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ABSTRACT 

In a temperate climate, most of the visible, seasonal changes in asparagus growth are 

induced by or dependent on changing temperature regimes. Senescence of ferns in 

autumn occurred below 13C, but was prevented by 20C. Crowns required chilling at 

temperatures below 12.5C to release the internal dormancy which occurred during 

winter. Although budbreak was never completely · suppressed, the minimum . 

temperature at which budbreak could occur changed during winter dormancy. 

Budbreak: did not occur at 12.5C in some cultivars at maximum dormancy. The 

optimum temperature for the growth of young plants was between 25C and 30C. 

A model was developed which simulated seasonal changes in carbohydrate 

accumulation and utilisation, and the changing source-sink relationships within male 

and female plants. The model used temperature, indirectly, to determine the times at 

which seasonal changes in plant growth occurred. 

· The basic unit for carbohydrate production and allocation in cultivars with well 

defmed rhizomes, e.g. 'Rutger' s Beacon •, was a rhizome and it's attached developing 

axillaries. An axillary rhizome became independent very soon after it had developed 

fern. The basic unit may differ in cultivars such as 'UC15T which have less well 

defined rhizomes. The strength of correlative inhibition within a cultivar appears to - . 
affect both rhizome morphology and budbreak patterns during. spear harvest. 

\ 
In ·�ummer, young fern had a higher mobilising ability for assimilate than older fern 

or roots in male plants. In late summer-early autumn, roots became a stronger sink 

than the fern. On female plants, reproductive sinks (i.e, berries) had the highest 

competitive and mobilising ability. 

Crown carbohydrate concentration appeared to reach a physiological maximum of 

65% in late summer. Most of the carbohydrate pool was long chain fructans, i.e, with 

degree of polymerisation above eight. The size of the crown carbohydrate pool 

increased during autumn and senescence as crown dry weight increased. The 

concentration of disaccharide increased during senescence indicating that it may have 

a role in cold tolerance. There was little change in crown dry weight or carbohydrate 

concentration of chilled plants until after the plants had been chilled for five weeks 

and the minimum temperature for budbreak had decreased. Respiration then increased 

(iS internal dormancy was further released. 
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Changes in the composition of carbohydrate reserves are associated with the chilling 

process, and may affect the release of internal dormancy. Dormant plants required 

exposure to temperatures below 12.5C to increase the monosaccharide concentration 

above 4.5% dry weight and to depolymerise long chain fructans. Both these factors 

would decrease the substrate for some energy requiring process which must occur 

before budbreak can occur. 

'Rutger's Beacon' required approximately 500 chilling units (calculated using the 

Utah model) to release 50% of the basal buds from internal dormancy and permit 

growth at 12.5C. The chilling response curve for asparagus appears to be flatter than 

the Utah model. 

This thesis confinned earlier work which indicated that improved agronomic 

performance may be related to increased partitioning into carbohydrate storage tissue 

i.e, the crown. Genotypic differences in depth of internal dormancy and spear growth 

rate will also affect yield. 

Differences in carbohydrate metabolism are not the reason for agronomic differences 

between male and female plants. The strong sink effect of berries on female plants 

reduces crown dry weight and thus the crown carbohydrate pool. 
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