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Abstract

Virtual terrain is often used as the large scale background of computer graphics scenes. While

virtual terrain is essential for representing landscapes, manual reproduction of such large-scale

objects from scratch is time-consuming and costly for human artists. Many algorithmic generation

methods have been proposed as an alternative solution to manual reproduction. However, those

methods are still limited when needing them to be employed in a wide range of applications.

Alternatively, simulation of the stream power equation can effectively model landscape evolution

at large temporal and spatial scales by simulating the land-forming process. This equation was

successfully employed by a previous study in terrain generation. However, the unoptimised pipeline

implementation of the method suffers from long computation time on the increased simulation

size. Graphics processing units (GPUs) provide significantly higher computational throughput for

massively parallel problems over conventional multi-core CPUs. The previous study proposed a

general parallel algorithm to compute the simulation pipeline, but is design for any multi-core

hardware and does not fully utilise the computing power of GPUs. This study seeks to develop

an optimised pipeline of the original stream power equation method for GPUs. Results showed

that the new parallel GPU algorithm consistently had higher performance (about 300% for GTX

780 and 900% for RTX 2070 Super) recent octa-core CPU (Intel i7 9700k 4.9 Ghz). It also

consistently showed a 300% improvement in performance over the previous parallel algorithm on

GPUs. The new algorithm significantly outperformed the fastest parallel algorithm available, while

still being able to produce the same terrain result as the original stream power equation method.

This advancement in computational performance allows the algorithm method to generate precise

geological details of terrain while providing reasonable computation time for the method to be

employed in a broader range of applications.
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Chapter 1

Introduction

Computer graphics is the creation, storage and manipulation of images and models using com-

puters. There are many applications of computer graphics, and one of the commonly known is to

provide experiences of virtual worlds. Many of these virtual worlds can present a realistic world

of imagination that cannot be experienced in reality. This attraction has created an increasing

demand from movie audiences and video game users for high degrees of realism and for develop-

ment of artificially crafted objects within the virtual scenes. Computer graphics application has

also been employed for manufacturing industries where virtually-rendered images of the products

are economical and flexible for presenting products. Construction industries have also applied

computer graphics to virtually render their expected construction outcome, such as previewing a

building and for pre-inspection of the design and structure. As a result, the increased expectation

for computer graphics applications has been demanding the continuous and rapid evolution of

electronic devices.

Virtual terrain is essential background for representing landscapes in many computer graphics

applications such as movies, video games, architectural design, and simulations. However, virtual

terrain is usually a complex large-sized object, and for humans to craft it manually from scratch

is a costly approach because human labour is an expensive resource. An alternative method is

using computers to generate terrain automatically. Such methods are called procedural content

generation in computer graphics, which algorithmically creates digital content with limited or

indirect input. Procedural terrain generation methods have been an active area of research in

computer graphics for almost four decades. Many proposed methods are typically based on the

fractal, example data, and physical simulation. Different procedural terrain methods have their

advantages and disadvantages.

Additionally, the purpose of the application will affect the goals for these methods. Most

applications want to have reasonable control over the method to create results that they desire

11



12 CHAPTER 1. INTRODUCTION

rather than an unexpected random result. However, lack of control is not a concern for some

applications. For example, several video games attempt to provide a totally unexpected random

experience to players. Computation time should also satisfy the purpose of the application. There

is often a trade-off between realism and computation time, where the demand for more realistic

details usually means more computation. For applications such as movies and simulations, realism

is the most important factor, and how long it takes to compute is often less of a concern. However,

there are applications where realistic quality and computation time are both important. Video

games require interactions with users, but the user also wants the virtual world to have the highest

quality detail for a better experience at the same time. It may be one reason simulation-based

terrain generation methods are not very popular for an interactive application like video games

that intend to create content on the fly because simulations are usually expensive to compute even

though it can add realism to the result.

In order to achieve better realism for applications that require both reasonable computation

time and quality detail, parallel computing may offer as a possible solution. Parallel computing

exploits multiple processing cores to execute the computation simultaneously to solve a compu-

tational problem. A decomposition of the computation usually has to be manually written into

a parallel algorithm by the programmer. There are a variety of computing resources available

for parallel computing such as a multi-core CPU, network of distributed computers, digital signal

processor, field-programmable gate array, and graphics processing unit. Different resources are

optimised for different purposes and choosing the most effective combination for the application is

crucial.

Graphics processing units (GPUs) are designed for accelerating computer graphics rendering

pipeline. In order to process millions of pixels for a scene showing on the screen in real-time,

GPUs have thousands of small processing cores. GPUs can also be effective for computing a

general problem that requires a large amount of computation if the problem can be decomposed

into small subproblems. These are often called massively parallel problems, and GPUs can provide

significantly higher computational throughput in such cases as compared to multi-core CPUs.

Parallel computing exploiting GPUs may be one solution to generate terrain with high-quality

detail while also satisfying the requirement for reasonable computation time.

Research Goal

This study seeks to develop a method that generates large scale virtual terrain by simulating the

land forming process to produce realistic geological detail. This study simulates the stream power

equation, which was successfully employed by the method proposed in [1]. The previous study
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showed that the simulation of the equation can effectively generate large-scale features of terrain

such as valleys, mountains, and river networks. However, their implementation of the simulation

pipeline is unoptimised, and increasing the simulation size would result in a long computation

time.

This study objective was also to improve the computation time of the new method while keeping

the quality of terrain to widen the application range that the method can be employed. There has

a study that proposed a parallel algorithm for the simulation [2]. The parallel algorithm proposed

in [2] was a general algorithm that targeted any multi-core hardware such as multi-core CPUs, and

GPUs. However, the parallel algorithm specifically optimised to utilise GPUs’ computing power

has not yet been proposed. Therefore, this study seeks to develop an optimised pipeline of the

original stream power equation method for GPUs.

This thesis is arranged as follows. Chapter 2 briefly introduces the procedural terrain generation

and the method proposed in [1]. Chapter 3 presents and discusses the stream power equation and

its simulation in detail. Chapter 4 introduces GPU computing, which helps to explain the parallel

implementation of the simulation pipeline. Chapter 5 presents and discusses different parallel

algorithms and their implementations to compute the simulation pipeline. Chapter 6 presents and

discusses the result shown in this research, including computation time and terrain generation

result. Finally, Chapter 7 presents an overview of the study and discussion, along with some

conclusions and future work.
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Chapter 2

Procedural Terrain Generation

Virtual world in computer graphics scenes consists of a variety of digital contents such as vege-

tations, terrain, vehicles, buildings, living objects, and texture. For the application such as video

games, the contents also include levels, maps, rules, stories, items, quests, music, and sound effects.

While the creation of such contents is typically the responsibility of the human artist, humans are

slow and expensive. Moreover, those contents can be spatially demanding for limited storage size.

These limitations drove people to think of the automatic creation of digital contents through com-

puter algorithms. In computer graphics, the algorithmic generation technique of digital contents

is called procedural content generation.

Procedural content generation (PCG) refers to the algorithmic generation method of digital

contents with limited and or indirect human input. PCG algorithms are typically based on repeat-

ing patterns found in the object, exploiting existing dataset of the object, or physical simulations

of the forming process of the object. PCG methods were first introduced to overcome the storage

limitation in video games by generating contents on the fly instead of storing them in the storage.

Manual crafting of the variety of contents from scratch can be time-consuming and challenging for

the human artist, which also can be improved with the assistance from algorithms. However, the

effectiveness of PCG methods is limited to the contents that the algorithm can define its creation

pattern such as maps and levels in video games, or forming process such as terrain, and plants.

PCG is not a preferable solution for contents that require unique and artistic design.

Virtual terrain serves as an essential background in many computer graphics applications such

as video games, films, architectural design, and simulations. Complex landform features of terrain

are a result of interactions between various natural phenomena, and it is challenging for the human

to reproduce such features while keeping geological correctness. It is because while our visual

system is highly effective at identifying important features of natural terrain, our interpretation of

such features does not focus on their forming process. In order to overcome difficulties in virtual

15



16 CHAPTER 2. PROCEDURAL TERRAIN GENERATION

terrain crafting, procedural terrain generation has been an active area of research in computer

graphics for decades.

2.1 Procedural Content Generation

Computer graphics applications consist of a variety of digital contents such as texture, sound

effect, 3D objects. Procedural content generation (PCG) is an algorithmic creation method of

digital contents with the minimal, or indirect input from the user. PCG was first employed in

video games to overcome the storage size limitation in the early days. Instead of including large

amounts of contents data in the packages, exploiting PCG creates the contents on the fly as the

user proceeds in the game world.

In addition to the efficient use of storage, there are also other advantages of PCG. The algo-

rithmic generation is an automatic creation of contents with minimal input required from the user,

which can enhance the productivity and creativity of the human artist. Randomness can also be

introduced to the procedure using pseudorandom number generators. Random content generation

enables game developers to provide less predictable gameplay, which helps with creative game

design as a result.

PCG has been receiving increasing attention in many computer graphics application in large

industries. A classic example is the dungeon generation in the early 80s game Rogue (1980).

The random map generation in Civilisation has been allowing a unique gameplay experience.

Diablo (1996) employs PCG all over the game for its contents, such as maps, type, items, and

monsters. Borderland, the famous shooting game uses PCG to generate weapons in the game

(2009). Minecraft is a good example of extensive use of PCG techniques to generate the whole

world and its contents (2009). Although PCG methods were first developed for video games and

have been mostly employed for video games, they are also extensively used in other industries such

as films, and design. Speed Tree, the interactive data visualisation tool that generates vegetation is

employed in many 3D modelling for games, films, architectural design (2003). MASSIVE (Multiple

Agent Simulation System in Virtual Environment) is a famous example of PCG used in many

famous films. It was first developed for Lord of the Ring, and its key feature is the ability to

generate thousands of agents that all act as individuals.

Due to the increasing attention, PCG has been an active area of research across the academia

and industry. Research goal in PCG vary depending on the application, but there are some common

desirable properties. Firstly, the PCG method must be able to generate believable content reliably.

It is not desirable for the contents consumer to identify that the algorithm generated the content.

The failure of the content creation due to the unreliability of the algorithm cannot be forgiven
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especially for real-time applications such as video games. Secondly, the contents creator usually

need the ability to specify some aspects of the content to be generated. PCG methods that are

difficult to control are only useful for the limited scope of applications. Control methods are

desired to be highly-influencing to the resulting content and not to be too complicated. Lastly, the

computation time of the algorithm should satisfy the requirement of the application. Requirements

for time vary widely depending on the application, from real-time to days. The desirable properties

of a solution are different for each application. There is usually some degree of tradeoffs between

the properties involved.

2.2 Procedrual Terrain Generation

Terrain serves as an essential background in many computer graphics applications in large indus-

tries such as video games, films, architectural design, and simulations. Features of terrain such

as eroded parallel valleys, dendritic mountain ranges, and river networks are a result of complex

interactions between a number of natural phenomena such as temperature changes, rain, wind,

lightning, tectonic uplift, and plant ecosystem. The human visual system is highly effective at

identifying important features of natural terrain and so can quickly recognise errors and inconsis-

tencies in virtual landscapes. However, our interpretation of such complex features does not focus

on their forming process, and therefore, it is challenging and time-consuming for a human creator

to reproduce realistic-looking landscapes from scratch. In order to overcome the challenge of the

terrain crafting, developing methods of procedural terrain generation has been an active area of

research in computer graphics.

Procedural terrain generation has been studied for nearly four decades, and there are three

common approaches in the fields; fractal and noise, example-base, physical simulation of natural

phenomena. Fractal-based methods were inspired by the fact that similar patterns repeat at differ-

ent scales in terrain features. Using existing terrain dataset to generate new ones is also a popular

approach. These methods can exploit real-terrain dataset to reproduce realistic virtual terrain.

Methods that generate terrain data by simulating natural phenomena have been received much

attention since there is a large body of previous work on modelling of landscapes evolution. Simu-

lation of natural phenomena can reproduce geologically more accurate terrain features at small to

large scale. The goal of research in procedural terrain generation is typically to achieve better real-

ism, controllability, and reasonable computation time for its application. Each of these approaches

has advantages and disadvantages and which to be used is depending on the application.

Fractal-based methods are built on the observation that similar patterns repeat at different

scales in terrain feature. Fractional Brownian motion (fBm), the continuous-time Gaussian process
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is a basis of methods [3]. Two commonly known approaches are a random midpoint displacement

algorithm [4, 5, 6, 7] and a noise-based method [8]. Both methods are efficient to compute, es-

pecially the independent evaluation of the noise function of noise-based methods enable efficient

parallel implementations. However, the result of fBm is difficult to control through input parame-

ters which makes fractal-based terrain generation methods suffer from lack of control [9]. Moreover,

the self-similar pattern modelled by fractal terrain is only observed in relatively new not eroded

terrain, and such terrain does not include geological structures formed by erosion such as networks

of parallel valleys [4].

Example-based methods exploit the existing terrain model to generate new ones. The examplar

can be real terrain dataset or even generated terrain by other terrain models. A typical approach

in example-based methods is based on texture synthesis [10, 11, 12, 13]. This approach takes a user

painted input and derives the corresponding terrain model by combining synthesis extracted from

the dataset. Another approach is terrain altering [14, 15]. It is a technique that generates user-

desired terrain by adjusting provided exemplars. Example-based methods can achieve high-quality

realism, control and interactive performance. The difficulty is that the quality of output is heavily

dependent on the input data. They also have a difficulty to provide realism at a large spatial scale

because the nature of the methods does not consider the geological land forming process.

Erosion is the most influencing geomorphological agent that forms natural terrain and most of

the simulations for terrain modelling are based on erosion. Erosion is the transportation action of

surface processes that remove material from a location then move to another location. Exploiting

erosion simulations have been studied for many years in computer graphics to generate terrain

that is geologically more accurate. Erosion processes include a number of natural phenomena such

as temperature changes, rain, wind, lightning, tectonic uplift, and plant ecosystem. One that

has been received the most attention in the field of procedural terrain generation is a hydraulic

erosion. A simple hydraulic and thermal erosion model was coupled with fractal noise function

to implement a warping function that can break the unrealistic regularity of the fractal terrain

[3]. More detailed hydraulic erosion simulation model later proposed by adopting physical fluid

simulation [16, 17, 18, 19].

While methods that are based on hydraulic erosion simulations can effectively generate geolog-

ically correct landform features such as complex river network, valleys, and dendritic ridges, they

suffer from expensive computational cost and lack of control. Fluid simulation is a well-known

computationally expensive problem and also the spatial and temporal scale of many hydraulic

erosion simulations is small, which makes it limit the scale of terrain due to the providing tractable

computation time. Erosion processes can only be controlled through initial parameters of the

simulation, but it is difficult to predict the result from the initial condition before the simulation
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completes, which means that if the result is not satisfactory at the end of the simulation, the user

has to re-run the simulation with different initial parameters until the simulation generates the

desired terrain.

Background landscapes in many computer graphics applications are usually required to be able

to represent a large spatial scale. Although hydraulic erosion simulations add high-quality realistic

details to terrain features, many of simulation algorithms are difficult to control and limited in

scales. The hydraulic erosion simulation method proposed in [1] resolved these limitations by

exploiting the simulation of large spatial and temporal scales erosion model, the stream power

erosion model [20]. The stream power erosion model efficiently captures the action of hydraulic

erosion at large spatial and temporal scales by including fluvial erosion. Fluvial erosion is the

process of detachment of materials of the river bed and the sediment and its transportation downhill

by running water. At such large scales, terrain evolution cannot be considered without also taking

into account the increase of elevation of earth surface caused by collisions between tectonic plates,

which is called in term tectonic uplift. A variety of geological processes are involved in the formation

of terrain at large scale, but the most significant of which is the interaction between tectonic uplift

and fluvial erosion and such interaction is modelled by the stream power equation.

Exploiting the simulation of the stream power erosion model can efficiently generate geolog-

ically accurate terrain features at large spatial scales. Moreover, the method in [1] proposes a

highly-influencing and straightforward control method. Instead of controlling the hydraulic ero-

sion process, the method in [1] controls the result by feeding a simple user-painted grayscale image

that defines tectonic uplift rate over the domain. Figure 6.1 shows the influence of the user-painted

input to the output. The simulation of the stream power erosion model is the basis of this study

to generate terrain of large spatial scale, which is discussed in detail in the following chapter.

2.3 Summary

Virtual terrain serves as an essential background in many computer graphics applications. This

chapter briefly introduced procedural generation methods of the virtual terrain. This study aims

to develop the method that can generate geologically more accurate virtual terrain of large spatial

scales.

There are three typical approaches in the field of procedural terrain generation; fractal-based,

example-based, and erosion-based. Fractal-based and example-based methods are efficient to com-

pute. However, they cannot reliably generate geologically correct terrain features at large spatial

scale such as river networks, and valleys because the land forming physical processes are not taken

into account. Hydraulic erosion-based generation methods can generate geologically more accurate
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Figure 2.1: An example to show the influence of a simple user-painted input to the output. A
user-painted greyscale image defines uplift rates over the domain where higher intensity represents
the higher uplift rate.

Input Output

terrain by simulating physical land forming process. However, they are difficult to be employed in

many real-world problems due to the long computation time.

The Stream power erosion model is an extension of hydraulic erosion model, which models the

interaction between tectonic uplift and fluvial erosion. The method introduced in [1] successfully

employed this model to effectively generate virtual terrain of a large spatial scale within a reasonable

computation time. The steam power erosion model is the basis of this study, and more details are

discussed in the following chapter.



Chapter 3

Stream Power Erosion Model

Chapter 2 described various procedural generation methods of terrain and discussed the effec-

tiveness of the stream power erosion model for mountainous terrain generation. Hydraulic erosion

models can reproduce terrain of realistic detail. However, it is difficult to control the erosion process

for desired output, and those models are computationally demanding to be used at large spatial

and temporal scale. The stream power erosion model were first exploited to generate terrain in the

method suggested in [1]. They extended the way hydraulic erosion is modelled in terrain genera-

tion methods to capture such erosion interacting with tectonic plates at large spatial and temporal

scales, the action of water forming streams that carve the terrain while it vertically grows. The

basis of the stream power erosion model is a partial differential equation named the stream power

equation, which models key geological processes of mountainous terrain formation. Computational

simulation of the stream power equation is exploited to generate terrain in this study.

This chapter introduces the stream power erosion model in detail. The stream power equation

and its geological background are introduced in Section 3.1. How the domain of landscapes can be

approximated for the simulation is introduced in Section 3.2. Finally, the computational simulation

of the equation and the limitation of the previous work is introduced in Section 3.3.5.

3.1 Stream Power Equation

Large scale landscapes such as mountainous terrain contain complex landform features including

valleys, ridges, and river networks. A variety of geological processes are involved in the formation

of such landscapes, the most significant of which is the interaction between tectonic uplift and

fluvial erosion. Tectonic uplift is increase of elevation of earth surface caused by collisions between

tectonic plates. Fluvial erosion is the process of detachment of materials of the river bed and

the sediment and its transportation downhill by running water. The stream power equation is

21
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a hyperbolic partial differential equation that is used to model the interaction between tectonic

uplift and fluvial erosion [20].

The stream power equation models the rate of change in surface elevation over the domain of

landscapes, which is controlled by the balance between the tectonic uplift rate and fluvial erosion

rate. The equation divides the domain into smaller regions, and the tectonic uplift rate and fluvial

erosion rate are computed for each of these local regions. The equation can be written as the

following:
dh(p)

dt
= U(p)− E(p) (3.1)

Where p denotes the 2D point of each local region, h(p) denotes the surface elevation at point p,

U(p) denotes a function that evaluates the given uplift rate caused by tectonic plates at point p,

E(p) denotes a function for the fluvial erosion rate at point p. In the stream power equation, the

change in elevation dh(p)
dt at point p is a difference between U(p) and E(p).

The function E(p) for a fluvial erosion rate at position p can be written as the following:

E(p) = −kA(p)mS(p)n (3.2)

Where A(p) denotes an approximation of total water flowing into point p, S(p) denotes a gradient

of a discharging path of running water at point p, which is used to approximate the total discharge

rate of water. k, m, and n are constant positive values. The constant k is an erosion factor

that depends on geological factors such as lithology, channel width, and channel hydrology. The

constants m and n are scaling factors that depend on bedrock strength, climate, and the topology of

stream networks. While the appropriate values for k, m, and n are still up for debate, observations

on depth and channel of streams indicate that ratio of m/n is constrained to be around 0.5 [20].

Values m = 0.5 and n = 1 are used in most geomorphology studies.

3.2 Representation of the Domain of Landscapes

Computational simulation of the stream power equation is used to generate terrain in this study.

In order to simulate the stream power equation, continuous fields must be discretised. The terrain

can be represented by a geometric mesh connecting a discrete set of points sampled over the terrain

domain. A sample point represents topographic information such as the position and elevation of a

local region in the domain. Meshes for the simulation can be stored in a graph data structure. Each

node Ni ∈ graph G is each sample point over the terrain domain. Each edge Ei ∈ G represents

a connection between sample points, which is used to represent a potential path of running water
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in the domain; the path of running water is called as a term stream-flow in the stream power

erosion model. Geometric information stored in G can be used to render virtual terrain in 3D

space directly without any post-processing.

There are many types of meshes available for the simulation. A regular grid shape could be

used, as described in [21]. However, while it provides simplicity in implementation due to its

regular structure, it can introduce artefacts since water does not always flow in directions aligned

to such structure. Therefore, in order to remove such artefacts, the structure of the mesh must

be able to represent stream-flows in a variety of directions. A random mesh generation method

suggested in [1] is a preferable solution for this reason. The method consists of two stages, random

point generation over the domain, and construction of the set of connections between generated

points using Delaunay triangulation.

A method called Poisson disc sampling [22] is used to generate a set of random points. It is

a blue noise sampling method based on nonuniform Poisson distribution where all samples are at

least distance r apart from each other. Sampling is indirectly controlled using a density parameter,

r that defines the minimum distance between samples but not the number of samples directly. This

method can generate a set of points that is tightly-packed and in a naturally distributed pattern.

The set of points are then connected by computing a Delaunay triangulation of the points. In

computational geometry, for a given set of discrete points P in a plane, a Delaunay triangulation is

a triangulation DT (P ) such that no point in P is inside the circumcircle of any triangle in DT (P ).

The association of Poisson disc sampling and Delaunay triangulation produce a quality triangle

mesh where most of the edges and angles are quasi-uniformly distributed. This randomly generated

mesh can represent stream-flows more randomly distributed angles, which enables stream-flows to

be aligned to the pattern of more like natural streams, as shown in Figure 3.1.

There is another useful property of the Delaunay triangulation that can be exploited in the

stream power erosion model. A set of Delaunay triangles DT (P ) for a given set of points P is a

dual graph of a Voronoi diagram V D(P ) for P . A Voronoi diagram is a partition of a plane into

regions that correspond to each point of a given set of points P . Each of these regions consists of

every point in the Euclidean plane whose distance to its corresponding point in P is closer than

any other points in P . These regions are called a Voronoi cell. For a given set of points P , a

Voronoi Diagram V D(P ) can be found by connecting the circumcentres of neighbouring triangles

in DT (P ). The approximation of the surface area ai of each local region represented by each node

Ni ∈ G serves as an important property to evaluate the amount of rainfall received. Each Voronoi

cell vi of V D(P ) that surrounds the node Ni ∈ G can provide a good approximation for the local

surface area value of ai by computing the surface area of vi.
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Figure 3.1: A visual example of directions of running water on different types of meshes.
A regular grid (left), Random mesh generated by the method in [1] (right).

3.3 Computational Simulation

In order to simulate the stream power equation, the equation must be computed for discrete

timestep for each node Ni ∈ G until the simulation converges. Each iteration of the simulation

requires the following steps:

1. Compute stream connectivity that is represented by a set of trees T covering the graph G.

2. Compute the change in elevation caused by tectonic uplift for each node Ni ∈ G.

3. Compute the change in elevation caused by fluvial erosion for each node Ni ∈ G.

4. Compute the change in elevation caused by thermal erosion for each node Ni ∈ G for correc-

tion of extreme peaks.

Convergence occurs when the change in elevation is below a given threshold. It is difficult to

predict the number of iterations required until convergence. The implicit solver suggested in [21]

enables solving the equation with large-timestep for the fast convergence, but as the size of the

simulation grows, the number of iterations required to converge also increases.

3.3.1 Stream-flow Computation

In the stream power erosion model, a stream-flow is a term for directions of running water between

neighbouring regions. Stream-flows are computed for each node Ni ∈ G, and it is to construct a

set of directed trees T that covers G. This set of directed trees T is used to represent streams
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in the model. The topology of T must be updated every iteration according to the topographic

gradient of G that approximates total water accumulation and discharge at each local region.

To define a set of directed trees T , we employ the same single flow direction model used in

[1]. Nodes that are connected by the edge in G are a neighbour region of each other. The model

assumes that a local stream flows in a single direction into a neighbouring region with the steepest

descent slope. This neighbour is called the receiver node denoted by NRi for each node Ni ∈ G.

Based on this model, we define T as follows. NRi
for each node NiinG can be computed by finding

the neighbour that has a lower elevation than Ni and the steepest gradient. For NRi
, Ni is called

a donor node DNRi
of NRi . If a node does not have any neighbour with a lower elevation, water

does not flow out of its region. For such cases, the node serves as a root of each tree in T . If

the simulation initially starts from a flat surface with no elevation, fluvial erosion process does not

occur during the first iteration. This is because all nodes serve as a root of N trees, where N is

the total number of nodes in G.
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Figure 3.2: An example streasm-flow graph consisting of 10 nodes. Each node Ni and its elevation
are represented by a circle. Dashed lines represent an edge of the global graph, and a number next
to the edge denotes a slope between nodes. Arrow lines represent a directed edge of the tree.

Figure 3.2 is a visual example of a small system covered by one tree. As shown in the figure,

the receive NRi of each node Ni is the neighbour with lower elevation and the steepest slope. In
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Figure 3.2, N0 serves as a root of the tree because its elevation is lower than all of its neighbours.

3.3.2 Uplift Computation

The uplift rate in the stream power erosion model approximates increase of elevation due to the

movement of tectonic plates. The surface uplift u(p) in the equation is a function that defines the

uplift rate at point p. The uplift over a timestep ∆t for each node Ni ∈ G can be defined using

the following equation:

hi(t + ∆t)− hi = ui∆t (3.3)

Where hi denotes the elevation of Ni, ui is a constant that defines the uplift rate at Ni, ∆t denotes

the length of timestep. The equation can be used to compute a new elevation hi(t+∆t) of Ni over

the timestep caused by tectonic uplift:

hi(t + ∆t) = hi + ui∆t (3.4)

Boundary Condition

In the stream power erosion model, nodes that are on the boundary of the geometric graph G serves

as river mouths such as the region at the sea level, and outflows of the terrain domain. Several

boundary conditions are suggested for fluvial erosion simulation such as fixed height boundary

condition, reflecting boundary condition, and periodic boundary condition [21]. This study employs

the fixed height boundary condition used in the method in [1], which fixed the height of nodes on

the boundary to constant. The height for boundary nodes can be fixed to constant by setting their

uplift rate to 0.

3.3.3 Erosion Computation

Fluvial erosion is the transportation process of bedrock material downhill caused by the stream of

water from rainfall and running downhill. In the stream power equation, such erosion is modelled

by water accumulation and discharge rate at a local region. The change in elevation caused by

fluvial erosion can be computed using the equation:

dhi

dt
= −kAm

i Sn
i (3.5)

Where k, m, and n are erosion constants described in Section ?.?, Ai denotes the total area of

nodes that flow into Ni as defined by the set of stream trees T ; Ai is called the drainage area of Ni
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and is a key property required to compute the water accumulation at the local region, Si denotes

the slope of the local stream between Ni and NRi
; Si is to approximate how much accumulated

water discharges from the region by measuring the steepness of the local stream.

Based on the stream flows computed, the drainage area Ai can be computed using the formula:

Ai = ai +
∑

dn∈DNi

Adn (3.6)

Where ai denotes the area of Ni, DNi denotes all donor nodes of Ni. Note that this is a recursive

formula, the computation of Ai depends on all ADNi
. Therefore the computation of the drainage

area for each node has to be computed in reverse order (leaf to root) of trees ∈ T . Such order may

be extracted by traversing T .

a0

1 0

2

4

3

Figure 3.3: An example of the small graph to demonstrate a drainage area computation. Each
node Ni is represented by a circle. Dashed lines represent an edge of the global graph. Arrow lines
represent a directed edge of the tree. Hexagons represent a local region. In this figure, node 0 has
four contributing nodes 1, 2, 3, 4. For node 0, let a0 is the area of the local region, drainage area
A0 = a0 + A1 + A2 + A3 + A4.

Si is the slope between Ni and NRi
, which can be computed using the formula:

Si = hi − hRi

∆d
(3.7)

Where hi and hRi
denote the elevation of Ni and its receiver NRi

, ∆d denotes the distance between

Ni and NRi in the horizontal plane.



28 CHAPTER 3. STREAM POWER EROSION MODEL

The implicit scheme suggested in [21] can efficiently solve Equation 3.5. For each node Ni and

its receiver NRi , the Equation 3.5 can be rewritten as:

hi(t + ∆t)− hi(t)
∆t

= −KAm
i

(
hi(t + ∆t)− hRi

(t + ∆t)
∆d

)n

(3.8)

When n = 1, equations for each node Ni is linear and can be solved explicitly to compute the new

elevation after a timestep ∆t:

hi(t + ∆t) = hi +
KAm

i

∆d hRi(t + ∆t)∆t

1 + KAm
i

∆d ∆t
(3.9)

To compute hi(t + ∆t), the equation for hRi(t + ∆t) must be solved first, which means that each

equation has to be solved in order (root to leaf) of each tree of T . Note that this is similar to

computing Equation 5.3 in that they must be computed in reverse order (leaf to root). It means

that one extraction of tree order of T can be used to compute both Equation 5.3 and 5.2.

3.3.4 Correction Process

When the simulation is generating high-altitude mountain ranges, the stream power erosion model

can efficiently shape river networks and dendritic ridges. However, unrealistic high peaks may ap-

pear in regions with low discharge areas. Such unrealistic peaks create undesirable visual artefacts

in the resulting terrain. This can be corrected by using a thermal erosion process [MKM89] as

suggested in [1].

Thermal erosion combines thermal weathering and downward movement of rocks and sediments

on slopes, due to temperature change and force of gravity. The different thermal expansion of

water and material creates cracks and small intrusions at the material boundary, which causes the

material to break and fall. This process creates regularity in the slope angle of ridges and hill

slopes as a result. We apply the following formula at the end of the erosion process for each node

Ni:

hi =


hi if Si ≤ Smax

tan(smax)∆d + rH if Si > Smax

(3.10)

Where Smax denotes a maximum slope angle allowed between Ni and its receiver NRi
. If the

elevation of Ni exceeds the Smax, the elevation is corrected to restrict the slope to a prescribed

range.
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3.3.5 Computational Limitation of the Simulation

Computational performance is one of the desirable properties of procedural generation methods.

Terrain generation methods are usually to assist the human artist authoring terrain to create a

desired digital asset for computer graphics applications or to generate random landscapes on the

fly for background in real-time applications such as video games. For a method to assist the human

artist effectively, the method must be able to be computed in a time that it can provide reasonable

interactivity. For real-time applications, methods that cannot provide real-time performance would

introduce several undesirable loading sessions to end-users. The computational performance of

modern hardware now heavily relies on an increasing number of processing cores. In order to

exploit modern hardware, a series of computation in the algorithm must be parallelised.

More densely sampled meshes can provide better-approximated simulation results of the stream

power equation. Figure 3.4 shows that as the number of points grows, the method can generate

terrain of more detail. However, the method in [1] is limited in size due to providing reasonable

computational performance. The computational simulation of the stream power equation described

in [1] has O(n) complexity, where n is the total number of sample points of the geometric mesh.

Although the linear complexity is considered efficient to compute, the computation time of the

simulation would grow up to the point that it can not complete the computation in acceptable time

for a large number of points such as over millions. This limitation is because their implementation

only exploits a single core of the processing unit.

10,000 100,000 1,000,000

Figure 3.4: The comparison of outputs of different density meshes. Numbers on the top are the
total number of points on the mesh. Pictures below numbers are the corresponding output.

Graphics processing units (GPUs) are a widely available computing hardware with a highly

parallel structure that consists of thousands of processing cores. GPUs are originally designed to

accelerate 3D graphics rendering, but they have been getting much attention for computationally

demanding general-purpose applications due to their capability to provide significantly higher

computational throughput than CPUs on massively parallel problems. However, the physical

architecture and processing mechanism of GPUs are significantly different from conventional CPUs.

To exploit GPUs efficiently, a parallel algorithm that specifically targets GPUs must be developed.

The goal of this study is the development of the parallel GPU algorithm for the computational
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simulation of the stream power equation to overcome the size limitation of the simulation. More

details of GPU computing is discussed in the following chapter.

3.4 Summary

Complex landform features in mountainous terrain result from the combined action of tectonic

uplift and fluvial erosion. Such land forming process can be modelled by the stream power erosion

model introduced in this chapter. The basis of the model is a partial differential equation called

the stream power equation. The simulation of the equation is used to generate large scale terrain

in this study.

Continuous fields of the system can be approximated by a geometric mesh connecting. The

mesh must be able to represent the terrain forming process naturally. Association of random point

sampling and Delaunay triangulation can effectively provide such mesh.

Computational simulation of the equation is discussed in detail. The implicit scheme suggested

provides an efficient way to solve the equation for a large time step. The algorithm suggested for

the simulation shows the linear complexity, but it still suffers from the long computation time as

the size of the simulation grows. This computational limitation may be overcome by exploiting

parallel hardware such as GPU discussed in detail in the following chapter.
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GPU Computing

Graphics processing units (GPUs) are a widely available computing hardware with a highly parallel

structure that contains thousands of processing cores. Although GPUs was originally designed for

the needs of accelerating 3D graphics, the parallel processing capability of GPUs have also made

them used in many computationally demanding applications other than computer graphics recently

such as computational science and image processing.

To fully utilise the computing capability of GPUs properly, a parallel algorithm that specifically

targets GPUs must be developed due to their different architecture and processing mechanism.

This study proposes the parallel algorithm for the stream power equation simulation, which is

specifically designed to run on GPUs to exploit their computing capability more effectively.

In order to implement the parallel algorithm to run on GPUs, there are two commonly used

tools, OpenCL and CUDA. OpenCL (Open Computing Language) is a framework for a writing

program that executes on parallel hardware such as CPUs, GPUs, DSPs (digital signal processors),

and FPGAs (field-programmable gate arrays). CUDA is a framework developed by NVIDIA for

a writing program that executes on their GPUs. NVIDIA is the leading GPU vendor and also

known better support for general applications of GPUs than OpenCL. This study uses NVIDIA

CUDA framework throughout this study to implement the newly proposed algorithm.

This chapter introduces the NVIDIA technology-based general-purpose GPU computing, which

helps understand our parallel implementation of the stream power equation simulation presented in

the following chapter. The content presented in this chapter is a summary of important information

that is relevant to this study from NVIDIA CUDA Programming Guide [23] and NVIDIA Turing

architecture white paper [24].

31
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4.1 NVIDIA GPU Architecture

The CPU and GPU serve different purposes. The GPU architecture is specialised for massively

parallel computations, whereas the CPU is designed to focus on the performance of its smaller

number of cores on individual tasks. Figure 4.1 gives a high-level comparison of the CPU and

GPU architecture comparison. While CPUs consist of few cores and allocates more transistors for

the control unit and the cache memory, GPUs devote most of the transistor to data processing cores.

The CPU is suited to workloads that require fast memory latency or high per-core performance.

The cores on the GPU, due to their lack of cache memory, they can not provide good memory

access latency but, the GPU can outperform the CPU on the massively parallel problems that

enable the GPU to hide poor memory latency by exploiting its parallel processing capability.

Figure 4.1: High-level comparison diagram of CPU and GPU architectures.
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NVIDIA GPUs employ a unique architecture called SIMT (Single-Instruction, Multiple-Thread)

architecture. The architecture is built on a scalable array of streaming multiprocessors (SMs) where

each processor is designed for the concurrent execution of thousands of threads. A GPU enumerates

and distributes threads to the available SMs when the CUDA kernel launches. Each SM can run

multiple threads concurrently.

SMs manage threads in groups of 32 parallel threads called warps. An SM partitions threads

into warps and each warp get scheduled by a warp scheduler. Threads initialised in the same warp

share the same program address. However, each thread has a separate instruction address counter

and register state, enabling them to diverge and execute independently.

Threads in the same warp execute one common instruction at a time. The optimal efficiency is

only achieved when all threads in a warp are on the same execution path. If the branch divergence

occurs within a warp, the warp sequentially executes each branch execution path, disabling threads

in the other path. Branch divergence could affect the performance of the application because there

will be a decrease in computational throughput due to the deactivated threads.
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Continuous enhancement to the architecture has been made through the seven architecture gen-

erations since CUDA framework was introduced. At the time of writing Turing architecture is the

seventh generation, and this architecture introduced in Section 4.4 is used for all the experiments

of this study.

4.2 NVIDIA CUDA Programming Model

General-purpose computing on graphics processing units (GPGPU) exploits the GPU for compu-

tationally expensive applications other than computer graphics such as computational science, and

image processing. CUDA (Compute Unified Device Architecture) is a parallel computing platform

and programming model developed by NVIDIA for general-purpose applications of their GPUs.

CUDA provides programming interfaces in popular high-level languages such as C, C++, Fortran,

and Python, which enhances the accessibility for the programmers. This study employs CUDA

C++ that extends the standard C++ language. The CUDA programming model requires the pro-

grammer to partition the problem into fine-grained sub-problems that can be solved independently

in parallel.

CUDA employs heterogeneous programming model that breaks down the application into two

sections, which are referred to as a term host (CPU) and device (GPU). The host executes the

main sequential part of the program and launches a special user-defined function called kernel for

parallel execution of threads on the device. CUDA allows concurrent execution of multiple kernels

and the host program does not necessarily have to wait for the kernels to complete execution before

continuing execution.

A CUDA kernel is a user-defined function that is executed N times in parallel by N different

threads where N denotes the total number of threads. A host side of the application is usually

responsible for invoking a kernel function on a device side. CUDA threads are organised in a

hierarchy of two levels. A grid consists of thread blocks, and a thread block consists of threads.

A maximum number of threads per block is up to 1024 threads on a modern GPU. A structure of

the threads blocks can be equally shaped into 1D, 2D or 3D arrays of threads, which makes more

sense with many parallel applications that involve with multidimensional data such as a vector,

matrix, or volume. A scalable programming model of CUDA automatically scales each block of

threads to any available SMs on the GPU.

Listing 4.1 is a sample code snippet of a simple kernel definition and invocation. __global__

declaration specifier is used to define a kernel function. Each thread that executes the kernel

is given a unique index that can be accessed through the built-in variable threadIdx. A kernel

invocation can be made from the host to the device using a <<<...>>> execution configuration
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syntax that defines the dimension of the grid and blocks for the execution. The sample code invokes

kernel for a block of N threads, and then the kernel function adds two vectors A and B of size N

and stored the result into vector C.

Listing 4.1: An example of the simple kernel function vecAdd and its invocation by host side

program. vecAdd sums two vectors A and B, and stores the result to the vector C.

// Kernel definition
__global__ void vecAdd ( float * A, float * B, float * C){
int i = threadIdx .x;
C[i] = A[i] + B[i];
}
int main (){
...
// Kernel invocation with a block of N threads .
vecAdd <<<1, N>>>(A, B, C);
...
}

4.3 CUDA Memory

CUDA threads have access to several different types of the device memory separated from the host

side during the execution. Data transfers between the host memory and the device memory have

much lower bandwidth than data transfers between memories in the device. Therefore minimising

the data transfers between the host and the device is essential for the high performing solution.

Data transfers in GPU have much higher latency than CPU applications. In order to maximise

memory throughput, CUDA supports several types of memories. Depending on the access pattern

of each type of memory, the overall throughput of memory accesses dramatically varies. Different

types of memories are optimised for different usages. Following are the device side memory types

that the programmer has access to:

• Global memory is accessible from any threads in a grid across the same program. It

resides in off-chip DRAM and provides the largest memory space, having the slowest access

latency. Although access performance is poor, the overall performance of the program can

be significantly improved by coalescing global memory transactions. The device memory is

accessed by 32, 64 or 128 bytes memory transactions. When threads in the warp access

global memory, the hardware coalesce the request into one or more transactions depending

on the size of the memory that is each thread accesses and distribution of the memory

addresses accessed. For instance, accessing sequentially well-aligned 4-byte words from all

threads in the warp (accessing 128 bytes in total) can coalesce into a single 128 bytes memory

transaction.

• Local memory is a private space for a thread residing in off-chip DRAM and is used as

overflow for registers. Thus, it has the same high memory access latency as global memory.
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However, local memory access in CUDA is fully coalesced in a way that consecutive 4 bytes

words are accessed by consecutive thread indexes.

• Shared memory is an on-chip memory shared between threads in the same block. It

provides much lower memory access latency than global or local memory. Shared memory

is sliced into modules called banks. Access to each bank is one at the time, but it can be

made concurrently as long as there is no conflict between two or more threads requesting the

same bank. To effectively access shared memory should therefore take account on avoiding

conflict between accesses.

• Constant memory is read-only and an on-chip caching method of accessing global memory.

This memory cached in a constant cache for all threads to access the same value at the same

time. Global memory access only occurs for the case of a cache miss. The maximum size of

the memory is 64KB.

• Registers are an on-chip memory automatically used to store the local variables belonging

to each thread. If the registers cannot store all the local variables required by the threads,

local memory must be used. The access time for registers is effectively zero extra clock

cycles. The programmer cannot explicitly allocate registers for the local variables, and the

only consideration for the programmer is how many registers are used by each thread.

• L1/L2 cache is to cache all access to local memory for each thread. L1 is on-chip cache

memory provided per SM, and the L2 is off-chip cache memory provided for the GPU.

4.3.1 Atomic Memory Operation

CUDA support atomic memory operation to prevent a race condition between threads accessing

the same memory address. It is provided as a built-in function and can be used for global and

shared memory. An atomic function guarantees to perform a read-modify-write memory operation

without interference from other threads. The atomic operation is useful and essential for many

parallel applications, but care must be taken for the best performance because a series of atomic

operations on the same memory address by threads can only be performed sequentially.

4.4 Turing Architecture

The latest NVIDIA Turing architecture achieves significant performance improvement over previous

Pascal architecture due to architectural changes. NVIDIA claims that a new design of Turing SM

achieves 50% improvement in performance per CUDA core. Newly introduced GDDR6 device

memory provides 20% enhanced power consumption while maintaining the same data transfer rate
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as compared to the previous Pascal architecture. This section introduces selected architectural

changes of Turing GPUs, which are important for the parallel implementation discussed in the

following chapter.

4.4.1 Turing SM

Turing SM is divided into four blocks, each of which has its own warp scheduler, register file, and

dispatch unit. There are also newly introduced units that our work does not exploit, such as Tensor

core, and RT core, more details of which can be found in the architecture white paper [24]. Figure

4.2 gives a high-level comparison of the Turing and Pascal SM.

Figure 4.2: High-level comparison diagram of the Turing and Pascal SM.
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Table 4.1 shows the comparison of compute-cores per SM in Pascal and Turing architectures.

Turing SM has a new independent integer datapath feature by allocating half amount of space

to 32 bits integer arithmetic unit. Computations in a modern shader are mainly floating-point

instructions along with simpler integer pipe instructions such as address math and branching.

While it used to be that floating-point instruction pipeline has to stall to execute integer instruction,

Turing GPUs enables concurrent execution of floating-point and integer instructions for the first

time in the consumer GPU line-up of NVIDIA. The concurrent execution of integer and floating-

point pipeline achieves 36% additional throughput for floating-point arithmetic.
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Table 4.1: Compute Cores per SM Comparison (Pascal and Turing)

Pascal SM Turing SM

FP64 Cores 4 2

FP32 Cores 128 64

INT32 Cores N/A 64

Turing SM unifies L1 cache and shared memory. Shared memory provides high bandwidth,

low latency, and consistent performance (no cache misses), but it requires explicit management

by a programmer. The new unified memory design narrows the performance gap between the

explicitly tuned shared memory management and direct access to the device memory. The new

unified memory design also allows an application to configure memory structure into either 64KB

of L1 cache and 32 KB of shared memory or vice versa. This configurability helps achieve better

utilisation of expensive SRAM resource depending on applications demands. Figure 4.3 shows the

new unified memory design compared to the Pascal architecture.

Figure 4.3: High-level comparison diagram of the new Turing unified memory and the previous
Pascal.
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4.4.2 Independent Thread Scheduling

In the previous architectures, a single program counter is shared among the threads in the warp.

Threads in the same warp execute one common instruction at a time. When threads in the same

warp diverge to multiple execution paths, each execution path must be sequentially processed at

a time, and threads that are not on the current path get disabled. Diverged threads in the warp

later reconverge implicitly once the execution of all branches is complete.

In Volta and Turing, independent thread scheduling allocates program counter and call stacks

per thread instead per warp. Diverged threads in the same warp can be executed concurrently and

not required to reconverge unless the programmer explicitly converges them. Warp synchronise

functions can be called to reconverge diverged threads in the same warp once branch execution
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complete for the case of the reconvergence required.

4.5 Summary

This chapter introduced the NVIDIA GPU architecture and CUDA programming to help to under-

stand the parallel implementation of the stream power erosion simulation presented in the following

chapter.

The GPU architecture is designed to be effective for massively parallel computation. NVIDIA

GPUs used in this study employs SIMT architecture, which consists of an array of SMs. CUDA

GPU automatically scales parallel threads to any available SMs.

C++ is used for the implementation in this study out of various high-level programming lan-

guages supported by CUDA. The CUDA application is heterogeneous and can be broken down

to two sections host (CPU) and device (GPU) where the host invokes the kernel function that

executes parallel threads on the device.

CUDA supports different types of memories for the device side of the application. Each type of

memories is optimised for different purposes; therefore, care must be taken for a high-performing

application.

The latest Turing GPUs used for all the experiments for this study provides enhanced power

efficiency and computational performance compared to the previous architecture. The configurable

unified memory enables efficient use of L1 cache for the application that does not exploit shared

memory up to its capacity. Independent thread scheduling allows diverged thread in the same warp

to be executed concurrently. However, care must be taken for the case that the program requires

diverged threads to be explicitly reconverged after branch execution.
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Parallel Implementation

The stream power equation simulation can be used to generate geologically more accurate terrain of

large spatial scale. The method introduced in [1] also provides high-level control method. However,

while more densely discretised simulations can add high-quality details to the resulting terrain, the

unoptimised implementation suggested in [1] can not provide reasonable computation time for

simulations of such larges spatial scales. The computational performance of modern hardware now

heavily relies on an increasing number of processing cores. A series of computation in the algorithm

must be parallelised to exploit the power of modern hardware.

The implementation in [1] is a sequential execution of the algorithm proposed in [21] has a

computational complexity that is linear in the number of samples. Although linear complexity is

considered efficient to compute, large simulation sizes still suffer from long computation time. The

algorithm introduced in [21] also introduced a parallel execution model. However, the design of

this model can not fully leverage the power of modern hardware such as multi-core CPUs, or GPUs

and imposes limitations on parallelism and scalability. These limitations were later improved by

the parallel algorithm proposed in [2], which fully utilise the power of modern CPUs and shows

performance improvement on GPUs. However, the algorithm proposed in [2] is a parallel algorithm

that targets any multi-core hardware, and therefore, the performance it provides on GPUs is not

optimal. This study improves on this previous work by developing a parallel algorithm that

specifically targets GPUs.

This chapter introduces the parallel implementation of the newly proposed algorithm written

in CUDA. This study also implemented the original terrain generation method [1] using the paral-

lel algorithm proposed in [2]. The implementations of the previous algorithm to generate terrain

are written for multi-core CPUs and GPUs. Moreover, the previous parallel algorithm was im-

plemented in OpenACC that is a high-level parallel computing platform for easier learning and

accessibility for users. However, the algorithm has never been implemented in CUDA that provides

39
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lower-level access to the GPU to explore an opportunity to achieve better performance. This study

is the first one that presents the CUDA implementation of the parallel algorithm proposed in [2].

5.1 Data Structure

This section introduces commonly used data structures for different implementations presented in

this chapter. In order to compute the stream power equation simulation, discretised approximation

of terrain domain is stored as a graph data structure where each node represents each local region.

Each node stores its geometric information such as position at a horizontal plane, elevation, and

surface area. Each node requires to have storage to store simulation data that updates every

iteration such as stream-flow and drainage area. There are some constant simulation data that

each node stores, such as uplift rate, and maximum slope angle limitation for the correction

process.

The implementation declares the separate pointer variables to construct dynamic arrays for

different data. For the CPU targeted C++ implementation, we use std::vector provided in C++

Standard Template Library instead of the dynamic array. In this chapter, an array means either

a dynamic array pointed by pointer variable or a std::vector container.

5.1.1 Graph Representation

Terrain in the stream power erosion model is represented by a geometric graph. In the imple-

mentations, an adjacency list is used to represent a graph. An adjacency list is an array for each

node Ni ∈ G, store a list of the nodes adjacent to it. Each node Ni ∈ G typically has an array

of its own adjacency list where the size of an array is a total number of its adjacent nodes. As

shown in Figure 5.1, All adjacency list array for each node Ni are stored in the one large array of

length
n∑

i=0
NNi where n denotes a total number of nodes in the G, NNi denotes a total number of

adjacent nodes of each node Ni. Each adjacency list can be accessed using a stored offset and a

length of the list of each node Ni. Because the graph used in the model has an irregular structure

that total numbers of neighbouring nodes of each node Ni vary, this representation provides spatial

efficiency and simple access pattern.
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Figure 5.1: An example of the small graph of 5 nodes and how 1D global adjacency list array is
constructed. Circles represent a node, and numbers are an identifier. Dashed lines represent an
edge of the graph. nNum is an array to store a total number of neighbours of each node. Offset is
an array to store start index at the adjacency list array for adjacency list of each node.

In the code implementation, the following arrays are declared to represent graph:

int* neighbour ;
int* offset ;
int* nNum;
float * distance

Where neighbour is a 1D array to store the adjacency lists of all nodes, offset stores offset

into neighbour for each node, and nNum stores a total number of neighbours for each node, severa

stages of the pipeline needs distance between neighbouring points in the horizontal plane, and it

is computed at the initialisation and stored in distance. Neighbours of node Ni can be accessed

from neighbour[offset[i]] to neighbour[offset[i] + nNum[i] - 1].

5.1.2 Simulation Data

In order to simulate the stream power erosion model, each node Ni ∈ G have geometric information

stored in the following arrays:

glm :: vec2* point ;
float * height ;
float * area;

Where point stores the geometric position of each node Ni in the horizontal plane, height stores

the current elevation of each node Ni, and area stores the local surface area of each node Ni.

A stream-flow is used to approximate the total water accumulation and discharge rate at each

local region represented by each node Ni ∈ G. A set of stream-flows T for each node is updated

every iteration, and it is stored in the following arrays:

int* receiver ;
int* dNum;
int* donor ;
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Where receiver stores the index of receiver node NRi
for each node Ni, dNum stores the total

number of donors for each node Ni, and donor is an array with the same size as neighbour, which

stores all the donor indexes of each node Ni.

In order to compute a new elevation for each node Ni ∈ G, the following arrays stores key

values:

float * uplift ;
float * drainageArea ;
float * maxSlope ;

Where uplift stores the uplift rate ui for each node Ni, drainageArea stores the drainage area

Ai for each node, and maxSlope stores the maximum slope angle Smaxi for each node Ni.

Lastly, we define the following constants for the simulation parameters:

# define SIZE_GRID 5.0e+4f
# define MAX_UPLIFT 5.0e -4f
# define KEQ 5.61e -7f
# define MEQ 5.0e -1f
# define DT 2.5e+5f
# define NO_FLOW -1

Where SIZE_GRID defines the horizontal and vertical size of the plane in metres, MAX_UPLIFT defines

the maximum uplift rate in my−1, KEQ defines the constant k in y−1, MEQ defines the constant m,

DT defines the timestep ∆t in y where m denotes a metre, and y denotes a year. The value −1 is

used in NO_FLOW to define no receiver status.

5.2 Initialisation

This section introduces the CUDA implementation of the simulation initialisation process intro-

duced in [1]. The initialisation consists of three stages; random point generation using the Poisson

disc sampling, graph construction by performing the Delaunay triangulation, and assigning the lo-

cal surface area value for each node Ni ∈ G by computing the Voronoi diagram of the constructed

graph. All data are stored in the GPU device memory to avoid expensive data transfer between

host and device throughout the simulation.

5.2.1 Random Point Generation

The first stage of the initialisation is a random point generation over the domain. Poisson disc

sampling is used to generate a set of random points, which is a blue noise sampling method based

on nonuniform Poisson distribution where all samples are at least distance r apart from each

other. Sampling is indirectly controlled using a density parameter, r that defines the minimum

distance between samples but not the number of samples directly. This method can generate a

set of points that is tightly-packed and in a naturally distributed pattern. An efficient linear time

sequential algorithm introduced in [25] is the most commonly used approach, but it demands long
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computational time to generate a large set of samples such as over million. Therefore, Poisson disc

sampling for GPUs is implemented in CUDA for faster initialisation. The CUDA implementation

of Poisson disc sampling is based on but not exactly the same as the algorithm introduced in [26].

In order to generate random points, the algorithm first covers the horizontal plane with a

regular grid that its size of each grid cell is r√
2 where r denotes a density parameter that defines

the minimum distance between samples. Each grid cell is given a status that states accepted,

rejected, and active, where accepted states that the cell is accepted and included in the set of point

being generated, rejected states that the cell is rejected and not included in the set, active states

that the cell has not yet been accepted, and it still needs to be validated. Three status are stored

as an integer value; active = 0, accepted = 1, and rejected = 2. An initial status for all grid cell is

the active.Each grid cell is also given a unique priority to determine which one is on priority when

two are too close to each other. The algorithm then repeats the following sample generation and

validation process for k times; generate the random samples in the grid cells that are not validated

to be accepted yet, and validate the samples (whether they are not too close to each other) in each

grid. In the implementation, the sampling converges at around 30 iterations, so it uses k = 30.

The size properties of a grid can be computed using the grid cell size r√
2 as the following C++

code:

const float RADIUS = r;
const float CELL_WIDTH = RADIUS / std :: sqrt (2.0f);
const int COLS = std :: ceil( SIZE_GRID / CELL_WIDTH );
const int ROWS = std :: ceil( SIZE_GRID / CELL_HEIGHT );
const int SIZE = COLS * ROWS;

Where COLS is a number of columns in the grid, ROWS is a number of rows in the grid, and

SIZE is a total number of cells in the grid.

Initial data can be copied into the following arrays of the size of the grid in the device memory:

curandState * state ;
glm :: vec2* grid_points ;
int* priority ;
int* status ;

Where state stores the sequence of pseudo-random numbers for CUDA random number generator,

grid_points is stores the randomly generated sample for each grid cell, priority is stores ran-

domly generated unique priority value for each grid cell, and status stores the status of acceptance

of the sample in each grid cell.

The sampling process can then begin. As shown in Listing 5.1, both sample generation and

validation process run on the GPU. Both kernels are repeatedly launched for k times. Each stage is

implemented in the separate kernels because the generation has to finish before the validation and

vice-versa. Therefore, cudaDeviceSynchronize() function must be called between kernel launch

to ensure for them to wait for the other kernel to complete before launching.
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Listing 5.1: An example of the host side implementation of Poisson disc sampling that launch

sample generation and validation kernel for 30 times. generatePoints is a kernel to generate a

new sample in the grid cells that are not accepted yet. validatePoints is a kernel to validate

samples in the grid cells that are still on active status.

for(int i = 0; i < 30; ++i){
generatePoints <<<RAND_BLOCK , THREAD >>>( grid_points , status , state );
cudaDeviceSynchronize ();
validatePoints <<<BLOCK , THREAD >>>( grid_points , priority , status , i);
cudaDeviceSynchronize ();

}

The kernel function generatePoints creates a thread that generates a sequence of pseudo-

random numbers used to produce samples for grid cells that have not yet been accepted. Each

thread is given an equally divided number of grid cells to produce a new sample for the next

validation. Listing 5.2 shows the implementation of generatePoints. Each thread iterates through

the given grid cells to generate a new sample. A new sample is only generated for the cell that is on

active status. Note that random number is generated even for the cell that is not active status, or

when it is out of range. This dummy generation is because the parallel random number generator

(PRNG) by CUDA requires all threads given a sequence of random numbers have to generate the

random number. Otherwise, the whole sequence may break.

Listing 5.2: The CUDA kernel implementation of sample generation stage. Each tread is given a

sequence of pseudo-random numbers to generate a new sample for an equally divided number of

grid cells.

__global__ void generatePoints (glm :: vec2* points , int* status , curandState * state ){
int idx = blockIdx .x * blockDim .x + threadIdx .x;
int s_idx = idx * POINTS_PER_GENERATOR ;
int e_idx = s_idx + POINTS_PER_GENERATOR - 1;
for(int i = s_idx ; i <= e_idx ; ++i){

if(i < SIZE){
if( status [i] == 0){

int row = i / COLS;
int col = i % COLS;
float minX = col * CELL_WIDTH ;
float maxX = min(minX + CELL_WIDTH , SIZE_GRID );
float minY = row * CELL_WIDTH ;
float maxY = min(minY + CELL_WIDTH , SIZE_GRID );
float x = randFloat ( state + idx , minX , maxX);
float y = randFloat ( state + idx , minY , maxY);
points [i] = glm :: vec2(x, y);

} else {
randFloat ( state + idx , 0.0f, 1.0f);
randFloat ( state + idx , 0.0f, 1.0f);

}
} else {

randFloat ( state + idx , 0.0f, 1.0f);
randFloat ( state + idx , 0.0f, 1.0f);

}
}

}

Each grid cell is validated by checking the distance between the samples and the samples in

the 20 surrounding cells, as shown in Figure 5.2. Listing 5.3 shows the implementation of the

kernel function validatePoints. The validation only proceeds for the cells that are on the active

status, and the validation process is as follow; For each grid cell given, if the surrounding cell has
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not yet been rejected, compute the distance between samples, it then compares priority between

the cell and the current checking surrounding cell, if the priority is lower than the current cheking

surrounding cell, it terminates the kenel (Validation fail). If the validation process success without

fail until it checks the last surrounding cell, the cell gets accepted. The sample gets rejected if the

validation process fails at the last iteration (30th) of the sampling process.

Figure 5.2: An visual example to show which surrounding cells are to be checked to validate a
sample in the cell. The grid cell with a circle inside has the sample that is currently on validation.
The grid cells with an X inside have samples that need to be checked for validation.

X X X
X X X X X
X X O X X
X X X X X
X X X

Listing 5.3: The listing presents CUDA kernel implementation of sample validation stage. Each

thread is given a grid cell to validate a sample inside the grid cell.

__global__ void validatePoints (glm :: vec2* points , int* priority , int* status , const int N){
int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= SIZE) return ;
if( status [idx] == 1) return ;

glm :: vec2 thread_p = points [idx ];
unsigned int thread_priority = priority [idx ];

int col = idx % COLS;
int row = idx / COLS;

for(int i = -2; i <= 2; ++i){
int n_row = row + i;
if( n_row < 0 || n_row >= ROWS) continue ;
int abs_i = abs(i);
for(int j = ( abs_i == 2 ? -1 : -2); j <= ( abs_i == 2 ? 1 : 2); ++j){

int n_col = col + j;
if ((i == 0 && j == 0) || n_col < 0 || n_col >= COLS ) continue ;
int n_idx = n_row * COLS + n_col ;
int n_status = status [ n_idx ];
if( n_status != 2) {

glm :: vec2 n_p = points [ n_idx ];
float distance = glm :: distance (thread_p , n_p);
if( distance < RADIUS ){

if( n_status == 1){
if(N == 29) status [idx] = 2;
return ;

}
unsigned int n_priority = priority [ n_idx ];
if( thread_priority < n_priority ){

if(N == 29) status [idx] = 2;
return ;

}
}

}
}

}
status [idx] = 1;
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}

A final post-processing step is required after the sampling process because the valid and invalid

samples are stored in grid_point in arbitrary order. In order to copy only valid samples out of

the array, it first sorts status and grid_point as a key-value pair. A parallel radix-sort can be

performed efficiently since the maximum value of the sort key uses only two bits. Once grid_point

is sorted, it launches kernel that each thread checks values in status at its thread index and the

next index to find the boundary index between sets of accepted and rejected samples, which is to

identify how many samples have been accepted. For each thread index i, i is the boundary index

if the statusi = 1, statusi+1 = 2. All accepted samples can then be copied into point.

5.2.2 Graph Construction

The second stage of initialisation is the construction of the geometric graph from the generated

random points. The graph is computed by performing Delaunay triangulation for the generated

points. In computational geometry, for a given set of discrete points P in a plane, a Delaunay

triangulation is a triangulation DT (P ) such that no point in P is inside the circumcircle of any

triangle in DT (P ). In order to perform fast Delaunay triangulation on the GPU, the algorithm

and its implementation introduced in [27] is employed. A geometric graph can be stored according

to the structure of the set of triangles computed.

In order to store the graph, the total number of neighbours for each node can first be com-

puted by counting Delaunay triangles that each point lies on. The total number of neighbours

for nodes can be two cases; Let the total number of triangles that the point lies on be t, if the

node is at the boundary of the set of Delaunay triangles, the total number of neighbours is t+;

otherwise, the total number of neighbours is t. To reduce the computational cost of the process,

it allocates t + 1 space for the neighbour list for all node. Listing 5.4 shows the CUDA kernel

implementation of the procedure. count is first initialised all elements of the array with 1, and

then countTriangles_kernel is launched. The result then can be copied into nNum.

Listing 5.4: The CUDA kernel implementation to construct nNum array. countTriangles_kenel

function is to count triangles of each node is part of. increaseAllCount_kernel function is to

increase all counts by one.

__global__ void countTriangles_kernel (Tri* triangles , unsigned int* count ){
int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE_TRI ) return ;
Tri t = triangles [idx ];
atomicInc ( count + t._v [0] , D_SIZE );
atomicInc ( count + t._v [1] , D_SIZE );
atomicInc ( count + t._v [2] , D_SIZE );

}

To compute the index offset into the adjacency list for each node and the size of neighbour
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that stores the adjacency lists for all nodes, an exclusive-prefix-sum of nNum can be computed.

The implementation exploits the ExclusiveSum function provided in the CUB library for efficient

parallel execution on the GPU. Let n be the size of the nNum, performing the exclusive-prefix-sum

of the array produce an array of size n + 1 where the elements at [0, n− 2] are the index offset for

each node, and the last element at n− 1 is the size of neighbour. Figure 5.3 provides an example

of the computation for the small system of 5 nodes.

Figure 5.3: The figure is to visually demonstrate how the index offset and the size of the adjacency
list are computed by performing an exclusive-prefix-sum.
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The final step is the computation of the neighbour lists (adjacency list). neighbour is first

constructed with the size computed in the previous step, and then all elements are initialised with

−1. The value −1 indicates an empty slot in the later steps. The kernel shown in Listing 5.5 is then

launched to compute and store the neighbour list. The kernel function constructNeighbourList

create a thread that is given one Delaunay triangle. For three vertexes of the given triangle, each

thread calls the addNeighbour function to store the other two vertexes as a neighbour to each

vertex.

Listing 5.5: The CUDA kernel implementation that construct the 1D global adjacency list array.

__global__ void constructNeighbourList (Tri* triangles , int* neighbour , unsigned int* offset ,
unsigned int* nNum)

{
int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE_TRI ) return ;

Tri t = triangles [idx ];
int* n0 = neighbour + offset [t._v [0]];
int* n1 = neighbour + offset [t._v [1]];
int* n2 = neighbour + offset [t._v [2]];

unsigned int nN0 = nNum[t._v [0]];
unsigned int nN1 = nNum[t._v [1]];
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unsigned int nN2 = nNum[t._v [2]];

addNeighbour (n0 , nN0 , t._v [1]);
addNeighbour (n0 , nN0 , t._v [2]);
addNeighbour (n1 , nN1 , t._v [0]);
addNeighbour (n1 , nN1 , t._v [2]);
addNeighbour (n2 , nN2 , t._v [0]);
addNeighbour (n2 , nN2 , t._v [1]);

}

Listing 5.6 present the implementation of the addNeighbour function, which iterates through

the neighbour list to add a new neighbour index (n_idx) to an empty slot in the list. There are

two cases to check for each iteration of the loop. Firstly, if the n_idx has already been stored, it

terminates the function to avoid duplicated storing. Secondly, if the slot is empty, it performs an

atomic compare and swap operation to store a new neighbour to the slot. The atomic operation is

required because there are groups of triangles that share one or two vertexes with each other, and

there is a race condition when two threads try to access the same slot at the same time. atomicCAS

function lets the first arrived thread write to the empty slot, and indicates to other threads that

the slot is no longer empty.

Listing 5.6: The CUDA device function implementation that adds a new adjacency to the empty

slot in the neighbour list.

__device__ bool addNeighbour (int* neighbour , unsigned int nNum , int n_idx ){
for(int i = 0 ; i < nNum; ++i){

int result = neighbour [i];
if( result == n_idx ) return true ;
if( result == -1) {

result = atomicCAS ( neighbour + i, -1, n_idx );
if( result == -1 || result == n_idx ) return true ;

}
}

}

5.2.3 Area Computation

The final stage is to assign a local surface area value to each node. Approximation of the local

surface area for each node is an important property to compute the stream power equation. A

set of Delaunay triangles DT (P ) for a given set of points P is a dual graph of a Voronoi diagram

V D(P ) for P . A Voronoi diagram is a partition of a plane into regions that correspond to each

point of a given set of points P . Each of these regions consists of every point in the Euclidean plane

whose distance to its corresponding point in P is closer than any other points in P . These regions

are called a Voronoi cell. Each Voronoi cell in Voronoi diagram V D(P ) for the given set of points

P provides a reasonable and well-distributed approximation for the local surface. In computational

geometry, for the given set of points P , V D(P ) is a dual graph of DT (P ). A set of vertexes vi of

each Voronoi cell Vi for each node Ni is circumcentre of the set of triangles in DT (P ) that have

Ni as one of the vertexes.

To compute a surface area of each Voronoi cell Vi for each node Ni, Vi is divided into the small
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triangles by connecting each edge of Vi with Ni. It is efficient to sort the set of vertexes vi of

Vi with the angle to their centre Ni to identify the edges. Parallel radix sort can be performed

efficiently for the case. In the implementation, the vi are sorted into the clockwise order. In order

to sort vi for each Ni, the key and value 1D global array pair for all nodes is constructed. Each

element in the key array consists of the major and minor key where the major key is the index of

Ni, and the minor key is the angle of each Voronoi vertex in vi.

To construct the key and the value array pair, an exclusive-prefix-sum of the count that stores

triangle count for each node Ni is performed. Let n be the size of the resulting array, the elements

at [0, n− 2] are the index offset for each node, and the last element at n− 1 is the size of the key

and the value array pair. The CUDA kernel function constructSortKeyValue_kernel shown in

Listing 5.7 to compute the key and the value array pair.

In the constructSortKeyValue_kernel function in Listing 5.7, each thread computes the

circumcentre of the given triangle. Note that the circumcentre computation must be performed in

the double-precision otherwise, it may not produce a geometrically correct Voronoi diagram due

to floating-point arithmetic errors. Then for each vertex of the given triangle, each thread loads

the index offset, and the total numbers of triangles and calls the addKeyValuePair function to fill

in the key and the value array pair.

Listing 5.7: The CUDA kernel implementation to construct the key and the value array pair.

__global__ void constructSortKeyValue_kernel (Tri* tri , unsigned int* offset , unsigned int* tNum ,
glm :: vec2* point , unsigned long long int* keys , glm :: vec2* values ){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE_TRI ) return ;
Tri t = tri[idx ];
int idx0 = t._v [0];
int idx1 = t._v [1];
int idx2 = t._v [2];

// Get circumcentre
glm :: dvec2 circum = computeCircumcentre ( point [idx0], point [idx1], point [idx2 ]);

int offset0 = offset [idx0 ];
int offset1 = offset [idx1 ];
int offset2 = offset [idx2 ];

addKeyValuePair (idx0 , keys + offset0 , values + offset0 , p0 , circum , tNum[idx0 ]);
addKeyValuePair (idx1 , keys + offset1 , values + offset1 , p1 , circum , tNum[idx1 ]);
addKeyValuePair (idx2 , keys + offset2 , values + offset2 , p2 , circum , tNum[idx2 ]);

}

Listing 5.8 presents the implementation of the addKeyValuePair function, which iterates

through the key array to add a new key to an empty slot. The key allocates the lower 10 bits to

the angle and the upper bits to the index of the node. In order to find the empty slot, atomic

compare and swap operation is required to avoid a race condition between threads that share one

or two vertexes.

Listing 5.8: The implementation of the device function to add a new key and value pair to the

empty slot of the key and the value array pair.
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__device__ bool addKeyValuePair (int idx , unsigned long long int* key , glm :: vec2* value , const
glm :: vec2& p, const glm :: dvec2 & circum , unsigned int tNum){

float angle = atan2f ((p.y - circum .y), (p.x - circum .x));
angle = angle < 0 ? angle += M_PI * 2.0f : angle ;
unsigned int bit_angle = angle * 1e+2;

for(int i = 0; i < tNum; ++i){
if( atomicCAS (key + i, 0, (( unsigned long long int)idx << 10) | ( unsigned long long int)

bit_angle ) == 0){
value [i] = glm :: vec2( circum );
return ;

}
}

}

A final step is using the sorted vi the local surface area ai for each node Ni can be computed

on the GPU by launching the CUDA kernel presented in Listing 5.9. In the kernel function

computeArea_kernel, firstly, the Ni that lies on the boundary of graph is ignored otherwise, each

thread iterates through the vi to compute the ai. The set of vi can be accessed using the index

offset for Ni. In each iteration, let idx be the index that is currently being processed, the area of

the triangle of vidx, vidx+1, and Ni is computed and accumulated to the sum.

Listing 5.9: The CUDA kernel implementation that compute area for each node.

__global__ void computeArea_kernel (glm :: vec2* point , glm :: vec2* circum , unsigned int* offset ,
float * area , unsigned int* tNum){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE ) return ;
glm :: vec2 p0 = point [idx ];
if( isBoundary (p0 , D_RADIUS )) return ;

glm :: vec2* thread_circum = circum + offset [idx ];
unsigned int thread_tNum = tNum[idx ];
float areaSum = 0.0f;

for(int i = 0; i < ( thread_tNum == 2 ? 1 : thread_tNum ); ++i){
glm :: vec2 p1 = thread_circum [i];
glm :: vec2 p2 = thread_circum [(i + 1) % thread_tNum ];
areaSum += computeTriArea (p0 , p1 , p2);

}
area[idx] = areaSum ;

}

5.3 Stream-Flows Computation

A stream-flow represents water running between neighbouring nodes in the stream power erosion

model. The stream-flow can be used to approximate the total accumulation and discharge rate of

water in each node. The stream-flow model used for the simulation is a single direction flow model

where water accumulated in each node Ni flows into the neighbour with the steepest descent slope

called the receiver node NRi . Each node Ni is called the donor node NDRi
of the receiver node

NRi
. Stream-flows between each node Ni and its receiver node NRi

form a set of directed trees T ,

which cover the graph G and is a key property to compute the fluvial erosion rate for each node

Ni in the later stage of the pipeline. A node that is not higher than any of its neighbours does

not have the receiver node and serves as a root node of each tree. Finding the receiver node NRi

for each node Ni is the first step in simulating the stream power equation. This section presents
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parallel algorithms and their implementations for this stage of the pipeline.

5.3.1 Finding Receiver Nodes

In order to find the receiver node NRi
for each node Ni, the slope angles between each node Ni and

its neighbours need to be computed and compared between all neighbours. The slope angle is only

computed for neighbours that have a lower elevation than Ni because it is searching for the steepest

descent. Once the relevant slope angles to neighbours are computed, they can be compared, and

the neighbour with the steepest slope becomes the receiver node by storing its index. There is no

dependency between the procedures to find the receiver node NRi for each node. Therefore, the

procedures can be done per node in parallel. The previously proposed parallel algorithm creates a

thread per node to executes the procedure to find the receiver node NRi
in parallel.

For the implementation of the algorithm, in order to search through neighbours, the lists of

neighbours are stored in neighbour. The lists of neighbours can be accessed for each node using

the offset index into the list and the total number of neighbours, which are stored in offset

and nNum. Some nodes may have neighbours stored as −1, indicating an empty space in the list

and should be ignored. The slope between the nodes is computed based on their distance on the

horizontal plane, and their elevation, which are stored in distance and height. Lastly, once the

receiver node NRi
found, it is stored in receiver.

Listing 5.10 presents C++ / OpenMP implementation of the parallel algorithm to find the

receiver node NRi for each node Ni. The implementation uses two variables maxS and maxN to

keep track of the neighbour with the steepest slope throughout the procedure where maxS keeps

track of the slope of the current steepest, maxN keeps track of the index of the current steepest.

OpenMP parallel for prgma that executes each iteration of the loop in parallel is used for

parallelisation of the procedure that finds the receiver node NRi
for each node Ni.

Listing 5.10: The C++ / OpenMP implementation of the stream flows computation.

# pragma omp parallel for
for(int i = 0; i < SIZE; ++i){

float h = height [i];
int offs = offset [i];
int nN = nNum[i];

int maxN = NO_FLOW ;
float maxS = 0.0f;

for(int j = 0; j < nN; ++j){
int n = neighbour [offs + j];
if(n != -1){

nh = height [n];
if(nh < h){

float slope = std :: abs(h - nh) / distance [offs + j];
if(maxS < slope ){

maxS = slope ;
maxN = n;

}
}

}
}
receiver [i] = maxN;
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}

The GPU implementation follows the same general algorithm parallelised by launching one

thread per node. Each thread will search through the neighbour of Ni to find the neighbour with

the steepest descent. This kernel is shown in Listing 5.11.

Listing 5.11: The CUDA implementation of the stream-flow computation.

__global__ void CR_kernel ( float * distance , float * height , unsigned int* offset , unsigned int*
nNum , int* neighbour , float * distance , int* receiver , const size_t SIZE){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= SIZE) return ;
float thread_h = height [idx ];
unsigned int thread_offset = offset [idx ];
unsigned int thread_nNum = nNum[idx ];

int maxN = NO_FLOW ;
float maxS = 0.0f;

for(int i = 0; i < thread_nNum ; ++i){
int n_idx = neighbour [ thread_offset + i];
if( n_idx != -1){

float n_h = height [ n_idx ];
if(n_h < thread_h ){

float n_d = distance [ thread_offset + i];
float slope = abs( thread_h - n_h) / n_d;
if(maxS < slope ){

maxS = slope ;
maxN = n_idx ;

}
}

}
}
receiver [idx] = maxN;

}

The algorithm to compute the later stages of the pipeline also requires the list of donors (denoted

as DNi
) for each node Ni. To store the donor list for each node Ni, Ni is added into the donor list

DNRi
of the receiver node NRi . The total number of donors for each node Ni must be counted each

iteration because the total number of donors will change through the simulation. The total number

of donors for each node can not exceed the total number of neighbours because only neighbours of

the node can become a donor of the node.

The procedure to add Ni into the DNRi
will have a race condition when nodes that share

the same NRi
are trying to read and increment the donor count for NRi

at the same time. The

parallel algorithm proposed in the previous work creates a thread the given each node Ni to add

itself into the DNRi
with protection for the race condition of the donor count increment. For the

implementation of the algorithm, The lists of donors for each node are stored in donor, and each

list can be accessed using an offset index into the list stored in offset. For a donor node to add

itself to the donor list, an index of the receiver node is stored in receiver, and as a donor gets

added, the donor counts for the node stored in dNum need to be incremented.

Listing 5.12 presents C++ / OpenMP implementation of the parallel algorithm to store each

node Ni into the donor list of its receiver node DNRi
. dNum must be initialise to 0 because the

total number of donors for each node Ni will change throughout the simulation and is used to

add elements to index and also counts donors. parallel for pragma is used to parallelised the
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procedure, and each node is given to each thread. atomic capture pragma is used to protect the

section with the race condition that is between nodes that share the same NRi
.

Listing 5.12: The C++ / OpenMP implementation of the list of donors computation.

# pragma omp parallel for
for(int i = 0; i < SIZE; ++i) dNum[i] = 0;

# pragma omp parallel for
for(int i = 0; i < SIZE; ++i){

int r = receiver [i];

if( receiver [i] != NO_FLOW ){
# pragma omp atomic capture
unsigned int dN = dNum[r]++;

donor [ offset [r] + dN] = i;
}

}

The GPU implementation follows the same general algorithm with a separate thread to add Ni

into the DNRi
. The race condition can be protected using the atomic function atomicInc. This

kernel is shown in Listing 5.13.

Listing 5.13: The CUDA implementation of the list of donors computation.

__global__ void CD_kernel (int* receiver , unsinged int* offset , unsigned int* dNum ,int* donor ,
const int SIZE){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= SIZE) return ;

int r = receiver [idx ];

if(r == NO_FLOW ) return ;

unsigned int r_offset = offset [r];
unsigned int r_dNum = atomicInc (dNum + r, SIZE);

donor [ r_offset + r_dNum ] = idx;
}

5.3.2 A New GPU Algorithm

In order to find the receiver node NRi
, the previous method parallelises the procedure by creating

one thread per node Ni. This approach may underutilise the GPU because it ignores a further

parallelisation opportunity. In the previous work, the thread is created per node Ni to search

through its neighbours sequentially. However, there is no dependency between the procedures of

searching through each neighbour except for the comparing and updating the current steepest

neighbour. The new algorithm further parallelises the procedure by creating one thread per edge

to compute slope angle between each node Ni and a single neighbour. This approach better utilises

the parallel processing capability of the GPU, which would show better computation throughput.

However, it does require additional storage for each neighbour in the list of neighbours for each

node Ni to identify which node they belong to.

The new algorithm consists of two steps where each step is implemented in the separate CUDA

kernel. The first step creates a thread given each neighbour in the neighbour lists to compute
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the slope angle between Ni and a single neighbour to find the steepest. For a thread to access

data of Ni that the given neighbour belongs to, the procedure requires additional data that is the

same size array as neighbour, which stores the index of Ni at the corresponding position of each

neighbour stored at the neighbour. This array is called the mask, and Figure 5.4 shows how data

is stored. The steepest neighbour then can be found by comparing the slope angle computed for

all neighbours of each node Ni, which needs to be performed sequentially and it can be done using

an atomic operation. The result computed for each node Ni needs to be accessed in the next step,

which also requires another additional data storage.

3 4 4 3 4nNum:

0 3 7 11 14Offset:

0.17 0.25 1.32 1.42 0.13 0.27 0.31 0.99 0.87 3.21 4.11 2.13 9.7 1.3 14.2 1.2 2.1 1.3Distance:

0 0 0 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4Mask:

Figure 5.4: The visual example of how data stored in the distance and mask arrays in the small
system of 5 nodes.

For the implementation of the first step of the new algorithm, the kernel creates one thread

per edge stored in neighbour, and the node that is a given neighbour belongs to can be identified

from the corresponding element stored in mask. Some neighbours may be stored as −1, indicating

an empty space, and should be ignored. In order to compute the slope of the given edge, the

distance between them is stored in distance, and their elevation is stored in height. The current

steepest is stored in the maxS by comparing and updating it using the atomic operation. The

kernel implementation of the step is presented in Listing 5.14. Note that it rounds the value of

slope angle computed to the integer with 106 for the comparison because the atomic operation

CUDA does not support floating-point value. The steepest slope angle computed and the index

of the receiver node NRi
found are stored in the upper and lower 32-bit of the maxS for each node

Ni.

Listing 5.14: The CUDA implementation of the massively parallel computation of the slope and

the receiver node.

__global__ void computeSlope_kerenl ( float * height , int* neighbour , unsigned int* mask , unsigned
long long int* maxS , float * distance ){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE_N ) return ;

int n_idx = neighbour [idx ];
if( n_idx == -1) return ;

unsigned long long int c_idx = mask[idx ];

float n_h = height [ n_idx ];
float c_h = height [ c_idx ];
float dist = distance [idx ];

unsigned long long int slope = (c_h > n_h ? (abs(c_h - n_h) / dist) * 1e+6f : 0);

if( slope != 0) atomicMax (maxS + c_idx , ( slope << 32) | n_idx );
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}

This stage of the pipeline in the previous work requires to store the list of donors for each node

Ni for the later stage of the pipeline. The new algorithm proposed does not require to store the

list of donors but the total number of donors for the later stage of the pipeline. The final step of

the stage stores NRi
and counts the total number of donors for each node Ni. The index of NRi

can be extracted from the result from the previous step stored in maxS. The total number of

donors for each node Ni can be counted by Ni increment the donor count of NRi . A thread can

be created for each node Ni to store the receiver node NRi
and increment the donor count of NRi

.

There may be a race condition between nodes that shares the same receiver node, which can be

prevented using an atomic operation.

For the implementation of the final step of the new algorithm, the computation results from

the previous step stored in maxS can be extracted and stored can be stored in receiver. The

slope computed stored in the upper 32-bit, and if it is 0, it indicates that the node does not have

a receiver node. Otherwise, the index of the receiver is extracted from lower 32-bit and stored in

receiver. Lastly, the corresponding donor count stored in dNum of the found receiver node can be

increment by performing an atomic operation. The implementation of the kernel to execute the

procedure is presented in Listing 5.15.

Listing 5.15: The CUDA implementation of the final step to compute stream-flows

__global__ void computeReceiver_kernel_level_labeling ( unsigned long long int* maxS , int*
receiver , unsigned int* dNum){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE ) return ;
unsigned long long int maxN = maxS[idx ];
int r_idx = (( maxN & 0 xFFFFFFFF00000000 ) == 0) ? NO_FLOW : (maxN & 0 x00000000FFFFFFFF );
if( r_idx != NO_FLOW ) atomicInc (dNum + r_idx , D_SIZE );
receiver [idx] = r_idx ;

}

Although the new algorithm costs additional memory space, the new algorithm proposed in

this study to compute this stage of the pipeline better utilise the GPU over the previous method

by further parallelising the execution.

5.4 Ordering

Solving the stream power equation is an iterative process based on the order of dependency hier-

archy between each node Ni ∈ G defined by a set of directed trees T computed in the previous

step. In order to solve the stream power equation efficiently, such order of computation may be

extracted by performing a traversal of T . In this section, we present the parallel algorithms and

their implementation of the node ordering process.
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5.4.1 RB Algorithm

The parallel algorithm proposed in [2] is building an ordering queue to store computation order by

traversing the tree. Traversing each tree in depth-first search (DFS) order was initially suggested in

[21]. This approach explores each tree branch by branch and generates a tree by tree computation

order queue for nodes ∈ G, which is based on the idea that there is no dependency between nodes

that are in different trees. Therefore, each tree can be allocated onto separate parallel threads to

compute the later stages of the pipeline. However, [21] does not consider that not all computation

of nodes in the same tree is dependent on each other. For nodes in the same level (depth), their

computation to solve the stream power equation is also independent of each other, even though

they are in the same tree. In order to increase the parallelism, breadth-first search (BFS) order

traversal that can build a queue in a level by level order instead of a tree by tree order was suggested

by the previous work in [2]. A visual example of the BFS order queue is presented in Figure 5.5.

In order to build the ordering queue, the algorithm traverses the set of stream-flow trees T in BFS

order, and stores the node into the queue. The algorithm also tracks an offset index into levels in

the order queue during traversal for the later stages of the pipeline.
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Figure 5.5: An example of the small system of 20 nodes covered by two trees to show how com-
putation order will be in the queue in the BFS order where circles represent a node, dashed lines
represent an edge of the graph arrow lines represent a directed edge of the tree. Nodes that are on
the same level can split onto different parallel threads.

Listing 5.16 presents our CPU implementation of BFS order queue generation algorithm used

in [2]. The algorithm first initialises variables where n is a counter for the order queue array, levels

is an array to store an index offset of each level in the queue, nL is counter for the levels array. In

the first for loop, traversal of T begins with finding all root nodes of each tree ∈ T and insert those

root nodes into the queue. The while loop then expands the search a level by level. The nested

loop in the while loop; the outer loop iterates through all nodes at the current deepest level, and
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inner loop iterates through all donor of those nodes and insert them into the queue. It then stores

a new index offset in the levels array once all nodes at the next level are inserted in the queue.

The while loop repeats until the whole T traversed.

The algorithm is implemented as a sequential program. The parallel approach of the algorithm

in [2] is to parallelise the first for loop and the outer loop of the second for loop and to have a queue

insertion and queue counter increment operation as a critical section. For the CPU application,

the multi-core implementation of this approach shows slower computational performance than a

sequential program.

The CPU implementation is written in a sequential program because the parallel computation

of the queue generation showed worth performance than the sequential implementation on the

CPUs. For the implementation, the extracted order is stored in order, and an index offset into

each level also need to stored in levels. Nodes at the next level are the donors of the nodes at the

current level. In order to traverse to the next level, the donors stored in donor need to be accessed

using the index offset into the list stored in offset and donor count stored in dNum. Listing 5.16

presents the CPU implementation of the queue generation procedure. The variable n and nL are

counters used to track of the current last index of queue and current last level. levels must be

initialised to 0 because it will change throughout the simulation. The procedure first finds all root

nodes of trees and then starts traversing by expanding the donor lists of nodes at the current level.

During the traversing, nodes are added to the queue one by one, and the level offset when the

traversing of the current level finishes.

Listing 5.16: The C++ implementation to generate a computation order queue.

int n = 0;
std :: memset ( levels .data () , 0, sizeof (int) * SIZE_LEVEL );
levels [0] = 0;
nL = 1;

for(int i = 0; i < SIZE; ++i) if( receiver [i] == NO_FLOW ) order [n++] = i;

levels [nL ++] = n;
int bL = -1;
int tL = 0;

while (bL < tL){
bL = tL;
tL = n;
for(int sI = bL; sI < tL; ++ sI){

int idx = order [sI ];
int _offset = offset [idx ];
int _dNum = dNum[idx ];
for(int i = 0; i < _dNum ; ++i){

order [n++] = donor [ _offset + i];
}

}
levels [nL ++] = n;

}
nL --;

Unlike the CPU implementation, it is inefficient to launch a single thread for GPU implementa-

tion to achieve reasonable performance. It is also inefficient to copy a chunk of data back into host

to generate the queue on the host side. Therefore, the CUDA implementation of the procedure
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explores parallel execution suggested in [2]. The parallel implementation of the procedure consists

of two steps which are implemented as a separate kernel. The steps are as follow; expands the

search to add nodes at the next level to the queue in parallel, launch a single thread to label the

offset for the next level. In order to iteratively expand the search, the host side application needs

to keep track of the current last index of the queue, which has to be copied from the device side.

Listing 5.17 presents the host side implementation of the procedure. The root nodes of the

trees are added to the queue first by launching the kernel addRoot, and the level offset is stored by

launching setNewBoundary. It then iteratively expands the search a level by level. Each iteration

a new level offset is stored by launching setNewBoundary. Note that in order to launch kernel

iteratively, the current last index of the queue n need to be copied back to host.

Listing 5.17: The host side implementation of the queue generation algorithm.

nL = 1;

cudaMemset (n, 0, sizeof ( unsigned int));
cudaMemset (levels , 0, sizeof ( unsigned int) * SIZE_LEVEL );
cudaMemcpy (nL , &nL , sizeof ( unsigned int), cudaMemcpyHostToDevice );

addRoot <<<BLOCK , THREAD >>>( receiver , n, d_order ,SIZE); cudaDeviceSynchronize ();
setNewBoundary <<<1, 1>>>(levels ,d_n ,d_nL); cudaDeviceSynchronize ();

unsigned int h_n;
int bL = -1;
int tL = 0;

while (bL < tL){
cudaMemcpy (&h_n , n, sizeof ( unsigned int), cudaMemcpyDeviceToHost );

bL = tL;
tL = n;
const unsigned int LS = tL - bL;
const unsigned int BLOCK = LS <= THREAD ? 1 : std :: ceil(LS / float ( THREAD ));

addNextLevel <<<BLOCK , THREAD >>>(dNum ,offset ,n,donor ,order ,bL ,tL); cudaDeviceSynchronize ();
setNewBoundary <<<1, 1>>>(levels , d, d); cudaDeviceSynchronize ();

}
cudaMemcpy (&nL , d, sizeof ( unsigned int), cudaMemcpyDeviceToHost );
cudaMemcpy ( levels .data () , d_levels , sizeof ( unsigned int) * SIZE_LEVEL , cudaMemcpyDeviceToHost );
nL --;

Listing 5.18 presents the the CUDA kernel implementation of addRoot. The kernel creates one

thread per node, which adds the nodes that are root into the queue. Reading and incrementing

n is a race condition between threads that found root nodes, which is prevented by an atomic

operation.

Listing 5.18: The CUDA kernel implementation to find and add all root nodes to the queue.

__global__ void addRoot (int* receiver , unsigned int* n, unsigned int* order , const unsigned int
SIZE){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= SIZE) return ;

int r = receiver [idx ];
if(r != NO_FLOW ) return ;

unsigned int my_idx = atomicInc (n, SIZE);
order [ my_idx ] = idx;

}

Listing 5.19 presents the implementation of the CUDA kernel setNewBoundary that is to insert
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a new index offset of the deepest level inserted so far. This kernel only creates a single thread for

the insertion. Purpose of the kernel is to avoid data transfer between the host and the device.

Listing 5.19: The CUDA kernel implementation to insert a new index offset into the levels array.

__global__ void setNewBoundary ( unsigned int* levels , unsigned int* n, unsigned int* nL){
levels [* nL] = *n;
(* nL) += 1;

}

Listing 5.20 presents implementation of the CUDA kernel addNextLevel that is to insert nodes

that at the next level into the queue. Ther kernel creates one thread per node at the current

deepest level. Insertion to the queue is again a race condition. Each thread loads the count of

donors of the given node, and it sums the loaded count to the counter of the queue n by performing

an atomic add operation. atomicAdd function returns an old value of the n and adds up the number

of donors to the n can secure the spot at [n, n + dNum− 1] of the queue to insert all donors of the

given node without a race condition. As a result, this approach increases the parallelism of the

execution.

Listing 5.20: The CUDA kernel implementation to add all nodes at the next level into the queue.

__global__ void addNextLevel ( unsigned int* dNum , unsigned int* offset , unsigned int* n, int*
donor , unsigned int* order , const int bL , const int tL){

int idx = blockIdx .x * blockDim .x + threadIdx .x + bL;
if(idx >= tL) return ;

unsigned int thread_idx = order [idx ];
unsigned int thread_dNum = dNum[ thread_idx ];

if( thread_dNum == 0) return ;

unsigned int thread_offset = offset [ thread_idx ];
unsigned int thread_n = atomicAdd (n, thread_dNum );
for(int i = 0; i < thread_dNum ; ++i) order [ thread_n ++] = donor [ thread_offset + i];

}

5.4.2 A New GPU Algorithm

Although the tree traversal has an efficient linear time complexity to the size of the graph, it is

challenging to implement queue generation algorithm efficiently for GPU because the algorithm

only focuses on parallelism, not the architecture of targeting hardware. Although, a single kernel

invocation only takes fractions of a second, launching kernel hundreds and thousands of times at

the stages of the pipeline for every iteration of the simulation does affect performance and is a

costly approach. Especially implementation of this stage of the pipeline also requires data transfer

between the host and device for every iterative kernel launching, which should be avoided for the

optimal performance for the GPU application. This study proposes a new algorithm to perform

the ordering, instead of building a queue, it sorts the nodes by their level.

To sort nodes by their level, the procedure as following; label the level of all nodes, sort the

nodes using the level labelled as a key and rearrange data. Each step is implemented in separate
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CUDA kernels.

The first step is to label a level for each node. This step is implemented by making all nodes

traverse the directed edge constructed by the stream-flows in parallel to find their level on the tree.

The procedure first finds the root nodes of the trees and label their level as 0. It then launches

a kernel that creates a thread that is given each node and traverses a directed edge constructed

by the stream-flows until it finds the node that has been labelled. Once it finds the labelled node,

the level can be computed by adding traverse step and the level of the found node. For each node

to traverse toward the root of the tree, it needs to access the receiver node, which is stored in

receiver. The levels labelled for each node is used for a sort key, which can be stored in level.

Listing 5.21 presents the implementation of the CUDA kernels to label level. The kernel function

initialiseLevel label the root nodes to begin the procedure. The kernel function labelLevel

launch threads per node to perform parallel traversing. Each thread traverse the tree towards the

root of tree through the receiver node until it finds the one that has been labelled.

All nodes in the graph can then be sorted using the level as a key. Construction of a value

array of the size N to be paired is also required. The array is filled with indexes [0, N−1], which is

named to sort_id. The array is later used to construct a renumber array that is used to rearrange

the data in sorted order. Sorting operation is performed by parallel radix sort from CUB library.

In order to achieve the optimal performance, the maximum number of bits required for the sort

key has to be known. The maximum value in the level can be efficiently found on the GPU using

the function called DeviceReduce::Max from CUB library.

Listing 5.21: The CUDA kernel implementation to label a level of each node.

__global__ void initialiseLevel (int* level , int* receiver ){
int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE ) return ;
level [idx] = receiver [idx] == NO_FLOW ? 0 : -1;

}
__global__ void labelLevel (int* level , int* receiver ){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE ) return ;

int r_idx = receiver [idx ];
if( r_idx == NO_FLOW ) return ;

int r_level = level [ r_idx ];
int cnt = 1;

while ( r_level == -1){
cnt ++;
r_idx = receiver [ r_idx ];
r_level = level [ r_idx ];

}
level [idx] = r_level + cnt;

}

Sorting operation arranges the indexes stored in sort_id in an order that is similar to the

ordering queue. To rearrange the node data in this order renumber that indicates a new position

of data need to be constructed. Listing 5.22 presents the CUDA kernel implementation to construct

the array. Each thread is given each element of the sort_id. Let i be a thread index, the data
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position at sort_id[i] moves to i. Therefore each thread stores i at renumber[sort_id[i]].

Listing 5.22: The CUDA kernel implementation to construct the renumbering array.

__global__ void constructRenumberArray ( unsigned int* sort_id , unsigned int* renumber ){
int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE ) return ;
renumber [ sort_id [idx ]] = idx; [4] = 0

}

Data can then be rearranged as the CUDA kernel presented in Listing 5.23. The implemen-

tation is abstracted to give an example of how a data array can be rearranged. In the actual

implementation, all arrays of node data need to be rearranged.

Listing 5.23: The abstracted CUDA kernel implementation to rearrange data.

__global__ void rearrangeData (...) {
int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE ) return ;
int new_idx = renumber [idx ];
data_out [ new_idx ] = data_in [idx ];

}

The index information of the graph representation data also needs to be updated into a new

index. Listing 5.24 present the CUDA kernel implementation to rearrange the graph representation.

For the graph representation, instead of reposition the data, it just updates the value of the index.

Listing 5.24: The abstracted CUDA kernel implementation to rearrange the list of neighbours.

__global__ void rearrangeNeighbourList_kernel_level_labeling ( unsigned int* renumber , int*
neighbour , unsigned int* d_neighbour_mask ){

int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE_N ) return ;

int old_idx = neighbour [idx ];
unsigned int old_mask = d_neighbour_mask [idx ];

if( old_idx != -1){
int new_idx = renumber [ old_idx ];
neighbour [idx] = new_idx ;

}

d_neighbour_mask [idx] = renumber [ old_mask ];
}

5.5 Uplift Computation

Computation of the change in elevation caused by tectonic uplift is one of two parts of the stream

power equation. Each node Ni ∈ G is given a constant uplift rate ui that defines the growing speed

of the elevation per year at each local region. A new elevation of each node caused by tectonic

uplift can be computed using the equation:

hi(t + ∆t) = hi + ui∆t (5.1)

Where hi denotes an elevation of Ni ∈ G, ui denotes the constant uplift rate of Ni ∈ G, ∆t denote
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the length of timestep. Computation for each node are completely independent of each other and

therefore the uplift rate for each node can be computed on n threads without any communication

required between threads where n denotes the total number nodes.

This stage of the pipeline is the one example of embarrassingly parallel problems, which of each

computation is obviously independent of each other. In multi-core CPU implementation, such

parallel problems can be computed using SIMD instruction set for it to exploit vector processing

capability of CPU efficiently. The function computeUplift in Listing 5.25 is the OpenMP im-

plementation that uses the omp simd pragma for each iteration of the for loop to be executed in

parallel by using SIMD instructions.

Although the multi-core CPUs can exploit SIMD instructions for fast parallel execution of the

uplift computation, the vector processing capability of GPUs significantly higher than multi-core

CPUs for this kind of problems. computeUplift_CUDA function presented in Listing 5.25 is the

kernel that each thread is given each node to compute the uplift rate for each node in parallel,

which may show faster execution time over multi-core CPUs as the size of G grows.

Listing 5.25: The multi-core implementation (computeUplift) and the CUDA kernel implemen-

tations (computeUplift_CUDA) of the uplift computation.

void computeUplift (){
# pragma omp simd
for(int i = 0; i < SIZE; ++i){

height [i] += uplift [i] * DT;
}

}

__global__ void computeUplift_CUDA ( float * uplift , float * height ){
int idx = blockIdx .x * blockDim .x + threadIdx .x;
if(idx >= D_SIZE ) return ;
height [idx] += uplift [idx] * DT;

}

5.6 Erosion Computation

The last stage of the pipeline is computing a new elevation changed by fluvial erosion over the

discrete timestep for each node Ni ∈ G. In this section, we present parallel algorithms and their

implementation to compute elevation changes by erosion.

The new elevation for each node can be computed using the following equation discussed in

Chapter 3:

hi(t + ∆t) = hi +
KAm

i

∆d hRi(t + ∆t)∆t

1 + KAm
i

∆d ∆t
(5.2)

The computation must be in the order of T that is extracted from the ordering stage. It is

because the equation for hRi
(t + ∆t) must be computed first as shown in the Equation 5.2. The

drainage area Ai for each node also has to be computed in order to compute Equation 5.2. A

drainage area is the total surface area of regions that flow water into a region represented by each
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node, and it is used to approximate the total water accumulation in each region. The drainage

area Ai for each node can be computed using the following equation discussed in Chapter 3:

Ai = ai +
∑

dn∈DNi

Adn
(5.3)

Equation 5.3 is similar to Equation 5.2 where it needs to be computed in the order of T because

ADNi
must all be computed first before Ai where DNi

denotes all contributing donor nodes of Ni.

Therefore, Ai for each node Ni ∈ G can be computed in the order of T , the only difference is that

it has to be in reverse order since donor nodes have to be computed before the receiver nodes.

Thermal erosion process for each node is computed to correct artefacts caused by unrealistic

high peaks. Thermal erosion process corrects the elevation of each node by restricting the slope

angle between a receiver node and donor node, and it can be computed using the following function

discussed in Chapter 3:

hi =


hi if Si ≤ Smax

tan(smax)∆d + rH if Si > Smax

(5.4)

5.6.1 RB Algorithm

In order to compute the drainage area and erosion for each node in parallel, computation depen-

dency between nodes only occurs for the case that the nodes are connected through the stream-

flows. The parallelism that the parallel algorithm proposed in [2] to compute this stage of the

pipeline is to compute nodes in the same level of T in parallel. The algorithm creates threads per

node in the same level iteratively a level by level in order of computation.

The first step of this stage of the pipeline is to compute drainage area Ai for each node Ni.

Computation order of drainage area computation is from the top level to bottom (root) where

each node Ni in the level adds the Ai to the drainage area of the receiver node ANRi
. For the

implementation, the lists of donors for each node are stored in donor, which can be accessed

using the index offset into the list and total number of donors stored in offset and dNum. The

surface area and drainage area to compute drainage area for each node are stored in area and

drainageArea. Listing 5.26 shows the C++ / OpenMP implementation for multi-core CPU.

drainageArea is first initialised to 0 because the computation result from the previous iteration

is stored. The implementation iteratively executes omp parallel for pragma for each level to

compute drainage area for nodes in the same level in parallel. Note that the parallel threads are

only created when there are at least 500 nodes in the level because it is not enough parallelism to

outperform sequential execution.
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Listing 5.26: The C++ / OpenMP implementation of the drainage area computation for multi-core

CPU.

memcpy ( drainageArea .data () , area.data () , sizeof ( float ) * SIZE);
for(int lI = nL - 3; lI >= 1; --lI){

const unsigned int lS = levels [lI ];
const unsigned int lE = levels [lI + 1];
const unsigned int lSize = lE - lS;
# pragma omp parallel for default (none) shared (lI) if( lSize > 500)
for(int sI = lS; sI < lE; ++ sI){

int idx = order [sI ];
unsigned int _dNum = dNum[idx ];
unsigned int _offset = offset [idx ];
for(int i = 0; i < _dNum ; ++i){

drainageArea [idx] += drainageArea [ donor [ _offset + i]];
}

}
}

The same parallel algorithm can be implemented in CUDA by substituting the parallel for

loop with a CUDA kernel that creates one thread per node in the current level. The host side

application iteratively launches kernel a level by level. Unlike the implementation for the CPUs,

it launches the kernel for all levels even though the total number of nodes is not large enough.

It would be more costly to transfer data to host to compute it sequentially, and computation

throughput provided by a single CUDA thread is not great. As the size of G grows, the total

number of nodes at each level of T would grow beyond the efficient parallel processing capability

of multi-core CPUs, enabling GPUs to outperform in computation time over CPUs. Listing 5.27

shows the CUDA kernel implementation to compute drainage area for nodes in the current level.

Listing 5.27: The CUDA kernel implementation of the drainage area computation.

__global__ void CDA_kernel ( unsigned int* order , unsigned int* dNum , unsigned int* offset , int*
donor , float * drainageArea , const int lS , const int lE){

int idx = blockIdx .x * blockDim .x + threadIdx .x + lS;
if(idx >= lE) return ;
int thread_idx = order [idx ];
unsigned int thread_dNum = dNum[ thread_idx ];
unsigned int thread_offset = offset [ thread_idx ];
for(int i = 0; i < thread_dNum ; ++i){

drainageArea [ thread_idx ] += drainageArea [ donor [ thread_offset + i]];
}

}

The second step is to compute a new elevation changed by erosion over the discrete timestep

for each node Ni ∈ G. Computation order of erosion computation is from the bottom (root) level

to the top level, which is the reverse order of drainage area computation order. It is because to

compute a new elevation for each node Ni, it must have updated elevation of the receiver node

NRi . For the implementation, in order to compute erosion for each node, an index of the receiver

node is stored in receiver, the drainage area Ai stored in drainageArea, the elevation of the node

and its receiver node stored in height, the distance between the node and its receiver node stored

in distance are required along with some constant parameters for the simulation. Listing 5.28

shows the C++ / OpenMP implementation for multi-core CPU. The implementation iteratively

executes omp parallel for pragma for each level to compute erosion for nodes in the same level
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in parallel. Note that the parallel threads are only created when there are at least 500 nodes in

the level same as the drainage area computation. It is for the same reason that when there is not

enough parallelism to outperform sequential execution.

Listing 5.28: The C++ / OpenMP implementation of the erosion computation for multi-core

CPUs.

void computeErosion (){
for(int lI = 1; lI < nL - 1; ++ lI){
const int lS = levels [lI ];
const int lE = levels [lI + 1];
const size_t lSize = lE - lS;

# pragma omp parallel for if( lSize > 500)
for(int sI = lS; sI < lE; ++ sI){

int idx = order [sI ];
int rIdx = receiver [idx ];
float _distance = glm :: distance ( point [idx], point [rIdx ]);
float ka_DIV_distance = (KEQ * std :: pow( drainageArea [idx], MEQ) * DT) / _distance ; //

reduce redundunt computation
float rH = height [rIdx ];
float h = ( height [idx] + rH * ka_DIV_distance ) / (1 + ka_DIV_distance );
GLdouble slope = std :: atan(std :: abs(h - rH) / _distance );

if( slope > maxSlope [idx ]){
h = std :: tan( maxSlope [idx ]) * _distance + rH;

}
height [idx] = h;

}
}

}

The same parallel algorithm can be implemented in CUDA by substituting the parallel for loop

with a CUDA kernel that creates one thread per node in the current level the same as the drainage

area computation. The host side application iteratively launches kernel a level by level. Unlike

the implementation for the CPUs, it also launches the kernel for all levels even though the total

number of nodes is not large enough because it would be more costly to compute it sequentially.

As the simulation size grows, the total number of nodes at each level of T would grow beyond the

efficient parallel processing capability of multi-core CPUs, which may enable GPUs to outperform

in computation speed over CPUs. Listing 5.29 shows the CUDA kernel implementation to compute

erosion for nodes in the current level.

Listing 5.29: The CUDA implementation of the erosion computation.

__global__ void CER_kernel ( unsigned int* order , int* receiver , glm :: vec2* point , float * height ,
float * drainageArea , float * maxSlope , const int lS , const int lE){

int idx = blockIdx .x * blockDim .x + threadIdx .x + lS;
if(idx >= lE) return ;
int thread_idx = order [idx ];
int r_idx = receiver [ thread_idx ];
glm :: vec2 thread_p = point [ thread_idx ];
float thread_h = height [ thread_idx ];
glm :: vec2 r_p = point [ r_idx ];
float r_h = height [ r_idx ];
float distance = glm :: distance (thread_p , r_p);
float ka_DIV_distance = (KEQ * pow( drainageArea [ thread_idx ], MEQ) * DT) / distance ;
float h = ( thread_h + r_h * ka_DIV_distance ) / (1 + ka_DIV_distance );
float slope = atan ((h - r_h) / distance );
float thread_maxSlope = maxSlope [ thread_idx ];

if( slope > thread_maxSlope ){
h = tan( thread_maxSlope ) * distance + r_h;

}
height [ thread_idx ] = h;

}
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5.6.2 A New GPU Algorithm

The parallel algorithm proposed in [2] fully utilises the parallel processing capability of modern

CPUs. The same general parallel algorithm can scale its parallelism to utilise computing hardware

of highly parallel structure such as GPU. However, the algorithm can be further improved to utilise

the computing power of GPUs better. Firstly, the maximum level of the set of stream-flow trees

T can grow over hundreds and thousands as the simulation size grows. Launching kernels that

many times for every iteration of the simulation is a costly approach. Secondly, some levels near

the top may not have enough nodes to benefit from GPUs’ parallel processing capability. This

study proposes a new algorithm to compute this stage of the pipeline. The new algorithm launches

kernel only once to compute drainage area and erosion for all nodes Ni ∈ G.

In order to transform the iterative kernel launching into a single kernel, the kernel creates a

single thread per node, and each thread waits for dependent computation for the given node to

complete. CUDA built-in warp vote function __all_sync() can be exploited to implement such

behaviour inside the kernel. This function receives two arguments; the first argument is a mask

to indicate which threads in the warp to be included in the vote, and the second argument is a

condition. The function returns true if all threads in the vote satisfy the condition. The CUDA

kernel implementations of this stage of the pipeline have a while loop statement block that iterates

until __all_sync() function returns true where the condition is whether the thread has completed

computation for the given node. Lastly, this is not a usual approach to write a CUDA kernel, and

it is not recommended to make a thread wait in the loop until something completes. When CUDA

kernel launches, threads are getting launched sequentially from the first to the end. For this

approach to work appropriately, all nodes must be given to threads in computation order, which

can minimise the waiting time of thread by the time they launch otherwise the kernel crashes or

completes after a significantly long time.

There are two specific implemented features for Turing architecture compatibility. Firstly the

volatile variables are for the variables that must be immediately reloaded once value changes

to avoid unexpected caching behaviour showed at Turing architecture GPUs. Those GPUs loads

values from the cache memory even when the actual value stored at the global memory has changed.

They reload data from memory after a long time, making threads wait too long for warp vote

function to return true. Secondly, the __syncwarp() function right after the conditional statement

block is to reconverge threads in the warp explicitly due to the independent thread scheduling

feature newly introduced in Turing architecture.

Listing 5.30 shows the CUDA kernel implementation to compute the drainage area Ai for each

node Ni. The kernel arranges nodes to threads in reverse order of stored data because the order

of computation is from top to bottom. Each thread waits until the dNum of the given node become
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0, which indicates that the drainage area computation for the node has completed. Each thread

then adds the Ai to ARi
, and it then decreases the dNum of its receiver node NRi

. These two

computations in the block must be protected by atomic operation because there is a race condition

between threads share the same NRi
.

Listing 5.30: The CUDA kernel implementation of the drainage area computation of our new

algorithm.

__global__ void computeDrainageArea_kernel ( float * drainageArea , volatile float *
vol_drainageArea , int* receiver , int* level , unsigned int* dNum , volatile unsigned int*
vol_dNum ){

int idx = ( D_SIZE - blockIdx .x * blockDim .x) + threadIdx .x;
if(idx >= D_SIZE ) return ;
int thread_level = level [idx ];

if( thread_level < 2) return ;

unsigned int mask = __activemask ();
bool done = false ;

while (! __all_sync (mask , done)){
if (! done && ( vol_dNum [idx] == 0)){

int r_idx = receiver [idx ];
float da = vol_drainageArea [idx ];
atomicAdd ( drainageArea + r_idx , da);
atomicDec (dNum + r_idx , D_SIZE );
done = true ;

}
__syncwarp (mask);

}
}

Listing 5.31 shows the CUDA kernel implementation to compute the erosion for each node Ni.

The kernel arranges nodes to thread in order of stored data because the order of computation is

from bottom to top. Each thread waits until the erodded of the receiver node NRi
of the given

node, which indicates that the erosion computation for NRi has completed. Each thread then

computes the new elevation changes caused by erosion for the given node.

Listing 5.31: The CUDA kernel implementation of the erosion computation of our new algorithm.

__global__ void computeErosion_kernel (glm :: vec2* point , float * height , volatile float *
vol_height , float * drainageArea , float * maxSlope , int* receiver , int* eroded , volatile int*

vol_eroded , const int N, float * distance ){
int idx = blockIdx .x * blockDim .x + threadIdx .x ;
if(idx >= D_SIZE ) return ;
int r_idx = receiver [idx ];
unsigned int mask = __activemask ();
bool done = false ;
if( r_idx == NO_FLOW ) {

eroded [idx] = N;
done = true ;

}
__syncwarp (mask);
while (! __all_sync (mask , done)){

if (! done && ( vol_eroded [ r_idx ] == N)){
glm :: vec2 thread_p = point [idx ];
float thread_h = height [idx ];
glm :: vec2 r_p = point [ r_idx ];
float r_h = vol_height [ r_idx ];

float dist = glm :: distance (thread_p , r_p);
float ka = KEQ * pow( drainageArea [idx], MEQ) * DT / dist;
thread_h = ( thread_h + r_h * ka) / (1 + ka);
float slope = atan(abs( thread_h - r_h) / dist);
float maxS = maxSlope [idx ];
height [idx] = slope > maxS ? (tan(maxS) * dist + r_h) : thread_h ;
__threadfence ();
eroded [idx] = N;
done = true ;
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}
__syncwarp (mask);

}
}

Extra Sort Key The new ordering method provides improved memory access over [2] by sorting

data in order at the memory. However, while the new method can provide coalesced memory access

patterns for threads given nodes at the same level, accessing data of nodes that are connected with

given nodes through the stream flows or graph edges still not coalesced access. It is because sorting

does not take account of such connections.

Memory access pattern can be improved by having indexes of NRi
of all nodes Ni ∈ G as a

minor key for the sorting. Using the minor key sorts nodes into an order that provides coalesced

memory access when each thread are accessing NRi or NDNi
. However, it requires the double

amount of bits to sort nodes, making simulation slower overall because it takes longer at the

ordering stage. We have tried to find another minor key that requires fewer bits and sort nodes

into a similar order; such as sorting nodes with their position at the horizontal plane or sorting

nodes in the same tree together. None has provided better memory access pattern. Computational

performance of these approaches is also presented in the next chapter for comparison.

Size Limitation The new algorithm proposed minimises data transfer between host and device

for optimal performance and therefore all simulation data are stored in the device side memory.

Off-chip DRAM capacity is not very high compared to the size of RAM. This memory bottleneck

limits the size simulation that the GPU can store. Multi-GPU computing could be one solution

that extends data storage by adding more DRAM of the additional GPU to overcome the storage

limitation. The Multi-GPU computing solution for the new algorithm is beyond the scope of this

study, which can be a potential extension to this study.

5.7 Summary

Although the parallel algorithm proposed in [2] can efficiently exploit the parallel processing capa-

bility of modern hardware such as multi-core CPUs and GPUs, the algorithm can still be improved

to utilise GPUs better because the algorithm does not specifically target GPUs. The new parallel

GPU algorithm proposed by this study is optimised to improve GPU utilisation to compute the

stream power equation simulation.

The stream flows computation stage has been improved by increasing the parallelism. The

new ordering method by sorting node data removes the inefficient iterative kernel launching and

data transfer between host and device. The drainage area and erosion computation of the previous

algorithm also iteratively launch the kernel level by level, which becomes costly as the depth of the
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stream-flows tree grows. The new algorithm transforms this iterative kernel launching algorithm

into a single kernel launching by exploiting the warp voting function to make a thread wait for

dependent computation to be completed. Performance results comparison between the previous

work and the new algorithm are presented in the following chapter.
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Chapter 6

Result

The different parallel implementations’ performance results have been measured to compare their

computation time for a range of initial uplift rates, sizes, and architecture. The different parallel

algorithms for computing the stream power equation have been implemented using C++ / OpenMP

and Nvidia’s CUDA. In this chapter, the parallel algorithm proposes in the previous work [2] is

referred to as RB and the new GPU algorithm is referred to as New GPU.

Terrain generation results of the new GPU algorithm have also been collected to verify that

the new algorithm produces the same result as the original method proposed in [1]. The generate

terrain is rendered in 3D using a C++ / OpenGL pipeline.

6.1 Performance Result

The machine used to test the CPU implementations is equipped with a 4.9 GHz Intel Core i7-9700k

with 8 processing-cores and a 12MB cache and 32GB of DDR4-3200 RAM. Two GPUs are used

to test CUDA implementations: an Nvidia GTX 780 (Kepler architecture, 3GB DRAM) and an

Nvidia RTX 2070 Super (Turing architecture, 8GB DRAM). Although the GTX 780 is quite an

outdated piece of hardware at the time of writing, it has been included in the test to observe how

New GPU algorithm works on an old previous-generation GPU. The operating system used by this

test machine is Ubuntu 18.04 LTS.

Figure 6.1: Uplift maps used in the tests.
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The performance test measures the time duration to compute 1, 000 iterations for different
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simulation sizes for different implementations. A randomly generated set of points with a minimum

distance r ranges from 400 to 20 on the 5, 0000 X 5, 0000 size plain used in tests. The sizes range

from 8, 956 up to 3, 565, 808, and the same geometric graph (set of points) is used for the same

size. The test for each size was conducted for 4 different uplift maps shown in Figure 6.1 to observe

whether different uplift maps affect performance. Each size test was conducted 30 times to observe

whether the results are consistent.

Figure 6.2: Overall performance comparison of the CPU implementations for four different uplift
maps.
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The first performance comparison is between the RB single-core and multi-core CPU algorithm

implementations. Figure 6.2 shows that multi-core implementation consistently outperforms the

single-core implementation across all sizes. The performance improvement of the multi-core over

single-core is approximately 400% for all sizes and uplift maps. The simulation performance of

CPU implementations linearly scales with the simulation size. However, results from different

uplift maps show different computation times, which take longer in order of the max uplift, circle,

piecewise, and smooth uplift maps, where the max uplift map is the fastest.

The inconsistent performance for the different uplift maps is believed to be due to the ordering,

drainage area, and erosion stages and their relation to the maximum level (depth) of the set of

stream-flows T . The ordering stage traverses each node in T a level by level to build the ordering

queue. The drainage area computation stage iteratively processes T a level by level from bottom

to top, and the erosion stage processes T the same way in reverse order. Figure 6.3 shows the

overall maximum level of T throughout the simulation for the different uplift maps and simulation



6.1. PERFORMANCE RESULT 73

sizes. The tests were conducted 30 times with different graph each time generated from the same

minimum distance between points ranges from 400 to 20. While all uplift maps show a similar trend

that the maximum level grows as the simulation size grows, the smooth uplift map’s maximum

level is significantly higher than others followed by the piecewise uplift map.

Figure 6.3: Maximum tree level thoughout the simulation.
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In the stream power erosion model, the topology of T represents a running water path that flows

from peak to river mouths (boundary) through the descendant pathâĂŤthe depth of T increases

as the distance of water flowing path increases. While Max Uplift and Circle’s peak would be

located around the centre of the domain and flow water to the boundary from there, Smooth

and Piecewise’s peak would be located around the bottom of the domain, and water would flow

towards to the top of the domain through the descendent path. Especially for Smooth, uplift

rates gradually increase from the bottom to top of the domain, making nodes have more tight

stream-flow connections throughout the domain.

Figure 6.4 shows a performance comparison between the RB multi-core and GPU. The RTX

2070 Super results show that the GPU provides better performance than multi-core as the sim-

ulation size grows over about 0.45 million. The GTX 780 results for the max uplift, circle, and

piecewise uplift maps also shows better performance than multi-core CPU as the simulation size

grows over about 2 million. However, the GTX 780 always shows slower performance than the

multi-core CPU for the smooth uplift map. It is because the ordering, drainage area, and erosion

stages launch kernel iteratively D times to compute the stage where D is the maximum level of

the set of stream-flows T . Ordering stage especially also require the data transfer between host
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and device every iteration of kernel launching.

Figure 6.4: Overall performance comparison of the multi-core CPU and RB GPU implementations
for four different uplift maps.
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Figure 6.5 shows the performance comparison between the RB algorithm and the New GPU

algorithm. The results for both GTX 780 and RTX 2070 Super shows significantly better perfor-

mance than the RB multi-core CPU and at least 300% improved performance over the RB GPU.

The New GPU algorithm’s significant performance improvement can be found from the result

for the GTX 780. According to the technical specification, while theoretical max computational

throughput that the RTX 2070 Super provides is 8.92 TFLOPS, the GTX 780 only provides 3.97

TFLOPS computation throughput. However, the New GPU algorithm running on the GTX 780

outperforms the RB algorithm running on the RTX 2070 Super for most test cases. Performance

improvement on the RTX 2070 super from the GTX 780 is also greater in the New GPU. While

the RTX 2070 Super provides over the GTX 780 is about 200% improved performance with the

RB algorithm, the New GPU algorithm runs with 300% improved performance on the RTX 2070

Super over the GTX 780.

Performance results of each stage of the pipeline have been collected for the case initialised with

the smooth uplift map to observe how a higher maximum level of T affects each pipeline stage.

Figure 6.6 shows the running time of each stage of the pipeline for the RB CPU and GPU, and

New GPU algorithms.

The plots for single-core implementation shows that the stages that take the largest running

time are the stream-flow, drainage area, and erosion stages. The stream-flow stage searches through
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Figure 6.5: Overall performance comparison of the multi-core CPU, RB GPU, and New GPU
implementations for four different uplift maps.
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a list of neighbours for each node to find the receiver node. The drainage area stage iterates through

each node in order of T and adds its drainage area to its receiver node’s drainage area. The erosion

stage iterates through each node in order of T and computes each node’s erosion rate. The parallel

multi-core implementation significantly improves these stages. The parallel implementation of the

stream-flow stage creates a thread per node, and each thread search through a neighbour list to

find the receiver node for the given node. The parallel implementation of the drainage area and

erosion stage iteratively creates a thread per node at each level by level, and each thread computes

the stage for the given nodes. However, parallelisation of the ordering stage for the multi-core

CPU shows slower performance than the sequential implementation. Therefore the ordering stage

is not parallelised for the multi-core implementation, making the stage take the largest running

time.

The RB GPU plots show that the ordering stage takes the largest running time, followed by

the drainage area and erosion stages. Those stages iteratively launch kernel a level by level, which

can be costly if it requires hundreds and thousands of kernel launching. This costly approach has

resulted in that for this particular case, the overall running time for the GTX 780 is slower than

the multi-core CPU. The ordering stage also requires data transfer between host and device for

every iteration of kernel launch. That is why the ordering stage takes significantly longer than

other stages, making the overall performance. The stream-flow takes the shortest running time as

it only launches a kernel just once for all nodes in the graph.
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Figure 6.6: All stage performances comparison of the single-core, multi-core, RB GPU, and New
GPU for the smooth uplift map.
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The New GPU plots show that the erosion stage takes the largest running time, followed by

the ordering, stream-flow, and drainage area stages. The New GPU algorithm does not iteratively

launch kernel to compute the ordering, drainage area, and erosion stages. The results for those

stages shows the significantly faster running time than RB GPU. Only the stream-flow stage shows

slightly slower performance than RB GPU because of the ordering stage that sorts nodes instead

of building a queue affects the memory access pattern in the stream-flow stage. However, that

does not affect the overall performance comparison because the ordering stage running of the RB

GPU already takes longer than the overall running time of the New GPU.

6.1.1 Minor Sort Key

The potential for further improvement of memory access patterns of the pipeline computation by

sorting nodes in the same level using the minor key has been discussed in Chapter 5. The New
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Figure 6.7: Overall performance comparison of the New GPU and different minor key approaches
for four different uplift maps.
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GPU sort nodes by the level can provide coalesced memory access pattern for loading data from

nodes that are in the same level. However, the stages of the pipeline also need to load data of

the given node’s neighbour nodes, including the receiver node, which there will be no guarantee

on coalesced access. The idea is that although adding a minor key to the soring would make the

ordering stage slower if it can improve the memory access pattern for other stages of the pipeline,

overall performance may be better than the original New GPU.

Performance results of different minor key approaches have been collected. Three approaches

have been tried. The first approach uses an index of the receiver node for each node, which is

referred to as RID. The second approach uses an index of the tree that each node belongs to, which

is referred to as TID. The last approach uses an index of the space on the grid that each node

belongs to, which is referred to as SID.

Figure 6.7 shows the performance comparison between the New GPU and different minor key

approaches for different uplift maps. The results for the TID approach shows the worst performance

of all. The poor performance could be that the TID approach either does not improve memory

access pattern or takes too long at the ordering stage even though it improves the memory access

pattern. The RID approach results only show slightly better performance for the case with the

circle uplift map, which states that it may improve the memory access pattern, but the ordering

takes too long. The SID approach results show slightly better performance for most cases except

for the smooth uplift map. The results state that the SID approach’s performance trade-off at the
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Figure 6.8: All stage performances comparison of the New GPU and different minor key approaches
running on the GTX 780 for the max uplift map.
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ordering stage is not as bad as long as if the maximum level of T is not too high.

Performance results of each stage of the pipeline have been collected for the case initialised

with the max uplift. The ordering stage for the minor key approaches takes longer time than the

original New GPU algorithm. The max uplift shows the smallest overall maximum level throughout

the simulation, which will have less effect on the ordering stage’s performance for each approach.

Firue 6.8 and 6.9 shows the running time of each stage of the pipeline for the original New GPU

algorithm and minor key approaches.

The RID approach results show that unlike the original New GPU algorithm, the ordering stage

takes the largest running time. The stream-flow, drainage area, and erosion stages show improved

performance over the original algorithm making RID approach outperform the original algorithm

for this particular case. The RID approach results state that the memory access pattern for the

pipeline stages is improved enough to show better performance over the original algorithm at the

time-consuming pipeline.

The SID approach results also show improved performance at the stream-flow, drainage area,

and erosion stages, but the improvement is not as good as the RID approach. The running time at

the ordering stage is not as long as the RID approach. As a result, this approach outperforms the

original algorithm for this particular case even though the memory access pattern’s improvement

is not as significant.
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Figure 6.9: All stage performances comparison of the New GPU and different minor key approaches
running on the RTX 2070 Super for the max uplift map.
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The TID approach results show the worst performance of all. The results show that this

approach does improve the memory access pattern as it shows shorter running times than the

original algorithm for the stream-flow, drainage area, and erosion stages. However, although this

approach improves the memory access pattern, it takes a long time at the ordering stage, making

the overall performance slower than the original algorithm.

The study has not found a minor key that improves the memory access pattern as good as the

RID approach and does not take a too long time at the ordering stage as the SID approach. If

such the minor key can be found, the algorithm using that minor key may outperform the original

algorithm for all cases.

6.2 Terrain Generation Result

The New GPU algorithm shows significantly improved performance over the RB algorithm and

can correctly generate the terrain as the original method proposed in [1]. The result of the stream

power equation simulation is a digital elevation map (DEM). Terrain result is rendered using C++

/ OpenGL. The purpose of the rendering a result is to verify that the result produced by the New

GPU algorithm is correct. Therefore terrain is rendered with a simple material Phong shading

without any additional feature and texture.
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Figure 6.10: Examples of rendered terrain generation result for different uplift maps.
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Figure 6.10 presents the rendering results of terrain generated from 6 different uplift maps.

Those results are exactly the same as those generated by the simulation pipeline of the previously

proposed method. For procedural terrain generation methods, it is important to be able to generate

desired looking terrain. If the method only generates unpredictable random terrain and can not

produce the desired output, it is not useful for many applications. In the results, controllability

of the uplift map input to the output can also be observed. Rendered results with Circle, Panda,

and Massey Logo uplift maps are formed into terrain that is almost identical to the shape of the

uplift map. Smooth and Piecewise uplift maps distribute the uplift rates over the domain in a

gradient pattern. The altitude distribution of terrain of mountain ranges follows the same gradient

pattern.

6.3 Summary

The New GPU algorithm has been compared with the RB CPU and GPU algorithm. The New

GPU algorithm shows significant performance over any RB algorithm implementation running on

different hardware. Especially the New GPU algorithm even shows better performance on the

GTX 780 over the RB GPU algorithm running on the RTX 2070 Super. It is a remarkable result

considering while theoretical max computational throughput that the RTX 2070 Super provides is

8.92 TFLOPS, the GTX 780 only provides 3.97 TFLOPS computation throughput.

The approaches that use an extra minor key to sort nodes to improve the memory access pattern

to neighbours of each node has been tried, and their performance results have been compared with

the original New GPU algorithm. The trade-off between the running time of the ordering stage and

improvement of the memory access pattern has to be optimal for these approaches to outperform

the original algorithm. The optimal solution has not been found yet, and it requires further study.

Terrain generation results using the New GPU algorithm has been verified by rendering them

in 3D. The New GPU algorithm successfully produces terrain as same as the original method in [1].
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Controllability of the uplift map input to the output has also been presented. The controllability

of procedural generation methods is important for them to be used in many applications.
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Chapter 7

Conclusion

Virtual terrain is often an object of large spatial scale in backgrounds of the computer graphics

scenes. This study developed a method to reproduce large scale terrain by investigating the dif-

ferent procedural terrain generation methods. Many methods have limitation generating terrain

of such large scales. Fractal-based is lack of realism, and example-based methods are not reliable.

It is because both of those methods do not consider land-forming processes. Hydraulic erosion

simulation methods based on computational fluid dynamics are too expensive to compute despite

several attempts to optimise the pipeline. The stream power erosion model can effectively model

landscape evolution at large temporal and spatial scales. The original method has shown that

employing simulation is effective for the purpose of generating large scale terrain. However, in-

creasing simulation size may result in a long computation time using the pipeline of sequential

implementation.

Graphics processing units (GPUs) were exploited to overcome the computational limitations

of the original method of the stream power erosion model. Graphics processing units are very

effective for massively parallel problems as compared to conventional CPUs. However, for GPUs

to be effective on such problems, a parallel algorithm that specifically targets GPUs is required

due to their different architecture. A previous study proposed a parallel algorithm to compute

the stream power equation simulation. However, that proposed algorithm was a general parallel

algorithm that targeted any multi-core hardware such as CPUs and GPUs. Therefore, there was

an opportunity to improve the algorithm to utilise GPUs better.

This study proposes a new parallel GPU algorithm to compute the stream power erosion model

equation. The new algorithm proposed several changes to each stage of the simulation pipeline to

optimise its performance on GPUs. The stream-flow computations stage created a thread per graph

edge instead of per node to find the receiver node for each node. The ordering stage sorted the

nodes by level, rather than building an ordering queue. The drainage area and erosion computation

83
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stages launched kernel only once instead of iteratively launching a kernel level by level.

The new parallel GPU algorithm’s terrain generation was verified to generate the same terrain

as the original stream power erosion model method. It also showed significantly better performance

than the previously proposed algorithm across all tested simulation sizes, uplift maps, and hard-

ware. The new algorithm consistently outperformed the multi-core CPU by about 300% on the

GTX 780, and 900% on the RTX 2070 Super. It consistently showed about 300% improvement in

performance over GPU implementation of the previous algorithm. In addition, the new algorithm

running on the GTX 780, which is outdated hardware, outperformed the previous algorithm that

ran on the significantly newer RTX 2070 Super. This result is very significant when considering

that while theoretical max computational throughput that the RTX 2070 Super provides is 8.92

TFLOPS, the GTX 780 only provides 3.97 TFLOPS computation throughput.

The newly proposed GPU algorithm significantly outperforms the fastest parallel algorithm

available in computing the stream power equation simulation, while being able to produce the same

terrain result as the original method. This computational performance advancement allows the

method to generate terrain with more precise geological detail while keeping the same computation

time.

Future Work

Some possible extensions of this study have been identified. Firstly, the new algorithm stores

all simulation data in DRAM to minimise the data transfer between host and device. However,

simulation size is limited to the size of DRAM because simulation data is expected to be stored

in the GPU. This memory bottleneck may be overcome by developing the multi-GPU computing

solution for the new algorithm to extend data storage by adding more DRAM of the additional

GPU to the computation.

Secondly, the ordering stage of the pipeline sorts nodes by the level, which provides coalesced

memory access pattern for loading data from nodes in the same level. However, edges for each node

will be stored in an arbitrary order, therefore accessing neighbours for each node has no guarantee

for them to be coalesced. There have been several attempts to use a minor key to sort nodes

within the same level align them in order of nodes that share the neighbours. Sorting by minor

keys can improve memory access patterns for the stream-flow, drainage area, and erosion stages,

but at an increased cost for the ordering stage. No one minor key shows a consistent performance

improvement from this trade-off in all test cases but may warrant further investigation.
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