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ABSTRACT

Nano-metric Optimised CMOS RF Receiver Front-end Components for UHF RFID

Readers

Jie (Jack) Li
Doctor of Philosophy in Engineering — School of Engineering and Technology

Massey University, Auckland, New Zealand

As the capabilities of wireless hand-held devices continue to increase, more pressure is
placed on the performance of RF transceiver front-ends. The primary objective of this
research is to investigate optimal methods of implementing a receiver front-end with
reduced power dissipation, reduced design complexity and minimised cost. This design
will be implemented on CMOS technology due to its advantages in system integration

and low-cost mass production.

This thesis presents the optimisation of a CMOS RF receiver front-end components
design for 866 MHz UHF RFID readers. The completed receiver front-end was
fabricated on an IBM 130nm CMOS process. Circuit-level techniques were employed
to reduce chip size and power consumption while providing enhanced performance. The
inclusion of the finite drain-source conductance g, effect improves the nano-metric
design optimisation algorithm. Simulated results and experimental data are presented
that demonstrate the RF receiver design with low power dissipation and low noise while

providing high performance.

Low-noise amplifiers using a power-constrained simultaneous noise and input matching
(PCSNIM) technique are presented first. In contrast to previously published narrow-
band LNA designs, the proposed design methodology includes the finite drain-source
conductance of devices, thus achieving simultaneous impedance and minimum noise
matching at the very low power drain of 1.6mW from a 1V supply. The LNA delivers a
power gain (S21) of 17dB, a reverse isolation (S12) of -34dB and an input power



reflection (S11@866 MHz) of -30dB. It has a minimum pass-band NF of around 2dB
and a 3rd order input referred intercept point (11P3) of -16dBm.

A low noise mixer is also presented utilising the PCSNIM topology with current
bleeding techniques. This design is proposed to replace the conventional Gilbert cell
mixer that usually exhibits a high noise figure. The proposed mixer has demonstrated
the ability to scale to the targeted 130nm process and meets design requirement at the
required operating frequency. It has a power conversion gain of 14.5dB, DSB noise
figure of 8.7dB DSB and an IIP3 of -5.1dBM. The mixer core itself only consumes
6mW from a 1.2V supply and the complete test circuit consumes 10mW with a balun at

each port.

Finally, a voltage controlled oscillator (VCO) is presented. A quadrature VCO (QVCO)
structure is selected to overcome the image rejection issue. Since the main goal for this
work is to design a low power receiver front-end, a folded-cascode topology is
employed to enable the QVCO to operate under 1V power supply. The proposed VCO
has a phase noise of -140dBc/Hz at 3-MHz offset from the carrier with only 5mW of
power dissipation. This gives a FOM value of -181dBc/Hz that compares favourably to

recently published designs.
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