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Abstract

A significant portion of New Zealand’s kiwifruit production is held as stock in
local coolstores for extended periods of time before being exported. Many pre-harvest
factors contribute to variation in fruit quality at harvest and during coolstorage, and
results in the difficulty in segregating fruit for their storage outcomes. The objective of
this work was to develop non-destructive techniques utilised at harvest to predict
storability of individual or batches of ‘Hayward’ kiwifruit based on (near) skin
properties. Segregation of fruit with low storage potential at harvest could enable that
fruit to be sold earlier in the season reducing total fruit loss and improving profitability

later in the season.

The potential for optical coherence tomography (OCT) to detect near surface
cellular structural differences in kiwifruit as a result of preharvest factors was
demonstrated through quantitative image analysis of 3D OCT images of intact fruit
from five commercial cultivars. Visualisation and characterisation of large parenchyma
cells in the outer pericarp of kiwifruit was achieved by developing an automated image
processing technique. This work established the usefulness of OCT to perform rapid
analysis and differentiation of the microstructures of sub-surface cells between kiwifruit
cultivars. However, the effects of preharvest conditions between batches of fruit within
a cultivar were not detectable from image analysis and hence, the ability to provide

segregation or prediction for fruit from the same cultivar was assumed to be limited.

Total soluble solids concentration (TSS) and flesh firmness (FF) are two
important quality attributes indicating the eating quality and storability of stored
kiwifruit. Prediction of TSS and FF using non-destructive techniques would allow
strategic marketing of fruit. This work demonstrated that visible-near-infrared (Vis-NIR)
spectroscopy could be utilised as the sole input at harvest, to provide quantitative
prediction of post-storage TSS by generating blackbox regression models. However the
level of accuracy achieved was not adequate for online sorting purposes. Quantitative
prediction of FF remained unsuccessful. Improved ways of physical measurements for
FF may help reduce the undesirable variation observed on the same fruit and increase

prediction capability.



More promising results were obtained by developing blackbox classification
models using Vis-NIR spectroscopy at harvest to segregate storability of individual
kiwifruit based on the export FF criterion of 1 kgr (9.8 N). Through appropriate machine
learning techniques, the surface properties of fruit at harvest captured in the form of
spectral data were correlated to post-storage FF via pattern recognition. The best
prediction was obtained for fruit stored at 0°C for 125 days: approximately 50% of the
soft fruit and 80% of the good fruit could be identified. The developed model was
capable of performing classification both within (at the fruit level) and between grower
lines. Model validation suggested that segregation between grower lines at harvest
achieved 30% reduction in soft fruit after storage. Should the model be applied in the
industry to enable sequential marketing, $11.2 million NZD/annum could be saved

because of reduced fruit loss, repacking and condition checking costs.
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Chapter 1 Introduction

1 Introduction

1.1 Research Outline

Kiwifruit (Actinidia deliciosa (A.Chev) C. F. Liang et A. R. Ferguson and A.
chinensis) is an emerging horticultural crop globally. Currently the total area of
kiwifruit orchards around the world is estimated to be 170,000 ha with annual
production exceeding 1.8 million tonnes (Huang, 2016). The major kiwifruit producing
countries include China, Italy, New Zealand and Chile, accounting for about 80% of the
world production (Burdon and Lallu, 2011; Ferguson, 2011). In New Zealand, about 90%
of kiwifruit production is exported (Burdon and Lallu, 2011). The sales of New
Zealand-grown kiwifruit reached 117.1 million trays in the 2015/16 season, contributing
to a total of 1.3 billion NZD export earnings (Anonymous, 2016a). New Zealand graded

fruit were exported to over 50 countries around the world (Anonymous, 2016d).

Kiwifruit are harvested unripe and stored at cold temperatures for long periods
of time (usually between 6 — 8 months) allowing for physiological development until
being suitable for consumption, a process known as ripening (Beever and Hopkirk,
1990). This process enables long distance transport of kiwifruit to global markets using
cost-effective shipping methods (Sale, 1990). A number of factors affect the quality of
the fruit, including cultivar, climatic conditions, orchard management, maturity at
harvest, storage condition, transport and handling. As a result, there is inherent

variability that contributes to a wide range of storage potential.

Keeping suitable quality fruit during storage has been a challenge to the
kiwifruit industry. The development of over soft or disordered fruit during storage costs
the industry approximately $120 million annually (Tanner et al., 2012). As part of
quality control measures, fruit are tested using destructive methods prior to shipping and
again on arrival at the distant market (East et al., 2013). Removal of fruit that are
unsuitable for sale, both onshore and offshore, incur costs, due to manual repacking
costs and direct fruit loss. These costs contribute to a significant portion of the marginal

changes in postharvest costs of per tray of kiwifruit (Fig. 1.1; Anonymous, 2012)
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Figure 1.1 Quality costs in NZD as a function of per submit tray of exported
kiwifruit and volume (million trays) of exported Kkiwifruit over 7 years
(Anonymous, 2015b). Regenerated image.

Accurate prediction of postharvest performance of kiwifruit at harvest would
help to identify individual or batches of fruit susceptible to postharvest storage disorders
and hence have a shorter storage life. This would enable timely inventory decisions for
sequential marketing and reduce overall fruit loss in the supply chain. Predicting the
storage potential of fresh produce usually involves physical measurements at harvest
such as estimates of harvest maturity (East et al., 2013). Traditionally storage potential
of kiwifruit is estimated from at-harvest fruit quality data, and later assessed during
storage with flesh firmness testing. This method is destructive; it requires removal of a
small population of fruit from the batch for testing and only evaluates the storability of
the fruit at the time of measurement. The development of real-time non-destructive
testing methods is preferable because multiple attributes can be monitored over time

without damaging the population.

This study aims to investigate the feasibility of using non-destructive techniques
applied at harvest to predict and segregate kiwifruit for storability based on several

quality predictors. Near infrared (NIR) spectroscopy and optical coherence tomography
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(OCT) are investigated as potential technologies. Optical coherence tomography is used
to capture three-dimensional images of the cellular structures immediately underneath
the surface of kiwifruit. This information may be useful to assess the changes in cellular
structure and their potential consequences for postharvest fruit storability. Near infrared
spectroscopy is used to predict storage outcomes by analysing the light scattering
properties of the surface of fruit and the chemical composition underneath the surface.
Segregation of fruit for their storage potential based on at-harvest NIR spectra is
investigated. This segregation creates two inventories: one with lower storage potential
that would be shipped earlier in the season, and another with higher storage potential
that would be kept for later shipment. The ultimate goal is to reduce total fruit loss in

the supply chain over the season and hence improve profitability.
1.2 Thesis Outline

The majority of the experimental research was conducted at the Centre for
Postharvest and Refrigeration Research, Massey University, New Zealand, while a short
period of research was conducted at Katholieke Universiteit de Leuven, Belgium in
order to develop an imaging analysis protocol for the OCT technique. The ‘Hayward’
cultivar was chosen for the purpose of this study because it is the most produced
cultivar for export to the global market. The well documented studies on ‘Hayward’
quality and storability also enabled comparisons between the current study and the

literature.

The second chapter provides a literature review on current knowledge on
kiwifruit, including physiology, skin structure, important quality attributes, and the
factors influencing the quality and storage potential. This chapter also introduces the
principles of NIR and OCT, the instrumentation and sampling process, data analysis
techniques and the applications of these methods for quality prediction in horticultural

produce.

The third chapter involves an experiment conducted through manipulating
preharvest growing conditions (crop load and application of trunk girdling) in order to
showcase the potential relationships between growing conditions and postharvest
performance of kiwifruit. This work demonstrates the inherent variability in fruit quality,

and the subsequent impacts and challenges in predicting fruit storability.
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The fourth chapter investigates the capability of OCT to visualise and
characterise kiwifruit near-surface cellular structures non-destructively. An automated
imaging analysis technique was developed in order to identify large parenchyma cells in
the image data and enable quantitative analysis of these cells. The within and between-
cultivar differences in cellular microstructures were examined and compared to existing
knowledge. However, the capability of the technique is limited by penetration depth,
resolution and equipment cost, and therefore will not be useful in monitoring or

predicting future storage performance of the fruit in the near future.

The next three chapters investigate the potential for Vis-NIR spectroscopy to
predict kiwifruit storability. The fifth chapter evaluates the ability of Vis-NIR
spectroscopy applied at harvest time to provide quantitative prediction of postharvest
storage performance of kiwifruit, using a series of datasets collected over several
seasons. While the post-storage sugar content could be predicted with relatively good
accuracy, the post-storage firmness which is an important influencer of storability was
poorly predicted. Neither prediction was accurate enough to be suitable for online
grading purposes. Results obtained in this chapter led to the decision that subsequent
research should focus on qualitative prediction of fruit storage potential as an alternative

approach.

The sixth chapter identifies the most suitable multivariate data analysis
technique that can be applied to develop a classification model which segregates fruit
based on the minimum export firmness criterion. The classification accuracy was
compared using various machine learning classifiers and the best method was selected
based on the highest accuracy for both calibration and validation datasets. This
generated a classification model which segregates fruit for storage potential at the time

of harvest.

The seventh chapter details a real-time validation trial that evaluated the
robustness of the classification model developed in the sixth chapter. Fruit were scanned
using NIR spectroscopy at harvest and then sorted by the model for segregation into two
populations: fruit that develop post-storage firmness below the minimum export
criterion and those that do not. The predicted and measured storage performance was

compared. The reduction in fruit loss as a result of segregation was also assessed.
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The final chapter provides overall discussions and conclusions on this research

and suggests recommendations for future studies.
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2 Literature review
2.1 Kiwifruit
2.1.1 Classification and general characteristics

Kiwifruit (Actinidia sp.) was first grown in New Zealand in 1910, by an
orchardist, Alexander Allison, who received seeds from Isabel Fraser, a missionary who
just returned from China. The plants producing fruit were considered the source vines of
the New Zealand kiwifruit industry today (Sale, 1990). The genus Actinidia is
comprised of 55 species (Li et al., 2007). The two economically important species of

Actinidia are Actinidia deliciosa and Actinidia chinensis (Currie, 1997).

The green-fleshed cultivar ‘Hayward’ from the A. deliciosa species is the
“original” kiwifruit, known for its brown hairy skin, large fruit size, superior flavour
and long storage potential (Burdon and Lallu, 2011; Sale, 1990). Whilst ‘Hayward’
dominates the global kiwifruit market, many new cultivars have or are being introduced
to the fruit category to cater to consumer values. In particular, efforts have been made to
select A. chinensis cultivars with desirable characteristics for commercial purposes
(Currie, 1997). The successful launch of ‘Hort16A’, a yellow-fleshed fruit from the
species A. chinensis that has a ‘tropical’ flavour, demonstrated the potential for fruit
category extension. A. chinensis has contributed to about a quarter of the New Zealand
annual export volume nowadays (Burdon and Lallu, 2011). Additionally, in 2013,
commercial volumes of 3 new cultivars were released in New Zealand, being yellow-
fleshed ‘G3’ (Zespri® SunGold) and ‘G9’ (Zespri® Charm; both A. chinensis), and

green-fleshed ‘G14° (Zespri® Sweet Green), a cross of A. deliciosa and A. chinensis.

2.1.2 Important quality attributes of kiwifruit

2.1.2.1 Total soluble solids concentration

Total soluble solids (TSS) concentration is a measurement consisting of soluble
sugars, as well as soluble pectins and organic, amino and ascorbic acids, often
expressed as %, or °Brix (Crisosto et al., 2012b). The TSS can be readily measured with
a manual or digital refractometer. The value of TSS varies between individual fruit in an

orchard and also along the longitudinal axis of an individual fruit, being higher at the
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blossom end than at the stem end (Hopkirk et al., 1986). Harman and Hopkirk (1982)
described a standardised method of assessing the TSS of kiwifruit using an optical
refractometer: fruit was sliced 1.5 cm from each end of the fruit and a few drops of juice

squeezed from both end caps onto the measurement glass of the refractometer.

The TSS at harvest is used as a maturity index for kiwifruit to indicate harvest
time (Beever and Hopkirk, 1990). It is also a key parameter which links closely with
consumers’ liking and acceptance because the flavour of kiwifruit is based largely on a
sugar-acid balance (Crisosto and Crisosto, 2001). Harker et al (2009) suggested that
consumers’ liking grew with increased TSS. Fruit with TSS ranged from 14 to 16% are
consumed with pleasure, whereas fruit with TSS below 12% is considered not
acceptable (Hasey, 1994). However, a lower TSS fruit could still be acceptable if the

acidity is also low (Crisosto and Crisosto, 2001).

2.1.2.2 Dry matter concentration

Dry matter refers to fruit solid contents other than water (Feng, 2003). Dry
matter concentration (DMC) is defined as the ratio of dry weight to fresh weight of a
test sample, expressed as a percentage (Crisosto et al., 2012b). The DMC of kiwifruit
comprises both soluble sugars and insoluble solids (structural carbohydrate and starch;
Burdon et al., 2004). It can be determined by cutting an equatorial kiwifruit slice of
approximately 3 mm thickness and drying them at 65°C to constant weight (approx. 24

hours).

The DMC of ‘Hayward’ kiwifruit ranges from 12 — 20% while most fruit in
New Zealand fall within the range of 14 — 17%, depending on the season, timing of
harvest, orchard location and canopy management (Burdon et al., 2004). The flavour of
kiwifruit and consumers’ acceptance has been associated with the DMC of the fruit
(Harker et al. 2009; Jordan and Seelye 2009) . Crisosto et al. (2011) proposed that a
DMC of above 15.1% was required to allow a large proportion of the tested ‘Hayward’
kiwifruit to satisfy a high percentage of consumers. Zespri® Group Ltd. developed a
Taste Zespri Grade (TZG) to meet specific market preference of sweeter fruit in Asia
(Japan) and Europe; the TZG range for ‘Hayward’” was 15.5 — 19.5% DMC in 2015
(Anonymous, 2015a).
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The DMC at harvest indicates the TSS that will develop in ripe fruit (Jordan et
al., 2000; Burdon et al., 2004). It has been used as a quality prediction tool in a range of
fruit including avocados (Arpaia et al., 2001), mango (Bally et al., 2000) and kiwifruit
(Burdon et al., 2004). Since the DMC does not change during cool storage of kiwiftruit,
information on DMC provides a useful decision-making tool for marketing and
distribution of kiwifruit (Harker et al., 2009). Traditionally assessment of harvest DMC
is carried out by sampling a small proportion of the entire batch destructively. Non-
destructive methods such as near infrared (NIR) spectroscopy have also been used to
segregate future eating quality of fruit based on at-harvest DMC (Jordan et al., 2000;
McGlone et al., 2002b).

2.1.2.3 Flesh firmness

Flesh firmness (FF) of kiwifruit is referred to as the maximum force required for
a 7.9 mm diameter Magness-Taylor probe to penetrate into the fruit flesh after removing
a 1-mm slice of skin (Feng et al., 2011). In commercial practice, kiwifruit are harvested
long before they reach eating ripeness, i.e. while the fruit are relatively firm, with an FF
value of 6 — 9 kgr (~ 60 — 90 N; Beever and Hopkirk, 1990). The FF value is also an
important characteristic for determining the storage potential and eating quality of
kiwifruit. Over-softening of the fruit is generally considered the end of kiwifruit shelf
life (Feng, 2003). Therefore, in order to ensure reasonable storage life remains to enable
shipping to distant markets, a minimum standard of 1 kgr (9.8 N) for individual fruit is
required in New Zealand (Hopkirk et al., 1996). A FF value of approximately 0.6 — 0.8
kgr (5.9 — 7.8 N) is considered an acceptable texture for consumers for ‘Hayward’,
whereas a FF value lower than 0.4 kgr (3.9 N) is considered too soft and therefore not

acceptable for consumption (Stec et al., 1989).

Conventionally the FF is measured destructively by using a handheld (FT327,
Effegi, Italy) or electric (QALink, Willowbank Electronics Ltd., Napier, New Zealand)
penetrometer fitted to a 7.9 mm probe. Other devices have been developed to assess
kiwifruit firmness or texture non-destructively. For instance, compression force
measured by a texture analyser (TA-XT Plus, Stable Microsystems Ltd., Surrey, UK) is
used as an alternative measurement of firmness. Acoustic firmness sensors (AFS, Aweta

Impact & Acoustic Firmness System, Nootdorp, Netherlands) are developed based on
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acoustic impulse response technology and provide measurements of acoustic firmness

indices.

The FF values were found to be temperature dependent, with lower FF at
elevated temperatures as a result of irreversible fruit ripening (Jeffery and Banks, 1994).
Therefore, measurements immediately after removal of fruit from coolstorage (0 °C)
could result in varying FF values due to rapid changes in fruit temperatures (Feng,
2003). The FF measurements also increase with increasing penetration speed (Feng et
al., 2011; Li et al, 2016), regardless of cultivar, season or instrument type.
Penetrometer speeds of 5 mm s (McGlone et al., 1997; Burdon et al., 2014), 10 mm s
(Hertog et al., 2004b; Feng et al., 2006), 20 mm s (Burdon et al., 2013) and 25 mm s’!
(Harker et al., 1996) have all been reported. Currently Zespri® uses a standard of 8 mm

s! for evaluation of FF during onshore condition checking.
2.1.3 Kiwifruit physiology
2.1.3.1 Growth and development

Kiwifruit reach full size approximately 10 weeks after anthesis. During this
period, there is an increase in both fruit volume and fruit weight. Cell division and cell
enlargement occur, and the latter is found to be responsible for subsequent increase in
fruit size (Beever and Hopkirk, 1990). The final fruit size is affected by cultivar, the
number of seeds in the fruit, crop load and growing conditions. As the fruit reach
maturity (approximately 15 — 20 weeks after anthesis), there are no obvious changes in
the shape and skin colour of the fruit. However, the concentrations of chemical
components vary, with the most marked change occurring in carbohydrates (Beever and
Hopkirk, 1990). During early stages of development, there is a small but significant
decrease in total sugar. Starch content increases and peaks at later stages of
development, and may comprise up to 50% of total dry matter of the fruit at harvest
(Beever and Hopkirk, 1990; Richardson et al., 1997; Burdon and Lallu, 2011). After
harvest a rapid decrease in starch concentration is observed during the first 4 — 6 weeks
of storage, accompanied by an increase in soluble solids (TSS) due to starch hydrolysis

and a decline in FF (Snelgar and Hopkirk, 1988; Beever and Hopkirk, 1990).
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2.1.3.2 Maturation and harvest

Maturation is known as the period in which the fruit develops the characteristics
that are required for ripening. It occurs after completion of growth and before the fruit
ripens and senesces (Burdon and Lallu, 2011). At a particular stage of maturation, the
fruit may be removed from the vine and will continue to develop physiologically until it
reaches eating quality. This is referred to as physiological maturity (Beever and Hopkirk,
1990). The stage of maturity at harvest influences the storage potential of the fruit, as
well as its final quality for consumption (Beever and Hopkirk, 1990). In commercial
practices kiwifruit are harvested at physiological maturity, when fruit are still firm and
unripe. Fruit that are harvested too early, prior to physiological maturity, generally
soften more rapidly and fail to develop full flavour and aroma of ripe kiwifruit during
storage (Beever and Hopkirk, 1990). Fruit harvested too late may become overripe very
quickly and do not have sufficient storage life (Burdon et al., 2014a). Development of a
standard to indicate when to harvest is necessary. This harvest index should be based on
a physiological attribute of the fruit that changes consistently during maturation and

easy to measure.

During kiwifruit maturation, several physiological and biochemical changes
occur, including cessation of growth, conversion of starch to sugar and softening of the
fruit etc. Amongst these changes, the conversion of starch to sugar is found to have
close association with fruit quality after storage (Beever and Hopkirk, 1990). The TSS
of the fruit is related to sugar concentration and is readily measurable with a
refractometer. Therefore it has been used as a maturity index for kiwifruit harvest. In
New Zealand, the minimum TSS value before fruit can be harvested in the orchard is
6.2% (Harman, 1981). Fruit harvested with low TSS (< 6%) generally exhibited poor
quality after storage. Some studies suggest that fruit harvested with a higher TSS (7 —
12%) have better storability and final eating quality. However, harvesting at very late
stage is not recommended because of the increasing risk of damages from frosts (Beever

and Hopkirk, 1990).
2.1.3.3 Postharvest ripening and softening

Ripening is referred to as the process of a fruit changing from physiologically

mature to an optimum condition for consumption (Beever and Hopkirk, 1990).
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Kiwifruit are climacteric fruit which, during ripening, undergo a rapid increase in
ethylene production that is accompanied by a climacteric burst of respiration, resulting
in physiological and biochemical changes such as flavour, aroma and texture (Kim,
1999). The most significant change is the decrease in flesh firmness (FF). The FF values
range from 6 — 9 kgr (= 60 — 90 N) at harvest to 0.5 — 0.8 kgr (= 5 — 8 N) when fruit
reach eating ripeness (Beever and Hopkirk, 1990). This softening is the main limiting
factor for storage life of individual fruit (Feng et al., 2001). However, the time taken by
individual fruit to soften varies enormously. In common practice, fruit are usually stored
together within a plastic liner to ensure a more uniform rate of ripening as a result of

ethylene accumulation interaction between fruit (Beever and Hopkirk, 1990).

Depending on the maturity at harvest, softening of kiwifruit occurs in two or
three phases (Lallu et al., 1989; MacRae et al., 1990). Kiwifruit harvested at early
maturity go through three softening stages: 1) an initial lag phase where fruit remain
relatively firm and soften only slowly, 2) a rapid softening phase in which fruit soften to
about 20% of their harvest FF, and 3) the final stage of softening which is marked by
the start of internal ethylene production (MacRae et al., 1990; Paterson et al., 1991). For
fruit that are harvested late in the season, there is no initial lag phase during softening;

only the second and third phases exist (MacRae et al., 1990).

The softening of kiwifruit is due to disintegration of the cell wall, resulted from
a number of activities including pectin solubilisation, cell wall swelling, degradation of
pectin, reduction in molecular weight of xyloglucan, and dissolution of middle lamellae
(Schroder and Atkinson, 2006). During the initial phase of softening, pectin is solid-like
and water-insoluble. As the fruit starts to soften rapidly (the second phase), pectin
softens to a more liquid-like state (Redgwell and Percy, 1992). This softening is not a
chemical but a physical change and hence cannot be measured by chemical analysis
(Schroder and Atkinson, 2006). In addition, cell wall swells as ripening proceeds and at
eating ripeness will reach approximately 3 — 4 times its thickness at harvest (Hallett et

al., 1992).

The conversion of starch to sugar also continues during ripening process. The
TSS increases to 14 — 16% before fruit are eating-ripe (Beever and Hopkirk, 1990).
However, when fruit become overripe, the TSS begin to fall slightly (Fukui et al., 1980).

The internal flesh colour remains unchanged for ‘Hayward’. Upon complete ripeness,

12
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the flavour of the fruit changes from initially acidic taste to a more pleasant delicate
aroma (Beever and Hopkirk, 1990). When fruit become overripe, an ‘estery’ aroma may

develop and it can be unacceptable to consumers (Burdon and Lallu, 2011).

2.1.4 Factors affecting kiwifruit quality and storage potential

2.1.4.1 Preharvest factors

When growing kiwifruit, many practices have been utilised to achieve improved
fruit quality and maximise productivity through optimised vine performance (Patterson
and Currie, 2011). These include planning block layout, ensuring good orchard shelter,
spring and summer trunk girdling, “tip-squeezing” (Max and Currie, 2005), “zero-leaf”
pruning (Gardiner et al., 2005) and fruit thinning (Patterson and Currie, 2011).
Preharvest growing conditions and orchard management practices can affect fruit
quality at the time of harvest and during subsequent storage. While several orchard and
climatic factors have been suggested to influence kiwifruit storage quality, there are few

published data demonstrating these effects.

2.1.4.2 Girdling

Trunk girdling, or cincturing, is a technique used to influence cropping, which
involves the removal of a ring of the bark around the trunk (Sale, 1990). Fruit growth is
dependent on the ability of fruit to compete with vegetative growth for a supply of
carbohydrates from leaves (Seager et al., 1995). Girdling interrupts the flow of
carbohydrates around the vine by redirecting them to the shoots rather than to the roots,
restricting the roots from competing with the fruit to absorb carbohydrates produced by
the leaves. Trunk girdling has been widely used in many horticultural products such as
grapes, citrus, apple, peach and persimmon to improve fruit size and quality attributes

such as DMC and TSS (Goren et al., 2003).

The implementation of girdling within the New Zealand kiwifruit industry was
developed to increase orchard yield, fruit size/weight and dry matter concentration (Sale,
1990). Spring trunk girdling practices are used to increase fruit size in both ‘Hayward’
and ‘Hort16A’ whereas summer trunk girdling is applied to facilitate higher dry matter
accumulation by fruit, as well as higher flowering in the spring following application

(Patterson and Currie, 2011). Davison (1980) demonstrated that girdling on young
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kiwifruit vines increased flower and fruit numbers. Snelgar and co-workers (Snelgar et
al., 1986; Snelgar and Thorp, 1988) reported increased fruit weight with increasing leaf
area on girdled vines. Girdling combined with high leaf to fruit ratios were found to
improve fruit weight (Seager et al., 1995) and TSS (Seager et al., 1995; Assar et al.,
2009). Boyd and Barnett (2011) suggested that extended trunk girdling increased fruit
number, improved DMC and resulted in more advanced maturity at harvest. This
hastening of maturation of fruit makes girdling an undesirable practice in some cases
(Davison, 1990). While much research reports on the effect of girdling on at-harvest
kiwifruit quality, little information is available on how girdling affects kiwifruit storage
performance (Boyd, 2012). Boyd and Barnett (2011) found that trunk girdling of
‘Hort16A” (A. chinensis) vines reduced the susceptibility of fruit to develop chilling

injury (CI) during storage.
2.1.4.3 Crop load

Crop load is defined as the fresh weight obtained per canopy hectare. For
‘Hayward’ yields increase from approximately 7 to over 30 t/ha from 1980°s to 2010’s
as a result of continued improvements in orchard management, with top-performing
orchards producing over 50 t/ha (Thorp et al., 2011). Manipulation of crop load is
achieved by light-to-moderate vegetative pruning and flower/fruit thinning. Crop load is
important as it affects kiwifruit size and quality in the current season and flower
induction for the following season (Sale, 1990). However, over-reduction of crop load
compromises orchard yield and in turn profitability (Snelgar et al., 1986; Patterson and

Currie, 2011).

Published studies on the effect of crop load on at-harvest kiwifruit quality are
somewhat contradictory. While some failed to demonstrate any significant effect of
manipulated crop load on fruit weight, FF, DMC and TSS (Snelgar et al., 1998; Broom
et al., 2000), others reported high crop load being associated with reduced fruit weight
(Patterson and Currie, 2011), higher FF (Boyd and Barnett, 2011) and reduced DMC
and total titratable acidity (Famiani et al., 2012) at harvest. The effect of crop load
manipulation on kiwifruit storage performance is not well established. Famiani et al.
(2012) suggested that high crop load results in reduced TSS and FF after storage for
‘Hayward’. Boyd and Barnett (2011) found that high crop load also increased the
susceptibility of ‘Hort16A” fruit to CI incidence.

14
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2.1.4.4 Light

Light is essential for plant growth and fruit production. Vines grown under
shaded areas flower poorly in the following season (Davison, 1990). Light intensity also
influences photosynthesis rates of leave, growth rate of vines, water uptake and mineral
accumulation in the fruit (Buwalda and Smith, 1990; Davison, 1990). Previous studies
showed that insufficient light exposure resulted in smaller fruit size, reduced
chlorophyll content and calcium accumulation, lower TSS and DMC, and less FF
(Tombesi et al., 1993; Antognozzi, 1995; Biasi et al., 1995; Snelgar et al., 1998;
Montanaro et al., 2006; Tavarini et al., 2009). In comparison, fruit grown in high light
intensity had better quality and longer storability (Tombesi et al., 1993; Antognozzi,
1995).

The use of reflective mulches was discovered in an attempt to increase light
availability in the canopies of apple trees (Doud and Ferree, 1980; Mika et al., 2007).
Reflective mulches increase light availability by reflecting the light that passes through
the canopy and reflecting the light up onto the leaves (Currie et al., 2007). More light
allows for warmer air temperatures in various seasons which increase vegetative growth
rate (Richardson et al., 2004). Thorp et al (2001) discovered that the use of reflective
covers placed underneath ‘Hayward’ kiwifruit vines improved fruit weight and hence
fruit yield, and increased flowering in the second year. Costa et al (2003a) confirmed
the former study and pointed out a trend for higher TSS and lower FF values before
harvest. A research conducted by Currie et al (2007) also suggested higher fruit weight

and DMC were found in the fruit from reflective plots.
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2.1.5 Skin properties of kiwifruit
2.1.5.1 Skin composition

Kiwifruit skin is composed of several surface structures such as the periderm,
trichomes and lenticels, and sub-surface layers of the outer pericarp (Burdon and Lallu,
2011). The skin of A. deliciosa and A. chinensis fruit is brown, and the number and size
of hairs differ among cultivars: ‘Hayward’ fruit have denser and more robust hairs than
those of ‘Hort16A’ (Burdon and Lallu, 2011). Layers of dead cells on skin surface form
the periderm. Development of periderm occurs after 6 to 8 weeks from fruit set, after
which cell expansion from cell layers within the fruit occurs and results in small tears
on the skin surface. These tears in turn develop into lenticels. Lenti-cellular structures
help to improve gas transfer to and from the environment but may also promote surface
spotting and pathogen infections. Underneath the periderm are two to three layers of
cells forming the hypodermis region which separates the skin from the outer pericarp.
This region is composed of small, closely packed cells with thick walls and a maximum

diameter of approximately 0.05 mm (Burdon and Lallu, 2011).

The outer pericarp of A. deliciosa is composed of two types of parenchyma cells
(Fig. 2.1a): small spherical cells with a diameter of up to 0.2 mm, and large elongated
cells with a diameter more than 0.2 mm but most commonly more than 0.5 mm and up
to 1 mm (Hallett and Sutherland, 2005; Hallett et al., 2005; Burdon and Lallu, 2011). In
A. chinensis, sclerified cells (brachysclereides, stone cells) are found in the interface
between the hypodermis and the bulk of the outer pericarp tissue (Fig. 2.1b). These
stone cells are scattered amongst small parenchyma cells and have a maximum length

up to 0.30 mm (Hallett and Sutherland, 2005, 2007).
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Figure 2.1 a) Cross section of skin of mature (21 weeks from petal drop) A.
deliciosa var. deliciosa ‘Hayward’ fruit and outer flesh showing dead cell layers,
hypodermis and a mixture of large and small cells in underlying flesh stained with
toluidine blue. b) Cross section of skin of mature (23-24 weeks from petal drop) A.
chinensis ‘Hort16A’ fruit and outer flesh, parenchyma cells are interspaced with
stone cells. All images were acquired using light microscopy with underlying flesh
stained with toluidine blue. s = dead cells of skin, h = hypodermis, sp and Ip =
small and large cells, b = stone cells, bar = 100 pm. Extracted from Hallett and

Sutherland (2005). Image used with permission.
2.1.5.2 Changes in skin and near-surface cellular structures

Changes in skin and subsurface cellular structure can be resulted from
environmental factors and may have potential consequences for postharvest fruit quality
and storability (Nardozza et al., 2011). Celano et al. (2009) studied the changes in the
structure of ‘Hayward’ kiwifruit skin in relation to water loss, an indicator of fruit
quality during growth. As transpiration declines (decreased water loss), degradation of
surface hairs, suberisation of outer cell layers and the subsequent death of the outer cells
were observed. Light is another important factor influencing the skin structure of the
fruit. Insufficient light exposure resulted in reduction of waxes, less hair number and
more hydrated hair due to a decrease of skin temperature and an increase in relative

humidity on the surface (Tombesi et al., 1993).

In ‘Hayward’ (A. deliciosa), the large cells comprise around 38 — 50% of the
volume of the outer pericarp tissue (Hallett et al., 2005; Nardozza, 2008). The cell wall
of these cells contributes to under 20% to the total cell wall volume of a fruit and shows

resistance to softening in ripe fruit tissues (Hallett et al., 2005). The volume ratio of
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small and large cells was found to affect dry matter content, an important quality factor
of kiwifruit (Nardozza, 2008). While small cells are found to accumulate starch during
fruit growth, larger cells do not accumulate starch to the same levels. A recent study on
fruit anatomy in various A. deliciosa genotypes shows that small cells have a higher
starch concentration than large cells (Nardozza et al., 2011). The presence of stone cells
has effects on the firmness of A. chinensis fruit during ripening (Hallett and Sutherland,
2005). Additionally, the intercellular porosity and pore size were found to be highly
variable amongst five commercial kiwifruit cultivars (‘Hayward’, ‘Hort16A’, ‘G3’, ‘G9’

and ‘G14’; Cantre et al., 2014).

2.2 Non-Destructive Techniques for Assessing Kiwifruit Quality

Conventionally the quality of fruit at harvest, during storage and at consumption
is assessed using simple destructive tests, such as flesh firmness by the penetrometer
and total soluble solids by the refractometer. However, these tests destroy the fruit and
hence only a small proportion of fruit samples can be measured. It is important in this
case that a representative sample is used, as there is usually a wide variability in fruit

quality within or between batches of fruit.

Development of non-destructive testing techniques enables the possibility to
assess quality on a large number of fruit, to conduct multiple measurements on the same
samples as well as to monitor fruit quality development over a period of time from
preharvest through to the end of storage (Costa et al., 2003b). Various types of non-
destructive techniques that are being used commercially, or currently under research,
can be categorised based on the principles of mechanism: electromechanical (impact),
electrochemical (electronic nose) and electromagnetic (e.g. near-infrared spectroscopy,

nuclear magnetic resonance).

Impact technology measures the elasticity parameters of the fruit under dynamic
conditions. The sensors are commonly applied to grading lines, and the progression of
acceleration is recorded after fruit are gently tapped by the impact device (Chen and
Tjan, 1998). This technique has been used for grading ripeness of kiwifruit (Peleg,
1999). Electronic nose (e-nose) simulates human’s olfactory system and can identify the
chemical composition of an odour. This technique has been used to assess kiwifruit

freshness by classifying fruit based on the volatile compounds detected by the e-nose at
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different storage time (Liu and Hui, 2015). Nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI) enables visualisation of internal structural changes
and water mobility of a fruit sample (Costa et al., 2003b). This information can be used
to identify physical and mechanical properties of the sample. Burdon et al. (2014c¢)
utilised MRI to evaluate the water status of ripe kiwifruit and the capacity of cell wall
swelling; Ward (2011) used a portable NMR system to assess textural properties of
kiwifruit. The next section provides details on the use of near-infrared (NIR)

spectroscopy for assessing quality of kiwifruit.

2.3 Near Infrared (NIR) Spectroscopy

2.3.1 Principle of NIR spectroscopy

Near-infrared (NIR) spectroscopy studies the spectral property of an object when
irradiated with electromagnetic radiation between 780 — 2500 nm (Fig. 2.2) or 12820.5
to 4000 cm™' wavenumbers (Williams and Norris, 1987; Miller, 2001; Sun, 2009). In
many cases spectrometers also measure spectral properties within the visible range (400
— 750 nm; Miller, 2001). The 400 — 1000 nm range is sometimes referred to as visible-
near-infrared (Vis-NIR; Williams and Norris, 2001) and the 1000 — 2500 nm range is
referred to as short-wave infrared (SWIR).

X-ray Far UV Near UV Visible NIR MIR Far IR
0.5 10nm 200 350 nm 800 2500 nm 25 pm 100 pm
4000 cm™! 400 cm™! 100 cm~!

Figure 2.2 Spectral regions of interest for analytical purposes. Extracted from Sun
(2009). Image used with permission.

Spectroscopy involves energy transfer between light and object. When NIR
radiation reaches an object, the incident radiation may be reflected, absorbed or
transmitted, depending on the physical properties and chemical composition of the
sample (Nicolai et al., 2007a). Reflection could be due to specular or diffusional
reflection by glossy or rough surfaces, or scattering resulted from multiple refractions
inside the object (Nicolai et al., 2007a). Spectral absorptions are caused by the chemical
and physical compositions present in the object. Chemical bonds such as the CH, NH,
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OH and CO groups are subject to vibrational energy change in forms of stretching or
bending when irradiated by NIR light. These anharmonic vibrations enable the
occurrence of overtone transitions and combination modes, which correspond to

specific absorption bands in the NIR region (Miller, 2001).

Fruit tissue contains water, carbohydrates and proteins which have large
numbers of NIR-active chemical groups (Feng, 2003). For instance, strong absorption
of water and carbohydrate can be found at 958 nm and 980 nm, respectively (Williams

and Norris, 1987). Table 2.1 summarises several important NIR absorption bands of

functional groups corresponding to various attributes of fruit tissues.

Table 2.1 Important NIR spectral regions for measuring fruit tissues.

Functional

Attributes Wavelength Location ~ Reference
Group
744, 830-840, 938, (Williams and Norris, 1987)
958,970,980, 1010-  (>um2009)
Water O-H ’ ’ ’ (Osborne et al., 1993)
1030, 1458, 1442,
1932 (McGlone and Kawano,
1998)
830-840, 870-890,
Carbohydrates C-H, O-H 900-930, 970-990, (Williams and Norris, 1987)
1010-1030, 1053
(Mowat and Poole, 1997);
Chlorophyll C-H 680 (McGlone and Kawano,
1998)
901, 918, 1200, 1700, (Osborne and Fearn, 1986)
Starch CH,O-H 1956 1780 (Williams and Norris, 1987)
Pectin CILOL - gg (Elvidge, 1990)
C-O0
838, 870, 878, 888, - .
Sucrose C-H, O-H 906, 913, 990 (Williams and Norris, 1987)
Cellulose C-H, O-H, 905, 920, 1655-1715, (Williams and Norris, 1987)
u C-0 2300-2360 (Workman and Weyer, 2007)
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2.3.2 Instrumentation

Review of literature

A generalised NIR spectroscopy system contains four main components (Fig.

2.3): 1) an NIR radiation source, 2) a wavelength selector for wavelength discrimination,

3) modes of sample measurement, and 4) a detector to convert the radiation to an

electrical signal that can be sent to a signal processor and readout (usually computers).

q Halogen lamp
—P| LEDs
—»
Discrete P Filters
P AOTF
Spectrum p| Gratings
—p| FT-NIR
Reflectance I—’ Cuvettes
Transmittance p| Fiber optics
Transflectance L Special
Accessories
R
Single channel (PbS, InGaAs)
Multichannel Arrays
CCDs

Figure 2.3 Principal features of NIR spectroscopy equipment. Extracted from

Blanco and Villarroya (2002). Image used with permission.
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The most common source of NIR radiation is the quartz halogen tungsten
filament lamp which covers broad spectral region between 320 — 2500 nm (Osborne and
Fearn, 1986). Light-emitting diodes (LED) are another source of NIR radiation
(McClure et al., 2006). The LEDs release energy in the form of light of narrow

wavelength bands in the process of electroluminescence (Osborne and Fearn, 1986).

Components for wavelength discrimination can be classified into two types,
discrete-value and full-spectrum devices. Discrete-value spectrophotometers use filters
to produce narrow wavelength bands or LEDs. As a result, they can only be used in
applications with objects absorbing in specific spectral regions (Williams and Norris,
1987; McClure et al., 2006; Jha, 2010). Full-spectrum spectrophotometers usually
include a diffraction grating. They are more flexible and therefore can be used in a

wider variety of situations (Osborne and Fearn, 1986).

There are four modes available for the measurements using NIR spectroscopy:
reflectance, transmittance, interactance and transflectance modes. Transflectance mode
is designed for thin or clear samples having characteristics different from those of food
and therefore is not commonly used for food samples (Williams et al., 2006). In
reflectance mode (Fig. 2.4a), the object surface is illuminated by the light source and
viewed by the light detector at a specific angle, e.g. 45 °C to avoid specular reflection
(Schaare and Fraser, 2000; Nicolai et al., 2007a). In transmittance mode (Fig. 2.4b), the
light source is opposite to the detector. This requires very high light intensities which
can cause heat damage to the object surface and alter its spectral properties (Nicolai et
al., 2007a). In interactance mode (Fig. 2.4¢), the light source and detector are next to
each other but separated by a light barrier which ensures that light due to specular
reflection cannot directly enter the detector (Nicolai et al., 2007a). Schaare and Fraser
(2000) suggested that amongst the three measurement modes of NIR, interactance mode
provide the most accurate instant estimates of TSS, density and flesh colour for
measuring internal properties of kiwifruit (A. chinensis). However, Lammertyn et al.
(2000) found little difference between interactance and reflectance configurations for

the prediction of TSS of apple.
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v

(a) (b) (c)

Figure 2.4 NIR measuring mode: (a) reflectance; (b) transmittance; and (c)
interactance showing (i) the light source, (ii) object, (iii) detector, (iv) light barrier,

and (v) support. Extracted from Nicolai et al. (2007a). Image used with permission.

Detective devices are usually comprised of photoconductive semiconductors
(PbS or InGaAs) operating in the range of 1000 — 2500 nm with a peak at 2000 nm
(Blanco and Villarroya, 2002). The conduction increases with the intensity of incident
radiation. Another type of detectors is photovoltaic photodiodes, which are usually
formed from silicon and germanium and cover the Vis-NIR region between 400 and

1000 nm (Osborne and Fearn, 1986; Osborne et al., 1993).

The NIR technology has been adapted to devices with various configurations for
specific purposes. Fig. 2.5a illustrates a commercial-scale bench-top Vis-NIR
spectroscopy system (PANalytical, B.V, Boulder, Colorado, USA) suitable for both
industrial and laboratory analysis. The NZ kiwifruit industry uses online multilane NIR
sensors (Fig. 2.5b; Taste Tech 1, Taste Technologies Ltd., Auckland, NZ) fitted to a
commercial kiwifruit grader (Compac™ grading equipment, Auckland, NZ) for sorting
of kiwifruit according to DMC. This system can also be used for recovering high DMC
fruit from lower dry matter grower lines that do not meet the Minimum Taste Standard
(MST) of DMC for ‘G3’ kiwifruit (McGlone and Wohlers, 2016). More recently, a
breakthrough in technology (Goldring and Sharon, 2012) enabled the production of
low-cost spectrometer on a “chip”, leading to the development of consumer-scale NIR

devices such as SCiO molecular sensor (Fig. 2.5¢) (Consumer Physics Inc., Tel Aviv,
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Israel), LinkSquare (Stratio Inc., Seoul, Korea) and Tellspec® Food Sensor (Tellspec
Inc., Toronto, Canada), which can be integrated into smartphones and make applications
of NIR accessible and affordable to a wider audience (Coates, 2014; Haughey et al.,
2015).

Figure 2.5 (a) A commercial ASD FieldSpec® Pro full-spectrum Vis-NIR
spectroscopy system (ASD Inc., USA) coupled with a contact probe (PANalytical,
B.V, Boulder, Colorado, USA); (b) an NIR sensor for online sorting of fruit (Taste
Tech 1, Taste Technologies Ltd., Auckland, NZ); (¢) a consumer-scale SCiO™

molecular sensor (V1.0, Consumer Physics Inc., Tel Aviv, Israel).

2.3.3 Multivariate statistical techniques

Using NIR for analysis of fruit products has several advantages, including
speedy response time, simple or no sample preparation, allowing for non-destructive
measurements and low cost in comparison to other spectroscopies such as mid-infrared,
Raman and others (McClure, 2006). However, diffuse reflectance spectra of fruit are
often non-specific because of multiple overlapping absorption features. Therefore
multivariate statistical techniques (also known as chemometrics) are required to extract
the information relevant to quality attributes which is hidden in the NIR spectrum

(Nicolai et al., 2007a).

2.3.3.1 Pre-processing of spectra

Data pre-processing techniques are used to remove unwanted spectral variations
and baseline shifts arising from light scattering from solid samples or variations in
temperature, density, and particle size of samples etc (Ozaki et al., 2006; Nicolai et al.,

2007a).
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Spectroscopic measurements performed in reflectance mode are usually
converted to log(1/R) (R is reflected radiation) using Beer’s Law because there is a
linear relationship between the concentration of an absorbing component and its
contribution to the log(1/R) value at the wavelength absorbed (Williams and Norris,
1987). However, this approach does not take into account the fact that light penetration

in biological tissue is complicated and also involves scattering (Nicolai et al., 2007a).

Smoothing techniques are used to remove random noise of spectral data. During
smoothing a Savizky-Golay filter (Savitzky and Golay, 1964) is usually used which
functions by fitting the spectrum in a wavelength interval with a polynomial by least-
squares method (Williams and Norris, 2001; Nicolai et al., 2007a). However, smoothing
sometimes also removes useful information which is not clear yet at the time of removal.
Hence the usefulness of smoothing is questionable since most multivariate techniques

used after pre-processing already include models for unwanted noise (Naes et al., 2004).

Baseline correction can be achieved by derivation (first or second order) or
multiplicative scatter correction (MSC; Ozaki et al., 2006). Derivation is usually
calculated according to the Savizky-Golay algorithm (Naes et al., 2004). The MSC is
useful for correcting vertical variations and inclination of the baseline (Ozaki et al.,

2006).

Normalization of spectra can be described as the changing of a set of spectra so
that the new set has more features in common to suppress unwanted source of
variability. Normalisation transformations are computed sample-wise. A simple
example is subtracting the log(1/R) (absorbance) value at the reference wavelength from
all the spectral values. This results in a set of spectra with value zero at the reference

wavelength. (Williams and Norris, 1987).

Centering using the average value (also called mean centering) is often powerful
in resolution enhancement. This is achieved through an adjustment to the data set to
reposition the centroid of the data to the origin of the coordinate system (Ozaki et al.,
2006). This shifts the focus on the differences between observations rather than their
absolute value. After mean centering, all means are zero and variances are interpreted

around zero.

25



Developing non-destructive techniques to predict kiwifruit storability

2.3.3.2 Reduction of variables

Variable reduction or selection methods are developed to identify a small
number of variables (a subset of spectral bands) from the entire range of spectra for
easier data interpretation (Zou et al., 2010). Elimination of uninformative variables can
improve prediction accuracy and model robustness (Cai et al., 2008). The most
commonly used method is principal component analysis (PCA; Wold et al., 1987;
Blanco and Villarroya, 2002). Several other methods have also been developed
including correlation coefficient, interval partial least squares (iPLS), stepwise analysis

and genetic algorithms (GA; Cai et al., 2008) .

Another simple way of reducing the number of variables is by taking averages
over wavelengths. Commercial spectrophotometers generally have a spectral resolution
of a few nanometers up to ~ 10 nm, where in most applications a 10 nm resolution is
often sufficient (Nicolai et al., 2007a). High resolution does not improve the
information content of the spectra and yet increases the computational time. Nicolai et
al. (2007b) evaluated the predictive accuracy of NIR regression model using a range of
spectra resolution and found that a wavelength resolution of about 5 nm provided the

best results.

2.3.3.3 Model development and evaluation

For any spectroscopy technique, calibration is a process which develops the
mathematical relationship, in the form of a model, between measured sample properties
and the intensities or absorbance at more than one wavelength of the set of known

reference samples (Zeaiter et al., 2005; Sun, 2009).

Once an NIR instrument has been calibrated against a reference method for the
measurement of a particular sample property, it can be used to predict unknown samples
and the prediction errors can be estimated, a process known as validation. Validation of
calibration provides the basis for calculation of true measurement error by comparing
NIR measurements to reference method measurements on a new set of samples
(Williams and Norris, 1987). If the two are essentially the same, the model provides

accurate prediction and will be useful for future predictions (Sun, 2009).
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For internal validation, both n-fold cross-validation and internal test-set
(‘holdout’) validation can be used to compare the predictive performance of calibration
and validation. In n-fold cross-validation, the calibration samples are randomly divided
into n segments. One of the segments is then removed from the dataset and the
calibration model is developed from the remaining (n — 1) segments. The isolated
segment is used to calculate the prediction errors. This process is repeated until every
segment is removed from the dataset once, and the variance of all prediction residuals is
estimated. For leave-one-out cross-validation (LOOCYV), the process is similar except
that at each time one sample, rather than one segment, is removed from the dataset. In
internal test-set validation, the calibration samples are randomly divided into two
populations: calibration and validation subsets. Calibration model is then developed
using the calibration subset, and the prediction residuals are calculated by applying the
calibration model to the validation subset. In external validation, calibration model is
applied to an independent external validation data set usually obtained from a different

orchard or different season (Fig. 2.6; Nicolai et al., 2007a) .

Samples from a
different orchard or

Calibration Subset e

Calibration
Subset

Take one

group out ﬁ
U Validation Subset

External Validation External Validation

Figure 2.6 A flow chart showing the internal and external validation processes for

model development.

Prediction model using NIR spectroscopy can be applied for both quantitative
and qualitative analysis. In quantitative analysis, spectra of training sample set and
corresponding chemical analysis are collected, and calibration model is developed using

regression techniques. The accuracy for calibration is tested using a validation test set
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(Westerhaus et al., 2004). In qualitative analysis, calibration involves the application of
discriminant techniques to find useful relationship between spectra of training samples

and their group membership instead of quantitative regressions (Kramer et al., 2004).

The efficiency of quantitative regression for a set of calibration samples can be
reported as the standard error of calibration (SEC), standard error of prediction (SEP),
mean square error (MSE), root mean square error (RMSE), correlation coefficient (r),
and/or coefficient of determination (r*; Williams and Norris, 2001). The selection of
terms is often dependent on the software used (Westerhaus et al., 2004). When internal
or external validation is used, the prediction error of a calibration model is defined as
the mean square error of prediction (MSEP) or root mean square error of prediction

(RMSEP; Nicolai et al., 2007a; Sun, 2009), which can be calculated as:

n ~
2P 9i-yi)?
np

RMSEP = (2.1)

where n,, is the number of validated objects, and J; and y; are the predicted and

measured value of the ith observation in the test set, respectively.

Additionally, SDR, which is the division of standard deviation (SD) and RMSEP,
is also used. The SDR represents the predictive performance of a model and it usually
provides more direct information rather than R? or RMSEP (Liu et al., 2010). The
higher the SDR values the greater the power of the model to predict accurately. SDR
values below 1.5 indicate that the calibration model is not useful; between 1.5 and 2
suggest that the model can discriminate low from high values of the response variable
fairly well; between 2 and 2.5 indicate coarse quantitative predictions are possible, and

above 2.5 correspond to good and excellent prediction accuracy (Saeys et al., 2005).

For qualitative/discriminant analysis, calculation of prediction accuracy is
usually expressed as the correctly classified samples as a percentage of all samples in

the designated group.

2.3.3.4 Regression and classification techniques

For linear regression, multivariate linear regression (MLR), principal component

regression (PCR) and partial least squares regression (PLSR) are the three most
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common techniques used in calibration of NIR spectral data (Nicolai et al., 2007a; Zou
et al.,, 2010). Recent development of nonlinear techniques such as artificial neuron
network (ANN) and kernel functions enables the analysis of data with nonlinearilities
and improves predictive performance of regression model (Nicolai et al., 2007a). Kernel
functions generate hidden units that represent the input data and map this information
into a high-dimensional feature space, in which calibration is carried out (Ivanciuc,
2007). The common kernel functions include Gaussian, polynomial and radial basis.
Kernel-based support vector machines (SVM) are capable of both linear and non-linear
regressions but would require the tuning of parameters to achieve model robustness

(Chapelle et al., 2002).

In classification, discriminant analysis of spectra can be supervised (the class to
which the samples belong is known) or unsupervised (Blanco and Villarroya, 2002).
Pattern recognition usually consists of three steps (Kim et al., 2000). First, the raw data
is reduced by a feature extraction process; PCA is the main technique for this purpose
and can work for both supervised and unsupervised cases. Second, features that are
suitable for discriminating samples are selected; a number of techniques including
canonical discriminant analysis (CDA) and genetic algorithms (GA) can be applied to
the spectral data. The final stage involves pattern recognition based on selected features;
this includes traditional methods such as linear discriminant analysis (LDA) and PLS-
DA, which uses PLS to develop a model which is then used to estimate the
classification of unknown samples (Kim et al., 2000; Kramer et al., 2004). More
recently, machine learning techniques such as ANN and SVM have also been used in
discriminant analysis and can achieve robust calibration models with good prediction

outcomes.

There are many software packages available for multivariate calibration. In this
research two packages were used. The Unscrambler® package (CAMO Software AS.,
Oslo, Norway) is user friendly and allows visual interpretation of spectral data and
calibration model. The Weka (Waikato Environment for Knowledge Analysis) is open-
source software (Version 3.7.12; University of Waikato, Hamilton, New Zealand; Hall
et al., 2009) which provides a wide range of machine learning algorithms for solving

data mining problems.
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2.3.4 Applications of Vis-NIR in horticultural products

The potential of NIR spectroscopy was first discovered in the 1960s (Reh and
Irudayaraj, 2008; Sun, 2009). The wide-spread application of NIR initiated in 1973
following the use of NIR spectroscopy to replace the traditional Kjeldahl measurements
for the determination of protein in grain (Williams and Norris, 1987; Reh and Irudayaraj,
2008). Since then, Vis-NIR spectroscopic techniques have been used as non-destructive
and rapid tools to evaluate various quality attributes of fruits and vegetable (Williams et

al., 2006; Jha, 2010).

For the kiwifruit industry, NIR spectroscopy is most commonly used in
quantitative analysis of quality attributes by developing regression models (Table 2.2).
For instance, instant estimation of at-harvest TSS and DMC can be achieved with high
regression accuracy of % RMSEP < 5 (McGlone and Kawano, 1998; Osborne et al.,
1998; Osborne et al., 1999; Schaare and Fraser, 2000; Clark et al., 2004; Moghimi et al.,
2010; Lee et al., 2012). There have also been attempts to predict post-storage TSS based
on at harvest NIR spectral data (McGlone et al., 2002b; McGlone et al., 2007).
Prediction of at-harvest FF using NIR spectral data was not as successful (McGlone and

Kawano, 1998; Costa et al., 1999).
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However, use of NIR spectroscopy to perform qualitative analysis in kiwifruit is
not well established. In particular, little research was carried out to discriminate
kiwifruit storage potential based on export firmness criterion (FF < 1 kgr or 9.8 N) using
classification models. Feng (2003) used at-harvest NIR spectral data to classify
‘Hayward’ grower lines based on softening rate and incidence of physiological
disorders (e.g. soft patch, low temperature breakdown). Clark et al. (2004) categorised
‘Hort16A” kiwifruit into two groups (‘disordered’ and ‘good’) based on at-harvest NIR
spectral data and after storage firmness values. In other crops, Zude et al. (2006)
classified apples by different ‘quality levels’ using NIR spectra data and firmness
measured before and after storage. In addition, Feng et al. (2013) segregated apricots for
storage potential using at-harvest Vis-NIR spectral data by developing an exponential

model.

2.4 Optical Coherence Tomography (OCT)
2.4.1 Principle of OCT

The OCT technique is a purely optical, non-destructive, non-invasive, and
contactless high resolution imaging method applicable to semi-transparent and turbid
media (Drexler and Fujimoto, 2008). It allows for the acquisition of three-dimensional
(3D) depth resolved image data of (sub)surface regions in situ and in real-time with

resolution as good as one micrometre.

This technique detects the discontinuities in refractive index corresponding to
the boundaries between different types of tissues (Landahl et al., 2012). To capture an
OCT image, the sample is irradiated with near-infrared light and the light beam is back-
scattered from different layers of sub-surface tissue structures such as pores and cells. A
depth scan is obtained by comparing the arrival times of the light path scattered from
the sample with the light path reflected from a reference mirror. Cross-sectional images
are obtained by scanning the light laterally across the surface of the sample and a 3D
volume is generated by several depth scans at adjacent lateral positions (Verboven et al.,
2013). OCT provides excellent axial resolution with an accuracy of a few micrometers.
The penetration depth however depends on the scattering and absorption properties of
the tissue. In fruit media the penetration depth is up to 2 mm with 5 — 20 um resolution

(Meglinski et al., 2010; Verboven et al., 2013).
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2.4.2 Image acquisition

Depth scans can be obtained either by moving the reference mirror (time-
domain OCT, TD-OCT) or, by spectral analysis of the interference signal with the
reference mirror kept fixed and subsequent fast Fourier transformation (spectral-domain

OCT, SD-OCT; Fercher et al., 1995) .

In SD-OCT, a dispersive element such as a grating is used for spectral analysis
and depth scans are acquired quasi-instantaneously by a line scan camera within a few
milliseconds. This technique allows for high acquisition rates as required in real-time
measurements. However, for two-dimensional (2D) images the light beam needs to be
scanned laterally in one dimension. Single depth scans and cross-sections are classified
as A- and B-scans, respectively. The 3D measurements require 2D scanning across both
lateral directions. The scanning process can be performed by different means, such as
by one (2D image) or two galvanometer mirrors (3D data). Single (2D) images acquired
by SD-OCT are always cross-section images. A schematic diagram of a SD-OCT
system is depicted in Fig. 2.7.

Sample
DS | i
L k3
ccD <{— =7
D A L BS GM
’.
" DC L
2
I M
Framegrabber & PC Light source

Figure 2.7 Schematic diagram of a spectral-domain OCT (SD-OCT) system. The
boxes represent portable and independent modules. DC: directional coupler; BS:
beam-splitter; GM: Galvanometer mirror; L: lens; DG: diffraction grating; CCD:
charged coupled device (Podoleanu, 2012; Verboven et al., 2013). Image used with

permission.
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Figure 2.8 illustrates the image capture of a kiwifruit sample using the
commercial TELESTO™ SD-OCT imaging system (Thorlabs, Liibeck, Germany).
Real-time visualisation of the sample in 2D and 3D is available from the software
accompanying this system. However, for high level image processing, sophisticated
image processing software such as Matlab® (MathWorks, Inc., Natick, USA). and
Avizo® (Visualization Sciences Group, France) are usually required, in order to allow

display, modification and quantification of the images.

Processor  probe Head and Image Processing Software
§  Fibre Optics

SD-OCT Engine

Translation Stage

Figure 2.8 Schematic diagram of a commercial SD-OCT system: Variable-Rate
TELESTO™ OCT Imaging System operating at 1325nm (Thorlabs, Liibeck,
Germany). Axial resolution: 7.5 pm. Lateral resolution: 15 pm. Operating rates:

5.5 kHz, 28 kHz, and 91 kHz.

2.4.3 Applications of OCT in horticultural products

The OCT has the advantages of minimal sample preparation in comparison to
conventional optical methods and it enables the potential for repeated measurements on
the same sample matured over a period of time. Although OCT has already been widely
applied in biomedical areas such as dermatology and ophthalmology, this technique has

also found an increasing number of applications in assessment of horticultural products.

Clements et al. (2004) used OCT to compare hull layer thickness of four

genotypes of lupin seeds, and were able to distinguish between different species of
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lupins and also identify thin-hulled seeds from normal seeds. Meglinski et al. (2010),
Ford et al. (2012) and Landahl et al. (2012) demonstrated the use of OCT to detect
defects, rots and diseases in onions based on visualisation and quantification of 2D OCT
images. Loeb and Barton (2003) produced OCT images of kiwifruit showing some thin-
walled parenchyma cells in the outer pericarp (Fig. 2.9a). However, the images were not
obtained from intact kiwifruit samples but from a radial transverse section removed
from the equator of the fruit. Magwaza et al. (2013) investigated the feasibility of using
OCT in the visualization of histological and microstructural features in intact rind
tissues of mandarins. Image processing enabled the development of 3D models of oil
glands, which is associated with progressive rind breakdown in mandarins (Fig. 2.9b).
Rizzolo et al. (2013) reported the differences in mechanical and acoustic characteristics
between two types of air-dried apple rings were due to different subsurface structure as
found with OCT analysis (Fig. 2.9¢). Verboven et al. (2013) used OCT to visualise peel
structural differences between apples and measured structural changes that occur during

storage (Fig. 2.9d).

.

© — @ e =

Figure 2.9 OCT images of (a) sectioned kiwifruit (Loeb and Barton, 2003); (b)
mandarin with moderate degree of RBD (Magwaza et al., 2013); (c) untreated air-
dried apple ring (Rizzolo et al., 2013); and (d) ‘Royal Gala’ apple (Verboven et al.,

2013). Images used with permission. Scale bars = (0.1 mm
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2.5 Conclusion and Opportunity for Research

The green-fleshed ‘Hayward’ kiwifruit is the most dominating cultivar globally
and is the major export cultivar in New Zealand. At commercial harvest there is often
huge inherent variability in fruit quality as a result of preharvest conditions and orchard
manipulation techniques. This leads to a wide range of storage potential when fruit are
stored locally prior to export. The development of oversoft fruit during storage not only
renders the affected fruit unsaleable, but also produces an ethylene environment which
softens fruit that are otherwise long-storing, leading to significant financial losses. The
ability to predict the potential of fruit to develop rapid softening is essential for making

inventory decisions and reducing total loss.

The effects of preharvest conditions on at harvest kiwifruit quality have been
well established. The main driving force has been improving production yield and sugar
content in order to meet consumers’ preferences. Knowledge of how preharvest
conditions influence postharvest performance is also important. The first part of this
thesis will look at the effects of two most common commercial practices on postharvest

quality and storability of kiwifruit.

The development of new technologies such as OCT and NIR spectroscopy
allows rapid and non-destructive measurements of fruit. The application of OCT in
horticultural products is not well studied. This research explores the type of information
that can be captured by OCT using kiwifruit samples, and investigates the potential for

OCT to provide useful information on harvest and postharvest fruit quality.

The application of NIR technology in horticultural products has been well
established. Whilst strong correlation can be found between spectral data and the
chemical properties of the fruit by developing regression methods, there is little success
in predicting physical attributes such as FF quantitatively. Additionally, in most cases
evaluation of NIR focuses on instant estimation of fruit properties; research on the
ability of NIR to predict future quality is scarce. In this thesis an attempt will be made
to investigate the potential of NIR to indicate future FF and storage potential using

qualitative analysis.
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Chapter 3 Effects of preharvest orchard practices kiwifruit quality

3 Effects of preharvest orchard management practices on at-harvest

and post-storage kiwifruit quality

3.1 Introduction

Kiwifruit quality is defined by many factors including fruit size, shape, flavour,
texture and length of storage time (Ferguson and Seal, 2008). The internal quality
attributes of the fruit are more important in determining (re)purchase decisions by
consumers (Buxton, 2005). Flavour of kiwifruit has been associated with fruit DMC at
harvest (Harker et al., 2009; Jordan and Seelye, 2009) and TSS that will develop in ripe
fruit (Jordan et al., 2000; Burdon et al., 2004). Additionally, fruit FF is an important

attribute for determining the postharvest storability of kiwifruit.

Preharvest factors such as growing conditions and orchard management
practices can affect fruit quality at the time of harvest and during subsequent storage.
Good orchard management practices aim to achieve optimal flowering and fruit yield
for the current season, help to obtain desirable fruit quality and reduce chances of poor
yield in the following season (Sale, 1990). However, preharvest factors also contribute
to large inherent variation in fruit quality within and between kiwifruit orchards at the
time of harvest (Woodward, 2007). Such variability contributes to the difficulty for the
industry to accurately predict quality changes during postharvest storage and
distribution (Shewfelt, 1999). While several orchard and climatic factors have been
suggested to influence kiwifruit storage quality, few published data demonstrated these
effects. It is important to understand how at-harvest characteristics such as size,
appearance, taste and texture etc. are imposed (or not) from previous growing
conditions and environmental factors, and what kinds of consequences are likely to

occur during storage.

This chapter aims to elucidate the effects of preharvest orchard practices on at-
harvest and postharvest storage quality of ‘Hayward’ kiwifruit, through the
manipulation of crop load and the application of girdling during cropping. The
individual and the combined effects of both practices will be observed in order to
investigate if these practices can be utilised to affect or improve postharvest fruit quality

and storability for distribution.
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3.2 Materials and Methods

3.2.1 Experimental design

In a commercial orchard located in Te Puna, Bay of Plenty, an experiment was
established in the form of a 2 x 2 matrix of treatments, consisting of 56 ‘Hayward’
kiwifruit female vines with manipulated crop load (industrial average, 36 t/ha and
ultrahigh, 43 t/ha) and the application (or not) of girdling. There were 16 vines each for
low crop load treatment with and without girdling, and 12 vines each for high crop load
treatment with and without girdling. The vines were about 35 years old and grown on a
pergola using opposing females. Hydrogen cyanamide was used at commercial rates to

treat the vines to improve budbreak and reduce the incidence of side flowers.

Crop thinning occurred on 4 — 5 January 2013 (42 — 43 day after full bloom;
DAFB) and trunk girdling occurred on 10 December 2012 (17 DAFB) and 2 February
2013 (71 DAFB). The fruit thinning in this experiment was designed to simulate
conventional fruit thinning practices, in which the smallest fruit and poorly shaped or
‘Hayward’ marked (a shallow sunken line running down the side of the fruit, sometimes
ending in a hook or protuberance caused by a stamen sticking to the fruit and the hook
by an anther sticking) were removed first, and the remaining fruit removed to reach the
final crop load by taking into consideration the local leaf to fruit loading relative to
shoot length. Prior to pollination the vines were flower-thinned to remove any side

flowers. Fruit were then thinned to the final crop load 6 weeks after the last pollination.

Selected vines for each treatment were arranged according to a four-by-four
Latin square (Fig. 3.1) with each treatment represented on each row and column of the
trial as plots, which accounted for in-orchard location effects but avoided unusual plants
caused by e.g. regrafting. Commercial harvest occurred on 15 May 2013, with all
treatments being harvested on the same day. At harvest, 24 trays of 30 mixed-sized fruit
per tray were sampled from each of the four plots for each treatment representing
replicates. The samples were collected by dividing each vine quarter into 9 quadrants
and then randomly sampling a fruit from each quadrant. Fruit were delivered from the
orchards in Te Puke and cured at ambient temperature for two days during transport.
Fruit trays arrived at Massey University on 17 May 2013, and were wrapped in
polyliner films and stored at 20 °C overnight before the commencement of

measurements (day 0).
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Figure 3.1 Design of orchard layout to minimise in-orchard location effects. HCG:
High crop load with girdling. LCG: Low crop load with girdling. HC: High crop
load. LC: Low crop load. Letters represent different rows whereas numbers

represent different columns. Each square represents a single plot.

3.2.2 Fruit quality attributes

The at-harvest (prior to transportation) fruit weight, DMC and TSS of kiwifruit
were randomly collected from 90 fruit of each treatment at the packhouse. The TSS and
FF were also monitored upon arrival at the laboratory (day 0) and during storage (14 —
175 days). Single trays (30 fruit) from each of the 16 plots were assessed destructively
for FF and TSS at 0, 14, 28 and 50 days. Four trays (120 fruit) from each of the 16 plots
were measured at 25-day intervals from 75 to 175 days. During storage, ethylene
concentration in the cool room was monitored using ethylene analysing equipment
(photoacoustic ETD-300, Sense B.V., Nijmegen) and maintained below 5 nL L. Fruit
were equilibrated to ambient temperature (20 °C) over a period of 15 hours prior to fruit

quality measurement.

Fruit weight (g) was measured by using a digital balance (Mettler PG-503S,
Toledo, Switzerland) with 0.001 g accuracy. The DMC (%) was determined using an
oven drying technique by dehydrating a known mass of 2-3 mm thick equatorial fruit
slice at 60-65°C for 24 hours. Data were expressed as percentage of the wet mass. The
FF (N) was measured using an electronic QALink Penetrometer (Willowbank
Electronics Ltd., Napier, New Zealand) fitted with the standard 7.9 mm Magness-Taylor
probe. Two measurements of peak penetrating force were made at two locations (90°
apart) around the equator of the fruit after removal of a thin layer (1 mm) of the fruit

skin. The penetration speed was 20 mm s™' and the puncture depth was 8 mm. The TSS
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(°Brix) was measured using a digital pocket refractometer (PAL-1, Atago, Japan) using
the juice taken from both end caps of the fruit. The proportion of soft fruit during

storage was calculated as the percentage of fruit with FF values below 9.8 N.

3.2.3 Data analysis

The effects of preharvest factors on fruit quality both at harvest (before
transportation), at day O (after arrival at laboratory) and during storage were
investigated. In addition to the measured quality attributes, fruit dry weight (DW),
which is a combination of solid materials (excluding water) within the fruit, was
calculated as fresh weight x DMC. The ratio of at-harvest TSS to DMC (TSS/DMC)
indicates the proportion of solubilised sugar relative to total carbohydrate storage, and
hence can be used as an alternative measure to represent maturity at harvest. This was

also calculated for this study.

Data analysis for comparison of factors and calculation of least significant
differences (LSD) was carried out at the plot level using the general linear model (GLM)
in Minitab® (Version 16.1.0, Minitab Inc., Pennsylvania, USA). Factors considered
included crop load, trunk girdling and the interaction between the two. In addition,
comparisons of incidence of soft fruit (FF < 9.8 N) amongst treatments were carried out

using a Chi-square test in Minitab®.

3.3 Results and Discussion

3.3.1 Effects on at-harvest fruit weight, DMC, DW and TSS/DMC

Low crop load increased fruit weight and DMC at harvest (Table 3.1). This
agrees with the previous findings for ‘Hayward’ (Famiani et al., 2012) and ‘Hort16A”.
(Boyd and Barnett, 2011; Patterson and Currie, 2011). Low crop load also increased at-
harvest DW and TSS/DMC (Table 3.1). Woodward (2007) found similar results for
‘Hayward’ kiwifruit: DW accumulation was negatively correlated with crop load, i.e.
low crop load increased DW. Table 3.1 suggests that low crop load and use of girdling
both resulted in higher ratio of TSS/DMC, i.e. more advanced maturity of ‘Hayward’
kiwifruit. This is in accordance with the study on ‘Hortl16A’ kiwifruit (Boyd and
Barnett, 2011).
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While extended trunk girdling was previously found to improve at-harvest
kiwifruit DMC for ‘Hortl6A’ vines (Boyd and Barnett, 2011), in this study trunk
girdling alone did not have any significant impact on at-harvest DMC and fruit weight
(Table 3.1). However, girdling in combination with low crop load increased at-harvest
fruit weight (116.9 g; Table 3.1). The effect of low crop load on improving at-harvest
fruit weight seemed to be more pronounced without girdling (8.5 g vs. 6.9 g increase).
In addition, trunk girdling increased DW at harvest, suggesting higher total solid
materials within the fruit, despite that the total weight of the fruit seemed to be

unaffected by girdling treatment (Table 3.1).
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3.3.2 Effects on TSS at harvest and during storage

In general, low crop load treatment advanced TSS at day 0 and improved TSS
after storage, with exceptions at 14, 50 and 125 days (Fig. 3.2; Table 3.2). This increase
in TSS somewhat agrees with Famiani et al. (2012) where higher TSS was found in fruit
from low crop load vines after 5 months (approx. 150 days) of storage. The application
of girdling increased TSS at day 0, which corresponds to the advanced fruit maturity
(TSS/DMC) at harvest (Table 3.1). Increase in TSS was also observed later when fruit
were stored for 50, 100, 150 and 175 days once starch to sugar conversion had
completed (Fig. 3.2; Table 3.2). The combined effect of girdling and crop load resulted
in significant differences amongst treatments at day 0, as well as at 100, 150 and 175
days after storage with the low crop load x girdling treatment resulting in the highest

TSS values at those times (Table 3.2).

17

16

15

14

13

12

11

Total Soluble Solids, °Brix

10

0 25 50 75 100 125 150 175

Storage period, d
Figure 3.2 Average TSS (°Brix) during storage (days) as a result of preharvest
manipulation of crop load and girdling. HCG: High crop load with girdling. LCG:

Low crop load with girdling. HC: High crop load. LC: Low crop load. Bars
represent the least significant difference (LSD).
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Chapter 3 Effects of preharvest orchard practices kiwifruit quality

3.3.3 Effects on FF at harvest and during storage

The average FF at day 0 was 70.1 N with no significant difference found
between treatments. For post-storage FF, the effect of crop load on firmness was
insignificant with one exception at 100 days where the FF for high crop load fruit was
lower (Fig. 3.3; Table 3.3). On the contrary, the application of girdling resulted in
reduced kiwifruit FF at 50, 125, 150 and 175 days after storage (Fig. 3.3; Table 3.3). In
particular kiwifruit from girdled vines softened more rapidly especially after 125 days,
and reached the minimum firmness criterion (9.8 N) sooner (Fig. 3.3). This result agrees
with the study by Boyd and Barnett (2011) where ‘Hort16A’ fruit from girdled vines
were softer during storage. The combined effect of girdling and crop load was mostly
insignificant except for at 175 days after storage where the application of girdling

resulted in lower FF of fruit (Table 3.3).
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Figure 3.3 Average FF (N) as a result of preharvest manipulation of crop load and
girdling (A) during the entire storage (days) period and (B) after 100 days of
storage. HCG: High crop load with girdling. LCG: Low crop load with girdling.
HC: High crop load. LC: Low crop load. Dashed lines represent the minimum
standard of FF for exporting purposes. Bars represent the least significant

difference (LSD).
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Chapter 3 Effects of preharvest orchard practices kiwifruit quality

The proportion of soft fruit (FF < 9.8 N) in each population was recorded
throughout the storage period (Fig. 3.4; Table 3.4). Chi-square tests suggest the
proportion of soft fruit varied as a result of trunk girdling and crop load manipulation
throughout storage (Fig. 3.4). The difference in % soft fruit became more prominent
with increasing storage time. At 75 days after storage, the percent of soft fruit in girdled
and non-girdled vines was 2.0% and 2.2%, respectively (Table 3.4; > = 0.102; p =
0.749). After 175 days of storage, the percent of soft fruit from girdled vines was 70%,
much higher than 44.4% found for non-girdled vines (Table 3.4; x~ = 128.735; p <
0.001). The effect of crop load on firmness during storage was inconsistent. When
girdling was not applied, the proportion of soft fruit was higher when accompanied by
low crop load; when girdling was applied, the proportion of soft fruit was very similar

irrespective of crop load (Fig. 3.4; Table 3.4).
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Figure 3.4 Percentage of soft fruit (flesh firmness < 9.8 N) during storage (days) as
a result of manipulated crop load (36 or 43 t/ha) and the application (or not) of
girdling. HCG: High crop load with girdling. LCG: Low crop load with girdling.
HC: High crop load. LC: Low crop load. Asterisks indicate the degree of
significant differences amongst treatments (*, **, or *** being p < 0.05, 0.01 or

0.001) as indicated by Chi-square tests.
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3.3.4 Further discussions

In this study girdling was applied at two time points: late spring (17 DAFB)
when cell division was at peak (0 — 30 DAFB; Hopping, 1976) , and late summer (71
DAFB) during starch accumulation (> 50 DAFB; Beever and Hopkirk, 1990) and the
second stage of rapid cell expansion (58 — 76 DAFB; Hopping, 1976) . Girdling during
late spring has been shown to increase fruit weight by an average of 7 g in ‘Hort16A’
kiwifruit (Patterson and Currie, 2011). In the current study, although a comparable
increase in fruit weight (7.3 g) was obtained for ‘Hayward’ kiwifruit with girdling
application (113.5 g with girdling vs. 106.2 g without) this increase was not statistically
significant at the block level (Table 3.1).

Trunk girdling applied during late summer has been found to achieve increases
in fruit DMC of 0.8 — 1.0% for high-yielding ‘Hortl6A” vines (Patterson and Currie,
2011). In the current study, albeit not statistically different, the average DMC of fruit
with girdling treatment (18.9%) was 0.3% higher compared to control (18.6%) in DMC
for ‘Hayward’. A possible explanation could be an inhibitory effect of girdling when
applied during cell division: Currie (1997) observed smaller fruit weight, dry weight
and DMC with cane girdling applied 14 DAFB (similar to the first girdle in this study)
compared to girdling applied at other dates (7, 28, 42 and 56 DAFB). The same study
also found no increase in DMC compared to control when girdling was applied earlier
than 28 DAFB. It was proposed that the period during cell division or seed formation (0
— 30 DAFB) might be a crucial period in kiwifruit growth and girdling during this
period could limit fruit growth potential due to increased vegetative growth which emits
an inhibitory growth signal. This inhibitory effect might have interfered with the
positive impact of the second girdle on fruit weight and DMC, as observed in the

present study (Table 3.1).

The effect of crop load on fruit DMC, DW and TSS (Tables 3.1 and 3.2) may
have resulted from combined effects of additional sugar accumulation and enhanced
fruit expansion. The summer period of December and January is considered the peak
period for fruit growth (Sale, 1990). Hence, orchard practices applied at this time are
critical in controlling fruit growth. In this experiment fruit thinning was carried out in
January, when fruit expansion occurs via expansion of parenchyma cell (Ezura and

Hiwasa-Tanase, 2010). The magnitude of cell enlargement could be influenced by water
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retention properties of the cell (Coombe, 1976). Ezura and Hiwasa-Tanase (2010)
suggested that accumulation of sugar in parenchyma cells leads to an increase in water
flow due to osmotic pressure, thereby resulting in overall fruit expansion. Hence fruit
grown on low crop load vines were able to assimilate more carbohydrate and water due
to reduced competition with other fruit on the same vine, assisting in cell enlargement
and resulting in larger fruit size (Table 3.1). While low crop load improved assimilate
accumulation in the fruit, it should be considered that the increase in DMC, DW and
fruit weight should be sufficient to justify the lower crop load, as the reduction of total
fruit number will potentially compromise orchard profitability because of reduced yield

(Patterson and Currie, 2011).

Famiani et al. (2012) reported that high crop load reduced FF of kiwifruit after
approx. 150 days of storage when fruit were harvested (at different dates) based on a
standard minimum TSS maturity. This suggests that high crop load could lead to a
higher rate of softening in storage, given the same initial maturity. In the current study,
however, all fruit were harvested on the same day; the initial physiological maturity of
fruit varied, with fruit from high crop load having less advanced maturity (lower at-
harvest TSS and TSS/DMC; Table 3.1 and 3.2). It is possible that the effect of high crop
load accelerating softening during storage, as demonstrated in Famiani et al. (2012),
could have been masked by this heterogeneity in maturity stages. However, an
important finding based on the current study is that, the effect of crop load on kiwifruit
quality may be very different when observations were made at different storage points.
This somewhat explains the discrepancy in previous findings where experiments were

often conducted at a single storage point and this point varied between studies.

3.4 Conclusions

This chapter demonstrates that preharvest orchard management practices altered
the growing conditions of kiwifruit vines and had considerable effects on at-harvest and
postharvest quality and storability of ‘Hayward’ kiwifruit. While low crop load
increased fruit weight, DMC and DW, and resulted in advanced maturation of fruit at
harvest, the use of girdling did not seem to have any impact on at-harvest fruit weight
and DMC. Both low crop load and trunk girdling improved TSS at day 0 and during
storage. No significant crop load effect was observed on fruit softening or FF. Trunk

girdling was found to hasten fruit softening and resulted in lower FF and a higher
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proportion of undesirable soft fruit during later stages of coolstorage. Hence careful
consideration should take place when applying trunk girdling to improve fruit DMC
and/or TSS as this technique may compromise the storage potential of the fruit. When
low crop load is selected to improve fruit weight, DMC and/or TSS, it should be
justified that the improvement is sufficient to compensate the reduction in fruit yield.
The effects of growing conditions during fruit development in the orchard can be
captured by assessing fruit physiology at the time of harvest, and will serve as important

information for prediction of future fruit quality and storability.
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Chapter 4 Characterising near skin cellular structures using OCT

4 Characterising kiwifruit near skin cellular structures using optical

coherence tomography

Acknowledgement:
Material from this chapter is included in the following papers:

Li, M., Verboven, P., Buchsbaum, A., Cantre, D., Nicolai, B., Heyes, J., Mowat, A.,
East, A., 2015. Characterising kiwifruit (Actinidia sp.) near skin cellular structures

using optical coherence tomography. Postharvest Biology and Technology 110, 247-256.

Li, M., East, A.R., Heyes, J.A., Verboven, P., Nicolai, B., Buchsbaum, A., 2016.
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4.1 Introduction

Preharvest factors such as growing conditions and orchard management
practices can affect macrostructural fruit quality at the time of harvest and during
storage (Chapter 3). The effects of preharvest factors have also been related to changes
in microstructural cellular properties of fruit. Currie (1997) found that shoot-girdling
with high leaf:fruit ratios increased cell expansion in the outer pericarp tissue of
kiwifruit and hence increased fruit weight at harvest. The same authors also suggested
that crop load could affect fruit via cell division; low crop load increased the diameter
of both small and large cells in the near surface tissue of the outer pericarp. Changes in
cellular structure have potential consequences for postharvest fruit quality and

storability (Nardozza et al., 2011).

The OCT imaging is a novel technique capable of 3D characterisation of
subsurface cellular structures of an object (Section 2.3.1). Previous applications of OCT
on other horticultural products (Section 2.3.3) demonstrated the potential for this
technology to also provide useful information for intact kiwifruit samples. Therefore,
the objective of this work was to visualise and characterise the sub-surface cellular
structures of five commercial kiwifruit cultivars non-destructively, and determine if
differences which may be influenced by cultivar or growing conditions are detectable.

The OCT technique was used to produce 3D images of the layers of structures
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immediately underlying kiwifruit skin, allowing subsequent analysis on the
microstructures of these structures. The combined results investigate if OCT shows
promise as a non-destructive assessment tool for kiwifruit and evaluate the potential

applications of this technique to measure kiwifruit quality.

4.2 Materials and Methods
4.2.1 Plant material and treatment manipulation

A total of 90 kiwifruit from five commercial cultivars were sourced: yellow-
fleshed cultivars (all A. chinensis) ‘G3’ (Zespri® Sun Gold), ‘G9’ (Zespri® Charm) and
‘Hort16A’ (Zespri® Gold), and green-fleshed cultivars ‘G14” (A. deliciosa x chinensis,
Zespri® Sweet Green) and ‘Hayward’ (A. deliciosa). These included 10 fruit each of
‘G9’, ‘Hortl6A’ and ‘G14’, 20 fruit of ‘G3’ (10 fruit plus 5 fruit each of two additional
grower lines) and 40 fruit of ‘Hayward’ (10 fruit each of four treatments from the
growing condition manipulation trial; Chapter 3). All of the 90 samples were obtained
in New Zealand and delivered via airfreight to RECENDT, Linz, Austria, in June 2013

prior to OCT image capture and fruit quality measurement.
4.2.2 Fruit quality measurement

Fruit flesh firmness (FF) and total soluble solids (TSS) content were assessed
using the methodologies described in Section 3.2.2. Means were obtained from 5 fruit
of each cultivar for ‘G9’, ‘G14’ and ‘Hort16A’, and 5 of each grower line/treatment for
‘G3> and ‘Hayward’ respectively. At the time of measurement all fruit could be
considered firm and ripe given that high TSS development had been achieved and FF
was within 10 — 20 N (Table 4.1).
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Table 4.1 Condition of kiwifruit from five commercial cultivars at time of OCT
measurement. Values represent mean and standard deviation (in brackets). Means
were averaged from 5 fruit per cultivar for ‘G9’°, ‘G14’ and ‘Hort16A’, 15 for ‘G3’
and 20 for ‘Hayward. Means denoted with different letters are different with

statistical significance (a = 0.05).

Kiwifruit Cultivar

Fruit Quality
G3 G9 Hort16A Gl4 Hayward
Total Soluble 18.49? 18.56* 19.36? 17.64% 14.69°
Solids, % (1.53) (2.26) (1.15) (1.45) (0.66)
10.29°¢ 10.49°¢ 12.15% 16.46% 19.50*
Firmness, N
(2.55) (2.74) (2.06) (1.76) (2.74)

4.2.3 OCT instrumentation and image capture

The OCT instrument was a commercially-available spectral domain OCT (SD-
OCT) system (Telesto, Thorlabs, Liibeck, Germany) operating at 1325 nm (Fig. 2.8). A
wavelength of 1325 nm was chosen by the need to balance against the transparency and
scattering properties of the kiwifruit skin. OCT systems operating at lower wavelength
(e.g. 800 nm) do offer higher axial resolution in many cases; however, the light at 800
nm does not penetrate under the kiwifruit skin. OCT systems operating at higher
wavelength are available but do not have sufficient axial resolution. Therefore using

1325 nm is a compromise between penetration depth and axial resolution.

For the OCT measurements of the kiwifruit no prior sample preparation was
required. To capture an image, the basic steps include: focusing the laser onto the
surface of the fruit; choosing a relatively flat surface on the fruit skin and then capturing
the raw image. Single 3D images (3 mm (L) x 3 mm (W) X 1.498 mm (D)) were
obtained for each fruit. After raw image capture, the depths of images were corrected
with Avizo® (Version 7.1, Visualization Sciences Group, France) to reflect the sample
refractive index. The choice of refractive index affects the depth scale of the final
estimated values (i.e. volume and size) and a single value is applied across an entire
data image. For this work, the refractive index was estimated from the average

measured TSS of the fruit. This is because the error from applying an average across the
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entire data set was small given that the difference in depths estimated was
approximately 0.006 mm between a medium containing 14% soluble solids (similar to
‘Hayward’; Table 4.1) and one containing 20% soluble solids (similar to ‘Hort16A’;
Table 4.1). Therefore, a refractive index of 1.36 (Anonymous, 2013) corresponding to

the average total soluble solids (17.75%) for all five cultivars was applied.
4.2.4 Image processing

Raw OCT images displayed surface and sub-surface structures of the skin of fruit
but some image artefacts were also observed (Fig. 4.1 and 4.2). The affected volumes
were estimated by manual selection of the shadows cast by lenticels and trichomes on
the top and bottom slice, followed by interpolation across all slices in the vertical
direction (Fig. 4.3). The aim was to identify and select only large parenchyma cells
from the background tissue in order to enable further analysis of these objects. Image
®

processing using both automated and manual methods was carried out using Avizo

(Version 7.1, Visualization Sciences Group, France; Fig. 4.4).

The raw image was first treated with a smoothing filter to reduce effects of
artefacts (Fig. 4.4a). Box-filtering was carried out by averaging 27 voxels in the
enclosing 3 x 3 x 3 box of volume (Table 4.2), without altering the information

contained in the region.

Figure 4.1 Example of a 2D OCT raw image for ‘G14’ kiwifruit: (a) the periderm
layer; (b) a layer of homogeneous small cells; (c) large cells (black voids); (d)
shadowing effects caused by lenticels; (e) shadowing effect caused by trichomes; (f)

direct reflection of light back into the sensor from the surface. Bar =1 mm.
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Figure 4.2 Example of 2D OCT images showing cultivar differences: (a) ‘G3’, (b)
‘G9’, (¢) ‘Hortl16A’, (d) ‘G14’ and (e) ‘Hayward’. Bar =1 mm.
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Figure 4.3 Visualisation of shadowing effects caused by lenticels and trichomes
throughout the tissue underneath the surface layer in an example of: a) ‘G3’, b)

‘G9’, ¢) ‘Hort16A’, d) ‘G14’ and e) ‘Hayward’ kiwifruit. Bar = 1 mm.
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Figure 4.4 OCT image processing techniques presented in 2D cross-sectional
images, for the identification of large parenchyma cells of kiwifruit skin using
Avizo® in an example (‘G14°): (a) smoothing; (b) interactive threshold
binarisation; (c) watershed separation; (d) labelling; (e) filtering; (f) closing and (g)
manually selected large cells. The red rectangle in (a) indicates the region of

interest.
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To select the large parenchyma cells, both automated image segmentation and
manual selection methods were developed. For the automated segmentation method,
firstly an interactive threshold binarisation was used (Fig. 4.4b). In this technique, the 8-
bit greyscale raw image was transformed into a binary image, which is a 16-bit label
image with only interior and exterior materials, enabling the segmentation of objects of
interest from the background. The lower threshold was set as the lowest grey level value
of the image, and the upper threshold was set at a value where there was the best
contrast between dark cells and the lighter background tissue. Objects with an initial

grey level value between these two thresholds were selected.

Table 4.2 Procedures and settings for automated OCT image processing of

kiwifruit using Avizo® (Version 7.1, Visualization Sciences Group, France).

Procedure Parameter Setting
Smoothing Volume of average 3 x 3x 3 voxels
Threshold Binarisation Greyscale 55-75
Separation Contrast factor 1
Vertical depth 0.43 — 0.98 mm
Filtering Maximum length >0.20 mm
Equivalent diameter <0.25 mm
) ) o 2 voxels added to 6
Closing Kernel size of dilation

neighbouring voxels

After segmentation, many of the boundaries between selected cells were merged
and not clear. To separate them, a watershed algorithm was applied to detect cell
boundaries (Fig. 4.4c). This algorithm simulates ‘flooding’ using different coloured
water (labels) from a series of marker regions in a 3D image. The efficiency of
separation was maximised by adjusting the contrast factor, which determines the size of
the seed areas for flooding (Table 4.2). Separated cells were then displayed using a 16-
colour cyclic colour-map so that the cells in close proximity were labelled in a different

hue (Fig. 4.4d).
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Comparing the labelled objects to the black voids in the raw image, it is clear that
unwanted objects which had the same grey level values as the large cells were also
selected. Therefore, filtering of mislabelled objects was conducted (Fig. 4.4e). This
included the screening of three different types of undesirable objects using different
image processing techniques (Table 4.2). Firstly, the vertical distance of the object from
the surface of the skin was restricted to 0.13 — 0.68 mm deep (0.43 — 0.98 mm from the
top of the images as the image depth covers a region above the skin surface) for all the
images. Secondly, a threshold for the minimum value for maximum cell length was
chosen. In A. deliciosa large cells start to appear beneath the hypodermis (approx. 0.10
mm from the skin) with a maximum length more than 0.20 mm and become more
prevalent at 0.30 — 0.40 mm from the skin with maximum length of 0.25 — 0.30 mm
(Hallett and Sutherland, 2005); in A. chinensis large cells start to appear 0.25 mm from
the skin and further extend to the bulk of the outer pericarp, with a mix of up to and
more than 0.50 mm maximum diameter (Hallett and Sutherland, 2005). Since the
maximum length of small cells within the same region was 0.12 mm for A. deliciosa
and 0.10 mm for A. chinensis, a minimum length of 0.20 mm was selected for large
cells. Finally a maximum equivalent diameter (De) was set as 0.25 mm, based on the
results of manual segmentation method (Section 4.3.2). These ensured that most of the
under- or over-sized objects other than the large parenchyma cell were removed (Fig.

4.4e).

The final step of the protocol was to apply a ‘closing’ of the assessed region (Fig.
4.41). This technique performs a dilation of the selected cells, followed by an erosion.
This helped to fill up small holes inside the cells and ensure the cell boundaries are
smoother. The kernel size of dilation was set as 2 voxels (Table 4.2) so that separated

cells were not reconnected and additional volume was not added to the large cells.

Quantitative analysis was conducted on the processed images of all fruit samples
using the automated method to evaluate the number and describe the characteristics of
the large cells (Table 4.3). The image processing time using the automated segmentation
method was 5 — 10 minutes for each image and the number of cells that could be
identified was unconstrained. The volume fraction calculation of large cells was
conducted on the basis of the volume of the sample that could be analysed after removal
of image artefacts (Fig. 4.3). The effect of cultivar was analysed using the GLM in

Minitab® to examine the differences amongst the means. A two-way ANOVA was
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conducted within ‘Hayward’ samples using Minitab®, in order to study the effects of

crop load and girdling on the cellular structure of the fruit.

Table 4.3 Microstructural parameters of large parenchyma cells of kiwifruit and

description used to quantify these parameters.

Microstructural . .

Unit  Description
parameters
Total volume mm3 Total volume of all the objects
Average volume mm3 Volume of an individual object
Total surface area mmz Total surface area of all the objects
Average surface area mmz Surface area of an individual object

The feret diameter which measures the distance
Maximum length mm between two outermost tangential lines of the
object projected to a plane

The diameter of a spherical object of equivalent

Equivalent diameter, De . .
quivaient Giameter, fm volume as the irregularly-shaped object

The number of objects within the assessed

No. of cells - .
region
. 3 The number of objects within 1 mm? of
Density mm
assessed volume
.. The ratio of the surface area of a sphere of the
Sphericity -

same volume to the surface area of the object

The manual segmentation (Fig. 4.4g) method identified individual cell cross-
sections in three orthogonal planes, yielding a ‘skeleton’ of the structure of the cell. A
‘wrapping’ method was followed which enfolds the selected pixels into a 3D volume
based on scattered data interpolation with a radial basis (Wevers et al., 2012). This
method was carried out on one kiwifruit sample (‘G14°), as it was used as a reference to
validate the automated method. The quantitative analysis results from the manual

method were compared to the automated method for the same fruit sample.
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4.3 Results and Discussion

4.3.1 Features of raw image

The complete data set is a 3D image (Fig. 4.5) consisting of 512 two-
dimensional (2D) vertical slices at 5.9 pm spacing. However, for the purpose of ease of
demonstration, 2D slices of the data set are presented in this chapter. Several layers of
sub-surface structures were observed in the raw images (Fig. 4.1 and 4.2). These
structures include: (a) the suberised periderm layer (the ‘skin’), (b) a layer of
homogeneous small cells, intermingling with (c) elongated black voids (large cells)
located in the sub-surface region. In addition, some image artefacts are present as a
result of: (d) shadowing effect caused by lenticels observed as grey spaces throughout
the tissue underneath without detailed texture boundaries, (e) shadowing effects caused
by trichomes observed as “black streaks” underneath the hair throughout the tissue, and
(f) direct reflection of light back into the sensor from the surface observed as “white
streaks” in the vertical direction (Fig. 4.1). Lenticels were a common issue for all the
cultivars, whereas trichomes were a significant issue for the hairy green-fleshed ‘G14’
(Fig. 4.2d) and ‘Hayward’ (Fig. 4.2e). This can be more clearly observed in Fig. 4.3
where shadows of lenticels and trichomes were manually selected on cross-sectional
slices and then visualised in 3D images. Details of any cellular structures within the
shadowed volumes were unable to be observed or extracted. The fraction of volume
being affected by these artefacts of the assessed image region varied between cultivars,
with 9-13% losses for all three yellow cultivars (‘G3°, ‘G9’ and ‘Hort16A’; Fig. 4.3a-c)
and 25-29% for the hairy green cultivars (‘G14’ and ‘Hayward’; Fig. 4.3d-e).

Visualisation of the cellular structures immediately underneath the skin (Fig.
4.2) showed that the large cells were observed to be less prevalent and smaller in
volume in ‘G9’ (Fig. 4.2b) and ‘Hort16A’ (Fig. 4.2c) but more prevalent and larger in
volume in ‘G3’ (Fig. 4.2a), ‘G14’ (Fig. 4.2d) and ‘Hayward’ (Fig. 4.2¢). In yellow-
fleshed cultivars (‘G3°, G9” and ‘Hort16A”) the large cells were commonly observed to
be flat and elongated and further away from the skin surface, whereas in green-fleshed
cultivars (‘G14° and ‘Hayward’) they were observed to be more spherical and closer to

the periderm layer.
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Figure 4.5 Surface view of large cells presented in 3D image in an example (‘G14°)
using a) automated method and b) manual method. The grey regions in the image
represent the image artefacts as a result of lenticels and trichomes which were

removed from analysis as part of image processing. Bar = 1 mm.

66



Chapter 4 Characterising near skin cellular structures using OCT

4.3.2 Comparison of image segmentation methods

Both manual and automated segmentation methods identified large cells from
the background tissue and enabled further analysis of these cells. For manual method,

2 cross-sectional

there was found to be approximately 25 large cells per mm
(perpendicular to the skin surface) area and 60 large cells per mm?® volume of tissue,
with these cells occupying around 22.4% of the total outer pericarp tissue (Table 4.4).
For the automated method, large cell density was estimated at 38 per mm? cross-
sectional area and 114 per mm?, with a 28.9% volume fraction of cells in the outer
pericarp tissue (Table 4.4). Cell equivalent diameter (De) ranged from 0.10 mm to 0.25
mm and 0.05 mm to 0.35 using the manual and automated methods respectively (Fig.

4.6), with both methods finding cells with D, between 0.10 — 0.15 mm being most

prevalent.

The observed difference in cross-sectional density is most likely because there is
a maximum threshold of the number of objects being selected using manual method; for
an 8-bit greyscale image, this number equals to 255 (2% — 1), although more than 400
cells could be observed. There is no such limitation when using the automated method
since the maximum threshold is large enough for a 16-bit image after binarisation (2'® —
1). Apart from this observed difference, other microstructural characteristics were
similar between the two methods, therefore further quantitative analysis and
comparisons of cultivars were carried out using the automated method for the ease of

computation.

Table 4.4 Microstructural properties of large cells in the outer pericarp of ‘G14’
kiwifruit obtained using automated and manual methods for the same sample (n =

1), and using automated method for all samples of ‘G14’ (n = 10).

Imaging Volume Maximum De Density
Method Fraction (%) Length (mm) (mm) (no. /mm?)
Manual 22.4 0.35 0.17 25
Automated 28.9 0.32 0.14 38
Automated
24.8 —33.8 0.31-0.33 0.14-0.15 35-40
(n=10)
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Figure 4.6 Size distribution of large cells expressed as cumulative probability of
number of cells as a function of equivalent diameter. Values were obtained from

the same fruit evaluated by both manual and automated segmentation methods.
4.3.3 Charaterisation of large cells

Processing of the OCT images enabled quantification of the number, size and
shape of the large cells observed. The average maximum cell length (maximum feret
diameter, Table 4.3) for ‘Hayward’ ranged between 0.31 — 0.34 mm. The large cells
found using the automated method were irregular shaped (Fig. 4.5a) and this is a result
of image processing and could have contributed to the differences found between
manual and automated methods. Ellipsoids could be fitted to the cells to be more
realistic (Mebatsion et al., 2009). However, for the purpose of this work to compare
between cultivars, this tedious step was not taken. The large cell density for ‘Hayward’
ranged between 54 — 126 cells per mm?® volume of tissue, with these cells occupying 17
— 35% of the analysed near skin tissue, disregarding the proportion of tissue affected by

image artefacts.
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4.3.4 Differences between cultivars

Automated analysis of OCT images was able to differentiate the microstructures
amongst five kiwifruit cultivars with statistical significance (Table 4.5). Overall, ‘G14’
had the highest total large cell volume and total surface area of large cells compared to
the other cultivars. ‘G3’ and ‘Hayward’ had higher total volume of large cells than ‘G9’
and ‘Hort16A’. For each individual large cell, ‘G3’, ‘G14’ and ‘Hayward’ had higher
average large cell volume and equivalent diameter than that of ‘G9” and ‘Hort16A’. For
those cultivars with larger individual cells, ‘G3” had higher maximum large cell length
in comparison to ‘G14’ and ‘Hayward’, suggesting that the large cells of ‘G3’ are more
elongated as observed in Fig. 4.2a. This is also evidenced by a higher average large cell
surface area in ‘G3’ than that of other cultivars. ‘G14’ and ‘G9’ had higher total large
cell number compared to other cultivars but ‘G14’ had much higher total large cell
surface areas than ‘G9’ because the individual cells of ‘G14’ are larger. In contrast,
‘Hort16A’ had the lowest total large cell volume and number, and the smallest
individual maximum large cell length and average large cell surface area. The volume
fraction of large cells was found to be lower for yellow-fleshed cultivars, ‘G9’ and
‘Hort16A’ than green-fleshed cultivars, ‘G14’ and ‘Hayward’. The yellow-fleshed ‘G3’
had lower fraction of large cells than ‘G14’ but not ‘Hayward’ (Table 4.5).

The cell size distribution curves for the five commercial cultivars demonstrate
that the equivalent diameter (De; Table 4.3) of large cells ranged between 0.05 — 0.30
mm (Fig. 4.7). For ‘Hort16A’ all the large cells had a De smaller than 0.25 mm. For the
other cultivars, a small proportion of large cells were found to have a De larger than
0.25 mm. For ‘G9’ and ‘Hort16A’, the large cells with De between 0.05 — 0.20 mm
contributed to almost 90% of the total volume of large cells (Fig. 4.7a); and those with
De more than 0.20 mm contributed to only less than 10% of the total volume. For ‘G3’,
‘G14’ and ‘Hayward’, the large cells with De between 0.05 — 0.20 mm contributed to
about 60% of the total volume of large cells and those with De more than 0.20 mm
contributed to up to 40% of the total volume (Fig. 4.7a). Consequently, the significant
difference observed in cumulative large cell volumes (Fig. 4.7b) was a result of the
added volumes from the large cells sized with De between 0.20 — 0.30 mm.). The
difference in total volume of large cells between ‘G9’ and ‘G14’ was a result of the lack

of large cells above 0.2 mm in ‘G9’ (Fig. 4.7b).
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Figure 4.7 Size distribution of large cells expressed as a) cumulative volume
fraction of large cells; and b) cumulative volume of large cells, as a function of cell
equivalent diameter. Sample volumes analysed were immediately underlying the
skin (0.13 — 0.68 mm from the surface of the skin) of commercial kiwifruit
cultivars. Values were averaged from 10 fruit per cultivar for ‘G9’, ‘G14° and

‘Hort16A’, 20 for ‘G3’ and 40 for ‘Hayward’.
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4.3.5 Differences within ‘Hayward’ cultivar

Both girdling and crop load significantly affected fruit quality at the time of
harvest (Table 3.1). Despite the macro-scale effects of these treatments observed, the
internal cellular structures of fruit from the subsamples showed minimal difference
(Table 4.6). Neither girdling nor the interaction between girdling and crop load was
found to affect microstructural changes of large cells in ‘Hayward’, despite that the
latter increased fruit weight at harvest (Table 3.1), and that previous results showed
girdling with high leaf:fruit ratios increased large cell size (Currie, 1997). It is possible
that, due to the limitation that the assessed images only represented the cellular layers
near to the surface and had a limited resolution, any significant changes to the bulk of

the outer pericarp were not reflected or only reflected to a limited extent.

Crop load was found to have a significant effect on maximum large cell length
(Table 4.6). Kiwifruit harvested from low crop load vines had larger maximum length
for large cells (0.33 mm), in comparison to kiwifruit from high crop load vines (0.32
mm). This agrees with Currie (1997) where low crop load resulted in increased large
cell diameter. It has been suggested that accumulation of sugar in parenchyma cells
leads to an increase in water flow due to osmotic pressure, thereby resulting in cell and

overall fruit expansion (Ezura and Hiwasa-Tanase, 2010).

Table 4.6 Significance table showing p-values (a = 0.05) for the effects of crop load
and girdling on the microstructure description of ‘Hayward’ Kiwifruit outer

pericarp large cells at eating ripe condition.

p-value
Microstructures Unit g(r)(;g Girdling gﬁ)é)l i];l;ad x
Total volume mm’ 0.07 0.82 0.39
Average volume mm3 0.67 0.81 0.70
Total surface area mm2 0.06 0.73 0.29
Average surface area mm2 0.60 0.86 0.96
Maximum length mm 0.03 0.49 0.42
Equivalent diameter mm 0.84 0.78 0.54
No. of cells - 0.14 0.67 0.33
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4.3.6 Differences between batches of ‘G3’ kiwifruit

Between three grower lines of ‘G3’°, there were no detectable differences
observed in the microstructure of the large cells (data not shown), indicating that either
the cellular structural differences between growers were minimal, or the analysis based
on OCT images was not sensitive enough to pick up any differences caused by orchard

location (i.e. grower lines in this case).
4.3.7 Further discussions

In general, the manual segmentation method was less affected by image artefacts
as only ovoid smooth-surfaced cells were selected (Fig. 4.5b). Hence it provided a good
reference for understanding the general microstructural features of the large cells (e.g.
maximum length and D.). However, this method is highly labour-intensive with 5 — 6
hours of processing time per image, and the maximum number of objects was limited to
255 (Section 4.3.2). As a result subsequent analysis based on these cells is compromised
if these cells were not representative of the whole population. The density and volume

of cells within the image region could also have been underestimated.

The automated segmentation method was able to identify cells more efficiently
with 5 — 10 minutes of processing time per image; and it was not constrained to the
number of cells that could be identified. The size distribution and total volume of large
cells found was comparable to the results obtained using manual method (Table 4.4).
Despite the fact that some undesirable objects remained selected due to the ‘bleeding’ of
cell surface boundaries as a result of image artefacts, the automated method has benefits
of rapid processing and computation of large sets of images, and the minimisation of

human error and bias during selection of large cells.

A primary limitation of the images captured is that the depth of penetration of
the data was estimated to be approximately 1 mm underneath the skin even though the
outer pericarp of kiwifruit could be a 10 mm thick region. There is no published
evidence as to whether the distribution of small and large cells in the analysed region is
the same as the majority of the outer pericarp. Therefore the data probably represents
only the sub-surface layers of the outer pericarp of the fruit and the regions observable
in the images may not necessarily represent the outer pericarp as a whole. Despite these

limitations there is still potential for this technology to provide potentially useful
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information on near surface cell size and structure non-destructively. For this reason this
chapter continues to discuss the differences observed between cultivars and to compare
with known data for the pericarp due to the lack of other quantitative sub-surface data,

despite that these may not be directly comparable due to the limitation in image depth.

For A. chinensis cultivars stone cells have been previously reported to be
scattered amongst small parenchyma cells in the region approximately 0.10 — 0.25 mm
(for ‘Hort16A’; Hallett and Sutherland, 2005) from the skin slightly above the bulk of
the outer pericarp where large cells start to show prevalence, and may further extend to
deeper region (0.60 — 0.70 mm from the skin) for some cultivars. The images, however,
showed no obvious differentiation between the observed large voids and the stone cells
approximately in the assessed image region. This could be another weakness of the
technique as it is possible that some of the near-surface layers of large cells observed in
yellow-fleshed cultivars, especially ‘G3’, could have been stone cells. While
acknowledging that the technique is unable to potentially differentiate between large
cells and stone cells, discussions in this chapter will be under the assumption that all

large objects observed are large cells.

The penetration and the resolution of the images were compared with previous
studies on other horticultural products. When operating at the same wavelength (1325
nm), the depth resolution (5.9 um) and the penetration depth (0.68 mm), to which
cellular discrimination was possible, were comparable to those in apples (5 wum and 0.5
mm, respectively; Verboven et al., 2013) but the resolution was lower compared to
those in onions (I pm and 0.5 mm, respectively; Meglinski et al., 2010) . The
penetration depth was lower but the depth resolution was better than those in mandarins
(7 pm and 1.1 mm, respectively; Magwaza et al., 2013) where a shorter wavelength
(930 nm) was used. The common problems identified across the studies included the
choice between good penetration depth and high resolution, and the compromise in data
processing speed when manual selection was used instead of automated method for

better accuracy or vice versa.

The shape and total volume of large cells may affect relative porosity of the
tissue. In this study, the total volume of large parenchyma cells was estimated to be high
in ‘G3’ and low in ‘Hort16A’ and ‘G9’ (Table 4.5). Cantre et al. (2014) found that the
relative porosity was low in ‘G3’ and high in ‘G9’ and ‘Hortl6A’ for fruit obtained
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from the same growers sampled at the same time as the current study. However, ‘G14’
and ‘Hayward’ were found to have higher total volume of large cells and also a high
porosity. In these two cultivars the observed large cells were most likely to be actual
large cells and therefore they were more spherical (smaller maximum large cell length,
Table 4.5), whilst in ‘G3” the observed large cells were possibly a mixture of more
flattened stone cells and some of the actual large cells. More spherical cells may cause
more intercellular spaces as cellular packing may be less dense in comparison to flat
cells (Mebatsion et al., 2009). It might be the case that the large cells were stacked less
densely against one another, resulting in a more porous near skin tissue compared to
‘G3’. This could also be evidenced from the results that ‘G14’ and ‘Hayward’ had
higher pore connectivity and lower pore fragmentation in comparison to ‘G3’ (Cantre et
al., 2014). However, the packing of small cells around the larger cells may also
influence porosity. Large number of small cells occupying the spaces around the large
cells could in fact reduce porosity. This might explain why ‘Hayward’ had lower
porosity in comparison to ‘G9’ and ‘Hortl6A’(Cantre et al.,, 2014), despite that
‘Hayward’ had more spherical large cells (Table 4.5). There seems to be no relationship
between the porosity of fruit tissue and the total number of large cells. For instance,
‘G9” was found to have higher total number of large cells but also higher relative
porosity than ‘G3’, due to ‘G9’ having smaller individual large cells and thus smaller

total volume of large cells.

The use of OCT as a tool is still in its infancy and there are required
improvements of the methods for it to become a ubiquitous tool for assessing
horticultural produce. For instance, increased signal-to-noise ratio and improved
resolution are necessary to allow applicability to a wider range of horticultural produce
for quantification purposes. Better depth penetration will be required to provide more
information for understanding microstructural or cultivar differences. Nonetheless, the
information obtained in this study still suggests that OCT has potential as a non-
destructive tool to provide information on the near-surface cellular structures of
horticultural products with thin cuticles, especially to detect the differences at the cell
level between crop varieties and cultivars. The technology may be used to monitor the
3D cellular changes in a crop during plant development, at the time of harvest and
during storage. Such information would be useful in understanding the physiology of

the crop in relation to internal quality changes and the variability in storage potential.
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With improved speed of data capture and analysis it can be used as a fast screening tool
during plant breeding, should the nature of the large cells be associated with an

important attribute.

4.4 Conclusions

OCT has potential as a non-destructive technique to characterise microstructure
of large parenchyma cells immediately underlying kiwifruit skin. The details of the skin
surface, the periderm layer, and the presence of large cells and their structures in the
near skin tissue can be observed from raw images but there was no clear differentiation
between large cells and stone cells. The data acquired were limited to a penetration
depth of up to 1 mm underneath the skin and might not represent the outer pericarp as a
whole. The developed image processing techniques enabled identification and
characterisation of large parenchyma cells in the near skin tissue of five commercial
kiwifruit cultivars in an efficient manner. Green-fleshed ‘G14’ and ‘Hayward’ were
found to have higher volume fraction of large cells than yellow-fleshed ‘G3’, ‘G9’ and
‘Hort16A’. The size and density of large cells were greater in ‘G3’, ‘G14’ and
‘Hayward’ than those of ‘G9’ and ‘Hort16A’. Girdling did not affect the microstructure
of large cells whereas low crop load increased maximum cell length. The ability to
describe large cell structures non-destructively may be useful for cultivar or batch
selection. However, improvement in the penetration depth is required to provide more

comprehensive information and better understanding on the observed differences.
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S Quantitative prediction of post storage ‘Hayward’ Kiwifruit

attributes using at harvest Vis-NIR spectroscopy
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prediction of post storage ‘Hayward’ kiwifruit attributes using at harvest Vis-NIR
spectroscopy. Journal of Food Engineering, 202, 46-55.

5.1 Introduction

During ripening kiwifruit undergo two major changes: the decrease of flesh
firmness (FF) and the conversion of starch to sugar (as indicated by TSS). The TSS at
ripening is strongly associated with sweetness, eating quality, consumer acceptance and
repeat purchases of kiwifruit (Crisosto et al., 2012a). The FF is an important ripening
index for indicating the postharvest storability of kiwifruit (Beever and Hopkirk, 1990).
In New Zealand, a minimum standard of 9.8 N for FF is required to ensure reasonable
storage life remains to enable shipping to market (Hopkirk et al., 1996). Traditionally,
the assessment of TSS and FF is destructive and hence unable to be used for monitoring
large volumes of fruit. Development of a non-destructive technique may allow

prediction of fruit quality and enable strategic marketing of fruit.

Vis-NIR spectroscopic techniques have been used as non-destructive and rapid
tools to evaluate various quality attributes of fruits and vegetable (Williams et al., 2006;
Jha, 2010). Previous attempts of using NIR spectroscopy to provide instant estimation
of at-harvest TSS have been moderately successful. Good predictions have been
achieved by McGlone and Kawano (1998), Osborne et al. (1998), Osborne et al. (1999),
Schaare and Fraser (2000), Moghimi et al. (2010), Lee et al. (2012) and Chen and Han
(2012). For post-storage TSS, prediction was usually based on estimates of at-harvest
attributes generated using predictive models calibrated with that quality data measured.
For instance, McGlone et al. (2002b) predicted post-storage TSS of ‘Hayward’ kiwifruit
based on a predictive model calibrated with at-harvest fruit density. Similarly, McGlone

et al. (2007) predicted post-storage TSS of ‘Hort16A’ kiwifruit based on estimated at-
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harvest DMC data. Both approaches required testing of specific attributes at harvest and
if this testing method is destructive, validation of the uncertainty in sample selection is
essential. Ignat et al. (2014) used an approach similar to the philosophy of this study and
predicted post-storage TSS of apples using at-harvest spectral data with good accuracy

(R?=0.76 — 0.94, RMSEP = 0.68 — 1.02 °Brix, SDR = 2.1 - 3.1).

Prediction of at-harvest firmness using NIR spectral data was not as successful.
Poor predictions were found in ‘Hayward’ kiwifruit (McGlone and Kawano, 1998;
Costa et al., 1999; Lee et al., 2012), apples (Lu et al., 2000) and peaches (Fu et al.,
2008). Prediction of post-storage firmness has also been studied by McGlone et al.
(2002a) on ‘Royal Gala’ apples and Feng et al. (2013) on apricots but not as yet on
‘Hayward’ kiwifruit. In both studies the initial FF values were measured in order to
develop a calibration model which was then applied for prediction. Similar to prediction
of at-harvest firmness, no strong correlation was found between spectral data and post-
storage firmness; prediction errors were relatively high. For kiwifruit, the initial
firmness at harvest has no direct relationship with post-storage firmness
(Ghasemnezhad et al., 2013; Burdon et al., 2014a). The softening rate in storage is
dependent on the stage in softening achieved at the time of harvest (Burdon and Lallu,
2011), and fruit harvested at late maturity were found to maintain firmness better
compared to early harvested fruit (Gordon Mitchell et al., 1992). Hence, the final
firmness is influenced by a range of fruit characteristics at harvest which affect both

maturity stage and rate of softening at harvest.

This paper investigates the ability of Vis-NIR spectroscopy utilised at harvest as
the sole input variable, to quantitatively predict both TSS and firmness after cool
storage. Because no additional at-harvest information is required, the objective is to
apply Vis-NIR spectroscopy to capture the (near) skin properties of fruit which may be
representative of various pre-harvest conditions resulting in a wide range of variability
within the population, and perform prediction for future quality attributes using a
blackbox model. The aim is to investigate whether information on skin properties
extracted from spectral data can be indicative of physical/chemical properties of the
fruit which in turn affects quality attributes after storage. The performance of regression
methods used to develop quantitative model will be evaluated. Comparisons of

prediction error to the literature will be drawn. Successful prediction of future quality
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attributes would allow industry to identify batches that have higher quality potential and

enable better inventory decisions.

5.2 Materials and Methods

A total of four Vis-NIR spectral and fruit quality data sets were collected over
two fruit seasons from 2012 to 2013 (Table 5.1). The first two sets of Vis-NIR spectral
data and quality after storage were available as a resource generated by two postdoctoral
students in 2012 (Sections 5.2.1 and 5.2.2). In 2013, two more sets of Vis-NIR spectral
data and fruit quality data were obtained from the trial with manipulation of crop load
and girdling (Chapter 3) and the trial with manipulation of light. Both firmness (FF) and
total soluble solids (TSS) data were collected for all the data sets except for the first set

which only contained firmness measurements.

Table 5.1 Summary of NIR data sets collected in 2012 — 2014 available for analysis.
Numbers represent the number of fruit measured. RM: Reflective mulch. HCG:
High crop load with girdling. LCG: Low crop load with girdling. HC: High crop
load. LC: Low crop load.

Firmness Total Soluble Solids
Data Sets Treatment Storage time (day) Storage time (day)
Total Total
75 100 125 150 75 100 125 150

51 grower lines ~ Grower 255 255 255 0 765 0 0 0 0 0

(2012) Lines
Manipulation RM
of light Control 40 40 40 40 160 40 40 40 40 160
(2012)
Manipulation RM
of light 40 240 40 240 560 40 80 40 80 240
Control
(2013)
Manipulation HC
of crop load LC
and girdling HCG 0 320 0 320 640 O 320 0 320 640
(2013) LCG
Total 335 855 335 600 2125 80 440 80 440 1040
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These data sets were later used to assess if Vis-NIR collected at harvest can
assist in predicting kiwifruit quality attributes after storage. Since the data were
collected from multiple orchards, multiple seasons and various types of trials with
manipulation treatments, a vast variety of data was used to generate the model. This
data variety increases the likelihood of a robust model being developed because, instead
of tuning on a specific set of data, this study tries to capture the large variability that is

observed within the industry.
5.2.1 Experiment 1: 51 grower lines

This experiment was part of a larger trial that investigated the potential to
segregate ‘Hayward’ kiwifruit for storage potential using an accelerated fruit library
rapid test methodology (Jabbar, 2014). Commercial ‘Hayward’ kiwifruit from 51
grower lines located in the Bay of Plenty, New Zealand were sourced during the 2012
season. Fruit were delivered in temperature controlled transport. The first grower line
arrived on 10" May 2012 and the last on 14™ June 2012. Each grower line consisted of
150 (5 trays of count 30) Class 1 export grade fruit. Only fifteen selected fruit (3 fruit
per tray) from each grower line were subjected to initial Vis-NIR spectral measurements
at day O (on arrival at the lab), resulting in a total of 765 fruit for corresponding post-
storage firmness measurement. All the fruit were then placed into a cold room at 0°C.
Each tray was randomly labelled for removal from the cold room for firmness

measurement at 75, 100 and 125 days of storage, respectively.
5.2.2 [Experiment 2: manipulation of light (season 2012)

This trial was part of a larger experiment that investigated the effects of light
manipulation in the orchard on growth and storability of ‘Hayward’ kiwifruit
(Pranamornkith, unpublished work). The experiment was conducted on a T-bar trained
block at the Plant Growth Unit (PGU) at Massey University, Palmerston North and
consisted of a control and a manipulated treatment using reflective mulch (RM) to
enhance light exposure of kiwifruit. The selected reflective film was Ultramat white UV
woven reflective ground cover (Cosio Industries, Auckland, New Zealand). The film
was laid down on 20" December 2011, and maintained in position, with frequent
cleaning and removal of trash, until harvest. The film was placed under both sides of 6
kiwifruit vines and the width of the film from the central leader was 4.15 m. Two blocks

of film-treated vines were established. Control kiwifruit vines were selected no less than

80



Chapter 5 Quantitative prediction of post-storage quality

2 m from the end of the reflective film. At harvest (11" May 2012), each treatment
contained 240 mixed-sized fruit (8 trays of 30 fruit). Only 10 fruit out of the 30 fruit per
tray were measured for initial Vis-NIR spectral data and subsequent post storage
firmness, resulting in a total of 160 fruit for two treatments. All fruit were then placed
into a cold room at 0 °C and firmness and TSS measurement was conducted for 20 fruit

of each treatment at 75, 100, 125 and 150 days of storage, respectively.

5.2.3 Experiment 3: manipulation of light (season 2013)

For the 2013 harvest season, a light manipulation experiment was carried out on
the Massey University PGU T-bar trained vines using the same Ultramat white UV
woven reflective mulch described in Section 5.2.2. The film was laid down on 21*
November 2012, under eastern side of 9 kiwifruit vines and both eastern and western
sides of 4 vines. All fruit were harvested on 31 May 2013. At harvest, each of the
treated and control fruit generated 2 replicates of 300 mixed-sized fruit (10 trays of 30
fruit), resulting in a total of 1200 fruit. Fruit were cured in the laboratory for two days at
20 °C, 60% R.H. Five fruit each from two trays of each replicate (20 fruit per treatment)
were measured for Vis-NIR spectral data at day 0 (2" June), and both firmness and TSS
data after 75 and 125 days of cool storage at 0 °C. Another two full trays (30 fruit) from
each replicate (120 fruit per treatment) were measured for spectral and firmness data
after 100 and 150 days of storage, respectively. Additionally, ten fruit each from two
trays of each replicate (40 fruit per treatment) were measured for spectral data and post-

storage TSS after 100 and 150 days of storage, respectively.
5.2.4 Experiment 4: manipulation of crop load and girdling

The experimental setup for this experiment is in accordance with that described
in Section 3.2.1. For the purpose of this study, at harvest, each of the four treatments
contained 4 replicates consisting of 8 trays of 30 mixed-sized fruit per tray. The
resulting total number of fruit was 3840. Only 5 selected fruit each of 2 trays per
replicate of each treatment were measured for Vis-NIR spectral data at harvest, resulting
in a total of 640 fruit for all four treatments. The post-storage TSS and FF data of

corresponding fruit were measured after 100 and 150 days of storage at 0 °C.
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5.2.5 Vis-NIR spectral data measurements

A commercial full-range Vis-NIR spectroscopy system (FieldSpec® Pro, ASD
Inc., USA) was used in this study (Fig. 2.5a). Within the instrument, three types of
detectors are installed to cover both the visible and the NIR range of the spectrum
including: a silicon detector (350 — 1000 nm); an InGaAs detector that measures
shortwave infrared (1000 — 1800 nm); and a second InGaAs detector (1800 — 2500 nm).
The optical fibre of the instrument was coupled with a contact probe (Hi-Brite,
PANalytical B.V., Boulder, USA) for contact measurements with a spot size of 10 mm
in diameter. The contact probe was fitted with a high intensity halogen lamp to produce
consistent illumination in a broad electromagnetic spectrum. The probe was fixed to a
burette stand in a nadir position and connected to the instrument through an optical fibre
cable. A diffuse reflectance material (Spectralon®, Labsphere Inc., North Sutton, USA)

panel was used as a reflectance standard and to convert raw spectra to reflectance.

At the time of scanning each fruit were measured at two locations (90° apart)
around the equator of the fruit. The sampling interval was 1.4 nm (350 — 1000 nm) and
2 nm (1000 — 2500 nm). The spectral resolution was 3 nm (at 700 nm), 10 nm (at 1400
nm) and 12 nm (at 2100 nm).

5.2.6 Fruit quality measurements

During storage, ethylene concentration in the cool room was monitored and
maintained below 5 nL L. Fruit flesh firmness (FF) and total soluble solids (TSS)

content were assessed using the methodologies described in Section 3.2.2.

5.3 Near-Infrared Spectra Data Analysis
5.3.1 Pre-processing of spectral data

The raw spectral data were pre-processed using The Unscrambler® (Version
X10.3; CAMO Software AS., Oslo, Norway). Spectral data from all experiments were
first truncated to 400 — 2450 nm (Fig. 5.1a) so that fluctuations and noises at both ends
were eliminated. Reflectance was then converted to absorbance by a Log transformation

(Fig. 5.1b) which can be related to concentration by Beer’s law:
Ay = —logio(R) (5.1)
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where A, is the absorbance at a wavelength 4. R is the reflectance detected.

First order derivation using a Savitzky-Golay smoothing algorithm (Fig. 5.1c¢)
was then applied. The purpose was to reveal the hidden information in the spectra as
well as to reduce the noise in the data without reducing the number of variables.

Derivation was the differentiation of the fitted polynomial at each point:

Sp = Sn+g - Sn—g (5.2)

where n is the degree of the fitting polynomial; Sy, is the first derivative at point
n for evenly spaced wavelength A,,; g is an integer called the gap or derivative size. The
Savitzky-Golay smoothing algorithm (Savitzky and Golay, 1964) was used to estimate

the polynomial approximation of the curve segment.:

;1 -m iryi = Z?:O(bnk Z:Z -m ir+k) (5.3)

where r = 0, 1, ..., n; mis the number of points on either side of the central
point (2m + 1 is the total number of points to fit); A; is the wavelength at which the
smoothed value is desired; y; is the absorbance value at wavelength A, ;; by is the

coefficient of the kth term of the nth degree polynomial; by, is the smoothed value at 4;.

Spectra were then normalised sample-wise (Fig. 5.1d) so that the resulting
spectra were on the same scale and had more features in common, and unwanted

sources of variability were suppressed.

£ =X (5.4)

where X; is the observation at a specific variable for one sample; X; and X;;are

an element of the jth spectrum and of a data matrix X, respectively.

Lastly, mean centering was applied (Fig. 5.1e) by subtraction of an average
value from each variable so that the final data was interpreted in terms of variation
around the mean rather than the absolute values of the observations. For a data set of n
samples each of j wavelengths, the mean centered jth wavelength of the nth sample is
defined by:

1
Xn,j cent = Xn,j - (; §=1Xn,j) (5.5
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Figure 5.1 Pre-processing of Vis-NIR spectral data after: a) removal of noise
regions; b) log transformation; c) first order derivation; d) normalization and e)

mean centering in the 400 — 2450 nm range.
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5.3.2 Algorithm for regression models

5.3.2.1 Partial least squares regression

Partial least squares (PLS) was introduced by Wold (1975) in algorithmic form
as a modification of the non-linear iterative partial least squares (NIPALS) algorithm
(Wold, 1966) to overcome disadvantages found in principal component regression. PLS
projects the input data onto a small number of latent variables (LVs) which maximise
the covariance between X-variables (spectral data) and Y-variables (TSS and FF) by
developing a linear multivariate model. Including too many LVs in the PLS model may
lead to over fitting, whereas too few LVs may result in under fitting (Gowen et al.,
2011). Therefore, full cross validation (LOOCV) was used in this study to determine the

optimal number of LVs.
The underlying model of multivariate PLS is shown in Eq. 5.6 and 5.7:
X=TPT+E (5.6)
Y=UQT +F (5.7)

where X is a matrix of predictors, Y is a matrix of responses; T and U are
matrices that are projections of X and Y respectively.; P and Q are orthogonal loading
matrices; and E and F are the error terms. The decompositions of X and Y are made so

as to maximise the covariance between T and U (Kalivas and Gemperline, 2006).
5.3.2.2 Support vector machine regression

Support vector machines regression (SVM-R) was first proposed by Vapnik
(1995). In ideal cases the SVM-R identifies a function, where, for all training patterns x
has a maximum of € (¢ > 0) deviation from the actual response y, and at the same time is
as flat (simple) as possible (Smola and Scholkopf, 2004). However, for most real-world
cases, the regression model is presented as a threshold tube with radius ¢ fitted to the
data (Fig. 5.2; Ivanciuc, 2007). Any error situated inside the threshold tube is
considered as zero and ignored by the loss function, whereas patterns situated outside
the threshold tube have an error that increases with the distance to the tube margin

(Ivanciuc, 2007). This is also known as the soft margin SVM-R using slack variables.
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Figure 5.2 Support vector machines regression determines a tube with radius ¢

fitted to the data (Ivanciuc, 2007). Image used with permission.
The formulation of soft margin SVMR is stated in Eq. 5.8 and 5.9:
| .
minimise > wll?+CX (& +ED (5.8)

yi—{w,x;)) —b < e+
subjectto (W, x;) + b —y; < e+ & (5.9)
§,$7 =0

where w is a weight vector and b is a bias; y; = (w,x;) —b —¢€ and y; =
(w, x;) + b + ¢ indicate the hyperplanes forming borders of the regression tube; and ¢&;
and & represent the slack variables associated with an underestimate and overestimate
of the calculated response respectively, for the input vector, x; (Vapnik, 1995). The
constant C (C > 0)determines the trade-off between model complexity (flatness), and
the degree to which deviations larger than ¢ are tolerated in optimisation formulation

(Smola and Schoélkopf, 2004).

For linear SVM-R models the threshold tube is a cylinder. For non-linear cases,
the coordinates of the input objects are mapped into a high-dimensional feature space
using a kernel function. The support vectors are those points that do not fall strictly
within the threshold tube. All the other points are considered unimportant and can be
removed from the training data without changing the outcome of the learning process
(Witten et al., 2011). The radial basis function (RBF) kernel was used in this study to
build non-linear regression model because this method is simple and capable of

modelling complex data sets.
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5.3.3 Model development and evaluation

Data sets at different storage times were randomly divided into two subsets:
calibration (66.7%) and validation (33.3%). The statistics for quality measurements of
the calibration and validation datasets are shown in Table 5.2. Calibration models were
developed on The Unscrambler® using both PLS-R and SVM-R. In PLS regression,
leave-one-out cross validation (LOOCV) was applied to avoid over-fitting. In this
method one sample is removed from the data set and a calibration model is developed
based on the remaining samples. The model is then used to predict the sample left out,
and the prediction error is estimated. The process is repeated until every sample has
been left out once, and the average prediction error is estimated. In SVM regression,
internal L-fold (L = 20) cross validation was used. This method is similar to LOOCV
except that samples are divided into L segments. At each time a segment of samples is
left out rather than one sample. Predictions were compared with reference values and

the R? and the RMSEP values were estimated.

Table 5.2 Summary statistics of quality measurements for kiwifruit after

coolstorage of 75, 100, 125 and 150 days, respectively. S.D. stands for standard

deviation.

Storage time
@ Flesh firmness (N) Total soluble solids (°Brix)

= n Mean S.D. Range n Mean S.D. Range
D
é 75 221 15.9 6.0 32.9 54 13.2 1.1 4.9
é 100 564 17.4 6.6 38.9 294 15.0 1.6 8.2
é 125 221 11.4 4.2 30.3 54 13.1 1.4 6.9
S 150 396 13.7 52 25.2 294 15.2 1.5 7.5
y n Mean S.D. Range n Mean S.D. Range
D
é 75 114 15.9 6.2 33.6 26 13.0 1.4 53
_g 100 291 17.3 6.6 35.6 146 15.1 1.7 8.5
;éz 125 114 12.2 3.9 19.2 26 13.0 1.5 5.7
>

150 204 14.2 53 27.1 146 15.1 1.6 8.0
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The stability of the SVM algorithm was enhanced by finding the appropriate
values of constant C (cost) and kernel parameter y (Gamma) using Matlab (Version
R2012a, MathWorks, Inc., Natick, USA), which are usually on a logarithmic scale. The
values were determined through a grid search and applying a 10-fold cross validation to
reduce the chance of under and over-fitting. The search window was set between 10°°
and 10 for y, and between 10 and 100 for C with a step size of 1. The optimal

parameters (Table 5.3) corresponding to the lowest RMSEs were used in the final model.

Table 5.3 Appropriate values of constant C (cost) and kernel parameter vy
(Gamma) used for developing quantitative models which corresponded to lowest

RMSE values.

Storage time FF TSS
(day) Cost Gamma Cost Gamma
75 1 0.00032 100 0.0000032
100 31.62 0.000032 31.62 0.000032
125 100 0.000010 100 0.000031
150 10 0.00010 100 0.000010

5.3.4 Selection of important waveband

Several variable selection techniques were also applied to the pre-processed
spectra data to eliminate unimportant variables so as to reduce computation cost and
improve prediction accuracy (Zou et al., 2010). Principal component analysis (PCA)
was carried out to find linear combinations of variables that contribute most to making
the samples different from each other. The first PC is one that carries most information;
the second PC carries the maximum share of the residual information, and so on.
Genetic algorithm (GA) selected important variables using genetic algorithm which
simulates the process of natural selection based on fitness (indicated by R? and RMSE).
In addition, the sampling intervals were increased from 1 nm to 5 or 10 nm by taking
mean of every 5 or 10 data points respectively (Fig. 5.3). This helped to reduce
localised fluctuations in the spectra. Determination of the best variable selection

technique was done by comparing regression outcomes using full spectrum.
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Amongst the selected techniques, increasing sample intervals was found to
perform best for overall regression accuracy (Tables A.1 — A.4). This technique has
several advantages: broader sampling intervals (5 — 10 nm) yield better results while
reducing computational cost (Kemper and Sommer, 2002; Shepherd and Walsh, 2002);
the resultant sampling intervals also match more closely to the spectral resolution of the
instrument used (3 — 12 nm). The improved accuracy is probably because variable
loadings with localised fluctuations were smoothed without losing important
information (e.g. Fig. 5.2d). Nicolai et al. (2007b) found that the accuracy of PLS model
was increased by removing redundant high resolution information by means of wavelet
compression and the best results corresponded to a wavelength resolution of about 5 nm.
In this study increasing sampling intervals to 5 and 10 nm was found to provide the best
accuracy for firmness and TSS respectively, and hence were used for subsequent

regression models.
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Figure 5.3 X-loadings for TSS PLS regression model (75 days) using (a) original

spectra and (b) pre-processed spectra by taking averages of every 10 nm in the 400

— 2450 nm range; and x-loadings for firmness regression model (75 days) using (c)

original spectra and (d) pre-processed spectra by taking averages of every 5 nm in

the 400 — 2450 nm range.
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5.4 Results and Discussion
5.4.1 Prediction of total soluble solids during storage

The reflectance spectra comprised of several overlapping absorptions
corresponding to overtones and combinational chemical bonds present in different
organic compounds (Osborne, 2000). The regression coefficient plot for TSS (Fig. 5.4a)
shows a few peaks with high RC values at 780, 880, 970, 1200-1210, 1400-1450, 1700,
1820 nm and 1940 nm, suggesting important contribution to the regression model from
these wavebands. These absorption bands correspond to the water spectrum with
overtone bands of OH-bonds at 760, 970, 1450 (Nicolai et al., 2007a), 1200, 1820 and
1940 nm (Workman and Weyer, 2007). The absorptions around 880 and 970 are caused
by second overtone of C—H stretching (McGlone and Kawano, 1998).
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Figure 5.4 Regression coefficient curves for the prediction of (a) total soluble solids
and (b) flesh firmness of ‘Hayward’ kiwifruit using support vector machines (red)
and partial least squares (blue) regression.

In general the predictive performance for TSS was good (Table 5.4), suggesting
good correlation between at-harvest Vis-NIR spectral data and post-storage TSS data.

Regression models built with SVM-R method produced better results compared to those
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with PLS-R. Specifically, considerably lower RMSE and higher SDR values (SDR > 2)
were obtained using SVM-R for predictions at 100, 125 and 150 days (Table 5.4). This
is probably because SVM-R models with kernel functions could handle non-linear
complex multivariate data correlation which might exist between post-storage TSS
values and at-harvest NIR spectral data, whilst PLS-R models were merely based on

linear projection.

The prediction results for validation from SVM-R model (R? = 0.68 — 0.83) were
not as good as those reported by McGlone et al. (0.89; 2007) in which prediction was
based on estimated at-harvest DMC of ‘Hort16A’ kiwifruit, and Ignat et al. (0.76 —
0.94; 2014) which performed prediction for apples using at-harvest spectral data directly.
However results were comparable to those found by McGlone et al. (0.70; 2002a) which
used estimated at-harvest density for ‘Royal Gala’ apples. The RMSE values (0.66 —
0.86 °Brix) were higher compared to those found by McGlone et al. (0.38 °Brix; 2007)
and McGlone et al. (0.50 °Brix; 2002a) but were lower than those found in Ignat et al
(0.68 — 1.02 °Brix; 2014). The SDR values (1.6-2.3) were comparable to that obtained
by McGlone et al. (1.8; 2002a).

The SDR values obtained in this study, however, suggest that a good regression
model can be developed by finding correlations between at-harvest Vis-NIR spectral
data and post-storage TSS values. Hence, quantitative prediction of TSS using the
developed model may be promising, especially for storage times of 100, 125 and 150
days. However, a significant regression model does not necessarily guarantee viable
industrial applications such as online sorting of kiwifruit. McGlone and Kawano (1998)
recommend that an SDR value of 3 should be considered as the minimum value for
sorting/grading purposes of kiwifruit. In this study the highest SDR value obtained was
2.3. This indicates that it would still be challenging to apply the predictive models for
on-line TSS sorting purposes without further improvement of the models. One would
argue that the selection of thresholds of SDR values can vary since there is no statistical
basis used to determine the thresholds (Bellon-Maurel et al., 2010). Therefore, an online
testing at existing packhouses, combined with storage studies on the same fruit/batch,
may be helpful to determine whether the developed model is sufficiently robust to be

used for online prediction of future TSS.
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5.4.2 Prediction of flesh firmness during storage

The regression coefficient plot for FF (Fig. 5.4b) shows two major peaks at 740
and 1395 nm, and several secondary peaks at 650, 770, 1680 and 1890 nm, indicating
important roles of these wavebands to the regression model. These could be related to a
combination of water absorption bands at 740, 770 and 1400 nm (Workman and Weyer,
2007), and the pectin absorption bands at around 1670 nm which was responsible for
measuring textural properties of fruit (Kojima et al., 2004). However, several other
known pectin absorption bands (e.g. 1590, 1730 and 2400 nm; Kojima et al., 2004) did

not seem to have a significant contribution to the regression model.

The predictive performance for firmness (Table 5.5) was not as good as that for
TSS. In general model validation showed poor to moderate predictability with low R?
(0.24-0.60) and SDR values around 1.5. Comparing the two regression algorithms,
SVM-R had better prediction because of lower RMSE and higher SDR values than
PLS-R, suggesting a possible non-linear correlation between post-storage FF values and

at-harvest Vis-NIR spectral data.

Comparing results to the literature (using SVM-R), the R? values (0.38 — 0.60)
were comparable to those found by McGlone et al. (0.59; 2002a) and Ignat et al. (0.18 —
0.73; 2014) for ‘Royal Gala’ apples, and Feng et al. (0.50; 2013) for ‘Clutha Gold’. The
achieved RMSE values (3.53 — 4.12 N) were considerably lower than those obtained in
McGlone and Kawano (7.8 N; 1998) for ‘Hayward’ kiwifruit, Feng et al. (8.8 N; 2013)
for ‘Clutha Gold’ apricot, McGlone et al. (7.5 N; McGlone et al., 2002a) for ‘Royal
Gala’ apples, and Ignat et al. (4.6 — 6.5 N; 2014) for various apple cultivars, respectively.
This suggests that FF is possibly affected by various quality attributes within the fruit
and hence, prediction based on an overall status may be a better approach rather than
only looking at initial FF value of the fruit. The SDR values (1.5 — 1.7) obtained in this
study (using SVM-R) were comparable to those found in McGlone et al., (1.6; 2002a)
but slightly lower than those reported in Ignat et al. (1.1 —2.5; 2014).
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The small RMSE values obtained in this study indicate better model fitting and
lower error achieved as compared to previous studies. However, low overall SDR
values suggest that spectral information of individual fruit obtained at harvest may not
be indicative to post-storage firmness, and accurate quantitative predictions using the
developed model would be difficult. Based on the minimum threshold recommended by
McGlone and Kawano (1998), the developed regression models were not suitable for

online sorting purposes.

The prediction of firmness is related to loss of cell wall structures such as pectin,
cellulose and hemicellulose as they contribute to the mechanical strength of the wall and
to the adhesion between cells. The ripening process which is observed as fruit softening
is associated with significant changes in the structures of the pectic substances (Lodge
and Roberston, 1990). Cho et al. (1992) found changes in pectin and water absorbance
bands of NIR at around 1900 nm, and suggested that a successful firmness model works
through reliance on water state changes in the softening fruit; pectin breakdown
products bind some of the free water that existed when the fruit was firmer. Since the
total amount of pectic substances in kiwiftruit is very low (< 1% by fruit weight; Beever
and Hopkirk, 1990) , McGlone and Kawano (1998) propose that pectin structural
changes (hence, changes in firmness) are possibly more difficult to detect than changes

in more abundant constituents such as TSS.

Additionally, Paz et al. (2008) suggests that the lower predictive capacity of
firmness prediction models as opposed to those of TSS, was to be expected since
firmness is a physical parameter whose measurement using the reference method is
already prone to considerable error. In fact a closer look at the difference between the
two firmness measurements carried out on the same fruit showed that there was large
variation in firmness readings between the two locations on the same fruit, with this
variation decreasing as the average firmness of the population decreased, i.e. storage
time increased (Fig. 5.5). It is possible that this variation contributed as a source of error,
to affect final model accuracy. At 95% confidence level, the error caused by variation in
physical measurements using penetrometer were found to be £ 3.8 N, £ 3.1 N, = 2.3 N
and + 2.3 N for 75, 100, 125 and 150 days respectively (Fig. 5.5). This means that up to
80% of the observed RMSE in regression models could have been originated from

variations in physical measurements of firmness (Table 5.5). This suggests that the key
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to improving predictive accuracy of FF does not only rely on model robustness but also

require a more precise way of conducting physical measurements of firmness.

Cumulative Probability

75d
—— 100d
— 125d
— 150d

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Difference between Two Firmness Readings, N

Figure 5.5 Cumulative probability of the difference found between two firmness
readings (IN) using an electronic QALink Penetrometer fitted with the standard 7.9
mm Magness-Taylor probe, for measurement at 75, 100, 125 and 150 days
respectively. Horizontal dash line represents 95% confidence level (cumulative

probability = 0.95).

Although quantitative prediction of future FF has been shown to be challenging,
there is still potential to investigate qualitative prediction of future FF using
classification methods. One major concern of NIR technique for fruit and vegetables is
that model performance and robustness is largely affected by the ‘richness’ of variation
in the calibration sample (Nicolai et al., 2007a). Model error can drastically increase
when the calibration model is applied to a new dataset from a different batch or season,
or have been subjected to changes in physical condition, temperature or replacement of
instrument. In this case the calibration model loses its validity and a new model or
recalibration is needed (Swierenga et al., 2000). This would be time-consuming and
labour-intensive. Qualitative prediction would reduce chances of error resulted from re-

calibration, and would enable the possibility of focusing on relative correlation, rather
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than absolute correlation, between spectral data and firmness retention properties of
kiwifruit. Therefore, the next two chapters will explore this potential application of Vis-

NIR spectroscopy.

5.5 Conclusion

In this chapter, the potential of using at-harvest Vis-NIR spectra as the sole
predictor to forecast post-storage quality attributes of kiwifruit was investigated. Four
sets of at-harvest spectral data and post-storage firmness and TSS data were collected.
Both PLS and SVM were used to develop regression models, with SVM-R generating
better predictions than PLS. Predictive accuracy of TSS (R?=0.58 — 0.83;
RMSE =0.66 — 1.02 °Brix) was comparable to previous studies that used both NIR
spectral and initial fruit quality data for prediction. Although the developed model
shows potential to be utilised as a predictive tool, the SDR values (1.5 — 2.3) suggest
that models are not as yet useful for online sorting purposes. Prediction of firmness was
poor to moderate (R2=0.30 — 0.60; RMSE =2.65 — 4.32N) but results were
comparable to the literature. The RMSE values were lower compared to previous
studies, suggesting better model fitting. The firmness prediction model was not useful
for online grading purposes due to low SDR values (1.4 —1.7). A significant source of
variation was observed during physical measurement of firmness, contributing to final
RMSEs. Confirming and reducing this variation would be recommended for future
development of regression models of FF, as this may reduce RMSE considerably and
potentially improve the accuracy for quantitative prediction of firmness. Alternatively,
classification models can be developed using at-harvest spectral data, in order to

investigate the potential of qualitative prediction of post-storage kiwifruit firmness.
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6 Segregation of ‘Hayward’ kiwifruit for storage potential using Vis-
NIR spectroscopy — development of an appropriate multivariate

data analysing method
6.1 Introduction

The work in Chapter 5 concluded that although quantitative prediction of post-
storage total soluble solids content could be achieved with some success, it was not
possible to obtain accurate prediction of fruit firmness, a quality indicator that is
important for storage potential prediction. It was recommended that, qualitative
prediction may be an alternative approach and may have better potential applications.
This is particularly useful for segregation/sorting of fruit/grower lines for export
purposes. There is huge financial benefit if fruit or grower lines can be segregated at

harvest for potential storability and shipped sequentially based on the prediction.

Despite the many previous attempts carried out to utilise NIR spectroscopy for
quantitative prediction of kiwifruit quality attributes, little research has been conducted
to evaluate the ability of NIR to perform qualitative prediction using classification

models.

Feng (2003) used NIR spectral and fruit quality data collected at harvest to
classify individual ‘Hayward’ kiwifruit for storage potential using canonical
discriminant analysis (CDA). At-harvest NIR spectra were calibrated with various at-
harvest fruit attributes, and the calibrated model was then used for the prediction of
post-storage firmness, allowing for segregation of disordered fruit from healthy ones.
Poor prediction of post-storage firmness was obtained. The classification accuracy was
67%, 35% and 46% for healthy fruit, fruit with soft patch and fruit that developed CI

respectively.

Feng et al. (2014) also attempted to segregate storage potential of individual
kiwifruit based on at-harvest NIR spectra using models calibrated with various at-
harvest attributes (skin and flesh colour, FF, TSS and DMC) and in-storage acoustic
firmness measurements. Fruit that developed rots or became overly soft after

coolstorage and seven days simulated shelf life were classified as rejected fruit.
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Amongst many multivariate analysis techniques logit-boost decision stumps was found
to generate the best segregation performance. Results suggested that the false positive
rate (good fruit classified wrongly) was 30% and 40% respectively for ‘Hayward’ and
‘SunGold” (‘G3’) for a targeted 75% true positive rate (rejected fruit accurately

classified).

In addition, Clark et al. (2004) categorised ‘Hort16A’ kiwifruit based on Vis-
NIR reflectance intensities at 227 selected wavelengths at harvest using the
unsupervised pattern recognition CDA classification. In this study fruit from two
maturity stages were used for developing classification models that segregate the fruit
into two groups: ‘good’ and ‘disorder’ (with rots and chilling injuries after storage). The
classification accuracy was 66% and 52% for disordered fruit and 80% and 89% for
good fruit, respectively for fruit from two harvest stages. This would indicate a
reduction in disorder incidence from 33.9 to 17.9% and 14.7 to 8.5% for both harvests.
However external validation was not conducted hence the robustness of the model to
perform prediction on an independent data set was not determined. Similarly, Burdon et
al. (2014b) used at-harvest NIR spectral data calibrated with at-harvest attributes to
predict the incidence of CI of stored ‘Hort16A’ kiwifruit, and concluded that such a
generally applicable approach was not useful in this case due to a large orchard factor
which contributed to considerable variation in the minimum or maximum threshold for

the development of CI.

In other crops, prediction of the storability of apricots was carried out by fitting
an exponential model to describe the relationship between FFo, the at-harvest FF
estimated by Vis-NIR spectral data, and FFrinal, post-storage firmness predicted based
on FFy (Feng et al., 2013). Segregation of storage potential was based on the projected
FFFinal in comparison to the minimum standard for sale at retail (10 N). This segregation
provided theoretical limits for initial firmness of apricot for the two cultivars studied but
validation of the segregation model was not conducted. In addition, Zude et al. (2006)
discriminated post-storage quality levels of apple as a result of storage condition
treatments using non-destructively estimated TSS (Vis-NIR) and FF (acoustic impulse
resonance frequency) values measured after storage, and obtained 77% and 84% overall
accuracy respectively. The authors suggested that the superior results obtained using

non-destructive methods were possibly due to the fact that more representative data of
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the heterogeneous fruit material could be obtained, compared to destructive methods

which only provided localised data.

To date most relevant studies required calibration of the model with at-harvest
attributes in addition to spectral data in order to perform prediction or segregation of
future storability. In-storage quality measurements were sometimes required (e.g. Feng
et al., 2014). However this approach involves destructive measurements of fruit and the
accuracy for prediction is affected by sample selection for the calibration process.
Additionally data collection during storage would be challenging for packhouses as this
would require extra labour reshuffling pallets of fruit in order to obtain a representative
sample. An alternative approach would be to perform prediction/classification prior to
storage using NIR spectra data as the only input. In this case a black-box model is
developed using supervised machine learning algorithms for classification. The spectral
data capture an overall initial state of the fruit whilst the post-storage firmness values

provide training for pattern recognition (Fig. 6.1).

/ Machine learning system

Input data
(NIR spectra)

Output data
(prediction)
Black-box model

Y—eedbac\k

Figure 6.1 Conceptual diagram of a black-box model using NIR spectral data as

the sole input to predict storability of kiwifruit.
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In this chapter, an attempt was made to utilise NIR spectra data as the sole input
at harvest, to perform qualitative prediction of kiwifruit firmness retention properties
after coolstorage using the blackbox model proposed as above. Various pattern
recognition algorithms were selected to develop a suitable classification model which
aims to segregate individual kiwifruit into two groups based on the export firmness
criterion (FF > 9.8 N). The predictive performance of each of the algorithms was
evaluated, and the classifier that resulted in the model with the most satisfactory
accuracy and robustness was identified. The resulting final classification model will be
tested in the next chapter (Chapter 7) using a new data set. Segregation of fruit by
storage potential may allow rapid identification of fruit unsuitable for export and in turn

reduce fruit and financial losses.

6.2 Materials and Methods

6.2.1 Data sets

The same four data sets discussed in Chapter 5 (Section 5.2, Table 5.1) were
also used in this chapter for the purpose of building classification models using at-
harvest spectral and post-storage firmness data. Additionally, in 2014, another set of
data was collected from a larger trial that studied the relationship between storage
temperature and the development of chilling injury (Zhao, 2017). The fruit measured for
this study were from 9 grower lines of the ‘control’ samples meaning that fruit were
stored at 0°C. Fruit were sourced in the Bay of Plenty, New Zealand at three maturity
stages with delivery dates sequenced by 1-week intervals commencing 8 May 2014.
Each maturity stage consisted of 6 trays of count 33 fruit from three grower lines (2
trays per GL), resulting in a total of 594 fruit for three maturities. At day O (on delivery
day), Vis-NIR spectral data of individual fruit were collected prior to subsequent
storage at 0°C for extended periods of time. Single trays from each maturity stage were
assessed for firmness at 75 and 100 days after storage, and two trays assessed at 125 and
150 days after storage. For model development, the four data sets (n = 2125) from 2012
— 2013 were used for calibration whereas the data set collected in 2014 (n = 594) was

used for external validation (Table 6.1).
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Table 6.1 Summary of Vis-NIR spectral and post-storage firmness data sets
collected in 2012 — 2014 for developing and validating classification models.
Numerical values represent the number of fruit measured at each time of storage.

Soft and good means flesh firmness of the fruit is < 9.8 N and > 9.8 N respectively.

Calibration Validation
Storage
time Season Total Season Total
(day) 2012 2012 2013 2013 Soft Good 2014  Soft Good
75 255 40 40 0 35 300 99 6 93
100 255 40 240 320 87 768 99 2 97
125 255 40 40 0 121 214 198 53 145
150 0 40 240 320 133 467 198 68 130

6.2.2 Data collection and spectral pre-processing

The experimental procedures for spectral data collection and firmness
measurements were in accordance with those described in Sections 5.2.5 and 3.2.2
respectively. The raw spectral data were pre-processed using the steps described in
Chapter 5 (Section 5.3.1) except that mean centering was not applied for the purpose of
this chapter, as this technique is mostly useful in simplifying spectral data for regression
models (Boysworth and Booksh, 2007). Since the objective of this chapter was to
develop classification models, this technique was not used to pre-process the spectral

data.
6.2.3 Machine learning algorithms for classification models

In order to identify the most suitable pattern recognition algorithm for
classification of samples, several machine learning techniques were explored using two
data mining software: Weka (Version 3.7.12; University of Waikato, Hamilton, New
Zealand; Hall et al., 2009) and The Unscrambler® (Version X10.3; CAMO Software
AS., Oslo, Norway). Each of these techniques will be discussed in the following

sections.
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6.2.3.1 Naive Bayes

The Naive Bayes classifier is one of the simplest probabilistic classifiers based
on the “Bayes’ Theorem”. It assumes that all variables of the samples are independent
of each other given the context of the class. This is also known as the “Naive Bayes
assumption”. The assumption is based on the fact that classification is only a function of
the sign (or the class); function approximation can still be poor while classification
accuracy remains high (McCallum and Nigam, 1998). This method uses a collection of
labelled training samples to estimate the parameters of the generative model.
Classification on new samples is performed by selecting the class that is most likely to
have generated the sample (McCallum and Nigam, 1998). By Bayes Theorem, the
posterior probability of Y given X is:

P(X =x|Y = k)py=k)

where Xi, ..., Xj are the J predictors considered in the model. The Naive Bayes

model assumes that X1, ..., Xj are conditionally independent given the target, that is:
P(X=x|Y =k)= I\, P (X; = x|y = k) (6.2)

where P values are the probabilities estimated from the training data set; X is the
categorical predictor vector; j is the number of predictors considered; Y is the

categorical target variable; K is the number of categories of Y.

6.2.3.2 Quadratic discriminant analysis

Linear and quadratic discriminant analyses are orthogonal classifiers. The linear
discriminant analysis (LDA) assumes that data is normally distributed and that the
covariance matrices of the two classes are equal (Sun, 2009). As such the variability
within each group has the same structure. The only difference between classes is that
they have different centres. In this case linear separation of groups is possible (Witten et
al., 2011). If the covariance matrices are not identical and the curve separating groups is
not linear, quadratic discriminant analysis (QDA) should be used. This method performs
better when the training data sets used are large. The quadratic discriminant function

can be expressed as:
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9:(X) = =3 (X — )" T (X — 1) — log(I%:) + log(my) (6.3)

where g;(X) is a simple max gate function used as a classification rule; X is the
vector of feature variables, which is multivariate normally distributed in the group with
the mean vector y;; m;is the prior probability of class i; ),; is the group specific

covariance matrix for QDA; and T is a transpose operator.

6.2.3.3 Random forests

A decision tree finds features in the input variables and identifies the threshold
for the features that best splits the data into separate classes (Quinlan, 1986). Each
feature attribute is presented as a node in the tree, with each possible threshold of each
attribute as a branch and a class label as each leaf. However, this method is prone to
over-fitting and has high variance. Random Forests are an ensemble of decision trees. In
this method each model (tree) is trained independently using a random small subset of
features for the split. As a result the predictions from the sub-trees are uncorrelated or
weakly correlated, resulting in lower variance (Nguyen et al., 2006). The generalisation
error for forests converges to a limit as the number of trees in the forest becomes large.
Prediction is made by aggregating majority vote for the predictions of the ensemble
(Anne-Michelle and Mousumi, 2007). The algorithm of RF was developed by Breiman
(2001):

{r,X),.., 7,0} (6.4)

where X = {xl, ...,xp} is a p-dimensional vector of a sample or properties
associated with a sample. The ensemble produces ] outputs {171 = T,(X), )7] =
T;(X )} where 17}, j=1, ..., ], 1s the prediction for a sample by the jth tree. Outputs of all

trees are aggregated to produce one final prediction, Y. For classification problems, ¥ is

the class predicted by the majority of the trees (Svetnik et al., 2003).

6.2.3.4 Support vector machine classification

The concept of SVM regression was introduced in Section 5.3.2.2. In this
chapter, SVM with sequential minimal optimisation (SMO; Platt, 1999) was used for
classifying the spectral data. For any set of two-class objects, the SVM finds the unique

hyperplane having the maximum margin for optimal discrimination. The hyperplane
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defines the borders for each class with specific objects within the class, and these
objects are referred to as support vectors (Ivanciuc, 2007). The support vectors are used
to classify the samples. For non-linear classification, the coordinates of the input objects
are mapped into a high-dimensional feature space using different kernel functions. The
kernels can be computed in the same space as the input objects allowing linear
algorithms to work with higher dimensional feature space. Classification is
accomplished by a weighted sum of kernels evaluated by the support vectors (Ivanciuc,
2007). The SMO algorithm was used to speed up the training of SVMs by reducing a
large quadratic programing optimisation problem into a series of small optimisations

(Mohri et al., 2012). Suppose there are N data points in the training dataset,

{(xl'yl)! (xZIyZ)' '"r(xN'yN)} (65)
where x; € Ryand y; € (+1,—1).

Consider a hyperplane defined by (w, b), where w is a weight vector and b is a

bias. A new object X can be classified with:
f(x) = sign (wx + b) = sign (Z?’ aiyl-(xl-xj) +b) (6.6)

where (xi,xj) is a set of training data points and a; is the Lagrange multipliers

which is minimised with respect to w and b and maximised with respect to a; > 0

(Gunn, 1998; Pachghare and Kulkarni, 2011).

For real-world data, the common approach is to solve the classification using a
soft margin, meaning that the hyperplane separates most but not all of the data points.

In this case the soft slack variable, &; and the capacity constant, C will be required:

minimise %llwll2 +CYié (6.7)
. N)>1— ¢
subject to { vif (’Z;_); 01 S (6.8)
P>

In this study the RBF kernel was used. This function generates hidden units that
represent the coordinates of the objects in the input space (NIR spectral data and FF
values). The output of an object for a given instance (the class that the sample belongs

to) depends on the distance between the object and its instance. This distance is
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converted into a non-linear measure. The hidden units are referred to as RBFs and the
hyperplane is formed when a given hidden unit for the objects in the instance space

produces the same outputs (Witten et al., 2011). The algorithm for RBF kernels is:
Kernel (x;,x;) = exp(—y Il x; — x; 11?) (6.9)
where y is the variable parameter (Gunn, 1998).

The robustness of the calibration model could be optimised by finding the
optimal constant C and kernel parameter y. However due to the limitation of the
software Weka and time constraints, a grid search of the least RMSEs was not
conducted. The default values (C = 1 and y = 0.01) were used for developing all the

models.

6.2.3.5 Boosted decision stumps

Decision stumps (DS) are one level decision trees with two terminal nodes
(Friedman et al., 2000). In this method, each node in a DS represents a feature in a
sample, and each branch represents a threshold value that the node can take. Samples
are classified starting at the root node and sorting them based on their feature values
(Kotsiantis et al., 2006). Stumps are weak leaners and usually have low variance but

high bias (Friedman et al., 2000).

Boosting algorithms were first introduced by Freund and Schapire (1996) to
provide a way of combining performance of many weak classifiers to produce a
powerful committee. It uses a sequential algorithm in which each new weak learner is

built based on the performance of the previously generated predictors (Jung, 2009).

AdaBoost algorithm (Freund and Schapire, 1996) assigns equal weight to all
samples in the training data. When a classifier is formed by the learning algorithm, the
algorithm reweights each sample according to the prediction output. The weight of
correctly classified samples is decreased and that of misclassified samples is increased.
A new classifier is then built for the reweighted data and focuses on predicting the
previously misclassified samples correctly. Once again the algorithm reweights the
samples according to the new classifier. The weights after iteration reflect how often the

samples have been misclassified. Whenever error on the weighted training data exceeds
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or equals 0.5, or equals 0, the boosting procedure deletes the current classifier and does
not perform any more iteration. To predict a new sample, the output of a series of

classifiers generated by the boosting method is combined using a weighted vote, where:

weight = — logi (Witten et al., 2011) (6.10)

where e denotes the classifier’s error on the weighted data and is a fraction

between 0 and 1 (Witten et al., 2011).

LogitBoost was first introduced by Friedman et al. (2000) for fitting additive
logistic regression models by maximum probability. It computes ‘response variable’
that encodes the error of the currently fit model on the training examples in terms of
probability estimates (Landwehr et al., 2004). LogitBoost decision stumps use the logit
transform to translate the probability estimation problem into a regression problem, and
solve the regression task using DS (Witten et al., 2011). The probability of a sample
being class A is a number between 0 and 1. If the number is more than 0.5 the algorithm
will categorise the sample as class A, and vice versa. The probability for each instance
can be calculated as:

p(3)= —=7= 6.11)

1+ e 2Ti@

where f; is the jth regression model and fj,) is its prediction for sample a

(Witten et al., 2011).
6.2.4 Model calibration and validation

The pre-processed spectral data from the four different experimental trials in
2012 — 2013 and the corresponding fruit firmness values for the same fruit (n = 2125)
were used to develop the calibration model. The data set obtained in 2014 (n = 594) was
used for external validation (Table 6.1). For classification, fruit were categorised into
two groups based on their firmness values after coolstorage: soft (FF < 9.8 N) and good
(FF = 9.8 N). The predictive relationship between at-harvest spectral data and post-
storage fruit grouping was investigated at four storage times (75, 100, 125 and 150 days)

by developing four corresponding models.
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A ten-fold cross-validation method was used for internal validation. In this
method the samples were randomly divided into 10 segments. One of the segments was
then removed from the dataset and then the calibration model was developed from the
remaining 9 segments. The isolated segment was then used to assess classification
performance. This process was repeated until every segment was removed from the
dataset once and their predictive performance averaged. Once this was completed, the
calibration models developed at specific storage times were used to predict fruit

grouping for the validation data set.

6.2.5 Model assessment

6.2.5.1 Comparison of data sets

Comparisons between the calibration and validation data sets were carried out
by generating respective cumulative distribution graphs of FF measurements and
conducting the non-parametric Kolmogorov-Smirnov test using Matlab® (Version
R2012a, MathWorks, Inc., Natick, USA). In this test, the hypothesis, H, was tested
based on the maximum difference between the empirical distribution functions of

calibration and validation data set, D:
Dy = SuplFm(x) - Gn(x)l (6.12)

where F, (x) is the distribution of a first population Xj,..., X;, of size m, and
G, (x) is the distribution of a second population X;,..., X,, of sizen; H = 0 if D,,,, <

mn mn

1 1
1.36 (—)z, i.e. F = G (p-value > 0.05) and H = 1 if D,p,;, > 1.36 (—)z, i.e. F # G

m+n m+n

(p-value <0.05).

Additionally, PCA plots of spectral data for both calibration and validation data
sets were obtained and compared using Scikit-learn (Version 0.18.1, BSD License,

USA).
6.2.5.2 Classification performance

The ability of Vis-NIR spectroscopy to assist in predicting kiwifruit storability
on an individual fruit basis was evaluated. To assess the model performance, the

percentage of accurate classification was calculated for each group. In addition, Table
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6.2 illustrates the performance metrics used to evaluate the classifiers. True positive (TP)
is referred to as correctly classified soft fruit (< 9.8 N). True negative (TN) is the
correctly classified good fruit (> 9.8 N). False positive (FP) is the number of classified
soft fruit which are actually good. False negative (FN) is the number of classified good
fruit which are in fact soft. For the purpose of this study, the proportion of actual soft
fruit in the segregated soft population as well as in the predicted good group, i.e. the TP
and FN rates, were used to assess model robustness. This is because the TP rate
represents the true correct classification of soft fruit and the FN rate indicates the
potential fruit loss in the segregated good fruit population which is very important for

justification of industrial applications.

Table 6.2 A typical confusion matrix used to evaluate performance of classification

models.

Predicted
Soft Good
Soft TP FN
Actual
Good FP TN

6.2.5.3 Classification algorithm comparison

In order to compare the predictive performance amongst various classifiers,
several parameters including overall accuracy, kappa values, mean absolute error, FN

rates, recall and precision and computation time were estimated.

Overall accuracy (OA) is the percentage of correct predictions in the entire

population, i.e. (TP + TN) / n, where n is the total number of samples.

Kappa is a value that ranges between 0 and 1 which indicates the reliability of a
classifier on a specific dataset. The closer the value is to 1, the more reliable the
classifying algorithm is. The kappa statistic can be calculated using the equation:

Observed accuracy - expected accuracy

Kappa = (6.13)
1 - expected accuracy

where observed accuracy is the total number of instances that were classified

correctly throughout the entire confusion matrix; expected accuracy is defined as the
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accuracy that any random classifier would be expected to achieve based on the

confusion matrix and can be calculated as:

(TP+FN)x (TP+FP) | (TN+FP) x (TN+FN)

Expected accuracy = It ~ It (6.14)

where n represent the number of total observations

Mean absolute error (MAE) is the mean of overall error made by the classifier.
1 ~
MAE = ~ ™16 -6 (6.15)

where 8; is the predicted value and 8; is the observed value.

Recall is the proportion of samples belonging to the positive class (i.e. Soft) that

are correctly predicted, i.e. Recall = TP / (TP + FN).

Precision is the proportion of actual positive samples in the predicted positive

class, i.e. Precision = TP / (TP + FP).
Training time is the time in seconds consumed to compute the model.

In addition, the performance of the models using different classifiers was
evaluated using the receiver operating characteristic (ROC) curves. The ROC curve is
used to characterise the trade-off between hit rate (signal) and false-alarm rate (noise)
over a noisy channel (Gorunescu, 2011; Witten et al., 2011). As a result the ROC curves
can be used to visualise, organise and select classifiers, based on their performance
(Gorunescu, 2011). Often the ROC curves are plotted using the TP rates (‘benefits’)
against the FP rates (‘costs’). However for this study, the FN rates are more important
as they are the true costs of a poor segregation (number of soft fruit in the predicted
good batch). Therefore the ROC curves were obtained by plotting the TN values against
the FN values. The samples were sorted in descending probability order according to
the predicted probability of a true response. The ROC curve started from the origin, and
each point corresponded to drawing a line at a certain position on the ranked list,
counting the True’s and/or False’s above it, and plotting them vertically and/or

horizontally, respectively (Witten et al., 2011).
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In ideal situations the curves should be as close to the upper left corner (vertical
axis) as possible (Witten et al., 2011) because high TN rate results in consecutive
vertical lines which will bring the curve to coordinates with low FN rate. The point (0, 1)
represents perfect classification (i.e., no FNs), whereas a completely random guess
would form a diagonal line (no discrimination) from the left bottom to the upper right

corner (Gorunescu, 2011).

A simple way of evaluating ROC curves is to estimate the area under curve
(AUC). A higher AUC value suggests better classification performance. Hence the
AUC values were also used for algorithm comparison. In general an AUC value
between 0.8 — 1.0 indicates good to excellent classification accuracy, whereas 0.7 — 0.8
is considered fair accuracy. However, cautions should be taken when using AUC to
evaluate model performances, because over-simplifying ROC curves into a single AUC
number may lose information about the pattern of trade-offs of a particular classifier

(Gorunescu, 2011).

Final ranking of classifiers was carried out using the Garrett’s Ranking
Technique (Garrett, 2002). It was calculated as percentage score using the equation:

100 (Rij—o.s)

Percentage score = N

- (6.16)
J
where R;; is the rank given for the i™ item j™ individual; N; is the number of

items ranked by j™ individual.

6.2.5.4 Further improvement through data balancing

In the calibration data set the distribution of the incidence of soft and good fruit
were highly imbalanced especially at 75 and 100 days (Table 6.1) where the vast
majority of the fruit were firm. This class imbalance problem is common to many real
world data mining problems. The minority class is often the one that has the highest

interest and usually implies a great cost when it is not well classified (Elkan, 2001).

The solutions to deal with this can be categorised into three major groups: 1)
data resampling including under or oversampling, 2) algorithmic modification and 3)
cost-sensitive learning (Barandela et al., 2003; Lopez et al., 2013). Amongst these, data
resampling is the most popular due to its simplicity. In this chapter the Synthetic
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Minority Oversampling Technique (SMOTE) filter was employed as a resampling
technique, in order to improve the performance of imbalanced data set. This was carried

out using only the top two ranked classifiers after algorithm comparison (Section 6.3.3).

The SMOTE technique, proposed by Chawla et al. (2002), is a supervised filter
that alters the distribution of classes by oversampling the minority class. This is
achieved by creating synthetic samples using a k-nearest-neighbour approach (Witten et
al., 2011). This causes the decision boundaries for the minority to spread further into the

majority class space (Batista et al., 2004).

For the purpose of this chapter, the percentage of oversampling was determined
by aiming for a final ratio of about 2:1 for good : soft fruit (Table 6.3). To achieve this,
300% of the original number of soft fruit was simulated by the SMOTE filter, resulting
in a total of 400% of the original number of soft samples for storage times at 75 and 100
days. Similarly, 100% of the original number of soft fruit was synthesised for storage
time at 150 days, contributing to a total of 200% of the original number of soft. The
number of soft fruit after data balancing is obtained by multiplying the original number

with the percentage of fruit simulation.

Table 6.3 Number and ratio of good and soft fruit before and after data balancing

using the SMOTE filter.

Stgrage Soft Good : Soft % of Soft Soft Good : Soft
time (original) (original) simulated (after data (after
(day) g & balancing) balancing)

75 35 8.6:1 300 140 2.1:1
100 87 8.8:1 300 348 22:1
125 121 1.8:1 - 121 1.8:1
150 133 35:1 100 266 1.8:1

The performance of the models developed using the original and balanced data
sets was evaluated using the ROC curves. Comparisons of AUC values were carried out

using the GLM in Minitab®.
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6.2.5.5 Multiclass classification

Data noise generated by variation in physical measurements of firmness using
the penetrometer was also considered. Fig. 6.2a shows the differences observed between
the two firmness readings measured on the same fruit. As the measured average
firmness values increase so does the potential difference between the two measured
values determining the average. Given that only two values were used to determine each
average firmness value, either of these values could be considered as the true fruit

firmness.

50
@) 75d

45 1 o 100d
v 125d
40 A 150d
35
30 4

25 A

Difference between Two Firmness Readings, N

True Firmness, N

0 5 10 15 20 25 30 35 40 45 50 55 60

Average Meaured Firmness, N

Figure 6.2 (a) Difference between two measured firmness readings as a function of
average measured firmness; (b) True firmness as a function of average measured
firmness. Dots represent average values where blue lines represent potential error
margins and red dotted lines indicate the range of actual firmness when the

measured firmness is 9.8 N.
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Following this thought, data on Fig. 6.2a were converted to Fig. 6.2b which
represents the relationship between the measured average and potential true firmness of
a kiwifruit. A fruit with an average firmness of 9.8 N (1 kgr) may have a true firmness
ranging from 7.4 N to 12.3 N. A fruit is only considered really soft if the measured
firmness value is below 7.4 N, and a fruit is truly exportable if the measured firmness is
greater than 12.3 N. Fruit with measured firmness values falling in between these two

boundaries could either be soft or good and therefore is considered as unsure.

Based on this observation, attempts were also made to develop classification
models to segregate fruit into three classes, Real Soft (FFaverage < 7.4 N), Unsure (7.4 <
FF Average < 12.3 N), and Real Good (FF average > 12.3 N). Again this was carried out only

using the top two ranked classifiers after algorithm comparison (Section 6.3.3).

Within multiclass classification there are two popular methods of simplifying
the decisions made: one-against-all (OAA) and one-against-one (OAQO). These methods
achieve classification by reducing a multiclass problem to a binary one and hence
simplifying predictions. The OAA builds a classifier for each class in a multiclass
dataset. As a result it builds n models for a dataset with n classes. The OAO approach
builds classifiers by taking any two classes as a pair and ignoring the remaining one. As
a result n (n — 1) / 2 classifiers are needed to be built for a dataset with n classes

(Eichelberger and Sheng, 2013b).

An alternative approach is known as all-at-once (AAQO) which applies multiclass
algorithms directly. It classifies a test example into anyone of the multiple classes using
one decision function only (Eichelberger and Sheng, 2013b). Eichelberger and Sheng
(2013a) compared the performance of these three methods and concluded that OAA and
OAO should not be used for algorithms that can perform multiclass classifications
directly, i.e. AAO. Similarly, Mathur and Foody (2008) also suggested that one-shot
multiclass classification (AAO) was better than the OAA approach. Therefore, for this

study, we only applied algorithms directly for multiclass classifications.

115



Developing non-destructive techniques to predict kiwifruit storability

6.3 Results and Discussion

6.3.1 Comparison of data sets

The storage performance data appeared to be highly imbalanced, with the soft
fruit class under-represented relative to the good fruit class in all data sets (Table 6.1).
As the storage time increased the number/proportion of soft fruit increased and hence
the data became relatively more balanced. The distributions of firmness were found to
be different between calibration and validation data sets at 75, 100 and 125 days (p <
0.05; Fig. 6.3a, b, d) but were comparable at 125 days (p > 0.05; Fig. 6.3c). This is
probably because external factors such as orchard, season and other growing conditions

result in different physiological properties of fruit when using an independent data set.

K-S test: these distributions are significantly different . K-S test: these distributions are significantly different
1 = r 7
H=1 H=1 {f
09 p=3.234e07 03+ p=0041835 i
D =0.31509 D = 0.145856 4
0s i 08tk
r
Pl 8 2071
= i = L
205 r B 08
E E
o 05 = 05F
= =
S 04 = o4t
3 g
03 0.3r
02 02r
0.1 Calibration 01k Calibration
(a) ———Yalidation — — —Yalidation
0 . . . . ) 0 | 1 1 )
1] 5 10 18 20 25 30 35 40 45 a0 a 25 30 k2] 40 45 50
Firmness, N Firmness, M
k-5 test: no significant difference between distributions K-S test: these distributions are significantly diferent
ir == 1r e
H=1 i
o8- 08} p=21263e-12
D=0.30111 !
08t aal i
=077 _o7f
08l z
= =
208y 208
= £
Z 04r (—é 0.4
3 =
03¢ 2 g3t
02r 02f
01F 01 ’> f Calibration
/
(d)" — ——%alidation
0 . . . i ol 1 . L . I . )
1] 20 25 a0 35 40 45 50 u] 5 10 15 20 25 30 a5 40 45 50
Firmness, N Firmness, N

Figure 6.3 Kolmogorov-Smirnov test comparing cumulative distributions of flesh
firmness (N) for calibration and validation data sets at (a) 75, (b) 100, (c¢) 125 and
(d) 150 days after storage.
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In addition, PCA test was conducted at each time point, to visualise the
differences in spectral properties of fruit skin between the calibration and validation
data set (Fig. 6.4). In model calibration, a wide range of fruit variability was captured in
order to increase the likelihood for future validation data to exhibit similar spectral
properties as what was observed in the calibration data set. This was true for fruit stored
for 100 and 150 days as the calibration and validation data sets overlap with each other,
suggesting similar spectral characteristics of fruit. However the validation samples for
75 and 125 days exhibited different spectral properties and hence were separate from

the calibration samples (Fig. 6.4).
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Figure 6.4 Visualisation of spectral differences between calibration and validation
data sets using principal component analysis (PCA). Data points represent
individual fruit samples present in the data sets. x- and y-axes represent PCs 1 and

2 correspond to an individual PCA test for each storage time.

The differences observed between calibration and external validation samples
are not uncommon for real-world model prediction problems. Various external

parameters such as temperature, moisture, wavelength shifts and crop season can vary
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largely in industrial conditions and alter the spectral properties of validation samples
(Roger et al., 2003). As such, corrections to reduce the effect of external parameters are
required in order to improve model performance. One approach is to optimise the
calibration sample which includes collection of a comprehensive data set that covers all
the variations including those caused by external parameters so that the model would be
insensitive to these parameters (Roger et al., 2003). This approach was used during the
development of the calibration model for this study but seasonal differences were still
observed (Fig. 6.4). Alternatively, spectral preprocessing techniques such as external
parameter orthogonalisaiton and orthogonal signal correction can be applied to

eliminate the effects of external parameters.
6.3.2 Classification performance

The predictive outcomes of various classifiers using 10-fold cross validation are
summarised in Table 6.4. Samples size seems to have affected predictive performance
of the classification models, with better prediction accuracy observed for the good
group (> 78%) than the soft group (< 54%) for all classifiers except for Naive Bayes
and QDA. In general prediction of soft fruit was better at 125 and 150 days (~ 40 — 50%)
compared to that at 75 and 100 days (~ 20 — 40%). This could also be related to the
higher number of soft fruit (hence, more balanced data sets) found at those storage times.
Results obtained for 125 and 150 days were comparable to the results found by Feng
(2003) for the classification of healthy and soft-patched fruit (67% and 35%
respectively), and those reported by Clark et al. (2004) for segregation between good
and disordered fruit (~85% and ~59% respectively).

In external validation (Table 6.5), the models were unable to segregate soft fruit
at 75 and 100 days regardless of the classifiers used; all (or most) of the fruit were
identified as good fruit. Better TP rates (accurately classified soft fruit) were found at
125 and 150 days using SVM and LogitBoost DS. For QDA, Naive Bayes, Random
Forest and AdaBoost DS, segregation of soft fruit was only possible at 150 days
however with relatively low TN rates (accurately classified good fruit). In general as

storage time increased the TP rates improved but the TN rates decreased.

The poor validation performance was likely attributed to the extremely low

levels of soft fruit found in the validation data set, in particular for storage times at 75
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and 100 days (6 and 2 soft fruit respectively), compared to that found in the calibration
data set (35 and 87 respectively; Table 6.1). Hair et al. (2006) recommended at least 20
samples per group for discriminant analysis design in order to improve the chance of
classification. The number of soft fruit in the validation data set was below 20 at both
75 and 100 days. As a result the calibration models were less likely to identify soft fruit
from the population, hence the poor classification accuracy. At 125 days, the number of
soft fruit in the validation data set was more than 20 and the proportion increased to
27%. In this case, classification accuracy of soft fruit improved using SVM and Logit-
Boost DS (11% and 40% respectively) but not for the other classifiers (0%). At 150
days, 34% soft fruit were found in the validation data set. Prediction accuracy improved
significantly for soft fruit (44 — 99%) for all classifiers but became less successful for
good fruit (< 53%; Table 6.5) compared to that at other storage times. This further

suggests that classification accuracy was affected by group size.

In addition, the spectral differences observed in Fig. 6.4 also contributed to the
discrepancy in classification performance between classification and validation. This
explains the poor validation prediction at 75 and 125 days, where the validation data set
had patterns and trends different from those of the calibration data set (Fig. 6.4a, c). In
comparison, classification accuracy at 150 days was higher since the spectral properties

between the two data sets were much more similar (Fig. 6.4d).
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Chapter 6 Segregation of kiwifruit storability

6.3.3 Classification algorithm comparison

Tables 6.6 — 6.9 summarise the statistics for model evaluation and Garrett’s
ranking of model performance amongst classifiers. Considering a total of eight
performance metrics, the best two performing classifiers were SVM and LogitBoost DS
regardless of storage time, with LogitBoost DS performing better at 125 and 150 days
whereas SVM performing better at 75 and 100 days. Amongst the remaining classifiers
AdaBoost DS and Random Forest showed better performance whereas QDA and Naive

Bayes performed poorly.

The Overall Accuracy (OA) showed the combined predictive performance of
both classes but did not indicate the accuracy of predictions for each group. For instance,
SVM and LogitBoost had similar OA but SVM had higher Recall at 75, 100 and 150
days whereas LogitBoost DS had lower FN rates at all times (Tables 6.6 — 6.9). In this
case low FN rates are preferable because the proportion of soft fruit in the predicted
good class should be as low as possible in order to ensure exportability and long
storability of the predicted good batch. Similarly, QDA and Naive Bayes had high
Recall rates most of the time but the FN rates were also high and hence were considered
undesirable. Amongst all classifiers, SVM had the highest precision at 75 and 100 days
but was outperformed by LogitBoost DS at 125 and 150 days (Tables 6.6 — 6.9).
AdaBoost DS seemed to have lower MAE (error) values compared to the top-two
classifiers (SVM and LogitBoost DS) despite lower overall ranking (Tables 6.6 — 6.8).
Naive Bayes consistently had the highest MAE at all storage times. The SVM had the
highest Kappa values except for at 125 days, indicating better reliability.

The AUC ranged from 0.70 — 0.80 for most classifiers with one exception of
Naive Bayes at 125 days (AUC = 0.56), indicating fair accuracy. The SVM had the
highest AUC values at 75 and 100 days, indicating better classification performance.
However, at 125 and 150 days LogitBoost DS was found to be superior given the higher
AUC values at those storage times (Tables 6.6 — 6.9). The computational cost was
highest for AdaBoost DS as it consumed the longest time to build models. The costs of
Random Forest, Naive Bayes and QDA were noticeably less than those of SVM,
LogitBoost and AdaBoost DS but their performance was poor (Tables 6.6 — 6.9).
Amongst the top performing classifiers, SVM and LogitBoost were more cost effective

as compared to AdaBoost.
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Developing non-destructive techniques to predict kiwifruit storability

Previous findings on the comparison of machine learning techniques in
classification models showed contradictory results. For instance, the study of Zhang and
Fang (2007) found that when tested on an (external) independent data set, LogitBoost
using Decision Tree as a base learner performed similarly with SVM for discrimination
of proteins according to their primary structures. Cai et al. (2006) however, suggested
LogitBoost DS outperformed SVM in predicting the structural classes of protein.
Contradictory results have also been found between the two boosting algorithms. While
Dehzangi et al. (2011) found that AdaBoost performed better than LogitBoost,
McDonald et al. (2003) and Ridgeway (1999) indicated that the difference in
performance between the two was limited. Yet Krishnaraj and Reddy (2008) showed
that better results were obtained using LogitBoost for the prediction of protein fold
recognition using decision stumps as a weak learner on Weka. In addition, the
performance of different classifiers varies with experimental conditions. Khorshid et al.
(2015) demonstrated that the performance of SVM as opposed to the other classifiers
(such as AdaBoost, LogitBoost, Naive Bayes and Random Forest) varied across three

experiments.

The No Free Lunch Theorem (Wolpert and Macready, 1997) suggests that “any
two optimisation algorithms are equivalent when their performance is averaged across
all possible problems”. This was also true for this study. There is no single classifier
that had the best performance under all circumstances. Predictive performance amongst
the classifiers varied at different storage times, and was depended on the parameters
selected for evaluation (Tables 6.6 — 6.9). For instance, LogitBoost and SVM performed
poorly in some cases (low recalls at 75 and 100 days) but classifiers with low overall
performances predicted well in a few occasions (e.g. QDA and Naive Bayes had higher
recalls at 75 and 100 days; Tables 6.6 — 6.7). Therefore it is more sensible to say that
there is no absolute best learning algorithm. The choice of the most suitable classifier is
dependent on the nature of the data set and the criteria for discriminant analysis. In this
case LogitBoost and SVM were the better classifiers because they performed well in

cases that are more critical for the purposes of this study.

Nonetheless, the observed differences in performances amongst classifiers have
been addressed and explained in many previous studies. Dettling and Biithlmann (2003)

suggested that the lower error rates obtained with LogitBoost were because, unlike
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Chapter 6 Segregation of kiwifruit storability

AdaBoost which uses an exponential function, LogitBoost uses the binomial log
likelihood, which increases linearly rather than exponentially for strong negative
margins. As such LogitBoost usually performs better on noisy data or mislabelled
samples. This is important for the current study as the variation in firmness
measurements by penetrometer could result in a large margin of error for sample
grouping and hence, resulting in misclassification of fruit (Fig. 6.2). Caruana and
Niculescu-Mizil (2006) suggested that SVM had high error because the measurement of
error interprets predictions as posterior probabilities but SVM is not designed to predict
probabilities; the output of an SVM are just normalised distances to the decision
boundary. Similarly, Naive Bayes had much higher error than the others because NB
models predict calibrated probabilities poorly due to the unrealistic independence
assumption (“Naive Bayes assumption”). In addition, Wu et al. (2010) suggested that
LogitBoost DS was more capable of handling mixed data because, unlike SVM which
relies on the Euclidean distance between two data points, the decision split at each
stump branch does not rely on any particular distance measure between any pair of data

points. Hence it should be more robust to outliers in both input and feature spaces.

Amongst all the classifiers, only SVM and LogitBoost DS were capable of
prediction of soft fruit at both 125 and 150 days in external validation (Table 6.5), with
LogitBosot performing slightly better at 125 and 150 days. Identifying long storing fruit
is important for making inventory decisions because firmness decreases rapidly for all
the fruit from ~80 N to 15 N during the first 70 days of storage (Beever and Hopkirk,
1990). During this period the proportion of soft fruit is very low and majority of the
fruit would have already been shipped. Afterwards fruit continue to soften slowly
during 100 — 175 days of storage and the average firmness will be approaching and
eventually go below 9.8 N or 1 kgr (Beever and Hopkirk, 1990; Jabbar, 2014), causing
soft fruit to become prominent and problematic. As a result the proportion of soft fruit
in the remaining batch would be significantly consequential. The ability to predict and
segregate fruit with storability beyond 100 days would not only enable the reduction of
direct fruit loss resulted from short-storing fruit becoming unacceptable for export, but
also enable the separation of long-storing fruit from an ethylene environment produced
by short-storing fruit during softening (Samarakoon, 2013), preventing secondary fruit
loss (Jabbar and East, 2016). In addition, LogitBoost DS was considered superior to
SVM because of the lower FN rates at all storage times (Tables 6.6 — 6.9), i.e. less soft
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fruit were classified as good fruit and hence, less fruit loss in storage should the
predicted good fruit population be kept for later shipment in the season. As such
LogitBoost DS would be more suitable to be used to segregate potential soft fruit from

the entire batch.

Computational cost is also an important consideration. AdaBoost was found to
have a substantial speed advantage as compared to SVM as reported in Bartlett et al.
(2004) where LOOCV was used. Krishnaraj and Reddy (2008) also suggested that
AdaBoost and LogitBoost DS with 100 iterations were less expensive than SVM (with
SMO) when 10-fold cross-validation was used. However our study showed
contradictory results. With 100 iterations boosted algorithms were not as fast compared
to SVM using sequential minimal optimisation (Tables 6.6 — 6.9). In many of the
previous studies the parameters for SVM prediction (e.g. C and y values) were
optimised and this might have increased its computational cost. Only default values for
the parameters of SVM were used in the present study. This might explain why SVM

was more cost effective compared to boosting algorithms.

The ranking of the classifiers carried information specific for the data set used in
this study. However, it is important to note that when Garrett’s Ranking Technique was
applied, equal importance was assigned to all the performance metrics. The best
classifier(s) were chosen based on the assumption that all the metrics considered for
evaluation contributed equally for final model performance. It is important to bear in
mind that the rankings could be modified by assigning different weightings to the

selected metrics, should such requirements be needed for a particular case.
6.3.4 Further improvement through data balancing

Data balancing using the SMOTE filter seemed to improve classification
accuracy during model calibration, especially for soft fruit (Table 6.10). Predictive
accuracy of good fruit was similar to that using the original data (Table 6.4). The
improvement in performance was more prominent at 75 and 100 days as compared to at
150 days (where original data was more balanced; Tables 6.4 and 6.10). The overall
outcomes predicted by LogitBoost DS were slightly better (higher TP and TN rates) in
comparison to those by SVM (Table 6.10). The ROC curves shifted to the upper left
direction for both SVM and LogitBoost DS (Fig. 6.5 — 6.6), with higher AUC values
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obtained using the balanced data (p = 0.023). There were no difference in AUC values
between the two classifiers (p = 0.347). Before data balancing the FN rate was
approximately 20 — 40% for a targeted 75% TN rate. After data balancing the FP rates

reduced to less than 20% for achieving the same level of TP rates.

Despite the promising results from model calibration, it is quite obvious that
data balancing using SMOTE filter also led to over fitting, as evidenced by the poor
accuracy obtained in external validation (Table 6.10). Segregation of soft fruit was not
improved at 75 and 100 days (0%). Predictive accuracy of soft fruit at 150 days was
improved with SVM but was reduced for LogitBoost DS compared to those using
original data (Table 6.5 and 6.10). Predictive accuracy of good fruit reduced
considerably with SVM but improved slightly with LogitBoost DS (Table 6.10). Overall
the performance in predicting independent sample was similar between the original and

balanced data.

Table 6.10 Calibration and validation of classification models to predict kiwifruit
storage potential based on balanced Vis-NIR spectra data using Support Vector

Machines and LogitBoost decision stumps (data balancing was not applied at 125

days).
Calibration Accuracy (%) Validation Accuracy (%)
Storage
time n Support LogitBoost .
o Support Vector  LogitBoost
(day) Vector Decision ) o
_ Machine  Decision Stumps
Machine Stumps
Soft  Good  Soft Good Soft Good Soft Good

75 440 88 91 95 92 0 100 0 100

100 1116 73 88 78 89 0 100 0 100

150 733 71 86 66 89 91 9 41 67
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Figure 6.5 ROC curves of models developed at 75 (a — b), 100 (¢ — d) and 150 days

(e — f) using SVM classification based on original (a, ¢, ¢) and balanced (b, d, f)
data.
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Figure 6.6 ROC curves of models developed at 75 (a — b), 100 (c — d) and 150 days
(e — f) using LogitBoost DS classification based on original (a, ¢, ¢) and balanced (b,

d, f) data.
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Yen and Lee (2009) suggested that the SMOTE algorithm had disadvantages
such as over generalisation of the minority class since it did not concern the majority
class when generating the synthetic examples for the minority class. As a consequence
this increases the occurrence of overlapping between classes (Lopez et al., 2013) and
results in difficulty for discrimination. Elrahman and Abraham (2013) also suggested
that the SMOTE filter stopped functioning well when the number of samples in the
minority class was not adequate for estimating the accurate probability distribution for
the actual data. This is likely to be the case for this study (only 6% and 2% soft fruit at

75 and 100 days, respectively in validation; Table 6.1).

For the purpose of this study, the use of this filter was not justified since it did
not contribute to any improvement in performance during model validation while
additional computational cost was introduced as there were more samples to process.
Some studies recommended under-sampling using data cleaning techniques as an
alternative method. For instance, Wilson (1972) used edited nearest neighbour rule to
remove samples that differ from two of its three nearest neighbours. An SVM method
could also be used to discard redundant or irrelevant majority class samples (Lopez et
al., 2013). However, under-sampling also has a great disadvantage: some of the
important information might be lost from the majority class (Dubey et al., 2014). Hence
it may not be suitable for the current study as a wide range of variability is required to
represent characteristics of fruit from various sources, and removing some of the
samples could potentially remove some of the desirable variation. Ramentol et al. (2012)
recommended a hybrid method which uses both under- and over-sampling by
eliminating some of the minority class samples expanded by the oversampling method
to reduce over-fitting. Since this method does not eliminate samples from the majority

class, it could be considered for future improvement of the models.
6.3.5 Multiclass classification

In multiclass classification, the calibration model suggests that the segregation
of Real Soft fruit (< 7.4 N) from the entire population was possible at 75 and 100 days
with SVM but was unsuccessful with LogitBoost DS (Table 6.11). The overall
predictive accuracy of SVM was considered better than that of LogitBoost because of
the better prediction of Real Soft fruit. Predictions of Real Good fruit (> 12.3 N) were
acceptable (~ 80%) at 75, 100 and 150 days but were poor (< 50%) at 125 days for both
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classifiers. Predictions of Unsure fruit (7.4 — 12.3 N) were better at 125 days (71%) but
were relatively poor (< 52%) at other storage times. Compared to binary-class models
(Table 6.4), for SVM the predictive performance of (real) soft fruit was better at 75 and
125 days but was poorer at 100 and 150 days; prediction of (real) good fruit was not as
good at all times. For LogitBoost DS the predictive accuracy of (real) soft and (real)

good fruit was not as good at all storage times.

Table 6.11 Calibration of multiple-class classification models to predict kiwifruit
storage potential based on at-harvest Vis-NIR spectra data (original) using

Support Vector Machines and LogitBoost decision stumps

Classification Accuracy (%)

Storage Support Vector Machine LogitBoost Decision Stumps
time (day) Real Unsure Real Real Unsure Real
Soft Good Soft Good
75 50 46 81 0 39 83
100 17 43 87 0 52 84
125 75 71 46 25 71 48
150 33 40 79 26 47 78

In external validation (Table 6.12), predictive accuracy at 75 and 100 days was
good for prediction of Real Good fruit but was poor for Unsure fruit. There was no Real
Soft fruit in the validation data set at 75 or 100 days (i.e. FF > 7.4 N for all fruit). This
suggests that the fruit that were previously grouped as ‘soft’ could have actually been
good (as illustrated in Fig.6.2b). This most probably contributed to the difficulties in
classification of (real) soft fruit in binary-classification and further explained the poor
performance of validation observed in Table 6.5. For this reason segregation of soft fruit
at storage times less than 100 days might be more challenging compared to that at 125
and 150 days. At 125 days for both classifiers predictive accuracy was good for Real
Good fruit and was poor for Unsure fruit; SVM achieved good prediction for Real Soft
class whereas LogitBoost DS was unable to segregate Real Soft fruit. At 150 days both
classifiers performed similarly; prediction accuracy was good for Real Soft fruit but was

poor for Unsure and Real Good fruit.
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Table 6.12 Validation of multiple-class classification models to predict kiwifruit
storage potential based on at-harvest Vis-NIR spectra data (original) using SVM
and LogitBoost DS.

Accuracy of Classification (%)

Storage Support Vector Machine LogitBoost Decision Stumps
time (day)
Real Unsure Real Real Unsure Real
Soft Good Soft Good
75 - 0 90 - 0 100
100 - 0 100 - 5 93
125 73 0 63 0 4 98
150 60 39 9 60 42 8

Compared to binary-class models (Table 6.5), for SVM the predictive
performance of (real) soft fruit was better at 125 days but not as good at 150 days;
prediction of (real) good was not as good. For LogitBoost DS the predictive
performance of (real) soft fruit was not as good compared to binary-class models;

prediction of (real) good fruit was better at 125 days but poorer at 150 days.

Previous studies found contrary results on the performance of SVM and
LogitBoost directly applied for multiclass classification. Kim et al. (2015) compared the
performance of four-class classification models to predict places of origin of animal-
related food products using k-nearest-neighbour, LogitBoost and SVM with SMO, and
found that LogitBoost gave better predictive accuracy than the other classifiers in most
situations. Aires et al. (2004) on the other hand, found that SVM with SMO achieved
better results than the others including LogitBoost for classification of web texts
according to users’ need. In our study SVM seemed to have outperformed LogitBoost
during both calibration and validation, especially for the prediction of Real Soft fruit
(Table 6.11 — 6.12). The result suggests that SVM may be more suitable for multiclass
segregation of real soft fruit using the data set generated for the current study. However
significant improvement of predictive performance of Unsure and Real Good fruit is

required in order to justify the proposed multiclass approach.
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6.4 Final Model

Considering the predictive performance in both calibration and external
validation, it seems that the best approach for developing a suitable classification model
for this study is to use original spectral data to segregate fruit into two groups based on

the export firmness criterion using boosted decision stumps.

The final model adapts the LogitBoost ensemble algorithm in which the base
learner, single decision tree with one root node (a decision stump), is boosted through
an adjustment process which involves weighting and re-sampling in order to develop a
strong final learner. The assumption is that although the model developed by a weak
learner such as single layer decision stump may be prone to high bias and prediction
error, this error can be reduced through iterations of a series of such models (decision

stumps) and the assembled accuracy will be greater than a single classifier.

Figure 6.7 illustrates the process to develop the final model. The input variables
x are a set of fruit spectral data which are defined over a range of attributes, i.e.
reflectance over a range of wavelengths. The outcomes are labelled class signs y (+ or —
for soft or good) for the input variables. Before the training begins, each input sample x;
is assigned an equal weight w, and the initial probability p, of y = +1 (i.e. soft) is 0.5.
F(x) and f, (x) are both predictor functions of the input variables whereas[F (x)] is the
class sign. The initial function Fy(x) is 0. At each iteration m, the decision stump
evaluates all possible splitting thresholds for each attribute of a sample, selects the one
attribute a,, with the maximum information gain, and then generates an output y; based
on the threshold value. After the first iteration the weights w; are estimated using p(x)
in the previous iteration. A dummy output response z;, which reflects the error from the
previous iteration, is also computed. A new model is trained in the next iteration by
fitting the function f,,, (x) with a weighted least-square regression of z; and w;. The new
probability p(x) is obtained from F(x) through a logistic link function, and is
maximised by minimising the squared error in the regression model f,,,(x). The output
response [F(x)] is updated after each iteration and the final [F(x)] for each sample
after M iteration is determined based on a majority voting scheme, i.e. the class with the

most votes is selected (Fig. 6.7).
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Figure 6.7 A schematic diagram showing the process of final model development,

calibration and validation.
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Once the model is developed the prediction outcome is presented in a confusion
matrix showing true positive, true negative, false positive and false negative rates, and
the predictive performance is evaluated using analytical tools such as recall, precision
and ROC curves. Once model calibration is completed it can then be applied to an

independent data set for validation (Fig. 6.7).
6.5 Conclusion

Segregation of kiwifruit storability based on the export firmness criterion could
be achieved using Vis-NIR spectral data collected at harvest by developing a blackbox
model using machine learning algorithms. In general the prediction of good fruit was
better than that of soft fruit possibly due to data imbalance. Amongst the six classifiers
studied, Support Vector Machines and LogitBoost Decision Stumps performed better
than the other classifiers in calibration models. In external validation segregation of soft
fruit was possible at 125 days and 150 days for SVM and LogitBoost DS but was only
possible at 150 days for the other classifiers. The poor validation performance was
likely due to a combination of low soft fruit count in the validation data set and different
spectral characteristics of validation samples, which can be corrected by applying pre-

processing algorithms to remove effects of external parameters.

Data balancing by oversampling using the SMOTE filter improved performance
of calibration models but did not make any changes during external validation. An
alternative technique which combines both under- and over-sampling may be
considered for further work. Multiclass classification using directly applied algorithms
to account for variations generated by physical measurements of firmness was possible
using SVM and LogitBoost DS. However the overall predictive performance was not as
good compared to original calibration models. Because of its better predictive power at
125 and 150 days, LogitBoost DS was selected as the most suitable classifier for final

model development.
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7 Segregation of ‘Hayward’ kiwifruit for storage potential using Vis-

NIR spectroscopy — validation of classification model

7.1 Introduction

For kiwifruit growers, it is important that orchard gate returns are maximised
and costs are minimised (Tanner et al., 2012). Due to packhouse rejection penalties,
there are limited options for growers to save on-orchard costs. However, there is
potential for segregation technology to improve orchard gate returns by improving the
efficiency of packing operations and reducing postharvest cost through fruit loss
(Tanner et al., 2012). The variability in fruit at the point of harvest contributes to a wide
range of storage potential. Screening out kiwifruit with shorter storage life potential
from the entire population could enable fruit or batches of fruit to be sold earlier in the
season without affecting the remaining batch. This is important because although a large
percent of the fruit would store well through the season, it is the poorest-storing fruit in
a line that influences the storability of the line (Tanner et al., 2012). It would be
beneficial to utilise the variability in the population and segregate fruit with different
intended storability in the supply chain. There are two potential segregation systems:

within grower line and between grower line. Fig. 7.1 illustrates the two systems

conceptually.
(a) (b)
N z
' N

Figure 7.1 Conceptual diagram of segregation of five batches of kiwifruit (a) within

grower line and (b) between grower line. Orange arrow indicates good-storing

fruit/lines whereas blue arrow indicates poor-storing fruit/lines.
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Within grower line segregation (Fig. 7.1a) identifies individual short-storing
fruit and aims to separate these fruit from long-storing ones within the same batch. The
outcome of this segregation would be two lines of fruit for each grower line with the
poor-storing fruit from each line being separated and shipped earlier in the season. For
between grower line segregation (Fig. 7.1b), poor-storing lines are identified as they
contain a larger number of potentially short-storing fruit and hence have, on average,
lower storability. Segregation would result in these grower lines being separated from
the population for earlier sale. Both systems would be useful to assist with inventory
decisions for sequential marketing, but would require different implementation and have

different outcomes on postharvest performance and grower orchard gate return.

In 2012 and 2013, several sets of at-harvest Vis-NIR spectral and post-storage
firmness data were collected from various ‘Hayward’ kiwifruit sources to develop a
qualitative classification model which could be applied to segregate kiwifruit for their
storability. An external validation showed that using LogitBoost Decision Stumps, the
developed model successfully predicted storability of 40% of soft fruit (FF < 9.8 N) and
81% of good fruit (FF > 9.8 N) after storage at 0°C for 125 days (Table 6.5, Chapter 6).
This result suggests there is potential for the developed model to be useful as a
segregating tool when applied prior to storage. However, more work is needed to
investigate the repeatability of the model in real-world cases and whether commercial
applicability can be justified should the technique be applied on an industrial scale. As
such a new experiment was conducted in 2015. This trial was designed to assess
whether the model would be helpful in segregating, both within and between batches of
fruit, by ranking storage potential prior to coolstorage. At-harvest Vis-NIR spectra was
utilised together with the calibrated classification model (Chapter 6). The aim was to
assess whether segregation of fruit identified as poor storing at an early stage would
benefit storability of the remaining batch and hence assist with marketing and inventory

management decisions and ultimately reduce fruit loss later in the season.
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7.2 Materials and Methods
7.2.1 Experimental philosophy

Kiwifruit softening is known to be highly sensitive to ethylene, even in
coolstorage conditions (Jabbar and East, 2016), with ethylene production of kiwifruit
dramatically increasing as fruit soften (Samarakoon, 2013). Consequently, as short-
storing fruit become soft, they have the potential to produce within pack an ethylene
environment that softens otherwise long-storing fruit during storage, reducing overall
firmness in the same tray. This ‘cross-contamination’ effect can be greatly reduced if
short-storing fruit can be identified and separated from long-storing fruit prior to storage.
This is because short-storing fruit would be closely kept next to one another. During
softening, they would go through rapid softening and produce a large amount of
ethylene within the same tray. Stored separately, long-storing fruit would go through
normal softening in a relatively uncontaminated cooling environment with minimal
interferences from soft fruit within the tray. As a result, the after storage average
firmness within the tray is expected to be higher for long-storing fruit and lower for
short-storing fruit as shown in Fig. 7.2. The number of soft fruit in the short-storing

trays should also be higher than that in the long-storing trays.

—— Long-storing
7 A —— Short-storing

Firmness, kgf
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Storage Time, day

Figure 7.2 Expected softening curve of kiwifruit with segregation within batches

prior to storage. Data is theoretical curves and not observed experimental results.
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As a result the experiment was designed in which physical separation of fruit
was performed in order to facilitate the potential benefits of the pre-softening
segregation (Fig. 7.3). At-harvest Vis-NIR data was captured and analysed with the
existing model (Chapter 6), and then individual fruit ranked on prediction of storability
and resorted into trays based on this ranking, within each grower line. This process
results in trays of fruit which are sorted by their storage potential as predicted from the
Vi