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Abstract 

A significant portion of New Zealand’s kiwifruit production is held as stock in 

local coolstores for extended periods of time before being exported. Many pre-harvest 

factors contribute to variation in fruit quality at harvest and during coolstorage, and 

results in the difficulty in segregating fruit for their storage outcomes. The objective of 

this work was to develop non-destructive techniques utilised at harvest to predict 

storability of individual or batches of ‘Hayward’ kiwifruit based on (near) skin 

properties. Segregation of fruit with low storage potential at harvest could enable that 

fruit to be sold earlier in the season reducing total fruit loss and improving profitability 

later in the season. 

The potential for optical coherence tomography (OCT) to detect near surface 

cellular structural differences in kiwifruit as a result of preharvest factors was 

demonstrated through quantitative image analysis of 3D OCT images of intact fruit 

from five commercial cultivars. Visualisation and characterisation of large parenchyma 

cells in the outer pericarp of kiwifruit was achieved by developing an automated image 

processing technique. This work established the usefulness of OCT to perform rapid 

analysis and differentiation of the microstructures of sub-surface cells between kiwifruit 

cultivars. However, the effects of preharvest conditions between batches of fruit within 

a cultivar were not detectable from image analysis and hence, the ability to provide 

segregation or prediction for fruit from the same cultivar was assumed to be limited.  

Total soluble solids concentration (TSS) and flesh firmness (FF) are two 

important quality attributes indicating the eating quality and storability of stored 

kiwifruit. Prediction of TSS and FF using non-destructive techniques would allow 

strategic marketing of fruit. This work demonstrated that visible-near-infrared (Vis-NIR) 

spectroscopy could be utilised as the sole input at harvest, to provide quantitative 

prediction of post-storage TSS by generating blackbox regression models. However the 

level of accuracy achieved was not adequate for online sorting purposes. Quantitative 

prediction of FF remained unsuccessful. Improved ways of physical measurements for 

FF may help reduce the undesirable variation observed on the same fruit and increase 

prediction capability. 
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More promising results were obtained by developing blackbox classification 

models using Vis-NIR spectroscopy at harvest to segregate storability of individual 

kiwifruit based on the export FF criterion of 1 kgf (9.8 N). Through appropriate machine 

learning techniques, the surface properties of fruit at harvest captured in the form of 

spectral data were correlated to post-storage FF via pattern recognition. The best 

prediction was obtained for fruit stored at 0°C for 125 days: approximately 50% of the 

soft fruit and 80% of the good fruit could be identified. The developed model was 

capable of performing classification both within (at the fruit level) and between grower 

lines. Model validation suggested that segregation between grower lines at harvest 

achieved 30% reduction in soft fruit after storage. Should the model be applied in the 

industry to enable sequential marketing, $11.2 million NZD/annum could be saved 

because of reduced fruit loss, repacking and condition checking costs.  
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1 Introduction 

1.1 Research Outline 

Kiwifruit (Actinidia deliciosa (A.Chev) C. F. Liang et A. R. Ferguson and A. 

chinensis) is an emerging horticultural crop globally. Currently the total area of 

kiwifruit orchards around the world is estimated to be 170,000 ha with annual 

production exceeding 1.8 million tonnes (Huang, 2016). The major kiwifruit producing 

countries include China, Italy, New Zealand and Chile, accounting for about 80% of the 

world production (Burdon and Lallu, 2011; Ferguson, 2011). In New Zealand, about 90% 

of kiwifruit production is exported (Burdon and Lallu, 2011). The sales of New 

Zealand-grown kiwifruit reached 117.1 million trays in the 2015/16 season, contributing 

to a total of 1.3 billion NZD export earnings (Anonymous, 2016a). New Zealand graded 

fruit were exported to over 50 countries around the world (Anonymous, 2016d). 

Kiwifruit are harvested unripe and stored at cold temperatures for long periods 

of time (usually between 6 – 8 months) allowing for physiological development until 

being suitable for consumption, a process known as ripening (Beever and Hopkirk, 

1990). This process enables long distance transport of kiwifruit to global markets using 

cost-effective shipping methods (Sale, 1990). A number of factors affect the quality of 

the fruit, including cultivar, climatic conditions, orchard management, maturity at 

harvest, storage condition, transport and handling. As a result, there is inherent 

variability that contributes to a wide range of storage potential.  

Keeping suitable quality fruit during storage has been a challenge to the 

kiwifruit industry. The development of over soft or disordered fruit during storage costs 

the industry approximately $120 million annually (Tanner et al., 2012). As part of 

quality control measures, fruit are tested using destructive methods prior to shipping and 

again on arrival at the distant market (East et al., 2013). Removal of fruit that are 

unsuitable for sale, both onshore and offshore, incur costs, due to manual repacking 

costs and direct fruit loss. These costs contribute to a significant portion of the marginal 

changes in postharvest costs of per tray of kiwifruit (Fig. 1.1; Anonymous, 2012)    .  
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Accurate prediction of postharvest performance of kiwifruit at harvest would 

help to identify individual or batches of fruit susceptible to postharvest storage disorders 

and hence have a shorter storage life. This would enable timely inventory decisions for 

sequential marketing and reduce overall fruit loss in the supply chain. Predicting the 

storage potential of fresh produce usually involves physical measurements at harvest 

such as estimates of harvest maturity (East et al., 2013). Traditionally storage potential 

of kiwifruit is estimated from at-harvest fruit quality data, and later assessed during 

storage with flesh firmness testing. This method is destructive; it requires removal of a 

small population of fruit from the batch for testing and only evaluates the storability of 

the fruit at the time of measurement. The development of real-time non-destructive 

testing methods is preferable because multiple attributes can be monitored over time 

without damaging the population.  

This study aims to investigate the feasibility of using non-destructive techniques 

applied at harvest to predict and segregate kiwifruit for storability based on several 

quality predictors. Near infrared (NIR) spectroscopy and optical coherence tomography 
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(OCT) are investigated as potential technologies. Optical coherence tomography is used 

to capture three-dimensional images of the cellular structures immediately underneath 

the surface of kiwifruit. This information may be useful to assess the changes in cellular 

structure and their potential consequences for postharvest fruit storability. Near infrared 

spectroscopy is used to predict storage outcomes by analysing the light scattering 

properties of the surface of fruit and the chemical composition underneath the surface. 

Segregation of fruit for their storage potential based on at-harvest NIR spectra is 

investigated. This segregation creates two inventories: one with lower storage potential 

that would be shipped earlier in the season, and another with higher storage potential 

that would be kept for later shipment. The ultimate goal is to reduce total fruit loss in 

the supply chain over the season and hence improve profitability.  

1.2 Thesis Outline 

The majority of the experimental research was conducted at the Centre for 

Postharvest and Refrigeration Research, Massey University, New Zealand, while a short 

period of research was conducted at Katholieke Universiteit de Leuven, Belgium in 

order to develop an imaging analysis protocol for the OCT technique. The ‘Hayward’ 

cultivar was chosen for the purpose of this study because it is the most produced 

cultivar for export to the global market. The well documented studies on ‘Hayward’ 

quality and storability also enabled comparisons between the current study and the 

literature.   

The second chapter provides a literature review on current knowledge on 

kiwifruit, including physiology, skin structure, important quality attributes, and the 

factors influencing the quality and storage potential. This chapter also introduces the 

principles of NIR and OCT, the instrumentation and sampling process, data analysis 

techniques and the applications of these methods for quality prediction in horticultural 

produce.  

The third chapter involves an experiment conducted through manipulating 

preharvest growing conditions (crop load and application of trunk girdling) in order to 

showcase the potential relationships between growing conditions and postharvest 

performance of kiwifruit. This work demonstrates the inherent variability in fruit quality, 

and the subsequent impacts and challenges in predicting fruit storability.   
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The fourth chapter investigates the capability of OCT to visualise and 

characterise kiwifruit near-surface cellular structures non-destructively. An automated 

imaging analysis technique was developed in order to identify large parenchyma cells in 

the image data and enable quantitative analysis of these cells. The within and between-

cultivar differences in cellular microstructures were examined and compared to existing 

knowledge. However, the capability of the technique is limited by penetration depth, 

resolution and equipment cost, and therefore will not be useful in monitoring or 

predicting future storage performance of the fruit in the near future. 

The next three chapters investigate the potential for Vis-NIR spectroscopy to 

predict kiwifruit storability. The fifth chapter evaluates the ability of Vis-NIR 

spectroscopy applied at harvest time to provide quantitative prediction of postharvest 

storage performance of kiwifruit, using a series of datasets collected over several 

seasons. While the post-storage sugar content could be predicted with relatively good 

accuracy, the post-storage firmness which is an important influencer of storability was 

poorly predicted. Neither prediction was accurate enough to be suitable for online 

grading purposes. Results obtained in this chapter led to the decision that subsequent 

research should focus on qualitative prediction of fruit storage potential as an alternative 

approach.  

The sixth chapter identifies the most suitable multivariate data analysis 

technique that can be applied to develop a classification model which segregates fruit 

based on the minimum export firmness criterion. The classification accuracy was 

compared using various machine learning classifiers and the best method was selected 

based on the highest accuracy for both calibration and validation datasets. This 

generated a classification model which segregates fruit for storage potential at the time 

of harvest. 

The seventh chapter details a real-time validation trial that evaluated the 

robustness of the classification model developed in the sixth chapter. Fruit were scanned 

using NIR spectroscopy at harvest and then sorted by the model for segregation into two 

populations: fruit that develop post-storage firmness below the minimum export 

criterion and those that do not. The predicted and measured storage performance was 

compared. The reduction in fruit loss as a result of segregation was also assessed.   
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The final chapter provides overall discussions and conclusions on this research 

and suggests recommendations for future studies. 
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2 Literature review 

2.1 Kiwifruit 

2.1.1 Classification and general characteristics 

Kiwifruit (Actinidia sp.) was first grown in New Zealand in 1910, by an 

orchardist, Alexander Allison, who received seeds from Isabel Fraser, a missionary who 

just returned from China. The plants producing fruit were considered the source vines of 

the New Zealand kiwifruit industry today (Sale, 1990). The genus Actinidia is 

comprised of 55 species (Li et al., 2007). The two economically important species of 

Actinidia are Actinidia deliciosa and Actinidia chinensis (Currie, 1997).  

The green-fleshed cultivar ‘Hayward’ from the A. deliciosa species is the 

“original” kiwifruit, known for its brown hairy skin, large fruit size, superior flavour 

and long storage potential (Burdon and Lallu, 2011; Sale, 1990). Whilst ‘Hayward’ 

dominates the global kiwifruit market, many new cultivars have or are being introduced 

to the fruit category to cater to consumer values. In particular, efforts have been made to 

select A. chinensis cultivars with desirable characteristics for commercial purposes 

(Currie, 1997). The successful launch of ‘Hort16A’, a yellow-fleshed fruit from the 

species A. chinensis that has a ‘tropical’ flavour, demonstrated the potential for fruit 

category extension. A. chinensis has contributed to about a quarter of the New Zealand 

annual export volume nowadays (Burdon and Lallu, 2011). Additionally, in 2013, 

commercial volumes of 3 new cultivars were released in New Zealand, being yellow-

fleshed ‘G3’ (Zespri® SunGold) and ‘G9’ (Zespri® Charm; both A. chinensis), and 

green-fleshed ‘G14’ (Zespri® Sweet Green), a cross of A. deliciosa and A. chinensis. 

2.1.2 Important quality attributes of kiwifruit 

2.1.2.1 Total soluble solids concentration 

Total soluble solids (TSS) concentration is a measurement consisting of soluble 

sugars, as well as soluble pectins and organic, amino and ascorbic acids, often 

expressed as %, or °Brix (Crisosto et al., 2012b). The TSS can be readily measured with 

a manual or digital refractometer. The value of TSS varies between individual fruit in an 

orchard and also along the longitudinal axis of an individual fruit, being higher at the 
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blossom end than at the stem end (Hopkirk et al., 1986). Harman and Hopkirk (1982) 

described a standardised method of assessing the TSS of kiwifruit using an optical 

refractometer: fruit was sliced 1.5 cm from each end of the fruit and a few drops of juice 

squeezed from both end caps onto the measurement glass of the refractometer.  

The TSS at harvest is used as a maturity index for kiwifruit to indicate harvest 

time (Beever and Hopkirk, 1990). It is also a key parameter which links closely with 

consumers’ liking and acceptance because the flavour of kiwifruit is based largely on a 

sugar-acid balance (Crisosto and Crisosto, 2001). Harker et al (2009) suggested that 

consumers’ liking grew with increased TSS. Fruit with TSS ranged from 14 to 16% are 

consumed with pleasure, whereas fruit with TSS below 12% is considered not 

acceptable (Hasey, 1994). However, a lower TSS fruit could still be acceptable if the 

acidity is also low (Crisosto and Crisosto, 2001).  

2.1.2.2 Dry matter concentration 

Dry matter refers to fruit solid contents other than water (Feng, 2003). Dry 

matter concentration (DMC) is defined as the ratio of dry weight to fresh weight of a 

test sample, expressed as a percentage (Crisosto et al., 2012b). The DMC of kiwifruit 

comprises both soluble sugars and insoluble solids (structural carbohydrate and starch; 

Burdon et al., 2004). It can be determined by cutting an equatorial kiwifruit slice of 

approximately 3 mm thickness and drying them at 65°C to constant weight (approx. 24 

hours).  

The DMC of ‘Hayward’ kiwifruit ranges from 12 – 20% while most fruit in 

New Zealand fall within the range of 14 – 17%, depending on the season, timing of 

harvest, orchard location and canopy management (Burdon et al., 2004). The flavour of 

kiwifruit and consumers’ acceptance has been associated with the DMC of the fruit 

(Harker et al. 2009; Jordan and Seelye 2009)  . Crisosto et al. (2011) proposed that a 

DMC of above 15.1% was required to allow a large proportion of the tested ‘Hayward’ 

kiwifruit to satisfy a high percentage of consumers. Zespri® Group Ltd. developed a 

Taste Zespri Grade (TZG) to meet specific market preference of sweeter fruit in Asia 

(Japan) and Europe; the TZG range for ‘Hayward’ was 15.5 – 19.5% DMC in 2015 

(Anonymous, 2015a). 
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The DMC at harvest indicates the TSS that will develop in ripe fruit (Jordan et 

al., 2000; Burdon et al., 2004). It has been used as a quality prediction tool in a range of 

fruit including avocados (Arpaia et al., 2001), mango (Bally et al., 2000) and kiwifruit 

(Burdon et al., 2004). Since the DMC does not change during cool storage of kiwifruit, 

information on DMC provides a useful decision-making tool for marketing and 

distribution of kiwifruit (Harker et al., 2009). Traditionally assessment of harvest DMC 

is carried out by sampling a small proportion of the entire batch destructively. Non-

destructive methods such as near infrared (NIR) spectroscopy have also been used to 

segregate future eating quality of fruit based on at-harvest DMC (Jordan et al., 2000; 

McGlone et al., 2002b).  

2.1.2.3 Flesh firmness 

Flesh firmness (FF) of kiwifruit is referred to as the maximum force required for 

a 7.9 mm diameter Magness-Taylor probe to penetrate into the fruit flesh after removing 

a 1-mm slice of skin (Feng et al., 2011). In commercial practice, kiwifruit are harvested 

long before they reach eating ripeness, i.e. while the fruit are relatively firm, with an FF 

value of 6 – 9 kgf (~ 60 – 90 N; Beever and Hopkirk, 1990). The FF value is also an 

important characteristic for determining the storage potential and eating quality of 

kiwifruit. Over-softening of the fruit is generally considered the end of kiwifruit shelf 

life (Feng, 2003). Therefore, in order to ensure reasonable storage life remains to enable 

shipping to distant markets, a minimum standard of 1 kgf (9.8 N) for individual fruit is 

required in New Zealand (Hopkirk et al., 1996). A FF value of approximately 0.6 – 0.8 

kgf (5.9 – 7.8 N) is considered an acceptable texture for consumers for ‘Hayward’, 

whereas a FF value lower than 0.4 kgf (3.9 N) is considered too soft and therefore not 

acceptable for consumption (Stec et al., 1989).  

Conventionally the FF is measured destructively by using a handheld (FT327, 

Effegi, Italy) or electric (QALink, Willowbank Electronics Ltd., Napier, New Zealand) 

penetrometer fitted to a 7.9 mm probe. Other devices have been developed to assess 

kiwifruit firmness or texture non-destructively. For instance, compression force 

measured by a texture analyser (TA-XT Plus, Stable Microsystems Ltd., Surrey, UK) is 

used as an alternative measurement of firmness. Acoustic firmness sensors (AFS, Aweta 

Impact & Acoustic Firmness System, Nootdorp, Netherlands) are developed based on 
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acoustic impulse response technology and provide measurements of acoustic firmness 

indices.   

The FF values were found to be temperature dependent, with lower FF at 

elevated temperatures as a result of irreversible fruit ripening (Jeffery and Banks, 1994). 

Therefore, measurements immediately after removal of fruit from coolstorage (0 °C) 

could result in varying FF values due to rapid changes in fruit temperatures (Feng, 

2003). The FF measurements also increase with increasing penetration speed (Feng et 

al., 2011; Li et al., 2016), regardless of cultivar, season or instrument type. 

Penetrometer speeds of 5 mm s-1 (McGlone et al., 1997; Burdon et al., 2014), 10 mm s-1 

(Hertog et al., 2004b; Feng et al., 2006), 20 mm s-1 (Burdon et al., 2013) and 25 mm s-1 

(Harker et al., 1996) have all been reported. Currently Zespri® uses a standard of 8 mm 

s-1 for evaluation of FF during onshore condition checking. 

2.1.3 Kiwifruit physiology 

2.1.3.1 Growth and development 

Kiwifruit reach full size approximately 10 weeks after anthesis. During this 

period, there is an increase in both fruit volume and fruit weight. Cell division and cell 

enlargement occur, and the latter is found to be responsible for subsequent increase in 

fruit size (Beever and Hopkirk, 1990). The final fruit size is affected by cultivar, the 

number of seeds in the fruit, crop load and growing conditions. As the fruit reach 

maturity (approximately 15 – 20 weeks after anthesis), there are no obvious changes in 

the shape and skin colour of the fruit. However, the concentrations of chemical 

components vary, with the most marked change occurring in carbohydrates (Beever and 

Hopkirk, 1990). During early stages of development, there is a small but significant 

decrease in total sugar. Starch content increases and peaks at later stages of 

development, and may comprise up to 50% of total dry matter of the fruit at harvest 

(Beever and Hopkirk, 1990; Richardson et al., 1997; Burdon and Lallu, 2011). After 

harvest a rapid decrease in starch concentration is observed during the first 4 – 6 weeks 

of storage, accompanied by an increase in soluble solids (TSS) due to starch hydrolysis 

and a decline in FF (Snelgar and Hopkirk, 1988; Beever and Hopkirk, 1990). 
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2.1.3.2 Maturation and harvest 

Maturation is known as the period in which the fruit develops the characteristics 

that are required for ripening. It occurs after completion of growth and before the fruit 

ripens and senesces (Burdon and Lallu, 2011). At a particular stage of maturation, the 

fruit may be removed from the vine and will continue to develop physiologically until it 

reaches eating quality. This is referred to as physiological maturity (Beever and Hopkirk, 

1990). The stage of maturity at harvest influences the storage potential of the fruit, as 

well as its final quality for consumption (Beever and Hopkirk, 1990). In commercial 

practices kiwifruit are harvested at physiological maturity, when fruit are still firm and 

unripe. Fruit that are harvested too early, prior to physiological maturity, generally 

soften more rapidly and fail to develop full flavour and aroma of ripe kiwifruit during 

storage (Beever and Hopkirk, 1990). Fruit harvested too late may become overripe very 

quickly and do not have sufficient storage life (Burdon et al., 2014a). Development of a 

standard to indicate when to harvest is necessary. This harvest index should be based on 

a physiological attribute of the fruit that changes consistently during maturation and 

easy to measure.  

During kiwifruit maturation, several physiological and biochemical changes 

occur, including cessation of growth, conversion of starch to sugar and softening of the 

fruit etc. Amongst these changes, the conversion of starch to sugar is found to have 

close association with fruit quality after storage (Beever and Hopkirk, 1990). The TSS 

of the fruit is related to sugar concentration and is readily measurable with a 

refractometer. Therefore it has been used as a maturity index for kiwifruit harvest. In 

New Zealand, the minimum TSS value before fruit can be harvested in the orchard is 

6.2% (Harman, 1981). Fruit harvested with low TSS (< 6%) generally exhibited poor 

quality after storage. Some studies suggest that fruit harvested with a higher TSS (7 – 

12%) have better storability and final eating quality. However, harvesting at very late 

stage is not recommended because of the increasing risk of damages from frosts (Beever 

and Hopkirk, 1990).  

2.1.3.3 Postharvest ripening and softening 

Ripening is referred to as the process of a fruit changing from physiologically 

mature to an optimum condition for consumption (Beever and Hopkirk, 1990). 
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Kiwifruit are climacteric fruit which, during ripening, undergo a rapid increase in 

ethylene production that is accompanied by a climacteric burst of respiration, resulting 

in physiological and biochemical changes such as flavour, aroma and texture (Kim, 

1999). The most significant change is the decrease in flesh firmness (FF). The FF values 

range from 6 – 9 kgf (≈ 60 – 90 N) at harvest to 0.5 – 0.8 kgf (≈ 5 – 8 N) when fruit 

reach eating ripeness (Beever and Hopkirk, 1990). This softening is the main limiting 

factor for storage life of individual fruit (Feng et al., 2001). However, the time taken by 

individual fruit to soften varies enormously. In common practice, fruit are usually stored 

together within a plastic liner to ensure a more uniform rate of ripening as a result of 

ethylene accumulation interaction between fruit (Beever and Hopkirk, 1990). 

Depending on the maturity at harvest, softening of kiwifruit occurs in two or 

three phases (Lallu et al., 1989; MacRae et al., 1990). Kiwifruit harvested at early 

maturity go through three softening stages: 1) an initial lag phase where fruit remain 

relatively firm and soften only slowly, 2) a rapid softening phase in which fruit soften to 

about 20% of their harvest FF, and 3) the final stage of softening which is marked by 

the start of internal ethylene production (MacRae et al., 1990; Paterson et al., 1991). For 

fruit that are harvested late in the season, there is no initial lag phase during softening; 

only the second and third phases exist (MacRae et al., 1990). 

The softening of kiwifruit is due to disintegration of the cell wall, resulted from 

a number of activities including pectin solubilisation, cell wall swelling, degradation of 

pectin, reduction in molecular weight of xyloglucan, and dissolution of middle lamellae 

(Schröder and Atkinson, 2006). During the initial phase of softening, pectin is solid-like 

and water-insoluble. As the fruit starts to soften rapidly (the second phase), pectin 

softens to a more liquid-like state (Redgwell and Percy, 1992). This softening is not a 

chemical but a physical change and hence cannot be measured by chemical analysis 

(Schröder and Atkinson, 2006). In addition, cell wall swells as ripening proceeds and at 

eating ripeness will reach approximately 3 – 4 times its thickness at harvest (Hallett et 

al., 1992). 

The conversion of starch to sugar also continues during ripening process. The 

TSS increases to 14 – 16% before fruit are eating-ripe (Beever and Hopkirk, 1990). 

However, when fruit become overripe, the TSS begin to fall slightly (Fukui et al., 1980). 

The internal flesh colour remains unchanged for ‘Hayward’. Upon complete ripeness, 
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the flavour of the fruit changes from initially acidic taste to a more pleasant delicate 

aroma (Beever and Hopkirk, 1990). When fruit become overripe, an ‘estery’ aroma may 

develop and it can be unacceptable to consumers (Burdon and Lallu, 2011). 

2.1.4 Factors affecting kiwifruit quality and storage potential 

2.1.4.1 Preharvest factors 

When growing kiwifruit, many practices have been utilised to achieve improved 

fruit quality and maximise productivity through optimised vine performance (Patterson 

and Currie, 2011). These include planning block layout, ensuring good orchard shelter, 

spring and summer trunk girdling, “tip-squeezing” (Max and Currie, 2005), “zero-leaf” 

pruning (Gardiner et al., 2005) and fruit thinning (Patterson and Currie, 2011). 

Preharvest growing conditions and orchard management practices can affect fruit 

quality at the time of harvest and during subsequent storage. While several orchard and 

climatic factors have been suggested to influence kiwifruit storage quality, there are few 

published data demonstrating these effects. 

2.1.4.2 Girdling 

Trunk girdling, or cincturing, is a technique used to influence cropping, which 

involves the removal of a ring of the bark around the trunk (Sale, 1990). Fruit growth is 

dependent on the ability of fruit to compete with vegetative growth for a supply of 

carbohydrates from leaves (Seager et al., 1995). Girdling interrupts the flow of 

carbohydrates around the vine by redirecting them to the shoots rather than to the roots, 

restricting the roots from competing with the fruit to absorb carbohydrates produced by 

the leaves. Trunk girdling has been widely used in many horticultural products such as 

grapes, citrus, apple, peach and persimmon to improve fruit size and quality attributes 

such as DMC and TSS (Goren et al., 2003).  

The implementation of girdling within the New Zealand kiwifruit industry was 

developed to increase orchard yield, fruit size/weight and dry matter concentration (Sale, 

1990). Spring trunk girdling practices are used to increase fruit size in both ‘Hayward’ 

and ‘Hort16A’ whereas summer trunk girdling is applied to facilitate higher dry matter 

accumulation by fruit, as well as higher flowering in the spring following application 

(Patterson and Currie, 2011). Davison (1980) demonstrated that girdling on young 
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kiwifruit vines increased flower and fruit numbers. Snelgar and co-workers (Snelgar et 

al., 1986; Snelgar and Thorp, 1988) reported increased fruit weight with increasing leaf 

area on girdled vines. Girdling combined with high leaf to fruit ratios were found to 

improve fruit weight (Seager et al., 1995) and TSS (Seager et al., 1995; Assar et al., 

2009). Boyd and Barnett (2011) suggested that extended trunk girdling increased fruit 

number, improved DMC and resulted in more advanced maturity at harvest. This 

hastening of maturation of fruit makes girdling an undesirable practice in some cases 

(Davison, 1990). While much research reports on the effect of girdling on at-harvest 

kiwifruit quality, little information is available on how girdling affects kiwifruit storage 

performance (Boyd, 2012). Boyd and Barnett (2011) found that trunk girdling of 

‘Hort16A’ (A. chinensis) vines reduced the susceptibility of fruit to develop chilling 

injury (CI) during storage.  

2.1.4.3 Crop load 

Crop load is defined as the fresh weight obtained per canopy hectare. For 

‘Hayward’ yields increase from approximately 7 to over 30 t/ha from 1980’s to 2010’s 

as a result of continued improvements in orchard management, with top-performing 

orchards producing over 50 t/ha (Thorp et al., 2011). Manipulation of crop load is 

achieved by light-to-moderate vegetative pruning and flower/fruit thinning. Crop load is 

important as it affects kiwifruit size and quality in the current season and flower 

induction for the following season (Sale, 1990). However, over-reduction of crop load 

compromises orchard yield and in turn profitability (Snelgar et al., 1986; Patterson and 

Currie, 2011).  

Published studies on the effect of crop load on at-harvest kiwifruit quality are 

somewhat contradictory. While some failed to demonstrate any significant effect of 

manipulated crop load on fruit weight, FF, DMC and TSS (Snelgar et al., 1998; Broom 

et al., 2000), others reported high crop load being associated with reduced fruit weight 

(Patterson and Currie, 2011), higher FF (Boyd and Barnett, 2011) and reduced DMC 

and total titratable acidity (Famiani et al., 2012) at harvest. The effect of crop load 

manipulation on kiwifruit storage performance is not well established. Famiani et al. 

(2012) suggested that high crop load results in reduced TSS and FF after storage for 

‘Hayward’. Boyd and Barnett (2011) found that high crop load also increased the 

susceptibility of ‘Hort16A’ fruit to CI incidence. 
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2.1.4.4 Light 

Light is essential for plant growth and fruit production. Vines grown under 

shaded areas flower poorly in the following season (Davison, 1990). Light intensity also 

influences photosynthesis rates of leave, growth rate of vines, water uptake and mineral 

accumulation in the fruit (Buwalda and Smith, 1990; Davison, 1990). Previous studies 

showed that insufficient light exposure resulted in smaller fruit size, reduced 

chlorophyll content and calcium accumulation, lower TSS and DMC, and less FF 

(Tombesi et al., 1993; Antognozzi, 1995; Biasi et al., 1995; Snelgar et al., 1998; 

Montanaro et al., 2006; Tavarini et al., 2009). In comparison, fruit grown in high light 

intensity had better quality and longer storability (Tombesi et al., 1993; Antognozzi, 

1995).   

The use of reflective mulches was discovered in an attempt to increase light 

availability in the canopies of apple trees (Doud and Ferree, 1980; Mika et al., 2007). 

Reflective mulches increase light availability by reflecting the light that passes through 

the canopy and reflecting the light up onto the leaves (Currie et al., 2007). More light 

allows for warmer air temperatures in various seasons which increase vegetative growth 

rate (Richardson et al., 2004). Thorp et al (2001) discovered that the use of reflective 

covers placed underneath ‘Hayward’ kiwifruit vines improved fruit weight and hence 

fruit yield, and increased flowering in the second year. Costa et al (2003a) confirmed 

the former study and pointed out a trend for higher TSS and lower FF values before 

harvest. A research conducted by Currie et al (2007) also suggested higher fruit weight 

and DMC were found in the fruit from reflective plots. 
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2.1.5 Skin properties of kiwifruit 

2.1.5.1 Skin composition 

Kiwifruit skin is composed of several surface structures such as the periderm, 

trichomes and lenticels, and sub-surface layers of the outer pericarp (Burdon and Lallu, 

2011). The skin of A. deliciosa and A. chinensis fruit is brown, and the number and size 

of hairs differ among cultivars: ‘Hayward’ fruit have denser and more robust hairs than 

those of ‘Hort16A’ (Burdon and Lallu, 2011). Layers of dead cells on skin surface form 

the periderm. Development of periderm occurs after 6 to 8 weeks from fruit set, after 

which cell expansion from cell layers within the fruit occurs and results in small tears 

on the skin surface. These tears in turn develop into lenticels. Lenti-cellular structures 

help to improve gas transfer to and from the environment but may also promote surface 

spotting and pathogen infections. Underneath the periderm are two to three layers of 

cells forming the hypodermis region which separates the skin from the outer pericarp. 

This region is composed of small, closely packed cells with thick walls and a maximum 

diameter of approximately 0.05 mm (Burdon and Lallu, 2011).  

The outer pericarp of A. deliciosa is composed of two types of parenchyma cells 

(Fig. 2.1a): small spherical cells with a diameter of up to 0.2 mm, and large elongated 

cells with a diameter more than 0.2 mm but most commonly more than 0.5 mm and up 

to 1 mm (Hallett and Sutherland, 2005; Hallett et al., 2005; Burdon and Lallu, 2011). In 

A. chinensis, sclerified cells (brachysclereides, stone cells) are found in the interface 

between the hypodermis and the bulk of the outer pericarp tissue (Fig. 2.1b). These 

stone cells are scattered amongst small parenchyma cells and have a maximum length 

up to 0.30 mm (Hallett and Sutherland, 2005, 2007).  
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2.1.5.2 Changes in skin and near-surface cellular structures  

Changes in skin and subsurface cellular structure can be resulted from 

environmental factors and may have potential consequences for postharvest fruit quality 

and storability (Nardozza et al., 2011). Celano et al. (2009) studied the changes in the 

structure of ‘Hayward’ kiwifruit skin in relation to water loss, an indicator of fruit 

quality during growth. As transpiration declines (decreased water loss), degradation of 

surface hairs, suberisation of outer cell layers and the subsequent death of the outer cells 

were observed. Light is another important factor influencing the skin structure of the 

fruit. Insufficient light exposure resulted in reduction of waxes, less hair number and 

more hydrated hair due to a decrease of skin temperature and an increase in relative 

humidity on the surface (Tombesi et al., 1993).  

In ‘Hayward’ (A. deliciosa), the large cells comprise around 38 – 50% of the 

volume of the outer pericarp tissue (Hallett et al., 2005; Nardozza, 2008). The cell wall 

of these cells contributes to under 20% to the total cell wall volume of a fruit and shows 

resistance to softening in ripe fruit tissues (Hallett et al., 2005). The volume ratio of 

Figure 2.1 a) Cross section of skin of mature (21 weeks from petal drop) A. 

deliciosa var. deliciosa ‘Hayward’ fruit and outer flesh showing dead cell layers, 

hypodermis and a mixture of large and small cells in underlying flesh stained with 

toluidine blue. b) Cross section of skin of mature (23–24 weeks from petal drop) A. 

chinensis ‘Hort16A’ fruit and outer flesh, parenchyma cells are interspaced with 

stone cells. All images were acquired using light microscopy with underlying flesh 

stained with toluidine blue. s = dead cells of skin, h = hypodermis, sp and lp = 

small and large cells, b = stone cells, bar = 100 μm. Extracted from Hallett and 

Sutherland (2005). Image used with permission. 

a b 
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small and large cells was found to affect dry matter content, an important quality factor 

of kiwifruit (Nardozza, 2008). While small cells are found to accumulate starch during 

fruit growth, larger cells do not accumulate starch to the same levels. A recent study on 

fruit anatomy in various A. deliciosa genotypes shows that small cells have a higher 

starch concentration than large cells (Nardozza et al., 2011). The presence of stone cells 

has effects on the firmness of A. chinensis fruit during ripening (Hallett and Sutherland, 

2005). Additionally, the intercellular porosity and pore size were found to be highly 

variable amongst five commercial kiwifruit cultivars (‘Hayward’, ‘Hort16A’, ‘G3’, ‘G9’ 

and ‘G14’; Cantre et al., 2014). 

2.2 Non-Destructive Techniques for Assessing Kiwifruit Quality 

Conventionally the quality of fruit at harvest, during storage and at consumption 

is assessed using simple destructive tests, such as flesh firmness by the penetrometer 

and total soluble solids by the refractometer. However, these tests destroy the fruit and 

hence only a small proportion of fruit samples can be measured. It is important in this 

case that a representative sample is used, as there is usually a wide variability in fruit 

quality within or between batches of fruit.  

Development of non-destructive testing techniques enables the possibility to 

assess quality on a large number of fruit, to conduct multiple measurements on the same 

samples as well as to monitor fruit quality development over a period of time from 

preharvest through to the end of storage (Costa et al., 2003b). Various types of non-

destructive techniques that are being used commercially, or currently under research, 

can be categorised based on the principles of mechanism: electromechanical (impact), 

electrochemical (electronic nose) and electromagnetic (e.g. near-infrared spectroscopy, 

nuclear magnetic resonance). 

Impact technology measures the elasticity parameters of the fruit under dynamic 

conditions. The sensors are commonly applied to grading lines, and the progression of 

acceleration is recorded after fruit are gently tapped by the impact device (Chen and 

Tjan, 1998). This technique has been used for grading ripeness of kiwifruit (Peleg, 

1999). Electronic nose (e-nose) simulates human’s olfactory system and can identify the 

chemical composition of an odour. This technique has been used to assess kiwifruit 

freshness by classifying fruit based on the volatile compounds detected by the e-nose at 
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different storage time (Liu and Hui, 2015). Nuclear magnetic resonance (NMR) and 

magnetic resonance imaging (MRI) enables visualisation of internal structural changes 

and water mobility of a fruit sample (Costa et al., 2003b). This information can be used 

to identify physical and mechanical properties of the sample. Burdon et al. (2014c) 

utilised MRI to evaluate the water status of ripe kiwifruit and the capacity of cell wall 

swelling; Ward (2011) used a portable NMR system to assess textural properties of 

kiwifruit. The next section provides details on the use of near-infrared (NIR) 

spectroscopy for assessing quality of kiwifruit. 

2.3 Near Infrared (NIR) Spectroscopy 

2.3.1 Principle of NIR spectroscopy 

Near-infrared (NIR) spectroscopy studies the spectral property of an object when 

irradiated with electromagnetic radiation between 780 – 2500 nm (Fig. 2.2) or 12820.5 

to 4000 cm-1 wavenumbers (Williams and Norris, 1987; Miller, 2001; Sun, 2009). In 

many cases spectrometers also measure spectral properties within the visible range (400 

– 750 nm; Miller, 2001). The 400 – 1000 nm range is sometimes referred to as visible-

near-infrared (Vis-NIR; Williams and Norris, 2001) and the 1000 – 2500 nm range is 

referred to as short-wave infrared (SWIR).  

 

Spectroscopy involves energy transfer between light and object. When NIR 

radiation reaches an object, the incident radiation may be reflected, absorbed or 

transmitted, depending on the physical properties and chemical composition of the 

sample (Nicolaï et al., 2007a). Reflection could be due to specular or diffusional 

reflection by glossy or rough surfaces, or scattering resulted from multiple refractions 

inside the object (Nicolaï et al., 2007a). Spectral absorptions are caused by the chemical 

and physical compositions present in the object. Chemical bonds such as the CH, NH, 

Figure 2.2 Spectral regions of interest for analytical purposes. Extracted from Sun 

(2009). Image used with permission. 
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OH and CO groups are subject to vibrational energy change in forms of stretching or 

bending when irradiated by NIR light. These anharmonic vibrations enable the 

occurrence of overtone transitions and combination modes, which correspond to 

specific absorption bands in the NIR region (Miller, 2001). 

Fruit tissue contains water, carbohydrates and proteins which have large 

numbers of NIR-active chemical groups (Feng, 2003). For instance, strong absorption 

of water and carbohydrate can be found at 958 nm and 980 nm, respectively (Williams 

and Norris, 1987). Table 2.1 summarises several important NIR absorption bands of 

functional groups corresponding to various attributes of fruit tissues. 

Attributes Functional 
Group Wavelength Location Reference 

Water O-H 

744, 830-840, 938, 
958, 970, 980, 1010-
1030, 1458, 1442, 
1932 

(Williams and Norris, 1987) 
(Sun, 2009) 
(Osborne et al., 1993) 
(McGlone and Kawano, 
1998)  

Carbohydrates C-H, O-H 
830-840, 870-890, 
900-930, 970-990, 
1010-1030, 1053 

(Williams and Norris, 1987) 

Chlorophyll C-H 680 
(Mowat and Poole, 1997); 
(McGlone and Kawano, 
1998) 

Starch C-H, O-H 901, 918, 1200, 1700, 
1720, 1780 

(Osborne and Fearn, 1986) 
(Williams and Norris, 1987) 

Pectin C-H, O-H, 
C-O 980 (Elvidge, 1990) 

Sucrose C-H, O-H 838, 870, 878, 888, 
906, 913, 990  (Williams and Norris, 1987) 

Cellulose C-H, O-H, 
C-O 

905, 920, 1655-1715, 
2300-2360 

(Williams and Norris, 1987) 
(Workman and Weyer, 2007) 

 

 

Table 2.1 Important NIR spectral regions for measuring fruit tissues. 
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2.3.2 Instrumentation 

A generalised NIR spectroscopy system contains four main components (Fig. 

2.3): 1) an NIR radiation source, 2) a wavelength selector for wavelength discrimination, 

3) modes of sample measurement, and 4) a detector to convert the radiation to an 

electrical signal that can be sent to a signal processor and readout (usually computers). 

 

Figure 2.3 Principal features of NIR spectroscopy equipment. Extracted from 

Blanco and Villarroya (2002). Image used with permission. 
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The most common source of NIR radiation is the quartz halogen tungsten 

filament lamp which covers broad spectral region between 320 – 2500 nm (Osborne and 

Fearn, 1986). Light-emitting diodes (LED) are another source of NIR radiation 

(McClure et al., 2006). The LEDs release energy in the form of light of narrow 

wavelength bands in the process of electroluminescence (Osborne and Fearn, 1986).  

Components for wavelength discrimination can be classified into two types, 

discrete-value and full-spectrum devices. Discrete-value spectrophotometers use filters 

to produce narrow wavelength bands or LEDs. As a result, they can only be used in 

applications with objects absorbing in specific spectral regions (Williams and Norris, 

1987; McClure et al., 2006; Jha, 2010). Full-spectrum spectrophotometers usually 

include a diffraction grating. They are more flexible and therefore can be used in a 

wider variety of situations (Osborne and Fearn, 1986). 

There are four modes available for the measurements using NIR spectroscopy: 

reflectance, transmittance, interactance and transflectance modes. Transflectance mode 

is designed for thin or clear samples having characteristics different from those of food 

and therefore is not commonly used for food samples (Williams et al., 2006). In 

reflectance mode (Fig. 2.4a), the object surface is illuminated by the light source and 

viewed by the light detector at a specific angle, e.g. 45 °C to avoid specular reflection 

(Schaare and Fraser, 2000; Nicolaï et al., 2007a). In transmittance mode (Fig. 2.4b), the 

light source is opposite to the detector. This requires very high light intensities which 

can cause heat damage to the object surface and alter its spectral properties (Nicolaï et 

al., 2007a). In interactance mode (Fig. 2.4c), the light source and detector are next to 

each other but separated by a light barrier which ensures that light due to specular 

reflection cannot directly enter the detector (Nicolaï et al., 2007a). Schaare and Fraser 

(2000) suggested that amongst the three measurement modes of NIR, interactance mode 

provide the most accurate instant estimates of TSS, density and flesh colour for 

measuring internal properties of kiwifruit (A. chinensis). However, Lammertyn et al. 

(2000) found little difference between interactance and reflectance configurations for 

the prediction of TSS of apple. 
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Detective devices are usually comprised of photoconductive semiconductors 

(PbS or InGaAs) operating in the range of 1000 – 2500 nm with a peak at 2000 nm 

(Blanco and Villarroya, 2002). The conduction increases with the intensity of incident 

radiation. Another type of detectors is photovoltaic photodiodes, which are usually 

formed from silicon and germanium and cover the Vis-NIR region between 400 and 

1000 nm (Osborne and Fearn, 1986; Osborne et al., 1993). 

The NIR technology has been adapted to devices with various configurations for 

specific purposes. Fig. 2.5a illustrates a commercial-scale bench-top Vis-NIR 

spectroscopy system (PANalytical, B.V, Boulder, Colorado, USA) suitable for both 

industrial and laboratory analysis. The NZ kiwifruit industry uses online multilane NIR 

sensors (Fig. 2.5b; Taste Tech 1, Taste Technologies Ltd., Auckland, NZ) fitted to a 

commercial kiwifruit grader (CompacTM grading equipment, Auckland, NZ) for sorting 

of kiwifruit according to DMC. This system can also be used for recovering high DMC 

fruit from lower dry matter grower lines that do not meet the Minimum Taste Standard 

(MST) of DMC for ‘G3’ kiwifruit (McGlone and Wohlers, 2016). More recently, a 

breakthrough in technology (Goldring and Sharon, 2012) enabled the production of 

low-cost spectrometer on a “chip”, leading to the development of consumer-scale NIR 

devices such as SCiO molecular sensor (Fig. 2.5c) (Consumer Physics Inc., Tel Aviv, 

Figure 2.4 NIR measuring mode: (a) reflectance; (b) transmittance; and (c) 

interactance showing (i) the light source, (ii) object, (iii) detector, (iv) light barrier, 

and (v) support. Extracted from Nicolaï et al. (2007a). Image used with permission. 
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Israel), LinkSquare (Stratio Inc., Seoul, Korea) and Tellspec® Food Sensor (Tellspec 

Inc., Toronto, Canada), which can be integrated into smartphones and make applications 

of NIR accessible and affordable to a wider audience  (Coates, 2014; Haughey et al., 

2015).  

  

2.3.3 Multivariate statistical techniques 

Using NIR for analysis of fruit products has several advantages, including 

speedy response time, simple or no sample preparation, allowing for non-destructive 

measurements and low cost in comparison to other spectroscopies such as mid-infrared, 

Raman and others (McClure, 2006). However, diffuse reflectance spectra of fruit are 

often non-specific because of multiple overlapping absorption features. Therefore 

multivariate statistical techniques (also known as chemometrics) are required to extract 

the information relevant to quality attributes which is hidden in the NIR spectrum 

(Nicolaï et al., 2007a). 

2.3.3.1 Pre-processing of spectra 

Data pre-processing techniques are used to remove unwanted spectral variations 

and baseline shifts arising from light scattering from solid samples or variations in 

temperature, density, and particle size of samples etc (Ozaki et al., 2006; Nicolaï et al., 

2007a).  

Figure 2.5 (a) A commercial ASD FieldSpec® Pro full-spectrum Vis-NIR 

spectroscopy system (ASD Inc., USA) coupled with a contact probe (PANalytical, 

B.V, Boulder, Colorado, USA); (b) an NIR sensor for online sorting of fruit (Taste 

Tech 1, Taste Technologies Ltd., Auckland, NZ); (c) a consumer-scale SCiO™ 

molecular sensor (V1.0, Consumer Physics Inc., Tel Aviv, Israel). 

(a) (b) (c) 
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Spectroscopic measurements performed in reflectance mode are usually 

converted to log(1/R) (R is reflected radiation) using Beer’s Law because there is a 

linear relationship between the concentration of an absorbing component and its 

contribution to the log(1/R) value at the wavelength absorbed (Williams and Norris, 

1987). However, this approach does not take into account the fact that light penetration 

in biological tissue is complicated and also involves scattering (Nicolaï et al., 2007a).  

Smoothing techniques are used to remove random noise of spectral data. During 

smoothing a Savizky-Golay filter (Savitzky and Golay, 1964) is usually used which 

functions by fitting the spectrum in a wavelength interval with a polynomial by least-

squares method (Williams and Norris, 2001; Nicolaï et al., 2007a). However, smoothing 

sometimes also removes useful information which is not clear yet at the time of removal. 

Hence the usefulness of smoothing is questionable since most multivariate techniques 

used after pre-processing already include models for unwanted noise (Naes et al., 2004). 

Baseline correction can be achieved by derivation (first or second order) or 

multiplicative scatter correction (MSC; Ozaki et al., 2006). Derivation is usually 

calculated according to the Savizky-Golay algorithm (Naes et al., 2004). The MSC is 

useful for correcting vertical variations and inclination of the baseline (Ozaki et al., 

2006). 

Normalization of spectra can be described as the changing of a set of spectra so 

that the new set has more features in common to suppress unwanted source of 

variability. Normalisation transformations are computed sample-wise. A simple 

example is subtracting the log(1/R) (absorbance) value at the reference wavelength from 

all the spectral values. This results in a set of spectra with value zero at the reference 

wavelength. (Williams and Norris, 1987).  

Centering using the average value (also called mean centering) is often powerful 

in resolution enhancement. This is achieved through an adjustment to the data set to 

reposition the centroid of the data to the origin of the coordinate system (Ozaki et al., 

2006). This shifts the focus on the differences between observations rather than their 

absolute value. After mean centering, all means are zero and variances are interpreted 

around zero. 
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2.3.3.2 Reduction of variables 

 Variable reduction or selection methods are developed to identify a small 

number of variables (a subset of spectral bands) from the entire range of spectra for 

easier data interpretation (Zou et al., 2010). Elimination of uninformative variables can 

improve prediction accuracy and model robustness (Cai et al., 2008). The most 

commonly used method is principal component analysis (PCA; Wold et al., 1987; 

Blanco and Villarroya, 2002). Several other methods have also been developed 

including correlation coefficient, interval partial least squares (iPLS), stepwise analysis 

and genetic algorithms (GA; Cai et al., 2008) . 

 Another simple way of reducing the number of variables is by taking averages 

over wavelengths. Commercial spectrophotometers generally have a spectral resolution 

of a few nanometers up to ~ 10 nm, where in most applications a 10 nm resolution is 

often sufficient (Nicolaï et al., 2007a). High resolution does not improve the 

information content of the spectra and yet increases the computational time. Nicolaï et 

al. (2007b) evaluated the predictive accuracy of NIR regression model using a range of 

spectra resolution and found that a wavelength resolution of about 5 nm provided the 

best results. 

2.3.3.3 Model development and evaluation  

For any spectroscopy technique, calibration is a process which develops the 

mathematical relationship, in the form of a model, between measured sample properties 

and the intensities or absorbance at more than one wavelength of the set of known 

reference samples (Zeaiter et al., 2005; Sun, 2009).  

Once an NIR instrument has been calibrated against a reference method for the 

measurement of a particular sample property, it can be used to predict unknown samples 

and the prediction errors can be estimated, a process known as validation. Validation of 

calibration provides the basis for calculation of true measurement error by comparing 

NIR measurements to reference method measurements on a new set of samples 

(Williams and Norris, 1987). If the two are essentially the same, the model provides 

accurate prediction and will be useful for future predictions (Sun, 2009). 
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 For internal validation, both n-fold cross-validation and internal test-set 

(‘holdout’) validation can be used to compare the predictive performance of calibration 

and validation. In n-fold cross-validation, the calibration samples are randomly divided 

into n segments. One of the segments is then removed from the dataset and the 

calibration model is developed from the remaining (n – 1) segments. The isolated 

segment is used to calculate the prediction errors. This process is repeated until every 

segment is removed from the dataset once, and the variance of all prediction residuals is 

estimated. For leave-one-out cross-validation (LOOCV), the process is similar except 

that at each time one sample, rather than one segment, is removed from the dataset. In 

internal test-set validation, the calibration samples are randomly divided into two 

populations: calibration and validation subsets. Calibration model is then developed 

using the calibration subset, and the prediction residuals are calculated by applying the 

calibration model to the validation subset. In external validation, calibration model is 

applied to an independent external validation data set usually obtained from a different 

orchard or different season (Fig. 2.6; Nicolaï et al., 2007a) . 

 

 Prediction model using NIR spectroscopy can be applied for both quantitative 

and qualitative analysis. In quantitative analysis, spectra of training sample set and 

corresponding chemical analysis are collected, and calibration model is developed using 

regression techniques. The accuracy for calibration is tested using a validation test set 

Figure 2.6 A flow chart showing the internal and external validation processes for 

model development. 
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(Westerhaus et al., 2004). In qualitative analysis, calibration involves the application of 

discriminant techniques to find useful relationship between spectra of training samples 

and their group membership instead of quantitative regressions (Kramer et al., 2004).  

The efficiency of quantitative regression for a set of calibration samples can be 

reported as the standard error of calibration (SEC), standard error of prediction (SEP), 

mean square error (MSE), root mean square error (RMSE), correlation coefficient (r), 

and/or coefficient of determination (r2; Williams and Norris, 2001). The selection of 

terms is often dependent on the software used (Westerhaus et al., 2004). When internal 

or external validation is used, the prediction error of a calibration model is defined as 

the mean square error of prediction (MSEP) or root mean square error of prediction 

(RMSEP; Nicolaï et al., 2007a; Sun, 2009), which can be calculated as:  

ܲܧܵܯܴ =  ඨ∑ (௬ො೔ି௬೔)మ೙೛೔సభ ௡೛     (2.1) 

where ݊௣ is the number of validated objects, and ݕො௜ and ݕ௜ are the predicted and 

measured value of the ݅th observation in the test set, respectively.  

Additionally, SDR, which is the division of standard deviation (SD) and RMSEP, 

is also used. The SDR represents the predictive performance of a model and it usually 

provides more direct information rather than R2 or RMSEP (Liu et al., 2010). The 

higher the SDR values the greater the power of the model to predict accurately. SDR 

values below 1.5 indicate that the calibration model is not useful; between 1.5 and 2 

suggest that the model can discriminate low from high values of the response variable 

fairly well; between 2 and 2.5 indicate coarse quantitative predictions are possible, and 

above 2.5 correspond to good and excellent prediction accuracy (Saeys et al., 2005).  

For qualitative/discriminant analysis, calculation of prediction accuracy is 

usually expressed as the correctly classified samples as a percentage of all samples in 

the designated group. 

2.3.3.4 Regression and classification techniques 

For linear regression, multivariate linear regression (MLR), principal component 

regression (PCR) and partial least squares regression (PLSR) are the three most 
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common techniques used in calibration of NIR spectral data (Nicolaï et al., 2007a; Zou 

et al., 2010). Recent development of nonlinear techniques such as artificial neuron 

network (ANN) and kernel functions enables the analysis of data with nonlinearilities 

and improves predictive performance of regression model (Nicolaï et al., 2007a). Kernel 

functions generate hidden units that represent the input data and map this information 

into a high-dimensional feature space, in which calibration is carried out (Ivanciuc, 

2007). The common kernel functions include Gaussian, polynomial and radial basis. 

Kernel-based support vector machines (SVM) are capable of both linear and non-linear 

regressions but would require the tuning of parameters to achieve model robustness 

(Chapelle et al., 2002).  

In classification, discriminant analysis of spectra can be supervised (the class to 

which the samples belong is known) or unsupervised (Blanco and Villarroya, 2002). 

Pattern recognition usually consists of three steps (Kim et al., 2000). First, the raw data 

is reduced by a feature extraction process; PCA is the main technique for this purpose 

and can work for both supervised and unsupervised cases. Second, features that are 

suitable for discriminating samples are selected; a number of techniques including 

canonical discriminant analysis (CDA) and genetic algorithms (GA) can be applied to 

the spectral data. The final stage involves pattern recognition based on selected features; 

this includes traditional methods such as linear discriminant analysis (LDA) and PLS-

DA, which uses PLS to develop a model which is then used to estimate the 

classification of unknown samples (Kim et al., 2000; Kramer et al., 2004). More 

recently, machine learning techniques such as ANN and SVM have also been used in 

discriminant analysis and can achieve robust calibration models with good prediction 

outcomes.  

There are many software packages available for multivariate calibration. In this 

research two packages were used. The Unscrambler® package (CAMO Software AS., 

Oslo, Norway) is user friendly and allows visual interpretation of spectral data and 

calibration model. The Weka (Waikato Environment for Knowledge Analysis) is open-

source software (Version 3.7.12; University of Waikato, Hamilton, New Zealand; Hall 

et al., 2009) which provides a wide range of machine learning algorithms for solving 

data mining problems.  
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2.3.4 Applications of Vis-NIR in horticultural products 

The potential of NIR spectroscopy was first discovered in the 1960s (Reh and 

Irudayaraj, 2008; Sun, 2009). The wide-spread application of NIR initiated in 1973 

following the use of NIR spectroscopy to replace the traditional Kjeldahl measurements 

for the determination of protein in grain (Williams and Norris, 1987; Reh and Irudayaraj, 

2008). Since then, Vis-NIR spectroscopic techniques have been used as non-destructive 

and rapid tools to evaluate various quality attributes of fruits and vegetable (Williams et 

al., 2006; Jha, 2010).  

For the kiwifruit industry, NIR spectroscopy is most commonly used in 

quantitative analysis of quality attributes by developing regression models (Table 2.2). 

For instance, instant estimation of at-harvest TSS and DMC can be achieved with high 

regression accuracy of % RMSEP ≤ 5 (McGlone and Kawano, 1998; Osborne et al., 

1998; Osborne et al., 1999; Schaare and Fraser, 2000; Clark et al., 2004; Moghimi et al., 

2010; Lee et al., 2012). There have also been attempts to predict post-storage TSS based 

on at harvest NIR spectral data (McGlone et al., 2002b; McGlone et al., 2007). 

Prediction of at-harvest FF using NIR spectral data was not as successful (McGlone and 

Kawano, 1998; Costa et al., 1999). 

 



C
ha

pt
er

 2
 

 
Re

vi
ew

 o
f l

ite
ra

tu
re

 

31
 

 

R
ef

er
en

ce
 

A
cq

ui
si

tio
n 

M
od

e 

Sp
ec

tr
a 

R
an

ge
 

(n
m

) 
C

ul
tiv

ar
 

St
or

ag
e 

T
im

e*
 

(D
ay

s)
 

St
or

ag
e 

T
em

p.
 

D
at

a 
 

Pr
e-

tr
ea

tm
en

t 
Q

ua
lit

y 
A

tt
ri

bu
te

 
Sa

m
pl

e 
Si

ze
 

R
2 

R
M

SE
P 

C
he

n 
an

d 
H

an
 

(2
01

2)
 

R
ef

le
ct

an
ce

 
83

3–
25

00
 

‘Q
in

m
ei

’ 
0 

- 

Sm
oo

th
in

g,
 d

er
iv

at
iv

e,
 

m
ul

tiv
ar

ia
te

 sc
at

te
r 

co
rr

ec
tio

n,
   

no
rm

al
is

at
io

n 

TS
S 

(°
B

rix
) 

70
–2

20
 

0.
35

–0
.9

4 
0.

66
–0

.8
9 

Le
e 

et
 a

l. 
(2

01
2)

 
R

ef
le

ct
an

ce
 

40
8–

24
92

  
A.

de
lic

io
sa

 
‘H

ay
w

ar
d’

 
0 

- 
St

an
da

rd
  n

or
m

al
 

va
ria

te
, d

et
re

nd
, 

de
riv

at
iv

e  

FF
 (N

) 
TS

S 
(°

B
rix

) 
A

ci
di

ty
 (%

) 

18
0 

18
0 

18
0 

0.
88

 
0.

98
 

0.
91

 

3.
32

 (S
EP

) 
0.

49
 (S

EP
) 

0.
28

 (S
EP

) 

M
og

hi
m

i 
et

 a
l. 

(2
01

0)
 

Ta
ns

m
itt

an
ce

 
40

0–
10

00
 

A.
de

lic
io

sa
 

‘H
ay

w
ar

d’
 

0 
- 

Sm
oo

th
in

g,
 d

er
iv

at
iv

e,
 

m
ul

tiv
ar

ia
te

 sc
at

te
r 

co
rr

e c
tio

n,
   

st
an

da
rd

  n
or

m
al

 
va

ria
te

 

TS
S 

(°
B

rix
) 

pH
 

10
0 

10
0 

0.
86

 
0.

89
 

0.
26

 
0.

08
 

M
cG

lo
ne

 
et

 a
l. 

(2
00

7)
 

In
te

ra
ct

an
ce

 
30

0–
11

40
 

A.
ch

in
en

si
s 

‘H
or

t1
6A

’ 
84

 
0°

C
 

Lo
g 

tra
ns

fo
rm

at
io

n,
   

sm
oo

th
in

g,
  

st
an

da
rd

  n
or

m
al

 
va

ria
te

  

D
M

C
 (%

) 
TS

S 
(%

) 
H

ue
 (o ) 

12
3 

12
3 

12
3 

0.
92

 
0.

89
 

0.
83

 

0.
39

 
0.

38
 

1.
19

 

C
la

rk
 e

t a
l. 

(2
00

4)
 

In
te

ra
ct

an
ce

 
30

0–
11

40
 

A.
ch

in
en

si
s 

‘H
or

t1
6A

’ 
0 

- 
Lo

g 
tra

ns
fo

rm
at

io
n,

 
sm

oo
th

in
g,

 sc
al

in
g,

 
no

rm
al

is
at

io
n  

D
M

C
 (%

) 
TS

S  
(%

) 
H

ue
 (o ) 

86
4–

26
42

 
88

6 –
26

78
 

86
8 –

26
63

 

0.
90

–0
.9

3 
0.

69
–0

.9
4 

0.
63

–0
.8

6 

0.
44

–0
.5

4 
0.

76
–1

.4
3 

0.
85

–1
.3

7 

M
cG

lo
ne

 
et

 a
l. 

(2
00

2b
) 

In
te

ra
ct

an
ce

 
30

0–
11

40
 

A.
de

lic
io

sa
 

‘H
ay

w
ar

d’
 

0 
- 

Lo
g 

tra
ns

fo
rm

at
io

n,
 

sm
oo

th
in

g,
 sc

al
in

g,
 

no
rm

al
is

at
io

n  

D
M

C
 (%

) 
TS

S 
(%

) 
18

0 
18

0 
0.

86
 

0.
87

 
0.

46
 

0.
52

 

T
ab

le
 2

.2
 P

re
di

ct
io

n 
of

 k
iw

ifr
ui

t 
qu

al
ity

 a
tt

ri
bu

te
s, 

bo
th

 a
t 

ha
rv

es
t 

an
d 

af
te

r 
st

or
ag

e,
 u

si
ng

 (
V

is
-)

N
IR

 s
pe

ct
ra

l 
m

ea
su

re
m

en
ts

 

ac
qu

ir
ed

 a
t h

ar
ve

st
.  



D
ev

el
op

in
g 

no
n-

de
st

ru
ct

iv
e 

te
ch

ni
qu

es
 to

 p
re

di
ct

 k
iw

ifr
ui

t s
to

ra
bi

lit
y 

32
 

 

 

2–
7 

20
°C

 
D

M
C

 (%
) 

TS
S  

(%
) 

17
9 

17
9 

0.
91

 
0.

92
 

0.
39

 
0.

39
 

Sc
ha

ar
e 

an
d 

Fr
as

er
 

(2
00

0)
 

R
ef

le
ct

an
ce

 
In

te
ra

ct
an

ce
 

Tr
an

sm
itt

an
ce

 

30
0–

11
00

 
 

A.
ch

in
en

si
s 

‘H
or

t1
6A

’ 
0  

- 

Sm
oo

th
in

g,
 

lo
g 

tra
ns

fo
rm

at
io

n,
 

m
ul

tiv
ar

ia
te

 sc
at

te
r 

co
rr

ec
tio

n,
   

st
an

da
rd

  n
or

m
al

 
va

ria
te

,  
de

riv
at

iv
e,

 
no

rm
al

is
at

io
n 

TS
S 

(°
B

rix
) 

50
 

0.
86

 
0.

93
 

0.
89

 

1.
18

 (S
EP

) 
0.

80
 (S

EP
) 

1.
01

 (S
EP

) 

D
en

si
ty

  
(k

g 
m

-3
) 

50
 

0.
59

 
0.

74
 

0.
55

 

4.
5 

(S
EP

) 
3.

6 
(S

EP
) 

4.
8 

(S
EP

) 

H
ue

 (°
) 

50
 

0.
76

 
0.

82
 

0.
74

 

1.
88

 (S
EP

) 
1.

63
 (S

EP
) 

1.
95

 (S
EP

) 

C
os

ta
 e

t a
l. 

(1
99

9)
 

R
ef

le
ct

an
ce

 
65

0–
12

00
 

A.
de

lic
io

sa
 

‘H
ay

w
ar

d’
 

0 
- 

Lo
g 

tra
ns

fo
rm

at
io

n,
 

sm
oo

th
in

g,
 d

er
iv

at
iv

e 
FF

 (k
g·

cm
-2

) 
TS

S 
(°

B
rix

) 
80

 
80

 
0.

42
 

0.
65

 
0.

65
 (S

EC
) 

0.
36

 (S
EC

) 

O
sb

or
ne

 e
t 

al
. (

19
99

) 
In

te
ra

ct
an

ce
 

33
0–

11
40

  
N

ot
 S

ta
te

d 
0 

- 
Sm

oo
th

in
g 

D
M

C
 (%

) 
TS

S 
(o B

rix
) 

19
2–

32
2 

19
2–

32
2 

- - 
0.

32
–0

.6
8 

0.
27

–0
.4

7 

M
cG

lo
ne

 
an

d 
K

aw
an

o 
(1

99
8)

 

In
te

ra
ct

an
ce

 
40

0–
11

00
  

A.
de

lic
io

sa
 

‘H
ay

w
ar

d’
 

0 
- 

D
er

iv
at

iv
e 

FF
 (N

) 
D

M
C

 (%
) 

TS
S  

(o B
rix

) 

41
–3

18
 

41
–3

18
 

41
–3

18
 

0.
42

–0
.7

6 
0.

85
–0

.9
2 

0.
76

–0
.9

2 

4.
5–

11
.8

 
0.

36
–0

.9
6 

 
0.

42
–0

.6
9 

O
sb

or
ne

 e
t 

al
. (

19
98

) 
In

te
ra

ct
an

ce
 

30
6–

11
39

 
N

ot
 S

ta
te

d 
0 

- 
Sm

oo
th

in
g,

 
m

ul
tiv

ar
ia

te
 sc

at
te

r 
co

rr
ec

tio
n  

D
M

C
 (%

) 
TS

S 
(o B

rix
) 

97
 

97
 

- - 
0.

41
 

0.
45

 

*S
to

ra
ge

 ti
m

e 
re

fe
rs

 to
 th

e 
de

la
y 

in
 ti

m
e 

(d
ay

s)
 b

et
w

ee
n 

N
IR

 sp
ec

tra
l m

ea
su

re
m

en
ts

 a
nd

 fr
ui

t q
ua

lit
y 

m
ea

su
re

m
en

ts
 



Chapter 2  Review of literature 

33 
 

However, use of NIR spectroscopy to perform qualitative analysis in kiwifruit is 

not well established. In particular, little research was carried out to discriminate 

kiwifruit storage potential based on export firmness criterion (FF < 1 kgf or 9.8 N) using 

classification models. Feng (2003) used at-harvest NIR spectral data to classify 

‘Hayward’ grower lines based on softening rate and incidence of physiological 

disorders (e.g. soft patch, low temperature breakdown). Clark et al. (2004) categorised 

‘Hort16A’ kiwifruit into two groups (‘disordered’ and ‘good’) based on at-harvest NIR 

spectral data and after storage firmness values. In other crops, Zude et al. (2006) 

classified apples by different ‘quality levels’ using NIR spectra data and firmness 

measured before and after storage. In addition, Feng et al. (2013) segregated apricots for 

storage potential using at-harvest Vis-NIR spectral data by developing an exponential 

model.  

2.4 Optical Coherence Tomography (OCT) 

2.4.1 Principle of OCT 

The OCT technique is a purely optical, non-destructive, non-invasive, and 

contactless high resolution imaging method applicable to semi-transparent and turbid 

media (Drexler and Fujimoto, 2008). It allows for the acquisition of three-dimensional 

(3D) depth resolved image data of (sub)surface regions in situ and in real-time with 

resolution as good as one micrometre.  

This technique detects the discontinuities in refractive index corresponding to 

the boundaries between different types of tissues (Landahl et al., 2012). To capture an 

OCT image, the sample is irradiated with near-infrared light and the light beam is back-

scattered from different layers of sub-surface tissue structures such as pores and cells. A 

depth scan is obtained by comparing the arrival times of the light path scattered from 

the sample with the light path reflected from a reference mirror. Cross-sectional images 

are obtained by scanning the light laterally across the surface of the sample and a 3D 

volume is generated by several depth scans at adjacent lateral positions (Verboven et al., 

2013). OCT provides excellent axial resolution with an accuracy of a few micrometers. 

The penetration depth however depends on the scattering and absorption properties of 

the tissue. In fruit media the penetration depth is up to 2 mm with 5 – 20 μm resolution 

(Meglinski et al., 2010; Verboven et al., 2013).   
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2.4.2 Image acquisition 

 Depth scans can be obtained either by moving the reference mirror (time-

domain OCT, TD-OCT) or, by spectral analysis of the interference signal with the 

reference mirror kept fixed and subsequent fast Fourier transformation (spectral-domain 

OCT, SD-OCT; Fercher et al., 1995)  .  

 In SD-OCT, a dispersive element such as a grating is used for spectral analysis 

and depth scans are acquired quasi-instantaneously by a line scan camera within a few 

milliseconds. This technique allows for high acquisition rates as required in real-time 

measurements. However, for two-dimensional (2D) images the light beam needs to be 

scanned laterally in one dimension. Single depth scans and cross-sections are classified 

as A- and B-scans, respectively. The 3D measurements require 2D scanning across both 

lateral directions. The scanning process can be performed by different means, such as 

by one (2D image) or two galvanometer mirrors (3D data). Single (2D) images acquired 

by SD-OCT are always cross-section images. A schematic diagram of a SD-OCT 

system is depicted in Fig. 2.7.   

 

  

Figure 2.7 Schematic diagram of a spectral-domain OCT (SD-OCT) system. The 

boxes represent portable and independent modules. DC: directional coupler; BS: 

beam-splitter; GM: Galvanometer mirror; L: lens; DG: diffraction grating; CCD: 

charged coupled device (Podoleanu, 2012; Verboven et al., 2013). Image used with 

permission.   
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 Figure 2.8 illustrates the image capture of a kiwifruit sample using the 

commercial TELESTO™ SD-OCT imaging system (Thorlabs, Lübeck, Germany). 

Real-time visualisation of the sample in 2D and 3D is available from the software 

accompanying this system. However, for high level image processing, sophisticated 

image processing software such as Matlab® (MathWorks, Inc., Natick, USA). and 

Avizo® (Visualization Sciences Group, France) are usually required, in order to allow 

display, modification and quantification of the images.  

 

2.4.3 Applications of OCT in horticultural products 

The OCT has the advantages of minimal sample preparation in comparison to 

conventional optical methods and it enables the potential for repeated measurements on 

the same sample matured over a period of time. Although OCT has already been widely 

applied in biomedical areas such as dermatology and ophthalmology, this technique has 

also found an increasing number of applications in assessment of horticultural products.  

Clements et al. (2004) used OCT to compare hull layer thickness of four 

genotypes of lupin seeds, and were able to distinguish between different species of 

Figure 2.8 Schematic diagram of a commercial SD-OCT system: Variable-Rate 

TELESTO™ OCT Imaging System operating at 1325nm (Thorlabs, Lübeck, 

Germany). Axial resolution: 7.5 μm. Lateral resolution: 15 μm. Operating rates: 

5.5 kHz, 28 kHz, and 91 kHz. 

Processor Probe Head and 
Fibre Optics 

Translation Stage 

Image Processing Software 

SD-OCT Engine 

Sample 
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lupins and also identify thin-hulled seeds from normal seeds. Meglinski et al. (2010), 

Ford et al. (2012) and Landahl et al. (2012) demonstrated the use of OCT to detect 

defects, rots and diseases in onions based on visualisation and quantification of 2D OCT 

images. Loeb and Barton (2003) produced OCT images of kiwifruit showing some thin-

walled parenchyma cells in the outer pericarp (Fig. 2.9a). However, the images were not 

obtained from intact kiwifruit samples but from a radial transverse section removed 

from the equator of the fruit. Magwaza et al. (2013) investigated the feasibility of using 

OCT in the visualization of histological and microstructural features in intact rind 

tissues of mandarins. Image processing enabled the development of 3D models of oil 

glands, which is associated with progressive rind breakdown in mandarins (Fig. 2.9b). 

Rizzolo et al. (2013) reported the differences in mechanical and acoustic characteristics 

between two types of air-dried apple rings were due to different subsurface structure as 

found with OCT analysis (Fig. 2.9c). Verboven et al. (2013) used OCT to visualise peel 

structural differences between apples and measured structural changes that occur during 

storage (Fig. 2.9d).  

 

Figure 2.9 OCT images of (a) sectioned kiwifruit (Loeb and Barton, 2003); (b) 

mandarin with moderate degree of RBD (Magwaza et al., 2013); (c) untreated air-

dried apple ring (Rizzolo et al., 2013); and (d) ‘Royal Gala’ apple (Verboven et al., 

2013). Images used with permission. Scale bars = 0.1 mm 

(a) (b) 

(c) (d) 
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2.5 Conclusion and Opportunity for Research 

The green-fleshed ‘Hayward’ kiwifruit is the most dominating cultivar globally 

and is the major export cultivar in New Zealand. At commercial harvest there is often 

huge inherent variability in fruit quality as a result of preharvest conditions and orchard 

manipulation techniques. This leads to a wide range of storage potential when fruit are 

stored locally prior to export. The development of oversoft fruit during storage not only 

renders the affected fruit unsaleable, but also produces an ethylene environment which 

softens fruit that are otherwise long-storing, leading to significant financial losses. The 

ability to predict the potential of fruit to develop rapid softening is essential for making 

inventory decisions and reducing total loss. 

The effects of preharvest conditions on at harvest kiwifruit quality have been 

well established. The main driving force has been improving production yield and sugar 

content in order to meet consumers’ preferences. Knowledge of how preharvest 

conditions influence postharvest performance is also important. The first part of this 

thesis will look at the effects of two most common commercial practices on postharvest 

quality and storability of kiwifruit.    

The development of new technologies such as OCT and NIR spectroscopy 

allows rapid and non-destructive measurements of fruit. The application of OCT in 

horticultural products is not well studied. This research explores the type of information 

that can be captured by OCT using kiwifruit samples, and investigates the potential for 

OCT to provide useful information on harvest and postharvest fruit quality.  

The application of NIR technology in horticultural products has been well 

established. Whilst strong correlation can be found between spectral data and the 

chemical properties of the fruit by developing regression methods, there is little success 

in predicting physical attributes such as FF quantitatively. Additionally, in most cases 

evaluation of NIR focuses on instant estimation of fruit properties; research on the 

ability of NIR to predict future quality is scarce. In this thesis an attempt will be made 

to investigate the potential of NIR to indicate future FF and storage potential using 

qualitative analysis. 
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3 Effects of preharvest orchard management practices on at-harvest 

and post-storage kiwifruit quality 

3.1 Introduction 

Kiwifruit quality is defined by many factors including fruit size, shape, flavour, 

texture and length of storage time (Ferguson and Seal, 2008). The internal quality 

attributes of the fruit are more important in determining (re)purchase decisions by 

consumers (Buxton, 2005). Flavour of kiwifruit has been associated with fruit DMC at 

harvest (Harker et al., 2009; Jordan and Seelye, 2009) and TSS that will develop in ripe 

fruit (Jordan et al., 2000; Burdon et al., 2004). Additionally, fruit FF is an important 

attribute for determining the postharvest storability of kiwifruit. 

Preharvest factors such as growing conditions and orchard management 

practices can affect fruit quality at the time of harvest and during subsequent storage. 

Good orchard management practices aim to achieve optimal flowering and fruit yield 

for the current season, help to obtain desirable fruit quality and reduce chances of poor 

yield in the following season (Sale, 1990). However, preharvest factors also contribute 

to large inherent variation in fruit quality within and between kiwifruit orchards at the 

time of harvest (Woodward, 2007). Such variability contributes to the difficulty for the 

industry to accurately predict quality changes during postharvest storage and 

distribution (Shewfelt, 1999). While several orchard and climatic factors have been 

suggested to influence kiwifruit storage quality, few published data demonstrated these 

effects. It is important to understand how at-harvest characteristics such as size, 

appearance, taste and texture etc. are imposed (or not) from previous growing 

conditions and environmental factors, and what kinds of consequences are likely to 

occur during storage. 

This chapter aims to elucidate the effects of preharvest orchard practices on at-

harvest and postharvest storage quality of ‘Hayward’ kiwifruit, through the 

manipulation of crop load and the application of girdling during cropping. The 

individual and the combined effects of both practices will be observed in order to 

investigate if these practices can be utilised to affect or improve postharvest fruit quality 

and storability for distribution.   
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3.2 Materials and Methods 

3.2.1 Experimental design 

 In a commercial orchard located in Te Puna, Bay of Plenty, an experiment was 

established in the form of a 2 × 2 matrix of treatments, consisting of 56 ‘Hayward’ 

kiwifruit female vines with manipulated crop load (industrial average, 36 t/ha and 

ultrahigh, 43 t/ha) and the application (or not) of girdling. There were 16 vines each for 

low crop load treatment with and without girdling, and 12 vines each for high crop load 

treatment with and without girdling. The vines were about 35 years old and grown on a 

pergola using opposing females. Hydrogen cyanamide was used at commercial rates to 

treat the vines to improve budbreak and reduce the incidence of side flowers.  

 Crop thinning occurred on 4 – 5 January 2013 (42 – 43 day after full bloom; 

DAFB) and trunk girdling occurred on 10 December 2012 (17 DAFB) and 2 February 

2013 (71 DAFB). The fruit thinning in this experiment was designed to simulate 

conventional fruit thinning practices, in which the smallest fruit and poorly shaped or 

‘Hayward’ marked (a shallow sunken line running down the side of the fruit, sometimes 

ending in a hook or protuberance caused by a stamen sticking to the fruit and the hook 

by an anther sticking) were removed first, and the remaining fruit removed to reach the 

final crop load by taking into consideration the local leaf to fruit loading relative to 

shoot length. Prior to pollination the vines were flower-thinned to remove any side 

flowers. Fruit were then thinned to the final crop load 6 weeks after the last pollination.  

 Selected vines for each treatment were arranged according to a four-by-four 

Latin square (Fig. 3.1) with each treatment represented on each row and column of the 

trial as plots, which accounted for in-orchard location effects but avoided unusual plants 

caused by e.g. regrafting. Commercial harvest occurred on 15 May 2013, with all 

treatments being harvested on the same day. At harvest, 24 trays of 30 mixed-sized fruit 

per tray were sampled from each of the four plots for each treatment representing 

replicates. The samples were collected by dividing each vine quarter into 9 quadrants 

and then randomly sampling a fruit from each quadrant. Fruit were delivered from the 

orchards in Te Puke and cured at ambient temperature for two days during transport. 

Fruit trays arrived at Massey University on 17 May 2013, and were wrapped in 

polyliner films and stored at 20 °C overnight before the commencement of 

measurements (day 0). 
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HCG LC HC LCG 

LCG HC LC HCG 

LC LCG HCG HC 

HC HCG LCG LC 

 

3.2.2 Fruit quality attributes  

The at-harvest (prior to transportation) fruit weight, DMC and TSS of kiwifruit 

were randomly collected from 90 fruit of each treatment at the packhouse. The TSS and 

FF were also monitored upon arrival at the laboratory (day 0) and during storage (14 – 

175 days). Single trays (30 fruit) from each of the 16 plots were assessed destructively 

for FF and TSS at 0, 14, 28 and 50 days. Four trays (120 fruit) from each of the 16 plots 

were measured at 25-day intervals from 75 to 175 days. During storage, ethylene 

concentration in the cool room was monitored using ethylene analysing equipment 

(photoacoustic ETD-300, Sense B.V., Nijmegen) and maintained below 5 nL L-1. Fruit 

were equilibrated to ambient temperature (20 ºC) over a period of 15 hours prior to fruit 

quality measurement. 

Fruit weight (g) was measured by using a digital balance (Mettler PG-503S, 

Toledo, Switzerland) with 0.001 g accuracy. The DMC (%) was determined using an 

oven drying technique by dehydrating a known mass of 2-3 mm thick equatorial fruit 

slice at 60-65°C for 24 hours. Data were expressed as percentage of the wet mass. The 

FF (N) was measured using an electronic QALink Penetrometer (Willowbank 

Electronics Ltd., Napier, New Zealand) fitted with the standard 7.9 mm Magness-Taylor 

probe. Two measurements of peak penetrating force were made at two locations (90° 

apart) around the equator of the fruit after removal of a thin layer (1 mm) of the fruit 

skin. The penetration speed was 20 mm s-1 and the puncture depth was 8 mm. The TSS 

Figure 3.1 Design of orchard layout to minimise in-orchard location effects. HCG: 

High crop load with girdling. LCG: Low crop load with girdling. HC: High crop 

load. LC: Low crop load. Letters represent different rows whereas numbers 

represent different columns. Each square represents a single plot. 
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(ºBrix) was measured using a digital pocket refractometer (PAL-1, Atago, Japan) using 

the juice taken from both end caps of the fruit. The proportion of soft fruit during 

storage was calculated as the percentage of fruit with FF values below 9.8 N.                                                         

3.2.3 Data analysis 

The effects of preharvest factors on fruit quality both at harvest (before 

transportation), at day 0 (after arrival at laboratory) and during storage were 

investigated. In addition to the measured quality attributes, fruit dry weight (DW), 

which is a combination of solid materials (excluding water) within the fruit, was 

calculated as fresh weight × DMC. The ratio of at-harvest TSS to DMC (TSS/DMC) 

indicates the proportion of solubilised sugar relative to total carbohydrate storage, and 

hence can be used as an alternative measure to represent maturity at harvest. This was 

also calculated for this study.  

Data analysis for comparison of factors and calculation of least significant 

differences (LSD) was carried out at the plot level using the general linear model (GLM) 

in Minitab® (Version 16.1.0, Minitab Inc., Pennsylvania, USA). Factors considered 

included crop load, trunk girdling and the interaction between the two. In addition, 

comparisons of incidence of soft fruit (FF < 9.8 N) amongst treatments were carried out 

using a Chi-square test in Minitab®.  

3.3 Results and Discussion 

3.3.1 Effects on at-harvest fruit weight, DMC, DW and TSS/DMC 

Low crop load increased fruit weight and DMC at harvest (Table 3.1). This 

agrees with the previous findings for ‘Hayward’ (Famiani et al., 2012) and ‘Hort16A’. 

(Boyd and Barnett, 2011; Patterson and Currie, 2011). Low crop load also increased at-

harvest DW and TSS/DMC (Table 3.1). Woodward (2007) found similar results for 

‘Hayward’ kiwifruit: DW accumulation was negatively correlated with crop load, i.e. 

low crop load increased DW. Table 3.1 suggests that low crop load and use of girdling 

both resulted in higher ratio of TSS/DMC, i.e. more advanced maturity of ‘Hayward’ 

kiwifruit. This is in accordance with the study on ‘Hort16A’ kiwifruit (Boyd and 

Barnett, 2011). 
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While extended trunk girdling was previously found to improve at-harvest 

kiwifruit DMC for ‘Hort16A’ vines (Boyd and Barnett, 2011), in this study trunk 

girdling alone did not have any significant impact on at-harvest DMC and fruit weight 

(Table 3.1). However, girdling in combination with low crop load increased at-harvest 

fruit weight (116.9 g; Table 3.1). The effect of low crop load on improving at-harvest 

fruit weight seemed to be more pronounced without girdling (8.5 g vs. 6.9 g increase). 

In addition, trunk girdling increased DW at harvest, suggesting higher total solid 

materials within the fruit, despite that the total weight of the fruit seemed to be 

unaffected by girdling treatment (Table 3.1). 
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3.3.2 Effects on TSS at harvest and during storage 

In general, low crop load treatment advanced TSS at day 0 and improved TSS 

after storage, with exceptions at 14, 50 and 125 days (Fig. 3.2; Table 3.2). This increase 

in TSS somewhat agrees with Famiani et al. (2012) where higher TSS was found in fruit 

from low crop load vines after 5 months (approx. 150 days) of storage. The application 

of girdling increased TSS at day 0, which corresponds to the advanced fruit maturity 

(TSS/DMC) at harvest (Table 3.1). Increase in TSS was also observed later when fruit 

were stored for 50, 100, 150 and 175 days once starch to sugar conversion had 

completed (Fig. 3.2; Table 3.2). The combined effect of girdling and crop load resulted 

in significant differences amongst treatments at day 0, as well as at 100, 150 and 175 

days after storage with the low crop load × girdling treatment resulting in the highest 

TSS values at those times (Table 3.2). 

 Storage period, d
0 25 50 75 100 125 150 175

To
ta
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Figure 3.2 Average TSS (oBrix) during storage (days) as a result of preharvest 

manipulation of crop load and girdling. HCG: High crop load with girdling. LCG: 

Low crop load with girdling. HC: High crop load. LC: Low crop load. Bars 

represent the least significant difference (LSD). 
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3.3.3 Effects on FF at harvest and during storage 

The average FF at day 0 was 70.1 N with no significant difference found 

between treatments. For post-storage FF, the effect of crop load on firmness was 

insignificant with one exception at 100 days where the FF for high crop load fruit was 

lower (Fig. 3.3; Table 3.3). On the contrary, the application of girdling resulted in 

reduced kiwifruit FF at 50, 125, 150 and 175 days after storage (Fig. 3.3; Table 3.3). In 

particular kiwifruit from girdled vines softened more rapidly especially after 125 days, 

and reached the minimum firmness criterion (9.8 N) sooner (Fig. 3.3). This result agrees 

with the study by Boyd and Barnett (2011) where ‘Hort16A’ fruit from girdled vines 

were softer during storage. The combined effect of girdling and crop load was mostly 

insignificant except for at 175 days after storage where the application of girdling 

resulted in lower FF of fruit (Table 3.3). 
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Figure 3.3 Average FF (N) as a result of preharvest manipulation of crop load and 

girdling (A) during the entire storage (days) period and (B) after 100 days of 

storage. HCG: High crop load with girdling. LCG: Low crop load with girdling. 

HC: High crop load. LC: Low crop load. Dashed lines represent the minimum 

standard of FF for exporting purposes. Bars represent the least significant 

difference (LSD). 



D
ev

el
op

in
g 

no
n-

de
st

ru
ct

iv
e 

te
ch

ni
qu

es
 to

 p
re

di
ct

 k
iw

ifr
ui

t s
to

ra
bi

lit
y 

48
 

 St
or

ag
e 

tim
e 

(d
ay

s)
 

0 
14

 
28

 
50

 
75

 
10

0 
12

5 
15

0 
17

5 

C
ro

p 
lo

ad
 

H
ig

h 
N

.S
. 

N
.S

. 

 

N
.S

. 
N

.S
. 

N
.S

. 
17

.4
b  

N
.S

 
N

.S
. 

N
.S

. 

Lo
w

 
 

19
.6

a  
 

LS
D

0.
05

 
N

.S
. 

N
.S

. 
N

.S
. 

N
.S

. 
N

.S
. 

2.
0 

N
.S

. 
N

.S
. 

N
.S

. 

n 
8 

8 
8 

8 
8 

8 
8 

8 
8 

G
ird

lin
g 

Po
si

tiv
e 

N
.S

. 

 

N
.S

. 

 

N
.S

. 

 

31
.3

b  
N

.S
. 

 

N
.S

. 
13

.0
b  

10
.6

b  
8.

53
b  

N
eg

at
iv

e 
35

.1
a  

14
.8

a  
13

.1
a  

10
.5

9a  

LS
D

0.
05

 
N

.S
. 

N
.S

. 
N

.S
. 

3.
1 

N
.S

. 
N

.S
. 

1.
6 

1.
5 

0.
88

 

n 
8 

8 
8 

8 
8 

8 
8 

8 
8 

C
ro

p 
lo

ad
  

× 
gi

rd
lin

g 

H
ig

h 
× 

gi
rd

lin
g 

N
.S

. 

 

N
.S

. 

 

N
.S

. 
N

.S
. 

N
.S

. 
N

.S
. 

N
.S

. 
N

.S
. 

8.
7b  

H
ig

h 
 

 
 

 
11

.2
a  

Lo
w

 ×
 g

ird
lin

g 
 

 
 

 
 

 
8.

4b  

Lo
w

 
 

 
10

.0
ab

 

LS
D

0.
05

 
N

.S
. 

N
.S

. 
N

.S
. 

N
.S

. 
N

.S
. 

N
.S

. 
N

.S
. 

N
.S

. 
1.

8 

n 
4 

4 
4 

4 
4 

4 
4 

4 
4 

 T
ab

le
 3

.3
 E

ff
ec

ts
 o

f p
re

-h
ar

ve
st

 m
an

ip
ul

at
io

n 
of

 c
ro

p 
lo

ad
 (3

6 
or

 4
3 

t/h
a)

 a
nd

 th
e 

ap
pl

ic
at

io
n 

(o
r 

no
t)

 o
f g

ir
dl

in
g 

on
 fl

es
h 

fir
m

ne
ss

 

(N
) a

t d
ay

 0
 a

nd
 d

ur
in

g 
st

or
ag

e 
(1

4 
– 

17
5 

da
ys

). 
N

.S
. m

ea
ns

 th
er

e 
is

 n
o 

si
gn

ifi
ca

nt
 d

iff
er

en
ce

 b
et

w
ee

n 
po

pu
la

tio
ns

. 



Chapter 3                                               Effects of preharvest orchard practices kiwifruit quality 

49 
 

The proportion of soft fruit (FF < 9.8 N) in each population was recorded 

throughout the storage period (Fig. 3.4; Table 3.4). Chi-square tests suggest the 

proportion of soft fruit varied as a result of trunk girdling and crop load manipulation 

throughout storage (Fig. 3.4). The difference in % soft fruit became more prominent 

with increasing storage time. At 75 days after storage, the percent of soft fruit in girdled 

and non-girdled vines was 2.0% and 2.2%, respectively (Table 3.4; χ2 = 0.102; p = 

0.749). After 175 days of storage, the percent of soft fruit from girdled vines was 70%, 

much higher than 44.4% found for non-girdled vines (Table 3.4; χ2 = 128.735; p < 

0.001). The effect of crop load on firmness during storage was inconsistent. When 

girdling was not applied, the proportion of soft fruit was higher when accompanied by 

low crop load; when girdling was applied, the proportion of soft fruit was very similar 

irrespective of crop load (Fig. 3.4; Table 3.4).   
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Figure 3.4 Percentage of soft fruit (flesh firmness < 9.8 N) during storage (days) as 

a result of manipulated crop load (36 or 43 t/ha) and the application (or not) of 

girdling. HCG: High crop load with girdling. LCG: Low crop load with girdling. 

HC: High crop load. LC: Low crop load. Asterisks indicate the degree of 

significant differences amongst treatments (*, **, or *** being p < 0.05, 0.01 or 

0.001) as indicated by Chi-square tests. 
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3.3.4 Further discussions 

In this study girdling was applied at two time points: late spring (17 DAFB) 

when cell division was at peak (0 – 30 DAFB; Hopping, 1976) , and late summer (71 

DAFB) during starch accumulation (> 50 DAFB; Beever and Hopkirk, 1990) and the 

second stage of rapid cell expansion (58 – 76 DAFB; Hopping, 1976) . Girdling during 

late spring has been shown to increase fruit weight by an average of 7 g in ‘Hort16A’ 

kiwifruit (Patterson and Currie, 2011). In the current study, although a comparable 

increase in fruit weight (7.3 g) was obtained for ‘Hayward’ kiwifruit with girdling 

application (113.5 g with girdling vs. 106.2 g without) this increase was not statistically 

significant at the block level (Table 3.1).  

Trunk girdling applied during late summer has been found to achieve increases 

in fruit DMC of 0.8 – 1.0% for high-yielding ‘Hort16A’ vines (Patterson and Currie, 

2011). In the current study, albeit not statistically different, the average DMC of fruit 

with girdling treatment (18.9%) was 0.3% higher compared to control (18.6%) in DMC 

for ‘Hayward’. A possible explanation could be an inhibitory effect of girdling when 

applied during cell division: Currie (1997) observed smaller fruit weight, dry weight 

and DMC with cane girdling applied 14 DAFB (similar to the first girdle in this study) 

compared to girdling applied at other dates (7, 28, 42 and 56 DAFB). The same study 

also found no increase in DMC compared to control when girdling was applied earlier 

than 28 DAFB. It was proposed that the period during cell division or seed formation (0 

– 30 DAFB) might be a crucial period in kiwifruit growth and girdling during this 

period could limit fruit growth potential due to increased vegetative growth which emits 

an inhibitory growth signal. This inhibitory effect might have interfered with the 

positive impact of the second girdle on fruit weight and DMC, as observed in the 

present study (Table 3.1).  

The effect of crop load on fruit DMC, DW and TSS (Tables 3.1 and 3.2) may 

have resulted from combined effects of additional sugar accumulation and enhanced 

fruit expansion. The summer period of December and January is considered the peak 

period for fruit growth (Sale, 1990). Hence, orchard practices applied at this time are 

critical in controlling fruit growth. In this experiment fruit thinning was carried out in 

January, when fruit expansion occurs via expansion of parenchyma cell (Ezura and 

Hiwasa-Tanase, 2010). The magnitude of cell enlargement could be influenced by water 
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retention properties of the cell (Coombe, 1976). Ezura and Hiwasa-Tanase (2010) 

suggested that accumulation of sugar in parenchyma cells leads to an increase in water 

flow due to osmotic pressure, thereby resulting in overall fruit expansion. Hence fruit 

grown on low crop load vines were able to assimilate more carbohydrate and water due 

to reduced competition with other fruit on the same vine, assisting in cell enlargement 

and resulting in larger fruit size (Table 3.1). While low crop load improved assimilate 

accumulation in the fruit, it should be considered that the increase in DMC, DW and 

fruit weight should be sufficient to justify the lower crop load, as the reduction of total 

fruit number will potentially compromise orchard profitability because of reduced yield 

(Patterson and Currie, 2011).    

Famiani et al. (2012) reported that high crop load reduced FF of kiwifruit after 

approx. 150 days of storage when fruit were harvested (at different dates) based on a 

standard minimum TSS maturity. This suggests that high crop load could lead to a 

higher rate of softening in storage, given the same initial maturity. In the current study, 

however, all fruit were harvested on the same day; the initial physiological maturity of 

fruit varied, with fruit from high crop load having less advanced maturity (lower at-

harvest TSS and TSS/DMC; Table 3.1 and 3.2). It is possible that the effect of high crop 

load accelerating softening during storage, as demonstrated in Famiani et al. (2012), 

could have been masked by this heterogeneity in maturity stages. However, an 

important finding based on the current study is that, the effect of crop load on kiwifruit 

quality may be very different when observations were made at different storage points. 

This somewhat explains the discrepancy in previous findings where experiments were 

often conducted at a single storage point and this point varied between studies. 

3.4 Conclusions 

This chapter demonstrates that preharvest orchard management practices altered 

the growing conditions of kiwifruit vines and had considerable effects on at-harvest and 

postharvest quality and storability of ‘Hayward’ kiwifruit. While low crop load 

increased fruit weight, DMC and DW, and resulted in advanced maturation of fruit at 

harvest, the use of girdling did not seem to have any impact on at-harvest fruit weight 

and DMC. Both low crop load and trunk girdling improved TSS at day 0 and during 

storage. No significant crop load effect was observed on fruit softening or FF. Trunk 

girdling was found to hasten fruit softening and resulted in lower FF and a higher 
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proportion of undesirable soft fruit during later stages of coolstorage. Hence careful 

consideration should take place when applying trunk girdling to improve fruit DMC 

and/or TSS as this technique may compromise the storage potential of the fruit. When 

low crop load is selected to improve fruit weight, DMC and/or TSS, it should be 

justified that the improvement is sufficient to compensate the reduction in fruit yield. 

The effects of growing conditions during fruit development in the orchard can be 

captured by assessing fruit physiology at the time of harvest, and will serve as important 

information for prediction of future fruit quality and storability. 
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4 Characterising kiwifruit near skin cellular structures using optical 

coherence tomography 

Acknowledgement: 

Material from this chapter is included in the following papers: 

Li, M., Verboven, P., Buchsbaum, A., Cantre, D., Nicolaï, B., Heyes, J., Mowat, A., 

East, A., 2015. Characterising kiwifruit (Actinidia sp.) near skin cellular structures 

using optical coherence tomography. Postharvest Biology and Technology 110, 247-256. 

Li, M., East, A.R., Heyes, J.A., Verboven, P., Nicolaï, B., Buchsbaum, A., 2016. 

Development of an optical coherence tomography image analysis method to 

characterise cellular structure of kiwifruit. Acta Horticulturae, 1119, 127-134. 

4.1 Introduction 

Preharvest factors such as growing conditions and orchard management 

practices can affect macrostructural fruit quality at the time of harvest and during 

storage (Chapter 3). The effects of preharvest factors have also been related to changes 

in microstructural cellular properties of fruit. Currie (1997) found that shoot-girdling 

with high leaf:fruit ratios increased cell expansion in the outer pericarp tissue of 

kiwifruit and hence increased fruit weight at harvest. The same authors also suggested 

that crop load could affect fruit via cell division; low crop load increased the diameter 

of both small and large cells in the near surface tissue of the outer pericarp. Changes in 

cellular structure have potential consequences for postharvest fruit quality and 

storability (Nardozza et al., 2011).  

The OCT imaging is a novel technique capable of 3D characterisation of 

subsurface cellular structures of an object (Section 2.3.1). Previous applications of OCT 

on other horticultural products (Section 2.3.3) demonstrated the potential for this 

technology to also provide useful information for intact kiwifruit samples. Therefore, 

the objective of this work was to visualise and characterise the sub-surface cellular 

structures of five commercial kiwifruit cultivars non-destructively, and determine if 

differences which may be influenced by cultivar or growing conditions are detectable. 

The OCT technique was used to produce 3D images of the layers of structures 
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immediately underlying kiwifruit skin, allowing subsequent analysis on the 

microstructures of these structures. The combined results investigate if OCT shows 

promise as a non-destructive assessment tool for kiwifruit and evaluate the potential 

applications of this technique to measure kiwifruit quality. 

 

4.2 Materials and Methods 

4.2.1 Plant material and treatment manipulation 

A total of 90 kiwifruit from five commercial cultivars were sourced: yellow-

fleshed cultivars (all A. chinensis) ‘G3’ (Zespri® Sun Gold), ‘G9’ (Zespri® Charm) and 

‘Hort16A’ (Zespri® Gold), and green-fleshed cultivars ‘G14’ (A. deliciosa × chinensis, 

Zespri® Sweet Green) and ‘Hayward’ (A. deliciosa). These included 10 fruit each of 

‘G9’, ‘Hort16A’ and ‘G14’, 20 fruit of ‘G3’ (10 fruit plus 5 fruit each of two additional 

grower lines) and 40 fruit of ‘Hayward’ (10 fruit each of four treatments from the 

growing condition manipulation trial; Chapter 3). All of the 90 samples were obtained 

in New Zealand and delivered via airfreight to RECENDT, Linz, Austria, in June 2013 

prior to OCT image capture and fruit quality measurement. 

4.2.2 Fruit quality measurement 

Fruit flesh firmness (FF) and total soluble solids (TSS) content were assessed 

using the methodologies described in Section 3.2.2. Means were obtained from 5 fruit 

of each cultivar for ‘G9’, ‘G14’ and ‘Hort16A’, and 5 of each grower line/treatment for 

‘G3’ and ‘Hayward’ respectively. At the time of measurement all fruit could be 

considered firm and ripe given that high TSS development had been achieved and FF 

was within 10 – 20 N (Table 4.1). 
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Fruit Quality 
Kiwifruit Cultivar 

G3 G9 Hort16A G14 Hayward 

Total Soluble 

Solids, % 

18.49a 

(1.53) 

18.56a 

(2.26) 

19.36a 

(1.15) 

17.64a 

(1.45) 

14.69b 

(0.66) 

Firmness, N 
10.29c 

(2.55) 

10.49c 

(2.74) 

12.15bc 

(2.06) 

16.46ab 

(1.76) 

19.50a 

(2.74) 

4.2.3 OCT instrumentation and image capture 

The OCT instrument was a commercially-available spectral domain OCT (SD-

OCT) system (Telesto, Thorlabs, Lübeck, Germany) operating at 1325 nm (Fig. 2.8). A 

wavelength of 1325 nm was chosen by the need to balance against the transparency and 

scattering properties of the kiwifruit skin. OCT systems operating at lower wavelength 

(e.g. 800 nm) do offer higher axial resolution in many cases; however, the light at 800 

nm does not penetrate under the kiwifruit skin. OCT systems operating at higher 

wavelength are available but do not have sufficient axial resolution. Therefore using 

1325 nm is a compromise between penetration depth and axial resolution. 

For the OCT measurements of the kiwifruit no prior sample preparation was 

required. To capture an image, the basic steps include: focusing the laser onto the 

surface of the fruit; choosing a relatively flat surface on the fruit skin and then capturing 

the raw image. Single 3D images (3 mm (L) × 3 mm (W) × 1.498 mm (D)) were 

obtained for each fruit. After raw image capture, the depths of images were corrected 

with Avizo® (Version 7.1, Visualization Sciences Group, France) to reflect the sample 

refractive index. The choice of refractive index affects the depth scale of the final 

estimated values (i.e. volume and size) and a single value is applied across an entire 

data image. For this work, the refractive index was estimated from the average 

measured TSS of the fruit. This is because the error from applying an average across the 

Table 4.1 Condition of kiwifruit from five commercial cultivars at time of OCT 

measurement. Values represent mean and standard deviation (in brackets). Means 

were averaged from 5 fruit per cultivar for ‘G9’, ‘G14’ and ‘Hort16A’, 15 for ‘G3’ 

and 20 for ‘Hayward. Means denoted with different letters are different with 

statistical significance (α = 0.05). 
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entire data set was small given that the difference in depths estimated was 

approximately 0.006 mm between a medium containing 14% soluble solids (similar to 

‘Hayward’; Table 4.1) and one containing 20% soluble solids (similar to ‘Hort16A’; 

Table 4.1). Therefore, a refractive index of 1.36 (Anonymous, 2013) corresponding to 

the average total soluble solids (17.75%) for all five cultivars was applied. 

4.2.4 Image processing 

Raw OCT images displayed surface and sub-surface structures of the skin of fruit 

but some image artefacts were also observed (Fig. 4.1 and 4.2). The affected volumes 

were estimated by manual selection of the shadows cast by lenticels and trichomes on 

the top and bottom slice, followed by interpolation across all slices in the vertical 

direction (Fig. 4.3). The aim was to identify and select only large parenchyma cells 

from the background tissue in order to enable further analysis of these objects. Image 

processing using both automated and manual methods was carried out using Avizo® 

(Version 7.1, Visualization Sciences Group, France; Fig. 4.4).  

The raw image was first treated with a smoothing filter to reduce effects of 

artefacts (Fig. 4.4a). Box-filtering was carried out by averaging 27 voxels in the 

enclosing 3 × 3 × 3 box of volume (Table 4.2), without altering the information 

contained in the region. 

 

Figure 4.1 Example of a 2D OCT raw image for ‘G14’ kiwifruit: (a) the periderm 

layer; (b) a layer of homogeneous small cells; (c) large cells (black voids); (d) 

shadowing effects caused by lenticels; (e) shadowing effect caused by trichomes; (f) 

direct reflection of light back into the sensor from the surface. Bar = 1 mm. 

a 
b 

c 

e d f 
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Figure 4.2 Example of 2D OCT images showing cultivar differences: (a) ‘G3’, (b) 

‘G9’, (c) ‘Hort16A’, (d) ‘G14’ and (e) ‘Hayward’. Bar = 1 mm. 

b 

a 

c 

d 

e 
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Figure 4.3 Visualisation of shadowing effects caused by lenticels and trichomes 

throughout the tissue underneath the surface layer in an example of: a) ‘G3’, b) 

‘G9’, c) ‘Hort16A’, d) ‘G14’ and e) ‘Hayward’ kiwifruit. Bar = 1 mm. 

a b 

c d 

e 
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Figure 4.4 OCT image processing techniques presented in 2D cross-sectional 

images, for the identification of large parenchyma cells of kiwifruit skin using 

Avizo® in an example (‘G14’): (a) smoothing; (b) interactive threshold 

binarisation; (c) watershed separation; (d) labelling; (e) filtering; (f) closing and (g) 

manually selected large cells. The red rectangle in (a) indicates the region of 

interest. 

a 

b 

c 

d 

e 

f 

g 
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To select the large parenchyma cells, both automated image segmentation and 

manual selection methods were developed. For the automated segmentation method, 

firstly an interactive threshold binarisation was used (Fig. 4.4b). In this technique, the 8-

bit greyscale raw image was transformed into a binary image, which is a 16-bit label 

image with only interior and exterior materials, enabling the segmentation of objects of 

interest from the background. The lower threshold was set as the lowest grey level value 

of the image, and the upper threshold was set at a value where there was the best 

contrast between dark cells and the lighter background tissue. Objects with an initial 

grey level value between these two thresholds were selected.  

Procedure Parameter Setting 

Smoothing Volume of average 3 × 3× 3 voxels 

Threshold Binarisation Greyscale 55 - 75 

Separation Contrast factor 1 

Filtering 

Vertical depth 0.43 – 0.98 mm 

Maximum length  0.20 mm 

Equivalent diameter  0.25 mm 

Closing Kernel size of dilation 
2 voxels added to 6 

neighbouring voxels 

After segmentation, many of the boundaries between selected cells were merged 

and not clear. To separate them, a watershed algorithm was applied to detect cell 

boundaries (Fig. 4.4c). This algorithm simulates ‘flooding’ using different coloured 

water (labels) from a series of marker regions in a 3D image. The efficiency of 

separation was maximised by adjusting the contrast factor, which determines the size of 

the seed areas for flooding (Table 4.2). Separated cells were then displayed using a 16-

colour cyclic colour-map so that the cells in close proximity were labelled in a different 

hue (Fig. 4.4d).  

Table 4.2 Procedures and settings for automated OCT image processing of 

kiwifruit using Avizo® (Version 7.1, Visualization Sciences Group, France). 
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Comparing the labelled objects to the black voids in the raw image, it is clear that 

unwanted objects which had the same grey level values as the large cells were also 

selected. Therefore, filtering of mislabelled objects was conducted (Fig. 4.4e). This 

included the screening of three different types of undesirable objects using different 

image processing techniques (Table 4.2). Firstly, the vertical distance of the object from 

the surface of the skin was restricted to 0.13 – 0.68 mm deep (0.43 – 0.98 mm from the 

top of the images as the image depth covers a region above the skin surface) for all the 

images. Secondly, a threshold for the minimum value for maximum cell length was 

chosen. In A. deliciosa large cells start to appear beneath the hypodermis (approx. 0.10 

mm from the skin) with a maximum length more than 0.20 mm and become more 

prevalent at 0.30 – 0.40 mm from the skin with maximum length of 0.25 – 0.30 mm 

(Hallett and Sutherland, 2005); in A. chinensis large cells start to appear 0.25 mm from 

the skin and further extend to the bulk of the outer pericarp, with a mix of up to and 

more than 0.50 mm maximum diameter (Hallett and Sutherland, 2005). Since the 

maximum length of small cells within the same region was 0.12 mm for A. deliciosa 

and 0.10 mm for A. chinensis, a minimum length of 0.20 mm was selected for large 

cells. Finally a maximum equivalent diameter (De) was set as 0.25 mm, based on the 

results of manual segmentation method (Section 4.3.2). These ensured that most of the 

under- or over-sized objects other than the large parenchyma cell were removed (Fig. 

4.4e).  

The final step of the protocol was to apply a ‘closing’ of the assessed region (Fig. 

4.4f). This technique performs a dilation of the selected cells, followed by an erosion. 

This helped to fill up small holes inside the cells and ensure the cell boundaries are 

smoother. The kernel size of dilation was set as 2 voxels (Table 4.2) so that separated 

cells were not reconnected and additional volume was not added to the large cells.  

Quantitative analysis was conducted on the processed images of all fruit samples 

using the automated method to evaluate the number and describe the characteristics of 

the large cells (Table 4.3). The image processing time using the automated segmentation 

method was 5 – 10 minutes for each image and the number of cells that could be 

identified was unconstrained. The volume fraction calculation of large cells was 

conducted on the basis of the volume of the sample that could be analysed after removal 

of image artefacts (Fig. 4.3). The effect of cultivar was analysed using the GLM in 

Minitab® to examine the differences amongst the means. A two-way ANOVA was 
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conducted within ‘Hayward’ samples using Minitab®, in order to study the effects of 

crop load and girdling on the cellular structure of the fruit. 

Microstructural 
parameters 

Unit Description 

Total volume mm
3
 Total volume of all the objects 

Average volume mm
3
 Volume of an individual object 

Total surface area mm
2
 Total surface area of all the objects 

Average surface area mm
2
 Surface area of an individual object 

Maximum length mm 
The feret diameter which measures the distance 
between two outermost tangential lines of the 
object projected to a plane 

Equivalent diameter, De mm 
The diameter of a spherical object of equivalent 
volume as the irregularly-shaped object 

No. of cells - 
The number of objects within the assessed 
region 

Density mm
-3

 
The number of objects within 1 mm3 of 
assessed volume 

Sphericity - 
The ratio of the surface area of a sphere of the 
same volume to the surface area of the object 

 

The manual segmentation (Fig. 4.4g) method identified individual cell cross-

sections in three orthogonal planes, yielding a ‘skeleton’ of the structure of the cell. A 

‘wrapping’ method was followed which enfolds the selected pixels into a 3D volume 

based on scattered data interpolation with a radial basis (Wevers et al., 2012). This 

method was carried out on one kiwifruit sample (‘G14’), as it was used as a reference to 

validate the automated method. The quantitative analysis results from the manual 

method were compared to the automated method for the same fruit sample. 

  

Table 4.3 Microstructural parameters of large parenchyma cells of kiwifruit and 

description used to quantify these parameters. 
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4.3 Results and Discussion 

4.3.1 Features of raw image 

The complete data set is a 3D image (Fig. 4.5) consisting of 512 two-

dimensional (2D) vertical slices at 5.9 μm spacing. However, for the purpose of ease of 

demonstration, 2D slices of the data set are presented in this chapter. Several layers of 

sub-surface structures were observed in the raw images (Fig. 4.1 and 4.2). These 

structures include: (a) the suberised periderm layer (the ‘skin’), (b) a layer of 

homogeneous small cells, intermingling with (c) elongated black voids (large cells) 

located in the sub-surface region. In addition, some image artefacts are present as a 

result of: (d) shadowing effect caused by lenticels observed as grey spaces throughout 

the tissue underneath without detailed texture boundaries, (e) shadowing effects caused 

by trichomes observed as “black streaks” underneath the hair throughout the tissue, and 

(f) direct reflection of light back into the sensor from the surface observed as “white 

streaks” in the vertical direction (Fig. 4.1). Lenticels were a common issue for all the 

cultivars, whereas trichomes were a significant issue for the hairy green-fleshed ‘G14’ 

(Fig. 4.2d) and ‘Hayward’ (Fig. 4.2e). This can be more clearly observed in Fig. 4.3 

where shadows of lenticels and trichomes were manually selected on cross-sectional 

slices and then visualised in 3D images. Details of any cellular structures within the 

shadowed volumes were unable to be observed or extracted. The fraction of volume 

being affected by these artefacts of the assessed image region varied between cultivars, 

with 9-13% losses for all three yellow cultivars (‘G3’, ‘G9’ and ‘Hort16A’; Fig. 4.3a-c) 

and 25-29% for the hairy green cultivars (‘G14’ and ‘Hayward’; Fig. 4.3d-e).  

Visualisation of the cellular structures immediately underneath the skin (Fig. 

4.2) showed that the large cells were observed to be less prevalent and smaller in 

volume in ‘G9’ (Fig. 4.2b) and ‘Hort16A’ (Fig. 4.2c) but more prevalent and larger in 

volume in ‘G3’ (Fig. 4.2a), ‘G14’ (Fig. 4.2d) and ‘Hayward’ (Fig. 4.2e). In yellow-

fleshed cultivars (‘G3’, G9’ and ‘Hort16A’) the large cells were commonly observed to 

be flat and elongated and further away from the skin surface, whereas in green-fleshed 

cultivars (‘G14’ and ‘Hayward’) they were observed to be more spherical and closer to 

the periderm layer.  
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Figure 4.5 Surface view of large cells presented in 3D image in an example (‘G14’) 

using a) automated method and b) manual method. The grey regions in the image 

represent the image artefacts as a result of lenticels and trichomes which were 

removed from analysis as part of image processing. Bar = 1 mm. 
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4.3.2 Comparison of image segmentation methods 

Both manual and automated segmentation methods identified large cells from 

the background tissue and enabled further analysis of these cells. For manual method, 

there was found to be approximately 25 large cells per mm2 cross-sectional 

(perpendicular to the skin surface) area and 60 large cells per mm3 volume of tissue, 

with these cells occupying around 22.4% of the total outer pericarp tissue (Table 4.4). 

For the automated method, large cell density was estimated at 38 per mm2 cross-

sectional area and 114 per mm3, with a 28.9% volume fraction of cells in the outer 

pericarp tissue (Table 4.4). Cell equivalent diameter (De) ranged from 0.10 mm to 0.25 

mm and 0.05 mm to 0.35 using the manual and automated methods respectively (Fig. 

4.6), with both methods finding cells with De between 0.10 – 0.15 mm being most 

prevalent.  

The observed difference in cross-sectional density is most likely because there is 

a maximum threshold of the number of objects being selected using manual method; for 

an 8-bit greyscale image, this number equals to 255 (28 – 1), although more than 400 

cells could be observed. There is no such limitation when using the automated method 

since the maximum threshold is large enough for a 16-bit image after binarisation (216 – 

1). Apart from this observed difference, other microstructural characteristics were 

similar between the two methods, therefore further quantitative analysis and 

comparisons of cultivars were carried out using the automated method for the ease of 

computation.  

Imaging 

Method 

Volume 

Fraction (%) 

Maximum  

Length (mm) 

De 

(mm) 

Density  

(no. /mm2) 

Manual 22.4 0.35 0.17 25 

Automated 28.9 0.32 0.14 38 

Automated 

(n = 10) 
24.8 – 33.8 0.31 – 0.33 0.14 – 0.15 35 – 40 

Table 4.4 Microstructural properties of large cells in the outer pericarp of ‘G14’ 

kiwifruit obtained using automated and manual methods for the same sample (n = 

1), and using automated method for all samples of ‘G14’ (n = 10).  
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4.3.3 Charaterisation of large cells 

Processing of the OCT images enabled quantification of the number, size and 

shape of the large cells observed. The average maximum cell length (maximum feret 

diameter, Table 4.3) for ‘Hayward’ ranged between 0.31 – 0.34 mm. The large cells 

found using the automated method were irregular shaped (Fig. 4.5a) and this is a result 

of image processing and could have contributed to the differences found between 

manual and automated methods. Ellipsoids could be fitted to the cells to be more 

realistic (Mebatsion et al., 2009). However, for the purpose of this work to compare 

between cultivars, this tedious step was not taken. The large cell density for ‘Hayward’ 

ranged between 54 – 126 cells per mm3 volume of tissue, with these cells occupying 17 

– 35% of the analysed near skin tissue, disregarding the proportion of tissue affected by 

image artefacts. 

  

Equivalent Diameter, mm

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Automated
Manual

Figure 4.6 Size distribution of large cells expressed as cumulative probability of 

number of cells as a function of equivalent diameter. Values were obtained from 

the same fruit evaluated by both manual and automated segmentation methods. 
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4.3.4 Differences between cultivars 

Automated analysis of OCT images was able to differentiate the microstructures 

amongst five kiwifruit cultivars with statistical significance (Table 4.5). Overall, ‘G14’ 

had the highest total large cell volume and total surface area of large cells compared to 

the other cultivars. ‘G3’ and ‘Hayward’ had higher total volume of large cells than ‘G9’ 

and ‘Hort16A’. For each individual large cell, ‘G3’, ‘G14’ and ‘Hayward’ had higher 

average large cell volume and equivalent diameter than that of ‘G9’ and ‘Hort16A’. For 

those cultivars with larger individual cells, ‘G3’ had higher maximum large cell length 

in comparison to ‘G14’ and ‘Hayward’, suggesting that the large cells of ‘G3’ are more 

elongated as observed in Fig. 4.2a. This is also evidenced by a higher average large cell 

surface area in ‘G3’ than that of other cultivars. ‘G14’ and ‘G9’ had higher total large 

cell number compared to other cultivars but ‘G14’ had much higher total large cell 

surface areas than ‘G9’ because the individual cells of ‘G14’ are larger. In contrast, 

‘Hort16A’ had the lowest total large cell volume and number, and the smallest 

individual maximum large cell length and average large cell surface area. The volume 

fraction of large cells was found to be lower for yellow-fleshed cultivars, ‘G9’ and 

‘Hort16A’ than green-fleshed cultivars, ‘G14’ and ‘Hayward’. The yellow-fleshed ‘G3’ 

had lower fraction of large cells than ‘G14’ but not ‘Hayward’ (Table 4.5).  

The cell size distribution curves for the five commercial cultivars demonstrate 

that the equivalent diameter (De; Table 4.3) of large cells ranged between 0.05 – 0.30 

mm (Fig. 4.7). For ‘Hort16A’ all the large cells had a De smaller than 0.25 mm. For the 

other cultivars, a small proportion of large cells were found to have a De larger than 

0.25 mm. For ‘G9’ and ‘Hort16A’, the large cells with De between 0.05 – 0.20 mm 

contributed to almost 90% of the total volume of large cells (Fig. 4.7a); and those with 

De more than 0.20 mm contributed to only less than 10% of the total volume. For ‘G3’, 

‘G14’ and ‘Hayward’, the large cells with De between 0.05 – 0.20 mm contributed to 

about 60% of the total volume of large cells and those with De more than 0.20 mm 

contributed to up to 40% of the total volume (Fig. 4.7a). Consequently, the significant 

difference observed in cumulative large cell volumes (Fig. 4.7b) was a result of the 

added volumes from the large cells sized with De between 0.20 – 0.30 mm.). The 

difference in total volume of large cells between ‘G9’ and ‘G14’ was a result of the lack 

of large cells above 0.2 mm in ‘G9’ (Fig. 4.7b). 
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Figure 4.7 Size distribution of large cells expressed as a) cumulative volume 

fraction of large cells; and b) cumulative volume of large cells, as a function of cell 

equivalent diameter. Sample volumes analysed were immediately underlying the 

skin (0.13 – 0.68 mm from the surface of the skin) of commercial kiwifruit 

cultivars. Values were averaged from 10 fruit per cultivar for ‘G9’, ‘G14’ and 

‘Hort16A’, 20 for ‘G3’ and 40 for ‘Hayward’. 
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4.3.5 Differences within ‘Hayward’ cultivar 

Both girdling and crop load significantly affected fruit quality at the time of 

harvest (Table 3.1). Despite the macro-scale effects of these treatments observed, the 

internal cellular structures of fruit from the subsamples showed minimal difference 

(Table 4.6). Neither girdling nor the interaction between girdling and crop load was 

found to affect microstructural changes of large cells in ‘Hayward’, despite that the 

latter increased fruit weight at harvest (Table 3.1), and that previous results showed 

girdling with high leaf:fruit ratios increased large cell size (Currie, 1997). It is possible 

that, due to the limitation that the assessed images only represented the cellular layers 

near to the surface and had a limited resolution, any significant changes to the bulk of 

the outer pericarp were not reflected or only reflected to a limited extent.  

Crop load was found to have a significant effect on maximum large cell length 

(Table 4.6). Kiwifruit harvested from low crop load vines had larger maximum length 

for large cells (0.33 mm), in comparison to kiwifruit from high crop load vines (0.32 

mm). This agrees with Currie (1997) where low crop load resulted in increased large 

cell diameter. It has been suggested that accumulation of sugar in parenchyma cells 

leads to an increase in water flow due to osmotic pressure, thereby resulting in cell and 

overall fruit expansion (Ezura and Hiwasa-Tanase, 2010).  

Microstructures Unit 
p-value 

Crop 
Load Girdling Crop Load × 

Girdling 

Total volume mm
3
 0.07 0.82 0.39 

Average volume mm
3
 0.67 0.81 0.70 

Total surface area mm
2
 0.06 0.73 0.29 

Average surface area mm
2
 0.60 0.86 0.96 

Maximum length mm 0.03 0.49 0.42 

Equivalent diameter mm 0.84 0.78 0.54 

No. of cells - 0.14 0.67 0.33 

Table 4.6 Significance table showing p-values (α = 0.05) for the effects of crop load 

and girdling on the microstructure description of ‘Hayward’ kiwifruit outer 

pericarp large cells at eating ripe condition.  
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4.3.6 Differences between batches of ‘G3’ kiwifruit 

Between three grower lines of ‘G3’, there were no detectable differences 

observed in the microstructure of the large cells (data not shown), indicating that either 

the cellular structural differences between growers were minimal, or the analysis based 

on OCT images was not sensitive enough to pick up any differences caused by orchard 

location (i.e. grower lines in this case).  

4.3.7 Further discussions 

In general, the manual segmentation method was less affected by image artefacts 

as only ovoid smooth-surfaced cells were selected (Fig. 4.5b). Hence it provided a good 

reference for understanding the general microstructural features of the large cells (e.g. 

maximum length and De). However, this method is highly labour-intensive with 5 – 6 

hours of processing time per image, and the maximum number of objects was limited to 

255 (Section 4.3.2). As a result subsequent analysis based on these cells is compromised 

if these cells were not representative of the whole population. The density and volume 

of cells within the image region could also have been underestimated.  

The automated segmentation method was able to identify cells more efficiently 

with 5 – 10 minutes of processing time per image; and it was not constrained to the 

number of cells that could be identified. The size distribution and total volume of large 

cells found was comparable to the results obtained using manual method (Table 4.4). 

Despite the fact that some undesirable objects remained selected due to the ‘bleeding’ of 

cell surface boundaries as a result of image artefacts, the automated method has benefits 

of rapid processing and computation of large sets of images, and the minimisation of 

human error and bias during selection of large cells. 

A primary limitation of the images captured is that the depth of penetration of 

the data was estimated to be approximately 1 mm underneath the skin even though the 

outer pericarp of kiwifruit could be a 10 mm thick region. There is no published 

evidence as to whether the distribution of small and large cells in the analysed region is 

the same as the majority of the outer pericarp. Therefore the data probably represents 

only the sub-surface layers of the outer pericarp of the fruit and the regions observable 

in the images may not necessarily represent the outer pericarp as a whole. Despite these 

limitations there is still potential for this technology to provide potentially useful 
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information on near surface cell size and structure non-destructively. For this reason this 

chapter continues to discuss the differences observed between cultivars and to compare 

with known data for the pericarp due to the lack of other quantitative sub-surface data, 

despite that these may not be directly comparable due to the limitation in image depth.  

For A. chinensis cultivars stone cells have been previously reported to be 

scattered amongst small parenchyma cells in the region approximately 0.10 – 0.25 mm 

(for ‘Hort16A’; Hallett and Sutherland, 2005)   from the skin slightly above the bulk of 

the outer pericarp where large cells start to show prevalence, and may further extend to 

deeper region (0.60 – 0.70 mm from the skin) for some cultivars. The images, however, 

showed no obvious differentiation between the observed large voids and the stone cells 

approximately in the assessed image region. This could be another weakness of the 

technique as it is possible that some of the near-surface layers of large cells observed in 

yellow-fleshed cultivars, especially ‘G3’, could have been stone cells. While 

acknowledging that the technique is unable to potentially differentiate between large 

cells and stone cells, discussions in this chapter will be under the assumption that all 

large objects observed are large cells. 

The penetration and the resolution of the images were compared with previous 

studies on other horticultural products. When operating at the same wavelength (1325 

nm), the depth resolution (5.9 μm) and the penetration depth (0.68 mm), to which 

cellular discrimination was possible, were comparable to those in apples (5 μm and 0.5 

mm, respectively; Verboven et al., 2013)   but the resolution was lower compared to 

those in onions (1 μm and 0.5 mm, respectively; Meglinski et al., 2010) . The 

penetration depth was lower but the depth resolution was better than those in mandarins 

(7 μm and 1.1 mm, respectively; Magwaza et al., 2013)   where a shorter wavelength 

(930 nm) was used. The common problems identified across the studies included the 

choice between good penetration depth and high resolution, and the compromise in data 

processing speed when manual selection was used instead of automated method for 

better accuracy or vice versa.   

The shape and total volume of large cells may affect relative porosity of the 

tissue. In this study, the total volume of large parenchyma cells was estimated to be high 

in ‘G3’ and low in ‘Hort16A’ and ‘G9’ (Table 4.5). Cantre et al. (2014) found that the 

relative porosity was low in ‘G3’ and high in ‘G9’ and ‘Hort16A’ for fruit obtained 
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from the same growers sampled at the same time as the current study. However, ‘G14’ 

and ‘Hayward’ were found to have higher total volume of large cells and also a high 

porosity. In these two cultivars the observed large cells were most likely to be actual 

large cells and therefore they were more spherical (smaller maximum large cell length, 

Table 4.5), whilst in ‘G3’ the observed large cells were possibly a mixture of more 

flattened stone cells and some of the actual large cells. More spherical cells may cause 

more intercellular spaces as cellular packing may be less dense in comparison to flat 

cells (Mebatsion et al., 2009). It might be the case that the large cells were stacked less 

densely against one another, resulting in a more porous near skin tissue compared to 

‘G3’. This could also be evidenced from the results that ‘G14’ and ‘Hayward’ had 

higher pore connectivity and lower pore fragmentation in comparison to ‘G3’ (Cantre et 

al., 2014). However, the packing of small cells around the larger cells may also 

influence porosity. Large number of small cells occupying the spaces around the large 

cells could in fact reduce porosity. This might explain why ‘Hayward’ had lower 

porosity in comparison to ‘G9’ and ‘Hort16A’(Cantre et al., 2014), despite that 

‘Hayward’ had more spherical large cells (Table 4.5). There seems to be no relationship 

between the porosity of fruit tissue and the total number of large cells. For instance, 

‘G9’ was found to have higher total number of large cells but also higher relative 

porosity than ‘G3’, due to ‘G9’ having smaller individual large cells and thus smaller 

total volume of large cells. 

The use of OCT as a tool is still in its infancy and there are required 

improvements of the methods for it to become a ubiquitous tool for assessing 

horticultural produce. For instance, increased signal-to-noise ratio and improved 

resolution are necessary to allow applicability to a wider range of horticultural produce 

for quantification purposes. Better depth penetration will be required to provide more 

information for understanding microstructural or cultivar differences. Nonetheless, the 

information obtained in this study still suggests that OCT has potential as a non-

destructive tool to provide information on the near-surface cellular structures of 

horticultural products with thin cuticles, especially to detect the differences at the cell 

level between crop varieties and cultivars. The technology may be used to monitor the 

3D cellular changes in a crop during plant development, at the time of harvest and 

during storage. Such information would be useful in understanding the physiology of 

the crop in relation to internal quality changes and the variability in storage potential. 
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With improved speed of data capture and analysis it can be used as a fast screening tool 

during plant breeding, should the nature of the large cells be associated with an 

important attribute. 

4.4 Conclusions 

OCT has potential as a non-destructive technique to characterise microstructure 

of large parenchyma cells immediately underlying kiwifruit skin. The details of the skin 

surface, the periderm layer, and the presence of large cells and their structures in the 

near skin tissue can be observed from raw images but there was no clear differentiation 

between large cells and stone cells. The data acquired were limited to a penetration 

depth of up to 1 mm underneath the skin and might not represent the outer pericarp as a 

whole. The developed image processing techniques enabled identification and 

characterisation of large parenchyma cells in the near skin tissue of five commercial 

kiwifruit cultivars in an efficient manner. Green-fleshed ‘G14’ and ‘Hayward’ were 

found to have higher volume fraction of large cells than yellow-fleshed ‘G3’, ‘G9’ and 

‘Hort16A’. The size and density of large cells were greater in ‘G3’, ‘G14’ and 

‘Hayward’ than those of ‘G9’ and ‘Hort16A’. Girdling did not affect the microstructure 

of large cells whereas low crop load increased maximum cell length. The ability to 

describe large cell structures non-destructively may be useful for cultivar or batch 

selection. However, improvement in the penetration depth is required to provide more 

comprehensive information and better understanding on the observed differences. 
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5 Quantitative prediction of post storage ‘Hayward’ kiwifruit 

attributes using at harvest Vis-NIR spectroscopy 

Acknowledgement: 

Material from this chapter is included in the following paper: 

Li, M., Pullanagari, R.R., Pranamornkith, T., Yule, I.J., East, A.R., 2017. Quantitative 

prediction of post storage ‘Hayward’ kiwifruit attributes using at harvest Vis-NIR 

spectroscopy. Journal of Food Engineering, 202, 46-55. 

5.1 Introduction 

During ripening kiwifruit undergo two major changes: the decrease of flesh 

firmness (FF) and the conversion of starch to sugar (as indicated by TSS). The TSS at 

ripening is strongly associated with sweetness, eating quality, consumer acceptance and 

repeat purchases of kiwifruit (Crisosto et al., 2012a). The FF is an important ripening 

index for indicating the postharvest storability of kiwifruit (Beever and Hopkirk, 1990). 

In New Zealand, a minimum standard of 9.8 N for FF is required to ensure reasonable 

storage life remains to enable shipping to market (Hopkirk et al., 1996). Traditionally, 

the assessment of TSS and FF is destructive and hence unable to be used for monitoring 

large volumes of fruit. Development of a non-destructive technique may allow 

prediction of fruit quality and enable strategic marketing of fruit.  

Vis-NIR spectroscopic techniques have been used as non-destructive and rapid 

tools to evaluate various quality attributes of fruits and vegetable (Williams et al., 2006; 

Jha, 2010). Previous attempts of using NIR spectroscopy to provide instant estimation 

of at-harvest TSS have been moderately successful. Good predictions have been 

achieved by McGlone and Kawano (1998), Osborne et al. (1998), Osborne et al. (1999), 

Schaare and Fraser (2000), Moghimi et al. (2010), Lee et al. (2012) and Chen and Han 

(2012). For post-storage TSS, prediction was usually based on estimates of at-harvest 

attributes generated using predictive models calibrated with that quality data measured. 

For instance, McGlone et al. (2002b) predicted post-storage TSS of ‘Hayward’ kiwifruit 

based on a predictive model calibrated with at-harvest fruit density. Similarly, McGlone 

et al. (2007) predicted post-storage TSS of ‘Hort16A’ kiwifruit based on estimated at-
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harvest DMC data. Both approaches required testing of specific attributes at harvest and 

if this testing method is destructive, validation of the uncertainty in sample selection is 

essential. Ignat et al. (2014) used an approach similar to the philosophy of this study and 

predicted post-storage TSS of apples using at-harvest spectral data with good accuracy 

(R2 = 0.76 – 0.94, RMSEP = 0.68 – 1.02 ºBrix, SDR = 2.1 – 3.1). 

Prediction of at-harvest firmness using NIR spectral data was not as successful. 

Poor predictions were found in ‘Hayward’ kiwifruit (McGlone and Kawano, 1998; 

Costa et al., 1999; Lee et al., 2012), apples (Lu et al., 2000) and peaches (Fu et al., 

2008). Prediction of post-storage firmness has also been studied by McGlone et al. 

(2002a) on ‘Royal Gala’ apples and Feng et al. (2013) on apricots but not as yet on 

‘Hayward’ kiwifruit. In both studies the initial FF values were measured in order to 

develop a calibration model which was then applied for prediction. Similar to prediction 

of at-harvest firmness, no strong correlation was found between spectral data and post-

storage firmness; prediction errors were relatively high. For kiwifruit, the initial 

firmness at harvest has no direct relationship with post-storage firmness 

(Ghasemnezhad et al., 2013; Burdon et al., 2014a). The softening rate in storage is 

dependent on the stage in softening achieved at the time of harvest (Burdon and Lallu, 

2011), and fruit harvested at late maturity were found to maintain firmness better 

compared to early harvested fruit (Gordon Mitchell et al., 1992). Hence, the final 

firmness is influenced by a range of fruit characteristics at harvest which affect both 

maturity stage and rate of softening at harvest. 

This paper investigates the ability of Vis-NIR spectroscopy utilised at harvest as 

the sole input variable, to quantitatively predict both TSS and firmness after cool 

storage. Because no additional at-harvest information is required, the objective is to 

apply Vis-NIR spectroscopy to capture the (near) skin properties of fruit which may be 

representative of various pre-harvest conditions resulting in a wide range of variability 

within the population, and perform prediction for future quality attributes using a 

blackbox model. The aim is to investigate whether information on skin properties 

extracted from spectral data can be indicative of physical/chemical properties of the 

fruit which in turn affects quality attributes after storage. The performance of regression 

methods used to develop quantitative model will be evaluated. Comparisons of 

prediction error to the literature will be drawn. Successful prediction of future quality 
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attributes would allow industry to identify batches that have higher quality potential and 

enable better inventory decisions. 

5.2 Materials and Methods 

 A total of four Vis-NIR spectral and fruit quality data sets were collected over 

two fruit seasons from 2012 to 2013 (Table 5.1). The first two sets of Vis-NIR spectral 

data and quality after storage were available as a resource generated by two postdoctoral 

students in 2012 (Sections 5.2.1 and 5.2.2). In 2013, two more sets of Vis-NIR spectral 

data and fruit quality data were obtained from the trial with manipulation of crop load 

and girdling (Chapter 3) and the trial with manipulation of light. Both firmness (FF) and 

total soluble solids (TSS) data were collected for all the data sets except for the first set 

which only contained firmness measurements.  

Data Sets Treatment 

Firmness Total Soluble Solids 

Storage time (day) 
Total 

Storage time (day) 
Total 

75 100 125 150 75 100 125 150 

51 grower lines 
(2012) 

Grower 
Lines 255 255 255 0 765 0 0 0 0 0 

Manipulation 
of light 
(2012) 

RM 
Control 40 40 40 40 160 40 40 40 40 160 

Manipulation 
of light 
(2013) 

RM 
Control 40 240 40 240 560 40 80 40 80 240 

Manipulation 
of crop load 
and girdling 

(2013) 

HC 
LC 

HCG 
LCG 

0 320 0 320 640 0 320 0 320 640 

Total  335 855 335 600 2125 80 440 80 440 1040 

Table 5.1 Summary of NIR data sets collected in 2012 – 2014 available for analysis. 

Numbers represent the number of fruit measured. RM: Reflective mulch. HCG: 

High crop load with girdling. LCG: Low crop load with girdling. HC: High crop 

load. LC: Low crop load. 
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These data sets were later used to assess if Vis-NIR collected at harvest can 

assist in predicting kiwifruit quality attributes after storage. Since the data were 

collected from multiple orchards, multiple seasons and various types of trials with 

manipulation treatments, a vast variety of data was used to generate the model. This 

data variety increases the likelihood of a robust model being developed because, instead 

of tuning on a specific set of data, this study tries to capture the large variability that is 

observed within the industry. 

5.2.1 Experiment 1: 51 grower lines 

This experiment was part of a larger trial that investigated the potential to 

segregate ‘Hayward’ kiwifruit for storage potential using an accelerated fruit library 

rapid test methodology (Jabbar, 2014). Commercial ‘Hayward’ kiwifruit from 51 

grower lines located in the Bay of Plenty, New Zealand were sourced during the 2012 

season. Fruit were delivered in temperature controlled transport. The first grower line 

arrived on 10th May 2012 and the last on 14th June 2012. Each grower line consisted of 

150 (5 trays of count 30) Class 1 export grade fruit. Only fifteen selected fruit (3 fruit 

per tray) from each grower line were subjected to initial Vis-NIR spectral measurements 

at day 0 (on arrival at the lab), resulting in a total of 765 fruit for corresponding post-

storage firmness measurement. All the fruit were then placed into a cold room at 0°C. 

Each tray was randomly labelled for removal from the cold room for firmness 

measurement at 75, 100 and 125 days of storage, respectively. 

5.2.2 Experiment 2: manipulation of light (season 2012) 

This trial was part of a larger experiment that investigated the effects of light 

manipulation in the orchard on growth and storability of ‘Hayward’ kiwifruit 

(Pranamornkith, unpublished work). The experiment was conducted on a T-bar trained 

block at the Plant Growth Unit (PGU) at Massey University, Palmerston North and 

consisted of a control and a manipulated treatment using reflective mulch (RM) to 

enhance light exposure of kiwifruit. The selected reflective film was Ultramat white UV 

woven reflective ground cover (Cosio Industries, Auckland, New Zealand). The film 

was laid down on 20th December 2011, and maintained in position, with frequent 

cleaning and removal of trash, until harvest. The film was placed under both sides of 6 

kiwifruit vines and the width of the film from the central leader was 4.15 m. Two blocks 

of film-treated vines were established. Control kiwifruit vines were selected no less than 
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2 m from the end of the reflective film. At harvest (11th May 2012), each treatment 

contained 240 mixed-sized fruit (8 trays of 30 fruit). Only 10 fruit out of the 30 fruit per 

tray were measured for initial Vis-NIR spectral data and subsequent post storage 

firmness, resulting in a total of 160 fruit for two treatments. All fruit were then placed 

into a cold room at 0 °C and firmness and TSS measurement was conducted for 20 fruit 

of each treatment at 75, 100, 125 and 150 days of storage, respectively. 

5.2.3 Experiment 3: manipulation of light (season 2013) 

For the 2013 harvest season, a light manipulation experiment was carried out on 

the Massey University PGU T-bar trained vines using the same Ultramat white UV 

woven reflective mulch described in Section 5.2.2. The film was laid down on 21st 

November 2012, under eastern side of 9 kiwifruit vines and both eastern and western 

sides of 4 vines. All fruit were harvested on 31st May 2013. At harvest, each of the 

treated and control fruit generated 2 replicates of 300 mixed-sized fruit (10 trays of 30 

fruit), resulting in a total of 1200 fruit. Fruit were cured in the laboratory for two days at 

20 °C, 60% R.H. Five fruit each from two trays of each replicate (20 fruit per treatment) 

were measured for Vis-NIR spectral data at day 0 (2nd June), and both firmness and TSS 

data after 75 and 125 days of cool storage at 0 °C. Another two full trays (30 fruit) from 

each replicate (120 fruit per treatment) were measured for spectral and firmness data 

after 100 and 150 days of storage, respectively. Additionally, ten fruit each from two 

trays of each replicate (40 fruit per treatment) were measured for spectral data and post-

storage TSS after 100 and 150 days of storage, respectively.  

5.2.4 Experiment 4: manipulation of crop load and girdling 

 The experimental setup for this experiment is in accordance with that described 

in Section 3.2.1. For the purpose of this study, at harvest, each of the four treatments 

contained 4 replicates consisting of 8 trays of 30 mixed-sized fruit per tray. The 

resulting total number of fruit was 3840. Only 5 selected fruit each of 2 trays per 

replicate of each treatment were measured for Vis-NIR spectral data at harvest, resulting 

in a total of 640 fruit for all four treatments. The post-storage TSS and FF data of 

corresponding fruit were measured after 100 and 150 days of storage at 0 °C. 
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5.2.5 Vis-NIR spectral data measurements 

A commercial full-range Vis-NIR spectroscopy system (FieldSpec® Pro, ASD 

Inc., USA) was used in this study (Fig. 2.5a). Within the instrument, three types of 

detectors are installed to cover both the visible and the NIR range of the spectrum 

including: a silicon detector (350 – 1000 nm); an InGaAs detector that measures 

shortwave infrared (1000 – 1800 nm); and a second InGaAs detector (1800 – 2500 nm). 

The optical fibre of the instrument was coupled with a contact probe (Hi-Brite, 

PANalytical B.V., Boulder, USA) for contact measurements with a spot size of 10 mm 

in diameter. The contact probe was fitted with a high intensity halogen lamp to produce 

consistent illumination in a broad electromagnetic spectrum. The probe was fixed to a 

burette stand in a nadir position and connected to the instrument through an optical fibre 

cable. A diffuse reflectance material (Spectralon®, Labsphere Inc., North Sutton, USA) 

panel was used as a reflectance standard and to convert raw spectra to reflectance. 

At the time of scanning each fruit were measured at two locations (90° apart) 

around the equator of the fruit. The sampling interval was 1.4 nm (350 – 1000 nm) and 

2 nm (1000 – 2500 nm). The spectral resolution was 3 nm (at 700 nm), 10 nm (at 1400 

nm) and 12 nm (at 2100 nm). 

5.2.6 Fruit quality measurements 

During storage, ethylene concentration in the cool room was monitored and 

maintained below 5 nL L-1. Fruit flesh firmness (FF) and total soluble solids (TSS) 

content were assessed using the methodologies described in Section 3.2.2. 

5.3 Near-Infrared Spectra Data Analysis 

5.3.1 Pre-processing of spectral data 

The raw spectral data were pre-processed using The Unscrambler® (Version 

X10.3; CAMO Software AS., Oslo, Norway). Spectral data from all experiments were 

first truncated to 400 – 2450 nm (Fig. 5.1a) so that fluctuations and noises at both ends 

were eliminated. Reflectance was then converted to absorbance by a Log transformation 

(Fig. 5.1b) which can be related to concentration by Beer’s law: ܣఒ = − logଵ଴(ܴ)     (5.1) 
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where ܣఒ is the absorbance at a wavelength ߣ. ܴ is the reflectance detected.  

First order derivation using a Savitzky-Golay smoothing algorithm (Fig. 5.1c) 

was then applied. The purpose was to reveal the hidden information in the spectra as 

well as to reduce the noise in the data without reducing the number of variables. 

Derivation was the differentiation of the fitted polynomial at each point: ܵ௡ᇱ =  ܵ௡ା௚ −  ܵ௡ି௚     (5.2) 

where ݊ is the degree of the fitting polynomial; ܵ௡ᇱ  is the first derivative at point ݊ for evenly spaced wavelength ߣ௡; ݃ is an integer called the gap or derivative size. The 

Savitzky-Golay smoothing algorithm (Savitzky and Golay, 1964) was used to estimate 

the polynomial approximation of the curve segment.: ∑ ݅௥ݕ௜ =௠௜ୀ ି௠ ∑ (ܾ௡௞௡௞ୀ଴ ∑ ݅௥ା௞௠௜ୀ ି௠ )   (5.3) 

where 1 ,0 = ݎ, …, ݊; ݉ is the number of points on either side of the central 

point (2 ݉ + 1 is the total number of points to fit); ߣ௜ is the wavelength at which the 

smoothed value is desired; ݕ௜  is the absorbance value at wavelength ߣ௬ା௜; ܾ௡௞  is the 

coefficient of the ݇th term of the ݊th degree polynomial; ܾ௡଴ is the smoothed value at ߣ௜. 
Spectra were then normalised sample-wise (Fig. 5.1d) so that the resulting 

spectra were on the same scale and had more features in common, and unwanted 

sources of variability were suppressed. 

ܺప෡ =  ௑೔ට∑ ௑೔ೕమೕ       (5.4) 

where ܺ௜ is the observation at a specific variable for one sample; ܺ݅ and ܺ௜௝are 

an element of the jth spectrum and of a data matrix ܺ, respectively. 

Lastly, mean centering was applied (Fig. 5.1e) by subtraction of an average 

value from each variable so that the final data was interpreted in terms of variation 

around the mean rather than the absolute values of the observations. For a data set of ݊ 

samples each of ݆ wavelengths, the mean centered ݆th wavelength of the ݊th sample is 

defined by: ܺ௡,௝ ௖௘௡௧ = ܺ௡,௝ − ቀଵ௡ ∑ ܺ௡,௝௝௝ୀଵ ቁ    (5.5) 
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Figure 5.1 Pre-processing of Vis-NIR spectral data after: a) removal of noise 

regions; b) log transformation; c) first order derivation; d) normalization and e) 

mean centering in the 400 – 2450 nm range. 

a 

b 

c 

d 

e 
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5.3.2 Algorithm for regression models 

5.3.2.1 Partial least squares regression 

Partial least squares (PLS) was introduced by Wold (1975) in algorithmic form 

as a modification of the non-linear iterative partial least squares (NIPALS) algorithm 

(Wold, 1966) to overcome disadvantages found in principal component regression. PLS 

projects the input data onto a small number of latent variables (LVs) which maximise 

the covariance between X-variables (spectral data) and Y-variables (TSS and FF) by 

developing a linear multivariate model. Including too many LVs in the PLS model may 

lead to over fitting, whereas too few LVs may result in under fitting (Gowen et al., 

2011). Therefore, full cross validation (LOOCV) was used in this study to determine the 

optimal number of LVs.  

The underlying model of multivariate PLS is shown in Eq. 5.6 and 5.7: ܺ = ்ܶܲ + ܻ (5.6)       ܧ = ்ܷܳ +  (5.7)       ܨ

where ܺ  is a matrix of predictors, ܻ  is a matrix of responses; ܶ  and ܷ  are 

matrices that are projections of ܺ and ܻ respectively.; ܲ and ܳ are orthogonal loading 

matrices; and ܧ and ܨ are the error terms. The decompositions of ܺ and ܻ are made so 

as to maximise the covariance between ܶ and ܷ (Kalivas and Gemperline, 2006). 

5.3.2.2 Support vector machine regression 

Support vector machines regression (SVM-R) was first proposed by Vapnik 

(1995). In ideal cases the SVM-R identifies a function, where, for all training patterns x 

has a maximum of ε (ε > 0) deviation from the actual response y, and at the same time is 

as flat (simple) as possible (Smola and Schölkopf, 2004). However, for most real-world 

cases, the regression model is presented as a threshold tube with radius ε fitted to the 

data (Fig. 5.2; Ivanciuc, 2007). Any error situated inside the threshold tube is 

considered as zero and ignored by the loss function, whereas patterns situated outside 

the threshold tube have an error that increases with the distance to the tube margin 

(Ivanciuc, 2007). This is also known as the soft margin SVM-R using slack variables.  
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The formulation of soft margin SVMR is stated in Eq. 5.8 and 5.9: 

minimise  ଵଶ ଶ‖ݓ‖ + ܥ ∑ ௜ߦ) + ௜∗)௟௜ୀଵߦ      (5.8) 

subject to ቐݕ௜ − ,ݓ〉 〈௜ݔ − ܾ ≤ ߝ + ,ݓ〉௜ߦ 〈௜ݔ + ܾ − ௜ݕ ≤ ߝ + ,௜ߦ∗௜ߦ ∗௜ߦ ≥ 0    (5.9) 

where ݓ  is a weight vector and  ܾ  is a bias; ݕ௜ = ,ݓ〉 〈௜ݔ − ܾ − ߝ  and ݕ௜ ,ݓ〉= 〈௜ݔ + ܾ +  ௜ߦ indicate the hyperplanes forming borders of the regression tube; and ߝ
and ߦ௜∗ represent the slack variables associated with an underestimate and overestimate 

of the calculated response respectively, for the input vector, ݔ௜  (Vapnik, 1995). The 

constant ܥ) ܥ > 0)determines the trade-off between model complexity (flatness), and 

the degree to which deviations larger than ε are tolerated in optimisation formulation 

(Smola and Schölkopf, 2004).  

For linear SVM-R models the threshold tube is a cylinder. For non-linear cases, 

the coordinates of the input objects are mapped into a high-dimensional feature space 

using a kernel function. The support vectors are those points that do not fall strictly 

within the threshold tube. All the other points are considered unimportant and can be 

removed from the training data without changing the outcome of the learning process 

(Witten et al., 2011). The radial basis function (RBF) kernel was used in this study to 

build non-linear regression model because this method is simple and capable of 

modelling complex data sets.  

Figure 5.2 Support vector machines regression determines a tube with radius ε 

fitted to the data (Ivanciuc, 2007). Image used with permission. 
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5.3.3 Model development and evaluation 

Data sets at different storage times were randomly divided into two subsets: 

calibration (66.7%) and validation (33.3%). The statistics for quality measurements of 

the calibration and validation datasets are shown in Table 5.2. Calibration models were 

developed on The Unscrambler® using both PLS-R and SVM-R. In PLS regression, 

leave-one-out cross validation (LOOCV) was applied to avoid over-fitting. In this 

method one sample is removed from the data set and a calibration model is developed 

based on the remaining samples. The model is then used to predict the sample left out, 

and the prediction error is estimated. The process is repeated until every sample has 

been left out once, and the average prediction error is estimated. In SVM regression, 

internal L-fold (L = 20) cross validation was used. This method is similar to LOOCV 

except that samples are divided into L segments. At each time a segment of samples is 

left out rather than one sample. Predictions were compared with reference values and 

the R2 and the RMSEP values were estimated. 

Storage time 

(d) 
 Flesh firmness (N) Total soluble solids (°Brix) 

C
al

ib
ra

tio
n 

da
ta

 se
t  n Mean S.D. Range n Mean S.D. Range 

75 221 15.9 6.0 32.9 54 13.2 1.1 4.9 

100 564 17.4 6.6 38.9 294 15.0 1.6 8.2 

125 221 11.4 4.2 30.3 54 13.1 1.4 6.9 

150 396 13.7 5.2 25.2 294 15.2 1.5 7.5 

V
al

id
at

io
n 

da
ta

 se
t  n Mean S.D. Range n Mean S.D. Range 

75 114 15.9 6.2 33.6 26 13.0 1.4 5.3 

100 291 17.3 6.6 35.6 146 15.1 1.7 8.5 

125 114 12.2 3.9 19.2 26 13.0 1.5 5.7 

150 204 14.2 5.3 27.1 146 15.1 1.6 8.0 

Table 5.2 Summary statistics of quality measurements for kiwifruit after 

coolstorage of 75, 100, 125 and 150 days, respectively. S.D. stands for standard 

deviation. 



Developing non-destructive techniques to predict kiwifruit storability 

88 
 

The stability of the SVM algorithm was enhanced by finding the appropriate 

values of constant ܥ  (cost) and kernel parameter γ (Gamma) using Matlab (Version 

R2012a, MathWorks, Inc., Natick, USA), which are usually on a logarithmic scale. The 

values were determined through a grid search and applying a 10-fold cross validation to 

reduce the chance of under and over-fitting. The search window was set between 10−6 

and 10 for γ, and between 10−3 and 100 for C with a step size of 1. The optimal 

parameters (Table 5.3) corresponding to the lowest RMSEs were used in the final model. 

Storage time 

(day) 

FF TSS 

Cost Gamma Cost Gamma 

75 1 0.00032 100 0.0000032 

100 31.62 0.000032 31.62 0.000032 

125 100 0.000010 100 0.000031 

150 10 0.00010 100 0.000010 

5.3.4 Selection of important waveband 

 Several variable selection techniques were also applied to the pre-processed 

spectra data to eliminate unimportant variables so as to reduce computation cost and 

improve prediction accuracy (Zou et al., 2010). Principal component analysis (PCA) 

was carried out to find linear combinations of variables that contribute most to making 

the samples different from each other. The first PC is one that carries most information; 

the second PC carries the maximum share of the residual information, and so on. 

Genetic algorithm (GA) selected important variables using genetic algorithm which 

simulates the process of natural selection based on fitness (indicated by R2 and RMSE). 

In addition, the sampling intervals were increased from 1 nm to 5 or 10 nm by taking 

mean of every 5 or 10 data points respectively (Fig. 5.3). This helped to reduce 

localised fluctuations in the spectra. Determination of the best variable selection 

technique was done by comparing regression outcomes using full spectrum. 

Table 5.3 Appropriate values of constant ࡯  (cost) and kernel parameter γ 

(Gamma) used for developing quantitative models which corresponded to lowest 

RMSE values. 
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Amongst the selected techniques, increasing sample intervals was found to 

perform best for overall regression accuracy (Tables A.1 – A.4). This technique has 

several advantages: broader sampling intervals (5 – 10 nm) yield better results while 

reducing computational cost (Kemper and Sommer, 2002; Shepherd and Walsh, 2002); 

the resultant sampling intervals also match more closely to the spectral resolution of the 

instrument used (3 – 12 nm). The improved accuracy is probably because variable 

loadings with localised fluctuations were smoothed without losing important 

information (e.g. Fig. 5.2d). Nicolaï et al. (2007b) found that the accuracy of PLS model 

was increased by removing redundant high resolution information by means of wavelet 

compression and the best results corresponded to a wavelength resolution of about 5 nm. 

In this study increasing sampling intervals to 5 and 10 nm was found to provide the best 

accuracy for firmness and TSS respectively, and hence were used for subsequent 

regression models.  
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Figure 5.3 X-loadings for TSS PLS regression model (75 days) using (a) original 

spectra and (b) pre-processed spectra by taking averages of every 10 nm in the 400 

– 2450 nm range; and x-loadings for firmness regression model (75 days) using (c) 

original spectra and (d) pre-processed spectra by taking averages of every 5 nm in 

the 400 – 2450 nm range. 

(a) 

(b) 

(c) 

(d) 
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5.4 Results and Discussion 

5.4.1 Prediction of total soluble solids during storage 

The reflectance spectra comprised of several overlapping absorptions 

corresponding to overtones and combinational chemical bonds present in different 

organic compounds (Osborne, 2000). The regression coefficient plot for TSS (Fig. 5.4a) 

shows a few peaks with high RC values at 780, 880, 970, 1200–1210, 1400–1450, 1700, 

1820 nm and 1940 nm, suggesting important contribution to the regression model from 

these wavebands. These absorption bands correspond to the water spectrum with 

overtone bands of OH-bonds at 760, 970, 1450 (Nicolaï et al., 2007a), 1200, 1820 and 

1940 nm (Workman and Weyer, 2007). The absorptions around 880 and 970 are caused 

by second overtone of C−H stretching (McGlone and Kawano, 1998). 

 

In general the predictive performance for TSS was good (Table 5.4), suggesting 

good correlation between at-harvest Vis-NIR spectral data and post-storage TSS data. 

Regression models built with SVM-R method produced better results compared to those 
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Figure 5.4 Regression coefficient curves for the prediction of (a) total soluble solids 

and (b) flesh firmness of ‘Hayward’ kiwifruit using support vector machines (red) 

and partial least squares (blue) regression. 
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with PLS-R. Specifically, considerably lower RMSE and higher SDR values (SDR > 2) 

were obtained using SVM-R for predictions at 100, 125 and 150 days (Table 5.4). This 

is probably because SVM-R models with kernel functions could handle non-linear 

complex multivariate data correlation which might exist between post-storage TSS 

values and at-harvest NIR spectral data, whilst PLS-R models were merely based on 

linear projection. 

The prediction results for validation from SVM-R model (R2 = 0.68 – 0.83) were 

not as good as those reported by McGlone et al. (0.89; 2007) in which prediction was 

based on estimated at-harvest DMC of ‘Hort16A’ kiwifruit, and Ignat et al.   (0.76 – 

0.94; 2014) which performed prediction for apples using at-harvest spectral data directly. 

However results were comparable to those found by McGlone et al. (0.70; 2002a) which 

used estimated at-harvest density for ‘Royal Gala’ apples. The RMSE values (0.66 – 

0.86 °Brix) were higher compared to those found by McGlone et al. (0.38 °Brix; 2007) 

and McGlone et al. (0.50 °Brix; 2002a) but were lower than those found in Ignat et al 

(0.68 – 1.02 ºBrix; 2014). The SDR values (1.6–2.3) were comparable to that obtained 

by McGlone et al. (1.8; 2002a). 

The SDR values obtained in this study, however, suggest that a good regression 

model can be developed by finding correlations between at-harvest Vis-NIR spectral 

data and post-storage TSS values. Hence, quantitative prediction of TSS using the 

developed model may be promising, especially for storage times of 100, 125 and 150 

days. However, a significant regression model does not necessarily guarantee viable 

industrial applications such as online sorting of kiwifruit. McGlone and Kawano (1998) 

recommend that an SDR value of 3 should be considered as the minimum value for 

sorting/grading purposes of kiwifruit. In this study the highest SDR value obtained was 

2.3. This indicates that it would still be challenging to apply the predictive models for 

on-line TSS sorting purposes without further improvement of the models. One would 

argue that the selection of thresholds of SDR values can vary since there is no statistical 

basis used to determine the thresholds (Bellon-Maurel et al., 2010). Therefore, an online 

testing at existing packhouses, combined with storage studies on the same fruit/batch, 

may be helpful to determine whether the developed model is sufficiently robust to be 

used for online prediction of future TSS. 
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5.4.2 Prediction of flesh firmness during storage 

 The regression coefficient plot for FF (Fig. 5.4b) shows two major peaks at 740 

and 1395 nm, and several secondary peaks at 650, 770, 1680 and 1890 nm, indicating 

important roles of these wavebands to the regression model. These could be related to a 

combination of water absorption bands at 740, 770 and 1400 nm (Workman and Weyer, 

2007), and the pectin absorption bands at around 1670 nm which was responsible for 

measuring textural properties of fruit (Kojima et al., 2004). However, several other 

known pectin absorption bands (e.g. 1590, 1730 and 2400 nm; Kojima et al., 2004) did 

not seem to have a significant contribution to the regression model.  

The predictive performance for firmness (Table 5.5) was not as good as that for 

TSS. In general model validation showed poor to moderate predictability with low R2 

(0.24–0.60) and SDR values around 1.5. Comparing the two regression algorithms, 

SVM-R had better prediction because of lower RMSE and higher SDR values than 

PLS-R, suggesting a possible non-linear correlation between post-storage FF values and 

at-harvest Vis-NIR spectral data.  

Comparing results to the literature (using SVM-R), the R2 values (0.38 – 0.60) 

were comparable to those found by McGlone et al. (0.59; 2002a) and Ignat et al. (0.18 – 

0.73; 2014) for ‘Royal Gala’ apples, and Feng et al. (0.50; 2013) for ‘Clutha Gold’. The 

achieved RMSE values (3.53 – 4.12 N) were considerably lower than those obtained in 

McGlone and Kawano (7.8 N; 1998) for ‘Hayward’ kiwifruit, Feng et al. (8.8 N; 2013) 

for ‘Clutha Gold’ apricot, McGlone et al. (7.5 N; McGlone et al., 2002a)  for ‘Royal 

Gala’ apples, and Ignat et al. (4.6 – 6.5 N; 2014) for various apple cultivars, respectively. 

This suggests that FF is possibly affected by various quality attributes within the fruit 

and hence, prediction based on an overall status may be a better approach rather than 

only looking at initial FF value of the fruit. The SDR values (1.5 – 1.7) obtained in this 

study (using SVM-R) were comparable to those found in McGlone et al., (1.6; 2002a) 

but slightly lower than those reported in Ignat et al. (1.1 – 2.5; 2014).  
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The small RMSE values obtained in this study indicate better model fitting and 

lower error achieved as compared to previous studies. However, low overall SDR 

values suggest that spectral information of individual fruit obtained at harvest may not 

be indicative to post-storage firmness, and accurate quantitative predictions using the 

developed model would be difficult. Based on the minimum threshold recommended by 

McGlone and Kawano (1998), the developed regression models were not suitable for 

online sorting purposes. 

The prediction of firmness is related to loss of cell wall structures such as pectin, 

cellulose and hemicellulose as they contribute to the mechanical strength of the wall and 

to the adhesion between cells. The ripening process which is observed as fruit softening 

is associated with significant changes in the structures of the pectic substances (Lodge 

and Roberston, 1990). Cho et al. (1992) found changes in pectin and water absorbance 

bands of NIR at around 1900 nm, and suggested that a successful firmness model works 

through reliance on water state changes in the softening fruit; pectin breakdown 

products bind some of the free water that existed when the fruit was firmer. Since the 

total amount of pectic substances in kiwifruit is very low (< 1% by fruit weight; Beever 

and Hopkirk, 1990) , McGlone and Kawano (1998) propose that pectin structural 

changes (hence, changes in firmness) are possibly more difficult to detect than changes 

in more abundant constituents such as TSS.  

Additionally, Paz et al. (2008) suggests that the lower predictive capacity of 

firmness prediction models as opposed to those of TSS, was to be expected since 

firmness is a physical parameter whose measurement using the reference method is 

already prone to considerable error. In fact a closer look at the difference between the 

two firmness measurements carried out on the same fruit showed that there was large 

variation in firmness readings between the two locations on the same fruit, with this 

variation decreasing as the average firmness of the population decreased, i.e. storage 

time increased (Fig. 5.5). It is possible that this variation contributed as a source of error, 

to affect final model accuracy. At 95% confidence level, the error caused by variation in 

physical measurements using penetrometer were found to be ± 3.8 N, ± 3.1 N, ± 2.3 N 

and ± 2.3 N for 75, 100, 125 and 150 days respectively (Fig. 5.5). This means that up to 

80% of the observed RMSE in regression models could have been originated from 

variations in physical measurements of firmness (Table 5.5). This suggests that the key 
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to improving predictive accuracy of FF does not only rely on model robustness but also 

require a more precise way of conducting physical measurements of firmness. 

 

 Although quantitative prediction of future FF has been shown to be challenging, 

there is still potential to investigate qualitative prediction of future FF using 

classification methods. One major concern of NIR technique for fruit and vegetables is 

that model performance and robustness is largely affected by the ‘richness’ of variation 

in the calibration sample (Nicolaï et al., 2007a). Model error can drastically increase 

when the calibration model is applied to a new dataset from a different batch or season, 

or have been subjected to changes in physical condition, temperature or replacement of 

instrument. In this case the calibration model loses its validity and a new model or 

recalibration is needed (Swierenga et al., 2000). This would be time-consuming and 

labour-intensive. Qualitative prediction would reduce chances of error resulted from re-

calibration, and would enable the possibility of focusing on relative correlation, rather 
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Figure 5.5 Cumulative probability of the difference found between two firmness 

readings (N) using an electronic QALink Penetrometer fitted with the standard 7.9 

mm Magness-Taylor probe, for measurement at 75, 100, 125 and 150 days 

respectively. Horizontal dash line represents 95% confidence level (cumulative 

probability = 0.95). 
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than absolute correlation, between spectral data and firmness retention properties of 

kiwifruit. Therefore, the next two chapters will explore this potential application of Vis-

NIR spectroscopy. 

5.5 Conclusion 

 In this chapter, the potential of using at-harvest Vis-NIR spectra as the sole 

predictor to forecast post-storage quality attributes of kiwifruit was investigated. Four 

sets of at-harvest spectral data and post-storage firmness and TSS data were collected. 

Both PLS and SVM were used to develop regression models, with SVM-R generating 

better predictions than PLS. Predictive accuracy of TSS (R2 = 0.58 – 0.83; 

RMSE = 0.66 – 1.02 °Brix) was comparable to previous studies that used both NIR 

spectral and initial fruit quality data for prediction. Although the developed model 

shows potential to be utilised as a predictive tool, the SDR values (1.5 – 2.3) suggest 

that models are not as yet useful for online sorting purposes. Prediction of firmness was 

poor to moderate (R2 = 0.30 – 0.60; RMSE = 2.65 – 4.32 N) but results were 

comparable to the literature. The RMSE values were lower compared to previous 

studies, suggesting better model fitting. The firmness prediction model was not useful 

for online grading purposes due to low SDR values (1.4 –1.7). A significant source of 

variation was observed during physical measurement of firmness, contributing to final 

RMSEs. Confirming and reducing this variation would be recommended for future 

development of regression models of FF, as this may reduce RMSE considerably and 

potentially improve the accuracy for quantitative prediction of firmness. Alternatively, 

classification models can be developed using at-harvest spectral data, in order to 

investigate the potential of qualitative prediction of post-storage kiwifruit firmness. 
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6 Segregation of ‘Hayward’ kiwifruit for storage potential using Vis-

NIR spectroscopy – development of an appropriate multivariate 

data analysing method 

6.1 Introduction 

The work in Chapter 5 concluded that although quantitative prediction of post-

storage total soluble solids content could be achieved with some success, it was not 

possible to obtain accurate prediction of fruit firmness, a quality indicator that is 

important for storage potential prediction. It was recommended that, qualitative 

prediction may be an alternative approach and may have better potential applications. 

This is particularly useful for segregation/sorting of fruit/grower lines for export 

purposes. There is huge financial benefit if fruit or grower lines can be segregated at 

harvest for potential storability and shipped sequentially based on the prediction.  

Despite the many previous attempts carried out to utilise NIR spectroscopy for 

quantitative prediction of kiwifruit quality attributes, little research has been conducted 

to evaluate the ability of NIR to perform qualitative prediction using classification 

models.  

Feng (2003) used NIR spectral and fruit quality data collected at harvest to 

classify individual ‘Hayward’ kiwifruit for storage potential using canonical 

discriminant analysis (CDA). At-harvest NIR spectra were calibrated with various at-

harvest fruit attributes, and the calibrated model was then used for the prediction of 

post-storage firmness, allowing for segregation of disordered fruit from healthy ones. 

Poor prediction of post-storage firmness was obtained. The classification accuracy was 

67%, 35% and 46% for healthy fruit, fruit with soft patch and fruit that developed CI 

respectively. 

Feng et al. (2014) also attempted to segregate storage potential of individual 

kiwifruit based on at-harvest NIR spectra using models calibrated with various at-

harvest attributes (skin and flesh colour, FF, TSS and DMC) and in-storage acoustic 

firmness measurements. Fruit that developed rots or became overly soft after 

coolstorage and seven days simulated shelf life were classified as rejected fruit. 
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Amongst many multivariate analysis techniques logit-boost decision stumps was found 

to generate the best segregation performance. Results suggested that the false positive 

rate (good fruit classified wrongly) was 30% and 40% respectively for ‘Hayward’ and 

‘SunGold’ (‘G3’) for a targeted 75% true positive rate (rejected fruit accurately 

classified). 

In addition, Clark et al. (2004) categorised ‘Hort16A’ kiwifruit based on Vis-

NIR reflectance intensities at 227 selected wavelengths at harvest using the 

unsupervised pattern recognition CDA classification. In this study fruit from two 

maturity stages were used for developing classification models that segregate the fruit 

into two groups: ‘good’ and ‘disorder’ (with rots and chilling injuries after storage). The 

classification accuracy was 66% and 52% for disordered fruit and 80% and 89% for 

good fruit, respectively for fruit from two harvest stages. This would indicate a 

reduction in disorder incidence from 33.9 to 17.9% and 14.7 to 8.5% for both harvests. 

However external validation was not conducted hence the robustness of the model to 

perform prediction on an independent data set was not determined. Similarly, Burdon et 

al. (2014b) used at-harvest NIR spectral data calibrated with at-harvest attributes to 

predict the incidence of CI of stored ‘Hort16A’ kiwifruit, and concluded that such a 

generally applicable approach was not useful in this case due to a large orchard factor 

which contributed to considerable variation in the minimum or maximum threshold for 

the development of CI.   

In other crops, prediction of the storability of apricots was carried out by fitting 

an exponential model to describe the relationship between FF0, the at-harvest FF 

estimated by Vis-NIR spectral data, and FFFinal, post-storage firmness predicted based 

on FF0 (Feng et al., 2013). Segregation of storage potential was based on the projected 

FFFinal in comparison to the minimum standard for sale at retail (10 N). This segregation 

provided theoretical limits for initial firmness of apricot for the two cultivars studied but 

validation of the segregation model was not conducted. In addition, Zude et al. (2006) 

discriminated post-storage quality levels of apple as a result of storage condition 

treatments using non-destructively estimated TSS (Vis-NIR) and FF (acoustic impulse 

resonance frequency) values measured after storage, and obtained 77% and 84% overall 

accuracy respectively. The authors suggested that the superior results obtained using 

non-destructive methods were possibly due to the fact that more representative data of 
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the heterogeneous fruit material could be obtained, compared to destructive methods 

which only provided localised data. 

To date most relevant studies required calibration of the model with at-harvest 

attributes in addition to spectral data in order to perform prediction or segregation of 

future storability. In-storage quality measurements were sometimes required (e.g. Feng 

et al., 2014). However this approach involves destructive measurements of fruit and the 

accuracy for prediction is affected by sample selection for the calibration process. 

Additionally data collection during storage would be challenging for packhouses as this 

would require extra labour reshuffling pallets of fruit in order to obtain a representative 

sample. An alternative approach would be to perform prediction/classification prior to 

storage using NIR spectra data as the only input. In this case a black-box model is 

developed using supervised machine learning algorithms for classification. The spectral 

data capture an overall initial state of the fruit whilst the post-storage firmness values 

provide training for pattern recognition (Fig. 6.1). 

 

  

Figure 6.1 Conceptual diagram of a black-box model using NIR spectral data as 

the sole input to predict storability of kiwifruit.  
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In this chapter, an attempt was made to utilise NIR spectra data as the sole input 

at harvest, to perform qualitative prediction of kiwifruit firmness retention properties 

after coolstorage using the blackbox model proposed as above. Various pattern 

recognition algorithms were selected to develop a suitable classification model which 

aims to segregate individual kiwifruit into two groups based on the export firmness 

criterion (FF ≥ 9.8 N). The predictive performance of each of the algorithms was 

evaluated, and the classifier that resulted in the model with the most satisfactory 

accuracy and robustness was identified. The resulting final classification model will be 

tested in the next chapter (Chapter 7) using a new data set. Segregation of fruit by 

storage potential may allow rapid identification of fruit unsuitable for export and in turn 

reduce fruit and financial losses. 

6.2 Materials and Methods 

6.2.1 Data sets 

The same four data sets discussed in Chapter 5 (Section 5.2, Table 5.1) were 

also used in this chapter for the purpose of building classification models using at-

harvest spectral and post-storage firmness data. Additionally, in 2014, another set of 

data was collected from a larger trial that studied the relationship between storage 

temperature and the development of chilling injury (Zhao, 2017). The fruit measured for 

this study were from 9 grower lines of the ‘control’ samples meaning that fruit were 

stored at 0°C. Fruit were sourced in the Bay of Plenty, New Zealand at three maturity 

stages with delivery dates sequenced by 1-week intervals commencing 8 May 2014. 

Each maturity stage consisted of 6 trays of count 33 fruit from three grower lines (2 

trays per GL), resulting in a total of 594 fruit for three maturities. At day 0 (on delivery 

day), Vis-NIR spectral data of individual fruit were collected prior to subsequent 

storage at 0°C for extended periods of time. Single trays from each maturity stage were 

assessed for firmness at 75 and 100 days after storage, and two trays assessed at 125 and 

150 days after storage. For model development, the four data sets (n = 2125) from 2012 

– 2013 were used for calibration whereas the data set collected in 2014 (n = 594) was 

used for external validation (Table 6.1).  
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Storage 
time 
(day) 

Calibration Validation 

Season Total Season Total 

2012 2012 2013 2013 Soft Good 2014 Soft Good 

75 255 40 40 0 35 300 99 6 93 

100 255 40 240 320 87 768 99 2 97 

125 255 40 40 0 121 214 198 53 145 

150 0 40 240 320 133 467 198 68 130 

6.2.2 Data collection and spectral pre-processing 

The experimental procedures for spectral data collection and firmness 

measurements were in accordance with those described in Sections 5.2.5 and 3.2.2 

respectively. The raw spectral data were pre-processed using the steps described in 

Chapter 5 (Section 5.3.1) except that mean centering was not applied for the purpose of 

this chapter, as this technique is mostly useful in simplifying spectral data for regression 

models (Boysworth and Booksh, 2007). Since the objective of this chapter was to 

develop classification models, this technique was not used to pre-process the spectral 

data.  

6.2.3 Machine learning algorithms for classification models 

In order to identify the most suitable pattern recognition algorithm for 

classification of samples, several machine learning techniques were explored using two 

data mining software: Weka (Version 3.7.12; University of Waikato, Hamilton, New 

Zealand; Hall et al., 2009)  and The Unscrambler® (Version X10.3; CAMO Software 

AS., Oslo, Norway). Each of these techniques will be discussed in the following 

sections. 

  

Table 6.1 Summary of Vis-NIR spectral and post-storage firmness data sets 

collected in 2012 – 2014 for developing and validating classification models. 

Numerical values represent the number of fruit measured at each time of storage. 

Soft and good means flesh firmness of the fruit is < 9.8 N and ≥ 9.8 N respectively. 
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6.2.3.1 Naïve Bayes 

The Naïve Bayes classifier is one of the simplest probabilistic classifiers based 

on the “Bayes’ Theorem”. It assumes that all variables of the samples are independent 

of each other given the context of the class. This is also known as the “Naïve Bayes 

assumption”. The assumption is based on the fact that classification is only a function of 

the sign (or the class); function approximation can still be poor while classification 

accuracy remains high (McCallum and Nigam, 1998). This method uses a collection of 

labelled training samples to estimate the parameters of the generative model. 

Classification on new samples is performed by selecting the class that is most likely to 

have generated the sample (McCallum and Nigam, 1998). By Bayes Theorem, the 

posterior probability of Y given X is:  

ܲ (ܻ = ݇|ܺ = (ݔ =  ௉ ൫ܺ = หܻݔ = ݇൯௉(௒ୀ௞)∑ ௉ ൫ܺ = หܻݔ = ݅൯௉(௒ୀ௜)೔಼సభ     (6.1) 

where X1, …, Xj are the J predictors considered in the model. The Naïve Bayes 

model assumes that X1, …, XJ are conditionally independent given the target, that is: 

ܲ (ܺ = ܻ|ݔ = ݇) =  ∏ ܲ ൫ ௝ܺ = ௝หܻݔ = ݇൯௃௝ୀଵ    (6.2) 

where ܲ values are the probabilities estimated from the training data set; X is the 

categorical predictor vector; ݆  is the number of predictors considered; Y is the 

categorical target variable; k is the number of categories of Y. 

6.2.3.2 Quadratic discriminant analysis 

Linear and quadratic discriminant analyses are orthogonal classifiers. The linear 

discriminant analysis (LDA) assumes that data is normally distributed and that the 

covariance matrices of the two classes are equal (Sun, 2009). As such the variability 

within each group has the same structure. The only difference between classes is that 

they have different centres. In this case linear separation of groups is possible (Witten et 

al., 2011). If the covariance matrices are not identical and the curve separating groups is 

not linear, quadratic discriminant analysis (QDA) should be used. This method performs 

better when the training data sets used are large. The quadratic discriminant function 

can be expressed as:  
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݃௜(ܺ) = − ଵଶ (ܺ − ்(௜ߤ ∑ (ܺ −ିଵ௜ (௜ߤ − ଵଶ log (|∑௜|) + log(ߨ௜)   (6.3) 

where ݃௜(ܺ) is a simple max gate function used as a classification rule; X is the 

vector of feature variables, which is multivariate normally distributed in the group with 

the mean vector ߤ௜ ௜ߨ ; is the prior probability of class i; ∑௜  is the group specific 

covariance matrix for QDA; and T is a transpose operator. 

6.2.3.3 Random forests 

A decision tree finds features in the input variables and identifies the threshold 

for the features that best splits the data into separate classes (Quinlan, 1986). Each 

feature attribute is presented as a node in the tree, with each possible threshold of each 

attribute as a branch and a class label as each leaf. However, this method is prone to 

over-fitting and has high variance. Random Forests are an ensemble of decision trees. In 

this method each model (tree) is trained independently using a random small subset of 

features for the split. As a result the predictions from the sub-trees are uncorrelated or 

weakly correlated, resulting in lower variance (Nguyen et al., 2006). The generalisation 

error for forests converges to a limit as the number of trees in the forest becomes large. 

Prediction is made by aggregating majority vote for the predictions of the ensemble 

(Anne-Michelle and Mousumi, 2007). The algorithm of RF was developed by Breiman 

(2001): 

൛ ଵܶ(ܺ), … , ௃ܶ(ܺ)ൟ     (6.4) 

where ܺ  = ൛ݔଵ, … , ௣ൟݔ  is a ݌ -dimensional vector of a sample or properties 

associated with a sample. The ensemble produces ܬ  outputs ൛ ෠ܻଵ =  ଵܶ(ܺ), … , ෠ܻ௃ = ௝ܶ(ܺ)ൟ where ෠ܻ௝, ݆ = 1, …, ܬ, is the prediction for a sample by the ݆th tree. Outputs of all 

trees are aggregated to produce one final prediction, ෠ܻ . For classification problems, ෠ܻ  is 

the class predicted by the majority of the trees (Svetnik et al., 2003). 

6.2.3.4 Support vector machine classification 

The concept of SVM regression was introduced in Section 5.3.2.2. In this 

chapter, SVM with sequential minimal optimisation (SMO; Platt, 1999)  was used for 

classifying the spectral data. For any set of two-class objects, the SVM finds the unique 

hyperplane having the maximum margin for optimal discrimination. The hyperplane 
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defines the borders for each class with specific objects within the class, and these 

objects are referred to as support vectors (Ivanciuc, 2007). The support vectors are used 

to classify the samples. For non-linear classification, the coordinates of the input objects 

are mapped into a high-dimensional feature space using different kernel functions. The 

kernels can be computed in the same space as the input objects allowing linear 

algorithms to work with higher dimensional feature space. Classification is 

accomplished by a weighted sum of kernels evaluated by the support vectors (Ivanciuc, 

2007). The SMO algorithm was used to speed up the training of SVMs by reducing a 

large quadratic programing optimisation problem into a series of small optimisations 

(Mohri et al., 2012). Suppose there are ܰ data points in the training dataset,  {(ݔଵ, ,(ଵݕ ,ଶݔ) ,(ଶݕ … , ,ேݔ)  ே)}    (6.5)ݕ

where ݔ௜ ∈ ℝேand ݕ௜ ∈ (+1, −1).  

Consider a hyperplane defined by (ݓ, ܾ), where ݓ is a weight vector and ܾ is a 

bias. A new object x can be classified with:  

(ݔ)݂ = ݔݓ) ݊݃݅ݏ + ܾ) = ∑) ݊݃݅ݏ ܽ௜ݕ௜൫ݔ௜ݔ௝൯ + ܾே௜ )  (6.6) 

where ൫ݔ௜,  ௝൯ is a set of training data points and ܽ௜ is the Lagrange multipliersݔ

which is minimised with respect to ݓ  and ܾ  and maximised with respect to ܽ௜  ≥ 0 

(Gunn, 1998; Pachghare and Kulkarni, 2011). 

For real-world data, the common approach is to solve the classification using a 

soft margin, meaning that the hyperplane separates most but not all of the data points.  

In this case the soft slack variable, ߦ௜ and the capacity constant, ܥ will be required:  

minimise  ଵଶ ଶ‖ݓ‖ + ܥ ∑ ௜௜ߦ      (6.7) 

subject to ൜ ݕ௜݂(ݔ௜) ≥ 1 − ௜ߦ௜ߦ ≥ 0     (6.8) 

In this study the RBF kernel was used. This function generates hidden units that 

represent the coordinates of the objects in the input space (NIR spectral data and FF 

values). The output of an object for a given instance (the class that the sample belongs 

to) depends on the distance between the object and its instance. This distance is 
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converted into a non-linear measure. The hidden units are referred to as RBFs and the 

hyperplane is formed when a given hidden unit for the objects in the instance space 

produces the same outputs (Witten et al., 2011). The algorithm for RBF kernels is: 

Kernel ൫ݔ௜, ௝൯ݔ = ߛ−൫݌ݔ݁ ∥ ௜ݔ − ௝ݔ ∥ଶ൯     (6.9) 

where ߛ is the variable parameter (Gunn, 1998). 

The robustness of the calibration model could be optimised by finding the 

optimal constant ܥ  and kernel parameter γ. However due to the limitation of the 

software Weka and time constraints, a grid search of the least RMSEs was not 

conducted. The default values (C = 1 and γ = 0.01) were used for developing all the 

models. 

6.2.3.5 Boosted decision stumps 

Decision stumps (DS) are one level decision trees with two terminal nodes 

(Friedman et al., 2000). In this method, each node in a DS represents a feature in a 

sample, and each branch represents a threshold value that the node can take. Samples 

are classified starting at the root node and sorting them based on their feature values 

(Kotsiantis et al., 2006). Stumps are weak leaners and usually have low variance but 

high bias (Friedman et al., 2000).  

Boosting algorithms were first introduced by Freund and Schapire (1996) to 

provide a way of combining performance of many weak classifiers to produce a 

powerful committee. It uses a sequential algorithm in which each new weak learner is 

built based on the performance of the previously generated predictors (Jung, 2009).  

AdaBoost algorithm (Freund and Schapire, 1996) assigns equal weight to all 

samples in the training data. When a classifier is formed by the learning algorithm, the 

algorithm reweights each sample according to the prediction output. The weight of 

correctly classified samples is decreased and that of misclassified samples is increased. 

A new classifier is then built for the reweighted data and focuses on predicting the 

previously misclassified samples correctly. Once again the algorithm reweights the 

samples according to the new classifier. The weights after iteration reflect how often the 

samples have been misclassified. Whenever error on the weighted training data exceeds 
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or equals 0.5, or equals 0, the boosting procedure deletes the current classifier and does 

not perform any more iteration. To predict a new sample, the output of a series of 

classifiers generated by the boosting method is combined using a weighted vote, where:  

weight =  − log eଵିe
  (Witten et al., 2011)   (6.10) 

where e denotes the classifier’s error on the weighted data and is a fraction 

between 0 and 1 (Witten et al., 2011). 

LogitBoost was first introduced by Friedman et al. (2000) for fitting additive 

logistic regression models by maximum probability. It computes ‘response variable’ 

that encodes the error of the currently fit model on the training examples in terms of 

probability estimates (Landwehr et al., 2004). LogitBoost decision stumps use the logit 

transform to translate the probability estimation problem into a regression problem, and 

solve the regression task using DS (Witten et al., 2011). The probability of a sample 

being class A is a number between 0 and 1. If the number is more than 0.5 the algorithm 

will categorise the sample as class A, and vice versa. The probability for each instance 

can be calculated as:  

p ቀଵ
a
ቁ =  ଵଵା ௘షಂ ೑ೕ(a)      (6.11) 

where ௝݂  is the ݆ th regression model and ௝݂(a)  is its prediction for sample a 

(Witten et al., 2011). 

6.2.4 Model calibration and validation 

The pre-processed spectral data from the four different experimental trials in 

2012 – 2013 and the corresponding fruit firmness values for the same fruit (n = 2125) 

were used to develop the calibration model. The data set obtained in 2014 (n = 594) was 

used for external validation (Table 6.1). For classification, fruit were categorised into 

two groups based on their firmness values after coolstorage: soft (FF < 9.8 N) and good 

(FF ≥ 9.8 N). The predictive relationship between at-harvest spectral data and post-

storage fruit grouping was investigated at four storage times (75, 100, 125 and 150 days) 

by developing four corresponding models.  
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A ten-fold cross-validation method was used for internal validation. In this 

method the samples were randomly divided into 10 segments. One of the segments was 

then removed from the dataset and then the calibration model was developed from the 

remaining 9 segments. The isolated segment was then used to assess classification 

performance. This process was repeated until every segment was removed from the 

dataset once and their predictive performance averaged. Once this was completed, the 

calibration models developed at specific storage times were used to predict fruit 

grouping for the validation data set. 

6.2.5 Model assessment 

6.2.5.1 Comparison of data sets 

Comparisons between the calibration and validation data sets were carried out 

by generating respective cumulative distribution graphs of FF measurements and 

conducting the non-parametric Kolmogorov-Smirnov test using Matlab® (Version 

R2012a, MathWorks, Inc., Natick, USA). In this test, the hypothesis, H, was tested 

based on the maximum difference between the empirical distribution functions of 

calibration and validation data set, ܦ :ܦ௠௡  = supݔ (ݔ)௠ܨ| −  (6.12)     |(ݔ)௡ܩ

where ܨ௠(ݔ) is the distribution of a first population ܺଵ,…, ܺ௠  of size ݉, and ܩ௡(ݔ) is the distribution of a second population ܺଵ,…, ܺ௡ of size ݊; H = 0 if ܦ௠௡  ≤1.36 ( ௠௡௠ା௡)భమ, i.e. ܨ = ௠௡ܦ and H = 1 if (p-value > 0.05) ܩ  > 1.36 ( ௠௡௠ା௡)భమ, i.e. ܨ ≠  ܩ

(p-value  ≤ 0.05).  

Additionally, PCA plots of spectral data for both calibration and validation data 

sets were obtained and compared using Scikit-learn (Version 0.18.1, BSD License, 

USA). 

6.2.5.2 Classification performance 

The ability of Vis-NIR spectroscopy to assist in predicting kiwifruit storability 

on an individual fruit basis was evaluated. To assess the model performance, the 

percentage of accurate classification was calculated for each group. In addition, Table 
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6.2 illustrates the performance metrics used to evaluate the classifiers. True positive (TP) 

is referred to as correctly classified soft fruit (< 9.8 N). True negative (TN) is the 

correctly classified good fruit (≥ 9.8 N). False positive (FP) is the number of classified 

soft fruit which are actually good. False negative (FN) is the number of classified good 

fruit which are in fact soft. For the purpose of this study, the proportion of actual soft 

fruit in the segregated soft population as well as in the predicted good group, i.e. the TP 

and FN rates, were used to assess model robustness. This is because the TP rate 

represents the true correct classification of soft fruit and the FN rate indicates the 

potential fruit loss in the segregated good fruit population which is very important for 

justification of industrial applications. 

 
Predicted 

Soft Good 

Actual 
Soft TP FN 

Good FP TN 

6.2.5.3 Classification algorithm comparison 

In order to compare the predictive performance amongst various classifiers, 

several parameters including overall accuracy, kappa values, mean absolute error, FN 

rates, recall and precision and computation time were estimated.  

Overall accuracy (OA) is the percentage of correct predictions in the entire 

population, i.e. (TP + TN) / n, where n is the total number of samples.  

Kappa is a value that ranges between 0 and 1 which indicates the reliability of a 

classifier on a specific dataset. The closer the value is to 1, the more reliable the 

classifying algorithm is. The kappa statistic can be calculated using the equation: 

Kappa = 
Observed accuracy - expected accuracy

1 - expected accuracy
   (6.13) 

where observed accuracy is the total number of instances that were classified 

correctly throughout the entire confusion matrix; expected accuracy is defined as the 

Table 6.2 A typical confusion matrix used to evaluate performance of classification 

models. 
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accuracy that any random classifier would be expected to achieve based on the 

confusion matrix and can be calculated as: 

Expected accuracy = 
(೅ುశಷಿ)× (೅ುశಷು)೙ ା (೅ಿశಷು) × (೅ಿశಷಿ)೙௡    (6.14) 

where n represent the number of total observations 

Mean absolute error (MAE) is the mean of overall error made by the classifier.  

ܧܣܯ =  ଵ௡ ∑ หߠ෠௜ − ௜ห௡௜ୀଵߠ     (6.15) 

where ߠ෠௜ is the predicted value and ߠ௜ is the observed value. 

Recall is the proportion of samples belonging to the positive class (i.e. Soft) that 

are correctly predicted, i.e. Recall = TP / (TP + FN).  

Precision is the proportion of actual positive samples in the predicted positive 

class, i.e. Precision = TP / (TP + FP).  

Training time is the time in seconds consumed to compute the model.  

In addition, the performance of the models using different classifiers was 

evaluated using the receiver operating characteristic (ROC) curves. The ROC curve is 

used to characterise the trade-off between hit rate (signal) and false-alarm rate (noise) 

over a noisy channel (Gorunescu, 2011; Witten et al., 2011). As a result the ROC curves 

can be used to visualise, organise and select classifiers, based on their performance 

(Gorunescu, 2011). Often the ROC curves are plotted using the TP rates (‘benefits’) 

against the FP rates (‘costs’). However for this study, the FN rates are more important 

as they are the true costs of a poor segregation (number of soft fruit in the predicted 

good batch). Therefore the ROC curves were obtained by plotting the TN values against 

the FN values. The samples were sorted in descending probability order according to 

the predicted probability of a true response. The ROC curve started from the origin, and 

each point corresponded to drawing a line at a certain position on the ranked list, 

counting the True’s and/or False’s above it, and plotting them vertically and/or 

horizontally, respectively (Witten et al., 2011).  
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In ideal situations the curves should be as close to the upper left corner (vertical 

axis) as possible (Witten et al., 2011) because high TN rate results in consecutive 

vertical lines which will bring the curve to coordinates with low FN rate. The point (0, 1) 

represents perfect classification (i.e., no FNs), whereas a completely random guess 

would form a diagonal line (no discrimination) from the left bottom to the upper right 

corner (Gorunescu, 2011).  

A simple way of evaluating ROC curves is to estimate the area under curve 

(AUC). A higher AUC value suggests better classification performance. Hence the 

AUC values were also used for algorithm comparison. In general an AUC value 

between 0.8 – 1.0 indicates good to excellent classification accuracy, whereas 0.7 – 0.8 

is considered fair accuracy. However, cautions should be taken when using AUC to 

evaluate model performances, because over-simplifying ROC curves into a single AUC 

number may lose information about the pattern of trade-offs of a particular classifier 

(Gorunescu, 2011). 

Final ranking of classifiers was carried out using the Garrett’s Ranking 

Technique (Garrett, 2002). It was calculated as percentage score using the equation:  

Percentage score = 
ଵ଴଴ (ோ೔ೕି଴.ହ)ேೕ      (6.16) 

where ܴ௜௝  is the rank given for the ݅th item ݆th individual; ௝ܰ  is the number of 

items ranked by ݆th individual. 

6.2.5.4 Further improvement through data balancing 

In the calibration data set the distribution of the incidence of soft and good fruit 

were highly imbalanced especially at 75 and 100 days (Table 6.1) where the vast 

majority of the fruit were firm. This class imbalance problem is common to many real 

world data mining problems. The minority class is often the one that has the highest 

interest and usually implies a great cost when it is not well classified (Elkan, 2001).  

The solutions to deal with this can be categorised into three major groups: 1) 

data resampling including under or oversampling, 2) algorithmic modification and 3) 

cost-sensitive learning (Barandela et al., 2003; López et al., 2013). Amongst these, data 

resampling is the most popular due to its simplicity. In this chapter the Synthetic 



Chapter 6  Segregation of kiwifruit storability 

113 
 

Minority Oversampling Technique (SMOTE) filter was employed as a resampling 

technique, in order to improve the performance of imbalanced data set. This was carried 

out using only the top two ranked classifiers after algorithm comparison (Section 6.3.3).  

The SMOTE technique, proposed by Chawla et al. (2002), is a supervised filter 

that alters the distribution of classes by oversampling the minority class. This is 

achieved by creating synthetic samples using a k-nearest-neighbour approach (Witten et 

al., 2011). This causes the decision boundaries for the minority to spread further into the 

majority class space (Batista et al., 2004).  

For the purpose of this chapter, the percentage of oversampling was determined 

by aiming for a final ratio of about 2:1 for good : soft fruit (Table 6.3). To achieve this, 

300% of the original number of soft fruit was simulated by the SMOTE filter, resulting 

in a total of 400% of the original number of soft samples for storage times at 75 and 100 

days. Similarly, 100% of the original number of soft fruit was synthesised for storage 

time at 150 days, contributing to a total of 200% of the original number of soft. The 

number of soft fruit after data balancing is obtained by multiplying the original number 

with the percentage of fruit simulation.  

Storage 
time  
(day) 

Soft 
(original) 

Good : Soft 
(original) 

% of Soft  
simulated 

Soft  
(after data 
balancing) 

Good : Soft 
(after 

balancing) 

75 35 8.6 : 1 300 140 2.1 : 1 

100 87 8.8 : 1 300 348 2.2 : 1 

125 121 1.8 : 1 - 121 1.8 : 1 

150 133 3.5 : 1 100 266 1.8 : 1 

The performance of the models developed using the original and balanced data 

sets was evaluated using the ROC curves. Comparisons of AUC values were carried out 

using the GLM in Minitab®. 

  

Table 6.3 Number and ratio of good and soft fruit before and after data balancing 

using the SMOTE filter. 
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6.2.5.5 Multiclass classification 

Data noise generated by variation in physical measurements of firmness using 

the penetrometer was also considered. Fig. 6.2a shows the differences observed between 

the two firmness readings measured on the same fruit. As the measured average 

firmness values increase so does the potential difference between the two measured 

values determining the average. Given that only two values were used to determine each 

average firmness value, either of these values could be considered as the true fruit 

firmness.  
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Figure 6.2 (a) Difference between two measured firmness readings as a function of 

average measured firmness; (b) True firmness as a function of average measured 

firmness. Dots represent average values where blue lines represent potential error 

margins and red dotted lines indicate the range of actual firmness when the 

measured firmness is 9.8 N. 
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Following this thought, data on Fig. 6.2a were converted to Fig. 6.2b which 

represents the relationship between the measured average and potential true firmness of 

a kiwifruit. A fruit with an average firmness of 9.8 N (1 kgf) may have a true firmness 

ranging from 7.4 N to 12.3 N. A fruit is only considered really soft if the measured 

firmness value is below 7.4 N, and a fruit is truly exportable if the measured firmness is 

greater than 12.3 N. Fruit with measured firmness values falling in between these two 

boundaries could either be soft or good and therefore is considered as unsure.  

Based on this observation, attempts were also made to develop classification 

models to segregate fruit into three classes, Real Soft (FFAverage ≤ 7.4 N), Unsure (7.4 < 

FFAverage < 12.3 N), and Real Good (FFAverage ≥ 12.3 N). Again this was carried out only 

using the top two ranked classifiers after algorithm comparison (Section 6.3.3). 

Within multiclass classification there are two popular methods of simplifying 

the decisions made: one-against-all (OAA) and one-against-one (OAO). These methods 

achieve classification by reducing a multiclass problem to a binary one and hence 

simplifying predictions. The OAA builds a classifier for each class in a multiclass 

dataset. As a result it builds n models for a dataset with n classes. The OAO approach 

builds classifiers by taking any two classes as a pair and ignoring the remaining one. As 

a result n (n – 1) / 2 classifiers are needed to be built for a dataset with n classes 

(Eichelberger and Sheng, 2013b). 

An alternative approach is known as all-at-once (AAO) which applies multiclass 

algorithms directly. It classifies a test example into anyone of the multiple classes using 

one decision function only (Eichelberger and Sheng, 2013b). Eichelberger and Sheng 

(2013a) compared the performance of these three methods and concluded that OAA and 

OAO should not be used for algorithms that can perform multiclass classifications 

directly, i.e. AAO. Similarly, Mathur and Foody (2008) also suggested that one-shot 

multiclass classification (AAO) was better than the OAA approach. Therefore, for this 

study, we only applied algorithms directly for multiclass classifications. 
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6.3 Results and Discussion 

6.3.1 Comparison of data sets 

The storage performance data appeared to be highly imbalanced, with the soft 

fruit class under-represented relative to the good fruit class in all data sets (Table 6.1). 

As the storage time increased the number/proportion of soft fruit increased and hence 

the data became relatively more balanced. The distributions of firmness were found to 

be different between calibration and validation data sets at 75, 100 and 125 days (p < 

0.05; Fig. 6.3a, b, d) but were comparable at 125 days (p > 0.05; Fig. 6.3c). This is 

probably because external factors such as orchard, season and other growing conditions 

result in different physiological properties of fruit when using an independent data set.  

 \ 

 

Figure 6.3 Kolmogorov-Smirnov test comparing cumulative distributions of flesh 

firmness (N) for calibration and validation data sets at (a) 75, (b) 100, (c) 125 and 

(d) 150 days after storage. 

(a) (b) 

(c) (d) 
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In addition, PCA test was conducted at each time point, to visualise the 

differences in spectral properties of fruit skin between the calibration and validation 

data set (Fig. 6.4). In model calibration, a wide range of fruit variability was captured in 

order to increase the likelihood for future validation data to exhibit similar spectral 

properties as what was observed in the calibration data set. This was true for fruit stored 

for 100 and 150 days as the calibration and validation data sets overlap with each other, 

suggesting similar spectral characteristics of fruit. However the validation samples for 

75 and 125 days exhibited different spectral properties and hence were separate from 

the calibration samples (Fig. 6.4). 

 

The differences observed between calibration and external validation samples 

are not uncommon for real-world model prediction problems. Various external 

parameters such as temperature, moisture, wavelength shifts and crop season can vary 

Figure 6.4 Visualisation of spectral differences between calibration and validation 

data sets using principal component analysis (PCA). Data points represent 

individual fruit samples present in the data sets. x- and y-axes represent PCs 1 and 

2 correspond to an individual PCA test for each storage time. 
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largely in industrial conditions and alter the spectral properties of validation samples 

(Roger et al., 2003). As such, corrections to reduce the effect of external parameters are 

required in order to improve model performance. One approach is to optimise the 

calibration sample which includes collection of a comprehensive data set that covers all 

the variations including those caused by external parameters so that the model would be 

insensitive to these parameters (Roger et al., 2003). This approach was used during the 

development of the calibration model for this study but seasonal differences were still 

observed (Fig. 6.4). Alternatively, spectral preprocessing techniques such as external 

parameter orthogonalisaiton and orthogonal signal correction can be applied to 

eliminate the effects of external parameters.  

6.3.2 Classification performance 

The predictive outcomes of various classifiers using 10-fold cross validation are 

summarised in Table 6.4. Samples size seems to have affected predictive performance 

of the classification models, with better prediction accuracy observed for the good 

group (> 78%) than the soft group (< 54%) for all classifiers except for Naïve Bayes 

and QDA. In general prediction of soft fruit was better at 125 and 150 days (~ 40 – 50%) 

compared to that at 75 and 100 days (~ 20 – 40%). This could also be related to the 

higher number of soft fruit (hence, more balanced data sets) found at those storage times. 

Results obtained for 125 and 150 days were comparable to the results found by Feng 

(2003) for the classification of healthy and soft-patched fruit (67% and 35% 

respectively), and those reported by Clark et al. (2004) for segregation between good 

and disordered fruit (~85% and ~59% respectively). 

In external validation (Table 6.5), the models were unable to segregate soft fruit 

at 75 and 100 days regardless of the classifiers used; all (or most) of the fruit were 

identified as good fruit. Better TP rates (accurately classified soft fruit) were found at 

125 and 150 days using SVM and LogitBoost DS. For QDA, Naïve Bayes, Random 

Forest and AdaBoost DS, segregation of soft fruit was only possible at 150 days 

however with relatively low TN rates (accurately classified good fruit). In general as 

storage time increased the TP rates improved but the TN rates decreased.  

The poor validation performance was likely attributed to the extremely low 

levels of soft fruit found in the validation data set, in particular for storage times at 75 
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and 100 days (6 and 2 soft fruit respectively), compared to that found in the calibration 

data set (35 and  87 respectively; Table 6.1). Hair et al. (2006) recommended at least 20 

samples per group for discriminant analysis design in order to improve the chance of 

classification. The number of soft fruit in the validation data set was below 20 at both 

75 and 100 days. As a result the calibration models were less likely to identify soft fruit 

from the population, hence the poor classification accuracy. At 125 days, the number of 

soft fruit in the validation data set was more than 20 and the proportion increased to 

27%. In this case, classification accuracy of soft fruit improved using SVM and Logit-

Boost DS (11% and 40% respectively) but not for the other classifiers (0%). At 150 

days, 34% soft fruit were found in the validation data set. Prediction accuracy improved 

significantly for soft fruit (44 – 99%) for all classifiers but became less successful for 

good fruit (< 53%; Table 6.5) compared to that at other storage times. This further 

suggests that classification accuracy was affected by group size.  

In addition, the spectral differences observed in Fig. 6.4 also contributed to the 

discrepancy in classification performance between classification and validation. This 

explains the poor validation prediction at 75 and 125 days, where the validation data set 

had patterns and trends different from those of the calibration data set (Fig. 6.4a, c). In 

comparison, classification accuracy at 150 days was higher since the spectral properties 

between the two data sets were much more similar (Fig. 6.4d). 
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6.3.3 Classification algorithm comparison 

Tables 6.6 – 6.9 summarise the statistics for model evaluation and Garrett’s 

ranking of model performance amongst classifiers. Considering a total of eight 

performance metrics, the best two performing classifiers were SVM and LogitBoost DS 

regardless of storage time, with LogitBoost DS performing better at 125 and 150 days 

whereas SVM performing better at 75 and 100 days. Amongst the remaining classifiers 

AdaBoost DS and Random Forest showed better performance whereas QDA and Naïve 

Bayes performed poorly. 

The Overall Accuracy (OA) showed the combined predictive performance of 

both classes but did not indicate the accuracy of predictions for each group. For instance, 

SVM and LogitBoost had similar OA but SVM had higher Recall at 75, 100 and 150 

days whereas LogitBoost DS had lower FN rates at all times (Tables 6.6 – 6.9). In this 

case low FN rates are preferable because the proportion of soft fruit in the predicted 

good class should be as low as possible in order to ensure exportability and long 

storability of the predicted good batch. Similarly, QDA and Naïve Bayes had high 

Recall rates most of the time but the FN rates were also high and hence were considered 

undesirable. Amongst all classifiers, SVM had the highest precision at 75 and 100 days 

but was outperformed by LogitBoost DS at 125 and 150 days (Tables 6.6 – 6.9). 

AdaBoost DS seemed to have lower MAE (error) values compared to the top-two 

classifiers (SVM and LogitBoost DS) despite lower overall ranking (Tables 6.6 – 6.8). 

Naïve Bayes consistently had the highest MAE at all storage times. The SVM had the 

highest Kappa values except for at 125 days, indicating better reliability. 

The AUC ranged from 0.70 – 0.80 for most classifiers with one exception of 

Naïve Bayes at 125 days (AUC = 0.56), indicating fair accuracy. The SVM had the 

highest AUC values at 75 and 100 days, indicating better classification performance. 

However, at 125 and 150 days LogitBoost DS was found to be superior given the higher 

AUC values at those storage times (Tables 6.6 – 6.9). The computational cost was 

highest for AdaBoost DS as it consumed the longest time to build models. The costs of 

Random Forest, Naïve Bayes and QDA were noticeably less than those of SVM, 

LogitBoost and AdaBoost DS but their performance was poor (Tables 6.6 – 6.9). 

Amongst the top performing classifiers, SVM and LogitBoost were more cost effective 

as compared to AdaBoost.   
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Previous findings on the comparison of machine learning techniques in 

classification models showed contradictory results. For instance, the study of Zhang and 

Fang (2007) found that when tested on an (external) independent data set, LogitBoost 

using Decision Tree as a base learner performed similarly with SVM for discrimination 

of proteins according to their primary structures. Cai et al. (2006) however, suggested 

LogitBoost DS outperformed SVM in predicting the structural classes of protein. 

Contradictory results have also been found between the two boosting algorithms. While 

Dehzangi et al. (2011) found that AdaBoost performed better than LogitBoost, 

McDonald et al. (2003) and Ridgeway (1999) indicated that the difference in 

performance between the two was limited. Yet Krishnaraj and Reddy (2008) showed 

that better results were obtained using LogitBoost for the prediction of protein fold 

recognition using decision stumps as a weak learner on Weka. In addition, the 

performance of different classifiers varies with experimental conditions. Khorshid et al. 

(2015) demonstrated that the performance of SVM as opposed to the other classifiers 

(such as AdaBoost, LogitBoost, Naïve Bayes and Random Forest) varied across three 

experiments.  

The No Free Lunch Theorem (Wolpert and Macready, 1997) suggests that “any 

two optimisation algorithms are equivalent when their performance is averaged across 

all possible problems”. This was also true for this study. There is no single classifier 

that had the best performance under all circumstances. Predictive performance amongst 

the classifiers varied at different storage times, and was depended on the parameters 

selected for evaluation (Tables 6.6 – 6.9). For instance, LogitBoost and SVM performed 

poorly in some cases (low recalls at 75 and 100 days) but classifiers with low overall 

performances predicted well in a few occasions (e.g. QDA and Naïve Bayes had higher 

recalls at 75 and 100 days; Tables 6.6 – 6.7). Therefore it is more sensible to say that 

there is no absolute best learning algorithm. The choice of the most suitable classifier is 

dependent on the nature of the data set and the criteria for discriminant analysis. In this 

case LogitBoost and SVM were the better classifiers because they performed well in 

cases that are more critical for the purposes of this study. 

Nonetheless, the observed differences in performances amongst classifiers have 

been addressed and explained in many previous studies. Dettling and Bühlmann (2003) 

suggested that the lower error rates obtained with LogitBoost were because, unlike 
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AdaBoost which uses an exponential function, LogitBoost uses the binomial log 

likelihood, which increases linearly rather than exponentially for strong negative 

margins. As such LogitBoost usually performs better on noisy data or mislabelled 

samples. This is important for the current study as the variation in firmness 

measurements by penetrometer could result in a large margin of error for sample 

grouping and hence, resulting in misclassification of fruit (Fig. 6.2). Caruana and 

Niculescu-Mizil (2006) suggested that SVM had high error because the measurement of 

error interprets predictions as posterior probabilities but SVM is not designed to predict 

probabilities; the output of an SVM are just normalised distances to the decision 

boundary. Similarly, Naïve Bayes had much higher error than the others because NB 

models predict calibrated probabilities poorly due to the unrealistic independence 

assumption (“Naïve Bayes assumption”). In addition, Wu et al. (2010) suggested that 

LogitBoost DS was more capable of handling mixed data because, unlike SVM which 

relies on the Euclidean distance between two data points, the decision split at each 

stump branch does not rely on any particular distance measure between any pair of data 

points. Hence it should be more robust to outliers in both input and feature spaces.  

Amongst all the classifiers, only SVM and LogitBoost DS were capable of 

prediction of soft fruit at both 125 and 150 days in external validation (Table 6.5), with 

LogitBosot performing slightly better at 125 and 150 days. Identifying long storing fruit 

is important for making inventory decisions because firmness decreases rapidly for all 

the fruit from ~80 N to 15 N during the first 70 days of storage (Beever and Hopkirk, 

1990). During this period the proportion of soft fruit is very low and majority of the 

fruit would have already been shipped. Afterwards fruit continue to soften slowly 

during 100 – 175 days of storage and the average firmness will be approaching and 

eventually go below 9.8 N or 1 kgf (Beever and Hopkirk, 1990; Jabbar, 2014), causing 

soft fruit to become prominent and problematic. As a result the proportion of soft fruit 

in the remaining batch would be significantly consequential. The ability to predict and 

segregate fruit with storability beyond 100 days would not only enable the reduction of 

direct fruit loss resulted from short-storing fruit becoming unacceptable for export, but 

also enable the separation of long-storing fruit from an ethylene environment produced 

by short-storing fruit during softening (Samarakoon, 2013), preventing secondary fruit 

loss (Jabbar and East, 2016). In addition, LogitBoost DS was considered superior to 

SVM because of the lower FN rates at all storage times (Tables 6.6 – 6.9), i.e. less soft 
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fruit were classified as good fruit and hence, less fruit loss in storage should the 

predicted good fruit population be kept for later shipment in the season. As such 

LogitBoost DS would be more suitable to be used to segregate potential soft fruit from 

the entire batch.  

Computational cost is also an important consideration. AdaBoost was found to 

have a substantial speed advantage as compared to SVM as reported in Bartlett et al. 

(2004) where LOOCV was used. Krishnaraj and Reddy (2008) also suggested that 

AdaBoost and LogitBoost DS with 100 iterations were less expensive than SVM (with 

SMO) when 10-fold cross-validation was used. However our study showed 

contradictory results. With 100 iterations boosted algorithms were not as fast compared 

to SVM using sequential minimal optimisation (Tables 6.6 – 6.9). In many of the 

previous studies the parameters for SVM prediction (e.g. C and γ values) were 

optimised and this might have increased its computational cost. Only default values for 

the parameters of SVM were used in the present study. This might explain why SVM 

was more cost effective compared to boosting algorithms. 

The ranking of the classifiers carried information specific for the data set used in 

this study. However, it is important to note that when Garrett’s Ranking Technique was 

applied, equal importance was assigned to all the performance metrics. The best 

classifier(s) were chosen based on the assumption that all the metrics considered for 

evaluation contributed equally for final model performance. It is important to bear in 

mind that the rankings could be modified by assigning different weightings to the 

selected metrics, should such requirements be needed for a particular case. 

6.3.4 Further improvement through data balancing 

Data balancing using the SMOTE filter seemed to improve classification 

accuracy during model calibration, especially for soft fruit (Table 6.10). Predictive 

accuracy of good fruit was similar to that using the original data (Table 6.4). The 

improvement in performance was more prominent at 75 and 100 days as compared to at 

150 days (where original data was more balanced; Tables 6.4 and 6.10). The overall 

outcomes predicted by LogitBoost DS were slightly better (higher TP and TN rates) in 

comparison to those by SVM (Table 6.10). The ROC curves shifted to the upper left 

direction for both SVM and LogitBoost DS (Fig. 6.5 – 6.6), with higher AUC values 
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obtained using the balanced data (p = 0.023). There were no difference in AUC values 

between the two classifiers (p = 0.347). Before data balancing the FN rate was 

approximately 20 – 40% for a targeted 75% TN rate. After data balancing the FP rates 

reduced to less than 20% for achieving the same level of TP rates.  

Despite the promising results from model calibration, it is quite obvious that 

data balancing using SMOTE filter also led to over fitting, as evidenced by the poor 

accuracy obtained in external validation (Table 6.10). Segregation of soft fruit was not 

improved at 75 and 100 days (0%). Predictive accuracy of soft fruit at 150 days was 

improved with SVM but was reduced for LogitBoost DS compared to those using 

original data (Table 6.5 and 6.10). Predictive accuracy of good fruit reduced 

considerably with SVM but improved slightly with LogitBoost DS (Table 6.10). Overall 

the performance in predicting independent sample was similar between the original and 

balanced data. 

Storage 

time 

(day) 

n 

Calibration Accuracy (%) Validation Accuracy (%) 

Support 

Vector 

Machine 

LogitBoost 

Decision 

Stumps 

Support Vector 

Machine 

LogitBoost 

Decision Stumps 

  Soft Good Soft Good Soft Good Soft Good 

75 440 88 91 95 92 0 100 0 100 

100 1116 73 88 78 89 0 100 0 100 

150 733 71 86 66 89 91 9 41 67 

 

Table 6.10 Calibration and validation of classification models to predict kiwifruit 

storage potential based on balanced Vis-NIR spectra data using Support Vector 

Machines and LogitBoost decision stumps (data balancing was not applied at 125 

days). 
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Figure 6.5 ROC curves of models developed at 75 (a – b), 100 (c – d) and 150 days 

(e – f) using SVM classification based on original (a, c, e) and balanced (b, d, f) 

data. 

AUC = 0.83 

AUC = 0.86 

(a) 

AUC = 0.86 

AUC = 0.96 

AUC = 0.93 

AUC = 0.89 

(b) 

(c) (d) 

(e) (f) 
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Figure 6.6 ROC curves of models developed at 75 (a – b), 100 (c – d) and 150 days 

(e – f) using LogitBoost DS classification based on original (a, c, e) and balanced (b, 

d, f) data. 

AUC = 0.78 

AUC = 0.81 

AUC = 0.84 

AUC = 0.97 

AUC = 0.94 

AUC = 0.91 

(a) (b) 

(c) (d) 

(e) (f) 
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Yen and Lee (2009) suggested that the SMOTE algorithm had disadvantages 

such as over generalisation of the minority class since it did not concern the majority 

class when generating the synthetic examples for the minority class. As a consequence 

this increases the occurrence of overlapping between classes (López et al., 2013) and 

results in difficulty for discrimination. Elrahman and Abraham (2013) also suggested 

that the SMOTE filter stopped functioning well when the number of samples in the 

minority class was not adequate for estimating the accurate probability distribution for 

the actual data. This is likely to be the case for this study (only 6% and 2% soft fruit at 

75 and 100 days, respectively in validation; Table 6.1). 

 For the purpose of this study, the use of this filter was not justified since it did 

not contribute to any improvement in performance during model validation while 

additional computational cost was introduced as there were more samples to process. 

Some studies recommended under-sampling using data cleaning techniques as an 

alternative method. For instance, Wilson (1972) used edited nearest neighbour rule to 

remove samples that differ from two of its three nearest neighbours. An SVM method 

could also be used to discard redundant or irrelevant majority class samples (López et 

al., 2013). However, under-sampling also has a great disadvantage: some of the 

important information might be lost from the majority class (Dubey et al., 2014). Hence 

it may not be suitable for the current study as a wide range of variability is required to 

represent characteristics of fruit from various sources, and removing some of the 

samples could potentially remove some of the desirable variation. Ramentol et al. (2012) 

recommended a hybrid method which uses both under- and over-sampling by 

eliminating some of the minority class samples expanded by the oversampling method 

to reduce over-fitting. Since this method does not eliminate samples from the majority 

class, it could be considered for future improvement of the models. 

6.3.5 Multiclass classification 

In multiclass classification, the calibration model suggests that the segregation 

of Real Soft fruit (≤ 7.4 N) from the entire population was possible at 75 and 100 days 

with SVM but was unsuccessful with LogitBoost DS (Table 6.11). The overall 

predictive accuracy of SVM was considered better than that of LogitBoost because of 

the better prediction of Real Soft fruit. Predictions of Real Good fruit (≥ 12.3 N) were 

acceptable (~ 80%) at 75, 100 and 150 days but were poor (< 50%) at 125 days for both 
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classifiers. Predictions of Unsure fruit (7.4 – 12.3 N) were better at 125 days (71%) but 

were relatively poor (< 52%) at other storage times. Compared to binary-class models 

(Table 6.4), for SVM the predictive performance of (real) soft fruit was better at 75 and 

125 days but was poorer at 100 and 150 days; prediction of (real) good fruit was not as 

good at all times. For LogitBoost DS the predictive accuracy of (real) soft and (real) 

good fruit was not as good at all storage times. 

Storage 
time (day) 

Classification Accuracy (%) 

Support Vector Machine LogitBoost Decision Stumps 

Real 
Soft 

Unsure 
Real 
Good 

Real 
Soft 

Unsure 
Real 
Good 

75 50 46 81 0 39 83 

100 17 43 87 0 52 84 

125 75 71 46 25 71 48 

150 33 40 79 26 47 78 

In external validation (Table 6.12), predictive accuracy at 75 and 100 days was 

good for prediction of Real Good fruit but was poor for Unsure fruit. There was no Real 

Soft fruit in the validation data set at 75 or 100 days (i.e. FF > 7.4 N for all fruit). This 

suggests that the fruit that were previously grouped as ‘soft’ could have actually been 

good (as illustrated in Fig.6.2b). This most probably contributed to the difficulties in 

classification of (real) soft fruit in binary-classification and further explained the poor 

performance of validation observed in Table 6.5. For this reason segregation of soft fruit 

at storage times less than 100 days might be more challenging compared to that at 125 

and 150 days. At 125 days for both classifiers predictive accuracy was good for Real 

Good fruit and was poor for Unsure fruit; SVM achieved good prediction for Real Soft 

class whereas LogitBoost DS was unable to segregate Real Soft fruit. At 150 days both 

classifiers performed similarly; prediction accuracy was good for Real Soft fruit but was 

poor for Unsure and Real Good fruit.  

Table 6.11 Calibration of multiple-class classification models to predict kiwifruit 

storage potential based on at-harvest Vis-NIR spectra data (original) using 

Support Vector Machines and LogitBoost decision stumps 
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Storage 
time (day) 

Accuracy of Classification (%) 

Support Vector Machine LogitBoost Decision Stumps 

Real 
Soft Unsure Real 

Good 
Real 
Soft Unsure Real 

Good 

75 - 0 90 - 0 100 

100 - 0 100 - 5 93 

125 73 0 63 0 4 98 

150 60 39 9 60 42 8 

Compared to binary-class models (Table 6.5), for SVM the predictive 

performance of (real) soft fruit was better at 125 days but not as good at 150 days; 

prediction of (real) good was not as good. For LogitBoost DS the predictive 

performance of (real) soft fruit was not as good compared to binary-class models; 

prediction of (real) good fruit was better at 125 days but poorer at 150 days. 

Previous studies found contrary results on the performance of SVM and 

LogitBoost directly applied for multiclass classification. Kim et al. (2015) compared the 

performance of four-class classification models to predict places of origin of animal-

related food products using k-nearest-neighbour, LogitBoost and SVM with SMO, and 

found that LogitBoost gave better predictive accuracy than the other classifiers in most 

situations. Aires et al. (2004) on the other hand, found that SVM with SMO achieved 

better results than the others including LogitBoost for classification of web texts 

according to users’ need. In our study SVM seemed to have outperformed LogitBoost 

during both calibration and validation, especially for the prediction of Real Soft fruit 

(Table 6.11 – 6.12). The result suggests that SVM may be more suitable for multiclass 

segregation of real soft fruit using the data set generated for the current study. However 

significant improvement of predictive performance of Unsure and Real Good fruit is 

required in order to justify the proposed multiclass approach.  

Table 6.12 Validation of multiple-class classification models to predict kiwifruit 

storage potential based on at-harvest Vis-NIR spectra data (original) using SVM 

and LogitBoost DS. 
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6.4 Final Model 

Considering the predictive performance in both calibration and external 

validation, it seems that the best approach for developing a suitable classification model 

for this study is to use original spectral data to segregate fruit into two groups based on 

the export firmness criterion using boosted decision stumps.  

The final model adapts the LogitBoost ensemble algorithm in which the base 

learner, single decision tree with one root node (a decision stump), is boosted through 

an adjustment process which involves weighting and re-sampling in order to develop a 

strong final learner. The assumption is that although the model developed by a weak 

learner such as single layer decision stump may be prone to high bias and prediction 

error, this error can be reduced through iterations of a series of such models (decision 

stumps) and the assembled accuracy will be greater than a single classifier.  

Figure 6.7 illustrates the process to develop the final model. The input variables ݔ  are a set of fruit spectral data which are defined over a range of attributes, i.e. 

reflectance over a range of wavelengths. The outcomes are labelled class signs ݕ (+ or – 

for soft or good) for the input variables. Before the training begins, each input sample ݔ௜ 
is assigned an equal weight ݓ଴ and the initial probability ݌଴ of 1+ = ݕ (i.e. soft) is 0.5. (ݔ)ܨ and ௠݂(ݔ) are both predictor functions of the input variables whereas[(ݔ)ܨ] is the 

class sign. The initial function ܨ଴(ݔ)  is 0. At each iteration ݉ , the decision stump 

evaluates all possible splitting thresholds for each attribute of a sample, selects the one 

attribute ܽ௠ with the maximum information gain, and then generates an output ݕ௜∗ based 

on the threshold value. After the first iteration the weights ݓ௜ are estimated using (ݔ)݌ 

in the previous iteration. A dummy output response ݖ௜, which reflects the error from the 

previous iteration, is also computed. A new model is trained in the next iteration by 

fitting the function ௠݂(ݔ) with a weighted least-square regression of ݖ௜ and ݓ௜. The new 

probability (ݔ)݌  is obtained from (ݔ)ܨ  through a logistic link function, and is 

maximised by minimising the squared error in the regression model ௠݂(ݔ). The output 

response [(ݔ)ܨ] is updated after each iteration and the final [(ݔ)ܨ] for each sample 

after ܯ iteration is determined based on a majority voting scheme, i.e. the class with the 

most votes is selected (Fig. 6.7). 
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Figure 6.7 A schematic diagram showing the process of final model development, 

calibration and validation. 
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Once the model is developed the prediction outcome is presented in a confusion 

matrix showing true positive, true negative, false positive and false negative rates, and 

the predictive performance is evaluated using analytical tools such as recall, precision 

and ROC curves. Once model calibration is completed it can then be applied to an 

independent data set for validation (Fig. 6.7). 

6.5 Conclusion 

Segregation of kiwifruit storability based on the export firmness criterion could 

be achieved using Vis-NIR spectral data collected at harvest by developing a blackbox 

model using machine learning algorithms. In general the prediction of good fruit was 

better than that of soft fruit possibly due to data imbalance. Amongst the six classifiers 

studied, Support Vector Machines and LogitBoost Decision Stumps performed better 

than the other classifiers in calibration models. In external validation segregation of soft 

fruit was possible at 125 days and 150 days for SVM and LogitBoost DS but was only 

possible at 150 days for the other classifiers. The poor validation performance was 

likely due to a combination of low soft fruit count in the validation data set and different 

spectral characteristics of validation samples, which can be corrected by applying pre-

processing algorithms to remove effects of external parameters. 

Data balancing by oversampling using the SMOTE filter improved performance 

of calibration models but did not make any changes during external validation. An 

alternative technique which combines both under- and over-sampling may be 

considered for further work. Multiclass classification using directly applied algorithms 

to account for variations generated by physical measurements of firmness was possible 

using SVM and LogitBoost DS. However the overall predictive performance was not as 

good compared to original calibration models. Because of its better predictive power at 

125 and 150 days, LogitBoost DS was selected as the most suitable classifier for final 

model development. 
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7 Segregation of ‘Hayward’ kiwifruit for storage potential using Vis-

NIR spectroscopy – validation of classification model 

7.1 Introduction 

For kiwifruit growers, it is important that orchard gate returns are maximised 

and  costs are minimised (Tanner et al., 2012). Due to packhouse rejection penalties, 

there are limited options for growers to save on-orchard costs. However, there is 

potential for segregation technology to improve orchard gate returns by improving the 

efficiency of packing operations and reducing postharvest cost through fruit loss 

(Tanner et al., 2012). The variability in fruit at the point of harvest contributes to a wide 

range of storage potential. Screening out kiwifruit with shorter storage life potential 

from the entire population could enable fruit or batches of fruit to be sold earlier in the 

season without affecting the remaining batch. This is important because although a large 

percent of the fruit would store well through the season, it is the poorest-storing fruit in 

a line that influences the storability of the line (Tanner et al., 2012). It would be 

beneficial to utilise the variability in the population and segregate fruit with different 

intended storability in the supply chain. There are two potential segregation systems: 

within grower line and between grower line. Fig. 7.1 illustrates the two systems 

conceptually. 

 

Figure 7.1 Conceptual diagram of segregation of five batches of kiwifruit (a) within 

grower line and (b) between grower line. Orange arrow indicates good-storing 

fruit/lines whereas blue arrow indicates poor-storing fruit/lines.  

(a) (b) 
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Within grower line segregation (Fig. 7.1a) identifies individual short-storing 

fruit and aims to separate these fruit from long-storing ones within the same batch. The 

outcome of this segregation would be two lines of fruit for each grower line with the 

poor-storing fruit from each line being separated and shipped earlier in the season. For 

between grower line segregation (Fig. 7.1b), poor-storing lines are identified as they 

contain a larger number of potentially short-storing fruit and hence have, on average, 

lower storability. Segregation would result in these grower lines being separated from 

the population for earlier sale. Both systems would be useful to assist with inventory 

decisions for sequential marketing, but would require different implementation and have 

different outcomes on postharvest performance and grower orchard gate return. 

In 2012 and 2013, several sets of at-harvest Vis-NIR spectral and post-storage 

firmness data were collected from various ‘Hayward’ kiwifruit sources to develop a 

qualitative classification model which could be applied to segregate kiwifruit for their 

storability. An external validation showed that using LogitBoost Decision Stumps, the 

developed model successfully predicted storability of 40% of soft fruit (FF < 9.8 N) and 

81% of good fruit (FF ≥ 9.8 N) after storage at 0ºC for 125 days (Table 6.5, Chapter 6). 

This result suggests there is potential for the developed model to be useful as a 

segregating tool when applied prior to storage. However, more work is needed to 

investigate the repeatability of the model in real-world cases and whether commercial 

applicability can be justified should the technique be applied on an industrial scale. As 

such a new experiment was conducted in 2015. This trial was designed to assess 

whether the model would be helpful in segregating, both within and between batches of 

fruit, by ranking storage potential prior to coolstorage. At-harvest Vis-NIR spectra was 

utilised together with the calibrated classification model (Chapter 6).  The aim was to 

assess whether segregation of fruit identified as poor storing at an early stage would 

benefit storability of the remaining batch and hence assist with marketing and inventory 

management decisions and ultimately reduce fruit loss later in the season.  
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7.2 Materials and Methods 

7.2.1 Experimental philosophy 

Kiwifruit softening is known to be highly sensitive to ethylene, even in 

coolstorage conditions (Jabbar and East, 2016), with ethylene production of kiwifruit 

dramatically increasing as fruit soften (Samarakoon, 2013). Consequently, as short-

storing fruit become soft, they have the potential to produce within pack an ethylene 

environment that softens otherwise long-storing fruit during storage, reducing overall 

firmness in the same tray. This ‘cross-contamination’ effect can be greatly reduced if 

short-storing fruit can be identified and separated from long-storing fruit prior to storage. 

This is because short-storing fruit would be closely kept next to one another. During 

softening, they would go through rapid softening and produce a large amount of 

ethylene within the same tray. Stored separately, long-storing fruit would go through 

normal softening in a relatively uncontaminated cooling environment with minimal 

interferences from soft fruit within the tray. As a result, the after storage average 

firmness within the tray is expected to be higher for long-storing fruit and lower for 

short-storing fruit as shown in Fig. 7.2. The number of soft fruit in the short-storing 

trays should also be higher than that in the long-storing trays.  
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Figure 7.2 Expected softening curve of kiwifruit with segregation within batches 

prior to storage. Data is theoretical curves and not observed experimental results. 
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As a result the experiment was designed in which physical separation of fruit 

was performed in order to facilitate the potential benefits of the pre-softening 

segregation (Fig. 7.3).  At-harvest Vis-NIR data was captured and analysed with the 

existing model (Chapter 6), and then individual fruit ranked on prediction of storability 

and resorted into trays based on this ranking, within each grower line. This process 

results in trays of fruit which are sorted by their storage potential as predicted from the 

Vis-NIR data, which were then stored in a coolroom, with firmness measured after long 

term storage. At the same time the Vis-NIR data and resulting predictions from the data 

enable a prediction of the between grower line storability. The remaining 

methodological sections provide the details of how each of these processes was 

achieved.  

 

Figure 7.3 A systematic diagram of validation trial: two types of ranking was 

achieved based on segregation by the model: within grower line using probability 

distribution and between grow line using predicted number of failed fruit.   
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7.2.2 Pre-storage Vis-NIR measurements 

‘Hayward’ kiwifruit form a total of 27 commercial grower lines were harvested 

at early, mid and late periods of the season. Fruit from each seasonal period were 

delivered to Massey University at two-week intervals with the first batch commencing 7 

May, 2015 and the last batch arriving on 5 June, 2015. Each seasonal period consisted 

of nine growers arriving as 3 grower lines on three different days during the same week. 

Each selected grower line contained 3 trays of fruit (count 30), resulting in a total of 

2430 fruit for all 27 growers. At each delivery, fruit were scanned using the ASD 

FieldSpec® Pro spectroradiometer in the reflectance mode (Section 5.2.5). 

7.2.3 Segregation of fruit based on Vis-NIR measurements 

The captured Vis-NIR spectral data was processed with each fruit being 

assigned a class label (‘Soft’ or ‘Good’) by the developed classification model (Chapter 

6) based on their measured Vis-NIR reflectance.  

For within grower line segregation, the probability of each fruit belonging to the 

‘Soft’ class (a value between 0 and 1) was estimated in order to assist with classification 

and subsequent fruit organisation. If the probability of a fruit belonging to the ‘Soft’ 

class is greater than 0.5, fruit will be classified as ‘Soft’; if the probability is less than 

0.5, fruit will be classified as ‘Good’. The probability values assigned to each fruit were 

then used to rank fruit in a specific order so that the fruit from the same group are more 

likely to be sorted next to each other, while being separated from those from the other 

class. An example of ranking based on probability distribution is shown in Fig. 7.4. 

Ninety fruit from the same batch with random probability arrived in three trays (30 fruit 

per tray) and were initially numbered (Fig. 7.4a). Subsequently, fruit were ranked based 

on their at-harvest Vis-NIR reflectance data by the model on their probability to turn 

soft after 125 days of storage at 0ºC. This resulted in segregation into a new set of trays 

where fruit were ordered according to their ranking (Fig. 7.4b). In the example provided 

the first 21 fruit (fruit 69 to fruit 36) in the first tray would be segregated as soft 

(probability > 0.5) and the last 69 fruit identified as long-storing (fruit 64 to fruit 73; 

probability < 0.5, Fig. 7.4b). However, the repacking method resulted in creating 3 

batches of 30 fruit per tray, with the ranking by probability resulting in separation of the 

most likely short-storing fruit from the most likely long-storing fruit.  
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The applied experimental method ensured an equal and maximum number of 

fruit in each tray. An alternative experimental method would have been to segregate 

fruit by the prediction of short- and long-storing fruit. However this would have resulted 

in creating unbalanced trays (i.e. 21 predicted soft fruit for the provided example in a 30 

fruit tray). This method was avoided due to the introduced risk of influencing firmness 

by changing the water loss dynamics within the polylined tray that would occur with 

changes in product mass inside the tray. For every set of three trays the Vis-NIR 

measurement, ranking and repacking time was about three hours. 

For between grower line segregation, the proportion of failed fruit for each 

grower line was predicted by the model (Fig. 7.5a). The 27 lines were then ranked based 

on this prediction in ascending order with the top 9 lines being the longest storing fruit 

(≤ 10% failure) and the remaining being 9 lines each of medium (≤ 30% failure) and 

short storing fruit (> 30% failure), respectively (Fig. 7.5b). However, no re-packing was 

required for this sorting because individual grower lines were separated by default, as a 

result of storing fruit in units of three trays per grower line.  
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Figure 7.5 Segregation between grower line: predicted proportion of failed fruit 

(FF < 9.8 N) after 125 days of storage for 27 kiwifruit grower lines: a) before 

ranking and b) after ranking. 
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7.2.4 Cool storage and destructive firmness measurements 

After segregation and repacking, fruit were immediately stored in a controlled 

cool room at 0 ºC. During storage, ethylene concentration in the cool room was 

monitored and maintained below 5 nL L-1. After 125 days of storage, firmness 

measurements were performed on individual fruit using the methods described in 

Section 3.2.2, except that in this experiment the penetration speed for FF measurements 

using the electric penetrometer was changed to 8 mm·s-1 due to a change in standard 

industrial procedure.  

7.2.5 Data analysis 

The potential for within batch segregation was assessed by determining if 

differences in firmness were obtained between the different trays of fruit within the 

same grower line as a result of the sorting applied. The effect of segregation on average 

firmness within grower lines was analysed using the GLM in Minitab®. The number of 

failed fruit in different trays within grower line was also analysed using a Chi-square 

test in Minitab® to indicate evidence of potential benefit. 

The performance of between grower line segregation was assessed by comparing 

the predicted and actual storage performance of different lines. The percentage of 

accurate prediction was estimated for each of the short, medium and long storage lines. 

The correlation between predicted proportion of soft fruit and measured data was 

established using Fitted Line Plot regression in Minitab®. Additionally, the proportions 

of soft fruit found in the segregated populations were compared using a Chi-square test 

in Minitab®.  

In addition, the percentage of fruit loss with and without segregation was 

calculated to indicate whether segregation prior to storage has potential to reduce costs 

and improve profitability. For within grower line segregation, reduction was estimated 

on the basis that fruit stored in the short- and medium-storing trays were to be shipped 

earlier whereas fruit in the long-storing trays would be kept for later in the season. For 

between grower line segregation, reduction was based on the assumption that predicted 

short- and medium-storing lines were to be distributed earlier whereas long-storing lines 

would be shipped later in the season.  
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7.3 Results and Discussion  

7.3.1 Within grower lines segregation 

Table 7.1 shows that the average firmness amongst the three trays within the 

same grower line differed as a result of segregation before storage. Fruit from the first 

trays (highest probability of becoming soft at the end of storage) had lowest average 

firmness (12.56 N), whereas those from the third trays (lowest probability of becoming 

soft at the end of storage) had highest average firmness (14.03 N). The total number of 

soft fruit was highest in the first trays (30.7%), followed by the second (23.3%) and the 

third trays (21.2%). Chi-square analysis confirmed that the proportion of soft fruit was 

significantly different amongst the three trays (p < 0.001) as a result of ranking prior to 

storage. In addition, Table 7.1 shows that the effect of segregation within grower line 

seemed to be more pronounced in the fruit harvested during early seasonal period 

(especially in G1 – G6) than those in late seasonal fruit (e.g. G22 – G27). The effect 

also seemed to be more pronounced within growers with lower proportion of firmness 

failure (e.g. G1 – G6, G11, G21) but there were a few exceptions (e.g. G17). 

The initial water content of the fruit is inversely proportional to the at-harvest 

DMC of the fruit. Famiani et al. (2012) found that higher initial DMC (hence lower 

water content) was associated with better firmness retention during storage. Tombesi et 

al. (1993) found that the higher initial water content in shaded kiwifruit resulted in high 

transpiration during storage, which consequentially reduced cell turgor and FF during 

storage. This suggests that fruit that soften more quickly during storage are more likely 

to have higher water content at harvest (lower initial DMC). For fruit with higher water 

content, the at-harvest NIR reflectance signal would be attenuated due to stronger 

absorption in water absorption bands, masking any significant peaks over absorption 

bands by other chemicals such as pectin. As a result, it is possible that some information 

was lost during NIR data capture which would in turn affect model prediction. This may 

explain the poor prediction of grower lines with higher proportion of failure, which may 

have higher initial water content compared to those with lower proportion of failure. 

However, the DMC range in the mentioned previous studies was between 13 – 16%, 

lower than the likely range of DMC for the fruit used in this study (usually ≈ 18% for 

‘Hayward’). Hence, it is also possible that the finding in these studies may not be 

directly relevant to the current study. 
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Grower 
Average firmness (N) No. of soft fruit 

FF T1 FF T2 FF T3 n T1 n T2 n T3 

G1 13.44b 14.52b 17.07a 4 3 0 

G2 12.65b 14.32b 18.44a 7 3 2 

G3 14.32b 17.66a 19.72a 2 0 0 

G4 14.52b 16.97ab 19.03a 1 0 1 

G5 15.60b 17.85ab 19.52a 3 0 1 

G6 14.52b 17.56a 18.64a 1 0 1 

G7 13.34a 13.93a 14.13a 9 5 6 

G8 8.24a 9.81a 8.83a 22 19 17 

G9 14.81a 13.83a 15.50a 2 4 3 

G10 11.87a 11.97a 12.75a 6 5 6 

G11 15.70b 17.27ab 18.15a 2 0 0 

G12 12.95a 14.42a 15.50a 8 3 6 

G13 12.75a 13.15a 14.03a 5 1 3 

G14 18.44a 19.91a 18.74a 2 0 0 

G15 10.59a 10.79a 10.20a 13 10 11 

G16 15.50a 17.46a 17.56a 3 0 0 

G17 10.20b 10.69b 14.42a 14 12 4 

G18 11.18a 12.26a 10.99a 10 8 12 

G19 9.61a 10.59a 10.01a 15 13 14 

G20 9.22a 9.81a 9.81a 17 14 13 

G21 12.46ab 11.38b 13.15a 2 6 2 

G22 10.69a 10.40a 11.28a 10 8 5 

G23 9.03a 9.52a 9.71a 25 17 18 

G24 9.81a 10.40a 10.79a 14 11 9 

G25 9.81a 10.10a 10.40a 17 13 10 

G26 10.30a 11.48a 11.28a 12 8 6 

G27 7.06a 6.77a 8.14a 23 26 22 

Total 12.56c 13.15b 14.03a 249 189 172 

Table 7.1 Average flesh firmness (N) and number of soft fruit amongst the three 

trays (T1 – T3) within a grower line after storage at 0°C for 125 days as a result of 

pre-storage within grower line segregation. 



Chapter 7  Validation of classification model 

149 
 

Softening of kiwifruit occurs in two or three phases depending on the maturity at 

harvest (Section. 2.1.3.3).  Kiwifruit that are harvested late in the season only go 

through the second and third stages; there is no lag phase during softening. In addition, 

Redgwell and Percy (1992) found that little pectin solubilisation was observed during 

the softening of kiwifruit from about 81 N to 56 N (during the lag phase), whereas 

pectin became more soluble as fruit continued to soften below 56 N (the second and 

third phases). It is possible that the near skin characteristics exhibited in kiwifruit, 

specifically, the amount of pectin that is solubilised during the lag phase played a more 

important role or provided more comprehensive information for model prediction. As a 

result, segregation within grower line was more successful in those lines harvested 

during early seasonal period. 

Statistically significant differences amongst trays suggest that prediction based 

on segregation was not simply a result of random variability. The model was able to 

identify a proportion of the actual short-storing fruit from the population. Repacking 

ensured that short-storing fruit were separated from the better storing ones and hence 

the production of ethylene as fruit soften would have minimal effect on long-storing 

fruit. As a result, these long-storing fruit go through natural softening without 

interference of soft fruit. 

7.3.2 Between grower line segregation 

The model predicted that the majority of the grower lines harvested during early 

seasonal period (G1 – G9) would have medium or short storability; these lines would 

likely to have 17.8 – 54.4% (16 – 49 fruit) of the population turning soft. However, G6 

was predicted to be an exception: only 8.9% (8 fruit) would be turning soft at the end of 

storage (Table 7.2; Fig. 7.6). The late harvested fruit (G19 – G27) were predicted to 

perform similar to those harvested during early seasonal period, with most lines having 

medium or short storability (18.9 – 47.8% failure; 17 – 43 soft fruit) except for G24 

being long-storing (4.4% failure; 4 soft fruit). For grower lines harvested during mid 

seasonal period (G10 – G18), the model predicted that most lines were to have long 

storage with 3.3 – 10% failure (3 – 9 fruit). The remaining lines (G13 and G17) were 

predicted to have medium storage with 17.8% (16 fruit) and 26.7% (24 fruit) failures, 

respectively (Table 7.2; Fig. 7.6). The predicted number of soft fruit was lowest for mid 

seasonal fruit but was higher in both early and late seasonal fruit (Table 7.2). 
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Grower Predicted 
Soft 

Predicted 
Soft 

Proportion 

Measured 
Soft 

Measured 
Soft 

Proportion 

Rank 
Predicted 

Rank 
Measured 

1 33 36.7% 7 7.8% 20 8 

2 31 34.4% 12 13.3% 19 12 

3 48 53.3% 2 2.2% 25 1 

4 18 20.0% 2 2.2% 13 1 

5 16 17.8% 4 4.4% 10 7 

6 8 8.9% 2 2.2% 6 1 

7 49 54.4% 20 22.2% 27 15 

8 45 50.0% 58 64.4% 24 25 

9 48 53.3% 9 10.0% 25 9 

10 9 10.0% 17 18.9% 8 13 

11 9 10.0% 2 2.2% 8 1 

12 8 8.9% 17 18.9% 6 13 

13 16 17.8% 9 10.0% 10 9 

14 1 1.1% 2 2.2% 1 1 

15 4 4.4% 34 37.8% 3 20 

16 5 5.6% 3 3.3% 5 6 

17 24 26.7% 30 33.3% 17 18 

18 3 3.3% 30 33.3% 2 18 

19 37 41.1% 42 46.7% 21 23 

20 43 47.8% 44 48.9% 22 24 

21 18 20.0% 10 11.1% 13 11 

22 22 24.4% 23 25.6% 16 16 

23 18 20.0% 60 66.7% 13 26 

24 4 4.4% 34 37.8% 3 20 

25 43 47.8% 40 44.4% 22 22 

26 17 18.9% 26 28.9% 12 17 

27 25 27.8% 71 78.9% 18 27 

Total 602  610  

Table 7.2 Proportion of soft fruit and ranking between grower lines as predicted 

by classification model and measured after storage at 0°C for 125 days. 
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Post-storage firmness measurements showed that there was a large variation in 

storage potential between grower lines (Table 7.1). In general, fruit harvested during 

early and mid-seasonal periods (G1 – G18) had lower proportion of soft fruit and higher 

average firmness after 125 days of storage compared to those harvested during late 

seasonal period (G19 – G27). The number of actual soft fruit also generally increased 

from early to late seasonal periods (Tables 7.1 and 7.2). Most early harvested lines had 

long to medium storability (2.2 – 22.2% failure; 2 – 20 soft fruit) except for G8 which 

had 58 soft fruit (64.4% failure). Similarly, most of the mid harvested lines had long to 

medium storability (2.2 – 18.9% failure; 2 – 17 soft fruit) except for G15, G17 and G18 

(37.8%, 33.3% and 33.3% soft fruit, respectively). Although the predicted and the 

measured number of soft fruit was somewhat similar (602 and 610, respectively), the 

model overestimated the number of soft fruit in early harvested lines, but 

underestimated the proportion of failure in the mid harvested lines. 

Table 7.3 displays the classification accuracy for segregation between grower 

lines for storability. For each of the short, medium and long storage group, 4 out of 9 

lines were classified accurately, whilst the remaining 5 lines were classified incorrectly. 

The percentage of actual short, medium and long storage lines in the predicted short, 

medium and long storage lines was 44.4% each, compared to 37.0%, 29.6% and 33.3% 

respectively by chance (Table 7.3). The overall accuracy (44.4%) is not as good 

compared to the 52.8% accuracy achieved by Feng  (2003) for the segregation of 36 

grower lines using CDA based on several at-harvest attributes including solublised 

DMC, harvest date, fruit lightness and mineral content. This is probably because in 

Feng’s study, results were obtained from internal validation data set and hence were not 

subjected to errors as a result of unknown variability from an independent new data set.  

The prediction in this study seemed to have equal performance for each of the 

three designated classes, in contrast to the poorer prediction of medium storage lines 

(33.3 – 46.7%) than the short or long storage lines (60.0 – 80.0%) as observed by Feng 

(2003). The average FF for the predicted long, medium and short storage groups was 

14.29 N, 12.27 N and 12.74 N respectively, compared to 16.65 N, 12.85 N and 9.79 N 

respectively for the actual groups (Table 7.3). Both predicted and actual long-storing 

groups had the highest average FF. However, the lowest FF was found in the medium-

storing group based on prediction.  
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 Predicted number (percentage) of grower line Average 

FF (N) Actual number Short Medium Long Total 

Short 
4  

(44.4%) 

3  

(33.3%) 

3  

(33.3%) 

10  

(37.0%) 
9.79 

Medium 
2  

(22.2%) 

4  

(44.4%) 

2  

(22.2%) 

8  

(29.6%) 
12.86 

Long 
3  

(33.3%) 

2  

(22.2%) 

4  

(44.4%) 

9  

(33.3%) 
16.65 

Total 9 9 9 27 - 

Average FF 

(N) 
12.74 12.27 14.29 - 

 

A fitted regression line showed that the proportion of soft fruit increased from 0 

– 40% with increasing predicted proportion of soft fruit (0 – 55%; Fig. 7.7a). However, 

there was no significant linear correlation (p = 0.237) between measured and predicted 

proportion of soft fruit. This could be due to the poor predictions of a few grower lines 

resulting in outliers. Removing the three lines with > 50% predicted proportion of soft 

fruit (G3, G7 and G9; Table 7.2) significantly improved this correlation (p = 0.021). 

Similarly, there was no significant linear correlation between measured average 

FF values and predicted soft fruit proportion (p = 0.298). The average post-storage 

firmness for each grower line reduced from 14 N to 12 N when the proportion of 

predicted soft fruit increased from 0 to 55% (Fig. 7.7b). The fitted linear line was 

improved (p = 0.026) after removing G3, G7 and G9 (with > 50% predicted soft fruit). 

However, the range of measured firmness for a specific predicted proportion of soft fruit 

could be as high as 9 N (Fig. 7.7b). This suggests that segregation between grower line 

was rather qualitative and incapable of quantitative prediction of post-storage firmness 

measurements. 

Table 7.3 Classification accuracy based on segregation into three groups: short (≥ 

30% soft fruit), medium (10 – 30% soft fruit) and long (< 10% soft fruit) 

storability between 27 grower lines.  
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 Predicted Proportion of Soft Fruit
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Figure 7.7 Relationship of predicted proportion of soft fruit to (a) measured 

proportion of soft fruit and (b) post-storage firmness measurements for 27 grower 

lines. Circle, square and triangle shapes represent grower lines with predicted long 

(9), medium (9) and short (9) storability, respectively. Solid lines are fitted linear 

regression lines based on all data points. 
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7.3.3 Soft fruit reduction 

In the test data set, 25.1% (610 fruit) of the total population were soft after 125 

days of coolstorage at 0°C (Table 7.4, Fig. 7.8a and Fig. 7.9a). At the time of harvest 

the model accurately predicted 196 out of 610 soft fruit and 1418 out of 1820 good fruit 

(Table 7.4). The TP and TN rates were 32.1% and 77.9% respectively, compared to 24.6% 

and 75.4% respectively by chance. The FN rate was 22.6% (414 out of 1832) which 

indicate the actual fruit loss in the predicted good batch. 

 Predicted   

Actual Soft Good Total 

Soft 
196  

(32.1%) 

414  

(67.9%) 

610  

(25.1%) 

Good 
402  

(22.1%) 

1418  

(77.9%) 

1820 

(74.9%) 

Total 
598  

(24.6%) 

1832 

(75.4%) 
2430 

The predictive accuracy for ‘Soft’ (32.1%) and ‘Good’ (77.9%) was slightly 

lower than the 40% and 81% obtained in the calibration model for ‘Soft’ and ‘Good’, 

respectively (Table 6.5; Chapter 6). The true positive rate (32.1%) was comparable to 

the 17 – 47% for kiwifruit that developed soft patches found by Feng (2003) but was 

lower compared to the 46 – 63% for kiwifruit that developed disorders found by Clark 

et al. (2004). The false positive rate (22%; 402 fruit out of 1820) was lower than the 33 

– 86% for healthy fruit found by Feng (2003), but was higher than those obtained in 

Clark et al. (2004) for good fruit (8 – 18%). 

According to Hair et al. (2006), the classification accuracy should be at least 

one-fourth (25%) greater than that achieved by chance, in order to justify the 

significance of improvement using a discriminant model. In this study, the classification 

accuracy for soft fruit was 32.1%. This is more than 25% greater than that achieved by 

chance (30.8% = 24.6% × 1.25). However, the classification accuracy for good fruit was 

Table 7.4 Confusion matrix for 2015 validation trial using developed classification 

model.  
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77.9 %, less than the 94.3% (75.4% × 1.25) required to justify a significant segregation. 

This suggests that in general, classification for soft fruit resulted in more significant 

improvement compared to that for good fruit, despite a lower % classification accuracy.  

For segregation within grower lines, it was intended that segregation followed 

by ranking and repacking of fruit would reduce final soft fruit proportion by allowing 

earlier shipping of fruit stored in the first and second trays while keeping those in the 

third trays for later in the season. Post-storage firmness results showed that 438 out of 

1620 (27.0%) early-shipment fruit (first and second trays) were soft (Fig. 7.8b), whereas 

638 out of 810 (78.8%) late-shipment fruit (fruit stored in the third trays) were sound 

(Fig. 7.8c). Segregation resulted in two populations: early shipment with a slightly 

higher proportion of short-storing fruit than the whole population and late shipment 

with a higher proportion of long-storing fruit. The proportion of soft fruit reduced from 

25.1% (shipment without segregation) to 21.2% (shipment based on segregation). Chi-

square test suggests that the proportion of soft fruit was significantly different between 

the two segregated populations (χ2 = 9.670; p = 0.002). 

 

Figure 7.8 Distribution of actual soft (FF < 9.8 N) and good (FF ≥ 9.8 N) fruit in (a) 

whole validation population, (b) fruit stored in the first and second trays, and (c) 

fruit stored in the third trays. The size of each population is indicated by area of 

the corresponding pie chart. 

(a) 

(b) 

(c) 
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For segregation between grower lines, it was intended that the predicted short- 

and medium-storing grower lines (lines with more than 10% predicted proportion of 

soft fruit) would be shipped earlier in the season while the predicted long-storing lines 

would be kept for later sales. Nine of the grower lines (one-third of the population) were 

identified as long-storing by the model: G6, G10 – G12, G14 – G16, G18 and G24 

(Table 7.2). Post-storage firmness results showed that 469 out of 1620 (29.0%) fruit in 

the early shipment lines were soft (Fig. 7.9b), whereas 669 out of 810 (82.6%) fruit in 

the late shipment were sound (Fig. 7.9c). The proportion of soft fruit reduced from 25.1% 

(shipment without segregation) to 17.4% (shipment based on grower line segregation). 

Chi-square test suggests that the proportion of soft fruit in the two segregated 

populations was significantly different (χ2 = 38.270; p < 0.001). 

 

The significance of soft fruit reduction as a result of segregation was also 

assessed based on the minimum criterion as defined by Hair et al. (2006). For 

segregation within grower line, the proportion of soft fruit (21.2%; Fig. 7.8c) in the 

Figure 7.9 Distribution of actual soft (FF < 9.8 N) and good (FF ≥ 9.8 N) fruit in (a) 

whole validation population, (b) short- and medium-storing grower lines, and (c) 

long-storing grower lines. The size of each population is indicated by area of the 

corresponding pie chart. 

(c) c)

(a) 

(b) 
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segregated long-storing population was less than 25% reduction from that achieved by 

chance (20.1% = 25.1% ÷ 1.25), indicating that the reduction of soft fruit was not 

significant. However, for segregation between grower line, the proportion of soft fruit in 

the segregated long-storing group (17.4%; Fig. 7.9c) was more than 25% less than that 

achieved by chance (20.1%), suggesting a significant reduction in soft fruit. Significant 

reduction in fruit loss may justify industrial application of the developed segregation 

system on current packing lines.  

7.3.4 Validation performance evaluation 

The performance of the model in this validation trial was comparable to that 

during model calibration (Section 7.3.3), suggesting good repeatability of the model. 

This is possibly attributed to the large number of training samples in the calibration data 

set with a wide variety of factors including growth conditions, maturity, grower lines 

and seasonal variation. The slight reduction in ability to predict between model 

calibration and validation is to be expected. The purpose of validation is to ensure that 

results obtained in the calibration model are not specific to only the calibration sample, 

but could also be generalised to an independent population (Hair et al., 2006). However, 

multivariate models in food processes can take years to build and/or improve up to a 

desirable level. The lack of selectivity in the multivariate NIR signal and the time span 

required for model building can be problematic when unwanted sources of variation are 

present in the data (Sileoni et al., 2011). This is especially true for natural products such 

as food raw materials (in this case, freshly harvested fruit) in open biological processes 

where the composition cannot be exactly predetermined. In this study, the predictive 

accuracy could have been improved by recalibration of the model by adding a set of 

NIR spectral and fruit storage data obtained from the validation trial. However this is 

impractical because prediction needs to take place prior to cool storage and hence it 

would not be possible to collect fruit storage data at the time of model prediction.   

For between grower line segregation, the fact that the model overestimated the 

proportion of failure for grower lines harvested during early seasonal period suggests 

the lack of reliability to rank grower lines according to their harvesting time. It is 

recommended that, for future improvement, harvesting time (e.g. ISO days) or 

harvesting seasonal periods (e.g. early, mid or late) should be included in the calibration 

model as an input variable, so as to improve the prediction accuracy of the model. 
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7.4 Conclusions 

The robustness of the developed classification model (Chapter 6) was tested 

using a validation trial conducted in 2015. At harvest fruit were ranked by the model 

both within and between grower lines, based on the probability of individual fruit to 

become soft after cool storage. Fruit were then repacked and stored in separate trays so 

as to segregate long-storing fruit from the remaining population. Fruit flesh firmness 

was measured after 125 days of storage at 0ºC. For within grower line segregation, the 

average storability of fruit was significantly different amongst trays, with lowest FF and 

highest number of soft fruit found in short-storing trays, suggesting that the model was 

capable of segregating individual kiwifruit within population. For segregation between 

grower lines, the developed model accurately classified 44.4% of the grower lines, with 

long-storing lines having the highest average FF values. This demonstrates the ability 

for the developed model to segregate storability of grower lines of kiwifruit. Should the 

model be applied at harvest and the fruit/grower lines be shipped sequentially, the 

proportion of soft fruit would be reduced from 25.1% by chance, to 21.2% and 17.4% 

(15% and 30% fruit loss reduction) for segregation within and between grower line 

respectively. Applying a segregation system to sort grower lines may have industrial 

viability through direct fruit loss reduction and more importantly reduction of associated 

postharvest costs. 
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8 General Discussions 

8.1 Introduction 

In New Zealand, kiwifruit are often harvested unripe and stored in cool 

temperature for long periods of time before being exported to the global market. During 

coolstorage, a significant proportion of fruit soften and this contributes to fruit and 

financial losses. It was demonstrated that pre-harvest manipulation of crop load and 

girdling had significant influence on at-harvest kiwifruit attributes and postharvest fruit 

storability (Chapter 3). As such, it is important to be able to capture this inherent 

information at harvest while keeping the fruit intact, so that future fruit quality can be 

forecasted prior to coolstorage. The main purpose of this thesis was to develop an 

appropriate non-destructive technique applied at harvest to predict ‘Hayward’ kiwifruit 

storability. The aim was to assist with inventory management decisions for export and 

help to reduce fruit loss in the supply chain. Even a small percentage of reduction could 

potentially contribute to a significant improvement, because of the current size of the 

industry and the associated labour costs being reduced. A positive result would 

compound as the volume of the New Zealand kiwifruit increases.  

Several batches of ‘Hayward’ kiwifruit were sourced commercially from 

multiple orchards, different seasons, various harvesting periods and several growing 

condition treatments. Two non-destructive techniques were investigated: optical 

coherence tomography (Chapter 4) and near infrared spectroscopy (Chapters 5, 6 and 7). 

Experiments were carried out to determine the correlation between at-harvest data 

captured by the proposed techniques and fruit quality and storability prior to as well as 

after coolstorage. Figure 8.1 is a schematic illustration of the work carried out in this 

thesis. The key findings and the implications of the studied technologies will be 

discussed in this chapter. 
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Figure 8.1 A diagrammatic representation of how pre-harvest factors could affect 

kiwifruit attributes both at harvest and after coolstorage at 0 °C (Chapter 3). The 

application of non-destructive techniques including OCT and NIR at the time of 

harvest would help to assess at-harvest fruit attributes (Chapter 4) and predict 

post-storage fruit quality and storability (Chapters 5, 6 and 7). 
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8.2 Effects of Pre-Harvest Factors on Fruit Quality 

The quality of a horticultural product is determined in the field prior to harvest. 

Postharvest technologies help to maintain but not improve quality (Hewett, 2006). 

Preharvest factors can interact to affect plant growth and fruit development, and 

ultimately lead to the inevitable variability in fruit quality within the population at the 

time of harvest as well as during storage. While the main objective of this thesis is to 

utilise non-destructive techniques to predict and segregate storage outcomes of kiwifruit 

based on at harvest attributes, it is important to understand how at-harvest quality 

attributes such as size, appearance, taste and texture etc. are imposed (or not) from 

previous growing conditions and environmental factors, and how these attributes affect 

the rate of postharvest deterioration in storage and consumers’ decision to purchase the 

product. 

The current study found that trunk girdling improved sugar content at harvest 

and during storage but led to lower FF of fruit during storage (at 50, 100, 150 and 175 

days after storage) and fruit reached the minimum export standard (FF = 9.8 N) sooner 

(Sections 3.3.2 and 3.3.3). Previous studies also reported that girdling led to advanced 

maturity and more rapid softening in ‘Hort16A’ (Boyd and Barnett, 2011) and ‘Gold3’ 

kiwifruit (Snelgar and Blattmann, 2012), apples (Autio and Greene, 1994), peaches 

(Crisosto and Costa, 2008), nectarines (Agusti et al., 1998), and persimmon (Juan et al., 

2009). Boyd (2012) and Scarrow (2014) suggested that if the right timeframe for 

harvesting was chosen, fruit treated with trunk girdling could exhibit the same softening 

behaviour as a non-girdled population. To minimise the adverse effect of girdling on 

fruit storability, future studies should further investigate the relationship between 

girdling, at-harvest maturity and softening curves of fruit, in order to identify the 

optimal harvest time for maintaining storability. 

High crop load reduced fruit eating quality because of reduced TSS during 

storage but did not seem to affect storability (i.e. post-storage FF) of the fruit (Sections 

3.3.2 and 3.4.3). High crop load could enable economic advantages if an increased yield 

can be achieved without adverse impacts on kiwifruit harvest and postharvest quality. 

The limits to ‘Hayward’ kiwifruit productivity are yet to be reached (Thorp et al., 2011). 

Advances in management with higher cropping systems such as selection of lower 

vigour wood (improving DMC) and closer cane spacing (improving sunlight and 
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maximising DMC) are evolving to reduce the risk of adverse impacts on fruit quality. If 

the adverse impacts on at harvest DMC, fruit weight and postharvest TSS (Sections 

3.3.1 and 3.3.2) can be alleviated through such cropping systems, high crop load would 

have the potential to improve productivity without affecting storability. However, this 

would require detailed studies on storage performance of the treated fruit and sensory 

tests conducted to ensure consumers’ acceptability regarding taste profile of the product. 

Postharvest cooling-induced disorders such as chilling injuries (also known as 

low temperature breakdown and storage breakdown disorder) can also be affected by 

preharvest environmental conditions and orchard practices (Ferguson et al., 1999). For 

kiwifruit, the susceptibility to CI can be affected by seasons (Arpaia et al., 1985), 

orchard location (Lallu, 1997), preharvest chilling treatment (Sfakiotakis et al., 2005), 

harvest maturity (Burdon et al., 2007), curing temperature and time (Doleh, unpublished 

work), cooling rate and storage temperature (Lallu, 1997; Zhao, 2017). Boyd and 

Barnett (2011) also found that extended trunk girdling reduced the CI susceptibility of 

‘Hort16A’ kiwifruit. In the current study the effect of crop load and trunk girdling on CI 

development in ‘Hayward’ kiwifruit was not evaluated. Trunk girdling and low crop 

load resulted in more advanced maturity at harvest and during storage (Section 3.3.2), 

and hence are likely to reduce the incidence of CI in the treated fruit. However, Burdon 

et al. (2014b) also pointed out that the quality of fruit that developed CI differed 

considerably and as such using a threshold based on maturity was not sensible. 

Therefore, future studies should be carried out to elucidate how CI susceptibility of 

‘Hayward’ is affected by crop load and girdling. 

Knowledge of how preharvest factors affect fruit quality may help to manipulate 

biological variability of fruit at harvest. For instance, Peirs et al. (2003) found that more 

than half of the variability in NIR spectral data collected on apple samples could be 

attributed to seasonal and orchard variations as a result of different growing conditions. 

The robustness of models for external validation was found to improve with more 

variability in the calibration data set for quality prediction of apple (Peirs et al., 2003; 

Bobelyn et al., 2010) and avocado (Wedding et al., 2013). Hence, manipulation of 

preharvest conditions (e.g. including samples from various seasons and multiple 

orchards) may help to ensure a wide range of relevant variability in fruit quality for the 

data set and improve robustness of predictive models.  
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On the other hand, large biological variability between and within batches of 

fruit induced by growing conditions may contribute to unwanted variations in 

postharvest quality and storability and result in losses due to storage disorder. This calls 

for the need to decrease this variability prior to storage, by means of sorting or grading 

in order to reduce losses and assist with inventory management (Tijskens et al., 2003). 

Previous studies attempted to describe the effects of preharvest factors on the observed 

variability using mathematical languages. Specifically, abstract model mechanisms 

including prediction of DMC during fruit growth to indicate harvest fruit quality and 

incidence of CI as a function of antioxidants assimilation during development can be 

found in Tijkens et al. (2003). Pérez-Marín et al. (2011) used NIR spectroscopy to 

segregate postharvest storability of nectarines as a result of preharvest irrigation 

strategies. The ability to capture, model and predict the sources and effects of variability 

helps to integrate with existing knowledge and provide segregation solutions for 

optimisation of product quality. For instance, the effects of preharvest factors on 

biological variability of batches of kiwifruit at harvest can be integrated with the study 

of Jabbar (2014), which modelled and segregated the variability in softening rates 

during storage, to provide a better overview of fruit behaviour from orchards through to 

the supply chain.  

Rivera et al. (2017) proposed that the postharvest ripening behaviour of avocado 

was affected by multiple preharvest factors including seasonal temperature, humidity, 

plant nutrition and irrigation management and hence, prediction of postharvest quality 

using a single pre- or at-harvest variable could be misleading. However, in practice 

extensive data collection requires intensive labour and data analysis and thus may not be 

pragmatic. In the current study, non-destructive methods were used to capture the (near) 

skin properties of fruit at harvest. Given that fruit skin is the first point of contact with 

growing environment, it is assumed that this information may be representative of 

various pre-harvest conditions and therefore, can be indicative of physical/chemical 

properties of the fruit at harvest, which in turn affect quality attributes after storage. 
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8.3 Assessment of Near-Surface Cellular Structures using OCT 

Prior to this work, there is no existing knowledge on the type of information that 

can be extracted from OCT images of intact kiwifruit. Loeb and Barton (2003) 

investigated the application of OCT on cut kiwifruit along the outer pericarp (parallel to 

skin). In this thesis, OCT imaging enabled non-destructive identification of large cells 

in near skin kiwifruit tissue, with subsequent automated segmentation and analysis 

identifying and describing large cells efficiently (Chapter 4). The automated OCT data 

analysis method developed in this chapter has benefits of rapid processing (approx. 10 

mins) and computation of large 3D data sets of images, and the minimisation of human 

error and bias during selection of large cells (Section 4.2.4). This study conducted a 

number of preliminary comparisons amongst cultivars and growing systems to 

investigate what the resulting information on large cells may be useful for. 

Cellular structure and composition have also been associated with quality 

attributes of kiwifruit. For instance, White et al. (2016) studied the impact of cell 

membrane integrity on taste perception in both soft and firm fruit. In soft fruit the large 

cells tended to maintain membrane integrity during mastication while the small cells 

lost membrane integrity, whereas in firm fruit both the large cells and small cells tended 

to lose membrane integrity during mastication resulting in high juiciness. High cell 

membrane integrity would lead to mealiness. A potential application of OCT would be 

to look at whether the membrane integrity of large cells for soft and firm fruit can be 

differentiated by OCT imaging.  

Additionally, Nardozza (2008) suggested that the ratio of small to large cells 

affects dry matter content and fruit size. Small cells made a much higher contribution to 

the total fruit starch concentration than large cells because starch granules were mainly 

found in small cells whereas large cells usually appeared empty. Assuming the 

remaining outer pericarp tissue is comprised of small cells and intercellular spaces, the 

yellow-fleshed cultivars, ‘G3’, ‘G9’ and ‘Hort16A’ may have larger volume fraction of 

small cells in comparison to the green-fleshed ones, ‘G14’ and ‘Hayward’, since the 

volume fraction of large cells in the outer pericarp tissue was lower for yellow-fleshed 

cultivars than green-fleshed cultivars (Chapter 4). This agrees with the existing 

knowledge that ‘Hort16’ fruit have a higher dry matter content at harvest and are much 

sweeter tasting than ‘Hayward’ fruit when ripe (Lowe et al, 1999). 
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The cell wall of large cells contributes to a significant portion of the total cell 

wall volume in the fruit and plays an important part in delaying softening in ripe fruit 

(Hallett et al., 2005). This suggests that at harvest, fruit with larger volume fraction of 

large cells (hence, larger volume fraction of cell walls) potentially have better resistance 

to softening. It was also observed that at harvest ‘G14’ and ‘Hayward’ had significantly 

higher firmness values than ‘G3’, ‘G9’ and ‘Hort16A’ (Table 4.1). It may be helpful to 

examine the storage performance of fruit for future studies, in order to fully explore the 

relationship between volume fraction of large cells and fruit quality during storage. 

In addition, OCT has the capability of enabling continuous monitoring of 

cellular changes over a period of time. It may provide useful information on cellular 

structural changes during kiwifruit ripening and softening without damaging the fruit. 

Hallett et al. (1992) used microscopy to study the structural changes of kiwifruit cells 

during ripening on separate fruit tissues, and found that as fruit tissues softened, the 

cellular profiles became more rounded, i.e., packing of more spherical bodies. The 

intercellular spaces also increased in the outer pericarp (increased percent volume of 

intercellular spaces and increase in the percentage of the tissue occupied by free gas). 

However, different fruit samples were used at each ripening/softening stage; hence the 

results were based on the assumption that cellular structures are identical for fruit with 

similar firmness measurements. Applying OCT would allow the same fruit to be 

measured at different stages. This could be useful to study the differences in cellular 

structural changes during softening between commercial cultivars or batches of 

kiwifruit. 

OCT also has the potential to provide information for cultivar or batch selection, 

since cellular structural properties can affect physiological features of the breed. For 

instance, cell density and diversity of sizes and shapes of the cells making up a fruit 

tissue may contribute to differences in water mobility in the same tissue. Kenouche et al. 

(2014) found that various cell density and structures in cherry tomato tissue resulted in 

different magnetic resonance imaging (MRI) T1 values, which are relaxation times 

indicative for the mobility of water within the fruit tissue. The T1 values for yellow-

fleshed kiwifruit cultivars have been previously reported by Burdon et al. (2014c), with 

T1 values in ‘G9’ being lower than in ‘G3’ and ‘Hort16A’, suggesting lower water 

mobility and limited potential for mass water transfer within the ‘G9’ fruit. This, in 
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combination with fruit softening, may have resulted in shrivel development in ‘G9’ fruit 

during storage, which is a known problem for the industry (Burdon et al., 2014c). In 

Chapter 4, the large cells were found to be relatively small but in higher density in ‘G9’ 

as compared to ‘G3’ and ‘Hort16A’, and this could be a possible contributor for the 

reduction in water mobility in ‘G9’ fruit tissue since cell density plays a role in affecting 

T1 values of the fruit. However, more research may be needed to investigate the 

relationship between large cell density and water mobility in the tissue. 

In addition, chilling injury is observed in cool-stored kiwifruit which leads to 

extreme softening of the fruit. Fruit that develop CI may contribute to a large proportion 

of soft fruit (Bauchot et al., 1999). Symptoms of CI include a ring of granular and 

water-soaked soft tissue in the outer pericarp, and a dark scald-like appearance in the 

skin (Lallu, 1997). Bauchot et al. (1999) also observed large airspaces within cells 

affecting both small and large cells. Given that OCT is capable of detecting the 

boundary of tissues having different refractive indices, it is possible that water-soaked 

regions in the sub-surface structures and the presence of air bubbles may be identifiable. 

This would be helpful for non-destructive detection of early development of CI 

symptoms in kiwifruit.  

Although OCT was capable of segregation between cultivars, it failed to detect 

any differences within cultivars resulting from pre-harvest manipulation of growing 

conditions, except that low crop load was found to increase maximum cell length 

(Chapter 4). In addition, there seems to be a trade-off between penetration depth and the 

clarity of information that can be extracted vertically from the images. At low 

penetration depth (e.g. 0.68 mm under the skin as used in Chapter 4), near-surface 

cellular structures were observed with relatively high axial resolution, enabling image 

processing and quantitative analysis. However, the data captured by the images would 

only be relevant to the layers of tissue immediately underneath the skin surface and may 

not be representative to the entire outer pericarp which could be up to 10 mm thick. 

Further work should be carried out to investigate the distribution and microstructural 

properties of small and large parenchyma cells across the outer pericarp. Improvement 

of penetration depth would also improve applicability of this technique and help to 

provide more convincing and comprehensive data for the assessment of internal quality 

or quality changes of the crop examined. 
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8.4 Prediction of Post-Storage Kiwifruit Quality using Vis-NIR Spectroscopy 

8.4.1 Blackbox modelling 

The present study provides an attempt to predict post-storage quality of 

‘Hayward’ kiwifruit using at-harvest spectral measurement. Due to the multicollinear 

nature (a large number of absorption bands that overlap heavily with each other) of the 

NIR spectral data, advanced ‘black-box’ multivariate data processing models were used 

to perform quantitative and qualitative predictions. Prediction is based on pattern 

recognition using machine learning algorithms and the actual correlation between input 

data and prediction outcome is highly empirical. Therefore, although specific 

information such as absorption peaks and regression coefficients for a specific 

waveband could be obtained, the underlying relationship between the input spectral data 

and model predictions was not clearly defined. Fundamentally there is a physical 

relationship between input spectral data and the output attribute. However, when 

working under complex environmental conditions, light interacts with many other 

physique-chemical properties including sensor artefacts, sensor offsets and multiple 

confounding chemical properties. As a result, the physique-chemical relationship 

between input and output data becomes complex and obscure. Black box models 

effectively extract the hidden complex information.  

Black-box models are not uncommon for predictions using NIR spectroscopy 

(Zerbini, 2006). For instance Lammertyn et al. (1997) found that although a physique-

chemical background could be established for quantitative prediction of TSS of apples, 

for the other analysed parameters such as pH and FF it was difficult to interpret the 

spectral data to assign a specific vibration to a wavelength, resulting in most models 

being black-box. Contrary to explanatory models which generally contain a series of 

sub-models describing biochemical processes at the cellular level, black-box models do 

not require comprehensive understanding of the system to be predicted. As such they 

are more efficient for industrial applications and can be used for predictions and 

analyses at the crop level. In addition, an increasing number of open-source data mining 

software and machine learning libraries are becoming available, enabling the ability to 

continuously improve the performance of the model. 
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However, while black-box models are usually more accurate for predicting 

nonlinear correlations, there is often a trade-off between interpretability and model 

accuracy due to the fundamental complex nature of the algorithms used (Feelders et al., 

2000). For instance, the algorithms discussed in Chapter 6 (SVM and boosted decision 

stumps) typically generated pure black-box models which cannot be easily interpreted 

(Friedman, 2006) or re-performed manually. If the purpose is simply to develop an 

effective automated prediction system then this is sufficient. However, the ability to 

understand what happens inside the black box can help rationalise model predictions 

and provide ideas for future improvements. The recently-developed local interpretable 

model-agnostic explanation (LIME) approach (Ribeiro et al., 2016) can be utilised in 

the future to provide more meaningful interpretation of machine learning predictions. 

8.4.2 Quantitative prediction of post-storage TSS 

Quantitative prediction of postharvest TSS using at-harvest NIR spectral data 

was somewhat successful: approximate predictions were achieved (Section 5.6.1). 

Lower errors were obtained in the current study, compared to Ignat et al. (2014) who 

also used at-harvest NIR data directly to predict post-storage TSS of apples. 

The assessed storage time did not seem to largely affect predictive performance 

of the regression models. Predictions at 100, 125 and 150 days were similar and slightly 

better compared to that at 75 days (Section 5.6.1). Ignat et al. (2014) also found no 

significant changes in RMSEP for TSS of apples in relation to time of storage (after 2, 4 

and 6 months). This is probably because during kiwifruit ripening, the conversion of 

starch into soluble sugar would have already been completed after 50 days of 

postharvest coolstorage (MacRae et al., 1992; Ritenour et al., 1999; Jabbar, 2014; Zhao, 

2017). Therefore there is little change in TSS content during the storage times 

investigated in this study. This suggests that the at-harvest spectral data can be used as a 

good indicator of post-storage TSS when fully developed. This supports the good 

predictive performance of DMC (which is an indicator of post-storage TSS once fully 

developed) in many previous studies using NIR spectral data collected at harvest 

(Osborne et al., 1998; McGlone et al., 2002b; Clark et al., 2004; McGlone et al., 2007). 

Williams and Norris (2001) proposed that sampling error could be a major 

component contributing to differences between reference and predicted values. In the 
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current study, sampling error can be caused by the lack of homogeneity in the material 

being sampled. Similar to OCT, the low penetration depth of NIR (~ 2 – 3 mm in fruit 

media) could result in biased sampling because the fruit sample has an outer pericarp as 

deep as 10 mm but only a near skin portion of the sample is being measured. In addition, 

the TSS of kiwifruit is higher in the core compared to that in the outer and inner 

pericarp (Martinsen and Schaare, 1998). Given the small penetration depth, spectral 

measurements fail to take into consideration the role of the kiwifruit core, contrary to 

the destructive methods.  Hu et al. (2017) demonstrated the potential to use 

hyperspectral imaging to visualise and quantify the distribution of soluble sugars within 

the fruit by taking scans of sectioned slices. This method could be used to describe the 

changes of TSS in different tissue zones and hence, provide corrections for model 

predictions affected by heterogeneity of fruit sweetness. 

 Sugar levels vary within kiwifruit, being higher at the blossom-end and lower at 

the stem-end. However, this distribution is not linear along the longitudinal axis. 

According to Hopkirk et al. (1986), the TSS of kiwifruit at the equatorial position was 

not the middle point between the stem and the blossom ends; the increase of TSS from 

stem end to the equator appeared to be higher than that from the equator to the blossom 

end. In this thesis, TSS measurements were carried out by combining the juice from 

both stem and blossom ends of the fruit, in order to obtain an average TSS value across 

the fruit. However, NIR measurements were conducted at the equatorial position of the 

fruit. Hence in the current study the equatorial scans which indicate mid-point TSS were 

used to predict the average TSS measured from both ends of the fruit. 

Measurement location has been found to affect the robustness of NIR models for 

prediction of TSS in apples (Fan et al., 2016). To determine if this difference in location 

plays a role in adding error to the prediction, a simple test can be carried out by 

collecting and averaging the spectral data around locations a few centimeters from both 

ends to find out if improvement in model prediction can be achieved. Fan et al. (2016) 

also suggested that the development of a global position model improved the robustness 

of NIR models for prediction of TSS of apples at any surface locations of the fruit. 

Therefore, future studies could also investigate whether the development of a global 

position model would improve the prediction of TSS in kiwifruit. Alternatively, NIR 

sensors with spatial imaging capabilities such as hyperspectral imaging (HSI) 
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technologies can be utilised to account for the variation in sugar content as a result of 

spatial distribution, as demonstrated in Martinsen and Schaare (1998).  

8.4.3 Quantitative prediction of post-storage FF 

Prediction of post-storage FF using at-harvest spectral data has been studied on 

other crops such as apples and apricots but not for ‘Hayward’ kiwifruit. Although lower 

RMSEs were obtained in comparison to previous findings on other crops/cultivars 

(McGlone and Kawano, 1998; McGlone et al., 2002a; Ignat et al., 2014), quantitative 

prediction of post-storage FF was still unsuccessful (Section 5.6.2).  

Kiwifruit firmness is a physical measurement that is influenced by internal 

cellular structures which can manifest as a change of surface spectral or scattering 

properties, a change in pectin structure as a result of pectin solublisation and changes in 

degree of cell turgor. Compared to soluble sugar concentration which tends to form a 

linear correlation with spectral absorbance, it is more challenging for NIR to estimate a 

physical structural change. Whole fruit turgor is dependent on water content and rate of 

water loss in both outer and inner pericarp (Li et al., 2016). However, there is a 

limitation for NIR light to penetrate any tissues more than 2 mm below the skin. In 

addition, the NIR spectra of fruit are dominated by the water spectrum and hence any 

structural changes of constituents with low concentration (such as pectin solubilisation 

in kiwifruit) might be barely detectable because of this dominance of water (Pojić et al., 

2015). As such, quantitative prediction of FF is more difficult compared to that of TSS, 

as shown by many previous studies (McGlone and Kawano, 1998; McGlone et al., 

2002a; Ignat et al., 2014) and the current study. The ability of NIR technology to 

provide accurate quantification of firmness remains questionable, at best.  

For crops such as apples and cherries, the correlation between NIR spectral data 

and at-harvest or post-storage FF measurements is more likely to be attributed to a 

change in skin or background colour during maturation and ripening which influences 

the absorbance of certain colour pigments. For instance, apple peel chlorophyll content 

was found to be strongly correlated with fruit firmness (Kuckenberg et al., 2008). Given 

that chlorophyll has peak absorbance bands at around 670 – 680 nm, any change in 

chlorophyll content coinciding with firmness would be detectable by Vis-NIR 

spectroscopy in the visible range. Similarly, the firmness of sweet cherries was found to 
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be correlated with skin colour (h°; Muskovics et al., 2006)   with Lu (2001) finding 

“relatively good predictions” of the firmness of sweet cherries (SEP = 0.44 – 0.55 N). 

However, for ‘Hayward’ kiwifruit there is no colour change during physiological 

development. Hence, it is not possible to develop such a secondary correlation based on 

changes in colour absorption. 

The number of NIR scans collected per fruit can also influence the accuracy of 

the model. For spectra data collection, most previous NIR work and the current study 

used two measurements corresponding to the two locations used for firmness 

measurements. This is mainly due to time constraints and the limitation of speed of lab-

scale NIR sensors especially when a large sample size is required. However firmness 

can be position dependent; hence it is possible that the two spots used for measurements 

may not represent the overall firmness of the fruit. McGlone and Kawano (1998) used 

50 scans per fruit for instant estimation of FF (no storage) of ‘Hayward’ kiwifruit and 

obtained better results compared to Feng (2003), in which only two scans per fruit were 

used. Increasing the number of spectral measurements should be considered for future 

research. However, the number of measurements should also be small enough to allow 

industrial applicability. The industrial NIR sensors are capable of approximately 20 

scans per fruit on a packing line (Feng, 2003). For future experimental designs this 

number should be considered. Alternatively hyperspectral imaging which can provide a 

global measure of firmness can also help to reduce the variation caused by spatial 

location. 

8.4.4 Qualitative prediction of kiwifruit storability 

Segregation of ‘Hayward’ kiwifruit for storage potential was carried out at 

individual fruit level using at-harvest Vis-NIR spectral data as the sole input data for 

fruit stored at various periods of storage (Chapter 6). This enabled classification both 

within (at fruit level) and between grower lines based on the export firmness criterion of 

1 kgf (9.8 N). The external validation trial (Chapter 7) showed that the model performed 

better in segregation between grower lines and achieved significant reduction in soft 

fruit (Section 7.3.3).  

The penetration speed of the electric penetrometer influences the value of 

firmness obtained. Feng et al. (2011) demonstrated that the measured FF values 
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increased with increasing penetration speeds varying from 4 mm·s-1 to 40 mm·s-1. 

Similarly, Li et al. (2016) found that increasing the penetrometer measurement speed 

from 5 mm·s-1 to 20 mm·s-1 increased the firmness values obtained. For ‘Hayward’ 

kiwifruit, this difference only became apparent when fruit FF were below 40 N. The 

difference in firmness could be up to ~ 10 N particularly in samples stored for 8 – 16 

weeks (56 – 112 days). Both studies suggest the influence of change in penetration 

speed on FF values was high in stored ‘Hayward’ fruit with low FF values (< 20 N). In 

the present study, there were multiple data sets collected over four seasons during 2012 

– 2015. Due to a change in standard measurement procedures, the penetration speed of 

firmness measurements using the electric penetrometer was changed from 20 mm·s-1 for 

model calibration (2012 – 2014), to 8 mm·s-1 for the validation trial (2015). This change 

in penetration speed could have resulted in slightly different firmness values for fruit, 

hence affecting the decision of the model to determine whether a fruit is commercially 

acceptable (FF > 9.8 N).  

Using the firmness-speed model provided in Feng et al. (2011), a plot showing 

the ratio between a FF value measured at a specific penetration speed and that measured 

at 10 mm·s-1 on the same fruit can be obtained (Fig. 8.2). From this plot, a quick 

calculation suggests that a fruit read 9.8 N at 20 mm·s-1 penetration speed (which would 

have been grouped as a good fruit) would obtain a firmness value of ≈ 7.6 N at 8 mm·s-1 

penetration speed. This would mean that the soft fruit found in the validation trial, 

which had firmness readings between 7.6 – 9.8 N, would likely to be classified as good 

fruit using the calibration model. In order to evaluate the effect of penetration speed on 

classification accuracy, the FF data used in the validation trial were corrected using the 

mentioned firmness-speed model with the segregation performance re-assessed (Tables 

8.1 and 8.2).  
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  Overall the segregation performance improved after correction of FF values 

using the firmness-speed model. In this case the proportion of soft fruit in the entire 

batch was reduced to 13.6% by chance. Approximately 33.8% and 76.8% of soft and 

good fruit were accurately classified respectively (Table 8.1). The FN rate was 12% 

(Table 8.1), much lower than the 22.6% found before correction (Section 7.3.3).   

 Predicted  

Actual Soft Good Total 

Soft 
112 

(33.8%) 

219  

(67.9%) 

331 

(13.6%) 

Good 
487  

(23.2%) 

1612 

(76.8%) 

2099  

(86.4%) 

Total 
599 

(24.7%) 

1831 

(75.3%) 
2430 
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Figure 8.2 Firmness-speed model proposed by Feng et al. (2011) displaying the 

relationship between penetration speed (mm·s-1) and FF normalised to the value on 

the same fruit using a reference penetration speed of 10 mm·s-1. 

Table 8.1 Confusion matrix for 2015 validation trial using corrected FF values 

based on the firmness-speed model described in Feng et al. (2011). 
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GL n T1 n T2 n T3  GL Actual 
total 

Predicted 
total Actual % Predicted % 

1 1 1 0 14 2 1 2.2% 1.1% 
2 2 2 2 18 6 3 6.7% 3.3% 
3 0 0 0 15 0 4 0.0% 4.4% 
4 1 0 0 24 1 4 1.1% 4.4% 
5 0 0 1 16 1 5 1.1% 5.6% 
6 1 0 0 6 1 8 1.1% 8.9% 
7 5 3 5 12 13 8 14.4% 8.9% 
8 17 11 15 10 43 9 47.8% 10.0% 
9 1 1 3 11 5 9 5.6% 10.0% 
10 2 3 4 5 9 16 10.0% 17.8% 
11 2 0 0 13 2 16 2.2% 17.8% 
12 4 0 2 26 6 17 6.7% 18.9% 
13 1 0 0 4 1 18 1.1% 20.0% 
14 0 0 0 21 0 18 0.0% 20.0% 
15 6 4 7 23 17 18 18.9% 20.0% 
16 2 0 0 22 2 22 2.2% 24.4% 
17 8 4 3 17 15 24 16.7% 26.7% 
18 5 4 8 27 17 25 18.9% 27.8% 
19 13 7 9 2 29 31 32.2% 34.4% 
20 12 9 5 1 26 33 28.9% 36.7% 
21 0 4 1 19 5 37 5.6% 41.1% 
22 4 4 2 20 10 43 11.1% 47.8% 
23 12 7 5 25 24 43 26.7% 47.8% 
24 7 6 6 8 19 45 21.1% 50.0% 
25 5 4 1 3 10 48 11.1% 53.3% 
26 8 2 4 9 14 48 15.6% 53.3% 
27 17 21 15 7 53 49 58.9% 54.4% 

Total 136 97 98 331 602 

Table 8.2 Reviewed number of soft fruit amongst the three trays (T1 – T3) within a 

grower line after storage at 0°C for 125 days as a result of pre-storage within 

grower line segregation (correction based on the firmness-speed model described 

in Feng et al. (2011)). Green, orange and purple indicate short, medium and long-

storing fruit/lines. 
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For segregation within grower lines, the total number of soft fruit in the last 

trays (predicted long-storing trays) was 98 out of 810 fruit after correction (Table 8.2). 

This would mean that: the proportion of soft fruit would be reduced by 11% from 13.6% 

(without segregation) to 12.1% (with segregation) in the remaining population if fruit 

from the first and second trays were shipped early. This was not as good compared to 

the 15.5% reduction in soft fruit obtained without correction of FF values (Section 

7.3.3). For segregation between grower lines, the same thresholds (< 10%, 10 – 30% 

and > 30% predicted fruit) were used to classify 27 grower lines. The number of soft 

fruit after correction was 73 out of 810 fruit in the predicted long-storing lines (Table 

8.2). This would mean that the proportion of soft fruit would be reduced by 33.8% from 

13.6% (without segregation) to 9% (with segregation) in the remaining population if 

short- and medium-storing lines were shipped early. This was slightly better than the 

30.7% soft fruit reduction obtained without correction of FF values (Section 7.3.3). This 

suggests that penetration speed actually affected model performance and hence it should 

be kept consistent or corrected during new model development. 

In the few studies that investigated the use of NIR to segregate storage potential 

of fruit, in most cases NIR spectral data were used in combination with other means of 

quality indicators. For instance, Feng (2003) segregated kiwifruit grower lines using 

Vis-NIR spectra in combination with initial fruit firmness, colour, TSS, DMC and 

mineral concentrations. This requires extensive laboratory work at the time of harvest 

which may be impractical on the packing lines when dealing with large volumes of fruit. 

In Feng et al. (2014), at-harvest NIR spectral data was used in combination with 

acoustic firmness measurements of fruit during storage, with soft fruit regularly 

removed from the population to minimise their impact on storability of firmer fruit in 

the same tray. This would require firmness measurements and replacement of soft fruit 

during storage and hence may offset any economic benefits gained through reduction of 

fruit loss as a result of segregation. Conversely, the significance of the current study is 

that at-harvest spectral data was used as the sole input data for prediction. The initial 

measurement and segregation is all that is required, meaning the economic impact of the 

additional labour is minimal.  

Currently many packhouses practise ranking of grower lines for storage potential 

for sequential marketing based on storage behaviour obtained from historical data. 
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Therefore, a weighted grading system can be designed which combines prediction 

outcomes from the segregation model developed in the current study and historical 

industrial data (Fig. 8.3). First, grower lines can be categorised into short, medium and 

long-storing classes according to historical storage performance prior to the season. The 

segregation model then ranks the grower lines at harvest based on current season’s 

spectral data and classifies them into the same three groups. A final ranking and/or 

grouping will be generated based on the percentage value (weight) assigned to each of 

the two methods. Experiments should be carried out in order to find out the optimal 

ratio of weightings to be assigned to each of the two segregation methods. Grower lines 

classified as short-storing should be prioritised for shipping or selling, followed by 

those classified as medium-storing. The predicted long-storing lines should be kept for 

later in the season and distributed sequentially to distant markets based on their 

weighted ranking (first to expire, first out).     

 

 

  

Figure 8.3 Implementation of weighted grading system for segregation grower 

lines based on storage potential. Fruit are distributed according to “First to 

Expire, First Out” approach.  
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8.4.5 Industrial applicability assessment for segregation model 

 For the industry, implementation of a segregation model into existing sorting 

line requires justification of financial gain outweighing the cost incurred for installing 

such as system. An attempt was made to investigate the industrial applicability of the 

developed segregation model based on the following contributing factors:  

1) The associated onshore condition checking and repacking costs 

At the point of export, a proportion of the fruit is usually assessed for firmness. 

The suitability for export is determined by calculating the soft fractile (0.03 fractile), i.e. 

if the 9th softest fruit of 300 fruit has a FF value above 1 kgf (9.8 N), the pallet can be 

exported. If the pallet fails the test it will be off-loaded, put in the coolstore on the wharf 

and then returned to the packhouse for re-working (Fisher, 2011). This process ensures 

that fruit quality is controlled at the time of export and that fruit arrives at the 

destination in suitable condition. However, this process involves intensive labour cost 

and results in direct fruit loss, hence it contribute to a significant portion of the marginal 

changes in postharvest costs (Anonymous, 2015d). It is important that both fruit loss 

and repacking and condition checking costs are reduced.  

Segregation between grower line contributed to 30.7% reduction of soft fruit in 

the classified long-storing population (Section 7.3.3). Considering the 2015/16 season’s 

data where the total sales volume of ‘Hayward’ is 77.9 million trays (Anonymous, 

2016a) and one-third of the population are kept for late season sales with a sales price of 

~$5 per tray (Anonymous, 2016a; McBeth, 2016), a quick calculation of the potential 

benefit of segregation can be made. Assuming the percent fruit loss is 25.1% and 17.4% 

with and without segregation (Chapter 7), it would seem that a reduction of approx. 

NZD$10 million per annum in cumulative fruit loss at the end of the season could be 

achieved (Fig. 8.4). The proportion of repacking/condition check cost would also reduce 

from currently 12% of the postharvest quality cost ($1.20 per submit tray of exported 

kiwifruit; Anonymous, 2015a, c) to approx. 8.3% after segregation, assuming that the 

percent reduction in repacking cost is directly proportional to the reduction in soft fruit 

(30.7%). This would contribute to an additional cost reduction of NZD$1.2 million per 

annum (Fig. 8.4). 
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The total current repacking, condition check and fruit loss costs are estimated to 

be NZD$113 million without segregation. This number could have been a slight over-

estimation but was considered realistic given that the costs were $81.6 million during 

the 2007/08 season with a total sales volume of 95 million trays (Anonymous, 2008). 

The total cost reduction was NZD$11.2 million with segregation. Hence, approximately 

10% reduction in the total cost could be achieved. Note that this number only represents 

the expected reduction for ‘Hayward’ and does not account for any other commercial 

cultivars should a similar segregation system be developed and applied. However, this 

estimation also does not take into consideration the costs incurred with implementing 

the new segregation system.   

Figure 8.4 Annual costs of cumulative fruit loss and repacking/condition check cost 

with and without segregation. Values are calculated by assuming: a total sales 

volume of 77.9 million trays (Anonymous, 2016a); one-third of the population are 

kept for late season sales with a sales price of ~$5 per tray (Anonymous, 2016a; 

McBeth, 2016); approximately 25.1% original fruit loss in the later shipment fruit; 

the postharvest quality cost is $1.20 per submit tray of exported kiwifruit 

(Anonymous, 2015b, d); and that the percent reduction in repacking cost is 

directly proportional to the reduction of soft fruit. 
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2) The total sales volume of kiwifruit 

Increasing total kiwifruit sales volume may increase costs due to industry 

capacity constraints. For instance, condition checking, repacking and fruit loss costs 

increased from NZD $57.1 million to $81.6 million (43% increase), when sales volume 

increased by 17% from 81 million trays in 2004/05 season to 95 million trays in 

2007/08 (Anonymous, 2008). Although the total sales volume has been affected by the 

bacterial kiwifruit vine disease, Pseudomonas syringae pv actinidiae (Psa), since 

November 2010 (Anonymous, 2015d), the commercialisation of new Psa-resistant 

cultivars has stabilised the market and as a result, a recent report by Anonymous (2015c) 

suggests that the total volume will “continue to recover from the impact of Psa”. This is 

supported by the reported growing number of 117.1 million trays in 2015/16 

(Anonymous, 2016a) and a forecast of 129 million trays in 2016/17 (Rotherham, 2016). 

It is likely that the volume will further increase as the global market of New Zealand 

kiwifruit expands. 

As a result of increase values in production, there are increased risks and reward 

for managing fruit loss and associated labour costs. Implementation of appropriate 

segregation systems for not only ‘Hayward’ but also other commercial cultivars would 

enable separation of short-storing batches from the population facilitating sequential 

distribution. This would be useful in prioritising a proportion of the inventory for early 

shipment, which could alleviate the problem caused by industry capacity constraints. 

Additionally, increased volumes stimulate the need to store fruit longer in order to cater 

for higher supply to established markets. Hence a higher percent of fruit will need to be 

stored longer with larger volume, facilitating an increased value in identifying longer 

storing fruit. It is important that a well-designed segregation system is in place to 

facilitate sequential distribution. 

3) Constraints for implementation at existing packhouses 

Despite the potential cost reduction, additional cost associated with applying 

spectral sensors onto kiwifruit packing lines should be considered. Currently some 

packhouses use NIR sensors (Fig. 2.5b) installed on packing lines to sort fruit primarily 

based on dry matter content. This suggests that there will be costs associated with 

replacing or modifying current sensors, in order to match the instrumental parameters 
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required for the purpose of sorting fruit for future storability. The cost would depend on 

the number of NIR sensors installed and the monthly lease and installation fee (if any) 

charged by the provider (Tanner et al., 2012). As such the actual cost reduction would 

be less than that estimated in Fig. 8.4.  

In addition, the current segregation method requires model computation after 

NIR spectral measurements. Hence a proper design to overcome engineering constraint 

will be required. Potentially computation after initial measurements may slow down the 

speed of the packing line and would require trained personnel to conduct data analysis 

on-site, which would contribute to additional costs. In this case, an automated ranking 

programme can be developed in order to improve applicability of the model. 

8.5 Future Opportunities 

8.5.1 Time-variable classification (global model) 

 In this thesis the presented quantitative and qualitative models were developed at 

fixed points of storage. As a result validation can only be made at time points in 

accordance with those chosen in previous experiments. An alternative measure would 

be to develop a global model which incorporates time as an input variable. This 

potentially widens industrial applicability as prediction can be made at any time during 

coolstorage once a satisfactory global model has been developed. As a proof of concept, 

this section attempts to develop such a global model using LogitBoost decision stumps 

as described in Section 6.4. The objective is to compare the predictive performance of 

the global model to that of fixed-time models using the same multivariate data analysis 

technique.  

 An additional data set from the maturity trial conducted in 2013 was added to 

the calibration data set described in Chapter 6 (Table 6.1). This experiment is part of a 

larger trial that studied the effects of storage temperature switches on the storability of 

kiwifruit (Zhao, 2017). The fruit were sourced from three commercial grower lines 

located in the Bay of Plenty area of New Zealand. Fruit from each grower line were 

harvested at three seasonal periods at 2-week intervals commencing 30th April 2013. 

Fruit were cured for two days during transportation before initial NIR spectral 

measurements. At day 0 (3 May), a total of 1080 fruit (30 fruit per tray × 4 trays per GL 

× 3 GLs × 3 maturities) were measured by Vis-NIR spectroscopy. Fruit were then 
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cooled to 10 °C within 12 hours, followed by 1 week to 0 °C. Single trays from each 

grower line were measured for FF at each of 12, 16, 19 and 22 weeks after storage. The 

spectral data and firmness measurements were used in combination with the former four 

classification data sets (Table 6.1), adding four more time points (84, 112, 133 and 154 

days) to the existing ones (75, 100, 125 and 150 days). The same test data set (Section 

6.2.1) was used for external validation of the global model.  

 For calibration, the overall classification accuracy for soft and good fruit were 

35% and 92% respectively (data not shown), comparable to those obtained using fixed-

time models (17 – 54% and 79 – 97% respectively; Table 6.4). External validation 

results using the global model were significantly different (p ≤ 0.027) from those 

obtained using fixed-time models (Table 8.3). In general the global model showed more 

promising results. Prediction of soft group using the global model was significantly 

better at 75 and 100 days (p ≤ 0.001) but not as good at 150 days (p < 0.001), compared 

to fixed-time models developed using the same classifier. At 125 days the performance 

was comparable between the two types of models (p = 0.298) with the global model 

having slightly lower TP rate and higher TN rate (Table 8.3). Given this result, it is 

likely that a global model would provide more benefit by generating more consistent 

prediction outcomes while keeping a wider range of industrial applicability by 

combining data sets obtained from various time points. 

Storage time 

(day) 

Validation Accuracy (%) 

Variable-Time Fixed-Time 

 Soft Good Soft Good 

75 83 66 0 100 

100 50 99 0 100 

125 34 92 40 81 

150 40 86 79 70 

Table 8.3 Validation results of the global model and fixed-time models to predict 

kiwifruit storage potential based on at-harvest Vis-NIR spectra data using 

LogitBoost decision stumps. 
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8.5.2 Economic NIR sensors 

The consumer-scale NIR sensor, SCiO (Consumer Physics Inc., Tel Aviv, Israel) 

was introduced in Section 2.2.1.2. Beyond the cheap cost, the sensor has high 

portability enabling measurement anywhere and anytime, and provides the linkage of 

the data captured to cloud databases and analytics, meaning that rapid diagnostic 

information is able to be displayed on a regularly available cellular phone. Therefore, 

this section attempts to assess the performance of SCiO to provide estimation of fruit 

quality (quantitative) and segregation of fruit groups (qualitative). 

Preliminary studies were carried out under supervision during the current study. 

For spectra acquisition, three scans per fruit were taken from different positions around 

the equator with the illuminator pointing at the fruit skin. Calibration with a white 

reference was carried out after approximately every 10 fruit. All spectral measurements 

were collected with an attached light shield to ensure adequate light seal from 

background noises. All data analysis was conducted using the SCiOLab online interface, 

in which limited selections of data pre-processing techniques were applied. 

The first experiment consisted of 435 apple fruit from eight commercial 

cultivars (‘Braeburn’, ‘Eve’, ‘Granny Smith’, ‘Lemonade’, ‘Mahana Red’, ‘Red 

Delicious’, ‘Rose’, ‘Royal Gala’) and 405 kiwifruit from two commercial cultivars 

‘Hayward’ and ‘SunGold’, both sourced from local supermarkets in January, 2016 

(Medicott, unpublished work). At the time of purchase fruit were considered to be at 

various maturity and ripeness stages. Fruit were scanned using the sensor followed by 

destructive measurements of quality (DMC, TSS and FF). Regression models were 

developed to provide instant estimation of the measured quality attributes. In addition, 

classification models were developed for cultivar identification as well as branding 

discrimination (‘Zespri’ or ‘Southern Green’) for kiwifruit. In general quantitative 

analysis for both apples and kiwifruit was not successful (R2 ≈ 0.15 – 0.53; SDR ≈ 1.2 – 

1.5; data not shown). Qualitative analysis of kiwifruit, on the other hand, obtained better 

results with 82% and 96% classification accuracy for each of the two brands, and 97% 

and 80% accuracy for each of the two cultivars. 

The second experiment included a total of 296 ‘Kakariki’ feijoa fruit collected 

from a commercial orchard (Shi, unpublished work). Five batches of fruit were 
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harvested using ‘touch-picking’ method from the Matamata-based Southern Belle 

Orchard and at different stages of ripeness. Batches 1, 2 and 3 of feijoa were harvested 

on 30 March, 4 and 13 April, 2016 respectively, and were assessed two days after each 

harvest time. Batches 4 and 5 were harvested at the same date as batch 3 but were stored 

in the Massey postharvest laboratory at 20  and then assessed after 1 and 2 weeks of 

storages respectively to represent different ripening stages. Spectral data collection was 

carried out using the sensor, followed by fruit quality attributes measured both non-

destructively (FF, skin hue°) and destructively (TSS, titratable acidity, internal flesh 

colour). The data were then used to develop regression models for estimation of quality 

attributes and a classification model to segregate feijoa by maturity. The sensor 

quantitatively predicted quality of feijoa with moderate accuracy (R2 ≈ 0.44 – 0.68; 

SDR ≈ 1.3 – 1.6; data not shown). The best quality prediction was obtained from TSS 

model (R2 = 0.60; RMSE = 1.1 °Brix). The classification model accurately predicted 

maturity of 44%, 84% and 66% of the unripe, ripe and overripe fruit, respectively. This 

accuracy was improved to 98%, 91% and 99% respectively when neighbouring groups 

were included (Table 8.4).  

 Actual class 

Predicted Unripe Ripe Overripe 

Unripe 44% 7% 0% 

Ripe 54% 84% 33% 

Overripe 1% 7% 66% 

The last experiment consisted of spectral data captured from a total of 2055 

kiwifruit from 21 coded commercial cultivars available in NZ and China including 8 

green (G), 6 red (R) and 6 yellow varieties (Y), and an additional A. eriantha (E) 

cultivar (Jeffery, unpublished work). Fruit were scanned at various ripening stages in a 

sensory lab facility located in Shanghai, China. Quality attributes (TSS, FF and skin 

hue°) of 574 fruit from the same population were also measured. Regression models 

were developed to predict fruit quality. Again, quantitative analysis was not successful 

(R2 ≈ 0.38 – 0.40; SDR ≈ 1.3; data not shown). A global classification model that 

Table 8.4 Prediction accuracy for classification models developed based on NIR 

spectra collected using SCiO (Consumer Physics Inc., Tel Aviv, Israel) for 

categorising feijoa (cv. ‘Kakariki) maturity (n = 296). 
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included all of the 21 cultivars was developed to identify cultivar differences, whilst 

three additional models using only the green, red and yellow cultivars respectively were 

created. The models were then tested for robustness using 52 additional fruit from 17 

cultivars. In calibration, the classification model showed good overall predictive 

accuracy (≈ 70 – 80%; Table 8.5). In model validation, good repeatability and 

robustness of the developed classification models were found, with 69.6% of the tested 

fruit accurately classified using the Global cultivar model, whilst 78.3%, 60.0% and 

78.6% of tested fruit from green, red and yellow cultivars correctly identified using the 

Green, Red and Yellow models respectively (Table 8.5). 

 n Cultivars Model used 
 Global Green Red  Yellow 
Calibration 105 G1 75% 81% 

30 G2 43% 78% 
55 G3 44% 69% 
72 G4 85% 81% 
71 G5 61% 58% 
94 G6 89% 88% 
68 G7 63% 74% 
25 G8 34% 50% 
160 R1 78% 79% 
236 R2 86% 81% 
263 R3 74% 75% 
75 R4 51% 35% 
130 R5 29% 30% 
99 R6 65% 65% 
145 Y1 40% 62% 
116 Y2 55% 72% 
45 Y3 58% 78% 
75 Y4 81% 87% 
80 Y5 62% 77% 
75 Y6 93% 93% 
36 E1 57% 

Validation 52  69.6% 78.3% 60.0% 78.6% 

Table 8.5 Calibration model for segregation of commercial kiwifruit cultivars (n = 

2055) using SCiO™ sensor (Consumer Physics Inc., Tel Aviv, Israel). Green, red, 

yellow and blue represent green, red, yellow and A. eriantha kiwifruit cultivars 

respectively. 
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Preliminary results suggest that predictive performance of SCiO using the 

SCiOLab online software was in agreement with the present study. Qualitative 

classification generated more promising results compared to quantitative estimation 

which showed no or marginal success. Although the experiments were carried out to 

perform instant prediction rather than future forecasting, the capability of this sensor to 

segregate fruit based on cultivar or maturity stages further demonstrated the potential 

for NIR spectroscopy to be used as a grading/sorting tool rather than a means for 

quantitative estimation. A rapid and economic NIR sensor such as SCiO molecular 

sensor would reduce the time and cost spent on construction of calibration model from 

large data sets, hence enabling wider industrial applicability of this technique. 

Development of models which are designed to categorise fruit by ripeness to assist with 

consumer purchase decisions, or ones that detects fruit origin for authentication 

purposes may have significant commercial implications. 

8.5.3 Other kiwifruit cultivars 

 By far most studies on NIR spectroscopy focus on ‘Hayward’ and the original 

gold cultivar, ‘Hort16A’. New cultivars have since been developed and introduced to 

the market. While ‘Hayward’ continues to have high export volume, the production and 

export volumes of ‘Hort16A’ are now almost nil since the outbreak of Psa in 2010. The 

Psa-resistant cultivar ‘Gold3’ (Zespri® SunGold) was then widely planted in 

replacement of most of the ‘Hort16A’ vines that have been destroyed by the disease 

(Anonymous, 2016c). This new variety is found to store well and have higher yield and 

better market acceptability than ‘Hort16A’ (Fox, 2015). As a result, sale volumes of 

‘SunGold’ continue to grow and are expected to be doubled by 2019/20 (Anonymous, 

2016b). Attempts have been made to utilise existing NIR sensors to sort ‘SunGold’ 

based on DMC (McGlone and Wohlers, 2016). There would be a need to establish 

storage performance studies as well and re-evaluate the potential of NIR to predict 

storability of this new variety. 

In addition, pre-commercial trials of the new green cultivar ‘G11’ (working title 

‘Zespri® New Green’) showed that this variety has the potential of longer storability 

than ‘Hayward’ (Knowles, 2016). Therefore it would be useful to study the spectral 

characteristics of this new cultivar in order to obtain better understanding of how skin 

properties can be used to indicate storability.  
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8.5.4 Other non-destructive methods  

When the fruit is illuminated by light, a small amount of the light is reflected at 

the fruit surface by specular reflection depending on the surface properties, and the 

remaining light penetrates into the fruit where multiple scattering occurs as a result of 

the change in refractive indices at the interfaces of cellular structures. Some of the 

scattered light will be absorbed by the chemical bonds found in the tissue, whereas 

some will scatter back and exit the fruit within 90° of a line normal to the fruit surface, 

in the form of diffuse reflectance (Williams and Norris, 2001; Lu, 2004; Lu and Peng, 

2006). While absorption is determined by the chemical properties of the tissue 

underneath the surface (e.g. sugar, acid and water), scattering is influenced by the 

physical or textural properties of the tissue in terms of cellular structures, densities and 

small interfaces (Nicolaï et al., 2007a). In the current study the NIR sensor measures 

reflectance which contains information for both absorption and scattering. Given that 

NIR spectroscopy often performs better in predicting chemical properties of a sample 

(as observed in Chapter 5), it is possible that devices that explicitly quantify light 

scattering separately from absorption may have potentials to provide more useful insight 

for the assessment of fruit properties relating to texture such as firmness.  

McGlone et al. (1997) assessed the use of an NIR light scattering device to 

estimate kiwifruit firmness quantitatively. Although moderate success was obtained (R2 

~ 0.7) the proposed technique required complex setup procedures and hence was 

unsuitable for online grading purposes. Similarly, multispectral imaging techniques 

which enable quantification of backscattered light at a few spectral bands have been 

used for quantitative prediction of FF in apples (Lu, 2004; Qing et al., 2007; Sun et al., 

2015). However, the technique used is too slow to be adapted at online grading speeds. 

Development of a high speed multispectral imaging system such as one conceptulised in 

Rowe (2015) with improved accuracy may have the potential to provide on-line 

prediction of instant and after-storage FF values of kiwifruit. 

Previous attempts also used time resolved reflectance spectroscopy which 

measures light absorption and scattering coefficients based on time of flight distribution 

of photons (Nicolaï et al., 2007a). In this technique more well-defined, fundamental 

optical properties of the fruit surface can be obtained and as such, the models are no 

longer black-box (Zerbini, 2006). The scattering coefficient was found to be related to 
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pectin composition and textural properties of apples (Vanoli et al., 2010). What is 

interesting about this technique is the potential to perform qualitative prediction related 

to macroscopic textural properties given the promising results reported in segregation of 

textural profiles of kiwifruit (Baranyai and Zude, 2009) and peaches (Attanasio et al., 

2015).    

The hyperspectral imaging technique can provide spatial and spectral 

information at contiguous wavelengths over a wide spectral range. It has been applied to 

provide spatial light scattering images for the prediction of FF of peaches (Lu and Peng, 

2006) and apples (Mendoza et al., 2011). The latter also proposed a prototype online 

system which achieved a scanning speed of 2 seconds per fruit. For industrial purposes 

a much higher speed would be required. Additionally, the above applications were 

designed for instant estimation of FF. More studies should look at the ability of this 

technique to predict future FF values.  

Alternatively there are other optical techniques that provide information on 

surface properties of a sample which may reveal some useful information about textural 

profiles of the same sample. One of such examples is the fringe projection which 

generates 3D skin map and supports quantification of surface properties such as surface 

roughness (Gorthi and Rastogi, 2010; East et al., 2016). On-going studies investigate 

the skin topography characteristics and surface changes during development of 

‘SunGold’ (‘G3’) kiwifruit and their relationship with post-storage fruit quality (Lai, 

unpublished work). In addition, biospeckle laser techniques, which detect biological and 

physical activity of the surface of the sample over time, have shown potential in 

predicting quality attributes (Zdunek and Cybulska, 2011) and classifying mealiness 

(Arefi et al., 2016) of apples. 

Other non-destructive methods for firmness measurements should also be 

considered. For instance, impact and acoustic firmness (AwetaTM Impact & Acoustic 

Firmness System, Nootdorp, The Netherlands), compression force (TA-XT2i, Stable 

Micro Systems Ltd., UK) and Kiwifirm (a prototype device developed by Plant & Food 

Research, New Zealand in conjunction with T.R, Turoni, Italy) were found to have good 

overall relationships in line with penetrometer measurements (Li et al., 2016). 

Alternatively, the use of multiple non-destructive sensors (‘sensor fusion’) was found to 

provide better predictions and lower errors for measuring FF in apples (Mendoza et al., 
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2012) and peaches (Vursavus et al., 2015) and hence should also be considered for 

kiwifruit. Non-destructive methods may allow an integration of FF and NIR spectral 

measurements and potentially improve sorting speed and reduce labour cost. 

In addition, Guay-Lord et al. (2016) proposed a system for clinical purposes 

which combined OCT and NIR hyperspectral imaging technique using an optical fibre 

coupler. This integration enabled the acquisition of sub-surface cellular structures of the 

sample using OCT, complemented with chemical properties of the measured region 

obtained using HSI. There is potential for such a system to be adapted to the 

horticultural industry, for the understanding, estimation and prediction of the internal 

quality of crops. The information captured by OCT images, NIR spectra and spatial 

images would provide better pictures of the physiological characteristics of the sample 

studied and hence may potentially contribute to new and better industrial solutions. 

8.6 Thesis Conclusion 

The use of OCT as a non-destructive tool to assess internal quality attributes is 

still in its early development stages. It has potential as a rapid technique to visualise and 

characterise near surface cellular structures of large parenchyma cells but is also limited 

by penetration depth. The information captured by the OCT images can be analysed 

quantitatively using the developed imaging processing protocol. Identification and 

characterisation of large cells between five commercial cultivars were achieved. Pre-

harvest treatment effects on cellular structures within ‘Hayward’ cultivar were not 

observed, except that low crop load increased maximum cell length possibly due to 

more vigorous cell expansion during fruit growth. This technique may be used as a 

screening tool for plant breeding or provide information on postharvest physiological 

changes over time. Improved resolution may be required in order to widen its 

applicability. 

The post-storage quality attributes of individual ‘Hayward’ kiwifruit can be 

predicted with marginal success by collecting at-harvest Vis-NIR spectral reflectance 

and generating blackbox regression models. Overall, the prediction of TSS was superior 

compared to that of FF. The predictive accuracy of post-storage TSS (R2 = 0.68 – 0.83; 

RMSE = 0.66 – 0.86 °Brix; SDR = 1.6 – 2.3) was comparable to previous findings, 

indicating approximate quantitation was possible. The prediction of post-storage FF was 
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poor (R2 = 0.38 – 0.60; RMSE = 3.53 – 4.12 N; SDR = 1.5 – 1.7) but in agreement with 

previous research on other crops, suggesting poor correlation between at-harvest 

spectral and post-storage firmness retention properties of kiwifruit. Industrial 

application of the regression models for TSS would require further reduction of 

sampling errors and an improvement of variability within the population. 

The storage potential of individual fruit can be predicted based on its likelihood 

to become unacceptable for export (FF < 1 kgf or 9.8 N) after coolstorage. At-harvest 

Vis-NIR spectral data and the post-storage FF collected at various time points were 

required in order to develop blackbox classification models. Using machine learning 

techniques the models segregated the population into two groups: good (FF ≥ 1 kgf) and 

soft (FF < 1 kgf). Using LogitBoost decision stumps, the true positive and false negative 

rates for internal cross validation were 54% and 21% respectively for the prediction of 

storage outcome at 125 days after coolstorage. The classification model enabled ranking 

and segregation of individual fruit according to their predicted probability belonging to 

the soft class. In external validation, segregation using the developed classification 

model prior to storage resulted in significantly different post-storage FF means amongst 

the segregated trays, with lowest FF found in trays with fruit having highest probability 

for the soft group. This would contribute to a reduction of soft fruit from 25.1% in the 

original population to 21.2% if the predicted soft group is sold early in the season, 

suggesting marginal commercial benefit should this model be applied. 

The storage potential of grower lines could also be predicted by ranking these 

lines based on the predicted proportion of soft fruit using the same classification model. 

Based on this ranking grower lines were divided into three groups: short-, medium- and 

long-storing (≥ 30% soft fruit) lines. In external validation, 44% of the lines were 

accurately classified. The proportion of soft fruit reduced from 25.1% (without 

segregation) to 17.4% should the segregated short and medium storing lines be shipped 

earlier in the season, keeping the predicted long storing lines for later sales. Segregation 

of storability between grower lines showed more promising results compared to 

segregation of individual fruit. Potentially this could bring meaningful financial benefit 

to the industry (approx. $11.2M/annum saved) by enabling sequential marketing and 

subsequently reducing fruit loss and repacking cost and improving total profitability. 

However, technical capabilities are required within the industry to ensure proper 
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operation of the equipment and model. Additionally, the cost incurred to implement 

such a system online should not be overlooked.  

Future studies should consider incorporating storage time as an input variable 

for the model because of promising preliminary results. The knowledge obtained in this 

thesis can be transferable to other fast-growing new kiwifruit varieties and serve as a 

reference for future storage related work on these cultivars. Additionally, the 

quantitative and qualitative models developed in this thesis can be used as guidelines for 

future model development using rapid and cost-effective small-scale NIR sensors. This 

would enable a wider range of industrial and consumer applications. 
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