Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

LIPID BIOSYNTHESIS IN ISOLATED

BARLEY PROTOPLASTS

54

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOCHEMISTRY AT MASSEY UNIVERSITY

.

LOUISE CYNTHIA BELL

1983

ABSTRACT

In most studies of fatty acid and lipid synthesis in plants there has been poor incorporation of radioactive label from acetate into linoleic (18:2) and linolenic (18:3) acids. Consequently the amounts of these fatty acids found in the galactolipids in such studies are much less than their observed endogenous levels.

In the present study incorporation of $H^{14}CO_3^{-1}$ and $(1^{-14}C)$ acetate into lipids of barley protoplasts was examined. CO2 -dependent O2 evolution rates of the protoplasts were around 180 µmol 02/h/mg Chl and intactness was also ascertained by phase contrast microscopy. Incubating protoplasts with 1mM $H^{14}CO_3^-$ or 50 μ M (1-¹⁴C) acetate resulted in 146.2 and 17 nmol/mg Chl being incorporated into lipids respectively after 1 hour. A concentration of 10 mM was optimal for HCO3 incorporation and up to 580 nmol/mg Chl was incorporated into lipids at the end of 1 hour. Mq⁺⁺ and P_i ions used at 2 mM had little effect on HCO_3^{-1} incorporation while PP, appeared to be slightly inhibitory. Acetate assimilation and its incorporation into lipids was markedly affected by pH and pH 5.8 was chosen for the assay medium. In 20 hour incubations 162 nmol acetate/mg Chl was incorporated. About 33% of label from acetate was found in each of palmitic (16:0) and oleic (18:1) acids with less than 9% in each of stearic (18:0), linoleic and There was little or no incorporation linolenic acids. of acetate into DGDG and less than 10% into each of PG, MGDG, PE and U (unknown lipid). Incorporation into PC after 2¹/₂ hours was 36.8% then decreased to 8.9%. Acetate incorporation was most significant into U_{SF} (another unknown lipid), being 73.4%. Although acetate was incorporated into a range of glycerolipids, incorporation into constituent 18:2 and 18:3 of these lipids was not significant.

ACKNOWLEDGEMENTS

I am especially grateful to my supervisor Dr J.C. Hawke for his guidance and encouragement during this study.

Thanks are due to Dr I. Warrington of the Plant Physiology Dept of the DSIR for the use of the climate control rooms for the growing of the maize and barley plants.

I wish to thank Mr J. Reid very much for the preparation of the figures in this thesis.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	iii
LIST OF ABBREVIATIONS	viii
LIST OF FIGURES	ix
LIST OF TABLES	xii

CHAPTER	1	INTRODUCTION	1
	1.1	General Introduction	1
	1.2	Biosynthesis of Saturated Fatty	
		Acids	6
	1.2.1	Initial Steps	6
	1.2.2	Formation of Palmitate and Stearate	9
	1.3	Biosynthesis of Unsaturated Fatty	
		Acids	. 9
	1.3.1	Biosyntheses of Oleic Acid	9
	1.3.2	Biosynthesis of Linoleic and	
		Linolenic Acids	10
	1.4	Substrates of Oleate and Linoleate	
		Desaturation	11
	1.5	Galactolipid Synthesis	16
CHAPTER	2	MATERIALS	22
	2.1	Plant Materials	22
	2.2	Reagents	22
		14	
CHAPTER	3	METHODS	23
	3.1	Preparation of Mesophyll Protoplasts	23
	3.2	Determination of Intactness of	
		Protoplasts	24
	3.2.1	Phase Contrast Microscopy	24
	3.2.2	Oxygen Evolution	24
	3.3	Incubation of Protoplasts with	
		⁴ C-Bicarbonate	24

	3.4	Incubation of Protoplasts with (1- ¹⁴ C) Acetate	25
	3.5	Incubation Conditions	26
	3.6	Separation of Lipids by Thin-Layer	
		Chromatography	26
	3.7	Preparation of Methyl Esters of	
		Fatty Acids	28
	3.8	Gas-Liquid Chromatography of Methyl	
		Esters of Fatty Acids	29
	3.9	Determination of Radioactivity	30
	3.10	Chlorophyll Determination	30
CHAPTER	4	RESULTS	31
	4.1	Comparison of Yield of Protoplasts	
		using (i) Cut and (ii) Abraded	31
		Maize Leaves	
	4.2	Quality of Protoplasts obtained from	
		Barley Leaves	32
	4.3	Measurement of Intactness of Proto-	÷
		plasts isolated from Barley	32
	4.3.1	Phase Contrast Microscopy	32
	4.3.2	Oxygen Evolution	34
	4.4	Utilisation of $H^{14}CO_3^{-1}$ and $(1^{-14}C)$	
		Acetate by Barley Protoplasts for	
		Lipid Synthesis	35
	4.4.1	Rate of Total H ¹⁴ CO ₃ Assimilation	
		by Barley Protoplasts	35
	4.4.2	Rate of H ¹⁴ CO ₃ Incorporation into	
		Total Lipids of Barley Protoplasts	35
	4.4.3	Rate of (1- ¹⁴ C) Acetate Incorporation	
		into Total Lipids of Barley Proto-	
		plasts	38
	4.5	Variations of Reaction Conditions	
		for the Incorporation of H ⁺⁴ CO ₃	
		into Lipids of Barley Protoplasts	38

÷

v

ł

4.5.1	Effect of HCO3 Concentration on H ¹⁴ CO2 Incorporation into Lipids of	
	Barley Protoplasts	38
4.5.2	Effect of PP, Concentration on	
	H ¹⁴ CO ₃ Incorporation into Lipids of	
	Barley Protoplasts	41
4.5.3	Effect of P _i Concentration on H ¹⁴ CO ₃	5.4
	Incorporation into Lipids of Barley	
	Protoplasts	41
4.5.4	Effect of Mg ⁺⁺ Concentration on	
	H ¹⁴ CO ₃ Incorporation into Lipids of	
	Barley Protoplasts	43
4.5.5	Effect of pH on H ¹⁴ CO ₃ Incorporat-	
	ion into Lipids of Barley Proto-	
	plasts	43
4.5.6	Effect of Time on H ¹⁴ CO ₃ Incorp-	
	oration into Lipids of Barley Proto-	
	plasts	43
4.5.7	Effect of Acetate on the Incorp-	
	oration of $H^{14}CO_3^{-1}$ into Lipids	
	of Barley Protoplasts	47
4.6	Incorporation of (1- ¹⁴ C) Acetate	
	into Lipids by Barley Protoplasts	47
4.6.1	Influence of pH on the Assimilation	
	of (1- ¹⁴ C) Acetate by Barley Proto-	
	plasts	47
4.6.2	(1- ¹⁴ C) Acetate Incorporation into	
	Lipids of Barley Protoplasts over a	
	pH Range	54
4.6.3	Rate of (1- ¹⁴ C) Acetate Incorporat-	
	ion into Lipids of Barley Proto-	
	plasts	54
4.6.4	Rate of (1- ¹⁴ C) Acetate Incorporat-	
	ion into Constituent Fatty Acids of	
	Total Lipids	57

vi

4.6.5	Rate of (1- °C) Acetate Incorp-	
	oration into Constituent Fatty	
	Acids of PC, DGDG plus PG, PE,	
	MGDG, U and U _{SF}	60
4.6.6	Attempt to determine the Identity of	
	Unknown Compounds U and U _{SF}	63
5	DISCUSSION	77
5.1	Protoplast Preparation	77
5.2	Intactness of Protoplasts and	
	Chloroplasts Isolated from Other	
	Tissue	78
5.3	Factors Affecting Incorporation of	
	Substrate into Lipids	79
5.4	Incorporation of Substrate into	
	Polyunsaturated Fatty Acids and	
	Lipids of Plants	80
	4.6.5 4.6.6 5 5.1 5.2 5.3 5.4	 4.6.5 Rate of (1- ¹C) Acetate Incorportion into Constituent Fatty Acids of PC, DGDG plus PG, PE, MGDG, U and U_{SF} 4.6.6 Attempt to determine the Identity of Unknown Compounds U and U_{SF} 5 DISCUSSION 5.1 Protoplast Preparation 5.2 Intactness of Protoplasts and Chloroplasts Isolated from Other Tissue 5.3 Factors Affecting Incorporation of Substrate into Lipids 5.4 Incorporation of Substrate into Polyunsaturated Fatty Acids and Lipids of Plants

14

BIBLIOGRAPHY

83

vii

LIST OF ABBREVIATIONS

ACP	acyl-carrier protein
ATP	adenosine 5'-triphosphate
BSA	bovine serum albumin
Chl	chlorophyll
CoA	coenzyme A
DAG (or DG)	diacylglycerol (or diglyceride)
DGDG (or DDG)	digalactosyldiacylglycerol (or digalacto-
	syldiglyceride)
EDTA	ethylenediamine tetraacetic acid
FA	fatty acid
FFA	free fatty acid
fr. wt	fresh weight
g.l.c.	gas-liquid chromatography
HEPES	N-2-hydroxyethylpiperazine-N'-2-ethane
2	sulphonic acid
MES	2[N-morpholino] ethane sulphonic acid
MG	monoacylglycerol (or monoglyceride)
MGDG (or DGD)	monogalactosyldiacylglycerol (or monogalacto-
	syldiglyceride)
NADH	nicotinamide adenine dinucleotide, reduced
	form
NADPH	nicotinamide adenine dinucleotide phosphate,
	reduced form
PA	phoshatidic acid
PC	phosphatidylcholine
PE	phosphatidylethanolamine
PEP	phosphoenolpyruvate
PG	phosphatidyglycerol
PGA	phosphoglycerate
PI	phosphatidylinositol
POPOP	1,4-bis[2(5-phenyloxazolyl)] benzene
PPi	pyrophosphate
PPO	2,5-diphenyloxazole
TG	triacylglycerol (or triglyceride)
TLC	thin-layer chromatography
U, U _{SF} UDP -gal	unknown compounds (see Section 3.6) uridine 5'-diphosphate <u>D</u> -galactose

ï

LIST OF FIGURES

Figure	Н	Page
1–1	The structure of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)	2
1-2	Structure of the major molecular species of galactolipids (MGDG and DGDG) found in 18:3 and 16:3 plants	4
1-3	Douce and Joyard (1980) model of galacto- lipid synthesis in the chloroplast	19
1 – 4	Roughan and Slack (1982) model of galacto- lipid synthesis in the leaf cell	21
3-1	Thin-layer chromatogram and scan of sample developed in $CHCl_3$: MeOH : acetic acid : H_2O (85:15:10:3.5, v/v)	27
4-1	A representative field from a preparation of barley protoplasts	33
4-2	The rate of total H ¹⁴ CO ₃ assimilation by barley protoplasts	36
4-3	The rate of H ¹⁴ CO ₃ ⁻ incorporation into the total lipids of barley protoplasts	37
4-4	The rate of (1- ¹⁴ C) acetate incorporation into total lipids of barley protoplasts	39
4-5	The effect of HCO_3^- concentration on the incorporation of H^{14} CO_3^- into lipids of barley protoplasts	40

- 4-6 The effect of PP_i concentration on the incorporation of H¹⁴CO₃ into lipids of barley protoplasts 40
- 4-7 The effect of P, concentration on the incorporation of H^{14ⁱ}CO₃ into lipids of barley protoplasts
- 4-8 The effect of Mg⁺⁺ concentration on the incorporation of H¹⁴CO₃⁻ into lipids of barley protoplasts 44
- 4-9 The effect of pH on H¹⁴ CO₃⁻ incorporation into lipids of barley protoplasts 45
- 4-10 The effect of time on H¹⁴CO₃⁻ incorporation into lipids of barley protoplasts 46
- 4-11 The effect of acetate concentration on H¹⁴CO₃ incorporation into lipids by barley protoplasts 48
- 4-12 The effect of pH on (1-¹⁴C) acetate assimilation by barley protoplasts 51

4-13 The effect of pH on (1-¹⁴C) acetate assimilation by barley protoplasts 53

- 4-14 The effect of pH on (1-¹⁴C) acetate incorporation into the lipids of barley protoplasts 55
- 4-15 The rate of (1-¹⁴ C) acetate incorporation into the lipids of barley protoplasts 56
- 4-16 The rate of (1-¹⁴ C) acetate incorporation into the lipids of barley protoplasts 58

X

42

4-17 The rates of (1-¹⁴ C) acetate incorporation into the constituent fatty acids of total lipids 59

- 4-18 The rate of (1-¹⁴ C) acetate incorporation into the lipids of barley protoplasts 62
- 4-19 Rates of (1-¹⁴ C) acetate incorporation into the fatty acids of lipids 64
- 4-20 Rates of (1-¹⁴ C) acetate incorporation into the fatty acids of unidentified lipids 65
- 4-21 Autoradiograms of TLC of total lipid developed in CHCl₃ : MeOH : CH₃COOH : H₂O (85:15:10:3.5, v/v)
- 4-22 Autoradiograms of TLC of total lipid developed in toluene : ethyl acetate : 95% ethanol (2:1:1, v/v) 69
- 4-23 Radioactive scan of chromatogram of U in toluene : ethyl acetate : 95% ethanol (2:1:1, v/v) 72
- 4-24 Radioactive scan of U_{SF} in hexane : diethyl ether : acetic acid (70:30:1, v/v) 74
- 4-25 A typical scan of a chromatogram obtained from development of methylated U or U_{SF} in hexane : diethyl ether (9:1, v/v) 76

Page

67

LIST OF TABLES

		Dece
Table		Page
1	The effect of pH on $(1-^{14}C)$ acetate assimilat- ion by barley protoplasts	50
2	The effect of pH on (1- ¹⁴ C) acetate assimilat- ion by barley protoplasts	52
3	(1- ¹⁴ C) acetate incorporation into the constituent fatty acids of total lipids	57
4	Incorporation of $(1-^{14}C)$ acetate into lipids and fatty acids by barley protoplasts	61
5	Distribution of label in bands obtained from chromatogram of U in toluene : ethyl acetate : 95% ethanol (2:1:1, v/v)	71
6	Distribution of label in bands obtained from chromatogram of $U_{\rm SF}$ in hexane : diethyl ether : acetic acid (70:30:1, v/v)	75
7	Distribution of label in bands obtained from chromatograms of methylated U in hexane : diethyl ether (9:1, v/v)	75
8	Distribution of label in bands obtained from chromatograms of methylated $U_{\rm SF}$ in hexane : diethyl ether (9:1, v/v)	75

xii.