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Abstract 

The increasing amount of molecular data available for phylogenetic studies 

means that larger, often intra-species, data sets are being analysed. Treating such 

data sets with methods designed for small interspecies data may not be useful . This 

thesis comprises four projects within the field of phylogenetics that focus on cases 

where the application of current tree estimation methods is not sufficient to answer 

the biological questions of interest. 

• A simulation study contrasts the accuracy of several tree estimation methods 

for a particular class of five-taxon, equal-rate, trees. This study highlights 

several difficulties with tree estimation, including the fact that some tree 

topologies produce "misleading" patterns that are incorrectly interpreted; 

that correction for multiple changes does not always increase accuracy, be­

cause of increased variance; and the difficulty of correctly placing outgroup 

taxa. 

• A mitochondrial 0 I\ A data set, containing over 400 modern and ancient 

Adelie penguin samples , is used to estimate the rate of evolution . Straight­

forward tree-estimation is unhelpful because the amount of homoplasy in the 

data makes the construction of a single reliable tree impossible. Instead the 

data is represented by a network. 

• A method, that extends statistical geometry, assesses whether or not a data 

set can be well-represented by a tree. The "tree-likeness" of each quartet in 

the data is evaluated and displayed visually, either for the entire data set or 

by taxon. This aids in identifying reticulate (or simply noisy) data sets, and 

also particular taxa that confound tree-like signal. 

• Novel methods are developed that use pairwise dissimilarities between iso­

lates in intra-species microbial data sets, to identify strains that are good 

representatives of their species or subspecies. 
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