Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

NUTRIENT REQUIREMENTS FOR ACETONE-BUTANOL-ETHANOL PRODUCTION FROM WHEY PERMEATE BY *CLOSTRIDIUM ACETOBUTYLICUM* P262 IN A RANGE OF BIOREACTORS

by

SUNTHORN KANCHANATAWEE

A Thesis presented in partial fulfilment of the requirements for the degree of **Doctor of Philosophy** in *Biotechnology* at Massey University, Palmerston North, New Zealand

1991

To my father who passed away in peace, To my beloved mother, sister 'Lek' and brother 'Som'

.

.

ABSTRACT

The acetone-butanol-ethanol (ABE) fermentation process, using *Clostridium acetobutylicum* P262, was studied. Experiments were conducted in a traditional batch fermentation using freely-suspended cells in a defined medium with lactose as carbon source. Solvent production did occur under conditions of nitrogen-, phosphate- or iron-limitation. However, the optimum conditions were observed when all nutrients were present slightly in excess of growth requirements. A greater excess of nutrients caused the fermentation to be acidogenic rather than solventogenic.

Sulphuric acid casein whey permeate, without nutrient supplementation, proved to be a poor substrate for growth and solvent production by this organism. However, the addition of yeast extract (5 g/l) led to strong solventogenesis. The deficiency in the whey permeate was shown to be iron rather than assimilable nitrogen, phosphate or vitamins.

Experiments were also performed in a defined medium in continuous culture using freely-suspended cells in a CSTR. An inverse relationship was observed between the biomass concentration and the specific butanol productivity. It is suggested that this was due to the cell population not being homogeneous, and that a change in the nutrient *balance* led to a change in the relative proportions of acidogenic, solventogenic and inert cells (spores).

The addition of supplementary yeast extract during continuous solvent production from whey permeate using free cells in a CSTR showed that yeast extract supplementation of less than 1 g/l favoured acid production rather than solvent production. It is unlikely that high solvent productivities can be attained with this substrate in a single stage continuous culture system with freely-suspended cells. A maximum solvent productivity of 0.05 g/l.h was observed in continuous culture compared to 0.06 g/l.h in batch culture.

A continuous fermentation process was investigated using cells immobilized by adsorption onto bonechar and operated in a packed bed reactor. Three nutrients (i.e. nitrogen, phosphate and iron) were selected for this investigation. Solvent production was favoured by high concentrations of these nutrients in the influent medium. It was not possible to restrict the supply of phosphate or iron in the reactor due to leaching of the bonechar. However, conditions where biomass growth was restricted by a restriction in the nitrogen supply were not conducive to solvent production.

This reactor was also operated using whey permeate as the substrate. The biomass build-up was controlled by minimizing the supplementary yeast extract concentration of the feed, but this had deleterious effects on solvent production. Hence, when producing solvent from whey permeate in this type of reactor a compromise must be made between strong solventogenesis and reactor longevity.

ii

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. Ian S Maddox for his remarkable guidance and supervision. His encouragement, patience and enthusiasm throughout the course of this Ph.D. study was deeply appreciated.

I also wish to thank my co-supervisor, Dr. S M Rao Bhamidimarri for his supervision and interest in this project.

I gratefully thank to Professor Richard L Earle and Dr. Mary D Earle for their constant support, encouragement and understanding thoughout this study.

I also gratefully acknowledge the New Zealand Ministry of External Relations and Trade for the financial support towards this degree, the Royal Thai Government and Khon Kaen University for allowing me the time to pursue my academic advancement.

I wish to thank Dr. Tipvanna Ngamsak, Dean of Technology Faculty, Khon Kaen University, Khon Kaen, Thailand for her encouragement and support me to apply for this scholarship.

I also wish to extend my appreciation to the following people:

- Mr. John Alger and Mr. Bruce Collins of the Biotechnology Department for their excellent and willing assistance with all the related technical matters and laboratory equipment fabrication requirements that arose during this project,
- Mr. Wayne Mallet and Ms. Patty Ratumaitavuki of the Biotechnology Department for their marvellous and enthusiasm assistance in all the related computer work and typing to create this thesis,
- Mr. Mike Stevens, Mrs. A.-M. Jackson, Mrs. John Sykes, Mrs Janice Naulivou and Mrs. Judy Collins of the Biotechnology Department for their assistance in the laboratory,

iii

- Dr. Noemi A Gutierrez, Dr. Anton Friedl and Dr. Nasib Qureshi for sharing their enthusiasm on *Clostridium acetobutylicum* and their friendship,
- The Ph.D. fellows at the Biotechnology Department: Miss Pinthita Mungkarndee, Mr. Chan Xing-Xu, Mr. Dianesius Wongso and Mr. Sridhar Susarla for sharing their time and friendship,
- My parents, brother and sister for sharing their love, encouragement and support,
- My 'Kiwi' mum, Mrs Jane Kessell for her hospitality, patience, love and understanding which make my stay and my life in New Zealand worthwhile. I am deeply appreciated!!
- My 'Thai' friends: 'Poh', 'Nit', 'Griang', 'Odd', 'Wuth', and others for sharing their time and friendship,
- My 'Japanese' friends:
 Jun and Mami Tsujimoto; Akihito and Akemi Uchida for sharing their time, friendship and understanding,
- My 'Dutch' friends:

Marian, Martin and Casper for sharing their time and friendship,

- My 'Kiwi' friends:

Mr. Brian Robb for sharing his time and friendship,

Mr Maxwell Dick for his kindness, hospitality and constant support,

Dr. Paul Buckley for sharing his time, kindness and understanding,

Celia and Barry Robertson for their friendship and hospitality,

The Rotary Club (International) for all the entertainments and their hospitality,

Nat and John Grey; Nit and Mike Hare for their friendship and hospitality,

Mrs. K B L McDonald for sharing her time and kindness,

The only 'olly', 'Will', 'Roger', 'Malcolm', and Warren for sharing their time and friendship,

Last but not least, thanks to the Radio Station 92.2XS FM, the 'Classic Hit' 82.8 AM for all the music and entertainments.

TABLE OF CONTENTS

				Page
ABSTRACT	•			i
ACKNOWL	iii			
TABLE OF	CONT	ENTS		v
LIST OF FI	GURE	S		xii
LIST OF TA	ABLES			xvii
ABBREVIA	TIONS	5		xix
CHAPTER	1	INTROD	DUCTION	1
1.1	Backg	ground and	d objectives of Thesis	1
1.2	Histo	ory of the A	Acetone-Butanol-Ethanol (ABE)	
	Ferm	entation		2
1.3	The A	ABE Ferme	ntation Process	4
	1.3.1	Microorg	anisms	4
	1.3.2	Course o	f Fermentation	5
	1.3.3	Biochemi	stry of the Fermentation	6
1.4	Facto	rs Affectin	g the Fermentation	7
	1.4.1	Substrate	Source and Concentration	10
	1.4.2	Temperat	ture	11
	1.4.3	Oxygen		11
	1.4.4	pH and A	Acid End-products	12
	1.4.5	Nutrient	Concentrations	13
		1.4.5.1	Nutrient Concentrations in	
			Batch Culture	14
		1.4.5.2	Nutrient Concentrations in	
			Continuous Culture	15

v

				Page
	1.4.6	Product I	nhibition	17
1.5	Cell I	Density in	Association with	
	Solve	nt Product	ion	18
	1.5.1	Introduct	ion	18
	1.5.2	Chemosta	at	19
	1.5.3	Turbidos	tat	20
	1.5.4	pH-Auxo	stat	21
1.6	Utiliz	ation of W	hey for the ABE Fermentation	22
1.7	Solve	nt Product	ion using Immobilized cells	26
	1.7.1	Introduct	ion	26
	1.7.2	Cell Imm	obilized by Entrapment	27
	1.7.3	Cell Imm	obilized by Adsorption	32
1.8	Sumn	nary		34
CHAPTER	2	MATERI	ALS AND METHODS	36
2.1	Mater	rials		36
	2.1.1	Microbio	logical Media	36
	2.1.2	Chemical	S	40
	2.1.3	Gases an	d Other Materials	41
	2.1.4	Microorg	anism	41
		2.1.4.1	Production of Spore and Culture	
			Maintenance	41
		2.1.4.2	Culture Conditions	42
2.2	Steril	ization		42
	2.2.1	Media St	erilization	42
	2.2.2	Equipme	nt Sterilization	43

vi

				Page
2.3	Clear	ing of Glas	sware	43
2.4	Anae	robic Incub	ation	43
2.5	Analy	ytical Metho	ods	44
	2.5.1	pH Measu	rement	44
	2.5.2	Determina	ation of Biomass Dry Weight	44
	2.5.3	Total Cell	Count	44
	2.5.4	Determina	ation of Solvents and Acids	44
	2.5.5	Determina	ation of Lactose	46
	2.5.6	Determina	ation of Total Nitrogen by	
		the Kjelda	hl Method	47
	2.5.7	Determina	ation of Ammonium Ion	48
	2.5.8	Determina	ation of Inorganic Phosphate	48
	2.5.9	Determina	ation of Iron	49
2.6	Ferm	entation Cu	lture Conditions	49
	2.6.1	100-ml Bo	ttle Cultures	49
	2.6.2	Batch Ferr	nenter Culture	50
		2.6.2.1	Preparation of Inoculum	50
		2.6.2.2	2-litre Fermentation Apparatus	51
		2.6.2.3	Batch Fermenter Operation	51
	2.6.3	Continuou	is Fermentation using Free Cells	52
	2.6.4	Continuou	is Fermentation using Immobilized	
		Cells		56
2.7	Discu	ission of Me	ethods	60

vii

								P	age
CHAPTER 3		PRODUC	CTION	OF	SOLV	ENTS	ΒY	BAT	СН
		FERMEN	TATION	IN	DEFINE	D MEL	DIUM	AND	IN
		SULPHUI	RIC ACIE	O CAS	SEIN WI	HEY PER	RMEA	ГЕ	62
3.1	Introd	luction							62
3.2	Batch	Fermentati	on in Def	ined	Medium				63
	3.2.1	Effect of F	hosphate	Ion (Concentra	ation on			
		Solvent Pr	oduction						63
		3.2.1.1	Introd	uction	n				63
		3.2.1.2	Result	S					63
		3.2.1.3	Discus	sion					75
				Ŧ	6				
	3.2.2	Effect of A	Ammoniui	n Ion	Concen	tration o	n		
		Solvent Pr	oduction						77
		3.2.2.1	Introd	uction	1				77
		3.2.2.2	Result	S					78
		3.2.2.3	Discus	sion					87
	3.2.3	Effect of I	ron Conce	entrat	ion on				
		Solvent Pr	oduction						91
		3.2.3.1	Introd	uctio	n				91
		3.2.3.2	Result	5					91
		3.2.3.3	Discus	sion				-	100
3.3	Concl	usions							101
2.4			mal Chatro] h : .	٨			
3.4	Effect		onal Status	or 5		Acid			100
	Casei	n vvney Pei	imeate on	50IV	ent Prod	uction			102
	3.4.1	Introductio	on						102
	3.4.2	Results an	d Discuss	10n					102
	3.4.3	Conclusion	n					-	106

CHAPTER 4	L	CONTINUC FREELY-SU P262 IN A C REACTOR	DUS ISPENI CONTI	SOLVENT DED CELLS INUOUS ST	PRODUCTION OF <i>C. ACETOBU</i> IRRED TANK	Page USING TYLICUM 108
4.1	Introd	luction				108
4.2	Conti	nuous (Chem	ostat) (Solvent Prod	luction	
	Durin	.g Nutrient Li	imitatio	on in Define	d Medium	109
	4.2.1	Introduction	ι			109
	4.2.2	Results				111
		4.2.2.1	Effect	of Ammoni	um (Nitrogen)-	
			limite	ed Chemosta	t	111
		4.2.2.2	Effect	of Phospha	te-limited	
			Cherr	nostat		114
	4.2.3	Discussion				118
	4.2.4	Conclusion				120
4.3	Conti	nuous Solven	t Prod	uction from	Sulphuric	
	Acid	Casein Whey	Perme	eate		121
	4.3.1	Introduction	L			121
	4.3.2	Results				122
		4.3.2.1	Effect	of Dilution	Rate	122
		4.3.2.2	Effect	of Supplem	entary Yeast	
			Extra	ct Concentra	tion	122
	4.3.3	Discussion				125
	4.3.4	Conclusion				126

ix

			I	Page		
CHAPTER 5		CONTINUOUS SOLVENT PRODUCTION IN A PACKED				
		BED REACT	OR USING CELLS OF C. ACETOBUTYLIC	CUM		
		P262 IMMO	BILIZED BY ADSORPTION ONTO			
		BONECHAR	R	127		
5.1	Introd	luction		127		
5.2	Effect	of Growth-lin	miting Nutrient			
	Conce	entration on C	Continuous Solvent			
	Produ	iction in Defin	ned Medium	129		
	5.2.1	Introduction		129		
	5.2.2	Results		130		
		5.2.2.1	Effect of Ammonium (Nitrogen)			
			Ion Concentration on Solvent			
			Production in a Packed Bed			
			Reactor	130		
		5.2.2.2	Effect of Phosphate Ion			
			Concentration on Solvent			
			Production in a Packed Bed			
			Reactor	134		
		5.2.2.3	Effect of Iron Concentration			
			on Solvent Production in a			
			Packed Bed Reactor	137		
	5.2.3	Discussion		140		

5.2.4 Conclusion 141

x

÷

÷

			Page
5.3	Effect	of Yeast Extract Supplementation on	
	Solve	nt Production from Whey Permeate	142
	5.3.1	Introduction	142
	5.3.2	Results	142
	5.3.3	Discussion	148
	5.3.4	Conclusion	149
CHAPTER	6	FINAL DISCUSSION AND CONCLUSIONS	151
REFERENC	ES		154
APPENDIC	ES		172
1-4	Repri	nts of publications concerning work	
	descri	ibed in this thesis	

ł

xi

LIST OF FIGURES

Figure		Page
1.1	Outline of an ABE fermentation as carried	
	by C. Acetobutylicum (Awang et al., 1988)	8
1.2	Biochemical pathways in C. acetobutylicum	
	(Jones and Woods, 1986). Reactions which	
	predominate during the solventogenic phase of	
	the fermentation are shown by thick arrows.	9
2.1	The diagram of the fermenter head	53
2.2	A schematic diagram of the fermenter and	
	ancillary equipment used for continuous	
	fermentation in a CSTR	54
2.3	A photograph of the fermenter set-up for	
	continuous (chemostat) experiments in a CSTR	55
2.4	A schematic diagram of a vertical packed	
	bed reactor and ancillary equipment	57
2.5	A photograph of the vertical packed bed	
	reactor set-up for continuous culture	
	experiments using immobilized cells in	
	defined medium	58
2.6	A photograph of the vertical packed bed	
	reactor set-up for continuous culture	
	experiments using immobilized cells in	
	whey permeate medium	59

ŕ.

		×iii
Figure		Page
3.1	Progress of fermentation Run I. Initial phosphate 20 mg/l	65
3.2	Progress of fermentation Run II. Initial phosphate 100 mg/l	66
3.3	Progress of fermentation Run III. Initial phosphate 150 mg/l	67
3.4	Progress of fermentation Run IV. Initial phosphate 200 mg/l	68
3.5	Progress of fermentation Run V. Initial phosphate 250 mg/l	69
3.6	Progress of fermentation Run VI. Initial phosphate 400 mg/l	70
3.7	Progress of fermentation Run VII. Initial phosphate 600 mg/l	71
3.8	Progress of fermentation Run VIII. Initial phosphate 1000 mg/l	72
3.9	Plot of specific butanol production rate (g/g biomass phosphate.h) versus phosphate utilized, mg/l, for Runs I to VIII	76
3.10	Progress of fermentation Run IX. Initial ammonium 500 mg/l	80

		xiv
Figure		Page
3.11	Progress of fermentation Run X. Initial ammonium 650 mg/l	81
3.12	Progress of fermentation Run XI. Initial ammonium 1000 mg/l	82
3.13	Progress of fermentation Run XII. Initial ammonium 1200 mg/l	83
3.14	Progress of fermentation Run XIII. Initial ammonium 1500 mg/l	84
3.15	Progress of fermentation Run XIV. Initial ammonium 2000 mg/l	85
3.16	Plot of specific butanol production rate (g/g biomass ammonium.h) versus ammonium utilized, mg/l, for Runs IX to XIV	90
3.17	Progress of fermentation Run XV. Initial iron content 1.08 mg/l	93
3.18	Progress of fermentation Run XVI. Initial iron content 1.93 mg/l	94
3.19	Progress of fermentation Run XVII. Initial iron content 3.63 mg/l	95
3.20	Progress of fermentation Run XVIII. Initial iron content 6.25 mg/l	96

-

.

:

		xv
Figure		Page
3.21	Progress of fermentation Run XIX. Initial	94
	non content 11.50 mg/1	<i>y</i> -
3.22	Plot of specific butanol production rate	
	(g/g biomass iron.h) versus iron utilized,	
	mg/l, for Runs XV to XIX	98
4.1	Plot of volumetric production rate (mg/l.h)	
	versus ammonium acetate utilized (mg/l) in	
	continuous culture at pH 4.5 and D = 0.056 h ⁻¹	112
4.2	Plot of specific production rate (mg/g biomass.h)	
	versus ammonium acetate (mg/l) in continuous	
	culture at <i>p</i> H 4.5 and D = 0.056 h ⁻¹	113
4.3	Plot of volumetric production rate (mg/l.h)	
	versus potassium phosphate utilized (mg/l) in	
	continuous culture at <i>p</i> H and D = 0.056 h^{-1}	116
4.4	Plot of specific production rate (mg/g biomass.h)	
	versus potassium phosphate utilized (mg/l) in	
	continuous culture at <i>p</i> H 4.5 and D = 0.056 h^{-1}	117
4.5	Effect of dilution rate on reactor performance	
	using whey permeate as substrate at 34°C and	
	pH 4.5	123
4.6	Effect of yeast extract concentration on	
	reactor performance using whey permeate as	
	substrate at 34°C, pH 4.5 and D = 0.056 h ⁻¹	124

xvi
Page
132
136
139
"
143
144
ed
146

.

:

.....

;

•

LIST OF TABLES

.

Table		Page
1.1	Summary of the literature describing the production of solvents in batch fermentation using whey media	23
1.2	Summary of the literature describing the production of solvents in continuous fermentation using whey media	25
2.1	Synthetic medium used for batch fermentation experiments	37
2.2	Sulphuric acid casein whey permeate medium for batch fermentation experiments	37
2.3	Synthetic medium for continuous fermentation experiments	38
2.4	Sulphuric acid casein whey permeate medium for continuous fermentation experiments	38
2.5	Synthetic medium for experiments involving immobilized cells in a packed bed reactor	39
2.6	Sulphuric acid casein whey permeate medium for experiments involving immobilized cells in a packed bed reactor	39

xvii

		xviii
Table		Page
2.7	Typical composition of sulphuric acid casein whey permeate	40
3.1	Effect of phosphate ion concentration on fermentation parameters, after five days	
	of fermentation	64
3.2	Effect of ammonium ion concentration on fermentation parameters, after five days of fermentation	79
3.3	Effect of iron concentration on fermentation parameters, after five days of fermentation	92
3.4	Effect of yeast extract and vitamins on solvent production from whey permeate	104
3.5	Effect of various supplements on solvent production from whey permeate	105
5.1	Fermentation parameters on the effect of ammonium concentration on the performance of PBR	131
5.2	Fermentation parameters on the effect of phosphate concentration on the performance of PBR	135
5.3	Fermentation parameters on the effect of iron concentration on the performance of PBR	138

•

:

: . .

:

-

ABBREVIATION

-

ABE	Acetone-Butanol-Ethanol
ATP	Adenosine 5'-tri-phosphate
CoA	Coenzyme A
°C	Degree Celcius
cm	Centimetre(s)
CSTR	Continuous Stirred Tank Reactor
D	Dilution rate(s)
g	Gram(s)
GPR	General Purpose Reagent
h	Hour(s)
1	Litre(s)
М	Molar
mg	Milligram(s)
min	Minute(s)
ml	Millitre(s)
mm	Millimetre(s)
NAD⁺, NADH	Nicotinamide adenine dinucleotide, and its reduced form
nm	Nanometre
OD ₆₂₅	Optical density at 625 nm
PBR	Packed Bed Reactor
rpm	Revolutions per minute
μl	Microlitre(s)
%(w/v)	Percentage weight by volume
%(v/v)	Percentage volume by volume