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Abstract 

In-process electronic high speed weighing systems play an important role in the highly 

automated, continuously evolving industrial world of today.  They are an essential component 

in sorting, grading and quality control within a diverse range of industries, including; 

robotics, automotive and food. Load cells are considered to be the definitive force sensor for 

industrial weighing systems. Load cell output is in the form of an oscillatory response in 

which the measurand contributes to the response characteristics. Current methods require the 

oscillatory response to settle in order to achieve an accurate measurement. This is time 

consuming and speed limiting.  

The focus of this paper is to find alternative weighing analysis methods for a system which 

utilises two load cells, placed either side of a carrier travelling on a chain conveyor, running 

at speeds of 10 items a second. It is necessary to determine the value of the measurand in the 

fastest time possible to speed up the process and increase throughput. This has been 

approached by mathematically modelling the system to allow accurate prediction of the 

weights passing the load cells before the settling time of the oscillatory response. Models of 

harmonic motion have been considered for the motion of a load cell.  

An experimental system was built and weighing data collected for different speeds and loads. 

Spectral analysis of the weighing data was analysed to determine dominant frequencies and 

estimate system parameters.  

This thesis describes the work done on load cell modelling and improving an in-process 

electronic weighing system by successfully predicting the weight during the transient period 

of the oscillatory response. The assumptions and results of both simulations and experimental 

data are presented. 
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Chapter 1: Introduction 

 

The strain gauge based load cell is the most common weighing device which uses a thin foil 

resistor as the primary sensing element (Muller, de Brito, Pereira, & Brusamarello, 2010). A 

load cell is a transducer which converts force into a measurable electrical output. The strain 

gauges are bonded on elastic materials and change their resistance according to the 

deformation of the spring element when under stress. The resistance is proportional to the 

intensity of the applied force. The strain gauges are usually assembled in a Wheatstone bridge 

configuration where the measurement is indirect by the detection of the differential voltage in 

the centre of the bridge. This eliminates the offset voltage that naturally occurs in a simple 

resistance-to-voltage converter. A typical setup is having a Wheatstone bridge using 1, 2 or 4 

strain gauges then adding an amplifier and filter for conditioning.  

The strain gauges are sensitive to mechanical stress, temperature variations as well as  to 

unwanted noise and vibration  interferences (Muller, et al., 2010). As the demand for higher 

throughput increases, higher processing speeds are needed. However, higher speeds introduce 

additional noise and vibrations and therefore diminish the accuracy of the measurements.  

This is why the need for new high speed weighing methods is becoming increasingly 

important. 

In addition, government bodies internationally are trying to maintain high standards of 

weighing by introducing legal requirements and regulations for weighing. This is beneficial 

to both the customers and the producers. The producer’s manufacturing efficiency is 

increased and hence profitability whilst packing quality and quantity are assured to the 

customer’s satisfaction (Balachandran et al., 1995). As a result of these two trends, new high 

speed weighing methods are becoming increasingly important. 

Load cell output is in the form of an oscillatory response in which the measurand contributes 

to the response characteristics. Current methods require the oscillatory response to settle 

down before an accurate measurement is achievable. It is necessary to determine the value of 

the measurand in the fastest time possible to speed up the process of measurement.  

Compac Sorting Equipment Ltd is a New Zealand owned company established in 1984 by 

Hamish Kennedy. Compac specialises in produce sorting and handling equipment and is now 

the world leader in fruit sorting technology. Compac designs, manufactures, assembles, 
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installs and maintains machines which are termed sizers to sort and pack fruit all over the 

world. Compac’s success has been based on the application of leading edge technology 

through the collaboration of mechanical, electrical and software solutions. The machines sort 

produce by size, colour, defect, sweetness and weight. Compac exports worldwide to 

Australia, North and South America, Europe, Asia and South Africa, and manufactures in 

four countries; New Zealand, Uruguay, Italy and Korea. Compac employs over 100 

employees in New Zealand and over 300 employees worldwide. 

One of Compac’s main inspection systems is the weighing hence expressing interest and 

sponsoring my Master’s project. Compac’s dependency on this system has caused them to 

invest in research work being conducted in the past, such as presenting the project to 

Mathematics in Industry Study Group (MISG) in 2005. MISG form a workshop whereby 

Mathematicians and Engineers tackle real world complex problems and suggest solutions to 

the various industries. The suggestions from the workshop in 2005 have guided me in this 

research. 

1.1 Objectives 

 

The objective of the project is to improve a high speed weighing system. This has been 

tackled through mathematically modelling the system and inferring various methods to 

calculate the weight. Disturbances and interferences with acquiring the weights while using 

these methods were investigated. This allowed for a great deal to be learned about the real-

life counterpart and increased the opportunity to understand the problem and its results, and 

provide sound conclusions. 

A high speed weighing system has been configured and assembled to allow testing to be 

performed. It consists of a weighing inspection section with a dual load cell system 

surrounded by a chain conveyor based machine that transports carriers onto the dual load cell 

system. Items are placed onto the carriers and allowed to settle prior to the weighing 

inspection section. Through this, different methods can be used to determine the weight of 

unknown items at high speeds of up to 10 items a second. 
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1.2 Literature Review 

 

The purpose of this literature review is to provide an overarching of the work done on load 

cell modelling and weighing analysis methods , as well as the various techniques used to face 

the weighing problem.  

Several methods have been proposed to improve the weighing measurements from a load 

cell. They can be classified into three areas; frequency compensation, model parameter 

estimation and neural network modelling. 

1.2.1  Frequency Compensation  

 

Due to noise introduced on the weigh measurement output, it is necessary to find a suitable 

filter technique that will cope with the variations in the frequency of system noise. The filter 

needs to extract the desired part of the signal, giving both a fast transient response and stable, 

robust weighing result. Adaptive filters are used to handle wide variety of masses to 

compensate for changes in natural frequency by adjusting its transfer function depending on 

an optimisation algorithm. Compensation for imperfections in load cell captures is an 

imperative aspect of sensor research, as there is influence of unwanted signals, non-ideal 

frequency response, nonlinearity, cross sensitivity and parameter drift defects occurring in 

primary sensors (Jafaripanah, Al-Hashimi, & White, 2005). 

Calpe et al. (2002) present, while looking at high speed weighing of fruit, the use of more 

advanced pre-processing method to have a ±2g deviation at 16fruit/sec for a fruit range up to 

250g. The work presents a two step process of filtering and having the resulting signal 

deconvoluted. The purpose of the filtering is to soften vibrator oscillations produced by the 

mechanical system and to remove of power line interference.  

In this approach it was assumed that the load cell functions as a second order system. 

Through the use of adaptive filtering, they have shown that there was improvement in the 

graph’s oscillations by using a least mean squared (LMS) algorithm to adjust an adaptive 

filter coefficient used in the method of steepest descent. They have also shown that better 

results can be obtained by using an averaged least means squares (ALMS) variant.  

Oscillations were still evident in their graphs after the adaptive filtering so they investigated 

the path of modelling the oscillations using another model from a single input record of a step 
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function. The model was a second order, zero-phase system with zero delay, so it equalises 

the system response (Frances et al., 2000). They called it the ARMA model. 

The results of the ARMA model produced a plateau around the actual weight, including a 20g 

error range. The average of the plateau was thought to be an accurate enough estimation of 

the weight. The plateau’s length varied depending on the weight and speed at which the fruits 

were travelling. To determine the length of the plateau, first the end limit was obtained by 

using a pulse from an optical encoder. This encoder was used for synchronization to mark the 

moment when the cup exits the weighing platform. Next, the start of the plateau was 

determined by using a look-up-table which contained lengths of plateaus obtained for 

different speeds. 

Due to unspecified mechanical restrictions of the machine, they were only able to run at 16 

fruit a second, and they could not maintain that speed for a long duration. This limitation 

confined them to obtain results of only 10 measurements for 6 fruit weights; 0g (empty 

carrier), 50g, 100g, 150g, 200g and 250g. Furthermore, to obtain these results, the fruit were 

manually placed at a distance to the weighing platform to stabilise the fruit and avoid 

superfluous vibrations.  At least two empty cups were left between consecutive pieces. The 

results are summarised in Table 1. They show a maximum error of 0.57% for the 250g 

weights. 

Real Value 

(g) 
0 50 100 150 200 250 

Mean (g) -0.02 49.95 100.21 150.32 199.31 248.58 

Standard 

Deviation (g) 
0.2 0.31 0.44 0.50 0.56 0.68 

Maximum 

Deviation (g) 
0.61 0.82 1.02 1.32 0.86 1.4 

Table 1: Weigh results of 10 samples of weights between 0g and 250g 

 

Halimic & Balachandran (1995) proposed the use of a Kalman filter to take these superfluous 

vibrations into account. The aim was to use improved filtration to allow an increase in speed 

and enhanced measurement accuracy of weighing. They stated that the main constraint in 
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increasing the throughput rate and achieving higher accuracy was the noise superimposed on 

the signal from the system noise, which predominantly came from the mechanical and 

electrical part of the weighing system and from the type of product. Another contributing 

factor is the speed of the conveyor as the level and frequency of noise varied with it.   

Their weighing system was based on a belt conveyor transporting various sized products onto 

a load cell system. Due to variations in the product length coming onto the weighing area, 

weighing was time varying and this caused change in the values of the model parameters 

therefore requiring an adaptive filter.  

When a Finite Impulse Response (FIR) filter with a smooth cut-off frequency characteristics 

and a linear phase response with a Hann’s window was used, results for a single weighing 

measurement have shown improvement of 150%, and for repeated measurements only a 5% 

improvement was shown. This was due to the fluctuation of the DC level with very low 

frequency from measurement to measurement hence proposing the Kalman filter. The 

Kalman filter is a useful tool for reducing the effects of noise in measurements by estimating 

the true value of a set of variables from a set of noisy measurements.  

To design the Kalman filter, mathematical models were employed to examine the suitability 

of the chosen filter. Automatic methods where the parameters of the filter are optimised using 

the performance indices as the quality of the filter, were found to be less time consuming than 

using an analytical method, and trial and error technique. The input to the load cell was 

modelled as a ramp function to simulate a rigid type input such as a plastic container or a 

carton box, and as a sinusoidal or cosinusoidal function to represent a plastic film bag filled 

with powder. They modelled the load cell as a damped spring system having the following 

equation; 

 1( ( ) ) ( ) ( ) ( ) ( )w t m t c t k t w t gθ θ θ+ + + =&& &           (1.1) 

Where ( )w t  is the mass of the product, �� is the mass of the load cell, c  is the damping 

coefficient, k  is spring constant, � is the position of the weighable and g  is the acceleration 

due to gravity. 

This is used to estimate what the required variables in a Kalman filter will be, based on 

estimates of the time varying parameters.  
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The results obtained by applying the Kalman filter on real measurement data from the 

weighing system produced a 300% improvement as a result of single weighing measurement. 

Repeated measurements showed that a 50% improvement was attained.  Therefore, this 

shows that a Kalman filter could be effective with increased speed given that all influences of 

the system and measurement noise are known. Unfortunately, the weight values were not 

stated and therefore the absolute accuracy is unknown. 

1.2.2  Model Parameters  

 

The load cell is frequently used to determine the weight by evaluating the step response due 

to an object exerting a force (weight) causing deflection in the load cell. The voltage output 

from the load cell is proportional to the input load (i.e. the weight).  

Shu (1993) considers the weigher as a second order mass spring damper system similar to 

Halimic & Balachandran (1995) (Equation (1.1)). It was demonstrated that the mass can be 

estimated from the model parameters which are acquired through fitting the model to a 

measured transient weighing signal to have the least-squared errors. 

The unknown mass of the product was derived from the z transformation by looking at the 

limit of the discrete values at infinity. This means that the unknown mass was found from the 

latter part of the weigh graph, avoiding the initial transient at the input side due to the sliding 

and springing of the package on the weighing platform.  

Shu (1993) emphasised that determining the mass was independent of the initial conditions. 

The mechanical system that was used had noise in the measurements as a result of sliding or 

spring-like motion of the package on the load cell platform. The initial conditions affected the 

appearance of the start of the weigh graph signals. The end values were unchanged, hence 

determining the mass from the limit of the equations looking at the latter part of the weigh 

graphs. 

In addition to the initial noise, the electrical elements such as the sensor and the amplifier 

contribute noise interference in the whole weighing process. Shu (1993) mentions that these 

can be minimised with a well designed system and the use of either a software low pass filter 

with a cut-off greater than the highest possible natural frequency of the weigher, or a 

hardware filter at the output side. 
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The method for finding the weight involved a recursive calculation of an algorithm. When 

this was used on two simulated noise-free signals of a 100g weight from the same parameters 

but under different initial conditions, they gave similar results. These results were not 

provided in the article. One of the signals was then corrupted with white-Gaussian noise and 

was found to converge in 180 steps to a value of 102.5539g using the recursive calculation, 

and when using a filter it converged in 50 steps to 99.77757g. This shows that it is more 

effective using a filter. Results are presented in Table 2. 

Without a filter With a filter 

Number of recursion 

steps 

Estimated Weight (g) Number of recursion 

steps 

Estimated Weight (g) 

60 105.1959 10 111.2408 

90 99.91519 20 100.1327 

120 103.912 30 98.95274 

150 102.972 40 99.22825 

180 102.5539 50 99.77757 

Table 2: Results on two noise-free simulated signals 

This has been further supported with real measurements by using a 36.2g, 100g and a 173.8g 

iron weights as test weights. A third order digital Infinite Impulse Response (IIR) low-pass 

filter with a third order was used to eliminate the input noise. Furthermore, the first 40 points 

of the measurement were eliminated to avoid input noise caused by sliding or springing of the 

weights on the platform.  

The results to a 1% accuracy, showed that the weights can be acquired in less than 20% of the 

time needed while calculating it using the traditional static method. As the traditional static 

method required at least more than 1000 data points, whereas using the recursive algorithm 

meant that the weight can be found in approximately 200 data points.  

Another concept of using the load cell as a weigher involves impact (Gilman & Bailey, 

2006). Impact was performed by dropping the objects to be weighed onto a load cell, 

therefore exerting relatively large forces on each other for a short time. The load cell’s 
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movement in response to external excitation force was, once again, modelled using Newton’s 

second law; similar to the modelling performed by Halimic & Balachandran (1995) and Shu 

(1993) (refer to Equation (1.1)). 

Given that the objects to be weighed are dropped onto the load cell, the impact event is 

approximated using the principle of conservation of momentum as the system is isolated and 

closed. The impact force causes an impulse which is equal to the change in momentum of the 

load cell. The mass can then be found in terms of the impulse and the impact velocity of the 

object by using the following equation; 

 ( , )
(1 )m

m

MJ
m J v

M e v J
=

+ −
          (1.2) 

Where M is the mass of the load cell, J  is the impulse, mv  is the impact velocity and e  is 

the coefficient of restitution (fractional value representing the ratio of speeds after and before 

an impact).  

J can be found from the load cell output as it is approximated by a Dirac delta function 

scaled by J . Therefore the system output is assumed to be a scaled impulse response, ( )Jh t . 

To determine the velocity of a falling object, the time ( )Tt  and distance ( )d which the object 

experiences are measured. Then, assuming that the object is being accelerated solely by the 

force of gravity (g), the impact velocity becomes a function of Tt  and d ; 

 
1

( , )
2m T T

T

d
v t d gt

t
= +          (1.3) 

This approach assumes that the object rebounds in the opposite direction after collision with 

the load cell, with no significant change to the position or orientation of the object or the load 

cell during impact. Furthermore, it assumes the initial velocity of the load cell is zero and it 

assumes the effects of gravity, restoration and damping forces on the velocity of the load cell 

are negligible.  

To test the relationship between impact and velocity, two steel balls with an 11.7g and 2.7g 

were dropped from varying heights on the load cells. The results indicated that there was a 

linear relationship between the measured size of the impulse and the impact velocity of 

dropped objects. Knowing the impact of an object, the velocity can be found using the linear 
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relationship; therefore the mass can be determined using Equation (1.2). Another experiment 

to test the time interval required to make each measurement was performed by dropping three 

almost identical objects with the same weight (~2.2g) at 250ms intervals. Results showed that 

a time interval of approximately 50ms was required to make each measurement, giving a 

theoretical measurement rate of 20 measurements per second for high speed weighing.  

There was a lot of uncertainty due to the assumptions that have been made to simplify the 

analysis. They do not hold in real systems and this was evident in the high speed testing, 

especially due to the assumption that the load cell velocity prior to impact is zero. 

It was also mentioned that for faster weighing, impact is not ideal due to constraints in the 

weighing process i.e. it was hard to control having the preceding item removed from the 

environment to avoid interference with the following item.  

1.2.3  Artificial Neural Networks 
 

Yasin & White (1999) investigated the application of neural network method to predict the 

weight by considering the feeding mechanism of a load onto a tri-beam load cell. This load 

sensor is based on three cantilevered beams coupled together. The load cell was considered as 

a non-linear mapping box where the input is the unknown load, and the output is the 

electrical signal generated due to the input load.  

Through system simulation they have used three successive extreme points along with the 

time intervals between successive peaks to represent the input neurons. This was feasible as 

they showed that three successive points have sufficient information to determine the final 

value, the output neuron.   

Simulated testing was performed by using a set of 100 patterns for training the neural 

network which was generated by choosing masses that were uniformly distributed over the 

range of 100g to 1000g. This was done for 10 different initial conditions that were chosen 

randomly. The neural network learns the behaviour of the sensor from the set of training 

patterns. For testing purposes, patterns were simulated by using 150g, 350g, 550g, 750g and 

950g. These masses were purposely chosen to be different than those used for training. 

Results of the simulation for the testing weights showed an error of ± 1.5%,. The error was 

random across the testing weights, and it was considered small. 
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The simulated results were verified with real measurements by performing a practical 

experiment on the tri-beam load cell. A load set of 330 sample weights varying between 0g 

and 975.7g were used for training the network. Three weights of 148.29g, 542.3g and 832.2g 

were used to test the network. The training procedure was repeated many times with different 

conditions and each time the maximum error from the testing data was calculated. It was 

shown that if the number of training samples was greater than 30, the maximum error was 

less than ± 1.5%, similar to what was seen in the simulation. 

Bahar & Horrocks (1997) investigated a multi-layer perceptron artificial neural network to 

obtain the weight from a finite segment of the load cell data from a weighing system. The 

idea of a finite segment was to allow for high speed weighing without having to wait for the 

transient effects. Furthermore, the neural network used backpropagation learning, whereby, it 

used an iterative method to minimise the error between the actual and the desired outputs of 

the network in response to given inputs. 

Similar to Gilman & Bailey (2006), Shu (1993) and Halimic & Balachandran (1995), the 

article presented by Bahar & Horrocks (1997) proposed using Equation (1.1). They mention 

that an ideal weighing platform can be modelled by a mass-spring-damping structure with an 

underdamped step response, governed by the solution of the second order differential 

equation.  

To simulate the network, Bahar & Horrocks (1997) used the solution to the model to generate 

data. They first used 200 noise-free input samples of applied masses that were uniformly 

chosen to cover the range 1kg to 100kg for training the network. It was assumed that the 

input is a step function. Results indicated that a linear relationship between applied masses 

and estimated output masses were evident as the errors were small. The average noise error in 

the linearity was 0.1187% and the root mean square (RMS) error was 0.0772kg between the 

applied and estimated masses. These verified that an artificial neural network is capable to 

accurately model the non-linear relationship between the load cell time series data and the 

corresponding applied mass. 

Next they simulated noisy input samples by mixing the aforementioned training samples with 

random measurement noise having a 2% amplitude of the steady state mass. The results 

presented in Table 3 show an RMS error and average error of 0.4208kg and 0.5641% 

respectively for the testing data, and 0.4534kg and 0.4593% respectively for the training data. 
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The small difference between the training and testing data verified that a beneficial “noise 

averaging” is performed by the Artificial Neural Network. 

Data RMS error (kg) Average error 

Training 0.4208 0.5641% 

Testing 0.4534 0.4593% 

Table 3: Simulated testing and training data errors 

Finally, experimental data were obtained from an industrial load cell to train an Artificial 

Neural Network. Applied masses of 5 to 45kg in steps of 1kg were used to train the network, 

except for 10kg, 20kg, 30kg and 40kg which were used as the testing data. Training was 

performed in a typical noisy laboratory environment. Testing data was applied by dropping 

the masses onto the load cell from a height of typically 2cm. The results presented in Table 4 

shows that the testing applied masses can be predicted accurately even when noise is present. 

Applied mass to the 

weighing platform 

(kg) 

Estimated mass of 

the Artificial Neural 

Network 

Error between 

applied and 

estimated masses 

(kg) 

10 9.8814 0.1186 

20 19.8137 0.1863 

30 30.1190 0.1190 

40 40.9231 0.9230 

Table 4: Experimental results of the applied masses 
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1.2.4  Literature review Discussion 

 

Accurate, fast and reliable dynamic weighing is important in the modern world. Several 

methods have been proposed to get an accurate measurement from a load cell. The output of 

the load cell was found to be highly sensitive to excitation factors all of which had a 

significant effect on the accuracy of the weighing measurements, as well as, mechanical and 

electrical inaccuracies influencing the output measurement results. 

The methods reviewed have been split into three classifications of frequency compensation, 

model parameters estimation and neural networks.  

Frequency compensation methods have been based on using adaptive filters which tracks 

variations in the measurand, as opposed to only having a fixed filter that is only valid at one 

specific load value. This is performed through the use of digital filtering, exhibiting the 

reciprocal characteristic of the load cell being cascaded with it. The transfer function of the 

filter is usually identified assuming that the sensor can be modelled as a linear system. 

Furthermore, an adaptive rule is needed and is a crucial element for automatic updating of the 

parameters of the filter to suit different measurands.  

The literature review first investigated frequency compensation using an adaptive filter with 

an ALMS algorithm as proposed by Calpe et al. (2002). Their research showed that they 

acquired ±2g for a speed of 16 cups per second in a very controlled environment. This was 

possible as the graphs had a long time to settle as the effect of neighbouring cups was not 

taken into account by having at least two empty cups between consecutive fruit. It was 

mentioned that external interferences in the form of oscillations were evident in the 

measurements. These oscillations were attempted to be compensated for using Kalman Filter 

by Halimic & Balachandran (1995) and it seemed to be quite effective when looking at a 

single weighing measurement with an improvement of 300%. Repeated measurements were 

not as effective only showing a 50% improvement, possibly due to interferences between the 

items. Unfortunately, Halimic & Balachandran (1995) did not provide details of the apparatus 

used to perform the measurements, nor did they provide information on the weights or speed 

for testing.  These oscillations were also noted by McGuinness et al. (2005) when analysing 

the power spectrum noticing there were usually two, or sometimes three, frequencies that 

were dominating in each spectra. It was mentioned that the lower frequency oscillations 

corresponded to the bouncing which decreased in frequency value yet increased in amplitude 

as the weight increased. 
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Model parameters estimation method developed a parametric model for the sensor (load cell) 

through experimental data or analytical means. This was commonly performed using a mass 

spring damper system. This method depended on extraction of parameters from a short 

duration of the response in each measurement. The value of the measurand was determined 

from the parameters of the model. This method was different depending on the model chosen 

and the procedure that was used to find parameters of the model. 

The literature review investigated model parameter estimation methods where a suitable 

algorithm was used to estimate or predict the weight. Shu (1993) and Gilman & Bailey 

(2006) considered a second order system to acquire their algorithms. Shu (1993) utilised a 

recursive calculation of an algorithm to acquire a 1% accuracy in determining the weight 

from 20% of the data measurements. These results were from running 36.2g, 100g and 

173.8g over the load cell. Unfortunately, the speed at which the items were run was not 

provided. Gilman & Bailey (2006) used a different method of applying the load by using 

impact rather than sliding. Time had to be given between objects being dropped on the load 

cell and assumptions had to be made to simplify the analysis. Results showed that weights 

can be calculated in 50ms periods, although this could not be done continuously as time was 

needed between loads in order to acquire the measurements accurately.   

Neural Network method was based on a black box model that assumed a new system output 

can be predicted from the past inputs of the system. It used a collection of elements, called 

neurons, to learn through training by presenting the system with known weights (training 

data) and corresponding desired responses which perform generalisations about testing data. 

The Neural network was capable of ‘representing’ any known function to any level of 

accuracy assuming a sufficient number of layers (Windrow & Lehr, 1990). 

Neural Networks analysis by Yasin & White (1999) were capable of accurately predicting an 

applied mass in a noisy environment on a tri-beam load cell system, while the weighing 

platform was still in transient mode to accuracies of 1.5%. This method was highly dependent 

on the training of the neurons with 330 sample weights needed to make generalisations. 

Bahar & Horrocks (1997) investigated the usage of Neural Network on a load cell system 

whereby the masses are dropped onto the load cell. Simulations verified that the neural 

network was capable to accurately model the relationship between the load cell and the 

applied mass, while performing noise averaging. Experimental results showed that the 
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applied masses were predicted when noise was present, with maximum error of 2.3% while 

applying a 40g weight. 

1.3  Project Approach 

 

Taking all these different research material into account, this project aims at improving a high 

speed weighing system’s calculation through the model parameters approach. Similar to 

Gilman & Bailey (2006), Bahar & Horrocks (1997), Halimic & Balachandran (1995) and Shu 

(1993) the load cell model is considered as a second order equation using Newton’s second 

law. This project however presents different methods than those previously suggested, 

whereby the initial oscillations are used to predict the unknown mass. The methods presented 

require estimation of the load cell parameters. They are referred to as the Frequency and 

Damping methods (Chapter 3). These are compared to the Averaging method which is 

currently used by Compac. 

This approach been chosen as it has a number of benefits over the frequency compensation 

and neural network approaches. Modelling the system mathematically provides a systematic 

approach to problem solving, allowing analyses and understanding of the problem.  

The neural network approach depends on a “black box” model that is developed to 

satisfactorily represent the input-output performance of the system with no insight into the 

system structure. It is difficult to analyse the source of the problem in detail and to diagnose 

the issues if it is dependent on trial and error through a learning system. 

The system that will be experimented on already has electronics designed specifically for the 

application which includes filters and therefore, the Frequency compensation methods were 

not investigated further.  

M. McGuiness et al. (2005) have already done a substantial amount of analysis as part of the 

Mathematics in Industry Study Group (MISG). Their findings are considered and built upon 

throughout the context of this project. Specifically, the Frequency method was suggested. 

This, as well as the Averaging method, are studied in detail and tested in this thesis. In 

addition to this, the Damping method is developed, tested and compared to the other 

methods. 
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Chapter 2: The Weighing System 

 

The in process electronic high speed weighing system being analyzed consists of a dual load 

cell system whereby chain driven carriers travel over two load cells at high speeds up to 10 

carriers a second. The desired item to be weighed is placed on a carrier, which is a Compac 

patented product. Dual load cells are used for stability of the items on the carriers. 

Furthermore, as each load cell is only subjected to half the weight of the item it has the 

advantage of not being over-stressed. The carrier has four contact points. Two points on each 

side of the carrier slide along a hardened stainless steel plate mounted on a load cell. The load 

cells are cantilevered to allow deflection.  

 

 

 

 

 

 

 

 

 

 

The load cells used are Vishay low profile single point with a 6kg capacity. They have an 

accuracy class (NTEP/OIML) of C3 with a maximum number of intervals of 3000 and a Y 

value (Emax/Vmin) of 6000. Therefore for the 6kg load cell, it has an accuracy of ±1g. The 

Data Sheet is presented in Appendix A. Further research could have been spent searching for 

other load cells with higher Y value to increase the resolution, and with increased stiffness. 

Figure 2: Carrier Components in Solidworks Figure 1: Compac Carrier 
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Stiffness is advantageous when weighing heavier items, as the oscillations would reach 

steady state faster. Although due to the weights of the items we are interested in, the 6kg load 

cells are sufficient and will be reactive to small changes of weight, as well as being cheaper. 

Load cell output is in the form of an oscillatory response of current and is dependent on the 

amount of deflection it experiences due to the added weight. This current output (4-20mA) is 

passed through an instrumentation amplifier, and filtered using a 5th order Butterworth filter. 

This is then passed through a current to voltage converter and sampled at 4 kHz by a 12bit 

Analogue to Digital Converter (ADC). Figure 4 shows a typical weigh graph of three carriers 

from the load cell output.  

 

  

Figure 3: Apples on a Vishay Load Cell 

Figure 4: Typical Weigh Graph 
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The Load Cell system is designed such that each carrier exerts pressure on both load cells at 

the same time. The graphs are introduced with an overshoot as each carrier exerts pressure on 

the load cell plate. The load cell plate is made out of hardened stainless steel and is cut to the 

shape of a z to allow contact points on the carrier to exert pressure on the load cell for the 

maximum allowed time (refer to Figure 42). The overshoot then dampens into oscillations 

which would eventually reach steady state if enough time is given.  

The item to be weighed travels along two load cells on a carrier for a short period of time 

depending on the speed of the motor driving the chain. The outputs from the two associated 

load cells are summed and the carrier weight is subtracted to give the desired weight of the 

item.  

Due to the possibility of interferences propagating through machine components, this system 

is placed on a weighing structure isolated from the whole machine. This weighing structure is 

bolted down to the floor. The only point of contact between the weighing system and the rest 

of the machine is the carriers with the desired items to be weighed. Figure 5 is of the 

experimental machine modelled in Solidworks. 

 

 

Solidworks was used for the design as it is a very powerful 3D modelling tool which has 

intuitive 3D design software with built-in intelligence to allow collaboration while designing. 

It allows speed design while ensuring accuracy starting from individual parts to top level 

Figure 5: The Weighing Machine 
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assemblies. Having the machine model design and the flexibility of viewing and editing 

individual parts allows for testing real world conditions to make sure it is right before 

building (Solidworks 2011). 

The machine that has been configured and built for experimentation purposes to allow access 

to weighing data for analysis consists of two lanes with a take-up, a weighing and a drive 

section. Two lanes have been chosen so comparison tests can be done simultaneously. This 

saves time having to redo each test twice, and has helped with determining variations and 

errors to be expected between the lanes. The take-up section is where the items to be weighed 

are placed on the carriers. This is two meters long to allow easy placement of the items to 

stabilize on the carriers before entering the weighing section. Unstable items on carriers may 

cause false readings due to not having all its weight exerted on the load cell, or adding 

additional force onto the load cell due to gravity and kinetic inertia.  

The weighing section contains the dual load cell system arrangement for each lane of carriers. 

It is isolated from the rest of the machine by being bolted to the floor with the load cell 

system being the only point of contact with the carriers. This is to avoid unnecessary 

vibrations interfering with the weighing.  

The Drive section contains a 3kW Bonfiglioli motor to drive the chain conveyors at fast 

speeds up to 600 carriers a minute (10 items a second) using a Lenze variable speed drive 

(VSD) to control and obtain the desired speed. 

The carriers have a floating feature to further isolate the item to be weighed from the rest of 

the machine as the carriers travel over the weighbridge section (refer to Figure 6). When in 

floating position, only the frame, rollers, axle and latch are weighed along with any item on 

top. These items are easily subtracted from the overall weight of the carrier to obtain the 

weight of the item of interest. While in floating position, the only point of contact between 

the clip and the rest of the carrier is in the horizontal axis along the direction of travel. The 

clip attaches to the chain, which is driven by the motor.  
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Figure 6: Carrier in floating position 

Due to variations in manufacturing, the frame, rollers, axle and latch might vary slightly 

within tolerance. The weights of every component of 40 carriers from this machine have been 

weighed separately and presented in Appendix B. They are summarised in  

Table 5. It is evident that there is a variance of 1.8g that has to be taken into account when 

calculating the weights of items run on the carriers. Therefore each carrier’s weight is known 

during an initial tare of the machine and recorded to be subtracted as it runs over the weigh 

bridge section. 

  Summary of 40 Carrier Components 

  mean (g) min (g) max (g) 

Range 

(g) 

Frame 51.22665 50.912 52.004 1.092 

Latch 16.435825 16.301 16.469 0.168 

Roller & axle 75.40575 74.92 75.78 0.86 

Clip 30.72005 30.628 30.836 0.208 

Total Calculated weight  

(all components) 173.788275 172.901 174.719 1.818 

Total Calculated weighing weight  

(floating components) 143.068225 142.249 144.083 1.834 

 

Table 5: Carrier Component Weights
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Chapter 3: Modelling 

 

To calculate the weight of an item, three methods are investigated and compared; an 

“Averaging” method, a “Frequency” method and a “Damping” method. These methods have 

been accrued through mathematically modelling the system. Compac currently utilise the 

Averaging method. This chapter details the mathematical model and the details of each of 

these methods. Advantages and disadvantages of each method are also portrayed.  

To test these methods, a model of the load cell system has been simulated on Matlab (refer to 

Chapter 5). The model’s user interface allows for entering the parameters of the load cell. It 

outputs the inferred weight using all three methods with their error percentages.  

3.1 Mathematical Model of the system 

 

The model of the load cell is represented by Figure 7 as a Mass Spring Damper (MSD) 

system, where m is the mass of the desired item subjected to the load cell. M is the 

equivalent mass of the load cell that is attached to a mass-less spring with spring constant k . 

As the load is applied to the load cell, a counteracting force produced by the spring due to an 

offset x  from equilibrium is defined by Hooke’s law assf kx= − .  

This would be sufficient to model the load cell in a static equilibrium, but in analysing the 

dynamic characteristics, it is important to take into account the damping. Viscous damping is 

assumed, where the damping force is proportional to the velocity: D

dx
f c

dt
= − , where c is the 

damping coefficient. By using Newton’s second law the following differential equation is 

obtained: 

 
2

2
( )

dx dx
M m c kx mg Mg

dt dt
+ = − − + +           (3.1) 

Where g is the average acceleration produced by Earth’s gravity. 

The solution of Equation (3.1) has the form: 

 1 2

( )
cos( ) sin( )t t M m g

x c e t c e t
k

µ µω ω− − += + +           (3.2) 

 



Modelling 
 

Page | 21  
 

Where c1 and c2 are constants which depend on the initial conditions. The damping factor (

µ ) is: 

 
2( )

c

M m
µ =

+
          (3.3) 

and the frequency ω is: 

 
2

2

1 4 ( )

2 ( )

k M m c

M m
ω + −=

+
          (3.4) 

We see from Equation (3.4) that with heavier weight, the frequency decreases and from 

Equation (3.2) that amplitude of oscillations would increase with heavier weight. 

 

Figure 7: Mass Spring Damper (MSD) System 

The output of the load cell from the machine was either converted to grams or given in terms 

of deflection of the load cells i.e. millimetres. When the output from the machine is not in 

terms of grams, a conversion factor needs to be taken into account. Therefore the new 

solution is in the form of; 

  1 2

( )
ˆ cos( ) sin( )t t M m g
x c e t c e t

k
µ µα ω ω− − + = + + 

 
          (3.5) 

Where α is a conversion factor (millimetres to grams). 

Equation (3.1) is used in cases where the deflection is from a steady state that is not solely by 

the mass of the load cell, i.e. m≠ 0. This would be evident from an offset in the graphs before 

a mass is applied to the system as shown in Figure 8.  
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Figure 8: Offset on a Weigh Graph 

In cases where the offset is 0, Equation (3.6) is used. 

 
2

2
( )

dx dx
M m c kx mg

dt dt
+ = − − +

% %
%           (3.6) 

This has the following solution; 

 1 2cos( ) sin( )t t mg
x c e t c e t

k
µ µω ω− −= + +%           (3.7) 

Where µ and ω are the same as they were defined in Equations (3.3) and (3.4) above.  

Note that Equation (3.6) can be derived from Equation (3.1) by defining %
Mg

x x
k

= − . That is, 

%x is the displacement from the steady state when m=0.  
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3.2 “Averaging” Method 

 

The averaging method is based on the assumption that the oscillatory response has enough 

time to settle down. The weight can be found from the value of the graph when it has become 

stable.  

The two solutions are considered. The first is where the deflection is from steady state not 

solely by the mass of the load cell with the conversion factor taken into account (Equation 

(3.5)). The second is where the deflection is from steady state when m= 0 (Equation (3.7)).  

Considering the limit of the first solution to the model (Equation (3.5)); 

 
( )

lim ( )
t

m M g
x t

k
α

→∞

+=           (3.8) 

Note that this equation with α =1 is the solution to the model where there is no conversion to 

millimetres and the deflection is from an unloaded spring. 

Similarly, considering the limit of the second solution to the model (Equation (3.7); 

 lim ( )
t

mg
x t

k→∞
=           (3.9) 

Figure 9 shows the limit of an oscillating graph whereβ  is a constant multiplier to the mass 

being weighed shown in the two equations above. 

 

Figure 9: Limit of an oscillating Weigh Graph 

To find the unknown mass when run over a load cell, Equation (3.8) can be rearranged to; 
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lim ( )
t

k x t
m M

gα
→∞= −             (3.10) 

Similarly, Equation (3.9) can be rearranged to find the unknown mass (m) by having; 

 
lim ( )
t

k x t
m

g
→∞=           (3.11) 

In this method the last 35% of the data measurements of each carrier with the desired item to 

be weighed are averaged. An average of these measurements is taken to compensate for the 

cases where the graphs are still oscillating in the time allocated to acquire the weight. As each 

carrier travels over two load cells, two average measurements are obtained for each carrier. 

The two measurements are then summed and the weight of the associated carrier is subtracted 

to get the weight of the desired item. 

This method relies on the settling of the oscillatory response from the load cells to acquire an 

accurate measurement of the desired weight. This becomes less efficient when the speed of 

the carriers increases as the time for which the dual load cell system is subjected to the 

carriers is decreased. Furthermore, having heavier items on the carriers would require more 

time for the response to settle as the deflection of the load cells is greater. This method is 

therefore time-consuming and speed limiting. 

3.3 “Frequency” Methods 

 

In the next two sections, the weight of the item of interest is predicted from the initial 

oscillations of the weigh graphs. The method described in this section has been named the 

Frequency method as the unknown mass is predicted by rearranging the frequency equation 

(Equation (3.4)). Similarly, the Damping method described in the next section is named as 

such because the unknown mass is predicted by rearranging the damping factor equation 

(Equation (3.3)) as will be seen later in this chapter. 

As each load cell has its unique properties, it is required to find the parameters of each load 

cell which are its mass (M), spring constant (k) and damping coefficient (c). The parameters 

M, k and c are calculated only once as they are unique to each load cell.  

The weight can then be calculated, using these parameters, by measuring the first two 

successive peaks in the load cell output, using the fact that the frequency (ω ) can be 
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calculated from the time difference between the two peaks (refer to Equation (3.18)) and 

using Equation (3.4) to solve for m:    

 

2

2 2

2 1

2

2 1

2

2
2

k k c
t t

m M

t t

π

π

 
+ −  − = −

 
 − 

          (3.12) 

 

Similar to the Averaging method, both Equation (3.5) and Equation (3.7) are used when 

calculating the parameters. When considering the solution given by Equation (3.7), one 

possible procedure for deducing the parameters is performed by running a known mass over 

the system and measuring the load cell output. The spring constant (k) can be calculated by 

rearranging Equation (3.9);  

 
( )

lim ( )
t

m g
k

x t
→∞

=           (3.13) 

Calculating the damping factor (µ ) requires measuring any two successive peaks or two 

maximum amplitudes of the same phase (t1, y1) and (t2, y2) as in Figure 10. 

 

Figure 10: Two Successive Peaks 
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From Equation (3.7), these points are at  

 1- t
1 1

mg
y =Ae sin( t - )+

k
µ ω ϕ           (3.14) 

 2- t
2 2

mg
y =Ae sin( t - )+

k
µ ω ϕ           (3.15) 

As both points are in-phase, subtracting 
mg

k
 from both sides and dividing both equations to 

get; 

 
1

2

1

2

t

t

mg
y ek

mg ey
k

µ

µ

−

−

−
=

−
          (3.16) 

Therefore µ  can be calculated, knowing the mass (m), spring constant (k) and coordinates of 

the two successive peaks using; 

 
1

2 1
2

1
ln

( )

mg
y

k
mgt t y
k

µ
 − 

=  −  −
 

          (3.17) 

The two successive peaks have been chosen such that the angular frequency can be calculated 

easily by using; 

 
2 1

2
2 f

t t

πω π= =
−

          (3.18) 

The next step is finding the damping coefficient (c) and the mass of the load cell (M). This 

involves solving the two simultaneous equations given for the damping factor (µ ), and the 

frequency (ω ) (Equations (3.3) and (3.4)) giving; 

 2 2

k
M

ω µ
=

+
          (3.19) 

and  

 2c Mµ=           (3.20) 
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Where; 

 M M m= +           (3.21) 

One possible procedure to get the parameters of the load cell when considering Equation 

(3.5) requires two known masses that run over the load cell separately (1m and 2m ). Firstly 

the mass of the load cell (M) can be calculated from looking at the limits of both graphs at the 

values when the oscillations reach steady state. 

 1
1 1

( )
lim ( )
t

M m g
x t L

k

α
→∞

+= =           (3.22) 

 2
2 2

( )
lim ( )
t

M m g
x t L

k

α
→∞

+= =           (3.23) 

Dividing them and rearranging for Mass of the load cell (M) gives; 

 1 2 2 1
1 2

1
( )M L m L m

L L
= − +

−
          (3.24) 

Note that this was good in eliminating the factor α . To get the other parameters (k and c), 

the frequencies of the graphs of both masses are considered. 

 
2

2 2 21
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1

4 ( )1
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+
          (3.25) 

 
2

2 2 22
2 2 2 22

2

4 ( )1
4 ( ) 4 ( )

2 ( )
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+
          (3.26) 

As 1ω and 2ω can be calculated using Equation (3.18), and the masses (m and M) are known, 

the parameters k and c can be found to be; 

 ( )2 2 2 2
2 2 1 1

2 1

1
( ) ( )

( )
k M m M m

m m
ω ω= + − +

−
          (3.27) 
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1 2 2 2 1 1
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These are based on solving two simultaneous straight line equations; 

 1 1b a x y= −           (3.29) 

 2 2b a x y= −           (3.30) 

Which have the following solutions; 

 2 1
2 1

1
( )x b b

a a
= −

−
          (3.31) 

 1 2 2 1
2 1

1
( )y a b a b

a a
= −

−
          (3.32) 

(Where 2 2 2 2 2
1 1 1 2 2 2 1 1 2 24 ( ) , 4 ( ) , 4( ), 4( ), ,b M m b M m a M m a M m x k y cω ω= + = + = + = + = =  ) 

Therefore as mentioned earlier, the unknown mass can be calculated using Equation (3.12) 

knowing the parameters of the load cell (M, k and c).  

To summarise for the Frequency method; finding the parameters of a load cell when no offset 

is present only requires one known mass, otherwise two masses are required. Once the load 

cell parameters are known, measuring any two successive peaks or two amplitudes of the 

same phase could be used to predict the mass of the item that passes the load cell without the 

need to wait for the oscillations to settle down to steady state. Therefore this method saves 

time and only limits the speed when the peaks of two oscillations cannot be acquired 

accurately. 

3.4 “Damping” Method 

 

Considering the model of the load cell system presented in Figure 7. Another solution to 

finding the mass involves the analysis of the first three peaks. The analysis will be performed 

on Equation (3.5) which is the solution to the model of the load cell when the deflection is 

from an unloaded spring, and a conversion factor to get the output in grams is required. 

Applying the same procedure on the solution given by Equation (3.7) will give the same 

results as these factors are eradicated as will be seen later in this section.   
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Therefore from Equation (3.5), the first three peak’s are at: 

 1- t
1 1

(m+M)g
y = Ae sin( t - )+

k
µα ω ϕ 

 
 

          (3.33) 

 2- t
2 2

(m+M)g
y = Ae sin( t - )+

k
µα ω ϕ 

 
 

          (3.34) 

 3- t
3 3

(m+M)g
y = Ae sin( t - )+

k
µα ω ϕ 

 
 

          (3.35) 

 

Figure 11: Three Successive Peaks 

As the output from the load cells are in the form of a decaying oscillations then it is possible 

to deduce the damping factor from the three peaks and the time between them. Considering 

the ratio of their difference; 

 1 2
1 2 [ ]t ty y AF e eµ µα − −− = −           (3.36) 

 32
2 3 [ ]tty y AF e e µµα −−− = −           (3.37) 

1 2

32

1 2

2 3

t t

tt

y y e e

y y e e

µ µ

µµ

− −

−−

− −=
− −

          (3.38) 

Where 1 2 3sin( ) sin( ) sin( )F t t tω ϕ ω ϕ ω ϕ= − = − = −  as three consecutive peaks have been 

chosen. Note that this was good in eliminating the factor α and the mass of the load cell (M). 

Therefore, as mentioned earlier, applying these equations on the solutions given by Equation 

(3.7) and Equation (3.5) will give the same results.  
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Taking the ratio of their differences as 1 2

2 3

y y
y

y y

−∆ =
−

and simplifying the equation results in; 

 32 1 2( )tt t ty e e e eµµ µ µ−− − −∆ − = −           (3.39) 

 32 1( 1) tt te y e ye µµ µ −− −⇒ ∆ + = − ∆           (3.40) 

 2 32 1 ( )( )1 t tt ty e yeµµ −−⇒∆ + = − ∆           (3.41) 

Knowing that 3 2 1t t t> > therefore this can be simplified further to; 

 ( ) ( )1 t ty e yeµ µ∆ − ∆⇒∆ + = − ∆           (3.42) 

Grouping y∆ together gives; 

 (1 ) 1t ty e eµ µ− ∆ ∆∆ − = −           (3.43) 

 
1

1
t

t
t

e
y e

e

µ
µ

µ

∆
∆

∆

 −
⇒ ∆ = − 

 
          (3.44) 

As there are common terms on both sides of the equation, an equation for y∆ in terms of µ

and t∆  can be found; 

 
1

1
t

y
eµ∆
 ∆ = 
 

          (3.45) 

 ty eµ∆⇒∆ =           (3.46) 

And therefore deducing the damping factor (µ ) by taking the natural log of both sides is 

possible; 

 
ln( )y

t
µ ∆=

∆
          (3.47) 

The damping factor (µ ) is used to calculate the damping coefficient (c) of each load cell by 

running a known mass (m) and rearranging Equation (3.3) to give; 

 2 ( )c M mµ= +           (3.48) 
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Knowing the parameters M, c andµ , Equation (3.3) can be rearranged to predict any 

unknown mass; 

 
2

c
m M

µ
= −           (3.49) 

To summarise; for the Damping method, finding the parameters of a load cell requires 

running only one known mass over the load cell. Once the load cell parameters are known, 

measuring the ratio of any three successive peaks or three amplitudes of the same phase could 

be used to predict the mass of the item that passes the load cell without the need of waiting 

for the oscillations to settle down to steady state. Therefore, similar to the Frequency method, 

this method saves time and only limits the speed of the machine when the peaks of three 

oscillations cannot be acquired accurately. 
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Chapter 4: Simulation and Analysis 

 

A program has been written in Matlab to simulate weigh graphs and allow applying the three 

methods to deduce the weight of an item. The user interface is shown in Figure 12. Input 

parameters of the Load cell including the load cell mass (M), spring constant (k) and damping 

factor (c) could be entered. The acceleration produced by earth’s gravity (g) and time interval 

(t) were also required to be applied for the visual graph to be shown depending on the mass of 

the item of interest (m). The time interval is entered in the form of a vector, where in Figure 

12 for example, the time is from 0 to 150ms, with t∆ of 0.025ms. Results are displayed at the 

bottom of the user interface for calculating the weight from the output graph using all three 

methods, as well as their error percentages from the actual weight of the item. This allowed 

easy and quick comparison between the three methods. 

 

Figure 12: User Interface 
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Matlab was used as it encompasses a numerical computing environment which allows the 

implementation of algorithms, plotting of functions and data, creation of user interfaces and 

interfacing with programs written in other languages (Mathworks, 2011).  

For investigating the effects of different load cells, the damping coefficient and spring 

constant values were varied. This had a great effect on the Load Cell’s output. Figure 13 

compares 10kg/s to a 20kg/s damping coefficient on a 150g load cell with 120N/m spring 

constant using a 50g load. 

   

 

The effect of increasing the damping coefficient during a 150ms period resulted in the 

oscillations reaching steady state faster. As the damping coefficient (c) and the damping 

factor (µ ) have a linear relationship denoted by Equation (3.20), the deflection of the load 

cell is affected by a factor of a negative exponential elucidated in Equation (3.14).  

To simulate a stiffer load cell, Figure 14 illustrates running a load over a two load cells with 

one having half the spring constant value of the other. The graphs are from using a spring 

constant of 120N/m vs 60N/m while running a 50g weight over a 150g load cell with a 

damping coefficient of 10kg/s. The stiffer load cell has less deflection as expected from 

Equation (3.7). 

Figure 13: Comparing Weigh Graphs with different Damping coefficients 



Simulation and Analysis 
 

Page | 34  
 

   

 

Note the different scales of the y-axis. 

To compare the three methods, six weights of 57g, 145g, 197g, 242g, 272g and 378g were 

run through the simulation and their weigh graphs captured within 250ms using a spring 

constant of 60N/m with 3kg/s as the damping coefficient. The results are presented in Table 

6. 

 

Table 6: Results of 57, 145, 197, 242, 272 and 378g during a 250ms period 

As presented, the results from the Frequency and Damping methods are more accurate than 

the Averaging method. As well as being more accurate, only a fraction of the time is needed 

to calculate the weight as it is predicted from the first two peaks for the Frequency method 

and the first three peaks for the Damping method. Whereas the averaging method requires all 

the data to average the last 35% hoping it is steady enough to get an accurate measurement. 

The averaging method’s error increases with increasing weight. The Frequency method’s 

error percentage is consistent between 0.2% and 0.35%. Similarly, the Damping method error 

Figure 14: Comparing Weigh Graphs with Different Spring Constants 
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percentage is between 0.3% and 0.45%. The Damping method is slightly less accurate than 

the Frequency method as three peaks are required to be determined accurately as opposed to 

only two peaks in the Frequency method. This is affected by the resolution of capturing the 

data, discussed later in this chapter. 

The averaging method is highly dependent on the start and finish positions as the nature of 

the weigh graph is oscillating about a multiple of the mass as shown from Equation (3.7) of 

the system. The value of the graph at steady state is given by Equation (3.9). Therefore this 

method would be most accurate if the start and end points are chosen as such that the values 

above the desired weight cancel with the values below. Choosing a multiple of periodic 

intervals would give the least error.  

Unlike the Averaging method which depends on the graph oscillations settling down to a 

steady state to get better accuracy, the Frequency and Damping methods rely on the peaks of 

the first few oscillations. While running at the same machine speed, the data is sampled at the 

same frequency rate in the same duration of time regardless of the weight. 

Investigating different speeds has been performed by modifying the capture time of the weigh 

graphs. 250ms time capture used previously is simulating running the machine at 4 items a 

second consecutively, which equates to 240 items a minute. To simulate running the machine 

at 600 items a minute, a time capture of 0.1s is required. Table 7 shows the results when 

running 57, 145, 197, 242, 272 and 378g weights at a faster machine speed of 600items a 

minute (10items a second) using a spring constant of 60N/m and a damping coefficient of 

3kg/s.  

 

Table 7: Results of 57, 145, 197, 242, 272 and 378g while running at 600cpm 
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Comparing these results to the ones obtained in Table 6; the weights calculated using the 

Damping and Frequency methods were not affected, whereas the weights calculated using the 

Averaging method had decreased in accuracy due to the increased speed.  

As the speed increases, the time for which the items are subjected to the load cell decreases. 

Therefore the oscillations have less time to settle to a steady state. As the Averaging method 

is highly dependent on the oscillations reaching steady state, it has been highly affected 

whereas the peaks for the Damping and Frequency methods are from the first three 

oscillations which were not affected by having a shorter time. 

To further investigate the errors; a Snapshot of the error between 600g and 925g for a 

timeframe of 250ms using the Averaging method better illustrates the periodic behaviour; 

 

Figure 15: Averaging Method Error in 250ms 

Depending on the starting point of calculating the weight, if there are more points above the 

desired weight then it accrues a higher positive error therefore falsely stating the weight is 

heavier. Similarly, if more points are below the desired weight then it portrays a lighter 

weight. Therefore if we inspect the averaging method on a larger scale, the error would 

oscillate and increase as shown in Figure 16. 
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Figure 16: Averaging Method error on Larger Scale 

The error increases in value as weight increases due to the amplitude of the graphs increasing 

and the frequency and damping of the oscillations decreasing, hence taking a longer time to 

settle to a steady state value. This can be seen from Equation (3.7); as the mass increases x(t) 

increases in amplitude. Also, from Equation (3.3); as the mass increases the damping 

decreases and from Equation (3.4); as the mass increases the frequency decreases.  

Running an example through the simulation of a 100g vs 300g weights over a load cell with 

the same parameters of spring constant = 15N/m, damping coefficient = 10Kg/s over a 250ms 

period is illustrated below to further explain this; 

 

Figure 17: 100g vs 300g Weights Over a Load Cell 
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Notice the 100g weight has lower amplitude, higher frequency and higher damping of 

oscillations than the 300g weight. 

On a large scale, all three methods tend to decrease in accuracy with increased weight, as 

seen by analysis of the linear trend line on the graphs produced by running the simulation for 

all values between 600g and 925g. All trend lines have a positive increasing slope. 

 

Figure 18: Frequency Method error 

 

Figure 19: Averaging Method error 

 

Figure 20: Damping Method error 
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Further to the interesting fact that the error increases with increasing weight for all three 

methods, looking at the trend line for the error percentages, it shows that it decreases when 

using the Frequency and Damping methods, but still increases when using the Averaging 

method. 

 

Figure 21: Frequency Method Trend Line for error Percentages 

 

Figure 22: Averaging Method Trend Line for error Percentages 

 

Figure 23: Damping Method Trend Line for error Percentages 
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Chapter 5: Weighing System Testing & Analysis  

5.1 Setup 

 

Various experiments have been performed on the weighing system which is outlined in this 

chapter. To perform the experiments a few preliminary installation steps had to be done to 

ensure that the system performed accurately. These are outlined in this section. 

The whole machine should be leveled across the machine axle, especially the chain extrusion 

before and after the weighbridge section. Also, the Weighing section must be centred 

between the machine’s side extrusions. 

 

The transition plates transfer the carriers to the floating position for the most accurate 

weighing. There are slots in the incoming weigh plates to allow a smooth transfer of the 

carriers to the weighbridge section. To ensure the carriers are transitioned at the correct 

height onto the incoming weigh plate, the transition plates must be at a 10mm height from the 

bottom of the chain extrusion. This can be set using a 10mm spacer (M10 Hex Nut).  

Figure 24: Centred Weigh Bridge Section 
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Figure 25: Transition plates onto the Weighing System 

 

 

Figure 26: Transition plate height 

To ensure the carriers are at the correct height as they travel along the Load Cells, there needs 

to be a 2mm gap between the top of the Weigh bar mounting plate and the bottom of the 
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chain extrusion. This places the carriers in their floating position to avoid added or removed 

weight. Additional weight of the chain is introduced when the gap between the weigh bar 

mounting bracket and the bottom of the extrusion is more than 2mm. This causes the carrier 

latch to touch the top of the slot in the carrier clip. When this distance is less than 2mm, the 

carriers are not able to exert full force of the items to be weighed onto the load cell as the 

carrier latch touches the bottom of the slot in the carrier clip; therefore the weight measured is 

calculated inaccurately to be less than the actual. 

 

Figure 27: Weighing plate height 

A jig has been designed for ease of ensuring the 2mm gap is achieved. This has been 

designed to be machined out of black oxide mild steel flat bar for accuracy. In addition to 

ensuring the height is correct, it also serves the purpose of making sure the chain extrusion is 

centred to the weigh bar system as it has been designed to have the same width as the 
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mounting block. The jig simply slides in and out between the mounting block and the chain 

extrusion. 

 

Figure 28: Weigh Bar jig in place 

The height of the weigh bar pair is adjusted using a simple system whereby two locking 

M10x25mm bolts are loosened and two M10x70mm bolts at the bottom of the mounting 

bracket are either screwed in to decrease the distance between the mounting block and the 

chain extrusion or screwed out to increase this distance. 
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Figure 29: Position of Adjustment Bolts 

To minimise the external disturbances from the machine, the weighing section must be 

isolated from the rest of the machine and bolted down to the floor. The only points of contact 

between the machine and the weighing section are the carriers. 

Further to these preliminary installation steps, regular checks had to be made before tests 

were performed to ensure the best performance. These included the following;  

• Ensuring all the chain extrusions are centred and set up correctly using the jig 

o Ensuring the jig slid in and out the mounting blocks slots with little or no 

friction 

• Ensuring the gap between the bottom of the extrusion and the bottom of the transition 

plates is 10 mm 

• Ensuring the gap between Transition plates and the incoming weigh plates’ slots are 

evenly spaced 

• Ensuring nothing is interfering with the Weigh Bridge, including the base wooden 

covers 

The Compac software allowed data to be exported to an excel spreadsheet. These files are 

opened by Matlab and analysed using various software algorithms that will be detailed in the 

following sections. A sample file is in Appendix C. The files exported can have up to five 
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columns dependent on the number of load cells chosen. There are four load cells on this 

machine, due to having two lanes; therefore the last four columns are assigned to these. The 

first column is always the sample number.  

5.2 Sampling Restrictions 

 

The sample number is not precise as the Analogue to Digital Converter (ADC) samples at a 

rate of 4 kHz, but this has small variations (4096± samples per second). Furthermore, the 

software caps at 2047 samples per capture of carrier weigh graphs. Depending on the number 

of carriers chosen, the software would average the samples obtained over the samples chosen. 

For example, if a capture of three carriers was chosen, and the machine was running at 300 

carriers per minute (cpm), then three carriers would be captured in 0.6 seconds. This equates 

to 2457.6 samples. As the maximum number of samples per capture through the software is 

2047, the difference is 410.6 samples. These are averaged over the 2047 samples; therefore, 

each sample on the software graph is an average of 1.2 samples from the ADC. 

The opposite could happen where the number of cups chosen to be captured would utilise 

more samples in the limited time (depending on the speed of the machine) than the maximum 

2047 samples. Therefore inaccuracies occur. To avoid this, the maximum carriers to capture 

during the allocated time due to speed have been tabulated below; 

Speed (cpm) carriers Samples 

300 5 4096 

400 6 3686 

500 8 3932 

600 10 4096 

700 11 3861 

Table 8: Samples due to Speed and Readings 

This is from the detailed analysis shown in Appendix D.  

If another carrier is chosen to be captured at the speeds shown in Table 8, then samples would 

be missed as presented in Table 9. 
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Speed (cpm) Carriers Missed Samples 

300 6 819 

400 7 204 

500 9 327 

600 11 409 

700 12 117 

Table 9: Missed Samples 

5.3 Averaging Method 

 

Tests have been performed to find the accuracy of the system using the Averaging method at 

different speeds and weights. Five items weighing 164g, 226g, 379g, 528g and 711g were run 

over the weighing system at 300 and 600 carriers per minute (cpm).  

As the weighing section consists of a dual load cell system for every lane, the load is split 

between the load cells, therefore each load cell was subjected to approximately 82g, 113g, 

189.5g, 264g and 355.5g load. The results are presented in Table 10 while running the 

machine at 300cpm and Table 11 while running at 600cpm. 

Weight of item (g) Calculated weight (g) error  (g) error % 

82 81.40 0.60 0.73 

113 114.10 1.10 0.97 

189.5 191.40 1.90 1.00 

264 261.10 2.90 1.10 

355.5 360.30 4.80 1.35 

 

Table 10:  Results while running at 300cpm 
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Weight of item (g) Calculated weight (g) error  (g) error % 

82 82.70 0.70 0.85 

113 114.60 1.60 1.42 

189.5 192.03 2.53 1.34 

264 260.10 3.90 1.48 

355.5 371.30 15.80 4.44 

 

Table 11: Results while running at 600cpm 

The tables show that accuracy decreases with increasing weight and speed. This method 

relies on the settling of the oscillatory response from the load cells to acquire an accurate 

measurement of the desired weight. This becomes less efficient when the speed of the carriers 

increases as the time for which the dual load cell system is subjected to the carriers and 

weight is decreased. Furthermore, having heavier items on the carriers would require more 

time for the response to settle as the deflection of the load cells is greater. This is evident 

from higher amplitudes as well as the frequency and damping of oscillations decreasing as 

seen in Figure 17.  

To test the reliability of the load cells, one item weighing 100g was run on the carriers over 

the load cells 15 times repeatedly at 300, 400, 500 and 600cpm. The results are presented in 

Table 12.  

Running 100g weight over Weighing System 15 times 

Speed 

(cpm) 
Mean (g) StdDev Range (g) 

300 100.66 0.92 2.9 

400 100.71 1.01 3.7 

500 100.78 1.57 5.4 

600 101.01 1.83 6.5 

Table 12: Reliability test of a 166g weight on a Carrier 
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It is evident that there are external factors affecting the accuracy of the system. If the system 

was not affected by external disturbances then there would not have been a range evident 

when running the same item a number of times at the same speed over the weighing system. 

It is interesting to note that as speed increases the reliability decreases. This is investigated 

further in this chapter. 

To further investigate the inconsistency, empty carriers have been run on the dual load cell 

system at 300, 400, 500 and 600cpm. The components of the carriers that are weighed are the 

frame, latch, rollers and axle. They add up to a total of 143g. The z-plate on top of the load 

cell has to be taken into account as it is calculated as part of the weight. The z-plate weighs 

87g. Therefore when empty carriers are run there is a total of 230g over the weighing system. 

The results are shown in Table 13. 

Running 15 230g Carriers over Weighing System 

Speed  

(cpm) 
Mean (g) StdDev Range (g) 

300 230.04 0.71 2.2 

400 230.36 0.71 2.3 

500 230.39 0.74 2.4 

600 230.52 0.77 2.6 

Table 13: Accuracy of empty Carriers 

This shows that the carriers and z-plate have a slight variation that occurs during 

manufacturing. These variations affect the accuracy of the system when trying to calculate 

the weight. The inaccuracy is not as high as that of Table 12 There are other factors that 

affect the accuracy of calculating the weight that are explained and investigated further in this 

chapter. 

If the averaging method is applied on a weigh graph like that of Figure 30, it would give an 

inaccurate weight as a disturbance is evident at the last 35% of the weigh graph data causing 

it to increase. The weight calculated through the averaging method for this item is 143.3g. 

The item’s weight was actually 283g and it was run at 399cpm over the dual load cell system; 
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therefore the weight should have been estimated to be about 141.5g. This gives an error of 

1.8g, which equates to about 1.27%. 

 

Figure 30: Graph with disturbance in the final 35% 

This same weight is analysed using the Damping and Frequency methods. 

5.4 Damping Method 

 

The next section is the experiments conducted on getting the weight of an unknown item, and 

deducing the accuracy using the Damping method. There are various factors that influence 

the output of the load cell, and hence provide a misleading outcome to the weight. These 

factors are discussed.  

Firstly, the parameters of both load cells on a lane were needed to be determined. To get the 

parameters of the load cell an experiment was conducted whereby a known load (200g) was 

placed onto the z-plate on top of each load cell statically on the second lane, presented in 

Figure 31and Figure 32. The response of the load cells were captured and peaks detected. In 

order to capture the data statically, a rod simulator was used to deceive the software into 

thinking the machine was running at 290cpm. From this, the x-axis time scale can be 

determined accurately. 

Data was collected from each of the load cells from the second lane and uploaded into the 

Matlab software. The known mass and gravitational constant were specified. The code is 

presented in Appendix F. 

It was essential to be able to capture the peak values of the oscillations accurately as the 

methods depend on them to deduce the weight. The Algorithm “Peakdet” has been written as 



Weighing System Testing & Analysis 
 

Page | 50  
 

a function, presented in Appendix E, to allow it to be called from within any program 

throughout the tests to capture the peaks and troughs of any graph. The peaks in Figure 31 

and Figure 32 have been signified with black crosses. 

 

 
Figure 31: Weigh Graph of a 200g weight on first load cell 

 

 

Figure 32: Weigh Graph of a 200g weight on second load cell 

The peaks that were of interest are the highest three that happen as a result of placing the 

weight onto the load cell. This data was used to get the damping factor (µ ) by taking the 

ratio of the amplitude of these peaks, as well as the average time between the peaks, then 

using Equation (3.47) to calculate it. This is summarised in Table 14.  
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Load Cell 1st Peak 2nd Peak 3rd Peak Ratio of 

peaks 

Average time (s) Damping 

factor 

1 (0.3137, 

247.6) 

(0.3380, 

220.4) 

(0.3595, 

205.9) 

1.8793 0.0229 27.5805 

2 (0.1530, 

295.9) 

(0.1660, 

248.3) 

(0.1740, 

213.7) 

1.3757 0.0105 30.379 

Table 14: 200g load cell data 

The damping coefficient (c) is calculated from the damping factor ( )µ using Equation (3.48), 

and equated to be 1.2152e4 kg/s for the first load cell and 1.1032e4 kg/s for the second load 

cell. 

Through reverse Engineering, a check was made using the parameters to see if the mass can 

be returned and it came out to be 200g as expected using these parameters.  

 

In order to test these parameters, an item with a 283g weight (unknown weight) is run at 

399cpm on a carrier over the dual load cell system and its data captured. The weight of the 

carrier was removed and the weigh data was used to predict the weight using the Damping 

method on the load cells with the graphs presented in Figure 33 and Figure 34. Peaks have 

been denoted with red crosses.  

 
Figure 33: Weigh Graph of a 283g weight running at 400cpm on first load cell 
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Figure 34: Weigh Graph of a 283g weight running at 400cpm on second load cell 

 

The peaks that are of interest are stored in an array starting at the overshoot peak. This was 

after the initial fluctuations at the 0g weight, hence polling in the code for a peak above 50, 

shown in Appendix F. The damping factor was found from the ratio of the peaks and the 

average time difference by using Equation (3.47). The graph’s three peaks were used to find 

the ratio of the difference of amplitudes of the second & third to the second & first peaks, and 

the average time difference. Finally, the mass was calculated using Equation (3.49). This is 

all summarised in Table 15.   

Table 15: 283g load cell data 

Assuming the item on the carrier was stable, the weights would have been expected to either 

be divided equally between them (141.5g on each load cell) or compensated by one load cell 

Load 

Cell 

1st Peak 2nd Peak 3rd Peak Ratio of 

peaks 

Average 

time (s) 

Damping 

factor 

Predicted 

weight (g) 

1 (0.1268, 

190.2075) 

(0.1492, 

163.2075) 

(0.1718, 

151.9575) 

2.4 0.0225 38.9097 141.7668 

2 (0.1270, 

208.0075 

(0.1495, 

176.8875) 

(0.1727, 

165.1375) 

2.6 0.0225 43.2888 140.3549 
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more than the other due to the shape of the item being weighed. Either case should give the 

total weight of the item when both load cell’s acquired weights are summed.  

Summing the masses from both load cells gives the total predicted mass of the 283g item as 

282.1217g. Therefore there is an error of 0.8783g while using the Damping method. This 

equates to 0.31%. This is a similar result to the simulations. 

Testing with other masses gave conflicting results to the simulation in some cases. These are 

outlined in Table 16 and Table 17; 

Speed 

(cpm) 

Actual Weight 

(g) 
1st peak 2nd peak 3rd peak 

Predicted 

weight (g) 

error  

(g) 

error 

% 

300 82 
(0.2093, 

102.9) 

(0.2585, 

87.7) 

(0.2957, 

86.8) 
84.30 2.30 2.81 

300 113 (0.3144,129.1) 
(0.3350, 

121.43) 

(0.3619, 

119.3) 
112.68 0.32 0.29 

300 189.5 
(0.3365, 

247.7) 

(0.3672, 

211.7) 

(0.3941, 

198.2) 
190.30 0.80 0.42 

300 264 (0.3331,342.9) 
(0.3605, 

309.1) 

(0.3898, 

291.2) 
270.69 6.69 2.53 

300 355.5 (0.4056, 441) 
(0.4368, 

408.6) 

(0.4680, 

389.4) 
362.28 6.78 1.91 

Table 16: Weight prediction while being run at 300cpm 
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Speed 

(cpm) 

Actual Weight 

(g) 
1st peak 2nd peak 3rd peak 

Predicted 

weight (g) 

error  

(g) 

error 

% 

600 82 (0.1790, 137.6) 
(0.2026, 

107.4) 

(0.2230, 

100.2) 
84.49 2.49 3.03 

600 113 (0.0912, 123.7) 
(0.1158, 

116.3) 

(0.1341, 

113.9) 
115.70 2.70 2.39 

600 189.5 (0.1819, 296.3) 
(0.2078, 

242.2) 

(0.2359, 

217.3) 
191.93 2.43 1.28 

600 264 (0.0818, 363.9) 
(0.1133, 

297.5) 

(0.1462, 

266.1) 
260.92 3.08 1.17 

600 355.5 (0.0756,493.9) (0.1025,443) 
(0.1301, 

409) 
372.39 16.89 4.75 

Table 17: Weight prediction while being run at 600cpm 

These results are not consistent as seen in the simulation. The accuracy has a general 

tendency to decrease with increasing weight and also decrease with increasing speed. The 

inconsistency in the results is due to disturbances causing the graphs not to act as a second 

order harmonic oscillator as assumed by the system model due to disturbances that are 

investigated further in this chapter.  

To further explain the discrepancies, the expected graph from the output of the model has 

been overlaid onto the actual graph for the 189.5g load while running at 300cpm in Figure 35, 

and while running at 600cpm in Figure 36.  
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Figure 35: Actual vs Predicted for 189.5g at 300cpm 

 

Figure 36: Actual vs Predicted for 189.5g at 600cpm 

The model graphs are not exactly overlaid onto the output graphs from the weighing system. 

While running at 300cpm, the first peak of the oscillations had a lower value than the 

expected output from the model, although this was counteracted by having the second and 
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third peaks with a higher value than the expected model. Therefore, the overall weight 

prediction was higher than the actual weight by 0.8g. While running at 600cpm, the first and 

second peaks were lower than the expected outcome from the model, but the third was higher 

which lead to the 2.43g difference. 

Similarly, when investigating the graphs for the 264g weight, Figure 37 and Figure 40 

represent running the weight at 300cpm and 600cpm respectively. As presented, the model 

graph is a closer fit while running at 600cpm than it is while running at 300cpm. This lead to 

a better accuracy at 600cpm with 3g error, while at 300cpm there was a 6.7g error. 

 

Figure 37: Actual vs Predicted for 264g at 300cpm 
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Figure 38: Actual vs Predicted for 264g at 600cpm 

The model graph’s oscillation frequency fit well onto the output graph’s data from the 

weighing system but the amplitude does not. To make the models fit the data better, damping 

could be investigated as the model is sometimes consistently higher than the data at the 

peaks. This suggests that more damping would be beneficial. Although, some cases similar to 

the 264g at 300cpm, presented in Figure 37, shows that the model graph’s amplitude starts of 

higher than the weighing system’s output data, then it is lower after the first oscillation. This 

suggests that the data is being interfered with.  

All forms of interferences and disturbances need to be eradicated from the system. There 

seems to be more than one form of interference as the data is not consistently affected the 

same way. These are investigated later in the chapter.  

5.5 Frequency Method 

 

To predict the weight utilising the Frequency method, a similar approach to the Damping 

method is applied. In addition to the 200g weight placed on both the lane’s load cells, another 

static load was applied to get the load cell parameters which are used to predict the weight 

when an unknown mass is run on the dual load cell system. The graphs of 122g static loads 

on both load cells are presented in Figure 39 and Figure 40. 
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Figure 39: Weigh graph of 122g on third load cell 

 

Figure 40: Weigh graph of 122g placed on fourth load cell 

The frequencies acquired are presented in Table 18. The table also has the frequencies 

acquired from running a 283g weight at 399cpm on lane 2 (load cells 3 and 4) presented in 

Figure 33 and Figure 34 above. Approximately half the weight is going to be exerted on each 

load cell, therefore the actual frequencies on each load cell is that of a 141.5g weight. 
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Lane Load Cell Weight (g) 1st Peak 2nd Peak Frequencies 

(Hz) 

2 4 200 (0.3137, 247.6) (0.3380, 

220.4) 

259.1 

2 4 122 (0.3347,165.8875) (0.3810, 

136.6375) 

135.85 

2 4 141.5 (0.1492, 

163.2075) 

(0.1718, 

151.9575) 

279.25 

2 3 200 (0.1530, 295.9) (0.1660, 

248.3) 

483 

2 3 122 (0.3648, 

168.8875) 

(0.3882, 

136.6375) 

284.1 

2 3 141.5 (0.1495, 

176.8875) 

(0.1727, 

165.1375) 

279.25 

Table 18: Frequency comparisons 

The time it takes for the oscillations created by a static load placed on a load cell are very 

short. This means that the difference in time between the first two peaks is very small. Even 

though the system has a high sampling rate of 4 KHz, any disturbance to the load cell while 

applying the load leads to inaccuracies and wrong predictions of the weight. The Frequency 

method is highly dependent on accurate determination of the time between the first two 

peaks. This system is highly susceptible to small variations which have a big effect on the 

angular frequency determination of the graphs. As seen from the graphs above, the 

oscillations do not follow a harmonic motion with the oscillations being at constant 

frequency. A difference of 0.01s between the first two peaks causes a large difference in the 

angular frequency calculation using Equation (3.18). Therefore although the Frequency 

method might be very useful tool for other systems with fewer discrepancies, it is not the best 

option for this weighing system.  

Various factors may be contributing to the discrepancies such as the mechanical assembly not 

being fully isolated, the mechanical component’s variations, the mechanical setup and 
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external noise. When these factors are flagrant, the graph of the output of the load cell does 

not abide by the expected outcome of the system model. Therefore the algorithms do not give 

an accurate prediction of the weight.   

5.6 Disturbances 

5.6.1  Carrier Interference 

 

The current system has the chain driven carriers travel along a hardened stainless steel plate 

which is mounted using a couple of button-head bolts to the Vishay 6Kg load cell. The 

stainless steel plate is hardened to withstand the carriers constantly running on top without 

cutting groves or wearing the steel. The frame of the carriers, which is the contact point to the 

stainless steel plate, is made of glass reinforced nylon plastic. The stainless steel plate is cut 

to the shape of a Z to allow the weigh pads on the frame of each carrier to enter, and exit, the 

stainless plate at the same time. 

 

Figure 41: Carriers on z-plate 

Each carrier is on the z-plate for a distance of 90mm to allow enough time for the deflection 

of the load cell to accrue an accurate measurement. Although, due to the distance between the 

carriers being 95.25mm as they are at 3.75” pitch means that the carrier prior to the one on 

the z-plate being weighed will enter the z-plate before the first one exits as presented in 

Figure 42. There is a gap of 1mm between the z-plate and the weigh plates. Therefore the 

interference lasts for 4.25mm as the carrier is introduced onto the z-plate (from the preceding 
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carrier), and a further 4.25mm as the carrier exits the z-plate (from the next carrier). Giving a 

total of 8.5mm, this equates to ~9% of the carrier duration while being weighed. 

 

Figure 42: Carrier interference on the z-plate 

To investigate this further an experiment was conducted whereby every second carrier was 

removed from the chain to allow only one carrier on the z-plate at any one time. This allowed 

the deflection of each load cell to have enough time to return to its neutral position before the 

next carrier arrived to be weighed. 

A 166g weight was placed on the carriers twenty times while the machine was running at 

300, 400, 500, 600 and 670cpm. The mean, standard deviation, range and error were 

calculated and presented in Table 19 for the case without missing carriers and Table 20 for 

the case with missing carriers; 
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Running 166g weight on carriers  

without missing carriers on the chain 

Speed Mean StdDev Range error (g) error % 

300 167.04 0.98 3.5 1.04 0.626506 

400 167.20 1.24 4.6 1.2 0.722892 

500 165.83 1.05 4.4 0.17 0.10241 

600 166.81 1.92 6.7 0.81 0.487952 

670 170.21 1.89 8.8 4.21 2.536145 

Table 19: 166g Weight on Carriers without Missing Carriers 

 

Running 166g weight on carriers  

where every second carrier is missing from the lane 

Speed Mean StdDev Range error (g) Error % 

300 166.41 0.82 3.1 0.41 0.246988 

400 166.25 0.83 2.9 0.25 0.150602 

500 165.13 0.73 6.9 0.87 0.524096 

600 166.59 1.25 4.5 0.59 0.355422 

670 169.09 2.03 6.2 3.09 1.861446 

Table 20: 166g Weight on Carriers with Missing Carriers 

Having every second carrier missing from the lane, therefore allowing the load cell to return 

to its neutral position before the next carrier with a weight is introduced, gave more accurate 

results at all speeds except at 500cpm. Further investigation shows that at 500cpm the range 

is bigger than expected due to two values having the values of 163.9 and 164g. These outliers 
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have skewed the mean. Disregarding this, the overall effect of allowing the load cell to settle 

before the next carrier is introduced leads to more accurate calculation of the weights.  

5.6.2  Item’s physical shape (stability) 

 

If an item is not stable on the carrier while travelling over the load cells then the weight of the 

item is not split evenly between the two load cells of the lane. Similar to Figure 43 where the 

blue graph is from load cell 4, the green graph is from load cell 3 and the red graph is the 

total sum of both the blue and green. If an item is bouncing it may exert less force on a load 

cell if it has an upwards velocity component, or it may exert more force if it has a downward 

velocity component. In this case, the item was bouncing therefore less force was exerted on 

the fourth load cell, and more was exerted on the third load cell. This is evident from the 

graphs of both load cells starting and ending at the same position but moving further apart 

during the motion. 

 

 

Figure 43: Load Cell output and their summation 

The weights of graphs with interferences as such would be better calculated using the 

Damping method as it depends on the initial oscillation’s amplitudes which might not have 

been affected by the unstable items. The Averaging method will predict the individual load 

cell’s masses to be varying due to the bouncing, and depending on the intensity of the 
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unstableness, might give inaccurate results.  

 

Due to the recent results implying that stability of the items on the carriers is crucial, a simple 

test experiment was carried out by adding foam to the carrier’s frame. Ten carriers had low 

density, closed cell foam placed on the frame as shown in Figure 44.  

It was expected that the foam should stabilise the items on the carriers therefore producing 

more accurate weighing. Tests were performed by running the carriers at two different speeds 

of 400 and 600 carriers per minute (cpm) and placing three weights of 88, 166 and 253g on 

empty standard carriers, and then on the carriers with the foam on the frame. Each weight 

was run 10 times on carriers with and without foam to compare. Table 21 outlines the results. 

 

Figure 44: Carriers with Foam 

 

Figure 45: Apple on Carriers with Foam 
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. 

Speed 

(cpm) 

Weight 

(g) 

Mean 

(g) 

StdDev 

(g) 

Range 

(g) 

Mean Error 

(g) Mean Error % 

Foam 400 88 89.76 1.38 3.6 1.76 2 

No Foam 400 88 88.48 1.18 3.4 0.48 0.545454545 

Foam 400 166 167.58 1.77 5.9 1.58 0.951807229 

No Foam 400 166 166.02 2.44 7.9 0.02 0.012048193 

Foam 400 253 254.76 0.96 3.1 1.76 0.695652174 

No Foam 400 253 254.4 1.85 6.8 1.4 0.553359684 

Foam 600 88 87.99 1.09 3.7 -0.01 -0.011363636 

No Foam 600 88 88.89 1.45 4.3 0.89 1.011363636 

Foam 600 166 167.72 2.06 7.5 1.72 1.036144578 

No Foam 600 166 167.84 2.69 9.3 1.84 1.108433735 

Foam 600 253 259.14 1.11 3.5 6.14 2.42687747 

No Foam 600 253 259.98 4.07 13.8 6.98 2.758893281 

Table 21: Results of Foam Vs No Foam on Carriers 

Comparing the means between the two speeds, the carriers with no foam seemed to be closer 

to the actual weight being measured at the slow speed. This was differing to the results at 

higher speed where the carriers with foam seemed to be more accurate. 

Comparing the standard deviations between the two speeds, the carriers with foam seemed to 

be more consistent every time, except for the case at 400cpm with 88g, although the standard 

deviations are very close (1.38 vs 1.18). It was very noticeable at higher speed (600cpm) 

using the heavy fruit (253g) that the foam had a big effect on the standard deviation (1.11 vs 

4.07). 

Comparing the range between the two speeds, again, the carriers with the foam gave better 

results by having a lower range. Except for the lower speed (400cpm) using the lower weight 
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(88g). Similar to the standard deviation in that case, the ranges are very close (3.6 vs 3.4). It 

was the most noticeable at the higher speed with the heavier weight (3.5 vs 13.8g). 

When the foam and no foam experiments are compared in terms of weigh measurements 

error, the results were inconclusive. Generally, the foam had a positive effect on the weights, 

more so at higher speeds. As mentioned in the expected outcome, the foam seems to be 

effective in stabilising the fruit on the carriers. The low density property of the foam meant it 

moulded to the shape of the item placed on the carrier and gave it a soft surface contact rather 

than a line or point contact on the plastic frame of the carrier. Furthermore, the foam 

absorbed the shock of placing the fruit on the carriers quickly and so items managed to settle 

in one position. 

Repeating this test with more weights and more frequent runs would be beneficial to draw 

sound conclusions.  

5.6.3  External noise/vibration 

 

External noise is one of the factors that can result in inaccurate determination of the weight of 

an item when using either of the methods. Even though the weighing system is isolated from 

the machine, noise can still propagate through the legs. When the noise is present the weigh 

graph of an item does not conform to a sinusoidal decay. It can be noticeable that the graph is 

increasing in amplitude of oscillations, or it fluctuates in a non-decaying form. Increasing in 

oscillations could be due to excitation of the natural frequencies of the structure. This is 

evident as in Figure 46 having the oscillations increase in amplitude. The natural frequencies 

of the structure could be researched further in terms of adding stiffness to increase the values 

of the natural frequencies. Although, this should be done with care as increasing the stiffness 

could be accompanied by increasing the mass, resulting in no change or even a decrease in 

the natural frequencies.  
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Figure 46: Disturbance due to excitation 

5.6.4  External Disturbance – human interference 

 

The load cells are designed to be very sensitive. Care needs to be taken when placing items 

onto each load cell to determine its parameters. External disturbance was noticed when trying 

to acquire the parameters of the load cell by placing a 200g load onto the fourth load cell on 

lane 2. Figure 47 shows that the weight was not placed correctly as it is evident that the 

weight was removed slightly after the initial contact with the load cell.   
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Figure 47: Disturbance due to human interference 

When using the first three peaks in Figure 47 to calculate the damping factor and the spring 

constant, the coefficient values came out negative while using Equations (3.47) and (3.27). 

Therefore using either the Damping or Frequency methods would result in an inaccurate 

prediction of the parameters due to the misleading data.  

Another way of acquiring the load cell parameters, instead of placing a known weight onto a 

load cell, is removing a known weight off a load cell. This seemed less likely to introduce 

disturbances in terms of human error adding extra weight or removing weight as seen in 

Figure 48. 
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Figure 48: Weigh Graph from removing a 200g Weight off a Load Cell 

This has been tested by removing a 200g weight from a load cell, and the two peaks captured 

after removing the load were at (0.4746, 32) and (0.4941, 12). 

 
Figure 49: Peaks of interest from the 200g removed weight 

Due to the resolution of the graph, the peaks are not accurately determined therefore the 

parameters of the load cell could not be calculated accurately. The load cell takes a very short 

time to reach a stable state when removing an item from the deflected position. Whereas 
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when an item is placed onto a load cell, it starts at its stable position, deflects to its maximum 

depending on the weight placed and oscillates back to its neutral state. There are more 

oscillations that have higher amplitude and take a longer time to settle when an item is placed 

onto a load cell. Therefore it is easier to get more accurate values for the peaks.  

5.7 Spectral Analysis 

 

Frequency of the weigh graphs from a load cell is dependent on the weight of the object 

being weighed regardless of speed, refer to Equation (3.4). Speed should theoretically only 

affect the time upon which the item to be weighed is applied to the load cell. Upon further 

experimentation, it was found that this is not necessarily the case for this system. This is 

explained in the following section. 

An experiment was conducted to find the frequencies of the oscillations by running different 

weights 164, 379, 528 and 711g at different speeds 300, 400, 500 and 600cpm. The weigh 

graph data was captured and manipulated to be produced on the same graph. These tests were 

conducted on the second lane of the machine, hence using load cells three and four to capture 

the data. Figure 50 and Figure 51 show the weigh graphs of 379g on load cells three and four 

respectively. Refer to Figure 52 to Figure 57 in Appendix I for the weigh graphs of 164g, 

528g and 711g. Throughout the figures, the x-axis denotes time (seconds) and the y-axis 

denotes weight (deca-grams).The peaks have been found using the peak detection algorithm 

presented in Appendix G. The graph colour codes are as follows; Blue = 300cpm, Green = 

400cpm, Red = 500cpm and Magenta = 600cpm. The results are presented in Table 22. 
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Figure 50: Weigh Graphs of 379g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 3 (Lane 2, LC 1) 

 

Figure 51: Weigh Graphs of 379g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 4 (Lane 2, LC 2) 
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 Speed 

300cpm 400cpm 500cpm 600cpm 

Weight LC3 LC4 LC3 LC4 LC3 LC4 LC3 LC4 

164g 47.3485 43.4028 27.2331 27.2331 39.0137 35.0730 42.5170 36.5497 

379g 44.3262 40.8497 28.6369 27.5028 31.2813 30.7276 38.2263 38.2263 

528g 38.5802 37.8788 27.2331 26.9687 29.6771 29.1783 31.8066 32.0513 

711g 37.2024 37.2024 42.7350 42.7350 22.6943 22.4014 37.2024 35.3107 

Table 22: Frequency (Hz) Depending on Speed and Weight 

In general load cell 4 had a lower frequency from its outputs than load cell 3. LC3 and LC4 

are both exposed to the same item at the same time; therefore the variation in their frequency 

at the same speed suggests that the weight on the cup might not be stable. It might be slightly 

rocking from side to side. Other possibilities are that the setup of the load cells is not level, or 

the carriers themselves are flexing and affecting the loadcell signals.  

As expected, the frequency decreased with increasing weight at the same speed except for 

when running 379g and 711g at 400 and 600cpm. It was interesting that the frequency was 

not consistent using the same weight as speed increased. These discrepancies could be due to 

external interferences to the system. These interferences would have to be related to the speed 

of the machine. Increasing the speed would mean the motor runs faster to convey the chain 

around the sprockets faster. This also leads to the carriers transferring across the weighing 

system faster therefore causing more abrupt loading and unloading of the load cell.  

Furthermore, running at different speeds would mean the carriers are introducing other 

forcing frequencies to the system themselves. In that, 

• @300 cpm = 5 cups/sec, T = 0.2s, f = 5Hz 

• @400 cpm = 6.67cups/sec, T = 0.15s, f =6.67Hz 

• @500 cpm = 8.33 cups/sec, T = 0.12s, f = 8.33Hz 

• @600 cpm = 10 cups/sec, T = 0.1s, f = 10Hz 

Were T is the period, and f is the forcing frequency. 

These forcing frequencies, and their harmonics, could be interfering with the natural 

frequency of the system therefore causing excitation. An overall frequency analysis of the 

weighing structure and the components in the system such as the carriers and the weigh plates 
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would be beneficial in further analysing these discrepancies. In general a stiffer structure is 

beneficial as it is less affected by the lower harmonics of everyday life.  

Another factor that could affect this is the variance in tolerances between the different 

carriers. The carrier discrepancies were evident in the results presented before in Chapter 2. 
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Chapter 6: Results & Discussion 

 

A weighing system was configured and built to allow testing and experimentation on 

acquiring the weight of items placed on the Compac carriers travelling at high speeds up to 

600 items a minute.  

The system has been modelled mathematically and different methods for predicting the 

weight have been established; the Averaging, Frequency and Damping methods. Each has its 

advantages and drawbacks. Also, each has its limitations. These were found through 

simulations using a programmed user interface and real world testing on the dual load cell 

system. 

The simulations were successful in providing an easy and quick comparison between the 

three methods while presenting a visual graph of the load cell output for the weight applied. 

The real world testing allowed for a better understanding of external and internal variables 

unaccounted for using the simulations, while comparing the three methods for calculation of 

the unknown weights being run on the dual load cell system.  

The Averaging method works best when the data output from the load cell is stable and there 

is enough time for the oscillations of the graph to reach steady state. This method involves 

utilising as much time as possible to get an accurate result.  Therefore slower speeds and 

lighter weights work well using the Averaging method. At slower speeds the weight is 

subjected to the load cells for a longer period of time allowing the oscillations of the graph 

from the weighing data to settle. Lighter weights deflect the load cells less than heavier 

weights therefore they have lower amplitudes which reach steady state faster. The Averaging 

method does not require calculating the parameters of the load cell to acquire the weight.  

The Frequency and Damping methods work well when the resolution is high so can 

determine the coordinates of the peaks accurately. They do not require waiting for all the 

oscillations to settle as they are based upon predicting the weight from the initial oscillations. 

The Damping method depends on the ratio of the peaks of the oscillations and consequently 

requires at least three peaks. The Frequency method depends on the frequency of the 

oscillations, and thus requires accurate determination of the period of the oscillations. This 

can be acquired from the first two peaks of the oscillations. These are an improvement over 

the Averaging method as the rest of the weigh data after the initial peaks are acquired can be 
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disregarded. An advantage of this is that processing power can be utilised elsewhere to 

calculate a prediction of the weight. This also means that speed of the machine can be 

increased as it is not necessary to wait to capture all the data from the load cell. When the 

initial three oscillations are captured accurately from the load of the first carrier onto the load 

cell, the next carrier can be subjected to the load cell directly after so time is not wasted. 

Another advantage is that heavier weights can be run over the weighing system. The 

Averaging method might not have had time to calculate the weight of heavier masses 

accurately due to the higher amplitudes, lower frequency and lower damping coefficient of 

oscillations taking a longer time to settle. Managing to predict the weight accurately in a 

shorter amount of time and having the ability to use heavier weights would be extremely 

beneficial for industry applications such as robotics, automation and food as it would increase 

throughput for production. 

Simulations done on Matlab of different weigh graphs running with different weights 

between 55 and 400g showed that the Frequency method’s error percentage is between 0.2 

and 0.35%, the Damping method error percentage is between 0.3 and 0.45% and the 

Averaging method’s error percentage is between 0.5 and 2.9%. The error increased with 

increasing weight, although the increase for the Frequency and Damping methods was less 

than the increase exhibited by the Averaging method. This is because the Averaging 

method’s oscillations did not tend to reach steady state in the allocated time as weight 

increased. The Damping and Frequency method’s errors were more consistent as they 

depended on the resolution of the graphs to acquire the peaks. Due to the consistency of the 

error, the error percentage of the Damping and Frequency method decreased with increasing 

weight, whereas the Averaging method’s error percentage continued to increase with 

increasing weight. 

Increasing the speed was another interesting factor investigated. This was simulated by 

decreasing the amount of time for each weigh capture as at faster speeds the items are 

subjected to the load cells in less time. Due to the Damping and Frequency methods 

depending on the initial oscillation’s peaks, they were not affected by an increase in speed 

from 240 items a minute to 600 items a minute. Whereas the Averaging method’s accuracy 

decreased due to the calculations being performed on higher amplitude oscillations of the 

graphs because of the decreased time. The error percentages were between 0.6 and 3.2%. 
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The Frequency and Damping methods are more suitable for a wider range of load cells. It 

was found that a higher damping factor of the load cells caused the oscillations of the graphs 

to reach steady state faster. Furthermore, a higher spring constant causes more oscillations 

with lower amplitude. Therefore having load cells with a higher damping factor and a lower 

spring constant that tends to reach steady state faster is preferred for the Averaging method as 

it depends on the start and finish position of the calculation of the graph data at the final 35%. 

Whereas, the Damping and Frequency methods do not depend on the behaviour of the graph 

after the initial oscillations; as long as the damping factor and the spring constant can be 

found accurately then it is a matter of obtaining the peak values of the initial oscillations. 

Real world testing was performed to find the accuracy and reliability of the weighing system. 

Analysis using the Averaging method showed an increase of error between 0.1% and 0.5% 

due to speed while running various weights between 82g and 355.5g on the weighing system 

at 300cpm and 600cpm. There was a case when the error increased by 3% for the 355.5g 

weight. Repeatability tests showed that there were discrepancies when running a 100g weight 

as the ranges varied with increasing speed between 2.9g and 6.5g. The maximum range of 

6.5g with a standard deviation of 1.83g was obtained while running at 600cpm. Part of this 

discrepancy was from the carriers and the z-plate that is placed on top of the load cell. This 

was shown through further repeatability tests performed by running empty carriers over the 

dual load cell system. Results ranged between 2.2g and 2.6g. The standard deviations seemed 

to be consistent between 0.71g and 0.77g. 

The Damping method gave, while running the weights between 82g and 355.5g at 300cpm 

and 600cpm, varying results depending on how close the model outcome represented the 

actual outcome from the weighing system. There was an error between 0.22% and 0.86% for 

weights between 82g and 189.5g. The 264g weight gave better accuracy at 600cpm, and the 

355.5g weight’s error increased to 2.84% with increasing speed. It was not consistent as the 

simulated outcome due to disturbances in the system. The general trend was that error 

increased with increasing weight and speed. Comparing this to the Averaging method showed 

that the Damping method had better accuracy in two cases while running at 300cpm and 

600cpm. The difference between the accuracies was minimal, but due to the Damping 

method being calculated in a shorter duration, it is an improvement. 
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Spectral Analysis of the graphs of these weights at different speeds between 300cpm and 

600cpm showed that the periods, and hence the frequencies, were not consistent for each 

weight at different speeds. This was due to disturbances to the system. 

Modelling of the load cell as a second order mass spring damper system is similar to that 

applied by Gilman & Bailey (2006), Bahar & Horrocks (1997), Halimic & Balachandran 

(1995) and Shu (1993), although the results from the methods obtained here are better than 

those researched in the literature review. Shu (1993) has investigated a method similar to the 

Averaging method where the weight was acquired to 1% accuracy from 20% of the data 

measurements. The heaviest weight tested was 173.8g. The Averaging method, as mentioned 

above, has acquired accuracies of less than 0.5% up to a similar weight. Gilman & Bailey 

(2006) have shown that the weights can be calculated in 50ms periods while investigating 

weighing using impact on load cells. The Damping and Frequency methods were able to 

predict the weight from the first three peaks of the data while running at 600cpm. This 

equates to 1 cup in 0.1s, with the first three oscillations occurring in less than half that time 

(50ms). Generally, the weight accuracies acquired through Artificial Neural Networks were 

low such as Yasin & White (1999) investigating the tri beam load cell with accuracies of 

1.5%, and Bahar & Horrocks (1997) investigating masses being dropped onto load cells with 

an accuracy of 2.3% while applying a 40g weight. 

Disturbances and external interference were the main culprits for inaccuracies in determining 

the weight. It has been found that the system is susceptible to various factors including; 

• The mechanical assembly and setup (isolation) 

• Mechanical setup (heights, transition) 

• The mechanical components (z-plate, material) 

• External noise (disturbances) 

• The carrier’s tolerance 

• Item’s physical shape (stability)  

When these factors are flagrant, the graph of the output of the load cell does not abide by the 

expected outcome of the system model. Therefore the algorithms do not give an accurate 

prediction of the weight as seen from the results.  

Some precautions have been put in place to avoid disturbances such as isolating the 

mechanical assembly of the weighing section from the rest of the machine. Therefore 
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machine noise does not travel to the load cells and affect the accuracy. Also, the carrier 

design has a weighing position that is floating to avoid extra weight being added or removed. 

The transition plates, placed on either side of the carriers, shift the carriers to the correct 

floating height onto the weigh plates of the weighing section. These plates need to be setup at 

10mm from the bottom of the chain extrusion. Refer to Figure 26. If they are setup less than 

10mm then the carriers collide with the edge of the weigh plates causing them to bounce 

therefore affecting the stability of the items on top of the carriers. If they are setup higher 

than 10mm then the carriers drop onto the weigh plates causing the carriers and the items on 

the carriers to become unstable. 

Disturbances from carriers were prominent due to the length of the z-plate that is placed on 

top of the load cells. Refer to Figure 42. The z-plates were 90mm long whereas the carriers 

placed on the chain were at a 95.25mm pitch. There is also a 1mm gap between the z-plate 

and the weighing plates. Therefore two carriers are on the z-plate at the same time for a 

distance of 4.25mm. A test was done by removing every second carrier from the chain and 

running a repeatability test by running a 166g weight twenty times over the load cell at 

different speeds. It proved that the accuracy improved when every second carrier was 

removed, as well as the standard deviation and the range decreasing between measurements. 

External noise Disturbances were introduced from human interferences with the weights 

placed on the load cells while acquiring their parameters to predict the weight. This caused 

inaccuracies when trying to predict the weight using the Damping and Frequency methods.   

Inaccuracies in the weighing were sometimes due to the carrier’s tolerances. Measuring all 

the floating components of the carrier that are always part of the weight calculated had a 

variance of 1.8g. This included the frame ranging between 50.912 and 52.004g, the latch 

ranging between 16.301 and 16.469g and the rollers and axle ranging between 74.92 and 

75.78g. 

Inaccuracies to weighing occurred when an item was unstable on the carriers therefore 

exerting more pressure onto one load cell than the other. A test was performed whereby foam 

was placed on the lip of every frame of ten carriers and weights of 88, 166 and 253g were run 

at 400 and 600cpm. Results were inconclusive as they showed that the error was lower by 

having foam on at higher speeds, but not at lower speeds. Although, the foam was beneficial 

as the standard deviation and the range were generally lower from the results of carriers with 

foam than without, resulting in more consistent results with the foam. 



Conclusion & Future Recommendations 
 

Page | 79  
 

Chapter 7: Conclusion & Future Recommendations 

  

Constructing a mathematical model of the weighing system was a profitable activity. It 

allowed for the creation and comparison of different methods which were used as effective 

means of predicting the weight. The methods allowed accurate prediction of the weights 

passing a dual load cell system before the settling time of the oscillatory response.  

These methods were used on data exported from the high speed weighing system that was 

designed and built to allow for experimentation and data analysis. In addition to this, 

simulations were performed on a programmed user interface that has produced an effective 

means of comparing the methods and presenting the user with results in an aesthetically 

pleasing manner. 

It has been shown that the Damping and Frequency method were an improvement over the 

Averaging method currently used by Compac on their weighing inspection system, allowing 

for a faster measurement time thereby speeding up the process and increasing throughput.  

Future work should be spent eliminating the noise disturbances which originate from various 

sources as seen throughout the thesis and improving the design of the weighing structure. I 

recommend concentrating on further research by splitting it into three sections; mechanical & 

design, noise vibration and method of calculation. 

The z-plate should be made longer so two carriers are never exerting force on the load cell at 

any one time. Performing this would mean redesigning the weigh plates before or after the z-

plate to avoid interference. I recommend further research being performed on the material of 

the z-plate and weigh plates. Hardened stainless steel at 2.75mm thickness is not a standard 

thickness that is readily available. A lighter and stiffer design would be beneficial and 

possibly more cost effective.  

Stability of the items to be weighed on the carriers is crucial therefore further research should 

be performed on adding foam-like materials to the frame of the carriers. Minimising the 

bouncing and side rocking of the carriers and the items on them is critical. Furthermore, 

increasing the floating range in the carriers is recommended to avoid the tight tolerances that 

are currently needed during the setup, such as the 2mm gap needed between the load cell 

mounting block and the extrusion. 
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Noise vibration includes investigating the mechanical structure, the load cell system and the 

carriers. Having the weighing structure bolted to the floor isolated from the rest of the 

machine was successful in eliminating the noise from the rest of the machine when setup 

correctly. However, external noise was still evident in the data. Therefore further research on 

minimising this noise using such methods as rubber padding underneath the legs of the weigh 

structure to eliminate noise itinerant through the ground, and also, having a tuned mass 

damper to eliminate the external unwanted vibrations would be beneficial.  

Investigation of stiffening and reducing the mass of the carriers themselves is recommended, 

as the presence of varying frequencies in the data raises the question of whether the flexing of 

the carriers might also be affecting the loadcell signals.  

Furthermore, and possibly before the study on the carriers, it would be valuable investigating 

the natural frequencies of the load cell system and the mechanical structure. This would give 

further insight on the frequencies that would cause vibration problems due to excitation. This 

will probably influence the decisions in regards to further design done to the system, in terms 

of stiffening the weighing structure and carriers.  

Further work should be done on other models of the system to provide alternative algorithms 

and methods of acquiring the weight run over the load cells. I would recommend 

investigating a mass, two springs, two damper system and a two mass, two springs, two 

damper system. This would allow comparing the models and determining which one is the 

most accurate representation of the system. The accuracy of the results of the model analysis 

is dependent upon how well the model represents the real system. The closer the model is to 

its actual counterpart, the more concise the predictions made and conclusions drawn about the 

system behaviour. 

I would recommend investing time in creating a weighing diagnosis tool. This tool would 

ideally have the ability to capture raw as well as filtered data, and allow the application of 

various signal processing algorithms such as the Averaging, Frequency and Damping 

methods to allow easy and quick comparison through the use of statistical analysis of 

accuracy and precision. In addition to this, the tool can be used for investigating various 

filters, especially digital adaptive filters as recommended in the literature review. 

Finally, a holistic improvement approach, whereby the whole system is analysed in terms of 

materials, manufacturing methods, design specifications and assembly installation 
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instructions, should be implemented on the weighing system. The future improvements need 

to be looked at from a cost benefit point of view, and depend on what is accepted for the 

application. The accuracy might be within the industry standard, and tolerances of variation 

allowed. As competition increases, and the demand for better accuracy and lower tolerances 

of variation are required, higher costs might be involved in improving the system. 
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Appendices 

 
Appendix A Load Cell Datasheet 
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Appendix B Carrier Weights 

 

Carrier 

Frame 

 Weight 

(g) 

Latch 

 Weight 

(g) 

Roller 

 and axle 

Weight 

(g) 

Clip  

Weight 

(g) 

Total  

Calculated 

Weight (g) 

Total Calculated 

Weighing 

weight (g) 

(floating) 

1 50.959 16.424 75.66 30.633 173.676 143.043 

2 50.978 16.416 75.6 30.83 173.824 142.994 

3 50.918 16.428 74.92 30.635 172.901 142.266 

4 50.947 16.45 75.7 30.637 173.734 143.097 

5 51.038 16.428 75.06 30.628 173.154 142.526 

6 50.95 16.454 75.63 30.831 173.865 143.034 

7 51.032 16.43 74.94 30.829 173.231 142.402 

8 52.004 16.459 75.62 30.636 174.719 144.083 

9 51.789 16.422 75.02 30.826 174.057 143.231 

10 51.697 16.458 75.63 30.836 174.621 143.785 

11 51.727 16.432 75.06 30.637 173.856 143.219 

12 51.766 16.427 75.63 30.64 174.463 143.823 

13 51.833 16.453 75.6 30.823 174.709 143.886 

14 51.807 16.425 75.61 30.824 174.666 143.842 

15 51.755 16.459 74.94 30.828 173.982 143.154 

16 51.837 16.423 75.7 30.64 174.6 143.96 

17 51.828 16.429 75.66 30.631 174.548 143.917 

18 51.82 16.431 75.56 30.828 174.639 143.811 
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19 51.178 16.418 75.78 30.638 174.014 143.376 

20 51.022 16.428 74.98 30.831 173.261 142.43 

21 51.023 16.461 75.65 30.826 173.96 143.134 

22 50.959 16.423 75.62 30.631 173.633 143.002 

23 50.952 16.465 75.6 30.825 173.842 143.017 

24 51.003 16.451 75.01 30.638 173.102 142.464 

25 51.074 16.456 75.75 30.819 174.099 143.28 

26 51.004 16.462 75.63 30.63 173.726 143.096 

27 50.912 16.469 75.08 30.632 173.093 142.461 

28 51.67 16.427 75.59 30.829 174.516 143.687 

29 51.043 16.458 75.63 30.637 173.768 143.131 

30 50.922 16.419 75.61 30.636 173.587 142.951 

31 50.975 16.301 75.39 30.75 173.416 142.666 

32 51.026 16.424 74.97 30.64 173.06 142.42 

33 50.98 16.444 75.69 30.82 173.934 143.114 

34 50.925 16.452 74.97 30.64 172.987 142.347 

35 50.916 16.451 75.67 30.632 173.669 143.037 

36 51.017 16.453 74.92 30.633 173.023 142.39 

37 50.929 16.444 75.64 30.638 173.651 143.013 

38 50.931 16.414 74.98 30.646 172.971 142.325 

39 51.006 16.45 75.61 30.83 173.896 143.066 

40 50.914 16.415 74.92 30.829 173.078 142.249 
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Appendix C Sample output weighing data file 

 

The output weighing data files has the properties of capture scenario and then the samples in 

columns. Each column represents a Load Cell. 

Below is a screenshot of the first page of a weighing data file representing 4 channels 

meaning four load cells active, with a weighing interval of 250 sµ .The cycle percentage 

represents the number of carriers captured on screen at any time; 300 means three carriers 

captured. The screen shot shows the first 40 readings out of the 1250readings taken during 

that capture. The sampling rate is set to 4kHz.  
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Appendix D Sampling Restrictions 

 

The table shows the samples for 2 to 12 carriers running at 300, 342, 350, 400, 500, 600 and 

700 carriers per minute. The second column represents the carriers per second. The cells 

highlighted pink are indicating missed samples.  
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Appendix E Peak Detection Algorithm 

 

The Peak Detect (peakdet) function detects peaks in a vector. It finds the local maxima and 

minima peaks in the vector V.  

With [MAXTAB, MINTAB] = PEAKDET (V, DELTA, X); MAXT AB and MINTAB 

consists of two columns. Column 1 contains the x-value (usually time) and Column 2 the 

found peak value. A point is considered a maximum peak if it has the maximal value, and 

was preceded by a value lower by DELTA.  

function  [maxtab, mintab]=peakdet(v, delta, x) 

 

maxtab = []; 

mintab = []; 

  

v = v(:); % Just in case this wasn't a proper vector  

  

if  nargin < 3 

  x = (1:length(v))'; 

else   

  x = x(:); 

  if  length(v)~= length(x) 

    error( 'Input vectors v and x must have same length' ); 

  end  

end  

   

if  (length(delta(:)))>1 

  error( 'Input argument DELTA must be a scalar' ); 

end  

  

if  delta <= 0 

  error( 'Input argument DELTA must be positive' ); 

end  

  

mn = Inf; mx = -Inf; 
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mnpos = NaN; mxpos = NaN; 

  

lookformax = 1; 

 for  i=1:length(v) 

  this = v(i); 

  if  this > mx, mx = this; mxpos = x(i); end  

  if  this < mn, mn = this; mnpos = x(i); end  

   

  if  lookformax 

    if  this < mx-delta 

      maxtab = [maxtab ; mxpos mx]; 

      mn = this; mnpos = x(i); 

      lookformax = 0; 

    end    

  else  

    if  this > mn+delta 

      mintab = [mintab ; mnpos mn]; 

      mx = this; mxpos = x(i); 

      lookformax = 1; 

    end  

  end  

end 
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Appendix F Damping Method  

 

load_cell = 4; %4 is LC4  

file1=load( 'Calibration_200g_1.csv' );  

Mass1=200; 

g=9.8; 

t=file1(1:end,1) 

length(file1(:,load_cell)) 

length (t) 

time1=t/1000; 

%1st load cell output  

figure; plot (time1,file1(:,load_cell)) 

[maxtab1,mintab1]=peakdet (file1(:,load_cell),1,tim e1); 

hold on; plot (maxtab1(:,1),maxtab1(:,2), 'k*' ) 

%Run through to find first peak  

r=1; 

maxtab1(r,2) 

while  (maxtab1(r,2)<200) 

    r=r+1; 

end  

r 

   

% Interesting Max for 1st load cell are at  

Max1_1st = maxtab1(r,1:2) 

Max1_2nd = maxtab1(r+1,1:2) 

Max1_3rd = maxtab1(r+2,1:2) 

   

%1st load cell coordinates  

Max1_t1 = maxtab1(r,1); 

Max1_y1 = maxtab1(r,2); 

Max1_t2 = maxtab1(r+1,1); 

Max1_y2 = maxtab1(r+1,2); 

Max1_t3 = maxtab1(r+2,1); 

Max1_y3 = maxtab1(r+2,2); 
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%Calculating u from three peaks  

delta_y_LC4 = (Max1_y1 - Max1_y2)/(Max1_y2 - Max1_y 3) 

delta_t_LC4 = ((Max1_t2-Max1_t1)+(Max1_t3-Max1_t2)) /2 

u_LC4= (log(delta_y_LC4))/delta_t_LC4 

c_LC4_M2= 2*u_LC4*(M_LC4+m1) 

m_200=c_LC4_M2/(2*u_LC4) - M_LC4 

load_cell = 4;  

file3=load( '399cpm_283g_1_m.csv' );  

 speed=399; 

 time3 =file3(:,1)/1000; 

 

%1st load cell output  

plot (time3,file3(:,load_cell)-67.5) %67.5 is the mass of

 the  carrier on the load cell  

 

% hold on;  

[maxtab3,mintab3]=peakdet (file3(:,load_cell)

 67.5,1,time3);  

hold on;  

plot (maxtab3(:,1),maxtab3(:,2), 'r*' ) 

 

%Run through to find first peak  

z=1; 

while  (maxtab3(z,1:2)<50) 

    z=z+1; 

end  

z 

   

% Interesting Max for load cell are at  

Max3_1st = maxtab3(z,1:2) 

Max3_2nd = maxtab3(z+1,1:2) 

Max3_3rd = maxtab3(z+2,1:2) 
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%1st load cell coordinates  

Max3_t1 = maxtab3(z,1); 

Max3_y1 = maxtab3(z,2); 

Max3_t2 = maxtab3(z+1,1); 

Max3_y2 = maxtab3(z+1,2); 

Max3_t3 = maxtab3(z+2,1); 

Max3_y3 = maxtab3(z+2,2); 

 

%first, we have to find the new u from the peaks  

delta_y_ = (Max3_y1 - Max3_y2)/(Max3_y2 - Max3_y3) 

delta_t_ = ((Max3_t2-Max3_t1)+(Max3_t3-Max3_t2))/2 

u_LC_= (log(delta_y_))/delta_t_ 

m_M2=c_LC4_M2/(2*u_LC_) - M_LC4 
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Appendix G Simulation UI 

 

function  varargout = Simulation2(varargin) 

%      SIMULATION2('CALLBACK',hObject,eventData,han dles,...) 

calls the local  function named CALLBACK in SIMULAT ION2.M with 

the given input arguments.  

% 

gui_Singleton = 1; 

gui_State = struct( 'gui_Name' ,       mfilename, ...  

                   'gui_Singleton' ,  gui_Singleton, ...  

                   'gui_OpeningFcn' , @Simulation2_OpeningFcn, 

...  

                   'gui_OutputFcn' ,  @Simulation2_OutputFcn, 

...  

                   'gui_LayoutFcn' ,  [] , ...  

                   'gui_Callback' ,   []); 

if  nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1});  

end  

  

if  nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State,  

varargin{:}); 

else  

    gui_mainfcn(gui_State, varargin{:}); 

end  

% End initialization code  

   

% Executes just before Simulation2 is made visible.  

function  Simulation2_OpeningFcn(hObject, eventdata, handles , 

varargin) 

handles.output = hObject; 

  

% Update handles structure  
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guidata(hObject, handles); 

  

function  varargout = Simulation2_OutputFcn(hObject, eventda ta, 

handles)  

% Get default command line output from handles stru cture  

varargout{1} = handles.output; 

  

% Executes on button press in plot_button.  

function  plot_button_Callback(hObject, eventdata, handles) 

 

% Get user input from GUI  

 

% mass of item 

m = str2double(get(handles.m_input, 'String' )); 

% Mass of Load Cell 

M = str2double(get(handles.BigM_input, 'String' )); 

% Spring constant 

k = str2double(get(handles.k_input, 'String' )); 

% Damping coefficient 

c = str2double(get(handles.c_input, 'String' )); 

% Gravitational constant 

g = str2double(get(handles.g_input, 'String' )); 

% time 

t = eval(get(handles.t_input, 'String' )); 

time = max (t) 

res = max (t) / (size (t,2)-1) 

  

w=0.5*sqrt((4*k*(M+m)-c^2)/((M+m)^2)); %Frequency  

u=c/(2*(M+m)); %Damping factor  

  

x=((-m*g/k)*exp(-u*t).*cos(w*t))-((m*g*u/(k*w))*exp (-

u*t).*sin(w*t))+((m*g)/k); 

  

% Create time plot  
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axes(handles.time_axes) 

plot(t,x) 

grid on 

Xlabel ( 'time (ms)' ) 

Ylabel ( 'Load Cell Output (deflection)' ) 

Title ( 'High Speed Weighing' ) 

  

%Peaks using the Peak Detection Algorithm  

[maxtab,mintab]=peakdet (x,0.001,t); 

hold on;  

plot (maxtab(:,1),maxtab(:,2), 'r*' ) 

hold off ; 

Max_1st_x = maxtab(1,1) 

Max_1st_y = maxtab(1,2) 

  

Max_2nd_x = maxtab(2,1) 

Max_2nd_y = maxtab(2,2) 

  

Max_3rd_x = maxtab(3,1) 

Max_3rd_y = maxtab(3,2) 

  

%%%%%%%%%%%%%%%%%%%%%%%%% 

 

T=Max_2nd_x - Max_1st_x; 

f = 1/T; 

w1=2*pi*f; 

  

T=Max_3rd_x - Max_2nd_x; 

f = 1/T; 

w2=2*pi*f; 

  

w_actual=0.5*sqrt((4*k*(M+m)-c^2)/((M+m)^2)) %Frequency  

  

%Total Mass of Load Cell and Item  
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M_= (k + sqrt(k^2-(w1^2*c^2)))/(2*w1^2) 

  

%Mass of item  

m_MSD_freq= M_-M 

  

%Error  

m_MSD_freq_error = abs(m-m_MSD_freq) 

%m_MSD_freq_error_perc = abs((m-m_MSD_freq)/m * 100 )  

m_MSD_freq_error_perc = ((m-m_MSD_freq)/m * 100) 

  

%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Averaging Method  

  

Max_3rd_x = maxtab(3,1); 

Max_3rd_y = maxtab(3,2); 

  

total=0; 

count = 0; 

  

time 

res 

Tot_Time = time/res 

avg_interval = time/res * 0.35 

  

for  i= (Tot_Time - avg_interval): 1 : Tot_Time % averaging the 

last 35%  

    total = total + x(i); 

    count= count +1; 

end  

  

avg = total / count; 

  

m_Avg= avg * k / g 
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%Error  

m_Avg_error = abs(m-m_Avg) 

%m_Avg_error_perc = abs((m-m_Avg)/m * 100)  

m_Avg_error_perc = ((m-m_Avg)/m * 100) 

  

%%%%%%%%%%%%%%%%%%%%%%%% 

  

% Dsmping Method  

del_y = (Max_1st_y - Max_2nd_y) / (Max_2nd_y - Max_ 3rd_y) 

del_t = ((Max_2nd_x - Max_1st_x) + (Max_3rd_x - Max _2nd_x))/2 

  

u_3peaks = log(del_y)/del_t % Damping coeffitient  

  

%Total Mass of Load Cell and Item  

M_3peaks = c / (2*u_3peaks) 

  

%Mass of item  

m_3peaks = M_3peaks - M 

  

%Error  

m_3peaks_error = abs(m-m_3peaks) 

% m_3peaks_error_perc = abs((m-m_3peaks)/m * 100)  

m_3peaks_error_perc = ((m-m_3peaks)/m * 100) 

  

%%%%%%%%%%%%%%%%%%%%%%%% 

r=[m_MSD_freq m_Avg m_3peaks m_MSD_freq_error m_Avg _error 

m_3peaks_error m_MSD_freq_error_perc m_Avg_error_pe rc 

m_3peaks_error_perc] 

% dlmwrite ('results7.csv', r, '/t', '-append')  

  

dlmwrite ( 'results21.csv' , r, 'coffset' ,1, '-append' ) 

  

% output to excel file     
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% fid = fopen('results5.xls','wb')  

% count = fwrite (fid , r)  

% ST = fclose (fid)  

% if m==50  

%     r=[m_MSD_freq m_Avg M_3peaks]  

% end  

%      

% r=[r; m_MSD_freq m_Avg M_3peaks]  

  

%Output  

set (handles.MSD_freq, 'String' , m_MSD_freq) 

set (handles.Averaging, 'String' , m_Avg) 

set (handles.MSD_damping, 'String' , m_3peaks) 

  

set (handles.MSD_freq_error, 'String' , m_MSD_freq_error_perc) 

set (handles.Averaging_error, 'String' , m_Avg_error_perc) 

set (handles.MSD_damping_error, 'String' , m_3peaks_error_perc) 

   

% Executes during object creation, after setting al l 

properties.  

function  m_input_CreateFcn(hObject, eventdata, handles) 

 

if  ispc && isequal(get(hObject, 'BackgroundColor' ), 

get(0, 'defaultUicontrolBackgroundColor' )) 

    set(hObject, 'BackgroundColor' , 'white' ); 

end  

   

  



Appendices 
 

Page | 101  
 

Appendix H Frequency depending on speed 

 

% Loading Data  

load_cell = 4; %LC =1 (lane1 LC1), =2 (Lane1 LC2), =3 (Lane2 

LC1), =4 (Lane 2 LC2)  

load_cell = load_cell + 1; 

samples = 1250; % number of samples  

file1=load( '300cpm_711g_1.csv' );  

speed=300; 

x=file1; 

  

% Getting time in x axis  

t=0:3*60/speed/samples:(3*60/speed)-(3*60/speed/sam ples); 

length(file1(1:samples,load_cell)); 

length (t); 

%1st load cell output  

figure; plot (t,file1(1:samples,load_cell), 'b' ) 

hold on; 

[maxtab1,mintab1]=peakdet (file1(1:samples,load_cel l),10,t); 

hold on; plot (maxtab1(:,1),maxtab1(:,2), 'r*' ) 

  

%faster speed (400cpm)  

file2=load( '400cpm_711g_1.csv' );  

speed = 400; 

t=0:3*60/speed/samples:(3*60/speed)-(3*60/speed/sam ples); 

% figure;  

plot (t,file2(1:samples,load_cell), 'g' ) 

  

[maxtab2,mintab2]=peakdet (file2(1:samples,load_cel l),10,t); 

hold on;  

plot (maxtab2(:,1),maxtab2(:,2), 'b*' ) 

  

%faster speed (500cpm)  

file3=load( '500cpm_711g_1.csv' ); speed = 500; 
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t=0:3*60/speed/samples:(3*60/speed)-(3*60/speed/sam ples); 

%  figure;  

plot (t,file3(1:samples,load_cell), 'r' ) 

  

[maxtab3,mintab3]=peakdet (file3(1:samples,load_cel l),10,t); 

hold on; plot (maxtab3(:,1),maxtab3(:,2), 'g*' ) 

  

%faster speed (600cpm)  

file4=load( '600cpm_711g_1.csv' );  

speed = 600; 

t=0:3*60/speed/samples:(3*60/speed)-(3*60/speed/sam ples); 

% figure;  

plot (t,file4(1:samples,load_cell), 'm' ) 

  

[maxtab4,mintab4]=peakdet (file4(1:samples,load_cel l),10,t); 

hold on; plot (maxtab4(:,1),maxtab4(:,2), 'k*' ) 

  

%Finding the first peak 

i=1; 

maxtab1(i,2); 

while  maxtab1(i,2)<1500 

    i=i+1; 

end  

  

%Calculating the frequncy 

Max1_t1=maxtab1(i,1); 

Max1_t2=maxtab1(i+1,1); 

  

t1= Max1_t2-Max1_t1; 

f_300cpm=1/t1 

  

%Finding the first peak 

m=1; 

maxtab2(m,2); 
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while  maxtab2(m,2)<1500 

    m=m+1; 

end  

 

%Calculating the frequncy 

Max2_t1=maxtab2(m,1); 

Max2_t2=maxtab2(m+1,1); 

  

t2= Max2_t2-Max2_t1; 

f_400cpm=1/t2 

  

%Finding the first peak 

n=1; 

maxtab3(n,2); 

while  maxtab3(n,2)<1500 

    n=n+1; 

end  

 

%Calculating the frequncy 

Max3_t1=maxtab3(n,1); 

Max3_t2=maxtab3(n+1,1); 

  

t3= Max3_t2-Max3_t1; 

f_500cpm=1/t3 

  

%Finding the first peak 

p=1; 

maxtab4(p,2); 

while  maxtab4(p,2)<1500 

    p=p+1; 

end  

  

%Calculating the frequncy 

Max4_t1=maxtab4(p,1); 
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Max4_t2=maxtab4(p+1,1); 

  

t4= Max4_t2-Max4_t1; 

f_600cpm=1/t4 
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Appendix I  Weigh graphs at various speeds 

 

 

Figure 52: Weigh Graphs of 164g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 3 (Lane 2, LC 3) 

 

Figure 53: Weigh Graphs of 164g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 4 (Lane 2, LC 4) 
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Figure 54: Weigh Graphs of 528g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 3 (Lane 2, LC 1) 

 

Figure 55: Weigh Graphs of 528g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 4 (Lane 2, LC 2) 
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Figure 56: Weigh Graphs of 711g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 3 (Lane 2, LC 1) 

 

Figure 57: Weigh Graphs of 711g at 300cpm, 400cpm, 500cpm and 600cpm on Load Cell 4 (Lane 2, LC 4) 

 

 


