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ABSTRACT

Several decades worth of public health research has shown that characteristics of
people’s environment are associated with health-related behaviours and outcomes.
Much of this research has used the concept of a residential neighbourhood to
delineate the relevant environment. However, there is no uniformity in the
neighbourhood delineation methods used in the literature and little consideration is
given to whether they adequately capture people’s exposure to the environmental
characteristics under investigation, or whether the choice of delineation methods
influences results. This dissertation has addressed these issues and suggested some

methods researchers may use to delineate spatial context more precisely.

The first part of the thesis used data from a study of neighbourhood environment and
physical activity in adults to examine the impact of different methodological choices
on modelling results. Both neighbourhood delineation method and scale were shown
to determine whether significant associations were found between the built
environment and physical activity. Modelling results also varied depending on the
built environment and outcome measures used. A detailed exploration of different
methods of operationalising the road network buffer demonstrated that, even for a
single neighbourhood delineation method, methodological choices can alter the

results.

The second part of the thesis used GPS data from a study of children’s physical
activity and independent mobility to examine how well a number of road network
buffers and activity space delineation methods represented exposure to the

environment. Results showed less than half of children’s seven-day activity was



captured by residential road network buffers at a range of scales. Most activity space
delineations were better representations of where children spent time than road
network buffers. However, the measures of activity space commonly used in health
research - the convex hull and standard deviation ellipse — were poor representations

of exposure.

Activity space delineations require detailed location data that is not always available.
Therefore, there is a need for delineation methods that do not require this data. Five
enhancements to standard road network buffers were proposed. One enhancement -
including school and home in the buffer - was tested and shown to be an

improvement on standard road network buffers.
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Chapter 1. Introduction

Over the past three decades, public health researchers have generated a significant
body of literature examining the associations between environment and health. Much
of this literature has conceptualised the environment as a residential neighbourhood
and then gone on to examine whether variations in environmental attributes at the
neighbourhood level predict differences in the health-related behaviours or
outcomes. In doing so, residential neighbourhood boundaries have come to be used

as proxies for exposure to the environment.

There are two problems with this approach. First, a number of methods — such as
census areas and circular buffers — have been used to delineate the residential
neighbourhood boundary. However, while there is evidence that the choice of
delineation method and the size of the neighbourhood boundary can change research
results (James et al. 2014, Parenteau and Sawada 2011, Prins et al. 2014, Colabianchi
et al. 2014, Veugelers, Kim and Guernsey 2000), it is not clear which of the many

delineation methods and scales are optimal.

The second, more important, problem lies in the conflation between the core
concepts of ‘neighbourhood’ and ‘exposure.’” Although these concepts are often used
interchangeably, they have different meanings. Neighbourhood denotes an area in the
vicinity of something; for instance, a residential neighbourhood refers to the area
near home. Exposure, on the other hand, refers to the external influences an

individual is subjected to in a particular location.

Clearly, as a number of researchers have noted, the residential neighbourhood does

not usually represent an individual’s total exposure to the environment (Matthews
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2008, Chaix et al. 2009, Cummins et al. 2007). Conversely, there are likely to be a
number of locations within a residential neighbourhood that individuals rarely visit,
and so little or no exposure occurs. Ultimately, individuals may be exposed to
locations beyond a residential ‘neighbourhood’ and may not be exposed to locations
within that neighbourhood. This distinction between the potential exposure of a
neighbourhood and actual exposure is not always explicitly acknowledged, yet it is
an important consideration when interpreting research results, and selecting and

developing appropriate delineation methods.

Together, these issues suggest that public health researchers’ interest in assessing
exposure to the environment is outpacing the development of appropriate methods to
delineate both the residential neighbourhood and exposure to the broader
environment. Furthermore, they indicate a need to pay attention to the definition of
place related concepts (Matthews and Yang 2013) and critically consider the
operationalisation of these concepts to ensure that we are measuring what we think

we are measuring.

1.1 Dissertation goals and aims

This dissertation addresses the challenge of delineating boundaries in environment
and health research by: 1) exploring how different methodological decisions in
delineating the residential neighbourhood influence research findings; 2) determining
how well the current best practice method of delineating the residential
neighbourhood captures the places people travel and spend time; and 3) exploring
and proposing new delineation methods that better capture potential and actual

exposure to the environment.



While this work is relevant to the wider neighbourhoods and health literature, the
data used in the analyses come from studies of the relationship between the built
environment and physical activity in New Zealand adults and children. The built
environment and physical activity literature is substantial and, due to the work
around increasing sedentary behaviour and rising obesity rates, it is one of the main

areas in which health researchers are investigating the issue of boundary delineation.

PhD Goals:

1) Provide evidence to assist in appropriate selection and delineation of
boundaries in environment and health research.
2) Propose new/improved methods of delineating boundaries that better

represent actual and potential exposure to the environment.

PhD Rationale:

Contribute to more robust measurement of the neighbourhood — and, therefore, the

environment - individuals are exposed to.
PhD Aims and Research Questions:

1) Review existing delineation methods and the effect of these on built environment
and health research results.

2) Explore the influence of analysis choices on residential neighbourhood
delineation and relationships between the built environment and physical activity
in New Zealand adults.

a. How do different delineation methods and scale choices change research
results?

b. How does the choice of outcome measure interact with different
delineation methods to change research results?

c. Does the choice of buffering algorithm change the size of the boundary
and resulting measures of the built environment?

3) Determine how well road network buffers — the current best practice method of

delineating residential boundaries - represent actual exposure to the environment.



4) Determine whether different activity spaces improve on road network buffers as a
method of delineating exposure to the environment.
5) Propose, develop, and test enhanced road network buffer delineations to capture

exposure to the environment.

1.2 Thesis Structure

Chapter Two reviews existing methods of delineating boundaries, summarises the
literature investigating the effect of different neighbourhood definitions on study
results, reviews approaches for identifying the optimal neighbourhood boundaries,

and discusses theoretical issues that arise when delineating boundaries.

Chapter Three addresses the second aim of the thesis, which is to explore the
influence of methodological choices on residential neighbourhood delineation and
relationships between the built environment and physical activity in New Zealand
adults. The three research questions comprising this aim are addressed in this chapter
using data from the Understanding the Relationship between Physical Activity and
Neighbourhood (URBAN) study; an investigation of the association between built

environment and physical activity in New Zealand adults.

Chapter Four describes relevant methods and data from the Kids in the City (KITC)
study; a study of the relationship between the built environment and New Zealand
children’s independent mobility and physical activity. Demographic, Geographic
Information Systems (GIS), and Global Positioning System (GPS) data from this

study are used in the analyses presented in Chapters Six, Seven, and Eight.

Chapter Five provides detailed methods and descriptive analyses related to GPS
inclusion/exclusion criteria. This is an essential step in ensuring that the GPS data

used in subsequent chapters is as robust as possible.



Chapter Six addresses the third aim of the thesis. GIS analysis is used to calculate
the overlap between road network buffers (potential residential exposure) and actual
exposure as measured by seven-day GPS data. Limitations of road network buffers

are identified.

Chapter Seven addresses the fourth aim of the thesis. GIS analysis is used to
calculate the overlap between different methods of delineating activity spaces and

actual exposure as measured by seven-day GPS data.

Chapter Eight draws on the limitations of road network buffers to propose five
enhancements that may allow road network buffers to represent actual and potential
exposure around both residential addresses and general life spaces more accurately.
One enhancement — the inclusion of school in the buffer delineation — is tested with
the KITC data and compared to standard road network buffers. Potential methods of

implementing the other four enhancements are described.

Finally, Chapter Nine links the dissertation in a discussion and conclusion.

Appendix A is a detailed statement of candidate contributions to the two research
studies used in this thesis. Appendices B-C contain supplementary descriptive

statistics and modelling results.

1.3 General statement of candidate contributions

This doctoral dissertation uses data from two studies of the built environment and
physical activity conducted in New Zealand: the URBAN study, and the Kids in the
City study. The candidate was an investigator and a member of the research team on
both studies. Candidate contributions to each study are summarised in the relevant
chapters with additional detail provided in Appendix A.
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A part of the research undertaken for this dissertation has been submitted as a journal

article and is currently under review:

Mavoa, S., Bagheri, N., Koohsari, M.J., Kaczynski, A.T., Lamb, K.E., O’Sullivan D.,
Witten, K. (under review). The influence of different neighbourhood definitions on

the relationship between the built environment and physical activity.

The candidate conceived the idea for the manuscript in collaboration with
dissertation supervisors (Witten and O’Sullivan), conducted all GIS and statistical
analyses, and wrote the first draft of the manuscript. Co-authors contributed to the
development of the research idea, the choice of statistical methods, interpretation of
results, and editing the manuscript. Bagheri and Lamb provided advice on the
statistical methods and interpretation of model results. The research in this
manuscript is a major component of Chapter 3, Sections 3.1-3.3. The analysis and
interpretation of the different physical activity outcome measures and all other
sections of Chapter 3 — namely the analysis of different algorithms (Section 3.4), and
the commentary on methodological issues arising from these analyses (Section 3.5),

are solely the candidates work.



Chapter 2. Literature review: Delineating
neighbourhood and exposure

2.1 Introduction

An essential step in any research investigating relationships between the environment
and health is conceptualising and operationalising/delineating the spatial extent of
the area of interest (Diez Roux 2001). This chapter reviews the public health
literature on the delineation of neighbourhood and exposure to the environment, and

- where appropriate - draws on relevant research from other fields.

The next two sections explore the related concepts of ‘neighbourhood’ and
‘exposure’, defining the use of these terms within this thesis. The following sections
review existing methods of delineating boundaries, investigate whether different
neighbourhood definitions and delineations make a difference to results, review
approaches for identifying the optimal neighbourhood boundaries, and identify and
discuss theoretical issues that arise when delineating boundaries. The final section

summarises the chapter.

2.2 Neighbourhood

A focus of research on the built environment and health has been whether
neighbourhood influences health, independent of an individual’s characteristics (Diez
Roux 2007). While neighbourhood is a fundamental concept, it is rarely defined
explicitly and there is no clear, single definition of what it means (Hipp, Faris and
Boessen 2012, Stein 2014, Ross, Tremblay and Graham 2004, Stafford, Duke-

Williams and Shelton 2008). The Oxford English Dictionary gives a variety of



definitions of neighbourhood, ranging from the purely spatial - “a district or portion
of a town, city, or country” or “the vicinity or surrounding area” - to those that
include people, for instance, “the people living near to a certain place or within a
certain range; neighbours collectively” or “a community” (Oxford English

Dictionary).

These definitions reflect the fact that neighbourhoods can be both spatial and social
spaces (Lupton 2003). As such, neighbourhoods can be conceptualised as spatial or

socio-spatial units (Guo and Bhat 2007, Sawicki and Flynn 1996).

Researchers’ definitions of neighbourhood have reflected this spatial versus socio-
spatial distinction. For example, Lebel et al. (2007), define neighbourhood as “a
place characterized by a specific collection of spatially-based features that can be
found at a specific geographic scale.” Whereas for Chaskin (1995), neighbourhood is
a “geographically bound unit in which the residents share proximity and the

circumstances within that proximity” (p. 1).

While consideration of neighbourhoods as socio-spatial units is important - and
starting to receive attention in broader neighbourhoods research (Hipp et al. 2012,
Hipp and Boessen 2013) - within health research, neighbourhoods are most
commonly viewed as purely spatial units (Dietz 2002, Guo and Bhat 2007,
Macintyre, Ellaway and Cummins 2002, Spielman and Yoo 2009). Perhaps one of
the most complete definitions of neighbourhood as a spatial feature is Galster’s
(2001), in which a neighbourhood is “the bundle of spatially based attributes
associated with clusters of residences, sometimes in conjunction with other land
uses” (p. 2112). For the remainder of the dissertation neighbourhoods are considered

as spatial units only.



In the literature, ‘neighbourhood’ often appears to refer to a number of concepts
related to place, such as ‘context’, ‘place’, ‘neighbourhood’, ‘neighbourhood
environment’, ‘local area’, ‘small area’, and ‘local environment’. These terms are
often used interchangeably (Gauvin et al. 2007), despite the fact some are used in
reference to the residential neighbourhood alone, whereas others, such as ‘context’
and ‘place’, could refer to locations beyond the residential. Within this dissertation,

the term ‘neighbourhood’ will be used to refer to the residential neighbourhood.

2.3 Towards improved conceptualisation of context: From

neighbourhood to exposure

Neighbourhoods and health research has primarily focused on residential
neighbourhoods. Yet other spatial contexts may have implications for health (Diez
Roux 2001). Cummins et al. (2007), have argued that a relational view of place —
one that acknowledges people are mobile and allows for dynamic and fluid
definitions of area - is essential to improve our understanding of the relationships
between place and health. They labelled the problem of focusing solely on the local
as the ‘local trap’. Chaix et al. (2009), later refined the concept of the ‘local trap’,
coining the phrase ‘residential trap’, to refer to the problem of focusing solely on the
residential environment. Given the loosening of our dependency on residential
locations (Matthews and Yang 2013), both the local and residential traps are likely to
be an increasing problem for researchers aiming to delineate and measure the

environment.

These critiques of delineations of context that focus solely on the residential
neighbourhood represent a conceptual shift from neighbourhood to exposure. While

residential neighbourhoods are still pertinent, researchers are increasingly interested



in developing a more nuanced understanding of exposure that goes beyond the

residential.

Exposure can be defined as “the state or fact of being subjected, to any external
influence” (Oxford English Dictionary). Public health research already has an
interest in exposure when the external influences — whether social, or chemical,
physical, and biological as in exposure science (Lioy and Smith 2013) - are

associated with health behaviours and outcomes.

Since residential neighbourhoods are unlikely to be an adequate proxy for exposure
(Madsen et al. 2014), researchers have called for better conceptualisation and
measurement of human exposure (Matthews and Yang 2013, Kwan 2012a, Chaix
2009, Cummins et al. 2007). This desire for greater precision in the delineation of
context aligns with a general move towards greater specificity in built environment

and health research (Giles-Corti et al. 2005).

2.4 Operationalising context

Operationalisation, or delineation, of the spatial extents (i.e., boundaries) of both
neighbourhood and exposure is an essential part of environment and health research.
However, delineating the spatial extents of both the residential neighbourhood (Ross
et al. 2004), and exposure (Cummins et al. 2007) are unresolved and interrelated

challenges.

The delineation of boundaries is typically undertaken using GIS software. There are
numerous methods that can be used to delineate a spatial extent, and the choice of

method can produce boundaries of different sizes and shapes. Furthermore,
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measuring the environment within these different areas can lead to different research

results.

Table 1 presents existing delineation methods and groups them within four

categories: territorial; ego-centric; location-centric; and activity space. This

categorisation is based on the work of Chaix et al. (2009) - who reviewed theoretical

issues relating to the delineation of ego-centric neighbourhoods - and has been

extended to capture a broader range of delineation methods used in the literature.

Table 1. Main types of delineation methods.

Type of Delineation method Examples
delineation
Territorial Administrative units Morland et al. (2002)
Smith et al. (2008)
Aggregated administrative units Riva et al. (2009)
(zones) Sabel et al. (2013)
Buffered administrative units Frank et al. (2012)
Environmentally defined areas Cutchin et al. (2011)
(natural neighbourhoods) Stafford et al. (2008)
Ross et al. (2004)
Ego-centric Euclidean buffers Bell, Wilson and Liu (2008)

Location-centric

Activity space

Network buffers

Participant defined neighbourhoods

Euclidean buffers
Network buffers

Convex hull

Standard deviation ellipse

Daily path area

Lovasi et al. (2009)
Badland et al. (2009)
Frank et al. (2007)

Basta, Richmond and Wiebe (2010)
Coulton et al. (2001)
Smith et al. (2010)

Parks and Schofer (2006)
Pearce et al. (2008)

Shareck, Kestens and Gauvin (2013)
Villanueva et al. (2012)
Yin et al. (2013)

Hirsch et al. (2014)
Kamruzzaman and Hine (2012)
Zenk et al. (2011)

Hirsch et al. (2014)
Lipperman-Kreda et al. (2015)
Zenk et al. (2011)
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The list of delineation methods was obtained from recent theoretical articles and
literature reviews that specifically consider the delineation of boundaries (Brownson
et al. 2009, Carter and Dubois 2010, Schaefer-McDaniel et al. 2010, Feng et al. 2010,
Chaix et al. 2009, Wong, Faulkner and Buliung 2011), and supplemented by journal

articles describing empirical studies.

Figure 1 (on the following page) illustrates a few of the different types of
delineations for a single residential address with hypothetical GPS data. The

delineation methods are discussed in detail below.

2.4.1 Territorial units

Territorial units are mutually exclusive “entities that have a social consistence
independent of a specific individual” (Chaix et al. 2009, p. 1306). Administrative and
census areas are examples of territorial units. Territorial units have most often been
used to represent residential neighbourhoods, but they can be used to represent
context beyond the residential (e.g., Wong and Shaw 2011). Four common types of

territorial units are described below.

2.4.1.1 Administrative units

Until recently, the majority of health research delineated neighbourhoods used pre-
existing administrative units such as meshblocks, census tracts, enumeration districts
and suburb boundaries. The use of administrative units to represent where
participants live is still popular, presumably because they are predefined, relatively
simple to use, and readily available. In addition, and perhaps more importantly,
secondary data sources, such as census data, are often defined at an administrative
unit level, making it easy to include such data in research (Diez Roux 2007, Pickett

and Pearl 2001).
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Figure 1. Examples of delineation methods for a theoretical individual.
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Examples of empirical studies that used administrative units to delineate the
environment include Smith et al. (2008) who measured neighbourhood walkability
within census tracts, and Morland et al. (2002) who measured food accessibility

within census tracts.

2.4.1.2 Aggregated administrative units (zones)

To delineate boundaries using aggregated administrative units, small administrative
units - typically the smallest available census area - are used as building blocks to
form larger aggregated administrative units. Relatively few researchers have used
aggregated administrative units, perhaps because it requires the additional step of

creating new zones, which is not always straightforward.

Automated zone design techniques provide methods of aggregating administrative
units. Cockings and Martin (2005), took enumeration districts - the smallest census
unit in the UK - and designed a zoning system at different scales and aggregation
levels in order to explore the relationship between neighbourhood deprivation and
health in a UK county. Riva et al. (2009), designed zones for Montreal based on
Canadian dissemination areas. They designed their zones to be homogenous over the

exposure variable of ‘active living potential’.

While most researchers have used small administrative units as the
zone/neighbourhood building blocks, Sabel et al. (2013), recently developed an
experimental automated zone design method, using a small tessellated cell as a basic
building block, to create new synthetic neighbourhoods in France. They found
correlations between asthma and deprivation were higher for their new zones than

French census areas of a similar size. As a result, they argued that the careful
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construction of neighbourhoods can aid our understanding of relationships between

the social and physical neighbourhood environment and health.

While some researchers have aggregated units based on homogeneity of a particular
characteristic (Riva et al. 2009), others have argued against using homogeneity as a
criteria to create zones (Chaix et al. 2009, Pickett and Pearl 2001, Ross et al. 2004).
Although homogeneity may be relevant for defining sampling units or implementing
interventions, it may not be relevant as the sole criteria with which to delineate areas
an individual is exposed to. In other words, a zone/neighbourhood need not be

homogenous to affect the lives of residents.

2.4.1.3 Buffered administrative units

The use of buffered administrative units is a response to boundary problems.
Boundary problems — also called edge effects — are where study areas such as
neighbourhoods are bounded by a discrete border, yet the spatial processes are not
(Fotheringham and Rogerson 1993). For instance, if a participant lives on the edge of
a neighbourhood, the characteristics of the adjacent neighbourhood may be more
relevant than the characteristics of the neighbourhood the participant resides in.
Boundary problems are particularly relevant for territorial units. Techniques to
address them have long been discussed in geography, but are still new in health

research.

Recently, Frank et al. (2012), have used buffered administrative units in a study of
the environment and adolescents physical activity. In this study, a census block

group buffered by a 0.25 mile radius was used as the residential neighbourhood.
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2.4.1.4 Natural neighbourhoods

Some researchers have suggested that neighbourhoods need to be ‘natural’, or
‘ecologically meaningful” (Pickett and Pearl 2001). These terms describe functional
neighbourhood units that are delineated to better represent the local-level activity
spaces of individuals by ensuring they contain the appropriate composition of

physical and social characteristics (Bissonnette et al. 2012).

Researchers have taken different approaches to the delineation of natural
neighbourhoods. Some create ‘natural’ neighbourhoods by aggregating
administrative units based on homogeneity of variables (Parenteau and Sawada
2011). Natural neighbourhoods created in this way are the same as aggregated

administrative units.

Another approach has been to create natural neighbourhoods by drawing on local
knowledge. Ross et al. (2004), for example, have delineated natural neighbourhoods
using a combination of housing district maps, historical documents, census data,
local perceptions, and consultations with real estate agents. This type of approach

may also end up creating neighbourhoods based on aggregated administrative units.

A small number of studies have delineated natural neighbourhoods based on physical
features of the environment, such as roads, rivers and areas of parkland (Stafford et
al. 2008, Cutchin et al. 2011). Because physical features play an important role in
daily life - for example, most people have to travel around a lake - it is likely that
physical features are an important component in determining realistic neighbourhood
boundaries. As such, a consideration of physical features might have the potential to

improve boundary delineation; either alone, or in combination with other methods.
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2.4.2 Ego-centric delineations

In contrast to territorial units, ego-centric delineations are individually defined.
These types of spatial extents are unique for each individual, although spatial extents
for different individuals can overlap (Chaix et al. 2009). Delineating ego-centric
boundaries around locations relevant to individuals (e.g., home, workplace) is

becoming more common and there are several methods to achieve this.

2.4.2.1 Euclidean buffers

Euclidean buffers — also called ‘straight-line buffers’, or ‘radial buffers’ - are created
by drawing a circle centred on a point relevant to an individual participant, with a
radius/scale defined by the researcher (Oliver, Schuurman and Hall 2007). Euclidean
buffers assume that every part of the circle is as accessible as every other part. In
other words, they ignore barriers (e.g., water, private property) and travel routes and
paths (Chaix et al. 2009, Oliver et al. 2007). Therefore, Euclidean buffers may not be
the most appropriate method of delineating exposure to the environment for certain
types of environmental measures (e.g., access to destinations and services) and
behaviours (e.g., commuting to work). However, for some kinds of environmental
exposures (e.g., air pollution, noise) and for behaviour that is less restricted (e.g.,
children’s roaming beyond official networks), Euclidean buffers may be appropriate

representations of neighbourhood and exposure.

Examples of the use of Euclidean buffers include Bell et al. (2008), who calculated
greenness within a 1 km Euclidean buffer around residential addresses, and Lovasi et
al. (2009), who used a 1 km Euclidean buffer to represent the residential

neighbourhood, in a study that measured neighbourhood walkability.
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2.4.2.2 Network buffers

Network buffers are calculated by measuring a distance over a network from a point
of interest, with the distance/scale determined by the researcher (Oliver et al. 2007).
The most common network used in the creation of network buffers is the road
network. Numerous researchers have used road network buffers at a range of scales
to represent the residential neighbourhood (e.g., Badland et al. 2009, Frank et al.

2007, Adams et al. 2014, Villanueva et al. 2014, Thornton, Lamb and Ball 2013).

However, the creation of neighbourhoods based solely on road networks assumes
that people only travel along roads. In reality, people may also travel along
pedestrian paths/tracks or alleyways, as well as through buildings, parks and public

open space.

Little research has examined the impact of including or excluding pedestrian paths
when creating road network buffers, and none has explicitly examined the impact on
network buffer size and shape. The two existing studies that have compared street
networks with and without pedestrian paths have demonstrated that excluding
pedestrian routes from road network buffers can result in different measures of street
connectivity (Chin et al. 2008, Tal and Handy 2012). Therefore, it is likely that the
inclusion or exclusion of pedestrian routes in street networks will influence the size

and shape of network buffers.

The accuracy of road network buffers is also dependent on the accuracy of the
underlying road network data. Research into the accuracy of commercially available
road data in the United States has highlighted issues with completeness, currency and
accuracy (Zandbergen and Ignizio 2011, Frizzelle et al. 2009). However, unless

researchers go through the time-consuming process of creating a customised road
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network for each study (e.g., Frizzelle et al. 2009), they are reliant on existing road
network data. Therefore, it is important to be aware of the impact that the quality of

this data can have on network buffers.

Other issues can arise in the calculation of road network buffers. These include the
algorithm and software used to calculate the buffer (Forsyth et al. 2012), and whether
the distance from a location to the road centreline is taken into account in the buffer

calculation.

Despite these issues, in many cases road network buffers represent a conceptual
advance on neighbourhoods defined by Euclidean buffers, since network buffers are
seen as a better representation of places people can travel to. However, road
networks may not be as appropriate as Euclidean buffers when assessing exposure or

behaviour that is not limited by roads.

2.4.2.3 Euclidean and network buffers around different locations (home, work,
school, and travel routes)

Euclidean and road network buffers have most commonly been calculated around
home addresses. To date, very little environment and health research has been
conducted around non-residential locations. Inagami et al. (2007), found that
including non-residential exposure increased the magnitude and significance of the
association between residential neighbourhoods and health and could explain why
other studies have not found strong associations between neighbourhoods and health.
More recently, Hurvitz and Moudon (2012), found differences between the

residential and non-residential neighbourhoods.

Researchers have also started to demonstrate significant differences between home

and work environments. Burgoine and Monsivais (2013), found that the food
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environments around homes and workplaces were very different and that the levels
of relative exposure between residential and work and commuting environments
were poorly correlated. Others have demonstrated significant associations between
the work environment characteristics and health-related outcomes such as
cardiovascular disease (CVD) risk (Chum and O' Campo 2013), and usual travel

mode to work (Dalton et al. 2013).

Regardless of the type of buffer used, or the non-residential location examined, all
these methods are still examples of ego-centric methods, since each location is
relevant to an individual. Additionally, these methods - that start to look at
delineations around locations other than home - may have some overlap with activity

space methods (see Section 2.4.4).

2.4.2.4 Participant defined neighbourhoods

A number of studies have asked participants to delineate their own neighbourhood
boundaries (e.g., Basta et al. 2010, Coulton et al. 2001, Smith et al. 2010).
Comparison of these perceived neighbourhood boundaries with territorial units has
shown they do not match (Robinson and Oreskovic 2013, Colabianchi et al. 2014,
Vallée et al. 2015). Furthermore, the degree to which residents agree on
neighbourhood boundaries differs across locations (Colabianchi et al. 2014). This
suggests that the discrepancy between researcher and resident-defined
neighbourhoods is a possible source of bias in neighbourhood effects studies
(Coulton et al. 2001). In addition, many researchers have observed variation in the
size and shape of participant defined neighbourhood boundaries (Basta et al. 2010,
Colabianchi et al. 2014, Coulton et al. 2001, Coulton and Jennings 2013, Vallée et al.
2015), suggesting that individuals living in the same vicinity perceive their

neighbourhood differently.
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Studies have found that the areas of perceived neighbourhoods differ from the areas
of road network buffers (Crawford et al. 2014) and that there is little overlap between
perceived neighbourhoods and road network buffers in adults (Smith et al. 2010),

adolescents (Colabianchi et al. 2014) and children (Villanueva et al. 2012).

While perceived neighbourhood boundaries are of interest for many research
questions, they may not be an appropriate mechanism for delineating areas of
exposure to the environment. Indeed, the extent to which perceived and objective
neighbourhoods represent actual exposure are unanswered questions. Some of the
first work to explore these questions has used GPS data to show that perceived
neighbourhood boundaries better captured where youth spent time and were

physically active than census tracts (Robinson and Oreskovic 2013).

2.4.3 Location-centric

Location-centric delineations use ego-centric methods, but create buffers around pre-
defined locations that do not specifically relate to an individual. For example, Parks
and Schofer (2006), defined neighbourhoods by creating circular (i.e., Euclidean)

buffers around centres of activity such as concentrations of commercial land.

Network buffers have also been calculated around administrative unit centroids
(Pearce et al. 2008, Sharkey and Horel 2008). This approach has some of the benefits
of using network buffers, in that it more accurately represents paths that people can
move along within their neighbourhood, and partially addresses edge effects.
However, the extent to which these location-centric buffers represent the territorial
unit will depend on the scale of analysis, and the method used to create
administrative unit centroids (e.g., geometric centroids versus population weighted

centroids; Thornton, Pearce and Kavanagh 2011).
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2.4.4 Activity spaces

An activity space has been defined as “the space within which people move about or
travel in the course of their daily activities” (Vallee et al. 2010, p. 838). It includes
both the places people visit and the places people travel through but don’t visit

(Schonfelder and Axhausen 2003).

The places that comprise an activity space can be thought of in the context of
Oldenburg’s (1989) theorising on third places, community environments that enable
social interaction. In this framework, home is conceptualised as an individual’s first
place, and workplace/school as their second place. Third places can be further
categorised as destinations (e.g., parks, shops), thresholds (e.g., driveways, front
porches) and transitory spaces (e.g., roads, pathways; Carroll et al., 2015). An
activity space encapsulates the first, second and third spaces frequented by an

individual and the routes between these destinations.

Activity spaces have a long history in transport, geography and other social sciences.
Over the past few years, they have been adopted by health researchers. For example,
activity spaces have recently been examined in relation to exposure to food (Kestens
et al. 2010), mental health (Vallee et al. 2011), alcohol outlets (Basta et al. 2010) and

the built environment (Colabianchi et al. 2014).

As with the delineation of neighbourhoods, there are numerous methods of
delineating activity spaces and the choice of method determines both the shape and
area of the activity space (Sherman et al. 2005). Just as the activity space concept has
been adopted from other fields, so too have many of the activity space delineation
methods. This is potentially problematic, since the purpose of delineating activity

spaces differs between research fields. For instance, in the transport field, activity
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spaces are used as a measure of mobility, with the size of the activity space polygon

indicating the degree of mobility (Schonfelder and Axhausen 2003).

While some health researchers have used activity spaces to assess mobility (e.g.,
Hirsch et al. 2014, Villanueva et al. 2012), others have used activity spaces to
delineate exposure to the environment. These researchers have measured the
characteristics of the environment within the activity space and then modelled
associations with various health-related outcomes (e.g., Zenk et al. 2011, Shearer et
al. 2015, Lipperman-Kreda et al. 2015, Christian 2012, Crawford et al. 2014,
Colabianchi et al. 2014). This approach can be problematic if the activity space
delineation contains large areas that participants never visit — as is the case with two
of the common activity space methods discussed below — or if they exclude areas
participants do visit. For instance, Figure 1 (above) illustrates the potential for this
problem to arise when using activity space measures such as convex hulls and

standard deviation ellipses (SDE).

The most common methods of delineating activity spaces are discussed below.

2.4.4.1 Standard deviation ellipses

The standard deviation ellipse (SDE) is a bivariate statistical measure that
geographically describes areal point data (Yuill 1971). SDEs capture the spatial
distribution of points around a mean centre and create an ellipse at one or two
standard deviations from this centre. Therefore, a 1-standard deviation ellipse (1-
SDE) contains approximately two-thirds of the points (Arcury et al. 2005). An SDE
requires points as input and these points can be weighted, for example, by activity

duration or frequency (Sherman et al. 2005).
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Historically, SDEs have been used to delineate activity spaces (Sherman et al. 2005).
Initially, SDE based activity spaces were created around point locations of regular
destinations obtained through surveys (Sherman et al. 2005), participatory mapping
(Townley, Kloos and Wright 2009) or activity diaries (Kamruzzaman and Hine
2012). However, since the adoption of GPS technology, researchers have
increasingly calculated SDEs using GPS data (e.g., Zenk et al. 2011, Hirsch et al.
2014, Madsen et al. 2014) or mobile phone data (e.g., Jirv, Ahas and Witlox 2014).
Modifications of the SDE have included SDE’s created using only GPS points
located within the residential neighbourhood (Boruff, Nathan and Nijenstein 2012),

and calculating time-weighted SDEs (Crawford et al. 2014).

The main limitation of the SDE is that it is an abstract representation of where people
go. As a Euclidean measure, it does not account for actual spatial arrangements of
geographic or human features. Furthermore, SDE’s typically include large areas that
are not visited (Wong and Shaw 2011).There can also be technical challenges — such
as an unusual spatial distribution of destinations, or too few visited destinations -
that make it difficult to calculate the ellipse (Wong and Shaw 2011). However, the
SDE provides a better indicator of individual access than distance alone, and is now

relatively easy to generate with available software.

2.4.4.2 Convex hulls

Convex hulls - also called minimum convex polygons - are the smallest convex
polygons that enclose a set of points (Galton and Duckham 2006). Therefore, like the
SDE, convex hulls require a dataset of points as input. When using convex hulls to
delineate activity spaces researchers have used commonly visited destinations
(Shareck et al. 2013, Villanueva et al. 2012) and GPS points (Boruff et al. 2012,

Shareck et al. 2013, Yin et al. 2013) as input.
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The limitations of convex hulls are similar to those of the SDEs. Convex hulls
include large areas that people do not visit (Wong and Shaw 2011, Chaix et al.
2012), and with certain numbers or configurations of points they can be difficult to

create (e.g., if all destinations are in a straight line).

2.4.4.3 Daily path areas

The daily path area is a method of activity space delineation adapted from Kwan
(1998). The daily path area takes GPS points as an input and buffers them to create
the activity space. A number of recent studies have delineated activity spaces using
daily path areas (e.g., Zenk et al. 2011, Hirsch et al. 2014, Lipperman-Kreda et al.
2015) and the buffer distances used to create the daily path areas have ranged from
50 m (Shearer et al. 2015) to a half mile (i.e., approximately 800 m; Zenk et al.

2011).

2.4.5 Other delineation methods

The methods described above represent the most commonly used delineation
methods. However, a small number of methodological studies have proposed the use
of alternative methods of delineating both neighbourhood and exposure. In a
statistical approach similar to the SDE method, Buliung and Kanaroglou (2006),
delineated a standard distance circle around a mean centre, with the radius being the
standard distance of activity locations. In an approach based on territorial units,
Wong and Shaw (2011), identified visited locations using travel survey data and
delineated the activity space by combining all census tracts that contained visited
locations. Kestens et al. (2010), also used travel survey data, however they delineated

activity spaces using kernel density estimation (KDE).
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Boruff et al. (2012), have suggested modifications to the SDE, convex hull and road
network buffers, based on the location of common walking trip destinations. Using
GPS data, they identified common walking trip destinations within 1 km of the
residence and created an SDE and convex hull using only these destinations as input.
Their modified road network buffer comprised the shortest network distances from
the residence to each destination. They also proposed the use of a variable width
buffer based on a raster cost-surface approach commonly used in ecology (Boruff et
al. 2012). When testing the alternate buffering methods, they found these techniques
provided better model fit when modelling the relationship between land use and

walking.

Finally, Madsen et al. (2014), have pointed out that while activity space methods are
useful, activity spaces rely on detailed location data (e.g., GPS), which may not
always be available. They noted there is still a need to develop better buffers that do
not require such data. To address this problem they created two types of buffers
oriented towards the central business district (CBD). The first were buffers based on
the shortest network distance between home and the CBD, and the second were
elliptical buffers oriented between the home and the CBD. While these methods are
an important advance they still have limitations. Shortest network distance buffers
exclude other potential routes and focus on journeys between destinations rather than
activity at destinations. The elliptical buffers suffer from the same limitation as the
convex hull and SDE; namely, they can include large areas not visited by

participants.

While many of these novel delineation approaches are promising, no other

researchers have tested or adopted them to date.
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2.5 Does the choice of delineation method affect research results?

Given the numerous delineation methods available, researchers are increasingly
testing the impact of their choice of delineation method and scale on research results.

Table 2 summarises these findings.

Table 2 has shown the impact of different delineation methods and scales for a range
of exposures, outcomes, and population groups. The first thing to note is that there
was little consistency in the neighbourhood delineation approaches and scales
compared in these studies. For example, some studies only compared territorial units,
while others only compared ego-centric methods; some investigated multiple scales,

and others used a single scale.

The final column of Table 2 indicates whether the different delineation methods
made a difference to results. Again, there was no standard method employed to
identify meaningful differences. Therefore, the results in the difference column were

based on the conclusions of each individual study.

Almost all the studies in Table 2 concluded that different neighbourhood delineation
methods and/or scales made a difference to results. However, there were three
exceptions. Ross et al. (2004) concluded that their natural neighbourhoods were
‘remarkably similar’ to census tracts. Given the very similar estimates produced by
the fully adjusted models — 0.98501 (p< 0.01) for the natural neighbourhoods and
0.98578 (p<0.01) for census tracts — their conclusion appears valid. The two models
do not appear to be meaningfully different. This similarity could be because the
natural neighbourhoods and census tracts were created using the same administrative
unit building blocks (i.e., enumeration areas). Furthermore, both the exposure and

outcome measures were measured using enumeration areas.
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The second study to conclude that neighbourhood delineation methods did not make
a difference to results also compared neighbourhoods created using the same
building blocks (i.e., enumeration districts; Jones et al. 2010). Again, the use of the
same base units may have contributed to the similarity of results for the different

delineation methods.

Finally, in a study of associations between walkability and walking in four different
age groups at four different scales, Villanueva et al. (2014), concluded there was no
difference between different sized road network buffers. Their conclusion was based
on results indicating that, for most — but not all - age groups examined, there was
some evidence to suggest higher walkability was associated with more walking.
However, their results also produced different odds ratios at different scales, and for
some population groups the scale of the road network buffer determined whether a
significant association was detected. This is an example of the inconsistency in
approaches for determining what constitutes a meaningful difference between
delineation methods. If the criteria used in some of the other studies were applied,
here, this study would have concluded the choice of scale did make a difference to

the results.

The studies in Table 2 employed a total of six main approaches to identify whether
delineation methods and scales differed. In some cases, more than one of these

comparison techniques has been used.

The first, and simplest, approach was a comparison of the areas of spatial extents
produced by the different delineation method (e.g., Crawford et al. 2014). Second,
some studies examined whether the territorial neighbourhood a participant resides in

predicted an outcome (e.g., Riva et al. 2009, Jones et al. 2010). Third, some studies
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compared characteristics of the delineated areas (e.g., Christian 2012, Zenk et al.

2011).

The fourth, and increasingly popular, approach was to model associations between
the environment measured within the different delineations and health-related
outcomes (e.g., Veugelers et al. 2000, Boone-Heinonen et al. 2010, James et al.
2014, Prins et al. 2011, Colabianchi et al. 2014, Jones et al. 2010, Parenteau and
Sawada 2011, Ross et al. 2004). These studies varied in how they identified optimal
models and delineations. Some studies assessed whether statistical significance was
reached (e.g., Colabianchi et al. 2014, Zenk et al. 2011, James et al. 2014); some
compared the strength of associations (e.g., Boone-Heinonen et al. 2010, van Loon et
al. 2014, James et al. 2014); and others examined model fit statistics (e.g., Parenteau

and Sawada 2011).

Fifth, a small number of researchers assessed the extent of the spatial overlap
between the areas created by the different delineation methods (e.g., Villanueva et al.

2012, Colabianchi et al. 2014).

Finally, even fewer researchers used GPS data to compare how well delineation
methods captured where participants travelled and spent time (e.g., Madsen et al.
2014). This last type of comparison is the only approach that compares delineation
methods with actual exposure. While it is informative to explore how different
delineation approaches change modelling results, it is perhaps more useful to select
delineation methods based on how well they capture exposure. The lack of such

evidence is a notable gap in research around delineation methods.

None of the studies in Table 2 offered a definitive conclusion about a single optimal

delineation method or scale. Indeed, researchers frequently acknowledged this
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limitation (Chaskin 1995, Veugelers et al. 2000, Boone-Heinonen et al. 2010, James
et al. 2014, Cockings and Martin 2005) and the need for future research to address
this issue. Several researchers identified strategies to mitigate this limitation, such as
reporting at multiple scales (Boone-Heinonen et al. 2010), and use of zone design
techniques (Cockings and Martin 2005, Flowerdew et al. 2008, Riva et al. 2009, Riva

et al. 2008, Jones et al. 2010).

2.6 Theoretical considerations

This section describes additional theoretical considerations that are important when
delineating neighbourhood and exposure. While some of these considerations are
drawn from the list provided by Chaix et al. (2009), additional considerations of
scale, time, the Modifiable Areal Unit Problem (MAUP), and the Uncertain

Geographic Context Problem (UGCoP) have been added.

2.6.1 Scale

Appropriate choice of scale is important for both territorial and ego-centric
delineation methods. For territorial delineation, since the scale of the administrative
units used is usually predefined, the choice consists of deciding which sized units are
most appropriate. For example, meshblocks versus census area units in New Zealand,
census tracts versus census blocks in the United States; and enumeration districts

versus census output areas in the United Kingdom.

When creating Euclidean and network buffers, however, the scale or distance is
defined by the researcher. While scales used to delineate buffers range from 100 m to
8050 m (Brownson et al. 2009), they are most commonly based on rules of thumb
(e.g., 400 m 800 m, and 1600 m). These distances are commonly cited as the distance

people can walk within 5, 10 and 20 minutes, respectively (Yang and Diez-Roux
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2012, Austin et al. 2005). The 1600 m distance also represents the distance a person
walks in 15 minutes at the speed suggested by the U.S. Surgeon General as being

required to achieve ‘moderate’ intensity physical activity (Giles-Corti et al. 2005).

Despite their apparent foundation in common-sense, these distances may not
adequately represent actual distances people travel. Evidence from household travel
surveys conducted in Brisbane, Australia and the US suggests that walking distances
to destinations were greater than the distances typically used when generating buffers
(Burke and Brown 2007, Yang and Diez-Roux 2012). Similarly, a pilot study by
Smith et al. (2010), showed participant defined neighbourhoods did not match the 1.6
km Euclidean or network buffers defined by researchers. Furthermore, using GPS
data, researchers have demonstrated that older adults walk distances beyond the

commonly used 400 and 800 m scales (Prins et al. 2014, Boruff et al. 2012).

Scale is a less obvious issue for activity space methods. For instance, when
calculating convex hulls or SDEs the researcher has no direct control over scale.
However, scale can be accounted for in these methods by calculating activity spaces
for subsets of the input dataset. For instance, creating local SDEs by only using
points within a defined distance of home (Boruff et al. 2012), or creating local
convex hulls in space and space-time (Lyons 2014). Scale is also relevant to daily

path areas when choosing the buffer size for the GPS points.

2.6.1.1 Multi-scale vs single-scale

An additional problem relating to scale is that appropriate scales will likely differ for
different locations, activities and population groups (Lupton 2003, Macintyre et al.
2002). Unfortunately, it can be difficult to determine the relevant boundary and size

(Carter and Dubois 2010). One approach that has been suggested as a way of
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overcoming this issue is to use sensitivity analyses to compare effects of variables at
different scales (Chaix et al. 2005). However, Spielman and Yoo (2009) found this
approach to be ineffective, with little difference in the overall fit of their model
across a range of neighbourhood sizes. They suggest that theoretical questions about
how people interact with their environment and at what scales should be answered

before analytical approaches are used.

While theoretical consideration of appropriate scales is essential, given the sparse
theory on the spatial scale relevant to specific health outcomes, exploratory analysis
at multiple scales is still important (Diez Roux 2007). Until the choice of scale is
theoretically or empirically grounded it has been recommended that researchers

report their results at multiple scales of neighbourhood (Brownson et al. 2009).

2.6.1.2 Individual-specific vs uniform scale

Boundaries are typically delineated using a uniform scale for all participants, yet it is
possible the size of a neighbourhood or exposure area is shaped by individual
characteristics and may vary across individuals (Chaix et al. 2009). Vallée et al.
(2015), have called this the ‘constant size neighbourhood trap’ and investigated this
issue by comparing the number of health resources within perceived neighbourhoods
and Euclidean neighbourhoods. Their findings showed a large variation in the size of
perceived neighbourhoods and they concluded that using spatial units of constant
size is a relatively inaccurate way of estimating the actual number of healthcare

resources in a neighbourhood.

Further research is needed to explore this issue and determine how well perceived
neighbourhoods capture exposure to the environment. We also need to consider and

whether the differences found by Vallée et al. are due to the difference between
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perceived and objective neighbourhoods, the difference between activity space and
residential approaches, individual-specific scales, or some combination of these

factors.

Lastly, activity space methods may assist in automatically addressing the constant

size neighbourhood trap.

2.6.2 Fuzzy vs clear-cut

Neighbourhoods and exposure are inherently vague concepts. It is likely that most
ego-centric boundaries are fuzzy, yet current methods of delineation use clear-cut
boundaries (Chaix et al. 2009). Ideally, delineation methods would allow for fuzzy
boundaries, however there are currently no standard methods for achieving this

within GIS.

2.6.3 Oriented vs isotropic

Ego-centric delineation methods usually assume the neighbourhood/exposure area
spreads out equally in all directions. In other words, the spatial extents are assumed
to be isotropic. Yet this is unlikely to reflect the reality of individual travel and
behaviour (Chaix et al. 2009, Matthews 2012). The areas that individuals travel to —
and, therefore, are exposed to - are likely to be oriented in the direction of commonly

visited destinations.

Delineating oriented buffers is a challenging task. Activity space methods
automatically account for anisotropy, but there is still a need to develop oriented ego-
centric neighbourhoods especially as activity spaces require detailed location data
that is not always available. To date, only one study has proposed an oriented

neighbourhood that does not require detailed location data. Madsen et al. (2014),
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proposed the use of ellipses oriented between home and the central business district

as a way of delineating buffers for cyclists.

2.6.4 Time

Time is a consideration not mentioned by Chaix et al. (2009). Most neighbourhood
effects on health studies are cross-sectional (Macintyre et al. 2002) and most
delineation methods ignore the temporal element. Yet human behaviour — and
consequently, exposure to the environment - is dynamic and has both a spatial and

temporal component.

Temporal issues in environment and health research include: the time lag between
exposure and outcome (e.g., taking into account changes in residence; Blakely and
Woodward 2000); the effects of cumulative exposure to the environment; and the
amount of time spent in different environments. There is an acknowledged need for
longitudinal research on environment and health, and researchers have been calling
for greater consideration of individual space-time behaviour when investigating
environmental impacts on health (Saarloos, Kim and Timmermans 2009, Kwan

2013, Rainham et al. 2012, Matthews and Yang 2013).

Research is only just beginning to address temporal issues related to exposure to the
environment. A growing number of longitudinal studies on the environment and
health account for change over longer time periods and across the life course
(Villanueva et al. 2013, Giles-Corti et al. 2013, Sarkar, Gallacher and Webster 2013).
Similarly, a few studies have explored temporal issues over shorter time frames; for
example, through the use of individual mobility data (Wiehe et al. 2008, Shoval et al.

2010).
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2.6.5 The modifiable areal unit problem and the uncertain geographic context

problem
Two theoretical problems are relevant to the delineation of neighbourhood and
exposure in health research: the Modifiable Areal Unit Problem (MAUP); and the

Uncertain Geographic Context Problem (UGCoP).

The MAUP highlights how results can vary depending on the division of the study
area, either through the zonation - or aggregation - effect (Gold 2006), or the scale
effect (Flowerdew et al. 2008). The MAUP has received substantial attention in the
geographic literature, and is increasingly acknowledged in the health literature.
While the MAUP is concerned with differences in results with different delineation
methods, it is not concerned with the question of whether the delineation method

adequately captures context.

Whether or not a delineation method captures the true context is the focus of Kwan’s
UGCoP, which acknowledges that associations between geographic variables and
outcome variables may be affected by the precise delineations of an area.
Furthermore, it is likely that the delineations in common use deviate from the true

geographic context (Kwan 2012a, Kwan 2012b).

2.7 Summary

This chapter provided a broad overview of the literature around the delineation of
neighbourhood and exposure; the methods in common use and limitations associated
with their application in environment and health research. Later chapters include a
more detailed account of literature relevant to the findings reported and discussed in

the particular chapter.
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As this review has shown, there are numerous existing delineation methods, and the
choice of method and scale can make a difference to research results. Yet it is still
unclear which of these methods are most appropriate to use in specific
circumstances. Therefore, Chapter 3 compares methodological choices in delineation
of the residential neighbourhood in a study of the built environment and physical

activity.

Another gap identified in this review has been the lack of evidence as to how well
different delineation methods capture exposure to the environment. Therefore,
Chapters 5, 6, 7, and 8 explore this question in the context of a study of children’s

mobility.

Finally, this review has identified a need for delineation methods that better capture
exposure, yet are not reliant on detailed mobility data (e.g., GPS). Therefore, Chapter
9 proposes several enhancements to the road network buffer that address some of the

theoretical issues identified in the literature review and throughout this dissertation.
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Chapter 3. The influence of methodological
choices on neighbourhood delineation and
relationships between the built environment
and physical activity

3.1 Introduction

Physical activity is of interest to health researchers because an inactive lifestyle is a
risk factor for cardiovascular disease, diabetes mellitus, obesity and other negative
health outcomes (Lee et al. 2012). Physical activity is also thought to be a
mechanism through which built environments - that is, the places built or designed
by humans — can affect chronic disease (Sallis et al. 2012). Therefore, many recent
studies have investigated associations between the built environment and physical
activity, with evidence accumulating on the health benefits of living in higher density
neighbourhoods with well-connected street networks and pedestrian access to a range
of amenities (Sallis et al. 2012). Recent reviews have found that various
characteristics of the objective built environment were consistently associated with
physical activity (including walking) in children (Davison and Lawson 2006), youth
(Ding et al. 2011), and adults (McCormack and Shiell 2011), yet inconsistently

associated with physical activity in older adults (Van Cauwenberg et al. 2011).

As is the case with much built environment and health research, the magnitude of the
associations between the built environment and physical activity are small in
comparison to associations between individual factors and physical activity (Bauman
2005). Giles-Corti et al. (2005) have suggested that there is a lack of specificity in

measurement in these studies and that the predictive ability of models could be
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improved if “behaviour-specific measures of the environment were used to predict

context-specific behaviours” (p. 175).

An important aspect of increased specificity is improved delineation of
neighbourhood and exposure. For instance, many built environment and physical
activity studies have modelled relationships between the characteristics of the
residential built environment (e.g., operationalised as an 800 m road network buffer
around the residential address) with physical activity measured in all locations visited
by the participant over the data collection period. This mismatch between context
and behaviour may mask the true effect of exposure to various environmental
characteristics. Since - as Kwan’s UGCoP states - the true context is often unknown,
researchers who want to better delineate context may be required to capture more
detailed exposure data (e.g., GPS, travel surveys) and/or conduct sensitivity analyses
on a range of context delineation methods and scales. This is further complicated by
the fact that the appropriate scale and delineation method is likely to vary by
population group, location, outcome measure, and the built environment

characteristic of interest (Brownson et al. 2009, Moudon et al. 2006).

This chapter addresses the second aim of this dissertation, which is to explore the
influence of different analysis choices on neighbourhood delineation and the
relationships between the built environment and physical activity in New Zealand

adults. It does this in two ways.

First, it compares seven different delineation methods/scales for a specific
population group (adults) and location (New Zealand), with five measures of
physical activity and three built environment characteristics (dwelling density, street

connectivity, and neighbourhood destination accessibility). While some findings
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from this analysis may be specific to the sample, other findings may be relevant to
other locations and populations and are likely to be useful in the translation of
research results into policy and practice and facilitate more effective policy
interventions (Learnihan et al. 2011). For example, it is not sufficient for urban
designers and planners to know that more shops are associated with higher levels of
walking, they also need to know where the shops need to be located — in other words

at what distance/scale (Koohsari, Badland and Giles-Corti 2013).

Second, this chapter goes on to focus on road network buffers, comparing different
buffering algorithms to determine whether the choice of algorithm makes a
difference to results. This builds on work by Forsyth et al. (2012), who compared
different network buffering algorithms in a study of the food environment. They
noted that different GIS software and different versions of the same software could
produce buffers of different shapes and sizes even when using the same scale. They
proposed a ‘sausage buffer’ method of creating road network buffers and
demonstrated that the sausage buffer produced similar results to other buffering
algorithms when measuring variables associated with the food and physical activity
environments and also when measuring the correlations between these variables and
relevant outcomes such as physical activity and food purchasing. They also observed
that the commonly used ArcGIS (ESRI, Redlands) service area functions are a black

box that can change between versions and are not replicable.

The analysis in this chapter adds to Forsyth et al.’s work in a number of ways: 1) it
uses different built environment and outcome variables, 2) it uses a greater range of
scales, and 3) it determines the impact on the results of statistical models of the

association between the built environment and physical activity.
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This chapter uses data from the URBAN study. Therefore, the next section provides
an overview of the URBAN study methods common to all analyses undertaken in

this chapter. It ends with a description of the candidate’s contributions to the study.

3.2 URBAN Study methods

3.2.1 Overview of the URBAN Study

The URBAN study was funded by the Health Research Council of New Zealand
(07/356) to explore the relationship between the neighbourhood built environment
and physical activity in New Zealand. It was a cross-sectional, mixed methods study
that was part of a larger twelve country study that used comparable methods to study
this relationship internationally (Kerr et al. 2012). The twelve country study was run

by the International Physical activity and Environment Network (IPEN).

The URBAN study methods were informed by IPEN protocols for neighbourhood
selection, data collection, and the calculation of GIS-based built environment
measures. While the study methods have been published elsewhere (Badland et al.
2009), methods and data sources relevant to this thesis are described below and
include more detail than in the published manuscript. Ethical approval was granted

by Auckland University of Technology and Massey University ethics committees.

3.2.2 Study area and neighbourhood selection
The URBAN study was conducted in four New Zealand cities — North Shore City,

Waitakere City, Wellington City, and Christchurch City — between April 2008 and
September 2010. A total of 48 neighbourhoods were selected on the basis of a
walkability index and levels of Maori population, which was used as a proxy for

socio-economic status.
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A walkability index was calculated for all urban meshblocks in the study cities. A
meshblock is the smallest census area unit used by Statistics New Zealand and urban
meshblocks contained approximately 110 people (Statistics New Zealand 2007).
Urban meshblocks were initially defined using the 2006 Urban/Rural profile
(Statistics New Zealand 2006) and were further refined using zoning data from
territorial local authorities. All meshblocks that contained any area zoned ‘rural’

were excluded.

The walkability index comprised four measures — residential density, street
connectivity, land use mix, and retail floor area ratio — and was based on methods

described in Leslie et al. (2007) and the IPEN GIS templates (Adams et al. 2012).

Residential density was calculated by dividing the number of private occupied
dwellings by the area in residential land use. Meshblock-level dwelling data were
obtained from the 2006 New Zealand census and the area in residential land use was

estimated using territorial authority zoning data.

Street connectivity was calculated by dividing the number of 3-or-more-way
intersections by the area of the meshblock. To minimise edge effects, the meshblock
was buffered by 20 m for this measure only. Intersections were derived from road

datasets provided by territorial authorities.

Zoning data were used to categorise areas into five different land uses: commercial,
residential, industrial, open space, and other. Land use mix was calculated using an
entropy equation (D'Sousa et al. 2006), where 0 indicates homogeneity of land use,

and a value closer to 1 indicates greater heterogeneity of land use.
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Retail floor area ratio was calculated by dividing the area of the footprint of
buildings located in retail zones by the land area of the parcels in retail zones. This
measure was intended to distinguish between car dominant retail

such as big block retail (smaller ratio resulting from a larger land parcel area
dedicated to car parking) and pedestrian dominant retail such as strip shopping.
However, the utility of the measure is heavily reliant on suitable data. Land use data
were not available at a sufficient resolution to identify many of the smaller
pedestrian-friendly retail land uses, such as corner shops in suburban
neighbourhoods. Therefore, the retail floor area ratio measure was only used in
neighbourhood selection and excluded from further analyses. Building footprint and

zoning data were sourced from territorial authorities.

The raw measures of residential density, street connectivity, land use mix, and retail
floor area ratio were converted into deciles and summed to create the walkability
index. Within each city the urban meshblocks were divided into deciles based on the
walkability index. Deciles 1-3 were defined as ‘low walkability’ and deciles 8-10

were defined as ‘high walkability.’

The percentage Maori population was assessed for each urban meshblock using 2006
data from the New Zealand census. Within each city the urban meshblocks were
divided into deciles based on the percentage Maori population. Deciles 1-3 were

defined as ‘low Maori’ and deciles 8-10 were defined as ‘high Maori.’

The study aimed to select three neighbourhoods within each city in each of the
following quadrants: low walkability/low Maori; low walkability/high Maori; high
walkability/low Maori; high walkability/high Maori. A neighbourhood was defined

as five contiguous meshblocks falling within the same walkability/Maori quadrant.
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In order to achieve the required sample size of 42 adults per neighbourhood, and
assuming a 60% response rate, the neighbourhoods also needed to contain a

minimum population of 100 dwellings.

The following process was used to create neighbourhoods from contiguous
meshblocks. First, clusters of urban meshblocks with the same walkability/Maori
quadrant were created. Meshblocks belonging to clusters with fewer than five
contiguous neighbouring meshblocks were excluded from further analyses. Second, a
meshblock was randomly selected from the remaining list of eligible meshblocks.
Next, the four neighbouring meshblocks with the closest walkability score were
sequentially combined with the selected meshblock to form a neighbourhood. These
five meshblocks were removed from the eligible meshblocks and the process
repeated from the second step until twelve neighbourhoods, three in each quadrant,

were selected for each city.

3.2.3 Participant sampling strategy

Participants were recruited by trained interviewers via a door-to-door strategy. GIS
was used to generate a random start point within each neighbourhood, and a walking
route was defined using a consistent set of rules. Maps were created for the
interviewers showing start points, walking routes, and instructions to approach every
nth household. The household sampling rate was calculated by dividing the dwelling

density by the estimated response rate (60%).

42 households were selected in each neighbourhood with one adult (20 - 65 years)
recruited in each household. Additional details on participant recruitment and data

collection are available in Badland et al. (2009).
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3.2.4 Participants
The URBAN study recruited a total of 2033 adults aged between 20 and 65 years of

age with a response rate of 44.8%. Residential addresses were geocoded using
ArcGIS software. 44 participant’s residential addresses could not be located, leaving

a total of 1989 participants. Participants provided informed consent/assent.

3.2.5 Demographics, neighbourhood preference, and neighbourhood
deprivation

Participants completed a face-to-face computer-assisted personal interview whereby
demographic data and self-reported physical activity were collected. Preference for
living in a more or less walkable neighbourhood was measured using items
developed by Levine et al. (2012). A full description of neighbourhood preference
measures in the URBAN study is available elsewhere (Witten et al. 2012).
Neighbourhood deprivation was measured using the New Zealand Deprivation Index

2006 provided at the meshblock level (Salmond, Crampton and Atkinson 2007).

3.2.6 Physical activity measures

Objective physical activity was measured using Actical accelerometers (Mini-Mitter,
Sunriver, OR, USA), which participants wore on their hips for seven consecutive
days during waking hours. The accelerometers recorded physical activity every 30
seconds and participants completed a travel and compliance log for the accelerometer

data collection.

The raw output from the accelerometer is called a count (Coulton et al. 2004), with
higher counts indicating more intense physical activity. Periods of greater than 59
minutes of consecutive zero counts or where the accelerometer was worn for less

than 60 minutes were excluded from analysis.
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Two objective measures of physical activity were created based on the accelerometer
data: mean number of accelerometer counts recorded per hour worn and, percentage
time spent in moderate-vigorous physical activity (MVPA). MVPA was determined

using a cut-point of 1500 counts per minute.

Self-report physical activity data were collected using the International Physical
Activity Questionnaire — Long Form (IPAQ-LF) (Craig et al. 2003). Three self-
reported measures of physical activity measures were created based on this
questionnaire: self-reported walking for transport, self-reported walking for

recreation, and total self-reported minutes walking for all purposes.

3.2.7 URBAN dataset and spatial data sources

Elements of the URBAN dataset used in this dissertation are presented in Table 3.
Spatial data collected to conduct GIS analyses for the URBAN study are presented in

Table 4 .
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Table 3. Relevant items from the URBAN dataset.

Item Description Categories
Identifiers
Participant ID Unique participant ID
Neighbourhood Unique neighbourhood ID
City Unique city ID

Socio-demographic (individual level)

Age 1=15-29, 2=30-44, 3=45-54, 4=55-65
Sex 1=male, 2= female

Ethnicity 1=Maori, 2=non-Maori

Highest qualification 1= no qualification, 2=school, 3=post

school diploma, 4=tertiary

Marital status 1=never married, 2=married,
3=previously married

Income Combined annual 1=<$ 40,000, 2=§ 40,001-60,000, 3=$
household income 60,001-80,000, 4=$ 80,001-100,000,
5=>$ 100,000
Employment status Employment status for 1=full time, 2= part time, 3=unpaid

main occupation

Vehicle access 1=unrestricted, 2=restricted, 3=no car
access
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Socio-demographic (area level)

Neighbourhood deprivation

Neighbourhood preference

Physical activity
Self-reported walking for
transport

Self-reported walking for
recreation

Self-reported walking

Accelerometer measured
physical activity

Moderate-vigorous physical
activity (MVPA)

Meshblock level quintiles: 1=less deprived, 5=most
deprivation index deprived.

1=strongly prefer walkable,
2=moderately prefer walkable,
3=neutral, 4=moderately prefer less
walkable, 5=strongly prefer less
walkable

Total minutes walking for
transport

Total minutes walking for
recreation

Total minutes walking for
all purposes

Mean accelerometer
counts/hour over a week

Percentage time spent in
MVPA
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Table 4. URBAN study spatial data and sources.

Dataset
Road network

Planning Zones

Cadastre
Address points
Building outlines

Parks

Public transport
stops

Destinations

Source

North Shore City Council
Waitakere City Council
Wellington City Council
Christchurch City Council

North Shore City Council
Waitakere City Council
Wellington City Council
Christchurch City Council

Olivier Consulting
Olivier Consulting

North Shore City Council
Waitakere City Council
Wellington City Council
Christchurch City Council

North Shore City Council
Waitakere City Council
Wellington City Council
Christchurch City Council

Auckland Transport Authority
Wellington City Council
Environment Canterbury

North Shore City Council
Waitakere City Council
Wellington City Council
Christchurch City Council
Ministry of Education
Ministry of the Environment and Land
Ministry of Health

Liquor Licensing Authority
Internet

GeoSmart

Terra Link International

Year of data collection

2008
2008
2008
2008

2008
2008
2008
2008

2009
2009

2008
2008
2008
2008

2008
2008
2008
2008

2008
2008
2008

2008
2008
2008
2008
2008
2005
2008
2008
2005, 2008
2008
2005

3.2.8 Candidate contributions to the URBAN study

The candidate was a named investigator on the URBAN study. Key contributions

included:

e Contribution to the study design and grant application.

e Responsibility for GIS methods, data and analyses.
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e Liaison with the IPEN study coordinating centre and modification of IPEN

GIS protocols for New Zealand data.

e Contribution as an author/co-author on reports and publications, notably the
URBAN study methods paper (Badland et al. 2009), a report for territorial
authorities describing the GIS methods used (Mavoa et al. 2009), the IPEN
study GIS methods paper (Adams et al. 2014), the main URBAN study
results papers (Witten et al. 2012, Oliver et al. 2015b, Hinckson et al. under
review), and other papers arising from the study (Hinckson et al. 2014,

McGrath et al. under review, Badland et al. 2012, Oliver et al. 2014a).

Further details of candidate contributions to the URBAN study are provided in

Appendix A.

3.3 Do different neighbourhood delineations change the results of
models of the relationship between the built environment and
physical activity?

This section describes the methods and results from the first set of analyses. It
compares how model results vary when using different delineation methods/scales,

different built environment measures, and different physical activity measures.

3.3.1 Methods
3.3.1.1 Neighbourhood definitions

Two types of neighbourhood definitions — administrative units and road network
buffers — were used in this study. Circular buffers were not investigated since they
are less appropriate for the built environment measures calculated here. Overall,
seven different neighbourhood definitions were created for each participant at a

range of scales. Three of the seven areas were based on administrative units: the
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meshblock; the census area unit, which is comprised of meshblocks in urban areas
and contains between 3,000 — 5,000 people (Statistics New Zealand 2007); and the
URBAN study neighbourhoods. 36 of the 48 URBAN neighbourhoods were
aggregations of five contiguous meshblocks with similar walkability scores. The
remaining 12 URBAN neighbourhoods were expanded during participant
recruitment to reach the required sample size of 42 adults per neighbourhood.
Despite varying numbers of meshblocks, all URBAN neighbourhoods were a similar

size.

The four remaining neighbourhood definitions were road network buffers centred on
participants’ residential addresses and calculated at four scales commonly used in
built environment and health research: 500, 800, 1000, and 1500 m (Brownson et al.
2009, Adams et al. 2012). The road network buffers were created using the Service
Area function in ArcGIS 9.3 (ESRI, 2013). The road network was supplied by
territorial authorities and excluded pedestrian-only paths. Roads that were
inaccessible to pedestrians (i.e., motorways and motorway on and off ramps) were
removed prior to analysis. The relative sizes of the neighbourhoods are illustrated in

Figure 2, which shows neighbourhood definitions for a single participant.
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Figure 2. Neighbourhood boundaries for an example participant.

3.3.1.2 Built environment measures

Three built environment measures — residential dwelling density, street connectivity,
and destination accessibility — were calculated for every participant for each of the
seven neighbourhood definitions. These three measures have been associated with
physical activity across different contexts (Sundquist et al. 2011, Kligerman et al.

2007, Witten et al. 2012, Van Dyck et al. 2010).

Dwelling density and street connectivity were calculated as described in the
walkability index methods above. Since meshblock boundaries align with all

administrative neighbourhoods, the number of private occupied dwellings was easily
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calculated for this type of neighbourhood delineation. However, meshblock
boundaries do not align with road network buffer boundaries. Therefore, the number
of private occupied dwellings within each road network buffer was estimated by

calculating a weighted average based on the land area of contributing meshblocks.

Destination accessibility was assessed using the Neighbourhood Destination
Accessibility Index (NDAI; Witten, Pearce and Day 2011). The NDAI is a measure
of access to 31 neighbourhood destinations in eight domains: education, transport,
recreation, social and cultural, food retail, financial, health, and other retail. Each
domain was assigned a score based on either the presence or density of destinations
within a neighbourhood. The NDAI was calculated by summing the weighted
domain scores, producing a value between 0 and 31, with a higher score representing
better walking access to services and amenities. Since the NDAI was based on
presence/absence of destinations, it is expected to increase with increased

neighbourhood size.

3.3.1.3 Statistical analyses

The relationships between the built environment and physical activity measures were
modelled using linear multi-level mixed effect models to take into account the
clustering of individuals within neighbourhoods (defined as the URBAN Study
neighbourhood) and cities (neighbourhoods and cities are specified as random

effects).

All outcome variables were log transformed to approximate a normal distribution.
Therefore, the regression coefficients when exponentiated are the ratio or relative

change in the outcome measure for each unit change in the exposure variable.
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The relationship between each of the three built environment measures and the five
activity measures, were modelled separately for each of the seven neighbourhood
definitions (a total of 105 distinct models). Each relationship was assessed by
adjusting for individual level factors (sex, age, ethnicity, marital status, education,
income, employment, and car access), neighbourhood socio-economic deprivation,

and neighbourhood preference (i.e., fixed effects).

The goodness-of-fit of each model was estimated by calculating the marginal R?
(proportion of variance explained by fixed effects alone) and conditional R?

(proportion of variance explained by both fixed and random effects; Nakagawa and

Schielzeth 2013).

Statistical analyses were conducted in R (R Development Core Team 2008) using the
‘Imer’ function in the ‘lme4’ package (Bates et al. 2015) to fit the linear mixed

models and the ‘MuMIn’ package to calculate goodness-of-fit (Barton 2015).

3.3.2 Results

Descriptive statistics for the size of the seven neighbourhood delineations are shown
in Table 5. The meshblock is the smallest neighbourhood, with a median area almost
one quarter the size of the next smallest area (500 m road network buffer). The
URBAN study neighbourhood is closest in size to the 500 m road network buffer
(RNB), and the census area unit falls between the 1000 m and 1500 m road network

buffers.
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Table 5. Neighbourhood boundary size descriptive statistics.

Boundary type Neighbourhood N Median Range Interquartile

boundary (kmz) (kmz) range
(km’)

Administrative unit ~ Meshblock 272 0.05 1.43 0.05

Contiguous URBAN neighbourhood 48 0.30 1.03 0.20

administrative units

Administrative unit ~ Census area unit 67 1.83 8.96 1.37

Road network 500 m road network 1,989 0.28 1.03 0.13

buffer buffer

Road network 800 m road network 1,989 0.64 0.98 0.31

buffer buffer

Road network 1000 m road network 1,989 1.00 1.63 0.51

buffer buffer

Road network 1500 m road network 1,989 2.26 341 0.95

buffer

buffer

Table 6 displays the descriptive statistics for the built environment measures for each

of these neighbourhood delineations. For the road network buffers, the median street

connectivity and dwelling density measures decrease consistently with increasing

neighbourhood size. As expected, NDAI measures consistently increase with

increasing neighbourhood size.
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Table 7 presents descriptive statistics for the physical activity outcome measures. On
average, participants in the study spent more time walking for transport than they did
for recreation. Mean accelerometer counts per hour had a median value of 8,291.59
and ranged from 281.0 to 30,917.9, with an inter-quartile range of 5,478.5. To put
these numbers into context, a participant who is washing dishes for an hour might
record counts in the order of 600 (~ 10 counts per minute), while a participant who is
continuously playing basketball for an hour might record counts in the order of

282,000 (~ 4,700 per minute; Puyau et al. 2004).

Table 7. Descriptive statistics for the physical activity outcome measures.

Physical activity outcome Mean Median SD
Self-reported walking for transport (total minutes) 25.7 20 54.1
Self-reported walking for recreation (total minutes) 29.4 20 47.0
Self-reported overall walking (total minutes) 55.1 20 73.3
Mean accelerometer counts per hour 9068.7 8291.9 4476.9
% time spend in MVPA 12.4 11 6.8

Table 8 presents the results from each of the 105 fully adjusted models comparing
the seven different neighbourhood definitions for three built environment measures
and five physical activity measures. Results are reported as the percentage change in

physical activity for a one-unit increase in the built environment.
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Shaded cells indicate results where the built environment measure was significantly
associated with physical activity; that is, where the confidence intervals did not cross
zero. The marginal and conditional R?s are shown in italics and indicate the
percentage of variance explained by the model. The magnitudes of the percentage
changes reported in Table 8 are not directly comparable across the different physical
activity measures. They are, however, comparable between the different built

environment measures.

As a general observation, it is worth nothing that effect sizes were small for all
models. This is common in built environment research since individual outcomes are
more strongly associated with individual predictors. Some of these effect sizes
appear meaningful. For instance, for a one dph increase in dwelling density the
estimates ranged from a 2.25% to 6.53% increase in walking for transport minutes,
which correspond to a 1-2 minute increase in transport walking minutes over a seven
day period. Other effect sizes may be less meaningful. For example, 0.27% to 0.45%
increases in mean accelerometer counts were associated with increasing the street
connectivity by one intersection per square kilometre. However, the main purpose of
conducting these analyses was not to identify effect sizes, but to determine whether

results differ for the different neighbourhood buffers.

The results for dwelling density show that, for all seven neighbourhood buffers, there
was evidence to support an association between dwelling density and two of the
physical activity measures: mean accelerometer counts and walking for transport

minutes. When examining walking for recreation and total walking measures, there
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was evidence of an association with dwelling density for all neighbourhood
definitions except the census area unit. However, when percentage time spent in
MVPA was the outcome measure, there was only evidence of an association with
dwelling density when measured within a meshblock, a census area unit, a 500 m

road network buffer, or an 800 m road network buffer.

When street connectivity was measured within the meshblock there was no evidence
of an association with any of the five physical activity measures. Evidence of an
association between street connectivity and both mean accelerometer counts and total
walking minutes was consistent across the remaining six neighbourhood definitions.
When modelling associations with MVPA there was no evidence of an association
for the largest road network buffer (1500 m). Conversely, when modelling
associations with walking for transport and walking for recreation, there was no
evidence of an association for the smaller road network buffers (500 and 800 m in

the case of walking for transport and 500 m for recreational walking).

NDAI measured within the two smallest administrative neighbourhoods (meshblock
and URBAN) was not associated with any of the physical activity measures. In
general, associations between NDAI and physical activity were more likely to be
detected when NDAI was measured within larger neighbourhoods. There was only
one neighbourhood definition where NDAI was associated with recreational walking:

the census area unit.

The number of models that resulted in associations between the built environment
and physical activity differed by built environment measure. Dwelling density was
most consistently associated with physical activity with 30 out of the 35 models

resulting in evidence of an association. 26 of 35 street connectivity models detected
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an association with physical activity. NDAI was the least consistently associated
with physical activity, since only 16 of the 35 NDAI models produced statistical
evidence of an association. In general, this suggests that the association between
dwelling density and physical activity may be more robust than the associations

between street connectivity or NDAI and physical activity.

There was no single neighbourhood definition that resulted in statistical evidence of
an association between all built environment and physical activity measures. The
meshblock, 500 m, and 800 m road network buffers consistently resulted in evidence
of an association between dwelling density and all five physical activity measures.
For street connectivity, it was the URBAN neighbourhood, census area unit, and
1000 m road network buffer that produced consistent evidence of an association with
physical activity. In contrast, there was no single neighbourhood definition that
resulted in consistent evidence of an association between NDAI and all five physical
activity measures. The neighbourhood definitions where NDAI was most
consistently associated with physical activity were the census area unit, 800 m road

network buffer, and 1000 m road network buffer.

When comparing models with the same built environment and physical activity
measure, the marginal and conditional R%s were similar. This indicates that the
choice of neighbourhood delineation did not meaningfully change the amount of

variance explained by the models.

Although there was no statistical evidence to show that the magnitudes of the
association differed for different neighbourhoods, there were scale trends in the point
estimates. For example, when looking at the dwelling density and street connectivity

models, as the neighbourhood increased in size the magnitude of the effect size also
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increased for both the administrative unit and road network buffers. In contrast, the

scale trend for the NDAI models appears to be nonlinear.

3.3.3 Discussion

The aim of this first part of the chapter was to determine whether different
neighbourhood delineations changed results of models of the relationship between
built environment and physical activity. As has been suggested in the literature the
results of these analyses were influenced by the choice of neighbourhood delineation;
different delineations produced different results when modelling the relationship

between the built environment and physical activity.

The clearest finding from this study is that the choice of neighbourhood definition,
built environment measure, and physical activity measure can all determine whether
there is evidence of an association or not. A neighbourhood delineation that is
appropriate for one built environment measure may not be appropriate for all built
environment measures. Similarly, different delineations may be more appropriate for
different physical activity outcome measures. Therefore, it is important to choose
neighbourhood definitions carefully, and to report results at a range of scales

(Brownson et al. 2009).

The results did not clearly identify a single ideal neighbourhood definition for use in
built environment and physical activity research. However, they do suggest the
commonly used 800 m road network buffer appears to be an appropriate choice
across a range of built environment and physical activity measures, at least for adults.
It is also apparent care needs to be taken with the smaller scale neighbourhoods (i.e.,
smaller than the 800m road network buffer), especially when measuring street

connectivity and destination accessibility.
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While it is not clear why there was a lack of evidence of associations between street
connectivity and physical activity at smaller scales, the lack of evidence at the
smaller scales makes sense for the NDAI. Given that neighbourhoods in this study
had a minimum population criterion, we would expect residential dwellings to be the
most common feature in the study neighbourhoods. The presence of destinations is
less guaranteed and may explain why the NDAI measure, which was based on the

presence of destinations, was not associated with physical activity at smaller scales.

There may be other explanations for the lack of evidence of associations at the
smallest scales. Smaller neighbourhoods are likely to have narrower exposure
gradients, making it more difficult to detect effects (Long and Nelson 2013).
Additionally, positional accuracy issues — for instance, geocoding and spatial data
precision and error — are more influential at smaller scales (Healy and Gilliland
2012). Finally, it is possible that smaller scale neighbourhoods are more relevant to
population groups not considered in this study (e.g., non-drivers compared to drivers
or children compared to adults). For instance, in a study of geographic area and scale
on the relationship between food environment and behaviour, Thornton et al. (2012)
found that their smallest neighbourhood (400 m road network buffer) was not
significant for the full sample yet reached significance when only households without
cars were assessed. This finding is consistent with travel survey data that shows
people in non-car households are more likely to use active transport modes than
households with access to a car (Barton, Horswell and Millar 2012, Dieleman, Dijst

and Burghouwt 2002, Scheiner 2010).

The results of the models of associations between NDAI and recreational walking are

also noteworthy. There was only evidence of an association when NDAI was
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measured within the census area unit (the largest neighbourhood boundary). This
could be a spurious result, especially since destination accessibility has not been
consistently associated with walking for recreation (Saelens and Handy 2008,
McCormack, Giles-Corti and Bulsara 2008, Sugiyama et al. 2012). Alternatively, it
could suggest that the scales at which destinations are associated with recreational
walking are larger than the scales at which destinations are associated with walking

for transport.

It was difficult to determine whether neighbourhood delineation made a difference to
the magnitude of the association. Comparing neighbourhoods of different scales
revealed different descriptive trends in effect size for the three built environment
measures and five physical activity measures. However, these trends were only
evident for the point estimates of this sample and there was no statistical evidence
that effect sizes vary by neighbourhood definition. In addition, the very small

differences in effects sizes were not practically meaningful.

As mentioned earlier, it has been recommended that researchers report GIS-based
built environment measures at a range of scales (Brownson et al. 2009), and the
results from this chapter support this recommendation. Reporting at a range of scales
would assist with greater consistency and comparability across studies. It would also
help identify optimal built environment thresholds to support health behaviour for a
range of built environment measures, population groups and health behaviours and

outcomes (Koohsari et al. 2013).

While it is a worthwhile goal, reporting results at a range of scales may be difficult
from a practical perspective. Calculating GIS-based measures of the built

environment requires technical staff, specialist software, and sufficient computing
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power. This can make the calculation of built environment measures at a range of
scales prohibitively difficult and expensive. Possible solutions to this problem
include sharing GIS resources and knowledge (e.g., sharing scripts and GIS-based
models that automatically calculate built environment measures), and the provision
of open source tools to calculate built environment measures (Giles-Corti et al.
2014). These mechanisms could reduce the workload and cost for researchers to
report results at a variety of scales, and increase comparability of built environment

measures between studies.

Reporting results at a range of scales does not preclude the need to determine what
scales and ranges are appropriate. An important first step is to consider available
theoretical and conceptual models that could assist with decisions about what scales
are likely to be most relevant (Diez Roux 2007). Other data - such as time use data
(Millward, Spinney and Scott 2013), travel survey data (Yang and Diez-Roux 2012,
Burke and Brown 2007), GPS data (Boruff et al. 2012, Zenk et al. 2011), and studies
on perceived neighbourhood sizes (Smith et al. 2010) - can also be used to inform the
choice of scale by providing information on distances people travel and places they

spend time.

When considering the different physical activity measures, the two most general
measures — mean accelerometer counts per hour and total walking minutes — were
most consistently associated with the built environment across all three built
environment measures and all seven neighbourhood delineations. It is likely the
mean accelerometer counts and total walking measures will both capture most
activity in the residential neighbourhood, whereas the other three physical activity

measures are more likely to exclude within-neighbourhood activity. For example,
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percentage time spent in MVPA was a measure of vigorous physical activity and is
the measure most likely to capture physical activity from sport participation and
fitness related activities that do not necessarily occur within the residential

neighbourhood and may also occur indoors (e.g., working out at a fitness centre).

3.3.3.1 Strengths and limitations

One of the strengths of the analyses presented in this chapter was the comparison of
five different physical activity measures, including two objective measures of
physical activity. The self-reported walking measures suffer from issues such as poor
respondent memory and under-estimation of incidental activities (Dollman et al.
2009). While the objective physical activity measures did not suffer from these
issues, they had a different limitation. It was challenging to determine whether effect
sizes are meaningful when the outcome measure is accelerometer counts per hour
since it is difficult to envision what this measure means in real life. Likewise, this
difficulty in interpretation also makes it harder to determine whether the difference in

effect size between neighbourhood definitions is consequential.

A limitation relevant to all outcome measures was that the built environment was
assessed for the residential neighbourhood, yet the physical activity could have taken

place within or beyond the residential neighbourhood.

Another limitation of this analysis is that it did not go beyond the 1500 m scale. It is
possible that the built environment is also associated with physical activity at larger
scales. However, as the scale increases, the reduced heterogeneity can lead to

difficulty detecting effects (Thornton et al. 2012, Long and Nelson 2013).

A further methodological limitation concerns the incomplete representation of where

people can travel. When creating road network buffers, road network data were used
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to represent where people can travel. However, as discussed in Chapter 2, this is an
incomplete representation of potential travel paths because it excludes non-road
networks that people commonly travel along (e.g., pedestrian only paths, cycle
trails). Therefore, the neighbourhood delineations based on road network buffers are

likely only subsets of the environment experienced by participants.

Finally, this analysis was limited by imprecise representation of destination data. The
location of each destination was represented by a single point, whereas in reality,
destinations cover areas of varying sizes. Furthermore, large destinations such as
parks and schools, are likely to have several access points. Future analyses would
benefit from better representation of destinations and some methods to achieve this
have recently been proposed in the literature (Higgs, Fry and Langford 2012, Mavoa

et al. 2014).

3.4 Do different buffering algorithms change the neighbourhood

definitions?

This section presents the second set of analyses — a comparison of road network
buffering algorithms. General URBAN study methods were described in Section 3.2.

Additional methods specific to this set of analyses are described in this section.

3.4.1 Methods
3.4.1.1 Buffer creation

Road network buffers were created around the residential addresses of 1989 adults
who participated in the URBAN study. Five different types of buffers were created
for each participant at ten scales: 400 m, 500 m, 800 m, 1000 m, 1200 m, 1500 m,

1600 m, 2000 m, 2500 m, and 3000 m. After the previous analyses (Section 3.3), the
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number of scales assessed was increased because it became apparent that fewer data

points across a shorter distance made it difficult to detect spatial trends in the results.

Four of the five road network buffer types were calculated using the ‘black-box’
proprietary service area algorithm in ArcGIS 10.2 software (ESRI, Redlands). The
ArcGIS “Service Area’ function has a range of user-specified parameters including:
1) a choice between a ‘Generalized’ or ‘Detailed’ service area, 2) a trim option, and
3) a trim distance. Generalised service areas are quick to calculate but are less
accurate at the edges and can result in exclusion of islands of unreached elements
(ESRI 2013). Detailed service areas are more accurate, but take longer to generate
than generalised service areas (ESRI 2013). The edges of service areas can be

trimmed to a specified distance of the outer network edges (ESRI 2013).

Table 9 shows the different parameters used for the four ArcGIS buffers calculated in

this section.

Table 9. ArcGIS service area types.

ArcGIS service area type Generalised or Detailed Trim

Detailed Buffer with No Trim (DN) Detailed None
Detailed Buffer with Trim (DT) Detailed 100 m
Generalised Buffer with No Trim (GN) Generalised None
Generalised Buffer with Trim (GT) Generalised 100 m

The fifth buffer type calculated was the ‘sausage buffer’ (SB). While the sausage
buffer was also calculated in ArcGIS 10.2, the functions used to create it are not

proprietary and therefore this approach can be replicated in other software. The
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sausage buffer was calculated using a 50 m radius from the road centreline (Figure

3).

——— Road centreline

Sausage buffer (50 m radius)

@ Origin (e.g. residential address)

Figure 3. [llustration of a sausage buffer with a 50 m buffer radius.

3.4.1.2 Built environment measures

Six built environment measures were calculated for each buffer: count of 3-or-more-
way intersections; street connectivity (i.e., intersection density); count of bus stops;
count of dwellings; total park area in the buffer; and percentage of the buffer that is a
park. These measures were chosen to represent a range of common types of spatial

data measures.

3.4.1.3 Statistical analysis

Descriptive statistics were calculated for the road network buffer areas. Spearman
correlations were calculated to compare the built environment measures across the
five different buffers for the ten different scales (a0 = 5%). Associations between the

built environment measures and a single physical activity measure - mean
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accelerometer counts - were assessed using the modelling approach described in the
previous section. 300 distinct models were run to capture the combinations of the
five types of road network buffer, ten scales, and objective measured physical
activity for the six built environment measures. Statistical analyses were conducted

in R (R Development Core Team 2008).

3.4.2 Results
3.4.2.1 Buffer Area

Table 29 (Appendix B) presents descriptive statistics of the area (km?) for the five
different types of buffer across the ten different scales. These results show that the
Sausage Buffers (SB) have the smallest mean and median areas at all scales, with the
exception of the 400 m scale, where the Generalised No Trim buffer (GN) had the
smallest mean area and the same median area. The difference between the mean and
median areas of the Sausage Buffers and the ArcGIS buffers (DN, DT, GN, GT)
increases as the scale increases. Across all scales, the Sausage Buffers also have the
smallest standard deviations. In other words, there is less variation in size for the

Sausage Buffers than for the ArcGIS buffers.

Table 30 (Appendix B) presents the Spearman rank correlation coefficients
comparing the area of the different buffer types at each of the ten scales (a0 = 5%, p <
0.001). All correlations between buffer sizes were ‘very strong’ and ranged from
0.84 between the Detailed No Trim buffer (DN) and the Sausage Buffer (SB) at the
400 m scale, to 1.00 between the Detailed Trim buffer (DT) and the General Trim
buffer (GT) at scales greater than 800 m. At the 1000 m, 1600 m, 2500 m, and 3000
m scales the area of the Sausage Buffer was most highly correlated with the areas of
the ArcGIS General Trim (GT) and Detailed Trim (DT) buffers. For the remaining

scales, the area of the Sausage Buffer was most highly correlated with the area of the
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General Trim buffer and next most highly correlated with the Detailed Trim buffer.
Sausage buffer areas were least correlated with the Detailed No Trim buffers at all

scales.

The magnitude of the correlation coefficients increased as the size of the buffers
increased, with the 400 m buffers showing correlations ranging from 0.84 to 0.95 and
the 3000 m buffers showing correlations ranging from 0.94 to 1.00. While the
correlation between the areas of the Sausage Buffers and all ArcGIS buffers was less

than perfect.

Table 30 also shows that - with a few exceptions - the correlation between different
ArcGIS buffers was also less than 1.00. In other words, while there were differences
between the size of the Sausage Buffers and the ArcGIS buffers, there were also

differences in the sizes of different types of ArcGIS buffers.

3.4.2.2 Intersections

Table 31 (Appendix B) shows that the counts of intersections (Cnt) are perfectly
correlated between all buffer types when the scale is greater than 500 m. At 400 m
and 500 m scales, the correlation coefficients range from 0.98 — 1.00. The correlation
coefficients are slightly lower for the intersection density measure (Dns) between all

buffer types.

3.4.2.3 Bus Stops

Table 32 (Appendix B) presents the correlation coefficients when comparing the
number of bus stops within different buffer types at a range of scales. The correlation
coefficients ranged from 0.95 to 1.00, indicating a very strong to perfect correlation
between the different buffer types when assessing the number of bus stops. In

general, the correlation coefficients increase as the scale increases. Correlations

76



between the sausage buffers and the ArcGIS buffers tended to be slightly lower than

correlations between different ArcGIS buffers.

3.4.2.4 Dwelling count

Table 33 (Appendix B) presents the Spearman rank correlation coefficients for the
different buffers when measuring dwelling counts. All correlations were very strong
to perfect, with correlations higher at larger scales. Correlations between the Sausage
Buffer and ArcGIS buffers tended to be slightly lower than correlations between
different types of ArcGIS buffer. For example, at scales greater than 1,000 m,
dwelling counts for the different ArcGIS buffers were perfectly correlated. At the
same scales, the correlations between the Sausage Buffer and the ArcGIS buffers

were slightly lower, but still ‘very strong’ (0.98-0.99).

3.4.2.5 Park Area

Table 34 (Appendix B) presents Spearman rank correlation coefficients for the
different buffers when measuring park area and percentage park area. The
correlations were lower for park area than for the other built environment measures.
Correlations between the Sausage Buffer and the ArcGIS buffers ranged from 0.69 to
0.93 for park area and from 0.76 to 0.93 for percentage park area. In general, the
highest correlations between Sausage Buffers and ArcGIS buffers were at the 800 m

and 1,000 m scales.

3.4.2.6 Modelled associations with objectively measured physical activity

The associations between the built environment (intersection count, intersection
density, bus stop count, dwelling count, park area, and % park area) and objectively

measured physical activity were modelled for the five different road network buffers
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across ten scales. Tables of the results are provided in Appendix C. Results are

grouped and discussed below.

For dwelling density (Table 35) and bus stop count (Table 36), results showed that,
at all scales, the choice of road network buffer algorithm did not alter whether there
was evidence of an association between the built environment measure and physical

activity.

While the coefficients varied for the different road network buffers at all scales, the
differences were minimal. For dwelling density, at 400 m, the percentage change in
physical activity for a one dph increase in dwelling density ranged from 0.87 % (DN
buffer) to 1.01% (GT buffer). At the 3000 m scale, the percentage change in physical
activity ranged from 2.00 — 2.45%. Again, the lowest percent estimate was for the
Detailed No Trim buffer (DN) and the highest for the Generalised Trim buffer (GT).
For bus stop count, all models reached significance except for the models at 400 and
3000 m. The magnitudes of the coefficients were very similar for the different types

of buffers.

The differences between the Sausage Buffer and ArcGIS buffers were no greater
than the differences between the different ArcGIS buffers. Indeed, for the dwelling
density models the percentage estimate provided with the Sausage Buffer (SB) was

always in the mid-range when comparing the different buffer types.

While not the primary purpose of this analysis, the scale trends observed in the
previous analyses were also apparent here. For dwelling density, there was a trend of
increasing magnitude in the percent estimates as the scale increased, whereas for bus
stop counts, there was a downward trend of coefficient magnitudes with an increase

in scale.
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For street connectivity (Table 37), total area in park (Table 38) and percentage area
in park (Table 39) the choice of buffering algorithm determined whether the models
reached significance. Results for street connectivity (Table 37) showed that for the
smallest buffers (400 m) there was no evidence of an association when measured
with the Detailed No Trim (DN) and Generalised No Trim (GN) buffers. At the 500
m scale, there was no evidence for the Generalised No Trim (GN) buffer). At all
other scales there was evidence of associations for all buffer types. There was no
obvious difference between the Sausage Buffer and ArcGIS buffers when assessing

relationships between street connectivity and physical activity.

Results for total park area (Table 38) showed that from 400 m to 1600 m there were
no significant associations for all road network buffers. For larger scales there was
variation as to whether different road network buffer produced significant
associations between park area and physical activity. At 2000 m, the Generalised
Trim (GT) and the Sausage Buffer (SB) produced significant associations. At the
2500 m scale, the Detailed Trim (DT), Generalised Trim (GT) and the Sausage
Buffer (SB) produced significant associations, and at the 3000 m scale, the Detailed
Trim (DT) and Sausage Buffer (SB) produced significant associations. Where
significance was reached, the magnitude of the estimates varied by type of road
network buffer, but the differences were, again, minimal. For instance, a range of
0.15—-0.32% at 2000 m and 0.07 — 0.20 % at 3000 m. Notably the Sausage Buffer

was the only type of buffer to reach significance at 2000, 2500, and 3000 m.

Results for percentage park area (Table 39) showed that from 400 — 2000 m there
were no significant associations for all road network buffers. At 2500 m and 3000 m

the percentage park area measured within Detailed Trim (DT), Generalised Trim
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(GT), and Sausage Buffers (SB) resulted in models that detected evidence of an

association with percentage park area and physical activity.

3.4.3 Discussion

The results showed that while all five buffer types differed from each other in terms
of area and built environment characteristics, whether this made a difference to
results depended on the built environment measure. For dwelling density and bus
stop count, the built environment measures were very strongly correlated and the
choice of buffer did not determine whether models of the association between the

built environment and physical activity reached significance.

For street connectivity, while there were very strong correlations between the
measures, at smaller scales (400 and 500 m) the choice of buffer could determine
whether models reached significance. At larger scales the results were consistent for

all buffer types.

Finally, for total area in park and percentage park area, correlations between built
environment measures were weaker. Similarly, whether models of the association
between parks and physical activity reached significance was in part determined by

the choice of buffer.

This suggests that the representation of the built environment measure — for instance
points (e.g., intersections, bus stops) versus polygons (e.g., parks) - is important.
Figure 4 demonstrates that if a park is represented as a point (centroid) it is less

likely to be captured by a road network buffer than if it is represented as a polygon.
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Legend
@® Parkrepresented as a point
Park represented as a polygon

® (] Road network buffer

Figure 4. Example park represented as a point and polygon.

The results also illustrated that sausage buffers were consistently smaller than the
ArcGIS buffers. This finding is the opposite of Forsyth et al. (2012), and is likely due
to the different radial distance used to calculate the sausage buffers. There is no
standard radial distance for use in sausage buffers. Therefore, in this dissertation,
inspection of the data determined that a 50 m radial distance was appropriate. This

contrasts with the 100 m radial distance used by Forsyth et al. (2012).

In summary, choice of spatial data representation (e.g., point versus polygon), built
environment measure choice (e.g., count versus density), buffering algorithm
(ArcGIS buffers versus sausage buffers), and scale can all change the results of

analyses of associations between the built environment and physical activity.

The results of this study support the findings of Forsyth et al. (2012) in
recommending the Sausage Buffer as a valid road buffering algorithm, particularly
given the transparency and replicability of this method compared to proprietary
ArcGIS algorithms. Future research could further compare the buffers by assessing
the extent of spatial overlap and how well the different buffers capture exposure to
the environment.
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The choice of scale appears to have had more of an impact on results than the
buffering approach. Furthermore, the analyses in this section undertook a more
comprehensive examination of scale (a greater number and range of scales) than
previous analyses (i.e., in both the previous section of this dissertation, and in the
literature reviewed in Chapter 2). This made scale trends more apparent and future
research exploring the role of scale in delineation of neighbourhood would benefit
from a similar comprehensive evaluation. Therefore, the results presented here
support the previous section in confirming that analyses should be conducted at

multiple scales.

Greater consideration needs to be given to analytical choices, particularly how spatial
data is represented. For instance, when working with point data, researchers should
ensure this is snapped to the road centreline to minimise issues related to choice of
buffering algorithm. Alternatively, methods that automatically snap points to the
road (e.g., OD-cost matrices) should be considered in lieu of buffering. These
alternate analysis approaches might also bypass any issues introduced in the creation

of the buffer.

3.5 Methodological commentary

This section reflects on additional methodological issues that arose during the

analyses described in this chapter.

3.5.1 Selecting units for the built environment measures

Prior analyses of the URBAN study data transformed all built environment measures
by dividing each measure by their standard deviation (SD; Witten et al. 2012). This
approach enabled comparison of regression coefficients across different models since

each coefficient referred to a 1-SD change (Witten et al. 2012). However, the
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analyses in this chapter took a different approach; the built environment measures

were not transformed prior to the analyses.

This decision was made for two reasons. First, and most importantly, since the
standard deviation varies for each neighbourhood delineation, dividing the built
environment measures by different standard deviations would make it difficult to
compare results across neighbourhoods. Second, modelling the relationship using the
original built environment units can make it easier to interpret the results. For
example, increasing the dwelling density by one dwelling per km? is easier to relate

to than increasing the dwelling density by 1-SD.

3.5.2 Measuring street connectivity

Street connectivity was measured by dividing the number of 3-or-more-way
intersections within a neighbourhood by the area of the neighbourhood. This appears
to be a simple calculation, yet an unforeseen issue arose when calculating street
connectivity for administrative units (i.e., meshblock, URBAN neighbourhoods, and

census area units).

Administrative unit borders are typically defined by road centrelines, therefore
intersections commonly occur on administrative unit boundaries. GIS analyses (e.g.,
intersect) that count the number of intersections within administrative units assign
each intersection to a single meshblock, even if that intersection is on the border of
several meshblocks .This means a participant may live near an intersection which
may not be included in their neighbourhood delineation. For instance, in Figure 5
meshblock 3 was assigned one intersection and meshblocks 1, 2, and 4 were assigned
no intersections. Therefore, participant A would have a higher intersection count —

and street connectivity measure — than participant B. This can result in an
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underestimation of the ‘real’ or ‘experienced’ street connectivity, especially for small

meshblocks.

Meshblock 3

o intersection A participantA

—— meshblock boundary * participant B

Figure 5. An intersection that borders four meshblocks is assigned to only one
meshblock (e.g., Meshblock 3).

The original meshblock level analyses conducted for the URBAN study addressed
this issue by buffering the meshblocks by 20 m and calculating street connectivity
based on the number of intersections within the buffered meshblock (Figure 6;

Badland et al. 2009).
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Meshblock 1 Meshblock 2

Meshblock 3 Meshblock 4

o intersection
——— meshblock boundary

buffered meshblock boundary

Figure 6. When the meshblock boundary is buffered an intersection that borders four
meshblocks is assigned to all four meshblocks.

While the approach of buffering meshblocks addressed the edge issue described
above, it also introduced a new phenomenon: a single intersection being counted in
multiple neighbourhoods. For example, in Figure 6 a single intersection is counted in
four different meshblocks. This is not a problem when using a single neighbourhood
delineation in the analysis. However, it produced unexpected results when comparing

administrative boundaries of different scales.

This is an example of the MAUP, discussed in Chapter 2. For the same location in
space we can arrive at different street connectivity measures if we use different
neighbourhood delineations. For instance, in Figure 7 each meshblock has an area of
1 km? and the census area unit has an area of 4 km”. If the number of intersections
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are counted within buffered meshblocks (e.g., meshblocks buffered by 20 m), then
each meshblock would contain 4 intersections, and the resulting street connectivity
measure would be 4 intersections per km®. Yet for the census area unit, the street
connectivity would be 2.25 intersections per km? (i.e., 9 / 4 km?). When meshblocks
are buffered, larger size differences between administrative units would result in

larger differences in street connectivity measures.

; 2
4 meshblocks (1 km? each) 1 census area unit (4 km?)
i.e. contains4 meshblocks
@
[
o
. intersection

administrative unit boundary

Figure 7. When buffering neighbourhoods, intersections on the borders of

neighbourhoods can be counted multiple times.

Therefore, in the analysis reported in this dissertation, the original, non-buffered,
meshblock boundaries were used to calculate street connectivity. This avoided
double-counting of intersections. Table 10 compares the median street connectivity
measures for the administrative unit neighbourhood definitions for buffered
meshblocks (not used in this dissertation) and non-buffered meshblocks (used in this
dissertation). Note that the URBAN and CAU connectivity measures are the same in

the two columns because the boundaries remained the same.

86



Table 10. Comparison of median street connectivity measures (intersections/km?) for

buffered and non-buffered meshblocks.

20 m buffered Non-buffered
meshblock meshblock
meshblock 59.6 25.4
URBAN 33.2 33.2
CAU 25.6 25.6

3.6 Discussion and conclusion

This chapter has demonstrated that the delineation method can change the built
environment measure and ultimately determine whether associations between the
measures and physical activity outcomes are significant or not. It has also highlighted
the importance of considering more than just the delineation method. The
relationship between spatial data representation, built environment measure, and
outcome measure is critical and researchers need to consider methodological choices
beyond just the delineation method. While the results did not clearly identify a single
ideal neighbourhood definition for use in built environment and physical activity
research, they suggested that the commonly used 800 m road network buffer appears
to be an appropriate choice across a range of built environment and physical activity

measures, at least for adults.

The analysis presented in this chapter has limitations. First, the research presented
here was limited by a small range of scales in the earlier analyses (Section 3.3). At
the time of analysis the number of scales seemed appropriate and more extensive

than in most of the existing literature. However, in hindsight, having only four scales
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made it difficult to discern spatial patterns. This issue was addressed in subsequent
analyses (Section 3.4), where the maximum scale was increased and a greater

number of scales were included, making it easier to detect scale trends in the data.

Second, in line with current research comparing delineations, this analysis relied on
statistical significance to make conclusions about optimal neighbourhood
delineations. It is likely that relying on the results of statistical models alone may not
be sufficient to identify appropriate neighbourhood boundaries (Rothman 2014,
Gorard 2014), or to determine how well they capture context. Other approaches -
such as determining how well a neighbourhood delineation captures exposure to the

environment — are needed.

Finally, the analyses in this chapter focused solely on the delineation of potential
exposure in the residential neighbourhood. While it was useful to explore the
implications of various methodological choices, as discussed in Chapter 2, there is
also a need to a) move towards better delineation of actual exposure and b) delineate
exposure beyond the residential neighbourhood. Subsequent chapters in this
dissertation address these limitations by using GPS data to assess which delineation

methods best represent where people travel and spend time.
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Chapter 4. Kids in the City study methods

4.1 Introduction

The previous chapter explored the impact of different residential neighbourhood
delineations on the results of models of the association between the built
environment and physical activity. While it is useful to understand how choice of
delineation method may impact research results, it is arguably more important to
understand how well delineation methods capture exposure to the environment. As
noted in Chapter 2, very little of the research comparing delineation methods has
assessed the methods by how well they represent exposure. Furthermore, to date no
studies have assessed how well road network buffers — the most commonly used

buffer — capture exposure.

The remainder of this dissertation addresses these gaps by determining how well
road network buffers represent actual exposure to the environment, exploring activity
space delineations, and proposing enhanced methods of delineation (Aims 3 — 5).
These issues are explored using data from two cross-sectional, mixed methods
studies of the built-environment and children’s physical activity. These two studies
were combined to create the Kids in the City (KITC) dataset used in this dissertation.

This chapter describes relevant methods from these studies.

The quantitative components of the two KITC studies investigated the association
between the neighbourhood built environment and children’s physical activity and
independent mobility (i.e., unsupervised travel and outdoor play). The first study,
funded by the Health Research Council of New Zealand (10/497), was conducted in
six suburban Auckland neighbourhoods. The second study, funded by a Marsden
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Grant (21568 RSNZ), took place in inner city Auckland neighbourhoods. The
quantitative data collection for both studies followed the same protocols. Since this
thesis uses only the pooled quantitative data, “Kids in the City study” refers to the

combined studies, unless otherwise stated.

Although data collection methods have been published elsewhere (Oliver et al.
2011), this chapter describes the methods relevant to the data used in this dissertation
and goes into more detail around the methods related to the GIS and GPS data. A
pilot study was completed in November — December 2010, in order to test and refine
data collection protocols. The full study took place between March 2011 and June
2012. Ethical approval to conduct both phases of the research was provided by
Auckland University of Technology, Massey University, and the University of
Auckland ethics committees. Informed consent was provided by the school
principal, the school board of trustees, the classroom teachers, a parent/guardian, and

the child.

Candidate contributions to the KITC study are summarised at the end of this chapter,

with details provided in Appendix A.

4.2 School selection

Eight primary schools (years 1-6) and one intermediate school (years 7-8) in
Auckland, New Zealand, were recruited for the study. The schools were purposively
selected based on their localities and school decile rating, which is an indicator of the

socio-economic status of the school catchment area.

Maps of Auckland walkability and destination accessibility (calculated in the

URBAN study) were used to identify three pairs of primary schools. Each pair had a
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similar decile rating, but differing neighbourhood walkability and destination

accessibility scores. The remaining three schools were selected because of their

location near the Central Business District (CBD).

The difference in school types (primary versus intermediate) and rationale for school

selection is a result of the different aims of the two KITC studies. Characteristics of

the nine schools are shown in Table 11.

Table 11. Characteristics of participating schools. Source: Ministry of Education

2010 (NZ Ministry of Education 2010).

School School type

ID

1 primary

3 primary

4 primary

2 primary

6 primary

5 primary

7 primary

9 primary

8 intermediate

Location

East

East

South

South

West

West

Central

Central

Central

Decile

9

Roll (%, European,

Maori, Pacific,

Asian/South Asian,

Other)

287 (1,25,67,7,0)

427 (3,32,61,2,2)

514 (0,45,50,5,0)

421 (0,34,64,2,0)

531(16,19,18,35,12)

290 (12,23,36,23,6)

249 (27,8,5,55,2)

423 (32,16,15,32,5)

531(59,11,10,16,2)

Estimated

walkability and

access to

destinations

Low

High

Low

Medium

Low

High

High

High

High

Note: some percentages do not add up to 100 due to rounding errors. Decile 1 =low SES; Decile 10 = high SES.
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4.3 Participant recruitment

The study aimed to recruit at least 25 children, aged 9-10 years per primary school
and 11-12 in the intermediate school. The rationale for this minimum sample size is
described in Oliver et al. (2011), but, briefly, it allows for the determination of a
physical activity effect between neighbourhoods and also allows for up to 20% data
loss. Limited GPS unit availability also restricted the sample size to a maximum of
30 children, however, in the case of school number 9, two data collection sessions
were conducted to increase the sample size beyond 30 and meet the additional

sample size requirements for the second KITC study.

A classroom-based session was conducted with each class containing appropriately
aged students. This session introduced the research team, explained the study
process, and demonstrated the research equipment participants would be wearing
(i.e., accelerometers and GPS units). The students were given the opportunity to use
the GPS units. The aim of this session was to engage children with the study and to
allow them to develop rapport with the researchers. Information sessions for parents
were also conducted at the school at a time convenient for parents. The research team

presented the research process and answered questions at these sessions.

4.4 Data collection

Data collection occurred in two phases: between March and June, 2011, for schools
1-6, and between March and June, 2012, for schools 7-9. Data collection was

conducted for one school at a time.

Spatial location was measured using QStarz BT-Q1000 and BT-Q1000XT GPS units

(Qstarz International Inc., Taiwan). The main difference between the units was the
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greater storage capacity of the BT-QT1000XTs. GPS units were worn on a belt and
recorded data every 10 seconds. Participants recorded when they put on and took off

the belt.

Seven consecutive days of GPS data were collected. Researchers visited participants
at their school on six consecutive weekday mornings to collect and check the
previous day/s data, charge the GPS units, and download the GPS data. GPS data
were downloaded using the QStarz QTravel vl Travel Recorder software. Both .kml
and raw .csv files were generated and saved to laptops. The file sizes of the GPS data
files were checked to ensure the units were recording data. Problematic GPS units
were immediately replaced with spares in order to minimise data loss. The GPS unit
logs were cleared once the data had been saved. After lunch the charged and reset
GPS units were returned to the children. On Friday afternoons children took home a

GPS charger and instructions to charge the unit each night.

Socio-demographic data were collected from parents/caregivers as part of a 75 item
computer-aided telephone interview (CATI), conducted after the completion of data

collection in their child’s school.

4.5 GIS, GPS, and accelerometer data processing

4.5.1 GPS

The raw GPS data were cleaned and pre-processed using the Physical Activity
Location Measurement System (PALMS; Personal Activity and Location
Measurement System (PALMS) website 2012). This is a secure website that allows
researchers to clean, process, and link accelerometer and GPS data. PALMS cleaned

the GPS data, resampled the data at 30 s intervals — enabling linkage with the
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accelerometer data - and used travel speed to assign a mode of travel (stationary,

walk, cycle, vehicle) to each GPS data point.

The GPS data was further processed and linked to accelerometer data using custom R
scripts. A subset non-vehicle GPS dataset was extracted, based on the mode of travel

being stationary, walk, or cycle.

4.5.2 GIS

The road network data were topologically cleaned. A walkable road network was

created by excluding motorways/highways/freeways and on- and off-ramps.

All home and school addresses for each participant were geocoded using ArcGIS
10.0 (ESRI, Redlands). Two home addresses were unable to be geocoded. School
addresses were checked visually. Polygon representations were created for all home
and school addresses using the land parcel. This is similar to the approach taken by

Klinker et al. (2014) who defined the house as the land parcel.

School entrance points were manually digitised based on entrance locations visible in
satellite imagery. GPS data were checked against school entrances to ensure that all
school entrances used by participants during data collection were captured. The
shortest distance from home to the school entrance along the walkable road network

were calculated using the OD-matrix function in ArcGIS.

4.6 Candidate contributions to the KITC study

The candidate was a named investigator on the two funded KITC studies. Key

contributions included:

e Contribution to the study design and grant application.
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e Responsibility for GIS and GPS methods, data and analyses.

e Contribution as an author on reports and publications, notably the KITC
study methods paper (Oliver et al. 2011), other methods papers (Mavoa et al.
2011, Mavoa et al. 2012, Oliver et al. 2014b, Badland et al. 2015a, Badland et

al. 2015b) , and results papers (Oliver et al. in press, Oliver et al. 2015a).

Further details of candidate contributions to the KITC study are provided in

Appendix A.

95



96



Chapter 5. GPS inclusion criteria

5.1 Introduction

The previous chapter presented methods from the KITC study, which collected
children’s seven-day GPS data. The GPS data will be used in subsequent analyses to
assess how well delineation methods capture exposure. Therefore, it is important to
ensure that the GPS data are as representative of seven-day exposure as possible.
Since missing data is a known issue with GPS data (Kerr, Duncan and Schipperijn
2011), this chapter tests a range of GPS inclusion criteria applied to the KITC GPS

dataset.

Inclusion criteria are used to determine whether a participant has sufficient data to
reliably estimate the behaviours of interest. Within physical activity research, it is
standard practice to apply inclusion criteria to accelerometer data. Accelerometer
inclusion criteria — also referred to as ‘data reduction’ or ‘minimum wear time’
criteria - vary between studies (Masse et al. 2005, Toftager et al. 2013) and
researchers have demonstrated that different criteria can change the results across a
range of physical activity related outcome measures (Janssen et al. 2014, Toftager et

al. 2013).

Inclusion criteria are also an important consideration for GPS data since insufficient
data will not represent a participant’s mobility behaviours adequately. For instance,
if a child only has one hour of GPS from the seven-day data collection in the KITC
study, then the GPS data is unlikely to represent the places that child goes in daily

life.
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Despite this, few built environment GPS studies have reported their GPS inclusion
criteria, and there are no standards among those that do. For example, Klinker et al.
(2014) excluded the first day of data, weekend data, participants who did not stay at
their primary home during data collection, participants who did not have any outdoor
data, and participants who had less than one valid weekday of nine hours combined
GPS/accelerometer wear time. Alternatively, Robinson and Oreskovic (2013)
employed the following minimum inclusion criteria: 1) a valid hour of combined
GPS/accelerometer data required a minimum of 10% non-zero accelerometer epochs
with matching GPS data points, 2) a valid day of combined data required at least two
valid hours, 3) a valid dataset required at least two valid weekdays and one valid

weekend day of combined data.

As mentioned above, several studies have investigated the impact of using different
accelerometer inclusion criteria. To date, however, no studies have investigated the
effects of using different GPS inclusion criteria. While a thorough exploration of
different GPS inclusion criteria is beyond the scope of this dissertation, ignoring this
issue may to lead to less reliable results. Therefore, three GPS datasets with different
inclusion criteria were created and assessed using descriptive statistics. The three

datasets were:

1) A complete GPS dataset with less stringent inclusion criteria applied

(subsequently referred to as the ‘complete GPS dataset’).

2) A subset of the GPS dataset with a more stringent inclusion criteria applied
to the entire week of GPS data (subsequently referred to as the ‘subset GPS

dataset 1°).
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3) A subset of the GPS dataset with the KITC accelerometer inclusion criteria
applied to each day of GPS data for each participant (subsequently referred to

as the ‘subset GPS dataset 2”).

The rest of this chapter describes the creation of these three datasets, presents
descriptive statistics, discusses issues relating to GPS inclusion criteria, and outlines

a strategy for the use of GPS inclusion criteria within this dissertation.

5.2 Methods — creation of the three GPS datasets

Of the 254 participants in the study, five participants did not have any GPS data,
leaving 249 participants that could potentially be included in any GPS analyses. One
participant lived on an island and attended school on the mainland. This participant
was included in both datasets and in later GPS analyses where possible. However,
some analyses were unable to be conducted for this participant (e.g., shortest road

network distance to school).

5.2.1 Creating the complete GPS dataset

The purpose of the complete GPS dataset was to maximise the number of

participants included by applying the following inclusion criteria:

1) The home address was able to be geocoded. Two participants did not meet

this criterion.

2) Participants reported a single home address. Three participants did not meet
this criterion due to custody being shared on an equal time basis between the

mother and father.

3) GPS data were recorded at the home address. Six participants did not record

any GPS data at their home address and therefore did not meet this criterion.
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4) Three or more hours of GPS data were collected during the seven-day data

collection period. Two participants did not meet this criterion.

Travel diary data revealed that some children stayed overnight at relatives’ houses
during the week. However, since we were unable to determine whether this was a
regular occurrence, these children remained in the dataset. This left a total of 236
children in the complete GPS dataset. All these participants had valid GPS and

address data.

5.2.2 Creating the subset GPS dataset 1

Since this dissertation will use the GPS data to explore spatial and temporal aspects
of where children travel and spend time - with a focus on the environment outside of
home and school - it is important to ensure there are sufficient data points on
different days of the week and different times of the day. Ideally, this would mean
using inclusion criteria with a high minimum number of hours per day for different
days of the week; for instance, at least seven hours per day, for a minimum of three
weekdays and one weekend day. However, this approach would not take into account
the fact that, for weekdays, up to four hours (six hours school day minus two hours
of GPS recharging) of the valid GPS data could be recorded at school. School-based
GPS data are less useful in determining where children spend time, since GPS data
are not needed to tell us that, in general, children spend their weekdays at school

during school hours.

Another issue with this ideal approach is that different participants might have bursts
of ‘good’ GPS data at different times of the day and a strict inclusion approach

would exclude this otherwise potentially useful data. Therefore, to prioritise non-
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school GPS data and to maximise the number of participants with included GPS data,

the following approach was taken.

First, the GPS data were divided into three categories: weekdays before school,
weekdays after school, and weekends. Weekdays before school included GPS points
recorded on weekdays, starting from the time the GPS was put on (based on
individual wear time data) and ending at the start of school (based on the school start
time). Weekdays after school included GPS points recorded on weekdays from the
end of school (based on school end time) and ending at the time the GPS was
removed for the day (based on individual wear time data). Each school had slightly
different start and end times, and these were taken into account when categorising

the GPS data. Weekends included all GPS data recorded on a Saturday or Sunday.

Next, the following additional inclusion criteria were applied to the complete GPS

dataset:

1) At least two weekdays with at least 30 minutes before school data; AND

2) At least two weekdays with at least two hours after school data; AND

3) At least five hours of total weekend data.

This left a total of 85 participants in the subset GPS dataset 1. The additional
inclusion criteria were determined based on a sensitivity analyses (i.e., exploration of
options). There was a trade off between inclusion criteria that minimised missing

data and inclusion criteria that maximised number of participants.
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5.2.3 Creating the subset GPS dataset 2

The second subset GPS dataset was created based on the accelerometer inclusion
criteria used in analyses of KITC accelerometer data (not part of this dissertation;
Oliver et al. in press). The inclusion criteria were applied to each day’s data for every
participant, and only days with valid accelerometer data were included in the
analyses. On weekdays, the inclusion criterion was at least three hours of data during
the non-school part of the day. On weekend days, the inclusion criterion was at least

seven hours of accelerometer data (Oliver et al. in press).

The published KITC accelerometer inclusion criteria were applied separately to each
day of activity for every participant since we were interested in children’s daily
physical activity behaviours. However, as stated above, the current purpose is to
explore spatial and temporal aspects of where children travel and spend time. Here,
the interest is in mobility over a longer period of time than a single day and,
therefore, it does not make sense to apply the accelerometer inclusion criteria to the

GPS on a day-by-day basis.

Ideally, the GPS inclusion criteria would require that a participant had seven days of
GPS data where each day met the accelerometer inclusion criteria. However, only
three out of the 249 participants with GPS data met these strict criteria. As above, a
sensitivity analysis was conducted to determine appropriate inclusion criteria. To
accommodate the need for several days of GPS data, and to ensure that enough

children met the criteria, the following process was used:

1) Accelerometer inclusion criteria were applied to each day of GPS data for

every child, to determine whether each day had a valid set of data. Weekdays
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required at least three non-school hours of GPS data and weekends required

at least seven hours of GPS data.

2) Further criteria of a child having at least two valid days of weekday data and

one valid weekend day were applied.

This left a total of 48 participants in the subset GPS dataset 2.

5.3 Descriptive statistics for the three GPS datasets

Table 12 presents characteristics of the three GPS datasets, showing the number of

participants in each dataset categorised by school, sex, age, ethnicity, number of cars

in the household, and shortest road network distance to school. This table shows that,

after applying the additional inclusion criterion, only 36% of participants were

retained in the subset GPS dataset 1, and 20% of participants were retained in the

subset GPS dataset 2.

Table 12. Characteristics of the three GPS datasets.

Complete
Dataset n

School

25
22
23
25
29
23
28
12
49

© 00 N OO U b W N R

Sex

Female 133

Subset
GPS
dataset
1n
3
4
7
6
12
13
11
5
24
48

Subset 1
% of
complete
dataset

12.0
18.2
30.4
24.0
414
56.5
39.3
41.7
49.0

36.1

Subset GPS
dataset 2 n

~ 00 A 0O P, W O W

N
o

27

Subset 2
% of
complete
dataset

12.0

0.0
13.0

4.0
27.6
17.4
17.9
333
40.8

20.3
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Male

Age (years)
9
10
11-13
Ethnicity
European

Indian/Asian/Other
Maori

Not stated

Other Pacific Islander
Samoan

Number of Cars

N 2 O

>=3
Not stated

Distance to School (m)
0-400
400 - 800
800-1,200
1,200 - 2,000
2,000 - 10,000
> 10,000
Not stated

Total

103

68
142
26

54
65
28
13
42
34

23
100
73
26
14

40
65
48
34
39

236

37

26
45
14

26
30

12

39
26
10

10
27
11
13
18

[EN

85

35.9

38.2
31.7
53.8

48.1
46.2
14.3
38.5
28.6
23.5

21.7
39.0
35.6
38.5
35.7

25.0
415
22.9
38.2
46.2
55.6
100.0
36.1

21

18

23

20
16

v b W O

20
19

[any

48

20.4

26.5
16.2
26.9

37.0
24.6
0.0
23.1
9.5
14.7

8.7
20.0
26.0
15.4
21.4

12.5
24.6
10.4
17.6
25.6
55.6
100.0
20.2

While the percentage retained in subset GPS dataset 1 varied by all characteristics in

Table 12, school attended had the greatest range of percentage retention. Only 12%

of children in school 1 were retained in the subset dataset 1, compared with almost

57% of participants from school 6.

There are several possible explanations for these differences between schools. First,

data collection progressed in numerical order, that is, the first data collection took
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place in school 1, the second data collection in school 2, and so on. Identification of
faulty GPS units — which resulted in GPS data loss - occurred more frequently at the
earlier schools. Second, the earlier schools had children from different socio-
economic status (SES): schools 1-4 were low decile (i.e., low SES), schools 5-6 were
mid decile, and schools 7-9 were high decile. This may have affected missing GPS
data. For example, some children in lower decile schools reported not being allowed
to recharge the GPS units at home because of the cost of electricity. Similarly,
children living in households with no cars showed less retention for subset datasets 1

and 2.

The percentage retained in subset dataset 2 also varied by all characteristics.
However, there was a notable variation in retention by ethnicity. None of the Maori
participants and a relatively low percentage of Samoan (14.7%) and Other Pacific
Island (9.5%) participants were retained in this dataset. This corresponds to none of
the participants from school 2 being retained (school 2 had no European students and

only one Asian student).

5.3.1 GPS descriptive statistics

Table 13 presents descriptive statistics for number of GPS points and hours of GPS
data for the three GPS datasets. As expected, the stricter the inclusion criteria, the
higher the minimum, mean, and median GPS data numbers and hours, and the lower
the standard deviation. When using the complete GPS dataset, participants had an
average of approximately 34 hours of GPS data, compared to averages of 48 and 55

hours for the subset 1 and subset 2 datasets, respectively.
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Table 13. GPS data descriptive statistics.

Complete dataset (n = Subset dataset 1 (n =) Subset dataset 2 (n =
236) 48)
Number of Hours Number of Hours of Number Hours of
GPS points of GPS GPS points GPSdata  of GPS GPS data
data points
Minimum 395 3.3 2115 17.6 4814 40.1
Maximum 8495 70.8 8495 70.8 8495 70.8
Mean 4038.1 33.7 5765.2 48.2 6568.3 54.7
Median 3799.0 31.7 5859 48.0 6584 54.9
SD 1814.7 15.1 1353.1 11.3 984.5 8.2

Figure 8 compares the distributions of the three GPS datasets in a boxplot of the
number of GPS points for each of the three GPS datasets. As the inclusion criteria
become stricter and the number of included participants decreases, the distribution of

the total number of GPS points becomes narrower.

8000
I

6000

Number of GPS points
4000

2000
I

R T—

T T T
Complete GPS GPS subset 1 GPS subset 2

GPS dataset

Figure 8 Boxplot of the distributions of the three GPS datasets created with different

inclusion criteria.
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5.4 Discussion and conclusion

The results described above illustrate that applying GPS inclusion criteria can
potentially remove a large number of participants from the dataset. Yet inclusion
criteria are important to ensure data are as representative of behaviour as possible.
Ultimately, there is a trade-off between strict/ideal criteria and maximising the
number of participants included. More comprehensive analysis of this trade-off,
along with the development of standardised GPS inclusion criteria, is an important

knowledge gap for researchers to address in future research.

As demonstrated in this chapter, applying ideal criteria can leave very few
participants in the dataset. In the KITC study GPS data were collected from 254
students, yet only 249 had any GPS data. Applying increasingly strict inclusion
criteria dropped the sample sizes to 236, 85, 48, and 3 respectively. This indicates
that larger samples are needed when collecting GPS data. A 2011 review of physical
activity studies that used GPS data showed that 21 out of 23 reviewed studies had
sample sizes less than 185, and over half of the studies had sample sizes less than 50
(Krenn et al. 2011). A more recent review of GPS use in studies of children’s
physical activity (McCrorie, Fenton and Ellaway 2014) indicates that while sample
sizes appear to be increasing, most sample sizes are still smaller than the KITC

sample size.

In deciding on appropriate inclusion criteria, it is important to consider the research
question and how the GPS data will be used. For instance, it wasn’t considered
appropriate to use accelerometer inclusion criteria used in the KITC study here,

because the accelerometer analyses was designed to investigate children’s daily

107



physical activity behaviours, whereas, within the framework of this dissertation, the

GPS data will be used to investigate mobility patterns over a longer time frame.

Another consideration in using different inclusion criteria for GPS and accelerometer
data is that the nature of GPS data collection — that is, requiring sufficient satellites to
be visible - means that there are more gaps in the GPS data than in equivalent
accelerometer datasets. Research to address the issue of missing GPS data — for

example, through imputation techniques - is needed.

The results demonstrated striking differences in retention of participants by SES and
ethnicity. Children of Maori and Pacific Island ethnicity and children at lower SES
schools were more likely to have GPS datasets that did not meet strict inclusion
criteria. This is likely to have equity implications since Maori and Pacific Islanders
and those with lower socio-economic status, also have poorer health (Hefford,

Crampton et al. 2005; Pearce and Dorling 2006).

The inclusion criteria used in subset GPS dataset 2 were inappropriate to investigate
the research questions addressed in this dissertation. Furthermore, the resulting
dataset was too small a sample for robust analysis and was not representative of the
KITC sample as it disproportionately excluded Maori and Pacific Island participants,
and excluded participants from an entire school. Since, the implications of GPS
inclusion criteria are unknown, GPS analyses in the following chapter were
conducted on both the complete dataset and subset GPS dataset 1, allowing for more

robust interpretation of results.
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Chapter 6. How well do road network
buffers represent where children spend
time?

6.1 Introduction

Road network buffers are the current best practice method of delineating
neighbourhood in research investigating associations between the neighbourhood
environment and health. Despite this, several researchers have demonstrated that
people do not access the entire buffer, and buffers often exclude places where people
spend time (Madsen et al. 2014, Villanueva et al. 2012, Basta et al. 2010, Prins et al.
2014). Therefore, this chapter explores how well road network buffers represent
where children travel and spend time, using the seven-day GPS data from the KITC

study.

A number of studies have compared different delineation methods (see Chapter 2 for
a review). Most of these studies compared the area of the buffers (e.g., Crawford et
al. 2014, Christian 2012, Zenk et al. 2011, Sherman et al. 2005, Madsen et al. 2014),
the built environment measures calculated within the buffers (e.g., Christian 2012,
Zenk et al. 2011, Sherman et al. 2005), and the results of associations with the
environment and various outcomes and behaviours such as walking (e.g., Boruff et
al. 2012, Learnihan et al. 2011), or MVPA (e.g., Jones, Zenk and Matthews 2014).
Chapter 3 of this dissertation also compared buffers based on results of associations
between the environment and physical activity. While this type of comparison
provides evidence of how different buffers impact results, it does not reveal how well

the different buffers represent where people travel and spend time (i.e., exposure).
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Research on how well different buffers represent mobility and activity is scarcer than
research comparing the impact of different buffers on study results. Two studies have
compared the spatial overlap of road network buffers with self-defined
neighbourhoods and activity spaces; in one case for children (Villanueva et al. 2012)
and in the other, for adolescents (Colabianchi et al. 2014). Both studies found very
little overlap with road network buffers. While self-defined neighbourhoods are not
the same as exposure, these results provide another argument for exploring how well
road network buffers represent actual and potential exposure. Indeed, how perceived
neighbourhoods interact with both potential and actual exposure is an important

question that warrants further research beyond this dissertation.

GPS data provide researchers with the ability to measure how well different
delineation methods represent actual exposure to the environment, yet very few
published studies have undertaken such comparisons. Robinson and Oreskovic
(2013), used GPS data to compare youth-defined and administrative neighbourhoods.
They found that, although adolescents perceive their neighbourhoods to be a similar
size to census-defined neighbourhoods, the youth-defined neighbourhoods better
captured the locations where adolescents spent time. Hirsch et al. (2014), compared
three GPS derived activity spaces - SDE, convex hull, and daily path area - with road
network buffers and found relatively low percentage overlaps. The maximum overlap
was 22.3 % between the 800 m road network buffer and the SDE activity space.
Overlap with the 400 m road network buffer ranged from 3.3 — 4.4 % for the three

activity space representations.

To date, only one study has used GPS data to assess how well road network buffers

represent mobility. Madsen et al. (2014), used GPS data to examine how well a
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number of buffers — including 1 and 2 km road network buffers around the
residential addresses - captured transport cycling behaviour of 331 regular cyclists.
They compared buffer sizes with the number and density of GPS points within the
buffers. Their results demonstrated that the ellipse shaped buffer between home and
the city centre was the most effective, since it had the highest percentage of GPS
points per km®. The city centre in this study was defined as the centroid of the

location with the highest density of daily activity destinations.

It should be noted that the existing research which compares different delineation
methods focuses exclusively on areas of overlap. However, areas that are excluded
from the buffer (i.e., errors of omission) and areas that are included in the buffer but

not visited (i.e., errors of commission), may also be relevant.

The rest of this chapter explores how well road network buffers represent children’s
non-vehicle mobility when compared with the KITC GPS data. The decision to focus
on non-vehicle mobility was consistent with the objective to examine how well road
network buffers represent exposure. Alignment between the GPS data and road
network buffers was assessed using existing methods; namely, overlap between
buffers and the number and percentage of GPS points contained by the buffer. The
analyses also expand on existing research by specifically assessing the spatial extent

of errors of commission and omission.

6.2 Methods

Data collection and GPS data processing were described earlier in Chapter 4. All
analyses in this section were conducted using the two GPS datasets described in
Chapter 5: the complete GPS dataset (n = 236), to which minimum inclusion criteria
were applied, and subset GPS dataset 1 (n= 85).
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The remainder of this section describes the methods used to create road network
buffers, create polygon representations of the GPS data, and compare the road

network buffers with the GPS data.

6.2.1 Estimating distance travelled from home

To get a sense of how far from home children were travelling and spending time, the
number of GPS points within eight distance bands (400, 500, 800, 1000, 1500, 1600,
2000, and 3000 m) were calculated for each participant. These distance bands were
calculated using a Euclidean (straight-line) distance. Since each GPS point represents
30 seconds in time, the number of hours spent within each distance band was
calculated by dividing the number of points by 120. The purpose of this analysis was

to provide context for the subsequent analyses.

6.2.2 Calculating road network buffers around the residential address

Road network buffers at a range of scales (400, 600, 800, 1000, 1200, 1400, 1600,
1800, 2000 m) were calculated around participant home addresses, using the
walkable road network and the sausage buffer method (described in Chapter 3). A
larger number of scales were assessed here compared to Section 3.3 to better assess
spatial trends in the results. In built environment and physical activity research,
maximum scales of 1600 m are typically used when representing residential
neighbourhoods for adults walking. For children, scales of up to 1600 m have also
been used (Villanueva et al. 2012). A maximum scale of 2000 m was chosen for this

analysis to extend previous scales and also keep the analyses manageable.

6.2.3 Delineating places children went using daily path areas

Polygon-based representations of places children went during the seven-day data

collection were created using the non-vehicle GPS point data (see Chapter 4 for a
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description of how non-vehicle GPS points were specified). Daily path areas were
calculated using a similar approach to that described by Zenk et al. (2011). All non-
vehicle GPS points were buffered by 50 m and dissolved to create a single polygon

for each participant.

There is no standard buffer distance for the creation of daily path areas. For example,
other researchers have used 25 m (Krenn, Oja and Titze 2014), 50 m (Boruff et al.
2012, Oliver et al. 2007, Morland et al. 2002), 100 m (James et al. 2014, Ross et al.
2004, Harrison et al. 2014, Saib et al. 2014, Burgoine and Monsivais 2013) , 200 m
(Hirsch et al. 2014), and 0.5 mile (approximately 805 m; Zenk et al. 2011). The 50 m
buffer was chosen for this analysis because it encompasses the distance a child could
travel within the 30 seconds before the next GPS point (39 m - assuming a walking
speed of 1.3 m/s; Finnis and Walton 2008). It also allows for the 10 m advertised

horizontal error associated with the GPS units (QStarz 2012).

Figure 9 provides an example of a daily path area using actual data for a single

participant.
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e  GPS points
? Road
- Daily path area
L T

Figure 9. Example of a daily path area.

6.2.4 Comparing GPS daily path areas and road network buffers

One approach to comparing two neighbourhood delineations is to calculate either the
area of overlap (e.g., Villanueva et al. 2012) or the percentage overlap (e.g., Hirsch et
al. 2014). However, these measures do not completely describe how well one

delineation captures a second delineation.

Figure 10 demonstrates that comparing the area — or percentage area - of overlap is
not sufficient to determine how well the road network buffers represent the daily path
area. Examples A, B, C, and D in the figure all have an identical overlap area yet
differ in how well the road network buffers represent the daily path area. The
percentage area of overlap also misses some information. For instance, examples A
and C have the same percentage of daily path area overlap, yet the road network
buffer in example A includes a larger area that was not visited by the participant than

example C.
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0___ 0O

m Example A Example B Example C Example D

Overlap area (km?) 15 15 15 15
Commission error area (km?) 85 85 15 15
Omission error area (km?) 35 15 35 15
Total error area (km?) 120 100 50 30
% RNB overlapped 15% 15% 50% 50%
% Daily path area overlapped 30% 50% 30% 50%

. Road network buffer (representation of neighbourhood)

O Daily path area (representation of where children go)

Figure 10. Illustration of the different measures of geographic overlap.

To gain a more complete picture of how well road network buffers represent where
children travel, the overlap between the daily path areas and road network buffers
was compared by calculating seven measures of spatial overlap. These seven
measures were: overlap area; percentage road network buffer overlap; percentage
daily path area overlap; commission error area; omission error area; total error area;

and sum of percentage overlap.

Overlap area was calculated using the ‘Clip’ and ‘Calculate Geometry’ functions in
ArcGIS 10.2 (ESRI, Redlands). The overlap area is the area present in both the GPS

daily path and the road network buffer.
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The percentage of road network buffer overlap was the overlap area, divided by the
total area of the road network buffer, then multiplied by 100. This measure represents
how much of the road network buffer is visited by the participant during the seven
day GPS data collection. The percentage of daily path area overlap was the overlap
area, divided by the total area of the daily path, then multiplied by 100. This measure
represents the proportion of places visited by the child that are captured by road

network buffers.

The areas representing errors of commission and omission were calculated using the
‘Erase’ and ‘Calculate Geometry’ functions. Commission error area refers to the area
present in the road network buffer that did not overlap the daily path area. In other
words, this is the area captured by the road network buffer that children did not visit
during GPS data collection. Omission error area refers to the area present in the GPS
daily path that does not overlap the road network buffer — in other words this is the

area visited by children but not captured by the road network buffer.

Finally, two composite measures were calculated. Total error area was the sum of the
commission error area and the omission error area. The sum of the percentage
overlap was the sum of the percentage road buffer overlap and the percentage daily

path area overlap.

The road network buffers that best represent where children go will maximise
overlap (area and percentages), and minimise the commission, omission, and total

error areas (Figure 10).

In addition to calculating overlap measures, road network buffers were assessed by
counting the number and percentage of GPS points in each buffer. This is similar to

the approach taken by Robinson and Oreskovic (2013) who calculated the percentage
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of time spent in different neighbourhood definitions. Hours within the road network
buffer were derived from the GPS data by dividing the number of GPS points by

120.

6.2.5 Missing GPS data

Missing GPS data is likely to have an impact on any analyses comparing GPS data to
road network buffers. For instance, a child may spend substantial time in all parts of
a road network buffer. However, if this travel was not recorded by the GPS unit (e.g.,
due to the child forgetting to wear the unit, or a unit malfunction) then a comparison
of the road network buffer and GPS daily path area will underestimate the overlap
between the two buffers and overestimate errors of commission. To ensure that the
impact of missing GPS data was minimised, all analyses in this chapter were
undertaken with two GPS datasets: 1) the complete dataset (236 participants), and 2)

the subset GPS dataset 1 (85 participants).

6.2.6 Statistical analysis

Descriptive statistics were calculated for the daily path and road network buffer
areas. Paired bivariate analyses using non-parametric Wilcoxon tests (o = 5%)
compared the daily path areas with each of the different road network buffers.

Statistical analyses were conducted in R (R Development Core Team 2008).

6.3 Results

6.3.1 Distance from home

Figure 11 presents results from the analysis of the number of GPS points within
Euclidean distances from participant’s homes for the complete GPS dataset. For
participants who lived less than two kilometres from school, over 90% of GPS points

were recorded within two kilometres from home. As expected, participants who lived
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further from school spent more of their time at greater distances from their home. For
the 39 participants who lived between two and 10 kilometres from school, over half
their time was spent at distances beyond two km from home. For the nine
participants who lived more than 10 km from school nearly three quarters of their

GPS points were recorded beyond two kilometres from home.
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Figure 11. Cumulative percentage of time spent at different distances from home
using the complete GPS dataset (n = 236).

Figure 12 presents results from the subset GPS dataset. This figure shows a similar
pattern, with participants who lived further from school recording a greater

percentage of GPS points at distances further from home.
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Figure 12. Cumulative percentage of time spent at different distances from home

using the GPS dataset with inclusion criteria applied (n = 85).

The main differences between the complete GPS dataset and the subset GPS dataset
occurred with participants who lived closest to school (<400 m) or furthest from
school (> 10 km). In the subset GPS dataset, participants who lived closest to school
had a greater percentage of GPS points further from home than in the complete GPS
dataset. Conversely, in the subset GPS dataset, participants who lived furthest from
school had a smaller percentage of GPS points further from home than in the

complete GPS dataset.

These differences indicate that participants with less complete GPS data — that is,
those that did not meet the GPS inclusion criteria — may have accumulated a greater

percentage of GPS points near school than further from school. This is likely because
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research assistants ensured that GPS units were being worn at school every weekday.
Outside of school hours, and further from the school, there was no one to remind
participants to wear the GPS units, and therefore there is more likely to be missing

data at greater distances from the school.

6.3.2 Area of buffers

Table 14 and 15 present descriptive statistics for the areas of the GPS based daily
paths and road network buffers. The GPS daily paths represent the places children
went during the seven-day GPS data collection, whereas the road network buffers are

representations of the residential neighbourhood.

For the complete GPS dataset the mean area of the daily path was significantly

different from the mean areas of each of the road network buffers (p <0.001).

For the subset GPS dataset, the mean area of the daily path was significantly
different from the mean areas for all but one of the road network buffers (p < 0.001).
The one exception was the mean area of the 800 m road network buffer, which was

not significantly different from the mean area of the GPS daily path (p = 0.540)

Table 14. Descriptive statistics of the areas (km”) of GPS daily paths and road
network buffers (RNBs) at different scales. Complete GPS dataset (n = 236).

Mean Median SD
GPS daily path 0.45 0.36 0.33
400 m RNB 0.15 0.14 0.05
600 m RNB 0.32 0.30 0.12
800 m RNB 0.57 0.55 0.22
1,000 m RNB 0.90 0.86 0.35
1,200 m RNB 131 1.27 0.52
1,400 m RNB 1.80 1.79 0.71
1,600 m RNB 2.36 2.35 0.92
1,800 m RNB 2.99 3.03 1.16
2,000 m RNB 3.69 3.76 1.43
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Table 15. Descriptive statistics of the areas (km?) of GPS daily paths and road
network buffers (RNBs) at different scales. GPS dataset with inclusion criteria
applied (n = 85).

Mean Median SD
GPS daily path 0.63 0.51 0.41
400 m RNB 0.14 0.14 0.06
600 m RNB 0.32 0.31 0.14
800 m RNB 0.59 0.57 0.25
1,000 m RNB 0.93 0.87 0.38
1,200 m RNB 1.36 1.28 0.53
1,400 m RNB 1.88 1.87 0.71
1,600 m RNB 2.46 2.42 0.92
1,800 m RNB 3.11 3.05 1.15
2,000 m RNB 3.85 3.79 1.44

6.3.3 Overlap of buffers

Table 16 presents the results from the analyses comparing the GPS daily path area
polygons and the road network buffers using the complete dataset. Table 17 presents
the results for the subset GPS dataset. Both tables demonstrate that, as expected, an
increase in the size of the road network buffer is associated with an increase in the

areas of overlap and commission errors, and a decrease in the omission error areas.

While these two tables demonstrate that both GPS datasets reveal a similar pattern in
terms of overlap between the road network buffers and the daily path area, there are
differences between the two datasets. The subset GPS dataset had greater overlap,
greater total error and lower errors of omission at all scales. The subset GPS dataset
also had lower errors of commission at small scales and greater errors of commission

at large scales.

Figure 13 illustrates the differences in magnitude of the overlap, commission errors,
omission errors and total errors in the complete GPS dataset. For the 400 - 800 m
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road network buffers, the magnitude of the errors of commission and omission are
similar. However, for the 1000 — 2000 m road network buffers, the errors of
commission are orders of magnitude larger than errors of omission. In other words,
the larger road network buffers contain substantially greater areas that were not

visited by participants than the smaller road network buffers.
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Figure 13. Median overlap, commission error, and omission error areas at different

road network buffer distances. Complete dataset (n = 236).
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Figure 14 illustrates the magnitude of the errors for the subset GPS dataset. The
pattern is similar to that of the complete GPS dataset. The main differences being the
distance at which the omission and commission areas are equal, and the distance at
which the omission and overlap areas are equal. In the complete GPS dataset,
omission and commission errors are near equal for a smaller road network buffer
(600 m) than in the subset GPS dataset (800 m). Similarly, the overlap and omission
areas are also near equal at a smaller road network buffer (1200 m) in the complete
dataset, than in the subset GPS dataset (1400 m). The differences between the
complete and subset GPS datasets could be due to the different population
characteristics in each dataset, however, they may also be due to the amount of
missing GPS data as errors of omission and commission may be magnified when

there is more missing GPS data.
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Figure 14. Median overlap, commission error, and omission error areas at different
road network buffer distances. Subset GPS dataset (n = 85).

While the areas of overlap, commission and omission are important, it is also
important to consider the percentage of the daily path area captured by the road
network buffer, and, conversely, the percentage of the road network buffer that

contains the daily path area.
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Table 16 and Table 17 (above) also present the mean, median and standard deviation
of the percentage overlaps. As expected, the percentage of daily path area overlap
increases with increased road network buffer size and the percentage of road network

buffer overlap decreases with increased road network buffer size.

6.3.4 GPS points/time within buffers

Descriptive statistics for the two GPS datasets were presented in Chapter 5, Table 13.
These showed that participants from the subset GPS dataset had, on average, 12

hours more GPS data than participants in the complete GPS dataset.

Table 13 also demonstrated that, on average, the 2000 m road network buffer
captures approximately five hours more of GPS activity than the 400 m road network
buffer (i.e., 14.51 hours vs 9.81 hours). However, as shown in the previous section,
this same change in buffer size adds over 3.3 km? of additional error. This error is
mostly error of commission; that is, including areas in the neighbourhood boundary

that children did not visit (Table 16).

Table 18 summarises the hours spent inside the road network buffers for the
complete dataset. The percentage of total recorded GPS time spent within the road
network buffer is also provided in this table. For instance, on average, 9.8 hours of
time was spent within the 400 m road network buffers. This corresponds to 29.9% of
all GPS data. Conversely, on average, 70.1% of the time was spent outside the 400 m
road network buffer. Note that the GPS hours only include time when participants
were wearing the GPS unit and the GPS unit was recording valid satellite data. Time
spent asleep and at home was not included. Furthermore, the time estimates may also

exclude time spent indoors when satellite reception was poor.
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Table 18 also demonstrates that, on average, the 2000 m road network buffer
captures approximately five hours more of GPS activity than the 400 m road network
buffer (i.e., 14.51 hours vs 9.81 hours). However, as shown in the previous section,
this same change in buffer size adds over 3.3 km? of additional error. This error is
mostly error of commission; that is, including areas in the neighbourhood boundary

that children did not visit (Table 16).

The relatively high standard deviations in Table 18 also demonstrate that, on
average, the 2000 m road network buffer captures approximately five hours more of
GPS activity than the 400 m road network buffer (i.e., 14.51 hours vs 9.81 hours).
However, as shown in the previous section, this same change in buffer size adds over
3.3 km? of additional error. This error is mostly error of commission; that is,

including areas in the neighbourhood boundary that children did not visit (Table 16).

Table 18 revealed substantial variation between participants. In other words, road
network buffers were very good representations of where some participants spent
time (i.e., higher percentages of GPS data in road network buffers), and poor
representations of where other participants spent time (i.e., lower percentages of GPS

data in road network buffers).

Table 19 shows the results for the subset GPS dataset. Here, the standard deviations
were higher. On average, the 2000 m road network buffer captured 5.8 additional

hours of GPS activity than the 400 m road network buffer.
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Even though participants with too few GPS points and participants whose home
addresses were not verified by the GPS data were excluded from this analysis, Table
19 show that there are participants who did not record any non-vehicle GPS points
within road network buffers around their residential address (i.e., there were

minimum values of 0).

Participants with no non-vehicle GPS points in the road network buffers were either
driven to and from home during data collection, or took non-road routes to and from
home. Figure 15 provides an example for one participant. As shown, there are GPS
points in the home parcel. However, since road network buffers are centred on road
centrelines, these GPS points do not fall within the road network buffer. The
participant left the house through a back fence and travelled across vacant land

before reaching a road. They returned home using the same route.

This example demonstrates that, in some instances, part of the residential land parcel
was excluded from all road network buffers. Inspection of the data also revealed that
some participants’ residential land parcels were entirely excluded from road network
buffers. This occurred when a participant lived down a long driveway/right of way,
or if the residential land parcel was large (e.g., when a child lived in a large

apartment building or on a block of land with many flats).
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Figure 15. Participant with no GPS data in the 400 m and 600 m road network
buffers.
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6.3.5 Is there an optimal road network buffer scale?

As shown above, increasing the road network buffer scale necessarily leads to an
increase in the overlap, an increase in the commission errors, and a decrease in the
omission errors. This tension between an increase in overlap (‘good’) and an increase
in commission errors (‘bad’) makes it difficult to identify an optimal scale within

which to capture children’s exposure to the environment.

However, it is possible to gain more insight by combining the overlap measures.
Table 20 presents the results for two combined measures: total error area, and the
sum of the percentage road network buffer overlap and percentage daily path area

overlap.

This table shows that, if the purpose is to minimise the total error area and maximise
the percentage overlap, then the 400 m road network buffer is optimal for both the
complete GPS dataset and the subset GPS dataset. However, since errors of
commission are orders of magnitude larger than errors of omission (refer Figure 13
and Figure 14), this approach to the selection of an optimal network buffer distance
is biased against the larger scales. Conversely, the larger buffers are always going to
capture more GPS points than the smaller buffers. Ultimately, this means that there is
no straightforward way of identifying an optimal scale of road network buffer to

capture GPS points (i.e., exposure).
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Table 20. Combined overlap measures for the complete GPS dataset (n = 236) and

the subset GPS dataset (n = 85).

400 m RNB

600 m RNB

800 m RNB

1,000 m RNB

1,200 m RNB

1,400 m RNB

1,600 m RNB

1,800 m RNB

2,000 m RNB

Sum of mean %
overlap

Complete  Subset

GPS GPS
dataset dataset
61.9 64.7
56.8 56.9
55.6 54.2
56.6 53.8
57.6 54.1
58.4 54.6
58.8 54.7
59.4 55.7
59.7 55.9

Mean total error area

(km?)

Complete
GPS

dataset

0.46

0.56

0.76

1.04

1.40

1.86

2.39

2.99

3.67

Subset
GPS

dataset

0.62

0.71

0.90

1.18

1.55

2.02

2.57

3.18

3.90

Number of participants
where this buffer has a
maximum mean relative

density

Complete

GPS dataset

202

14

Subset
GPS

dataset

74

6.4 Discussion

This chapter has examined how well road network buffers capture children’s

exposure. To answer this, road network buffers at a range of scales were created

around children’s residential addresses. The extent to which road network buffers

captured places children went was assessed by comparing the overlap of the road

134



network buffers with the GPS daily path area. Time spent within road network
buffers was estimated by counting the number and percentage of GPS points within

each buffer, with each GPS data point representing a 30 second time period.

All analyses were repeated for two datasets: the complete GPS dataset with
minimum inclusion criteria applied (n = 236), and the subset GPS dataset with
stricter inclusion criteria (n = 85). Comparing the two datasets, the patterns were
similar, although there were differences in the numbers. For instance, there were
greater errors of omission, greater overlap, and more GPS points captured by road
network buffers in the subset GPS dataset. A more rigorous investigation of the
impact of different GPS inclusion criteria is needed. Since the subset GPS dataset
represented the more stringent inclusion criteria, this dataset will be used in analyses

and interpretations for the remainder of this dissertation.

The degree to which road network buffers captured places children went and the time
they spent in those places varied for individual participants. Unsurprisingly, larger
buffers captured a greater spatial extent of where children travelled to (i.e., less
errors of omission) and a greater percentage of the time children spent in those places
(i.e., higher percentage of GPS points in the road network buffer). Conversely, the
smaller buffers minimised the area in buffers that children did not visit (i.e., less

errors of commission).

On average, the 400 m road network buffer captured only 14.0% of the daily path
area and 34.8% of the time spent in those places, while even the 2000 m road
network buffer captured only 47.7% of the daily path area and 48.4% of the time

spent in those places. This demonstrates that road network buffers are not adequate
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representations of where children go or spend time. While this point has been
highlighted by others (Madsen et al. 2014, Villanueva et al. 2012), the analyses in
this chapter provide new evidence of the extent to which children’s exposure — both
spatially and temporally — is captured and excluded by road network buffers at a

range of scales.

While it was not possible to determine an optimal road network buffer scale, this
chapter has made a new contribution to the literature by specifically assessing errors
of omission and commission. Previous studies have only assessed overlap and GPS
points contained by buffers. While errors of omission and commission were of a
similar magnitude at smaller scales, the errors of commission were up to 12 times

larger for the largest road network buffer.

This chapter has provided evidence of the relative gains and losses in choosing one
road network buffer scale over another. As mentioned in Chapter 2, 400 and 800
metres are commonly used road network buffer scales for both adults and children.
In this sample, using an 800 m road network buffer rather than a 400 m road network
buffer captures, on average, 13.9% more of the spatial extent of where children went,
and 5.8% more GPS points (i.e., 2.5 hours more activity). Yet the increased capture
of time spent within the buffer was offset by an increase in the percentage of the
buffer not visited by children (i.e., commission errors). The decision on whether it is
more important to capture exposure or minimise errors of commission will depend

on the research question.

The analyses in this chapter revealed the unexpected situation whereby residential

land parcels contained GPS data, yet road network buffers contained no GPS data.
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Exploration of the data revealed a number of situations where road network buffers
were not adequately representing children’s travel and presence at - or close to -
home. These inconsistencies occurred because network buffers are, by definition,
centred on roads and may, therefore, exclude part, or all, of the residential land
parcel. Similarly, road network buffers may exclude part, or all, of the school land

parcel.

Another issue was the failure of road network buffers to capture children’s activity
and travel that occurred beyond the road network. For instance, one participant used
a vacant lot at the back of their house as their route to and from school. These
situations occurred because of limitations associated with road network buffers,

which are presented in the following section.

6.4.1 Limitations of road network buffers

The limitations of road network buffers identified here arise from analyses
undertaken in this chapter. Six limitations were identified and are discussed in detail
below. The research acknowledging and/or addressing these limitations is still very
sparse, and in some cases non-existent. However, where possible, a review of how
these limitations have been acknowledged and addressed in the literature is also

included.

6.4.1.1 Road network buffers are typically created around the residential address
only

Road network buffers are created around specified origins, typically the residential
address. Specifying a single residential origin from which to calculate the buffers
ignores other places people travel and spend time in their daily lives such as home,

school, shops, and recreational places. This relates to the ‘residential trap’ (Chaix et
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al. 2009) and ‘local trap’ concepts (Cummins et al. 2005) discussed in Chapter 2.
This issue is relevant to all types of neighbourhood delineation methods, including

road network buffers.

Of the six limitations discussed here, this limitation has received the most attention
in the literature with continued acknowledgement of the issue and growing attempts
to address it. Researchers are increasingly including non-residential locations and
routes in their analyses, and road network buffers are often used to represent these
spaces. For instance, researchers have created both home and workplace/school road
network buffers (e.g., Thornton et al. 2013), and sometimes also include routes -
either shortest path or actual routes from GPS data (e.g., Dalton et al. 2013, Burgoine
and Monsivais 2013) - to create a better representation of exposure to the
environment. In keeping with the findings of this chapter, this emerging research -
along with research evaluating exposure via activity spaces (Villanueva et al. 2012)
and GPS tracking (Hirsch et al. 2014, Zenk et al. 2011) - has demonstrated that
excluding non-residential locations can lead to underestimation of exposure to

various aspects of the environment.

6.4.1.2 Assumption that movement only occurs along the road network

Delineation of boundaries using road network buffers assumes movement occurs
only along the road network. Yet, in reality, movement may be restricted in some
parts of the road network (e.g., where there are no footpaths), and may also occur
beyond the road network. As discussed in Chapter 2, the two studies that have
compared pedestrian versus non-pedestrian networks (Tal and Handy 2012, Chin et

al. 2008) found that excluding pedestrian routes from street networks can produce
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different measures of street connectivity and ultimately change the shape and size of

the road network buffers.

One approach to addressing this issue is to include pedestrian paths in the network
when creating road network buffers. However, the lack of footpath and pedestrian
path data is a problem that limits the use of pedestrian network buffers (Badland et
al. 2013, Giles-Corti et al. 2014). Given technological advances in the extraction of
footpath data from imagery (e.g., Senlet and Elgammal 2012, Smith, Malik and
Culler 2013) and the development of methods to approximate footpath locations
(Janssen and Rosu 2012), it is likely that digital footpath data will be increasingly
available. As this occurs, including pedestrian paths in the network analyses will

mitigate this limitation to some extent.

While the increased availability of footpath and pedestrian path data is promising,
including footpaths in the network does not entirely address this limitation since
people’s movement is not restricted to official networks. People can cut across
private property, go through public buildings that allow thoroughfare through
common areas or public spaces (e.g., shops in the CBD) and cross public open
spaces. Such movement beyond the official networks may be especially important
for children, who often play in informal or ‘found’ spaces such as carparks and
vacant lots (Thomson and Philo 2004, Berg and Medrich 1980, Carroll et al. 2015)
and, therefore, may travel through these informal spaces more frequently. Examples
of children’s movement in unofficial spaces were evident in the KITC GPS data. For
instance, GPS tracks revealed that some children were jumping a fence to get to and

from school and others were spending time in, and/or travelling through, vacant lots.
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6.4.1.3 Methodological choices can alter the size and shape of the buffer

As discussed in Chapter 3, a range of methodological choices - including those that
determine the size and shape of the buffer, the way the spatial data is represented
(e.g., points versus polygons), the type of built environment measure (e.g., counts,
density, area), and the spatial analysis functions used (e.g., OD matrix versus
intersecting points in polygons) - can potentially influence and alter results. This
issue has barely been acknowledged in the literature. Only Forsyth et al. (2012) have

considered one aspect: the use of different software versions and parameters.

6.4.1.4 Road network buffers are centred on roads, yet in many cases daily lives
are not dominated by road environments.

Road network buffers are centred on the road and so excel at capturing the road
environment (e.g., intersection density, traffic volume) and the environment in close
proximity to the road (e.g., bus stops, footpaths). However, it is likely there are
important aspects of daily life that take place at some distance from roads (e.g.,
work, study, and social and recreational activities). The degree to which road
network buffers can capture the non-road environment can depend on the
methodological choices discussed above (e.g., road width, algorithm used, data
representation choices, polygon versus point). This limitation has not been discussed

in the literature.

6.4.1.5 Road network buffers are usually isotropic and do not allow for aspects of
the environment to alter their size and shape

In most instances, road network buffers are isotropic. They are created around an
origin point and expand equally in all directions along the road network. This ignores
the fact that accessibility and exposure are often oriented towards a certain direction.

For example, roads in some directions may be more or less accessible than others
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(e.g., due to slope, presence of pedestrian crossings, traffic light phasing). Mobility
patterns and, therefore, exposure to the environment are also likely to be directional.
People may choose to travel in certain directions more than others due to
characteristics of the network (e.g., traffic, presence of footpaths), the surrounding
environment (e.g., slope, presence of destinations of interest, presence of graffiti,
crime, land use, public transit stop), and individual factors (e.g., relative location of

workplace/school, possession of a driver’s license and access to a car).

The problem of using symmetrical representations of neighbourhood to represent
asymmetrical movement and exposure was discussed in Chapter 2 and has been
acknowledged in the literature (Madsen et al. 2014, Chaix et al. 2009). Some
researchers have attempted to address asymmetrical delineations explicitly. For
example, Madsen et al. (2014), developed cycling oriented towards the CBD.
Alternatively, delineating the asymmetry of daily life can be achieved by using
activity space methods. To date, no one has proposed or calculated anisotropic road

network buffers.

6.4.1.6 Measuring the built environment within a road network buffer ignores
spatial patterning within the buffer

Road network buffers are often created so that researchers can measure
characteristics of the built environment within the buffer. However, this ignores any

variation or spatial patterning of the built environment within the buffer.

Figures 16-18 illustrate some of the issues and aspects of the built environment that
are not being captured with current buffering approaches. This figure shows an
example residential road network buffer at a constant scale. Figure 16 demonstrates

that the built environment can vary within a road network buffer. Each of the three
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examples provided has the same destination count and the same destination density,

yet real access to destinations varies.

Z Legend
L8 * . & Residential address
. Destination
A A & Road network buffer

Figure 16. Additional road network buffer limitations — part 1.
The three examples in Figure 17 have the same destination count, the same
destination density, and the same destination locations, but, again, the real access

differs for each example.

Legend
b AN Residential address
» * . . Destination
Road network buffer
A A A

Figure 17. Additional road network buffer limitations — part 2.

In Figure 18, the three examples shown demonstrate the same destinations located on
different road networks. While the real potential access to destinations is the same
for each example, the destination density differs because of the different road

network buffer areas.
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Legend
H HY 3 A Residential address

N Destination

w w A Road network buffer

Figure 18. Additional road network buffer limitations — part 3.
While the examples in Figures 16-18 demonstrate limitations with the measurement
of the built environment using road network buffers, these issues are also relevant to

other types of delineation methods.

Another question is whether variation of the built environment within a buffer makes
much difference. At smaller scales it is unlikely to make a difference, yet as scale

increase the impact of these issues are likely greater.

Although measurement of spatial pattern is common in other fields, it is not often
addressed in built environment and physical activity research. As illustrated above,
spatial patterning is pertinent to both delineation of neighbourhood/exposure and
methods of measuring the built environment. Built environment and physical activity
researchers are starting to consider spatial patterning. For instance, Manaugh and
Kreider (2013), have proposed a measure of mixed land use that accounts for the
spatial mixing/interaction within an area of interest (as opposed to solely measuring
proportions or counts of land use). Tribby et al. (2015) and Mayne et al. (2013) have
used Moran’s [ — a measure of spatial patterning — in recent studies of walkability.
Matthews and Yang (2013), have identified a similar issue whereby the absolute and

relative location of neighbourhood boundaries are ignored in current analyses.
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These issues demonstrate that, in the quest for greater precision in the measurement
of context, it is also worth considering how delineation methods interact with a range
of built environment measures and the pattern of the street network. It is possible that
this unmeasured variation in the environment within the buffer may make it difficult

to detect relationships between the environment and health.

6.4.1.7 Examples of limitations

Figure 19 illustrates several of the limitations discussed above using data from the
KITC study. Figure 19a demonstrates that road network buffers around a residential
address can exclude important places visited by the participant during data
collection. Neither the 400 m nor the 800 m road network buffers capture the child’s
school environment, and both only capture a part of the child’s journey to school.
Additionally, both buffers exclude the majority of the home residential parcel. In this
case, the child’s home is located at the end of a long driveway that is further than 50

m from the road centreline.

Figure 19b shows part of the child’s journey to school was along pedestrian only
paths not included in the road network and, regardless of the distance used in the
buffer, this part would never be included in the buffer. This issue was identified
earlier in this chapter (Figure 15), where the road network buffer did not capture any
GPS data points for one participant because the child did not visit roads in the
immediate vicinity of their home. Instead, they travelled to and from home via a

vacant lot accessible from the back of the residential property.
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Figure 19. Examples of limitations of road network buffers.
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Figure 19b also demonstrates how some built environment features may or may not
be included in the buffer depending on how they are represented. For example, if the
parks are represented as points instead of polygons, then their inclusion in the road
network buffer can depend on where the point representing the park is placed (often
an automated or arbitrary decision). As discussed in Chapter 3, this choice of how to
represent the raw built environment data can alter the built environment measures

calculated for each buffer.

Lastly, Figure 19b also shows that the road network buffer would better capture
places the child visited if the home buffer was oriented towards the school and/or the
school was included in the buffer. It is also worth noting that some activity appears

to be centred around the school.

6.4.2 Limitations of analyses

There were a couple of limitations with the analyses undertaken in this chapter. First,
due to missing GPS data, the method to estimate the spatial extent of where children
went (i.e., the GPS daily path area) is a likely underestimation of where children
spent time. Second, the GPS data came from only seven days of data collection.
Therefore, the daily path areas used here may not be representative of the

participant’s usual behaviour.

6.5 Conclusion

Most studies that compare buffers only have the potential to draw conclusions about
the relative size of buffers and whether they produce different built environment
measures and different modelling results. They cannot state whether a certain buffer

is better or worse at representing participants’ mobility than any other buffer.
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However, it is more important to know which delineations best represent a
participant’s exposure to the environment than it is to know which delineations
produce the strongest associations. This chapter has presented new evidence on how
well road network buffers represent where people travel and spend time, and has
expanded the scope of this question by exploring the concepts of commission and

omission errors.

The results showed that while the smallest buffer — the 400 m road network buffer -
minimised the error in identifying the spatial extent of the places children travel,
none of the road network buffers adequately capture the spatial extent of the places

where children spend the most time.

This chapter has also identified six limitations in the use of road network buffers.
While these limitations were identified based on data from a study of children, they
are likely to be relevant to other populations. To date, most of these limitations have
not been acknowledged in the literature. For those that have been identified
previously, little attention has been given to evaluating their impact or addressing

them in the context of improving road network buffers.

Explicitly acknowledging the limitations of road network buffers has a number of
benefits. First, it allows researchers to understand and interpret results of studies that
use road network buffers more accurately. For instance, an understanding of one of
these limitations helped explain the unusual result discussed in this chapter, where
participants recorded GPS points at home but not in their road network buffer.

Second, it provides a basis for improving road network buffers. Finally, we can
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assess different delineation methods in terms of how well they address the road

network buffer limitations.
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Chapter 7. How well do activity space
measures represent where children spend
time?

7.1 Introduction

The previous chapter concluded that, for the children in the KITC study, road
network buffers do not represent their exposure to the environment accurately. In the
KITC dataset, on average, more than half of the spatial extent visited by children,
and more than half of the time, captured by the seven-day GPS data were not

captured by road network buffers.

However, road network buffers are not the only method of conceptualising and
delineating neighbourhood boundaries. Activity spaces - spaces that people visit,
travel through, and see in the course of their daily activities (Schonfelder and
Axhausen 2003, Vallee et al. 2010) - were reviewed in Chapter 2. Briefly, there are
number of common methods of calculating activity space: SDE, convex hull, and
daily path areas. A few health researchers are developing new activity space
delineation methods such as localised SDEs (Boruff et al. 2012), kernel density
based methods (Thierry, Chaix and Kestens 2013), and oriented ellipses (Madsen et

al. 2014).

All methods of delineating activity space at least partially address three of the
limitations of road network buffers. First, by definition, activity spaces extend
beyond the residential address, unlike road network buffers calculated solely around

residential addresses. Second, delineations of activity spaces are centred on activity
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locations/destinations, not roads. Third, since activity spaces are based on where
people visit and spend time, they implicitly address the mismatch between
anisotropic movement and activity and isotropic road network buffers. For these

reasons, activity space methods offer a promising alternative to road network buffers.

This chapter explores how well a range of methods of operationalising activity
spaces perform in terms of representing where children spend time. It builds on
existing activity space research by using KITC GPS data to create ten different
representations of activity space, using a variety of methods. The activity space
methods applied here include both common methods - standard deviation ellipse
(SDE), convex hull, and daily path areas — and methods taken from the ecological

literature — temporal localised convex hulls, and kernel density estimation.

Using the same approach as the previous chapter, a range of activity spaces are
calculated. The different activity space delineation methods are then are compared to
GPS data by calculating the overlap between activity spaces and GPS-based daily
path areas, and by calculating the proportion of GPS data recorded within the activity
spaces. The results of these analyses will provide insight into how well different

activity spaces represent where children spent time.

7.2 Methods

7.2.1 Dataset

The subset GPS dataset — which contained 85 participants - was used for this
analysis. See Chapter 5 for a description of how this dataset was created. As with the
previous chapter, all analyses were undertaken with non-vehicle GPS data only. See

Chapter 4 for a description of non-vehicle GPS data extraction.
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7.2.2 Creation of activity spaces

Five different methods were used to create a total of ten different activity spaces

using non-vehicle GPS points (Table 21).

Table 21. Activity spaces methods.

Activity space method Activity space (abbreviation)

Minimum convex hull Convex hull (CH)

Standard deviation ellipse 1-Standard deviation ellipse (SDE)

Daily path area Daily path area (DPA)

Temporal localised convex hull 50% Temporal localised convex hull (TLCH50)

75% Temporal localised convex hull (TLCH75)
95% Temporal localised convex hull (TLCH95)

Kernel density estimation Kernel density estimation — selecting areas/cells where a
participant spent approximately 5 hours or more over the

data collection period (KDEQ5)

Kernel density estimation — selecting areas/cells where a
participant spent approximately 7 hours or more over the

data collection period (KDEQ7)

Kernel density estimation — selecting areas/cells where a
participant spent approximately 9 hours or more over the

data collection period (KDEQ9)

Kernel density estimation — selecting areas/cells where a
participant spent approximately 12 hours or more over the

data collection period (KDE12)

The minimum convex hull (CH) is the smallest convex polygon that encloses a set of
points. Convex hulls were calculated for each participant using the ‘Minimum
Bounding Geometry’ function in ArcGIS. The 1-standard deviation ellipse (SDE) is

an ellipse that captures approximately two-thirds of the points and is centred on the
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mean centre. The 1-SDE was calculated for each participant using the ‘Directional
Distribution function in ArcGIS. The daily path area (DPA) was calculated using

processes documented in Chapter 6.

In contrast to a convex hull - which is created around all points — a temporal
localised convex hull is created around each point and it’s n nearest neighbours in
time and space (Getz et al. 2007). Temporal localised convex hulls were calculated
using the ‘tlocoh’ package for R (Lyons, Turner and Getz 2013). T-LoCoH is a home
range construction algorithm that adds a temporal dimension to the concept of
localised convex hulls. GPS data were imported into R. The time-space scaling
parameter (s) was set to 0.00001. This value was chosen to balance the time-space
units and identify daily behaviour patterns, and is the recommended method in the T-

LoCoH user manual (Lyons 2014).

An adaptive hull method was chosen due to the sparse nature of the GPS data. In this
approach, neighbours are identified by their cumulative distance from their parent
point. Neighbourhood identification occurs when the value of a is reached. In this
analysis a was set to 500, which is the time-space distance between all points in the
hull (i.e., neighbourhood boundary). This value was chosen by visually assessing the
results of multiple values of a. Temporal localised convex hulls were created using
the parameters above. 50%, 75%, and 95% isopleths were created for each hull and
exported into GIS format. The three different temporal localised convex hull

delineations were named TLCHS0, TLCH75, and TLCH95, respectively.

The activity spaces based on kernel density estimates (KDE) were created in ArcGIS

using the kernel density function. The cell-size was set to 5 m and the kernel was set
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to 50 m to align with the daily path area buffer distance. Four KDE-based activity
spaces were created by selecting cells that met the following criteria and then

converting those cells to polygons:

e KDEO5 — only those cells with densities greater than or equal to 0.24 GPS
points/m” are included in the activity space. This density approximates a total
of 5 hours or more of time spent in these cells over the data collection period.
Since a GPS point is recorded every 30 s, 600 GPS points comprise 5 hours
of time. The area of interest is 50 m x 50 m, which is 2,500 m’. Therefore, the

cut-off density is 600 GPS points divided by 2,500 m?®= 0.24 GPS points/m’.

e KDEO7 — only those cells with densities greater than or equal to 0.336 GPS
points/mz. This density approximates a total of 7 hours or more of time spent

in these cells over the data collection period.

e KDEOQ9 — only those cells with densities greater than or equal to 0.432 GPS
points/m®. This density approximates a total of 9 hours or more of time spent

in these cells over the data collection period.

e KDEI12 — only those cells with densities greater than or equal to 0.576 GPS
points/m”. This density approximates a total of 12 hours or more of time

spent in these cells over the data collection period.

Figure 20 is a map of a single participant’s daily path area overlaid with three road
network buffers (400, 800, 1600 m) and the ten activity spaces calculated in this
analysis. Figure 21 shows the same map for a different participant. The participants
in the two figures were chosen to illustrate diverse travel patterns and activity spaces,
with the Figure 20 participant having more constrained travel, and consequently
smaller activity spaces than the participant in Figure 21 (note the different scales on

the maps).
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Figure 20. Example buffers and activity spaces for a single participant compared to
the 50 m GPS buffer daily path area: a) road network buffers at 400, 800, 1600 m, b)
convex hull based activity spaces (CH, TLCH50, TLCH75, TCH95), and c) activity
spaces (SDE, KDE12, KDE09, KDE07, KDEOS)

154



Legend

- Home

) o N

B crs caly path ares *

0 400 miced network puter

] 300 mroad nebwork buer

|| 1600 m ro@d network buter

mmh.l

B Terporad ezl convex Pl {05)

B Terporal hoced convex hull {1175}
Temporal hocad comver Rl {10.65)

] sc=asy

B o1 (- 12+ hows)

B o (-5 hous)

B coer (- 7 houms)
KIDEDE ([~ 5+ howrs)

|lil o3 1 2 Kilometers

Figure 21. Example buffers and activity spaces for a single participant compared to
the 50 m GPS daily path area: a) road network buffers at 400, 800, 1600 m, b)
convex hull based activity spaces (CH, TLCH50, TLCH75, TCH95), and c) activity
spaces (SDE, KDE12, KDE09, KDE07, KDEOS)
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7.2.3 Comparing GPS data and activity spaces

The following comparison measures were calculated to compare the activity space
delineations: overlap area, commission error area, omission error area, percentage of
the activity space overlapped by the daily path area, percentage of the daily path area
overlapped by the activity space, total error area, total hours GPS data captured by
the activity space, and percentage of GPS data captured by the activity space. The

methods used to calculate these measures were described in Chapter 6.

The following composite measures were also calculated, to enable comparison with
the 400 m road network buffer (which was shown to be the best road network buffer
in Chapter 6): additional total error area, additional total overlap area, and the
difference between the additional overlap and additional error. For example, the
additional total error area for the convex hull activity space is the total error of the
convex hull minus the total error of the 400 m road network buffer. Similarly, the
additional total overlap area is the total overlap area of the convex hull minus the
total overlap area of the 400 m road network buffer. The difference between the
additional overlap and additional error is the additional total overlap area minus the
additional total error area. A positive difference indicates that the activity space in
question adds more overlap than it does error, and, therefore, improves on the 400 m

road network buffer.

7.2.4 Statistical analysis

Paired bivariate analyses using non-parametric Wilcoxon tests (o = 5%) compared
the daily path areas with each of the different activity spaces. Statistical analyses

were conducted in R (R Development Core Team 2008).
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7.3 Results

Table 22 presents descriptive statistics for the areas of the ten different delineations
of activity space. In this analysis, the GPS daily paths represent the places children
went during the seven-day GPS data collection, whereas the other activity space
delineations are alternate representations of children’s exposure to the environment.
The daily path was significantly larger, on average, than the temporal localised
convex hulls and the kernel density activity spaces. Conversely, the daily path was
significantly smaller, on average, than both the convex hull and standard deviation
ellipse. As previously illustrated in Figure 20 and Figure 21, the activity spaces
delineated by convex hulls and standard deviation ellipses are orders of magnitude
larger than not only the other activity spaces but also the road network buffers from

the previous chapter (range 0.14 — 3.85 km?; Table 17).

Table 22. Descriptive statistics of the areas (km?) of GPS daily path areas and
different activity spaces. Subset GPS dataset (n = 85).

Mean Median SD
GPS daily path 0.630 0.510 0.410
CH 49.130 16.250 106.960
SDE 23.160 3.170 77.440
TLCH50 0.005 0.004 0.004
TLCH75 0.020 0.010 0.020
TLCHY5 0.150 0.090 0.180
KDEOS 0.110 0.110 0.040
KDEO7 0.060 0.060 0.020
KDEOS 0.030 0.030 0.010
KDE12 0.020 0.020 0.000
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Table 23 presents results from the overlap analyses, comparing each of the activity
space measures with the GPS daily path area. All activity spaces were calculated
using GPS data and many of the methods are based on inclusion of a certain
percentage of GPS points. For instance, the convex hull necessarily includes all GPS

points. Therefore, all results should be interpreted with this in mind.

While the omission error is practically zero for the convex hull, it also has the
highest commission error. Contrast this to the KDE-based activity spaces which have
low errors of omission and commission. The convex hull also has a very low
percentage activity space overlap. In other words, on average, only 7.6% of the
convex hull is covered by the daily path. In comparison, most of the temporal
localised convex hulls and the KDE activity spaces are almost completely covered by

the daily path (percentage activity space overlap).

Table 24 presents composite measures of overlap between the activity spaces and the
daily path area. The table also presents comparisons with the 400 m road network
buffer. For instance, the convex hull activity spaces added on average an additional
47.95 km” of total error area and an additional 0.5 km” of overlap area than the 400
m road network buffer. The column ‘Additional overlap — additional error’ is the
additional total error subtracted from the additional overlap. Positive values indicate
that a particular activity space performed better than the 400 m road network buffer,

as it added more overlap than error.
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Based on these composite measures, the following activity spaces performed better
than the 400 m road network buffer in terms of increasing overlap and minimising

errors of commission and omission: TLCH95, KDEO5, LDE07, KDE09, KDE12.

Table 25 presents the hours and percentage of non-vehicle GPS data recorded within
the activity spaces. Results for the convex hull activity space are not listed in the
table since by definition the convex hull includes 100% of GPS points. Aside from
the convex hull, the activity space measures that capture the most GPS data are the
TLCH95 and the KDEOS activity space delineations. This is not surprising since the
temporal local convex hull and KDE activity space boundaries were delineated based
on the hours/percentage of GPS points included in the activity space. All activity
space delineations captured a greater percentage of GPS data than the road network
buffers analysed in Chapter 6 (mean % GPS points captured by road network buffers
ranged from 34.8 — 48.4 %; Table 17). Again, this is not surprising since the activity
space delineations were created using the GPS data and the road network buffers

were created independent of the GPS data.

7.4 Discussion and conclusion

In addition to the daily path area previously calculated in Chapter 6, this chapter
presented nine additional delineations of activity spaces. In a comparison with the
400 m road network buffer, many of the activity spaces did a better job of
maximising overlap with the daily path and minimising error areas. The KDEOS5
activity space performed the best as it maximised additional overlap in comparison to

the additional error added.
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It is worth noting that two commonly used activity space methods — the convex hull
and SDE — were not as effective at representing children’s mobility and minimising
errors of commission as the other methods presented here. Therefore, if researchers
intend to use activity spaces as proxies of exposure to the environment, they should
consider using more sophisticated delineation methods, such as the spatio-temporal
KDE approaches developed in Geographic Information Science (e.g., Demsar and
Virrantaus 2010, Nakaya and Yano 2010). Moreover, there may be potential to
borrow from ecology and draw on advanced ‘home range’ delineation methods. For
instance, Scull et al. (2012) have used local convex hulls to estimate the home range
of Ugandan mountain gorilla, Stein et al. (2011) have used kernel density estimates
to estimate the home range of leopards in Namibia, and Diirr and Ward (2014) have
used temporal localised convex hulls and biased random bridge methods to delineate

the home ranges of domestic dogs in Australia.

Unlike the road network buffers, all these activity spaces were calculated using GPS
data. This means that the activity space delineation methods presented here are only
possible if GPS or similar data — such as geocoded travel survey, travel diary data, or
mobile phone records — are available. The collection of GPS data is expensive and
not feasible for many research studies. Therefore, even though many of the activity
spaces we examined performed better than the best road network buffer, there is still
a need for better neighbourhood delineations that do not require GPS data. Therefore,
the next chapter will explore how road network buffers can be improved, so as to

better represent exposure to the environment.
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Chapter 8. Home, school and in between:
enhancing road network buffer to better
represent neighbourhoods and exposure

8.1 Introduction

This dissertation has already established that road network buffers tend to be a better
choice than administrative and Euclidean buffers when delineating boundaries that
represent exposure to the built environment (Chapter 3). Therefore, Chapter 6
investigated the degree to which road network buffers - at a range of scales -
captured children’s exposure to the environment. While the 400 m road network
buffer was identified as the buffer that minimised errors of omission and
commission, none of the road network buffers were good representations of actual
exposure to the environment. In the KITC dataset, on average, more than half of the
spatial extent visited by children and more than half of the time captured by the

seven-day GPS data was not captured by road network buffers.

Consequently, Chapter 7 moved beyond road network buffers and implemented a
range of activity space delineations, concluding that the KDEOS5 delineation best
represented children’s mobility while minimising errors of commission. Chapter 7
also found that many activity space representations performed better than the 400 m

road network buffer.

These analyses would seem to suggest that activity spaces are the ideal type of
delineation method for researchers to use when representing exposure. However, the

activity space representations implemented in the previous chapter all require
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detailed location data (e.g., GPS, travel survey), but this kind of data is not always
available, and can be too expensive and/or intrusive to collect in practice. Therefore,
there is a need to develop better delineations of exposure to the environment that do

not require detailed location data.

In theory, it ought to be possible to use knowledge about key locations in people’s
lives to create better delineations. This chapter explores this idea by enhancing and
modifying the standard road network buffer to: a) better assess potential access and
b) better estimate exposure to the built environment. First, building on the limitations
of road network buffers identified in Chapter 6, five methods of enhancing the
standard network buffer to better capture exposure to the environment are proposed.
Next, one of these methods is operationalised using the KITC data and compared to

the GPS data. Finally, the results are presented and discussed.

8.2 Potential enhancements to the standard road network buffers

The purpose of these enhancements is to create road network buffers that better
represent the neighbourhood and exposure to the environment. Five potential

methods of improving road network buffers were identified, and are listed below.

1. Inclusion of common destinations.
Create a road network buffer around home and a road network buffer around
other frequently visited locations, such as the second places of work/school
and ‘third place’ destinations (Carroll et al, 2015). These buffers can then be

combined into a single buffer.
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2. Inclusion of transitory spaces (e.g., pedestrian paths).
Use a network of transitory third places such as roads and pedestrian paths to

create an enhanced buffer.

3. Inclusion of private and public spaces along the road network.
Supplement the road network buffer, either with polygons of land parcels of
frequently visited locations, or with all land parcels that intersect the road

network buffer.

4. Varying the orientation of the buffer.
Orient the buffer towards frequently visited locations, such as work and

school.

5. Varying the shape (width and length) of the buffer.
Vary the shape of the buffer based on additional information, such as road
infrastructure (e.g., traffic lights, number of lanes), traffic speed/volume,
pedestrian infrastructure (e.g., footpaths, pedestrian crossings), and

topography/slope.

The development, implementation, and testing of all five potential enhancements is
beyond the scope of this dissertation. Therefore, this dissertation will concentrate on
only the first enhancement, the inclusion of common locations in addition to the
home. As before, the enhanced road network buffers will be assessed by comparing
them with GPS daily path areas, representing the places children visited during the

seven-day GPS data collection.
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8.3 Methods

8.3.1 Data

Data collection and GPS data processing were described earlier, in Chapters 4 and 5.
All analyses in this section were conducted for the GPS dataset with inclusion
criteria applied (n= 85). The remainder of this section describes the methods used to
create enhanced road network buffers, create polygon representations of the GPS

data, and compare the road network buffers with the GPS data.

8.3.2 Buffer creation

The first step required to create the enhanced road network buffers was to identify
destinations to create additional road network buffers around. Not surprisingly, travel
diary data indicated that, after home, the most common destination for the children in
the KITC study was school, with an average of just under five trips during the seven
day data collection period (Carroll et al. 2015). The next most common destination
visited by children was ‘shops’, with on average 2.7 — 4.7 trips - for inner city and
suburban children, respectively - undertaken in the seven-day data collection period

(Carroll et al. 2015).

‘School” was included as another destination to create road network buffers around.
While shops were another frequently visited destination that could be included, the
decision was made to restrict the enhanced buffers to only one additional destination

so as to isolate the effects of an additional destination.

Next, road network buffers at a range of scales were created around both home and
school. Scales of 400, 600, and 800 m were chosen, since the work carried out in

Chapter 6 had demonstrated these smaller buffers minimised the total error area and
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maximised the sum of the percentage overlap. Six versions of the enhanced road
network buffers, representing a range of scale combinations were calculated (Table
26). Since children spend more time at home than at school, the size of the school
road network buffer was always less than or equal to the size of the home road

network buffer.

Table 26. Enhanced road network buffer scale combinations.

Scale combination Home scale (m) School scale (m)
1 400 400
2 600 400
3 600 600
4 800 400
5 800 600
6 800 800

Access to schools is more realistically modelled using school entrance locations
(Harrison et al. 2014) than a single centroid. Therefore, school entrances were
identified on Google Maps and digitised. Road network buffers were calculated
around each school entrance. Once this was done, the home and school buffers were

merged for each participant (e.g., Figure 22.)
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Figure 22. Example enhanced road network buffer.

8.3.3 Comparing the GPS data and enhanced road network buffers

The enhanced road network buffers were compared with GPS daily path areas. The
seven measures of geographical overlap described in Chapter 6 were calculated for
each buffer. Briefly, these measures were: area of overlap; area of commission error;
area of omission error; percentage of road network buffer overlapped by daily path
area; percentage of daily path area overlapped by road network buffer; and the total

number and total percentage of GPS points within the road network buffers.

The three composite measures employed in Chapter 7 were also calculated:
additional total error area, additional total overlap area, and the difference between

the additional overlap and the additional error.
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8.3.4 Statistical analyses

Descriptive statistics were calculated for the enhanced road network buffers. Paired
bivariate analyses using non-parametric Wilcoxon tests (o = 5%) compared the daily
path areas with each of the enhanced road network buffers. Statistical analyses were

conducted in R (R Development Core Team 2008).

8.4 Results

Table 27 presents results of the overlap analysis comparing daily path areas with the
enhanced road network buffers at a range of scales. For comparison purposes, results
from the 400, 600, and 800 m road network buffers (from Chapter 6) are included in

the first three rows.

The results shown in Table 27 are consistent with what was expected. Namely,
adding in road network boundaries around schools increased the overlap, increased
the commission error and decreased the omission error. As with the results presented
in Chapter 6, the magnitude of the commission error was much larger than the
magnitude of the omission error, which means that with every increase in scale the

total error also increased.

Table 28 presents results from the composite measures of buffer overlap for the
standard road network buffers created around residential addresses (Chapter 6), the
activity space delineations (Chapter 7), and the enhanced road network buffers
created around residential addresses and schools. The additional overlap and total
error areas given are in comparison with the standard 400 m road network buffer. For
example, when moving from a standard 400 m road network buffer to a standard 600

m road network buffer an additional 0.05 km?” of overlap area was added and an
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additional 0.09 km? of error area was added on average. For the 600 m road network

buffer, the ratio of the additional overlap area to additional error area was 0.56.

The bottom section of Table 28 presents composite measures for the enhanced road
network buffers created around residential addresses and schools. Results suggest
that, the enhanced road network buffer created at a 400 m distance around both home
and school improves on the standard 400 m road network buffer since the difference

between additional overlap and additional error is positive.

The results also demonstrate that, in general, enhancing the road network buffers by
adding in the school location provided a better representation of exposure than
simply increasing the scale of the standard road network buffers. For instance,
moving from a standard 400 m road network buffer to a standard 1000 m road
network buffer yielded a difference of -0.44 (i.e., the difference between additional
overlap area and additional error area). In contrast, moving from a standard 400 m
road network buffer to an enhanced road network buffer (600 m around home and

400 m around school) yielded a greater difference -0.05.

While all enhanced road network buffers were an improvement on the convex hull
activity space, they did not perform as well as the majority of the activity space
delineations. However, this was expected since the activity space delineations were
created using the same GPS data that they were subsequently compared to (i.e., daily

path area).
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8.5 Discussion

Five enhancements to road network buffers, which have the potential to improve the
representation of the environment, have been proposed. This chapter has
implemented the first proposed enhancement (combined home-school road network
buffers) at a number of different scales. The degree to which the enhanced buffers
represented exposure was assessed by comparing the buffers with GPS data. While a
small number of researchers have begun incorporating buffers around non-residential
destinations, this is the first research to test the extent to which the representation of

both the spatial extent and time spent in the buffers is improved.

Results showed that, on average, the enhanced road network buffer (400 m around
home and 400 m around school) was an improvement on the standard 400 m road
network buffer. Furthermore, results suggested that enhancing road network buffers
by including buffers around school produced better representations of children’s
exposure to the environment than simply increasing the scale of road network buffers

centred around home.

The remaining proposed enhancements to road network buffers were not tested in
this dissertation due to scope limitations. However, the potential of each of these four

enhancements will now briefly be discussed.

The second proposed enhancement - inclusion of pedestrian paths - would allow for
better representation of true mobility. The KITC data demonstrated that children
were travelling along pathways not included in the road dataset. Therefore,
pedestrian paths may be particularly important for representing children’s potential

and actual exposure to the environment. However, there are two key challenges when
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developing pedestrian enhanced network buffers. The first of these is obtaining
pedestrian path data (Kang et al. 2015, Giles-Corti et al. 2014), and the second
concerns the methodological challenges associated with representing footpaths in a
GIS network (Tal and Handy 2012, Kang et al. 2015). Research is underway to
address these issues (Kang et al. 2015, Senlet and Elgammal 2012, Smith et al.
2013), but it may be some time before pedestrian path data are widely available and
standard methods, enabling researchers to easily use these data in the creation of

pedestrian network buffers, are established.

The third proposed enhancement is the inclusion of private and public spaces along
the road network. This enhancement — addresses the limitation that road network
buffers are necessarily centred on roads One method of implementing this
enhancement would be to merge all land parcels that intersect the road network
buffer with the road network buffer. However, depending on the size of the dataset
and the scale of the buffers, this process could be significantly more computationally
intensive than calculating standard road network buffers. An alternative is to merge
only the land parcels of key destinations such as home, school, and work. Based on
an exploration of the KITC dataset, even including just the home and school parcels
could substantially improve the amount of actual activity captured by road network

buffers.

The fourth proposed enhancement — varying the orientation of the buffer — is perhaps
more challenging to implement than the other proposed enhancements. Standard road
network buffers can be considered anisotropic (i.e., oriented; Crawford et al. 2014),

since they are determined by the presence/absence of a road network and - in most
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cases - roads do not radiate equally in all directions. However, road network buffers
can also be considered isotropic, in the sense that - in most implementations - every
road and every direction has equal importance. In other words, road network buffers

spread out equally in all directions where roads exist.

Varying the orientation of a road network buffer — that is, explicitly weighting the
buffer towards a certain direction — is a little more difficult to implement in practice.
Standard GIS software does not provide oriented road network buffer functionality.
A number of researchers have experimented with oriented buffers by buffering the
shortest route between two points to create a version of oriented road network buffers
(Boruff et al. 2012, Madsen et al. 2014, Harrison et al. 2014). While this approach
automatically orients the buffer towards different destinations, there are a couple of
limitations. First, this method focuses on the journey/travel component of activity.
Second, relying only on the shortest route excludes all other possible routes.
Preliminary research has demonstrated that the shortest routes as measured by GIS
do not match actual routes as indicated by GPS data for children’s journeys to school
(Harrison et al. 2014, Duncan and Mummery 2007, Buliung et al. 2013), adult’s
commute routes (Badland et al. 2010, Dalton et al. 2015), and cycling routes (Krenn

et al. 2014).

Madsen et al. (2014) implemented an oriented ellipse based on home and CBD
locations. However, this ellipse suffers from the limitation of convex hulls and SDEs,
namely that they include large areas that participants do not visit. Building on
Madsen et al.’s oriented ellipses (Madsen et al. 2014), and overcoming the problem

of buffers based on shortest routes, the following process to create oriented road
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network buffers is proposed. First, road network buffers are created around
destinations of interest (e.g., home and school) that have been identified as relevant
to each participant (Figure 23). This is the same step undertaken for the first

proposed enhancement implemented in this chapter.

Legend
@ Destinations.

e 400 M road network buffer

Roads

Figure 23. Implementing an oriented road network buffer step 1/3.

Next, a line is created between the two destinations (Figure 24). This line represents

the orientation of the buffer.

180



Legend

@ Destinations

s 400 m road network buffer
| inking line

Roads

Figure 24. Implementing an oriented road network buffer step 2/3.

Finally, the road network buffers within a certain distance of the linking line (200 m

in this example) are selected as the oriented road network buffers (Figure 25).
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Legend
@ Destinations
s 400 m road network buffer
| inking line
e Oriented buffer
Roads

Figure 25. Implementing an oriented road network buffer part 3/3.

The fifth, and final, proposed enhancement is to vary the size and shape of the road
network buffer based on characteristics of the environment that might influence
movement (i.e., costs and barriers in GIS terminology). The concept behind this
enhancement is that some routes are arguably faster, more pleasant and easier to
travel along due to various route characteristics such as speed limit, pedestrian

crossings, slope, safety from crime, and so on. In most cases incorporating these
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route characteristics would require a shift from road network buffers based on

distance to those based on different costs (e.g., travel time, aesthetic costs).

Adding costs and barriers to a road network buffer is a relatively straightforward task
to implement in ArcGIS. The challenge in this proposed enhancement lies in
sourcing data that describes the additional route characteristics. Perhaps this is the
reason that so few researchers have created buffers or routes enhanced by route
characteristics. Of those that have incorporated costs and barriers, Bejleri et al.
(2011) took a vector approach by including costs and barriers in the network,
whereas others have used a raster cost-surface approach to create more refined

measures of accessibility (Ray and Ebener 2008, Boruff et al. 2012).

8.6 Conclusion

As demonstrated in Chapter 6, road network buffers captured less than half of
children’s activity and mobility. This means that using road network buffers to
represent exposure to the environment is likely to exclude much of the environment
that participants are actually exposed to. While road network buffers do better at
representing potential exposure to the environment than delineation methods such as
Euclidean buffers or administrative units, there are ways that road network buffers

could be enhanced.

The five potential approaches to enhancing/modifying road network buffers
presented in this chapter could provide researchers with a better representation of
both potential and actual exposure. This was demonstrated by implementing one of

the suggested enhancements — the addition of school-based buffers — and comparing
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its performance with standard road network buffers. In general, the enhanced buffer

did a better job of minimising errors and maximising GPS points captured.

Although space considerations prevented a full implementation of the other proposed
enhancements, a brief discussion of how these could be carried out was provided. As
many of these enhancements can be implemented simply with only a little additional

information, future work should test a range of these enhancements.
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Chapter 9. Discussion and conclusions

9.1 Summary of findings

This dissertation has addressed the challenge of developing a more precise
delineation of neighbourhood and exposure to the environment by systematically

comparing a number of GIS-based delineation methods at a range of scales.

Chapter 2 reviewed delineation methods in common use and compared these
methods. It demonstrated that there are numerous existing delineation methods, and
the choice of method and scale can make a difference to research results. The review
of the literature identified three gaps that this dissertation subsequently addressed.
The first of these gaps was the lack of clarity around which delineation methods and
scales are most appropriate to use in specific circumstances. The second was the lack
of evidence on how well different delineation methods capture exposure to the
environment. The third, and final, gap was the need for delineation methods that
better capture exposure, yet are not reliant on detailed mobility data such as GPS

data.

Chapter 3 compared the results of models of the associations between the built
environment and physical activity. The built environment was measured within a
number of different residential neighbourhoods using data from the URBAN study.
Results echoed the existing literature by demonstrating that choice of neighbourhood
delineation method, scale, built environment measure, and physical activity measure
all determined whether a statistically significant association was found between the
built environment and physical activity. The choice of buffering algorithm only made

185



a meaningful difference for one built environment measure; the area in public open
space. This is likely due to public open space being represented as a polygon. While
it was difficult to identify a single optimal neighbourhood delineation, results
suggested that the neighbourhood built environment was most consistently associated

with adult’s physical activity when using the 800 m road network buffer.

The remainder of the dissertation turned to focus on how well different delineation
methods captured where people spend time. Analyses in these later sections were
undertaken using data from the KITC study. Chapter 4 described KITC study
methods. Chapter 5 described the GPS inclusion criteria used to create the final GPS

dataset which was used as a proxy for exposure.

Chapter 6 explored the degree to which road network buffers represented where
children spent time by comparing them with seven-day GPS data. Analyses revealed
that residential road network buffers were very poor representations of where
children spent time. While this finding was not unexpected, the amount of activity
captured by road network buffers was surprisingly low, with less than half of

children’s seven-day activity captured by road network buffers at a range of scales.

Chapter 7 created a range of activity space delineations and compared these with the
GPS data. Results demonstrated that activity space measures were considerably
better representations of where children spent time than road network buffers. This
was not surprising, since activity space delineations were based on the same GPS
data they were compared with. Despite this, the effectiveness of the different activity

space delineation methods was varied.
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Notably, the measures of activity space commonly used in public health research -
the convex hull and standard deviation ellipse — were poor representations of
exposure. While they captured a large percentage of activity, they also included large
areas that participants never visited. Therefore, these activity space measures are
likely to produce homogenous built environment measures that could make it
difficult to detect associations between the built environment and health.
Furthermore, built environment measures calculated within the convex hull and
standard deviation ellipse activity space delineations did not represent the actual
environment that participants were exposed to. Researchers should consider using
more sophisticated activity space delineation methods; such as the daily path area,
temporal local convex hulls, and those based on kernel density estimation, which all

provided greater precision in exposure estimation.

Compared with road network buffers, activity space delineation methods better
represented exposure to the environment. However, activity space delineation
methods require detailed participant location data such as GPS, cellphone, or travel
survey data. These data are not always available to researchers as they are expensive

and intrusive to collect.

Therefore, Chapter 8 explored improved delineation methods that do not require
detailed location data. Five enhancements to the standard road network buffer were
proposed. One of these - an enhancement that includes road network buffers around
daily destinations other than home - was compared to seven-day GPS data. Results
suggested that adding road network buffers around schools may better capture

children’s exposure than simply increasing the scale of road network buffers around

187



home. Therefore, enhanced road network buffers are a promising delineation method

that improves representation of exposure to the environment.

A number of issues raised in this dissertation are worthy of further discussion. Each

issue is discussed below.

9.2 Considerations for future research

This dissertation raised a number of issues and considerations for future research.

These are discussed below.

9.2.1 The challenge of identifying an optimal delineation method

This dissertation has offered a series of analyses comparing different delineation
methods. The first set of analyses, presented in Chapter 3, identified appropriate
delineation methods and scales based on the results of statistical models of
associations between the built environment and physical activity. This approach was
used because it was the most common method of identifying ‘optimal’
neighbourhood delineations in the literature. While the results of these comparisons
are informative, selecting neighbourhood delineations that produce significant results
or the strongest effect sizes in the expected direction may not be the most suitable
way of selecting optimal or appropriate delineation methods (Spielman, Yoo and

Linkletter 2013).

A superior approach may be to select the delineation methods that better capture
actual or potential exposure. In other words, instead of choosing methods that
produce models with stronger associations between the environment and health, we
should consider choosing methods that better capture exposure. Chapters 6, 7, and 8

of this dissertation took this approach by comparing delineation methods with GPS-
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based exposure data. Further research of a similar nature would improve our
understanding of how well different delineation methods and scales represent

exposure.

Regardless of the way delineation methods are compared, a theoretical basis for
determining how context is delineated is still important. The lack of theoretical and
conceptual understanding about which contexts are relevant to health related
behaviours and outcomes (Kwan 2012a) can make it difficult to identify a single
appropriate context based on theory alone. Therefore, a range of techniques and

approaches are likely necessary to allow us to improve delineation of context.

9.2.2 Neighbourhood vs Exposure; Potential vs Actual

Researchers have regularly called for more precise assessment of context by moving
beyond residential neighbourhood boundaries towards methods that better capture
exposure to the broader environment. In answering this call it is also important to
distinguish between actual and potential exposure; a distinction that is rarely
mentioned in the literature. As Madsen et al. (2014) note, when measuring and
delineating the environment, researchers need to question whether they want to

measure actual or potential exposure.

It is important to have clarity regarding this distinction. While current research has
predominantly measured potential exposure around the residential neighbourhood,
the use of the terms ‘neighbourhood’ and ‘exposure’ is frequently unclear and the
residential neighbourhood is often seemingly used as a proxy for actual exposure to
the broader environment. However, as this dissertation has shown, the difference

between actual (e.g., GPS data) and potential (e.g., road network buffers) exposure
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can be large. The lack of precision in measurement and the lack of clarity in
reporting results are unlikely to further our understanding of relationships between

the environment and health.

Despite the lack of precision in measurement, researchers still consistently find
associations between the built environment and physical activity. Since we currently
lack accurate measures of exposure to the environment, we may be underestimating
the relationship between the built environment and health. Improving the precision of
our delineation and measurement will enable us to better understand relationships

between environment and health.

Future research on delineation of context may benefit from explicit measurement of
both potential and actual exposure, especially given: 1) our sparse knowledge about
what constitutes appropriate contexts; 2) the potentially large differences between
actual and potential exposure and; 3) issues such as selective daily mobility bias
(Chaix et al. 2013). Having measures of built environment characteristics of both
potential and actual exposure could help us better understand relationships between

environment and health.

9.2.3 Measuring ‘true exposure’

While it may be desirable to identify delineation methods that best represent
exposure (actual or potential) — as opposed to selecting methods that lead to
‘optimal’ model results, determining what constitutes ‘true exposure’ is a challenge

in itself.

In this dissertation, seven-day GPS data were used as a proxy for actual exposure.

The underlying assumption here is that these seven days of mobility data are an
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adequate representation of a child’s life. Yet this is unlikely to be the case. While the
minimum data collection duration needed to collect data that represents the true
exposure is not known, there is some research to suggest that a minimum of two
weeks is necessary to capture variability in travel behaviour (Schlick and Axhausen
2003), with Senbil and Kitamura (2009) noting that a duration longer than two weeks
is needed to capture variability in less frequent recreational activities. Furthermore,
mobility patterns can be considered across a number of temporal scales (e.g., hourly,
daily, weekly, seasonally, yearly, and over the life course; Kestens et al. 2010) and,
consequently, the minimum duration of data needed to capture these patterns will

also vary.

Missing GPS data is a related issue. Due to large amounts of missing data, the seven-
day GPS dataset did not adequately represent the entire seven-day data collection
period. The issue of missing data may be partially addressed by improved GPS
devices and the use of tracking technologies that do not require satellite visibility
(e.g., RFID). However, for now, the issue of missing data is something that

researchers will have to contend with.

Without tracking everyone all the time, we may never really know what constitutes
true exposure. Like the mythical ‘optimal delineation method’, ‘true exposure’ may
not be able to be captured. In the absence of measuring the ‘true exposure’, a
practical solution is to ask participants to report usual exposure. Increasingly there
are a tools that make this task easier (e.g., http://maptionnaire.com/, VERITAS;
Chaix et al. 2012). A combination of participant tracking and self-reported usual

activities seems a logical way forward and future research is needed to assess the
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correspondence between self-reported usual activity and activity measured by

tracking technologies.

9.2.4 Whose exposure are we measuring?

GPS technology is a useful tool that allows researchers to measure exposure to the
environment more accurately. However, if we use GPS data to help determine the
best way to delineate exposure to the environment, then we also need to be sure that
the GPS data is representative of the population of interest. The descriptive analyses
of GPS inclusion criteria, discussed in Chapter 5, revealed that there were large
amounts of missing GPS data, and the participants with the most missing data had
specific characteristics. Notably, Maori and Pacific Island participants at schools
with lower socio-economic status were excluded disproportionately when applying

stricter GPS inclusion criteria.

In New Zealand there is a strong social gradient in health outcomes, with Maori and
Pacific Islanders, and those with lower socio-economic status, experiencing poorer
health (Hefford, Crampton and Foley 2005, Pearce and Dorling 2006). Consequently,
there are equity implications in basing the selection and development of delineation
methods — which ultimately influence research results on the relationship between
environment and health - on non-representative GPS data. Since there are currently
no studies that explore the characteristics of participants excluded when applying

GPS inclusion criteria, this is an important area of future research.

9.2.5 Delineation methods need to be considered in combination with methods
of representing and measuring the built environment

The primary focus of this dissertation has been on delineation methods. However, it

became apparent that how the built environment is measured can determine whether
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different boundaries capture relationships between the built environment and
physical activity, and exposure to the environment. Representation of the built
environment within GIS (e.g., point versus polygon) can determine whether a
specific feature (e.g., park) is captured by a particular delineation method. This is
especially relevant when using road network buffers, which excel at capturing
features on or near roads, but are less effective at capturing built environment

characteristics located further from the road.

It may be that the common methods of delineating the environment (e.g., buffers)
and the common measures of the environment (e.g., counts or densities) do not
capture variation within the buffer. Therefore, it is likely that we need to improve
both the way we delineate the environment and the way we measure characteristics

of the environment.

9.2.6 The importance of time

The temporal dimension is an important aspect of exposure. The longer a person
spends in a location, the more plausible it becomes that any effect on behaviour and
health, due to the characteristics of that environment, will be magnified. While health
researchers are increasingly acknowledging the temporal component, this remains an

under-examined issue.

This dissertation has largely focused on the spatial, but has included temporal
elements. Namely, the development of temporal localised convex hulls — one of the
more promising activity space delineation methods — and the analyses of time spent

within various buffers, the results of which added a temporal dimension to analyses.
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Expanding the ways we consider and account for time will be important for future

environment and health research.

9.3 Conclusion

The conceptualisation and operationalisation of spatial context is an ongoing
challenge in built environment and health research, made more complex by the shift
in focus from residential neighbourhoods to broader contexts that encompass the
multiple locations in which people conduct their daily lives. This shift is associated
with the call for more precision in what we measure and brings with it additional

challenges in operationalising and delineating these varied spatial contexts.

This dissertation has contributed to this challenge by providing new evidence and
insights around delineation methods and how these relate to measures of the
environment. It has confirmed what many researchers already know; our current
methods of delineating exposure and measuring the environment are most likely
inadequate if we want to advance our understanding of the relationship between
environment and health. It has also proposed several enhanced methods of
delineating exposure. Further research is needed to develop and test methods such as
these so that researchers have better tools to measure the environment, and gain a

better understanding of the relationship between the environment and health.
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Appendix A. Statement of contribution to
datasets and published papers

This thesis used data from two studies of the built environment and physical activity:
the URBAN (Understanding the Relationship Between physical Activity and
Neighbourhood) study (Badland et al. 2009), and the Kids in the City study (Oliver
et al. 2011). The studies are discussed in detail in Chapters 3 and 4 respectively. My
contributions to the components of the studies relevant to this thesis are outlined
below. All research questions and analyses within this dissertation were made

independent of the URBAN and Kids in the City studies.

Contributions to the URBAN study

The URBAN study was a competitively funded project (Health Research Council of
New Zealand). [ was a named investigator on this study and responsible for GIS
components of the study. I contributed to the study design, proposal writing, and
responses to referee reports. During the project, I sourced all spatial data, with the
exception of the destination data used in the Neighbourhood Destination
Accessibility Index. The destination data was compiled by collaborators from the

GeoHealth Laboratory, Canterbury University.

The URBAN study is part of a wider international study of the built environment and
physical activity (IPEN study). I liaised with the IPEN coordinating centre when
calculating the GIS based measures - to ensure that the URBAN study followed

IPEN study GIS protocols - and provided feedback on these protocols.
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I was responsible for selecting participating neighbourhoods. This involved
following the IPEN protocol to calculate a walkability index for all meshblocks in
the study cities and selecting neighbourhoods in four quadrants: low walkability and
low Maori population; low walkability and high Maori population; high walkability
and low Maori population; and high walkability and high Maori population. There
were several methodological challenges in this process: creating a neighbourhood
from contiguous meshblocks; determining exclusion criteria (e.g., defining urban
meshblocks, determining minimum populations); ensuring there was a sufficient
population within each neighbourhood; and determining an appropriate process to
follow if the required sample was not met within each neighbourhood. I formulated
approaches to overcome these challenges and presented recommendations to other

members of the URBAN study team. Final decisions were made by the team.

I also devised and mapped the ‘random walks’; that is, the random route within each
neighbourhood that each research assistant followed. Based on the population of
each neighbourhood, the required sample size and expected response rate, |

calculated how many houses to sample on each walk.

I geocoded all participant addresses and calculated all GIS measures except for the
meshblock level Neighbourhood Destination Accessibility Index (NDAI) measure
which was calculated by colleagues at the GeoHealth Laboratory, Canterbury
University. For this thesis I re-calculated the NDAI for six additional neighbourhood

delineations.

Published papers arising from the URBAN study that I contributed to:
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Appendix B. Buffer algorithm comparison
results

Table 29. Descriptive statistics for the area (km?) of the different types of buffer at

different scales.

Mean Median SD Minimum Maximum
400 m
DN 0.170 0.175 0.065 0.018 0.334
DT 0.183 0.184 0.056 0.026 0.329
GN 0.132 0.132 0.066 0.002 0.319
GT 0.188 0.190 0.056 0.035 0.366
SB 0.135 0.132 0.049 0.032 0.282
500 m
DN 0.263 0.271 0.099 0.021 0.488
DT 0.272 0.276 0.089 0.026 0.480
GN 0.218 0.221 0.101 0.001 0.445
GT 0.278 0.279 0.090 0.035 0.492
SB 0.204 0.199 0.078 0.032 0.429
800 m
DN 0.690 0.691 0.244 0.021 1.268
DT 0.668 0.661 0.233 0.026 1.220
GN 0.629 0.626 0.252 0.002 1.183
GT 0.676 0.667 0.236 0.035 1.244
SB 0.510 0.492 0.202 0.032 1.097
1000 m
DN 1.110 1.111 0.388 0.021 1.990
DT 1.053 1.036 0.369 0.026 1.949
GN 1.036 1.027 0.389 0.002 1.878
GT 1.061 1.042 0.374 0.035 1.946
SB 0.804 0.779 0.318 0.032 1.723
1200 m
DN 1.642 1.642 0.552 0.021 2.759
DT 1.530 1.514 0.534 0.026 2.799
GN 1.553 1.544 0.555 0.002 2.769
GT 1.538 1.517 0.541 0.035 2.827
SB 1.166 1.122 0.460 0.032 2.471
1500 m
DN 2.643 2.649 0.836 0.021 4.339
DT 2.425 2.410 0.839 0.026 4.446
GN 2.538 2.511 0.857 0.002 4.299
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GT
SB
1600 m
DN
DT
GN
GT
SB
2000 m
DN
DT
GN
GT
SB
2500 m
DN
DT
GN
GT
SB
3000 m
DN
DT
GN
GT
SB

2.433
1.840

3.029
2.766
2.926
2.776
2.099

4.843
4.332
4.727
4.350
3.273

7.716
6.731
7.544
6.751
5.028

11.210
9.624
10.967
9.635
7.085

2.395
1.769

3.053
2.730
2.879
2.707
1.999

4.875
3.987
4.567
3.970
2.966

7.697
6.116
7.537
6.152
4.572

11.267
9.145
11.004
9.175
6.513

0.852
0.718

0.943
0.955
0.974
0.974
0.820

1.519
1.585
1.571
1.631
1.348

2.497
2.684
2.606
2.746
2.238

3.723
4.078
3.960
4.146
3.341

0.035
0.032

0.021
0.026
0.002
0.035
0.032

0.021
0.026
0.002
0.035
0.032

0.021
0.026
0.002
0.035
0.032

0.021
0.026
0.002
0.035
0.032

4.430
3.837

4.991
5.071
4.978
5.119
4.353

7.966
8.076
8.006
8.123
6.817

12.844
12.933
12.800
13.069
10.914

18.788
18.969
18.862
19.069
15.796
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Table 30. Spearman rank correlation coefficients (2 dp, a = 5%, p < 0.001)
comparing the area of different buffer types at a range of scales.

DN DT GN GT SB
400 m
DN X 0.91 0.89 0.89 0.84
DT 091 «x 0.92 0.97 0.93
GN 0.89 092 «x 0.93 0.91
GT 0.89 0.97 093 «x 0.95
SB 0.84 0.93 0.91 0.95 «x
500 m
DN X 0.94 0.94 0.92 0.87
DT 094 «x 0.96 0.98 0.95
GN 0.94 0.96 x 0.97 0.93
GT 0.92 0.98 0.97 x 0.96
SB 0.87 0.95 0.93 096 x
800 m
DN X 0.96 0.96 0.95 0.90
DT 0.96 x 0.97 0.99 0.96
GN 0.96 0.97 «x 0.97 0.92
GT 0.95 0.99 0.97 «x 0.97
SB 0.90 0.96 0.92 0.97 «x
1000 m
DN X 0.95 0.97 0.94 0.91
DT 0.95 «x 0.97 1.00 0.97
GN 0.97 0.97 «x 0.97 0.93
GT 0.94 1.00 0.97 x 0.97
SB 0.91 0.97 0.93 0.97 «x
1200 m
DN X 0.95 0.97 0.94 0.92
DT 0.95 «x 0.97 1.00 0.97
GN 0.97 0.97 «x 0.98 0.94
GT 0.94 1.00 0.98 x 0.98
SB 0.92 0.97 0.94 0.98 x
1500 m
DN X 0.95 0.98 0.94 0.93
DT 0.95 «x 0.97 1.00 0.97
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GN
GT
SB
1600 m
DN
DT
GN
GT
SB
2000 m
DN
DT
GN
GT
SB
2500 m
DN
DT
GN
GT
SB
3000 m
DN
DT
GN
GT
SB

0.98
0.94
0.93

0.94
0.98
0.94
0.93

0.94
0.98
0.93
0.92

0.95
0.99
0.94
0.93

0.96
0.99
0.95
0.94

0.97
1.00
0.97

0.94

0.97

1.00

0.97

0.94

0.97

1.00

0.97

0.95

0.97

1.00

0.98

0.96

0.98

1.00
0.98

0.97
0.95

0.98
0.97

0.97
0.95

0.98
0.97

0.97
0.94

0.99
0.97

0.97
0.95

0.99
0.98

0.98
0.96

0.97

0.98

0.94

1.00

0.97

0.97

0.93

1.00

0.97

0.98

0.94

1.00

0.97

0.98

0.95

1.00

0.98

0.98

0.95
0.98

0.93
0.97
0.95
0.97

0.92
0.97
0.94
0.98

0.93
0.98
0.95
0.98

0.94
0.98
0.96
0.98
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Table 31. Spearman rank correlation coefficients (2 dp, a = 5%, p < 0.001)

comparing intersection counts (Cnt) and intersection densities (Dns) for different

buffer types at a range of scales.

400 m
DN
DT
GN
GT

SB
500 m
DN
DT
GN
GT

SB
800 m
DN
DT
GN
GT

SB
1000 m
DN
DT
GN
GT

SB
1200 m
DN
DT
GN
GT

SB
1500 m

DN
Cnt

1.00
0.99
0.98
0.99

1.00
0.99
0.99
0.99

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

Dns

0.91
0.86
0.89
0.88

0.95
0.89
0.93
0.92

0.95
0.94
0.94
0.92

0.95
0.95
0.94
0.93

0.95
0.96
0.95
0.94

DT
Cnt

1.00

0.99

0.98

0.99

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00
1.00

Dns

0.91

0.80

0.98

0.97

0.95

0.86

0.98

0.97

0.95

0.95

0.99

0.97

0.95

0.96

0.99

0.97

0.95

0.97

1.00
0.98

GN
Cnt

0.99
0.99

0.98
0.99

0.99
1.00

0.99
0.99

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

Dns

0.86
0.80

0.80
0.80

0.89
0.86

0.86
0.86

0.94
0.95

0.94
0.92

0.95
0.96

0.95
0.92

0.96
0.97

0.97
0.95

GT
Cnt

0.98

0.98

0.98

0.99

0.99

0.99

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Dns

0.89

0.98

0.80

0.96

0.93

0.98

0.86

0.96

0.94

0.99

0.94

0.97

0.94

0.99

0.95

0.97

0.95

1.00

0.97

0.98

SB
Cnt

0.99
0.99
0.99
0.99

0.99
1.00
0.99
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

Dns

0.88
0.97
0.80
0.96

0.92
0.97
0.86
0.96

0.92
0.97
0.92
0.97

0.93
0.97
0.92
0.97

0.94
0.98
0.95
0.98
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DN

DT

GN

GT

SB
1600 m
DN

DT

GN

GT

SB
2000 m
DN

DT

GN

GT

SB
2500 m
DN

DT

GN

GT

SB
3000
DN

DT

GN

GT

SB

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

0.94
0.98
0.94
0.92

0.93
0.98
0.93
0.91

0.91
0.98
0.90
0.89

0.90
0.98
0.89
0.88

0.89
0.98
0.87
0.86

1.00

1.00
1.00
1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00
1.00

0.94

0.97
1.00
0.97

0.93

0.96

1.00

0.97

0.91

0.95

1.00

0.98

0.90

0.94

1.00

0.98

0.89

0.94

1.00
0.97

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

0.98
0.97

0.97
0.95

0.98
0.96

0.96
0.94

0.98
0.95

0.94
0.93

0.98
0.94

0.93
0.91

0.98
0.94

0.93
0.90

1.00
1.00
1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.94
1.00
0.97

0.97

0.93

1.00

0.96

0.98

0.90

1.00

0.94

0.98

0.89

1.00

0.93

0.98

0.87

1.00

0.93

0.97

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

0.92
0.97
0.95
0.97

0.91
0.97
0.94
0.98

0.89
0.98
0.93
0.98

0.88
0.98
0.91
0.98

0.86
0.97
0.90
0.97
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Table 32. Spearman rank correlation coefficients (2 dp, a = 5%, p < 0.001)
comparing bus stop count for different buffer types at a range of scales.

DN DT GN GT SB
400 m
DN X 0.98 0.96 0.96 0.96
DT 0.98 «x 0.96 0.98 0.97
GN 0.96 0.96 x 0.95 0.96
GT 0.96 0.98 0.95 «x 0.96
SB 0.96 0.97 0.96 0.96 x
500 m
DN X 0.98 0.97 0.97 0.96
DT 0.98 «x 0.97 0.98 0.97
GN 0.97 0.97 «x 0.97 0.96
GT 0.97 0.98 0.97 x 0.96
SB 0.96 0.97 0.96 0.96 x
800 m
DN X 0.99 0.99 0.99 0.96
DT 0.99 «x 0.98 0.99 0.97
GN 0.99 0.98 «x 0.98 0.95
GT 0.99 0.99 0.98 x 0.97
SB 0.96 0.97 0.95 0.97 «x
1000 m
DN X 0.99 0.99 0.99 0.96
DT 0.99 «x 0.99 1.00 0.97
GN 0.99 0.99 «x 0.99 0.96
GT 0.99 1.00 0.99 «x 0.97
SB 0.96 0.97 0.96 0.97 «x
1200 m
DN X 0.99 1.00 0.99 0.97
DT 0.99 «x 0.99 1.00 0.97
GN 1.00 0.99 «x 0.99 0.96
GT 0.99 1.00 0.99 «x 0.97
SB 0.97 0.97 0.96 0.97 x
1500 m
DN X 1.00 1.00 1.00 0.97
DT 1.00 x 0.99 1.00 0.98
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GN
GT
SB
1600 m
DN
DT
GN
GT
SB
2000 m
DN
DT
GN
GT
SB
2500 m
DN
DT
GN
GT
SB
3000 m
DN
DT
GN
GT
SB

1.00
1.00
0.97

1.00
1.00
1.00
0.97

1.00
1.00
1.00
0.98

1.00
1.00
1.00
0.98

1.00
1.00
1.00
0.98

0.99
1.00
0.98

1.00

1.00

1.00

0.98

1.00

1.00

1.00

0.98

1.00

1.00

1.00

0.98

1.00

1.00

1.00
0.98

0.99
0.97

1.00
1.00

1.00
0.97

1.00
1.00

1.00
0.98

1.00
1.00

1.00
0.98

1.00
1.00

1.00
0.98

0.99

0.97

1.00

1.00

1.00

0.97

1.00

1.00

1.00

0.98

1.00

1.00

1.00

0.98

1.00

1.00

1.00

0.98

0.97
0.97

0.97
0.98
0.97
0.97

0.98
0.98
0.98
0.98

0.98
0.98
0.98
0.98

0.98
0.98
0.98
0.98
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Table 33. Spearman rank correlation coefficients (2 dp, a = 5%, p < 0.001)

comparing dwelling count for different buffer types at a range of scales.

DN DT GN GT SB
400 m
DN X 0.98 0.97 0.96 0.96
DT 0.98 «x 0.97 0.99 0.98
GN 0.97 0.97 x 0.97 0.97
GT 0.96 0.99 0.97 «x 0.98
SB 0.96 0.98 0.97 0.98 x
500 m
DN X 0.99 0.98 0.98 0.97
DT 0.99 «x 0.98 0.99 0.98
GN 0.98 0.98 «x 0.99 0.98
GT 0.98 0.99 0.99 «x 0.99
SB 0.97 0.98 0.98 0.99 «x
800 m
DN X 1.00 0.99 0.99 0.98
DT 1.00 x 0.99 1.00 0.99
GN 0.99 0.99 «x 0.99 0.98
GT 0.99 1.00 0.99 «x 0.99
SB 0.98 0.99 0.98 0.99 «x
1000 m
DN X 1.00 1.00 1.00 0.98
DT 1.00 x 0.99 1.00 0.99
GN 1.00 0.99 «x 0.99 0.98
GT 1.00 1.00 0.99 «x 0.99
SB 0.98 0.99 0.98 0.99 «x
1200 m
DN X 1.00 1.00 1.00 0.98
DT 1.00 x 1.00 1.00 0.99
GN 1.00 1.00 x 1.00 0.98
GT 1.00 1.00 1.00 x 0.99
SB 0.98 0.99 0.98 0.99 «x
1500 m
DN X 1.00 1.00 1.00 0.98
DT 1.00 x 1.00 1.00 0.99
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GN
GT
SB
1600 m
DN
DT
GN
GT
SB
2000 m
DN
DT
GN
GT
SB
2500 m
DN
DT
GN
GT
SB
3000 m
DN
DT
GN
GT
SB

1.00
1.00
0.98

1.00
1.00
1.00
0.98

1.00
1.00
1.00
0.99

1.00
1.00
1.00
0.99

1.00
1.00
1.00
0.99

1.00
1.00
0.99

1.00

1.00

1.00

0.99

1.00

1.00

1.00

0.99

1.00

1.00

1.00

0.99

1.00

1.00

1.00
0.99

1.00
0.98

1.00
1.00

1.00
0.98

1.00
1.00

1.00
0.98

1.00
1.00

1.00
0.98

1.00
1.00

1.00
0.99

1.00

0.99

1.00

1.00

1.00

0.99

1.00

1.00

1.00

0.99

1.00

1.00

1.00

0.99

1.00

1.00

1.00

0.99

0.98
0.99

0.98
0.99
0.98
0.99

0.99
0.99
0.98
0.99

0.99
0.99
0.98
0.99

0.99
0.99
0.99
0.99
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Table 34. Spearman rank correlation coefficients (2 dp, a = 5%, p < 0.001)

comparing park area and % park area for different buffer types at a range of scales.

400 m
DN
DT
GN
GT

SB
500 m
DN
DT
GN
GT

SB
800 m
DN
DT
GN
GT

SB
1000 m
DN
DT
GN
GT

SB
1200 m
DN
DT
GN
GT

SB
1500 m
DN

DN

Area

0.88
0.90
0.88
0.85

0.92
0.90
0.92
0.86

0.95
0.93
0.95
0.88

0.96
0.96
0.96
0.87

0.96
0.96
0.95
0.84

%
Area

0.87
0.90
0.88
0.86

0.91
0.90
0.92
0.86

0.95
0.94
0.95
0.88

0.96
0.96
0.96
0.88

0.96
0.96
0.96
0.86

DT

Area

0.88

0.80

0.98

0.92

0.92

0.84

0.99

0.92

0.95

0.91

0.99

0.92

0.96

0.94

0.99

0.91

0.96

0.95

0.99

0.90

0.94

%
Area

0.87
X

0.78
0.98
0.92

0.91
X

0.82
0.99
0.93

0.95
X

0.91
0.99
0.92

0.96
X

0.94
0.99
0.92

0.96
X

0.95
0.99
0.91

0.95

GN

Area

0.90
0.80

0.81
0.82

0.90
0.84

0.85
0.84

0.93
0.91

0.92
0.85

0.96
0.94

0.95
0.88

0.96
0.95

0.95
0.86

0.96

%
Area

0.90
0.78
X

0.80
0.81

0.90
0.82
X

0.84
0.83

0.94
0.91
X

0.92
0.86

0.96
0.94
X

0.95
0.88

0.96
0.95
X

0.95
0.88

0.96

GT

Area

0.88

0.98

0.81

0.92

0.92

0.99

0.85

0.93

0.95

0.99

0.92

0.92

0.96

0.99

0.95

0.92

0.95

0.99

0.95

0.91

0.93

%
Area

0.88
0.98
0.80
X

0.92

0.92
0.99
0.84
X

0.93

0.95
0.99
0.92
X

0.93

0.96
0.99
0.95
X

0.93

0.96
0.99
0.95
X

0.92

0.94

SB

Area

0.85
0.92
0.82
0.92

0.86
0.92
0.84
0.93

0.88
0.92
0.85
0.92

0.87
0.91
0.88
0.92

0.84
0.90
0.86
0.91

0.78

%
Area

0.86
0.92
0.81
0.92

0.86
0.93
0.83
0.93

0.88
0.92
0.86
0.93

0.88
0.92
0.88
0.93

0.86
0.91
0.88
0.92

0.83
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DT
GN
GT
SB
1600 m
DN
DT
GN
GT
SB
2000 m
DN
DT
GN
GT
SB
2500 m
DN
DT
GN
GT
SB
3000 m
DN
DT
GN
GT
SB

0.94
0.96
0.93
0.78

0.94
0.96
0.93
0.78

0.92
0.96
0.90
0.74

0.89
0.97
0.86
0.69

0.84
0.97
0.82
0.70

0.95
0.96
0.94
0.83

0.94
0.97
0.94
0.83

0.91
0.97
0.91
0.81

0.89
0.97
0.88
0.77

0.86
0.98
0.84
0.76

0.95
0.99
0.88

0.94

0.95

0.99

0.88

0.92

0.94

0.99

0.88

0.89

0.90

0.99

0.88

0.84

0.89

1.00
0.91

0.95
0.99
0.91

0.94

0.95

0.99

0.90

0.91

0.94

0.99

0.89

0.89

0.90

0.99

0.88

0.86

0.89

1.00
0.89

0.95

0.95
0.82

0.96
0.95

0.94
0.81

0.96
0.94

0.93
0.77

0.97
0.90

0.89
0.72

0.97
0.89

0.88
0.74

0.95

0.96
0.87

0.97
0.95

0.95
0.86

0.97
0.94

0.94
0.84

0.97
0.90

0.90
0.79

0.98
0.89

0.88
0.78

0.99
0.95

0.90

0.93

0.99

0.94

0.89

0.90

0.99

0.93

0.89

0.86

0.99

0.89

0.90

0.82

1.00

0.88

0.91

0.99
0.96

0.92

0.94

0.99

0.95

0.91

0.91

0.99

0.94

0.90

0.88

0.99

0.90

0.89

0.84

1.00

0.88

0.88

0.88
0.82
0.90

0.78
0.88
0.81
0.89

0.74
0.88
0.77
0.89

0.69
0.88
0.72
0.90

0.70
0.91
0.74
0.91

0.91
0.87
0.92

0.83
0.90
0.86
0.91

0.81
0.89
0.84
0.90

0.77
0.88
0.79
0.89

0.76
0.89
0.78
0.88
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Appendix C. Buffer algorithm modelling
results

Table 35. Percentage change in physical activity for a 1dph increase in dwelling
density across a range of road network buffer types and scales. Bold text indicates a

significant association.

Scale Buffer % change confidence interval
400 DN 0.87 (0.42-1.31)
400 DT 0.96 (0.48 - 1.44)
400 GN 0.90 (0.48-1.33)
400 GT 1.01 (0.52-1.5)
400 SB 0.96 (0.5-1.42)
500 DN 0.95 (0.44-1.47)
500 DT 1.05 (0.51-1.6)
500 GN 0.98 (0.49-1.47)
500 GT 1.07 (0.52-1.61)
500 SB 1.02 (0.51-1.53)
800 DN 1.24 (0.58-1.9)
800 DT 1.28 (0.61-1.95)
800 GN 1.18 (0.55-1.8)
800 GT 1.27 (0.62-1.93)
800 SB 1.22 (0.62-1.83)

1000 DN 1.33 (0.59-2.07)
1000 DT 1.43 (0.7-2.16)

1000 GN 1.34 (0.64-2.05)
1000 GT 142 (0.7-2.14)

1000 SB 1.35 (0.69-2.01)
1200 DN 1.32 (0.52-2.13)
1200 DT 1.50 (0.71-2.28)
1200 GN 1.48 (0.68-2.28)
1200 GT 1.51 (0.73-2.28)
1200 SB 143 (0.72-2.14)
1500 DN 1.59 (0.63-2.54)
1500 DT 1.76 (0.88 - 2.65)
1500 GN 1.70 (0.76-2.64)
1500 GT 1.80 (0.92-2.68)
1500 SB 1.64 (0.85-2.43)
1600 DN 1.66 (0.68-2.64)
1600 DT 1.81 (0.89-2.73)
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1600  GN 1.74 (0.75-2.72)
1600  GT 1.87 (0.96 - 2.78)
1600  SB 1.69 (0.88-2.5)
2000 DN 1.82 (0.77 - 2.87)
2000 DT 2.02 (1-3.03)

2000 GN 1.91 (0.83-2.99)
2000 GT 2.07 (1.06 - 3.09)
2000 SB 1.91 (1.03-2.78)
2500 DN 1.87 (0.67-3.07)
2500 DT 2.19 (1.07-3.31)
2500 GN 1.97 (0.77-3.18)
2500  GT 2.23 (1.12-3.34)
2500 SB 2.05 (1.11-2.99)
3000 DN 2.00 (0.67-3.34)
3000 DT 2.42 (1.19 - 3.66)
3000 GN 2.11 (0.76 - 3.46)
3000 GT 2.45 (1.23-3.67)
3000 SB 2.32 (1.31-3.34)
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Table 36. Percentage change in physical activity for a 1 bus stop increase for a range
of road network buffers and scales. Bold text indicates a significant association.

Scale Buffer % change confidence interval
400 DN 0.62 (-0.29 -1.53)
400 DT 0.62 (-0.29 -1.53)
400 GN 0.63 (-0.32-1.58)
400 GT 0.65 (-0.25-1.55)
400 SB 0.55 (-0.36-1.46)
500 DN 0.97 (0.26-1.68)
500 DT 1.04 (0.33-1.75)
500 GN 0.94 (0.2-1.68)
500 GT 1.05 (0.34-1.76)
500 SB 1.02 (0.32-1.72)
800 DN 0.76 (0.37-1.15)
800 DT 0.73 (0.34-1.12)
800 GN 0.72 (0.33-1.12)
800 GT 0.75 (0.36-1.13)
800 SB 0.65 (0.26-1.04)

1000 DN 0.48 (0.21-0.76)
1000 DT 0.50 (0.23-0.78)
1000 GN 0.49 (0.22-0.77)
1000 GT 0.49 (0.21-0.76)
1000 SB 0.46 (0.19-0.74)
1200 DN 0.34 (0.13-0.55)
1200 DT 0.35 (0.13-0.56)
1200 GN 0.33 (0.12-0.55)
1200 GT 0.36 (0.15-0.57)
1200 SB 0.34 (0.13-0.55)
1500 DN 0.25 (0.1-0.4)
1500 DT 0.25 (0.1-0.4)
1500 GN 0.25 (0.1-0.39)
1500 GT 0.25 (0.11-0.4)
1500 SB 0.24 (0.09-0.38)
1600 DN 0.21 (0.08-0.34)
1600 DT 0.21 (0.08 - 0.35)
1600 GN 0.21 (0.08-0.34)
1600 GT 0.21 (0.08 - 0.35)
1600 SB 0.22 (0.09 - 0.35)
2000 DN 0.12 (0.03-0.21)
2000 DT 0.12 (0.03-0.21)
2000 GN 0.11 (0.02-0.21)
2000 GT 0.11 (0.02-0.21)
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2000 SB 0.13 (0.04-0.22)
2500 DN 0.06 (0-0.12)
2500 DT 0.06 (0-0.12)
2500 GN 0.06 (0-0.12)
2500 GT 0.06 (0-0.12)
2500 SB 0.08 (0.02-0.14)
3000 DN 0.04 (-0.01-0.08)
3000 DT 0.04 (-0.01-0.08)
3000  GN 0.04 (-0.01-0.08)
3000  GT 0.04 (-0.01-0.08)
3000  SB 0.05 (0.01-0.1)
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Table 37. Percentage change in physical activity for a 1 intersection per square
kilometre increase in street connectivity for a range of road network buffers and

scales. Bold text indicates a significant association.

Scale Buffer % change confidence interval
400 DN 0.55 (-0.14-1.25)
400 DT 0.28 (0-0.55)
400 GN -0.03 (-0.09 - 0.03)
400 GT 0.19 (0.02-0.36)
400 SB 0.18 (0.04-0.33)
500 DN 0.64 (0.15-1.13)
500 DT 0.48 (0.03-0.94)
500 GN 0.12 (-0.02-0.25)
500 GT 0.29 (0.1-0.48)
500 SB 0.22 (0.06-0.38)
800 DN 0.39 (0.15-0.62)
800 DT 0.56 (0.18-0.95)
800 GN 0.22 (0.01-0.43)
800 GT 0.35 (0.11-0.59)
800 SB 0.25 (0.03-0.47)

1000 DN 0.26 (0.1-0.41)
1000 DT 0.63 (0.24-1.01)
1000 GN 0.33 (0.08-0.57)
1000 GT 0.42 (0.15-0.69)
1000 SB 0.34 (0.09-0.59)
1200 DN 0.16 (0.05-0.27)
1200 DT 0.67 (0.25-1.1)
1200 GN 0.31 (0.04-0.58)
1200 GT 0.39 (0.1-0.67)
1200 SB 0.32 (0.05-0.59)
1500 DN 0.11 (0.03-0.18)
1500 DT 0.56 (0.22-0.9)
1500 GN 0.40 (0.1-0.7)
1500 GT 0.50 (0.19-0.8)
1500 SB 0.43 (0.14-0.73)
1600 DN 0.10 (0.03-0.17)
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1600 DT 0.86 (0.41-1.3)

1600  GN 0.48 (0.17 - 0.79)
1600  GT 0.59 (0.28-0.91)
1600  SB 0.53 (0.23-0.83)
2000 DN 0.06 (0.01-0.11)
2000 DT 1.00 (0.53 -1.48)
2000 GN 0.63 (0.28 - 0.99)
2000 GT 0.71 (0.35 - 1.06)
2000 SB 0.62 (0.28-0.95)
2500 DN 0.03 (0-0.07)
2500 DT 0.89 (0.39-1.39)
2500 GN 0.70 (0.29-1.11)
2500 GT 0.80 (0.39-1.2)
2500 SB 0.72 (0.34-1.09)
3000 DN 0.02 (0-0.05)
3000 DT 0.02 (0-0.05)
3000 GN 0.73 (0.26-1.21)
3000 GT 0.90 (0.44 - 1.36)
3000 SB 0.82 (0.4-1.25)
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Table 38. Percentage change in physical activity for a 1 ha increase in park area for a
range of road network buffers and scales. Bold text indicates a significant

association.

Scale Buffer % change  confidence interval

400 DN 112 (-2.68-0.43)
400 DT -0.34 (-1.93-1.25)
400 GN 221 (-4.88-0.45)
400 GT 047 (-2.11-1.17)
400 SB -1.70 (-4.46 - 1.07)
500 DN -0.53 (-1.62 - 0.56)
500 DT -0.55 (-1.79 - 0.69)
500 GN -1.20 (-2.85-0.45)
500 GT -0.76 (-2.04-0.52)
500 SB -1.52 (-3.68-0.64)
800 DN -0.18 (-0.68 - 0.33)
800 DT -0.11 (-0.78 - 0.55)
800 GN -0.34 (-1-0.31)

800 GT -0.15 (-0.84 - 0.54)
800 SB 043 (-1.58-0.73)
1000 DN -0.16 (-0.47 - 0.16)
1000 DT -0.07 (-0.51-0.38)
1000 GN -0.15 (-0.55-0.24)
1000 GT -0.08 (-0.55-0.39)
1000 SB -0.13  (-0.91-0.64)
1200 DN -0.13  (-0.34-0.08)
1200 DT 0.00 (-0.33-0.34)
1200 GN -0.08 (-0.35-0.19)
1200 GT -0.01 (-0.36-0.34)
1200 SB 0.03 (-0.56-0.61)
1500 DN -0.06 (-0.2-0.08)
1500 DT 0.04 (-0.2-0.28)
1500 GN -0.05 (-0.22-0.13)
1500 GT 0.04 (-0.22-0.29)
1500 SB 0.15 (-0.28-0.58)
1600 DN -0.04 (-0.17 - 0.09)
1600 DT 0.06 (-0.16-0.28)
1600 GN -0.02 (-0.18-0.13)
1600 GT 0.05 (-0.18-0.28)
1600 SB 0.20 (-0.19 - 0.6)
2000 DN 0.01 (-0.08-0.1)
2000 DT 0.14 (-0.01-0.29)
2000 GN 0.02 (-0.07-0.12)
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2000 GT 0.15 (0-0.3)

2000 SB 0.32 (0.04-0.6)
2500 DN 0.03 (-0.04-0.1)
2500 DT 0.11 (0.01-0.21)
2500 GN 0.03 (-0.04-0.1)
2500 GT 0.11 (0.01-0.21)
2500 SB 0.23 (0.03-0.43)
3000 DN 0.04 (-0.01-0.09)
3000 DT 0.07 (0-0.14)

3000 GN 0.04 (-0.01-0.09)
3000 GT 0.07 (-0.01-0.14)
3000 SB 0.20 (0.06 - 0.35)
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Table 39. Association between percentage park area and physical activity for a range
of road network buffers and scales. Bold text indicates a significant association.

Scale  Buffer coefficient confidence interval

400 DN -13.45 (-41.03 - 14.13)
400 DT -1.75 (-29.81-26.31)
400  GN -19.34 (-53.8-15.12)

400  GT 6.99 (-36.74 - 22.76)
400  SB -12.42 (-46.86 - 22.01)
500 DN -13.50 (-42.31-15.3)

500 DT -5.34 (-36.59 - 25.91)
500 GN -17.83  (-51.99 - 16.32)
500  GT -10.09 (-42.9-22.72)

500  SB -13.35 (-51.82-25.13)
800 DN -13.31 (-48.1-21.48)

800 DT -13.11 (-55.03 - 28.81)
800  GN -19.70 (-58.04 - 18.64)
800  GT -16.10 (-59.45 - 27.26)
800  SB -29.34 (-81.7-23.01)

1000 DN -20.28 (-56.51 - 15.95)
1000 DT -13.99 (-60.66 - 32.67)
1000  GN -18.48 (-59.92 - 22.97)
1000  GT -18.88 (-67.08 - 29.32)
1000  SB -28.17 (-88.56 - 32.23)
1200 DN -21.99 (-59.1-15.12)
1200 DT -11.02 (-63.32 - 41.28)
1200  GN -17.68 (-62.07 - 26.72)
1200  GT -17.14 (-71.24 - 36.96)
1200  SB 22.01 (-90.75 - 46.73)
1500 DN -16.93 (-55.7 - 21.85)
1500 DT 7.72  (-65.16 - 49.72)
1500  GN -13.78 (-60.08 - 32.51)
1500  GT -11.26 (-71.44 - 48.92)
1500  SB -11.96 (-89.25 - 65.33)
1600 DN 125 (-52.24-27.23)
1600 DT -0.19 (-58.27-57.9)
1600  GN -8.64 (-54.71-37.43)
1600  GT -4.55 (-65.2 -56.1)

1600  SB 1.66 (-76.98 - 80.3)
2000 DN 5.27 (-39.91-50.45)
2000 DT 41.82 (-19.66 - 103.3)
2000  GN 12.39 (-34.85 - 59.64)
2000  GT 43.83 (-19.42 - 107.08)
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2000  SB 55.03 (-30.95- 141.01)
2500 DN 26.63 (-26.66 - 79.92)
2500 DT 77.77 (10.08 - 145.47)
2500  GN 29.66 (-26.25 - 85.56)
2500  GT 82.00 (11.49-152.51)
2500 SB 111.36 (7.71-215.01)
3000 DN 56.23 (-3.84-116.29)
3000 DT 102.13 (29.88 - 174.39)
3000  GN 52.29 (-10.65 - 115.23)
3000 GT 101.65 (26.75 - 176.54)
3000 SB 185.18 (65.36 - 305)
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