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Abstract
The underlying theory of induced resistance (IR) is concerned with the situation

when there is an increase in plant resistance to herbivore or pathogen attack that

results from a plant’s response triggered by an agent such as elicitors (also known

as “plant activators”). This mechanism has been well studied in plant pathology

literature. In this thesis, a mathematical model of induced resistance mechanism

using elicitors is proposed and analysed. An adaptation of traditional Susceptible-

Infected-Removed (SIR) model, this proposed model is characterised by three main

compartments, namely: susceptible, resistant and diseased. Under appropriate en-

vironmental conditions, susceptible plants (S) may become diseased (D) when it is

exposed to a compatible pathogen or able to resist the infection (R) via basal host

defence mechanisms. The application of an elicitor enables the signal activation of

plant defence genes to enhance the basal defence responses and thereby affecting the

relative proportion of plants in each of the S, R and D compartments. In literature,

induced resistance is described as a transient response and this scenario is modelled

using reversible processes to describe the temporal evolution of the compartments.

The terms in the equations introduce parameters which are determined by fitting

the model to matching experimental data sets using MATLAB “fminsearch”. This

then gives the model’s outcome to predict the relative proportion of plants in each

compartment and quantitatively estimates the elicitor effectiveness. Extensions of

the model are developed, which includes some factors that affect the performance of

IR such as elicitor concentration and multiple elicitor applications. This IR model

is also extended to include a scenario of post-pathogen inoculation for elicitor treat-

ment. Finally, an application of optimal control theory is derived to determine the

best strategy for a continuous elicitor application. Numerical evaluations of this IR

model provide a potential support tool for the development of more potent elicitors

and its application strategies. The model is generic and will be applicable to a range

of plant-pathogen-elicitor scenarios.



Acknowledgements

Praise be to the Almighty the most Gracious most Merciful.

It would not have been possible to write this thesis without the help and support of

the people around me; to some of whom only it is possible to give particular mention

here.

My sincere thanks go to my mother Kamariah Abu Bakar, for her patience and

continuous support throughout my studies. Her love and encouragement kept me

going amidst the challenges. My thanks go also to my brothers Naufal Syafiq, Naufal

Syahir, and Nabil Syahmi and also to my fiancé Raja Farid Raja Aziz, all of whom
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Chapter 1

Introduction

1.1 Background and Research Motivation

Plants have evolved remarkable defence mechanisms to protect themselves from

insects, pests, and pathogens. However, when there is an epidemic outbreak, losses

from plant diseases have a significant impact on the economics apart from hunger

and starvation (Agrios, 2005).

Introduction and use of disease control measures have been successful in reducing

losses caused by plant disease. Plant disease management has traditionally relied

on the regular application of pesticides such as fungicides and insecticides. This is

because pesticides are effective across a wide range of diseases and improve crop

yields. Although the use of pesticides can be beneficial, there are still potentially

short and long-term risks that can harm the environment and pose a risk to human

health. Thus, there are increasingly stringent constraints on the chemicals used and

pressure to remove the hazardous chemicals from the market (Muilerman, 2011).

Many alternatives are available to reduce the application of pesticides such as cul-

tural control, use of host plant resistance and chemical control (Walters, 2009). In

the last 30 years biological controls have attracted increasing attention. These in-

clude induced resistance (IR), where the use of defence mechanisms that are inherent

to plants is targeted. According to Cipollini & Heil (2010), IR can be defined as an

1
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increase of resistance to a herbivore or pathogen that results from a plant’s response

to prior attack by the same or another attacker or to chemical or mechanical factors

that mimic enemy attack. A better understanding of this IR phenomenon has led to

the discovery of natural and synthetic compounds called “elicitors” that can trigger

plant defence mechanisms. Unlike pesticides that are used to kill pathogens, elic-

itor compounds were primarily designed to improve plant resistance to pathogens.

Various studies have confirmed the effectiveness of IR in suppressing diseases with a

general agreement that an application of elicitor can provide between 4% and 90%

disease control (Walters, 2010). This big range and the incompleteness of disease

control is not a surprise since IR can be regarded as a plant response and is affected

by many factors such as the environment and the aggressiveness of disease causing

agents. This variable efficacy is a major hurdle affecting the implementation of IR

in the current crop protection programmes. As pointed out by Walters in his pub-

lished papers (Walters et al., 2005; Walters, 2010), it is important to consider the

optimal timing of application, the optimal dosage for treatment and frequency of

application. These considerations are crucial in order to gain a better understanding

of the performance of IR before it can be potentially implemented as a practical tool

for growers. The development of a mathematical model is one component in this

process.

van Maanen & Xu (2003) quotes

“a mathematical model can be described as a simplification of reality

and attempts to summarise the main process, to put forward hypotheses

and to verify their coherence and consequences.”

A mathematical model allows one to investigate how complex an IR system is con-

nected. The numerical and analytical evaluations of such model will then enable the

researchers to systematically analyse the perturbations of the system and develop

hypotheses to guide the design of new experimental tests. While there has been

much research on modelling the biological control system, very little information is

available in understanding the dynamics between the plants, pathogens and elici-

tors. Improved knowledge of the plant-pathogen-elicitor interaction is important in

order to maximise the efficacy of elicitors used for the plant treatment to induce

resistance to pathogen attacks. Thus, this proposed IR model serves as a basis for
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decision-making tools for further experiments using elicitor-mediated induction of

plant defence.

Therefore, the objectives of this study are:

• to develop a generic mathematical model that describes the interaction be-

tween plants, pathogens and elicitors

• to fit the model with experimental data in a custom-made case study

• to extend the generic model to include effects of elicitor treatment to ma-

nipulating IR mechanisms such as varying the elicitor concentrations applied,

multiple elicitor applications and elicitor treatment after pathogen attacks

• to extend the model further to apply optimal control theory to optimise the

use of elicitor application.

1.2 Outline of the Thesis

This thesis presents details of the development of the proposed IR model as outlined

above. Chapter 2 provides an overview of plant pathology. The first part of the

chapter is devoted to the general view of plant defence mechanism against pathogen

attacks, and also plant protection technologies. The second part of the chapter

focusses on the general concept of IR and its use as a plant disease management

tool. Lastly, an overview of the pine system and its potential for IR to control pine

diseases is presented. Common pine disease, Diplodia blight (Diplodia pinea), that

causes pine stem canker and tip dieback to Monterey pine seedlings (Pinus radiata)

is the case study used for this proposed IR model.

Chapter 3 is devoted to the mathematical background of modelling a biological con-

trol system. Although mathematical modelling of IR using elicitors to induce a host

response specifically is lacking, some examples of mathematical models of biologi-

cal control systems are presented in this chapter. Generic mathematical models by

Jeger et al. (2009) and Xu et al. (2010) are discussed in this chapter, as the IR model

developed for this thesis is an adaptation from these two models. This chapter also
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features the method used in this thesis to estimate the unknown parameter for the

proposed IR model, and an overview of Pontryagin’s maximum principle.

Chapter 4 contains a full derivation of the IR model. Brief assumptions are described

and the equations chosen are discussed. The experimental data set on the IR of pine

seedlings is also described here. The model was derived from ordinary differential

equations, and adaptations of the traditional susceptible-infected-removed (SIR)

model. The IR experimental observations play an important role in choosing the

suitable equations to represent IR mechanisms. The unknown parameters introduced

in this model are then estimated in the next chapter.

Chapter 5 introduces the IR model for fitting the model to the matching experimen-

tal IR observations. Thus, the unknown parameters in this model can be determined.

These values are then used to solve the IR model numerically, and results of the dy-

namical system are plotted. In Chapter 6, this IR model is extended to include the

effect of IR in response to elicitor concentration, multiple elicitor applications and

the post-pathogen inoculation challenge for the elicitor treatment. In each case, the

numerical solutions to the models are presented.

The thesis is drawn to a close in Chapter 7 by applying Pontryagin’s maximum

principle to the IR model. The goal was to determine the optimal control strategy

of the continuous elicitor application. Despite the fact that a continuous application

might cause phytotoxicity to the plants, it is reasonable for plants that may be

already infected. Thus, the model assumes that the elicitor application and pathogen

challenge are introduced simultaneously, and elicitor is applied continuously until

a desirable level of disease control is achieved. Attention to this optimal control

problem is restricted to the case when the objective functional to be defined in a

quadratic term for the control variable.

Finally, the thesis concludes in Chapter 8, with a summary of the main points

from the development and analysis of the models in chapters 4–7, and offers some

suggestions for future research.



Chapter 2

Plant Disease Management

All species of plants are subject to disease. In the past, major plant disease out-

breaks among food crops have led to famines and mass migrations (e.g. the “Irish

Potato Blight”). Therefore there is a need to ensure the disease control strategies

for all economically important crops are robust enough to sustain crop yield. In

this chapter, the mechanisms of plant defence are introduced. The impact of plant

disease and disease control management systems are also briefly covered. The use of

externally applied elicitors as a means of inducing a disease resistance response in

plants are described and this chapter also includes an overview of the pine system

and its IR potential to control pine disease.

2.1 Plant Defence Mechanism

Plants are very capable of defending themselves against dangers from the environ-

ment and pathogen attacks. They have evolved constitutive and inducible defence

mechanisms (Walters, 2011). Constitutive defences are pre-existing physical barri-

ers, such as thick cuticles, rigid cell walls, as well as aggressively looking thorns,

needles and trichomes. In addition, plants contain pre-formed chemicals to protect

themselves such as toxic and repellent compounds. An inducible defence mechanism

is the second layer of plant defence, which many require gene activation. Inducible

defence can be of two types: physical and biochemical responses. The physical form

5
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of inducible defence is the strengthening of cell walls such as lignification. The bio-

chemical response corresponds to the synthesis of antimicrobial chemicals, enzyme

induction and hypersensitive response (HR).

Generally, plant defence mechanisms against the pathogen can be described as an

ordered process:

1. When receptors located in the cell wall and plasma membrane detects the

pathogen, it will alert via a chemical signal the surrounding cells to activate

their defences (see Figure 2.1).

2. The alerted cells then release an oxidative burst that serves to create toxic

environment within the cell and also to release signalling molecules to alert

neighbouring cells. One of the outcomes of the oxidative burst can be cell

death at the infection site; this is called the hypersensitive response (HR).

3. HR will result in sacrificing some of the plants’ cells at the site of the infection

in order to stop the pathogen spreading throughout the plant (Figure 2.2).

This action may prevent the pathogens from getting access to water and nu-

trients necessary for them to survive.

The plant defence system is very complicated and only a small amount of information

is currently known. The plant defence system is coordinated via a complex network

of interdependent signalling pathways. Many of the mechanisms associated with the

induction of plant defence are similar in many plant species.

2.2 Plant Disease Development in Agricultural Sys-

tems

Although plants have evolved a remarkable defence system, there are some pathogen

populations can evolve to overcome resistance mechanisms and to cause disease.

Historically, plant disease epidemics have resulted in severe economic losses where no

disease control management has been applied. Frequently cited examples include the

“Irish Potato Famine” between 1845 and 1852. Consequences of this catastrophic
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Figure 2.1: The schematic diagram of how the pathogen invades the plant’s cells
(source from: http://www.rikenresearch.riken.jp/eng/frontline/6025). When the
pathogens are able to penetrate a cell, the infected plants cells release intercellular

signals that prime defence mechanisms in neighbouring cells.

Figure 2.2: One of the signs of a plant activating their inducible defence called
the hypersensitive response (HR).
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Estimated Annual Crop Losses Worldwide in 2002
Attainable crop production (2002 prices) USD$1.5 trillion
Actual crop production (-36.5%) USD$950 billion
Production without crop protection USD$455 billion
Losses prevented by crop protection USD$415 billion
Actual annual losses to world crop production USD$550 billion
Losses caused by diseases only (14.1%) USD$220 billion

Table 2.1: Crop losses due to plant disease. Numbers taken from Agrios (2005).

plant disease caused a deficit in the food supply where a million people died of

starvation and almost two million migrated (Strange & Scott, 2005).

In recent years, 14.1% of the global harvest was estimated to have been lost to plant

diseases caused by bacteria, fungi and viruses, at a cost of USD220 billion in 2002

(Table 2.1). The goal of disease management is to reduce this economic and aesthetic

damage caused by plant disease. Thus, to ensure the economics of continuity of food

supplies, significant research effort has been targeted at the development of more

efficient plant disease management practices.

Plant Protection Using Old Technologies

The most common method of disease control is based on the regular application

of fungicides. Globally, the use of fungicides as protection to the crop to increase

crop yield has steadily increased. Issues (2011) reported that in 1970 the amount of

fungicides applied globally was four million tonnes; five million tonnes in 1985; and

in 2001 the tonnage had increased to six million tonnes with 85% of all fungicides

used in agriculture. In India, an estimated 59 million kg of pesticides are applied

annually (as cited in Pimentel (2002)).

Modern societies demand nutritious food, but at the same time they want their food

to be damage-free with no disease symptoms. This is arguably difficult without

pesticides. However, serious questions have been raised about the environmental

and human health safety of prolonged use of synthetic agrochemicals. This has led

to considerable changes in peoples’ attitude towards pesticides. Today, there are

increasingly stringent constraints on chemical pesticides used and there is pressure
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to remove the most hazardous chemicals from the market (Muilerman, 2011) and a

need for alternatives to synthetic agrochemicals.

Disease Management Based on Alternatives Technologies: Biological Con-

trol

Biological control has attracted attention as an alternative to pesticides. Biological

control is a more environmentally sound strategy for reducing or mitigating disease

development through the use of selected anti-microbial microorganisms. Some bi-

ological control agents (BCAs) are effective at reducing disease development and

several have been commercialised (Elmer & Reglinski, 2006; Jacometti et al., 2010).

In general, there are four mechanisms by which BCA’s bring about a reduction of

disease development (McSpadden Gardener & Fravel, 2002):

• competition

• parasitism

• antibiosis

• induced resistance (IR).

The aim of this thesis research was to explore the applicability of induced resistance

in plant disease management, and this will be discussed in the next section.

2.3 Induced Resistance: A General Concept

The general concept of IR is taken to mean as the phenomenon of induced changes in

resistance after attack by herbivores or pathogens. This observations of IR in plants

were reported over 100 years ago (Hammerschimdt, 2007). Chester (1933) analysed

these early works and concluded that this IR discovering phenomenon might play

an important role in sustainability of plants in nature. In his early published paper,

Chester (1933) describes IR as
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“The vaccination of plants resulting in an increased resistance of vari-

able duration, to subsequent infection.”

There has been some confusion in the literature about the definition of IR, and this

has been confounded by different authors using the terms interchangeably. Chester

(1933) used the term “vaccination” which is often compared to vaccination or im-

munisation in animals, but this term can be misleading; Van Loon (1997) points out

there is a difference in the mechanism of immunisation between animals and plants

as, unlike animals, plants possess neither a circulatory system nor immune surveil-

lance. In recent years, there has been a general understanding about the definition

of IR, and it is best described as (Cipollini & Heil, 2010)

“an increase in resistance to a herbivore or pathogen that results from

a plant’s response to a prior attack by the same or another attacker or

to chemical or mechanical factors that mimic enemy attack”.

There are now two generally recognised forms of IR:

1. Systemic acquired resistance (SAR)

• Initially characterised as a type of IR induced in response to pathogens

that cause a localised, necrotic lesion. This necrotic lesion can be a result

of HR.

• Involves salicylic acid (SA) signalling pathways and is also associated with

pathogenesis-related (PR) proteins.

• SAR becomes evident to the subsequent attack.

2. Induced systemic resistance (ISR)

• Develops systemically in response to the colonisation of roots by bacteria

and fungi.

• ISR is regulated by jasmonate acid (JA) or ethylene signalling pathways.

• May result in the ability of the host to enhanced defence response on

infection.
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Figure 2.3 illustrates SAR and ISR. Although different signalling pathways are used

for SAR and ISR, these two forms of resistance can be simultaneously activated

in the same plant leading to enhanced resistance. Moreover, both SAR and ISR

are effective against a broad spectrum of plant pathogens. In all cases of IR, SAR

and ISR have a similar mechanism where IR is expressed on subsequent “challenge”

inoculation. There is a time interval between the first treatment and “challenge”

inoculation which is a prerequisite for effective expression of IR. This span of time is

necessary for signals to be translocated to non-treated tissues and for the triggering

and development of defence potential in these tissues.

Figure 2.3: SAR is triggered by local infection that causes HR and involves
the SA and PR signalling. ISR is induced by root colonising by bacteria and it
is regulated by JA or ethylene signalling. This diagram is from Pieterse et al.

(2009).
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Since 1933, many studies have been developed to discover further exploitation on

IR. The pioneering works by Kuć et al. (1959), Loebenstein (1963), and Ross (1966)

have led to a new concept of IR in plants and its application (as cited in Kuć

(2000)). IR as a plant protection strategy may assist with reduction of the use

of environmentally toxic chemicals for disease control, and thus could be proposed

as an alternative and more environmentally benign eco-friendly approach for plant

protection. Many publications in the literature have described IR as a successful

tool in plant protection. As pointed out by Walters (2010) however, one major

drawback of IR is that it rarely leads to complete protection, with levels of disease

control ranging from 4% to greater than 90%. IR is a host response influenced by

a number of factors (see Figure 2.4), including the host plant, the virulence of the

pathogen and the environment. The understanding of the interrelationship between

these variables might contribute to more effective IR as a tool to control disease

development. The development of a mathematical model could be one part of the

process.

Figure 2.4: The disease triangle. The three necessary causal factors of disease:
a host plant, a favourable environment conditions, and a pathogen to cause the

disease.
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2.3.1 Induced Resistance for Pathogen Control using Elici-

tors

The past decade has seen a rapid development in exploiting IR mechanisms. An

appealing method of IR is the application of plant “activators” or elicitors to replace

fungicides. In broad biological terms, an elicitor is defined as any compound that,

when introduced, signals the activation or synthesis of another compound. In plant

pathology, the elicitor is an important component in IR, and plays a key role in

activating the plant’s resistance to disease. Plant disease resistance relies on the

activation of various physical and chemical defences, described in Section 2.1, and

therefore this is where the elicitor application stimulate the resistance genes. By

referring to Figure 2.4, elicitors develop resistance in plants as elicitors are not anti-

microbial per se but operate instead by activating defences signalling cascades which

culminate in an enhanced resistance to pathogen attack.

Elicitors can be divided into two groups (Radman et al., 2003):

1. Biotic

• Biological origin, derived from the pathogen or from the plant itself.

2. Abiotic

• Not of biological origin and derived from organic chemical compounds.

One biochemical response associated with resistant induction in plants is the Pheny-

lalanine ammonia lyase (PAL) (Nicholson & Hammerschmidt, 1992). Many studies

have measured PAL activity as a potential biochemical marker for elicitor activ-

ity. For example Reglinski et al. (1998); Mandal (2010); El Modafara et al. (2012)

investigated PAL activity for elicitor-treated plants and they reported a transient in-

duction of PAL where PAL activity increased then decreased back to pre-elicitation

concentrations (see Figure 2.5). However, some chemical elicitors such as methyl

jasmonate (MeJA) caused inhibition of PAL activity (Reglinski et al., 2012). Nev-

ertheless, some studies in the literature suggest that the elicitors can induce a broad

spectrum and long lasting resistance (Walters et al., 2013); however more commonly
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it has been shown that the effectiveness of the elicitor is transient and lasts for a

few weeks only.

Figure 2.5: PAL activity of Pinus radiata seedlings following treatment with
elicitor 2 mM 5CSA (squares) and untreated (circles). Figure is from Reglinski

et al. (1998).

If IR is to be used in disease management using appropriate elicitors, the timing of

the elicitor application prior to pathogen challenge plays an important role in order

to be effective as a potential disease control strategy. As previously described, IR is a

transient response. Therefore many studies have focused on the onset and duration

of the IR response (i.e. varying the time between the initial elicitor treatment

and the subsequent challenge inoculation with the pathogen). Experimental works

by Soylu et al. (2003), Gould et al. (2008), and Hindumathy (2012) studied the

optimum time required. They found that if the time lag between elicitor treatment

and challenge inoculation is too long, the elicited or induced response is no longer

effective against pathogen attack; that is, a longer induction period provided no

statistically significant increase in disease control.

In spite of the fact that the elicitors can enhance a plant’s defence mechanism, there

is also a drawback to the use of elicitors. In greenhouse studies (e.g. Godard et al.

(1999); Gould et al. (2008); Hindumathy (2012); Vivas et al. (2012)), it was shown

that applications of elicitors at higher concentrations caused phytotoxicity, a toxic

effect by a compound on plant growth (see Figure 2.6). Identification from these

studies indicated that IR is dependent on the dose of elicitor used. There is an

optimal concentration for the elicitor that maximises induction of plant defensive

responses and does not cause toxic effects to the plants. In practical disease con-

trol, the frequency of elicitor application is a crucial consideration as pointed out
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by Walters et al. (2013). Studies by Gould et al. (2008) and Dinh et al. (2008)

found that more frequent elicitor applications appear to be phytotoxic to the plants

despite the fact it suppressed disease development. A greenhouse experiment by

Gould et al. (2008) showed that weekly MeJA applications did not improve disease

control efficacy but reduced pine seedlings’ growth and health. While a study by

Dinh et al. (2008) on pre-harvest multiple MeJA treatment with three-day intervals

did not show any significant difference from the water control. This is contradic-

tory to a field study by Huang & Vallad (2012), where application of an elicitor

(Acibenzolar-S-Methyl (ASM)) weekly was capable of managing bacterial spot on

tomatoes compared to the bi-weekly applications.

     Untreated        1.1mM             4.5mM             18mM 

            x3           x3          x3 

Methyl jasmonate concentration and application frequency 

High Doses of MeJA cause needle chlorosis  

Figure 2.6: The phytotoxicity effects on pine seedlings after being treated with
elicitor MEJA. Lab studies showed that MeJA treatment did not improve disease

control efficacy and also reduced pine seedlings growth and health.

The awareness of IR, as a method for controlling plant diseases has resulted in

increasing volumes of research assessing the efficacies of IR under field or commercial
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production conditions (Reglinski et al., 2007). These studies have laid a foundation

for the current comprehension of IR as a tool in plant protection, and therefore has

led to the development of crop protectants. Some elicitor compounds (Table 2.2)

have been commercially released in some countries as a plant health promoter of

annual crops (Elmer & Reglinski, 2006; Reglinski et al., 2007; Walters et al., 2013;

Thakur & Sohal, 2013). These elicitors have provided significant benefits (Hill et al.,

1999; Walters et al., 2013):

• Reduction in the usage of pesticides and increased environmental sustainability

• Broad-spectrum disease control using plant’s own resistance

• Prospect of durability where induced resistance relies on a range of plant de-

fences and so development of pathogen resistance is unlikely

• Elicitor treatment is compatible to be integrated with other disease control

methods.

Elicitor Product Name

Acibenzolar-s-methyl Actigard®

Bion®

Chitosan ARMOUR-Zen®

Chitoplant®

Glucan and related oligosaccharides PELIOIGV®

lodus40®

Vacciplant®

Extract from giant knotweed (Reynoutoria sachalinensis) Milsana®

Salicylic acid + others Spotless
Treet™

Table 2.2: Some example of commercial elicitors (Reglinski et al., 2011)

Despite the fact that elicitors can reduce disease severity, some questions have been

asked about the safety of consuming food treated with elicitors. This dilemma

has been discussed in Lyon & Newton (1997). Under European Union legislation,

resistance elicitors are subject to the same requirements as other pesticides and must

achieve all the required safety standards. Although some application of elicitors may

cause phytotoxicity to plants, so far there is no evidence to suggest that this will

have any harm effect on human or animal. This aspect is supported by the fact
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that many resistance components that are increased by the elicitor treatment are

normal components of plants that exist before the treatment. Conversely, there is

also interest in the potential for elicitors to increase the content of bioactives with

perceived human health benefits (e.g. antioxidants) (Garćıa-Mier et al., 2013).

2.4 Pine Trees: A Case Study for IR Model

2.4.1 Pine Disease and Disease Control Practice

Pines, scientifically known as Pinus, are conifer trees native to most of the Northern

Hemisphere. There are approximately 115 species of pines worldwide. The most

widely planted pine in the world is the Monterey Pine also known as Pinus radiata.

This specific pine type, Pinus radiata, is commercially important for its valued

timber and pulp. In New Zealand, forest nurseries produce over 50 million Pinus

radiata annually in order to meet the demand (Reglinski & Dick, 2005).

Pine trees are large and long-lived plants, but are also exposed to pathogen attack

which ultimately causes death, or disease to the point where they need to be cut.

The forestry sector suffers substantial economic losses due to pine diseases. Nix

in his article (Nix, 2013) listed some virulent pine diseases, and the list includes

Diplodia blight of pines. This common disease affects pines worldwide, especially

Pinus radiata, and has seriously damaged extensive plantings of this species in New

Zealand. Pine blight is caused by the fungus Diplodia pinea. The most evident sign

of a Pinus radiata infected with Diplodia blight is that the tree has brown, stunted

new shoots with short, brown needles (Figure 2.7). Mostly younger and healthy

needles of newly formed candles are infected by this fungus. Infections of Diplodia

pinea reduce growth, deform trees, and ultimately kill them.

Some disease control management for Diplodia blight includes removing the infected

twigs to reduce the amount of fungus in the tree. In addition, it is recommended

not to plant young, healthy two-needle and three-needled pines near older, infected

pines (Moorman, 2013). Infection of new shoots has been traditionally controlled

by applying fungicide to pines. This method has reduced the infection significantly.
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Figure 2.7: Top dieback caused by Diplodia pinea. Figure is from Wikipedia.

Concerns about the adverse effects of pesticides have increased interest in biological

control methods.

2.4.2 The Potential of IR in Controlling Pine Disease

Induced resistance has been well studied in many agricultural systems and its ap-

plication has proved effective, yet less is known for forestry. While trees and crop

plants share common features, trees have certain unique features such as their larger

size and much longer life spans.

In the last 15 years, there has been increasing interest in investigating IR in pine

trees. Although tree protection strategies based on IR are in the early stages of

conceptual development (Bonello et al., 2006; Eyles et al., 2010), there is potential

for the use of IR in the management of forest systems, particularly pine trees forests.

Studies in the literature have shown that biological induction in pine trees have

provided effective control of pine diseases (e.g. Moreira & Zas (2009); Fitza et al.

(2011); Vivas et al. (2012)).
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Much work on Pinus radiata has been undertaken by Reglinski and his co-workers

(Reglinski et al., 1998; Gould et al., 2008, 2009; Reglisnki et al., 2012). These

studies found that foliar applications of chemical compounds have been shown to

enhance resistance against Diplodia pinea. The same crucial points (e.g. timing of

the applications, elicitor concentration and multiple applications) have been taken

into account in these studies to investigate the efficacy of IR in suppressing Diplodia

blight.

Several biological elicitors have been demonstrated to be effective for inducing re-

sistance to a range of pathogens in Pinus and other coniferous species (Eyles et al.,

2010). MeJA is one of the most commonly studied elicitors on pine trees, as a tool

to simulate a similar response to wounding and herbivory (Holopainen et al., 2009).

2.5 Summary

Plants have evolved defence mechanisms to protect susceptible tissues from the im-

pact of browsing by animals and loss of photosynthetic, structural and root tissues

by pathogen and insect feeding. However, plants can still get infected and become

diseased because some pathogen population has subsequently evolved and overcome

plant resistance mechanisms. Plant disease epidemics in the past have caused se-

vere economic losses and have even led to food shortage and famine. There are

many strategies for effective disease management but the most common practice is

based on the application of pesticides. Serious questions have been raised about

the adverse effect of pesticides on the environment and human health. Therefore,

alternative disease control strategies have been developed as synthetic pesticides are

withdrawn from the market. Biological control is an alternative strategy that has

gained greater acceptance by food producers in the last 20–30 years. In the last 10

years, IR as a viable, biologically based strategy has become more prominent.

The underlying theory of IR is when plant defence mechanisms are triggered by

an agent prior to infection by a plant pathogen resulting in a reduction in disease

infection. This agent is known as the elicitors which, via a complex cascade of

resistance inducing mechanisms is capable of transforming susceptible plant tissues
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into tissues with elevated levels of resistance when specific treatments are applied to

the plants prior to infection. Typically, there is a lag of several days between elicitor

application and the onset of IR. Some studies suggest that elicitors can induce a

broad spectrum of resistance which can be long lasting; however, more commonly

it has been shown that IR is transient and lasts for a few weeks only. The plant

protection based on IR provides incomplete disease control, and the extent of this

variability is a function of the dynamic relationship between the plant, the pathogen

and the environment

The understanding of IR in crop plants has been well observed, but little is known

about its use for trees as it is still in the early stages of conceptual development.

In spite of this, greenhouse studies have shown that IR can contributes to the sup-

pression of pine diseases and would fit into an integrated management strategy.

Development of a prototype mathematical model of IR using pine trees as a case

study, which will be discussed in Chapter 4, might help to gain better understanding

of IR in trees.

Studies have shown that the efficacy of the IR using elicitors is dependent on the

concentration applied and the right timing for the treatment. A new approach in

exploiting IR is the frequency of elicitor treatment to reduce disease infection. These

factors that affect the efficacy of the elicitor to induce plant resistance to diseases

will be taken into account for modelling IR. This is further discussed in Chapter 6.



Chapter 3

Mathematical Background

This chapter outlines previous mathematical models on biological control agents

(BCA) for controlling plant diseases, and an overview of parameter estimation.

Lastly, the background of Pontryagin’s maximum principle, used later in this thesis,

is covered.

3.1 Previous Mathematical Models

3.1.1 Modelling Biological Control System

Mathematical modelling is an important tool used in studying agricultural problems.

The application of mathematical theory to the problem allows a qualitative and

quantitative evaluation of the interested case. Nowadays, there is a rapid expansion

of studies of mathematical modelling applied to the biological control system. To

have a better understanding of the dynamical system of the biological control system,

one needs to investigate the interactions within the system and understand the

mechanisms involved.

Researchers have usually modelled interactions within biological control systems

using predator-prey theory, such as in the Lotka-Volterra model. For example,

studies by Xiao & van den Bosch (2003); Kessel et al. (2005); Liu et al. (2009);

21
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Rafikov & de Holanda Limeira (2012) used Lotka-Volterra equations to investigate

the dynamics of BCA population and the success of biological control mechanisms.

These methods are not restricted to the predator-prey theory; some authors (e.g.

Pathak & Maiti (2012)) formulated the biological control system using equation

such as Michaelis-Menten type. Moreover, authors such as Jeger et al. (2009) and

Gilligan & van den Bosch (2008) conducted their studies using the susceptible-

infected-removed (SIR) model, a well-known work first introduced by Kermack &

Mckendrick (1927), to model the efficacy of the BCA mechanisms that suppress

plant diseases.

There is a large volume of published studies describing the biological control model,

but there are limits in the literature review that consider plant-pathogen-elicitor dy-

namics. Nevertheless, Jeger et al. (2009) developed a generic mathematical model

framework in which a compartmental SIR model for plant-pathogen dynamics was

coupled with BCA-pathogen dynamics (see Figure 3.1). This study was extended

by Xu et al. (2010) for further numerical computations. The authors considered

four main BCA mechanisms as discussed in Chapter 2: induced resistance (IR),

antibiosis, competition and mycoparasitism. Each BCA mechanism had their key

parameter values in order to replicate the mechanisms involved. Another study by

Liu et al. (2009) presented a model of tritrophic interactions mediated by the IR (Fig-

ure 3.2), using the Lotka-Volterra model and the modified An-Liu-Johnson-Lovett

model. Underwood (1999) published an article on a model describing inducible

plant-herbivore systems with a quantitatively induced response. This model was

designed to examine the effect of IR on herbivore population dynamics. A delay

time was included in this model, which incorporates the time interval for herbivore

damage and the induction response. However, it was less clear how the plants were

able to become resistant against the attack by herbivores whether by pre-damage or

elicitor treatment prior to subsequent attack.

The existing models fail to show the modelling of IR mechanism using elicitors.

Although elicitors can be treated as a BCA, the scope for this thesis is beyond the

model by Jeger et al. (2009) and Xu et al. (2010), where BCA is assumed to be

part of the plant population (see Figure 3.1). Moreover, Gilligan & van den Bosch

(2008) and Xiao & van den Bosch (2003) introduced the effect of the control agent

to suppressed disease at a constant rate to their model which is simply not true
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for the elicitor effectiveness since elicitor response is transient (as discussed in the

previous chapter).

Figure 3.1: A simplified flow diagram describing the model by Jeger et al. (2009).
The parameters correspond to the specific rates of movement between the linked

compartments.

In spite of this, there are a few papers discussing a conceptual model of the length

of IR (Underwood, 1998; Bonello et al., 2006). The hypothesis for IR dynamics

proposed by these authors (Figure 3.3 and Figure 3.4) would be useful to formulate

the IR mechanism.

3.1.2 Application of Pontryagin’s Maximum Principle

There is an increasing interest in the application of Pontryagin’s maximum principle

in the field of agriculture. An early example is the article by Schaffer (1983). He

discussed an example of a plant that can allocate the energy to leaves or seeds or

stores the energy, which can be recalled at some cost to the following season (see

Figure 3.5). In this simple example, Schaffer’s analysis showed there exists switching
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Figure 3.2: A schematic diagram of the conventional tritrophic system (solid
lines) and induced volatiles-mediated tritrophic interactions (dotted lines). The
arrows are the predation or the food web relationships interaction in the tritrophic
system. When the natural enemies of the herbivore at the trophic level are at-
tracted to the plant-herbivore system by induced volatiles, plants activate their
induced chemical defensive system when they are attacked by herbivorous insects.

Figure is from Liu et al. (2009).

Figure 3.3: The conceptual model of the time course of IR presented by Under-
wood (1998) based on previous theoretical studies on the effect of IR on herbivore
population dynamics. There is a time lag between damage and the induced re-

sponse, and later IR is expected to decay over some period of time.
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Figure 3.4: Diagram represents the IR hypothesis by Bonello et al. (2006). The
baseline level of constitutive resistance exists in all plants, but an induction event
is predicted to induce resistance against pathogens. IR is predicted to remain
sustained for a period of time and this situation is described by curve a. If the
plants are severely damaged by the pathogens and becoming visibly diseased, the
resistance begins to decline and results in the plants become highly exposed to

the pathogen (described by curve b).

functions independent of the controls. This means that in each year the plant either

stores its energy for next season or for reproduction. Another example is a work

published by Whittle et al. (2007) where they formulated a simple mathematical

model to find the optimal solution to control an invasive plant species. The objective

functional is defined to minimise the area covered by the invasive species at the end

of the time period which is coupled with the control variable. The term for the

control variable was chosen to be in a quadratic form for simplicity of the analysis.

Although the author made several assumptions on the biological background in order

to simplify the process associated with this model, the study of optimal control

theory application is potentially still useful and applicable.
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Figure 3.5: Schematic representation of the Schaffer (1983) model where it
corresponds to a plant at age i. The energy, Carbon (calories), fixed at time t
can be allocated to leaves (Xi(t)), stores (Ci(t)), or seeds (Si(t)). The control
variables are defined as: ui(t) is the fraction of newly fixed carbon allocated to

seeds; vi(t) is the fraction allocated to stores.

Forster & Gilligan (2007) and Ndeffo Mbah & Gilligan (2013) addressed a problem

of optimisation of plant disease control on a lattice with a spatial model for the

spread of a plant pathogen over an agricultural region. Their goal was to minimise

the total level of infection during a single agricultural season at the least possible

cost of treatment. In the Forster & Gilligan (2007) study, the objective was to min-

imise the number of lattice sites receiving treatment. Two cases were considered in

this study; those where the objective functionals are defined for short and long time

scales. The difference in the objective functionals for both cases is the introduction

of the discount rate in the long time scale to represent the rate which the policymaker

is willing to pay. This is a trade-off between the value of treatment today against

the ensuing cost of increased infection in the future. Ndeffo Mbah & Gilligan (2013)

extended Forster & Gilligan (2007)’s idea to include the action of the control agent

(protectant or eradication) and assume a lattice with periodic boundary conditions

where each site of lattice exists in one of the following two states, healthy or infec-

tious. Ndeffo Mbah and Gilligan assumed that if control is applied to a healthy site,

the protectant action reduces the force of infection, whereas, if applied to an infected

site, the eradicant action decreases the period of infection of the site. Both studies

by Forster & Gilligan (2007) and Ndeffo Mbah & Gilligan (2013) used Pontragin’s
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maximum principle, and the optimal strategy obtained was a bang-bang type of

control. Both authors agreed the main challenge with such a control strategy is the

optimal switching times are generally unknown. They made some assumptions in

order to determine the switching time analytically. Unfortunately, there is a risk of

missing the optimal switching time which may drastically affect the outcome.

One simple optimal control problem quite relevant to this thesis is the example pre-

sented by Graves (2010) in her thesis. This concerned a fungus infestation controlled

by the periodic application of fungicide and the model is formulated in discrete time.

The objective of this control problem was to minimise the concentration of fungus

at the final time and the cost of applying the control. For simplification, the author

fixed the number of control applications and the final time in advance. The ob-

jective functional is the sum of the cost of fungus infestation which is proportional

to the concentration of fungicide at the final time. Graves also defined the control

function in a quadratic form, thus eliminating the possibility of a bang-bang type

of control. This example would have been more interesting if the optimal control

problem was adapted to the continuous time with the discount rate included in the

objective functional.

3.2 Parameter Estimation: Least-squares Method

Normally, biological processes are modelled using ordinary differential equations

(ODEs) which describe the evolution, over time, of certain quantities. A special

feature of biological models is that they usually contain a numbers of parameters

(such as reaction rates, production rates and decay coefficients) that have a physical

meaning. Most of the parameters are unknown and it might be feasible to measure

them experimentally; but in many cases this is either difficult, expensive, time con-

suming or otherwise impossible. However, these unknown parameters may possibly

be determined from the experimental data, using parameter estimation methods.

According to Gibbs (2011), the problem of estimating parameters in a model can be

visualised as a study of inverse modelling (see Figure 3.6). A parameter estimation

method could help to determine adequate values for the most uncertain model input
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parameters that cannot be deduced routinely through experimentation or expert

judgment. It is crucial to have the knowledge of these parameter values for the

mathematical model whenever one wants to obtain quantitative or even qualitative

information from the model.

Figure 3.6: Least-squares solution to inverse modelling (from Gibbs (2011)).

Least-squares Method

Parameter estimation problems are often formulated as an optimisation problem.

There are many ways of estimating parameters but the least-squares method is

the most widely applied. This is because of its practicality in analysing various

types of experimental data. In this method, estimation is accomplished by solving

an optimisation problem in which the objective function containing the unknown

parameters is being minimised. The results are the set of parameters that produce

the best fit between simulations and experimental data.

Johnson & Faunt (1992) stated that there are six assumptions which must be made to

implement the parameter estimation by the least-squares method. The assumptions

are:

1. All the experimental uncertainties can be attributed to the dependent vari-

ables.
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2. The experimental errors of the data follow a normal distribution.

3. No systematic error exists in the data.

4. The functional form of the selected model is correct.

5. There are enough data points to provide a good sampling of the experimental

data.

6. The observations (data points) are independent of each other.

Least-squares methods are divided into two categories :

• linear / ordinary least-squares method

• non-linear / total least-squares method.

The ordinary least-squares method is based on minimising the vertical distance

between the experimental measurements and the model’s curve, whereas the total

least-squares method is based on minimising the orthogonal distance between the

measurement to the curve (see Figure 3.7). In this thesis, the ordinary least-squares

method was used to estimate the unknown parameters in the IR model (see later in

Chapter 5).

If given a data set consisting of a set of N points, and a vector p = (p1, p2, ..., pn) of

unknown parameters, then the least sum of squares of error (SSE) is minimised to

obtain the parameter estimates:

SSE =
N∑
i=1

[y(ti)− f(ti; p)]2, (3.1)

where

• ti is the independent variable that is treated as the observation time

• yi is the dependent variable or the experimental measurement
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Figure 3.7: Graphical comparison between ordinary least-squares and total
least-squares methods. The ordinary least-squares is based on minimising the ver-
tical distance between the experimental data and the model simulation, whereas

the total least-squares estimate minimises the orthogonal distance.

• f(ti; p) is a function of the independent variable that is the model simulation

curve

• p vector of unknown parameters which needs to be evaluated.

The least-squares minimisation for linear models can usually be done analytically.

On the other hand, for a nonlinear model it is done using iterative numerical algo-

rithm (such as Nelder-Mead simplex method and Gauss-Newton method) to eval-

uate the “optimal values” for p. For this study, a MATLAB built-in tool called

“fminsearch” which is an application of Nelder-Mead simplex method, was used to

estimate the unknown parameters. In this case, the SSE is used, as the objective

function and initial guesses of each parameter need to be provided. The function

“fminsearch” will find the optimal value of each parameter to achieve the best model

fit.

For nonlinear problems, there is a possibility that multiple local minima of the SSE

exists. This means there may be more than one set of the parameters; each will

yield a relative minimum in the SSE (see Figure 3.8). The values of the SSE for
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the multiple minima may or may not have the same value. Once “fminsearch” have

converged to a minimum, there is no guaranteed means of determining whether it

is a unique or even the global minimum. To check the minimum value attained is

the global minimum; start the “fminsearch” procedure at several different estimates

for the parameters. If the final results are independent of the initial values, there is

more confidence that the final parameter values describe a global minimum.

Figure 3.8: Illustrative of multiple minima for non-linear parameter estimation.

3.3 Maximum Principle of Pontryagin: An Intro-

duction

The well-known work by Russian mathematician Lev Semenovich Pontryagin and

his student (Boltyanskii et al., 1956) [translated into English (Pontryagin et al.,

1962)] has been a powerful method for the computation of optimal control. This

method is essentially an extension of the classical variational techniques of Euler,

Lagrange, Legendre, Weierstrass, Hamilton and Jacobi (Clark, 1990). Pontryagin’s

maximum (or minimum) principle is used in optimal control theory to find the best
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manner of control to take a dynamical system from one state to another. This is

particularly so in the presence of constraints for the state of input controls.

3.3.1 The Optimal Control Problem

From Clark (1990), the optimal control problem of one-dimensional ordinary differ-

ential equations (ODEs) with real values consists of u(t) as the control variable and

x(t) as the state variable. The state equation describes the evolution of the system

from its initial state x0 resulting from the application of a given control u = u(t).

That is to say,

dx

dt
= f(t, x(t), u(t)), 0 ≤ t ≤ T, (3.2)

with initial condition

x(0) = x0. (3.3)

Where f(x, t, u) is the state function and T is the terminal time (suppose here that

T is finite).

Then, there is an objective functional

J{u} =

∫ T

0

g(t, x(t), u(t)) dt (3.4)

where g(x, t, u) is a given, continuously differentiable function and x(t) denotes the

response to u(t). The fundamental problem in optimal control theory is to determine

a feasible control u(t) that maximises J{u}. Such a control, if it exists, is called

an optimal control. The Pontryagin’s maximum principle gives certain necessary

conditions that must be satisfied by an optimal control. Pontryagin introduced the

“adjoint” functions to append the differential equation to the objective functional

(Lenhart & Workman, 2007).
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The Necessary Condition

Figure 3.9: The optimal control u∗ plotted together with uε.

Figure 3.10: The optimal control x∗ plotted together with xε.
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To derive this necessary condition (following Lenhart & Workman (2007)), assume

there exists a piecewise continuous optimal control in which u∗ is a control and x∗ is

the corresponding state. Suppose that J(u) ≤ J(u∗) < ∞ for all controls u. Next,

let h(t) be a piecewise continuous function and ε ∈ < a constant. Then

uε(t) = u∗(t) + εh(t) (3.5)

is a piecewise continuous control function (see Figure 3.9).

Let xε(t) be the state corresponding to the control uε(t), then xε(t) satisfies

d

dt
xε(t) = f(t, xε(t), uε(t)). (3.6)

It is easily seen that uε(t)→ u∗(t) for all t as ε→ 0. Furthermore, for all t

∂uε(t)

∂ε

∣∣∣∣
ε=0

= h(t).

The same reasoning is true for xε(t) because of the assumptions made on f where

that it is a continuously differentiable function. If ε→ 0, then it follows that

xε(t)→ x∗(t)

for each fixed t. Further, the derivative

∂xε(t)

∂ε

∣∣∣∣
ε=0

exists for each t.

The objective functional at uε is

J(uε) =

∫ t1

t0

g(t, xε(t), uε(t)) dt. (3.7)
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The maximum of J with respect to ε occurs at ε = 0. Let λ(t) be a piecewise

differentiable function on [t0, t1]. By the fundamental theorem of Calculus,∫ t1

t0

d

dt
[λ(t)xε(t)] dt = λ(t1)x

ε(t1)− λ(t0)x
ε(t0)

which implies ∫ t1

t0

d

dt
[λ(t)xε(t)] dt− λ(t1)x

ε(t1) + λ(t0)x
ε(t0) = 0. (3.8)

Here, λ(t) is a Lagrange multiplier (or called the adjoint variable).

Then adding the left-hand side of Equation (3.8) to Equation (3.7) gives

J(uε) =

∫ t1

t0

[
g(t, xε(t), uε(t)) +

d

dt
λ(t)xε(t)

]
dt− λ(t1)x

ε(t1) + λ(t0)x
ε(t0).

By the product rule, and from Equation (3.6), the above expression can be written

as

J(uε) =

∫ t1

t0

[g(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)f(t, xε(t), uε(t))] dt

−λ(t1)x
ε(t1) + λ(t0)x

ε(t0).

Since the maximum of J with respect to the control u occurs at u∗, the derivative

of J(uε) with respect to ε (in the direction h) is zero.

0 =
dJ(uε)

dε

∣∣∣∣
ε=0

= lim
ε→0

J(uε)− J(u∗)

ε
. (3.9)

Therefore,

0 =
dJ(uε)

dε

∣∣∣∣
ε=0

=

[∫ t1

t0

∂

∂ε
[g(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)f(t, xε(t), uε(t))] dt

] ∣∣∣∣
ε=0

− ∂

∂ε
λ(t1)x

ε(t1)

∣∣∣∣
ε=0

+
∂

∂ε
λ(t0)x

ε(t0)

∣∣∣∣
ε=0

.
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From Figure 3.10, take xε(t0) = x0 yields

∂

∂ε
λ(t0)x

ε(t0) =
∂

∂ε
λ(t0)x0 = 0,

Then,

0 =

[∫ t1

t0

∂

∂ε
[g(t, xε(t), uε(t)) + λ′(t)xε(t) + λ(t)f(t, xε(t), uε(t))] dt

] ∣∣∣∣
ε=0

− ∂

∂ε
λ(t1)x

ε(t1)

∣∣∣∣
ε=0

.

Applying the chain rule to g and f

0 =

∫ t1

t0

[
gx
∂xε

∂ε
+ gu

∂uε

∂ε
+ λ′(t)

∂xε

∂ε
+ λ(t)

(
fx
∂xε

∂ε
+ fu

∂uε

∂ε

)] ∣∣∣∣
ε=0

dt

− ∂

∂ε
λ(t1)x

ε(t1)

∣∣∣∣
ε=0

where the arguments of the gx, gu, fx, fu terms are (t, x∗(t), u∗(t)). Rearranging the

above term and recalling Equation (3.5) gives

0 =

∫ t1

t0

[
(gx + λ(t)fx + λ′(t))

∂xε

∂ε

∣∣∣∣
ε=0

+ (gu + λ(t)fu)h(t)

]
dt

− ∂

∂ε
λ(t1)x

ε(t1)

∣∣∣∣
ε=0

. (3.10)

The adjoint function is chosen to simplify the above function by making the coeffi-

cient of
∂xε(t)

∂ε

∣∣∣∣
ε=0

vanish. So,

gx + λ(t)fx + λ′(t) = 0

Thus, the adjoint function λ(t) satisfies

λ′(t) = −[gx(t, x
∗(t), u∗(t)) + λ(t)fx(t, x

∗(t), u∗(t))] (3.11)

Also, the boundary condition λ(t1) = 0.
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Therefore, the Equation (3.10) reduces to

0 =

∫ t1

t0

[gu(t, x
∗(t), u∗(t)) + λ(t)fu(t, x

∗(t), u∗(t))]h(t) dt.

Since h(t) is an arbitrary variation, it holds in particular for

h(t) = gu(t, x
∗(t), u∗(t)) + λ(t)fu(t, x

∗(t), u∗(t))

for all t0 ≤ t ≤ t1. Then,

0 =

∫ t1

t0

[gu(t, x
∗(t), u∗(t)) + λ(t)fu(t, x

∗(t), u∗(t))]2 dt,

which implies the optimality condition

gu(t, x
∗(t), u∗(t)) + λ(t)fu(t, x

∗(t), u∗(t)) = 0 (3.12)

for all t0 ≤ t ≤ t1.

The Equations (3.11) and (3.12) form a set of necessary conditions that an optimal

control and state variables must satisfy. These necessary conditions can be generated

from the Hamilton, H, which is defined as

H = g(t, x(t), u(t)) + λ(t)f(t, x(t), u(t)). (3.13)

If the optimal control u(t) happens to be at u∗(t), then the optimality condition is

∂H
∂u

= 0. (3.14)

While the adjoint equation is defined as

dλ

dt
= −∂H

∂x
= −∂g

∂x
− λ(t)

∂f

∂x
. (3.15)

There is a transversality condition which states that the adjoint variable is zero at

every end point where the corresponding state variable is not specified; that is, if

there is no terminal value (called the terminal condition) labelled as
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x(t1) = xT (3.16)

specified for the state variable, then the problem is referred to as a free terminal-value

problem, and

λ(T ) = 0. (3.17)

3.3.2 Pontraygin’s Maximum Principle

The above Equations (3.13)–(3.17), can be extended to Pontryagin’s maximum prin-

ciple (Pontryagin et al., 1962).

Theorem 3.1. (From Lenhart & Workman (2007))

If u∗(t) and x∗(t) are optimal for the system as in Equations (3.2)–(3.4), then there

exists a piecewise differentiable adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H = g(t, x(t), u(t)) + λ(t)f(t, x(t), u(t))

and

dλ

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(t1) = 0.

Theorem 3.2. (From Lenhart & Workman (2007))

Suppose that g(t, x, u) and f(t, x, u) are both continuously differentiable functions in

their three arguments and concave in u. Suppose u∗ is an optimal control for problem

in Equations (3.2)–(3.4), with associated state x∗, and λ a piecewise differentiable
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function with λ(t) ≥ 0 for all t. Suppose for all t0 ≤ t ≤ t1

0 = Hu(t, x
∗(t), u(t), λ(t)).

Then for all controls u at each t0 ≤ t ≤ t1 implies

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)).

The same argument applies for the minimisation problem to generate the necessary

conditions. In a minimisation problem, the Hamiltonian is minimised point-wise.

Therefore, the inequality above is defined in the reverse order with the functions g

and f being convex in u. Hence,

H(t, x∗(t), u(t), λ(t)) ≥ H(t, x∗(t), u∗(t), λ(t))

by the same argument as in Theorem 3.2.

The property of the Hamiltonian, H, is very useful to find the necessary conditions

in which one does not need to calculate the integral in the objective functional.

The necessary condition can be calculated by the property of the Hamiltonian being

maximised (or minimised) by an optimal control.

To determine the controls that maximise or minimise the objective functional, one

can check using

concavity condition =


∂2H
∂u2

< 0 at u∗ if the problem is maximisation,

∂2H
∂u2

> 0 at u∗ otherwise.

(3.18)

To apply the Maximum Pontryagin Principle, one needs to determine three unknown

functions: x(t), u(t) and λ(t). Three equations are known i.e. the state equation

[Equation (3.2)], the adjoint equation [Equation (3.15)] and the optimality condition

[Equation (3.14)]. The Equations (3.2) and (3.15) are first order ODEs, their solution

requires the specification of initial or terminal conditions which are included in
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the problem: Equation (3.3) and Equation (3.17). This presents the problem as a

boundary value problem (BVP). Analytical solutions can be found in various special

cases but, generally, it is necessary to solve the BVP by numerical techniques.

Generally, if given a system of n state variables and m control variables, then the

optimal control problem is:

minimise

∫ T

0

g(t, x1, x2, ..., xn, u1, u2, ..., um) dt,

subject to

dxi
dt

= fi (t, x1, x2, ..., xn, u1, u2, ..., um) 0 ≤ t ≤ T,

with boundary conditions

xi(t0) = xi0 xi(T ) = xiT

where i = 1, 2, ..., n. The functions g and fi are continuously differentiable in all

variables. Also, each component u is assumed to be a piecewise-continuous function

of t. Using vector notation, let

~x = (x1, x2, ..., xn),

~u = (u1, u2, ..., um),

~f = (f1(t, ~x, ~u), f2(t, ~x, ~u), ..., fn(t, ~x, ~u)),

~x(t0) = (x10 , x20 , ..., xn0),

~x(T ) = (x1T , x2T , ..., xnT
),

The optimal control problem then can be written in a simplified vector form

minimise

∫ T

0

g(t, ~x, ~u) dt, (3.19)



Chapter 3. Literature Review 41

subject to
d~x

dt
= ~f(t, ~x, ~u),

with boundary conditions

~x(t0) = ~x0 ~x(T ) = ~xT .

Therefore, the Hamiltonian can be defined as

H = g(t, ~x, ~u) + ~λ(t) · ~f(t, ~x, ~u).

Here ~λ(t) = (λ1(t), λ2(t), ..., λn(t)) is a piecewise differentiable vector-valued function

where λi is the adjoint variable corresponding to xi. The “·” is the dot product for

vectors. Let ~u∗ and ~x∗ be a vector of optimal control functions and a vector of the

corresponding optimal state variables that minimises Equation (3.19), respectively.

Then, by essentially the same arguments for the one-dimensional system, the adjoints

vector ~λ satisfies:

dλj
dt

= −∂H
∂xj

for j = 1, 2, ..., n ,

∂H
∂uk

= 0 at uk
∗ for k = 1, 2, ...,m .

3.4 Summary

Many studies in the field of agricultural, especially in biological control systems, have

applied mathematical theory, such as the SIR model, as tools to investigate the dy-

namics of a biological control system. This is crucial to understand the mechanisms

involved in biological control, how they interact and how they are demonstrated

at different levels; that is from the infection area to the ecosystem scale. More-

over, Pontryagin’s maximum principle has been widely used in agricultural fields;

for example, to control the cost of production of the crop yield.
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The mathematical models formulated obviously contain several numbers of param-

eters that have physical meanings. Most of the parameters are unknown and are

sometimes impossible to measure experimentally. However, the unknown parame-

ters can be determined using parameter estimation by fitting the model with the

experimental measurements. This is done by minimising the distance between the

measurements and the model. The method is known as least-squares. In this thesis,

the ordinary least-squares method is used to estimate the parameter values.



Chapter 4

Mathematical Modelling of

Induced Resistance

In this chapter, a mathematical model is formulated that represents the efficacy of

elicitors in inducing resistance to pathogen infection as discussed in Chapter 2. The

majority of this chapter covers a full derivation of the proposed IR model along with

the descriptions of the experimental datasets.

This chapter is part of an article published in Journal Frontiers Plant Science (see

Abdul Latif et al. (2013)).

4.1 Introduction

When constructing a mathematical model, there are many factors influencing the

mechanism, such as natural biological processes, that can be realistically imple-

mented into the model and that can mimic the dynamic behaviour within the bi-

ological system. However, a decision must be made about what to include in the

model and what to exclude. While it is true that large, detailed models are easier

to “sell” to a biological audience since it is more biologically realistic - the level of

complexity in such a detailed model poses many problems. For instance, with a large

number of parameters, it is not possible to determine the accuracy of the parameter

43
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values, and a study of the parameter sensitivity is also a very difficult task. Recall

that parameter values must be chosen carefully so that the model exhibits realistic

behaviour.

Although simple models contain the essential mechanism of the interested process,

they can often provide unforeseen insight into the biological process. With simple

models, it is easier to see what mechanisms are driving the model’s behaviour.

Consequently, models can feed back directly into the biological understanding of a

process.

In this study, a mathematical model is developed in order to include the key mech-

anism of induced resistance (IR) which is triggered by the elicitor treatment. Such

a model has not been proposed in the literature.

4.2 Descriptions of the Experimental Datasets

This section contains a brief description of the IR experiment and full information

on fitting the datasets will be in the next chapter. The available experimental

datasets were provided by Plant & Food Research Ltd and the datasets were judged

as appropriate for this proposed model. This experimental data was associated with

the effect of an elicitor called methyl jasmonate (MeJA) on the pine seedling, Pinus

radiata, to the causal agent of pine stem canker and tip dieback, Diplodia pinea.

To date various methods have been developed and introduced to measure IR. For this

study, the IR experiment was prepared according to the procedure used by Gould

et al. (2009). The pine seedlings were divided into groups of 20 plants and sprayed

with 0.1% MeJA at few days before inoculation with D. pinea. There were also a

group of 20 untreated seedlings as the control group for this experiment. For this

experiment, the pathogen was introduced via a wound site, simulated by physically

removing a pine needle.

Disease assessments for each treatment commenced one week after inoculation and

continued at three-to-four day intervals thereafter for at least 20 days.



Chapter 4. Mathematical Modelling of Induced Resistance 45

Figure 4.1: IR experiments: the pine seedlings were divided into groups and
sprayed with 0.1% MeJA at few days before inoculation (e.g. 27, 13, 6 and 3 days)
with D. pinea. There was also an untreated control group for this experiment.
Disease assessments for each treatment commenced one week after inoculation

and continued at three-to-four day intervals thereafter for at least 20 days.

This IR experiment was designed as in the Figure 4.1 in order to inoculate the

pathogen at the same time for all the experiment groups. Figure 4.2 shows the IR

experiment setup in the greenhouse. For the disease assessments, the observation

was done on the disease symptoms of the seedlings as shown in Figure 4.3. The

available datasets provided by Plant & Food Research Ltd are shown in Table 4.1

and Table 4.2.
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Figure 4.2: Greenhouse experiment: Pine seedlings were treated with methyl
jasmonate (MeJA) within a specific environmental condition (i.e. fixed tempera-

ture, moisture, light).

Figure 4.3: The difference between diseased (left) and healthy (right) seedlings.
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Disease Assessment Time (Days After Inoculation)

Elicitor Treatment Time (Days Before Inoculation) 7 11 15 18 21 25 28 32 35

Untreated (0) 0.16 0.34 0.53 0.56 0.59 0.59 0.59 0.66 0.66

3 0.09 0.16 0.22 0.31 0.34 0.34 0.34 0.34 0.41

6 0.06 0.13 0.19 0.19 0.22 0.22 0.28 0.31 0.31

13 0.03 0.16 0.16 0.28 0.38 0.38 0.38 0.41 0.41

27 0.19 0.28 0.31 0.38 0.44 0.47 0.50 0.50 0.50

Table 4.1: First dataset: Shows the proportion of diseased seedlings. The
seedlings were treated with 0.1% MeJA at different inoculation times tp days,
before the pathogen is introduced. The percentage of the healthy seedlings is

determined by 1 - proportion of the diseased seedlings.

Disease Assessment Time (Days After Inoculation)

Elicitor Treatment Time (Days Before Inoculation) 12 20 27

7 0.125 0.25 0.25

14 0.0625 0.125 0.125

21 0.125 0.25 0.375

35 0.3125 0.5 0.5

Table 4.2: Second dataset: Shows the proportion of diseased seedlings. The
seedlings were treated with 0.1% MeJA at different inoculation times tp, days,
before the pathogen is introduced. The percentage of the healthy seedlings is

determined by 1 - proportion diseased seedlings.

4.3 Model Developments

In general, standard epidemiological models for plant disease development are based

on the interactions between three critical components:

• the plant,

• the pathogen, and

• the environment.

When modelling the spread of a disease through a population, there is a physical

contact for the infection of a susceptible by an infective; however, plants do not move
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unless they are triffids. The spread of disease in plants is the result of migration of the

pathogen. Dispersal is the movement of the pathogens dispersal units (e.g. spores)

from the place where they are formed to the plant tissue they infect. Some referred

to this dispersion as the “conquest of space” (Zadoks & Schein, 1979). There are

many mechanisms of dispersal, such as leaf rubbing, rain splash, turbulent transfer

(wind-borne), water-borne, animal or vertebrate-borne, insect (invertebrate-borne)

and human-borne.

In disease conducive conditions, susceptible (S) plants become infected and de-

velop disease (D) when inoculated with a compatible pathogen (a direct disease

transmission). Here, D represents the proportion of plants that have become in-

fected but are not infectious; therefore D is different from I in the SIR model. This

is a dynamic relationship, and a subtle change to any one parameter may result in

a proportion of the plant population being able to exhibit resistance (R) to an

infection. In this study, a plant defence elicitor was applied to susceptible plants

in order to elevate their basal resistance and hence enable a proportion of formerly

susceptible plants to express IR, affecting a shift in the population from S to R.

This prototype IR model is an adaptation of the models by Jeger et al. (2009) and

Xu et al. (2010). Their models were developed for a generic biological control system

featuring a compartmental SIR model for host-pathogen dynamics coupled with the

pathogen-BCA dynamics. An induced resistance mechanism has been included in

their model; however, this is in a generic form where BCA is assumed part of the

plant population. Here the models are extended to include the induced resistance

as the specific biological control mechanism and to determine the effectiveness of

the elicitor used as the agent to induce resistance in plants. Apparently, there are

no mathematical models in the literature which specifically describe the interactions

between the plant, pathogen and elicitor.

4.3.1 IR Model: Assumptions and Definitions

The assumptions underlying the model’s formulation can be summarised as follows:
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Figure 4.4: The adaptation from Jeger et al. (2009) to construct an IR model
where the effectiveness of the elicitor used is defined as e(t) for which converts

some of the susceptible plants to become resistant.

1. Let S be the proportion of susceptible plants, R be the proportion of the

resistant plants, and D be the proportion of the diseased plants at time t.

These proportions are with total plant population which is assumed to be a

constant, given by S +R +D = 1.

2. Immediately following the time when the plants are treated with an elicitor

(at t = 0), a proportion of the plant population will exhibit natural resistance

(Ri). This means that, on treatment, the plant is assumed to be utilising the

elicitor effect immediately.

3. The induction period (tp) describes the time interval (in days) between the

elicitor treatment and pathogen inoculation. Upon inoculation, a proportion

of plants (Di) will become infected immediately. It is confirmed by the fact

that for the pathogen to infect young-plants, it must be able to colonise the

susceptible tissue quickly.

With a small sample size, as in the datasets in Table 4.1 and Table 4.2, the results

must be interpreted with caution, as discussed in the IR experimental set up de-

scribed in Section 4.2. Therefore, the timeline of the experiment is interpreted as
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Figure 4.5: Time series for the IR model for treated plants.

in Figure 4.5 and for each induction time tp, has a different dynamic (see later in

Chapter 5 for further explanation).

4.3.1.1 The Treated Model

Typically, inducible defences are triggered in response to pathogen attacks. There-

fore, the model is formulated with the elicitor treated plants divided into two regimes:

i) pre-inoculation (before the pathogen arrives) and ii) post-inoculation (after the

pathogen arrives). The model’s equations for the treated plants are as follows:

Pre-inoculation: For 0 < t < tp

dR

dt
= (e(t)− γR)(1−R) ;R(0) = Ri. (4.1)

Post-inoculation: For tp < t < T (where T is sufficiently large)

dR

dt
= (e(t)− γR)(1−R−D) ;R(tp) = Rp, (4.2)

dD

dt
= βD(1−R−D) ;D(tp) = Di. (4.3)
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and the elicitor effectiveness in the plants is defined to be:

e(t) =
kt

t2 + L2
(4.4)

where
k

2L
[days−1] is the maximum elicitor effect and L [days] is the time when

this is at its peak (see Figure 4.6). The parameter γ [days−1] is the specific rate

that resistant tissue becomes susceptible and β [days−1] is the specific rate at which

the disease spreads. It must be noted that the parameter β does not determine the

upper limit for disease D. The value of Rp represents the degree of the resistance at

the time of the pathogen inoculation obtained from Equation (4.1). For Equation

(4.1), D is not in the equation because the pathogen is absent during this period.

Pathogen is inoculated at time tp, therefore the D term only occurs in equations

(4.2) and (4.3).

The function e(t) was assumed to be time-dependent, to reflects the fact that elicitor-

induced changes in plant resistance is transient and the lasting effect may be short

(as previously described in Section 2.3.1). Other functional forms for e(t) were tried,

and this one (Equation (4.4)) gave a best fit and matched the biological insight from

experiments.

Note that Equations (4.1), (4.2) and (4.3) are based on the assumption that the

rates of change of R and D are directly proportional to the amount of S available at

a particular time (that is, S = 1−R−D) using the usual “mass-action-kinetics” (see

Keener & Sneyd (1998)). This rate of change is also following Jeger et al. (2009).

Furthermore, according to Vanderplank (1982), plant disease evolve through time

and can be treated synthetically, where the rate of increase in disease is proportional

to the amount of tissue that is uninfected and available for infection.

Consider the data given in Table 4.1 and Table 4.2; the fraction of diseased seedlings

increased relatively fast until 20 days after pathogen inoculation, when the amount

of diseased seedlings stopped increasing. This is not because there were no more

healthy seedlings available, but because there was no inoculum left to infect it, and

the pathogen ran out of spores. This obviously applies to Equation (4.3), but the

situation is less clear for the R compartment. This problem has been taken into
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Figure 4.6: The diagram for equation e(t) =
kt

t2 + L2
with k = 5.3749 and

L = 10.7607 chosen arbitrarily.

Figure 4.7: The schematic diagram for the treated model. Here S, R, D are the
proportion of plants in the representative compartments and the parameters γ, β

and e(t) are the specific rates of movement between the linked compartments.



Chapter 4. Mathematical Modelling of Induced Resistance 53

account where the rate of change of R is not proportional to S. If Equations (4.1)

– (4.3) are redefined to be

dR̂

dt
=

{
e(t)(1− R̂)− γR̂ for 0 < t < tp,

e(t)(1− R̂−D)− γR̂ for tp < t < T .

and

dD

dt
= βD(1− R̂−D) for tp < t < T .

Then, consider the second regime; that is tp < t < T and find the steady states for

this system. Taking the limit t→∞, this becomes a coupled autonomous system:

dR̂

dt
= −γR̂ = 0 (4.5)

dD

dt
= βD(1− R̂−D) = 0. (4.6)

This implies that the steady states for the above system are (R̂∗, D∗) = (0, 0), (0, 1)

(see Figure 4.8); showing D eventually approaches unity which is not shown by the

data. Note that the only mechanism that could cause this would be genetic in origin,

and so is beyond the scope of this study.

By taking the same analysis approach as above, the equations (4.2) and (4.3) become:

dR

dt
= −γR(1−R−D) = 0 (4.7)

dD

dt
= βD(1−R−D) = 0. (4.8)
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Figure 4.8: Phase plane for Equations (4.5) and (4.6). The diagram was plotted
using pplane8.m (see Polking (2009) for more details) with arbitrary parameter

values.

with steady states

dR

dD
=
−γR
βD

,

dR

R
= −γ

β

dD

D
,

ln R = −γ
β

ln D + C ; C is a constant.

Given that R(tp) = Rp and D(tp) = Di,

R(t) = Rp

[
D(t)

Di

]−γ
β
, for tp < t < T .

This shows that the steady state attained is dependent on the initial condition and

always attracting to the line R+D = 1 (see Figure 4.9). Therefore, Equations (4.1)

and (4.2) were employed for this IR model.
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R ’ = − γ R (1 − R − D)

D ’ = β D (1 − R − D)   
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Figure 4.9: Phase plane for Equations (4.7) and (4.8). The diagram was plotted
using pplane8.m (see Polking (2009) for more details) with arbitrary parameter

values.

4.3.1.2 The Untreated Model

The equations for the untreated plants are as follows:

dR

dt
= −αR(1−R−D) ;R(0) = Ri, (4.9)

dD

dt
= βD(1−R−D) ;D(0) = Di, (4.10)



Chapter 4. Mathematical Modelling of Induced Resistance 56

where α [days−1] is the rate at which the untreated plants lose their resistance due to

the pathogen attack. The untreated model shares the parameters β,Ri, Di with the

treated model as these untreated plants are a control group. This means that there

is no elicitor treatment for the control group. Therefore the untreated model will

not have the e(t) term in its equations and so is autonomous. That is, the untreated

is independent of time except implicitly. Note that the rates of change in R and D,

for the untreated plants, are also directly proportional to the amount of S available.

Also note that, if taken into consideration of no disease for the untreated model

(i.e. consider Equation (4.9) without D), then the steady-states for this particular

equation are R = 0 or R = 1. However, this scenario was not taken into account

and there is no experimental data to support the argument. Thus, these Equations

(4.9) and (4.10) were used in this proposed IR Model.

Figure 4.10: The schematic diagram for the untreated model. Here S,D,R are
the proportion of plants in the respective compartments and the parameters are

the specific rates of movement between the compartments.

4.4 Summary

In this chapter, the formulation of the proposed IR model has been presented. Ta-

ble 4.3 shows the variables and parameters defined in equations (4.1)–(4.10). The

unknown parameters are determined in the next chapter by matching the model’s

simulation with experimental observations (Table 4.1 and Table 4.2).
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Variable / Parameter Description Units

R Proportion of plant population able
to express resistance to infection. dimensionless

D Proportion of plant population being
infected and become diseased. dimensionless

S Proportion of plant population which is susceptible. dimensionless
α The specific rate at which untreated plants lose their resistance

due to the pathogen attack. days−1

β The specific rate at which the disease spreads. days−1

γ The specific rate the resistant plant becomes susceptible. days−1

k Determines the effectiveness of the elicitor. dimensionless
L The time where the elicitor effectiveness is at the peak. days
tp The induction time of the pathogen; i.e. the time interval

between the elicitor application and the pathogen challenge. days
Ri The proportion of the plant population that exhibits natural

resistance at the initial time t = 0. dimensionless
Di The proportion of the plant population which becomes

infected immediately after the pathogen challenge. dimensionless

Table 4.3: Description of variables and parameters used in the IR model.



Chapter 5

Model Fitting and Discussions

After formulating the model and gathering some indicative data, the next step in

the model-building process is to estimate the unknown parameters. This process is

known as model fitting or parameter estimation. This chapter discusses the process

of making such estimations for the proposed IR model seen in Chapter 4.

5.1 Parameter Estimation Using Datasets Table

4.1

The general idea of the least-squares method for determining unknown parameters

has been discussed in Chapter 3. In this chapter, the method is applied to determine

the unknown parameters as in the IR model by comparing the model’s simulation

with an IR experiment on pine seedlings (more details in Chapter 4). The results

and discussion in this section are part of an article in the Journal Frontiers Plant

Science (see Abdul Latif et al. (2013)).

The parameterisation results presented in this section are based on Table 4.1. Since

there is insufficient data to estimate all the parameters together, the parameterisa-

tion process is divided into 2 groups; i) parameterisation for data on the untreated

seedlings, and ii) parameterisation for data on the treated seedlings. The flow charts

58
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given in Figure 5.1 and Figure 5.2 are used to illustrate the process of parameter

estimation for the IR model.

Figure 5.1: Parameter estimation using the untreated seedlings data in Table
4.1.

Figure 5.2: Parameter estimation using the treated seedlings data in Table 4.1.

The reason for separating the parameter estimation as mentioned above is because

in the case for the untreated experimental data set, the parameters α, β, Ri and Di

appearing in the untreated model (Section 4.3.1.2) can be estimated and later fixed

in the parameterisation for the treated model (Section 4.3.1.1), when the remaining

parameters k, L, γ are estimated. This is acceptable based on the equations (4.1),

(4.2), (4.3), (4.9) and (4.10). Other assumptions made are for each induction time

tp [days]; while different dynamics are displayed, it is important to assume that
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these dynamical systems (both treated and untreated system) share the same set

of parameters. For the treated cases, the dynamical system for each tp was solved

simultaneously, using the criterion of least-squares fit. The minimum values of SSE,

for each tp, were then totalled to give the overall SSE value to assess the quality

of the fit. Supplementary to this parameter estimation, some artificial data was

added to the data to make the estimation process more stable as the number of

data points available was inadequate. Note that in Table 4.1, after a certain time

(the last three columns), the number of diseased seedlings seem to reach a steady

state. Therefore, artificial data points are added to the last five columns as shown

in Table 5.1. This will make parameterisation become stable and more accurate in

terms of taking more data points into account. Notice that, in the data sets (Table

5.1), there are only two compartments: diseased seedlings or healthy seedlings; thus,

for parameter estimation, the healthy (H) compartment is evaluated as H = S +

R or H = 1 − D. This identification of the compartments of Resistant (R) and

Susceptible (S) seedlings in the proposed IR model is a significant advantage over

pure experimentation.

Mathematically, the least-squares fit criterion for the treated case is defined as:

SSE =
n∑
i=1

m∑
j=0

[yi(tj)− fi(tj; a)]2. (5.1)

where

• i corresponds to the induction time tp (tp = 3, 6, 13, 27 days) (row),

• j corresponds to the number of observations and tj corresponds to the disease

assessment time (column),

• yi(tj) corresponds to the experimental data points for a particular tp at time

tj,

• fi(tj; a) corresponds to the model’s solution for a particular tp at time tj, with

the vector of unknown parameters a = (k, L, γ).
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Disease Assessment Time
Time for elicitor treatment tp + 7 tp + 11 tp + 15 tp + 18 tp + 21 tp + 25 tp + 28 tp + 32 tp + 35 tp + 40 tp + 45 tp + 50 tp + 55 tp + 60

No elicitor (tp = 0) 0.16 0.34 0.53 0.56 0.59 0.59 0.59 0.66 0.66 0.66 0.66 0.66 0.66 0.66
tp = 3 0.09 0.16 0.22 0.31 0.34 0.34 0.34 0.34 0.41 0.34 0.34 0.34 0.34 0.34
tp = 6 0.06 0.13 0.19 0.19 0.22 0.22 0.28 0.31 0.31 0.31 0.31 0.31 0.31 0.31
tp = 13 0.03 0.16 0.16 0.28 0.38 0.38 0.38 0.41 0.41 0.41 0.41 0.41 0.41 0.41
tp = 27 0.19 0.28 0.31 0.38 0.44 0.47 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table 5.1: Artificial data points added to Table 4.1, given in red. The data shows the proportion of the diseased seedlings,
where seedlings were treated with elicitor at different induction times tp. The proportion of the healthy seedlings are determined

by 1 - fraction of the diseased seedlings.
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5.1.1 Results

5.1.1.1 Optimal Parameter Values

Table 5.2 shows the final optimal value of each parameter α, β, Ri and Di based on

the various initial guesses provided. It is apparent, from this table, that the global

minimum SSE was not always reached and that the results indicate a dependency on

starting values. In this case, the global minimum of SSE seems to be reached in four

out of seven different sets of initial guesses. The lowest SSE recorded was 0.0151 for

this untreated seedlings data parameterisation. The sets of initial guesses for (1),

(3), (4) and (5) (Refer to Table 5.2) achieve the global minimum of SSE. However,

the values of the other parameter sets (i.e. in (2), (6), (7)) show large variation.

The results of those sets with lowest SSE show that the final optimal values are:

α = −0.1360 days−1

β = 0.3346 days−1

Ri = 0.0998

Di = 0.0288. (5.2)

Hence, these parameters can be considered identifiable. By fixing the values in 5.2

the remaining unknown parameters in the treated case are estimated. Notice that

parameter α has a negative final optimal value. This means that the susceptible

seedlings (S) will build resistance, shifting towards the resistant (R) compartment

in the model. Table 5.3 shows the final optimal value of each parameter k, L, γ based

on various initial guesses provided. The output of the final value of each parameter

and the final value of SSE are identical based on different sets of initial guesses

used. This estimation reached a unique value, which suggests that the parameters

are identifiable. Therefore the final optimal values obtained are:

k = 0.6059

L = 1.8925 days

γ = 0.0571 days−1. (5.3)
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Parameters
(1) (2) (3) (4) (5) (6) (7)

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final
α -0.1300 -0.1360 1.000 0.8642 0.1000 -0.1360 -0.5000 -0.1360 0.0760 -0.1360 1.0000 -0.2517 5.0000 7.1119
β 0.3000 0.3346 3.000 1.4992 0.1000 0.3346 0.3000 0.3346 0.2399 0.3346 5.0000 6.8780 1.0000 0.0293
Ri 0.0200 0.0998 0.5000 0.8501 0.1000 0.0998 0.1000 0.0998 0.1233 0.0998 0.2000 0.3989 0.1000 -0.0955
Di 0.0100 0.0288 0.030 0.1482 0.0100 0.0288 0.0100 0.0288 0.1839 0.0288 0.1000 0.0730 0.1000 0.3522

SSE 0.0151 0.0320 0.0151 0.0151 0.0151 0.5611 0.2338

Table 5.2: Parameter estimation for the untreated model using untreated experimental data in Table 4.1.

Parameters
(1) (2) (3) (4) (5)

Initial Final Initial Final Initial Final Initial Final Initial Final
k 0.2599 0.6059 0.8693 0.6059 3.0000 0.6059 -9.7059 0.6059 0.1000 0.6059
L 0.8001 1.8925 0.5797 1.8925 10.000 1.8925 9.7059 1.8925 10.000 1.8925
γ -0.1000 0.0571 0.5499 0.0571 0.1000 0.0571 0.4853 0.0571 0.5000 0.0571

SSE 0.6189 0.6189 0.6189 0.6189 0.6189

Table 5.3: Parameter estimation for the treated model using treated experimental data in Table 4.1.
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5.1.1.2 Solution Graphs

In Figures 5.3 through 5.6 the parameter estimates given in (5.2) and (5.3) were

used to plot the solutions of equations (4.1)–(4.10). The solution graphs for each tp

case are compared to the untreated model. The simulation given by our model is

well fitted to the experimental data. It shows that some of the susceptible seedlings

are being induced to become resistant by the elicitor to fight the pathogen attack.

Furthermore, it clearly shows that all treated seedlings have a better disease control

than the untreated seedlings.
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Figure 5.3: Solution graphs for each compartment with induction time tp = 3
days. The solid lines (—) are describing the dynamics for the treated model
and the dashed lines (– –) are indicating the untreated model. The blue (•) and
green (•) dots are experimental data for the treated seedlings and the red (•) dots
correspond to the untreated seedlings. The vertical line indicates the induction

time tp.
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From the diagrams in Figure 5.3, it can be seen there is a discontinuity in the dy-

namics of diseased (D) and healthy (H) compartments due to the introduction of the

pathogen after three days of elicitor treatment. That is to say the whole population

of seedlings was healthy prior to the introduction of the pathogen. This proportion

of healthy seedlings decreases as the number of diseased seedlings increases until it

reaches the limiting disease growth. An interesting finding occurs in the dynamics of

the resistant and susceptible populations. It can be seen that the susceptible popu-

lation declines, meaning that the entire proportion of susceptible seedlings becomes

resistant, limiting the spread of pathogen. This fluctuation results in the resistant

population reaching a peak before declining to a steady state.

In general, this behaviour is comparable to all treated seedlings with a different in-

duction time tp (see Figures 5.4, 5.5, 5.6). The dynamics of resistant and susceptible

populations are due to variations in induction time tp. This scenario can be clearly

seen in Figure 5.7.
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Figure 5.4: Solution graphs for each compartment with induction time tp = 6
days. The solid lines (—) describe the dynamics for the treated model and the
dashed lines (– –) indicate the untreated model. The blue (•) and green (•) dots
are experimental data for the treated seedlings and the red (•) dots correspond

to the untreated seedlings. The vertical line indicates the induction time tp.
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Figure 5.5: Solution graphs for each compartment with induction time tp = 13
days. The solid lines (—) describe the dynamics for the treated model and the
dashed lines (– –) indicate the untreated model. The blue (•) and green (•) dots
are experimental data for the treated seedlings and the red (•) dots correspond

to the untreated seedlings. The vertical line indicates the induction time tp.
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Figure 5.6: Solution graphs for each compartment with induction time tp = 27
days. The solid lines (—) describe the dynamics for the treated model and the
dashed lines (– –) indicate the untreated model. The blue (•) and green (•) dots
are experimental data for the treated seedlings and the red (•) dots correspond

to the untreated seedlings. The vertical line indicates the induction time tp.
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Figure 5.7: The phase plane for the IR model with trajectories of the R,D
compartments plotted in the feasible region (R,D > 0, R + D < 1). The lines
schematically correspond to the values of the two compartments R and D as
time passes for the equations in previous chapter (see Chapter 4) based on each
induction time tp and the untreated case. When D = 0, the straight lines illustrate
the dynamics of the R compartment in the absence of the pathogen. These lines
then have a discontinuity when the seedlings are inoculated with pathogen that is
being introduced at time t = tp, and it shows the state of the R compartment at
that particular time. Clearly there is a jump in the D values of Di at t = tp and
the trajectories of the R,D compartments will continue to approach the straight
line R+D = 1. For the untreated case, the dynamics of the R,D compartments

will depend on the initial condition of the systems; that is Ri and Di.

The phase plane in Figure 5.7 illustrates the characteristics of the resistant (R) and

diseased (D) compartments. The flows in the diagram indicate the time-evolution

of the dynamical system, based on the different values of tp and the untreated case.

There is a significant result when the induction time tp is between three and six

days; the development of disease is less severe compared to the other induction

times and with the untreated seedlings. The observed result can be attributed to

the resistance induced by the elicitor treatment, attaining its peak to coincide with
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the introduction of the pathogen. The figure also shows that the trajectories for each

induction case will eventually approach the line R+D = 1; which can be considered

to be a line of neutrally stable (non-hyperbolic) equilibria.

5.2 New Parameterisation

The results and discussions in this section are part of a published article in the

Journal of Theoretical Biology (Abdul Latif et al., 2014).

For the previous parameterisation result only the data set in Table 4.1 was used

to fit the model. Now, consider another experimental data set given by Plant &

Food (Table 4.2) and incorporate it into the data set of Table 4.1, producing a more

robust parameterisation.

Since there is a disparity in the disease assessment time for both of the experimental

data sets (Table 4.1 and Table 4.2), a logistic equation was used to interpolate the

numbers to fill in the gaps;

P (t) =
A

1 +Be−Ct

where A,B,C are real valued positive constants. It can be seen from Table 4.1 and

Table 4.2 that the numbers for diseased seedlings are monotonically increasing and

will reach a constant number after some time has passed. Therefore, the logistic

equation above is suitable to interpolate the data as:

1. P (t) is monotonic increasing

2. limt→∞ P (t) = A, meaning P (t) approaches the steady state, A, as time gets

large.
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Disease Assessment Time
Time for elicitor treatment tp + 7 tp + 11 tp + 12 tp + 15 tp + 18 tp + 20 tp + 21 tp + 25 tp + 27 tp + 28 tp + 32 tp + 35

No elicitor (tp = 0) 0.1600 0.340 0.3900 0.5300 0.5600 0.5900 0.5900 0.5900 0.5900 0.5900 0.6600 0.6600
3 days 0.0900 0.1600 0.1800 0.2200 0.3100 0.3200 0.3400 0.3400 0.3400 0.3400 0.3400 0.4100
6 days 0.0600 0.1300 0.1300 0.1900 0.1900 0.2100 0.2200 0.2200 0.2700 0.2800 0.3100 0.3100
7 days 0.0000 0.0600 0.1250 0.2400 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
13 days 0.0300 0.1600 0.1300 0.1600 0.2800 0.3200 0.3800 0.3800 0.3800 0.3800 0.4100 0.4100
14 days 0.0000 0.0300 0.0625 0.1200 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
21 days 0.0700 0.1100 0.1250 0.1700 0.2100 0.2500 0.2700 0.3400 0.3750 0.3900 0.4500 0.4800
27 days 0.1900 0.2800 0.2800 0.3100 0.3800 0.4100 0.4400 0.4700 0.4800 0.5000 0.5000 0.5000
35 days 0.0100 0.2100 0.3125 0.4800 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Table 5.4: Experimental data used in the new parameterisation process to determine the seven unknown parameter values.
Since there are gaps in the disease assessments time for both experimental data sets (Table 4.1 and Table 4.2), logistic equation
was used to interpolate the numbers to fill in the gaps. This is given by the numbers in red; while the numbers in black

represent the actual experimental data.
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Therefore a “new” data set is used for the parameterisation, as seen in Table 5.4.

These new parameterisation results are also based on the equations in Chapter 4.

For this parameterisation, the least-squares criterion is calculated as:

SSE = SSE treated + SSE untreated

SSE =
n∑
i=1

m∑
j=0

[yi(tj)− fi(tj; p)]2 +
m∑
j=0

[z(tj)− h(tj; p)]2 (5.4)

where:

• i corresponds to the induction time tp (tp = 3, 6, 7, 13, 14, 21, 27, 35 days)

(rows),

• tj corresponds to the disease assessment time (columns),

• yi(tj) corresponds to the treated experimental data points for a particular tp

at a particular time tj,

• z(tj) corresponds to the untreated experimental data points at a particular

time tj,

• fi(tj; p) corresponds to the treated model’s solution with a particular tp,

• h(tj; p) corresponds to the untreated model’s solution at a particular time tj,

• p = (k, L, γ, β, α,Ri, Di) is a vector of unknown parameters.

The flow chart in Figure 5.8 illustrates how the SSE in Equation (5.4) is calculated.

Note that the experimental data sets (without the interpolation) can be used for

parameterisation, but more data points are hypothetically will ensure the parame-

terisation process become stable.
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Figure 5.8: Parameter estimation using the experimental data in Table 5.4.
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5.2.1 New Results

5.2.1.1 New Optimal Parameter Values

The results in Table 5.5 show that the global minimum value of the final SSE is

achieved at 0.8968, based on the initial guesses (1), (2), (3), (4) and (7). For

those initial guesses which reach the global minimum of SSE, the final value of each

parameter is identical. In this case, the model parameters can be uniquely estimated.

It can be concluded that this model is identifiable, and the values of the unknown

parameter are:

α = 0.0908 days−1

β = 0.7379 days−1

γ = 0.2801 days−1

k = 5.3749

L = 10.7607 days

Ri = 0.6118

Di = 0.0168. (5.5)

In contrast to earlier findings, the value for α is positive, which means, from Equation

(4.9), the dynamics involve compartment R moving towards compartment S. In

other words the basal resistant seedlings lose their resistance and become susceptible.

The divergent of the empirical result for the α can only be attributed physiologically

to the effect of the elicitor. The non-treated cohort could, in principal behave

differently.
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Parameters
(1) (2) (3) (4) (5) (6) (7)

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final
k 0.4468 5.3749 0.5108 5.3749 0.1712 5.3749 0.1712 5.3749 1.0000 2.1291 1.0000 1.0968 3.0000 5.3749
L 0.3063 10.7607 0.8176 10.7607 0.7060 10.7607 10.0000 10.7607 1.0000 2.1632 1.0000 3.4517 10.0000 10.7607
γ 0.2801 0.2801 0.3000 0.2801 0.2801 0.2801 0.2000 0.2801 0.1419 0.2472 0.8147 0.0926 0.2000 0.2801
β 0.7379 0.7379 0.6000 0.7379 0.7379 0.7379 0.6000 0.7379 0.4218 0.0925 0.9058 0.6499 0.6000 0.7379
α 0.5085 0.0908 0.7948 0.0908 0.0908 0.0908 0.1000 0.0908 1.0000 1099.3665 1.0000 -0.0127 0.1000 0.0908
Ri 0.6118 0.6118 0.2000 0.6118 0.6118 0.6118 0.5000 0.6118 0.9157 -409.8927 0.1270 0.3852 0.5000 0.6118
Di 0.0164 0.0164 0.0164 0.0164 0.1000 0.0164 0.1000 0.0164 0.0186 0.1480 0.0186 0.0186 0.1000 0.0164

SSE 0.8968 0.8968 0.8968 0.8968 1.6746 1.0201 0.8968

Table 5.5: Parameter estimation for the data in Table 5.4.
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5.2.1.2 New Solution Graphs

The estimated parameter values given in (5.5) were used to plot the optimal solu-

tion graphs. Figures 5.9– 5.16 show how well the model fits to the corresponding

experimental data (Table 5.5). The red lines describe the untreated model and the

blue lines indicate the treated model. In each figure, the behaviours of the treated

seedlings to the untreated seedlings, and corresponding to the inoculation time tp,

were compared. It is clearly demonstrated that all treated seedlings have a better

disease resistance than the untreated seedlings. The findings of the new parameter-

isation are consistent with those in the old parameterisation; the difference is the

quality of fit for each parameterisation, which arises from the greater number of

data points used in this new fitting. The fitted model for tp = 13, 14 are not partic-

ularly satisfactory, but this could be the result of the variability in the experimental

observations - this experimental variability is beyond our control.
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Figure 5.9: New solution graphs for each compartment with induction time
tp = 3 days. The solid lines (—) describe the dynamics for the treated model and
the dashed lines (– –) indicate the untreated model. The marked points are the

experimental data. The vertical line indicates the induction time tp = 3.



Chapter 5. Model Fitting & Discussions 77

0 10 20 30 40

0

0.5

1

D
is

e
a
s
e
d
 (

D
)

Time (days)
0 10 20 30 40

0

0.5

1

H
e
a
lh

ty
 (

S
 +

 R
)

Time (days)

0 10 20 30 40
0

0.5

1

R
e
s
is

ta
n
t 
(R

)

Time (days)
0 10 20 30 40

0

0.5

1

S
u
s
c
e
p
ti
b
le

 (
S

)
Time (days)

Figure 5.10: New solution graphs for each compartment with induction time
tp = 6 days. The solid lines (—) describe the dynamics for the treated model and
the dashed lines (– –) indicate the untreated model. The marked points are the

experimental data. The vertical line indicates the induction time tp = 6.
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Figure 5.11: New solution graphs for each compartment with induction time
tp = 7 days. The solid lines (—) describe the dynamics for the treated model and
the dashed lines (– –) indicate the untreated model. The marked points are the

experimental data. The vertical line indicates the induction time tp = 7.
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Figure 5.12: New solution graphs for each compartment with induction time
tp = 13 days. The solid lines (—) describe the dynamics for the treated model
and the dashed lines (– –) indicate the untreated model. The marked points are

the experimental data. The vertical line indicates the induction time tp = 13.
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Figure 5.13: New solution graphs for each compartment with induction time
tp = 14 days. The solid lines (—) describe the dynamics for the treated model
and the dashed lines (– –) indicate the untreated model. The marked points are

the experimental data. The vertical line indicates the induction time tp = 14.
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Figure 5.14: New solution graphs for each compartment with induction time
tp = 21 days. The solid lines (—) describe the dynamics for the treated model
and the dashed lines (– –) indicate the untreated model. The marked points are

the experimental data. The vertical line indicates the induction time tp = 21.
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Figure 5.15: New solution graphs for each compartment with induction time
tp = 27 days. The solid lines (—) describe the dynamics for the treated model
and the dashed lines (– –) indicate the untreated model. The marked points are

the experimental data. The vertical line indicates the induction time tp = 27.
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Figure 5.16: New solution graphs for each compartment with induction time
tp = 35 days. The solid lines (—) describe the dynamics for the treated model
and the dashed lines (– –) indicate the untreated model. The marked points are

the experimental data. The vertical line indicates the induction time tp = 35.

It can be seen in Figures 5.9–5.16 that there is a discontinuity in the dynamics of

diseased (D) and healthy (H = S + R) compartments, which is again due to the

introduction of the pathogen. This means that in the absence of a pathogen at-

tack the entire seedling population is healthy. Later, the proportion of these healthy

seedlings decreases as the disease spreads until it stops at the limiting diseased value.

The most striking result to emerge from this new parameterisation result is the de-

scription of the dynamics between the resistant R and susceptible S compartments.

It shows that almost half of the seedling population is susceptible and the remainder

resistant. From the figures at the initial phase, the resistant compartment is decreas-

ing until, after some time, it increases to reach the steady state. This is probably

because of the delay effect of the elicitor treatment. In general, this dynamical be-

haviour is comparable to all treated seedlings with different induction time tp. This

can be clearly seen in Figure 5.17.
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Figure 5.17: The phase-plane for the induced resistance (IR) model with trajec-
tories of the R,D compartments plotted in the feasible region (R,D > 0, R+D <
1) using new parameter estimation as in (5.5). The lines schematically represent
the values of the two compartments R and D as time passes for the equations
(1)–(5) based on each induction case tp and the untreated case. When D = 0, the
straight lines illustrate the dynamics of the R compartment before the pathogen
inoculation. These lines will have a discontinuity when the pathogen is introduced
at time t = tp, and show the state of the R compartment at that particular time.
As can be seen in the figure, there is a jump in the D values of Di at t = tp and
the trajectories of the R,D compartments will continue to approach the straight
line R+D = 1. For the untreated case, the dynamics of the R,D compartments

will depend on the initial condition of the systems i.e. Ri and Di.

Figure 5.17 illustrates the characteristics of the two compartments R and D. The

flows in the figure indicate the time-evolution of the system of the differential equa-

tions based on the different values of tp and the untreated case. It shows that when

tp is between three and seven days, the development of disease is less severe com-

pared with the other induction times and with the untreated control plants. The

figure shows that the trajectories for each induction case will eventually approach

the straight line R + D = 1. The model has a line of equilibrium states in the

R,D plane which are neutrally stable (non-hyperbolic), and predicts that disease

development depends on the induction time tp.
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An interesting result shown here in Figure 5.17 is that the best disease control

attained when pathogen inoculation occurs at the time of lowest resistance. The

reason of such scenario happened is beyond of this thesis scope and there is no

available experimental data to support the statement.
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Figure 5.18: The proportion of the diseased seedlings which were treated at a
fixed final time against the inoculation time tp

Figure 5.18 shows the proportion of diseased seedlings which were treated at the

final time against the induction time tp. The IR model can determine the optimal

induction time tp that gives the best outcome for disease control for the treated pine

seedlings. This can be done by taking the point at the final time tf as a fixed variable,

e.g. let tf = tp + 35, and minimise the trajectories of Dfinal = D(t = tf ). For tp = 0

days, it means the elicitor treatment and the pathogen inoculation were introduced

at the same time. Experimental data for diseased seedlings, measured at tp + 35

days for each tp case, is taken into account to compare with the model outcome.

This numerical experiment shows that induced resistance was greatest when MeJA

was applied to pine seedlings six days before pathogen inoculation. Although the

error gaps between the model outcomes and the experimental data are noticeable,
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especially for the case tp = 14 days, it can be attributed to either the variability

of the data sets or experimental error. Also note that it is assumed that for every

induction time tp, the dynamics share the same parameter values.

5.2.2 Model’s Validation

To validate this proposed IR model, consider the experimental data except the data

points for tp = 21 (in Table 5.5) and redo the parameterisation. The results are as

below:

α = 0.1028 days−1

β = 0.8239 days−1

γ = 0.2689 days−1

k = 5.1561

L = 10.8161 days

Ri = 0.6434

Di = 0.0124. (5.6)

These parameter values in (5.6) were then used to plot the model when tp = 21

and the results compared with the experimental data. Based on Figure 5.19, it can

be seen that the IR model with the parameters values in (5.6), fits well with the

experimental data. The most striking result from this numerical experiment is the

similarity of parameter values both in (5.6) and (5.5).
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Figure 5.19: The treated model with the inoculation time tp = 21 days. The
marked points are the experimental data tp = 21 as in Table 4.2. The calculated
coefficient of determination R2 = 0.8917 shows this optimal parameter values in

(5.6) is well fitted to the IR model.

5.3 Summary

In this chapter, the results of the parameter estimation for our proposed IR model

have been presented. The least-squares method is used as the objective function to

optimise the parameters for the IR model. The results suggest that the parameter-

isation will become more robust if we take into account the data sets both in Table

4.1 and Table 4.2. The model parameters are identifiable with any initial guesses

used and suggest that it is stable; always achieving the global minimum value of

SSE to get the optimal value of parameters with the best model fitting. More-

over, even though the experimental data required consists of two compartments
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only, which is (H,D), this model has the ability to determine the H compartment

defining H = S + R. In other words, the susceptible cohort can be determined by

S = 1−R−D and can be separated out by this model.

In summary, the table below shows the parameter values which are used in this

thesis:

Parameter Description Value [Units]

α The specific rate at which untreated plants lose the resistance

due to the pathogen attack. 0.0908 [days−1]

β The specific rate at which the disease spreads. 0.7379 [days−1]

γ The specific rate the resistant plant becomes susceptible. 0.2801 [days−1]

k Determines the effectiveness of the elicitor. 5.3749 [dimensionless]

L The time where the elicitor effectiveness is at the peak. 10.7607 [days]

Ri A proportion of the plant population exhibit natural

resistance at the initial time t = 0. 0.6118 [dimensionless]

Di A proportion of the plant population which becomes

infected immediately after the pathogen challenge. 0.0168 [dimensionless]

Table 5.6: Parameter values obtained from parameterisation using experimental
data of IR for pine seedlings with elicitor MeJA.

Biologically, the potential for using a plant-defence elicitor to induce resistance

against plant disease is evaluated through the use of this IR compartment model,

which in turn is based on a SIR-type model. The model enables the likely long-term

effect of the disease to be examined. The attracting steady states in this model

are dependent on the initial conditions and not, as is usually the case, asymptoti-

cally stable (the phase-plane in Figure 5.17). Of particular interest is the optimal

induction time tp, which leads to a minimisation of the long-term effect for elicitor

application before the inoculation of the plants by the pathogen. The knowledge of

this optimal tp is crucial for an effective elicitor to enhance IR as pointed out by

Walters et al. (2013).

In conclusion, based on the parameterisation in Section 5.2, this IR model suggests

that the model does exhibit all the characteristics observed in the data provided to
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us. Further analysis on extending this IR model using the same parameter values in

Table 5.6 will be presented in the following chapters.



Chapter 6

IR Model Extensions

In the previous chapter, the unknown parameters for this IR model were deter-

mined by the least-squares method. Here, the mathematical model is extended to

include the concentration effect, multiple elicitor applications and post-inoculation

treatment.

The discussions in this chapter are part of the article submitted to the Journal of

Theoretical Biology (Abdul Latif et al., 2014).

6.1 Varying the Elicitor Concentration

Holopainen et al. (2009); Teniente et al. (2010); Thakur & Sohal (2013) reviewed

that various studies have been measured where exogenous application of elicitor,

specifically methyl jasmonate (MeJA), can enhance the levels of certain defensive

compounds of plants, and in consequence be used to trigger the defence mechanism.

Some experimental studies have reported that there is an effect of different elicitor

concentrations on the capability to induced resistance (Godard et al., 1999; Boughton

et al., 2006; Gould et al., 2009; Vivas et al., 2012; Hindumathy, 2012). This has led

to an increased interest in extending the proposed IR model to include a measure of

elicitor concentration.

90
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Plant & Food Research Ltd set up an experiment for this purpose and provided

relevant experimental data. Different concentrations of elicitor MeJA at 1.1, 4.5,

18 mM were sprayed onto pine seedlings and these seedlings were inoculated with

pathogen after seven days of seed treatment (i.e. tp = 7). Various levels of protection

over the control can be seen in Table 6.1.

Unpublished data from Plant & Food Research Ltd (sent Oct 2011)

Elicitor Concentration
Disease Assessment Time

tp + 14 tp + 22 tp + 28

1.1mM = 0.025% 0.10 0.25 0.30

4.5mM = 0.10% 0.05 0.10 0.15

18mM = 0.40% 0.00 0.15 0.15

Untreated Control 0% 0.30 0.65 0.70

Unpublished data from Plant & Food Research Ltd (sent Apr 2013)

Elicitor Concentration
Disease Assessment Time

tp + 14 tp + 21 tp + 35

1.1mM = 0.025% 0.250 0.313 0.250

4.5mM = 0.10% 0.125 0.250 0.250

18mM = 0.40% 0.429 0.571 0.770

Untreated Control 0% 0.500 0.625 0.625

Table 6.1: The proportion of the diseased Pinus radiata seedlings following
treatment with applications of 0, 1.1, 4.5,18 mM methyl jasmonate (MeJA) and
subsequent inoculation of all seedlings with Diplodia pinea. This experimental

data is used to estimate the value of parameter r in Equation (6.1).
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Data in Gould et al. (2009))

Elicitor Concentration
Disease Assessment Time

tp + 35

1mM = 0.023% 0.25

4.5mM = 0.10% 0.25

18mM = 0.40% 0.80

Table 6.2: The proportion of the diseased Pinus radiata seedlings at five weeks
following treatment with applications of three different concentrations of methyl
jasmonate (MeJA) and subsequent inoculation of all seedlings with Diplodia pinea.

This data is also used in order to estimate r.

The data suggests that the effect of the different concentration is not linearly depen-

dent on the elicitor dose. Hence, to replicate this experimental data measurement,

the elicitor effect is formulated as

f(a) = are1−a, (6.1)

where a is the elicitor concentration and r is a constant to describe the sub-linear

effects of the elicitor concentration with the elicitor effectiveness for induced resis-

tance. Note that f(a) is maximised at a = r.

Thus, the elicitor term will be:

concentration× elicitor effectiveness to the plant = are1−a × kt

t2 + L2
. (6.2)

As mentioned in Chapter 4, k determines the effectiveness of the elicitor used for

treatment and L corresponds to the time when the effectiveness is at the peak.

The newly introduced parameter r needs to be determined while the parameter a

is deduced from the experimental data. To parameterise r, the same least-squares

method was used and another dataset (Table 6.2) is also included in this process.

To simplify the parameterisation process, the values of a, percentage (%) concen-

tration, were scaled as
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Figure 6.1: Graph for Equation (6.1) with r = 0.6650.

a = [0.23, 0.25, 1, 4].

This approach is taken in order to use the same parameter values (α, β, γ, k, L,Ri, Di)

determined in Chapter 5 (Table 5.6) since the datasets in Table 4.1 and Table 4.2,

the elicitor concentration used was 0.1% and the parameter estimation is done using

this data. The biological assumption is that the dynamics of the physiological re-

sponse was assumed to remain the same, except for the elicitor effect when the dose

is changed. Therefore, the elicitor percentage concentration can be taken as a scaled

factor of 1. Hence, the term in Equation (6.1) is applicable for this scale assumption,

for which if a = 1 implies f(a = 1) = 1, and this becomes the original equation as in

Chapter 4 (see Equation (4.1)–Equation (4.3)). Moreover, for the 0% concentration

(or “water treatment”) this implies a = 0 which gives f(a = 0) = 0, which suggests

that the “water treatment” seedlings should be evaluated as the untreated model

(see Equation (4.9)–Equation (4.10)).

This varying elicitor concentration scenario can be formulated as:
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• For 0% elicitor concentration assume as untreated case

For pre-inoculation: 0 < t < tp

dR

dt
= −αR(1−R) ;R(0) = Ri. (6.3)

For post-inoculation: tp < t < T

dR

dt
= −αR(1−R−D) ;R(tp) = Rpunt (6.4)

dD

dt
= βD(1−R−D) ;D(tp) = Di. (6.5)

• For other elicitor concentration

For pre-inoculation: 0 < t < tp

dR

dt
= (are(1−a)

kt

t2 + L2
− γR)(1−R) ;R(0) = Ri (6.6)

For post-inoculation: tp < t < T

dR

dt
= (are(1−a)

kt

t2 + L2
− γR)(1−R−D) ;R(tp) = Rp (6.7)

dD

dt
= βD(1−R−D) ;D(tp) = Di. (6.8)

where Rpunt and Rp are obtained from Equation (6.3) and Equation (6.6) respec-

tively.

These equations (Equation (6.3)–(6.8)) were used to determine the value of r, by

matching the model with the experimental data in Table 6.1 and Table 6.2. From

this numerical computation, it was obtained that r = 0.6650. This is shown in Table

6.3 where the global minimum value of the final SSE seems to be achieved at 4.6725,

based on any initial guesses; thus parameter r is identifiable and it converges to a

unique value.
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Parameters
(1) (2) (3) (4) (5)

Initial Final Initial Final Initial Final Initial Final Initial Final

r 10.0000 0.6650 1.9048 0.6650 0.9134 0.6650 8.1472 0.6650 2.5397 0.6650

SSE 4.6725 4.6725 4.6725 4.6725 4.6725

Table 6.3: Parameter estimation for the parameter r using treated experimental
data as given in Table 6.1 and Table 6.2.

This r value has been used to plot the solutions to Equations (6.3)–(6.8); and Fig-

ures 6.2 – 6.6 show the model simulation for each elicitor concentration and exhibits

the characteristics of the experimental data given in the Table 6.1 and Table 6.2.

Although it is not well fitted, this is likely the result of the variability in the ex-

perimental observations, or the quantity of experimental data is not sufficient to

estimate r accurately.
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Figure 6.2: Solution graphs for each compartment with its elicitor 0 % concen-
tration for the untreated control seedlings group. The vertical line (- -) corre-
sponds to the inoculation time tp = 7 days. The marked points are the experi-

mental observations: � (April 2013 data) and • (October 2011 data).
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Figure 6.3: Solution graphs for each compartment with its elicitor 0.023% con-
centration. The vertical line (- -) corresponds to the inoculation time tp = 7 days.

The marked points are the experimental observations: ∗ (Table 6.2).
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Figure 6.4: Solution graphs for each compartment with its elicitor 0.025% con-
centration. The vertical line (- -) corresponds to the inoculation time tp = 7 days.
The marked points are the experimental observations: � (April 2013 data) and •

(October 2011 data).
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Figure 6.5: Solution graphs for each compartment with its elicitor 0.1% con-
centration. The vertical line (- -) corresponds to the inoculation time tp = 7
days. The marked points are the experimental observations: � (April 2013 data),

• (October 2011 data), and ∗ (Table 6.2).
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Figure 6.6: Solution graphs for each compartment with its elicitor 0.4% con-
centration. The vertical line (- -) corresponds to the inoculation time tp = 7
days. The marked points are the experimental observations: � (April 2013 data),

• (October 2011 data), and ∗ (Table 6.2).
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Figure 6.7: The proportion of diseased seedlings which were treated (seven
days before the pathogen challenge) at the final time (tp + 35) against the elicitor
concentration. The marked points ∗ are the experimental data (from dataset April

2013 and Table 6.2).

The results shown in Figure 6.7 demonstrate that the effect of elicitor MeJA on

seedling health is dose dependent. Based on the model simulations, elicitor with

concentrations of 0.02% and 0.1% offered a great disease control at a proportion of

0.4 and 0.3 of the whole seedlings population became diseased, respectively. The

proportion of diseased seedlings decreases at first, then increases above concentra-

tions of around 0.1%; for example a concentration of 0.4% offers ∼10% disease

protection only. In a study by Gould et al. (2009) indicated when a higher elicitor

concentration (> 0.1%) is used, there is phytotoxicity in the treated seedlings, and

disease incidence is higher. On the other hand, the model simulation shows that if

lower concentrations (e.g. < 0.02%) are used, there will be no significant difference

in the results compared to the untreated seedlings (those with no disease efficacy).
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This numerical experiment also demonstrated that at the lowest dose of elicitor

(∼ 0.067%) there was an induced resistance response to the pathogen attack; this

finding has important cost benefit implications as knowledge of an “optimal” dose

of MeJA would imply increased effectiveness with respect to cost, making it more

attractive as a plant protection product. Note that the optimal value obtained from

the model’s result is close to the value which maximise the function f(a), in the

elicitor effectiveness factor.

6.2 Multiple Elicitor Applications

Previous studies have demonstrated that more frequent elicitor applications ap-

peared to be phytotoxic to the seedlings (Gould et al., 2009) though they did suppress

disease development (Dinh et al., 2008). It would be beneficial if this experimental

observation could be modelled mathematically. Here, the proposed IR model is ex-

tended to include a multiple elicitor application; with only two elicitor applications

considered in this case study. The elicitors were applied before the pathogen inocu-

lation and the same amount of elicitor used at each time point. This scenario can

be described by the following diagram.

Figure 6.8: Schematic timeline for the multiple elicitor applications. Same
concentrations (or amount) was applied at each time.

Here, it is assumed that f(a) = are(1−a); therefore the equations for a multiple ap-

plication will be:
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• First application: for 0 < t < te2

dR

dt
= (f(a)

kt

t2 + L2
− γR)(1−R) ;R(0) = Ri. (6.9)

• Second application: for te2 < t < tp

dR

dt
=

(
(f(a)

kt

t2 + L2
+ f(a)

k(t− te)
(t− te)2 + L2

− γR
)

(1−R) ;R(te2) = Rp.

(6.10)

• Pathogen inoculation: tp < t < T

dR

dt
=

([
f(a)

kt

t2 + L2
+ f(a)

k(t− te)
(t− te)2 + L2

]
− γR

)
×(1−R−D) ;R(tp) = Rp, (6.11)

dD

dt
= βD(1−R−D) ;D(tp) = Di. (6.12)

Note that Equations (6.9)–(6.12) are formulated the same way as those in the single

application situation. Rp in Equation (6.10) obtained from Equation (6.9). Here

Equation (6.9) describes the first application and Equation (6.10) describes the

second application at time te2 ; while Equation (6.11) and Equation (6.12) describe

the pathogen inoculation to the seedlings.

It is warmly acknowledged with gratitude that Plant & Food Research Ltd set up

a special experiment for this case study (see Table 6.4). The pine seedlings were

divided into three groups with different elicitor MeJA concentration. The seedlings

were then treated at 7 and 14 days before the pathogen inoculation. That is te1 = 0,

te2 = 7 and tp = 14. It must be noted though, that there is no new parameterisation

for this study case. The same parameter values in Table 4.3 and the r value stated in

the previous section were used for plotting the solution of the Equations (6.9)–(6.12).
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Unpublished data sent April 2013

Elicitor Concentration
Disease Assessment Time

tp + 14 tp + 21 tp + 35

1.1mM = 0.025% 0.00 0.188 0.190

4.5mM = 0.10% 0.125 0.438 0.500

18mM = 0.40% 0.778 0.778 0.890

Table 6.4: Experimental data on the multiple elicitor applications provided by
Plant & Food. The numbers represent the proportion of the diseased seedlings.
The pine seedlings were treated with MeJA at 14 days and 7 days before the
pathogen inoculation. The number shows the proportion of the diseased pine

seedlings.

Figures 6.9 – 6.11 show that the dynamics of these multiple elicitor applications (the

red curve) correspond to the percentage concentration when compared to a single

application (the blue curve). The marked points in the diagrams are the experimen-

tal data as shown in Table 6.4. The numerical computation of the proposed model

demonstrates almost the same patterns as observed in the experiment. For a mul-

tiple elicitor application at the 0.4% dosage level, the predicted model has the best

fit and reproduces the experimental observations, compared to the other percentage

concentrations. Unlike the other elicitor concentrations, the error gap is large, which

can be attributed to the model’s formulation not being appropriate for these exper-

imental observations for these particular concentrations. Moreover, in each figures,

the simulations show that a multiple application enhanced the resistance in plants

and gave a better disease control compared to a single application.
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Figure 6.9: Solution graphs for multiple application (red curve) and single ap-
plication (blue) with elicitor concentration 0.025%. The first elicitor application
is at t = 0 and the second application is at time te = 7 (described by the vertical
line “– .”) and the pathogen inoculation at tp = 14 (described by the vertical line

“– –”).
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Figure 6.10: Solution graphs for multiple application (red curve) and single
application (blue) with elicitor concentration 0.1%. The first elicitor application
is at t = 0 and the second application is at time te = 7 (described by the vertical
line “– .”) and the pathogen inoculation at tp = 14 (described by the vertical line

“– –”).
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Figure 6.11: Solution graphs for multiple application (red curve) and single
application (blue) with elicitor concentration 0.4%. The first elicitor application
is at t = 0 and the second application is at time te = 7 (described by the vertical
line “– .”) and the pathogen inoculation at tp = 14 (described by the vertical line

“– –”).

6.3 Post-Inoculation Elicitor Treatment

Traditionally, elicitor treatment methods have subscribed to the belief that the treat-

ment should be done prior to the pathogen challenge. However, in the real world

situation, one can never determine the time of the disease outbreak. Here it would

be interesting to extend this proposed IR model to a situation which might be ap-

propriate in the field. The effect of elicitor treatment after a pathogen challenge

through a mathematical model is investigated. The assumptions made are:
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1. the pathogen is inoculated at t = 0

2. the elicitor treatment at t = te.

Here the proposed treated model is:

• pre-treatment: 0 < t < te

dR

dt
= −αR(1−R−D) ;R(0) = Ri (6.13)

dD

dt
= βD(1−R−D) ;D(0) = Di (6.14)

• post-treatment: te < t < T

dR

dt
= (

k(t− te)
(t− te)2 + L2

− γR)(1−R−D) ;R(te) = Re (6.15)

dD

dt
= βD(1−R−D) ;D(te) = De (6.16)

The pre-treatment formula (Equations (6.13)and (6.14)) describe the seedlings after

they have been challenged by the pathogen at t = 0. We have assumed they behave

like untreated seedlings as in equations (4.9) and (4.10). And, after some time te, the

seedlings are treated with the elicitor. The post-treatment formulations are given

by Equation (6.15) and Equation (6.16) with

e(t) =
k(t− te)

(t− te)2 + L2
,

where Re and De are obtained from (6.13) and (6.14) respectively at time te.

Here, no parameterisation is given for this extended model and, unfortunately, no

experimental observations exist to be compared with the model. Therefore, the

same parameter values as the previous chapter have been used to plot the solution

graph of the equations above (Equation (6.13) – Equation (6.16)). The phase plane

in Figure 6.12 illustrates the characteristics of the resistant (R) and diseased (D)

compartments. The flows in the diagram indicate the time-evolution of the above

dynamical system; the model demonstrates that if the elicitor treatment is done after

the pathogen challenge obviously these treated seedlings will be less severely affected
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compared to the untreated seedlings. This shows that the elicitor treatment helps the

seedlings suppress the pathogen attack and prevents them from becoming severely

diseased. Undoubtedly, if the treatment is done immediately after the seedlings are

inoculated with pathogens, they will become less diseased. The figure also shows

that the trajectories will eventually approach the straight line R +D = 1.
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Figure 6.12: For this illustration, the seedlings were challenged by the pathogen
at time t = 0 day, and then 2 days or 6 days later (i.e. te = 2 ot te = 6)
the seedlings were treated with the elicitor. The blue curve corresponds to the

untreated seedlings.
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Figure 6.13: The proportion of diseased seedlings at fixed final time (T = tp+35)
against te. The blue marked points (+) correspond to model’s outcome.

Figure 6.13 shows that the proportion of diseased seedlings at a final fixed time is

increasing with te. The model demonstrates that if the treatment is done after 15

days from the pathogen challenge, there is no significant difference in the treatment

outcome when compared to the untreated plants.

6.4 Summary

In this chapter, three different case studies extensions of the IR model in Chapter 4

have been presented. These are:

1. the effect of induced resistance due to the elicitor concentration used
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2. the effect of induced resistance in a multiple elicitor applications

3. the effect of elicitor treatment after pathogen inoculation.

From the previous IR studies, it is known that there is an effect of different con-

centrations of elicitor on its capability to induce resistance. The experimental data

suggests that this effect is not linearly dependent on the elicitor dose, but is instead

sub-linear. This means there is an optimal elicitor concentration that produces the

induced resistance at the peak. The effectiveness of a given elicitor concentration

is formulated as are(1−a), where a is the scaled dimensionless elicitor concentration

and r is the sub-linear effect. This formulation introduces a new parameter r that

needs to be parameterised using the same method as in Chapter 3, by comparing

a matching experimental data set, by which r is found to be 0.6650. The model

matches the experimental observations, where a higher elicitor concentration does

not give a significant result compared to the untreated control. From the model, it

is demonstrated that at the lowest elicitor concentration tested (∼ 0.067%) there

is an induced resistance response to the pathogen attack. This finding has impor-

tant implications as this “optimal” concentration of MeJA would increase its cost

effectiveness making it more attractive as a plant protection product.

The model was also extended to include a regime of elicitor application. Two elicitor

applications are considered in this case study, where the applications of elicitor

occur on 14 and 7 days before pathogen inoculation. The model was then compared

to experimental observations; however, due to a small sample size, the findings

might not give the best impression of those experimental observations. Elicitor

concentration at 0.4% is the only model simulation that exhibits the characteristics

of the observations.

For the last case study, the effect of elicitor treatment after pathogen challenge was

investigated. Traditionally, in the greenhouse experiment, elicitor treatment has

subscribed to the belief that treatment should occur prior to any pathogen chal-

lenge; but, one can never determine the time of the disease outbreak in the real field

situation. The assumption made is that the seedlings are in the untreated condi-

tion before the treatment, which implies it should be formulated as the untreated

system (see Chapter 4). Then, when the seedlings are applied with the elicitor at
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time te, the seedlings have taken the elicitor effect. The model’s simulation shows

that it will suppress the disease growth and therefore become less severe compared

to the untreated seedlings. While this study case did not confirm the efficacy of

post-inoculation treatment, it did partially substantiate that the treatment pro-

vides a disease control to the seedlings. Biologically, there is potential for using

a plant-defence elicitor to induce resistance to plant disease, which would further

enable better plant disease management; instead of using agrochemicals that have

the potential for enormous harm to the environment and human beings.

In conclusion, one of the more significant findings to emerge from these case studies

is that the model reproduces the experimental observations. The numerical findings

from this study provide a new understanding of the efficacy of the elicitor to induce

resistance in the plant, which will hopefully benefit the plant pathologist. Therefore,

time is saved and the expenditure of doing further experiments is avoided, as the

model can be used to predict the outcomes.



Chapter 7

Optimal Strategies and Control

In this chapter optimal control strategies are developed to optimise the continuous

application of the elicitor to manage the final disease outcome in a population. The

goal of this study is to present a method of control for this class of optimisation

problems, developing new strategies with the help of Pontryagin’s maximum prin-

ciple. At this stage no experimental verification of the approach is available, but in

view of the model described in the previous chapter, there is a potential practical

value in addressing this to show it is feasible and could be implemented in these

discussions.

7.1 Continuous Elicitor Application: A Case Study

7.1.1 The Description

The goal is to find a minimal daily elicitor application that will achieve a given

disease control level. There are Here a few applications of Pontryagin’s maximum

principle are presented. First of all, for notational purposes, let the state variables

be the following:

• E is the cumulative elicitor effect

113
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• c is the control variable that corresponds to the continuous elicitor application

rate

• R represents the resistant compartment

• D represents the diseased compartment.

The process is considered on the time interval [0, tf ] where the final time tf ≥ 0

is fixed. Generally, the dynamics underlying the optimal control model is similar

to the IR model discussed in Chapter 4. The difference concerns is the term E(t),

that is determined by the continuous elicitor application function c(t), a scenario

which might be used in the agricultural industry. The minimisation of amount of the

elicitor applied is chosen in order to determine the best elicitor application strategy

to reduce the cost and to avoid unnecessary application. In previous chapters, the

term e(t) was chosen to represent the qualitative effect of a single elicitor application

at one time. In other words, E(t) was considered as continuous application effect

and do not incorporate the elicitor effect peaking at the later time or delay maximum

as in the single application e(t).

In this case study, the objective functional is to minimise the following expression:

J{R,D,E, c} =

∫ tf

0

c dt

where c(t) is a continuously differentiable function.
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Figure 7.1: Schematic diagram for the control of the continuous elicitor applica-
tion. The elicitor effect is determined by the elicitor applied daily until it reaches

the target disease control.

Consider the elicitor effect, E(t), which is dependent on the amount of elicitor ap-

plied daily, defined as c(t). Here, c(t) is the application strategy that aids the plant

effectiveness in counteracting the pathogen (see Figure 7.1). Mathematically, the

cumulative elicitor effect E(t) at time t is given by

E(t) =

∫ t

0

s0e
−θ(t−τ)c(τ) dτ, (7.1)

where θ [days−1] and s0 [mass−1days−1] are constants. This implies that E has

a dimension of days−1. The assumption made here is that discounting the elicitor

effect in the future application is simply the reverse process of compounding the

elicitor effect on the present elicitor effect, where θ is the discount rate. Here, c(t)

is the daily elicitor application in [mass days−1] at time t.

Recall that the equations for this IR model for the treated plants are as described

in Section 4.3.1.1, but here change the term e(t) to E(t):

• Pre-inoculation: For 0 < t < tp

dR

dt
= (E(t)− γR)(1−R) ;R(0) = Ri. (7.2)
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• Post-inoculation: For tp < t < tf

dR

dt
= (E(t)− γR)(1−R−D) ;R(tp) = Rp, (7.3)

dD

dt
= βD(1−R−D) ;D(tp) = Df . (7.4)

Then, a successful strategy for the continuous elicitor application needs to be de-

termined in order to get the pre-set “desirable” disease control at the time tf , say

D(tf ) = Df . In other words, what is the least amount of elicitor needed to apply

every day to get the best results for protection to the plant to minimise the effect of

the pathogen attack. There are other possible alternatives for the optimal control

strategy such as minimising the final diseased proportion Df , but at this stage, the

elicitor application strategy to get the pre-specified final disease outcome is taken

into account in this thesis.

7.1.2 The Derivation of the Optimal Control System

7.1.2.1 Two-Stage Optimal Control Model

Since in Equation (7.1) E(t) is defined on the time interval of 0 < t < tf but the

Equations (7.2)–(7.4) are divided into two different time regimes; that is Equation

(7.2) is in 0 < t < tp, and Equations (7.3) and (7.4) are in tp < t < tf . Therefore,

these dynamical systems are a two-stage optimal control system.

The dynamics of the first stage in the interval [0, tp], with tp > 0 denotes the induc-

tion time, are modelled by

dR

dt
= (E(t)− γR)(1−R) ;R(0) = Ri,

dE

dt
= −θE + s0c ;E(0) = 0. (7.5)



Chapter 7. Optimal Strategies and Control 117

Whereas in the second stage [tp, tf ], the dynamics involves that of disease D:

dR

dt
= (E(t)− γR)(1−R−D) ;R(tp) = Rp,

dD

dt
= βD(1−R−D) ;D(tp) = Di (7.6)

dE

dt
= −θE + s0c ;E(tp) = Ep.

The term
dE

dt
is obtained from Equation (7.1). Needless to say, the functions R(t),

D(t), and E(t) are presumed to be continuous at the transition time tp. Therefore,

Rp and Ep are obtained from Equation (7.5). Here, the pre-set “desirable” disease

control at tf

D(tf ) = Df . (7.7)

is given.

Let the control function c(t) be bounded by

0 ≤ c(t) ≤ cmax. (7.8)

Hence, this optimal control problem consists of determining a piecewise continu-

ous control function c(t) where c : [0, tf ] → [0, cmax] that minimises the objective

functional

J{c} =

∫ tf

0

c dt (7.9)

subject to the constraints in Equation (7.5), Equation (7.6) and Equation (7.8). Us-

ing the same necessary conditions of Pontryagin’s maximum principle, the Hamilto-

nian for both stages can be obtained. Let the Hamiltonian for the first stage be H1

and the second stage be H2.

H1 = c+ λR(E − γR)(1−R) + λE(−θE + s0c) (7.10)

H2 = c+ λR(E − γR)(1−R−D) + λDβD(1−R−D)

+λE(−θE + s0c) (7.11)
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Here the λR, λD, and λE are the adjoint variables. Thus, the adjoint equations can

be obtained for both stages.

• The first stage : 0 < t < tp

dλR
dt

= −∂H1

∂R
= −λR[(−γ)(1−R) + (E − γR)(−1)]

= λR(E + γ(1− 2R)). (7.12)

dλE
dt

= −∂H1

∂E
= −λE[θ(−1)]− λR[(1−R)(1)]

= λEθ − λR(1−R). (7.13)

• The second stage : tp < t < tf

dλR
dt

= −∂H2

∂R
= −λR[(−γ)(1−R−D) + (E − γR)(−1)]− λDβD(−1)

= λR(E + γ(1− 2R−D)) + λDβD. ;λR(tf ) = 0. (7.14)

dλD
dt

= −∂H2

∂D
= −λR(E − γR)(−1)− λDβ[(1−R−D) +D(−1)]

= λR(E − γR)− λDβ(1−R− 2D). (7.15)

dλE
dt

= −∂H2

∂E
= −λE[θ(−1)]− λR[(1−R−D)(1)]

= λEθ − λR(1−R−D). ;λE(tf ) = 0.(7.16)

Note that there is no terminal constraint for D as it is fixed. Now, from both Hamil-

tonians H1 (Equation (7.10)) and H2 (Equation (7.10)) the optimality condition can

be obtained
∂H1

∂c
=
∂H2

∂c
= 1 + λE. (7.17)
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Observe the difficulty in obtaining the analogues
∂H1

∂c
=
∂H2

∂c
= 0 for continuous

control. This means there must exist a switching function

φ = 1 + λE, (7.18)

which determines an optimal control that minimises the Hamiltonians according to

c∗(t) =


cmax if φ(t) < 0,

0 if φ(t) > 0,

singular if φ(t) = 0 ∀t ∈ Is ⊂ [0, tf ].

(7.19)

From Lenhart & Workman (2007), a singular control is characterised by the con-

dition φ(t) = 0 over a subinterval Is ⊂ [0, tf ]. If φ(t) = 0 is not sustained over an

interval of time, then the optimal system becomes a “bang-bang control problem”.

The instance of the optimal control system switching between 0 to cmax or vice-versa

is called switch times.

These conditions allow the optimal system to have discontinuities, and the optimal

control system derived above is of bang-bang type.

7.1.2.2 One-Stage Optimal Control Model

In this section, a one-stage optimal control model is formulated. For this purpose,

take for simplicity tp = 0, meaning the pathogen and the elicitor were introduced

simultaneously at the initial t = 0. Therefore, the optimal control system is defined

by

minimise J{c} =

∫ tf

0

c dt (7.20)
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subject to:

dR

dt
= (E − γR)(1−R−D) ;R(0) = Ri

dD

dt
= βD(1−R−D) (7.21)

dR

dt
= −θE + s0c ;E(0) = 0 (7.22)

with boundary conditions the same as (7.7); and the same condition for c(t) as in

Equation (7.8). Therefore, the Hamiltonian will be

H = c+ λR(E − γR)(1−R−D) + λDβD(1−R−D) + λE(−θE + s0c), (7.23)

where the λR, λD, and λE are the adjoint variables. Following the same procedure,

the adjoint equations are determined by

dλR
dt

= −∂H
∂R

= −λR[(−γ)(1−R−D) + (E − γR)(−1)]− λDβD(−1)

= λR(E + γ(1− 2R−D)) + λDβD ;λR(tf ) = 0, (7.24)

dλD
dt

= −∂H
∂D

= −λR(E − γR)(−1)− λDβ[(1−R−D) +D(−1)]

= λR(E − γR)− λDβ(1−R− 2D), (7.25)

dλE
dt

= −∂H
∂E

= −λE[θ(−1)]− λR[(1−R−D)(1)]

= λEθ − λR(1−R−D) ;λE(tf ) = 0. (7.26)

Note that no terminal constraint is given for λD(tf ) as D(tf ) is fixed. If the optimal-

ity condition is applied to Equation (7.23), then the same function as in Equation

(7.17) is obtained; that is, there is a switching function φ = 1 + λE and same ar-

guments as in Equation (7.19) holds. Here, it can be concluded that this one-stage

optimal control system is of bang-bang type too.



Chapter 7. Optimal Strategies and Control 121

According to H. Maurer (personal communication, March, 2013), an expert in opti-

mal control theory, generally, discretisation and large-scale nonlinear programming

(NLP) methods are capable of determining the accurate optimal control structure.

The bang-bang control problem also can be solved by using these two methods. Com-

monly the Applied Modelling Programming Language (AMPL) is used with Interior

Point Optimizer (IPOPT) command to solve optimal control system with bang-bang

control problem (Laboratories, 2013; Laird & Wächter, 2013; Fourer et al., 2003).

Although the AMPL student version can be downloaded free online, it is limited to

a number of variables and the tool IPOPT is not available in this student version.

The full version is expensive and it was not possible to obtain the AMPL license at

this stage. Unfortunately, this bang-bang optimal control example cannot be solved

in MATLAB since it is difficult to determine the switching time analytically.

However, the bang-bang control problem can be illustrated as in Figure 7.2. It shows

that the optimal control is bang-bang with only one switching time ts and the control

c(t) structure is changing at time, ts, determined by Equation (7.19). The control

is restricted to between a lower bound (c(t) = 0) and an upper bound (c(t) = cmax).

This suggests that if it is desired to have a pre-set number of diseased seedlings in

the final time, the solution is to apply an amount elicitor dosage until the unique

switching point ts, and turn it off when the desired level of disease control is reached.

It is simply a straightforward ODE system to solve this proposed optimal system and

find the switching time ts analytically. Although the system can be simplified (by a

few assumptions being made) to determine ts, there might be a risk of missing the

optimal switching time; which may affect the outcome. Thus, a simple modification

is made to the objective functional, J , in the next section.
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Figure 7.2: φ is the switching function determined from λE(t). This illustration
of the bang-bang type control problem was plotted using arbitrary parameter
values. It was shown in the diagram, the regime of elicitor application, represented
by control variable c, is switched off after certain of time (refer to Equation (7.19)).

This figure is courtesy of Prof. Helmut Maurer using AMPL software.

7.2 Example: Control c(t) with Quadratic Term

In this section, an illustration of the optimal control for this IR model (for the

one-stage problem) is presented by defining the objective functional as

minimise J{c} =

∫ tf

0

c2 dt. (7.27)

Here, the objective functional is a L2-norm space with a quadratic term for the

control c(t). Although the function c is more likely to be more appropriate than

c2 from an agricultural or forestry perspective. By changing the power of c it will

eventually modify the system to an ordinary optimal control system. This is shown

in the arguments below.
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By minimising the Equation (7.27) subject to

dR

dt
= (E − γR)(1−R−D) ;R(0) = Ri, (7.28)

dD

dt
= βD(1−R−D) ;D(0) = Di, D(tf ) = Df , (7.29)

dE

dt
= −θE + s0c ;E(0) = 0. (7.30)

Using Pontryagin’s maximum principle, the Hamiltonian can be defined as

H = c2 + λR(E − γR)(1−R−D) + λDβD(1−R−D) + λE(−θE + s0c). (7.31)

Then, the adjoint equations for this system are

dλR
dt

= −∂H
∂R

= −λR[(−γ)(1−R−D) + (E − γR)(−1)]− λDβD(−1)

= λR(E + γ(1− 2R−D)) + λDβD. ;λR(tf ) = 0. (7.32)

dλD
dt

= −∂H
∂D

= −λR(E − γR)(−1)− λDβ[(1−R−D) +D(−1)]

= λR(E − γR)− λDβ(1−R− 2D). (7.33)

dλE
dt

= −∂H
∂E

= −λE[θ(−1)]− λR[(1−R−D)(1)]

= λEθ − λR(1−R−D) ;λE(tf ) = 0. (7.34)

Note that there is no transversality condition for λD as the system imposed a fixed

end-point on the state variable for D. Also observe that the adjoint equations in

Equations (7.32)–(7.34) are the same as in Equations (7.24)–(7.26). However, the

difference of the Hamiltonians in Equation (7.31) and Equation (7.23) is the power

of the function c.
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Using the Hamiltonian in Equation (7.31), the optimality condition implies that

∂H
∂c

= 2c+ λEs0 = 0,

and so the optimal solution is c∗ = −s0
2
λE. (7.35)

Furthermore, the Hamiltonian in Equation (7.31) satisfies the concavity condition

as in Equation (3.18):
∂2H

∂c2
= 2

which is
∂2H

∂c2
> 0 at c∗. It can be concluded that c∗ (Equation (7.35)) is the optimal

control function for the optimal control system above (Equations (7.27)–(7.30)).

Therefore, the optimal control problem strategy is obtained by solving the optimal

system, which consists of six ODEs and its boundary conditions:

dR

dt
= (E − γR)(1−R−D) ;R(0) = Ri

dD

dt
= βD(1−R−D) ;D(0) = Di, D(tf ) = Df

dE

dt
= −θE + s0c ;E(0) = 0

dλR
dt

= λR(E + γ(1− 2R−D)) + λDβD ;λR(tf ) = 0

dλD
dt

= λR(E − γR)− λDβ(1−R− 2D)

dλE
dt

= λEθ − λR(1−R−D) ;λE(tf ) = 0.

This optimality system is solved by interpreting the system as a boundary-value

problem (BVP). The “bvp4c” command in MATLAB is the numerical procedure

used to compute the solution. This MATLAB built-in tool ,“bvp4c”, is a finite dif-

ference code that implements the three-stage Lobatto IIIa formula.

To solve for, and plot, the solution of this optimality system, the same parame-

ter values were used as in Table 5.6, in particular Ri, Di, β, γ. The other parameter
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values were chosen arbitrarily for illustrative purpose:

Df = 0.3483,

θ = 0.05,

s0 = 0.1.

At the beginning there was a struggle to compute this BVP. The most difficult

part of the solution of BVP is to provide an initial estimation to the solution. In

order to direct the “bvp4c” for the solution of interest, it is necessary to assist

the solver by informing it with a guess. However, coming up with a sufficiently

good guess can be the most challenging part of solving a BVP (Gökhan, 2011).

Therefore, a good set of initial guesses for variables (R,D,E, λR, λD, λE) was needed

to run “bvp4c”. Since the values for λR(0), λD(0) and λE(0) are unknowns, these

values were chosen arbitrarily as zeros. However, the “bvp4c” computation does not

converge to a unique solution and every time the initial guess was changed BVP

seems to have multiple solutions. This shows that the convergence for a unique

solution depends on the initial guess function. To solve this problem, an iterative

method to the solution was executed. The solution of the initial guess function with

(R,D,E, λR, λD, λE) = (Ri, Di, 0, 0, 0, 0) was then recorded and used as the initial

guess function for the “bvp4c”. With this approach, the “bvp4c” solver computed to

a unique solution and this solution was then compared with the solution computed

by AMPL courtesy of Prof. Helmut Maurer. It was pleasing to see the BVP’s result

matched AMPL’s result. The advantage of AMPL is that one does not have to

define the initial guess and work out analytically the adjoint equations in order to

solve the optimal control problem.

Figures 7.3 to 7.9 show the simulation for this optimal control problem. In Figures

7.3 and 7.4, the computations illustrate that both compartments R and D tend to

reach a plateau after 40 days. By this time the disease has stopped progressing,

therefore there is no need to apply the elicitor again (see Figure 7.5). This figure

shows the optimal strategy for elicitor application, c(t), required to achieve the

desirable disease control, fixed as Df . This numerical result indicates that initially

(when t = 0) a considerable amount of elicitor is needed before a sharp decline,

reaching a local minimum at day 25. The total amount of elicitor is calculated as
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J{c} =
∫ 100

0
c2 dt = 1.1290 (units). Although, after 40 days, while no elicitor is

applied to the plants, the elicitor’s effect is still available in the plant (Figure 7.6).
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Figure 7.3: Dynamical solution for R(t) in Equation (7.28). The solution shows
that from the initial time t = 0, the proportion of the resistant plants drop then

increase back to reach a steady state (almost).
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Figure 7.4: Dynamical solution for D(t) in Equation (7.29). The solution shows
the behaviour of the disease growth is similar to the logistic growth curve. Initially
the proportion of the diseased plant increases then reaches its plateau after 40

days.
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Figure 7.5: Dynamical solution for c(t) in Equation (7.35). It shows the opti-
mal strategy for a daily elicitor application c(t) to achieve the pre-set desirable
proportion of diseased seedlings at the final time called Df . The numerical result
shows that at the initial time (t = 0), a large amount of elicitors has to be applied

and later decreased.
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Figure 7.6: Dynamical solution for E(t) in Equation (7.30). This describes the
cumulative elicitor effect which corresponds to the elicitor application everyday
(see also Figure 7.5 how daily application changes this cumulative elicitor effect).
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Figure 7.7: Dynamical solution for λR(t) in Equation (7.32).
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Figure 7.8: Dynamical solution for λD(t) in Equation (7.33).
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Figure 7.9: Dynamical solution for λE(t) in Equation (7.34).

7.3 Summary

In this chapter, an application of Pontryagin’s maximum principle has been pre-

sented. The IR model in Chapter 4 is extended to apply this well-known method

where a continuous elicitor application is considered, here defined by c(t). The goal

is to determine the best strategy for c(t) that will give the pre-specified disease con-

trol at the final observation time called Df . The derivation of this optimal system,

with the objective functional as J{c} =
∫ tf
0
c dt has led to a bang-bang control

problem which is interesting in itself. Unfortunately, there is no facility to compute

this bang-bang control problem . However, for learning purposes, it is still valuable

to compute this optimal system with a modified objective functional. The objective

functional is defined as J{c} =
∫ tf
0
c2 dt, where c is in the quadratic term. It is also

assumed that the infection and the treatment were introduced at the same time;
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that is tp = 0, which leads to a simple one-stage optimal control system. This modi-

fication changes the bang-bang control system to the ordinary control problem. The

modified optimal control system was solved by setting the system as the boundary

value problem. Therefore in this case, the system can be computed in MATLAB

using “bvp4c”.

Although no experimental observations have been compared with this optimal con-

trol system, it gives insight into how this continuous elicitor application can still

provide disease control for the plants (omitting the fact that there is a possibility of

phytotoxicity in the plants). In reality, it is not necessary to apply the protection

agent (such as fungicides) every day; commonly protection agents are applied to the

plant according to a calendar-based (e.g. every 7 to 14 days) schedule, to control

a plant disease. However, a daily application for an existing infection makes more

sense. Growers may be able to control the amount of the elicitor applied daily to

possibly eliminate unnecessary applications. The numerical computations show that

after some time (t = 40) the disease will stop progressing and therefore no elicitor

application will be needed (see Figures 7.4 and 7.5).
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Conclusion

8.1 Thesis Summary

In the past, the efficacy of induced resistance (IR) to control plant diseases has

typically been studied experimentally, whether in the fields or in greenhouses. The

objective of this thesis was to develop a generic mathematical model of IR to have a

better understanding of the behaviour of IR, which sometimes cannot be gained from

an experiment. Building on the approach of Jeger et al. (2009) and Xu et al. (2010)

in previous modelling of biological control systems, the compartmental SIR model

was applied for the potential of using a plant-defence elicitor to induce resistance to

plant disease. Several assumptions on the biological background were made in order

to simplify the biological process associated with IR. The developed model was

generic and can be used for any combination of plant-elicitor-pathogen scenarios;

which of course will have different parameters. The numerical results from this IR

model lead to a potentially powerful tool for quantifying the development of more

potent elicitors and strategies for their application.

The case study used in this thesis was on the effect of elicitor, methyl jasmonate

(MeJA) on the resistance of pine seedlings (Pinus radiata) by the causal agent of

pine stem canker and tip dieback (Diplodia pinea). The experimental data given

were in two components only; diseased and healthy. However, the IR model had

the advantage of quantifying the proportion of the plants that were susceptible and

133
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resistant, when observations were unable to determine these two components. This

experimental data was fitted to the model to estimate the unknown parameters, and

the ordinary least-squares method is used for the parameter estimation. The esti-

mated parameters were then used to analyse the dynamical IR model and extended

IR model to several case studies.

From the phase plane (Figure 5.17), the model enables the likely long-term effect

of the disease to be determined. The attracting steady states are dependent on the

initial conditions and not, as is usually the case, asymptotically stable. Moreover,

the model was capable of determining the optimal induction time tp which leads to

a minimisation of the long-term effect for elicitor application before the inoculation

of the plants by the pathogens. The model was also capable of determining the

optimal elicitor concentration to provide IR for the maximum effect. This IR model

was then extended to multiple elicitor applications; it was shown in the model sim-

ulation that a weekly elicitor application gives a better disease control compared to

a single application. Besides that, numerical results show that if the elicitor was ap-

plied after pathogen inoculation, then the treated plants were less severely affected

compared to the untreated plants. Another interesting outcome from this thesis was

the implementation of Pontryagin’s maximum principle to the IR model. For this

case study, a continuous elicitor application was considered, and the goal was to

determine the best application strategy in order to get the most desirable disease

control. Although daily elicitor application might cause phytotoxicity to the plants,

this daily application strategy is reasonable for plants that may be already infected.

The results from this numerical experiment gave the optimal application strategy,

and thus will help farmers avoid unnecessary application.

In conclusion, this new IR model has the potential to be implemented as a decision

support tool for the management of plant diseases, which involves an assessment of

the risk and economic cost critical for commercial operations (Gent et al., 2011).

8.2 Further Research

Some suggestions for future research following this thesis include:
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• Consider a different plant-elicitor-pathogen system. At this stage the model

has only been considered for Pinus radiata-MeJa-Diplodia pinea. Therefore

a new parameterisation needs to be determined if the model to be used to

analyse a different system.

• Include a delay time on the elicitor effect. In this thesis it was assumed that

the elicitor has an immediate effect once applied to the plants.

• More data for elicitor concentrations to estimate accurately for parameter r.

Results from this thesis (Section 6.1) can be more robust if more data points

are considered. It has to be admitted that only a small number of data points

were considered in the parameter estimation.

• Explore more on the multiple applications strategy. At this stage the model

only considered two elicitor applications before the pathogen inoculation. The

model can be further explored to consider a single application before and after

the pathogen inoculation. Possible questions include: how does this change

the efficacy of elicitor to induced resistance?

• Experimentation with the bang-bang control type. In Chapter 7, bang-bang

control type was discussed but the analysis was not completely covered. Fur-

ther analysis needs to be done and a possible paper might come from this

numerical experiment. This could be in collaboration with Prof. Helmut

Maurer, an expert on optimisation and optimal control theory.
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