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ABSTRACT

The presence of constitutive, intracellular and extracellular
enzymes catalysing the hydrolysis of glycine bile acid

conjugates in the fungus Cercospora melonis CBS 162.60 was

demonstrated by the use of cell-free systems. Shake flask

and fermenter studies were undertaken to determine environmental
factors favouring high free bile acid yields. Two major
factors were observed to reduce such yields. These were the

binding of the bile acid to the mycelium and the degradation

of free bile acids to non-steroidal products by the fungus.

Whole-cell cultures of C. melonis exhibited poor utilisation of
taurine conjugates with no concomitant production of free bile
acid. Incubation of synthetic bile conjugate analogues with

C. melonis and the use of cell-free systems suggested that

this was due to two major factors: firstly, the specificity

of the extracellular enzyme for a-aminocarboxylic acid
conjugates and secondly, the apparent inability of taurine
conjugates to gain access to a constitutive, intracellular
cholanoyl taurine hydrolase. It is proposed that the poor
permeability of the fungal cell membrane is responsible. Hence,
the low activity of whole-cell cultures of C. melonis on

taurine conjugates suggests that an industrial process employing
the fungal hydrolysis of gall is not feasible.

Comparative studies with Curvularia fallax IFO 8885 showed that
it possessed superior specific hydrolase activity on glyco-
deoxycholic acid compared to C. melonis, although this 1s not

apparent from qualitative screening.

The abilities of C. melonis, Curvularia coicis IFO 7278 and
Aspergillus ochraceus IFO 4071 (Wilhelm) to 7a-dehydroxylate
cholic acid and its natural conjugates were investigated.
Despite the presence of an apparently constitutive, intra-
cellular 7a-hydroxycholanoyl dehydroxylase in these organisms,
only low yields of dehydroxylated products were obtained with
whole-cell cultures.
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BILE ACID NOMENCLATURE

The trivial names used for bile acids are given, followed by the
abbreviations employed, in brackets, and their I.U.P.A.C.

systematic chemical names (I.U.P.A.C.-I.U.B., 1969).

Cholic acid (CA)

3a,700,12a-trihydroxy-58-cholan-24-oic
acid.

Chenodeoxycholic acid 3a,70-dihydroxy-58-cholan-24-o0ic acid.

Dehydrocholic acid 3a,70,120-trioxo-58-cholan-24-0ic acid.

Deoxycholic acid (DC) 30.,120-dihydroxy-58-cholan-24-o0ic acid.

Lithocholic acid = 3a-hydroxy-58-cholan-24-0ic acid.

N-(a-alano) -deoxycholic acid (a-AD) = 3o,12a-dihydroxy-58-cholan-
24-oyl-a-alanine.

N-(B-alano) -deoxycholic acid (B-AD) = 3a,l2a-dihydroxy-58-cholan-
24-o0yl-B-alanine.

N- (a-aminomethanesulphonyl) -

deoxycholic acid (Na-a-AMSD) = 3a,l2a-dihydroxy-58-cholan-24-oyl-

a-aminomethanesulphonic acid.

Glycocholic acid (GC) = 3a,7a,l2a-trihydroxy-58-cholan-24-
oylglycine.

Glycochenodeoxycholic acid = 3a,7a-dihydroxy-58-cholan-24-
' oylglycine.

Glycodeoxycholic acid (GD) = 3a,l2a-dihydroxy-58-cholan-24-
' oylglycine.

Taurocholic acid (NaTC) =3a,7a,l12a-trihydroxy-58-cholan-24-
oyltaurine.

Taurochenodeoxycholic acid = 3a,7a-dihydroxy-58-cholan-24-
oyltaurine.

Taurodeoxycholic acid (NaTD) = 3a,l12a-dihydroxy-58-cholan-24-

oyltaurine.

The term '""free bile acid'" denotes a bile acid with an unsubstituted

C-24 carboxylic acid group. Sulphonic acid conjugates will be

usually referred to as the sodium salt.
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ABBREVIATIONS

Abbreviations of units:

amu atomic mass units

°c degrees CelSius

d day

g gram

X g gravitational acceleration (ms_z)
h hour

1 litre

m metre

M mole per litre

m/e mass: charge ratio

min minute

mmo 1 millimole per litre

Pa pascal (Newton per square metre)
psi pound per square inch

rpm revolutions per minute

Other abbreviations:

ACC Akers Culture Collection of Imperial Chemical
- Industries Ltd.

ATCC American Type Culture Collection

calcd. calculated

CBS Centraalbureau voor Schimmelcultures

D.O. Dissolved oxygen

hplc high performance liquid chromatography

HUT Hiroshima University, Faculty of Engineering

8HQ 8 -Hydroxyquinoline

I.D. Internal diameter

IFO Institute for Fermentation, Osaka

IMI Commonwealth Mycological Institute

IR Infra-red

Lit. Literature

m.p. melting point

Rp Tlc mobility of a compound relative to the solvent

front mobility
tlc thin layer chromatography



