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Abstract 

In this thesis the description, analysis and control of time-delayed multivariable 

processes are investigated, particularly the descriptions of multivariable processes 

that facilitate a multi variable extension of the Smith predictor. 

Two new pseudo-commutativity results for matrix multiplication are 

presented. These results are used to show that a general time-delayed transfer 

function can be decomposed into three components representing input-delays, 

output-delays and the delay-free dynamics of the process. It is also shown that any 

such time-delayed transfer function can also be written in a form in which all the 

delays appear as output-delays. 

These time-delayed transfer functions are used in the development of a 

multivariable Smith predictor. 

It is also shown that the pseudo-commutativity results can be applied to 

non-delayed processes. In particular a new method, based on these results, for 

reformulating a transfer function description of a process as a state-space 

description is developed. 

A case study of a time-delayed process is investigated. 
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1 INTRODUCTION 

1 .1 I ntroduction 

This dissertation takes as its theme the control of time-delayed processes. In 
particular an investigation is made of the control of multivariable time-delayed 

processes in which the delays occur in both the input and output paths. 

Time-delayed processes are common in industrial and technological 

systems and include, for example, distillation columns (Wood and Berry, 1973), 

multi-effect evaporators, (Song et al, 1986, Crawford and Austin, 1 988), paper­

making machines (Astrom 1967), ore-crushing processes (Borison and Syding, 

1976), blending processes (Singh and McEwan, 1975), cold rolling steei mills 

(Smith 1 957) and catalytic crackers (Smith 1957). 

Continuous time-delayed processes are difficult to control since models of 

these processes have infinite dimension. Algorithms that predict or compensate for 

the time-delays are required. Few such algorithms have appeared in the control 

literature, especially for multivariable processes. 

The Smith predictor (Smith, 1 957) is a commonly used method of 

controlling single-input single-output time-delayed processes. The Smith predictor 

enables control engineers to design a controller for the equivalent delay-free 

process and apply that control law, in conjunction with the Smith predictor to 

control the time-delayed process. 

In single-input single-output linear processes, the order in which the 

dynamics and delays occur is not important. That is, it is of little consequence to 

the mathematical model of the process if the overall time-delay is due to delays in 
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the actuations or in the measurements. However, in multivariable processes it is 

evident that input-delays have different effects to output-delays and many of the 

single-input single-output methodologies for controlling time-delayed processes, 

including the Smith predictor, cannot be easily extended to the multivariable case. 

In this thesis, methods that simplify the analysis of multi variable processes 

are developed. These methods allow the manipulation of any of the time-delays so 

that their effects can appear to be as input or output delays. These results greatly 

simplify the development of a multivariable Smith predictor. 



1 2 

1 .2 Outline of Chapters 

The thesis is divided into four sections: 

Part A Introduction 

Chapter 2 contains a l iterature review and defines the notation and terminology that 

will be used in the remainder of the dissertation. Throughout this dissertation both 

time-domain and frequency-domain representations will be used. In order to be as 
inclusive as possible, a unified approach, Middleton and Goodwin ( 1 990), is used 

where ever possible. For completeness this unified approach, which includes 

continuous-time and discrete-time as special cases will be summarised. The 

literature review will cover some of the methods of controlling time-delayed 

processes, both single-input single-output and multivariable. 

PartB Analysis Of Time-Delayed Processes 

In Chapter 3 frequency domain representations of multivariable time-delayed 

processes are discussed. Two matrix decompositions are developed that allows a 

pseudo-commutativity of matrix products and allows an element by element matrix 

product to be written as a normal matrix product. These two decomposition 

theorems allow a general multivariable time-delayed transfer function to be written 

in a suitable form so that a generalised Smith predictor can be designed. 

Chapter 4 presents a method for the construction of a state-space 

description from multivariable transfer functions. The decomposition results of 

Chapter 3 are used to develop a new transformation between a multivariable 

transfer function, describing a time-delayed process, and a state-space description 

of this time-delayed process and an equivalent delay-free process to be constructed. 

This transformation is useful since it gives a block diagonal state-transition matrix . 



1 3  

Chapter 5 investigates a discrete-time state-space description, the Non­

Minimal State-Space (NMSS) description. This state-space description has some 

features that make it attractive for the design and implementation of adaptive 

controllers for time-delayed processes. A new form of NMSS description is 

developed using the decomposition results of Chapter 3. 

Parte A Generalised Smith Predictor 

In Chapter 6 the multivariable Smith predictor is developed using the results of 

Chapter 3. A simulation example using this Smith predictor is presented. An 

alternative derivation of the Smith predictor, using the Internal Model Control 

(IMC) structure is also considered. 

Chapter 7 investigates state-space representations of this multivariable 

Smith predictor based on the time-delayed state-space descriptions developed in 

Chapter 4. A Smith predictor based on the time-delayed NMSS description, 

developed in Chapter 5, is also investigated. 

Chapter 8 investigates some of the robustness and sensitivity properties of 

the Smith predictor. It is shown that the Smith predictor can only be applied to 

open-loop stable processes. Some of the robustness and stabil ity properties of the 

multivariable Smith predictor are investigated. This analysis extends the results of 

Palmor and Halevi ( 1 983) and Owens and Raya ( 1 982) to the types of Smith 

predictor developed in Chapter 6. 

Part D An Evaporator: A Case-Study Of A Time-Delayed Process 

Chapters 9 and 10  examine a case study of a time-delayed process. This case study, 

an evaporator, will illustrate some of the problems of implementation of a 

multivariable controller on a real process plant: utilising a novel , and cheap, 

method of implementation. 
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2 NOTATION AND LITERATURE 

REVIEW 

2.1  INTRODUCTION 

In this chapter the notation and terminology used throughout the remainder of the 

thesis is presented. 



2.2 DELAY-FREE SYSTEM DESCRIPTIONS AND 

NOTATION 

1 5  

A Process or System i s  any dynamic structure in which there are inputs, states and 

outputs. A diagram of a general process is shown in Figure 2.2.1. 

Disturbances 
Controller t t Actuations 

Plant 
Outputs 

Figure 2.2.1 

A Plant i s a portion of a process, usually related to a physical plant such as an 

evaporator or a boiler. 

Measurements, or Outputs, of a process are measurable quantities that are 

available from the process. Typically these might consist of temperatures, densities 

and flowrates. 

Control inputs, or actuations are inputs to the _process that can be 

manipulated in order that the outputs follow, as closely as possible, a selected 

pattern or trajectory. 

Disturbances are inputs to the process that cannot be manipulated. 

A Controller is a device that sets values for each actuation 

Oelay free processes can be described using State-space descriptions. A 

continuous-time linear process can be described as: 

dx 
dt = Ax(t) + Bu(t) + w(t) 

y(t) = Cx(t) + v(t) 

(2.2.1) . 

(2.2.2) 



and a discrete-time linear process can be described as :  

x(t+ 1) = <l>x(t) + ru(t) + w(t) 

y(t) = Cx(t) + v(t) 

(2.2.3) 

(2.2.4) 

where x(t) is the State-vector at time t. Unless stated otherwise x is Ff. 
y(t) is the vector of Measured outputs. Unless stated otherwise y is Ff. 
u(t) is the Control Input vector. Unless stated otherwise u is Ff1• 
w(t) is the Disturbance vector. Unless stated otherwise w is Ff2• 
v(t) is the Measurement Noise vector. Unless stated otherwise v is Ff. 
A and Cl> [ Ff><n] are the State-Transition matrices. 

,..;zxql 
B and r [ M ] are the Control Input matrices. 

and C [ F{><n] is the Measurement matrix. 

1 6  

The Backward-shift and Forward-shift operators are often used i n  discrete-time 

linear processes. The backward-shift operator, q- 1 , has the property: 

q- 1 x(t) = x(t- 1 )  (2.2.5) 

The forward shift operator, q, has the property: 

qx(t) =x(t+1)  (2.2.6) 

Discrete-time linear processes can also be described using Difference Equations or 

ARMAX, Auto Regressive Moving Average with auXiliary inputs, descriptions: 

A(q- 1 )y(t) = B(q- 1 )u(t) + E(q- l )w(t) + v(t) (2.2.7) 



1 7  

where A(q- 1 ) [E &Brxf], B(q-1 ) [e &Bq1Xf] and E(q- 1 ) [e &Bq2Xf] are polynomial 

matrics in q- 1 . 
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2.3 FREQUENCY DOMAIN REPRESENTATIONS OF 

M UL TIVARIABLE PROCESSES 

1 8  

In the frequency domain process descriptions have commonly been written i n  terms 

of the Laplace transform, the z-transform or the delta-transform. These three 

transformations have historically been used in different ways. However, they do 

possess certain similarities, especially in the way in which time-delays are 

transformed. These transformations will be briefly reviewed to allow the use of a 

unified approach, proposed by Middleton and Goodwin ( 1 990). This unified 

approach will be used in the remainder of the thesis. 

2.3.1 The Laplace Transform 

In continuous time, the Laplace transform is an often used and well understood 

method of studying differential equations. The underlying idea of the Laplace 

transform is the transformation of differential equations in the time-domain to 

algebraic equations in the frequency-domain. 

The one-sided Laplace transform is defined as 

00 

F(s) =.l{f(t)} = Je-Stf(t)dt 
0 

(2.3. 1 )  

The Laplace transformation has. two important properties i n relation to the subject 

matter of this work: 

. {dnf} .l dtn 
n- 1 

= snF(s) - :L,sif(i)(O) (2.3.2) 
i= 1 

and 



.l(f(t-k)U(t-k)} = e-kSF(s), 

where 

{ 1 if t > 0 U( t) = 
0 otherwise 

1 9  

(2.3.3) 

(2.3 .4) 

These properties provide the means for transforming time-delayed systems 

of differential equations to the frequency domain. 

Equation (2.3 .2) allows the state-space description in Equations (2.2. 1 )  and (2.2.3) 

to be written in the frequency domain as: 

y(s) =C(si-At1 (Bu(s) + w(s)) + v(s) (2.3 .5) 

from which the s-domain transfer function between u and y can be seen to be 

G(s) = C(si-At 1Bu(s) (2.3 .6) 

2.3.2 The Z-Transform 

The z-transform (Astrom and Wittenmark, 1984, p15, and Power and Simpson, 

1 978, p 106- 1 1  0) is a discrete-time analogy to the La place transform. 

The z-transform has a close association with the backward-shift operator, 

q-I. This close relationship allows for the easy calculation of the z-transform from 

the difference equation describing the processes. If the difference equation 
describing the open-loop process is 

A(q- 1 )y(t) = B(q- 1  )u(t) (2.3 .7) 
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with the initial conditions that y(O)=O and u(O)=O, the z-transform transfer 

function is 

(2.3.8) 

In the z-domain a k time-unit time-delay is represented by z-k instead of 

the e-'ts that represents a time-delay in the Laplace-transform domain. This results 

in the discrete-time time-delayed open-loop transfer function having only a finite, 

although possibly large, number of zeros, whereas the continuous-time process will 

have effectively an infinite number of zeros due to the isolated essential 

singularities at infinity resulting from the terms e-<XiS. 

2.3.3 The Delta Operator and the Delta Transform 

Middleton and Goodwin ( 1 990, p 43-47) present the delta operator 

(2.3.9) 

where q is the forward shift operator and tl is the sample-time. 

The delta operator appears very much like a Eulerian estimate of the 

derivative. This suggests that if a continuous-time system is modelled using the 

delta operator, it would appear very much like a differential equation. The 

parameters obtained for the delta operator model of a system as the sample-time, 

tl, tends to zero correspond with the parameters of the differential equation that 

describes the underlying process. In addition, the numerical properties of the delta 

operator have been shown to be superior to those of the backward-shift operator. 

(Middleton and Goodwin 1 986). 
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Since the Laplace transform is so useful with continuous-time processes, 

it would seem to be useful to develop a corresponding discrete-time transform 

using the delta-operator. This transform, called the delta-transform, should have the 

property that as the sample-time decreases the discrete transform will tend to the 

Laplace transform. 

The delta transform of f(t) is defined to be 

00 

.B(f(t)) =!:::.. L,f(tk) ( l +!:::..ytk 
k=O 

it can be shown that as !:::.. � 0 

00 

= J e-rtf(t)dt 
0 

= .l(f(t)) 

(2.3 . 10) 

(2.3 . 1 1 ) 

which is the Lap lace transform of f(t) . A formal proof that the Lap lace transform is 

the limiting case of the delta-transform is given in Middleton and Goodwin ( 1 990, 

p69-70). 

A table of delta-transforms can be easily constructed from a table of z-

transforms using the identity 

(2.3 . 1 2) 

where F(z- 1 ) is the z-transform of f(t). Such tables can be found in Middleton and 

Goodwin ( 1990, p56 and p90). 

In particular the pure delay F(z- 1 ) = z-k can be transformed as: 



.8{ f(y) } = ( l+�ytk 

= E(y,-k) 

which , as � --7 0 can be seen to tend to e-'Yk. 

2.3.4 Unified Transformation Method 

22 

(2.3 . 1 3) 

Middleton and Goodwin ( 1990, p65-76) suggests a unified approach to analysis 

using a unified frequency domain variable, y, representing z- 1 , y or s as required. 
d . Similarly the operators, dt , q

- 1  and 8 are represented by a smgle operator, p. 

Consider the process described by the state-space description 

dx(t) 
dt = Ax(t) + Bu(t) (2.3 . 14) 

y(t) = Cx(t) (2.3 . 1 5) 

By assuming a zero-order hold on the inputs this can be written in the discrete form 

x(t+�) = <l>x(t) + ru(t) (2.3 . 1 6) 

Equation (2.3. 1 6) can be rewritten in the delta operator form using either of the two 

methods suggested by Middleton and Goodwin ( 1990, p46-47). The first method 

uses the property presented in Equation (2.3 . 12). The second method uses 

where 

px(t) = Ayx(t) + B-yu(t) 

= QAx(t) + QBu(t) 

1 � Q = �fe
Atdt 

0 
A� A2�2 A3�3 

=1+2! + 3! + 4! + . . . .  

.(2.3 . 1 7) 

(2.3 . 1 8) 
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The three forms of the state-space description, Equations (2.3 . 14), (2.3 . 1 7) 

and (2.3 . 1 8) can be written in terms of the unified operator as 

yx(y) = Ayx(y) + B-yn(y) (2.3 . 1 9) 

which can be written in terms of the unified transform as 

y(y) = C(yi-Ay)- 1 B-yn(y) (2.3 .20) 

The transfer function between u and y can be seen to be C(yi-Ayt1By 
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2.4 TIME-DELAYED PROCESS DESCRIPTIONS 

In the previous section time-domain and frequency-domain representations of 

delay-free processes were briefly described. In this section representations of time­

delayed processes are introduced. Representations of time-delayed processes will 

be explored in depth in Chapter 3 .  

Time-delays occur both naturally and artificially in processes. They occur 

commonly with transportation processes where, for example, a product must either 

be physically moved from one part of the process to another, or cooled sufficiently 

to be handled. Delays can also occur due to the time taken for measurements to be 

made. Artificial delays are sometimes introduced to create low-order, time-delayed 

models of processes that are, in reality, of high order. 

Consider a single-input single output process in which the input to the 

plant is delayed by 't units of time. The plant can be described as: 

where 

or 

dx dt =ax(t)+bv(t) 

v(t) = u(t-'t) 

The Lap lace transform of this process is 

b x(s) = -;--;:v( ) (s) s-a 

=-b- e-tsu(s) 
(s - a) 

(2.4. 1 )  

(2.4.2) 

(2.4.3) 

(2.4.4) 
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In this process description it is clear that the delay free dynamics are represented by 

the rational portion of the transfer function, ( 
b 
)' and the delay is represented by s-a 

the exponential, e-'ts. 

If the process were described using the unified approach the form of the 

transfer function would not change. The unified transfer function of the process 

would be: 

* 
g ("() 

b = (y-a)E((y,-'t)) (2.4.5) 

The delay-free dynamics and the delay components of the transfer function, 

Equation (2.4.5), can still be clearly identified. 

In this process the delay was assumed to be an input-delay since the delay 

in the transfer function occurs as a result of a delay in the actuation. This delay 

could occur, as suggested by Marshal!, ( 1 979, p2) if the plant is remote from the 

controller and the signals are transmitted acoustically. In this case a delay of 0.003 

sm-t would be incurred. This delay could be significant if the distance is large or 

the delay-free dynamics are fast. 

Some measurements take an appreciable length of time to be performed 

and in some processes it is not always possible to place a sensor close to the plant 

due to environmental hazards. In these cases measurement, or output, delays 

would occur. 
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2.5 CONTROL OF TIME-DELAYED PROCESSES 

In this section methods that have been used to control time-delayed processes will 

be reviewed. 

2.5.1 Interactor Matrix Methods 

An interactor matrix for the proper transfer function G(y)=A(yt 1 B(y), is �(y) with 

the property 

lim 
y --7 oo �(y) .G(y) = K (2.5. 1 )  

where K is a non-singular constant matrix. 

Elliott and W olovich ( 1984) recognised that the interactor matrix of 

Wolovich and Falb ( 1 976) was the multivariable extension of the concept of time 

delay. This discovery gave rise to a number of algorithms using the interactor 

matrix. Using this device various control design algorithms have been studied. For 

�xample, De Souza ( 1 983) and Dugard, Goodwin and Xianya ( 1984) use the 

interactor matrix as the basis for their controller designs. 

These methods give rise primarily to model reference controllers. A 

major problem with the interactor matrix methods is that the control law obtained 

depends on the order in which the variables appear in the input and output vectors. 

Goodwin and Sin ( 1 984, p 1 33- 142) give a good account of this approach. 

2.5.2 Input-Output Matrix Method 

An alternative approach to the interactor matrix has been studied by Toivonen 

( 1984). In this approach, the delays are identified as being either input or output 
delays. The transfer function can then be factorised into diagonal input and output 

- delay matrices and a matrix that contains no delay elements. This approach is 
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extended in Chapter 3 of this thesis to allow non-diagonal input and output delay 

matrices. 

Tade, Bayoumi and Bacon ( 1987a, 1 987b) presented a self-tuning 

controller based on this idea of factorisation of the transfer function into input and 

output delay matrices and showed that if there is an interactor matrix then there is 

an input-output delay structure. 

Following Tade et a! ( 1 987 a, 1987b) let the input delay matrix be Dt (y), 

and the output delay matrix be Dz(y). 

Together these have the property 

lim 
y � oo Dt (y)G(y)Dz(y) = Kio (2.5.2) 

In general Kio is not the same as the K used in the definition of the 

interactor matrix. 

The results presented in Chapter 3 provide some techniques for the 

decomposition of a general time-delayed process into the components Dt (y), Dz(y) 

and G(y). 

2.5.3 Internal Model Control 

The basic idea of the Internal Model Control (IMC) structure is the explicit 

inclusion in the block diagram description of the closed-loop process of the process 

model used in the design of the controller. This facil itates an analysis of the 

system's closed-loop behaviour when there is mismatch between the model and the 

process. This representation allows a robustness analysis of the system to be made. 

The Internal Model Control method has been investigated by Garcia and 

Morari ( 1 982, 1 984a, 1 984b ), Morari ( 1 983), Holt and Morari ( 1 984, 1 985a, 

1 985b ) , Morari and Zafiriou ( 1 989) and Garcia, Prett and Morari ( 1 989) . 
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Jerome and Ray ( 1986) and Shanmugathasan and Johnston 

( 1 988a, 1 988b) used the IMC structure to reduce the system's settling-time by 

increasing certain of the system's delays. 

2.5.4 The Smith Predictor 

The Smith predictor (Smith 1 957) allows the user to design a controller as if there 

were no delay and then use this controller in conjunction with a compensator, the 

Smith predictor, to control the delayed process. 

The single-input single-output Smith predictor design method relies on the 

freedom to consider the single-input single-output delays as output-delays in order 

that any non-output delays can be passed through the transfer function. Any delays 

in the system then appear as an output delay. 

Jerome and Ray ( 1 986) consider the Smith predictor to have three 

properties. Firstly, when using the Smith predictor the time-delay is eliminated 

from the closed-loop characteristic equation. Secondly, for set-point changes the 

Smith predictor provides the controller with an immediate prediction of the effects 

of the control action on the system outputs. Finally, the Smith predictor implicitly 

factors the plant into two parts . These parts are the contribution of the delay, which 

is invertible only with prediction, and what might be considered the dynamics of 

the process (that part of the transfer-function that can be inverted without 

introducing predictive elements). 

In the multivariable case it is not, in general, possible for the delays to be 

moved through the transfer function in the same simple way because matrix 

multiplication does not have the commutatively property. Results which enable the 

delays to be passed through the transfer function will be developed in Chapter 3 . 

Furukana and Shumemura ( 1983), Watanabe and Ito ( 1 98 1 ) and 

Gawthrop ( 1977) pointed out that the classical Smith predictor cannot stabilise an 

unstable time-delayed process. However, De Paor ( 1 985) and De Paor and Egan 
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( 1 989) produced a modification to the Smith predictor that allows for the 

stabil isation of unstable time-delayed processes. 

Various multi variable versions of the Smith predictor have been developed. 

Alevisakis and Seborg ( 1 973, 1 974) produced a multivariable Smith 

predictor for two special cases: two distinct delays in the measurement and a single 

delay affecting all the inputs equally. 

Marshall ( 1 979) and Walton and Marshall ( 1984) considered the problem 

of mismatch between the real process and the model. They showed that in some 

cases mismatch actually improves the performance of the closed-loop system. 

Marshall ( 1 979) explored two-input, two-output time-delayed processes 

using block diagrams. However Marshal! did not generalise his results beyond this 

simple case, or using these results as a motivation for decomposing the matrix 

transfer function into a product of a matrix containing the delays and a matrix 

containing the delay-free dynamics. 

Ogunnaike and Ray ( 1979) presented a Smith predictor method that 

assumes that all the pure delays and the transfer function coefficients and orders are 

known exactly, but do not consider the delays and the dynamics as being 

sequential operations acting on the inputs. 

J erome and Ray ( 1 986) improved on this extension of the Smith predictor 

by allowing a much more general predictor. Using the internal model control 

(IMC) [Garcia and Morari (1 982, 1984a, 1 984b), Morari ( 1983), Holt and Morari 

( 1 984, 1985a, 1985b)] structure they showed that improvements to the control 

could be made if some of the delays are increased. Shanmugathasan and Johnston 

( 1 988a, 1 988b) presented a systematic method of choosing those delays in the 

system that should be increased in order to improve the control . 

Astrom and Wittenmark ( 1984, p238) show that a discrete time version of 

the Smith predictor, in the single-input single-output case, can be derived using a 

pole-placement design. 
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Chotai and Young ( 1988) made a connection between the Smith predictor 

and a Non-Minimal State Space (NMSS) description. 

2.5.5 Other Methods of Control of Time-Delayed 

Processes 

Fuller ( 1 968) showed that for a time-delayed system with all the delays 

equal the optimal controller has a similar structure to the Smith predictor. The 

controller found using this approach is called a predictor controller. 

The idea of predictor controllers with more general delay structures has 

been investigated by Mee ( 1973) where it was shown that even when the delays are 

of different time lengths, only non time-delayed problems need to be solved, as 

with the Smith predictor, but the solution becomes very complicated. The solution 

involves a sequence of dynamic optimisation sub-problems that must be solved for 

each time step. Due to the large amount of computation involved, this approach is 

not, at present, suitable for adaptive control . 

2.5.6 Robustness of Time-Delayed Controllers 

In addition to a process being stable, industrial controllers must be robust in the 

face of a number of possible failures: inaccurate modelling, time-variation in the 

process, noise and sensor failure. 

There is a large body of literature associated with the robustness of 

controllers. The robustness of adaptive controllers has been studied, for example, 

by Cluett, Shah and Fisher ( 1987), Cook and Chen ( 1 985), Gawthrop ( 1 985a, 

1 985b) and Ioannou and Sun ( 1 988) The robustness of adaptive controllers is 

closely related to the convergence properties of the control schemes. Ljung 

( 1 977 a,b) made major contributions to the analysis of the convergence properties 

of adaptive control schemes. 

The problem of controlling a process that has been ·inaccurately 

modelled has received a great deal of attention in recent years. The advent of Hoo 
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control has made a major contribution to the understanding of this type of 

robustness .  The IMC structure techniques have been used by Morari and Zafiriou 

( 1 989) to investigate the closed-loop stability of inaccurately modelled processes 

The robustness to modelling errors of the Smith predictor and of other 

methods for the control of time-delayed processes has also been investigated. The 

researchers include: Marshall ( 1 979) and Garland and Marshall ( 1 974) Palmor 

( 1 980) and Palmor and Halevi ( 1 983), Owens and Raya ( 1 982), Palmor and 

Shinnar ( 1 98 1 ), Horowitz ( 1 983), Owens and Chotai ( 1 983), and Chotai, Owens, 

Raya and Wang ( 1984). 
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2.6 NOTATION USED 

Throughout this thesis the following conventions as to type-face will be adhered to: 

bold upper-case text will denote matrices; bold lower case text will denote vector 

quantities; italic text will denote polynomial or rational functions and an asterisk 

will indicate that the quantity includes time-delay. 

[X]ij = ijth element of matrix X 

xr = transpose of matrix X 
1\ 

X = an estimate of X 

X-1 = Inverse of matrix X (if X is square and of full 

rank) 

x- = a generalised right inverse of X 

x* = X contains time-delays 

x+ = X has been manipulated using either Theorem 

3. 1 or Theorem 3.2 
1\ 1\ 

D. X = Difference between X and X, ie D.X= X- X 



33 

2.7 NOMENCLATURE 

A nxn state-transition matrix 

B nxq 1 Control Input matrices 

( continous time) 

c rxn Measurement matrix 

X nx1 state vector 

y rx1 measurement vector 

w q2x1 disturbance vector 

V rx 1 Measurement noise vector 

u q 1x1  control input vector 

Operators commonly used in this thesis 

q forward shift operator qx(t) = x(t+ 1) 

q- 1 backward shift operator q-1x(t) = x{t-1)  

.l{f(t)} Laplace transform J: e-srf(t)dt 

di 
ith derivative dti 

s laplace domain operator 

Y.s delta-transform operator 

z- 1 z-domain operator 
q-1 

8 delta operator 8 = -

l:l 
p generalized operator 

d -l 8 
dt ,q , 

'Y generalised frequency -1 r s,z , 8 

domain variable 

E{y,--r) Generalized exponential 

--.... 



.B!f(t)l 

Z{/(t)} 

* g (y) 

g(y) 

d(y) 

g(y) 
Dt(Y) 

D2(Y) 

G(y) 

G*(y) 

Go(Y) ,Go *(y) 

e· I . 

34 

-

Delta transform 11 L f(t.t)( l  + !:iyo)-k ,tk=tk 

Z-transform 

Sample time 

Single-input single-output 

time-delayed transfer 

function 

Single-input single-output 

transfer function 

pure-delay operator (single-

input single-output) 

description 

interactor matrix 

output delay matrix (rxm) 

input delay matrix (qxm) 

multivariable transfer function 

k=O 
-t+/1, k=1 ,2, . . .  

k= 1 ,2, . . .  

time-delayed multivariable transfer function 

multivariable transfer function in which the 

input and output delays have been removed. 

number of different time-delays appearing in 

the state-transition,output and input delay 

matrices respectively 

jth column of identity matrix 

diagonal matrix having Yj, the ith row of Y 

down its main diagonal 



JJO ( y) 

B+,c+ 

Transfer function 

-............ 

diagonal matrix having Yi, the ith row of 

Y down its main diagonal 

delay-free transfer function matrix of 

dimension mn2qx2 

delay-free transfer function matrix of 

dimension pxpm2n 

delay matrix containing only delays of the 

plant transfer function (mxnm) 

delay matrix containing only delays of the 

plant transfer function (nmxm) 

delay matrix containing only input delays 

of the plant (nmxn2mq) 

delay matrix containing only delays (pm2 

xnm) 

scalar transfer function relating ith output 

ofG+ to jth input to G+ 

kth quotient in the partial fractions 

expansion of g� ( y) 
Control Input matrix including time-

delays 

Measurement matrix including time-

delays 

the delay-free components of B*(q- 1 ) and 

c*cq- 1 ) respectively 

the delay components of B * ( q- 1 ) and 

c*cq- 1 ) respectively 

Kronicker delta 8,1 = {� 
discrete time 

ifi= j 
otherwise 
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continous time 

unified 

G(s) = A(sr1 B(s) 

G(y) = A(yr1B(y) 
dx 
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State space description continous time - = Ax(t) + Bu(t) 
dt 
y(t) = Cx(t) 
x(t + 1) = <I>x(t) + ru(t) 

discrete time y(t) = Cx(t) 

unified time 
px = A1x(t) + B1u(t) 

y(t) = Cx(t) 

Chapters 9 and 10 - units 

Symbol description units expected range 

F Concentrate flow-rate proportion 0- 1 

valve open 

w Cooling water flow-rate proportion 0- 1 

valve open 

D Output density kg/kg 1 . 10 - 1 . 1 1 1  

T Final effect temperature oc 38-440C 

p Steam pressure ps1 7- 1 5  psi 

DF Incoming whey density kg/kg 1 .00- 1 .05 

TF Incoming whey temperature oc 0-2ooc 

PW Water pressure psi 

DR Density set point kg/kg 1 . 10 - 1 . 1 1 1  

TR Temperature set point oc 38-44°C 

T'(k) T(k)-steady-state value of T 0 

D'(k) D(k)-steady-state value of D kg/kg 

F' F(k)-steady-state value of F proportion 

W' W(k)-steady-state value of W proportion 
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PART B 

ANALYSIS OF TIME-DELAYED 

PROCESSES 



3 MULTIVARIABLE TIME­

DELAYED SYSTEM 

REPRESENTATIONS 

3.1  INTRODUCTION 
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In this chapter representations of time-delays in  multivariable processes are 

investigated. In Sections 3.2 and 3 .3 it will become clear that time-delays in 

multivariable processes can be classified in three ways: input-delays, output-delays 

and plant-delays. These types of delay will be explored and the consequences of a 

process being comprised of them will be discussed. 

In Sections 3 .4 some of the problems associated with the representation of 

multivariable time-delayed processes will be addressed. Without loss of generality 

systems without time-delays can be considered as the sub-class of time-delayed 

systems in which all the delays are zero. 

In Section 3.5 Theorem 3. 1 ,  a result that allows a pseudo-commutativity 

of matrix multiplication, is proved. 

In Section 3.6 Theorem 3.2, a result that enables an element by element 

matrix product to be written as the product of two matrices is proved. 

These results are motivated by time-delay considerations and are used in 

Section 3.7 where it is shown that any time-delayed process can be represented as 

though all the delays act on the inputs of the process or, alternatively, on the 

outputs of the process. However Theorems 3 . 1  and 3.2 can also be applied to non­

delayed processes, as will be shown in Chapter 4. 



3.2 REPRESENTATIONS OF CONTINUOUS-TIME 

M UL TIVARIABLE TIME-DELAYED PROCESSES 
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In this section representations of continuous time delayed process are considered. 

These provide motivation for the results in the subsequent sections of this chapter. 

In Section 3.2. 1 existing representations of continuous-time multivariable delayed 

processes are considered. These provide a motivation for a general representation 

of time-delayed processes which is presented in Section 3.2.2. 

3.2.1 EXISTING REPRESENTATIONS OF CONTINUOUS­
TIME MULTIVARIABLE TIME-DELAYED PROCESSES. 
Ogunnaike and Ray ( 1 979) considered a general form of a continuous-time 

transfer function matrix: 

dx(t) nA ns 
dt = LAix(HXi) + LBju(t-�j) 

i= 1 j=1 
ne 

y(t) = L,ckx(t-'Yk) 
i=k 

(3.2. 1 )  

(3.2.2) 

where where x(t) E Rnxt ,y(t) E R'x1 ,u(t) E Rqxt , ai, �j and 'Yk are time-delays, the 

Ai are matrices of dimension n x n, the Bj are matrices of dimension n x q and 

the Ck are matrices of dimension r x n. 

Processes that can be described in this form, Equations (3 .2. 1 )  and (3 .2.2), 

are extremely general. A transfer function representation for such a process can be 

obtained by taking the Lap lace transform of Equations (3 .2 . 1 )  and (3.2.2). 

(3.2.3) 
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Consider now only the subclass of all time-delayed processes in which nA = 1  and 

<Xi=O. 

The transfer function can be obtained as: 

y(s) = G*(s)u(s) (3.2.4) 

where 

(3 .2.5) 

and 

ne 
D 1 (s) = L Cke-)'kS (3.2.6) 

k= l 

ns 
D2(s) = L Bje-�js (3.2.7) 

j=l 

Gp(s) = (si - A)-I (3.2.8) 

Note that, as it is defined, G*(s) has a structure that is a less general 

representation of pure delays than would normally arise from typical modelling 

procedures, using for example step, impulse or frequency response measurements 

· of the actual process. Such modelling procedures typically give rise to a transfer 

function matrix of the form: 



I . 

I I 

. ----

g 1 1  (s)g J2(s) . . .  g 1n(s) 
g2 1  (s)g22(s) . . . g2q(s) 

* G (s) = 

gr 1  (s) gr 1  (s) · · ·  grq(s) 

n::(,) 
where g· · (s) = �e-'tijS 

IJ bij(S) 

and the aij(s) and the bij (s) are polynomials in s. 

4 1  

(3.2.9) 

A transfer function of the form shown in Equation (3.2.9) can be 

represented in the form: 

(3.2. 1 0) 

using a method adapted from Tade et al ( 1 988a,b). By letting 

max (-r· ·) 
d 1 i  = . 

I
J 

J 
(3.2. 1 1 ) 

(3.2. 12) 

(3 .2. 1 3) 

it can be shown that D 1 (s),.D2(s) and GP*(s) can be written as follows: 

(3.2 . 14) 

(3 .2. 1 5) 

and 



* Gp (s) = 

* 
au (s)e-'tu s 

b 1 1  (s) 
* 

a2 1 (s)e-'tz1 s 

b2 1  (s) 

* 
ar 1  (s)e

-'trl s 

br1 (s) 

* 
a12(s)e-'tl2 s 

b12(s) 
* 

a22(s)e-'t22 s 

b22(S) 

* 
ar2(s)e-'tr2 s 

br2(s) 
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(3 .2 . 1 6) 

In this section it has been shown that the time-delays in a multivariable 

transfer function can appear in DJ , as output-delays, in D2, as input-delays, or 

appear in Gp 
*, as plant-delays. In Section 3.2.2 a more general representation of 

continuous-time multivariable time-delayed processes will be developed. 

3.2.2 A GENERAL REPRESENTATION OF 
CONTINUOUS-TIME MULTIVARIABLE TIME­
DELAYED PROCESSES 
Equation (3.2.3) is of a more general form than that considered in Section 3 .2 . 1 

' 
since it includes the possibility of state-delays. However for the purpose of this 

work, the most general form considered will be: 

* * G (s) = D 1 (s)Gp (s)D2(s) (3.2. 17) 

where 



and 

* Gp (s) = 

ne 

* 
a 1 1 (s)e-'tu s 

h1 1 (s) 
* 

a2 1 (s)e-'t21 s 
b2 l  (s) 

* ami (s)e-'tml s 
bm 1 (s) 

D1 (s) = I, Cke-'YkS 
k=l 

nB 
D2(s) = I, Bje-�jS 

j= 1 

* a12(s)e-'t12 s 
b12(S) 

* a22(s)e-'t22 s 
b22(s) 

* am2(s)e-'tm2 s 
bm2(s) 

* a 1 n(s)e-'tin s 
bt n(s) 

* 
a2n(s)e-'t2n s 

b2n(s) 

* amn(s)e-'tmn s 
bmn(s) 

43 

(3.2. 1 8) 

(3.2. 1 9) 

(3.2.20) 

D 1 (s) is rxm, D2(s) is nxq and Gp(s) is mxn. The dimension of G*(s) remains as 

before rxq. Ck, Yk and Bj > �j are not necessarily linked to the general system 

description shown in Equations (3.2. 1 ) and (3.2.2). This is a more general form of 

time-delayed representation than that presented in Section 3.2. 1 since it allows the 

delay operators, D 1 (s) and D2(s) to be non-square. 

The transfer function, Equations (3.2. 1 7) (3 .2. 1 8) (3.2. 1 9) and (3 .2.20), can 

be seen to be comprised of three components : D 1 (s) , the output-delays; D2(s), the 

input-delays and GP*(s), the plant itself, involving delayed elements. 
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3.3 DISCRETE-TIME AND UNIFIED TRANSFORM TIM E­

DELAYED MUL TIVARIABLE PROCESS DESCRIPTIONS 

In a completely analogous manner a general discrete time-delayed process transfer 

function description can be obtained, using the z-transform 

* * G (z) = Dt (z)Gp (z)D2(z) (3 .3 . 1 )  

where 

ne 
Dt (z) = rciz-i (3.3 .2) 

i= l 
ns 

D2(z) = LBiz-i (3.3.3) 
i= l 

and 

* = 
z-'tijbjj(Z) 

(3.3 .4) [Gp (z)]ij aij(Z) 

where aij(z) and bij(z) are polynomials· in z- 1 . 

Using the generalised exponential function and the unified transform 

(Middleton and Goodwin, 1 990) outlined in Section 2.3, the continuous-time and 

the discrete-time time-delay representations can be considered in a single 

framework. In this form, the general representation of a time-delayed multivariable 

process is of the same form as that presented in Section 3 .2.2, except that the delay 

operators are replaced with generalised exponential functions, E(y,--rl�) : 

y(y) 

where 

•. * * =G (y)u(y) = D 1 (y)Gp (y)D2(y)u(y) (3 .3.5) 



and 

Gp *(y) 

ne 
D 1 (y) = LCkE("(,-"fk) 

k=l 

nB 
D2('Y) = LBjE(y,-�j) 

= 

j= l  

a] 1 (y)E(y,-'t] 1) 
b l l  (y) 

az 1 (y)E(y,--rzl) 
b2 t (y) 

am] (y)E(y, -'tm 1) 
bm t (y) 
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(3 .3.6) 

(3.3.7) 

a 1 z(y)E(y,-'t] z) a1 nCX)E(y,-'t] n) 
b t2('Y) h t n(Y) 

azz(X)E(y,--rzz) azn(Y)E(:(,-'tzn) 
b22('Y) b2n(Y) 

amz (X)E( "f, --rmz) amn(Y)E(t. -'tmn) 
bm2(Y) bmn(Y) 

(3.3.8) 

where D 1 is a r x m matrix , D2 is an nxq matrix and Gp * is an mxn matrix. 

This model will be used in the remainder of this thesis whenever a general 

time-delayed multivariable process is discussed. 
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SYSTEM'S TIME-DELA V STRUCTURE 
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Equations (3.3 .5)-(3.3.8) provide a general description of a system's time-delay 

structure in terms of input, internal and output delays operating on the process 

variables. Since, in general, matrix products are not commutative, it is not easily 

possible to make input delays appear as output delays and vice versa, as illustrated 

by Example 3 . 1 .  However, the results presented in the later sections of this chapter 

provide a means by which the input-delays can be represented as output-delays. 

EXAMPLE 3.1 : Consider a simple 2 by 2 transfer function in which the inputs are 

delayed by 2 and 1 time units respectively. 

G*(s) -
((s� 1 )  (s!2) J (e-2s 0 ) 

- 2 - 1 0 e-s -- --
(s+3) (s+4) 

(e-2s 3e-s 

J _ (s+l )  (s+2) 
- 2e-2s -e-s -- --

(s+3) (s+4) 
(3.4. 1 )  

Suppose that this transfer function is to be written in the form G*(s) = D(s)G(s) in 

which G(s) contains no time-delay elements and D(s) represents a matrix of output 

delay elements. One way to form G(s) from G*(s) is by simply dropping out the 

delay elements. Then G(s) can be written as 

G(s) 
_ ((s�1 ) s

!
2J 

- . 2 - 1 - -
s+3 s+4 

and then G*(s) would have to be 

(3.4.2) 
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( e-2s 3e-s } t 1 3 

J 
( 1 3 

J (s+1 ) (s+2) (d1 1 Cs)d12(s) (s+1 )s+2 (s+ 1) s+2 G*(s) = 2e-2s -e-s d2 1 (s)d22(s) _2_ ...:..!.. = D(s) _l_ ...:..!.. 
(s+3) (s+4) s+3 s+4 s+3 s+4 

(3 .4.3) 

where D(s) is a 2 x 2 matrix which is to be determined. By expanding the matrix 

product the following set of equations can be obtained. 

e-2s 1 2 --

0 0 (s+ 1 ) ----

(s+ 1 ) s+3 
3e-s 3 - 1 [u(s] 
(s+2) - - 0 0 d12(S) s+2 s+4 
2e-2s = 1 2 d2 1  (s) 0 0 -- --

-- (s+ 1 ) s+3 (s+3) d22(S) 
-e-s 3 - 1 

0 0 
(s+4) s+2 s+4 

Clearly this can be separated into two subproblems: 

and 

[e-2sJ ( 1 2 } 
s+ 1 = 

s+ 1 s+ 3 d 1 1  ( s )) 
3e-s _2_ ...:..!_ d12(s) 
s+2 s+2 s+4 

(2e-2sJ ( 1 2 } 
s+3 

= 
s+ 1 s+3 d21 (s)) 

-e-s _2_ ...:..!.. d22(s) 
s+4 s+2 s+4 

From the first of these two subproblems it is clear that 

(3.4.4) 

(3 .4.5) 

(3 .4.6) 



( 1 2 ) 1(e-2s
J (d1 1 (s)) - s+ 1 s+3 s+1 \d1 2(s) - 2.._ _:L 3e-s 

s+2 s+4 s+2 

and similarly from the second ( 1 2 ) 1[2e-2s
J (d2 t (s)) = s+ 1  s+3 s+3 \d22(s) _l_ _:l_ -e-S 

s+2 . s+4 s+4 
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(3.4.7) 

(3.4.8) 

Since the inverse matrix exists, except for a finite number of values of s, 

and can be shown to be 

3 - 1 - 1  6 
- -

- -

s+4 s+3 
-3 1 

(�1 �3 
)

I 
= 1 

s+2 s+4 (s+ l )(s+4) - (s+3)(s+2) 

- 1  -2 

J s+2 s+1 

it is possible to write 

d e·25(s+2)(S+3)+6e-5(S+ 1 )(s+4) 
1 1  (s) = (s+3)(s+2)+6(s+ l)(s+4) 

2(e·2s_e-1 5)(s+l )(s+2) d2 1 (s) = (s+3)(s+2)+6(s+ l)(s+4) 

1 2 

J 
- -

s+4 s+3 
3 . - 1  

s+2 s+1 
(3 .4.9) 

d (s) = 3(e·2• - e-' )(s + 3)(s + 4) 
12 (s + 3)(s + 2) + 6(s + 3)(s + 4) 

d _ 6e-25(s+ 1 )(s+4)+e-s(S+2)(S+3) 
zz(s) - (s+3)(s+2)+6(s+ l)(s+4) 

(3.4. 10) 

These dij(s) terms are complicated to calculate even for this simple 

example. Furthermore the elements of D(s) bear little similarity to the relatively 

simple form of the delays in the original form of G*(s). 
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3.5 A PSEUDO-COMMUTATIVITY RESULT 

As has been shown by the preceding example representing input delays as output 

delays is not trivial since in general a matrix product cannot be commuted. 

However, a commutativity result that enables input-delays to be represented as 

output-delays is presented in this section. 

THEOREM 3.1 Given matrices A, of dimension n x m and B, of dimension m x q, 

the matrix product AB can be written as tEA. where tB is of dimension n x mnq, 

and A is of dimension mnq X q. The non-zero elements of the matrices A. and tB are 

rearrangements of A and B respectively. These matrices A and tB are defined in 

equation (3.5.6) below. 

Proof: The ijth element of the product AB can be written by expanding the matrix 

multiplication, as 

m 
�AB]ij = IJAl ikfBlkj 

k= l 

Extra zero terms may be added to this sum 
m 

[AB]ij = L [BJu O + [B]k2 0 + [B]u 0+ . . . + 
k=l 

[B].t<i-tl 0 + [A];k [B].tj + [B]k(j+t l 0+ . . .  +[B]kq 0 

m 

(3.5 . 1 )  

= L [[B]�cJB]�c2 [B]�c3 · · · · · [B]�co-tl [B]ki [B]k<i+tJ · · · · · · [B]�cq ]  [A]ik ei 
k=l 

where ej is the jth column of Iq, the identity matrix of dimension q. 

Thus 

(3.5.2) 



m 
[AB]jj = LBk[A]jkej 

k= l 

where Bk is the kth row of B. Concatenating the rows of B together : 

it can be seen that 

[Al i i ej 
[A]i2ej 

[AB]ij = fBR 

Hence the ith row of the product AB can be written as: 

[Ali tlq 
[A]j2Iq 

[ [AB] j 1 [AB]i2 . . . [AB] iql = fER 
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(3 .5.3) 

(3.5.4) 

(3.5.5) 

By augmenting the matrices to form the n rows of the product, it can be seen that 

the product AB can be written as 



5 1 

A] 1 1Iq 
[A] 1 2Iq 

[AJ imlq 
[A]2 1Iq 

(}3R 0 ... 
[A]22Iq 

0 

AB 
0 fER [AJ2mlq = 

0 0 • . .  fER 

(3.5 .6) 

This theorem provides what might be called a pseudo-commutativity result. 

In particular it will later be used to provide a means of reversing the order of the 

input-delays, D2(y), and the plant transfer function, Dt (y)Gp(Y), so that to 

observers outside the system, it would appear as though the time-delays were 

acting on the outputs of a transfer function instead of on the inputs. 

EXAMPLE 3.2: The time-delayed transfer function, G*(s), used in Example 3. 1 can 

be easily rewritten using Theorem 3. 1 as though the input-delays were output-

delays. 

* ((s� 1 ) (s!2) J (e-2s 0 ) G (s) = 2 - 1 0 e-s -- --
(s+3) (s+4) 

(3.4. 1 ) 



-
( e-2s 

- 0 
0 
0 

= .B; ( s)G+ (s) 

0 
0 

e-s 0 0 0 
0 e-2s 0 0 

1 
(s+1 ) 

0 
3 

(s+2) 

e�s ) 0 
2 

(s+3) 
0 
- 1 

(s+4) 
0 
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0 
1 

(s+1 )  
0 
3 

(s+2) 
0 
2 

(s+3) 
0 
- 1 

(s+4) 

(3 .5.7) 
(3.5.8) 

Here 1Jj(S) and G+(s) are defined by the right hand side of Equation (3.5.7) . .Bj(s) 

is a delay operator on the outputs of the process G+(s) . Note how simply 

constructed this representation is compared with that of Example 3 . 1 .  The delays in 
.Bi(s) are simply those in the original transfer function rearranged. 
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3.6 DECOMPOSITION OF AN ELEMENT BY ELEMENT 

MATRIX PRODUCT 

THEOREM 3.2: The matrix M: 

M =  (3.6. 1 )  

which is an element by element product of two matrices X and Y can be written as 

a matrix product of two matrices, .% and Jl. where the elements of .%' and Jl 
are rearrangements of the elements ofX and Y respectively, that is 

Dv I 

XI 
0 0 

Dv 2 

0 x2 = Jf  
0 X m 

Dvm 

where Xi is the ith row of X and Dyi is a diagonal matrix having Yi , the ith row 

of Y down its main diagonal. 

Proof The jth row of M can be written as 

Yi 1 0 0 
0 Yi2 0 

(Xi ! Xi2 XiJ X in) 
0 = XiDYi (3.6.2) 

0 Yij 0 
0 

0 Yin 
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Here Xi is the ith row of X and Dyi is a diagonal matrix having Yj, the ith row of Y 

down its main diagonal. Hence it is possible to write the matrix M as 

(XI 0 

M =  : �2 (3.6.3) 

This theorem provides a method in which plant-delays can be written as 

though they are output-delays, or alternatively as input-delays, as is demonstrated 

in the following example. 

EXAMPLE 3.3: The time-delayed transfer function, G*cs) can be easily rewritten 

using Theorem 3 .2 as though the delays were output delays. 

1 
0 [ e-2s 3e-s 

J 
(s+l ) 3 

(s+l ) (s+2) e-2s e-s 0 0 0 s+2 G*(s) = 2e-3s -e- 1 .5s = ( � 0 e-3s e- 1 .5s 2 
0 

(s+3) (s+4) s+3 
- 1 

0 s+4 

(3 .6.4) 

= Dp1 (s)G+(s) (3.6.5) 

Here Dp 1(s) and G+(s) are defined by the right hand side of Equation (3.6.5). 

Dp1(s) is a delay operator on the outputs of the process G+(s). The
. 
delays in Dp/s) 

are simply those in the original transfer function, rearranged. 

Alternatively th'C transfer function, equation (3.6.4), can be rewritten using 

Theorem 3.2 as though the delays were input-delays: 



G*(s) 

(
e-2s 3e-s J ( = 
(s+ 1 )  (s+2) 

= (s� 1 )  
2e-3s -e- 1 .5s 0 
(s+3) (s+4) 

= G+(s)Dp2(s) 

3 
s+2 

0 

0 
2 

s+3 

re-2s 0 

J 0 0 e-s 
- 1  e-3s 0 
s+4 0 e- 1 .5s 
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(3.6.6) 

(3.6.7) 

That is, the transfer function, Equation (3 .6.4) has been rewritten so that the time-

delays, which in the original transfer function, had appeared as input-delays, now 

appear as output-delays. 
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3.7 DECOMPOSITION OF TIME-DELAYED TRANSFER 

FUNCTIONS 

In this section a theorem i s presented which shows that any multivariable transfer 

function can be written with all the delays appearing as output delays, rather than 

as a mixture of input, plant and output delays. Alternatively the theorem can be 

used to write any multivariable transfer function with all the delays appearing as 

input delays. 

THEOREM 3.3: The time-delayed multivariable transfer function 
* G (s) of 

Equation (3.3.5) can be written as 

or as 

where 

(3.7. 1 )  

(3.7.2) 

G1 +(y) is a delay-free transfer-function matrix of dimension mn2q x q, 

G2 +(y) is a delay-free transfer-function matrix of dimension p x pm2n, 

Dp 1 (y) is of dimension m x nm and contains only the delays of the plant 

transfer function 

Dp2('Y) is of dimension mn x n and contains only the delays of the plant 

transfer function 

D 1 and D2 are matrices of dimensions rxm and qxm respectively 

.#0(-y) is of dimension pm2n x mn contains only the output-delays 

and .#i('Y) is of dimension mn X mn2q contains only the input-delays. 
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REMARK: This theorem provides a way in which the general time delayed 

transfer function matrix, G*(y) can be represented as though the delay matrices, � 

iCy), Dp("f),  D t  (y), containing the input, plant and output delays respectively act 

sequentially on the output of a delay-free transfer function matrix, G t  +(y). 

Atematively the theorem can be used to present the time-delayed transfer function 

as though the delays D2(y), Dpi"f), .tfJ(y) act sequentially on the inputs and the 

resulting, delayed inputs are then acted upon by a delay-free transfer function , 

Proof: 

Output Delay Form: 

From Equation (3 .3.5) G*(y) = D t  (y)Gp(Y)D2(y). It must be shown that Gp(Y)D2(Y) 

can be represented as Dp(Y) �i(Y) .bt +(y). By identifying: 

* d· · ('V) - E('V t . .  ) lj I - ,,- lj (3.7 .3)  

and (3 .7 .4) 

from the elements of Gp("f),  Theorem 3.2 provides a way of decomposing Gp(Y) as 

Hence 

G*(y) = D t  (y)Gp(y)D2(Y) 

= D 1 (y)Dp 1 (y)Gt (y)D2(Y) 

Theorem 3 . 1  shows that Equation (3.7.7) can be written as 

(3.7.5) 

(3 .7 .6) 

(3.7.7) 
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(3.7. 1 )  

as stated i n  the theorem. 

Input Delay Form: 

From Equation (3.3 .5) G*(y) = D 1 (y)Gp("f)D2(Y) • It remains to be shown that 

Theorem 3 .2 can be used to show that 

and hence 

* G (y) = D 1 (y)Gp(y)D2(Y) 

= ..!2 +(y) �o(Y)Dp2("f)D2('Y) 

as stated in the theorem. 

(3.7.9) 

(3.7. 1 0) 

(3.7. 1 1 ) 

(3.7. 1 2) 

This theorem provides the necessary tool to decompose any time-delayed 

transfer function into either a product of matrices of output-delays and the delay­

free process or as a product of the delay-free process and input-delays. It is clear 

that this decomposition enlarges the inner dimension of the description, which 

might be thought to limit the usefulness of the decomposition. However the 

combination of this decomposition with a generalised Smith predictor, as will be 

shown in Chapter 6, shows that there is in fact no increase in the dimensionality of 

the closed-loop system. 



59 

3.8 REVIEW 

In this chapter, representations of multivariable time-delayed processes have been 

investigated. A general form of time-delayed multivariable transfer function was 

derived in which the delays were identified as input, output or state delays. 

Two key results, Theorems 3. 1 and 3.2, were presented. Theorem 3 . 1  

shows that a pseudo-commutativity of matrix multiplication i s  possible. Theorem 

3.2 presents a method in which an element by element matrix product can be 

written as the product of two matrices. 

Theorems 3 . 1 and 3.2 were then used to prove Theorem 3.3 which shows 

that a general time-delayed multivariable transfer function can be written with all 

the delays appearing as input-delays, or alternatively with all the delays appearing 

as output delays. 

These results provide the necessary tools for the development of a 

multivariable Smith predictor, which is presented in Chapter 6. However, as will 

be shown in Chapter 4, Theorems 3 . 1  and 3.2 are completely general and can be 

applied to non time-delayed descriptions. 



4 FORMULATION OF STATE­

SPACE DESCRIPTIONS FROM 

TRANSFER FUNCTION 

DESCRIPTIONS 

4.1 INTRODUCTION 
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Model conversions between transfer function and state-space descriptions of 

processes are common problems encountered by control engineers. However, this 

reformulation often requires an artificial state-space to be created, or numerical 

methods, as opposed to analytical methods, to be applied. 

The pseudo-commutativity theorems of Chapter 3 have a perhaps 

unsuspected use in converting transfer function descriptions into state-space 

descriptions. A method presented in this chapter offers a simple procedure to 

generate a block diagonal state-space description from any rational multivariable 

transfer function. 

In Section 4.2, a simple 2 by 2 delay-free transfer function is 

reformulated as a state-space description, usin� Theorem 3 .2.  The method used in 

this transformation is then formalised in Section 4.3. 

In Section 4.4 · the reformulation method is extended to time-delayed 

processes. 

In Section 4.5 the stability, observability and controllability of time­

delayed processes is explored using an extension of delay-free state-space 
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methods made possible by the formulation of time-delayed state-space 

descriptions in Section 4.4. 



f 
• .. I 

4.2 REFORMULATION OF TRANSFER FUNCTION 

DESCRIPTIONS AS STATE-SPACE DESCRIPTIONS 

62 

Consider Example 4. 1 in which a state-space description of the process is obtained 

from a transfer function description of the process using Theorem 3 .2. 

EXAMPLE 4.1 :  

Consider the delay-free process transfer function: 

[(s� 
1 ) (s

!
2) J G(s) = 2 - 1 -- --(s+3) (s+4) 

Using Theorem 3 .2 it may be represented as follows 

( I 3 
(s+ 1 )  (s+2) 

G(s) = _2_ - 1 
(s+3) (s+4) 

= CG+(s) 

where 

and 
1 

(s+ 1 )  � 
+ 

0
1 s+2 G (s) = 

s+3 � 
0 -s+4 

1 

}u (s+1) � 
3 0 -� ) � s+2 
0 2 - 0  s+3 1 

0 -s+4 

(4.2 . 1 ) 

(4.2.2) 

(4.2.3) 

(4.2.4) 

(4.2.5) 
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By using Theorem 3.2 again G+(s) can be expanded so that: 

1 0 1 0 0 0 0 0 0 0 0 0 s+ 1 0 0 1 0 0 0 s+2 0 0 0 0 0 1 G(s) = C 1 1 0 0 0 0 0 0 0 0 s+3 1 0 0 
0 0 0 0 0 0 0 s+4 0 0 

0 1 

(4.2.6) 

Since rows 2, 3, 6 and 7 of the far right matrix in Equation (4.2.6) are all zero, 

these rows and the corresponding columns of the central matrix in Equation 

(4.2.6) make no contribution to the transfer function and may be removed. Hence 

1 0 0 ·o s+1 1 

u 
0 } C(si-A)- 1  B . 

0 s+2 0 0 1 G(s) = C 1 0 0 0 0 s+3 1 1 
0 0 0 s+4 

(4.2.7) 

where 

=U 
0 

J B 1 
(4.2.8) 0 

1 

The second equality of equation (4.2.7) defines (si - A)- 1 • The matrix A can easily 

be seen to be the diagonal matrix 



A = ( - 1  
0 
0 
0 

0 
-2 
0 
0 

0 
0 

-3 
0 jJ 

Hence a state-space description of this delay-free process is 

dx 
dt = Ax(t) + Bu(t) 

y(t) = Cx(t) 
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(4.2.9) 

(4.2 . 10) 

(4.2. 1 1) 

where A, B, and C are given by Equations (4.2.9), (4.2.8) and (4.2.4) respectively. 

In this example, a state-space description of the process has been 

obtained from the transfer function description of the process using the Theorems 

3. 1 and 3.2. This derivation of a state-space description was extremely simple 

compared with other methods of deriving state-space descriptions from transfer 

function descriptions. The method can be extended to any multivariable transfer 

function �atrix as is formalised in the following section. 



4.3 A M ETHOD FOR TRANSFORMING TRANSFER 

FUNCTION REPRESENTATIONS OF PROCESSES TO 

STATE-SPACE DESCRIPTIONS 
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In this section the method, suggested in Section 4.2, for obtaining state-space 

descriptions from transfer function descriptions of processes is formalised. 

COROLLARY 4.1 :  Any transfer function description of a process can be 

transformed to a state-space description using Theorem 3.2. 

Proof There are four cases that must be considered. They are: 

1 .  All elements of the multivariable transfer function matrix 

are first order; 

2 .  One element of the multivariable transfer function is of 

second or higher degree with no repeated roots in that 

element; 

3 .  Several elements of the multivariable transfer function have 

degree greater than one but no element has repeated roots; 

4. Repeated roots in an element of the multivariable transfer 

function. 

4.3.1 CASE 1:  ALL ELEMENTS OF THE TRANSFER 
FUNCTION ARE FIRST ORDER 
In Case 1 ,  the transfer function is of the form 



_ill_ c l Ly-au 
..E.u... C I2y-a12 _m_ . _m_ 

G*{y) = 
C2 Iy-a2 1  

c22y-a22 

J?.r.L J2r2... Cfly-ar l  
Cr2y -ar2 

Using Theorem 3.2 this can be written as :  

G(y) = CG+(y) 

where 

c 

and 

=C lt 

-

_1
_1 yt-al l  q 

_1 _1 
rra12 q 

_1_1 
rrarq q 

Defining B such that 

C 12b 1 2  C }qb l q 
0 0 

0 0 
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C } .!J..q_ qy-al q 
C2 � 
qy-a2q (4.3. 1 ) 

b Crq� 
y-arq 

(4.3.2) 

0 0 

CrqL J c2 1b2 1 0 

0 0 

(4.3 .3) 

(4.3 .4) 



-
= {o1 [Blij 

if [G+] ij :;tO 
otherwise 

Theorem 3.2 can be used to show that 

G1+ 0 0 0 
0 G2+ 0 0 

G+ = 

0 0 0 . . .  Gq+ 

= A B+ 

(4.3 .5) 

DB 1 
DB2 

(4.3.6) 

n -Bq 

(4.3 .7) 

where DB- is the diagonal matrix with the ith row of B along the main diagonal. 
1 
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From the structure of G+ in Equation (4.3.4) it is clear that each Gi+ (and 
-

the corresponding B) contains exactly one non-zero element. Hence the columns 
- -

of A and the rows of B+ containing only zero entries make no contribution to the 
-

transfer function and can be removed leaving q non-zero_ columns of A and q rows 

o,f B+, which can be identified with (yi-A)- 1 and B respectively. 

G(y) = C(yi-At 1 B 

1 0 0 
0 1 0 

0 0 0 
B = 1 0 0 

0 1 0 

0 0 0 

- and 

0 
. . 0 

1 
0 
0 

. . .  1 

(4.3.8) 

(4.3.9) 



(yi-At1 = 

1 
0 0 . . .  0 

y-al l 1 
o -o . . .  o y-al2 

0 0 

68 

(4.3. 10) 

Clearly since (yi-At 1 is a square and diagonal matrix, it can be inverted to obtain 

A: 

a1 1 0 0 . . . 0 
0 a12 0 . . .  0 

A = (4.3 . 1 1 ) 

0 0 . . .  arq 

It is clear that each individual root adds one row and column to the state�transition 

matrix, one row to the B matrix and one column to the C matrix. 

Example 4. 1 illustrates the method of obtaining a state-space description 

of a two-input two-output transfer function description in which each element is 

of first order. 

4.3.2 CASE 2: ONE ELEMENT OF THE TRANSFER 
FUNCTION IS OF SECOND OR HIGHER DEGREE 
In the case where one element of the transfer function is of order two or higher 

that element of the transfer function is of the form 

- c · ·  

- IJ Ianl 0 � k � I, (4.3 . 1 2) 

I 
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Since the order of the inputs and outputs is arbitrary, they can be reordered so that 

this element is in the ( 1 ,  l)th position. 

Hence as before: 

G(y) = 

c l lg+n(Y) cl2g+dy) 
C21g+ 2 1  (y) C22g+ 22C'Y) 

C 1qg+ 1 qC'Y) 
C2qg+ 2qC'Y) 

Crqg+ rq(Y) 

g+ l l  (y) 
0 

0 
g+ 2 1 ('¥) 

0 

g+ n(Y) 

(4.3. 1 3) 

0 0 

g+ 12('¥) 0 

0 g+ 1qC'Y) 
0 0 

g+ 22C'Y) 
g+ 2q(Y) 

g+ rz("() 
g+ rq(Y) 

(4.3. 14) 

By assuming that there are no repeated roots in the denominator a partial fractions 

expansion of the first element of this transfer function matrix can be written as 

(4.3. 1 5) 

One way of representing this summation in G(y) would be to add a row and 

column for each of these addends: 
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C" el l  C12 Ctq  0 0 

c:J G(y) = � 0 0 0 Czt 

0 0 

g+ l l t CY) 0 0 

g+t d'Y) 0 0 

g+ 1 1nCY) 0 0 
0 g+ 12(y) . . .  0 

0 0 · · ·  g+ tqCY) 
g+ zt (Y) 0 

0 0 . . . g+ rqCY) 

(4.3. 1 6) 

where (4.3 . 17) 

and applying the result of Theorem 3 .2 on the right hand matrix ,  cancelling out 

the rows and columns with only zero entries leaves: 



7 1  

g+ l l l ('Y) 0 0 

g+ 1 12('¥) 0 0 

g+ l m('Y) 0 0 
0 g+ 1 2('¥) 0 

0 0 g+ lq()') 
g+ 2 1 ('¥) 0 

0 0 g+ rq('Y) 
1 

0 0 0 0 
r- al i i  f3t t l  0 0 

1 0 0 0 0 {31 12 0 0 r- al l2 
0 

0 1 
0 0 0 f3t tn 0 0 

r- al ln 0 {312 0 
0 0 

1 

r- a12 0 0 f3rq 1 

r- arq 

(4.3. 1 8) 

As before the A matrix can be easily obtained since the (yl-A)-1 matrix IS 

diagonal. 

Remarks: 

J :  The transfer function G(y) = C(yi-At lB can be written as [ (yl-AI I  +t 1 

+ 0 
Cqr ] . 

0 0 

(4.3. 1 9) 
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where Aij+ is the diagonal matrix with the poles of the ijth element of the 

transfer function, 

Bij+ contains the rows of B+ that contain the coefficients bij (and 

in the case of B + 1 1  contains the coefficients bijk) 

and Cij+ are the columns of C + that contain the coefficients Cij · 

2. A number of possible transformations of this process description exist: 

the order in which the inputs and outputs are indexed could be modified 

or the order in which the submatrices, (yi-Aij+) appear on the diagonal 

of the innermost matrix of Equation ( 4.3. 19) could be changed. 

3. If the order of the inputs is modified, then only the order of the columns 

of B + is changed. Similarly if the order of the outputs is modified then 

only the order of the rows of c+ is changed. In both these cases, the 

ordering of the innermost matrix is not effected. 

4. If two of the submatrices (yi-A +ii) are interchanged, the order of the 

corresponding B · ·+ lJ are interchanged and the corresponding Cij+ 

matrices are interchanged, the overall process description is unaffected. 

However, since in the innermost matrix only diagonal elements on the 

main diagonal have been interchanged, the innermost matrix remains 

diagonal . Hence the corresponding state-space description will retain a 

diagonal state-transition matrix. 

Example 4.2: The process transfer function 

G(s) =( (s+2)(s+1 )  
2 

(s+3) 

(4.3.20) 



can be expanded using Theorem 3.2 so that: 

G(s) = C 

where C = ( � 

1 
(s+2)(s+ 1 )  

0 

0 

0 

1 0 � ) 0 1 

0 0 0 
1 

0 0 s+2 
0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 
1 

0 0 0 s+3 
1 

0 0 0 s+4 

Since the first element of this transfer function can be written as: 

1 1 1 
(s+2)(s+1)  = (s+1 )

-
(s+2) 

the transfer function can be expanded as: 

- 1  
(s+2) 0 0 0 

1 -- 0 0 0 (s+1 )  
1 G(s) = c+ 0 0 0 s+2 

0 0 0 0 

0 0 0 0 

where 

c + =( � 1 1 0 0 ) 0 0 1 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 s+3 
1 

0 0 0 s+4 
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1 0 
0 0 
0 0 
0 3 
2 0 
0 0 
0 0 
0 - 1 

(4.3.2 1 )  

(4.3.22) 

(4.3.23) 

1 0 
0 0 
0 0 
0 3 
2 0 
0 0 
0 0 
0 - 1 

(4.3 .24) 

(4.3.25) 
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S ince rows 2 ,  3 ,  6 and 7 of the far right matrix in Equation (4.3 .24) are all 

zero, these rows and the corresponding columns of the central matrix in Equation 

(4.3.24) make no contribution to the transfer function and may be removed. Hence 

G(s) = c+ 

or 

G(s) = c+ 

- 1  
(s+2) 

1 
s+1 
0 

0 

0 

1 
(s+2) 

0 

0 

0 

0 

where 
- 1  0 
1 0 

B = 0 3 
2 0 
0 - 1  

0 

0 
1 

s+2 
0 

0 

0 
1 

s+ 1 
0 

0 

0 

0 

0 

0 
1 

s+3 
0 

0 

0 
1 

s+2 
0 

0 

0 

0 

0 

0 
1 

s+4 

0 

0 

0 
1 

s+3 
0 

0 

0 

0 

0 
1 

s+4 

The matrix A can easily be seen to be the diagonal matrix 

-2 0 0 0 0 
0 - 1  0 0 0 

A = 0 0 -2 0 0 
0 0 0 -3 0 
0 0 0 0 -4 

Hence a state-space description of this delay-free process is 

(4.3.26) 

(4.3.27) 

(4.3 .28) 

(4.3.29) 



dx dt = Ax(t) + Bu(t) 

y(t) = c+x(t) 

75 

(4.3.30) 

(4.3.3 1 )  

where A ,  B and C are given by  Equations (4.3.29), (4.3.28) and (4.3.25) 

respectively. 

4.3.3 CASE 3: MORE THAN ONE ELEMENT IS OF 
HIGHER ORDER THAN UNITY, BUT NO REPEATED 
ROOTS IN ANY ELEMENT OF THE TRANSFER 
FUNCTION. 
In the case where more than one element in the transfer function is of higher order 

a similar method can be applied. It is possible to move any element of the transfer 

function into the ( 1 ,  l )th position by rearranging the rows and columns of the 

transfer function. Hence it is possible, by using Remark 4. 1 to identify a diagonal 

submatrix Aij as well as matrices Bij+ and Cij+ corresponding to each element 

o� the transfer function. Hence it is a simple process to construct a state-space 

description for the system. 

4.3.4 CASE 4: REPEATED ROOTS. 
The remaining case to be considered is the case of repeated roots in any element 

of the transfer function. 

Assume initially that the remainder of the transfer function is 'well­

behaved' and that a single element, the (k,l)th element, of the transfer function that 

has repeated roots is of the form: 

(4.3.32) 

where j sums over the non-repeated roots. 



t­' 

76 

The non-repeated roots, aklj • can be dealt with as in Case 2 which leaves the 

subproblem of the repeated roots, akl . That portion of the input-output relationship 

that the repeated roots determine is given by: 

Expanding Equation (4.3.33) as: 

n- 1 
(y-akl)ny• = LbkliYiu• 

i= l 

(4.3.33) 

(4.3.34) 

It can be seen that Equation (4.3.34) can be written, using the binomial expansion, 

as: 

( 4.3.35) 

A state-space description of this subproblem can then be constructed. One such 

state-space description would be: 

px(t) = A;1x(t) + B;1u' (t) 

y' (t) = c;lx(t) 

where 

A� ; (�:: A�y) 

(4.3 .36) 

(4.3.37) 

(4.3.38) 

(4.3.39) 
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cz = [�:] (4.3.40) 

0 0 0 0 
0 0 0 0 

Ayu = (4.3.4 1 )  
0 0 0 0 

bkl l bkl2 bkl3 bkln- 1 

0 1 0 0 
0 0 1 0 

Ayy = 0 0 0 1 

( � J -akl)n- 1 G}-akl)n-2 (� J -akl)n-3 (n� 1 J -aki) 1 

(4.3.42) = ( : 
1 0 0 

J Auu 0 0 0 (4.3.43) 

. 0  0 0 1 

1 
0 

Bu = (4.3.44) 

0 
0 
0 
0 

By = (4.3.45) 

1 

Cy =( 1 0 0 .. . 0 0 ) (4.3 .46) 

This procedure can be repeated for each element in the transfer function 

that has repeated roots. A simple extension to Remark 4. 1 ensures that it is 



'· 

.. f 

, ·  . 

; 
s 

- -..__ 
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possible to identify a block diagonal submatrix Aij+ as well as matrices Bij+ and 

Cij+ corresponding to each element in the transfer function. 

Example 4.3: Consider the process described by the transfer function: 

G(s) - [ (s:1)2 - 2 
(s + 3) 

(s�2)] 
- 1  

(s +4) 

(4.3.47) 

The ( 1 , 1  )th element of this transfer function is the only element of this transfer 

function that has repeated roots. A state-space description for this element can be 

written as: 

dx1 1  (t)  
= 
[ 0 1 ]x (t)  + [O]u (t) 

dt -1 -2 J l 1 I 

and 

(4.3 .48) 

(4.3 .49) 

The remaining elements in the transfer function are the same as those in 

the transfer function used in Example 4. 1 .  Hence a state-space description of the 

process described by Equation (4.3 .47) could be presented as: 

0 1 0 0 0 0 0 

- 1 -2 0 0 0 0 
dx 

0 0 -2 0 0 x(t) 0 3 u(t) (4.3 .50) - = + 
dt 

0 0 0 -:. 3  0 2 0 

0 0 0 0 - 4  0 - 1  

and 

-



y(t) = ( b 0 
0 

1 
0 

0 
1 (4.3 .5 1 )  
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This method will always produce a state-space description which i s  block 

diagonal . However there are circumstances when it is possible to obtain a smaller 

state-space description by other analytical methods. Further work is required to 

extend the method described in this chapter to ensure that it produces minimal 

state-space descriptions. 
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4.4 TIME-DELAYED STATE-SPACE DESCRIPTIONS 

. In this section state-space descriptions of time-delayed processes are derived. It 

will be shown that these state-space descriptions are interesting since the state-

transition matrices are the same in both descriptions and the time-delays appear 

only in the inputs or the outputs. 

CoROLLARY 4.2: Any time-delayed process of the form presented in Equations 

(3.3 .5)-(3 .3 .8) can be written in the state-space form 

px(t) = Ax(t) + B*(q- 1 )u(t) (4.4. 1 )  

(4.4.2) 

in which the delays appear either in the input matrix, B*(q- 1 ) or in the 

measurement matrix c*cq- 1  ), where 

n�. B\q-I ) = LB;q-'; (4 .4.3) 
i=l 

and 
n • 

c· cq-1 ) =  .!cjq-1:' (4.4.4) 
i=l 

Proof: 

The process can be represented as in Equations (3 .3 .5)-(3 .3 .8). 

(3.3 .5) 

.. ...... 
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ne 
Dt(Y) = LCkE(y,-'Yk) (3.3.6) 

k= l 

ns 
Dz(y) = LBjE(y,-�j) (3.3.7) 

j= l 

and 
a 1 1 (y)EC:y. -'t 11) ap(:i)E(y,--rp) aiD(y)E(y,-'tiD) 

bl i (Y) bn(y) bln(Y) 
a, I (y)E(y, -'t, I) a,(1)E(y,--r,2) a2D (:i)E(Y, -'t,D) 

b2l (y) b22(y) b2n(Y) 
Gp(Y)= 

ami (y)E(y,--rml) am,(:i)E(y, -'tm') amo (:i)E(y, -'two) 
bm! (Y) bm2(y) bmn(Y) 

(3.3.8) 

By expanding Equation (3 .3.5) it can be seen that the elements of G*(Y) can be 

expressed as: 

(4.4.5) 

Now the E("f,'tij) terms can be grouped either with the bij or with the Cij 

coefficients. If the E("f,'tijk) terms are grouped with the Cijk coefficients the 

elements b * ijk and c * ijk can be defined as :  

* c . .  k - c· ·kE("��-T "k) lJ - lJ • • lJ (4.4.6) 

b*ijk = bijk 

= bijkE(y,O) (4.4.7) 
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Otherwise, grouping the E(y,'tijk) with the bijk coefficients allows the definition 

* * of b · ·k and c · ·k as IJ IJ 

and 

* C ijk = Cjjk 

= CijkE(y,O) 

b* · ·k - b· ·kE(g 't· ·k) IJ - IJ • IJ 

In either case the transfer function can be written as 

nl.l 

I, cm •bt tk • gl l k (y) 
k=l 
nz.J 

nl2 

L ct2k •bt2k • gl2k ( Y) · · 
k=l 

nl..q 

L clqk •btqk • gtqk ( Y) 
k=l 

"2.2 n'Ll 

(4.4.8) 

(4.4.9) 

G(y)= L Cm •b2tk • g2lk ( Y) L c22k .b22k • g22k ( Y) · ·  L c2qk •b2qk • g2qk ( Y) 
k=l k=l k=l 
n,.l n2 n,J/ 

LCrlk •brlk • grlk (y) 2: cr2k ·br2k • gr2k c r) 2: crqk ·brqk • grqk c r) 
k=l k=l k=l 

(4.4. 10) 

The methodology used in Corollary 4. 1 can be used to present the process 

description as: 

px(t) = Ax(t) + B*u(t)) (4.4. 1 1 ) 

* y(t) = C x(t) (4.4. 12) 

The matrices B* and c* are of the form 

M*(Y)= L E(y,--rk )Mk. (4.4. 13) 
k 



It can be easily seen that M*(y)x(y) is the generalized transform of : 

� M,x(t - �, ) = ( � M,q-'• }(I) 
= M*cq- 1 )x(t) 

where 

M*cq-1 ) = LMk*q-'ti 

k 
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(4.4. 14) 

(4.4. 1 5) 

(4.4. 1 6) 

where k sums over all the time-delays, and Mi * are a set of constant matrices that 

can be identified from the coefficients of M* . 

Hence Equations (4.4. 1 1 ) (4.4. 1 2), can also be written in  the form: 

px(t) = Ax(t) + n*cq- 1 )u(t) (4.4. 1 7) 

y(t) = c*c q- 1 )x(t) (4.4. 1 8) 

One notable feature is that the state-transition matrix, A, is the same for 

both the input-delay form and the output-delay form. This is not entirely 

unexpected since this matrix determines the poles of the process. However it is 

now clear that even the plant-delays, that could not previously be separated from 

the dynamics of the process, can now be presented using either input or output 

delays. 
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In this form of state-space description the delays are intermingled with 

the delay-free dynamics of the process in the B*{q- 1 ) and c*(q- 1 ) matrices. The 

following corollary provides a means in which these can be separated. 

COROLLARY 4.3: Any time-delayed process of the fonn presented in Equations 

(3 .3 .5)-(3 .3.8) can be written in either the input delay fonn of state-space 

description 

px(t) = Ax(t) + B+Du(q- 1  )u(t) 

y(t) = Dy( l )C+x(t) 

or in the output delay fonn of state-space description: 

px(t) = Ax(t) + B+Du( l )u(t) 

y(t) = Dy( q- 1 )C+x(t) 

(4.4. 19) 

(4.4.20) 

(4.4.2 1 )  

(4.4.22) 

Proof: Corollary 4.2 provides a means in which the process can be described by 

Equations ( 4.4. 1 ), ( 4.4.2). It remains to be shown that this state-space form can be 

written in either the form of Equations ( 4,4, 19)-( 4.4.20) or in the form of 

Equations ( 4.4.2 1 )-( 4.4.22). 

In Corollary 4.2 the delays were grouped with either the bijk or with the 

Cijk· if the E(y,-'t) were associated with the bijk· then implicitly E(O,-'t)=1 was 

associated with the Cijk alternatively if the E(y,-'t) were associated with the Cijk· 

then implicitly E(y,0)=1 was associated with the bijk· In either case Theorem 3 .2 

provides a means by which B*c q- 1 ) and c*c q- 1 ) can be written as 

(4.4.23) 

· - �-
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and 

(4.4.24) 

If the E(y,-'t) were grouped with the bijk then the delays were considered to be 

input-delays, in  which case Dy(q- 1 )=Dy( 1 ). Hence it can be seen that the process 

can be described in the input-delay form, Equations (4.4. 1 9)-(4.4.20). 

Alternatively if the delays were grouped with the Cijk the they were considered to 

be output-delays and the process can be described in the output-delay form, 

Equations ( 4.4.2 1 )-( 4.4.22). 

Example 4.4 : Consider the simple 2 by 2 transfer function (e-2s 3e-s 

J 
-- --

* (s+1 )  (s+2) 
G (s) = 2e-3s -e- 1 .5s 

(s+3) (s+4) 

(4.4.25) 

By grouping the delays in the c*ij elements the transfer function can be written 

using Corollary 4. 1 in an output-delay state-space form: 

where 

!� = Ax(t) + (� � }(t) 

0 - 1 

(q-2 q- 1 0 0 } 
y(t) = 0 0 q-3 q- 1 .5 (t) 

(4.2.26) 

(4.4.27) 



A = ( -� 0 
-2 
0 
0 

0 
0 

-3 
0 
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JJ (4.4.28) 

or by grouping the delays in the bij * the process can be rewritten using Corollary 

4. 1 in an input delay form: 

( q-2 0 } dx 0 3q- 1 
dt = Ax(t) + 2q-3 0 (t) 

0 -q- 1 .5 

( 1 1 0 0 } 
y(t) = 0 0 1 1 (t) 

Where A is defined in Equation ( 4.4.28). 

By defining B+, Du(q- 1 ) and Dy(q- 1 ) 

( 1 0 0 0 

J B+ _ 
0 3 0 0 

- 0 0 2 0 
0 0 0 - 1 

and 

- 1 ( q-2 q- 1 0 0 ) 
Dy(q ) = 0 0 q-3 q- 1 .5 

(4.4.29) 

(4.4.30) 

(4.4.3 1 )  

(4.4.32) 

(4.4.33) 

it can be seen, by inspection, that in both cases the process could be written as: 
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dx 
dt(t) = Ax(t) + B+v(t) (4.4.34) 

y(t) = c*x(t) (4.4.35) 

When the process is described using the input-delay form it can be seen that 

q -2 0 

0 -3 
v(t) = q 

-I 0 
u(t) 

q 
0 

q-1.5 

=Du(q-l )u(t) · (4.4.36) 

and 

* C = Dy(l )  (4.4.37) 

and when the process is described in the output-delayed form 

v(t) 

(
q-2 0 

J 0 q-3 
= q- 1 0 

0 q- 1 .5 
q= l 

u(t) 

= Du( l )u(t) (4.4.38) 

and 

c* = DyCq-• ) 

= ( q�' q�' 

q�' q� ') (4.4.39) 



4.5 ANALYSIS OF TIME-DELAYED STATE-SPACE 

DESCRIPTIONS 
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There are well established methods for assessing the stability, controllability and 

observability of state-space descriptions of delay-free processes such methods are 

described by numerous authors, for example, Kwakemaak and S ivan ( 1 972), 

Ogata, ( 1 989) and Middleton and Goodwin (1990). In this section it will be 

shown that the properties of time-delayed state-space descriptions can be found by 

considering the properties of an equivalent delay-free state-space description. 

Definition 4. 1: The time-delayed state-space description 

px(t) = Ax(t) + B *c q- 1  )u(t) 

has the auxiliary or equivalent delay-free state-space description 

px(t) = Ax(t) + B*( l )u(t) 

y(t) = C*( l )x(t) 

(4.5. 1 )  

(4.5.2) 

(4.5.3) 

(4.5 .4) 

Remark: It can be easily seen that the state-space description, Equations (4.5 .3)­

(4.5 .4) contains no time-delays. This state-space description is clearly very closely 

related to the time-delayed process, Equations (4.5 . 1 )-(4.5 .2). 

Lemma 4.4: The open-loop poles of this auxiliary state-space description, 

Equations (4.5.3)-(4.5.4) exactly coincide with the poles of the time-delayed 

process. 
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Proof: The poles of  the open-loop process can be found by finding the 

eigenvalues of the-state-transition matrix A. Clearly the state-transition matrix for 

both the time-delayed and the auxiliary state-space descriptions are identical. 

Hence the eigenvalues must also be identical. 

Lemma 4.5: The time-delayed process, Equations (4.5. 1)-(4.5.2) is completely 

observable if an auxiliary delay-free state-spaces description of the process is 

completely observable. 

Proof· The time-delayed process can be written in  either an input-delayed or an 

output-delayed form. By choosing to write the process in an input-delay form it 

can be seen immediately that the observability matrix of the time-delayed process 

Q = 

c· o) 
c· ( l)A 

(4.5.5) 

is exactly the same as the observability matrix of the auxiliary state-space 

description. 

Lemma 4. 6: The time-delayed process, Equations (4.5. 1)-(4.5.2) is completely 

controllable if an auxiliary delay-free state-spaces description of the process is 

completely controllable. 

Proof" The time-delayed process can be written in either a input-delayed or an 

output-delayed form. By choosing to write the process in an output-delay form it 

can be seen immediately that the controllability matrix of the time-delayed process 

(4.5 .6) 
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is exactly the same as the controllability matrix of the auxiliary state-space 

description. 



9 1  

4.6 REVIEW 

In this chapter a method of obtaining state-space descriptions from transfer 

functions has been presented. This method has three advantages: 

The first advantage is that the method naturally generates state-space 

descriptions that are block diagonal. Each of the blocks in the state-space 

descriptions can easily be identified with the individual elements of the transfer 

function. 

The second advantage is that the method does not rely on numerical 

methods apart from determining a partial fraction representation of each element. 

Hence if the poles and zeros of the process are known exactly, the state-space 

description will be exact. 

The third advantage is that the method easily extends to time-delayed 

processes. When multivariable time-delayed transfer functions are transformed, 

the engineer has a number of choices as to where the time-delays will appear as 

input delays or as output delays or some combination of the two. 



5 DISCRETE-TIME NON­
MINIMAL STATE-SPACE 
DESCRIPTIONS 

5.1  I NTRODUCTION 
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This chapter introduces the Non-Minimal State-Space (NMSS) description. The NMSS 

description is a discrete-time state-space description that is extremely useful for 

studying time-delayed processes. Two forms of NMSS description are described in this 

chapter. The first form, which has previously been applied to control of time-delayed 

processes, includes all the delayed inputs and outputs in the state vector. The second 

form is developed using the results of Chapter 3 for the discrete-time version of the 

general time-delayed process description. This second form is a discrete-time analogy 

of the time-delayed state-space descriptions developed in Chapter 4. 



5.2 NON-MINIMAL STATE S PACE (NMSS) PROCESS 

DESCRIPTIONS 

In this section a Non-Minimal State-Space (NMSS) description will be constructed 

that describes a multivariable time-delayed process. The NMSS description is a 

discrete-time state-space description that, while intuitively simple, has not received 

very much attention in the literature. Hesketh ( 1 98 1 ,  1982) developed a self-tuning 

controller based on an NMSS description. Chotai and Young ( 1988), showed that 

NMSS descriptions could be used to implement a discrete-time form of Smith 

predictor. Crawford and Austin ( 1 988) used a controller based on an NMSS 

description to control an evaporator. Young Behzadi Wang and Chotai ( 1 987) Wang 

and Young ( 1988a, 1 988b), and Young Behzadi and Chotai ( 1 988) consider an 

extension of NMSS descriptions called Proportional Integral Plus (PIP) in which by 

using the NMSS description, the control action implicitly includes integral action. 

In this chapter it is assumed that the processes considered are discrete-time 

processes. Hence it will be assumed, in this chapter, that the backward-shift operator 

is defined for only discrete time-steps, that is: 

q-kx(x) = x(t-k) k e J+, the positive integers, 

The NMSS description can be constructed by explicitly using the definition 

of the backward shift operator. Equation (2.2.3) is a general input-output model of a 

time-delayed multivariable process, such as would be obtained from modelling the 

process using a model identification technique such as recursive least-squares: 

A(q- 1 )y(t) = B(q- 1 )u(t) + E(q-1 )w(t) 

ncl q1xl '12Xl 
where y e R  . u e R  .w e R  

(2.2.3) 
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This equation consists of three parts: The autoregressive component, 

au (q-1 ) 
al2 (q-1 ) 

alr (q-1 ) 
A(q-1 ) 

= 
a2

1 
(q-1 ) 

a22 (q-1 ) 
a2r (q-

l
) 

arl (q-1 ) 
ar2 (q-1 ) 

arr (q-1 ) 

and two moving average components, 

and 

where 

naij 
a · · cq- 1 ) - 8· ·  + "a · ·kq-k lJ - lJ L. lJ , 

k=l 

if i=j 
otherwise 
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(5.2. 1 )  

(5.2.2) 

(5.2.3) 

(5 .2 .4) 

(5.2.5) 



nxij 
Xij(q- 1 ) = LXijkq-k. 

k=1 
(5.2.6) 

where nxij is the order of polynomial Xij · The dij and the kij are the pure delay 

elements associated with each element of B(q- 1 ) and E(q- 1 ) respectively. That is, 

the elements of the matrices A(q- 1 ), B*(q- 1 ) and E*(q- 1 ) are polynomials in the 

backward shift operator, q- 1 . 

The A(q- 1 ) polynomial matrix can be written as 

na 
A(q- 1 ) = I + LAkq-k 

k= 1 

where 

max na· ·  
na = IJ 

i j  

the B( q- 1 ) polynomial matrix can be written as 

B(q- 1 ) = �*kq-k 

k=1 

and similarly the E( q- 1 ) polynomial matrix can be written as 

ne 
E(q- 1 ) = LE*kq-k 

k=1 

(5.2.7) 

(5 .2.8) 

(5.2.9) 

(5.2. 1 0) 

where the Aj, Bj and Ek are constant matrices (identified from the coefficients of · 

the aij · bij and eij polynomials), 
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and 

max(d .. +nb· ·) 
= • •  

IJ IJ 
Db IJ (5.2. 1 1 ) 

(5.2. 1 2) 

It can be seen by substituting (5.2.7) (5.2.9) and (5.2. 1 0) into (2.2.3) that 

which can be easily rewritten using the definition of the backward shift operator 

as: 

y(t) = -(
.
�Aiy(t-i)J+ ( '}�Bju(t-j)J+ ( fEkw(t-k)J 
1= 1 �=1 k= 1 

The NMSS description can be obtained by choosing 

x(t) T =[y(t) T,y(t- 1 )  T, . . . ,y(t-n+ 1 )  T,u(t- 1 )  T,u(t-2)T, . . . ,u(t-nb+ 1 )T, 

(5.2. 14) 

w(t- l )T,w(t-2)T, . . . ,w(t-ne+ l )T] (5.2. 1 5) 

since the process description can then be written as 

y(t) = (-At -A2 ... -An B2 B3 ... B0b E2 E3 ... Ene))x(t- 1 )  

+ B 1u(t- 1 )+ E 1d(t- 1 )  

Hence the process can be written in NMSS form as: 

(5.2. 1 6) 
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* * * * * X (t) = <I> X (t- 1)  + r u(t- 1 )  +A w(t- 1 )  

and 

y(t) = cx*(t) 

where 

<I>* 

and 

<l>l l 

<I>* 1 2  

<I>* 
1 3  

<I>* 
22 

<I>* 
33 

<1>;2 [$" $:'] = <1>�1 <1>;2 <1>23 <1>31 <r>;2 <1>;3 

= 

At A2 A3 
I 0 0 

0 I 0 

0 0 

0 0 . . . 0 
. . . 

c2 B3 · · ·  
Bnb 

J . 0 0 . . .  0 

= 

= 

[E2 E3 .. . En, 

J 0 0 . . .  0 
. . . 

0 0 . . .  0 
0 0 0  . . .  0 0  
I O O  . . .  O O  
O I O  . . . O O  
. . . . . . . .  

o o o  . . .  I o 

0 0 0  . . .  0 0  
I O O  . . .  O O  
0 1 0  . . .  0 0  
. . . . . . . .  

0 0 0  . . .  ! 0  

An 
0 

0 

I 0 
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(5.2. 1 7) 

(5.2. 1 8) 

(5.2. 1 9) 

(5.2.20) 

(5.2.2 1 )  

(5.2.22) 

(5.2.23) 

(5.2.24) 



.m.* .m.* .m.* .m.* . 
f . 

d" 
. 

'*' 2p'*' 23 ,'*' 3p'*' 32 are zero matnces o appropnate 1mens10ns. 

r* = c CB 1 ) T o  o o 1 o o o o o o o o o ) T 

�* = ( (E 1 )T O O O O O O O I O O O O O)T 

and 

C = (I 0 0 0 0 0 0 0 0 0 0 0 0 0) 

This state-space description has dimension: 

(5.2.25) 

(5.2.26) 

(5.2.27) 

(5.2.28) 

The NMSS description, Equations (5.2. 17) and (5.2. 1 8), has an advantage 

over many other state-space descriptions: no observer or filter is required in order 

to obtain the state-vector since the state-vector of an NMSS description consists of 

the input-output record of the plant. 

The NMSS description also has the advantage that when it is used to 

describe time-delayed processes it includes all the delayed inputs and the delayed 

outputs in the state-vector. Chotai and Young ( 1988) showed that it acts as an 

implicit Smith predictor since it makes the closed-loop appear, to the controller, to 

be a delay-free process. The implicit inclusion of the delays in the state-space 

description has also been used in the optimal control of an evaporator (Crawford 

and Austin, 1 988) as will be seen in Chapter 9. 

However this description does have some disadvantages. One 

disadvantage is that the transition matrix, et>, for any NMSS description is singular. 

Hence computing optimal state-feedback controllers is more difficult than is the 
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case with some other state-space descriptions since the solution of the discrete­

time Riccati equation by the · eigenvector method of Potter [Pappas, Laub and 

Sandell ,  1 980] cannot be used. However, it is still possible to solve the Riccati 

equation by a Schur vector method (Laub, 1 979), a generalised eigenvector 

method, Pappas, Laub and Sandell ( 1 980), or by approximating the solution by 

iterative means (Goodwin and Sin, 1984, p5 1 3-5 1 5). 

Another disadvantage of the NMSS description is that the dimension of 

the state-transition matrix for an NMSS description is large. The large dimensions 

of the NMSS description detract from the attractiveness of applying the NMSS 

description to real problems due to the consequentially large memory and 

computational time requirements. For example, the model of the evaporator used 

in Chapter 9 is a 2 input, 2 output, third-order ARMAX model with a maximum 

delay of 5 time-units. Hence the NMSS description obtained for this process can 

be seen, using Equation (5 .2.28) to have a state-transition matrix of dimension 20 

x 20. 

In the following sectiqn a method, based on the results of Chapter 3, will 

provide a way in which the dimensions of the NMSS description can be reduced. 
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5.3 TIME-DELAYED NMSS DESCRIPTIONS 

In the input-output representation presented in Equation (5.2. 1 )  the B(q- 1 ) and 

E( q- 1 ) polynomial matrices include the time-delays of the process. This means 

that the state-space description obtained in Section 5.2 include all the delays 

implicitly in the model . In this section the results of Chapter 3 are used to obtain a 

NMSS description of a time-delayed process that does not include the pure time­

delays in the state-space description but rather places all the delays in a matrix 

acting on the inputs and hence the delays are not involved in the dynamics. 

The B(q-1 ) matrix polynomial, written as 

q-dt tb l l (q- 1 ) q-dt2bl2(q- 1 ) q-dtqtblqlcq- 1 ) 
q-dztbzt (q- 1 ) q-d22b22( q- 1 ) q-dzqtb2qlcq- l )  

B(q- 1 ) =  (5.2.2) 

q-drtbrl( q- 1 ) q-d,zb,2(q- 1 ) q-drqtbniq- 1 ) 

can be written, using Theorem 3 .2, as 

(5.3 . 1 )  

where 

b,, . . . .  bJ 
(5.3 .2) 

and 

· - -........... 
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1 0 1 

q-du 0 0 0 
0 q-dt2 0 0 

0 0 0 q-dtql 

DuCq- 1 ) = 
q-d2t 0 0 0 

(5.3.3) 0 q-d22 0 0 

0 0 0 

and similarly 

(5.3.4) 

where 

el l  el2 ei'Jz 0 0 0 

E+ (q-1 ) =  
0 0 0 e21 0 0 

0 0 0 0 e,(ql-1> e,ql 

(5 .3.5) 

and 
q-dt t  0 0 0 
0 q-dt2 0 0 

0 0 0 q-dtql 

Do(q- 1 ) = 
q-dzt 0 0 0 

(5 .3.6) 0 q-d22 0 0 

0 0 0 

It is possible to write the system description as 

x+(t) = <r>+x+(t- 1 )  + r+Du(q- 1  )u(t- 1 )  + J:l+D0(q- 1  )w(t- 1 )  (5.3 .7) 



where 

--... 

<I>72 
cl>* [�" 

= <t>;l <t>;2 
�:,] <t>;3 

<I>ll = 

<t>+l2 

<f>+IJ 

<I>\2 = 

<I>\3 = 

<t>;l <t>;2 <t>;3 

A 1A2A3 . . . .  An- 1Ana 
I 0 0 ... 0 
0 I 0 ... 0 
. . . 

0 0 0 ... I 

c+B3+ . . .  Bn•+J 0 0 . . . 0 
. . . 
0 0 . . .  0 l2+E3+ . .  En,+J 0 0 . . .  0 

. . . 
0 0 . . .  0 

0 0 0 0 0 
I 0 0 0 0 
0 I 0 0 0 

0 0 0 I 0 

0 0 0 0 0 
I 0 0 0 0 
0 I 0 0 0 
. . . 
0 0 0 I 0 

0 
0 

0 

m.+ + m.+ m.+ . f 
. d" . 

-.v 21.<1> 23,-.v 3 1 '-.v 32 are zero matnces o appropnate tmensiOns. 

1 02 

(5.3 .8) 

(5.3 .9) 

(5.3 . 10) 

(5.3. 1 1 ) 

(5.3 . 12) 

(5.3. 1 3) 

(5.3 . 14) 



and 

T 
�+ = ((E1+)TO O O O O O O I O O O O O) 

c+ = (I  o o o o o o O) 

The row dimension of <t>+ is: 

(5.3 . 1 5) 

(5.3 . 1 6) 

(5 .3 . 1 7) 

Hence the difference in matrix dimensions, �. when there are no 

disturbances between the two NMSS descriptions is 

� = r na+q1(nb•- 1 )-(r na+rxq 1 (nb- 1 )) 

= q1(nb•- 1 )-rxq 1 (nb- 1 )  

Defining d as :  

_ max dij d - i and j 

it can be seen that 

and that 

(5.3. 1 8) 

(5 .3 . 1 9) 

(5.3.20) 

(5.3 .2 1 )  
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From Equation (5.3 .22) it can be seen that LlN will be positive if 

(5.3 .22) 

That is, when the maximum delay is sufficiently large to satisfy Inequality 

(5.3 .22), the dimension of the state-transition matrix, <t>+, Equation (5.3 .8) is 

smaller than that of <t>* , Equation (5.2. 1 9), in which the delays are included in the 

state-transition matrix. 

If the process contains disturbance inputs, as well as control inputs, the 

analysis of the comparative dimensions is more complicated since there are three 

possible options that can be considered: 

+ all delays are included in the state-transition matrix (the method 

presented in Section 5.2); 

+ only the control-input delays are in the state-transition matrix; 

+ only the disturbance-input delays are in the state-transition matrix and 

no delays in the state-transition matrix (the method presented in Section 

5 .3). 

Each of these options could be considered in a particular application. Although for 

large delays it is clear that the method of Section 5.3 will result in smaller state­

space descriptions, it is possible that one of the other options, listed above, could 

result in a smaller state-transition matrix if the delays are of the same magnitude as 

the model order. 

In the example of the evaporator used in Chapter 9, if the process was 

described using this NMSS description, the state-transition matrix, <t>+, would 

have been 14 by 14. 

However, the NMSS description Equations 5 .3 .8 has the disadvantage 

that there are time-delays operators, Du ( q- 1 ) and D d( q-1) in the description and to 

use this description a compensator for the time-delays inust be used. 
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5.4 REVIEW 

In this chapter Non Minimal State-Space (NMSS) descriptions have been investigated. 

NMSS descriptions have some distinct advantages for the description and control of 

time-delayed processes. However the potentially large size of the state transition 

matrices would appear to make NMSS descriptions less attractive. A modification of 

the NMSS description, using the results of Chapter 3 suggests one way in which a 

limitation of the NMSS description can to some extent be overcome. 



PART C 

A GENERALIZED SMITH 

PREDICTOR 
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6 MULTIVARIABLE SMITH 

PREDICTORS 

6.1  INTRODUCTION 

107 

The Smith predictor is perhaps the best known method of controlling a time­

delayed process. It has commonly been applied to continuous-time single-input 

single-output systems of the form g*(s) = e-'tsg+(s). However, the application of 

Smith predictor methods to multivariable systems has received much less attention .  

In Section 6.2 a derivation of the single-input single-output Smith 

predictor is presented which will be used as a motivation for several multivariable 

extensions of the Smith predictor that depend on the structure of the delay matrices 

in the transfer function description of the process. 

In Section 6.3, the main result of this chapter, a multi variable extension of 

the Smith predictor to quite general time-delayed multivariable processes is 

presented. 

In Section 6.4 the Internal Model Control (IMC) structure is introduced. 

The IMC methodology is applied to time-delayed processes and the relationships 

between the controllers designed this way and those designed using the generalised 

Smith predictor are explored. 

Throughout this chapter it will be assumed that the process is modelled 

exactly and is noise-free, as was the case with the original Smith predictor. 



6.2 SINGLE-INPUT SINGLE-OUTPUT SMITH 

PREDICTORS 

1 08 

In this sec
.
tion the single-input single-output Smith predictor is developed using 

Smith's Method. In subsequent sections the same methodology will be used for 

multivariable processes. 

Smith equated the transfer functions obtained from two closed-loop 

processes: one being the time-delayed process with a controller of unknown 

design, as shown in Figure 6.2. 1 and the other being the desired closed-loop, 

Figure 6.2.2, in which the delays l ie outside the feedback loop and hence act only 

on the outputs of the system. 

r +.o. u y .... 
g * 

.... '<;y f ... ... 
-

� .. �, 
� � 

Figure 6.2.1 

r -fJO\ :; 
k 

.... u ... d .. '<;? .,. g .,. ,... 
y 

-

� ,, 
� . 
..... 

Figure 6.2.2 



The closed-loop transfer function of the system portrayed in Figure 6.2. 1 is 

g*f 
( 1  + g*f> (6.2. 1 )  

The transfer function of the desired closed-loop system, Figure 6.2.2, is 

dgk 
( 1  + gk) 

Equating the two transfer functions: 

* g f gk 
( 1  + g*.f) = d( l + gk) 

collecting the terms containing g * andf and putting 

h = g*-dg 

it can be seen that: 

k g*f d..--­= g(l+hk) 

(6.2.2) 

(6.2.3) 

(6.2.4) 

(6.2.5) 
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This suggests that if the plant transfer function, g *, and the model, dg are equal, 

g *{y)= d(y)g(y) then 

k 
f(y) 

- ( 1  +kh) (6.2.6) 



·- ............ 

1 1 0  

This i s  the traditional form of the Smith predictor. The block-diagram 

representation of the controller transfer function,Jty), is given in Figure 6.2.3 . 

� u 
_'<.7 k 

J� �, 
h 

Figure 6.2.3 

Clearly in the single-input single-output case it does not matter whether 

the delay is associated with the input, the output or is a plant delay since scalar 

multiplication is commutative. However, in multivariable processes the orders in 

which the delays appear in the process description become important since matrix 

multiplication is not commutative. It is the lack of this commutatively property that 

has so far limited the extensions of Smith's method to multivariable processes. 
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6.3 M ULTIVARIABLE SMITH PREDICTORS 

One way of extending the Smith predictor to multivariable systems would be to 

consider the multivariable extensions of Smith's method, as is shown in Section 

6.3 . 1  

6.3.1 A MULTIVARIABLE EXTENSION OF SMITH'S 
METHOD 
Smith's method, which was used in Section 6.2 to derive a Smith predictor for a 

time-delayed single-input single-output process can be extended to multivariable 

processes by considering the multivariable extensions of Figures 6.2. 1 and 6.2.2. 

These are shown in Figures 6.3 . 1  and 6.3.2. In Figure 6.3.2 it has been assumed 

that the transfer function matrix, G*(y) can be written as the product of the matrices 

D(y) and G(y), where D(y) is a square matrix. In Section 4.3 . 1  it was shown that 

such a decomposition does exist for time-delayed processes that can be described 

in the form of Equations (3.3.5)-(3.3.8) . 

r +e ... u .... y F � G* � 
-

.. � .,, 
� ...... 

Figure 6.3.1 

r +.o. ... u .... X ... ----'1.(� F � G r- D � -

A� �r 
� � 

Figure 6.3.2 

y 
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In these Figures, G(y) is the delay-free plant, G*(y) is the delayed process, 

D(y) is a multivariable delay-operator and K(y) is the controller designed to close 

the delay-free loop. By equating the transfer functions obtained from these block 

diagrams it is readily seen that: 

Pre-multiplying by (I+G*F) and post-multiplying by (I+GK): 

or 

(I + G"F)DGK = G"F(I + GK) 
DGK + G"FDGK = G.F(I + GK) 
DGK = G*F(I + GK - DGK) 

G* F = DGK(I+HK)-1 

(6.3 . 1 )  

(6.3 .2) 

(6.3.3) 

(6.3 .4) 

which can be rewritten using the matrix identity (I+ ABt lA = A(l + BAt I as 

G*F = DG(I + HK)- IK (6.3.5) 

where H(y) = G+(y) - G*(y). (6.3.6) 

Hence the multivariable Smith predictor obtained is of the same form as 

the single-input single-output case if G*(y) = D(y)G+(y) and D(y) is a square 

matrix. 

However, in general, G*(y) is of the form given in Equations (3.3 .5)-

(3.3 . 8) :  



where 

and 

n 
D1CY) = fckE(y,-Yk) 

k=l 

ns 
D2(y) = LBjE(y,-a.j) 

j=l 

a1 1(g)E(y,--r1 1) 
bl l (y) 

a., 1 (y)E(y, --r., 1) 
b2 1 (y) 

am 1 (y)E(y, -"tm 1) 
bm i (Y) 

ap(y)E(y,--rp) 
b12(y) 

a22(y)E(y,--rz.,) 
b22(y) 

amzCy)E(y,-"tm.,) 
hm2CY) 

(3 .3 .5) 

(3.3.6) 

(3.3.7) 

am(y)E(y,--rm) 
bm(Y) 

a20 (y)E(y, -"tzn) 
b2n(Y) 

amnCy)E(y,-"tmn) 
bmnCY) 

(3.3 .8) 

1 1 3 

There are several special cases of delay-structures that will be considered. 

These possibilities arise from the different ways that the delays arise within the 

process .  The possibilities include: 

and 

a) all the delays are identical: G*(y) = E(y,--r)G(y); 

b) the delays arise only from the outputs of the plant: O.ij= 0 

and "tij=O V'i,j ;  

c) the delays arise from either the inputs or the outputs in a 

simple manner: the delay matrices D 1 (y) and D2(Y) are both 

d) 

square; 

the input and output delay matrices are non-square and 

internal plant delays exist. 



l 
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__ __ 

Each of these cases will be explored in turn. 

6.3.2 MULTIVARIABLE SMITH PREDICTORS WHEN 
ALL THE DELAYS ARE IDENTICAL 

1 14 

The transfer function matrix describing a process with all the overall delays 

identical can be written as 

. 
* G (y) = E(y,--r)G(y) 

where E(y,--r) is a scalar operator and 't is the length of the pure delay. 

(6.3.8) 

The multivariable version of the derivation of the Smith predictor is, in 

this case, a simple extension of the single-input single-output case. 

6.3.3 MULTIVARIABLE SMITH PREDICTORS WHEN 
THE DELAYS ACT ONLY ON THE PLANT'S OUTPUTS 
If in Equation (3 .3.5) all the internal plant delays were zero and the input delays 

were also zero so that DiY) = I then D(y)= D1 (y) and the multivariable Smith 

predictor would be in the same form as that obtained for the single-input single-

output case because the process transfer function can be written as: 

G*(y) = D(y)G(y) (6.3 .9) 

This allows the straightforward multivariable generalisation of the Smith predictor 

as noted in Section 6.3 . 1 and F can be easily identified from Equation (6.3.5) to be 

F = (I + HK )-IK (6.3. 1 0) 

A block diagram representation of F(y) is shown in Figure 6.3.3 . 



-., __ _ 
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e + 10\ u 
'( ,7 K 

H. .,, 
H 

Figure 6.3.3 

The Smith predictor, F is of the same form as the single-input single-output Smi th 

predictor. 

It is easy to see that the case presented in Section 6.3.2 is a special case of 

this result when all the output-delays are identical. 

6.3.4 MULTIVARIABLE SMITH PREDICTORS WHEN 
THE DELAYS ACT EITHER ON THE INPUTS OR THE 
OUTPUTS IN A SIMPLE MANNER 
In this case it is assumed that the input and output delay matrices are both square 

and there are no internal, or plant, delays. Smith's method, as was shown in Section 

6.3) ,  requires that the process description be represented as the product of a delay 

operator, D, and the delay-free dynamics, G. The output delays, represented by a 

matrix of delay operators, premultiply the delay-free dynamics of the process. 

However, the input-delays, which post-multiply the delay-free dynamics do not 

appear in a form in which Smith's method can be applied. 

A multivariable Smith predictor could be constructed if the input-delays 

were of the form: 

D2(Y) = E(y,-'t)l (6.3 . 1 1 ) 

since if the input-delays were of this form the scalar time-delay term, E(y,-'t) could 

be passed through the matrix product to appear as though it were an output-delay . 

-
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Alternatively, if D2 is not of the form of Equation (6.3 . 1 1) , additional 

input delays, D3, could be added so that: 

(6.3. 1 2) 

where 1:("() is a scalar function containing delay-operators. The result of adding 

these delays is that the effective controller, F*, becomes: 

F* = D3(I+KHtlK 

=D3F 

as shown in Figure 6.3.4. 

e +.&\. _'<,7 K 

� .. 
H 

.,, 

Figure 6.3.4 

The closed-loop transfer function can be written as: 

D(-y)G*(-y)(I+ EG*tl 

where D(y)= 't(y)D1(y) where D2(y)D3(y) = 1:("(), 

(6.3. 1 3) 

D3 
.... ll 
� 

(6.3 . 1 4) 

Time-delays have been added to multivariable Smith predictor by Jerome 

and Ray ( 1986) and Shanmaguthasan and Johnston ( 1 988a, 1 988b) in order to 

optimise response times. 



6.3.5 NON-SQUARE DELAY OPERATOR : A 
GENERALISATION OF THE SMITH PREDICTOR 
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In the previous sections i t  was assumed that the delay matrices were square and 

that there were no internal plant delays. It was found that a Smith predictor could 

be constructed that maintained a delay-structure only if the delays acted on the 

outputs or if all the input delays were the same, each represented as E(y,-'t') . 

Now consider the more general delay structures allowed by Equations 

(3.3 .5)-(3 .3 .8). Theorem 3.3 can be used to rewrite Equation (3.3 .5) as: 

(6.3 . 1 5) 

Smith's method, Section 6.3 . 1 can then be applied to this process description to 

obtain a multivariable Smith predictor. However this would, at first appearance, 

seem to be an impractical solution since the dimensions of the vector quantities, r 

and x, are not necessarily the same, as is evident from the block diagram of the 

'ideal', or desired, closed loop system drawn in Figure 6.3.2. 

This problem, concerning the difference in the dimensions of the vector 

quantity x(y)=G+u(y) and y(y)=D1 (y)Dp1 (y)Di(y)G+(y)u(y), can be solved by 

adding an extra block diagram element, E, to the actual process as shown in Figure 

6.3 .5, where E is of the same dimensions as the delay operator, 

D(y)=D1(y)Dp1 (y)Di(y). 

r -hO. .... u ..... X .... y '<:Y F P" G P" D r -

At. ,, 
...... E ..... 

Figure 6.3.5 
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By the same matrix manipulation process as was performed in Section 

6.3 . 1 ,  the controller/predictor block, F, can be determined. Equating the transfer 

functions from Figures 6.3.5 and 6.3. 1 :  

which can be rewritten using the matrix identity (I+ AB)- 1A = A(l + BAt1 as 

D D  D ·G+K ( I+EG+K )-1 - ( I +G*F )- IG*F I pl l - (6.3. 1 7) 

Premultiplying by ( I  +G*F ) and post-multiplying by ( I+EG+K ) this equality 

can be rewritten as: 

Def�ning 

and gathering together the terms containing G* F we have: 

G* F - D D D -a+ K ( I+HK )-I 
- I pi l 

(6.3 . 1 8) 

(6.3 . 1 9) 

(6.3 .20) 

Since by Theorem 3 .3  G*= D1Dp1D;G+, Equation (6.3 .20) reveals that:
. 

F = K ( I + HK )-I 

= ( I  + KH )-IK (6.3.2 1 )  
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The Smith predictor described by Equation (6.3 .20) is of the same form as 

the traditional Smith predictor except that the identity matrix. has been replaced by 

E. This E matrix can be free to the designer to choose so long as the delay-free 

process with the transfer function matrix G(y) = EG+(y) is controllable and 

observable. There are a number of possible choices for E. These include: 

1 .  

2 .� 

3 .  

E =D 1 ( l )Dp( l )Du( l )  

E = Dp( l )Du( l )  ( in the case where Dt (Y) is square) 

[E] · · _ { 1 if [D J ( l )Dp(l )Du( OJij * 0 
IJ - 0 otherwise 

It is clear that when the delays are only output-delays or all the input-

delays are the same, the second and third choices for E give the same Smith 

predictor as was found in Section 6.3 . 1 .  The first choice gives the Smith predictor 

found by Alevisakis and Seborg ( 1973, 1 974) if the input delays are equal .  Further 

research is needed to explore other possible choices of E. 

EXAMPLE 6.1 : The process used in Examples 3 . 1 ,  3.2 and 4. 1 was used for 

numerical simulations of the process. The process description obtained in Example 

3 .2 was 

G*(s) 

(e-2s 3e-s 

J (s+ 1 )  (s+2) e-2s e-s 0 0 
= 2e-3s -e- 1 .5s = ( 0 0 e-3s e- 1 .5s 

(s+3) (s+4) 

= Dp(s)G
+(s) 

2 
s+3 
0 

0 
3 

s+2 
0 
- 1 

s+4 

(6.3 .22) 

(6.3 .23) 

In order to use the Smith predictor, a controller for the delay-free transfer function 



1 20 

G(s) =EG+(s) (6.3.24) 

must be found. 

A state-space description of this delay-free process was obtained m 

Example 4. 1 :  

dx dt = Ax(t) + Bu(t) (6.3.25) 

y+(t) = Cx(t) (6.3.26) 

where 

= ( 
- 1 0 0 

jJ A 
0 -2 0 
0 0 -3 (4.2.9) 

0 0 0 

B =o n  (4.2.8) 

c = ( 1 3 0 0 ) (4.2.4) 0 0 2 - 1 

Using this state-space description it is a straightforward process to design 

an output feedback control law. The closed-loop system was simulated using 

SIMULINK using a proportional-integral output feedback controller. The first 

output, y 1 and the reference signals r1 are plotted in Figure 6.3.6 and the second 

output Y2and r2 are shown in Figure 6.3.7. 
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6.4 INTERNAL MODEL CONTROL {IMC) 

The Internal Model Control (IMC) philosophy is based on the explicit inclusion of 

a model of the process in the controller. In this way it is possible to consider the . 

effects, on the robustness and stability properties of the closed-loop system, of 

model mismatch, both in the structural parameters of the process description, such 

as the time-delays and model orders, and in the coefficients of the process. IMC 

uses the concept of perfect control , exactly matching and countering the dynamics 

of the open-loop processes. Clearly this Ts not always possible without including 

predictions or adding problematic unstable poles or non-minimum phase zeros to 

the closed-loop process, but the IMC methodology suggests some methods for the 

analysis of processes that contain problematic delays, poles or zeros . 

In Sections 6.4. 1 -6.4.3, it will be assumed that the process has the same 

number of inputs as outputs. In Sections 6.4.4 and 6.4.5 it will be shown that, by 

using the matrix decompositions found in Section 3.3, it is possible to extend some 

of the ideas of the IMC structure to non-square processes, and to hence provide an 

alternative method of obtaining Smith predictors and to provide an extension of 

IMC to processes in which the number of inputs differs from the number of 

outputs. 

6.4.1 DERIVATION OF THE IMC CLOSED-LOOP 
PROCESS STRUCTURE 
The Internal Model Control (IMC) closed-loop process structure can be derived by 

considering Figures 6.4. 1 -6 .4.3 . Figure 6.4. 1 is a typical traditional block diagram 

representation of a multivariable process: 
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d 
r u 

F G 

Figure 6.4.1 

1\ 
Figure 6.4.2 is obtained by adding and subtracting the process-model, G, to the 

block diagram. This obviously does not change the process transfer function. 

d 
r y 

F G 

+ + 
1\ 

G 
1\ 

G 

Figure 6.4.2 

Figure 6.4.3 is obtained by grouping the inner-loop as one element, C, in the block 

diagram, that is 

1\ 
C =( I + G F t1F (6.4. 1 )  
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d 
r 

c 
u 

G 
+ y 

1\ 
G 

Figure 6.4.3 

Figure 6.4.3 represents the IMC structure. The controller C explicitly 
1\ 

includes the model, G ,of the process. 

Clearly there is a relationship between the IMC controller, C, and the 

traditional controller, F, shown in Figure 6.4.2. By rearranging Equation (6.4. 1 )  

F ,  the traditional controller, can be found to  be: 

1\ 

F = ( I- CG )·IC (6.4.2) 

From Figure 6.4.3 it can be seen that the control inputs, u, are determined 

by the control law :  

1\ 

u(y) = ( I + C(G - G) )· IC ( r- d ) 

Hence the process output, y, can be described by: 

1\ 

y(y) = G ( I + C ( G - G) )· IC ( r- d ) + d 

(6.4.3) 

(6.4.4) 

Using the IMC structure it _is possible to design the element C so that the 

closed-loop process has the desired properties of stability and robustness. Two 

r · 1 ,  r: ,, :· t l  : .. � 
7i 
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properties of the IMC structure that have been found to be of use are presented in 

the next section. 

6.4.2 PROPERTIES OF THE IMC STRUCTURE 
There are two properties of the IMC structure that are commonly used (Morari, 

1 983, Morari and Zafiriou, 1 989) as evidence of the usefulness of the structure: 

Property 1 :  Dual stability criteria 
The closed-loop process is stable if 

a) the process is modelled exactly 

b) the open-loop process is stable and 

c) the IMC controller, C is stable. That is, both the controller, C, and the 

open-loop plant, G, have poles only inside the stability region. 

Proof: (Morari and Zafiriou, 1 989) 

The closed-loop process can be described by: 

A 

y(y) = G( I + C ( G - G) )- I C ( r- d ) + d 

= GC (r- d) + d (6.4.5) 

since the process is exactly modelled. Clearly this is stable if G is stable and C is 

stable. 

Property 2: Perfect control 
The closed-loop process follows the reference signal exactly, and hence offers 

perfect control if 

a) the process is modelled exactly and 

b) C =  G-1 

Proof: (Morari and Zafiriou, 1 989) 



/1. 
If C=G -I and G =G then the closed-loop transfer function becomes: 

/1. 

y(y) = G( I +  C( G - G )-1C (r- d) + d 

= GC(r - d) +  d 

= (r - d) +  d 

= r(y) 

6.4.3 TIME-DELAYED PROCESSES AND IMC 
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(6.4.6) 

Holt and Morari ( 1 985) pointed out that the transfer function of a time-delayed 

process cannot, in general, be inverted without the introduction of predictive 

elements. That is, the inverse of the process transfer function may be non-causal 

and that the idea of perfect control cannot be applied to processes with time­

delays. However, if the process description can be decomposed into the delays and 

the delay-free dynamics: 

G*(y) = D(y)G(y) (6.4.7) 

where D(y) and G(y) are square matrices and the delay-free dynamics G(y) can be 

inverted to produce C(y) = G(yt 1 with C(y) stable, then if C(y) is used as the 

controller applied to the process, it follows from the proof of Property 2, Section 

6.4.2, that the closed-loop system becomes: 

y(y) = D(y)(r- d) + d 

assuming that the process is exactly modelled. 

, By choosing C as the product 

(6.4.8) 

(6.4.9) 



where 

it can be seen that the closed-loop process has the transfer function 

y(y) = DGC(r - d) + d 

=DGG- l CcZ(r - d) + d 

=DCcZ(r - d) + d 

(6.4. 1 0) 

(6.4. 1 1 ) 

From Equations (6.4. 10) and (6.4. 1 1 ) it can be seen that the IMC controller is: 

C = G- 1 (1 + GF)- 1GF 

= (I + KG)- 1K (6.4. 12) 
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Equation (6.4.2) provides a means of obtaining the traditional controller of this 

process: 

F = (I - CG*t 1C 

= (I - (I + KGt1KDGt1(I + KGt1K 

= ((I + KG) - KDGt1K 

= (I+KHt1K (6.4. 1 3) 

This can be seen to be the traditional Smith predictor, as was obtained in Section 

6.3. 1 . Hence the Smith predictor for a process in which the delays and the 

dynamics can be decomposed into a product of square matrices, D and G, can be 

obtained using IMC techniques. 

In generaL as was shown in Chapter 3, it is not always possible to 

decompose a time-delayed process so that the delay operator and the dynamics 
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are both square multivariable transfer functions. Some authors, for example Holt 

and Morari ( 1985), Shanmugathasan and Johnston ( 1 988a, 1 988b), square down 

the process so that there are an equal number of inputs and outputs to the controlled 

process. In the next section, it will be shown that, by using the decompositions of 

Chapter 3, it is possible to extend the ideas of IMC to non-square processes 

without squaring down the system. 

6.4.4 IMC FOR NON-SQUARE DELAY -FREE SYSTEMS 
Consider now a process in which the multivariable transfer function has a different 

number of inputs from the number of outputs. 

y(y) = G(y)u(y) 

where G(y) is a pxq matrix. · 

(6.4. 14) 

The results of Sections 6 .4. 1 and 6.4.2 can be extended to non-square processes as 

is shown in the following results. 

Result 6.4.1 The closed-loop process, Equation (6.4. 14) will, in !MC form, have 

the transfer function 

1\ 

y(y) = G( I + C( G - G )- IC (r- d) + d (6.4. 1 5) 

If in addition the process is modelled exactly then the closed-loop process will 

have the transfer function, 

y(y) = G(y)C(y)(r - d) + d 

which will be stable if both G and C are stable. 

(6.4. 1 6) 
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Proof: The first part of the result can be obtained trivially by following exactly the 

same steps for the non-square case as were taken in Section 6.4. 1 for the case 

when G and K were square. 

Equation (6.4. 16) follows immediately since, when the process is 

modelled exactly the difference between the transfer functions representing the 
A 

actual process and the model of the process G - G will always be zero. 

Clearly, as in the Dual stability criteria, Property 1 ,  if both G and C are 

stable then their product will be stable, hence the closed-loop process will also be 

stable. 

Result 6.4.2 If 

a) the process, presented in Equation (6.4.14), is exactly modelled 

b) both G and C are stable 

c) G is of rank q 

d) q �  p 

e) C is chosen to be the right generalised inverse ofG, [GGT]- 1  

then the process is perfectly controlled. 

Proof: Result 6.4. 1 shows that if conditions a) and b) are satisfied then the closed 

loop process will be stable with transfer function 

y(y) = G(y)C(y)(r - d) + d (6.4. 17) 

S ince G is of rank q and q � p it can be shown that (G)- = GT[GGT]- lexists. 

Hence choosing C as 

(6.4. 1 8) 

ensures that 
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(6.4. 1 9) 

Clearly in order for C to be stable GT and [GTG]- 1 must both be stable. This 

requires that the poles and zeros of G lie inside the stability region. That is, the 

process must be stable and non-minimum phase in order that it can be perfectly 

controlled, in the IMC sense. 

6.4.5 IM_C FOR NON-SQUARE TIME-DELAYED 
SYSTEMS 
Considered now the general multivariable time-delayed system, Equations (3 .3 .5)­

(3 .3 .8) . By the decompositions of Chapter 3 it is possible to describe the open-

loop process: 

as 

where 

and 

G*(y) = D(y)G+(y) 

(d12(y)d12(y) . . d1q(Y) 0 0 0 0 J D(y) = 0 0 0 d21 (y) . . . . 
0 0 0 0 . dpq(Y) 

gl l 0 . . .  0 
0 gJ2 · · · 0 

g21 0 . . .  0 
G+ = 0 

g22 . . . 

0 gpq 

(6.4.20) 

(6.4.2 1 )  

(6.4.22) 

(6.4.23) 
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Since it can be seen that C must be of dimension qxp and that, from inspection of 

Equation (6.4.23) it can be seen that G+ is of dimension pqxq, it is not possible to 

find C such that G+c = I  unless q=l .  

By  comparison with the method used to solve · the multi variable Smith 

predictor in which the identity matrix was replaced by E, a similar technique is 

considered. 

Result 6.4.3 If 

a) the process, presented in Equation (6.4. 14), is exactly modelled 

b) both G and C are stable 

c) G is of rank q 

d) q � p  

e) C is chosen so that G+c = C cl 

where Cc[ =  (I+ G+KEt1G+K 

and E is a constant pxpq matrix. 

(6.4.24) 

then the !MC method will produce a control of the same form as the Smith 

predictor. 

Remark: Cc[ is the transfer function of the closed-loop process shown in Figure 

6.4.4. 

+.<>. I K I ... I G +  I ... 
)f I I ... l I ""  -

�� ,, 

E 

Figure 6.4.4 

Proof: Result 6.4. 1 shows that if conditions a) and b) are satisfied then the closed­

loop process will be stable with transfer function 



y(y) = G*(y)C(y)(r - d) + d 

= D(y)G(y)C(y)(r - d) + d 
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(6.4.25) 

S ince G is _of rank q and q � p it can be shown that (G+t = (G+)T[(G+)(G+)T]- 1 

exists. Hence it can be seen from Assumption (e) that: 

G+c = eel 

=> c = (G+tccZ (6.4.26) 

If the process is exactly modelled then the closed-loop process becomes: 

1\ 

y(y) = G*(l + C(G*- G*)t lC(r - d) + d 

= DG+C(r - d) + d 

= DCcl(r- d) + d (6.4.27) 

The closed-loop transfer function between r and y can be easily identified from 

Equation (6.4.27) as: 

(6.4.28) 

This can be seen to be the same as that found in Section 6.3 . 1  using Smith's 

method. 

The traditional controller can be found to be 

F = (I - CG*tlc 

= C(l - DG+Ct 1 

=C(I - DCcZt 1 

=(G+)-CcZ(I - DC cL)- I (6.4.29) 



By expanding Cc[ it can be seen that 

F = (G+)-(1+ G+KEt1G+K(I - D(I+ G+KEt1G+Kt1 

(6.4.30) 

By using the matrix identity (I + ABt1A = A(l + BAt1 it can be seen that 

� F = (G+tG+K(I+ EG+Ktl (l - DG+K(I+ EG+Kt1tl 

By defining 

= K( (I+ EG+K) - DG+Kt 1 (6.4.3 1 ) 

H = (E- D)G+ (6.4.32) 

it can be seen that F can be written as 

F = K(I + HKt1 (6.4.33) 
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which can be seen to be the transfer function form of the generalised multivariable 

Smith predictor. 
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6.5 R EVIEW 

In this chapter Smith predictors have been investigated. In particular a 

multivariable Smith predictors for time-delayed processes of the form given in 

Equations (3.3.5)-(3.3.8) have been developed using the results of Chapter 3. 

These generalised Smith predictors closely resemble the traditional Smith predictor 

that has been used for single-input single output processes. 

The multivariable Smith predictor, which was the subject of this chapter, 

was developed in two ways: using Smith's method and via the IMC methodology. 

This multivariable Smith predictor clearly separates the delays from the time-delay 

dynamics of the process, as is necessary by using Smith's method. Smith's method 

also explicitly removes the time-delays from the characteristic equation of the 

closed loop process. The multivariable Smith predictor also contains a model of a 

delay free process and this model provides a prediction of the effect of the control 

action on this delay-free processes outputs. Hence this generalised multivariable 

Smith predictor has the three properties that Jerome and Ray ( 1986) consider a 

Smith predictor to possess. 



7 TIME-DOMAIN 

REPRESENTATIONS OF SMITH 

PREDICTORS 

7. 1 INTRODUCTION 
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In this chapter generalised multivariable Smith predictors are developed in the 

time-domain using state-space descriptions. Traditionally, Smith predictors have 

been presented in the frequency-domain, where processes are represented as 

transfer functions. The implementation of a Smith predictor in this way has had to 

include approximations to time-delays, using mathematical devices such as Pade 

approximations. Allowing the multivariable Smith predictor to be represented in 

the time-domain has two advantages. The first advantage is that a control law can 

be designed using state-space techniques. The second advantage arises if the 

control law is implemented digitally since the delays can be represented as a queue 

of measurements rather than an approximation to an exponential function. 

In Section 7 .2 the generalised multi variable Smith predictor developed in 

Section 6.3 will be used to identify the requirements for a time-domain 

implementation of a Smith predictor. It will be shown that a key component of a 

time-domain representation of a Smith predictor is a time-domain model of an 

equivalent delay-free process. 

As in Chapter 6, throughout this chapter it will be assumed that the 

processes are modelled exactly, as was the case with the original Smith predictor. 



7.2 TIME-DOMAIN REPRESENTATIONS OF SMITH 

PREDICTORS 
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In this  section the derivation of a Smith predictor based around the time-delayed 

state-space descriptions developed in Section 4.4 is discussed. 

It was shown in Section 6.3 that a Smith predictor for a process in which 

the transfer function can be written in the output-delay form. A block diagram of 

such a process with a Smith predictor is shown in Figure 7 .2. 1 .  

r + .&\.e +.o. u * y 
_Y .. ] y K G 

�. �r 
h �r �. H 

� 
..... 

Figure 7 .2.1 

In this process description the time-delayed transfer function, G* can be expresseci 

as the product: 

(7.2. 1 )  

and the control-inputs can be calculated as 

u(y) = (I + KHt 1 KE(y) (7.2.2) 

where 

H(y) = (E-D(y))G(y) (7.2.3) 



and 

E(t) = r(t)-y(t) (7.2.4) 

K is the controller designed for an equivalent delay-free process and 

E is a constant matrix with the same dimensions as D(y). 
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Figure 7 .2. 1 makes it clear, that if output-delays were used, the transfer 

function matrix for h(y) is 

h(y) = H(y)u(y) 

= (E - D(y))G+(y)u(y) (7.2.5) 

Premultiplying Equation (7.2.2) by (I + KH) it can be seen that an expression for 

the control inputs in terms of E(y) and h(y) can be obtained: 

(I + KH)u(y) = KE(y) 

u(y) = KE("() - KH(y)u(y) 

u(y) = KE(y)-Kh(y) 

u(y) = K(E(y)-h(y)) 

Inverse transforming Equation (7.2.7) gives: 

u(t) = K(E(t)-h(t)) 

(7.2.6) 

(7.2.7) 

(7.2.8) 

From Equation (7.2.8) it is clear that in order to implement a Smith predictor in the 

time-domain it is necessary to have a control law that will improve the control of 

the equivalent delay-free process, EG which is represented by K and h(t) the 

output from the Smith predictor return matrix. 
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Time-delayed processes can be represented using Corollary 4.3 as either 

input-delayed or an output-delayed state-space descriptions. In either of these 

forms, as was shown in Section 4.5, an equivalent delay-free state-space 

description can be readily obtained, the Auxiliary state-space: 

pi(t) = Ai(t) + B+ uC l )u(t) (7.2.9) 

y(t) = D Y (l)C+x(t) (7.2. 1 0) 

It can be seen that this state-space description can be transformed to 

-

y(y) = EG+(y) (7.2. 1 1 ) 

where E= D(l ) . 

This state-space description can be used to design a controller that will then be 

used in the Smith predictor. The controller can be designed using any state-space 

controller design method. 

From Equation (7.2.5) it can be seen that for the output-delay form the 

S mith predictor return matrix, h(y), can be written as 

h(y) = y(y) - y(y) (7.2. 12) 

. which by inverse transforming can be expressed in the time-domain as: 

h(t) = y(t) - y(t) (7 .2. 1 3) 

where y(t) is the time-domain output-vector from the Auxiliary delay-free state-

space description, Equation (7 .2.9)-(7 .2. 1 0). 



If the process were written using Corollary 4.3 in input-delay form: 

px(t) = Ax(t) + B+Du(q- 1  )u(t) 

y(t) = Dy( l )C+x(t) 

it can be seen that h(t) can be expressed as 

h(t) = y(t) - y(t) 

= Dy (1)C+x(t) - Dy ( l )C+x( t) 

= Dy (1)C+ (x(t) - x(t)) 

(7.2. 1 4) 

(7.2. 1 5) 

(7.2. 1 6) 
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By augmenting the state-spaces descriptions, Equations (7 .2.9)-(7 .2. 1 0) and 

(7.2. 1 4)-(7.2. 1 5) the following state-space description can be obtained: 

[A 0 ] [ D ( I) ] 
pX= X(t) + B+ " _ 1  u(t) 

0 A D" (q ) 

y(t) = Dy ( l)C+ [o I]X(t) 

it can be seen that h(t) can be obtained from X(t) as: 

(7.2. 1 7) 

(7.2. 1 8) 

(7.2. 19) 

Lemma 4.5 shows that the observability of the time-delayed state-space 

description, Equations (7 .2. 17)-(7 .2. 19) ,  is the same as the controllability of its 

auxiliary state-space: 

(7.2.20) 

(7.2.2 1 )  
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The controllability matrix of the state-space description, Equations (7 .2.20)-

(7 .2.2 1 )  can be found to be: 

c+ [o I] 

Q = Dy (I) 
c+[o •l[ A: :r J 
c+[o •{ �r :r J (7.2.22) 

which is not of full rank, implying that the auxiliary state-space description is not 

completely observable and hence that the time-delayed state-space, Equations 

(7 .2. 1 7)-(7 .2. 1 8) is not completely observable. 

Since the augmented state-space description is not completely observable 

an observer, or filter for X(t) cannot be constructed. Hence h(t) cannot be obtained 

from process measurements. The only way to obtain h(t) then is to model it using, 

for example, Equations (7 .2. 1 7) and (7 .2. 1 9) inside the controller. 

It can also be seen that h(t) could be obtained from the state-space 

description: 

pxh(t) = Axh(t) + B+(Du( l )-Du(q- 1  ))u(t) 

h(t) = Dy( l )C+xh(t) 

(7.2.23) 

(7.2.24) 

Assuming that a good estimate of the initial value of x(t) can be obtained 

and that the model of the process is good, then a reasonable estimate of x(t), when t 

> 0, can be obtained from input data as: 

i =  E(A, t)i(O) +�(E(A; r- t)B+ D.,( l)u(r)) d r (7.2.25) 
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. If the process i s  open-loop stable, then as t -7 oo the effect of the initial 

conditions, E(A,t)x(O), will diminish. However, if the process is not open-loop 

stable then the effect of the initial conditions will dominate and cause the closed-

loop process to also be unstable. 

If Corollary 4.3 were used to write the process in an output-delay form: 

px(t) = Ax(t) + B+ uO)u(t) 

y(t) = Dy(q- I )c+x(t) 

it can be seen that h(t) can be obtained from x(t) as: 

(7.2.26) 

(7.2.27) 

(7.2.28) 

In a simular way to the analysis performed for the input-delay form, it can 

be seen that a model must be maintained to calculate h(t) and that the process must 

be open-loop stable. 

The two methods, developed above, for calculating h(t) could easily be 

implemented digitally. An algorithm to find the control, u(t), could be written as: 

Estimate h(t) using the model and old inputs. 
Measure y(t) and the setpoint r(t) 
Calculate E(t) = y(t)-r(t) 

Eh(t) = E(t) - h(t) 
Calculate u(t) = KEh(t) 

Example 7.1 :  Consider the process used in Examples 3.3, 4. 1 and 6. 1 



(e-2s 3e-s 

J * (s+ 1 )  (s+2) e-2s e-s 0 0 G (s) = 2e-3s -e- 1 .5s = ( 0 0 e-3s e- 1 .5s 

(s+3) (s+4) 

1 
(s+1 )  0

3 
0 
2 

s+3 
0 

s+2 
0 
- 1 

s+4 

(7.2.29) 
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In Example 4.4 input-delay and output-delay forms of state-space descriptions for 

this process were obtained. The output-delay form was 

where 

( 1 0 } 
dx 0 3  dt = Ax(t) + 2 0 (t) 

0 - 1  

(q-2 q- 1 0 0 } 
y(t) = 0 0 q-3 q- 1 .5 (t) 

A = ( -� 0 
-2 
0 
0 

0 
0 

-3 
0 lJ 

and the input-delay form was: (
q-2 0 } dx 0 3q- 1  

dt = Ax(t) + 2q-3 0 (t) 

0 -q- 1 .5 

( 1 1 0 0 } 
y(t) = 0 0 1 1 (t) 

(4.2.26) 

(4.4.27) 

(4.4.28) 

(4.4.29) 

(4.4.30) 
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The auxiliary delay-free state-space description of this process was 

obtained in Example 4. 1 as: 

where 

-
dx -dt = Ax(t) + Bu(t) 

- -
y(t) = Cx(t) 

A = ( - 1  
0 
0 
0 

B =u n  
c = ( � 3 

0 

0 
-2 
0 
0 

0 
2 

0 

-�J 0 
-3 
0 

0 ) - 1  

h(t) can be found using Equation (7.2. 1 6) as :  

h(t) = Dy( l )C+x(t) - DyC+x(t) 

h(t) = y(t) - y(t) 

=Dy( l )C+(x(t)- x(t)) 

( 1 3 
- 0 0 

0 
2 

0 \-- 1  ;x(t)- x(t)) 

(7.2.30) 

(7.2.3 1 )  

(4.2.9) 

(4.2.8) 

(4.2.4) 

(7.2. 1 6) 

(7.2.32) 

If the process were written in an output-delay form, then Equation (7.2.28) would 

give: 

(7.2.28) 



= (( � 3 0 0 
0 2 - 1 

144 }(q-2 q- 1 o o )I'-- · 

o o q-3 q- 1 .5 rct) (7 .2.33) 
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7.3 REVIEW 

In this chapter a method for using state-space descriptions of multivariable time­

delayed processes in an implementation of multivariable Smith predictors have 

been presented. These state-space Smith predictors have a:n advantage over 

traditional Smith predictors since any time-domain state-space method for 

designing delay-free process controllers can be used in conjunction with this form 

of Smith predictor. 



8 ROBUST STABILITY AND 

SENSITIVITY TO MODELLING 

ERRORS OF THE SMITH 

PREDICTOR 

8. 1 INTRODUCTION 
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The preceding chapters have shown that the multivariable Smith predictor can 

control multivariable time-delayed processes. However it is important to recognise, 

as with any device, the l imitations of the multivariable Smith predictor. In this 

chapter the robustness, stability and the sensitivity to modelling errors of the 

multivariable Smith predictor are considered. 

In Section 8 .2 it will be shown that the Smith predictor cannot be applied 

to open-loop unstable processes. 

In Section 8 .3 additive and multiplicative error models are discussed. 

These models are used to describe the differences between the actual process and 

the model of the process that is used for designing the Smith predictor. 

Section 8.4 considers a perturbation analysis of the multivariable Smith 

predictor. 

Section 8.5 contains a discussion of the practical stability properties of a 

multivariable Smith predictor. 

In Section 8 .6  a robust stability result due, to Owens and Raya ( 1 982), is 

extended to the multivarlable Smith predictor. 
I 



8.2 THE SMITH PREDICTOR AND OPEN-LOOP 

UNSTABLE PROCESSES 
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In this section it will be shown that, in  general , a multivariable Smith pred�ctor 

cannot be applied to open-loop unstable processes. This result is derived using the 

time-delayed state-space description of Section 4.4 and the Smith predictor 

controller that was derived in Section 6.3. 

Theorem 8.1 : A time-delayed closed-loop system controlled with a Smith predictor 

has 2n modes, n of these are those of the open-loop process and the other n are the 

modes of the equivalent delay-free closed-loop system, where n is the order of the 

state-space description. 

Proof: (Adapted from Palmor and Halevi, 1 983) 

Corollary 4.3 shows that a time-delayed process can be described by the state-space 

description: 

(8.2. 1 )  

(8.2.2) 

The Smith predictor scheme based on a state-feedback control law, calculates the 

input, u(t) as: 

where 

u(t) = K(x(t) - h(t)) 

ph(t) = Ah(t) + B+( Du( l )- Du(q-
1 ))u(t) 

(8.2.3) 

(8.2.4) 
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Writing X(t)T = [x(t)T h(t)T] ,  it follows from Equations (8.2. 1 ), (8.2.3) and (8.2.4) 

that the closed-loop system can be described by 

(8.2.5) 

The modes of the overall system are given by the roots of 

(8.2.6) 

Since det(AB) = det(A)det(B) and 

i t  can be seen that 

det( I O)det(Ip - A + B+D(q-t )K -B+D(q-t )K Jdet(I O
I
) 

-I I -B+ (E" - D(q-1 ))K Ip -AB+(E" - D(q-1 ))K I 

= det 
(Ip - A -B+D(q-1 )K J 0 Ip - A -B+EuK 

= det(Ip -A)det(Ip - A + B+EuK) 

(8 .2.7) 

Hence it can be seen that the modes of the overall closed-loop system consist of 

two parts: the modes of the open-loop system and the modes of the . equivalent 

delay-free closed-loop plant. 
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Corollary: The multivariable Smith predictor cannot be used to stabilise a time­

delayed open-loop unstable process. 

Proof The result follows immediately since the overall closed-loop process will 

contain among its modes, the (unstable) open-loop modes of the process, which 

make the closed-loop unstable. 

This result has previously been commented on by various authors, 

including Gawthrop ( 1977) Watanbe and lto ( 198 1) and Furukawa and Shimemura 

( 1 983) and has often been cited as a major disadvantage of the Smith predictor. 

Despite this, the Smith predictor remains as a viable controller design tool for the 

vast majority of time-delayed processes since most industrial processes are in fact 

stable. 

De Paor ( 1985) and De Paor and Egan ( 1989) produced modified Smith 

predictors that allowed certain open-loop unstable processes to be controlled via a 

Smith predictor-like control scheme. An extension of the ideas of the generalised 

Smith predictor, that was presented in Chapters 4 and 5, to encompass their work 

is yet to be at�empted. 
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8.3 ADDITIVE AND MULTIPLICATIVE ERROR MODELS 

OF A TIME-DELAYED PROCESS 

In most practical applications, the dynamics and time-delays are not known exactly 

and there is likely to be a certain amount of mismatch between the model of the 

process and the actual plant. The modelling errors, in time-delayed processes, can 

be divided into two distinct groups: the errors in the estimates of the time-delays 

and the errors in the model of the delay-free dynamics. There are, in the literature, 

a number of results that give tolerance bounds on the modelling errors for the 

time-delays and the dynamics that ensure that the controlled process remains 

stable. In this section two error models of time-delayed processes are presented that 

will be investigated in the following sections of this chapter. 

8.3.1 ADDITIVE ERROR MODELS OF A TIME­
DELAYED PROCESS 
Consider the general time-delayed process of Equations (3.3 .5)-(3.3 .8): 

y(y) =G *(y)u(y) = D 1 (y)Gp(Y)D2(y)u(y) 

ne 
where D 1 (y) = 2:CkE(y,-Yk) 

k= l 

nB 
D2(Y) = LBjE(y,-Pj) 

j=1 

and 

(3 .3.5) 

(3.3 .6) 

(3.3.7) 



a11(y)E(y,--c!l) 
b l l (y) 

a21 (y)E(y,-'t21) 
bzi (Y) 

aml(y)E(y,-'tml) 
bmi ('Y) 

ap(y)E(y.-'tp) 
bl2(y) 

a.,.,(y)E(y, -'t.,) 
bzz(Y) 

am.,(y)E(y,--cmz) 
bmi'Y) 

a,"(y)E(y,--c,") 
bln(Y) 

a.,n(y)E("(,-'tzn) 
bzn(Y) 

amn(y)E(y,--cmn) 
bmn(Y) 

1 5 1  

(3.3.8) 

It was shown in Chapter 3 that this general time-delayed process can be expressed · 

as: 

y(y) = G*u(y) 

= D 1 GpD2u(y) 

= D(y)G+(y) 

where D(y) is an rxqr matrix and G+(y) is a qrxq matrix. 

It will be assumed that the time-delayed process is modelled by: 

1\ 1\ 

y(y) = G*u(y) 
1\ 1\  

=DG+u(y) 

1\ 1\ 
where G+(y) and D(y) are the sums 

and 

1\ 

G+(y) = G+ + AG 

1\ 
D(y) = D + AD 

(8.3. 1 ) 

(8 .3 .2) 

(8 .3 .3) 

(8 .3 .4) 
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An alternative method of considering the inaccuracies in delay operators is 

a multiplicative error model. This model of errors in the delays will be considered 

in  the next section. 

8.3.2 A MULTIPLICATIVE MODELLING ERROR 
MODEL 
Consider the delay element: 

in which 

1\ 1\ 
dij (Y) = E(y,-'tij)=E(y,-('tij+Ll'tij)) 

1\ 
Ll'tij = 'tij - 'tij 

From the properties of generalised exponentials this can be written as :  

1\ 

dij(Y) = E(y,-Ll'tij)E(y,-'tij) 

= ildij (Y)dij(Y) 

where 

and 

(8.3 .5) 

(8.3 .6) 

(8.3 .7) 

(8.3 .8) 

(8.3.9) 

Applying this model to each element of the multivariable delay model 

D(y): 



A A dl l  dl2 dlq tldl ldl l  
A A tld21d21 A d21 d22 d2q 

D =  = 

A A A tldpldpl dpl dp2 dpq 

1\ 

D(y) can be written, using Theorem 3.2, as: 

D = 0 
1\ 
( tld 1 1  �d 1 2  

0 

tldl2dl2 
tld22d22 

tldp2dp2 

Similarly, using Theorem 3.2, it is possible to expand D as 

D = E+D 

where 

tldqdlq 
tld2qd2q 

tldpqdpq 
(8.3. 1 0) 

drq 

(8.3. 1 1 ) 

(8.3 . 1 2) 

(8.3. 1 3) 
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The additive error model of the time-delays, Equation (8.3 .4), can be rewritten as: 

1\ 
!ill = D- D 

= (E+ - MJ+)D (8.3. 14) 

where m+ is as defined in Equation (8.3. 1 1 ). 

If only one of the delays has a mismatch between the true delay and the 

modelled delay, say the kith element, then it can be seen that 



(0 0 . . 0} 
MJ = � 1 -�dkl . .  : 

0 0 .. 0 
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(8.3 . 1 5) 



8.4 PERTURBATION ANALYSIS OF M ISMATCH IN 

SMITH PREDICTORS 
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Consider the block diagram representation of the multivariable Smith predictor, 

Figure 8.4. 1 ,  in which the modelled process is used to construct the Smith predictor 

and controller. 

r + £e +JOt. u 
_'(..� _'<1 K 

�� �r 
h 

�l H 

.... 
� 

Figure 8.4.1 

This block diagram ea� be rearranged as Figure 8.4.2 

r + 0\ - ,J 
�� 
L + ..... '<:>' � + 

By expanding 

1\ - 1\ 1\ 

G*(y) = D(y)G+(y) 
1\ 

K 

�, 
1\ G 

Figure 8.4.2 

= D(y)(G+(y) + llG(y) 

u 

..... � 

G* y 

�, 

* y 
G 

� , 

" *  G � �+ 
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Figure 8.4.2 can be rearranged as shown in Figure 8.4.3. 

r + 0.. u o* y 
_'< J K 

� , 
�� �, 
-c + ........ 1\ fx o+ +t:.G) �+ � ';I .... G + 

..... � 

Figure 8.4.3 

By rearranging the block diagram Figure 8.4.3 Figures 8.4.4 and 8.4.5 can be easily 

obtained. 

r + + y 

1\ G 
+ 

Figure 8.4.4 

r + -DG 

G +�G 
+ 

Figure 8.4.5 
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This block diagram, Figure 8.4.5, illustrates the interaction between the 

two types of modelling error: the errors in the estimates of the time-delays and the 

errors in the estimates of the coefficients. 
1\ 

It can be seen that when D � D that the time-delays affect the controls 

through the term in �G in the upper loop around K. This means that if the delay is 

large, offsets in the model of G can cause instability. 

Conversely when �G= 0, but the delays are not exactly modelled, there is 

an outer loop with the term D(E+ • m+). The-affect of this outer loop can be 

l ikened to adding a derivative effect since the second term can be approximated, to 

first order, as :  

(8.4. 1 )  
0 

where 

(8.4.2) 

This derivative-like feedback loop will respond rapidly if the delays are 

not well matched. The single-input single-output case of this perturbation analysis 

has been investigated by Garland and Marshall ( 1 974, 1 975), Marshall ( 1 979, 

p 103- 1 04) and Marsh all and Salehi ( 1982). Marsh all ( 1 979) exploits deliberate 

mismatch to improve the performance of controlled processes. 
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8.5 PRACTICAL STABILITY OF MULTIVARIABLE SMITH 

PREDICTORS 

Practical stability, a weak form of robust stability, has been investigated in the 

single-input single-output case and in limited forms of the multivariable case. 

Palmor ( 1 980) investigated practical stability of single-input single-output 

processes. Palmor and Halevi ( 1 983) investigated practical stability of processes in 

which the control law was diagonal. 

In this section some practical stability results are obtained for the 

multivariable Smith predictor developed in Chapter 6. The results developed 

include those of Palmor and Halevi ( 1 983) as special cases. 

By letting G(y,J.l) be the transfer function in the y-domain that has the 

parameter y and coefficient values J.l, it is possible to make the following 

definition: 

Definition 8.1: (Palmor and Halevi, 1 983) A control system is practically stable 

(ps) if: 

(a) it is asymptotically stable ie all poles of G(y,J.l) are in the stability 

region. 

and (b) there exists a bound, 0>0, such that all the poles of G(y,J.t+LlJ.l) are 

also in the stability region for all parameter differences II�J.t ll < 8 . 

where 1 1 · 1 1  is a vector norm defined on the space of possible parameter values, Jl. 

The characteristic equation of the overall system can be found from the 

block diagram, Figure 8.4. 1 to be 

1\ 1\ 
det [I + KEG+ + K(G* - G*] =0 

By writing 

(8.5.2) 



1 59 

A 

S = (I + KEGt1 (8.5.3) 

the characteristic equation, Equation (8.5.2), can be rewritten as 

A 

det(s- 1  )det( I + SK(G* - G*) = 0 (8.5.4) 

Since det(S- 1 ) = 0 is the characteristic equation of the ideal (modelled) process, 

which can be assumed to have been designed to be stable, it is clear that there are 

no roots of det(s- 1  )=0 in the unstable region. Thus, the closed-loop process will be 

unstable if the roots of 

A 

det( I + SK(G* - G*) = 0 (8.5.5) 

lie outside the stability region. 

Assume temporarily that the system is exactly modelled except for some 

mismatch in the elements of the transfer function relating the outputs to one of the 

inputs of the time-delayed process model. That is, it is assumed that 

and 

A 

8ij = 8ij 

A 
'[• . IJ = 'tij 

A 

8ik + 6gik = 8ik 

A 

'tik + 6'tik = 'tik 

V i j  j:;tk 

V i j  j:;tk 

(8 .5.6) 

(8.5 .7) 

(8.5.8) 

(8.5 .9) 
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Furthermore �gkl * can be written as 

A A A 
= gkl[E(y,-'tkJ)-E(y,-'tkl)] + �gkJE(y,-'tkJ) (8.5 . 1 0) 

Since Equations (8.5.6) and (8.5.8) imply that 

8G· = n 0 . . �glk 0 

D 0 . . �g2k 0 (8.5 . 1 1 ) 
. . . 

0 . . �grk 0 . . . 

i t can be seen that the characteristic equation, Equation (8.5.5) can be written as :  

A 
det( I + P�G*)= det(l + SK(G* - G*) = 0 (8.5 . 1 2) 

where P is the matrix 

A 
P = SK = (I + KEGt1K (8.5 . 1 3) 

The product P�G* consists of zeros except for the kth column. 

Expanding the matrix and solving the determinant along the kth row it can 

be seen that the determinant is 

A r 
det(l + SK(G* - G*)) = 1 + :2Pki L\gik * 

i= 1 
(8.5. 14) 

The process is unstable if the determinant is zero for y values outside the 

stability region. (In the Laplace transform domain this is Re(s)>O.) 

Equation (8.5. 1 4) implies that 



r 
- 1 = llki �gik * 

i=1 

Taking the absolute values of both sides of Equation (8.5 . 1 5) gives: 

r 
1 = I LPki �gik *I 

i=1 

< l�g max *(L,Ipki I 

I\ I\ I\ 

<lg max[E( "f, -'tkl)-E( "f, -'tkl)] + �g maxE( "f, -'tkl)ll llki I 

1 6 1  

(8.5 . 1 5) 

(8.5 . 1 6) 

For y outside the stability region the absolute value of the generalised 

exponential, E(y,-r) can be bounded: 

0 �(y,--r) � 1  'r/y not i n  the stability region and for all 't>O 

Since 0 � E( y, -'t') � 1 it can be seen from the triangle inequality that 

By applying the triangle inequality to Equation (8.5. 1 6) it can now be seen that 

I\ 

< [21g maxiLip ill + l�gmaxiLipill] (8.5. 1 7) 
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and the system will be unstable if 

A 

1 < 2lg maxlLlp ul + l�gmaxlLIPiil 

for any value of y in the unstable region. 

Therefore, if the dynamics are modelled exactly (�gkl =0), it can be seen 

that a necessary condition for the non-ideal process to be stable is that: 

"i/ k and I and all y in the instability region. 

In the slightly more complicated case of the dynamics also containing 

mismatch then a bound for the amount of mismatch allowable can be constructed: 

l�gmaxl < 1 11LPill - 2lgmaxl "i/ k and I and 'V y in the instability 

region. 

It is interesting to note that this bound does not include the difference in 

the time-delays. 

This result shows that it is possible for a process in which some of the 

elements have modelling errors to remain stable and that bounds exist for the 

extent to which the elements can differ from the elements of the actual process. 



8.6 A ROBUST STABILITY RESULT FOR THE 

MULTIVARIABLE SMITH PREDICTOR WITH ADDITIVE 

MODELLING ERRORS 

The Smith predictor determines that the control law should be of the form: 

u(y) = (I+ KH)- 1K (8.6. 1 )  

where 

H( y) = (D( y) - E)G( y) (8.6.2) 
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When this control law is applied, the closed-loop can be described by Figure 8.6. 1 

r + .&\.e +.o. u * y 
_"(,. 

_v:.;� K G 

� .. �, 
h .,, 

�� H 

-...... 

Figure 8.6.1 

This block diagram can be rearranged as Figure 8.6.2 

r + tO.. u * y 
r.7 K .  G -

� , 
�� .,, 
� + - A A * H�+ 'I ...... G G 

+ 
.. � 

Figure 8.6.2 
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In this representation i t  i s  clear that i f  the model i s  exact, the outer-loop, 

which is the difference between the true output and the expected (modelled) output, 

6y, is zero and the controller is effectively feed-forward. If there is any noise in 

the process and the process is open-loop unstable then the Smith predictor scheme 

will fail to control the process as was shown in  Section 8.2. 

However, in general the model will not always exactly equal the real 

process and mismatch will occur. It is of interest to know how much mismatch can 

exist before the controller fails to stabilise the process. If a controller will continue 

to stabilise a process even when the process is not modelled exactly, then the 

system is said to have a degree of Robust Stability. 

A wide range of literature exists that investigates the robustness of delay­

free processes. However, much less is known about the robustness of time-delayed 

processes. It is known, however, that the traditional Smith predictor can be 

sensitive to modelling errors. In this section, the robust stability result of Owens 

and Raya ( 1 982) is extended to include the multi variable Smith predictor. Owens 

and Raya ( 1 982) investigated the case when the errors were assumed to be additive 

and the matrix delay-operator, D(y), acted only on the outputs and was a square 

matrix with non-zero elements only on the main diagonal. The extension to the 

non-square case is straightforward and rel ies only on the inclusion of the E matrix 

that is used in the construction of the multi variable Smith predictor. 

Definition 8.2: A vector norm is a measure of the size of a vector. It has the 

following properties: 

l lxl l � 0 

J laxl l = lall lxl l 

J lx + yll � l lxl l + Jlyll 
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There are several commonly used vector norms. These include the Euclidean norm 

and the absolute norm. 

Definition 8.3: The induced matrix operator norm has the properties 

I IXII � 0 

l laXII = lai i iXII 

I IX + Yll � I IXII + I IYII 

For example 1 1 ':11 = max I,l(.)ij l is the matrix norm induced by the vector norm IHI 
i j 

= max l(.)i l 
1 

Definition 8.4: A process is Bounded-Input Bounded-Output (BIBO) stable if for 

any finite initial conditions and for any u(t) such that llu(t)ll exists and is finite, the 

outputs y(t) exist and have finite norm. 

Theorem 8.3: Contraction mapping theorem. 

If the mapping T: U --7 U and I IT(u)- T(v)ll � l lu - vll then the mapping has a 

convergence point. 

Proof: See Ortega and Rheinboldt ( 1970) 

By defining U to be the range of possible actuations, u, let Y be the 

space of possible outputs, y, and Z to be the space of possible vectors, z. Suppose 

that U 0 is a linear subs pace of U,Y 0 is a linear subspace of Y and Zo is a linear 

subspace of Z; these are regarded as spaces of stable inputs, outputs and process-

outputs, z, respectively. Assuming that these vector spaces have a norm topology 

with respect to which they are Banach Spaces, it is possible to state the following 

theorem. 
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Theorem 8.4: A multivariable Smith predictor is Bounded-Input Bounded-Output 

(BIBO) stable if 
1\ 

(a) The delay-free plant G(y) and its model G (y) maps Uo 

into Zo 

(b) The delay component D, its model f> and E map Z0 into Z0• 
(c) The restriction to Yo of the delay free mapping 

(d) 

(e) 

1\ 
r � Ua= (I+ KEG t l Kr 

has range in U and has finite induced nonn. 
1\ 1\ 

llt = 11 (I + KEG t l KmG 11 < 1 
1 1\ 

ll2 = l -Ilt 
11 (I + KEG t l KDL1GII<l 

Comment: Conditions (a) and (b) are a requirement that the plant and the model 

are both open-loop stable. Condition (c) requires that the closed-loop model is 

stable and bounded and finally conditions (d) and (e) provide upper bounds on the 

additive mismatches of the delays and the delay-free dynamics. 

These requirements of stability echo those of the Internal Model Control 

structure discussed in Chapter 6. 

Proof: (Adapted from Owens and Raya, 1982). 

By assumption G(y) and D(y) are stable and bounded so it is sufficient to prove 

that ue Uo whenever re Yo. 

From Figure 8.6.2 it can be seen that 

1\ 1\ 1\  
u = K(r - EG u - (DG - DG )  u) 

which can be written as 

(8.6.3) 



1\ 1\ 1\ 

u = (I + KEG tiK[r-(DG - DG )  u] 

This is an equation in U of the form 

u = Wr(u) 

Conditions (a) to (c) ensure that Wr maps Uo into Uo for all r in Yo. 

Now 

1\ 1\ 1\  

Ao = 11(1 + KEG t I K(DG - DG )11 
1\ 1\ 

=11(1 + KEG t 1 K(D�G + WG )11 
1\ 1\ A 

< 11(1 + KEG t iKD�G 11 + 11(1 + KEG tlKmG 1 1  
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(8.6.4) 

(8.6.5) 

The two absolute values on the right hand side of this inequality can be replaced 

using assumptions (d) and (e) giving: 

Ao < A20-At ) + AI 

< ( I -AI ) +  AI = I  

Thus it can be seen that 

I IW,(u)ll � 11 u 1 1  

(8.6.6) 

(8.6.7) 

Hence W r(u) is a contraction mapping of Uo into itself. By the contractive 

mapping theorem W,(u) has only one fixed point. Since the process output Gu is 

finite (and since Gu E Zo from Theorem 8.4, assumption (a)), the process is BIBO 

as required. 
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8.7 R EVIEW 

In this chapter it has been proved that the poles of a Smith predictor controlled 

time-delayed process can be divided into two sets: the poles of the equivalent 

delay-free closed-loop process and the poles of the open-loop process. The proof 

utilises the results of Chapter 3 in order to decompose the transfer function in an 

appropriate manner. Hence it can be seen that a time-delayed open-loop unstable 

process cannot be stabilised using a Smith predictor. 

Two ways in which modelling errors c�m be accounted for in process 

descriptions were examined. It was seen that some robustness results relating to 

Smith predictors could be derived for inexactly modelled process descriptions 

when either additive or multiplicative model errors were assumed. 
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PART D 

AN EVAPORATOR: A CASE 

STUDY OF A TIME-DELAYED 

PROCESS 



9 AN EVAPORATOR: A CASE 

STUDY OF A CONTROLLED 

MULTIVARIABLE TIME­

DELAYED PROCESS 

9. 1 INTRODUCTION 
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This chapter describes an evaporator which is an example of a multivariable time­

delayed process. This particular evaporator is used to increase the concentration of 

solids in a stream of whey as part of the process to extract lactose. 

The control group at Massey University was invited to explore the 

possibility of installing a modem control system onto the existing plant to improve 

the control and hence the efficiency relative to what is currently obtained. 

The evaporator studied has a widely varying range of time-delays. These 

time-delays range up to about 1 4  minutes, although some of the inputs have an 

immediate effect. 

This chapter reports the first stage of this case study, a simulation analysis 

of the current controller implementation and a multivariable controller based on a 

state-space description of the evaporator process. An analysis of the economic 

advantages of improved control of the evaporator is also provided. 
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9.2 PLANT DESCRIPTION 

The evaporator is a five-effect evaporator used for the extraction of water from 

whey. During the dairy season it processes about 38,000 l itres of dilute whey each 

hour. The density of the whey is increased from about 6% solids to about 4 1 %  

solids. The whey stream will solidify if the temperature within any part of the 

evaporator exceeds a threshold. It is known from operator experience that if the 

final effect temperature is maintained with a set-point of less than 47 degrees, the 

temperature of the whey stream throught the evaporator does not exceed the 

solidification threshold. 

A schematic representation of the evaporator is presented in Figure 9 .2. 1 .  

Steam is used as the heat-source to raise steam from the concentrate-flow. The 

steam raised by evaporation in the first-effect is used to raise steam in the second­

effect, which is at a partial vacuum relative to the first-effect. This steam is used to 

heat the third-effect, which is at a partial vacuum relative to the second-effect. This 

pattern is repeated in five effects. In addition, to increase the thermal efficiency, 

some of the concentrate from the second and fifth effects is recycled. The amount 

of vacuum in the final effect is adjusted by varying the rate at which steam is 

condensed in the fifth effect. This is done by manipulating the cooling water flow­

valve that controls the cooling water flow rate. 
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The evaporator is controlled by varying the concentrate flow-rate and 

cooling water flow rate. By increasing the concentrate flow-rate (F) the output 

density (D) can be decreased and by increasing the cooling water flow rate (W) the 

final effect temperature (T) can be controlled. However, increasing the concentrate 

flow-rate will also decrease the final effect temperature and increasing the cooling­

water flow-rate will result in less evaporation and hence a lower output-density . 

Hence the evaporator dynamics have significant cross couplings between the 

effects of the actuation inputs. 

The steam, used as the heat source, is provided on-site from a boiler. 

However, there are other users of the steam, in particular a steam-turbine driven 

generator. The steam pressure (P) must therefore be considered a disturbance with 

a non-zero mean. The incoming density of the concentrate is considered to be a 

disturbance since the whey arrives at the evaporator from several sources. Since the 

economic payoff between transportation costs and the cost of concentration differ 

between the various sources, the whey arrives at different densities. Hence the 

incoming whey density (DF) is considered a disturbance. 

The temperature of the whey (TF) entering the evaporator is also a 

disturbance since newly arrived whey is significantly warmer that whey that has 

been stored for any significant length of time in chilled vats. 

The cooling water is pumped from a nearby stream. It is assumed that the 

temperature of this water is reasonably constant. However, the water-pressure 

(PW) fluctuates with other demands for water being made within the factory. 

This plant is a little different to most plants d�scribed in the literature, for 

example Nisenfeld ( 1 985), since most evaporator operators use the steam-pressure 

as an actuation-input and consider the concentrate flow-rate as the disturbance. 

A block diagram form of the evaporator is given in Figure 9.2.2. 
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Figure 9.2.2 
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9.3 THE PRESENT CONTROL MECHANISM INSTALLED 

ON THE EVAPORATOR 

The control scheme currently installed on the evaporator consists of two 

proportional-loops. One of these loops maintains the density of the out-flowing 

whey by adjusting the flow rate of the incoming-concentrate at a set-point 

determined by the operators. The other loop adjusts the cooling-water flowrate to 

keep the final effect temperature at a set-point. The two setpoints are periodically 

adjusted up or down by operation staff. These adjustments are based on the 

operators experience and have not been fully quantified. This controller 

configuration is portrayed in Figure 9.3 . 1 .  

F 

w 

Proportional loop 2 

P TF OF PW 

The Evaporator 

Proportional loop 1 

.,_ _ _..- D 
.,_ _ _.� T 

Figure 9.3.1 



176 

9.4 MODEL IDENTIFICATION OF THE EVAPORATOR 

The first stage of the preliminary study was obtaining a model of the process in 

order to assess the economic viability of implementing a multi variable controller. 

It was decided to obtain a time-series model of the evaporator rather than 

an analytical model . This choice was made for two reasons: firstly, very little was 

actually known about the heat-transfer coefficients, the evaporation surface 

dimensions and the pressures inside the evaporator except that the heat-transfer 

coefficients vaned during any evaporation run and, secondly' the slowness in 

variation in the dynamic response of the evaporator suggested that an adaptive 

linear multivariable control scheme would be sufficient to control the process. 

In order to obtain a time-series model of the process, data was collected 

from the evaporator. This data-logging was performed using an inter-sample 

interval of 20 seconds. This sampling rate was chosen to be about 1/lOth of the 

fastest time-constant (thought to be about 3 minutes). As the objective of this stage 

of the project was to obtain a model of the process running near the current 

operating set-points, under the existing control scheme, pseudo-random binary 

perturbations were made around the existing controller's concentrate flow-rate and 

cooling-water flow-rate actuation signals. Measurements were recorded of the fifth 

effect temperature (T), the concentrate flow-rate (F), the density of the outflowing 

concentrate (D), the steam pressure (P), and whether the concentrate flow-rate and 

cooling-water flow-rate were increased or decreased over the set-point levels 

decided by the currently implemented controller . 

The other disturbances, the cooling-water pressure (PW), the incoming­

density (DF), and the incoming-temperature (TF) were not initially considered to 

have significant effects on the plant so no provision for the on-line measurement of 

these variables was made. In fact it was during the course of data collection that the 

importance of these variables was realised and arrangements were made with the 
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operations staff to ensure that these variables remained constant for the data 

collection time-periods. 

Three runs of data were collected from the plant. The measurements were 

collected with an 8-bit AID converter. These runs were made when the operators 

considered the plant to be close to steady state. Each run was approximately 30 

minutes long, with data being collected every 20 seconds. In the first run the 

concentrate flow rate valve position was perturbed +1- 5% while the cooling water 

flow rate was held constant. In the second run the cooling water _£low rate was 

perturbed +1- 5% and the conentrate flow rate was held constant. In the final run 

both the concentrate flow rate and the cooling water flow rate were perturbed +1-

5% around their setpoints. In addition during this final run the steam flow to the 

evaporator was manually perturbed. 

During the course of the first run the operators found it necessary to 

change feed tanks of incoming whey. This whey was at a different temperature and 

density to that which had been used in the earlier part of the data collection run. 

The resulting shift of operating conditions for the evaporator meant that steady 

state was not again reached until well through the second data collection run. 

Unfortunately this was not realised until the data was analysed. There were no 

difficulties encountered during the third data collection run. As a result of this 

major disturbance, data from the first two runs were not used in the modelling 

process. 
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9.5 DATA ANAL VS IS 

The raw data from the evaporator was in the range 0 to 255. Appendix A contains 

the raw data from Run 3. The data collected was initially plotted and graphically 

analysed. This showed that the major cause of disturbances on the evaporator was 

variations in the steam pressure and gave some indication of the time-delays. A 

plot of the run three data is shown in Figure 9.5 . 1  

Plot of monitored variables againt time for the 
evaporator 

250 

200 

150 

1 00 

0 50 100 
Time (20 Second Intervals) 

Figure 9.5.1 

150 

- Steam pressure 

• • · Density 

- • • - Temperature 

- - - Whey flow rate 

- • • - whey flow actuation 

-- cooling flow 

actuation 

The power spectrum functions of the steam pressure measurements and the actuation signals were 

plotted, Figures 9.5.2-9.5.4. 
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PowerSpectrum plot for Steam Pressure 
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Figure 9.5.2 
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Power Spectrum plot for Cooling Water Flowrate Actuations 
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These plots show that there was sufficient excitation being provided to the process 

at all frequencies up to 112 the sample frequency of 1/20 Hz. This lends confidence 

to the claim that the evaporator was excited persistently by the input signals over 

the measurement period. 
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9.6  PARAMETER ESTIMATION 

In order to minimise numerical problems the measurements were scaled 

and translated so that the range of values in any measurement channel was - 100 

and 1 00. The setpoint for each variable was taken to be zero in this transformed 

space. Table 9.6. 1 shows how these ranges relate to the actual process variables. 

Value corresponding to - 1 00 Value corresponding to 1 00 

Temperature 38°C 44°C 

Density l . l Okg/kg l . l l lkgl.kg 

Steam pressure 7psi 15psi 

Concentrate Flow-rate 5% decrease in valve position 5 %  increase in valve position 

Cooling Water Flow-rate 5% decrease in valve position 5% increase in valve position , ·  

Table 9.6.1 

9.6.1 ESTIMATION OF TIME DELAYS 
Initial estimates of the delays were made using

. 
the cross-correlation method, 

Hannon and Robinson ( 1 973). 

The cross-correlation functions for each combination of input and output 

were calculated and the lag at which the cross-correlations were largest was 

identified and taken to be the time-delay. These estimates corresponded well with 

the indications suggested from visual analysis of the time-series. The delays were 

identified as given in Table 9.6.2 



Density Temperature 

Concentrate Flowrate 5 time-steps ( 1 00 sec) 2 time-steps ( 40 sec) 

Cooling water flow rate 2 time-steps ( 40 sec) 3 time-steps ( 60 sec) 

Steam pressure 1 time-steps (20 sec) 4 time-steps (80 sec) 

Time-Delays between Inputs and Outputs in Evaporator 

Table 9.6.2 

9.6.2 ESTIMATION OF MODEL ORDER 
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Using the time-delays estimated in . Section 9.6. 1 using the cross correlation 

method, estimates were then made of the model order of the process. the model 

orders were determined using the prediction error method. 

Akaike's information criteria (AIC) method, Akaike ( 1974, 198 1 ) maximizes the 

AIC: 

AIC = -2 ln(L(8, y)) + 2np (9.6 . 1 )  

where L i s  the maximum likihood function, 8 are the model parameters and np is 

the number of parameters. 

When the probability distributions of the observations are gaussian the AIC 

method is equivalent to minimizing 

SSEe +2np (6.6.2) 

where SSEe is the sum of squared errors for the model with parameters 8. 
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The model order, for each sub-model in the process, was then determined as that 

which minimizes Equation (9.6.2). 

The model was identified as: 

where A 1 ( q-1 ) = 1 + 1 .232q- 1 - 0.092q-2 - 0. 1 86q-3 

A 2( q- 1) = 1 + 0.408q- 1 -0.248q-2 - 0.292q-3 

and Hl l  (q- 1) = q-sc-o.o2sq- 1 - o.o 1 3q-3) 

H}2(q- 1) = q-2(-0.033q- 1 + 0.0 12q-2 - 0.004q-3) 

H1 3(q- 1) = q-2(-0.0SOq- 1 + 0.094q-2 + 0. 132q-3) 

H2 1 (q-1 ) = q-3( -O.OSOq- 1  + 0.094q-2 + 0.033q-3) 

H22(q- 1) = q-1 c-o.o67q- 1 - o.o32q-2 + o.o21q-3) 

H23(q- 1) =q-4(0.062q- 1  + 0.030q-2 + 0.09 1q-3) 

(9.6.3) 

(9.6.4) 

(9.6.5) 

(9.6.6) 

(9.6.7) 

(9.6.8) 

(9.6.9) 

(9.6. 1 0) 

(9.6. 1 1 ) 

The R2 values of the model was 66% for Density and 58% for final effect 

temperature. 

The one-step ahead predictions that this model produced are shown in 

Figures 9.6. 1 and 9.6.2. 
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This model provided an impression of what the evaporator was like at on 

the day on which data was collected. This model was then used as a basis for 

experimentation with different model descriptions and different controllers. 
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9.7 CONTROL AND SIMULATION 

The model, Equations (9.6.3)-(9.6. 1 1 ), was rewritten in a Non-Minimal State­

Space (NMSS) form and used to design several control schemes. The first group of 

controllers considered were optimal state-feedback controllers using an NMSS 

description to design and implement the controller. These control schemes were 

designed to minimise the following quadratic performance index: 

00 

J - � ( D'(k) T'(k)) ( q 0 XD'(k)) + ( F'(k) W'(k))( F'(k) ) - L..J 0 q T'(k) W'(k) 

k=1 

(9.7. 1 )  

where s'(k) is the value at the kth interval of the deviation variable of the signal 

s(k), that is: 

s'(k) = s(k) - steady-state value of s(k) (9.7.2) 

Using MATLAB and the model of the evaporator described in Section 9.6, 

Equations (9.6.3)-(9.6. 1 1 ), optimal state-feedback controller gain matrices were 

found for the evaporator for each of three values of q: q= 1 ;  q= 1 0 and q= 100: 

u(t) = -Kqx(t) (9.7.3) 

These resulted in closed-loop systems that reacted progressively more quickly to 

restore the process to steady-state after a disturbance. 

In an attempt to simulate a control system similar to that currently used on 

the evaporator, a control system comprising of two negative-feedback proportional 

control loops was also designed: 



F'(k) = -k 1D'(k) 

W'(k)= -k2T'(k) 

(9.7.4) 

(9.7.5) 
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In order to compare the performance of this control system with that of the optimal 

system, an attempt was made to determine the values of k 1 and k2 as near as 

possible to the same order of magnitude as each other and such that the resulting 

closed-loop system was stable and had closed-loop poles that were in the same 

range of magnitude as the closed-loop poles of the optimal designs. The values 

selected were k 1 =0.3 and k2=0. 1 .  

The positions of the closed-loop poles for each of the optimal controllers 

and for the proportional control system are presented in Table 9. 7 . 1 .  

q= 1 q=lO  q= 100 2-P loops open-loop 

0.89 0.65 0.52 0.97, 0. 10 0.90 

0.76 0.65 0.52 0.95,0.48 0.65 

0.7 1 0.7 1 0.42 0.66,0.49 0..32 

0.32 0.3 1 0.44 0.45,0.55 0.97 

0.55 0.52 0.44 0.45,0.08 0.55 

0.55 0.52 0.24 0.45,0.43 0.55 

0.55 

Table 9.7.1 

For a particular steam pressure input sequence, the controlled 

performance, in terms of the standard deviations and maximum and minimum 

values of each of these signals in the simulated evaporator is shown in Table 9.7.2. 

In this table the - 100 to 1 00 scale is used. 
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Control Standard Minimum Maximum 

System Deviation 

q= 1 D 5.021  -7.88 10  

T 3.462 -6.55 1 0.66 

F 2.402 -6. 10  5 .74 

w 3.387 -3.61 1 2.70 

q=lO  D 4.258 -7.06 1 0  

T 2 .639 -5.82 1 0.66 

F 5.040 - 1 5.74 1 3.54 

w 8 .553 - 1 1 .84 47.3 1 

q=1 00 D 3 .774 -6.80 1 0  

T 2.422 -5.40 1 0.66 

F 1 0.700 -28.43 3 1 .75 

w 1 5 .580 -2 1 .0 1  1 07.01 

2 P Loops D 5 .944 -9. 1 1 1 0.8 1 

T 3 .994 -4.03 1 1 .26 

F 1 .773 -3.24 2 .73 

w 0.395 - 1 . 1 2 0.40 

Open-Loop D 5 .87 1 -9. 1 1  10.98 

T 4.902 -6.50 1 1 .33 

Table 9.7.2 

Two controllers, an optimal controller with q= l O  and the 2 proportional 

loop controller, were simulated using the same disturbance sequences and the same 

initial conditions. The results from the simulations are presented in Figure 9.7.3. 
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This graph shows that the density is much less variable using the optimal 

state feedback control l aw than when the 2-P loop control law is used. However, 

this reduction in the variability of the outputs is at the expense of an increase in 

the magnitude of the signals to the valves controlling the feed flow-rate and 

cooling-water flow-rate. The increased variance in these were however within 

operating constraints of the process. 
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9.8 ADVANTAGES OF IMPROVED CONTROL 

The existing controller does not allow large enough gains in actuation signals 

whereas the multivariable controller could make use of appropriate amount of 

control action. By reducing the overall amount of steam used in the process, by 

increasing the amount of concentration that takes place in the evaporator, instead of 

in down stream stages of the process savings can be made to the process cost. 

Improved control could include, amongst its advantages a reduction in the amount 

of cleaning required due to fouling, or baking of the concentrate onto the 

evaporator walls. 

The savings in steam usage can be measured since the thermal efficiencies 

of the various components of the extraction process are known. The evaporator has 

a thermal efficiency of about 0. 14, that is 0. 14kg of steam is used to raise 1 kg of 

steam from the concentrate. This compares well with the thermal efficiencies of 

about 0.53 for the rest of the plant. Hence if more evaporation takes place in this 

part of the process than at down stream stages, savings can be made to the total 

amount of steam used in the extraction of concentrate. 

The simulation suggested that the set-point for the out-flowing density 

could be raised by 2%. This would result in more evaporation taking place in the 

evaporator instead in down-stream components of the extraction process with a 

resulting saving in the amount of steam used for heating. 

Assuming that the incoming whey flowrate is not changed, then 38000 t 

of concentrate enter the evaporator at 6% solids. This means that 2280 t of solids 

enters the evaporator each hour. When the solids exit the evaporator, they make up 

4 1 %  of the volume. Hence the volume of concentrated whey (and water) exiting 

the evaporator is about 556 1 t/hr. If the solids content is increased to 43%, the 

outflowing volume decreases to 5302 f/hr. The difference in total volume exiting 

the evaporator each hour of operation is the increased amount of steam raised in the 

evaporator, 260 f/hr. 
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The 2% increase in solids content would therefore save about 

260x(0.53-0. 14) = 10 1 .4kg/hr of steam used for heating 

The dairy company estimates that steam cost about $20 per tonne. Since 

the evaporator operates 22 hours per day for 250 days of the year. This means that 

about $ 1 1 , 1 54 per annum could be saved. 

The possible economic gains from improved control are marginal so the 

cost of implementing any form of improved controller had to be kept to a minimum 

in order to keep the improvements economically viable. A constraint imposed was 

to reduce to a minimum the software and hardware supplied by Massey University 

in order to reduce the development time. In order to further reduce the risks 

commercially available equipment and software was to be used whereever possible 

since these commercially available products have been well tested and are known 

to be reliable. Since the dairy company operating the evaporator had a PC and a 

suitable interface card already installed on the evaporator that was in use .only 

when the evaporator was in a cleaning cycle, the remaining 2 hours of each day, it 

was decided to implement a controller using the same PC. 

In addition using a PC with good software would allow the easy 

exploration of some possible control strategies and controller designs. 
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9.9 REVIEW 

In this chapter a model of an evaporator has been identified. The process which 

can be modelled as a discrete-time multivariable time-delayed system is currently 

· controlled using two proportional control loops. 

Using the model of the evaporator, a simulation study suggested that a 

multivariable controller could be applied to the evaporator and that financial 

savings could be made from improved control of the evaporator. 

The quantifiable savings from improved usage of steam are small. 

However additional benefits such as improved knowledge of the process dynamics 

and reduced foul ing of the evaporation surfaces make the project attractive to the 

dairy company. 
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1 0 Implementation of a Self-Tuning Controller 

for an Evaporator 

1 0 .1  INTRODUCTION 

The model obtained in the first part of this case-study, Chapter 9, provides an 

impression of what the evaporator was like on a particular day. However, the 

evaporator dynamics are slowly changing as concentrate builds up on the 

evaporation surfaces. This fouling causes the heat-transfer coefficients to change as 

well as the flow-rate of concentrate through the tubes of the evaporator. Hence it 

was suggested that an adaptive control law should be implemented on this process. 

This chapter investigates several aspects of a proposed implementation of a self­

tuning controller on the evaporator. This implementation was never tested on the 

process for two reasons; the dairy season finished before the controller could be 

implemented and evaluated, hence there was no whey to be evaporated, and the 

dairy company operating the evaporator then reviewed its development policy and 

decided to improve the steam pressure control, resulting in much better 

performance from the evaporator without the need for multivariable control of the 

evaporator. The controller was therefore only tested in simulation (Section 10.5) 

Section 10.2 contains a brief review of some of the aspects of self-tuning 

control is presented. 

Section 10.3 contains a description of the hardware and software that was 

selected for an implementation and the constraints and limitations that are imposed 

on the implementation by this choice of hardware and software. 
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In Sections 10.4 a framework for the control ·of the evaporator is 

described. 

In Section 1 0.5 the model obtained in the first part of the project is used 

to simulate the plant operating under a self-tuning controller based on the non­

minimal state-space (NMSS) description and optimal control. The results of this 

simulation show that a self-tuning controller is viable, at least on the simulated 

plant, on the grounds that: the time taken for the estimation and controller 

calculations was less than the inter-sample time-step; the coefficients converged; 

the self-tuning controller converges and the process variability is reduced. 



1 0.2 A LITERATURE REVIEW OF SELF-TUNING 

CONTROL 
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Self-tuning control was first suggested by Kalman (1 958) who developed an 

algorithm for controlling a plant where only the inputs, outputs, model-orders and 

time-delays were known. He constructed a hybrid computer, part analog and part 

digital , that used a recursive least-squares procedure to estimate the parameters of 

the process and implemented the control using a dead-beat control design law. The 

lack of powerful computers at the time and the lack of any convergence proofs 

meant that this method was severely limited. 

The invention of the microprocessor in the 1 970's provided the required 

technological impetus that resulted in practical self-tuning controllers. 

Good surveys of in this field are found in Astrom, Borison, Ljung and 

Wittenmark ( 1977), Harris and Billings ( 198 1 ), Astrom ( 1983), Astrom and 

Wittenmark ( 1 984), Goodwin and Sin ( 1 984) and Toivonnen ( 1984). 

The property that the controller will converge to the controller that would 

have been obtained if the true process description had been known a priori was 

called the self-tuning property by Astrom and Wittenmark ( 1 973). This is the 

property that differentiates self-tuning control from other forms of adaptive control . 

The analysis of self-tuning controller systems is usually restricted to 

time-invariant systems. It is common to assume that an upper-bound on the order 

of the process is known and that something is known about the disturbances that 

affect the process. 

A number of multi variable adaptive controllers have been presented in the 

l iterature. 

Borison ( 1 979) produced a multi variable minimum-variance self-tuning 

controller. This contro�ler presumed the delays in each loop were equal. 

Koivo ( 1980) extended this -method to the Clarke-Gawthrop controller. 

Again all the delays were assumed to be equal. Keviczky and Kumar ( 1 98 1 )  
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produced a generalisation of the Clarke-Gawthrop controller that allowed for a 

general B( q- 1 ) polynomial matrix subject to B(O) being non-singular. 

Prager and Wellstead ( 1 980) gave a multivariable pole-assignment self­

tuning regulator. This controller also assumes that the delays are all equal. 

The self-tuning methods mentioned above are based around a polynomial 

matrix description of the process. Another common method of writing process 

descriptions is the state-space technique. There are many state-space descriptions. 

One type of state-space description is the Non-Minimal State-Space (NMSS) 

description discussed in Chapter 5 .  This description is of interest since, unlike 

many state-space descriptions, it does not require an observer or filter to be 

implemented in order that the state of the process be obtained from input-output 

data. 

Peterka and Astrom ( 1973) produced a state-space adaptive controller that 

made use of a form of non-minimal state space (NMSS) description and used an 

optimal state feedback controller design law. 

Hesketh ( 1 98 1 ,  1 982) used a NMSS description but used pole-placement 

as the controller design technique. His control law is found by a transformation of 

the coordinate system used to describe the state-vector. The inverse transform 

returns the control law to the required coordinate space. This method produces 

controllers that are the same as those obtained in Prager and Wellstead's 

multi variable controller, Prager and Wellstead, ( 1 980). 

A particular NMSS form has been used by Young, Behzadi and Chotai 

( 1 987), Wang and Young ( 1988a, 1 988b), Chotai and Young ( 1988), Young 

Behzadi and Chotai ( 1988) and Cox, Boucher and Young ( 1 988).· These 

explorations have added various extensions to their NMSS description, in 

particular Proportional Integral Plus (PIP) control that involves adding an integral 

term to the NMSS �escription. 

Identifying the parameters of a process while it is in closed loop is a 

problem associated with adaptive and self tuning controllers. The problem arises 
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when a feedback control law is applied to a process and the coefficients of the 

process are estimated since the inputs and outputs are correlated. Soderstrom, 

Gustavsson and Ljung ( 1 975), Ljung, Gustavsson and Soderstrom (1974) and 

Gustavsson, Ljung and Soderstrom ( 1977) give a survey of the solutions to this 

problem. 

In Section 1 0.2. 1 methods which have been used to determine model 

orders and time-delays are reviewed. In Section 1 0.2.2 methods for model 

coefficient estimation are reviewed. Some of the methods used to calculate the 

controller gain matrix are considered in Section 10.2.3. 

10.2.1 ESTIMATES OF THE MODEL ORDERS AND 
TIME-DELAYS 
Good estimates of the system parameters are needed to obtain good models of the 

process. If the estimates of the orders are too small then not all the dynamics of the 

process are found. If the estimates are too large then there are two problems: the 

amount of calculation is vastly increased and the algorithm may not converge 

(Ljung, 1 977a, 1 977b). 

There are many tools for estimating the model orders. The most common 

way of selecting the model orders is based on the method of Akaike (Akaike 1 98 1 ) .  

The cost function that is minimised in this technique is a modification of that of 

maximum likelihood that includes a cost of increased model order. The technique 

used is to increase the order of a proposed model, calculating the cost function for 

each proposed model order. The true model order has been found when no 

significant decrease in the cost function is obtained by increasing the order any 

further. 

There are fewer results to assist in the estimation of the delays of a 

process. One method proposed is to �se Akaike's criterion in a similar manner to 

that used to find the order of a model, Mancher and Hensel ( 1 985). 
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Another method mentioned in the literature, for example Hannon and 

Robinson ( 1973) and Hamon and Hannon ( 1 974), is to use the cross-correlation 

function between the input and output. The pure delay is claimed to be the lag at 

which the maximum absolute value of the cross-correlation function is attained. 

10.2.2 MODEL ESTIIYIATION 
The most common technique for model identification is the method of least 

squares. Other methods for identification include maximum likelihood, method of 

instrumental variables and the method of recursive maximum likelihood stochastic 

approximation and recursive least-squares method, the differences between these 

methods are the criteria used to select the best estimates of the set of coefficients. 

These methods can be considered in a common frame-work with much of the 

analysis being the same. 

The least squares method has been used for estimating model coefficients 

since it was developed by Gauss in 1 809 [Ljung and Soderstrom 1983, p l 2-63] .  

The least squares estimator minimises the cost function 

1/ilt. 

1 = I.  w, (y(t) - .YCt))2 ( 10.2. 1 )  
t=O 

where Wt is a sequence of weightings and y(t) is the estimate of the output, y(t), 

made at time t. In the simplest implementation, all the weightings are the 

same,wt = I 'V t. 

The traditional least-squares method is best suited for offline analysis. A 

recursive form of the least squares method was developed by Plackett [Ljung and 

Soderstrom, 1 983, - p 1 2-63] . If a linear model, y(t) = 8(t)TX(t), is used to describe 

the process, the recursive least-squares algorithm can be stated in the form, 



and 

E>(t) = E>(t- 1 )  + K(t)(y(t)-E>'(t- 1 )X(t)) 

P(t- 1 )E>(t) 
K(t) = a(t)2+E>(t)1J>(t- 1 )E>(t) 

P(t- 1 )E>(t)E>(t)P(t- 1 ) 
P(t) = P(t- 1 )  -

a(t)2+E>(t)TP(t- 1 )E>(t) 

where a(t) is a forgetting factor. 
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( 10.2.2) 

( 10.2.3) 

( 1 0.2.4) 

The forgetting factor, a(t), is related to the weightings Wt. If all the 

weightings are the same then a(t) = 1 .  By changing the w�ightings, Wt, on the sum 

of squares cost function, it is possible to increase the relative weighting on newer 

data and correspondingly reduce the weighting on older data. There are several 

ways in which this can be performed. Exponential forgetting occurs if the 

weightings decrease geometrically with age. In this case a(t) =a for O<a< l .  

Alternatively i f  the weightings do not change with age except for a very low 

weighting on early data a forgetting factor in which a(t) increases to unity could be 

employed. Soderstrom, Gustavsson and Ljung ( 1975) suggest that a good choice of 

forgetting factor is a(t) = ao.a(t- 1 )  +( 1 - <XQ) with typical values of a(0)=0.95 and 

a(0)=0.99. 

Another method of improving the performance of the recursive least 

squares (RLS) algorithm is to insert a covariance resetting or modification step into 

the algorithm (Goodwin and Sin, 1 984 p65-68). This is done because while the 

RLS algorithm has large initial gain, K, the gain reduces dramatically in magnitude 

when the error covariance matrix becomes small . The covariance matrix is then 

reset to force the gain matrix to become larger. This commonly happens after 1 0� 

20 iteration steps. 
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Good summaries and derivations of the different methods of on-line, or 

recursive, model identification methods are given in Ljung and Soderstrom ( 1983, 

p 1 6-6 1 )  and Goodwin and Sin (1984, p47-1 05 and p301 -359). 

Comparisons of different variations of the recursive least squares 

estimator and other on-line identification methods are given in  Isermann, Baur, 

Bamberger, Kneppo and Siebert ( 1974), Saridis ( 1 974) and Sen and Sinha ( 1975). 

10.2.3 PERSISTENT EXCITATION 
In order for the recursive least squares algorithm, Equations ( 10.2.2)-( 1 0.2.4) to 

converge it is necessary that the process receives sufficient excitation in the input 

sequence that the matrix 8T8 is nonsingular. Care must therefore be taken to 

ensure that the inputs to the process are persistently exciting or have sufficient 

richness to ensure that the covariance matrix, eTe is nonsingular. If the inputs are 

not persistently exciting the process, perturbations could be added to the process to 

ensure that the inputs are sufficiently rich. 

The l iterature includes various results that ensure persistent excitation, For 

example Middleton and Goodwin ( 1990, p364) Goodwin and Sin ( 1 984, p72). 

10.2.4 UPDATING THE CONTROLLER GAIN MATRIX 
In discrete-time the time-invariant regulator problem can be formulated as 

such that 

00 
m in 
u(t) J = L, x(t)tQx(t) + u(t)tRu(t) 

0 

x(t+1 )  = Ax(t) + Bu(t) 

( 10.2.5) 

( 10.2.6) 
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The dynamic programming approach of Kalman and Koepeke is reviewed 

in Kwakernaak and S ivan ( 1 972 p 492-494). This version of the solution to the 

discrete time optimal regulator problem gives rise to the set of equations. 

F(t) = (R + B'(Q+P(t))Bt 1B'(Q+P(t))A ( 10.2.7) 

P(t- 1 )  =A[Q+P(t)] [A-BF] ( 10.2.8) 

which are solved recursively from the finishing time. from which the optimal u(t) 

can be calculated. It can be shown (see Goodwin and Sin, 1 984, p 5 1 3-5 1 5) that the 

steady-state solution can be obtained using the recursive approach and that this 

method will converge exponentially to the solution of the steady-state Riccati 

equation. 

Another approach is to use the techniques of constrained optimisation. 

This  can give rise to reformulation of the problem of solving the Riccati equation, 

as a generalised eigenvalue problem. Potter [Pappas, Laub and Sandell ( 1980)] 

showed that the continuous time optimal regulator can also be formulated in this 

way. If the transition matrix is non-singular then the set of equations that arise 

from applying the method of Lagrangian multipliers to the constrained 

optimisation problem can be rearranged as an eigenvalue and eigenvector problem, 

as shown by Vaughan ( 1 970). 

Laub ( 1979) shows that the Riccati equation can be solved in terms of 

Schur vectors. 

Pappas, Laub and Sandell ( 1 980) present the more general case in which it 

is not assumed that the transition matrix is invertible. They give two methods, one 

using generalised eigenvectors, the other using generalised Schur vectors. 

Shieh Tsay and Y ates ( 1 983) show that the matrix sign function can be 

used to solve the discrete time Riccati equation using a method similar to that of 

Vaughan ( 1 970). The matrix sign function can be viewed as a mapping of the 



203 

eigenvalues to +/- 1 but preserving the eigenvectors. There are several recursive 

algorithms for the estimation of the matrix sign function. 
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1 0.3 IMPLEMENTATION CONSIDERATIONS 

In this section the hardware and software components of the existing and the 

proposed controllers are discussed. 

10.3.1 THE MODICON AND THE ERO CONTROLLERS 
The evaporator is currently controlled using two controllers, a Modicon and an 

Ero. The Ero is used to regulate the cooling water flowrate. The Modicon is used to 

control the whey flowrate. Each of these controllers accepts 4-20mA signals from 

the various sensors. Both these controllers are typical industrial controllers and 

neither has extensive numerical capability. The lack of extensive floating-point 

arithmetic means that any multivariable controller could not be implemented using 

these controllers to perform the calculations. However, there is some spare input­

output capacity that would enable the Modicon to act as an intermediary between a 

more advanced controller and the process. 

10.3.2 MEASUREMENTS AVAILABLE ON THE 
PROCESS 
The evaporator, as described in Section 9.2 has nine variables that can be meaured. 

In addition to the measurements of the two inputs, W and F, and the two outputs, D 

and T, there are on the evaporator a number of other measurements available. 

These include: Water pressure (PW); water-temperature (WT), incoming whey­

temperature (TF); incoming whey-density, (DF) and steam pressure (P). Except for 

the incoming whey-temperature, which is a 0- 1 v signal, all the signals are available 

from 4-20mA loops. 



10.3.3 THE HARDWARE AVAILABLE FOR 
MULTIVARIABLE PROCESS CONTROL 
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The dairy company operating the evaporator have installed in the control-room of 

the evaporator an IBM-AT personal computer (PC). This computer was installed to 

assist in the management of the cleaning cycle of the evaporator and hence is 

available when the evaporator is not in a cleaning cycle. Attached to the PC is a 

Keithley interface device. This interface device consists of: 

up to 1 6  Analog-digital conversion channels with 1 2  bit accuracy; 

a 2 channel 1 2  bit digital-analog converter; 

32 bit digital input 

and 32 bit digital output. 

The analog-digital (AID) conversion channels can be selected to be 1 6  

channels in the ranges 0-5v, 0- lOv, or 8 channels in the range ±5v or ±10v. By 

tapping into the 4-20mA signals using a 250Q resister, the signals can be 

interpreted as 1-5v signals by the AID conversion hardware in the Keithley. 

10.3.4 SOFTWARE FOR THE MULTIVARIABLE 
CONTROLLER 
The PC uses MS-DOS version 3.3, a standard operating system. This allows a 

number of possibilities for the software used to implement a multivariable 

controller on the plant. However the cost of purchase and implementation of many 

of these packages effectively eliminated them from consideration. 

The selection of software was further restricted by two factors. MS-DOS 

is not a multitasking operating system. Hence any task-scheduling, such as making 

measurements and dispatching actuations at evenly spaced time-intervals, must be 

performed by software provided by the user, rather than either by the operating 
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system itself or by an autonomous process with its own reliable timing method. 

The second factor was the desire to minimise the amount of programming that was 

involved in the project. The tasks that the software had to perform could be 

separated into two groups: the algorithm for calculating the actuations and the 

interface between this algorithm and the rest of the plant. It was decided to use 

MATLAB for the algorithm portion of the software. 

MA TLAB is a matrix manipulation package available for a wide range of 

computer architectures, including the IBM personal computer. It is a well tested, 

fast and robust toolbox of matrix and vector routines that can be used either 

interactively or, by writing either in MATLAB script files or by l inking either 

FORTRAN or C code. Using MATLAB it is possible to very quickly code an 

algorithm for the calculation of the actuations and since MA TLAB is interactive, it 

is possible to modify this code relatively simply. Since MATLAB was not 

restricted to only being run on the PC attached to the evaporator but could be run 

on any compatible computer, it was possible to run simulation tests of the 

. evaporator control software without any possibility of upsetting the operation of 

the evaporator. 

However, MATLAB is intended to be used as a design tool rather than for 

real-time implementation. Hence the only standard methods of data-transfer to and 

from MA TLAB are via the keyboard, the screen and the hard-disk. The other major 

drawback of using MATLAB is that it does not contain any form of time­

management to ensure that the time-steps are maintained to be of equal-length. 

A simple, but ingenious, solution to these two drawbacks of using 

MA TLAB was devised. This solution was based around a Terminate and Stay 

Resident (TSR) program. This program takes over control of the computer once 

every 1 8  milliseconds, scanning each input measurement and then returning control 

to the program that was running. Every 20 seconds as well as scanning the input 

measurements, the TSR program averages the measurements that have been made 

and places the resulting mean values in the keyboard buffer. It then collects the 
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actuations that the foreground program, MATLAB, has placed in the screen buffer 

and reads a status-flag (one of the digital inputs). If the status-flag informs the TSR 

program that the multivariable controller is currently in charge of the evaporator, it 

then sends the actuations to the digital-analog converters and then returns control 

of the PC to the foreground program, MATLAB. 

This TSR program successfully overcomes the limitations of MATLAB 

since the combination of the TSR program and a MATLAB program that 

repeatedly reads input from the keyboard, calculates the actuations and displays the 

actuations on the screen. The TSR program ensures that the intersample interval is 

a constant 20 seconds provided that MATLAB completes its calculations within 

that time-period. Using this combination it is therefore possibly, relatively cheaply, 

to implement a multivariable controller on a PC. S imulation studies showed that 

MA TLAB required 1 2- 1 6  seconds to calculate the actuations, well within the l imit 

of 20 seconds. 

A listing of the Pascal code for the TSR is presented in Appendix B .  A 

. listing of the MATLAB code is presented in Appendix C. 

10.3.5 PROPOSED MODE OF OPERATION 
It was decided that any multivariable controller implemented on the evaporator 

would be positioned in parallel with any existing control scheme. Paramount 

among the reasons were: 

• Personal computers compared to ruggardised industrial controllers such 

as the Ero and Modicon are relatively fragile and prone to hardware 

failures such as Hard-disk crashes, power failures, overheating, and 

contamination of electronics due to dust particles. 

• The multivariable controller proposed was designed to operate near the 

stable �teady state. Hence another controller had to be available when 

the evaporator was started up. 
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• For financial reasons the existing controllers were to act as the interface 

between the multivariable controller, on the PC, and the evaporator. 

• Since the multivariable controller proposed was outside the operating 

experience of the operations or technical staff of the dairy company, it 

was felt that the operators should have a fall-back position of the 

existing control scheme. 

In order to satisfy the requirement that the multivariable controller · 

coexisted with the existing plant it was decided that the process hardware would be 

arranged so that all the actuations were transmitted to the evaporator via the 

Modicon that, at all times, continued to calculate the control actions that it would 

transmit to the evaporator if it were controlling the process. These actuations could 

then be used if for some reason the multivariable controller ceased to function. 

Figure 1 0.3. 1 displays the data-flow paths between the controllers and the 

evaporator when the multivariable controller is controlling the evaporator. 
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Figure 1 0.3.2 shows the data-flow paths when the Modicon and Ero calculates the 

actuations to be used to control the evaporator. 
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When the TSR program and MATLAB were running, there was no 

possible way of informing the software whether the existing controllers or the 

multivariable controllers was in fact controlling the evaporator since normally all 

communication to MATLAB, in which the multivariable software was written, 

passed through the keyboard that was being used to receive measurements from the 

Keithley interface device. The solution implemented involved the addition of a 

status-flag that was read by the TSR program and relayed to the MATLAB 

program and to the existing controller. The status-flag had four possible states. 

These states are listed in Table 1 0.3. 1 .  
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State Multi variable Existing 

Controller Controller 

0 Watch Control 

1 Learn Control 

2 Learn and Control Supervise 

3 Control only Supervise 

4 Save Supervise 

Table 10.3.1 

The Modicon received a binary flag: 0 if the Modicon was to control the 

evaporator or a 1 if the multivariable controller was in control , in which case the 

Modicon was in a supervising mode. If for some reason the PC and the Keithley 

failed to function, this flag would default to the 0 state and the Modicon and Ero 

controllers would resume control of the evaporator. The multivariable controller 

also received a 3-bit flag that informed it of the operational mode of the process. 

These modes were included so that the model estimation routine of the 

multivariable controller could be disabled, or the current model saved. 

No modifications to the program of the Ero were required. The Modicon 

program alterations were trivial. 



1 0.4 ALGORITHM USED TO IMPLEMENT A SELF­

TUNING CONTROLLER ON THE EVAPORATOR 

2 1 2  

It was decided to implement the multivariable controller using a NMSS 

description. This choice was made since the state-vector of a NMSS description 

consists of the previous input output record of the process. However, in this 

implementation the actual dynamics of the process are not known and hence the 

model and the actual process are possibly mismatched. Moreover, only 

approximations to the time-delays are known and some of these time-delays 

change with the flowrates of the cooling-water and the whey. The results of 

Section 8 .3  suggested that if a Smith predictor was implemented, large derivative­

like action could result which, on the largely unknown process was undesirable. 

The uncertainty in the model of the evaporator, especially the uncertainty 

in the estimates of the time-delays suggested that a Smith predictor should not be 

explicitly implemented, hence it was proposed that a controller based on a NMSS 

description, such as that described in Section 5.2 would be implemented. 

It was also decided to implement a self-tuning controller. This choice was 

made since the process dynamics, while largely unknown and slowly time-varying, 

seemed to be sufficiently slow in changing that a self-tuning controller 

implemented using the PC could control the process successfully. 

The control algorithm could thus be summarised as: 

1 )  Given the model orders and the time-delays 

2) Collect new measurements 

3) Update process model 

4) Recalculate controller gain matrix 

5) Calculate new actuations 

6) Dispatch actuations 

7) Go to step 2. 
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A variety of different methods are available that could be utilised in stages 1 , 3 and 

4 of the overall algorithm proposed above. These various options were discussed in 

the Sections 1 0.2. 1 ,  1 0.2.2 and 1 0.2.3. 
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1 0.5 SIMULATION OF A SELF-TUNING CONTROLLER 

ON THE EVAPORATOR 

When the evaporator was simulated using MATLAB the graphs shown in Figures 

1 0.5 . 1 - 1 0.5.6 were obtained. In this simulation the self-tuning controller was 

placed in a learning mode for the first 1 00 time-steps during which PRB signals 

were added to a predetermined actuation signal to the evaporator. After 100 time­

steps the actuations produced by the multivariable self-tuning controller were used 

to control the process . 
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The plots of the two outputs, D and T against time are shown in Figures 

1 0.5 . 1  and 1 0.5.2. It can be seen from these two graphs that the deviation from the 

setpoint of the temperature and the density decreased. In this particular simulation 

it can be seen that the temperature is especially well controlled by the self-tuning 

controller. 
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The plots of the two actuation inputs, W and F, against time are shown in 

Figures 1 0.5.3 and 1 0.5.4. In these the PRB signals can be clearly seen for the first 

I 00 time-steps. After the 1 00 time-step i t  can be seen that the actuation inputs 

quickly settled to within a band either side of the steady-state levels. 
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The plots of the traces of the solution of the Riccati equation and the 

covariance matrix against time, "Figure 1 0.5.5, shows that the two traces converge 

to constant values. This suggests that the controller gain matrix has converged to a 

constant matrix and the recursive least squares algorithm estimates of the 

coefficients of the evaporator have converged. 

•' " .·i"'"" .. 
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The plot of two of the coefficients against time, Figure 1 0.5.6, confirms 

that the coefficient estimates have converged. 
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10.6 REVIEW 
In this chapter self tuning controllers have been reviewed. A self tuning controller 

for the evaporator, described in Chapter 9, was developed although this controller 

was never tested due to an end to the dairy season and a change in company 

research and development policy. 

The controller was designed to meet the requirements of the dairy 

company and utilised as much existing equipment as possible, with the minimum 

of interference to their existing mode of operation. The design was such that, if any 

of the components of the multivariable controller failed, the existing controller 

would immediately resume control of the process. The multi variable controller was 

implemented in commercially available software, MATLAB, which has been 

proved to be numerically robust. 

The simulation study showed that it was feasible to control the process 

using a self-tuning controller: the controller converged and the calculations 

required in each time-interval could be completed within the available time-slice. 
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11 CONCLUSION 

1 1 . 1 Summary 

In this thesis multivariable time-delayed processes have been investigated. In 
particular the method of controlling time-delayed processes using a device known 

as a Smith predictor has been explored. 

The Smith predictor, which has been used on single-input single-output 

systems since the late 1 950's relies on the commutativity of scalar multiplication to 

allow the translation of the delay operator through the transfer function. However, 

this commutativity property does not, in general, extend to the multivariable case. 

Several special cases of Smith predictors have appeared in the literature. These 

Smith predictors have relied on the structure of the delay operator, or a close 

approximation to the delay operator, to allow the operator to be commuted through 

the transfer function. The representation of multivariable processes using either 

state-space or transfer functions is common place. However, the representation of 

multivariable time-delays in process descriptions has yet to be fully explored. In 
Chapter 3 several of the methods of representation of multivariable time-delays 

were considered and a general form of representation developed. This formulation 

is sufficiently general to include majority of process descriptions. 

In Chapter 3, two new results that allow a type of pseudo commutativity 

for matrices, and hence multivariable transfer functions, have been presented. 
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These results allowed the construction of a Generalised multivariable Smith 

predictor in Chapter 6. 

Many techniques exist for the reformulation of a state-space description of 

a process as a transfer function description. However the converse task, 

reformulating a transfer function description as a state-space description often 

relies on numerical methods. The results of Chapter 3 were used in Chapter 4 to 

present a method of reformulating a multivariable transfer function description of a 

process as a state-space description. The state-space description obtained is, by 

default, in a block-diagonal form, which makes it extremely easy to work with in 

the time-domain. 

In chapter 5 a discrete-time state-space description, the Non-Minimal 

State-Space (NMSS) description was investigated and a time-delayed variant of 

this description developed. 

The time-delayed state-space descriptions, developed in chapter 4, allow 

for the implementation of a new form of Smith Predictor: a State-space Smith 

predictor was developed in chapter 7. This form of Smith predictor could prove to 

be extremely useful for digital implementation of Smith predictors. 

It is well known that Smith predictors cannot control an open loop 

unstable process. In chapter 8 a proof of this limitation, using the results of Chapter 

3 was presented. An investigation of the robustness of the generalised 

multi variable Smith predictor of Chapter 6 to modelling errors was also undertaken 

in Chapter 8 .  

In Chapters 9 and 10  a case study of a multivariable time-delayed process 

was presented. This proces-s, with relatively long time-delays and numerous inputs 

and outputs is truly multivariable in nature. A NMSS description for this process 

was developed and used to investigate the feasibility of implementing a 

multivariable self-tuning controller. _ 
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1 1 .2 Recommendations 

There are several developments made in this thesis that need further work. These 

include: 

• The development of a method, or methods, for finding minimal state­

space descriptions from transfer function form. It may be possible to 

develop an algorithm, based on the method presented in Chapter 4, 

that allows reformulating a multivariable transfer function as a 

minimal state-stace description. 

• The investigation of the performance of the generalised Smith 

predictor on processes with disturbance inputs. 

• Exploration of the Relationship between generalised Smith predictors 

and LQC and the effect of model mismatch on generalised Smith 

predictors. 

• Explore the possibilities of combining the methods proposed by De 

Paor ( 1 985) and De Paor and Egan ( 1 989), for the control of open­

loop unstable processes, and the Generalised Smith predictor 

presented in this thesis . 

• In the evaporator case study, a multivariable self tuning controller was 

investigated as a possible control mechanism for the evaporator. It 

would be of interest to know how well this process could be controlled 

using a generalised multivariable Smith predictor. 



222 

APPENDIX A : RAW DATA COLLECTED FROM 
EVAPORATOR 
This dataset is the data collected from the evaporator on Run 3 .  

The records are the measurments of the Steam pressure, Density, 5th effect 

Temperature and Whey flow rate. These measurements are in the range 0-255. The 

other two columns of data contain the valve positions. These are 0 and 1 ,  

corresponding to the valve being pertibated -5% or 5 %  respectively. 

Time between samples is - 20.00 seconds 

1 STEAM PRESS. 

2 DENSITY 

3 5TH EFFECT TEMP. 

4 WHEY FLOW RATE 

Output channel 1 is perturbed 

Output channel 2 is perturbed 

During this run the steam pressure was varied by hand 

DATA STEAM DENSITY 5TH EFF WHEY WHEY FLOW COOLING 

POINT PRESSURE TEMP FLOW ACfUATION FLOW 

RATE ACTUATION 

0 200 29 49 2 10  0 

1 198 32 52 138 0 

2 197 3 1  5 1  138 0 0 

3 198 32 56 226 0 1 

4 1 97 32 52 149 0 

5 198 30 53 1 54 0 0 

6 197 32 48 226 0 1 

7 197 3 1  52 148 0 1 

8 1 97 3 1  47 146 0 0 
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9 1 97 34 47 228 1 1 

1 0  1 95 36 55 146 0 1 

1 1  1 94 40 47 148 1 1 

1 2  1 96 42 47 148 1 1 

1 3  1 93 48 5 1  145 1 1 

14  1 85 50 32 144 1 0 

1 5  201 5 1  42 230 1 0 

1 6  2 1 7  52 42 229 0 0 

17  178 55 32 2 1 1 1 

1 8  1 5 1  54 40 136 0 1 

1 9  1 56 54 38 139 0 0 

20 1 62 54 37 222 0 1 

2 1  2 12  55  49 144 0 1 

22 229 5 1  38 1 5 1  1 0 

23 1 97 44 44 227 0 0 

24 1 1 8 4 1  40 225 0 1 

25 141 34 38 138  0 0 

26 132 34 47 223 0 

27 198 36 47 228 0 0 

28 224 32 46 23 1 0 1 

29 158 26 44 147 0 0 

30  169 20 44 230 

3 1  226 10 32 147 1 0 

32 149 12  42 22 1 1 0 

33 2 17  13  37  232 0 0 

34 150 5 37 2 1 3  1 0 

35 160 3 32 203 0 1 

36  167 3 33 14 1  1 0 

37 190 3 8  224 0 0 
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38  1 87 2 37 225 0 0 

39 1 60 0 36 208 1 

40 149 0 39 146 1 1 

4 1  226 0 25 147 0 0 

42 1 50 0 36 22 1 0 

43 1 74 0 38 227 1 1 

44 224 0 28 1 65 0 1 

45 2 1 7� 0 29 1 65 0 0 

46 1 6 1  0 36 226 0 0 

47 226 0 32 233 0 0 

48 225 0 38 208 1 0 

49 1 67 5 45 209 1 1 J 

50 1 65 8 44 14 1  1 

5 1  1 83 9 50 1 53 0 0 

52 205 1 6  43 2 14 1 0 

53 154 1 9  53 2 10  0 1 

54 179 1 9  54 1 50 0 1 

55 2 1 8  1 6  57 1 55 0 0 

56 1 55 22 57 23 1 1 1 

57 20 1 22 59 153 0 1 

58 1 60 2 1  55 1 53 

59 2 19 22 54 154 0 1 

60 1 72 24 57 1 5 1  0 1 

6 1  1 65 23 60 1 55 1 0 

62 2 14  20 63 237 0 0 

63 148 2 1  56 209 1 1 

64 1 39 22 60 1 52 1 

65 140 2 1  6 1  1 5 1  0 

66 1 93 2 1  66 147 
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67 229 2 1  66 175 0 1 

68 223 19 56 175 1 0 

69 2 10  1 1  61 233 0 1 

70 206 4 58 152 0 0 

7 1  1 63 3 53 23 1 0 

72 172 6 54 229 0 1 

73 2 19  13  57 148 0 0 

74 226 17 52 22 1 1 1 

75 177 2 5 1  149 1 0 

76 1 5 1  2 1  57 227 1 0 

77 2 1 8  1 6  54 232 0 1 

78 1 60 20 57 147 0 1 

79 1 99 25 50 148 1 0 

80 209 22 58 227 0 1 

8 1  203 22 58 1 55 1 0 

82 1 95 17  52 234 0 1 

83 1 85 1 6  52 1 54 0 1 

84 1 65 1 3  54 1 5 8  1 1 

85 2 1 3  14 48 1 54 0 0 

86 1 89 1 6  48 230 0 0 

87 172 1 8  46 228 0 

88 204 1 1  44 229 1 

89 1 6 1  12  4 1  1 47 0 

90 1 76 14 26 . 1 45 0 1 

9 1  1 54 13  29 1 37 0 0 

92 1 64 1 3  37 222 1 

93 1 87 1 1  33 144 0 0 

94 2 14 1 0  28 232 0 1 

95 2 10 8 27 146 0 0 
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96 206 3 3 1  230 1 1 

97 1 59 0 29 1 54 0 0 

98 1 57 0 30 22 1 1 0 

99 1 94 0 3 1  226 0 0 

1 00 1 97 5 36 229 0 1 

1 0 1  1 54 1 2  3 1  1 5 1  0 0 

1 02 1 57 1 6  44 227 0 1 

1 03 1 87 1 4  47 144 0 1 

1 04 207 20 4 1  147 0 

105 1 54 20 43 224 0 0 

106 2 12 1 8  28 234 1 1 

1 07 2 1 5  1 3  33 1 53 1 

1 08 202 1 4  32 155 1 0 

1 09 1 53 14 26 227 0 

1 10 1 67 1 1  30 224 0 1 

1 1 1  1 90 1 1  3 1  149 0 1 

1 1 2 2 1 9  1 3  30 152 1 0 

1 1 3 1 83 1 6  33 224 0 1 

1 14 1 56 1 9  32 135 0 0 

1 1 5 1 9 1  1 3  34 226 0 0 

1 1 6 2 1 5 1 6  37 23 1 0 

1 1 7 203 20 30 224 1 0 

1 1 8 1 99 22 33 205 I 1 

1 1 9 1 68 1 8  29 146 1 

1 20 1 64 20 28 144 0 0 

1 2 1  1 82 1 9  35 222 0 0 

1 22 1 88 1 8  30 223 0 

1 23 1 6 1  20 34 2 1 0  0 

1 24 203 1 6  34 2 1 2  1 0 
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125 208 1 2  34 217 1 1 

126 1 83 1 3  3 1  140 1 0 

127 1 67 1 1  33 224 1 1 

128 1 92 8 25 146 0 0 

129 155 10 24 226 0 1 

130 176 9 34 145 1 1 

1 3 1  2 10 6 29 163 0 1 

132 1 88 7 33 163 0 1 

1 3 1  2 1 0  6 29 163 0 1 

1 32 1 88 7 33 1 63 0 0 
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APPENDIX B:  TSR PROGRAM DEVELOPED 
FOR CONTROLLING REAL PROCESS 

program ScndTSR; 

uses 

CRT,DOS,Unit_Key,Unit_Scn,Unit_Str,Unit_Sup,Unit_Isr,Unit_Int,Unit_Pgm; 

{ with the execption of CRT and DOS, these units are part of the Turbo 

professonal library. CRT and DOS are standard turbo pascal units } 

const 

Keithley _add = $cff0; 

Max_Channel = 12 ;  

Max_Point = 35; 

Max_Order = 9; 

StartCount = 5 ;  { ((Max_Point+ l+StartCount)*Int_Ticks)* 1 8 .2=Sample period } 

Int_Ticks = 3 ;  

TickCount = 4 ;  

B lnkStr = '  

var 

KeySignal : _SignalKey; 

' ·  

' 

TimerSignal : _SignalTime; 

ErrorCode : word; 

c_ val,bad_channels: word; 



index,k,j ,i ,Count,Point,Channel,Ticks : byte; 

FiltVal : array[O .. Max_Channel] of longint; 

Last_ Val : array[O .. Max_Channel] of integer; 

Order : array[O .. Max_Order] of byte; 

Chan_Buff : array[O . .  Max_Channel,0 . .  4] of Integer; 

Sort : array[0 . .4] of integer; 

Actuator,Tmp, Chan_ Val : integer; 

ActStr : string[ 40] ; 

MeasStr : string[80] ; 

CRLF : string[2] ; 

FLAG : boolean; 

{ $F+ } 

procedure Keithley(var Signal : _Signal); 

{ $F- } 

begin 

with Signal do 

begin 

{ continue with emptying buffer if neccessary } 

if length(MeasStr)>O then MeasStr:=_StuffKey(MeasStr) ; 

if _Key Action = _Service then 

begin 

index := 0;  

Count := 0;  

Point := 0;  
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MeasStr:="; 

Ticks:=O; 

FLAG := TRUE; 

for i :=O to Max_Channel do FiltVal [i] :=O; 

ActStr:= BlnkStr 

end; 

if Ticks < TickCount then inc(Ticks) 

else if (_TimeAction = _Interval) and (FLAG) then 

begin 

inc(Count); 

Ticks:=O; 

if Count >= StartCount then 

begin 

{ mains zero cross detector -ve to +ve } 

k:=O; { state unknown } 

repeat 

for i :=O to 2 do 

Count:=Count; 

Mem[Keithley _Add : $8A] := 1 5 ;  { channel number} 

Mem[Keithley _Add : $8 1 ]  := 6; { motherboard slot } 

Mem[Keithley _Add : $98] := 0; { start conversion } 

{ wait for A_D} 

i :=O; 

while (Mem[Keithley_Add : $98] = 255) and (i<200) do inc(i); 

if i>=200 then 

begin 

{ skip this detector if no response } 

230 



k:= 1 ; Chan_ Val :=1 

end 

else 

{ else set k= 1 when mains reading is negative } 

begin 

Chan_ Val:=Mem[Keithley_Add : $82] 

+((Mem[Keithley_Add : $83] and $OF) shl 8)-2047; 

if (k=O) and (Chan_ Val<O) then k:= 1 

end; 

until (k= 1 )  and (Chan_ Val>=O); 

{ now read channels } 

index:=(index+ 1 )  mod 5 ;  

for Channel:=O to Max_Channel- 1 do 

begin 

for i :=O to 2 do Count:=Count; 

Mem[Keithley _Add : $8A] := Channel; { channel number} 

Mem[Keithley _Add : $8 1 ]  := 6; { motherboard slot } 

Mem[Keithley _Add : $98] := 0; 

{ wait for A_D } 

i :=O; 

{ start conversion } 

while (Mem[Keithley _Add : $98] = 255) and (i<200) do inc(i); 

{use last value for this channel } 

if i > 1 99 then Chan_ Val :=Last_ Val [Channel] ;  
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{ or get new value } 

j := Mem[Keithley_Add : $82] ; 

k := Mem[Keithley _Add : $83] and $OF; 

Chan_ Val:=(k shl 8)+j ;  

232 

for j :=0 to 3 do chan_buff[ channel,j] := chan_buff[ channel,j+ 1 ] ; }  

{ update chan_buff} 

if Chan_ val >=2047 then chan_buff[channel,index] := chan_ val 

else bad_channels:= bad_channels or ( 1  shl channel) ;  

if  Point > 4 then 

begin 

{ move channel data to sort array for median filter} 

for j :=O to 4 do sortU] :=chan_buff[channel ,j ] ;  

For j :=O to 3 do 

for i :=O to 3-j do 

end; 

if Sort[i]>Sort[i+ 1] then 

begin 

Tmp:=Sort[i] ; 

Sort[l] :=Sort[i+ 1 ] ;  Sort[i+ 1 ] :=Tmp 

end; 

{ operate filter on this channel at current point } 

Filt Val [Channel] :=FiltVal [Channel]+longint(Sort[2 ]); 
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{ FiltVal[Channel ] :=FiltVal [Channel]+longint(Chan_ Val) ; }  {uncomment 

this line and comment above line if you wish to deactivate the median filter} 

end; 

inc(Point); 

if Point > Max_Point then 

begin 

Point := 0; 

{ convert all filtered values to string and put into buffer} 

if _QueueKey >= 15 then 

begin 

MeasStr := '[ ' ; 

for i :=O to Max_Order do 

begin 

C_ Val := FiltVal [Order[i]] div (max_point-4); 

Last_ Val [Order[i] ] :=;C_ Val; 

MeasStr:=MeasStr+_RightStr(_ToDecStr(C_ Val,2),2)+' '; 

end; 

{ read digital port [mode information] } 

C_ Val :=255-mem[keithley _add:$86]; 

MeasStr:=MeasStr+_RightStr(_ToDecStr(C_ Val,2),2)+' ' ;  

Me asS t6=MeasS tr+_RightS tr(_ToDecS tr(bad_channels,2) ,2 )+' ' ;  

MeasStr := MeasStr+']'+char($0D); 

{ if controller is in control and learn, controland save or control 

and we have good signals on all channels then we are in 

control otherwise hand back control to modicon } 



if ((C_ Val>=2) and (C_ Val<=9)) then mem[keithley_Add:$89] :=1 

else mem[keithley_Add:$89] :=0 

end; 

for i :=O to Max_Channel do FiltVal [i] :=O; 

MeasStr := _StuffK.ey(MeasStr); 

bad_channels:=O; 

{ get actuator values from screen, if there are none skip actuator update } 

_ReadScn(O,O,@ ActStr[ 1 ] ,25,0); 

_QuikScn(0,0, 1 , 1 5,BlnkStr); 

{ else convert them to 1 2  bit integer and write to d-a channels } 

i :=1 ; 

while (ActStr[i] = 1 1) and (i<25) do inc(i); 

j :=i; 

while (ActStr[j ]  <> I 1) and (j<=25) do inc(j); 

j :=j-i; 

if ActStr <> BlnkStr then 

begin 

Val(_SubS tr(ActStr,i ,j),Actuator,ErrorCode ); 

mem[Keithley _Add:$84] :=0; 

mem[Keithley _Add:$85] :=lo(Actuator); 

mem[Keithley_Add:$84] := 1 ;  

mem[Keithley_Add:$85] :=Hi(Actuator) and $F; 

i:=i+j ;  

while (ActStr[i] = 1 1) and (i<25) do inc(i); 

j :=i; 

while (ActStrfj] <> 1 1) and (j<=25) do inc(j); 

j :=j-i ;  
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Val(_SubStr(ActStr,i,j),Actuator,ErrorCode ); 

mem[Keithley _Add:$84] :=2; 

mem[Keithley _Add:$85] :=lo(Actuator); 

mem[Keithley_Add:$84] :=3; 

mem[Keithley_Add:$85] :=Hi(Actuator) and $F; 

mem[Keithley _Add:$9D]:=O; 

Count := 0 

end 

end 

end 

end 

end; 

end; 

begin 

{ initialize the keithley } 

Mem[Keithley_Add : $9A] := 0; 

Mem[Keithley_Add : $9D] := $40; 

for i :=O to Max_Channel do 

begin 

Last_ Val [i ] :=O; 

for j :=O to 4 do 

Chan_buff[i,j ] :=O; 

end; 

bad_channels:=O; 

{ Disturbances } 

{global gain = 1 } 

{ enable D-A strobe } 
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Order[0] :=2 ; Order[ I ] := 3; Order[2] :=4 ; Order[3] :=9; 

{ Y,s } 

Order[4] :=8 ; Order[5]:= 7; 

{ U,s } 

Order[6] :=5 ; Order[7] := 0; 

{ Set Points } 

Order[8] :=12 ;  Order[9] := 1 1 ;  

FLAG := False; 

CRLF := char($0D); { +char($0A); }  

Ticks:=O; 

MeasStr:="; 

with KeySignal do 

begin 

_HotKeySeq := _KeyTable[_Key_a_h] ;  

_Action := _Service 

end; 

with TimerSignal do 

begin 

_Ticks := Int_Ticks; 

_Action := _interval 

end; 

MeasStr:=_StuffKey('MATLAB'+CRLF+'kthly'+CRLF); 

_Insint(@ Keithley ,4096,False,False,@ KeySignal, 1 ,  @TimerSignal, 1 
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,'Keithley' ,ErrorCode ); 

_ExitRPgm(0,4096); 

end. 

APPENDIX C:  MATLAB CODE 

Main routine 

% This m-file contains the main program loop for the evaporator. 

% variables used. 

% 

% A, B, E, K  

% data 

% dist 

state space description of model formed 

used to test algorithm agaist historical data 

history of previous disturbances 

% engY, engYsetoutputs and output setpoints in  engineering units. 

history of modelling errors . 

elapsed time in last i teration (computation time) 

file in which the current description is saved. 
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% eta 

% eti 

o/o evap 

% F  

% itnum 

form) used % 

% mode 

the optimal state feedback gain matrix based on S 

number of iterations of the riccati equation (recursive 

at each time step 

% 

% m  

% order 

% N  

o/o ok 

current mode of operation learn, learn and control, control only, 

control and save 

Measurements made (array) 

Order of the polynomials 

N is the size of the A matrix. 

always 1 unless something has gone wrong 



number of inputs and disturbances respectively 

number of outputs 

weighting matices for the controller design 
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.% q 1 ,  q2 

% r  

% Q, R  

% S  

% setpoint 

% t  

% time 

the current estiate of the solution of the Riccati equation 

history of previous setpoints. Range 0-4096 

number of time steps since simulation begun 

used to calculate eti 

tolerance used to see if need to continue model 

history of last scrnlen inputs u(t), . . .  u(t-scrnlen). Range 

% tol 

estimation 

% u  

0-4096 

% U  

% uwant 

% usent 

inputs with the setpoint removed. Range +/-4096 

inputs that would have been sent if totally in control 

last actuation sent . Range 0-4096 

% usetpoint 

% uuset 

% y  

history of set-point for the actuations. Range 0-4096 

input setpoint (yet to determine how to set this variable) 

history of last scrnlen outputs y(t) , y(t- 1 ), . . .  y(t-scrnlen). 

range 0-

% 4096 

% ZA,ZB,ZE,ZK used in the construction of the state vector. 

% uindex,yindex, }  

disturbances. 

% dindex } 

% 

index of which measurements are inputs, outputs and 

% This m-file consists of several parts 

% 1 )  Data collection 

% 2) Data display 

% 3) Estimation of transition matrices (done in another m-file called estimate.m) 



% 4) Update of control law 

% 5) Update of state vector 

% 6) Calculation of new actuations 
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% It is assumed that either this program or EVAP.m has already be run. Evap.m 

sets up all the required 

% matrices and vectors for this program. 

% 

% The following files are called by this program: 

% 

% RLS.M, and engunit.m 

% THESE MUST BE CHECKED BEFORE USE 

% the measurements made are ordered in the tsr program as the 4 disturbances 

% then the outputs (2) and the inputs (2) followed by the output setpoints 

uindex = [7 ,8] ; 

yindex = [5,6] ; 

dindex = [ 1 ,2,3,4] ; 

sindex = [9, 1 0] ;  

%load evap 

mode = 2; 

ok = 1 ;  

%Retrieve saved values 

% assume mode is learn until is set otherwise 

while ok >0, % main loop . 

%-----------------------------------------------------------------------

% PART 1 DATA COLLECTION AND ACTUATION 
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% do some housekeeping tasks first 

t=t+1 ;  

eti=etime( clock, time); 

time=clock; 

% this block of the program sends the actuations to the Keithley 

% and reads in the new data from the Keithley. 

clc; 

disp(usent); % send the actuation to the keithley 

% in the real plant the measurements are made by a tsr. these are then 

% pushed into the keyboard buffer. From where they are read into 

MATLAB 

here to 

% by the following l ines. 

m = input(' '); 

% if the process is being simulated, an m-file called data can be called 

% provide measurements from simulated plant 

% m=data(t, :) 

i= m( 1 2); 

if i==O 

good = 1 ;  setstr(7*ones( l ,30)) 

else 

good=O; 

end; 

if mode-=m( 1 1  ); % riot the same mode as before 

mode = m( 1 1 ); % change mode 

if mode == 1 % newly entered learn mode so need to get the actuation 

set-points 

uuset = m(uindex)'; % for the actuations are the values in 

use. store 



m 

241 

% these for latter use 

ysetp = m(yindex)'; % get the setpoint from the input-data, 

end; 

% display mode of operaion 

if mode ==0 disp('just watch') 

elseif mode== 1 disp('leam'); 

elseif mode== 2 disp('learn and control') 

elseif mode= 3 disp('control') 

else disp('mode save') 

end; 

%-----------------------------------------------------------

% PART 2 DATA DISPLAY 

% This consists of two sub-sections 

% 1 )  update the stacks of stored data 

% 2) display the stacks 

%-----------------------------------------------------------

%---------------------------------------------------------------------------------------

% PART 2. 1 .  UPDATING THE STACKS 

% Before the data can be displayed the stacks of previous values must be 

updated. 

the top 

some of 

% The stacks are shifted down one place and the most recent data takes 

% position in the stack. The oldest piece of data is thrown out. 

% 

% A complication is that data goes into keihley from a 4-20rnA loop on 
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% the measurements. This when translated into voltages is 1 -5v. giving 

range 

% 4095/5 to 4095 when digitised. 

% On the disturbancces this offset is subtracted. In the case of inputs and 

outputs, 

% we are working with deviation variables from the setpoint and 

usetpoint, so this 

% offset is not important to the calculations, However, for the displayed 

and 

% stored data, these values are given in engineering units. 

%----------------------------------------------------------------------------------------

% stack data into y ,u, and dist stacks 

disp('display data'); 

uwant=[usent', uwant(: ,  1 :scrlen- 1 )] ;  

u=[m(uindex)',u(: , 1 :scrlen- 1 )] ; · 

0-4095 u=[m(uindex)',u(: , 1  :scrlen- 1 )] ;  

0-4095 

setpoint = [ysetp,setpoint(: , 1 :scrlen- 1 )] ;  

input-

% the true inputs in integers 

% the true inputs in integers 

% get the setpoint from the 

% data, m 

usetpoint=[ uuset,usetpoint( : ,  1 :scrlen- 1 )] ; % the setpoint for the inputs 

is the 

the last scrlen 

setpoints values 

U=u-usetpoint; 

the 

% running average of 

% of inputed 

% remove the setpoint from 

% inputs sent 



two 

dist=[m( dindex)' ,dist( : ,  1 :scrlen- 1 )] ;  % disturbances 

y=[m(yindex)', y(: , 1 :scrlen- 1)]; 

Y = y-setpoint; 

yhat=[C*x,yhat(: ,  1 :scrlen- 1)]; % predicted outputs 

tr=[trace(S),tr( l :scrlen- 1)] ;  % tr i s  the stack of old trace of the 
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% estimates of the riccati equation 

% solution 

out 1=[theta1 ( 1 :2*nr),out 1 (: , 1 :scrlen- 1 )] ;  % some of the coefficents, the 

% sets of autoregressive terms 

out2=[theta2(1 :2*nr),out2(: ,  1 :scrlen- 1)] ;  

fprintf(outfname,'%g ',yhat( 1 , 1 )); 

fprintf(outfname,'%g ',yhat(2, 1 )); 

for i= 1 :24 

fprintf(outfname,'%g ',theta1 (i)); 

end; 

for i= 1 :24 

fprintf(outfname,'%g ',theta2(i)); 

end; 

fprintf(outfname,'%g ',tr( l)); 

fprintf( outfname,'% g ',eti); 

fprintf( outfname,'\n') ; 

%----------------------------------------------------------------------------------------

% PART 2.2. DISPLAYING THE STACKS 

% In this opart of the program the historical data is displayed. 

%----------------------------------------------------------------------------------------

disp([A(: ,  1 :2),B]);%pause(5); 

clc,clg 

engY=y'; 

% ensure that the screens are clear. 



engU=u'; 

engUwant=uwant'; 

engYset = setpoint' ; 

engYhat = (yhat+setpoint)' ;  

engY(: ,  1 )=engunit(engY(: ,  1) ,  1 . 1 ,  1 .3); 

engYhat(: , 1 )=engunit(engYhat(: ,  1 ), 1 . 1 ,  1 .3); 

engYset(: ,  1 )=engunit(engYset( : , 1 ), 1 . 1  , 1 .3); 

eng Y(: ,2)=--engunit( eng Y(: ,2),0, 1 00); 

engYhat(: ,2)=engunit(engYhat(: ,2),0, 100); 

eng Y set(: ,2)=engunit(eng Y set(: ,2),0, 1 00); 

eng U=( eng U -820*ones( eng U)) * 1 00/( 4096-820); 

engUwant=( engUwant-820*ones( engUwant))* 1 00/( 4096-820); 

subplot(22 1 ), 

plot(t:- 1 :t-scrlen+ 1 , [engY(: ,  l ),engYset(: ,  1 ),engYhat(: , 1 )]), 

title('Density output') 

subplot(222), 

plot(t :-1 :t-scrlen+ 1 , [engY(: ,2),engYset(: ,2),engYhat(: ,2)]), 

title('Temperature output') 

subplot(223), 

plot(t:- 1 :t-scrlen+ 1 ,[engU,engUwant] '), 

title('Inputs') 

subplot(224), 

plot(t:- 1 :t-scrlen+ 1 , [eta',200*out 1 ', 200*out2']), 

title(['Errors & coeff. ', num2str(tr( l ))]) 

9&-----------------------------------------------------------
9& PART 3 ESTIMATION 

9&-----------------------------------7-----------------------
9& mode is a variable assumed to have one of four values 

90 0 stop and hand over control 
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% 1 learn only, no control action sent 

% 2 learn and control 

% 3 control only 

% 4 save and control 
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% the coefficents of the new A, B, E and K matrices are estimated. These 

estimates are 

% then arranged into their respective matrices. 

if ((mode=l)l(mode==2)) % then we must improve our estimates of 

clear phi 1 ;  

for j=1 :nr 

% the coefficients. To do this we must first 

% form the vectors of predictors and then 

% submit this, with the current coefficients 

% to the recursive least squares routine, 

% rls.m 

phi 1=[phi 1 ;Y( : ,j+ 1 )] ;  % get y(t-j) (y(t) is  in y(: , 1 ), the first 

% column of y) 

end; 

phi2=phi l ;  

for j= 1 :q 1  % and the actuations 

phi 1 =[phi 1 ;  U (j ,delay( 1 ,j)+ 2:delay( 1 j)+order+ 1 )'] ; 

phi2=[phi2; U(j ,delay(2,j)+ 2:delay(2,j)+order+ 1 )'] ; 

end; 

for j=1 :q2 % and the disturbances 

phi 1 =[phi 1 ;dist(j ,delay( 1 ,j+q 1 )+2:delay( 1 ,j+q 1 )+order+ 1 )'] ; 

phi2=[phi2;dist(j ,delay(2,j+q 1 )+2 :delay(2,j+q 1 )+order+ 1 )'] ; 

end; 

% Retrive theta for the ith output and the covariance matric for it 

error=[Y( 1 , 1 )-theta1 '*phi 1 ;  



Y(2, l )-theta2'*phi2] ; 

% run the recursive estimation routine 

[theta1 ,p 1 ,k 1 ]=rls(lamda,phi 1 ,error( 1 ),theta I ,p 1 ); 

[theta2,p2,k2]=rls(lamda,phi2,error(2),theta2,p2); 

% save some workings to disk for offline analysis 

% the trace of the covariance matrix 

% the max value of the predictor gain (k) matrix 

%-----------------------------------------------------------

% UPDATE THE A,B,E,and K MATRICES 

%-----------------------------------------------------------

for j=1 :nr, 

A(G- I )*r+ 1 , 1  : r)=theta1 (G- I)*r+ I :j*r)'; 

A(G- I )*r+2, 1 :r)=theta2(G- l )*r+ 1 :j*r)'; 

end; 

count=r*nr; % if K included then 2*r*nr 

for j=1 :q i 

for k=l :order 

end 

end; 

count=count+ I ;  

B((delay( I ,j)+k- l )*r+ 1 ,j)=thetal (count); 

B(( delay(2,j)+k- I)*r+2,j)=theta2( count); 

% update the non zeros components of E 

for j=1 :q2 

for k=l :order 

end; 

count=count+ 1 ;  

E((delay(1  ,j+q 1 )+k- I )*r+ I ,j)=thetai (count); 

E((delay(2,j+q 1 )+k-1 )*r+2,j)=theta2( count); 
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method 
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end; 

eta=[error,eta( : ,  1 :scrlen- 1)] ;  

mse=mse+error'*error; 

if (mode = 4), 

save evap; 

end; 

9b----------------------------------------------------------

9b PART 4 CONTROLLER DESIGN 

9b-----------------------------------------------------------

9b Update the feedback law using either Matrix sign function or iterative 

if (mode > 0) 

end; 

disp('control design'); 

if max(max(isnan(S)))==1 9b if the matrix has become 

9billconditioned then 

S=eye(Q); 

end; 

9b nan's will appear in the .matrix and 

9bneed to reset it. 

for i= 1 : itnum 9b perform itnum iterations of of 

end; 

9b recursive form of the solution of 

9b the Riccarti equation 

F=(B'*S*B+R)\B'*S* A; 

S=A'*S* A-A'*S*B*F+Q; 

if mode > 1  

9b-----------------------------------------------------------

9b PART 5 STATE RECONSTRUCTION 



vector 

end; 

% This is a way of reconstructing the state vector using the 

% input/output data, assuming that the oberver state space 

% description has been used. 

%-----------------------------------------------------------

ZA = A(: , l :r)*Y(: , l :N); 

ZB = B*U(: , l :N); 

ZE = E*dist( : , 1 :N); 

x= ZA(: , 1 )  + ZB(: , 1 )  + ZE(: , 1 )  

for i= 1 :N- 1 

x=x+[ZA(r*i+ 1 :r*N,i+ 1 ) ;zeros(i*r, 1 )]+ 

[ZB(r*i+ 1 : r*N,i+ 1 ) ;zeros(i*r, 1 )] + 

[ZE(r*i+ 1 :N*r,i+ 1 ) ;zeros(i*r, 1 ) ] ;  

end; 

%-----------------------------------------------------------

% PART 6 ACTUATION CALCULATION 

% State feedback controller based on the control law calculated earlier 

%-----------------------------------------------------------

usent=usetpoint( : ,  1 )-F*x; 

. % usent must lie between 820 and 4095 and be an integer 

for i= 1 :q 1 ;  

248 

usent(i)=max([820,usent(i)]); % greater of 820 and usent(i) 

usent(i)=min([ 4095,usent(i) ]); % lesser of 4095 and usent(i) 

end; 

usent=round(usent'); % Intergerise usent and make it a row 

end; % main loop 



RLS.M 

function [theta,p,k]=rls(lamda,phi,eta,theta,p); 

% This m-file uses the rls method to update the estimates of 

% the paramaters stored in vector theta using the new data stored in vector 

% phi. 

% Lamda is a forgetting factor specified by the user 

% p is the covariance matrix 

% eta contains the error (y-yhat) 

k=p*phi/(lamda+phi'*p*phi); % get the gain 

theta=theta+k*eta; % calculate the changed theta 

p=(p-k*phi'*p)/lamda; % and update the covariance matrix estimate 

249 



REFERENCES AND 
BIBLIOGRAPHY 

Abrishamkar, F. and Bekey, G.A. 

250 

Estimation of time varying delays in linear stochastic systems. in 

Proceedings of IFAC Identification and System Parameter Estimation, 

York, UK, 1 985. 

Ahmed, M.S. and Sait, N. 

State-space adaptive control through a modified bootstrap algorithm for 

parameter and state estimation. lEE proc ptD Vol 1 36 (5) 2 1 5-224 1 989. 

Akaike, H. 

A new look at the statistical model identification. IEEE Trans A C- 1 9  ( 6) 

7 1 6-723, 1 974. 

Akaike, H. 

Modem . development of statistical methods. p 1 69- 1 84. In Trends in 

Process and System Identification. Edited Eykhoff, P. Pergamon Press New 

York, 1 98 1 .  



25 1 

Alevisakis, G., and Seborg, D.E. 

An extension of the Smith Predictor method to multi variable linear systems 

containing time-delays. /nt. J. Control , 3 ( 17) p54 1 -55 1 ,  1 973. 

Alevisakis, G., and Seborg, D.E. 

Control of multi variable systems containing time delays · using a 

multivariable Smith predictor. Chemical Engineering Science, 29 p373-

380, 1 974. 

Anderson, B .D.O., Bitmead, R.R., Johnson, C.R., Kokotovic, P.V., Kosut, R.L. , 

Marcel, I.M.Y., Praly, L. and Riedle, B.D. 

Stability of adaptive systems: passivity and averaging analysis. The MIT 

Press, Massachusetts, 1 986, 326 p. 

Astrom, K.J. 

Computer control of a paper mashine - an application of l inear stochastic 

control theory. IBM journal research and development 1 1  389-405, 1 967. · 

Astrom, K.J. 

Frequency domain properties of Otto Smith regulators. lnt. J. Control 26 

(2) 307-3 14, 1 977. 

Astrom, K.J. 

Theory and applications of adaptive control -a survey. Automatica 1 9(5) 

47 1 -486, 1983. 

Astrom, K.J., Borison, U., Ljung, L. and Wittenmark, B.  

Theory and applications of self tuning regulators. Automatica 1 3  457-476, 

1 977. 



252 

Astrom, K.J. and Wittenmark, B. 

On self-tuning regulators. Automatica 9 1 85- 199, 1 973. 

Astrom, K.J and Wittenmark, B. 

Computer controlled systems: theory and design. Prentice-Hall 

International, Englewood Cliffs, NJ 1 984, 430 p. 

Astrom, K.J. and Wittenmark, B .  

Self tuning controllers based on pole-zero placement. lEE Proc. ptD 1 27 

(3) 1 20- 1 30, 1.980. 

Borison, U. 

Self-tuning regulators for a class of multivariable systems. Automatica 1 5, 

p209-2 15 ,  1 979. 

Borison, U. and Syding, R. 

Self-tuning control of an ore crusher Automatica 12 , 1 -7, 1976. 

Chotai, A. and Young, P.C. 

Pole-placement design for time delay systems using a generalised discrete­

time Smith predictor. Proceedings of control 88 lEE York, UK, 1 988. 

Chotai, A., Owens, D.H., Raya, A. and Wang, H.M. 

Design of S mith control schemes for time-delay systems based on plant 

step data. lnt. J. Control, 40 (2), p297 -3 1 6, 1984. 

Cluett, W.R., Shah, S .L. and Fisher, D.G. 

Stable robust adaptive controller. lnt J Control 45 (4) 1265- 1 273, 1 987. 



253 

Cox, C., Boucher, R. Young, P.C. 

Direct digital control using a personal computer: a new algorithm.p l lS-

1 23.  In Personal Computers in Industrial Control. Edited by Giorgi, B.  

Butterworths, 1 988. 

Cordero, O.A. and Mayne, D.Q. 

Deterministic convergence of a self-tuning regulator with a variable 

forgetting factor. Proc lEE prD 128 ( 1 )  1 9-23, 1 98 1 .  

Crawford, R.A., and Austin, P.C. 

Control of an evaporator. Proceedings of the third international symposium 

on process engineering, Sydney Australia 1988. 

De Paor, A.M. 

A modified Smith predictor and controller for unstable processes with time­

delays. /nt. J. Control 4 1  (4) p 1 025-1036, 1985. 

De Paor, A.M. and Egan, R.P.K. 

Extension and partial optimization of a modified Smith predictor and 

controller for unstable processes with time-delays. Int. J. Control 50 (4) 

1 3 1 5- 1 326, 1 989. 

De Souza, C.E., Goodwin, G.C., Mayne, D.O. and Palaniswami, M. 

An adaptive control algorithm for linear systems having unknown time 

delay. Automatica 24 (3) 327-34 1 ,  1 988. 

Dugard, L., Goodwin, G.C. and Xianya, X. 

The role of the interactor matrix in multivariable stochastic adaptive 

. control. Automatica,20 (5) 701 -709, 1984. 



254 

El-Sherief, H. and S inha, N.K. 

Bootstrap estimation of parameters and states of linear multivariable 

systems. IEEE Trans AC-24 (2) 340-343, 1979. 

El-Sherief, H. and Sinha, N.K. 

Suboptimal control of linear stochastic multivariable systems with 

unknown parameters. Automatica 1 8  ( 1 )  1 0 1 - 1 05, 1 982. 

Elliott, H. and Wolovich, W.A. 

Parameterization issues in multivariable adaptive control . Automatica 20 

(5) 533-545, 1 984. 

Fuller, A.T. 

Optimal non-linear control of systems with pure delay. Int J Control 8 (2) 

148- 1 68 ,  1 968. 

Furukawa, T. and Shimemura, E. 

Predictive control for systems with delay. /nt. J. Control, 37 (2) 399-4 12, 

1 983.  

Garcia, C.E and Morari, M. 

Internal model control 1 - A unifying review and some new results. /nd. 

Engng Chem Proc Des. Dev. 2 1 308, 1982. 

Garcia, C.E and Morari, M. 

Internal model control 2 - The multivariable case. Ind Engng Chem Proc. 

Des Dev. 24 (2) 472-484, 1 984. 



255 

Garcia, C.E and Morari, M. 

Internal model control 3 - Multivariable control law computation and 

tuning guidelines. lnd Eng Chem Proc. Des Dev. 24 (2) 484-494, 1 984. 

Garcia, C.E., Prett, D.M. and Morari, M. 

Model predictive control: theory and practice -a survey. Automatica 25 (3) 

335-348, 1 989. 

Garland, B.  and Marshall, J.E. 

Sensitivity considerations of Smith's method for time-delay systems. 

Electronic letters 10 ( 1 5) p308-309, 1 974. 

Garland, B. and Marshall, J.E. 

Application of the sensitivity points method to a linear predictor control 

system. lnt. J. Contro/ 2 1  (4) 68 1 -688, 1 975._ 

Gawthrop, P.J. 

Some interpretations of the self-tuning controller. Proceedings lEE 

Control and Science 124 ( 10) 889-894, 1 977. 

Gawthrop, P.J. 

Comparative robustness of non-adaptive and adaptive control. Proceedings 

of Contro/ 85, lEE, Cambridge, 1985. 

Goodwin, G.C. and S in, K.S. 

Adaptive filtering prediction and control. Prentice-Hall , Englewood-Cliffs, 

New Jersey, 1 984 540p 



256 

Gustavsson, I., Ljung, L. and Soderstrom, T. 

Identification of processes in closed loop - identification and accuracy 

aspects. Automatica 1 3  ( 1 )  59-75, 1 977. 

Hamon, B. V. and Hannon, E.J. 

Spectral estimation of time delay for dispersive and non-dispersive systems. 

Applied Statistician 23 (2) 1 34- 142, 1974. 

Hannon, E.J. 

Time series analysis. IEEE Trans AC-19  (6) 706-7 15 ,  1 974. 

Hannon, E.J. and Robinson, P.M. 

Lagged regression with unknown lags. J Royal Statistical Society, series B 
35 (2) 252-266, 1 973 .  

Harris, C.J. and Bil lings, S .A. (Editor) 

Self-tuning and adaptive control: theory and applications. Peregrinus Press 

Stevenage, 1 98 1 ,  333p. 

Hesketh, T. 

Strategies for multivariable self-tuning control. PhD thesis Massey 

University, 198 1 ,  1 86p. 

Hesketh, T. 

State-space pole-placing self-tuning regulator using input-output values. 

lEE Proc pt D 1 29 (4) 123-128, 1 982. 



257 

Holt, B .R. and Morari, M. 

Design of resilent processing plants -VI The effect of RHP zeros on 

dynamic resilience. Chemical Engineering Science 40 ( 1 )  59-74, 1 984. 

Holt, B .R. and Morari , M. 

Design of resilent processing plants -V The effect of dead time on dynamic 

resilience. Chemical Engineering Science 40 (7) 1229- 1 237, 1985. 

Horowitz, I. 

Some properties of delayed controls (Smith predictor) . Int. J. control 38  (5) 

977-990, 1 983. 

Ioannou, P. and Sun, J. 

Theory and design of robust direct and indirect adaptive-control schemes. 

Int J. control 47 (3) 775-8 1 3, 1 988. 

Isermann, R., Baur, U., Bamberger, W., Kneppo, P. and Siebert, H. 

Comparison of six on-l ine identification and parameter estimation methods. 

Automatica 10 8 1 - 1 03,  1 974. 

Jerome, N.F. and Ray, W.H. 

High performance multivariable control strategies for systems having time 

delays. AIChE Joumal 32 (6) 9 14-93 1 ,  1986. 

Kalman, R.E. 

Design of a self-optimising control system. Transactions ASME, 80, 468-

478, 1 958 



258 

Keviczky, L. and Kumar, K.S.P. 

Multivariable self-tuning regulator with generalized cost function. /nt J 

Control, 1 98 1 .  

Koivo, H.N. 

A multi variable self tuning controller. Automatica 1 6  35 1-366, 1 980. 

Kwakemaak, H. 

Optimal filtering in linear systems with time delays. IEEE Trans AC- 1 2  (2) 

1 69- 1 73,  1 967. 

Kwakemaak, H. and Sivan, R. 

Linear optimal control. Wiley, 1 972, 575 p. 

Laub, A.J. 

A schur method for solving algebraic Riccati equations. IEEE Trans AC-24 

(6) p9 1 3-92 1 ,  1 979. 

Ljung, L. 

Analysis of recursive stochastic algorithms. IEEE Trans AC-22 (4) 55 1 -

575, 1 977. 

Ljung, L. 

On positive real transfer functions and the convergence of some recursive 

schemes. IEEE Trans AC-22 (4) 539-55 1 ,  1977. 

Ljung, L., Gustavsson, I. and Soderstrom, T. 

Identification of linear multivariable systems operating under linear 

feedback control. IEEE Trans AC- 1 9  (6) 836-840, 1 974. 



259 

Ljung, L and Soderstrom, T. 

Theory and practice of recursive identification. MIT press, Massachusetts, 

1 983, 529p. 

Mancher, H. and Hensel, H. 

Determination of order and deadtime for multivariable discrete-time 

parameter estimation methods. Proceedings IF AC identification and system 

parameter estimation, York, UK, 1 985. 

Marshal!, J .E. 

Extensions of O.J. Smith's method to digital and other systems. lnt. J. 

Control 19  (5) 933-939, 1 974. 

Marshall, J.E. 

Control of time-delay systems. Peregrinus Press on behalf of lEE, 1 979, 

225p. 

Marshall, J.E., Chotai, A. and Garland, B .  

A survey of time-delay system control methods. Proceedings of control and 

its application, lEE, Warwick, UK, 1 98 1 .  

Marshall, J.E., Ireland, B .  and Garland, B .  

Comments on 'An extension of predictor control for systems with control­

delays'. Int. J. Control 26 (6) p98 1-982, 1977. 

Marshall ,  J.E. and Salehi, S .V. 

Improvement of system performance by the use of time-delay elements. lEE 

Proc. PtD 129 (5) 177- 1 8 1 ,  1 982. 



260 

Marshall ,  J.E. and Walton, K. 

Analytical design for time-delay system controllers. Proceedings of the 4th 

/MA Int. Conference on Control theory, ed Cook, P.A., Robinson College, 

Cambridge, 1 984. 

Mee, D.H. 

An extension of predictor control for systems with control time delays. Int J 

Control 1 8  (6) 1 1 5 1 - 1 1 68, 1 973.  

Middleton, R.H. and Goodwin, G.C. 

Improved finite word length characteristics in digital control using delta 

operators. IEEE trans AC-3 1 ( 1 1 )  1 0 1 5-102 1 ,  1986. 

Middleton, R.H. and Goodwin, G.C. 

Adaptive control of time-varying linear systems. IEEE trans AC-33 (2) 1 50-

1 55 ,  1 988 .  

Middleton, R.H. and Goodwin, G.C. 

Digital control and estimation: a unified approach. Prentice-Hall 

International, Englewood-Cliffs, New Jersey, 1990, 538 p. 

Morari, M. 

Design of resilient processing plants Ill. Chem Engng Sci. 38  ( 1 1 ) 1 8 8 1 -

1 89 1 ,  1 983.  

Morari , M.  and Zafiriou, E. 

Robust process control. Prentice-Hall Englewood-Cliffs, New Jersey, 1 989, 

488p. 



261  

Nisenfield, A.E. 

Industrial evaporators: principles of operation and control. Monograph 9 

Instrument Society of America, 1 985. 

Ogata, K. 

Discrete-time control systems. Prentice-Hall International, Englewood 

Cliffs, N.J. 1 987, 994 pp. 

Ogum1aike, B.A. 

A new approach to observer design for time-delay systems. lnt. J. Control 

33 (3) 5 19-542, 1 98 1 .  

Ogunnaike, B.A. and Ray, W.H. 

Multivariable controller design for linear sysytems having multiple time 

delays. AlChE Joumal 25 (6) 1043- 1057, 1 979. 

Ogunnaike, B.A. and Ray, W.H. 

Incomplete state feedback for time-delay systems: Observer applications in 

multidelay compensation. AlChE J. 30 (5) 7 17-724, 1 984. 

Owens, D.H. and Chotai, A. 

Robust controller design for linear dynamic systems using approximate 

models. lEE Proc. PtD 1 30 (2) 45-56, 1983. 

Owens, D.H. 

Multivariable and optimal systems. Academic press, London, 1 98 1 ,  300pp. 

Owens, D.H and Raya, A. 

Robust stabjl ity of Smith predictor controllers for time-delay systems. lEE 

Proc PtD 1 29 (6) 298-304, 1 982. 



262 

Palmor, Z.J. 

Stability properties of Smith dead-time compensator controlers. Int. J. 

Control 32 (6) 937-949, 1 980. 

Palmor, Z.J. and Halevi, Y. 

On the design and properties of multivariable dead-time compensators. 

Automatica, 1 9  (3) 255-264, 1983. 

Palmor, Z.J. and Shinnar, R. 

Design of advanced process controllers . A/ChE J. 27 (5) p793-805, 1 98 1 .  

Pappas, T., Laub, A.J. and Sandell, N.R. 

On the numerical solution of the discrete-time algebraic Riccati equation. 

IEEE Trans A C-25 (4) 63 1 -64 1 ,  1 980. 

Peterka, V. and Astrom, K.J. 

Control of multivariable systems with unknown but constant parameters. 

Proceedings of the 3rd IFAC Symposium on Identification and System 

Parameter Estimation, 535-544 The Hague/Delft, 1 973.  

Power ,H.M. and Simpson, R.J. 

Introduction to dynamics and control. McGraw-Hilll, London, 1 978, 

393pp. 

Prager, D.L. and Wellstead, P.E. 

Multivariable pole-assignment self tuning regulators. lEE Proc ptD 1 28 ( 1 )  

9- 1 8, 1 980. 



263 

Saridis, G.N. 

Comparison of six on-l ine identification algorithms. Automatica 10 69-79, 

1 974. 

Sen, A. and Sinha, N.K. 

On-line system identifaction combining stochastic approximation and 

pseudoinverse. Automatica 1 1  425-429, 1 975. 

Shanmugathasan, N. and Johnston, R.D. 

Exploitation of time delays for improved process control. lnt J control 48 

(3) 1 1 37- 1 1 52, 1 988. 

Shanmugathasan, N. and Johnston, R.D. 

Enhanced multi variable time delay compensation, Proceedings of the third 

international symposium on process systems Engineering, Sydney 1 988.  

Shieh, L.S. ,  Tsay, Y.T. and Yates, R.E. 

Some properties of matrix sign functions derived from continuous fractions. 

lEE Proc prD 1 30 (3) 1 1 1 - 1 18 ,  1 983.  

Singh, A. and McEwan, D.H. 

The control of a process having appreciable transport lag-a laboratory case 

study. IEEE Trans AC, AC-22 (3) 396-401 ,  1975. 

Smith, O.J.M. 

Closer control of loops with dead time. Chemical Engineering Progress 53 

(5) 2 1 7-2 19, 1 957.  



264 

Soderstrom, T. Gustavsson, I. and Ljung, L. 

Identifiably conditions for linear systems operating in closed loop. Int. J. 

Control 2 1  (2) 243-255 ,  1 975. 

Soliman, M.A. and Ray, W.H. 

The optimal control of a process containing pure time-delays -II Transfer 

function models .  Chemical Engineering Science 27, 2 1 83-2 1 88, 1972. 

Song, H.K., Shah, S .L. and·-Fisher, D.G. 

A self-tuning robust controller. Automatica 32 (5) 52 1 -53 1 ,  1 986. 

Tade, M.O., Bayoumi, M.M. and Bacon, D.W. 

Self-tuning controller design for systems with arbitrary time delays :Part I 

theoretical development. lnt J Sys Sci June 1987. 

Tade, M.O., Bayoumi, M.M. and Bacon, D.W. 

Self-tuning controller design for systems with arbitrary Time delays:Part II 
Algorithms and simulation examples. Int J Sys Sci June, 1 987. 

Toivonen, H .T. 

Multivariable adaptive control. Modelling Identification and Control 5 ( 1 )  

1 9-45, 1 984 

Vaughan, D.R. 

A non-recursive solution for the matrix Riccati equation. IEEE Trans AC-

1 5  597-599' 1 970. 

Walton, K. and Marshall ,  J.E. 

Mismatch in a predictor control scheme: some closed-form solutions. lnt. J. 

Control 40 (2) p403-4 1 0, 1 984. 



265 

Wang, C.L. and Young, P.C. 

Direct digital control by input-output, state variable feedback: theoretical 

background. Int J. Control 47 ( 1 )  97- 109, 1 988. 

Wang, C.L. and Young, P.C. 

Direct digital pole-assignment control systems for multivariable systems 

based on input output state variable feedback. Proceedings Control 88 lEE 

York , UK, 1 988. 

Watanabe, K. and Ito, M. 

A process model control for linear systems with delay. IEEE Trans AC-26 

(6) 1261 - 1 269, 198 1 .  

Wolovich, W.A. 

Linear multivariable systems. Springer-Verlag, New York 1 974, 358pp. 

Wolovich, W.A. and Falb, P.L. 

Invariants and canonical forms under dynamic compensation. SIAM J 

Control and Optimization 14 (6) 996- 1008, 1 976. 

Wood, R.K and Berry, M.W. 

Terminal composition control of a binary distillation column. Chemical 

Engineering Science 28, 1707- 17 17, 1 973. 

Ydstie, B .E. 

Adaptive control and estimation with forgetting factors. Proceedings of 

IFAC Identification and system parameter estimation, York, UK, 1 985. 



266 

Ydstie, B .E. and Sargent, R.W.H. 

Convergence and stability properties of an adaptive regulator with a 

variable forgetting factor. Automatica 22 (6) 749-75 1 ,  1 986. 

Young, P.C., Behzadi, M.A., Wang, C.L. and Chotai, A. 

Direct digital and adaptive control by input-output state variable feedback 

pole assignment. Int. J. Contro/ 46 (6) p 1 867- 1 88 1 ,  1 987. 

Young, P.C. ,  Behzadi, M.A. and Chotai, A. 

Self-tuning and self-adaptive PIP control systems. In Implementation of 

self-tuning. Edited Warwick, K., Peregrinus Press and lEE, 1 988.  


	20001
	20003
	20004
	20005
	20006
	20007
	20008
	20009
	20010
	20011
	20012
	20013
	20014
	20015
	20016
	20017
	20018
	20019
	20020
	20021
	20022
	20023
	20024
	20025
	20026
	20027
	20028
	20029
	20030
	20031
	20032
	20033
	20034
	20035
	20036
	20037
	20038
	20039
	20040
	20041
	20042
	20043
	20044
	20045
	20046
	20047
	20048
	20049
	20050
	20051
	20052
	20053
	20054
	20055
	20056
	20057
	20059
	20060
	20061
	20062
	20063
	20064
	20065
	20066
	20067
	20068
	20069
	20070
	20071
	20072
	20073
	20074
	20075
	20076
	20077
	20078
	20079
	20080
	20081
	20082
	20083
	20084
	20085
	20086
	20087
	20088
	20089
	20090
	20091
	20092
	20093
	20094
	20095
	20096
	20097
	20098
	20099
	20100
	20101
	20102
	20103
	20104
	20105
	20106
	20107
	20108
	20109
	20110
	20111
	20112
	20113
	20114
	20115
	20116
	20117
	20118
	20119
	20120
	20121
	20122
	20123
	20124
	20125
	20126
	20127
	20128
	20129
	20130
	20131
	20132
	20133
	20134
	20135
	20136
	20137
	20138
	20139
	20140
	20141
	20142
	20143
	20144
	20145
	20146
	20147
	20148
	20149
	20150
	20151
	20152
	20153
	20154
	20155
	20156
	20157
	20158
	20159
	20160
	20161
	20162
	20163
	20164
	20165
	20166
	20167
	20168
	20169
	20170
	20171
	20172
	20173
	20174
	20175
	20176
	20177
	20178
	20179
	20180
	20181
	20182
	20183
	20184
	20185
	20186
	20187
	20188
	20189
	20190
	20191
	20192
	20193
	20194
	20195
	20196
	20197
	20198
	20199
	20200
	20201
	20202
	20203
	20204
	20205
	20206
	20207
	20208
	20209
	20210
	20211
	20212
	20213
	20214
	20215
	20216
	20217
	20218
	20219
	20220
	20221
	20222
	20223
	20224
	20225
	20226
	20227
	20228
	20229
	20230
	20231
	20232
	20233
	20234
	20235
	20236
	20237
	20238
	20239
	20240
	20241
	20242
	20243
	20244
	20245
	20246
	20247
	20248
	20249
	20250
	20251
	20252
	20253
	20254
	20255
	20256
	20257
	20258
	20259
	20260
	20261
	20262
	20263
	20264
	20265
	20266
	20267
	20268



