN study methods were described in Section 3.2. 

Additional methods specific to this set of analyses are described in this section. 

3.4.1  Methods 

3.4.1.1  Buffer creation 

Road network buffers were created around the residential addresses of 1989 adults 

who participated in the URBAN study. Five different types of buffers were created 

for each participant at ten scales: 400 m, 500 m, 800 m, 1000 m, 1200 m, 1500 m, 

1600 m, 2000 m, 2500 m, and 3000 m. After the previous analyses (Section 3.3), the 
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number of scales assessed was increased because it became apparent that fewer data 

points across a shorter distance made it difficult to detect spatial trends in the results. 

Four of the five road network buffer types were calculated using the ‘black-box’ 

proprietary service area algorithm in ArcGIS 10.2 software (ESRI, Redlands).  The 

ArcGIS ‘Service Area’ function has a range of user-specified parameters including: 

1) a choice between a ‘Generalized’ or ‘Detailed’ service area, 2) a trim option, and 

3) a trim distance. Generalised service areas are quick to calculate but are less 

accurate at the edges and can result in exclusion of islands of unreached elements 

(ESRI 2013). Detailed service areas are more accurate, but take longer to generate 

than generalised service areas (ESRI 2013). The edges of service areas can be 

trimmed to a specified distance of the outer network edges (ESRI 2013). 

Table 9 shows the different parameters used for the four ArcGIS buffers calculated in 

this section. 

Table 9. ArcGIS service area types. 

ArcGIS service area type Generalised or Detailed Trim 

Detailed Buffer with No Trim (DN) Detailed None 

Detailed Buffer with Trim (DT) Detailed 100 m 

Generalised Buffer with No Trim (GN) Generalised None 

Generalised Buffer with Trim (GT) Generalised 100 m 

 

The fifth buffer type calculated was the ‘sausage buffer’ (SB). While the sausage 

buffer was also calculated in ArcGIS 10.2, the functions used to create it are not 

proprietary and therefore this approach can be replicated in other software. The 
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sausage buffer was calculated using a 50 m radius from the road centreline (Figure 

3). 

 

Figure 3. Illustration of a sausage buffer with a 50 m buffer radius. 

 

3.4.1.2  Built environment measures 

Six built environment measures were calculated for each buffer: count of 3-or-more-

way intersections; street connectivity (i.e., intersection density); count of bus stops; 

count of dwellings; total park area in the buffer; and percentage of the buffer that is a 

park. These measures were chosen to represent a range of common types of spatial 

data measures. 

3.4.1.3  Statistical analysis 

Descriptive statistics were calculated for the road network buffer areas. Spearman 

correlations were calculated to compare the built environment measures across the 

five different buffers for the ten different scales (α = 5%).  Associations between the 

built environment measures and a single physical activity measure - mean 
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accelerometer counts - were assessed using the modelling approach described in the 

previous section. 300 distinct models were run to capture the combinations of the 

five types of road network buffer, ten scales, and objective measured physical 

activity for the six built environment measures. Statistical analyses were conducted 

in R (R Development Core Team 2008). 

3.4.2  Results  

3.4.2.1  Buffer Area 

Table 29 (Appendix B) presents descriptive statistics of the area (km2) for the five 

different types of buffer across the ten different scales. These results show that the 

Sausage Buffers (SB) have the smallest mean and median areas at all scales, with the 

exception of the 400 m scale, where the Generalised No Trim buffer (GN) had the 

smallest mean area and the same median area. The difference between the mean and 

median areas of the Sausage Buffers and the ArcGIS buffers (DN, DT, GN, GT) 

increases as the scale increases. Across all scales, the Sausage Buffers also have the 

smallest standard deviations. In other words, there is less variation in size for the 

Sausage Buffers than for the ArcGIS buffers. 

Table 30 (Appendix B) presents the Spearman rank correlation coefficients 

comparing the area of the different buffer types at each of the ten scales (α = 5%, p < 

0.001). All correlations between buffer sizes were ‘very strong’ and ranged from 

0.84 between the Detailed No Trim buffer (DN) and the Sausage Buffer (SB) at the 

400 m scale, to 1.00 between the Detailed Trim buffer (DT) and the General Trim 

buffer (GT) at scales greater than 800 m. At the 1000 m, 1600 m, 2500 m, and 3000 

m scales the area of the Sausage Buffer was most highly correlated with the areas of 

the ArcGIS General Trim (GT) and Detailed Trim (DT) buffers. For the remaining 

scales, the area of the Sausage Buffer was most highly correlated with the area of the 



 

76 

General Trim buffer and next most highly correlated with the Detailed Trim buffer. 

Sausage buffer areas were least correlated with the Detailed No Trim buffers at all 

scales. 

The magnitude of the correlation coefficients increased as the size of the buffers 

increased, with the 400 m buffers showing correlations ranging from 0.84 to 0.95 and 

the 3000 m buffers showing correlations ranging from 0.94 to 1.00. While the 

correlation between the areas of the Sausage Buffers and all ArcGIS buffers was less 

than perfect.  

Table 30 also shows that - with a few exceptions - the correlation between different 

ArcGIS buffers was also less than 1.00. In other words, while there were differences 

between the size of the Sausage Buffers and the ArcGIS buffers, there were also 

differences in the sizes of different types of ArcGIS buffers. 

3.4.2.2  Intersections 

Table 31 (Appendix B) shows that the counts of intersections (Cnt) are perfectly 

correlated between all buffer types when the scale is greater than 500 m. At 400 m 

and 500 m scales, the correlation coefficients range from 0.98 – 1.00. The correlation 

coefficients are slightly lower for the intersection density measure (Dns) between all 

buffer types. 

3.4.2.3  Bus Stops 

Table 32 (Appendix B) presents the correlation coefficients when comparing the 

number of bus stops within different buffer types at a range of scales. The correlation 

coefficients ranged from 0.95 to 1.00, indicating a very strong to perfect correlation 

between the different buffer types when assessing the number of bus stops. In 

general, the correlation coefficients increase as the scale increases. Correlations 
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between the sausage buffers and the ArcGIS buffers tended to be slightly lower than 

correlations between different ArcGIS buffers. 

3.4.2.4  Dwelling count 

Table 33 (Appendix B) presents the Spearman rank correlation coefficients for the 

different buffers when measuring dwelling counts. All correlations were very strong 

to perfect, with correlations higher at larger scales. Correlations between the Sausage 

Buffer and ArcGIS buffers tended to be slightly lower than correlations between 

different types of ArcGIS buffer. For example, at scales greater than 1,000 m, 

dwelling counts for the different ArcGIS buffers were perfectly correlated. At the 

same scales, the correlations between the Sausage Buffer and the ArcGIS buffers 

were slightly lower, but still ‘very strong’ (0.98-0.99). 

3.4.2.5  Park Area 

Table 34 (Appendix B) presents Spearman rank correlation coefficients for the 

different buffers when measuring park area and percentage park area. The 

correlations were lower for park area than for the other built environment measures. 

Correlations between the Sausage Buffer and the ArcGIS buffers ranged from 0.69 to 

0.93 for park area and from 0.76 to 0.93 for percentage park area. In general, the 

highest correlations between Sausage Buffers and ArcGIS buffers were at the 800 m 

and 1,000 m scales. 

3.4.2.6  Modelled associations with objectively measured physical activity 

The associations between the built environment (intersection count, intersection 

density, bus stop count, dwelling count, park area, and % park area) and objectively 

measured physical activity were modelled for the five different road network buffers 
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across ten scales. Tables of the results are provided in Appendix C. Results are 

grouped and discussed below. 

For dwelling density (Table 35) and bus stop count (Table 36), results showed that, 

at all scales, the choice of road network buffer algorithm did not alter whether there 

was evidence of an association between the built environment measure and physical 

activity.  

While the coefficients varied for the different road network buffers at all scales, the 

differences were minimal. For dwelling density, at 400 m, the percentage change in 

physical activity for a one dph increase in dwelling density ranged from 0.87 % (DN 

buffer) to 1.01% (GT buffer). At the 3000 m scale, the percentage change in physical 

activity ranged from 2.00 – 2.45%. Again, the lowest percent estimate was for the 

Detailed No Trim buffer (DN) and the highest for the Generalised Trim buffer (GT). 

For bus stop count, all models reached significance except for the models at 400 and 

3000 m. The magnitudes of the coefficients were very similar for the different types 

of buffers. 

The differences between the Sausage Buffer and ArcGIS buffers were no greater 

than the differences between the different ArcGIS buffers. Indeed, for the dwelling 

density models the percentage estimate provided with the Sausage Buffer (SB) was 

always in the mid-range when comparing the different buffer types. 

While not the primary purpose of this analysis, the scale trends observed in the 

previous analyses were also apparent here. For dwelling density, there was a trend of 

increasing magnitude in the percent estimates as the scale increased, whereas for bus 

stop counts, there was a downward trend of coefficient magnitudes with an increase 

in scale. 
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For street connectivity (Table 37), total area in park (Table 38) and percentage area 

in park (Table 39) the choice of buffering algorithm determined whether the models 

reached significance. Results for street connectivity (Table 37) showed that for the 

smallest buffers (400 m) there was no evidence of an association when measured 

with the Detailed No Trim (DN) and Generalised No Trim (GN) buffers. At the 500 

m scale, there was no evidence for the Generalised No Trim (GN) buffer). At all 

other scales there was evidence of associations for all buffer types. There was no 

obvious difference between the Sausage Buffer and ArcGIS buffers when assessing 

relationships between street connectivity and physical activity. 

Results for total park area (Table 38) showed that from 400 m to 1600 m there were 

no significant associations for all road network buffers. For larger scales there was 

variation as to whether different road network buffer produced significant 

associations between park area and physical activity. At 2000 m, the Generalised 

Trim (GT) and the Sausage Buffer (SB) produced significant associations. At the 

2500 m scale, the Detailed Trim (DT), Generalised Trim (GT) and the Sausage 

Buffer (SB) produced significant associations, and at the 3000 m scale, the Detailed 

Trim (DT) and Sausage Buffer (SB) produced significant associations. Where 

significance was reached, the magnitude of the estimates varied by type of road 

network buffer, but the differences were, again, minimal. For instance, a range of 

0.15 – 0.32% at 2000 m and 0.07 – 0.20 % at 3000 m. Notably the Sausage Buffer 

was the only type of buffer to reach significance at 2000, 2500, and 3000 m. 

Results for percentage park area (Table 39) showed that from 400 – 2000 m there 

were no significant associations for all road network buffers. At 2500 m and 3000 m 

the percentage park area measured within Detailed Trim (DT), Generalised Trim 
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(GT), and Sausage Buffers (SB) resulted in models that detected evidence of an 

association with percentage park area and physical activity. 

3.4.3  Discussion 

The results showed that while all five buffer types differed from each other in terms 

of area and built environment characteristics, whether this made a difference to 

results depended on the built environment measure. For dwelling density and bus 

stop count, the built environment measures were very strongly correlated and the 

choice of buffer did not determine whether models of the association between the 

built environment and physical activity reached significance.  

For street connectivity, while there were very strong correlations between the 

measures, at smaller scales (400 and 500 m) the choice of buffer could determine 

whether models reached significance. At larger scales the results were consistent for 

all buffer types.  

Finally, for total area in park and percentage park area, correlations between built 

environment measures were weaker. Similarly, whether models of the association 

between parks and physical activity reached significance was in part determined by 

the choice of buffer.  

This suggests that the representation of the built environment measure – for instance 

points (e.g., intersections, bus stops) versus polygons (e.g., parks) - is important. 

Figure 4 demonstrates that if a park is represented as a point (centroid) it is less 

likely to be captured by a road network buffer than if it is represented as a polygon.  
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Figure 4. Example park represented as a point and polygon. 

 

The results also illustrated that sausage buffers were consistently smaller than the 

ArcGIS buffers. This finding is the opposite of Forsyth et al. (2012), and is likely due 

to the different radial distance used to calculate the sausage buffers.  There is no 

standard radial distance for use in sausage buffers. Therefore, in this dissertation, 

inspection of the data determined that a 50 m radial distance was appropriate. This 

contrasts with the 100 m radial distance used by Forsyth et al. (2012).  

In summary, choice of spatial data representation (e.g., point versus polygon), built 

environment measure choice (e.g., count versus density), buffering algorithm 

(ArcGIS buffers versus sausage buffers), and scale can all change the results of 

analyses of associations between the built environment and physical activity.  

The results of this study support the findings of Forsyth et al. (2012) in 

recommending the Sausage Buffer as a valid road buffering algorithm, particularly 

given the transparency and replicability of this method compared to proprietary 

ArcGIS algorithms.  Future research could further compare the buffers by assessing 

the extent of spatial overlap and how well the different buffers capture exposure to 

the environment.  
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The choice of scale appears to have had more of an impact on results than the 

buffering approach. Furthermore, the analyses in this section undertook a more 

comprehensive examination of scale (a greater number and range of scales) than 

previous analyses (i.e., in both the previous section of this dissertation, and in the 

literature reviewed in Chapter 2). This made scale trends more apparent and future 

research exploring the role of scale in delineation of neighbourhood would benefit 

from a similar comprehensive evaluation. Therefore, the results presented here 

support the previous section in confirming that analyses should be conducted at 

multiple scales. 

Greater consideration needs to be given to analytical choices, particularly how spatial 

data is represented. For instance, when working with point data, researchers should 

ensure this is snapped to the road centreline to minimise issues related to choice of 

buffering algorithm. Alternatively, methods that automatically snap points to the 

road (e.g., OD-cost matrices) should be considered in lieu of buffering. These 

alternate analysis approaches might also bypass any issues introduced in the creation 

of the buffer.  

3.5  Methodological commentary 

This section reflects on additional methodological issues that arose during the 

analyses described in this chapter. 

3.5.1  Selecting units for the built environment measures 

Prior analyses of the URBAN study data transformed all built environment measures 

by dividing each measure by their standard deviation (SD; Witten et al. 2012). This 

approach enabled comparison of regression coefficients across different models since 

each coefficient referred to a 1-SD change (Witten et al. 2012). However, the 
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analyses in this chapter took a different approach; the built environment measures 

were not transformed prior to the analyses.  

This decision was made for two reasons. First, and most importantly, since the 

standard deviation varies for each neighbourhood delineation, dividing the built 

environment measures by different standard deviations would make it difficult to 

compare results across neighbourhoods. Second, modelling the relationship using the 

original built environment units can make it easier to interpret the results. For 

example, increasing the dwelling density by one dwelling per km2 is easier to relate 

to than increasing the dwelling density by 1-SD. 

3.5.2  Measuring street connectivity 

Street connectivity was measured by dividing the number of 3-or-more-way 

intersections within a neighbourhood by the area of the neighbourhood. This appears 

to be a simple calculation, yet an unforeseen issue arose when calculating street 

connectivity for administrative units (i.e., meshblock, URBAN neighbourhoods, and 

census area units).  

Administrative unit borders are typically defined by road centrelines, therefore 

intersections commonly occur on administrative unit boundaries. GIS analyses (e.g., 

intersect) that count the number of intersections within administrative units assign 

each intersection to a single meshblock, even if that intersection is on the border of 

several meshblocks .This means a participant may live near an intersection which 

may not be included in their neighbourhood delineation. For instance, in Figure 5 

meshblock 3 was assigned one intersection and meshblocks 1, 2, and 4 were assigned 

no intersections. Therefore, participant A would have a higher intersection count – 

and street connectivity measure – than participant B.  This can result in an 



 

84 

underestimation of the ‘real’ or ‘experienced’ street connectivity, especially for small 

meshblocks. 

 

Figure 5. An intersection that borders four meshblocks is assigned to only one 
meshblock (e.g., Meshblock 3). 

 

The original meshblock level analyses conducted for the URBAN study addressed 

this issue by buffering the meshblocks by 20 m and calculating street connectivity 

based on the number of intersections within the buffered meshblock (Figure 6; 

Badland et al. 2009).  
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Figure 6. When the meshblock boundary is buffered an intersection that borders four 
meshblocks is assigned to all four meshblocks. 

 

While the approach of buffering meshblocks addressed the edge issue described 

above, it also introduced a new phenomenon: a single intersection being counted in 

multiple neighbourhoods. For example, in Figure 6 a single intersection is counted in 

four different meshblocks. This is not a problem when using a single neighbourhood 

delineation in the analysis. However, it produced unexpected results when comparing 

administrative boundaries of different scales.  

This is an example of the MAUP, discussed in Chapter 2. For the same location in 

space we can arrive at different street connectivity measures if we use different 

neighbourhood delineations. For instance, in Figure 7 each meshblock has an area of 

1 km2 and the census area unit has an area of 4 km2. If the number of intersections 
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are counted within buffered meshblocks (e.g., meshblocks buffered by 20 m), then 

each meshblock would contain 4 intersections, and the resulting street connectivity 

measure would be 4 intersections per km2. Yet for the census area unit, the street 

connectivity would be 2.25 intersections per km2 (i.e., 9 / 4 km2). When meshblocks 

are buffered, larger size differences between administrative units would result in 

larger differences in street connectivity measures. 

 

Figure 7. When buffering neighbourhoods, intersections on the borders of 

neighbourhoods can be counted multiple times. 

 

Therefore, in the analysis reported in this dissertation, the original, non-buffered, 

meshblock boundaries were used to calculate street connectivity. This avoided 

double-counting of intersections. Table 10 compares the median street connectivity 

measures for the administrative unit neighbourhood definitions for buffered 

meshblocks (not used in this dissertation) and non-buffered meshblocks (used in this 

dissertation). Note that the URBAN and CAU connectivity measures are the same in 

the two columns because the boundaries remained the same. 
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Table 10. Comparison of median street connectivity measures (intersections/km2) for 

buffered and non-buffered meshblocks.  

 20 m buffered 
meshblock 

Non-buffered 
meshblock 

meshblock 59.6 25.4 

URBAN 33.2 33.2 

CAU 25.6 25.6 

 

3.6   Discussion and conclusion 

This chapter has demonstrated that the delineation method can change the built 

environment measure and ultimately determine whether associations between the 

measures and physical activity outcomes are significant or not. It has also highlighted 

the importance of considering more than just the delineation method. The 

relationship between spatial data representation, built environment measure, and 

outcome measure is critical and researchers need to consider methodological choices 

beyond just the delineation method. While the results did not clearly identify a single 

ideal neighbourhood definition for use in built environment and physical activity 

research, they suggested that the commonly used 800 m road network buffer appears 

to be an appropriate choice across a range of built environment and physical activity 

measures, at least for adults. 

The analysis presented in this chapter has limitations. First, the research presented 

here was limited by a small range of scales in the earlier analyses (Section 3.3). At 

the time of analysis the number of scales seemed appropriate and more extensive 

than in most of the existing literature. However, in hindsight, having only four scales 
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made it difficult to discern spatial patterns. This issue was addressed in subsequent 

analyses (Section 3.4), where the maximum scale was increased and a greater 

number of scales were included, making it easier to detect scale trends in the data. 

Second, in line with current research comparing delineations, this analysis relied on 

statistical significance to make conclusions about optimal neighbourhood 

delineations. It is likely that relying on the results of statistical models alone may not 

be sufficient to identify appropriate neighbourhood boundaries (Rothman 2014, 

Gorard 2014), or to determine how well they capture context. Other approaches - 

such as determining how well a neighbourhood delineation captures exposure to the 

environment – are needed. 

Finally, the analyses in this chapter focused solely on the delineation of potential 

exposure in the residential neighbourhood. While it was useful to explore the 

implications of various methodological choices, as discussed in Chapter 2, there is 

also a need to a) move towards better delineation of actual exposure and b) delineate 

exposure beyond the residential neighbourhood. Subsequent chapters in this 

dissertation address these limitations by using GPS data to assess which delineation 

methods best represent where people travel and spend time.  
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Chapter 4. Kids in the City study methods 

4.1  Introduction 

The previous chapter explored the impact of different residential neighbourhood 

delineations on the results of models of the association between the built 

environment and physical activity. While it is useful to understand how choice of 

delineation method may impact research results, it is arguably more important to 

understand how well delineation methods capture exposure to the environment.  As 

noted in Chapter 2, very little of the research comparing delineation methods has 

assessed the methods by how well they represent exposure. Furthermore, to date no 

studies have assessed how well road network buffers – the most commonly used 

buffer – capture exposure. 

The remainder of this dissertation addresses these gaps by determining how well 

road network buffers represent actual exposure to the environment, exploring activity 

space delineations, and proposing enhanced methods of delineation (Aims 3 – 5). 

These issues are explored using data from two cross-sectional, mixed methods 

studies of the built-environment and children’s physical activity. These two studies 

were combined to create the Kids in the City (KITC) dataset used in this dissertation. 

This chapter describes relevant methods from these studies. 

The quantitative components of the two KITC studies investigated the association 

between the neighbourhood built environment and children’s physical activity and 

independent mobility (i.e., unsupervised travel and outdoor play).  The first study, 

funded by the Health Research Council of New Zealand (10/497), was conducted in 

six suburban Auckland neighbourhoods. The second study, funded by a Marsden 
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Grant (21568 RSNZ), took place in inner city Auckland neighbourhoods. The 

quantitative data collection for both studies followed the same protocols. Since this 

thesis uses only the pooled quantitative data, “Kids in the City study” refers to the 

combined studies, unless otherwise stated. 

Although data collection methods have been published elsewhere (Oliver et al. 

2011), this chapter describes the methods relevant to the data used in this dissertation 

and goes into more detail around the methods related to the GIS and GPS data. A 

pilot study was completed in November – December 2010, in order to test and refine 

data collection protocols. The full study took place between March 2011 and June 

2012. Ethical approval to conduct both phases of the research was provided by 

Auckland University of Technology, Massey University, and the University of 

Auckland ethics committees.  Informed consent was provided by the school 

principal, the school board of trustees, the classroom teachers, a parent/guardian, and 

the child.  

Candidate contributions to the KITC study are summarised at the end of this chapter, 

with details provided in Appendix A. 

4.2  School selection 

Eight primary schools (years 1-6) and one intermediate school (years 7-8) in 

Auckland, New Zealand, were recruited for the study. The schools were purposively 

selected based on their localities and school decile rating, which is an indicator of the 

socio-economic status of the school catchment area.  

Maps of Auckland walkability and destination accessibility (calculated in the 

URBAN study) were used to identify three pairs of primary schools. Each pair had a 
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similar decile rating, but differing neighbourhood walkability and destination 

accessibility scores. The remaining three schools were selected because of their 

location near the Central Business District (CBD). 

The difference in school types (primary versus intermediate) and rationale for school 

selection is a result of the different aims of the two KITC studies. Characteristics of 

the nine schools are shown in Table 11. 

Table 11. Characteristics of participating schools. Source: Ministry of Education 

2010 (NZ Ministry of Education 2010). 

School 

ID 

School type Location Decile  Roll (%, European, 

Māori, Pacific, 

Asian/South Asian, 

Other) 

Estimated 

walkability and 

access to 

destinations 

1  primary East 1 287 (1,25,67,7,0) Low 

3 primary East 1 427 (3,32,61,2,2) High 

4 primary South 1 514 (0,45,50,5,0) Low 

2 primary South 1 421 (0,34,64,2,0) Medium 

6 primary West 5 531(16,19,18,35,12) Low 

5 primary West 4 290 (12,23,36,23,6) High 

7 primary Central 8 249 (27,8,5,55,2) High 

9 primary Central 6 423 (32,16,15,32,5) High 

8 intermediate Central 9 531 (59,11,10,16,2) High 

Note: some percentages do not add up to 100 due to rounding errors. Decile 1 = low SES; Decile 10 = high SES. 
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4.3  Participant recruitment 

The study aimed to recruit at least 25 children, aged 9-10 years per primary school 

and 11-12 in the intermediate school.  The rationale for this minimum sample size is 

described in Oliver et al. (2011), but, briefly, it allows for the determination of a 

physical activity effect between neighbourhoods and also allows for up to 20% data 

loss. Limited GPS unit availability also restricted the sample size to a maximum of 

30 children, however, in the case of school number 9, two data collection sessions 

were conducted to increase the sample size beyond 30 and meet the additional 

sample size requirements for the second KITC study. 

A classroom-based session was conducted with each class containing appropriately 

aged students. This session introduced the research team, explained the study 

process, and demonstrated the research equipment participants would be wearing 

(i.e., accelerometers and GPS units). The students were given the opportunity to use 

the GPS units. The aim of this session was to engage children with the study and to 

allow them to develop rapport with the researchers. Information sessions for parents 

were also conducted at the school at a time convenient for parents. The research team 

presented the research process and answered questions at these sessions.  

4.4  Data collection 

Data collection occurred in two phases: between March and June, 2011, for schools 

1-6, and between March and June, 2012, for schools 7-9. Data collection was 

conducted for one school at a time. 

Spatial location was measured using QStarz BT-Q1000 and BT-Q1000XT GPS units 

(Qstarz International Inc., Taiwan). The main difference between the units was the 
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greater storage capacity of the BT-QT1000XTs. GPS units were worn on a belt and 

recorded data every 10 seconds. Participants recorded when they put on and took off 

the belt. 

Seven consecutive days of GPS data were collected. Researchers visited participants 

at their school on six consecutive weekday mornings to collect and check the 

previous day/s data, charge the GPS units, and download the GPS data. GPS data 

were downloaded using the QStarz QTravel v1 Travel Recorder software. Both .kml 

and raw .csv files were generated and saved to laptops. The file sizes of the GPS data 

files were checked to ensure the units were recording data. Problematic GPS units 

were immediately replaced with spares in order to minimise data loss. The GPS unit 

logs were cleared once the data had been saved. After lunch the charged and reset 

GPS units were returned to the children. On Friday afternoons children took home a 

GPS charger and instructions to charge the unit each night. 

Socio-demographic data were collected from parents/caregivers as part of a 75 item 

computer-aided telephone interview (CATI), conducted after the completion of data 

collection in their child’s school. 

4.5  GIS, GPS, and accelerometer data processing 

4.5.1  GPS 

The raw GPS data were cleaned and pre-processed using the Physical Activity 

Location Measurement System (PALMS; Personal Activity and Location 

Measurement System (PALMS) website 2012). This is a secure website that allows 

researchers to clean, process, and link accelerometer and GPS data. PALMS cleaned 

the GPS data, resampled the data at 30 s intervals – enabling linkage with the 
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accelerometer data - and used travel speed to assign a mode of travel (stationary, 

walk, cycle, vehicle) to each GPS data point.  

The GPS data was further processed and linked to accelerometer data using custom R 

scripts. A subset non-vehicle GPS dataset was extracted, based on the mode of travel 

being stationary, walk, or cycle. 

4.5.2  GIS 

The road network data were topologically cleaned. A walkable road network was 

created by excluding motorways/highways/freeways and on- and off-ramps.  

All home and school addresses for each participant were geocoded using ArcGIS 

10.0 (ESRI, Redlands).  Two home addresses were unable to be geocoded. School 

addresses were checked visually. Polygon representations were created for all home 

and school addresses using the land parcel. This is similar to the approach taken by 

Klinker et al. (2014) who defined the house as the land parcel.  

School entrance points were manually digitised based on entrance locations visible in 

satellite imagery. GPS data were checked against school entrances to ensure that all 

school entrances used by participants during data collection were captured. The 

shortest distance from home to the school entrance along the walkable road network 

were calculated using the OD-matrix function in ArcGIS.  

4.6  Candidate contributions to the KITC study 

The candidate was a named investigator on the two funded KITC studies. Key 

contributions included: 

 Contribution to the study design and grant application. 
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 Responsibility for GIS and GPS methods, data and analyses. 

 Contribution as an author on reports and publications, notably the KITC 

study methods paper (Oliver et al. 2011), other methods papers (Mavoa et al. 

2011, Mavoa et al. 2012, Oliver et al. 2014b, Badland et al. 2015a, Badland et 

al. 2015b) , and results papers (Oliver et al. in press, Oliver et al. 2015a). 

Further details of candidate contributions to the KITC study are provided in 

Appendix A.  
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Chapter 5. GPS inclusion criteria 

5.1  Introduction 

The previous chapter presented methods from the KITC study, which collected 

children’s seven-day GPS data. The GPS data will be used in subsequent analyses to 

assess how well delineation methods capture exposure. Therefore, it is important to 

ensure that the GPS data are as representative of seven-day exposure as possible. 

Since missing data is a known issue with GPS data (Kerr, Duncan and Schipperijn 

2011), this chapter tests a range of GPS inclusion criteria applied to the KITC GPS 

dataset. 

Inclusion criteria are used to determine whether a participant has sufficient data to 

reliably estimate the behaviours of interest. Within physical activity research, it is 

standard practice to apply inclusion criteria to accelerometer data. Accelerometer 

inclusion criteria – also referred to as ‘data reduction’ or ‘minimum wear time’ 

criteria - vary between studies (Masse et al. 2005, Toftager et al. 2013) and 

researchers have demonstrated that different criteria can change the results across a 

range of physical activity related outcome measures (Janssen et al. 2014, Toftager et 

al. 2013). 

Inclusion criteria are also an important consideration for GPS data since insufficient 

data will not represent a participant’s mobility behaviours adequately.  For instance, 

if a child only has one hour of GPS from the seven-day data collection in the KITC 

study, then the GPS data is unlikely to represent the places that child goes in daily 

life.  
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Despite this, few built environment GPS studies have reported their GPS inclusion 

criteria, and there are no standards among those that do. For example, Klinker et al. 

(2014) excluded the first day of data, weekend data, participants who did not stay at 

their primary home during data collection, participants who did not have any outdoor 

data, and participants who had less than one valid weekday of nine hours combined 

GPS/accelerometer wear time. Alternatively, Robinson and Oreskovic (2013) 

employed the following minimum inclusion criteria: 1) a valid hour of combined 

GPS/accelerometer data required a minimum of 10% non-zero accelerometer epochs 

with matching GPS data points, 2) a valid day of combined data required at least two 

valid hours, 3) a valid dataset required at least two valid weekdays and one valid 

weekend day of combined data. 

As mentioned above, several studies have investigated the impact of using different 

accelerometer inclusion criteria.  To date, however, no studies have investigated the 

effects of using different GPS inclusion criteria. While a thorough exploration of 

different GPS inclusion criteria is beyond the scope of this dissertation, ignoring this 

issue may to lead to less reliable results. Therefore, three GPS datasets with different 

inclusion criteria were created and assessed using descriptive statistics. The three 

datasets were:  

1) A complete GPS dataset with less stringent inclusion criteria applied 

(subsequently referred to as the ‘complete GPS dataset’). 

2) A subset of the GPS dataset with a more stringent inclusion criteria applied 

to the entire week of GPS data (subsequently referred to as the ‘subset GPS 

dataset 1’). 
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3) A subset of the GPS dataset with the KITC accelerometer inclusion criteria 

applied to each day of GPS data for each participant (subsequently referred to 

as the ‘subset GPS dataset 2’).  

The rest of this chapter describes the creation of these three datasets, presents 

descriptive statistics, discusses issues relating to GPS inclusion criteria, and outlines 

a strategy for the use of GPS inclusion criteria within this dissertation. 

5.2  Methods – creation of the three GPS datasets 

Of the 254 participants in the study, five participants did not have any GPS data, 

leaving 249 participants that could potentially be included in any GPS analyses. One 

participant lived on an island and attended school on the mainland. This participant 

was included in both datasets and in later GPS analyses where possible. However, 

some analyses were unable to be conducted for this participant (e.g., shortest road 

network distance to school). 

5.2.1  Creating the complete GPS dataset 

The purpose of the complete GPS dataset was to maximise the number of 

participants included by applying the following inclusion criteria:  

1) The home address was able to be geocoded. Two participants did not meet 

this criterion. 

2) Participants reported a single home address. Three participants did not meet 

this criterion due to custody being shared on an equal time basis between the 

mother and father. 

3) GPS data were recorded at the home address. Six participants did not record 

any GPS data at their home address and therefore did not meet this criterion. 
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4) Three or more hours of GPS data were collected during the seven-day data 

collection period. Two participants did not meet this criterion. 

Travel diary data revealed that some children stayed overnight at relatives’ houses 

during the week. However, since we were unable to determine whether this was a 

regular occurrence, these children remained in the dataset. This left a total of 236 

children in the complete GPS dataset. All these participants had valid GPS and 

address data. 

5.2.2  Creating the subset GPS dataset 1 

Since this dissertation will use the GPS data to explore spatial and temporal aspects 

of where children travel and spend time - with a focus on the environment outside of 

home and school - it is important to ensure there are sufficient data points on 

different days of the week and different times of the day. Ideally, this would mean 

using inclusion criteria with a high minimum number of hours per day for different 

days of the week; for instance, at least seven hours per day, for a minimum of three 

weekdays and one weekend day. However, this approach would not take into account 

the fact that, for weekdays, up to four hours (six hours school day minus two hours 

of GPS recharging) of the valid GPS data could be recorded at school. School-based 

GPS data are less useful in determining where children spend time, since GPS data 

are not needed to tell us that, in general, children spend their weekdays at school 

during school hours.  

Another issue with this ideal approach is that different participants might have bursts 

of ‘good’ GPS data at different times of the day and a strict inclusion approach 

would exclude this otherwise potentially useful data. Therefore, to prioritise non-
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school GPS data and to maximise the number of participants with included GPS data, 

the following approach was taken. 

First, the GPS data were divided into three categories: weekdays before school, 

weekdays after school, and weekends. Weekdays before school included GPS points 

recorded on weekdays, starting from the time the GPS was put on  (based on 

individual wear time data) and ending at the start of school (based on the school start 

time).  Weekdays  after school included GPS points recorded on weekdays from the 

end of school (based on school end time) and ending at the time the GPS was 

removed for the day (based on individual wear time data). Each school had slightly 

different start and end times, and these were taken into account when categorising 

the GPS data. Weekends included all GPS data recorded on a Saturday or Sunday. 

Next, the following additional inclusion criteria were applied to the complete GPS 

dataset: 

1) At least two weekdays with at least 30 minutes before school data; AND 

2) At least two weekdays with at least two hours after school data; AND 

3) At least five hours of total weekend data. 

This left a total of 85 participants in the subset GPS dataset 1. The additional 

inclusion criteria were determined based on a sensitivity analyses (i.e., exploration of 

options). There was a trade off between inclusion criteria that minimised missing 

data and inclusion criteria that maximised number of participants. 
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5.2.3  Creating the subset GPS dataset 2 

The second subset GPS dataset was created based on the accelerometer inclusion 

criteria used in analyses of KITC accelerometer data (not part of this dissertation; 

Oliver et al. in press). The inclusion criteria were applied to each day’s data for every 

participant, and only days with valid accelerometer data were included in the 

analyses. On weekdays, the inclusion criterion was at least three hours of data during 

the non-school part of the day. On weekend days, the inclusion criterion was at least 

seven hours of accelerometer data (Oliver et al. in press).   

The published KITC accelerometer inclusion criteria were applied separately to each 

day of activity for every participant since we were interested in children’s daily 

physical activity behaviours. However, as stated above, the current purpose is to 

explore spatial and temporal aspects of where children travel and spend time. Here, 

the interest is in mobility over a longer period of time than a single day and, 

therefore, it does not make sense to apply the accelerometer inclusion criteria to the 

GPS on a day-by-day basis.  

Ideally, the GPS inclusion criteria would require that a participant had seven days of 

GPS data where each day met the accelerometer inclusion criteria. However, only 

three out of the 249 participants with GPS data met these strict criteria. As above, a 

sensitivity analysis was conducted to determine appropriate inclusion criteria. To 

accommodate the need for several days of GPS data, and to ensure that enough 

children met the criteria, the following process was used: 

1) Accelerometer inclusion criteria were applied to each day of GPS data for 

every child, to determine whether each day had a valid set of data. Weekdays 
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required at least three non-school hours of GPS data and weekends required 

at least seven hours of GPS data.  

2) Further criteria of a child having at least two valid days of weekday data and 

one valid weekend day were applied.  

This left a total of 48 participants in the subset GPS dataset 2. 

5.3  Descriptive statistics for the three GPS datasets 

Table 12 presents characteristics of the three GPS datasets, showing the number of 

participants in each dataset categorised by school, sex, age, ethnicity, number of cars 

in the household, and shortest road network distance to school. This table shows that, 

after applying the additional inclusion criterion, only 36% of participants were 

retained in the subset GPS dataset 1, and 20% of participants were retained in the 

subset GPS dataset 2. 

Table 12. Characteristics of the three GPS datasets. 

 Complete 
Dataset n 

Subset 
GPS 
dataset 
1 n 

Subset  1  
% of 
complete 
dataset 

Subset GPS 
dataset 2 n 

Subset 2 
% of 
complete 
dataset 

School      

1 25 3 12.0 3 12.0 

2 22 4 18.2 0 0.0 

3 23 7 30.4 3 13.0 

4 25 6 24.0 1 4.0 

5 29 12 41.4 8 27.6 

6 23 13 56.5 4 17.4 

7 28 11 39.3 5 17.9 

8 12 5 41.7 4 33.3 

9 49 24 49.0 20 40.8 

Sex      

Female 133 48 36.1 27 20.3 
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Male 103 37 35.9 21 20.4 

Age (years)      

9 68 26 38.2 18 26.5 

10 142 45 31.7 23 16.2 

11-13 26 14 53.8 7 26.9 

Ethnicity      

European 54 26 48.1 20 37.0 

Indian/Asian/Other 65 30 46.2 16 24.6 

Māori 28 4 14.3 0 0.0 

Not stated 13 5 38.5 3 23.1 

Other Pacific Islander 42 12 28.6 4 9.5 

Samoan 34 8 23.5 5 14.7 

Number of Cars      

0 23 5 21.7 2 8.7 

1 100 39 39.0 20 20.0 

2 73 26 35.6 19 26.0 

>= 3 26 10 38.5 4 15.4 

Not stated 14 5 35.7 3 21.4 

Distance to School (m)      

0 - 400 40 10 25.0 5 12.5 

400 - 800 65 27 41.5 16 24.6 

800 -1,200 48 11 22.9 5 10.4 

1,200 - 2,000 34 13 38.2 6 17.6 

2,000 - 10,000 39 18 46.2 10 25.6 

> 10,000 9 5 55.6 5 55.6 

Not stated 1 1 100.0 1 100.0 

Total 236 85 36.1 48 20.2 

 

While the percentage retained in subset GPS dataset 1 varied by all characteristics in 

Table 12, school attended had the greatest range of percentage retention. Only 12% 

of children in school 1 were retained in the subset dataset 1, compared with almost 

57% of participants from school 6.  

There are several possible explanations for these differences between schools. First, 

data collection progressed in numerical order, that is, the first data collection took 
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place in school 1, the second data collection in school 2, and so on. Identification of 

faulty GPS units – which resulted in GPS data loss - occurred more frequently at the 

earlier schools. Second, the earlier schools had children from different socio-

economic status (SES): schools 1-4 were low decile (i.e., low SES), schools 5-6 were 

mid decile, and schools 7-9 were high decile. This may have affected missing GPS 

data. For example, some children in lower decile schools reported not being allowed 

to recharge the GPS units at home because of the cost of electricity. Similarly, 

children living in households with no cars showed less retention for subset datasets 1 

and 2.  

The percentage retained in subset dataset 2 also varied by all characteristics. 

However, there was a notable variation in retention by ethnicity. None of the Māori 

participants and a relatively low percentage of Samoan (14.7%) and Other Pacific 

Island (9.5%) participants were retained in this dataset. This corresponds to none of 

the participants from school 2 being retained (school 2 had no European students and 

only one Asian student). 

5.3.1  GPS descriptive statistics 

Table 13 presents descriptive statistics for number of GPS points and hours of GPS 

data for the three GPS datasets. As expected, the stricter the inclusion criteria, the 

higher the minimum, mean, and median GPS data numbers and hours, and the lower 

the standard deviation. When using the complete GPS dataset, participants had an 

average of approximately 34 hours of GPS data, compared to averages of 48 and 55 

hours for the subset 1 and subset 2 datasets, respectively.  
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Table 13. GPS data descriptive statistics. 

 Complete dataset (n = 
236) 

Subset dataset 1 (n = ) Subset dataset 2 (n = 
48) 

 Number of 
GPS points 

Hours 
of GPS 
data 

Number of 
GPS points 

Hours of 
GPS data 

Number 
of GPS 
points 

Hours of 
GPS data 

Minimum 395 3.3 2115 17.6 4814 40.1 
Maximum 8495 70.8 8495 70.8 8495 70.8 
Mean 4038.1 33.7 5765.2 48.2 6568.3 54.7 
Median 3799.0 31.7 5859 48.0 6584 54.9 
SD 1814.7 15.1 1353.1 11.3 984.5 8.2 

 

Figure 8 compares the distributions of the three GPS datasets in a boxplot of the 

number of GPS points for each of the three GPS datasets. As the inclusion criteria 

become stricter and the number of included participants decreases, the distribution of 

the total number of GPS points becomes narrower.  

 

Figure 8 Boxplot of the distributions of the three GPS datasets created with different 
inclusion criteria. 
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5.4  Discussion and conclusion 

The results described above illustrate that applying GPS inclusion criteria can 

potentially remove a large number of participants from the dataset. Yet inclusion 

criteria are important to ensure data are as representative of behaviour as possible. 

Ultimately, there is a trade-off between strict/ideal criteria and maximising the 

number of participants included. More comprehensive analysis of this trade-off, 

along with the development of standardised GPS inclusion criteria, is an important 

knowledge gap for researchers to address in future research.  

As demonstrated in this chapter, applying ideal criteria can leave very few 

participants in the dataset.  In the KITC study GPS data were collected from 254 

students, yet only 249 had any GPS data. Applying increasingly strict inclusion 

criteria dropped the sample sizes to 236, 85, 48, and 3 respectively.  This indicates 

that larger samples are needed when collecting GPS data. A 2011 review of physical 

activity studies that used GPS data showed that  21 out of 23 reviewed studies had 

sample sizes less than 185, and over half of the studies had sample sizes less than 50 

(Krenn et al. 2011). A more recent review of GPS use in studies of children’s 

physical activity (McCrorie, Fenton and Ellaway 2014) indicates that while sample 

sizes appear to be increasing, most sample sizes are still smaller than the KITC 

sample size. 

In deciding on appropriate inclusion criteria, it is important to consider the research 

question and how the GPS data will be used. For instance, it wasn’t considered 

appropriate to use accelerometer inclusion criteria used in the KITC study here, 

because the accelerometer analyses was designed to investigate children’s daily 
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physical activity behaviours, whereas, within the framework of this dissertation, the 

GPS data will be used to investigate mobility patterns over a longer time frame.  

Another consideration in using different inclusion criteria for GPS and accelerometer 

data is that the nature of GPS data collection – that is, requiring sufficient satellites to 

be visible - means that there are more gaps in the GPS data than in equivalent 

accelerometer datasets. Research to address the issue of missing GPS data – for 

example, through imputation techniques - is needed. 

The results demonstrated striking differences in retention of participants by SES and 

ethnicity. Children of Māori and Pacific Island ethnicity and children at lower SES 

schools were more likely to have GPS datasets that did not meet strict inclusion 

criteria. This is likely to have equity implications since Māori and Pacific Islanders 

and those with lower socio-economic status, also have poorer health (Hefford, 

Crampton et al. 2005; Pearce and Dorling 2006). 

The inclusion criteria used in subset GPS dataset 2 were inappropriate to investigate 

the research questions addressed in this dissertation. Furthermore, the resulting 

dataset was too small a sample for robust analysis and was not representative of the 

KITC sample as it disproportionately excluded Māori and Pacific Island participants, 

and excluded participants from an entire school. Since, the implications of GPS 

inclusion criteria are unknown, GPS analyses in the following chapter were 

conducted on both the complete dataset and subset GPS dataset 1, allowing for more 

robust interpretation of results. 
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Chapter 6. How well do road network 
buffers represent where children spend 
time? 

6.1  Introduction 

Road network buffers are the current best practice method of delineating 

neighbourhood in research investigating associations between the neighbourhood 

environment and health. Despite this, several researchers have demonstrated that 

people do not access the entire buffer, and buffers often exclude places where people 

spend time (Madsen et al. 2014, Villanueva et al. 2012, Basta et al. 2010, Prins et al. 

2014). Therefore, this chapter explores how well road network buffers represent 

where children travel and spend time, using the seven-day GPS data from the KITC 

study.  

A number of studies have compared different delineation methods (see Chapter 2 for 

a review). Most of these studies compared the area of the buffers (e.g., Crawford et 

al. 2014, Christian 2012, Zenk et al. 2011, Sherman et al. 2005, Madsen et al. 2014), 

the built environment measures calculated within the buffers  (e.g., Christian 2012, 

Zenk et al. 2011, Sherman et al. 2005), and the results of associations with the 

environment and various outcomes and behaviours such as walking (e.g., Boruff et 

al. 2012, Learnihan et al. 2011), or MVPA (e.g., Jones, Zenk and Matthews 2014). 

Chapter 3 of this dissertation also compared buffers based on results of associations 

between the environment and physical activity. While this type of comparison 

provides evidence of how different buffers impact results, it does not reveal how well 

the different buffers represent where people travel and spend time (i.e., exposure).  
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Research on how well different buffers represent mobility and activity is scarcer than 

research comparing the impact of different buffers on study results. Two studies have 

compared the spatial overlap of road network buffers with self-defined 

neighbourhoods and activity spaces; in one case for children (Villanueva et al. 2012) 

and in the other, for adolescents (Colabianchi et al. 2014). Both studies found very 

little overlap with road network buffers.  While self-defined neighbourhoods are not 

the same as exposure, these results provide another argument for exploring how well 

road network buffers represent actual and potential exposure. Indeed, how perceived 

neighbourhoods interact with both potential and actual exposure is an important 

question that warrants further research beyond this dissertation. 

GPS data provide researchers with the ability to measure how well different 

delineation methods represent actual exposure to the environment, yet very few 

published studies have undertaken such comparisons. Robinson and Oreskovic 

(2013), used GPS data to compare youth-defined and administrative neighbourhoods. 

They found that, although adolescents perceive their neighbourhoods to be a similar 

size to census-defined neighbourhoods, the youth-defined neighbourhoods better 

captured the locations where adolescents spent time. Hirsch et al. (2014), compared 

three GPS derived activity spaces - SDE, convex hull, and daily path area - with road 

network buffers and found relatively low percentage overlaps. The maximum overlap 

was 22.3 % between the 800 m road network buffer and the SDE activity space. 

Overlap with the 400 m road network buffer ranged from 3.3 – 4.4 % for the three 

activity space representations.   

To date, only one study has used GPS data to assess how well road network buffers 

represent mobility. Madsen et al. (2014), used GPS data to examine how well a 
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number of buffers – including 1 and 2 km road network buffers around the 

residential addresses - captured transport cycling behaviour of 331 regular cyclists. 

They compared buffer sizes with the number and density of GPS points within the 

buffers. Their results demonstrated that the ellipse shaped buffer between home and 

the city centre was the most effective, since it had the highest percentage of GPS 

points per km2.  The city centre in this study was defined as the centroid of the 

location with the highest density of daily activity destinations. 

It should be noted that the existing research which compares different delineation 

methods focuses exclusively on areas of overlap. However, areas that are excluded 

from the buffer (i.e., errors of omission) and areas that are included in the buffer but 

not visited (i.e., errors of commission), may also be relevant. 

The rest of this chapter explores how well road network buffers represent children’s 

non-vehicle mobility when compared with the KITC GPS data. The decision to focus 

on non-vehicle mobility was consistent with the objective to examine how well road 

network buffers represent exposure. Alignment between the GPS data and road 

network buffers was assessed using existing methods; namely, overlap between 

buffers and the number and percentage of GPS points contained by the buffer. The 

analyses also expand on existing research by specifically assessing the spatial extent 

of errors of commission and omission. 

6.2  Methods 

Data collection and GPS data processing were described earlier in Chapter 4. All 

analyses in this section were conducted using the two GPS datasets described in 

Chapter 5: the complete GPS dataset (n = 236), to which minimum inclusion criteria 

were applied, and subset GPS dataset 1 (n= 85).  
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The remainder of this section describes the methods used to create road network 

buffers, create polygon representations of the GPS data, and compare the road 

network buffers with the GPS data. 

6.2.1  Estimating distance travelled from home 

To get a sense of how far from home children were travelling and spending time, the 

number of GPS points within eight distance bands (400, 500, 800, 1000, 1500, 1600, 

2000, and 3000 m) were calculated for each participant. These distance bands were 

calculated using a Euclidean (straight-line) distance. Since each GPS point represents 

30 seconds in time, the number of hours spent within each distance band was 

calculated by dividing the number of points by 120. The purpose of this analysis was 

to provide context for the subsequent analyses. 

6.2.2  Calculating road network buffers around the residential address 

Road network buffers at a range of scales (400, 600, 800, 1000, 1200, 1400, 1600, 

1800, 2000 m) were calculated around participant home addresses, using the 

walkable road network and the sausage buffer method (described in Chapter 3). A 

larger number of scales were assessed here compared to Section 3.3 to better assess 

spatial trends in the results.  In built environment and physical activity research, 

maximum scales of 1600 m are typically used when representing residential 

neighbourhoods for adults walking. For children, scales of up to 1600 m have also 

been used (Villanueva et al. 2012). A maximum scale of 2000 m was chosen for this 

analysis to extend previous scales and also keep the analyses manageable. 

6.2.3  Delineating places children went using daily path areas 

Polygon-based representations of places children went during the seven-day data 

collection were created using the non-vehicle GPS point data (see Chapter 4 for a 
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description of how non-vehicle GPS points were specified). Daily path areas were 

calculated using a similar approach to that described by Zenk et al. (2011). All non-

vehicle GPS points were buffered by 50 m and dissolved to create a single polygon 

for each participant.  

There is no standard buffer distance for the creation of daily path areas. For example, 

other researchers have used 25 m (Krenn, Oja and Titze 2014), 50 m (Boruff et al. 

2012, Oliver et al. 2007, Morland et al. 2002), 100 m  (James et al. 2014, Ross et al. 

2004, Harrison et al. 2014, Saib et al. 2014, Burgoine and Monsivais 2013) , 200 m 

(Hirsch et al. 2014), and 0.5 mile (approximately 805 m; Zenk et al. 2011). The 50 m 

buffer was chosen for this analysis because it encompasses the distance a child could 

travel within the 30 seconds before the next GPS point (39 m - assuming a walking 

speed of 1.3 m/s; Finnis and Walton 2008). It also allows for the 10 m advertised 

horizontal error associated with the GPS units (QStarz 2012). 

Figure 9 provides an example of a daily path area using actual data for a single 

participant. 
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Figure 9. Example of a daily path area. 

6.2.4  Comparing GPS daily path areas and road network buffers 

One approach to comparing two neighbourhood delineations is to calculate either the 

area of overlap (e.g., Villanueva et al. 2012) or the percentage overlap (e.g., Hirsch et 

al. 2014). However, these measures do not completely describe how well one 

delineation captures a second delineation.  

Figure 10 demonstrates that comparing the area – or percentage area - of overlap is 

not sufficient to determine how well the road network buffers represent the daily path 

area. Examples A, B, C, and D in the figure all have an identical overlap area yet 

differ in how well the road network buffers represent the daily path area. The  

percentage area of overlap also misses some information. For instance, examples A 

and C have the same percentage of daily path area overlap, yet the road network 

buffer in example A includes a larger area that was not visited by the participant than 

example C. 
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Figure 10. Illustration of the different measures of geographic overlap. 

 

To gain a more complete picture of how well road network buffers represent where 

children travel, the overlap between the daily path areas and road network buffers 

was compared by calculating seven measures of spatial overlap.  These seven 

measures were: overlap area; percentage road network buffer overlap; percentage 

daily path area overlap; commission error area; omission error area; total error area; 

and sum of percentage overlap. 

Overlap area was calculated using the ‘Clip’ and ‘Calculate Geometry’ functions in 

ArcGIS 10.2 (ESRI, Redlands). The overlap area is the area present in both the GPS 

daily path and the road network buffer.  
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The percentage of road network buffer overlap was the overlap area, divided by the 

total area of the road network buffer, then multiplied by 100. This measure represents 

how much of the road network buffer is visited by the participant during the seven 

day GPS data collection. The percentage of daily path area overlap was the overlap 

area, divided by the total area of the daily path, then multiplied by 100. This measure 

represents the proportion of places visited by the child that are captured by road 

network buffers. 

The areas representing errors of commission and omission were calculated using the 

‘Erase’ and ‘Calculate Geometry’ functions. Commission error area refers to the area 

present in the road network buffer that did not overlap the daily path area. In other 

words, this is the area captured by the road network buffer that children did not visit 

during GPS data collection. Omission error area refers to the area present in the GPS 

daily path that does not overlap the road network buffer – in other words this is the 

area visited by children but not captured by the road network buffer.  

Finally, two composite measures were calculated. Total error area was the sum of the 

commission error area and the omission error area. The sum of the percentage 

overlap was the sum of the percentage road buffer overlap and the percentage daily 

path area overlap. 

The road network buffers that best represent where children go will maximise 

overlap (area and percentages), and minimise the commission, omission, and total 

error areas (Figure 10). 

In addition to calculating overlap measures, road network buffers were assessed by 

counting the number and percentage of GPS points in each buffer. This is similar to 

the approach taken by Robinson and Oreskovic (2013) who calculated the percentage 
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of time spent in different neighbourhood definitions. Hours within the road network 

buffer were derived from the GPS data by dividing the number of GPS points by 

120.   

6.2.5  Missing GPS data 

Missing GPS data is likely to have an impact on any analyses comparing GPS data to 

road network buffers. For instance, a child may spend substantial time in all parts of 

a road network buffer. However, if this travel was not recorded by the GPS unit (e.g., 

due to the child forgetting to wear the unit, or a unit malfunction) then a comparison 

of the road network buffer and GPS daily path area will underestimate the overlap 

between the two buffers and overestimate errors of commission. To ensure that the 

impact of missing GPS data was minimised, all analyses in this chapter were 

undertaken with two GPS datasets: 1) the complete dataset (236 participants), and 2) 

the subset GPS dataset 1 (85 participants).  

6.2.6  Statistical analysis 

Descriptive statistics were calculated for the daily path and road network buffer 

areas. Paired bivariate analyses using non-parametric Wilcoxon tests (α = 5%) 

compared the daily path areas with each of the different road network buffers. 

Statistical analyses were conducted in R (R Development Core Team 2008). 

6.3  Results 

6.3.1  Distance from home 

Figure 11 presents results from the analysis of the number of GPS points within 

Euclidean distances from participant’s homes for the complete GPS dataset. For 

participants who lived less than two kilometres from school, over 90% of GPS points 

were recorded within two kilometres from home. As expected, participants who lived 
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further from school spent more of their time at greater distances from their home. For 

the 39 participants who lived between two and 10 kilometres from school, over half 

their time was spent at distances beyond two km from home. For the nine 

participants who lived more than 10 km from school nearly three quarters of their 

GPS points were recorded beyond two kilometres from home. 

  

Figure 11. Cumulative percentage of time spent at different distances from home 
using the complete GPS dataset (n = 236). 

 

Figure 12 presents results from the subset GPS dataset. This figure shows a similar 

pattern, with participants who lived further from school recording a greater 

percentage of GPS points at distances further from home.  
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Figure 12. Cumulative percentage of time spent at different distances from home 
using the GPS dataset with inclusion criteria applied (n = 85). 

The main differences between the complete GPS dataset and the subset GPS dataset 

occurred with participants who lived closest to school (< 400 m) or furthest from 

school (> 10 km). In the subset GPS dataset, participants who lived closest to school 

had a greater percentage of GPS points further from home than in the complete GPS 

dataset. Conversely, in the subset GPS dataset, participants who lived furthest from 

school had a smaller percentage of GPS points further from home than in the 

complete GPS dataset.  

These differences indicate that participants with less complete GPS data – that is, 

those that did not meet the GPS inclusion criteria – may have accumulated a greater 

percentage of GPS points near school than further from school. This is likely because 
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research assistants ensured that GPS units were being worn at school every weekday. 

Outside of school hours, and further from the school, there was no one to remind 

participants to wear the GPS units, and therefore there is more likely to be missing 

data at greater distances from the school. 

6.3.2  Area of buffers 

Table 14 and 15 present descriptive statistics for the areas of the GPS based daily 

paths and road network buffers. The GPS daily paths represent the places children 

went during the seven-day GPS data collection, whereas the road network buffers are 

representations of the residential neighbourhood.  

For the complete GPS dataset the mean area of the daily path was significantly 

different from the mean areas of each of the road network buffers (p < 0.001).  

For the subset GPS dataset, the mean area of the daily path was significantly 

different from the mean areas for all but one of the road network buffers (p < 0.001). 

The one exception was the mean area of the 800 m road network buffer, which was 

not significantly different from the mean area of the GPS daily path (p = 0.540) 

Table 14. Descriptive statistics of the areas (km2) of GPS daily paths and road 
network buffers (RNBs) at different scales. Complete GPS dataset (n = 236). 
 Mean Median SD 

GPS daily path  0.45 0.36 0.33 

400 m RNB 0.15 0.14 0.05 

600 m RNB 0.32 0.30 0.12 

800 m RNB 0.57 0.55 0.22 

1,000 m RNB 0.90 0.86 0.35 

1,200 m RNB 1.31 1.27 0.52 

1,400 m RNB 1.80 1.79 0.71 

1,600 m RNB 2.36 2.35 0.92 

1,800 m RNB 2.99 3.03 1.16 

2,000 m RNB 3.69 3.76 1.43 
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Table 15. Descriptive statistics of the areas (km2) of GPS daily paths and road 
network buffers (RNBs) at different scales. GPS dataset with inclusion criteria 

applied (n = 85). 

 Mean Median SD 

GPS daily path  0.63 0.51 0.41 

400 m RNB 0.14 0.14 0.06 

600 m RNB 0.32 0.31 0.14 

800 m RNB 0.59 0.57 0.25 

1,000 m RNB 0.93 0.87 0.38 

1,200 m RNB 1.36 1.28 0.53 

1,400 m RNB 1.88 1.87 0.71 

1,600 m RNB 2.46 2.42 0.92 

1,800 m RNB 3.11 3.05 1.15 

2,000 m RNB 3.85 3.79 1.44 

 

6.3.3  Overlap of buffers 

Table 16 presents the results from the analyses comparing the GPS daily path area 

polygons and the road network buffers using the complete dataset. Table 17 presents 

the results for the subset GPS dataset. Both tables demonstrate that, as expected, an 

increase in the size of the road network buffer is associated with an increase in the 

areas of overlap and commission errors, and a decrease in the omission error areas.  

While these two tables demonstrate that both GPS datasets reveal a similar pattern in 

terms of overlap between the road network buffers and the daily path area, there are 

differences between the two datasets. The subset GPS dataset had greater overlap, 

greater total error and lower errors of omission at all scales. The subset GPS dataset 

also had lower errors of commission at small scales and greater errors of commission 

at large scales.  

Figure 13 illustrates the differences in magnitude of the overlap, commission errors, 

omission errors and total errors in the complete GPS dataset. For the 400 - 800 m 
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road network buffers, the magnitude of the errors of commission and omission are 

similar. However, for the 1000 – 2000 m road network buffers, the errors of 

commission are orders of magnitude larger than errors of omission. In other words, 

the larger road network buffers contain substantially greater areas that were not 

visited by participants than the smaller road network buffers. 

  

Figure 13. Median overlap, commission error, and omission error areas at different 

road network buffer distances. Complete dataset (n = 236). 
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Figure 14 illustrates the magnitude of the errors for the subset GPS dataset. The 

pattern is similar to that of the complete GPS dataset. The main differences being the 

distance at which the omission and commission areas are equal, and the distance at 

which the omission and overlap areas are equal. In the complete GPS dataset, 

omission and commission errors are near equal for a smaller road network buffer 

(600 m) than in the subset GPS dataset (800 m). Similarly, the overlap and omission 

areas are also near equal at a smaller road network buffer (1200 m) in the complete 

dataset, than in the subset GPS dataset (1400 m). The differences between the 

complete and subset GPS datasets could be due to the different population 

characteristics in each dataset, however, they may also be due to the amount of 

missing GPS data as errors of omission and commission may be magnified when 

there is more missing GPS data. 
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Figure 14. Median overlap, commission error, and omission error areas at different 
road network buffer distances. Subset GPS dataset (n = 85). 

 

While the areas of overlap, commission and omission are important, it is also 

important to consider the percentage of the daily path area captured by the road 

network buffer, and, conversely, the percentage of the road network buffer that 

contains the daily path area.   
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Table 16 and Table 17 (above) also present the mean, median and standard deviation 

of the percentage overlaps. As expected, the percentage of daily path area overlap 

increases with increased road network buffer size and the percentage of road network 

buffer overlap decreases with increased road network buffer size.  

6.3.4  GPS points/time within buffers 

Descriptive statistics for the two GPS datasets were presented in Chapter 5, Table 13. 

These showed that participants from the subset GPS dataset had, on average, 12 

hours more GPS data than participants in the complete GPS dataset.  

Table 13 also demonstrated that, on average, the 2000 m road network buffer 

captures approximately five hours more of GPS activity than the 400 m road network 

buffer (i.e., 14.51 hours vs 9.81 hours).  However, as shown in the previous section, 

this same change in buffer size adds over 3.3 km2 of additional error. This error is 

mostly error of commission; that is, including areas in the neighbourhood boundary 

that children did not visit (Table 16). 

Table 18 summarises the hours spent inside the road network buffers for the 

complete dataset. The percentage of total recorded GPS time spent within the road 

network buffer is also provided in this table. For instance, on average, 9.8 hours of 

time was spent within the 400 m road network buffers. This corresponds to 29.9% of 

all GPS data. Conversely, on average, 70.1% of the time was spent outside the 400 m 

road network buffer. Note that the GPS hours only include time when participants 

were wearing the GPS unit and the GPS unit was recording valid satellite data. Time 

spent asleep and at home was not included. Furthermore, the time estimates may also 

exclude time spent indoors when satellite reception was poor. 
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Table 18 also demonstrates that, on average, the 2000 m road network buffer 

captures approximately five hours more of GPS activity than the 400 m road network 

buffer (i.e., 14.51 hours vs 9.81 hours).  However, as shown in the previous section, 

this same change in buffer size adds over 3.3 km2 of additional error. This error is 

mostly error of commission; that is, including areas in the neighbourhood boundary 

that children did not visit (Table 16). 

The relatively high standard deviations in Table 18 also demonstrate that, on 

average, the 2000 m road network buffer captures approximately five hours more of 

GPS activity than the 400 m road network buffer (i.e., 14.51 hours vs 9.81 hours).  

However, as shown in the previous section, this same change in buffer size adds over 

3.3 km2 of additional error. This error is mostly error of commission; that is, 

including areas in the neighbourhood boundary that children did not visit (Table 16). 

Table 18 revealed substantial variation between participants. In other words, road 

network buffers were very good representations of where some participants spent 

time (i.e., higher percentages of GPS data in road network buffers), and poor 

representations of where other participants spent time (i.e., lower percentages of GPS 

data in road network buffers). 

Table 19 shows the results for the subset GPS dataset. Here, the standard deviations 

were higher.  On average, the 2000 m road network buffer captured 5.8 additional 

hours of GPS activity than the 400 m road network buffer. 
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Even though participants with too few GPS points and participants whose home 

addresses were not verified by the GPS data were excluded from this analysis, Table 

19 show that there are participants who did not record any non-vehicle GPS points 

within road network buffers around their residential address (i.e., there were 

minimum values of 0).  

Participants with no non-vehicle GPS points in the road network buffers were either 

driven to and from home during data collection, or took non-road routes to and from 

home. Figure 15 provides an example for one participant. As shown, there are GPS 

points in the home parcel. However, since road network buffers are centred on road 

centrelines, these GPS points do not fall within the road network buffer. The 

participant left the house through a back fence and travelled across vacant land 

before reaching a road. They returned home using the same route. 

This example demonstrates that, in some instances, part of the residential land parcel 

was excluded from all road network buffers. Inspection of the data also revealed that 

some participants’ residential land parcels were entirely excluded from road network 

buffers. This occurred when a participant lived down a long driveway/right of way, 

or if the residential land parcel was large (e.g., when a child lived in a large 

apartment building or on a block of land with many flats). 
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Figure 15. Participant with no GPS data in the 400 m and 600 m road network 
buffers. 
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6.3.5  Is there an optimal road network buffer scale? 

As shown above, increasing the road network buffer scale necessarily leads to an 

increase in the overlap, an increase in the commission errors, and a decrease in the 

omission errors. This tension between an increase in overlap (‘good’) and an increase 

in commission errors (‘bad’) makes it difficult to identify an optimal scale within 

which to capture children’s exposure to the environment. 

However, it is possible to gain more insight by combining the overlap measures. 

Table 20 presents the results for two combined measures: total error area, and the 

sum of the percentage road network buffer overlap and percentage daily path area 

overlap.  

This table shows that, if the purpose is to minimise the total error area and maximise 

the percentage overlap, then the 400 m road network buffer is optimal for both the 

complete GPS dataset and the subset GPS dataset. However, since errors of 

commission are orders of magnitude larger than errors of omission (refer Figure 13 

and Figure 14), this approach to the selection of an optimal network buffer distance 

is biased against the larger scales. Conversely, the larger buffers are always going to 

capture more GPS points than the smaller buffers. Ultimately, this means that there is 

no straightforward way of identifying an optimal scale of road network buffer to 

capture GPS points (i.e., exposure). 
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Table 20. Combined overlap measures for the complete GPS dataset (n = 236) and 
the subset GPS dataset (n = 85). 

 Sum of mean % 
overlap 

Mean total error area 
(km2) 

Number of participants 
where this buffer has a 
maximum mean relative 
density 

 Complete 

GPS 

dataset 

Subset 

GPS 

dataset 

Complete 

GPS 

dataset 

Subset 

GPS 

dataset 

Complete 

GPS dataset 

Subset 

GPS 

dataset 

400 m RNB 61.9 64.7 0.46 0.62 202 74 

600 m RNB 56.8 56.9 0.56 0.71 14 5 

800 m RNB 55.6 54.2 0.76 0.90 3 0 

1,000 m RNB 56.6 53.8 1.04 1.18 7 3 

1,200 m RNB 57.6 54.1 1.40 1.55 1 0 

1,400 m RNB 58.4 54.6 1.86 2.02 4 1 

1,600 m RNB 58.8 54.7 2.39 2.57 0 0 

1,800 m RNB 59.4 55.7 2.99 3.18 1 0 

2,000 m RNB 59.7 55.9 3.67 3.90 0 0 

 

6.4  Discussion 

This chapter has examined how well road network buffers capture children’s 

exposure. To answer this, road network buffers at a range of scales were created 

around children’s residential addresses. The extent to which road network buffers 

captured places children went was assessed by comparing the overlap of the road 
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network buffers with the GPS daily path area. Time spent within road network 

buffers was estimated by counting the number and percentage of GPS points within 

each buffer, with each GPS data point representing a 30 second time period.  

All analyses were repeated for two datasets: the complete GPS dataset with 

minimum inclusion criteria applied (n = 236), and the subset GPS dataset with 

stricter inclusion criteria (n = 85). Comparing the two datasets, the patterns were 

similar, although there were differences in the numbers. For instance, there were 

greater errors of omission, greater overlap, and more GPS points captured by road 

network buffers in the subset GPS dataset. A more rigorous investigation of the 

impact of different GPS inclusion criteria is needed. Since the subset GPS dataset 

represented the more stringent inclusion criteria, this dataset will be used in analyses 

and interpretations for the remainder of this dissertation. 

The degree to which road network buffers captured places children went and the time 

they spent in those places varied for individual participants. Unsurprisingly, larger 

buffers captured a greater spatial extent of where children travelled to (i.e., less 

errors of omission) and a greater percentage of the time children spent in those places 

(i.e., higher percentage of GPS points in the road network buffer). Conversely, the 

smaller buffers minimised the area in buffers that children did not visit (i.e., less 

errors of commission).  

On average, the 400 m road network buffer captured only 14.0% of the daily path 

area and 34.8% of the time spent in those places, while even the 2000 m road 

network buffer captured only 47.7% of the daily path area and 48.4% of the time 

spent in those places. This demonstrates that road network buffers are not adequate 
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representations of where children go or spend time. While this point has been 

highlighted by others (Madsen et al. 2014, Villanueva et al. 2012), the analyses in 

this chapter provide new evidence of the extent to which children’s exposure – both 

spatially and temporally – is captured and excluded by road network buffers at a 

range of scales. 

While it was not possible to determine an optimal road network buffer scale, this 

chapter has made a new contribution to the literature by specifically assessing errors 

of omission and commission. Previous studies have only assessed overlap and GPS 

points contained by buffers. While errors of omission and commission were of a 

similar magnitude at smaller scales, the errors of commission were up to 12 times 

larger for the largest road network buffer.  

This chapter has provided evidence of the relative gains and losses in choosing one 

road network buffer scale over another.  As mentioned in Chapter 2, 400 and 800 

metres are commonly used road network buffer scales for both adults and children.  

In this sample, using an 800 m road network buffer rather than a 400 m road network 

buffer captures, on average, 13.9% more of the spatial extent of where children went, 

and 5.8% more GPS points (i.e., 2.5 hours more activity). Yet the increased capture 

of time spent within the buffer was offset by an increase in the percentage of the 

buffer not visited by children (i.e., commission errors). The decision on whether it is 

more important to capture exposure or minimise errors of commission will depend 

on the research question.  

The analyses in this chapter revealed the unexpected situation whereby residential 

land parcels contained GPS data, yet road network buffers contained no GPS data. 
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Exploration of the data revealed a number of situations where road network buffers 

were not adequately representing children’s travel and presence at - or close to - 

home. These inconsistencies occurred because network buffers are, by definition, 

centred on roads and may, therefore, exclude part, or all, of the residential land 

parcel. Similarly, road network buffers may exclude part, or all, of the school land 

parcel.  

Another issue was the failure of road network buffers to capture children’s activity 

and travel that occurred beyond the road network. For instance, one participant used 

a vacant lot at the back of their house as their route to and from school. These 

situations occurred because of limitations associated with road network buffers, 

which are presented in the following section. 

6.4.1  Limitations of road network buffers  

The limitations of road network buffers identified here arise from analyses 

undertaken in this chapter. Six limitations were identified and are discussed in detail 

below. The research acknowledging and/or addressing these limitations is still very 

sparse, and in some cases non-existent. However, where possible, a review of how 

these limitations have been acknowledged and addressed in the literature is also 

included. 

6.4.1.1  Road network buffers are typically created around the residential address 
only 

Road network buffers are created around specified origins, typically the residential 

address. Specifying a single residential origin from which to calculate the buffers 

ignores other places people travel and spend time in their daily lives such as home, 

school, shops, and recreational places. This relates to the ‘residential trap’  (Chaix et 
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al. 2009) and ‘local trap’ concepts (Cummins et al. 2005) discussed in Chapter 2. 

This issue is relevant to all types of neighbourhood delineation methods, including 

road network buffers. 

Of the six limitations discussed here, this limitation has received the most attention 

in the literature with continued acknowledgement of the issue and growing attempts 

to address it. Researchers are increasingly including non-residential locations and 

routes in their analyses, and road network buffers are often used to represent these 

spaces. For instance, researchers have created both home and workplace/school road 

network buffers (e.g., Thornton et al. 2013), and sometimes also include routes  - 

either shortest path or actual routes from GPS data (e.g., Dalton et al. 2013, Burgoine 

and Monsivais 2013) - to create a better representation of exposure to the 

environment. In keeping with the findings of this chapter, this emerging research - 

along with research evaluating exposure via activity spaces (Villanueva et al. 2012) 

and GPS tracking (Hirsch et al. 2014, Zenk et al. 2011) - has demonstrated that 

excluding non-residential locations can lead to underestimation of exposure to 

various aspects of the environment.  

6.4.1.2  Assumption that movement only occurs along the road network 

Delineation of boundaries using road network buffers assumes movement occurs 

only along the road network. Yet, in reality, movement may be restricted in some 

parts of the road network (e.g., where there are no footpaths), and may also occur 

beyond the road network. As discussed in Chapter 2, the two studies that have 

compared pedestrian versus non-pedestrian networks (Tal and Handy 2012, Chin et 

al. 2008) found that excluding pedestrian routes from street networks can produce 
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different measures of street connectivity and ultimately change the shape and size of 

the road network buffers.  

One approach to addressing this issue is to include pedestrian paths in the network 

when creating road network buffers. However, the lack of footpath and pedestrian 

path data is a problem that limits the use of pedestrian network buffers (Badland et 

al. 2013, Giles-Corti et al. 2014). Given technological advances in the extraction of 

footpath data from imagery (e.g., Senlet and Elgammal 2012, Smith, Malik and 

Culler 2013) and the development of methods to approximate footpath locations 

(Janssen and Rosu 2012), it is likely that digital footpath data will be increasingly 

available. As this occurs, including pedestrian paths in the network analyses will 

mitigate this limitation to some extent.  

While the increased availability of footpath and pedestrian path data is promising, 

including footpaths in the network does not entirely address this limitation since 

people’s movement is not restricted to official networks. People can cut across 

private property, go through public buildings that allow thoroughfare through 

common areas or public spaces (e.g., shops in the CBD) and cross public open 

spaces. Such movement beyond the official networks may be especially important 

for children, who often play in informal or ‘found’ spaces such as carparks and 

vacant lots (Thomson and Philo 2004, Berg and Medrich 1980, Carroll et al. 2015) 

and, therefore, may travel through these informal spaces more frequently. Examples 

of children’s movement in unofficial spaces were evident in the KITC GPS data. For 

instance, GPS tracks revealed that some children were jumping a fence to get to and 

from school and others were spending time in, and/or travelling through, vacant lots. 
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6.4.1.3  Methodological choices can alter the size and shape of the buffer 

As discussed in Chapter 3, a range of methodological choices - including those that 

determine the size and shape of the buffer, the way the spatial data is represented 

(e.g., points versus polygons), the type of built environment measure (e.g., counts, 

density, area), and the spatial analysis functions used (e.g., OD matrix versus 

intersecting points in polygons) - can potentially influence and alter results. This 

issue has barely been acknowledged in the literature. Only Forsyth et al. (2012) have 

considered one aspect: the use of different software versions and parameters. 

6.4.1.4  Road network buffers are centred on roads, yet in many cases daily lives 
are not dominated by road environments. 

Road network buffers are centred on the road and so excel at capturing the road 

environment (e.g., intersection density, traffic volume) and the environment in close 

proximity to the road (e.g., bus stops, footpaths). However, it is likely there are 

important aspects of daily life that take place at some distance from roads (e.g., 

work, study, and social and recreational activities). The degree to which road 

network buffers can capture the non-road environment can depend on the 

methodological choices discussed above (e.g., road width, algorithm used, data 

representation choices, polygon versus point). This limitation has not been discussed 

in the literature. 

6.4.1.5  Road network buffers are usually isotropic and do not allow for aspects of 
the environment to alter their size and shape 

In most instances, road network buffers are isotropic. They are created around an 

origin point and expand equally in all directions along the road network. This ignores 

the fact that accessibility and exposure are often oriented towards a certain direction. 

For example, roads in some directions may be more or less accessible than others 
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(e.g., due to slope, presence of pedestrian crossings, traffic light phasing). Mobility 

patterns and, therefore, exposure to the environment are also likely to be directional. 

People may choose to travel in certain directions more than others due to  

characteristics of the network (e.g., traffic, presence of footpaths), the surrounding 

environment (e.g., slope, presence of destinations of interest, presence of graffiti, 

crime, land use, public transit stop), and individual factors (e.g., relative location of 

workplace/school, possession of a driver’s license and access to a car). 

The problem of using symmetrical representations of neighbourhood to represent 

asymmetrical movement and exposure was discussed in Chapter 2 and has been 

acknowledged in the literature (Madsen et al. 2014, Chaix et al. 2009). Some 

researchers have attempted to address asymmetrical delineations explicitly. For 

example, Madsen et al. (2014), developed cycling oriented towards the CBD. 

Alternatively, delineating the asymmetry of daily life can be achieved by using 

activity space methods. To date, no one has proposed or calculated anisotropic road 

network buffers.  

6.4.1.6  Measuring the built environment within a road network buffer ignores 
spatial patterning within the buffer 

Road network buffers are often created so that researchers can measure 

characteristics of the built environment within the buffer. However, this ignores any 

variation or spatial patterning of the built environment within the buffer. 

Figures 16-18 illustrate some of the issues and aspects of the built environment that 

are not being captured with current buffering approaches. This figure shows an 

example residential road network buffer at a constant scale. Figure 16 demonstrates 

that the built environment can vary within a road network buffer. Each of the three 
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examples provided has the same destination count and the same destination density, 

yet real access to destinations varies.  

 

Figure 16. Additional road network buffer limitations – part 1. 

The three examples in Figure 17 have the same destination count, the same 

destination density, and the same destination locations, but, again, the real access 

differs for each example.  

 

Figure 17. Additional road network buffer limitations – part 2. 

In Figure 18, the three examples shown demonstrate the same destinations located on 

different road networks. While the real potential access to destinations is the same 

for each example, the destination density differs because of the different road 

network buffer areas. 
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Figure 18. Additional road network buffer limitations – part 3. 

While the examples in Figures 16-18 demonstrate limitations with the measurement 

of the built environment using road network buffers, these issues are also relevant to 

other types of delineation methods.  

Another question is whether variation of the built environment within a buffer makes 

much difference. At smaller scales it is unlikely to make a difference, yet as scale 

increase the impact of these issues are likely greater. 

Although measurement of spatial pattern is common in other fields, it is not often 

addressed in built environment and physical activity research. As illustrated above, 

spatial patterning is pertinent to both delineation of neighbourhood/exposure and 

methods of measuring the built environment. Built environment and physical activity 

researchers are starting to consider spatial patterning. For instance, Manaugh and 

Kreider (2013), have proposed a measure of mixed land use that accounts for the 

spatial mixing/interaction within an area of interest (as opposed to solely measuring 

proportions or counts of land use). Tribby et al. (2015) and Mayne et al. (2013) have 

used Moran’s I – a measure of spatial patterning – in recent studies of walkability. 

Matthews and Yang (2013), have identified a similar issue whereby the absolute and 

relative location of neighbourhood boundaries are ignored in current analyses.  
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These issues demonstrate that, in the quest for greater precision in the measurement  

of context, it is also worth considering how delineation methods interact with a range 

of built environment measures and the pattern of the street network. It is possible that 

this unmeasured variation in the environment within the buffer may make it difficult 

to detect relationships between the environment and health. 

6.4.1.7  Examples of limitations 

Figure 19 illustrates several of the limitations discussed above using data from the 

KITC study. Figure 19a demonstrates that road network buffers around a residential 

address can exclude important places visited by the participant during data 

collection. Neither the 400 m nor the 800 m road network buffers capture the child’s 

school environment, and both only capture a part of the child’s journey to school. 

Additionally, both buffers exclude the majority of the home residential parcel. In this 

case, the child’s home is located at the end of a long driveway that is further than 50 

m from the road centreline. 

Figure 19b shows part of the child’s journey to school was along pedestrian only 

paths not included in the road network and, regardless of the distance used in the 

buffer, this part would never be included in the buffer. This issue was identified 

earlier in this chapter (Figure 15), where the road network buffer did not capture any 

GPS data points for one participant because the child did not visit roads in the 

immediate vicinity of their home. Instead, they travelled to and from home via a 

vacant lot accessible from the back of the residential property.  
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Figure 19. Examples of limitations of road network buffers. 
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Figure 19b also demonstrates how some built environment features may or may not 

be included in the buffer depending on how they are represented. For example, if the 

parks are represented as points instead of polygons, then their inclusion in the road 

network buffer can depend on where the point representing the park is placed (often 

an automated or arbitrary decision). As discussed in Chapter 3, this choice of how to 

represent the raw built environment data can alter the built environment measures 

calculated for each buffer. 

Lastly, Figure 19b also shows that the road network buffer would better capture 

places the child visited if the home buffer was oriented towards the school and/or the 

school was included in the buffer. It is also worth noting that some activity appears 

to be centred around the school. 

6.4.2  Limitations of analyses 

There were a couple of limitations with the analyses undertaken in this chapter. First, 

due to missing GPS data, the method to estimate the spatial extent of where children 

went (i.e., the GPS daily path area) is a likely underestimation of where children 

spent time. Second, the GPS data came from only seven days of data collection. 

Therefore, the daily path areas used here may not be representative of the 

participant’s usual behaviour. 

6.5  Conclusion 

Most studies that compare buffers only have the potential to draw conclusions about 

the relative size of buffers and whether they produce different built environment 

measures and different modelling results. They cannot state whether a certain buffer 

is better or worse at representing participants’ mobility than any other buffer. 
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However, it is more important to know which delineations best represent a 

participant’s exposure to the environment than it is to know which delineations 

produce the strongest associations. This chapter has presented new evidence on how 

well road network buffers represent where people travel and spend time, and has 

expanded the scope of this question by exploring the concepts of commission and 

omission errors.  

The results showed that  while the smallest buffer – the 400 m road network buffer - 

minimised the error in identifying the spatial extent of the places children travel, 

none of the road network buffers adequately capture the spatial extent of the places 

where children spend the most time.  

This chapter has also identified six limitations in the use of road network buffers. 

While these limitations were identified based on data from a study of children, they 

are likely to be relevant to other populations. To date, most of these limitations have 

not been acknowledged in the literature. For those that have been identified 

previously, little attention has been given to evaluating their impact or addressing 

them in the context of improving road network buffers.  

Explicitly acknowledging the limitations of road network buffers has a number of 

benefits. First, it allows researchers to understand and interpret results of studies that 

use road network buffers more accurately. For instance, an understanding of one of 

these limitations helped explain the unusual result discussed in this chapter, where 

participants recorded GPS points at home but not in their road network buffer. 

Second, it provides a basis for improving road network buffers. Finally, we can 
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assess different delineation methods in terms of how well they address the road 

network buffer limitations.  
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Chapter 7. How well do activity space 
measures represent where children spend 
time? 

7.1  Introduction 

The previous chapter concluded that, for the children in the KITC study, road 

network buffers do not represent their exposure to the environment accurately. In the 

KITC dataset, on average, more than half of the spatial extent visited by children, 

and more than half of the time, captured by the seven-day GPS data were not 

captured by road network buffers. 

However, road network buffers are not the only method of conceptualising and 

delineating neighbourhood boundaries. Activity spaces - spaces that people visit, 

travel through, and see in the course of their daily activities (Schönfelder and 

Axhausen 2003, Vallee et al. 2010) - were reviewed in Chapter 2. Briefly, there are 

number of common methods of calculating activity space: SDE, convex hull, and 

daily path areas. A few health researchers are developing new activity space 

delineation methods such as localised SDEs (Boruff et al. 2012), kernel density 

based methods (Thierry, Chaix and Kestens 2013), and oriented ellipses (Madsen et 

al. 2014). 

All methods of delineating activity space at least partially address three of the 

limitations of road network buffers. First, by definition, activity spaces extend 

beyond the residential address, unlike road network buffers calculated solely around 

residential addresses. Second, delineations of activity spaces are centred on activity 
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locations/destinations, not roads. Third, since activity spaces are based on where 

people visit and spend time, they implicitly address the mismatch between 

anisotropic movement and activity and isotropic road network buffers.  For these 

reasons, activity space methods offer a promising alternative to road network buffers.  

This chapter explores how well a range of methods of operationalising activity 

spaces perform in terms of representing where children spend time. It builds on 

existing activity space research by using KITC GPS data to create ten different 

representations of activity space, using a variety of methods. The activity space 

methods applied here include both common methods - standard deviation ellipse 

(SDE), convex hull, and daily path areas – and methods taken from the ecological 

literature – temporal localised convex hulls, and kernel density estimation.   

Using the same approach as the previous chapter, a range of activity spaces are 

calculated. The different activity space delineation methods are then are compared to 

GPS data by calculating the overlap between activity spaces and GPS-based daily 

path areas, and by calculating the proportion of GPS data recorded within the activity 

spaces. The results of these analyses will provide insight into how well different 

activity spaces represent where children spent time. 

7.2  Methods 

7.2.1  Dataset 

The subset GPS dataset – which contained 85 participants - was used for this 

analysis. See Chapter 5 for a description of how this dataset was created. As with the 

previous chapter, all analyses were undertaken with non-vehicle GPS data only. See 

Chapter 4 for a description of non-vehicle GPS data extraction. 
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7.2.2  Creation of activity spaces 

Five different methods were used to create a total of ten different activity spaces 

using non-vehicle GPS points (Table 21). 

 Table 21. Activity spaces methods. 

Activity space method Activity space (abbreviation) 

Minimum convex hull Convex hull (CH) 

Standard deviation ellipse 1-Standard deviation ellipse (SDE) 

Daily path area Daily path area (DPA) 

Temporal localised convex hull 50% Temporal localised convex hull (TLCH50) 

 75% Temporal localised convex hull (TLCH75) 

 95% Temporal localised convex hull (TLCH95) 

Kernel density estimation Kernel density estimation – selecting areas/cells where a 

participant spent approximately 5 hours or more over the 

data collection period (KDE05) 

 Kernel density estimation – selecting areas/cells where a 

participant spent approximately 7 hours or more over the 

data collection period (KDE07) 

 Kernel density estimation – selecting areas/cells where a 

participant spent approximately 9 hours or more over the 

data collection period (KDE09) 

 Kernel density estimation – selecting areas/cells where a 

participant spent approximately 12 hours or more over the 

data collection period (KDE12) 

 

The minimum convex hull (CH) is the smallest convex polygon that encloses a set of 

points. Convex hulls were calculated for each participant using the ‘Minimum 

Bounding Geometry’ function in ArcGIS. The 1-standard deviation ellipse (SDE) is 

an ellipse that captures approximately two-thirds of the points and is centred on the 
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mean centre. The 1-SDE was calculated for each participant using the ‘Directional 

Distribution function in ArcGIS. The daily path area (DPA) was calculated using 

processes documented in Chapter 6. 

In contrast to a convex hull - which is created around all points – a temporal 

localised convex hull is created around each point and it’s n nearest neighbours in 

time and space (Getz et al. 2007).  Temporal localised convex hulls were calculated 

using the ‘tlocoh’ package for R (Lyons, Turner and Getz 2013). T-LoCoH is a home 

range construction algorithm that adds a temporal dimension to the concept of 

localised convex hulls. GPS data were imported into R.  The time-space scaling 

parameter (s) was set to 0.00001. This value was chosen to balance the time-space 

units and identify daily behaviour patterns, and is the recommended method in the T-

LoCoH user manual (Lyons 2014).  

An adaptive hull method was chosen due to the sparse nature of the GPS data. In this 

approach, neighbours are identified by their cumulative distance from their parent 

point. Neighbourhood identification occurs when the value of a is reached. In this 

analysis a was set to 500, which is the time-space distance between all points in the 

hull (i.e., neighbourhood boundary). This value was chosen by visually assessing the 

results of multiple values of a. Temporal localised convex hulls were created using 

the parameters above. 50%, 75%, and 95% isopleths were created for each hull and 

exported into GIS format. The three different temporal localised convex hull 

delineations were named TLCH50, TLCH75, and TLCH95, respectively. 

The activity spaces based on kernel density estimates (KDE) were created in ArcGIS 

using the kernel density function. The cell-size was set to 5 m and the kernel was set 
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to 50 m to align with the daily path area buffer distance. Four KDE-based activity 

spaces were created by selecting cells that met the following criteria and then 

converting those cells to polygons: 

 KDE05 – only those cells with densities greater than or equal to 0.24 GPS 

points/m2 are included in the activity space. This density approximates a total 

of 5 hours or more of time spent in these cells over the data collection period. 

Since a GPS point is recorded every 30 s, 600 GPS points comprise 5 hours 

of time. The area of interest is 50 m x 50 m, which is 2,500 m2. Therefore, the 

cut-off density is 600 GPS points divided by 2,500 m2 = 0.24 GPS points/m2. 

 KDE07 – only those cells with densities greater than or equal to 0.336 GPS 

points/m2. This density approximates a total of 7 hours or more of time spent 

in these cells over the data collection period. 

 KDE09 – only those cells with densities greater than or equal to 0.432 GPS 

points/m2. This density approximates a total of 9 hours or more of time spent 

in these cells over the data collection period. 

 KDE12 – only those cells with densities greater than or equal to 0.576 GPS 

points/m2. This density approximates a total of 12 hours or more of time 

spent in these cells over the data collection period. 

Figure 20 is a map of a single participant’s daily path area overlaid with three road 

network buffers (400, 800, 1600 m) and the ten activity spaces calculated in this 

analysis. Figure 21 shows the same map for a different participant. The participants 

in the two figures were chosen to illustrate diverse travel patterns and activity spaces, 

with the Figure 20 participant having more constrained travel, and consequently 

smaller activity spaces than the participant in Figure 21 (note the different scales on 

the maps). 
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Figure 20. Example buffers and activity spaces for a single participant compared to 
the 50 m GPS buffer daily path area: a) road network buffers at 400, 800, 1600 m, b) 
convex hull based activity spaces (CH, TLCH50, TLCH75, TCH95), and c) activity 
spaces (SDE, KDE12, KDE09, KDE07, KDE05) 
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Figure 21. Example buffers and activity spaces for a single participant compared to 
the 50 m GPS daily path area: a) road network buffers at 400, 800, 1600 m, b) 
convex hull based activity spaces (CH, TLCH50, TLCH75, TCH95), and c) activity 
spaces (SDE, KDE12, KDE09, KDE07, KDE05) 
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7.2.3  Comparing GPS data and activity spaces 

The following comparison measures were calculated to compare the activity space 

delineations: overlap area, commission error area, omission error area, percentage of 

the activity space overlapped by the daily path area, percentage of the daily path area 

overlapped by the activity space, total error area, total hours GPS data captured by 

the activity space, and percentage of GPS data captured by the activity space. The 

methods used to calculate these measures were described in Chapter 6. 

The following composite measures were also calculated, to enable comparison with 

the 400 m road network buffer (which was shown to be the best road network buffer 

in Chapter 6): additional total error area, additional total overlap area, and the 

difference between the additional overlap and additional error. For example, the 

additional total error area for the convex hull activity space is the total error of the 

convex hull minus the total error of the 400 m road network buffer. Similarly, the 

additional total overlap area is the total overlap area of the convex hull minus the 

total overlap area of the 400 m road network buffer. The difference between the 

additional overlap and additional error is the additional total overlap area minus the 

additional total error area. A positive difference indicates that the activity space in 

question adds more overlap than it does error, and, therefore, improves on the 400 m 

road network buffer. 

7.2.4  Statistical analysis 

Paired bivariate analyses using non-parametric Wilcoxon tests (α = 5%) compared 

the daily path areas with each of the different activity spaces. Statistical analyses 

were conducted in R (R Development Core Team 2008). 
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7.3  Results 

Table 22 presents descriptive statistics for the areas of the ten different delineations 

of activity space. In this analysis, the GPS daily paths represent the places children 

went during the seven-day GPS data collection, whereas the other activity space 

delineations are alternate representations of children’s exposure to the environment. 

The daily path was significantly larger, on average, than the temporal localised 

convex hulls and the kernel density activity spaces. Conversely, the daily path was 

significantly smaller, on average, than both the convex hull and standard deviation 

ellipse. As previously illustrated in Figure 20 and Figure 21, the activity spaces 

delineated by convex hulls and standard deviation ellipses are orders of magnitude 

larger than not only the other activity spaces but also the road network buffers from 

the previous chapter (range 0.14 – 3.85 km2; Table 17). 

Table 22. Descriptive statistics of the areas (km2) of GPS daily path areas and 
different activity spaces. Subset GPS dataset (n = 85). 

 Mean Median SD 

GPS daily path 0.630 0.510 0.410 
CH 49.130 16.250 106.960 
SDE 23.160 3.170 77.440 
TLCH50 0.005 0.004 0.004 
TLCH75 0.020 0.010 0.020 
TLCH95 0.150 0.090 0.180 
KDE05 0.110 0.110 0.040 
KDE07 0.060 0.060 0.020 
KDE09 0.030 0.030 0.010 
KDE12 0.020 0.020 0.000 
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Table 23 presents results from the overlap analyses, comparing each of the activity 

space measures with the GPS daily path area. All activity spaces were calculated 

using GPS data and many of the methods are based on inclusion of a certain 

percentage of GPS points. For instance, the convex hull necessarily includes all GPS 

points. Therefore, all results should be interpreted with this in mind.  

While the omission error is practically zero for the convex hull, it also has the 

highest commission error. Contrast this to the KDE-based activity spaces which have 

low errors of omission and commission. The convex hull also has a very low 

percentage activity space overlap. In other words, on average, only 7.6% of the 

convex hull is covered by the daily path. In comparison, most of the temporal 

localised convex hulls and the KDE activity spaces are almost completely covered by 

the daily path (percentage activity space overlap). 

Table 24 presents composite measures of overlap between the activity spaces and the 

daily path area.  The table also presents comparisons with the 400 m road network 

buffer. For instance, the convex hull activity spaces added on average an additional 

47.95 km2 of total error area and an additional 0.5 km2 of overlap area than the 400 

m road network buffer. The column ‘Additional overlap – additional error’ is the 

additional total error subtracted from the additional overlap.  Positive values indicate 

that a particular activity space performed better than the 400 m road network buffer, 

as it added more overlap than error. 
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Based on these composite measures, the following activity spaces performed better 

than the 400 m road network buffer in terms of increasing overlap and minimising 

errors of commission and omission: TLCH95, KDE05, LDE07, KDE09, KDE12. 

Table 25 presents the hours and percentage of non-vehicle GPS data recorded within 

the activity spaces. Results for the convex hull activity space are not listed in the 

table since by definition the convex hull includes 100% of GPS points. Aside from 

the convex hull, the activity space measures that capture the most GPS data are the 

TLCH95 and the KDE05 activity space delineations. This is not surprising since the 

temporal local convex hull and KDE activity space boundaries were delineated based 

on the hours/percentage of GPS points included in the activity space. All activity 

space delineations captured a greater percentage of GPS data than the road network 

buffers analysed in Chapter 6 (mean % GPS points captured by road network buffers 

ranged from 34.8 – 48.4 %; Table 17). Again, this is not surprising since the activity 

space delineations were created using the GPS data and the road network buffers 

were created independent of the GPS data. 

7.4  Discussion and conclusion 

In addition to the daily path area previously calculated in Chapter 6, this chapter 

presented nine additional delineations of activity spaces. In a comparison with the 

400 m road network buffer, many of the activity spaces did a better job of 

maximising overlap with the daily path and minimising error areas. The KDE05 

activity space performed the best as it maximised additional overlap in comparison to 

the additional error added. 
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It is worth noting that two commonly used activity space methods – the convex hull 

and SDE – were not as effective at representing children’s mobility and minimising 

errors of commission as the other methods presented here. Therefore, if researchers 

intend to use activity spaces as proxies of exposure to the environment, they should 

consider using more sophisticated delineation methods, such as the spatio-temporal 

KDE approaches developed in Geographic Information Science (e.g., Demšar and 

Virrantaus 2010, Nakaya and Yano 2010). Moreover, there may be potential to 

borrow from ecology and draw on advanced ‘home range’ delineation methods. For 

instance, Scull et al. (2012) have used local convex hulls to estimate the home range 

of Ugandan mountain gorilla, Stein et al. (2011) have used kernel density estimates 

to estimate the home range of leopards in Namibia, and Dürr and Ward (2014) have 

used temporal localised convex hulls and biased random bridge methods to delineate 

the home ranges of domestic dogs in Australia.   

Unlike the road network buffers, all these activity spaces were calculated using GPS 

data. This means that the activity space delineation methods presented here are only 

possible if GPS or similar data – such as geocoded travel survey, travel diary data, or 

mobile phone records – are available. The collection of GPS data is expensive and 

not feasible for many research studies. Therefore, even though many of the activity 

spaces we examined performed better than the best road network buffer, there is still 

a need for better neighbourhood delineations that do not require GPS data. Therefore, 

the next chapter will explore how road network buffers can be improved, so as to 

better represent exposure to the environment. 
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Chapter 8. Home, school and in between: 
enhancing road network buffer to better 
represent neighbourhoods and exposure 

8.1  Introduction 

This dissertation has already established that road network buffers tend to be a better 

choice than administrative and Euclidean buffers when delineating boundaries that 

represent exposure to the built environment (Chapter 3). Therefore, Chapter 6 

investigated the degree to which road network buffers - at a range of scales - 

captured children’s exposure to the environment. While the 400 m road network 

buffer was identified as the buffer that minimised errors of omission and 

commission, none of the road network buffers were good representations of actual 

exposure to the environment. In the KITC dataset, on average, more than half of the 

spatial extent visited by children and more than half of the time captured by the 

seven-day GPS data was not captured by road network buffers.  

Consequently, Chapter 7 moved beyond road network buffers and implemented a 

range of activity space delineations, concluding that the KDE05 delineation best 

represented children’s mobility while minimising errors of commission. Chapter 7 

also found that many activity space representations performed better than the 400 m 

road network buffer.  

These analyses would seem to suggest that activity spaces are the ideal type of 

delineation method for researchers to use when representing exposure. However, the 

activity space representations implemented in the previous chapter all require 
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detailed location data (e.g., GPS, travel survey), but this kind of data is not always 

available, and can be too expensive and/or intrusive to collect in practice. Therefore, 

there is a need to develop better delineations of exposure to the environment that do 

not require detailed location data. 

 In theory, it ought to be possible to use knowledge about key locations in people’s 

lives to create better delineations. This chapter explores this idea by enhancing and 

modifying the standard road network buffer to: a) better assess potential access and 

b) better estimate exposure to the built environment. First, building on the limitations 

of road network buffers identified in Chapter 6, five methods of enhancing the 

standard network buffer to better capture exposure to the environment are proposed. 

Next, one of these methods is operationalised using the KITC data and compared to 

the GPS data.  Finally, the results are presented and discussed. 

8.2  Potential enhancements to the standard road network buffers 

The purpose of these enhancements is to create road network buffers that better 

represent the neighbourhood and exposure to the environment. Five potential 

methods of improving road network buffers were identified, and are listed below.  

1. Inclusion of common destinations. 

Create a road network buffer around home and a road network buffer around 

other frequently visited locations, such as the second places of work/school 

and ‘third place’ destinations (Carroll et al, 2015). These buffers can then be 

combined into a single buffer. 
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2. Inclusion of transitory spaces (e.g., pedestrian paths). 

Use a network of transitory third places such as roads and pedestrian paths to 

create an enhanced buffer. 

3. Inclusion of private and public spaces along the road network. 

Supplement the road network buffer, either with polygons of land parcels of 

frequently visited locations, or with all land parcels that intersect the road 

network buffer. 

4. Varying the orientation of the buffer. 

Orient the buffer towards frequently visited locations, such as work and 

school.  

5. Varying the shape (width and length) of the buffer. 

Vary the shape of the buffer based on additional information, such as road 

infrastructure (e.g., traffic lights, number of lanes), traffic speed/volume, 

pedestrian infrastructure (e.g., footpaths, pedestrian crossings), and 

topography/slope.  

The development, implementation, and testing of all five potential enhancements is 

beyond the scope of this dissertation. Therefore, this dissertation will concentrate on 

only the first enhancement, the inclusion of common locations in addition to the 

home. As before, the enhanced road network buffers will be assessed by comparing 

them with GPS daily path areas, representing the places children visited during the 

seven-day GPS data collection. 
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8.3  Methods 

8.3.1  Data 

Data collection and GPS data processing were described earlier, in Chapters 4 and 5. 

All analyses in this section were conducted for the GPS dataset with inclusion 

criteria applied (n= 85). The remainder of this section describes the methods used to 

create enhanced road network buffers, create polygon representations of the GPS 

data, and compare the road network buffers with the GPS data. 

8.3.2  Buffer creation 

The first step required to create the enhanced road network buffers was to identify 

destinations to create additional road network buffers around. Not surprisingly, travel 

diary data indicated that, after home, the most common destination for the children in 

the KITC study was school, with an average of just under five trips during the seven 

day data collection period (Carroll et al. 2015). The next most common destination 

visited by children was ‘shops’, with on average 2.7 – 4.7 trips - for inner city and 

suburban children, respectively - undertaken in the seven-day data collection period 

(Carroll et al. 2015).  

‘School’ was included as another destination to create road network buffers around. 

While shops were another frequently visited destination that could be included, the 

decision was made to restrict the enhanced buffers to only one additional destination 

so as to isolate the effects of an additional destination.  

Next, road network buffers at a range of scales were created around both home and 

school. Scales of 400, 600, and 800 m were chosen, since the work carried out in 

Chapter 6 had demonstrated these smaller buffers minimised the total error area and 
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maximised the sum of the percentage overlap. Six versions of the enhanced road 

network buffers, representing a range of scale combinations were calculated (Table 

26). Since children spend more time at home than at school, the size of the school 

road network buffer was always less than or equal to the size of the home road 

network buffer. 

Table 26. Enhanced road network buffer scale combinations. 

Scale combination Home scale (m) School scale (m) 

1 400 400 

2 600 400 

3 600 600 

4 800 400 

5 800 600 

6 800 800 

 

Access to schools is more realistically modelled using school entrance locations 

(Harrison et al. 2014) than a single centroid. Therefore, school entrances were 

identified on Google Maps and digitised. Road network buffers were calculated 

around each school entrance. Once this was done, the home and school buffers were 

merged for each participant (e.g., Figure 22.) 
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Figure 22. Example enhanced road network buffer. 

 

8.3.3  Comparing the GPS data and enhanced road network buffers 

The enhanced road network buffers were compared with GPS daily path areas. The 

seven measures of geographical overlap described in Chapter 6 were calculated for 

each buffer. Briefly, these measures were: area of overlap; area of commission error; 

area of omission error; percentage of road network buffer overlapped by daily path 

area; percentage of daily path area overlapped by road network buffer; and the total 

number and total percentage of GPS points within the road network buffers.  

The three composite measures employed in Chapter 7 were also calculated: 

additional total error area, additional total overlap area, and the difference between 

the additional overlap and the additional error. 
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8.3.4  Statistical analyses 

Descriptive statistics were calculated for the enhanced road network buffers. Paired 

bivariate analyses using non-parametric Wilcoxon tests (α = 5%) compared the daily 

path areas with each of the enhanced road network buffers. Statistical analyses were 

conducted in R (R Development Core Team 2008). 

8.4  Results 

Table 27 presents results of the overlap analysis comparing daily path areas with the 

enhanced road network buffers at a range of scales. For comparison purposes, results 

from the 400, 600, and 800 m road network buffers (from Chapter 6) are included in 

the first three rows. 

The results shown in Table 27 are consistent with what was expected. Namely, 

adding in road network boundaries around schools increased the overlap, increased 

the commission error and decreased the omission error. As with the results presented 

in Chapter 6, the magnitude of the commission error was much larger than the 

magnitude of the omission error, which means that with every increase in scale the 

total error also increased. 

Table 28 presents results from the composite measures of buffer overlap for the 

standard road network buffers created around residential addresses (Chapter 6), the 

activity space delineations (Chapter 7), and the enhanced road network buffers 

created around residential addresses and schools. The additional overlap and total 

error areas given are in comparison with the standard 400 m road network buffer. For 

example, when moving from a standard 400 m road network buffer to a standard 600 

m road network buffer an additional 0.05 km2 of overlap area was added and an 
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additional 0.09 km2 of error area was added on average. For the 600 m road network 

buffer, the ratio of the additional overlap area to additional error area was 0.56.   

The bottom section of Table 28 presents composite measures for the enhanced road 

network buffers created around residential addresses and schools. Results suggest 

that, the enhanced road network buffer created at a 400 m distance around both home 

and school improves on the standard 400 m road network buffer since the difference 

between additional overlap and additional error is positive.  

The results also demonstrate that, in general, enhancing the road network buffers by 

adding in the school location provided a better representation of exposure than 

simply increasing the scale of the standard road network buffers. For instance, 

moving from a standard 400 m road network buffer to a standard 1000 m road 

network buffer yielded a difference of -0.44 (i.e., the difference between additional 

overlap area and additional error area). In contrast, moving from a standard 400 m 

road network buffer to an enhanced road network buffer (600 m around home and 

400 m around school) yielded a greater difference -0.05. 

While all enhanced road network buffers were an improvement on the convex hull 

activity space, they did not perform as well as the majority of the activity space 

delineations. However, this was expected since the activity space delineations were 

created using the same GPS data that they were subsequently compared to (i.e., daily 

path area). 
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8.5  Discussion 

Five enhancements to road network buffers, which have the potential to improve the 

representation of the environment, have been proposed. This chapter has 

implemented the first proposed enhancement (combined home-school road network 

buffers) at a number of different scales. The degree to which the enhanced buffers 

represented exposure was assessed by comparing the buffers with GPS data.  While a 

small number of researchers have begun incorporating buffers around non-residential 

destinations, this is the first research to test the extent to which the representation of 

both the spatial extent and time spent in the buffers is improved. 

Results showed that, on average, the enhanced road network buffer (400 m around 

home and 400 m around school) was an improvement on the standard 400 m road 

network buffer. Furthermore, results suggested that enhancing road network buffers 

by including buffers around school produced better representations of children’s 

exposure to the environment than simply increasing the scale of road network buffers 

centred around home.  

The remaining proposed enhancements to road network buffers were not tested in 

this dissertation due to scope limitations. However, the potential of each of these four 

enhancements will now briefly be discussed.  

The second proposed enhancement - inclusion of pedestrian paths - would allow for 

better representation of true mobility. The KITC data demonstrated that children 

were travelling along pathways not included in the road dataset. Therefore, 

pedestrian paths may be particularly important for representing children’s potential 

and actual exposure to the environment. However, there are two key challenges when 
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developing pedestrian enhanced network buffers. The first of these is obtaining 

pedestrian path data (Kang et al. 2015, Giles-Corti et al. 2014), and the second 

concerns the methodological challenges associated with representing footpaths in a 

GIS network (Tal and Handy 2012, Kang et al. 2015). Research is underway to 

address these issues (Kang et al. 2015, Senlet and Elgammal 2012, Smith et al. 

2013), but it may be some time before pedestrian path data are widely available and 

standard methods, enabling researchers to easily use these data in the creation of 

pedestrian network buffers, are established. 

The third proposed enhancement is the inclusion of private and public spaces along 

the road network. This enhancement – addresses the limitation that road network 

buffers are necessarily centred on roads  One method of implementing this 

enhancement would be to merge all land parcels that intersect the road network 

buffer with the road network buffer. However, depending on the size of the dataset 

and the scale of the buffers, this process could be significantly more computationally 

intensive than calculating standard road network buffers. An alternative is to merge 

only the land parcels of key destinations such as home, school, and work. Based on 

an exploration of the KITC dataset, even including just the home and school parcels 

could substantially improve the amount of actual activity captured by road network 

buffers. 

The fourth proposed enhancement – varying the orientation of the buffer – is perhaps 

more challenging to implement than the other proposed enhancements. Standard road 

network buffers can be considered anisotropic (i.e., oriented; Crawford et al. 2014), 

since they are determined by the presence/absence of a road network and - in most 
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cases - roads do not radiate equally in all directions. However, road network buffers 

can also be considered isotropic, in the sense that - in most implementations - every 

road and every direction has equal importance. In other words, road network buffers 

spread out equally in all directions where roads exist.  

Varying the orientation of a road network buffer – that is, explicitly weighting the 

buffer towards a certain direction – is a little more difficult to implement in practice. 

Standard GIS software does not provide oriented road network buffer functionality. 

A number of researchers have experimented with oriented buffers by buffering the 

shortest route between two points to create a version of oriented road network buffers 

(Boruff et al. 2012, Madsen et al. 2014, Harrison et al. 2014). While this approach 

automatically orients the buffer towards different destinations, there are a couple of 

limitations. First, this method focuses on the journey/travel component of activity. 

Second, relying only on the shortest route excludes all other possible routes. 

Preliminary research has demonstrated that the shortest routes as measured by GIS 

do not match actual routes as indicated by GPS data for children’s journeys to school 

(Harrison et al. 2014, Duncan and Mummery 2007, Buliung et al. 2013), adult’s 

commute routes (Badland et al. 2010, Dalton et al. 2015), and cycling routes (Krenn 

et al. 2014). 

Madsen et al. (2014)  implemented an oriented ellipse based on home and CBD 

locations. However, this ellipse suffers from the limitation of convex hulls and SDEs, 

namely that they include large areas that participants do not visit. Building on 

Madsen et al.’s oriented ellipses (Madsen et al. 2014), and overcoming the problem 

of buffers based on shortest routes, the following process to create oriented road 
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network buffers is proposed.  First, road network buffers are created around 

destinations of interest (e.g., home and school) that have been identified as relevant 

to each participant (Figure 23). This is the same step undertaken for the first 

proposed enhancement implemented in this chapter. 

 

 

Figure 23. Implementing an oriented road network buffer step 1/3. 

 

Next, a line is created between the two destinations (Figure 24). This line represents 

the orientation of the buffer.  
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Figure 24. Implementing an oriented road network buffer step 2/3. 

 

Finally, the road network buffers within a certain distance of the linking line (200 m 

in this example) are selected as the oriented road network buffers (Figure 25). 
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Figure 25. Implementing an oriented road network buffer part 3/3. 

 

The fifth, and final, proposed enhancement is to vary the size and shape of the road 

network buffer based on characteristics of the environment that might influence 

movement (i.e., costs and barriers in GIS terminology). The concept behind this 

enhancement is that some routes are arguably faster, more pleasant and easier to 

travel along due to various route characteristics such as speed limit, pedestrian 

crossings, slope, safety from crime, and so on. In most cases incorporating these 
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route characteristics would require a shift from road network buffers based on 

distance to those based on different costs (e.g., travel time, aesthetic costs).  

Adding costs and barriers to a road network buffer is a relatively straightforward task 

to implement in ArcGIS. The challenge in this proposed enhancement lies in 

sourcing data that describes the additional route characteristics. Perhaps this is the 

reason that so few researchers have created buffers or routes enhanced by route 

characteristics. Of those that have incorporated costs and barriers, Bejleri et al. 

(2011) took a vector approach by including costs and barriers in the network, 

whereas others have used a raster cost-surface approach to create more refined 

measures of accessibility (Ray and Ebener 2008, Boruff et al. 2012). 

8.6  Conclusion 

As demonstrated in Chapter 6, road network buffers captured less than half of 

children’s activity and mobility. This means that using road network buffers to 

represent exposure to the environment is likely to exclude much of the environment 

that participants are actually exposed to. While road network buffers do better at 

representing potential exposure to the environment than delineation methods such as 

Euclidean buffers or administrative units, there are ways that road network buffers 

could be enhanced.  

The five potential approaches to enhancing/modifying road network buffers 

presented in this chapter could provide researchers with a better representation of 

both potential and actual exposure. This was demonstrated by implementing one of 

the suggested enhancements – the addition of school-based buffers – and comparing 
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its performance with standard road network buffers. In general, the enhanced buffer 

did a better job of minimising errors and maximising GPS points captured.  

Although space considerations prevented a full implementation of the other proposed 

enhancements, a brief discussion of how these could be carried out was provided. As 

many of these enhancements can be implemented simply with only a little additional 

information, future work should test a range of these enhancements. 
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Chapter 9. Discussion and conclusions 

9.1  Summary of findings 

This dissertation has addressed the challenge of developing a more precise 

delineation of neighbourhood and exposure to the environment by systematically 

comparing a number of GIS-based delineation methods at a range of scales. 

Chapter 2 reviewed delineation methods in common use and compared these 

methods. It demonstrated that there are numerous existing delineation methods, and 

the choice of method and scale can make a difference to research results. The review 

of the literature identified three gaps that this dissertation subsequently addressed. 

The first of these gaps was the lack of clarity around which delineation methods and 

scales are most appropriate to use in specific circumstances. The second was the lack 

of evidence on how well different delineation methods capture exposure to the 

environment. The third, and final, gap was the need for delineation methods that 

better capture exposure, yet are not reliant on detailed mobility data such as GPS 

data.  

Chapter 3 compared the results of models of the associations between the built 

environment and physical activity. The built environment was measured within a 

number of different residential neighbourhoods using data from the URBAN study. 

Results echoed the existing literature by demonstrating that choice of neighbourhood 

delineation method, scale, built environment measure, and physical activity measure 

all determined whether a statistically significant association was found between the 

built environment and physical activity. The choice of buffering algorithm only made 
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a meaningful difference for one built environment measure; the area in public open 

space. This is likely due to public open space being represented as a polygon. While 

it was difficult to identify a single optimal neighbourhood delineation, results 

suggested that the neighbourhood built environment was most consistently associated 

with adult’s physical activity when using the 800 m road network buffer. 

The remainder of the dissertation turned to focus on how well different delineation 

methods captured where people spend time.  Analyses in these later sections were 

undertaken using data from the KITC study. Chapter 4 described KITC study 

methods. Chapter 5 described the GPS inclusion criteria used to create the final GPS 

dataset which was used as a proxy for exposure. 

Chapter 6 explored the degree to which road network buffers represented where 

children spent time by comparing them with seven-day GPS data. Analyses revealed 

that residential road network buffers were very poor representations of where 

children spent time. While this finding was not unexpected, the amount of activity 

captured by road network buffers was surprisingly low, with less than half of 

children’s seven-day activity captured by road network buffers at a range of scales.  

Chapter 7 created a range of activity space delineations and compared these with the 

GPS data. Results demonstrated that activity space measures were considerably 

better representations of where children spent time than road network buffers. This 

was not surprising, since activity space delineations were based on the same GPS 

data they were compared with. Despite this, the effectiveness of the different activity 

space delineation methods was varied.  
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Notably, the measures of activity space commonly used in public health research - 

the convex hull and standard deviation ellipse – were poor representations of 

exposure. While they captured a large percentage of activity, they also included large 

areas that participants never visited. Therefore, these activity space measures are 

likely to produce homogenous built environment measures that could make it 

difficult to detect associations between the built environment and health. 

Furthermore, built environment measures calculated within the convex hull and 

standard deviation ellipse activity space delineations did not represent the actual 

environment that participants were exposed to. Researchers should consider using 

more sophisticated activity space delineation methods; such as the daily path area, 

temporal local convex hulls, and those based on kernel density estimation, which all 

provided greater precision in exposure estimation. 

Compared with road network buffers, activity space delineation methods better 

represented exposure to the environment. However, activity space delineation 

methods require detailed participant location data such as GPS, cellphone, or travel 

survey data. These data are not always available to researchers as they are expensive 

and intrusive to collect.  

Therefore, Chapter 8 explored improved delineation methods that do not require 

detailed location data. Five enhancements to the standard road network buffer were 

proposed. One of these - an enhancement that includes road network buffers around 

daily destinations other than home - was compared to seven-day GPS data. Results 

suggested that adding road network buffers around schools may better capture 

children’s exposure than simply increasing the scale of road network buffers around 
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home. Therefore, enhanced road network buffers are a promising delineation method 

that improves representation of exposure to the environment. 

A number of issues raised in this dissertation are worthy of further discussion. Each 

issue is discussed below. 

9.2  Considerations for future research 

This dissertation raised a number of issues and considerations for future research. 

These are discussed below. 

9.2.1 The challenge of identifying an optimal delineation method 

This dissertation has offered a series of analyses comparing different delineation 

methods. The first set of analyses, presented in Chapter 3, identified appropriate 

delineation methods and scales based on the results of statistical models of 

associations between the built environment and physical activity. This approach was 

used because it was the most common method of identifying ‘optimal’ 

neighbourhood delineations in the literature. While the results of these comparisons 

are informative, selecting neighbourhood delineations that produce significant results 

or the strongest effect sizes in the expected direction may not be the most suitable 

way of selecting optimal or appropriate delineation methods (Spielman, Yoo and 

Linkletter 2013).  

A superior approach may be to select the delineation methods that better capture 

actual or potential exposure. In other words, instead of choosing methods that 

produce models with stronger associations between the environment and health, we 

should consider choosing methods that better capture exposure. Chapters 6, 7, and 8 

of this dissertation took this approach by comparing delineation methods with GPS-



 

189 

 

based exposure data. Further research of a similar nature would improve our 

understanding of how well different delineation methods and scales represent 

exposure.  

Regardless of the way delineation methods are compared, a theoretical basis for 

determining how context is delineated is still important. The lack of theoretical and 

conceptual understanding about which contexts are relevant to health related 

behaviours and outcomes (Kwan 2012a) can make it difficult to identify a single 

appropriate context based on theory alone. Therefore, a range of techniques and 

approaches are likely necessary to allow us to improve delineation of context. 

9.2.2  Neighbourhood vs Exposure; Potential vs Actual 

Researchers have regularly called for more precise assessment of context by moving 

beyond residential neighbourhood boundaries towards methods that better capture 

exposure to the broader environment. In answering this call it is also important to 

distinguish between actual and potential exposure; a distinction that is rarely 

mentioned in the literature. As Madsen et al. (2014) note, when measuring and 

delineating the environment, researchers need to question whether they want to 

measure actual or potential exposure.  

It is important to have clarity regarding this distinction. While current research has 

predominantly measured potential exposure around the residential neighbourhood, 

the use of the terms ‘neighbourhood’ and ‘exposure’ is frequently unclear and the 

residential neighbourhood is often seemingly used as a proxy for actual exposure to 

the broader environment. However, as this dissertation has shown, the difference 

between actual (e.g., GPS data) and potential (e.g., road network buffers) exposure 
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can be large. The lack of precision in measurement and the lack of clarity in 

reporting results are unlikely to further our understanding of relationships between 

the environment and health. 

Despite the lack of precision in measurement, researchers still consistently find 

associations between the built environment and physical activity. Since we currently 

lack accurate measures of exposure to the environment, we  may be underestimating 

the relationship between the built environment and health. Improving the precision of 

our delineation and measurement will enable us to better understand relationships 

between environment and health. 

Future research on delineation of context may benefit from explicit measurement of 

both potential and actual exposure, especially given: 1) our sparse knowledge about 

what constitutes appropriate contexts; 2) the potentially large differences between 

actual and potential exposure and; 3) issues such as selective daily mobility bias 

(Chaix et al. 2013). Having measures of built environment characteristics of both 

potential and actual exposure could help us better understand relationships between 

environment and health. 

9.2.3  Measuring ‘true exposure’ 

While it may be desirable to identify delineation methods that best represent 

exposure (actual or potential) – as opposed to selecting methods that lead to 

‘optimal’ model results, determining what constitutes ‘true exposure’ is a challenge 

in itself.   

In this dissertation, seven-day GPS data were used as a proxy for actual exposure. 

The underlying assumption here is that these seven days of mobility data are an 
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adequate representation of a child’s life. Yet this is unlikely to be the case. While the 

minimum data collection duration needed to collect data that represents the true 

exposure is not known, there is some research to suggest that a minimum of two 

weeks is necessary to capture variability in travel behaviour (Schlick and Axhausen 

2003), with Senbil and Kitamura (2009) noting that a duration longer than two weeks 

is needed to capture variability in less frequent recreational activities. Furthermore, 

mobility patterns can be considered across a number of temporal scales (e.g., hourly, 

daily, weekly, seasonally, yearly, and over the life course; Kestens et al. 2010) and, 

consequently, the minimum duration of data needed to capture these patterns will 

also vary.   

Missing GPS data is a related issue. Due to large amounts of missing data, the seven-

day GPS dataset did not adequately represent the entire seven-day data collection 

period.  The issue of missing data may be partially addressed by improved GPS 

devices and the use of tracking technologies that do not require satellite visibility 

(e.g., RFID). However, for now, the issue of missing data is something that 

researchers will have to contend with. 

Without tracking everyone all the time, we may never really know what constitutes 

true exposure. Like the mythical ‘optimal delineation method’, ‘true exposure’ may 

not be able to be captured.  In the absence of measuring the ‘true exposure’, a 

practical solution is to ask participants to report usual exposure. Increasingly there 

are a tools that make this task easier (e.g., http://maptionnaire.com/, VERITAS; 

Chaix et al. 2012). A combination of participant tracking and self-reported usual 

activities seems a logical way forward and future research is needed to assess the 
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correspondence between self-reported usual activity and activity measured by 

tracking technologies. 

9.2.4  Whose exposure are we measuring? 

GPS technology is a useful tool that allows researchers to measure exposure to the 

environment more accurately. However, if we use GPS data to help determine the 

best way to delineate exposure to the environment, then we also need to be sure that 

the GPS data is representative of the population of interest.  The descriptive analyses 

of GPS inclusion criteria, discussed in Chapter 5, revealed that there were large 

amounts of missing GPS data, and the participants with the most missing data had 

specific characteristics. Notably, Māori and Pacific Island participants at schools 

with lower socio-economic status were excluded disproportionately when applying 

stricter GPS inclusion criteria.  

In New Zealand there is a strong social gradient in health outcomes, with Māori and 

Pacific Islanders, and those with lower socio-economic status, experiencing poorer 

health (Hefford, Crampton and Foley 2005, Pearce and Dorling 2006). Consequently, 

there are equity implications in basing the selection and development of delineation 

methods – which ultimately influence research results on the relationship between 

environment and health - on non-representative GPS data. Since there are currently 

no studies that explore the characteristics of participants excluded when applying 

GPS inclusion criteria, this is an important area of future research.  

9.2.5  Delineation methods need to be considered in combination with methods 
of representing and measuring the built environment 

The primary focus of this dissertation has been on delineation methods. However, it 

became apparent that how the built environment is measured can determine whether 
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different boundaries capture relationships between the built environment and 

physical activity, and exposure to the environment. Representation of the built 

environment within GIS (e.g., point versus polygon) can determine whether a 

specific feature (e.g., park) is captured by a particular delineation method. This is 

especially relevant when using road network buffers, which excel at capturing 

features on or near roads, but are less effective at capturing built environment 

characteristics located further from the road.  

It may be that the common methods of delineating the environment (e.g., buffers) 

and the common measures of the environment (e.g., counts or densities) do not 

capture variation within the buffer. Therefore, it is likely that we need to improve 

both the way we delineate the environment and the way we measure characteristics 

of the environment. 

9.2.6  The importance of time 

The temporal dimension is an important aspect of exposure. The longer a person 

spends in a location, the more plausible it becomes that any effect on behaviour and 

health, due to the characteristics of that environment, will be magnified. While health 

researchers are increasingly acknowledging the temporal component, this remains an 

under-examined issue. 

This dissertation has largely focused on the spatial, but has included temporal 

elements. Namely, the development of temporal localised convex hulls – one of the 

more promising activity space delineation methods – and the analyses of time spent 

within various buffers, the results of which added a temporal dimension to analyses. 
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Expanding the ways we consider and account for time will be important for future 

environment and health research. 

9.3  Conclusion 

The conceptualisation and operationalisation of spatial context is an ongoing 

challenge in built environment and health research, made more complex by the shift 

in focus from residential neighbourhoods to broader contexts that encompass the 

multiple locations in which people conduct their daily lives. This shift is associated 

with the call for more precision in what we measure and brings with it additional 

challenges in operationalising and delineating these varied spatial contexts.  

This dissertation has contributed to this challenge by providing new evidence and 

insights around delineation methods and how these relate to measures of the 

environment. It has confirmed what many researchers already know; our current 

methods of delineating exposure and measuring the environment are most likely 

inadequate if we want to advance our understanding of the relationship between 

environment and health.  It has also proposed several enhanced methods of 

delineating exposure. Further research is needed to develop and test methods such as 

these so that researchers have better tools to measure the environment, and gain a 

better understanding of the relationship between the environment and health.   
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Appendix A. Statement of contribution to 
datasets and published papers 

This thesis used data from two studies of the built environment and physical activity: 

the URBAN (Understanding the Relationship Between physical Activity and 

Neighbourhood) study (Badland et al. 2009), and the Kids in the City study (Oliver 

et al. 2011). The studies are discussed in detail in Chapters 3 and 4 respectively. My 

contributions to the components of the studies relevant to this thesis are outlined 

below. All research questions and analyses within this dissertation were made 

independent of the URBAN and Kids in the City studies. 

Contributions to the URBAN study 

The URBAN study was a competitively funded project (Health Research Council of 

New Zealand). I was a named investigator on this study and responsible for GIS 

components of the study. I contributed to the study design, proposal writing, and 

responses to referee reports. During the project, I sourced all spatial data, with the 

exception of the destination data used in the Neighbourhood Destination 

Accessibility Index. The destination data was compiled by collaborators from the 

GeoHealth Laboratory, Canterbury University.  

The URBAN study is part of a wider international study of the built environment and 

physical activity (IPEN study). I liaised with the IPEN coordinating centre when 

calculating the GIS based measures - to ensure that the URBAN study followed 

IPEN study GIS protocols - and provided feedback on these protocols.  
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I was responsible for selecting participating neighbourhoods. This involved 

following the IPEN protocol to calculate a walkability index for all meshblocks in 

the study cities and selecting neighbourhoods in four quadrants: low walkability and 

low Māori population; low walkability and high Māori population; high walkability 

and low Māori population; and high walkability and high Māori population. There 

were several methodological challenges in this process: creating a neighbourhood 

from contiguous meshblocks; determining exclusion criteria (e.g., defining urban 

meshblocks, determining minimum populations); ensuring there was a sufficient 

population within each neighbourhood; and determining an appropriate process to 

follow if the required sample was not met within each neighbourhood. I formulated 

approaches to overcome these challenges and presented recommendations to other 

members of the URBAN study team. Final decisions were made by the team. 

I also devised and mapped the ‘random walks’; that is, the random route within each 

neighbourhood that each research assistant followed. Based on the population of 

each neighbourhood, the required sample size and expected response rate, I 

calculated how many houses to sample on each walk.  

I geocoded all participant addresses and calculated all GIS measures except for the 

meshblock level Neighbourhood Destination Accessibility Index (NDAI) measure 

which was calculated by colleagues at the GeoHealth Laboratory, Canterbury 

University. For this thesis I re-calculated the NDAI for six additional neighbourhood 

delineations. 

Published papers arising from the URBAN study that I contributed to: 
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Appendix B. Buffer algorithm comparison 
results 

Table 29. Descriptive statistics for the area (km2) of the different types of buffer at 
different scales. 

  Mean Median SD Minimum Maximum 
400 m      

DN 0.170 0.175 0.065 0.018 0.334 
DT 0.183 0.184 0.056 0.026 0.329 
GN 0.132 0.132 0.066 0.002 0.319 
GT 0.188 0.190 0.056 0.035 0.366 
SB 0.135 0.132 0.049 0.032 0.282 
500 m      

DN 0.263 0.271 0.099 0.021 0.488 
DT 0.272 0.276 0.089 0.026 0.480 
GN 0.218 0.221 0.101 0.001 0.445 
GT 0.278 0.279 0.090 0.035 0.492 
SB 0.204 0.199 0.078 0.032 0.429 
800 m      

DN 0.690 0.691 0.244 0.021 1.268 
DT 0.668 0.661 0.233 0.026 1.220 
GN 0.629 0.626 0.252 0.002 1.183 
GT 0.676 0.667 0.236 0.035 1.244 
SB 0.510 0.492 0.202 0.032 1.097 
1000 m      

DN 1.110 1.111 0.388 0.021 1.990 
DT 1.053 1.036 0.369 0.026 1.949 
GN 1.036 1.027 0.389 0.002 1.878 
GT 1.061 1.042 0.374 0.035 1.946 
SB 0.804 0.779 0.318 0.032 1.723 
1200 m      

DN 1.642 1.642 0.552 0.021 2.759 
DT 1.530 1.514 0.534 0.026 2.799 
GN 1.553 1.544 0.555 0.002 2.769 
GT 1.538 1.517 0.541 0.035 2.827 
SB 1.166 1.122 0.460 0.032 2.471 
1500 m      

DN 2.643 2.649 0.836 0.021 4.339 
DT 2.425 2.410 0.839 0.026 4.446 
GN 2.538 2.511 0.857 0.002 4.299 
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GT 2.433 2.395 0.852 0.035 4.430 
SB 1.840 1.769 0.718 0.032 3.837 
1600 m      

DN 3.029 3.053 0.943 0.021 4.991 
DT 2.766 2.730 0.955 0.026 5.071 
GN 2.926 2.879 0.974 0.002 4.978 
GT 2.776 2.707 0.974 0.035 5.119 
SB 2.099 1.999 0.820 0.032 4.353 
2000 m      

DN 4.843 4.875 1.519 0.021 7.966 
DT 4.332 3.987 1.585 0.026 8.076 
GN 4.727 4.567 1.571 0.002 8.006 
GT 4.350 3.970 1.631 0.035 8.123 
SB 3.273 2.966 1.348 0.032 6.817 
2500 m      

DN 7.716 7.697 2.497 0.021 12.844 
DT 6.731 6.116 2.684 0.026 12.933 
GN 7.544 7.537 2.606 0.002 12.800 
GT 6.751 6.152 2.746 0.035 13.069 
SB 5.028 4.572 2.238 0.032 10.914 
3000 m      

DN 11.210 11.267 3.723 0.021 18.788 
DT 9.624 9.145 4.078 0.026 18.969 
GN 10.967 11.004 3.960 0.002 18.862 
GT 9.635 9.175 4.146 0.035 19.069 
SB 7.085 6.513 3.341 0.032 15.796 
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Table 30. Spearman rank correlation coefficients (2 dp, α = 5%, p < 0.001) 
comparing the area of different buffer types at a range of scales. 

 DN DT GN GT SB 

400 m      

DN x 0.91 0.89 0.89 0.84 

DT 0.91 x 0.92 0.97 0.93 

GN 0.89 0.92 x 0.93 0.91 

GT 0.89 0.97 0.93 x 0.95 

SB 0.84 0.93 0.91 0.95 x 

500 m      

DN x 0.94 0.94 0.92 0.87 

DT 0.94 x 0.96 0.98 0.95 

GN 0.94 0.96 x 0.97 0.93 

GT 0.92 0.98 0.97 x       0.96  

SB 0.87 0.95 0.93       0.96  x 

800 m      

DN x 0.96 0.96 0.95 0.90 

DT 0.96 x 0.97 0.99 0.96 

GN 0.96 0.97 x 0.97 0.92 

GT 0.95 0.99 0.97 x 0.97 

SB 0.90 0.96 0.92 0.97 x 

1000 m      

DN x 0.95 0.97 0.94 0.91 

DT 0.95 x 0.97 1.00 0.97 

GN 0.97 0.97 x 0.97 0.93 

GT 0.94 1.00 0.97 x 0.97 

SB 0.91 0.97 0.93 0.97 x 

1200 m      

DN x 0.95 0.97 0.94 0.92 

DT 0.95 x 0.97 1.00 0.97 

GN 0.97 0.97 x 0.98 0.94 

GT 0.94 1.00 0.98 x 0.98 

SB 0.92 0.97 0.94 0.98 x 

1500 m      

DN x 0.95 0.98 0.94 0.93 

DT 0.95 x 0.97 1.00 0.97 
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GN 0.98 0.97 x 0.97 0.95 

GT 0.94 1.00 0.97 x 0.98 

SB 0.93 0.97 0.95 0.98 x 

1600 m      

DN x 0.94 0.98 0.94 0.93 

DT 0.94 x 0.97 1.00 0.97 

GN 0.98 0.97 x 0.97 0.95 

GT 0.94 1.00 0.97 x 0.97 

SB 0.93 0.97 0.95 0.97 x 

2000 m      

DN x 0.94 0.98 0.93 0.92 

DT 0.94 x 0.97 1.00 0.97 

GN 0.98 0.97 x 0.97 0.94 

GT 0.93 1.00 0.97 x 0.98 

SB 0.92 0.97 0.94 0.98 x 

2500 m      

DN x 0.95 0.99 0.94 0.93 

DT 0.95 x 0.97 1.00 0.98 

GN 0.99 0.97 x 0.97 0.95 

GT 0.94 1.00 0.97 x 0.98 

SB 0.93 0.98 0.95 0.98 x 

3000 m      

DN x 0.96 0.99 0.95 0.94 

DT 0.96 x 0.98 1.00 0.98 

GN 0.99 0.98 x 0.98 0.96 

GT 0.95 1.00 0.98 x 0.98 

SB 0.94 0.98 0.96 0.98 x 
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Table 31. Spearman rank correlation coefficients (2 dp, α = 5%, p < 0.001) 
comparing intersection counts (Cnt) and intersection densities (Dns) for different 

buffer types at a range of scales. 

 DN DT GN GT SB 

 Cnt Dns Cnt Dns Cnt Dns Cnt Dns Cnt Dns 

400 m           

DN x x 1.00 0.91 0.99 0.86 0.98 0.89 0.99 0.88 

DT 1.00 0.91 x x 0.99 0.80 0.98 0.98 0.99 0.97 

GN 0.99 0.86 0.99 0.80 x x 0.98 0.80 0.99 0.80 

GT 0.98 0.89 0.98 0.98 0.98 0.80 x x 0.99 0.96 

SB 0.99 0.88 0.99 0.97 0.99 0.80 0.99 0.96 x x 

500 m           

DN x x 1.00 0.95 0.99 0.89 0.99 0.93 0.99 0.92 

DT 1.00 0.95 x x 1.00 0.86 0.99 0.98 1.00 0.97 

GN 0.99 0.89 1.00 0.86 x x 0.99 0.86 0.99 0.86 

GT 0.99 0.93 0.99 0.98 0.99 0.86 x x 1.00 0.96 

SB 0.99 0.92 1.00 0.97 0.99 0.86 1.00 0.96 x x 

800 m           

DN x x 1.00 0.95 1.00 0.94 1.00 0.94 1.00 0.92 

DT 1.00 0.95 x x 1.00 0.95 1.00 0.99 1.00 0.97 

GN 1.00 0.94 1.00 0.95 x x 1.00 0.94 1.00 0.92 

GT 1.00 0.94 1.00 0.99 1.00 0.94 x x 1.00 0.97 

SB 1.00 0.92 1.00 0.97 1.00 0.92 1.00 0.97 x x 

1000 m           

DN x x 1.00 0.95 1.00 0.95 1.00 0.94 1.00 0.93 

DT 1.00 0.95 x x 1.00 0.96 1.00 0.99 1.00 0.97 

GN 1.00 0.95 1.00 0.96 x x 1.00 0.95 1.00 0.92 

GT 1.00 0.94 1.00 0.99 1.00 0.95 x x 1.00 0.97 

SB 1.00 0.93 1.00 0.97 1.00 0.92 1.00 0.97 x x 

1200 m           

DN x x 1.00 0.95 1.00 0.96 1.00 0.95 1.00 0.94 

DT 1.00 0.95 x x 1.00 0.97 1.00 1.00 1.00 0.98 

GN 1.00 0.96 1.00 0.97 x x 1.00 0.97 1.00 0.95 

GT 1.00 0.95 1.00 1.00 1.00 0.97 x x 1.00 0.98 

SB 1.00 0.94 1.00 0.98 1.00 0.95 1.00 0.98 x x 

1500 m           
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DN x x 1.00 0.94 1.00 0.98 1.00 0.94 1.00 0.92 

DT 1.00 0.94 x x 1.00 0.97 1.00 1.00 1.00 0.97 

GN 1.00 0.98 1.00 0.97 x x 1.00 0.97 1.00 0.95 

GT 1.00 0.94 1.00 1.00 1.00 0.97 x x 1.00 0.97 

SB 1.00 0.92 1.00 0.97 1.00 0.95 1.00 0.97 x x 

1600 m           

DN x x 1.00 0.93 1.00 0.98 1.00 0.93 1.00 0.91 

DT 1.00 0.93 x x 1.00 0.96 1.00 1.00 1.00 0.97 

GN 1.00 0.98 1.00 0.96 x x 1.00 0.96 1.00 0.94 

GT 1.00 0.93 1.00 1.00 1.00 0.96 x x 1.00 0.98 

SB 1.00 0.91 1.00 0.97 1.00 0.94 1.00 0.98 x x 

2000 m           

DN x x 1.00 0.91 1.00 0.98 1.00 0.90 1.00 0.89 

DT 1.00 0.91 x x 1.00 0.95 1.00 1.00 1.00 0.98 

GN 1.00 0.98 1.00 0.95 x x 1.00 0.94 1.00 0.93 

GT 1.00 0.90 1.00 1.00 1.00 0.94 x x 1.00 0.98 

SB 1.00 0.89 1.00 0.98 1.00 0.93 1.00 0.98 x x 

2500 m           

DN x x 1.00 0.90 1.00 0.98 1.00 0.89 1.00 0.88 

DT 1.00 0.90 x x 1.00 0.94 1.00 1.00 1.00 0.98 

GN 1.00 0.98 1.00 0.94 x x 1.00 0.93 1.00 0.91 

GT 1.00 0.89 1.00 1.00 1.00 0.93 x x 1.00 0.98 

SB 1.00 0.88 1.00 0.98 1.00 0.91 1.00 0.98 x x 

3000           

DN x x 1.00 0.89 1.00 0.98 1.00 0.87 1.00 0.86 

DT 1.00 0.89 x x 1.00 0.94 1.00 1.00 1.00 0.97 

GN 1.00 0.98 1.00 0.94 x x 1.00 0.93 1.00 0.90 

GT 1.00 0.87 1.00 1.00 1.00 0.93 x x 1.00 0.97 

SB 1.00 0.86 1.00 0.97 1.00 0.90 1.00 0.97 x x 
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Table 32. Spearman rank correlation coefficients (2 dp, α = 5%, p < 0.001) 
comparing bus stop count for different buffer types at a range of scales. 

 DN DT GN GT SB 

400 m      

DN x 0.98 0.96 0.96 0.96 

DT 0.98 x 0.96 0.98 0.97 

GN 0.96 0.96 x 0.95 0.96 

GT 0.96 0.98 0.95 x 0.96 

SB 0.96 0.97 0.96 0.96 x 

500 m      

DN x 0.98 0.97 0.97 0.96 

DT 0.98 x 0.97 0.98 0.97 

GN 0.97 0.97 x 0.97 0.96 

GT 0.97 0.98 0.97 x 0.96 

SB 0.96 0.97 0.96 0.96 x 

800 m      

DN x 0.99 0.99 0.99 0.96 

DT 0.99 x 0.98 0.99 0.97 

GN 0.99 0.98 x 0.98 0.95 

GT 0.99 0.99 0.98 x 0.97 

SB 0.96 0.97 0.95 0.97 x 

1000 m      

DN x 0.99 0.99 0.99 0.96 

DT 0.99 x 0.99 1.00 0.97 

GN 0.99 0.99 x 0.99 0.96 

GT 0.99 1.00 0.99 x 0.97 

SB 0.96 0.97 0.96 0.97 x 

1200 m      

DN x 0.99 1.00 0.99 0.97 

DT 0.99 x 0.99 1.00 0.97 

GN 1.00 0.99 x 0.99 0.96 

GT 0.99 1.00 0.99 x 0.97 

SB 0.97 0.97 0.96 0.97 x 

1500 m      

DN x 1.00 1.00 1.00 0.97 

DT 1.00 x 0.99 1.00 0.98 
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GN 1.00 0.99 x 0.99 0.97 

GT 1.00 1.00 0.99 x 0.97 

SB 0.97 0.98 0.97 0.97 x 

1600 m      

DN x 1.00 1.00 1.00 0.97 

DT 1.00 x 1.00 1.00 0.98 

GN 1.00 1.00 x 1.00 0.97 

GT 1.00 1.00 1.00 x 0.97 

SB 0.97 0.98 0.97 0.97 x 

2000 m      

DN x 1.00 1.00 1.00 0.98 

DT 1.00 x 1.00 1.00 0.98 

GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.98 

SB 0.98 0.98 0.98 0.98 x 

2500 m      

DN x 1.00 1.00 1.00 0.98 

DT 1.00 x 1.00 1.00 0.98 

GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.98 

SB 0.98 0.98 0.98 0.98 x 

3000 m      

DN x 1.00 1.00 1.00 0.98 

DT 1.00 x 1.00 1.00 0.98 

GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.98 

SB 0.98 0.98 0.98 0.98 x 
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Table 33. Spearman rank correlation coefficients (2 dp, α = 5%, p < 0.001) 
comparing dwelling count for different buffer types at a range of scales. 

 DN DT GN GT SB 

400 m           

DN x 0.98 0.97 0.96 0.96 

DT 0.98 x 0.97 0.99 0.98 

GN 0.97 0.97 x 0.97 0.97 

GT 0.96 0.99 0.97 x 0.98 

SB 0.96 0.98 0.97 0.98 x 

500 m      

DN x 0.99 0.98 0.98 0.97 

DT 0.99 x 0.98 0.99 0.98 

GN 0.98 0.98 x 0.99 0.98 

GT 0.98 0.99 0.99 x 0.99 

SB 0.97 0.98 0.98 0.99 x 

800 m      

DN x 1.00 0.99 0.99 0.98 

DT 1.00 x 0.99 1.00 0.99 

GN 0.99 0.99 x 0.99 0.98 

GT 0.99 1.00 0.99 x 0.99 

SB 0.98 0.99 0.98 0.99 x 

1000 m      

DN x 1.00 1.00 1.00 0.98 

DT 1.00 x 0.99 1.00 0.99 

GN 1.00 0.99 x 0.99 0.98 

GT 1.00 1.00 0.99 x 0.99 

SB 0.98 0.99 0.98 0.99 x 

1200 m       

DN x 1.00 1.00 1.00 0.98 

DT 1.00 x 1.00 1.00 0.99 

GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.99 

SB 0.98 0.99 0.98 0.99 x 

1500 m      

DN x 1.00 1.00 1.00 0.98 

DT 1.00 x 1.00 1.00 0.99 
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GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.99 

SB 0.98 0.99 0.98 0.99 x 

1600 m      

DN x 1.00 1.00 1.00 0.98 

DT 1.00 x 1.00 1.00 0.99 

GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.99 

SB 0.98 0.99 0.98 0.99 x 

2000 m      

DN x 1.00 1.00 1.00 0.99 

DT 1.00 x 1.00 1.00 0.99 

GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.99 

SB 0.99 0.99 0.98 0.99 x 

2500 m      

DN x 1.00 1.00 1.00 0.99 

DT 1.00 x 1.00 1.00 0.99 

GN 1.00 1.00 x 1.00 0.98 

GT 1.00 1.00 1.00 x 0.99 

SB 0.99 0.99 0.98 0.99 x 

3000 m      

DN x 1.00 1.00 1.00 0.99 

DT 1.00 x 1.00 1.00 0.99 

GN 1.00 1.00 x 1.00 0.99 

GT 1.00 1.00 1.00 x 0.99 

SB 0.99 0.99 0.99 0.99 x 
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Table 34. Spearman rank correlation coefficients (2 dp, α = 5%, p < 0.001) 
comparing park area and % park area for different buffer types at a range of scales. 

 DN  DT  GN  GT  SB  

 Area % 
Area 

Area % 
Area 

Area % 
Area 

Area % 
Area 

Area % 
Area 

400 m           

DN x x 0.88 0.87 0.90 0.90 0.88 0.88 0.85 0.86 

DT 0.88 0.87 x x 0.80 0.78 0.98 0.98 0.92 0.92 

GN 0.90 0.90 0.80 0.78 x x 0.81 0.80 0.82 0.81 

GT 0.88 0.88 0.98 0.98 0.81 0.80 x x 0.92 0.92 

SB 0.85 0.86 0.92 0.92 0.82 0.81 0.92 0.92 x x 

500 m           

DN x x 0.92 0.91 0.90 0.90 0.92 0.92 0.86 0.86 

DT 0.92 0.91 x x 0.84 0.82 0.99 0.99 0.92 0.93 

GN 0.90 0.90 0.84 0.82 x x 0.85 0.84 0.84 0.83 

GT 0.92 0.92 0.99 0.99 0.85 0.84 x x 0.93 0.93 

SB 0.86 0.86 0.92 0.93 0.84 0.83 0.93 0.93 x x 

800 m           

DN x x 0.95 0.95 0.93 0.94 0.95 0.95 0.88 0.88 

DT 0.95 0.95 x x 0.91 0.91 0.99 0.99 0.92 0.92 

GN 0.93 0.94 0.91 0.91 x x 0.92 0.92 0.85 0.86 

GT 0.95 0.95 0.99 0.99 0.92 0.92 x x 0.92 0.93 

SB 0.88 0.88 0.92 0.92 0.85 0.86 0.92 0.93 x x 

1000 m           

DN x x 0.96 0.96 0.96 0.96 0.96 0.96 0.87 0.88 

DT 0.96 0.96 x x 0.94 0.94 0.99 0.99 0.91 0.92 

GN 0.96 0.96 0.94 0.94 x x 0.95 0.95 0.88 0.88 

GT 0.96 0.96 0.99 0.99 0.95 0.95 x x 0.92 0.93 

SB 0.87 0.88 0.91 0.92 0.88 0.88 0.92 0.93 x x 

1200 m           

DN x x 0.96 0.96 0.96 0.96 0.95 0.96 0.84 0.86 

DT 0.96 0.96 x x 0.95 0.95 0.99 0.99 0.90 0.91 

GN 0.96 0.96 0.95 0.95 x x 0.95 0.95 0.86 0.88 

GT 0.95 0.96 0.99 0.99 0.95 0.95 x x 0.91 0.92 

SB 0.84 0.86 0.90 0.91 0.86 0.88 0.91 0.92 x x 

1500 m           

DN x x 0.94 0.95 0.96 0.96 0.93 0.94 0.78 0.83 
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DT 0.94 0.95 x x 0.95 0.95 0.99 0.99 0.88 0.91 

GN 0.96 0.96 0.95 0.95 x x 0.95 0.96 0.82 0.87 

GT 0.93 0.94 0.99 0.99 0.95 0.96 x x 0.90 0.92 

SB 0.78 0.83 0.88 0.91 0.82 0.87 0.90 0.92 x x 

1600 m           

DN x x 0.94 0.94 0.96 0.97 0.93 0.94 0.78 0.83 

DT 0.94 0.94 x x 0.95 0.95 0.99 0.99 0.88 0.90 

GN 0.96 0.97 0.95 0.95 x x 0.94 0.95 0.81 0.86 

GT 0.93 0.94 0.99 0.99 0.94 0.95 x x 0.89 0.91 

SB 0.78 0.83 0.88 0.90 0.81 0.86 0.89 0.91 x x 

2000 m           

DN x x 0.92 0.91 0.96 0.97 0.90 0.91 0.74 0.81 

DT 0.92 0.91 x x 0.94 0.94 0.99 0.99 0.88 0.89 

GN 0.96 0.97 0.94 0.94 x x 0.93 0.94 0.77 0.84 

GT 0.90 0.91 0.99 0.99 0.93 0.94 x x 0.89 0.90 

SB 0.74 0.81 0.88 0.89 0.77 0.84 0.89 0.90 x x 

2500 m           

DN x x 0.89 0.89 0.97 0.97 0.86 0.88 0.69 0.77 

DT 0.89 0.89 x x 0.90 0.90 0.99 0.99 0.88 0.88 

GN 0.97 0.97 0.90 0.90 x x 0.89 0.90 0.72 0.79 

GT 0.86 0.88 0.99 0.99 0.89 0.90 x x 0.90 0.89 

SB 0.69 0.77 0.88 0.88 0.72 0.79 0.90 0.89 x x 

3000 m           

DN x x 0.84 0.86 0.97 0.98 0.82 0.84 0.70 0.76 

DT 0.84 0.86 x x 0.89 0.89 1.00 1.00 0.91 0.89 

GN 0.97 0.98 0.89 0.89 x x 0.88 0.88 0.74 0.78 

GT 0.82 0.84 1.00 1.00 0.88 0.88 x x 0.91 0.88 

SB 0.70 0.76 0.91 0.89 0.74 0.78 0.91 0.88 x x 
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Appendix C. Buffer algorithm modelling 
results 

Table 35. Percentage change in physical activity for a 1dph increase in dwelling 

density across a range of road network buffer types and scales. Bold text indicates a 

significant association. 

Scale Buffer % change confidence interval 
400 DN 0.87 (0.42 - 1.31) 
400 DT 0.96 (0.48 - 1.44) 
400 GN 0.90 (0.48 - 1.33) 
400 GT 1.01 (0.52 - 1.5) 
400 SB 0.96 (0.5 - 1.42) 
500 DN 0.95 (0.44 - 1.47) 
500 DT 1.05 (0.51 - 1.6) 
500 GN 0.98 (0.49 - 1.47) 
500 GT 1.07 (0.52 - 1.61) 
500 SB 1.02 (0.51 - 1.53) 
800 DN 1.24 (0.58 - 1.9) 
800 DT 1.28 (0.61 - 1.95) 
800 GN 1.18 (0.55 - 1.8) 
800 GT 1.27 (0.62 - 1.93) 
800 SB 1.22 (0.62 - 1.83) 

1000 DN 1.33 (0.59 - 2.07) 
1000 DT 1.43 (0.7 - 2.16) 
1000 GN 1.34 (0.64 - 2.05) 
1000 GT 1.42 (0.7 - 2.14) 
1000 SB 1.35 (0.69 - 2.01) 
1200 DN 1.32 (0.52 - 2.13) 
1200 DT 1.50 (0.71 - 2.28) 
1200 GN 1.48 (0.68 - 2.28) 
1200 GT 1.51 (0.73 - 2.28) 
1200 SB 1.43 (0.72 - 2.14) 
1500 DN 1.59 (0.63 - 2.54) 
1500 DT 1.76 (0.88 - 2.65) 
1500 GN 1.70 (0.76 - 2.64) 
1500 GT 1.80 (0.92 - 2.68) 
1500 SB 1.64 (0.85 - 2.43) 
1600 DN 1.66 (0.68 - 2.64) 
1600 DT 1.81 (0.89 - 2.73) 
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1600 GN 1.74 (0.75 - 2.72) 
1600 GT 1.87 (0.96 - 2.78) 
1600 SB 1.69 (0.88 - 2.5) 
2000 DN 1.82 (0.77 - 2.87) 
2000 DT 2.02 (1 - 3.03) 
2000 GN 1.91 (0.83 - 2.99) 
2000 GT 2.07 (1.06 - 3.09) 
2000 SB 1.91 (1.03 - 2.78) 
2500 DN 1.87 (0.67 - 3.07) 
2500 DT 2.19 (1.07 - 3.31) 
2500 GN 1.97 (0.77 - 3.18) 
2500 GT 2.23 (1.12 - 3.34) 
2500 SB 2.05 (1.11 - 2.99) 
3000 DN 2.00 (0.67 - 3.34) 
3000 DT 2.42 (1.19 - 3.66) 
3000 GN 2.11 (0.76 - 3.46) 
3000 GT 2.45 (1.23 - 3.67) 
3000 SB 2.32 (1.31 - 3.34) 
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Table 36. Percentage change in physical activity for a 1 bus stop increase for a range 
of road network buffers and scales. Bold text indicates a significant association. 

Scale Buffer % change  confidence interval 
400 DN 0.62 (-0.29 - 1.53) 
400 DT 0.62 (-0.29 - 1.53) 
400 GN 0.63 (-0.32 - 1.58) 
400 GT 0.65 (-0.25 - 1.55) 
400 SB 0.55 (-0.36 - 1.46) 
500 DN 0.97 (0.26 - 1.68) 
500 DT 1.04 (0.33 - 1.75) 
500 GN 0.94 (0.2 - 1.68) 
500 GT 1.05 (0.34 - 1.76) 
500 SB 1.02 (0.32 - 1.72) 
800 DN 0.76 (0.37 - 1.15) 
800 DT 0.73 (0.34 - 1.12) 
800 GN 0.72 (0.33 - 1.12) 
800 GT 0.75 (0.36 - 1.13) 
800 SB 0.65 (0.26 - 1.04) 

1000 DN 0.48 (0.21 - 0.76) 
1000 DT 0.50 (0.23 - 0.78) 
1000 GN 0.49 (0.22 - 0.77) 
1000 GT 0.49 (0.21 - 0.76) 
1000 SB 0.46 (0.19 - 0.74) 
1200 DN 0.34 (0.13 - 0.55) 
1200 DT 0.35 (0.13 - 0.56) 
1200 GN 0.33 (0.12 - 0.55) 
1200 GT 0.36 (0.15 - 0.57) 
1200 SB 0.34 (0.13 - 0.55) 
1500 DN 0.25 (0.1 - 0.4) 
1500 DT 0.25 (0.1 - 0.4) 
1500 GN 0.25 (0.1 - 0.39) 
1500 GT 0.25 (0.11 - 0.4) 
1500 SB 0.24 (0.09 - 0.38) 
1600 DN 0.21 (0.08 - 0.34) 
1600 DT 0.21 (0.08 - 0.35) 
1600 GN 0.21 (0.08 - 0.34) 
1600 GT 0.21 (0.08 - 0.35) 
1600 SB 0.22 (0.09 - 0.35) 
2000 DN 0.12 (0.03 - 0.21) 
2000 DT 0.12 (0.03 - 0.21) 
2000 GN 0.11 (0.02 - 0.21) 
2000 GT 0.11 (0.02 - 0.21) 
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2000 SB 0.13 (0.04 - 0.22) 
2500 DN 0.06 (0 - 0.12) 
2500 DT 0.06 (0 - 0.12) 
2500 GN 0.06 (0 - 0.12) 
2500 GT 0.06 (0 - 0.12) 
2500 SB 0.08 (0.02 - 0.14) 
3000 DN 0.04 (-0.01 - 0.08) 
3000 DT 0.04 (-0.01 - 0.08) 
3000 GN 0.04 (-0.01 - 0.08) 
3000 GT 0.04 (-0.01 - 0.08) 
3000 SB 0.05 (0.01 - 0.1) 
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Table 37. Percentage change in physical activity for a 1 intersection per square 

kilometre increase in street connectivity for a range of road network buffers and 

scales. Bold text indicates a significant association. 

Scale Buffer % change confidence interval 

400 DN 0.55 (-0.14 - 1.25) 

400 DT 0.28 (0 - 0.55) 

400 GN -0.03 (-0.09 - 0.03) 

400 GT 0.19 (0.02 - 0.36) 

400 SB 0.18 (0.04 - 0.33) 

500 DN 0.64 (0.15 - 1.13) 

500 DT 0.48 (0.03 - 0.94) 

500 GN 0.12 (-0.02 - 0.25) 

500 GT 0.29 (0.1 - 0.48) 

500 SB 0.22 (0.06 - 0.38) 

800 DN 0.39 (0.15 - 0.62) 

800 DT 0.56 (0.18 - 0.95) 

800 GN 0.22 (0.01 - 0.43) 

800 GT 0.35 (0.11 - 0.59) 

800 SB 0.25 (0.03 - 0.47) 

1000 DN 0.26 (0.1 - 0.41) 

1000 DT 0.63 (0.24 - 1.01) 

1000 GN 0.33 (0.08 - 0.57) 

1000 GT 0.42 (0.15 - 0.69) 

1000 SB 0.34 (0.09 - 0.59) 

1200 DN 0.16 (0.05 - 0.27) 

1200 DT 0.67 (0.25 - 1.1) 

1200 GN 0.31 (0.04 - 0.58) 

1200 GT 0.39 (0.1 - 0.67) 

1200 SB 0.32 (0.05 - 0.59) 

1500 DN 0.11 (0.03 - 0.18) 

1500 DT 0.56 (0.22 - 0.9) 

1500 GN 0.40 (0.1 - 0.7) 

1500 GT 0.50 (0.19 - 0.8) 

1500 SB 0.43 (0.14 - 0.73) 

1600 DN 0.10 (0.03 - 0.17) 
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1600 DT 0.86 (0.41 - 1.3) 

1600 GN 0.48 (0.17 - 0.79) 

1600 GT 0.59 (0.28 - 0.91) 

1600 SB 0.53 (0.23 - 0.83) 

2000 DN 0.06 (0.01 - 0.11) 

2000 DT 1.00 (0.53 - 1.48) 

2000 GN 0.63 (0.28 - 0.99) 

2000 GT 0.71 (0.35 - 1.06) 

2000 SB 0.62 (0.28 - 0.95) 

2500 DN 0.03 (0 - 0.07) 

2500 DT 0.89 (0.39 - 1.39) 

2500 GN 0.70 (0.29 - 1.11) 

2500 GT 0.80 (0.39 - 1.2) 

2500 SB 0.72 (0.34 - 1.09) 

3000 DN 0.02 (0 - 0.05) 

3000 DT 0.02 (0 - 0.05) 

3000 GN 0.73 (0.26 - 1.21) 

3000 GT 0.90 (0.44 - 1.36) 

3000 SB 0.82 (0.4 - 1.25) 
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Table 38. Percentage change in physical activity for a 1 ha increase in park area for a 
range of road network buffers and scales. Bold text indicates a significant 
association. 

Scale Buffer % change  confidence interval 
400 DN -1.12 (-2.68 - 0.43) 
400 DT -0.34 (-1.93 - 1.25) 
400 GN -2.21 (-4.88 - 0.45) 
400 GT -0.47 (-2.11 - 1.17) 
400 SB -1.70 (-4.46 - 1.07) 
500 DN -0.53 (-1.62 - 0.56) 
500 DT -0.55 (-1.79 - 0.69) 
500 GN -1.20 (-2.85 - 0.45) 
500 GT -0.76 (-2.04 - 0.52) 
500 SB -1.52 (-3.68 - 0.64) 
800 DN -0.18 (-0.68 - 0.33) 
800 DT -0.11 (-0.78 - 0.55) 
800 GN -0.34 (-1 - 0.31) 
800 GT -0.15 (-0.84 - 0.54) 
800 SB -0.43 (-1.58 - 0.73) 

1000 DN -0.16 (-0.47 - 0.16) 
1000 DT -0.07 (-0.51 - 0.38) 
1000 GN -0.15 (-0.55 - 0.24) 
1000 GT -0.08 (-0.55 - 0.39) 
1000 SB -0.13 (-0.91 - 0.64) 
1200 DN -0.13 (-0.34 - 0.08) 
1200 DT 0.00 (-0.33 - 0.34) 
1200 GN -0.08 (-0.35 - 0.19) 
1200 GT -0.01 (-0.36 - 0.34) 
1200 SB 0.03 (-0.56 - 0.61) 
1500 DN -0.06 (-0.2 - 0.08) 
1500 DT 0.04 (-0.2 - 0.28) 
1500 GN -0.05 (-0.22 - 0.13) 
1500 GT 0.04 (-0.22 - 0.29) 
1500 SB 0.15 (-0.28 - 0.58) 
1600 DN -0.04 (-0.17 - 0.09) 
1600 DT 0.06 (-0.16 - 0.28) 
1600 GN -0.02 (-0.18 - 0.13) 
1600 GT 0.05 (-0.18 - 0.28) 
1600 SB 0.20 (-0.19 - 0.6) 
2000 DN 0.01 (-0.08 - 0.1) 
2000 DT 0.14 (-0.01 - 0.29) 
2000 GN 0.02 (-0.07 - 0.12) 
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2000 GT 0.15 (0 - 0.3) 
2000 SB 0.32 (0.04 - 0.6) 
2500 DN 0.03 (-0.04 - 0.1) 
2500 DT 0.11 (0.01 - 0.21) 
2500 GN 0.03 (-0.04 - 0.1) 
2500 GT 0.11 (0.01 - 0.21) 
2500 SB 0.23 (0.03 - 0.43) 
3000 DN 0.04 (-0.01 - 0.09) 
3000 DT 0.07 (0 - 0.14) 
3000 GN 0.04 (-0.01 - 0.09) 
3000 GT 0.07 (-0.01 - 0.14) 
3000 SB 0.20 (0.06 - 0.35) 
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Table 39. Association between percentage park area and physical activity for a range 
of road network buffers and scales. Bold text indicates a significant association. 

Scale Buffer coefficient  confidence interval 
400 DN -13.45 (-41.03 - 14.13) 
400 DT -1.75 (-29.81 - 26.31) 
400 GN -19.34 (-53.8 - 15.12) 
400 GT -6.99 (-36.74 - 22.76) 
400 SB -12.42 (-46.86 - 22.01) 
500 DN -13.50 (-42.31 - 15.3) 
500 DT -5.34 (-36.59 - 25.91) 
500 GN -17.83 (-51.99 - 16.32) 
500 GT -10.09 (-42.9 - 22.72) 
500 SB -13.35 (-51.82 - 25.13) 
800 DN -13.31 (-48.1 - 21.48) 
800 DT -13.11 (-55.03 - 28.81) 
800 GN -19.70 (-58.04 - 18.64) 
800 GT -16.10 (-59.45 - 27.26) 
800 SB -29.34 (-81.7 - 23.01) 

1000 DN -20.28 (-56.51 - 15.95) 
1000 DT -13.99 (-60.66 - 32.67) 
1000 GN -18.48 (-59.92 - 22.97) 
1000 GT -18.88 (-67.08 - 29.32) 
1000 SB -28.17 (-88.56 - 32.23) 
1200 DN -21.99 (-59.1 - 15.12) 
1200 DT -11.02 (-63.32 - 41.28) 
1200 GN -17.68 (-62.07 - 26.72) 
1200 GT -17.14 (-71.24 - 36.96) 
1200 SB -22.01 (-90.75 - 46.73) 
1500 DN -16.93 (-55.7 - 21.85) 
1500 DT -7.72 (-65.16 - 49.72) 
1500 GN -13.78 (-60.08 - 32.51) 
1500 GT -11.26 (-71.44 - 48.92) 
1500 SB -11.96 (-89.25 - 65.33) 
1600 DN -12.5 (-52.24 - 27.23) 
1600 DT -0.19 (-58.27 - 57.9) 
1600 GN -8.64 (-54.71 - 37.43) 
1600 GT -4.55 (-65.2 - 56.1) 
1600 SB 1.66 (-76.98 - 80.3) 
2000 DN 5.27 (-39.91 - 50.45) 
2000 DT 41.82 (-19.66 - 103.3) 
2000 GN 12.39 (-34.85 - 59.64) 
2000 GT 43.83 (-19.42 - 107.08) 
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2000 SB 55.03 (-30.95 - 141.01) 
2500 DN 26.63 (-26.66 - 79.92) 
2500 DT 77.77 (10.08 - 145.47) 
2500 GN 29.66 (-26.25 - 85.56) 
2500 GT 82.00 (11.49 - 152.51) 
2500 SB 111.36  (7.71 - 215.01) 
3000 DN 56.23 (-3.84 - 116.29) 
3000 DT 102.13 (29.88 - 174.39) 
3000 GN 52.29 (-10.65 - 115.23) 
3000 GT 101.65 (26.75 - 176.54) 
3000 SB 185.18 (65.36 - 305) 

 




