Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Storage Potential of Kiwifruit from Alternative Production Systems

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Plant Science

at

Massey University New Zealand

Jason Ronald Benge 1999

Abstract

The effects of nine soil treatments on the storage potential of 'Hayward' kiwifruit were examined over three consecutive seasons at sites in Palmerston North and Te Puke, New Zealand (NZ). The treatments comprised three ground covers (viz. bare, grass and mulch), in factorial combination with three fertiliser regimes (viz. conventional, organic and organic plus (= organic + gypsum)). Each season, several fruit and vine attributes were measured at harvest and the subsequent softening behaviour of fruit was evaluated during storage. In the second and third seasons, several soil, fruit and vine attributes were also monitored before harvest. At both sites, significant and consistent differences were observed in many of the soil attributes that were measured. In particular, conventional plots often contained more inorganic nitrogen (N) and potassium (K) than organic and organic plus plots while organic plus plots nearly always contained more calcium (Ca) than conventional plots. Bare soil consistently contained less moisture, and experienced higher 2.00 pm and lower 6.00 am temperatures, than covered soil, while the mulch increased the surface rooting of vines. The soil amendments also had some consistent, though not statistically significant, effects on the mineral composition of vines, especially in the third season. In particular, fruit and leaves from conventional plots tended to contain more N and K but less Ca than those from organic and organic plus plots while fruit and leaves from grass plots consistently contained less N than those from bare and mulch plots. Of all the soil amendments, grass had the largest effect on fruit storage behaviour i.e. fruit associated with that amendment were consistently firmer throughout storage and developed significantly less soft patches than fruit from bare and mulch plots. Although fruit from conventional plots tended to soften slightly more rapidly and develop more soft patches than fruit from organic and organic plus plots, the differences were never significant. Generally, soil, vine and fruit attributes did not differ significantly with the interaction of ground cover and fertiliser regime.

In addition to the above work, in 1996 only, fruit were sampled from ten pairs of organic and conventional (i.e. Kiwigreen) orchards throughout the Bay of Plenty in NZ, to compare the responses of those fruit to typical postharvest handling and storage regimes and their compositional attributes. Generally, fruit from conventional orchards were harvested more mature, as indicated by soluble solids concentrations (SSC), although the average firmness of fruit from the two systems did not differ significantly. The average concentrations of N, K, magnesium (Mg) and phosphorous (P) in fruit did not differ significantly with production system. However, organic fruit often contained

•

more Ca with the average difference being on the borderline of significance. Despite differences in maturity, whole fruit softening did not differ significantly with production system. On the other hand, fruit from organic orchards nearly always developed less soft patches than fruit from conventional orchards with the average difference being significant. This difference may have been partly due to the difference in the Ca concentration of fruit. Typical postharvest handling practices, compared to harvesting directly into trays, did not significantly affect whole fruit softening but did significantly decrease the incidence of soft patches, for reasons that are not clear. Across all the grower lines, the incidence of soft patches was significantly and negatively associated with the average concentrations of Ca in fruit. Combinations of other fruit attributes (i.e. SSC, initial firmness and the concentrations of N and Mg) with Ca concentration, produced indicators that were very strongly associated with the incidence of soft patches. These attributes would appear to be important in the development of soft patches. If these relationships are subsequently shown to be consistent, then they could form the basis for a predictive tool that would allow at-harvest segregation of fruit lines with different storage potentials.

In all of the current work, fruit that developed soft patches consistently contained less Ca than healthy fruit. It therefore seems that enhancing the Ca content of fruit could be beneficial to fruit storage life. However, it appears that under some conditions at least, the uptake of minerals, particularly Ca, may be constrained at the root level and so manipulating the soil environment may not always guarantee an improvement in the storage potential of kiwifruit.

Acknowledgements

First and foremost, I would like to thank my chief supervisor, Professor Nigel Banks, for his encouragement and support throughout this Ph.D. I would also like to thank my co-supervisors, Professor Russell Tillman and Dr Nihal De Silva, for their invaluable input. I would also like to acknowledge the early supervision of Dr Paul Gandar.

I am deeply indebted to the New Zealand Kiwifruit Marketing Board whose financial support made this Ph.D. possible. I would especially like to thank Malcolm Garnham.

I would also like to thank the staff of the Fruit Crops and Plant Growth Units at Massey University for their assistance. A special mention goes to Shane Max. Thanks also to staff and postgraduates from the Departments of Plant and Soil Science at Massey.

Last but not least, I would like to thank my friends and family for all their support during my time at Massey.

Table of Contents

Abstract	i
Acknowledgements	iii
Table of Contents	iv
List of Figures	ix
List of Tables	xvi
List of Symbols and Abbreviations	xxviii

Chapter 1

General Introduction

1.1	Background	1
1.2	Structure of thesis	4
1.3	References	5

Chapter 2

Literature Review

2.1	Intro	oduction	6
2.2	Soft	ening of kiwifruit	6
2.2.	1	Introduction	6
2.2.	2	Dynamics	7
2.2.	3	Characterisation	9
2.2.	4	Soft patches	10
2.2.	5	Mechanisms of fruit softening	
2.	2.5.1	Introduction	10
2.	.2.5.2	Cell wall structure of plants	11
2.	2.5.3	Cell wall degradation	13
2.	.2.5.4	Synthesis of cell wall polymers	19
2.	.2.5.5	Starch degradation	
2.	.2.5.6	Other mechanisms	19
2.2.	.6	Differences between type of tissue and cell wall regions	20
2.2.	.7	Conclusions	

2.3	Facto	ors affecting the storage behaviour of kiwifruit	22
2	.3.1	Preharvest factors	22
	2.3.1.1	Introduction	22
	2.3.1.2	Cultivar	22
	2.3.1.3	Environmental factors	23
	2.3.1.4	Production system	23
	2.3.1.5	Soil management	25
	2.3.1.6	Irrigation	31
	2.3.1.7	Fruit position and shading	32
	2.3.1.8	Fruit mineral nutrition	33
	2.3.1.9	Fruit maturity	36
	2.3.1.10	Fruit size	37
2	.3.2	Postharvest factors	37
2.4	Calc	ium (Ca) and fruit storage behaviour	40
2	.4.1	Introduction	40
2	.4.2	The manifestation of Ca-related physiological disorders	41
2	.4.3	The role of Ca in fruit softening	42
2	.4.4	Assimilation and translocation of Ca in plants	43
2	.4.5	Periodicity of Ca uptake by plants	46
2	.4.6	Factors influencing the Ca status of fruit	47
	2.4.6.1	Introduction	47
	2.4.6.2	Other minerals and fertilisation	47
	2.4.6.3	Root growth	51
	2.4.6.4	Ground covers	52
	2.4.6.5	Rootstocks and interstocks	52
	2.4.6.6	Climatic factors	53
	2.4.6.7	Pollination and seed number	53
	2.4.6.8	Irrigation	55
	2.4.6.9	Vine vigour and leaf area	56
	2.4.6.10	Fruit position and shading	56
	2.4.6.11	Crop load and thinning	57

* * * *

2.	4.6.12	Plant growth regulators	.58
2.	4.6.13	Conclusions	.60
> 2.4.	7 (Ca treatments and their effectiveness	.60
2.5	Ca an	d the prediction of fruit storage behaviour	.61
2.6	Gener	al conclusions	.62
2.7	Refer	ences	.63

Soil Amendments and the Storage Potential of Kiwifruit

3.1	Intro	oduction	90
3.2	Des	cription of trial	91
3.2	2.1	Treatments	91
3.2	2.2	Experimental design and field layout	96
3.2	2.3	Orchard management	96
3.	2.4	Maintenance and changes to treatments	97
3.3	Ma	terials and methods	
3.	3.1	Soil, vine and fruit monitoring	
	3.3.1.1	Introduction	98
	3.3.1.2	Soil monitoring	
	3.3.1.3	Vine and fruit monitoring	
3.	3.2	Fruit assessments at harvest	
3.	3.3	Monitoring of fruit storage behaviour	
3.	3.4	Data analysis	105
3.4	Res	ults	
3.	4.1	Preharvest attributes	106
	3.4.1.1	Soil attributes	106
	3.4.1.2	Vine and fruit attributes	149
3.	4.2	Attributes at harvest	
	3.4.2.1	Crop load and fruit size	181
	3.4.2.2	Fruit maturity	184
	3.4.2.3	Fruit mineral concentrations	185

3.4.2.4	Fruit firmness	188
3.4.3	Postharvest attributes	192
3.4.3.1	Botrytis	192
3.4.3.2	Softening behaviour	192
3.4.3.3	Soft patches	209
3.5 Dise	scussion	216
3.5.1	Preharvest attributes	216
3.5.1.1	Soil attributes	216
3.5.1.2	Vine and fruit attributes	
3.5.1.3	Conclusions	
3.5.2	Attributes at harvest	233
3.5.2.1	Crop load and fruit size	
3.5.2.2	Fruit maturity	234
3.5.2.3	Fruit mineral concentrations	
3.5.2.4	Fruit firmness	
3.5.2.5	Conclusions	237
3.5.3	Postharvest attributes	237
3.5.3.1	Botrytis	237
3.5.3.2	Softening behaviour	
3.5.3.3	Soft patches	240
3.6 Con	nclusions	242
3.7 Ref	ferences	243

Pairwise Comparison of the Storage Potential of Organically and Conventionally Grown Kiwifruit

4.1	Introduction	
4.2	Materials and methods	
4.2.1	Orchard survey	
4.2.2	Data analysis	
4.3	Results	

4.3.1		Fruit attributes at harvest	
4.3	3.1.1	Maturity	253
4.3	3.1.2	Flesh firmness	
4.3	3.1.3	Mineral concentrations	
4.3.2	2	Postharvest attributes	
4.3	3.2.1	Fruit softening behaviour	
4.3	3.2.2	Soft patches	
4.3	3.2.3	Botrytis	
4.3.3	3	Indicators of fruit storage potential	
4.4	Disc	cussion	
4.4.1	l	Fruit attributes at harvest	
4.4.2	2	Postharvest attributes	275
4.4.3	3	Indicators of fruit storage potential	277
4.5	Con	clusions	279
4.6	Refe	erences	279

General Discussion

5.1	Introduction	.281
5.2	Fruit attributes important to the storage potential of kiwifruit	.282
5.3	Improving the storage potential of kiwifruit	.286
> 5.4	Enhancing the Ca status of kiwifruit	.294
5.5	Prediction of fruit storage potential	.298
5.6	Conclusions	300
5.7	References	.301

List of Figures

Chapter 2

Literature Review

Chapter 3	Soil Amendments and the Storage
	Potential of Kiwifruit

Figure 3.1	A section of a bare plot at the Massey site maintained free of	
	weeds by the application of glyphosate as required	.94
Figure 3.2	A section of a grass plot at the Massey site	.94
Figure 3.3	A section of a mulch plot at the Massey site	. 95
Figure 3.4	Seasonal variation in the average 6.00 am (A) and 2.00 pm (B)	
	soil temperatures of bare, grass and mulch plots at the Massey	
	site during the 1996 / 97 growing season	108
Figure 3.5	Seasonal variation in the average 6.00 am (A) and 2.00 pm (B)	
	soil temperatures of bare, grass and mulch plots at the Massey	
	site during the 1997 / 98 growing season	109
Figure 3.6	Seasonal variation in the average soil moisture content of bare,	
	grass and mulch plots at the Massey site during the 1996 / 97	
	growing season	113
Figure 3.7	Seasonal variation in the average soil moisture content of bare,	
	grass and mulch plots at the Massey site during the 1997 / 98	
	growing season	114
Figure 3.8	Seasonal variation in the average ammonium (NH_4^+) content	
	of soil from bare, grass and mulch plots at the Massey site	
	during the 1996 / 97 growing season	119
Figure 3.9	Seasonal variation in the average ammonium (NH_4^+) content	
	of soil from conventional, organic and organic plus plots at	
	the Massey site during the 1996 / 97 growing season	120

Figure 3.10	Seasonal variation in the average ammonium (NH_4^+) content	
	of soil from conventional, organic and organic plus plots at the	
	Massey site during the 1997 / 98 growing season	122
Figure 3.11	Seasonal variation in the average nitrate (NO3 ⁻) content of soil	
	from bare, grass and mulch plots at the Massey site during the	
	1996 / 97 growing season	124
Figure 3.12	Seasonal variation in the average nitrate (NO ₃ ⁻) content of soil	
	from conventional, organic and organic plus plots at the	
	Massey site during the 1996 / 97 growing season	125
Figure 3.13	Seasonal variation in the average nitrate (NO ₃ ⁻) content of soil	
	from bare, grass and mulch plots at the Massey site during the	
	1997 / 98 growing season	128
Figure 3.14	Seasonal variation in the average nitrate (NO ₃ ⁻) content of soil	
	from conventional, organic and organic plus plots at the	
	Massey site during the 1997 / 98 growing season	129
Figure 3.15	Seasonal variation in the average pH and concentrations of	
	calcium (Ca), magnesium (Mg), potassium (K) and sodium	
	(Na) in soil solution at the Massey site during the 1996 / 97	
	growing season	134
Figure 3.16	Seasonal variation in the average concentrations of calcium	
	(Ca) in soil solution from bare and mulch plots at the Massey	
	site during the 1996 / 97 growing season	135
Figure 3.17	Seasonal variation in the average concentrations of calcium	
	(Ca) in soil solution from conventional and organic plus plots	
	at the Massey site during the 1996 / 97 growing season	136
Figure 3.18	Seasonal variation in the average pH and concentrations of	
	calcium (Ca), magnesium (Mg), potassium (K) and sodium	
	(Na) in soil solution from bare, grass and mulch plots at the	
	Massey site during the 1997 / 98 growing season	141
Figure 3.19	Seasonal variation in the average pH and concentrations of	
	calcium (Ca), magnesium (Mg), potassium (K) and sodium	

Х

	(Na) in soil solution from conventional and organic plus plots
	at the Massey site during the 1997 / 98 growing season
Figure 3.20	Seasonal variation in the average concentrations of calcium
	(Ca), magnesium (Mg) and potassium (K) in the xylem sap of
	kiwifruit vines at the Massey site during the 1996 / 97 growing
	season
Figure 3.21	Seasonal variation in the average concentrations, on a dry
	weight basis, of calcium (Ca), magnesium (Mg), potassium
	(K), nitrogen (N) and phosphorous (P) in the leaves (petioles
	included) of kiwifruit vines at the Massey site during the 1996
	/ 97 growing season 156
Figure 3.22	Seasonal variation in the average concentrations, on a dry
	weight basis, of calcium (Ca), magnesium (Mg), potassium
	(K), nitrogen (N) and phosphorous (P) in the leaves (petioles
	included) of kiwifruit vines from bare, grass and mulch plots
	at the Massey site during the 1997 / 98 growing season157
Figure 3.23	Seasonal variation in the average concentrations, on a dry
	weight basis, of calcium (Ca), magnesium (Mg), potassium
	(K), nitrogen (N) and phosphorous (P) in the leaves (petioles
	included) of kiwifruit vines from conventional, organic and
	organic plus plots at the Massey site during the 1997 / 98
	growing season
Figure 3.24	Seasonal variation in the average concentrations, on a fresh
	weight basis, of calcium (Ca), magnesium (Mg), potassium
	(K), nitrogen (N) and phosphorous (P) in whole kiwifruit from
	bare, grass and mulch plots at the Massey site during the 1996
	/ 97 growing season
Figure 3.25	Seasonal variation in the average concentrations, on a fresh
	weight basis, of calcium (Ca), magnesium (Mg), potassium
	(K), nitrogen (N) and phosphorous (P) in whole kiwifruit from

	conventional, organic and organic plus plots at the Massey site	
	during the 1996 / 97 growing season16	57
Figure 3.26	Seasonal variation in the average concentrations, on a fresh	
	weight basis, of calcium (Ca), magnesium (Mg), potassium	
	(K), nitrogen (N) and phosphorous (P) in whole kiwifruit from	
	bare, grass and mulch plots at the Massey site during the 1997	
	/ 98 growing season	68
Figure 3.27	Seasonal variation in the average concentrations, on a fresh	
	weight basis, of calcium (Ca), magnesium (Mg), potassium	
	(K), nitrogen (N) and phosphorous (P) in whole kiwifruit from	
	conventional, organic and organic plus plots at the Massey site	
	during the 1997 / 98 growing season16	59
Figure 3.28	Relationships between the concentrations (mmol.kg ⁻¹) of Ca in	
	the soil solution ([Ca] ^{ss}) of plots at the Massey site, 4 weeks	
	after full bloom in the 1997 / 98 season, and the	
	concentrations (mmol.kg ⁻¹) of Ca in the xylem sap ([Ca] ^{sap}),	
	foliage ([Ca] ^{foliage}) and fruit ([Ca] ^{fruit}) of the vines from those	
	plots	13
Figure 3.29	Relationships between the concentrations (mmol.kg ⁻¹) of Ca in	
	the soil solution ([Ca] ^{ss}) of plots at the Massey site, 8 weeks	
	after full bloom in the 1997 / 98 season, and the	
	concentrations (mmol.kg ⁻¹) of Ca in the xylem sap ([Ca] ^{sap}),	
	foliage ([Ca] ^{foliage}) and fruit ([Ca] ^{fruit}) of the vines from those	
	plots17	74
Figure 3.30	Seasonal variation in the average size of fruit at the Massey	
	site in the 1996 / 97 season	75
Figure 3.31	Seasonal variation in the average size of fruit at the Massey	
	site in the 1997 / 98 season	76
Figure 3.32	Average root length densities (RLDs) of vines from bare and	
	mulch plots at the Massey site in the 1996 / 97 season, 8	
	weeks after full bloom1	78

٢.

Figure 3.33 Figure 3.34	Average root length densities (RLDs) of vines from conventional and organic plus plots at the Massey site in the 1996 / 97 season, 8 weeks after full bloom	9
	(mulch and conventional) and I (mulch and organic plus) plots	
	at the Massey site in the 1996 / 97 season, 8 weeks after full bloom	0
Figure 3.35	Relationships between the firmness (FF), soluble solids	U
i igui e elee	content (SSC) and nitrogen concentration ([N]) of fruit	
	harvested from the Massey site in 1997 (A) and 1998 (B)	1
Figure 3.36	Average softening behaviour of fruit harvested from the	
	Massey site in 1996 19	5
Figure 3.37	Average softening behaviour of fruit harvested from the	
	HortResearch site in 199619	6
Figure 3.38	Average softening behaviour of fruit harvested from the	_
F : 2.20	Massey site in 1997	7
Figure 3.39	Average softening behaviour of fruit harvested from the HortResearch site in 1997	Q
Figure 3 40	Average softening behaviour of fruit harvested from the	0
1 igui e 5.40	Massey site in 1998	9
Figure 3.41	Average softening behaviour of fruit harvested from bare,	
	grass and mulch plots at the Massey site in 199720	2
Figure 3.42	Average softening behaviour of fruit harvested from bare,	
	grass and mulch plots at the Massey site in 199820	3
Figure 3.43	Average softening behaviour of fruit harvested from	
	conventional, organic and organic plus plots at the Massey site in 1997	4
Figure 3.44	Average softening behaviour of fruit harvested from	
	conventional, organic and organic plus plots at the Massey site	
	in 1998	5

Figure 3.45	Average softening behaviour of fruit harvested from bare,	
	grass and mulch plots at the HortResearch site in 1997. Each	
	LSD was estimated at the 5 % significance level $(n = 9)$	206
Figure 3.46	Average softening behaviour of fruit harvested from	
	conventional, organic and organic plus plots at the	
	HortResearch site in 1997	207

Chapter 4 Pairwise Comparison of the Storage Potential of Organically and Conventionally Grown Kiwifruit

Figure 4.1	Average softening behaviour of fruit from both growers at	
	location 1 in the 1996 pairwise comparison of fruit storage	
	potential	261
Figure 4.2	Softening behaviour of fruit associated with each of the three	
	handling treatments applied at harvest in the 1996 pairwise	
	comparison of fruit storage potential, averaged across all	
	locations and growers	
Figure 4.3	Predicted vs. observed natural logs of incidences of soft	
	patches (%)	269
Figure 4.4	Relationship between the average concentration of Ca ([Ca])	
	in fruit at harvest (Indicator 1) and the incidence of soft	
	patches after long term storage	271
Figure 4.5	Relationship between the ratio of the product of average	
	calcium concentration ([Ca]), soluble solids concentration	
	(SSC) and initial firmness (f) to the product of average	
	magnesium concentration ([Mg]) and nitrogen concentration	
	([N]) of fruit at harvest (Indicator 2), and the incidence of	
	storage disorders after long term storage	272

General Discussion

Figure 5.1	Conceptual model of the relationships between 'Hayward'
	kiwifruit attributes at harvest, postharvest factors and
	softening behaviour
Figure 5.2	Conceptual model of the relationships between 'Hayward'
	kiwifruit attributes at harvest and the incidence of soft patches
Figure 5.3	Conceptual model of the relationship between variation in the
	inherent storage potential of kiwifruit lines (dashed line) and
	the level of improvement that might be achieved in the storage
	potential of those lines (solid line)
Figure 5.4	Conceptual model of the difference in variation (dashed
	curves) that may exist in the Ca contents of individual fruit
	from two populations with the same average
Figure 5.5	Model of proposed differences in the variation in fruit
	temperature (T) and the relative humidity (RH) of air within
	the canopies of vines from bare (left-hand side) and grass
	(right-hand side) plots
Figure 5.6	Pre-harvest factors thought to enhance the uptake and
	concentrations of Ca in kiwifruit

List of Tables

Literature Review

Table 2.1	Effects of ground covers on various soil properties, relative to	
	soil maintained free of a cover	27
Table 2.2	Effects of mulches on plant nutrient composition, relative to	
	soil maintained free of a cover, unless stated otherwise	30
Table 2.3	Ca-related physiological disorders of fruits and vegetables	42

Chapter 3

Chapter 2

Soil Amendments and the Storage Potential of Kiwifruit

Table 3.1	6.00 am and 2.00 pm soil temperatures (°C) of bare, grass and
	mulch plots at the Massey site, averaged across the 1996 / 97
	growing season110
Table 3.2	6.00 am and 2.00 pm soil temperatures (°C) of bare, grass and
	mulch plots at the Massey site, averaged across the 1997 / 98
	growing season
Table 3.3	Average 6.00 am and 2.00 pm soil temperatures (°C) of bare,
	grass and mulch plots at the HortResearch site during the 1996
	/ 97 growing season, 8 weeks after full bloom and at harvest111
Table 3.4	Average 6.00 am and 2.00 pm soil temperatures (°C) of bare,
	grass and mulch plots at the HortResearch site during the 1997
	/ 98 growing season, 8 weeks after full bloom and at harvest112
Table 3.5	Moisture content (% w / w) of bare, grass and mulch plots at
	the Massey site, averaged across the 1996/97 growing season115
Table 3.6	Moisture content of bare, grass and mulch plots at the Massey
	site, averaged across the 1997 / 98 growing season115
Table 3.7	Average moisture contents (% w / w) of soil from bare, grass
	and mulch plots at the HortResearch site during the 1996 / 97
	growing season, 8 weeks after full bloom and at harvest116

Table 3.8	Average moisture contents (% w / w) of soil from bare, grass	
	and mulch plots at the HortResearch site during the 1997 / 98	
	growing season, 8 weeks after full bloom and at harvest	117
Table 3.9	Ammonium content (mmol.kg ⁻¹) of soil from conventional,	
	organic and organic plus plots at the Massey site, averaged	
	across the 1996 / 97 growing season	121
Table 3.10	Ammonium content (mmol.kg ⁻¹) of soil from conventional,	
	organic and organic plus plots at the Massey site, averaged	
	across the 1997 / 98 growing season	123
Table 3.11	Nitrate content (mmol.kg ⁻¹) of soil from bare, grass and mulch	
	plots at the Massey site, averaged across the 1996 / 97	
	growing season	126
Table 3.12	Nitrate content (mmol.kg ⁻¹) of soil from conventional, organic	
	and organic plus plots at the Massey site, averaged across the	
	1996 / 97 growing season	126
Table 3.13	Nitrate content (mmol.kg ⁻¹) of soil from bare, grass and mulch	
	plots at the Massey site, averaged across the 1997 / 98	
	growing season	130
Table 3.14	Nitrate content (mmol.kg ⁻¹) of soil from conventional, organic	
	and organic plus plots at the Massey site, averaged across the	
	1997 / 98 growing season	130
Table 3.15	Average (\pm SE) ammonium (NH ₄ ⁺) and nitrate (NO ₃ ⁻) contents	
	(mmol.kg ⁻¹) of soil from the HortResearch site during the	
	1996 / 97 season, 8 weeks after full bloom and at harvest ($n =$	
	27)	132
Table 3.16	Average ammonium (NH_4^+) and nitrate (NO_3^-) contents	
	(mmol.kg ⁻¹) of soil from conventional, organic and organic	
	plus plots at the HortResearch site during the 1997 / 98	
	season, 8 weeks after full bloom and at harvest	
Table 3.17	pH and concentrations (mmol.L ⁻¹) of calcium (Ca),	
	magnesium (Mg), potassium (K) and sodium (Na) in soil	

	solution from bare and mulch plots at the Massey site,
	averaged across the 1996 / 97 season137
Table 3.18	pH and concentrations (mmol.L ⁻¹) of calcium (Ca),
	magnesium (Mg), potassium (K) and sodium (Na) in soil
	solution from bare and mulch plots at the Massey site,
	averaged across the 1996 / 97 season137
Table 3.19	pH and concentrations (mmol.L ⁻¹) of calcium (Ca),
	magnesium (Mg), potassium (K) and sodium (Na) in soil
	solution from conventional and organic plus plots at the
	Massey site, averaged across the 1996 / 97 season
Table 3.20	pH and concentrations (mmol.L ⁻¹) of calcium (Ca),
	magnesium (Mg), potassium (K) and sodium (Na) in soil
	solution from conventional and organic plus plots at the
	Massey site, averaged across the 1996 / 97 season
Table 3.21	pH and concentrations (mmol.L ⁻¹) of calcium (Ca),
	magnesium (Mg), potassium (K) and sodium (Na) in soil
	solution from bare, grass and mulch plots at the Massey site,
	averaged across the 1997 / 98 season
Table 3.22	pH and concentrations $(mmol.L^{-1})$ of calcium (Ca),
	magnesium (Mg), potassium (K) and sodium (Na) in soil
	solution from conventional and organic plus plots at the
	Massey site, averaged across the 1997 / 98 season143
Table 3.23	Average concentrations (mmol.L ⁻¹) of calcium in soil solution
	from bare and mulch plots at the HortResearch site in the 1996
	/ 97 growing season, 8 weeks after full bloom and at harvest
Table 3.24	Average concentrations (mmol.L ⁻¹) of calcium in soil solution
	from conventional and organic plus plots at the HortResearch
	site in the 1996 / 97 growing season, 8 weeks after full bloom
	and at harvest
Table 3.25	Average (\pm SE) pH and concentrations (mmol.L ⁻¹) of
	magnesium (Mg), potassium (K) and sodium (Na) in soil

	solution from the HortResearch site in the 1996 / 97 growing
	season, 8 weeks after full bloom and at harvest $(n = 12)$
Table 3.26	Average pH and concentrations $(mmol.L^{-1})$ of calcium (Ca),
	magnesium (Mg), potassium (K) and sodium (Na) in soil
	solution from bare, grass and mulch plots at the HortResearch
	site in the 1997 / 98 growing season, 8 weeks after full bloom
	and at harvest
Table 3.27	Average pH and concentrations (mmol.L ⁻¹) of calcium (Ca),
	magnesium (Mg), potassium (K) and sodium (Na) in soil
	solution from conventional and organic plus plots at the
	HortResearch site in the 1997 / 98 growing season, 8 weeks
	after full bloom and at harvest
Table 3.28	Average concentrations $(mmol.L^{-1})$ of calcium (Ca),
	potassium (K) and magnesium (Mg) in the xylem sap of
	kiwifruit vines from bare, grass and mulch plots at the Massey
	site in the 1997 / 98 growing season, 5 and 10 weeks after full
	bloom
Table 3.29	Average concentrations $(mmol.L^{-1})$ of calcium (Ca),
	potassium (K) and magnesium (Mg) in the xylem sap of
	kiwifruit vines from conventional, organic and organic plus
	plots at the Massey site in the 1997 / 98 growing season, 5 and
	10 weeks after full bloom
Table 3.30	Average concentrations (mmol.L ⁻¹) of calcium (Ca) and
	magnesium (Mg) in the xylem sap of kiwifruit vines from
	treatment A - I plots at the Massey site in the 1997 / 98
	growing season
Table 3.31	Average concentrations $(mmol.L^{-1})$ of calcium (Ca),
	potassium (K) and magnesium (Mg) in the xylem sap of
	kiwifruit vines from conventional, organic and organic plus
	plots at the HortResearch site in the 1996 / 97 growing season,
	8 weeks after full bloom and at harvest

Table 3.32	Average concentrations (mmol.L ⁻¹) of calcium (Ca),					
	potassium (K) and magnesium (Mg) in the xylem sap of					
	kiwifruit vines from conventional, organic and organic plus					
	plots at the HortResearch site in the 1997 / 98 growing season,					
	8 weeks after full bloom and at harvest154					
Table 3.33	Concentrations (mmol.kg ⁻¹), on a dry weight basis, of calcium					
	(Ca), magnesium (Mg), potassium (K), nitrogen (N) and					
	phosphorous (P) in the leaves (petioles included) of kiwifruit					
	vines from bare, grass and mulch plots at the Massey site,					
	averaged across the 1997 / 98 season159					
Table 3.34	Concentrations (mmol.kg ⁻¹), on a dry weight basis, of calcium					
	(Ca), magnesium (Mg), potassium (K), nitrogen (N) and					
	phosphorous (P) in the leaves (petioles included) of kiwifruit					
	vines from conventional, organic and organic plus plots at the					
	Massey site, averaged across the 1997 / 98 season					
Table 3.35	Average concentrations (mmol.kg ⁻¹), on a dry weight basis, of					
	calcium (Ca), magnesium (Mg), potassium (K), nitrogen (N)					
	and phosphorous (P) in the leaves (petioles included) of					
	kiwifruit vines from bare, grass and mulch plots at the					
	HortResearch site in the 1996 / 97 growing season					
Table 3.36	Average concentrations (mmol.kg ⁻¹), on a dry weight basis, of					
	calcium (Ca), magnesium (Mg), potassium (K), nitrogen (N)					
	and phosphorous (P) in the leaves (petioles included) of					
	kiwifruit vines from conventional, organic and organic plus					
	plots at the HortResearch site in the 1996 / 97 growing season162					
Table 3.37	Average concentrations (mmol.kg ⁻¹), on a dry weight basis, of					
	calcium (Ca), magnesium (Mg), potassium (K), nitrogen (N)					
	and phosphorous (P) in the leaves (petioles included) of					
	kiwifruit vines from bare, grass and mulch plots at the					
	HortResearch site in the 1997 / 98 growing season					

Table 3.38	Average concentrations (mmol.kg ⁻¹), on a dry weight basis, of
	calcium (Ca), magnesium (Mg), potassium (K), nitrogen (N)
	and phosphorous (P) in the leaves (petioles included) of
	kiwifruit vines from conventional, organic and organic plus
	plots at the HortResearch site in the 1997 / 98 growing season
Table 3.39	Concentrations (mmol.kg ⁻¹), on a fresh weight basis, of
	calcium (Ca), magnesium (Mg), potassium (K), nitrogen (N)
	and phosphorous (P) in whole kiwifruit from bare, grass and
	mulch plots at the Massey site, averaged across the 1997 / 98
	season170
Table 3.40	Concentrations (mmol.kg ⁻¹), on a fresh weight basis, of
	calcium (Ca), magnesium (Mg), potassium (K), nitrogen (N)
	and phosphorous (P) in whole kiwifruit from conventional,
	organic and organic plus plots at the Massey site, averaged
	across the 1997 / 98 season
Table 3.41	Average (\pm SE) concentrations (mmol.kg ⁻¹), on a fresh weight
	basis, of calcium (Ca), magnesium (Mg), potassium (K),
	nitrogen (N) and phosphorous (P) in whole kiwifruit at the
	HortResearch site during the 1996 / 97 growing season
Table 3.42	Average (\pm SE) concentrations (mmol.kg ⁻¹), on a fresh weight
	basis, of calcium (Ca), magnesium (Mg), potassium (K),
	nitrogen (N) and phosphorous (P) in whole kiwifruit at the
	HortResearch site during the 1997 / 98 growing season
Table 3.43	Average (\pm SE) size (mL) of fruit at the HortResearch site in
	the 1996 / 97 and 1997 / 98 seasons, 8 weeks after full bloom
	and at harvest
Table 3.44	Average (\pm SE) numbers (000's / ha) of fruit harvested from
	the Massey and HortResearch sites in 1996, 1997 and 1998 (n
	= 27)

Table 3.45	Average (\pm SE) yields (tonnes / ha) of fruit harvested from the			
	Massey and HortResearch sites in 1996, 1997 and 1998 ($n =$			
	27)			
Table 3.46	Average (± SE) sizes (g) of fruit harvested from the Massey			
	and HortResearch sites in 1996, 1997 and 1998 (<i>n</i> = 27)			
Table 3.47	Average number (000's / ha), yield (tonnes / ha) and			
	individual weight (g) of fruit harvested from bare, grass and			
	mulch plots at the Massey site in 1997			
Table 3.48	Average number (000's / ha), yield (tonnes / ha) and			
	individual weight (g) of fruit harvested from conventional,			
	organic and organic plus plots at the HortResearch site in 1998			
Table 3.49	Average (± SE) SSC (°Brix) of fruit harvested from the			
	Massey and HortResearch sites in 1996, 1997 and 1998184			
Table 3.50	Average SSC (°Brix) of fruit harvested from bare, grass and			
	mulch plots at the HortResearch site in 1998185			
Table 3.51	Average SSC (°Brix) of fruit harvested from conventional,			
	organic and organic plus plots at the HortResearch site in 1998			
Table 3.52	Average (\pm SE) concentrations (mmol.kg ⁻¹), on a fresh weight			
	basis, of calcium (Ca), magnesium (Mg), potassium (K),			
	nitrogen (N) and phosphorus (P) in fruit harvested from the			
	Massey site in 1996, 1997 and 1998			
Table 3.53	Average (\pm SE) concentrations (mmol.kg ⁻¹), on a fresh weight			
	basis, of calcium (Ca), magnesium (Mg), potassium (K),			
	nitrogen (N) and phosphorus (P) in fruit harvested from the			
	HortResearch site in 1996, 1997 and 1998186			
Table 3.54	Average Ca concentrations in fruit from the Massey and			
	HortResearch (HR) sites, and the experimental (DF = 16) and			
	analytical (DF = 27) error variances associated with them \dots 187			
Table 3.55	Average (\pm SE) flesh firmnesses of fruit (N) harvested from			
	the Massey and HortResearch sites in 1996, 1997 and 1998189			

Table 3.56	Average flesh firmnesses (f) of fruit harvested from bare, grass			
	and mulch plots at the Massey site in 1998			
Table 3.57	Average flesh firmnesses (f) of fruit harvested from			
	conventional, organic and organic plus plots at the Massey site			
	in 1998			
Table 3.58	Average flesh firmnesses (f) of fruit harvested from			
	conventional, organic and organic plus plots at the			
	HortResearch site in 1998			
Table 3.59	Estimates of the parameter a for the quartic polynomial model			
	used to describe the average softening behaviour of fruit from			
	bare, grass and mulch plots at the Massey site in 1998 200			
Table 3.60	Estimates of the parameter a for the quartic polynomial model			
	used to describe the average softening behaviour of fruit from			
	conventional, organic and organic plus plots at the Massey site			
	in 1998			
Table 3.61	Firmnesses (N) of fruit from bare, grass and mulch plots at the			
	Massey site in 1997 and 1998 and from the HortResearch site			
	in 1997, averaged across their entire storage durations 208			
Table 3.62	Firmnesses (N) of fruit from conventional, organic and organic			
	plus plots at the Massey site in 1997 and 1998 and from the			
	HortResearch site in 1997, averaged across their entire storage			
	durations			
Table 3.63	Average proportions (%) of fruit from bare, grass and mulch			
	plots at the Massey and HortResearch sites in 1997 that			
	developed soft patches during storage			
Table 3.64	Average proportions (%) of fruit from treatment A - I plots at			
	the HortResearch site in 1997 that developed soft patches (SP)			
	during storage			
Table 3.65	Average proportions (%) of fruit harvested from bare, grass			
	and mulch plots at the Massey site in 1998 that developed soft			
	patches (SP) during storage			

Table 3.66	Average proportions (%) of fruit harvested from treatment A -	
	I plots at the Massey site in 1998 that developed soft patches	
	(SP) during storage	211
Table 3.67	Average concentrations (mmol.kg ⁻¹), on a fresh weight basis,	
	of calcium (Ca), magnesium (Mg), potassium (K), nitrogen	
	(N) and phosphorous (P) in whole kiwifruit from the Massey	
	site in 1996 which did (+ SP) or did not develop (- SP) soft	
	patches during storage	212
Table 3.68	Average concentrations (mmol.kg ⁻¹), on a fresh weight basis,	
	of calcium (Ca), magnesium (Mg), potassium (K), nitrogen	
	(N) and phosphorous (P) in whole kiwifruit from the	
	HortResearch site in 1996 which did (+ SP) or did not develop	
	(- SP) soft patches during storage	213
Table 3.69	Average concentrations (mmol.kg ⁻¹), on a fresh weight basis,	
	of calcium (Ca), magnesium (Mg), potassium (K), nitrogen	
	(N) and phosphorous (P) in whole kiwifruit from the Massey	
	site in 1997 which did (+ SP) or did not develop (- SP) soft	
	patches during storage	213
Table 3.70	Average concentrations (mmol.kg ⁻¹), on a fresh weight basis,	
	of calcium (Ca), magnesium (Mg), potassium (K), nitrogen	
	(N) and phosphorous (P) in whole kiwifruit from the	
	HortResearch site in 1997 which did (+ SP) or did not develop	
	(- SP) soft patches during storage	214
Table 3.71	Average ratios of the concentrations (mmol.kg ⁻¹), on a fresh	
	weight basis, of magnesium (Mg), potassium (K) and nitrogen	
	(N) to calcium (Ca), in whole kiwifruit from the Massey site	
	in 1996 which did (+ SP) or did not develop (- SP) soft	
	patches during storage	214
Table 3.72	Average ratios of the concentrations (mmol.kg ⁻¹), on a fresh	
	weight basis, of magnesium (Mg), potassium (K) and nitrogen	
	(N) to calcium (Ca), in whole kiwifruit from the Massey site	

Table 4.1	Average soluble solids concentrations (SSC) of fruit harvested
Chapter 4	Pairwise Comparison of the Storage Potential of Organically and Conventionally Grown Kiwifruit
Table 3.74	Average ratios of the concentrations (mmol.kg ⁻¹) on a fresh weight basis of magnesium (Mg), potassium (K) and nitrogen (N) to calcium (Ca), in whole kiwifruit from the HortResearch site in 1997 which did (+ SP) or did not develop (- SP) soft patches during storage
	(N) to calcium (Ca), in whole kiwifruit from the HortResearch site in 1996 which did (+ SP) or did not develop (- SP) soft patches during storage
Table 3.73	in 1997 which did (+ SP) or did not develop (- SP) soft patches during storage

	Average soluble solution concentrations (SSC) of that harvested			
	from each of the locations surveyed in the 1996 pairwise			
254	comparison of fruit storage potential			
	Average (\pm SE) soluble solids concentrations (SSC, °Brix) of	Table 4.2		
	fruit harvested from each of the Kiwigreen and organic			
	production systems at each location surveyed in the 1996			
	pairwise comparison of fruit storage potential $(n = 20)$			
	Average soluble solids concentrations (SSC) of fruit harvested	Table 4.3		
	from Kiwigreen and organic production systems in the 1996			
	pairwise comparison of fruit storage potential, averaged across			
255	all growers			
	Average flesh firmness (f) of fruit harvested from each of the	Table 4.4		
	locations surveyed in the 1996 pairwise comparison of fruit			
	storage potential			

Table 4.5	Average (\pm SE) flesh firmness (N) of fruit harvested from each		
	of the Kiwigreen and organic production systems at each		
	location surveyed in the 1996 pairwise comparison of fruit		
	storage potential $(n = 20)$	257	
Table 4.6	Average flesh firmness (f) of fruit harvested from organic and		
	Kiwigreen production systems in the 1996 pairwise		
	comparison of fruit storage potential, averaged across all		
	growers	257	
Table 4.7	Average (\pm SE) concentrations (mmol.kg ⁻¹), on a fresh weight		
	basis, of calcium (Ca), magnesium (Mg) and potassium (K) in		
	fruit from each of the Kiwigreen and organic production		
	systems at each location surveyed in the 1996 pairwise		
	comparison of fruit storage potential $(n = 2)$	258	
Table 4.8	Average (\pm SE) concentrations (mmol.kg ⁻¹), on a fresh weight		
	basis, of nitrogen (N) and phosphorous (P), in fruit from each		
	of the Kiwigreen and organic production systems at each		
	location surveyed in the 1996 pairwise comparison of fruit		
	storage potential $(n = 2)$	259	
Table 4.9	Average concentrations (mmol.kg ⁻¹), on a fresh weight basis,		
	of calcium (Ca), magnesium (Mg), potassium (K), nitrogen		
	(N) and phosphorous (P) in fruit from organic and Kiwigreen		
	production systems in the 1996 pairwise comparison of fruit		
	storage potential, averaged across all growers	259	
Table 4.10	Average estimates $(\pm SE)$ of the parameters a, b, c, d and e for		
	the quartic polynomial model used to characterise the		
	softening behaviour of all fruit surveyed in the 1996 pairwise		
	comparison of fruit storage potential $(n = 60)$	261	
Table 4.11	Estimates $(\pm SE)$ of the parameters a, b, c, d and e for the		
	quartic polynomial model used to characterise the average		
	softening behaviour of fruit from each of the 3 handling		

	treatments applied at harvest to fruit surveyed in the 1996			
	pairwise comparison of fruit storage potential			
Table 4 12				
Table 4.12	Proportions (%) of fruit from each of the organic and			
	Kiwigreen production systems at each of the locations			
	surveyed in the 1996 pairwise comparison of fruit storage			
	potential which developed soft patches during storage			
Table 4.13	Average proportions (%) of fruit from each of 3 handling			
	treatments imposed at harvest in the 1996 pairwise			
	comparison of fruit storage potential, which developed soft			
	patches (SP) during storage, averaged across all locations and			
	growers			
Table 4.14	Average concentrations (mmol.kg ⁻¹), on a fresh weight basis,			
	of calcium (Ca), magnesium (Mg), potassium (K), nitrogen			
	(N) and phosphorous (P) in whole kiwifruit from the 1996			
	pairwise comparison of fruit storage potential which did (+			
	SP) or did not develop (- SP) soft patches during storage,			
	averaged across all locations and growers			
Table 4.15	Proportions (%) of fruit harvested from each of the organic			
	and Kiwigreen production systems at each of the locations in			
	the 1996 pairwise comparison of fruit storage potential which			
	were detected with <i>Botrytis</i> after 10 weeks of storage			
Table 4.16	Proportions (%) of fruit from each of three handling			
	treatments imposed at harvest in the 1996 pairwise			
	comparison of fruit storage potential, which were detected			
	with Botrytis after 10 weeks of storage, averaged across all			
	locations and growers			

List of Symbols and Abbreviations

- SP	=	without soft patches
μL	=	microlitre
[Ca]	=	calcium concentration (mmol.kg ⁻¹)
[K]	=	potassium concentration (mmol.kg ⁻¹)
[Mg]	=	magnesium concentration (mmol.kg ⁻¹)
[N]	=	nitrogen concentration (mmol.kg ⁻¹)
[P]	=	phosphorous concentration (mmol.kg ⁻¹)
+ SP	=	with soft patches
ANOVA	=	analysis of variance
В	=	boron
C_2H_4	=	ethylene
Ca	=	calcium
CA	=	controlled atmosphere storage
$CaCl_2$	=	calcium chloride
CaNO ₃	=	calcium nitrate
cm	=	centimetre
CMM	=	Complementary Michaelis-Menten
CO_2	=	carbon dioxide
CO0 [.]	=	carboxyl group
CPPU	Ξ	N-(2-chloro-4-pyridyl)-N'-phenylurea
CPRR	=	Centre for Postharvest and Refrigeration Research
Cu	=	copper
CVS.	=	cultivars
DF	=	degrees of freedom
dwt	=	dry weight (kg)
f	=	firmness (N or kgf)
F.O.B.	=	free on board
FCU	=	Fruit Crops Unit

xxix

fwt	=	fresh weight (kg)
g	=	gram
galA	=	galacturonic acid
GLM	=	general linear model
H ₂ SO ₄	=	sulphuric acid
ha	=	hectare
HCl	=	hydrochloric acid
HR	=	HortResearch
HRGP	=	hydroxyproline-rich glycoprotein
K	=	potassium
KCl	=	potasssium chloride
kg	=	kilogram
kgf	=	kilograms force
L	=	litre
LSD	=	least significant difference
m	=	metre
М	=	molar
Mg	=	magnesium
mL	=	millilitre
mm	=	millimetre
mmol	=	millimole
mol	=	mole
mPa		
MSE	=	millipascal
	=	millipascal mean square error
N		
	=	mean square error
N	=	mean square error Newtons
N N	= =	mean square error Newtons nitrogen number
N N n	= =	mean square error Newtons nitrogen number nitrogen gas
N N n N ₂	= = =	mean square error Newtons nitrogen number nitrogen gas

$\mathrm{NH_4}^+$	=	ammonium
NLIN	=	non-linear
NO ₃	=	nitrate
NZ	=	New Zealand
NZKMB	=	New Zealand Kiwifruit Marketing Board
O ₂	=	oxygen
°Brix	=	degrees Brix
°C	=	degrees Celsius
Р	=	phosphorous
Р	=	probability
PG	=	polygalacturonase
PGRS	=	plant growth regulator sprays
PME	=	pectinmethylesterase
RH	=	relative humidity (%)
RLD	=	root length density (m.L ⁻¹)
rpm	=	revolutions per minute
SE	=	standard error
SP	=	soft patch
Sr	=	strontium
SS	=	soluble solids
SSC	=	soluble solids concentration (°Brix)
t	=	time (days)
Т	=	temperature (°C)
w / w	=	weight per weight
XET	=	xyloglucan endotrans-glycosylase
Zn	=	zinc