Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SOME ASPECTS OF THE

ECOLOGY OF THE INTERTIDAL BENTHIC BIOTA OF THE MANAWATU RIVER ESTUARY

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Science in Zoology at Massey University

MICHAEL ROBERT BUTCHER

1976

574.526365099359 + But MASSEY UNIVERSITY, LIBRARY.

77 4256

No

ABSTRACT

This study was undertaken to investigate some of the aspects of the ecology of the benthic flora and fauna on mudflats at the Manawatu River estuary. Scientists and laymen alike are becoming generally aware of the dearth of information known about most New Zealand estuaries.

Four samples were taken at four stations along transects that were positioned up the estuary to give a transition from almost seawater to river water with no tidal influence.

Previous works on estuaries, and descriptions of the methods implemented are given, followed by the results obtained.

One section is devoted to the testing of salinity (chlorinity) tolerances and preferences of male <u>Helice</u> <u>crassa</u> (Dana), the common mud crab. This work is not in the depth of that carried out by Phillips (1968) on <u>Hemigrapsus edwardsi</u> (Hilgendorf), but it does give a hitherto undocumented account, albeit brief, of the effects of various salinities on the serum chloride content of male specimens of <u>Helice crassa</u> of varying body weights.

The author has tried to relate environmental salinities along with the other factors measured; Sediment size, pH, Redox potentials (Eh), Oxygen content and temperature, to the distribution of all the plants and animals found.

i

It appears that mainly sediment size, incorporating silt content, exposure time of the mudflat between tides and the water content of the sediments are the factors determining biotal distributions. Temperature is so variable seasonally that the animals adapt to the changes, oxygen appears in high enough concentrations as not to be significant, pH is reasonably constant and Eh is highly variable but within a range tolerated by all animals found.

A possible beach zonation is also discussed.

ii

ACKNOWLEDGEMENTS

I would like to thank Mr. I.K.Latta, of the Zoology Department, Massey University, for his thoughtful supervision of this thesis, especially for his criticism of the manuscript.

My thanks go also to Dr.I.N.Estcourt, of the New Zealand Oceanographic Institute for checking and aiding the identification of the polychaetes. To the Manawatu Catchment Board for making several reports available to me, and to Elizabeth Edgar of Botany Division, D.S.I.R. for confirmation of plant identifications.

For advice on various topics, my thanks go to Mr.I.A.N.Stringer, and to Dr.J.Riddle.

I am greatful to Mr.G.Benjamin for some remarkable aerobatics whilst I took aerial photographs of the estuary.

Finally thanks to my wife Jenny - she understood.

iii

TABLE OF CONTENTS. Abstract i Acknowledgements iii Table of Contents iv List of Figures vi General Introduction 1 The Study Area 6 2.01 The source 6 2.02 The Estuary 6 2.03 Drainage 8 SECTION ONE: PHYSICAL FACTORS 18 Sediments 18 3.01 Introduction 18 3.02 Methods (1) Size assessment 20 21 (2) Organic content (3) Water content 22 3.03 Results 22 Interstitial water 31 4.01 Introduction 31 4.02 Methods (1) Salinity 33 (2) Oxygen and Temperature 34 (3) pH and Redox Potential 35 Results (1) Salinity 35 4.03 (2) Oxygen and Temperature 37 (3) pH and Redox Potential 39 SECTION TWO:BIOLOGICAL FACTORS 42 42 Vegetation 42 5.01 Introduction

iv.

	5.02	Methods	45		
	5.03	Results	45		
In	48				
	6.01	Introduction	48		
	6.02	Methods	50		
	6.03	Results	50		
Sa	linity Pr	eferences and Tolerances of <u>H.crassa</u>	54		
	7.01	Introduction	54		
	7.02	Methods	57		
	7.03	Results	60		
General Discussion 62					
References 76					
Appendices 83					
	l. A C	A Comparison of Wentworth and Phi Scales			
	for	Particle Sizes			
	2. Sal	inity, Oxygen, pH and Eh measurements			
	3. Veg	3. Vegetation Field Data Sheet for S.x townsendi			
	4. The	: Number of Animals / 1104 $ m cm^3$ of subst	rate		
	5. The	: Number of Surface Animals / 1 m^2			
	6. A I)escription of Seawater Concentrations.			
	7. 't-	'. 't-test' analysis of the means of serum			
	chl	oride levels in <u>H.crassa</u>			
	8. Res	sults of Salinity Tolerance Tests on \underline{H} .	crassa		

v.

Fig	l	Map of Whole Estuary	7
Fig	2	Mudflat 1	9
Fig	3	Mudflat 2	10
Fig	4	Mudflat 3	ll
Fig	5	Transect A	12
Fig	6	Transect B	12
Fig	7	Transect C	13
Fig	8	Transect D	13
Fig	9	Transect E	14
Fig	10	Transect F	14
Fig	11	Transect G	15
Fig	12	Transect H	15
Fig	13	Transect I	16
Fig	14	Transect J	16
Fig	15	Transect K	17
Fig	16	Transect L	17
Fig	17	Graph of substrate Silt Content (%)	24
Fig	18	Mudflat 2 showing sand bars	26
Fig	19	Graph of substrate Organic Content (%)	28
Fig	20a	Tide Flattened Vegetation	29
	Ъ	Flood Flattened Vegetation	29
Fig	21	Graph of substrate Water Content (%)	30
Fig	22	Graph of Interstitial Water Salinity	36
Fig	23	Graph of Interstitial Water Oxygen	
		Concentration (ppm)	38
Fig	24	Graph of Interstitial Water pH	40
Fig	25	Graph of substrate Redox Potential (mV)	47

Fig	26	Crab Keeping Tank System	58
Fig	27	Puncture Site for crab serum extraction	58
Fig	28	Graph of mudflat exposure times (hrs)	68