Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Impact of Quorum Sensing on Cell Aggregation in Enteropathogenic and Enterohaemorrhagic Escherichia coli

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy In Microbiology and Genetics

At Massey University, Turitea Campus New Zealand

Barbara Siobhan Govan

2013

<u>Abstract</u>

Quorum sensing has been shown to regulate phenotypic traits such as motility and biofilm production in pathogenic bacteria. Escherichia coli utilise both AI-2 and N-acylhomoserine lactones (AHL) guorum sensing systems to initiate phenotypic switches, such as changes in dissemination, in response to overall microbial population density. In addition HosA, a transcriptional regulator present in pathogenic strains of E. coli, was shown to be important in bacterial dissemination during this study. Deletion of hosA from enteropathogenic E. coli strain E2348/69 resulted in a non-motile population at lower temperatures, an effect that was reversed in the presence of exogenous AHL. Furthermore, addition of the same AHLs to wild-type E2348/69 decreased population motility. Bacterial aggregation has been linked to the motility of the population. Deletion of hosA was shown to increase aggregation, corresponding to an observed decrease in motility. Furthermore, addition of AHL was shown to decrease the propensity of the HosA mutant population to aggregate. Opposing effects were observed in the non-aggregating wildtype population. A hypothetical hierarchical association between HosA and guorum sensing was modelled to explain the relationship between motility and aggregation in E2348/69. It was observed the EAF plasmid is not essential for the formation of A/E lesions on human cell-line HT-29 by E2348/69. Infection of Galleria mellonella revealed increased virulence in highly aggregative populations and further highlighted the effect of HosA and environmental conditions on the pathogenicity of E2348/69. Ruminant animals, in particular cattle, are the main reservoir of enterohaemorrhagic E. coli O157:H7 with infection remaining asymptomatic. By comparison infection in humans can result in a range of segualae from mild to lifethreatening. E. coli O157:H7 is derived from an EPEC progenitor and as expected, dissemination was affected by specific AHLs in a similar manner to E2348/69. However, no aggregation was observed in the presence or absence of signal. This suggested a difference in the genes affected by quorum sensing between enteropathogenic and enterohaemorrhagic E. coli. Development of biocontrol strategies targeting AHL-dependent quorum sensing regulated processes, such as aggregation to reduce E. coli O157:H7 contamination of meat products is possible, based on the data presented in this thesis.

i

Acknowledgments

A heartfelt thank you goes to my supervisors, Dr. Helen Withers and Prof. Nigel French for the help, encouragement and unfailing support throughout the length of my project and the writing of my thesis.

Thanks also go to Dr. Jonathan Marshall for his help during this project, particularly for the statistics advice, the help with developing the aggregation method and for providing information on the IPS model.

My thanks also go to the Food Assurance and Meat Quality team both past and present for their support and understanding. Special thanks go to Shelley Urlich, who provided a figure for this thesis, and Ben Bright and Justine Couper for teaching and providing advice during my project.

Extra special thanks go to Dr. Tanushree Gupta for the unending support both professionally and personally, all the advice provided over the years, for being there when I needed support and for making sure I got time out once a week.

Thanks also go to Leanne Hall, Jess Owens, Lynsay Morgan, Tobi Sawdon and Cate Davis for the de-stressing distractions, non-science based conversations and helping me keep perspective.

Huge heartfelt thanks go to my family for the love and support, for being a shoulder to cry on and for listening to me at all hours of the day or night. Special thanks go to Frank Turnbull for being there, for being you and without whom I would not have been able to finish this thesis.

Finally, thanks go to the Ministry of Business, Innovation and Employment for funding my project.

<u>Contents</u>

				<u>Page</u>
Chapter (One - Introduc	tion		1
1.1	Escheric	chia coli		1
	1.1.1	Escherichia	coli pathotypes DAEC, ETEC, EAEC and EIEC	1
	1.1.2	Enteropatho	ogenic <i>E. coli</i>	3
	1.1.3	Enterohaem	norrhagic E. coli	5
		1.1.3.1	E. coli O157:H7 in cattle	6
		1.1.3.2	Epidemiology of EHEC on foodstuffs	9
	1.1.4	EPEC and E	EHEC pathogenesis	13
		1.1.4.1	Attaching/Effacing Lesions	13
		1.1.4.2	Transcriptional Regulator, HosA	19
		1.1.4.3	Motility and Aggregation	20
		1.1.4.4	EPEC-specific virulence factors	21
		1.1.4.5	EHEC-specific virulence factors	23
1.2	Quorum	Sensing (QS)		26
1.3	N-Acylh	omoserine Lact	ones (AHLs)	32
	1.3.1	Luxl and Lu	xR	32
		1.3.1.1	SdiA and other Orphan LuxR Homologues	36
	1.3.2	AHL Structu	ire and Function	39
		1.3.2.1	Phenotypic Switching	42
	1.3.3	Pseudomon	as aeruginosa – a complex example of a QS hierarchy	44
		1.3.3.1	LasRI and RhIRI	46
		1.3.3.2	PQS, QscR and VqsR	47
1.4	Autoindu	ucer-2 (AI-2)		48
	1.4.1	AI-2 Synthe	sis	48
	1.4.2	LuxS		51
	1.4.3	Phenotypic	Switching	52
	1.4.4	Vibrio spp	- an example of the similarities of function in two QS systems	53
		1.4.4.1	Vibrio harveyi	54
1.5	Quorum	Sensing and F	ood Safety	56
1.6	Infectior	Models of Path	nogenicity	57
1.7	Researc	h Hypotheses		57
Chapter 1	「wo - Material	s and Methods	ì	60
2.1	Growth	Media, Diluents	and Supplements	60
	2.1.1	Luria Broth	(LB)	60
	2.1.2	Luria Agar (LA)	60
	2.1.3	Marine Aga	r	60
	2.1.4	Autoinducer	Bioassay Media (AB)	60

				<u>Page</u>
	2.1.5	Autoinduci	ng Bioassay Agar	61
	2.1.6	Phosphate	Buffered Saline (PBS)	61
	2.1.7	Antibiotic S	Solutions	61
	2.1.8	N-acylhom	oserine Lactones (AHLs)	62
2.2	Bacteria	I Strains and F	Plasmids	62
2.3	Autoindu	ucer-2 Bioassa	iys	62
	2.3.1	Conditione	d Media (CM) Production	62
	2.3.2	Vibrio harv	<i>eyi</i> BB170-based Assay	65
	2.3.3	Vibrio harv	<i>eyi</i> MM32-based Assay	65
	2.3.4	Plate Diffu	sion-based AI-2 Assay	65
2.4	AHL De	tection Method	ls	66
	2.4.1	T-streaks f	or the Detection of AHL Production	66
	2.4.2	T-streaks f	or the Detection of AHL Production using CM	66
	2.4.3	Plate Diffu	sion assay	67
	2.4.4	Thin Layer	Chromatography (TLC)	67
		2.4.4.1	TLC Plate Preparation	67
		2.4.4.2	Extraction of AHLs from Rumen Fluid	68
2.5	Phenoty	pic Assays		69
	2.5.1	Motility As	says	69
	2.5.2	Promoter E	Expression Assay	69
	2.5.3	Aggregatio	n Indices (AI)	70
	2.5.4	Aggregatio	n Phase Contrast Microscopy Assay	70
		2.5.4.1	Analysis of Aggregation	71
	2.5.5	Curli Expre	ession Plate Assay	71
	2.5.6	Cellulose E	Expression Assay	73
	2.5.7	Exopolysa	ccharide Production Assay	73
	2.5.8	Antigen 43	Assay	73
	2.5.9	Proteins		74
		2.5.9.1	Total Cell Protein Extraction	74
		2.5.9.2	Protein Gels	74
		2.5.9.3	Protein Visualisation using Coomassie Blue	75
	2.5.10	Uronic Aci	d Assay	75
2.6	Genetic Methods		77	
	2.6.1	DNA Agarose Gels		77
	2.6.2	Polymerase Chain Reaction (PCR)		77
	2.6.3	Pulsed Fie	ld Gel Electrophoresis (PFGE)	79
		2.6.3.1	Reagents	79
		2.6.3.2	Plug Preparation	79
		2.6.3.3	Restriction Enzyme Digest	80

				<u>Page</u>
		2.6.3.4	PFGE	81
2.7	Tissue Cu	lture		82
	2.7.1	Growth Mediu	Im	82
	2.7.2	HT-29 Cell Lir	ne	82
	2.7.3	Fluorescence	Actin Staining (FAS test)	83
		2.7.3.1	HT-29 Cell Preparation	83
		2.7.3.2	Bacterial Preparation	83
		2.7.3.3	FAS Test	84
2.8	Galleria m	ellonella Infecti	on Studies	84
	2.8.1	Bacterial Prep	paration	85
	2.8.1	Inoculation of	Galleria mellonella Larvae	85
2.9	Statistics			85
2.10	Approvals			87
Chapter Three	e - Effect of	Quorum Sens	ing on Motility and the Influence of HosA	89
	3.1	Introduction		89
	3.2	Results		90
		3.2.1	Role of AHL and Temperature on the Population Expansion of E2348/69	90
		3.2.2	Role of HosA on the Population Expansion of E2348/69	98
		3.2.3	Effect of HosA and AHL on Aggregation by E2348/69	105
		3.2.4	Development of a Phase Contrast Microscopy Method for	
			Aggregation Analysis	109
		3.2.5	Effect of HosA on Cell Aggregation of E2348/69	116
		3.2.6	Role of AHL in Cell Aggregation of E2348/69 and E2348/69	
			hosA-	116
		3.2.7	hosA Promoter Expression as a Response to Temperature	
			and AHL	125
	3.3	Discussion		130
Chapter Four	– Identifica	tion of Cell Su	rface Macromolecules Affected by AHLs in E2348/69	140
	4.1	Introduction		140
	4.2	Results		141
		4.2.1	Effect of AHL on Aggregation and Population Expansion in a	
			LuxS/AI-2 Negative Background	141
		4.2.2	Effect of AHL on Polysaccharide Expression in E2348/69 and	
			the HosA mutant	153
		4.2.3	Effect of Protease on the Aggregation of E2348/69 hosA-	155
		4.2.4	Effect of AHL on Cell Surface Factors in E2348/69 and	
			E2348/69-derived strains	159

	<u>P</u>	<u>age</u>
4.2.5	Role of the EAF plasmid in the Aggregation and Population	
	Expansion of E2348/69	162
4.2.6	Association Between the EspA Filament and Cell Aggregation	
	in E2348/69	176
4.2.7	Effect of AHL on the Formation of Attaching-effacing Lesions	
	by E2348/69 and E2348/69-derived strains	179
4.3 Discu	ussion	187
Chapter Five - Effect of AHL or	the motility and aggregation of <i>E. coli</i> O157:H7	198
5.1 Introd	duction	198
5.2 Resu	lts	199
5.2.1	Presence of AHL in Complex Biological Matrices	199
5.2.2	Genetic Relatedness of a Selection of E. coli O157:H7 Isolates	203
5.2.3	Role of AHL and Temperature on the Population Expansion of	
	E. coli O157:H7	205
5.2.4	Cell Aggregation of E. coli O157:H7	210
5.2.5	Effect of AHL on the Expression of Exopolysaccharide in E.	
	coli O157:H7	212
5.2.6	Effect of AHL on the Attachment of E. coli O157:H7 to	
	Mammalian Cells	216
5.2.7	Effect of Experimental Controls on Galleria mellonella	218
5.2.8	Effect of AHLs on E. coli O157:H7 Pathogenicity using the	
	Galleria mellonella Model	223
5.2.1	0 Role of Signalling and Environment on E2348/69 Pathogenicity	
	using the Galleria mellonella Model	226
5.3 Discu	Jssion	230
Chapter Six - General Discussi	on	239

Chapter Seven - References

Abbreviations

(v/v)	volume/volume ratio
(w/v)	weight/volume ratio
A/E Lesions	Attaching-effacing lesions
AB	Autoinducing Bioassay medium
AHL	N-acylhomoserine lactone
AI	Aggregation Indices
AI-2	Autoinducer-2
AIP	Autoinducing Peptide
AMC	Activated Methyl Cycle
ANOVA	Analysis of Variance
Bfp	Bundle forming pili
BSA	Bovine serum albumin
DAEC	Diffusely adherent Escherichia coli
dDHL	N-dodecanoyl-L-HSL
dH ₂ O	de-ionised water
DMEM	Dulbecco's Modified Eagles Medium
DMSO	Dimethyl Sulphoxide
D-OdDHL	N-(3-oxododecanoyl)-D-HSL
D-OHHL	N-(3-oxohexanoyl)-D-HSL
DPD	4,5-hydroxy-2,3-pentanedione, the AI-2 precursor
EAEC	Enteroaggregative Escherichia coli
EAF	EPEC adherence factor
EHEC	Enterohaemorrhagic Escherichia coli
EIEC	Enteroinvasive Escherichia coli
EPEC	Enteropathogenic Escherichia coli
ETEC	Enterotoxigenic Escherichia coli
FAS	Fluorescence Actin Staining
FBS	Foetal Bovine Serum
HosA	Homologue of SlyA

HUS	Haemolytic Uraemic Syndrome
K-S	Kolmogorov-Smirnov test
LA	Luria Agar
LB	Luria Broth
LEE	Locus of Enterocyte Effacement
OD ₆₀₀	Optical Density (600nm)
OHHL	N-(3-oxohexanoyl)-L-HSL
PBS	Phosphate Buffer Saline
PFGE	Pulsed Field Gel Electrophoresis
QS	Quorum Sensing
RLU	Relative Light Units
RT	Room Temperature
SAH	S-adenosylhomocysteine
SAM	S-adenosylmethionine
SdiA	Suppressor of division
SRH	S-ribosylhomocysteine
STEC/VTEC	Shiga-toxin containing/ verocytotoxin-producing Escherichia coli
Stx	Shiga toxin
SV.	serovar
VFA	volatile fatty acids

<u>Figures</u>

Figures		Page
Figure 1	Development of the gastric system in cattle from birth to maturity	7
Figure 2	Recorded cases of intestinal infections in New Zealand	12
Figure 3	Attaching/effacing lesion morphology of enteropathogenic E. coli on human epithelial cells	14
Figure 4	Locus of enterocyte effacement (LEE) in E. coli	16
Figure 5	Attaching/effacing lesion formation by enteropathogenic E. coli	18
Figure 6	Schematic diagram illustrating the basis of quorum sensing	28
Figure 7	Chemical structures of non-modified and modified AHLs	40
Figure 8	AHL synthesis in relation to changing population density in Euprymma scolopes, the	
	Hawaiian bobtail squid	43
Figure 9	Quorum sensing regulatory pathways in Pseudomonas aeruginosa	45
Figure 10	Schematic of the activated methyl cycle and synthesis of AI-2	49
Figure 11	Schematic of QS regulation in Vibrio harveyi leading to bioluminescence	55
Figure 12	Inoculation of Galleria mellonella larvae	86
Figure 13	Effect of temperature on E2348/69 population expansion	91
Figure 14	Effect of AHLs on E2348/69 population expansion at 25°C	93
Figure 15	Variation in the diameter of the motility zones produced by E2348/699 in the presence and	
	absence of different AHLs at 25°C	94
Figure 16	Variation in the diameter of the motility zones produced by E2348/69 in the presence and	
	absence of different AHLs at 37°C	97
Figure 17	Effect of temperature on E2348/69 hosA- population expansion	99
Figure 18	Effect of AHLs on E2348/69 hosA- population expansion at 25°C	100
Figure 19	Variation in the diameter of the motility zones produced by E2348/69 hosA- in the	
	presence and absence of different AHLs at 25°C	101
Figure 20	Comparison of variation of E2348/69 and E2348/69 <i>hosA</i> - population expansion at 25°C	
	in the presence and absence of <i>N</i> -(3-oxohexanoyl)-L-HSL and <i>N</i> -dodecanoyl-L-HSL	103
Figure 21	Variation in the diameter of the motility zones produced by E2348/69 hosA- in the	
	presence and absence of different AHLs at 37°C	104
Figure 22	Comparison of cell aggregation by E2348/69 and E2348/69 hosA- using aggregation	
	indices and incubation at 25°C	106
Figure 23	Effect of <i>N</i> -(3-oxohexanoyl)-L-HSL on cell aggregation by E2348/69 <i>hosA</i> ⁻ at 25°C	108
Figure 24	Aggregates formed by E2348/69 and E2348/69 hosA in three independent biological	
	replicates	110
Figure 25	CellProfiler™ outputs produced during analysis of the microscopy images illustrating the	
	aggregation of E2348/69 and E2348/69 hosA-	111
Figure 26	Aggregation profiles of biological replicates of E2348/69 and E2348/69 hosA- at 25°C	113
Figure 27	Graphical representations of variation between the aggregation profiles of two	115
	independent replicates of E2348/69	

		Page
Figure 28	Comparison of the aggregation profiles produced by E2348/69 and E2348/69 hosA- at	
	25°C	117
Figure 29	Aggregates formed by E2348/69 in the presence and absence of AHL at 25°C	119
Figure 30	Aggregation profile of E2348/69 in the presence and absence of N-(3-oxohexanoyl)-L-	
	HSL and <i>N</i> -dodecanoyl-L-HSL at 25°C	120
Figure 31	Aggregation profile of E2348/69 in the presence and absence of N-(3-oxo-hexanoyl)-D-	
	HSL and <i>N-</i> (3-oxododecanoyl)-D-HSL at 25°C	122
Figure 32	Aggregates formed by E2348/69 $hosA$ in the presence and absence of AHL at 25°C	123
Figure 33	Aggregation profile of E2348/69 hosA- in the presence and absence of N-(3-oxohexanoyl)-	
	L-HSL and <i>N</i> -dodecanoyl-L-HSL at 25°C	124
Figure 34	Aggregation profile of E2348/69 hosA- in the presence and absence of N-(3-oxo-	
	hexanoyl)-D-HSL and N-(3-oxododecanoyl)-D-HSL at 25°C	126
Figure 35	Comparison of the aggregates formed by E2348/69 and E2348/69 hosA- in the presence	
	and absence of N-(3-oxohexanoyl)-L-HSL and N-dodecanoyl-L-HSL at 25°C	127
Figure 36	Effect of temperature and active AHL on hosA promoter activity in E2348/69 and	
	E2348/69 hosA-	129
Figure 37	Comparison of E2348/69 population expansion with that of the HosA and LuxS mutants at	
	25°C	142
Figure 38	Variation in the diameter of the motility zones produced by AE2348/69 $\mathit{luxS^{-}}$ in the	
	presence and absence of different AHLs at 25°C	143
Figure 39	Aggregates formed by AE2348/69 $\mathit{luxS}^{\text{-}}$ in the presence and absence of exogenous AI-2	
	at 25°C	145
Figure 40	Aggregation profile of AE2348/69 <i>luxS</i> ⁻ and the effect of exogenous AI-2 at 25°C	146
Figure 41	Aggregates formed by AE2348/69 <i>luxS</i> ⁻ in the presence of AHL at 25°C	149
Figure 42	Aggregation profile of AE2348/69 luxS in the presence and absence of N-(3-	
	oxohexanoyl)-L-HSL and N-dodecanoyl-L-HSL at 25°C	151
Figure 43	Aggregation profile of AE2348/69 luxS in the presence and absence of N-(3-oxo-	
	hexanoyl)-D-HSL and <i>N</i> -(3-oxododecanoyl)-D-HSL at 25°C	152
Figure 44	Comparison of exopolysaccharide production by E2348/69 and E2348/69 hosA-	154
Figure 45	Cellulose expression by E2348/69 and E2348/69 hosA-	156
Figure 46	Aggregates formed by E2348/69 hosA in the presence and absence of protease at 25°C	157
Figure 47	Aggregation profile of E2348/69 <i>hosA</i> in the presence and absence of protease at 25°C	158
Figure 48	Effect of N-(3-oxohexanoyl)-L-HSL on antigen 43 expression in E2348/69 and E2348/69	161
	hosA-	
Figure 49	Curli expression in E2348/69 and E2348/69-derived strains	163
Figure 50	Effect of AHL on curli expression in E2348/69, E2348/69 hosA- and AE2348/69 luxS-	164
Figure 51	Variation in the diameter of the motility zones produced by E2348/69 bfpA- in the	
	presence and absence of different AHLs at 25°C	165
Figure 52	Aggregates formed by E2348/69 <i>bfpA</i> ⁻ in the presence and absence of AHL at 25°C	167

		<u>Page</u>
Figure 53	Aggregation profile of E2348/69 <i>bfp</i> A- in the presence and absence of <i>N</i> -(3-oxohexanoyl)-	
	L-HSL and <i>N</i> -dodecanoyl-L-HSL at 25°C	168
Figure 54	Variation in the diameter of the motility zones produced by E2348/69 MAR001 in the	
	presence and absence of different AHLs at 25°C	170
Figure 55	Aggregates formed by E2348/69 MAR001 in the presence and absence of AHL at 25°C	171
Figure 56	Aggregation profile of E2348/69 MAR001 in the presence and absence of N-(3-	
	oxohexanoyl)-L-HSL and N-dodecanoyl-L-HSL at 25°C	172
Figure 57	Aggregation profile of E2348/69 MAR001 in the presence and absence of N-(3-oxo-	
	hexanoyl)-D-HSL and N-(3-oxododecanoyl)-D-HSL at 25°C	174
Figure 58	Detection of the EAF plasmid by PCR	175
Figure 59	Variation in the diameter of the motility zones produced by E2348/69 espA- in the	
	presence and absence of different AHLs at 25°C	177
Figure 60	Aggregates formed by E2348/69 espA- in the presence and absence of AHL	178
Figure 61	Aggregation profile of E2348/69 espA- in the presence and absence of N-(3-oxohexanoyl)-	
	L-HSL and <i>N-</i> dodecanoyl-L-HSL at 25°C	180
Figure 62	Aggregation profile of E2348/69 espA- in the presence and absence of N-(3-oxo-	
	hexanoyl)-D-HSL and N-(3-oxododecanoyl)-D-HSL at 25°C	181
Figure 63	FITC-Phalloidin staining of HT-29 cells in the presence and absence of AHL and solvent	183
Figure 64	A/E lesion formation by E2348/69 in the presence and absence of AHLs	184
Figure 65	Comparison of A/E lesion formation by E2348/69 and E2348/69 bfpA-	185
Figure 66	A/E lesion formation by AE2348/69 luxS ⁻ in the presence and absence of AHLs	186
Figure 67	A/E lesion formation by E2348/69 hosA- in the presence and absence of AHLs	188
Figure 68	Short chain AHLs produced by psychrotolerant Enterobacteriaceae isolated from the	
	surface of meat	200
Figure 69	Separation of AHLs present in unfiltered rumen fluid by thin layer chromatography	202
Figure 70	Pulsed-Field Gel Electrophoresis separation of E. coli O157:H7 isolates	204
Figure 71	Effect of temperature on E. coli O157:H7 population expansion	206
Figure 72	Variation in the diameter of the motility zones produced by faecal isolates of E. coli	
	O157:H7 in the presence and absence of different AHLs at 25°C	208
Figure 73	Variation in the diameter of the motility zones produced by hide and clinical isolates of E.	
	coli O157:H7 in the presence and absence of different AHLs at 25°C	209
Figure 74	Aggregation profiles of E. coli O157:H7 isolates in the presence and absence of N-(3-	
	oxohexanoyl)-L-HSL and N-dodecanoyl-L-HSL at 25°C	213
Figure 75	Comparison of exopolysaccharide production by E. coli O157:H7 in the presence and	
	absence of AHL	215
Figure 76	A/E lesion formation by E. coli O157:H7 isolate N427 in the presence and absence of	
	AHLs	217
Figure 77	A/E lesion formation by E. coli O157:H7 isolate N218 in the presence and absence of	
	AHLs	219

		<u>Page</u>
Figure 78	A/E lesion formation by E. coli O157:H7 isolate N231 in the presence and absence of	
	AHLs	220
Figure 79	A/E lesion formation by E. coli O157:H7 isolate N635 in the presence and absence of	
	AHLs	221
Figure 80	A/E lesion formation by E. coli O157:H7 isolate N236 in the presence and absence of	
	AHLs	222
Figure 81	Galleria mellonella pigmentation after injection with inoculation medium and supplements.	
	Positive control is Ps. aeruginosa	224
Figure 82	Effect of AHL on E. Coli O157:H7 virulence and the impact on Galleria mellonella	
	pigmentation	225
Figure 83	Effect of AHL on E2348/69 virulence and the impact on Galleria mellonella pigmentation	227
Figure 84	Effect of growth media on E2348/69 virulence and the impact on Galleria mellonella	229
Figure 85	Hypothetical model of the regulation of aggregation in enteropathogenic E. coli	243
Figure 86	Schematic summary of the key findings in this study	251

<u>Tables</u>

Tables		Page
Table 1	Examples of chemical structures of different classes of quorum sensing signals	<u></u>
Table 2	Phenotypic effects of known AHL systems in specific bacteria	35
Table 3	Escherichia coli isolates used during this study	63
Table 4	Strains used during this study	63
Table 5	Plasmids used during this study	64
Table 6	CellProfiler™ parameters used for the analysis of aggregation as part of the phase	
	contrast microscopy method	72
Table 7	Reaction mix used for colony PCR reactions	78
Table 8	Primer sequences of <i>bfpA</i> and <i>perA</i>	78
Table 9	PCR cycling conditions used for all PCR reactions	78
Table 10	Statistical analysis of the effect of AHL on E2348/69 population expansion at $25^\circ C$	94
Table 11	Statistical analysis of the effect of AHL on E2348/69 population expansion at 37°C	97
Table 12	Statistical analysis of the effect of AHL on E2348/69 hosA- population expansion at 25°C	101
Table 13	Comparison of E2348/69 and E2348/69 hosA- population expansion at 25°C	103
Table 14	Statistical analysis of the effect of AHL on E2348/69 hosA- population expansion at 37°C	104
Table 15	Statistical comparison of the aggregation profiles produced by independent biological	
	replicates of E2348/69 and E2348/69 hosA-	113
Table 16	Statistical comparison of the effect of active AHL on E2348/69 aggregation	120
Table 17	Statistical comparison of the effect of <i>D</i> -isomers on E2348/69 aggregation	122
Table 18	Statistical comparison of the effect of active AHL on E2348/69 hosA- aggregation	124
Table 19	Statistical comparison of the effect of <i>D</i> -isomers on E2348/69 hosA- aggregation	126
Table 20	Statistical comparison of the effect of active AHL on the aggregation of E2348/69 and	
	E2348/69 hosA-	127
Table 21	Statistical analysis of the effect of AHL on AE2348/69 <i>luxS</i> population expansion at 25°C	143
Table 22	Statistical analysis of the effect of exogenous AI-2 on AE2348/69 luxS aggregation	146
Table 23	Statistical analysis of the effect of active AHL on AE2348/69 luxS- aggregation	151
Table 24	Statistical analysis of the effect of <i>D</i> -isomers on AE2348/69 <i>luxS</i> ⁻ aggregation	152
Table 25	Statistical analysis of the effect of protease on E2348/69 hosA- aggregation	158
Table 26	Statistical analysis of the effect of AHLs on E2348/69 <i>bfpA</i> ⁻ population expansion at 25°C	165
Table 27	Statistical analysis of the effect of active AHL on E2348/69 <i>bfpA</i> - aggregation	168
Table 28	Statistical analysis of the effect of AHL on E2348/69 MAR001 population expansion at	
	25°C	170
Table 29	Statistical analysis of the effect of active AHL on E2348/69 MAR001 aggregation	172
Table 30	Statistical analysis of the effect of <i>D</i> -isomers on E2348/69 MAR001 aggregation	174
Table 31	Statistical analysis of the effect of AHL on E2348/69 <i>espA</i> ⁻ population expansion at 25°C	177
Table 32	Statistical analysis of the effect of active AHL on E2348/69 espA- aggregation	180
Table 33	Statistical analysis of the effect of <i>D</i> -isomers on E2348/69 <i>espA</i> - in aggregation	181

		<u>Page</u>
Table 34	Statistical analysis of the effect of AHL on E. coli O157:H7 faecal isolate population	
	expansion at 25°C	208
Table 35	Statistical analysis of the effect of AHL on E. coli O157:H7 hide and clinical isolate	
	population expansion at 25°C	209
Table 36	Statistical analysis of the effect of AHL on <i>E. coli</i> O157:H7 population expansion at 37°C	211
Table 37	Statistical analysis of the effect of AHL on E. coli O157:H7 aggregation	214
Table 38	Fatality rates of Galleria mellonella after inoculation with the control samples	224
Table 39	Fatality rates of Galleria mellonella after inoculation with E. coli O157:H7	225
Table 40	Fatality rates of Galleria mellonella after inoculation with E2348/69 or E2348/69 hosA-	227
Table 41	Effect of N-(3-oxohexanoyl)-L-HSL on the fatality rates of Galleria mellonella after	
	inoculation with E2348/69 and E2348/69 hosA- grown in LB	229