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Abstract

Mire ecosystem engineers create an acidic, nutrient poor and slowly permeable peat due to
specific morphological, physiological and organo-chemical properties, changing the ecology of
fens (high-nutrient, wet mires) so that they become bogs (low nutrient mires with drier
surfaces), the so-called fen-bog transition. Observations on the development of raised restiad
bogs in New Zealand support the concept of ecosystem engineering in forming raised mires,
but involving the species Empodisma minus and Empodisma robustum, of the family

Restionaceae.

The aim of this thesis is to examine the facility with which Empodisma minus fits the model of
the ecosystem engineer of the fen-bog transition in New Zealand, and the techniques used to
achieve that transition. A model for identifying mire engineers is proposed, based on the
collated literature. Species best able to compete in the low nutrient raised mire environment
possess morphological adaptations to increase nutrient capture, or traits which minimise
nutrient losses (low tissue nutrient levels, high leaf longevity, high nutrient resorption prior to
abscission). Whilst both Empodisma minus and Chionochloa rubra appear to possess nutrient
retention and capture traits, Empodisma minus appears to out-compete Chionochloa rubra in

low nutrient mires, implying superior nutrient capture or retention strategies.

In a survey of 70 mire communities in New Zealand — taking canopy biomass, soil physico-
chemistry and the existence of capillaroid root growth and hummock-hollow topography into
account - it is clearly shown that Empodidma minus is tolerant of a wide range of
environmental conditions, thus enabling it to establish in minerotrophic fens, and persist after
the fen-bog transition. In contrast to its widespread occurrence in wetland vegetation
communities, extensive capillaroid root growth and the associated hummock-hollow
topography occur less frequently. Despite P-limited growth being indicated, capillaroid root
growth is infrequent or absent in coal pavement and pakihi communities, or where
Empodisma minus is not the dominant canopy species. Empodisma minus appears to form
capillaroid roots to maximise nutrient capture in the surface litter layer under a dense
Empodisma canopy, and a complex relationship between capillaroid root formation, climate,

canopy biomass and nutrients is indicated.

Lower tissue nutrient levels where the species co-exist in mires suggest Empodisma minus is a
more frugal user of limiting nutrients than Chionochloa rubra, of importance as the growing

surface of the mire becomes increasingly dependent on ombrotrophic (rainfall) nutrient



sources as a result of peat accumulation. | studied the competitive relations between
Empodisma minus and Chionochloa rubra in a 26 month long, de Wit replacement competition
experiment. Empodisma minus is the superior competitor long-term in the oligotrophic
conditions of the fen-bog transition and raised mire environments, providing a high water
table is maintained; otherwise species co-existence will likely occur. These results suggest a
dense Empodisma canopy is required to maintain the wet environment needed for

apogeotropic root weft growth, which displayed plasticity in proliferation and placement.

To further examine nutrient retention and loss traits in Empodisma minus and Chionochloa
rubra, | evaluated their production and decomposition characteristics in a 12 month Litter
Decomposition Experiment in a montane transitional mire. Empodisma minus culms comprise
much of the canopy biomass in wet, oligotrophic conditions of the mire environment, while
Chionochloa rubra tussocks are reduced in density and biomass. Mass losses after 12 months
were lowest from Empodisma minus capillaroid roots, which contain high fibre, and less P, K,
and celluose than Chionochloa rubra below-ground biomass. Both Empodisma minus and
Chionochloa rubra produce low nutrient, slowly decomposing foliar litters, with Empodisma
minus withdrawing much of the nutrient content from its senescing culms. While a large
component of total litter inputs in transitional restiad fens may be comprised of senesced
Empodisma minus culms, the slower decay of Empodisma minus capillaroid roots suggest
these contribute an increasing proportion of the accumulating organic matter after 12

months.

There is a significant relationship between short-term decay rates and location within the
mire, however, this appears to be unrelated to the nutrient content or geochemistry of the
substrate, and may reflect the influence of hummock-hollow topography and/or hydrology on

decomposition.

Empodisma minus possesses both mechanisms employed in engineering the fen-bog transition
- superior nutrient capture and nutrient retention - which results in increased production of
slowly decaying capillaroid roots and foliage in oligotrophic mires, and hence increased peat
accumulation. The mechanisms enable Empodisma minus to engineer the fen-bog transition in

New Zealand mires.
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List of Abbreviations

BD

C:N
CEC
Cond
EE

FBT
ICP-MS

LOI
Mo
Moist

N:P
PCA
PVC
REI
RYT
TC
TN
TK
TP
TY
VP
WCI
Xo
X1

Bulk density

Carbon:Nitrogen ratio

Cation exchange capacity
Conductivity

Ecosystem Engineer

Fen-Bog Transition
Inductively coupled plasma mass spectrometer
Decay rate constant

Loss on Ignition

Initial mass

Moisture content

Final mass
Nitrogen:Phosphorus ratio
Principal components analysis
Polyvinyl chloride

Relative Efficiency Index
Relative Yield Total

Total carbon

Total nitrogen

Total potassium

Total phosphorus

Total Yield

Von Post decomposition index
Wetland condition index
Initial nutrient content

Final nutrient content

Yield
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