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Abstract 

Quality inventory information is essential for optimal resource utilisation in the forestry 

industry. In-field tree imaging is a method which has been proposed to improve the 

preharvest inventory assessment of standing trees . It involves the application of digital 

imaging technology to this task. The method described generates a three dimensional 

model of each tree through the capture of two orthogonal images from ground level. 

The images are captured and analysed using the "TreeScan" in-field tree imaging 

system. This thesis describes the design, development, and evaluation of the TreeScan 

system. The thesi s can also be used as a technical reference for the system and as such 

contains appropriate technical and design detail. 

The TreeScan system consists of a portable computer, a custom designed high 

resolution scanner with integral microcontroller, a calibration rod, and custom designed 

processing software. Images of trees are captured using the scanner which contains a 

CCD line scan camera and a precision scanning mechanism. Captured images are 

analysed on the portable computer using customised image processing software to 

estimate real world tree dimensions and shape. 

The TreeScan system provides quantitative estimates of five tree parameters ; height, 

sweep, stem diameter, branch diameter, and feature separation such as intemodal 

distance. In addition to these estimates a three dimensional model is generated which 

can be further processed to determine the optimal stem breakdown into logs. 



v 

Table of Contents 

Abstract -------------------------------------------------------------------------------------------- iii 

Table of Contents -------------------------------------------------------------------------------- v 

List of Figures ------------------------------------------------------------------------------------ viii 

List of Tables ------------------------------------------------------------------------------------- xi 

Publications --------------------------------------------------------------------------------------- xi 

Aclmowledgements ------------------------------------------------------------------------------ xiii 

Glossary ------------------------------------------------------------------------------------------- xvii 

CHAPTER 1 - INTRODUCTION AND BACKGROUND -------------------------------- 1 
1 . 1 Scope of Research ---------------------------------------------------------------- 2 
1. 2 Thesis Overview ------------------------------------------------------------------ 2 
1.3 Forest Industry Background ---------------------------------------------------- 4 

1. 3. 1 Introduction ------------------------------------------------------------ 4 
1. 3. 2 Forestry and Sawmilling --------------------------------------------- 5 
1. 3. 3 Forest Operations ----------------------------------------------------- 5 
1 . 3 .4 Inventory Assessment ------------------------------------------------ 6 

1.4 Preharvest Inventory Assessment ---------------------------------------------- 7 
1.4.1 MARYL Inventory Assessment ------------------------------------- 8 
1.4.2 Weaknesses of the MARYL System -------------------------------- 9 
1 .4. 3 Possible Improvements ---------------------------------------------- 11 

CHAPTER 2 - IMPROVED FOREST ST AND ASSESSMENT 

DESIGN PROPOSAL -------------------------------- 13 
2.1 In-field Tree Imaging to Improve Stand Assessment -------------------------- 14 

2.1 .1 Previous Research on Standing Tree Imaging --------------------- 15 
2. 2 General Technology Options ---------------------------------------------------- 16 

2.2 .1 Massey University Feasibility Study ------------------------------- 16 
2. 2. 2 Alternative Approach ------------------------------------------------- 18 

2. 3 Design Constraints --------------------------------------------------------------- 21 
2.3 . 1 Constraints Imposed by Forest Conditions ------------------------ 21 
2.3 .2 Constraints Imposed by Technology Limitations ----------------- 22 

2. 4 Proposed System ---------------------------------------------------------------- 24 
2.4 . l Improved Assessment Outline --------------------------------------- 24 
2.4.2 Proposed Image Capture System overview ------------------------ 24 

2. 5 Design specification -------------------------------------------------------------- 26 

CHAPTER 3 - TREESCAN DESIGN CONSIDERATIONS 

AND THEORETICAL FOUNDATIONS ---------- 27 
3. 1 Design Overview ----------------------------------------------------------------- 28 

3 .1. 1 Systems Integration Project ------------------------------------------ 29 
3.2 TreeScan Operating Principle --------------------------------------------------- 31 

3. 2. 1 TreeScan Estimates --------------------------------------------------- 3 3 
3 . 3 Image Capture --------------------------------------------------------------------- 3 5 

3. 3. 1 Digital Image Capture ------------------------------------------------ 35 
3.3 .2 Primary Imaging Considerations ------------------------------------ 37 



VI 

3.3.3 Area Sensor vs. Line Scan Build-up ------------------------------- 38 
3. 3 . 4 Optical Considerations ---------------------------------------------- 41 
3. 3. 5 Image Focus ----------------------------------------------------------- 45 

3. 4 Image Transfer and Storage ----------------------------------------------------- 46 
3 .4. 1 Scanner Interface ---------------------------------------------------- 46 
3. 4. 2 Image Storage --------------------------------------------------------- 4 7 

3 .5 Parameter Extraction ------------------------------------------------------------- 48 
3. 5. 1 Image Calibration ---------------------------------------------------- 49 
3.5.2 Planar Transformation Distortion Correction --------------------- 51 
3.5 .3 Geometric Distortion Correction ----------------------------------- 53 

3. 6 Three Dimensional Model Construction ------------------------------------- 57 
3. 7 Implications of Image Capture Geometry ------------------------------------- 58 

3. 7 .1 Tree Plane Variation -------------------------------------------------- 61 
3. 7. 2 Calibration Alignment Variation ------------------------------------ 62 
3.7 .3 Image Processing and Feature Marking Precision ---------------- 64 

CHAPTER 4 - TREESCAN HARDWARE -------------------------------------------------- 67 
4.1 TreeScan Hardware Overview -------------------------------------------------- 68 
4. 2 Scanner Hardware Overview --------------------------------------------------- 70 

4 .2. 1 Scanner Controller Board -------------------------------------------- 74 
4. 3 Microcontroller Subsystem ------------------------------------------------------ 7 5 

4 .3.1 Microcontroller Subsystem Memory Organisation --------------- 77 
4.3.2 Microcontroller Subsystem Memory Timing ---------------------- 78 

4 .4 SCSI Subsystem ----------------------------------------------------------------- 80 
4.4. l Implementing SCSI : Design Specifications ----------------------- 82 
4.4.2 SCSI Bus Controller ( SN75C091A ) ----------------------------- 85 
4.4.3 SCSI Subsystem Development Obstacles ------------------------- 86 

4 . 5 Line Scan Camera Subsystem -------------------------------------------------- 87 
4. 5. 1 Imaging Sensor Spectral Response --------------------------------- 90 
4.5.2 Line Scan Camera Subsystem Signal Timing --------------------- 90 

4. 6 Additional Hardware ------------------------------------------------------------- 92 
4 . 6 . I Scanning Mirror Subsystem ----------------------------------------- 92 
4. 6. 2 Lens Subsystem ------------------------------------------------------ 95 
4.6.3 Power Supply Subsystem ------------------------------------------- 98 
4. 6. 4 User Feedback -------------------------------------------------------- 101 
4 . 6. 5 Scanner Chassis ----------------------------------------------------- l 02 
4. 6 . 6 Carrying Cases -------------------------------------------------------- 103 

4. 7 Hardware Development Environment ------------------------------------------ 103 

CHAPTER 5 - TREES CAN SOFIW ARE --------------------------------------------------- 105 
5. 1 TreeScan Software Overview --------------------------------------------------- 106 
5 .2 Image Capture Software --------------------------------------------------------- 108 

5 . 2. 1 Overview ------------------------------------------------------------- 108 
5 .2.2 Image Build-up Algorithm ------------------------------------------- 111 
5.2.3 Image Block Capture Algorithm (Microcontroller) --------------- 114 
5 . 2 .4 SCSI Transfer Algorithm -------------------------------------------- 118 
5. 2. 5 Focus Algorithms ----------------------------------------------------- 126 
5. 2 . 6 TreeScan Plug-in Software ------------------------------------------ 129 
5 . 2. 7 Microcontroller Software -------------------------------------------- 131 

5 . 3 Tree parameter Extraction Software -------------------------------------------- 13 2 
5. 3. 1 Overview -------------------------------------------------------------- 132 
5. 3. 2 Image Calibration ---------------------------------------------------- 13 3 
5 .3.3 Feature Size Estimation in Two Dimensions ---------------------- 135 
5. 3 .4 Three Dimensional Stem Shape Estimation ---------------------- 137 



vii 

5. 3. 5 Possible Improvements to Parameter Extraction ------------------ 139 
5 .3. 6 TreeScan Macros ------------------------------------------------------ 140 
5. 3. 7 NIH Image Source Additions and Modifications ----------------- 141 

5. 4 Software Development Environment ------------------------------------------- 14 2 

CHAPTER 6 - TREESCAN EVALUATION ------------------------------------------------ 143 
6. 1 Overview of Evaluation ---------------------------------------------------------- 144 

6. 2 Sequence of Evaluation Experiments ------------------------------------------- 145 
6 . 3 Hardware Calibration ------------------------------------------------------------ 147 

6. 3. 1 Scanner Component Alignment ------------------------------------- 14 7 
6. 3. 2 Measurement of Step Angle ----------------------------------------- 149 

6. 4 TreeScan Characterisation ------------------------------------------------------- 151 
6 .4. 1 Image Capture Timing ------------------------------------------------ 151 
6 .4. 2 TreeScan Resolution -------------------------------------------------- 153 
6.4.3 Integration Time Adjustment ---------------------------------------- 155 
6 .4 .4 Focus Tests ------------------------------------------------------------ 156 

6.5 Initial Accuracy Tests in Two Dimensions ------------------------------------ 157 

6. 6 Final Accuracy Tests in Two Dimensions ------------------------------------- 158 
6. 7 Accuracy Tests in Three Dimensions ------------------------------------------- 160 

CHAPTER 7 - FORESTRY IMPLICATIONS AND RECOMMENDATIONS --------- 161 
7. 1 TreeScan Strengths and Limitations -------------------------------------------- 162 
7. 2 Forestry Implications ------------------------------------------------------------- 166 
7 .3 Alternative Technology Uses ---------------------------------------------------- 168 
7.4 Future Work ----------------------------------------------------------------------- 169 

CHAPTER 8 - SUMMARY -------------------------------------------------------------------- 171 
8. 1 Summary -------------------------------------------------------------------------- 172 

REFERENCES ----------------------------------------------------------------------------------- 1 7 5 

Appendix A 

Appendix B 

Appendix C 

AppendixD 

AppendixE 

Appendix F 

Appendix G 

Appendix H 

Appendix I 

Appendix J 

Appendix K 

AppendixL 

AppendixM 

Appendix N 

Development Documentation for the TreeScan System 

Sample Tree Analysis 

Forestry Terms 

Original TreeScan Project Proposal 

System Error Calculations 

TreeScan System Component List 

TreeScan Schematics & Board Layout 

Microcontroller Specifications and Memory Space Organisation 

Additional SCSI Interface Specifications 

SCSI Bus Controller Specifications 

Macintosh SCSI Manager 

SCSI Byte Loss Detection and Resend Scheme 

Scanner Control Software 

Image Processing Software 



Figure 1.1 

Figure 2.1 
Figure 2.2 
Figure 2.3 
Figure 2.4 
Figure 2.5 

List of Figures 

- Information loss inherent in the MARYL tree description ---------- 10 

- Imaging technologies ---------------------------------------------------- 17 
- Effects of wind on captured images ----------------------------------- 19 
- Alternative image capture approaches --------------------------------- 20 
- Improved forest stand assessment overview ------------------------- 24 
- Image capture system principle ---------------------------------------- 25 

Figure 3.1 - Possible areas of technical difficulty ----------------------------------- 28 
Figure 3.2 - TreeScan image capture ------------------------------------------------- 31 
Figure 3.3 - Projection on a two dimensional plane -------------------------------- 32 
Figure 3.4 - TreeScan estimates ------------------------------------------------------- 33 
Figure 3.5 - Digital image capture __________________________________________ _: _________ 35 

Figure 3. 6 - CCD technology --------------------------------------------------------- 36 
Figure 3.7 - Photographic image capture distortion -------------------------------- 38 
Figure 3.8 - TreeScan image capture distortion ------------------------------------- 39 
Figure 3.9 - Depth of field ------------------------------------------------------------- 42 
Figure 3 .10 - Modulation transfer function and relative illumination -------------- 44 
Figure 3.11 - Definition of terms ------------------------------------------------------- 49 
Figure 3.12 - Simple perspective correction ------------------------------------------ 51 
Figure 3.13 - Two step perspective correction ---------------------------------------- 52 
Figure 3 .14 - Geometric correction using derived 0 -------------------------------- 53 
Figure 3.15 - Correction based on calibration rod dimensions --------------------- 54 
Figure 3.16 - Distortion correction imprecision -------------------------------------- 55 
Figure 3.17 - Measurement of angle 0 ------------------------------------------------ 56 
Figure 3 .18 - Three dimensional model generation ---------------------------------- 57 
Figure 3.19 - Image capture geometry ------------------------------------------------- 59 
Figure 3 .20 - Tree plane variation ------------------------------------------------------ 61 
Figure 3.21 - Calibration alignment variation ----------------------------------------- 62 

Figure 4.1 - TreeScan system ready for image capture --------------------------- 69 
Figure 4.2 - TreeScan scanner functional block diagram -------------------------- 70 
Figure 4.3 - The scanner internal layout -------------------------------------------- 71 
Figure 4.4 - System signal flow diagram ------------------------------------------ 73 
Figure 4.5 - Scanner controller board layout ---------------------------------------- 74 
Figure 4.6 - Microcontroller block diagram schematic ----------------------------- 76 
Figure 4.7 - Microcontroller memory map ----------------------------------------- 77 
Figure 4.8 - EPROM read cycle timing ---------------------------------------------- 78 
Figure 4.9 - SCSI block diagram schematic ----------------------------------------- 81 
Figure 4.10 - Typical command descriptor block ---------------------------------- 84 
Figure 4.11 - Imaging sensor photosite layout -------------------------------------- 88 
Figure 4.12 - LSC interface block diagram schematic ----------------------------- 89 
Figure 4.13 - CCD sensor spectral response ------------------------------------------ 90 
Figure 4.14 - Line scan camera timing --------------------------------------------- 91 

ix 



Figure 4.15 - Scanning mirror assembly ----------------------------------------------- 92 
Figure 4.16 - Stepper motor controller block diagram schematic ------------------- 94 
Figure 4.17 - Mkl and Mk2 lens systems --------------------------------------------- 95 
Figure 4.18 - Mk 1 and Mk2 lens driving interface --------------------------------- 97 
Figure 4.19 - Power supply block diagram schematic ------------------------------- 99 
Figure 4.20 - Scanner chassis ---------------------------------------------------------- 102 
Figure 4.21 - Hardware development environment --------------------------------- 104 

Figure 5 .1 - Levels of TreeScan software -------------------------------------------- 107 
Figure 5.2 - Algorithms implemented in image capture software ------- --------- 108 
Figure 5.3 - Image build-up sequence --------------------------------------------- 111 
Figure 5 .4 - Image build-up algorithm ----------------------------------------------- 112 
Figure 5 .5 - Image build-up algorithm (description) -------------------------------- 113 
Figure 5.6 - Image block capture algorithm ------------------------------------------ 114 
Figure 5.7 - Image block capture algorithm (description) ------------------------- 115 
Figure 5.8 - Line signal timing ------------------------------------------------------ 116 
Figure 5.9 - AID signal timing -------------------------------------------------------- 117 
Figure 5 .10 - AID conversion (8 bit) microcontroller code -------------------------- 118 
Figure 5.11 - Normal SCSI transfer ---------------------------------------------------- 120 
Figure 5.12 - Normal SCSI transfer (description) ------------------------------------ 121 
Figure 5 .13 - Image with byte loss problem ------------------------------------------- 122 
Figure 5.14 - Extended delays during SCSI transfer --------------------------------- 124 
Figure 5.15 - Byte loss detection and resend scheme -------------------------------- 125 
Figure 5.16 - Final autofocus algorithm ----------------------------------------------- 127 
Figure 5.1 7 - TreeScan image capture user interface --------------------------------- 129 
Figure 5.18 - Parameter extraction sequence ------------------------------------------ 132 
Figure 5.19 - Marking of calibration points -------------------------------------------- 134 
Figure 5.20 - Two dimensional feature size estimates -------------------------------- 135 
Figure 5 .2 1 - Generation of three dimensional stem model -------------------------- 137 
Figure 3.22 - Sweep estimation from displayed tree model -------------------------- 138 
Figure 5.23 - TreeScan processing and utility macros ------------------------------- 123 

Figure 6.1 
Figure 6.2 
Figure 6.3 
Figure 6.4 
Figure 6.5 
Figure 6.6 
Figure 6.7 
Figure 6.8 
Figure 6.9 

- Distortion introduced by camera misalignment --------------------- 14 7 
- Camera alignment procedure -------------------------------------------- 148 
- Distortion introduced by mirror misalignment ---------------------- 149 
- Image capture timing ------------------------------------------------- 152 
- Image resolution effects --------------------------------------------- 154 
- Integration time adjustment --------------------------------------------- 155 
- Focus results ----------------------------------------------------------- 156 
- Height errors with high imprecision --------------------------------- 157 
- Final accuracy tests in two dimensions ------------------------------- 159 

x 



XI 

List of Tables 
Table 2.1 - System design contraints ------------------------------------------------ 21 
Table 3.1 - Standard f-numbers ------------------------------------------------------ 41 
Table 3.2 - Image acquisition time vs. data transfer rate -------------------------- 46 
Table 3.3 - Scanner interface methods ---------------------------------------------- 47 
Table 3.4 - Comparison of distortion correction methods ------------------------ 48 
Table 3.5 - Sources of expected error in TreeScan -------------------------------- 60 
Table 3 .6 - Height errors introduced by stem displacement ---------------------- 61 
Table 3.7 - Width errors introduced by stem displacement ----------------------- 62 
Table 3.8 - Errors introduced by variation in measured angle -------------------- 63 
Table 3.9 - Errors introduced by distance error ------------------------------------ 64 
Table 4.1 - Availability of SCSI bus controllers ----------------------------------- 80 
Table 4.2 - Line scan cameras available --------------------------------------------- 87 
Table 4.3 - Scanner power requirements ------------------------------------------ 100 
Table 6.1 - Measured pixel resolution ----------------------------------------------- 153 
Table 7.1 - TreeScan strengths and limitations ------------------------------------- 163 

Publications 
The following publications were prepared during the research for this thesis: 

• Weehuizen, M., Pugmire, R.H. (1994): The use of in-field tree imaging in the 

pre-harvest inventory assessment in the logging industry, Proceedings of New 

Zealand Postgraduate Conference for Engineering and Technology Students, 

Department of Production Technology, Massey University, 1994. 

• Weehuizen, M., Pugmire, R.H. (1994): The use of in-field tree imaging in the 

pre-harvest inventory assessment in the logging industry, Proceedings of the 

Second New Zealand conference on Image Vision and Computing, Department of 

Production Technology, Massey University, 1994. 



Xlll 

Acknowledgements 

I would like to thank all the people who have been involved with the Tasman project 

over the last two years for making this research and development possible. 

In particular I would like to thank my two supervisors Prof. Bob Hodgson and 

Dr. Ralph Pugmire for their valuable support and their vision in the project guidance. 

Thanks to Ralph Pugmire for his help during the many hours spent of poring over the 

'unexplainable' development obstacles. 

The contribution of Thomas Look was invaluable in the design and engineering of the 

mechanical components of the system. 

Thanks also to the Gary Allen for the time spent constructing and testing the electronic 

aspects of the TreeScan system, and to Farshad Nourozi for his input into the design of 

the system. 

I would also like to thank Tasman Forestry Ltd. for their backing of the development of 

the TreeScan system and continued support for further research. In particular I would 

like to thank Mike Colley (unfortunately moved on early in the project) for initiating the 

commitment of Tasman Forestry to in-field tree imaging. 

Lastly, but certainly not least, I would like to thank Diana Foster for her editing skills 

on many chapter drafts and her unfaltering commitment whenever the project demanded 

more than its fair share of my time. 



I must go down to the seas again, to the lonely sea and the sky, 

And all I ask is a tall ship and a star to steer her by, 

And the wheel's kick and the wind's song and the white sail's shaking, 

And a grey mist on the sea's face and a grey dawn breaking. 

I must go down to the seas again, for the call of the running tide 

Is a wild call and a clear call that may not be denied; 

And all I ask is a windy day with the white clouds flying, 

And the flung spray and the blown spume, and the sea-gulls crying. 

I must go down to the seas again, to the vagrant gypsy life, 

To the gull's way and the whale's way where the wind's like a whetted 

knife; 

And all I ask is a merry yarn from a laughing fellow-rover, 

And quiet sleep and a sweet dream when the long trick's over. 

11 Sea-Fever 11 by John Masefield 
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Glossary 

AID Analog to Digital, used as ND convertor. 

CCD Charge Coupled Device 

CMOS Complementary Metal Oxide Semiconductor 

EPROM Erasable/Programmable Read Only Memory 

Kink A short deflection of a log affecting less than 2 m of the log (see 

appendix C). 

Log A single section from a tree stem which has been cut into sections. A tree 

stem is cut into a number of logs for transport to the mill (typically 6-12 m 

in length) . 

Log grade A measure of log quality and value. Each log grade has specifications 

which a log must meet (see appendix C) . 

LSC 

MARVL 

Plug-in 

RAM 

ROM 

sec 

SCSI 

SED 

Stem 

Sweep 

Wobble 

Line Scan Camera 

Method of Assessment based on Recoverable Volume by Log type. The 

preharvest inventory system used by many forestry companies. 

Macintosh code resource which complies with the Adobe interface 

specification and may be used to extend applications. 

Random Access Memory 

Read Only Memory 

Scanner Control Command 

Small Computer Systems Interface, a high speed flexible computer 

interface commonly used to connect peripheral devices to computers. 

Small End Diameter, minimum diameter of a log. 

A tree which has been felled but not yet cut into logs. 

Deviation from straightness along a length of log (see appendix C). 

Deviation from straightness of a log where the axis of a log deviates in two 

or more directions (see appendix C). 
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1. 1 Scope of Research 

The strategic objective of this research is to improve forest stand assessment by using 

imaging techniques to make the preharvest inventory assessment more quantitative. If 

successful this will have a far reaching impact on mensuration in the forestry industry. 

In order to make the preharvest inventory assessment more quantitative two aspects are 

important; the dimensions of the standing radiata pine trees must be measured, and the 

method used to calculate recoverable volume from tree dimensions must be modified. 

The research for this masters project focuses on the development of a suitable image 

capture and processing system which can be used to accurately estimate tree 

dimensions. 

More specifically, the objective of this masters project was to develop a line scan based 

image capture system that would allow the dimensions of standing pine trees to be 

estimated. As a result of this clearly defined objective this masterate has been a 

technology development project rather than a theoretical research project. 

1.2 Thesis Overview 

The research and development for this study takes the project from the design concept 

stage through the design and development stage up to the final testing stage. The 

structure of the thesis reflects this design path. 

Chapter 1 provides an introduction and context for the research. The scope of the 

research is defined and a background to the forestry industry is provided with an 

emphasis on the preharvest inventory assessment. This chapter presents a statement of 

problem, independent of the proposed solution. 

In chapter 2 alternative methods for improving inventory assessment are reviewed. The 

approaches identified in a Massey University feasibility study are outlined and analysed 

for design constraints. Based on this analysis a design proposal is put forward which 

provides the basis of the subsequent development work. 

In chapter 3 the design considerations and theoretical foundations upon which the 

development is based are explored. This chapter describes how the system works in 

principle and proves that the solution is technologically feasible. Key areas of technical 

difficulty are identified and individually analysed. 
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Chapter 4 describes the hardware of the TreeScan system, with an emphasis on the 

custom designed scanner. Functional blocks of the scanner are described in detail and 

the reasons for this particular implementation are presented. In addition to this the 

obstacles encountered during hardware development are briefly discussed. 

In chapter 5 the algorithms implemented in the TreeScan software are described. This 

includes both the image capture software used to capture images with the scanner and 

the parameter extraction software which is used to estimate actual tree dimensions. 

Chapter 6 is an evaluation of the system accuracy and discusses the modifications made 

to convert the scanner, as originally designed and built, to an accurate scientific 

instrument. 

In chapter 7 possible implications of this technology on the forestry industry are 

presented. Strengths and limitations of the TreeScan system are discussed and 

recommendations are made regarding the future directions for this research and 

development work. 

To conclude the thesis, the main points of this research are summarised in chapter 8. 

Relevant detailed technical documentation and software listings are included in the 

appendices. 

Unless noted to the contrary in the text, all work is the authors own work. This 

includes; analysis of design considerations, system sensitivity analysis, design and 

testing of all digital hardware, design and testing of the majority of analog hardware, all 

rnicrocontroller software development, and the majority of the system evaluation tasks. 

The development of the image acquisition plug-in, the distortion correction methods, 

and the image processing macros were a joint effort between the author and his 

supervisor (Dr. Ralph Pugmire). 

Notable tasks completed by other development team members were all mechanical 

engineering, design and testing of stepper motor controller, design and testing of power 

supply, and the final accuracy tests in two dimensions. 
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1. 3 Forest Industry Background 

The aim of this section is to provide a forestry background to set the context for this 

research. It is aimed at the reader with very little forestry experience, providing a brief 

overview of key aspects of the industry. It is intended to be an introduction and does 

not comprehensively cover all aspects of the forestry industry. 

1.3.1 Introduction 

Plantation forestry is the sector of forestry that deals with production forests. 

Production forests are forests specifically planted with the aim of being harvested. 

Plantation forestry does not include the felling of natural forests and is therefore a 

sustainable and renewable industry. 

Plantation forestry is a major export industry of New Zealand. In 1993 the export of 

forestry products constituted New Zealand's third largest export earner, generating 2.5 

billion dollars. This is almost on par with meat and dairy exports, 3.0 and 2.8 billion 

dollars respectively (Forestry Facts & Figures, 1994). 

New Zealand production forests are predominantly radiata pine (90% ), with smaller 

quantities of douglas fir, softwoods, and native hardwoods. The New Zealand radiata 

pine estate constitutes 34% of the global radiata pine estate (Forestry Facts & Figures, 

1994). New Zealand radiata pine plays an important role in the New Zealand economy 

and constitutes a large proportion of the global radiata pine market. 

The main plantation forestry area in New Zealand is the Rotorua district in the Central 

North Island with smaller scale forestry blocks scattered throughout the country. The 

ownership of these forests is divided between three large forestry companies and a 

significant number of smaller owners. The three largest owners are Fletcher Challenge 

Ltd., Carter Holt Harvey Ltd., and the Forestry Corporation of New Zealand. They 

own 16%, 25% and 13% of plantation forestry resources respectively (Forestry Facts 

& Figures, 1994). 

The forestry industry has seen a phenomenal growth over the last three years. This is 

largely a result of increased international demand driving world timber prices up. As the 

value of sawn timber rises, the value of the raw product also rises and it becomes 

important to maximise the use of business resources. Good tree breakdown is no longer 

good enough, the tree breakdown must be optimal. 
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1.3.2 Forestry and Sawmilling 

The timber industry traditionally contains a clear distinction of roles. The role of 

forestry operations is very different from the role of sawmilling operations. 

• The role of forestry operations is to produce logs. In practise, forestry 

operations includes the planting, growing, and maintenance of the trees during the 

time they are growing. Once the trees are ready to harvest they are felled and cut 

into logs of one of a number of specified grades (see appendix C). 

• The role of the sawmilling operations is to process logs. The sawmilling 

operations commence with the raw product of logs of a certain grade and process 

these into sawn timber and other wood products. 

The result of this division in the industry is that a sub optimal resource optimisation 

may be achieved. If this division is reduced and the tree optimisation can be based on 

final timber usage rather than log breakdown, resource optimisation could be improved. 

Many companies are currently restructuring to reduce this division. 

1.3.3 Forest Operations 

The basic unit of measurement in the forestry industry is the stand. A stand is a block of 

trees of similar age, size and other characteristics. Each forest is subdivided into even 

aged stands of typically 20 to 40 hectares. Stands are harvested as a whole at a tree age 

of 25 to 30 years. 

The life cycle or rotation of a stand of radiata pine begins when the trees are planted. It 

is split into three phases, with an inventory assessment made during each phase: 

• Early growth during which pruning and thinning operations may be completed 

• Mid rotation during which the trees are left to grow largely unattended 

• Harvest during which the trees are felled 

The early growth phase, 0 - 10 years, determines the quality of the trees in a stand. 

Trees are pruned in successive lifts up to a maximum of 6 or 8 m. The result of pruning 

is trees which grow straight and have large sections of clearwood. Clearwood is wood 

which does not contain any knots or defects outside a defect core. 

Stands will undergo two thinnings to select the best trees and reduce the stocking to a 

level that will produce a maximum tree growth rate. The first thinning is at a tree age of 

4 to 6 years, the second at 7 to 9 years. 

During the mid rotation phase, 10 - 25 years, very little tree maintenance is required. 

Generally the only task completed is the mid rotation inventory assessment. 



6 

During the harvest phase, 25 - 30 years, the trees are felled to produce stems. These 

stems are then cut into logs based on the current cutting strategy. 

Once the trees in a stand are felled, the stems are taken to a skid site. A skid site is a 

small area of the stand which has been cleared and where the stems are cut into logs. 

Typically there will be several skid sites per stand. There are two primary methods of 

stem removal; the skidder and the hauler. A skidder is a large wheeled vehicle which 

drags the stems to the skid site. The hauler is a cable based pulling system which must 

be used when the terrain is too steep for a skidder. 

On the skid site the stems are cut into logs. This breakdown is intended to optimise the 

use of a tree, but is a compromise between maximising value and meeting orders. The 

log maker decides on the best breakdown for a particular stem based on the log maker's 

assessment of stem shape and features, and the current log requirements. The total 

value of the recovered logs depends on the performance of the Jog makers. Generally 

the performance of a log maker is very good, typically 95% of optimal. If the 

performance of a log maker drops below this level, this results in a very large Joss in 

stem value. 

Once the stem is cut into Jogs they are stacked until they can be trucked out of the 

forest. 

1.3.4 Inventory Assessment 

Assessing the value and potential yield of a stand of trees is one of the basic concerns of 

commercial forest growers. During each of the three phases in the stand life cycle an 

inventory assessment is made. This involves gathering information on a representative 

sample of trees from a particular stand. 

The first inventory assessment is made during early growth phase, at a tree age of 4-10 

years. This is the quality control inventory which allows the forest owner to check 

that the pruning and thinning have been completed properly. Basic information is 

collected regarding the condition of the stand as a whole such as total tree stocking, tree 

diameter, tree height and the pruned height. 

At a tree age of 15-16 years the mid rotation inventory assessment is made. This 

enables the owner of the forest to gain information on the growth progress of the trees. 

The preharvest inventory assessment is made 1-2 years prior to harvest, at a tree 

age of 23-28 years. The main aim of this final inventory assessment is to aid in market 

planning and harvest scheduling. Information is collected regarding the stocking of the 

stand as well as detailed information regarding the characteristics of individual trees. 

Section 1.4 will discuss the preharvest inventory assessment in greater detail. 
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1. 4 Preharvest Inventory Assessment 

As stands mature growers require detailed inventory information to plan harvesting, 

marketing and utilisation of the timber. Logs are cut on a 'to order' basis, with no 

buffering of stock on hand. This implies that good inventory information is necessary 

to determine what log grades can be expected from a particular stand. On a short term 

basis if there are not enough logs to meet a particular order, higher quality logs may be 

downgraded to fill the outstanding order. The result of this is a serious loss in 

profitability. 

The aim of the preharvest inventory is to provide information regarding the value and 

quality of individual stands. This information is used in : 

Harvest planning - The log grades which can be most profitably cut from a 

stand are estimated. Harvesting operations are planned based on which stand can 

provide the optimal Jog grades to meet particular orders. 

Market planning - The volume of harvest, by log grade, is estimated up to 

three years ahead of harvest. Export contracts are based on the estimated volume 

of harvest. 

Valuation - The absolute value of a particular forest block can be estimated from 

the inventory information. The value of a forest may need to be established if the 

forest is sold or if company assets are valued. 

The assessment of total volume and quality should be based on the actual measured 

condition of the trees. The effect of disease and damage, and management operations 

such as pruning and thinning must be directly taken into account. However the data 

collected should be flexible enough to allow harvest to be estimated even if log 

specifications change after the inventory team has visited the stand. 

There are two important aspects of any tree which must be measured in order to be able 

to estimate the optimal log breakdown; the shape of the stem, and the quality of the 

stem. The shape of the stem, or sinuosity, is defined by the amount of sweep and 

wobble the tree has (see glossary or appendix C). The quality of the stem is defined by 

the branch sizes, pruned height and defects such as rot, broken tops, forks and nodal 

swelling. 

Currently the 'MARYL' (Method of Assessment based on Recoverable Volume by Log 

type) system is being used by most major forestry companies in New Zealand. 

MARVL is an inventory assessment method designed specifically for the preharvest 

inventory. 
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1.4.1 MARVL Inventory Assessment 

MARVL was developed by the Forestry Research Institute of New Zealand in the 

1970's in response to the need for a general purpose inventory tool and is now widely 

used in Australia and the Pacific as well as New Zealand. It is based on the visual 

assessment of a sample of trees. In addition to the visual assessment, a number of tree 

parameters are measured. From this information log production estimates are calculated. 

The MARVL system is a general purpose method which has been designed to allow 

flexibility in its use (Deadman & Goulding, 1979). As result, each user of the MARVL 

system has a slightly different implementation. The MARVL system involves three 

steps: sampling, cruising, and estimating log production. 

Sampling 

A series of bounded plots are defined as a representative sample of the stand. Each plot 

covers an area of 0.04 to 0.06 hectare, with a total of approximately 4% of the stand 

area sampled. The number of plots per stand is based on stand area. A typical number 

of plots per stand is 15, but can vary from 10 to 100. 

Cruising 

Once the plots have been established, a team of two people is sent out to assess each 

plot. During the assessment the heights of two trees are measured using a clinometer, 

stem diameter at breast height is measured for each tree and an visual assessment is 

made for each tree. 

The visual assessment estimates sinuosity (in three classes of sweep), and quality 

features from the base of the tree. The sinuosity of the tree is recorded by describing the 

stem as consisting of sections of estimated length with a given sweep class and branch 

size class. For example: 

• Sweep may be classified into three classes: <SED/4, SED/4-SED/2, >SED/2. 

• Branch size may be classified into three classes: <7 cm, 7-14 cm, >14 cm. 

There are a large number of quality features. Quality features include pruned height and 

other defects such as rot, broken tops and forks (see appendix C). The height of each 

feature of interest is estimated and recorded. 

The measured and estimated parameters are entered into a portable computer used as a 

data logger during the work out in the field. 
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Estimating log production 

The recorded data is down-loaded from the data logger onto a computer running the 

MARYL software to estimate log production. If necessary the trees are "grown on" to 

harvest age, using growth models. The data from each tree is individually processed to 

calculate the best log breakdown. Essential cuts such as those at the position of forks 

and stumps are made first with simulated felling breakage if required. The resulting 

yield for the plots is statistically extrapolated to provide an estimate of recoverable 

volume by log type of the entire stand. 

1.4 .2 Weaknesses of the MARVL System 

The MARVL system provides essential information, however it has limitations. Several 

aspects of the assessment are subjective, and the system has been developed to the point 

where it is limited by this subjectivity. This has been the result of an increasing need for 

more detailed and accurate inventory information and a greater variety of markets since 

the system was developed. 

The Jog volumes actually cut from a particular stand often do not match the log volumes 

as predicted by MARVL. The total volume estimate is very good, typically within 

± 5%, but the breakdown of this the volume by individual log types may vary between 

± 10% to ±80%. This is not solely due to the limitations of MARVL as logs actually cut 

depend on a large number of interrelated factors. For example, a sub optimal cutting 

strategy may have been used intentionally to fill a particular order. 

The results of MARVL depend on: 

The ability of crews to accurately estimate tree parameters. 

Information loss inherent in the method of calling particular trees. 

The ability of the MARVL software to extract the desired information from 

the recorded descriptions. 

Size of the sample and how representative this is of the stand. 

MARVL depends largely on the accuracy of human estimates. Branch class, tree 

height and the height of quality features can be surprisingly accurately identified. The 

greatest limitation of MARVL is that the estimation of sweep is subjective. Estimation 

of sweep is difficult as it involves making an estimate of sinuosity in two dimensions 

for sections of the tree. Two different people calling the same tree can give two different 

classifications. 

A second limitation of the MARVL system is that there is information loss when 

describing a tree. Ambiguity can develop if all the relevant information is not retained. 
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Figure 1.1 - Information loss inherent in the MARVL tree description 

wo examples of this ambiguity are: 

IO 

1 . MARVL is a two dimensional system. Three dimensional information is 

disregarded. If a tree is called as consisting of two sections of certain sweep, this 

could indicate the sweep is in the same plane or at right angles . This information 

which has an important impact on the optimisation of stem breakdown is 

disregarded (see figure 1.1). 

2. Secondly the definition of sweep for different log lengths is inadequate. If a tree 

is called as consisting of two sections of certain sweep, this could indicate one of 

two situations. The tree could have a large sweep over the combined length or the 

tree could have wobble over the combined length (see figure 1.1 ). 

! the above situation MARVL is not able to extract necessary information from the log 

!Scription, so a simplifying assumption is made. MARVL assumes that a long log of 

e same sweep class as the greatest sweep of its subsections can be cut. i.e. that the log 

mtains wobble in a single plane. 

istly the sample must be statistically representative of the stand. Often there is a large 

triation of tree growth even within a stand. As a result the sampling procedure or 

md area sampled may need to be modified. 
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1.4.3 Possible Improvements 

In order to improve the forecasting system, one or more of the above weaknesses must 

be targeted for improvement. If a more quantitative system can be provided which does 

not suffer from loss of information, this would mean a great improvement for the 

preharvest inventory assessment. 

A key consideration to maintaining high quality while retaining MARYL, is feedback to 

the staff involved regarding the results of subjective estimates. The more frequent and 

precise this feedback is the more successful it will be in maintaining the accuracy of the 

subjective assessment. However this is difficult in the assessment of sweep. The only 

reference to compare an assessment of a single tree, is how a more experienced person 

would call the tree. Even if the tree is felled, the extent to which the sweep was called 

correctly is difficult to determine. 

In chapter two, several methods are proposed that can be used to improve the inventory 

accuracy using a partially automated system. This will produce more accurate and 

repeatable results. 
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This chapter reviews alternative imaging methods which could be used to improve 

inventory assessment. The approaches identified by the Massey University feasibility 

study are discussed in detail and analysed for design constraints. A final design 

proposal is put forward providing the basis for the rest of the development. 

2.1 In-field Tree Imaging to Improve 

Stand Assessment 

Over recent years the increase in computing power and improved digital image 

processing techniques have led to the exponential growth of electronic tools making use 

of digital image processing in many commercial and industrial applications. 

The sawmilling operations of the timber industry have seen much development of 

scanning technology within the sawmill. This includes the scanning of log profile for 

optimised cross cutting, plank profiling for optimisation during edging and trimming, 

and internal scanning of logs to detect defect core structure. However this technology 

has made very little impact in the forestry industry. With in-field tree imaging this is 

changing. 

In-field tree imaging is a method proposed to apply digital imaging technology to 

improve and automate forest stand assessment. This method involves generating a three 

dimensional model of a standing tree by capturing one or more images from ground 

level. This three dimensional model will provide more quantitative inventory 

information. 

The three dimensional model fully defines the tree shape including sweep. This 

addresses the two main weaknesses of the MARVL based system as discussed in 

chapter one; the need to make a visual assessment of sweep in the field disappears and 

so human subjectivity is eliminated and there is no information loss. By removing the 

human subjectivity, the inventory system will be able to make more repeatable and 

accurate estimates of tree dimensions and as a result more quantitative inventory 

information will be available as basis for stand yield estimates. 
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Requirements of In-field Tree Imaging 

If in-field tree imaging is to succeed the developers of a system will need to overcome a 

number of obstacles. These include the substantial technical difficulties in producing a 

working system that is robust enough to operate in a hostile forest environment. 

The requirements of an in-field tree imaging system are that it must : 

1 . Work under forest conditions. 

2. Produce accurate and repeatable results. 

3. Be usable and productive. 

A system must be capable of working in conditions typically experienced in a forest. 

This includes dense tree stocking, terrain and undergrowth variation, outdoor weather 

conditions, tree movement in the wind, and low levels of ambient lighting. 

The system must be technically capable of producing accurate results that are repeatable 

regardless of expected variation in normal operating conditions. 

The first two requirements are most important at this stage, but the system must also be 

usable and productive. This involves ease of operation by non technical users, 

acceptable portability (weight and ease of carrying) , and acceptable productivity 

compared with existing methods of inventory. 

2.1.1 Previous Research on Standing Tree Imaging 

As the inventory of forests is a universal problem it was expected that there would have 

been previous research on the use of imaging techniques to improve inventory methods. 

This was not the case. After a comprehensive search no reference has been found to any 

other development work in tree imaging, tree sizing, tree assessment, or forest 

inventory assessment using imaging techniques. 

The only reference found to other work specifically on standing tree imaging is a project 

by the Forest Research Institute of New Zealand, which is researching technology to 

solve the same problem as the development at Massey University. This was started 

approximately 18 months after development at Massey University was started. 
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2.2 General Technology Options 

There are a large number of technology options that could be employed to develop a 

system to meet the above requirements. However, no technology can be said to provide 

the best or the worst solution. The use of each technology has advantages and 

disadvantages which must be considered. What is required is the lowest cost, easily 

developed, sufficiently accurate technology. This involves judgements by the 

developers based on past experience. 

The most important consideration is a cost versus technology trade-off. Certain 

technologies may be faster or more accurate, however the cost in development expense 

and development time may be much higher. The requirements and benefits need to be 

carefully weighed up against the funds available to determine the best technologically 

feasible solution. 

In the measurement of standing trees some form of remote sensing technique is required 

as the tree cannot be directly physically measured without climbing the tree or felling it, 

either of which would be unsatisfactory. The options available are some form of 

imaging using electromagnetic imaging (visual, infrared, Xray, or radar) or ultrasonic 

imaging. Each imaging method is briefly examined for technical feasibility in 

figure 2.1. 

The imaging method employed must capture three dimensional tree information. Some 

imaging methods, such as laser and ultrasonic imaging, can directly incorporate three 

dimensional information. Other imaging methods are inherently two dimensional and 

the three dimensional information must be captured by some other means. Techniques 

that could be used are stereo imaging, multiple views from different directions, or 

structured lighting techniques. 

The most promising solution is to use some form of imaging technique based on the 

visible spectrum. Investigation should be made into both the use of photographic 

systems and CCD based technology to capture images. The use of either infrared or 

ultraviolet imaging might also prove useful and should be investigated. 

2.2.1 Massey University Feasibility Study 

In late 1993 the Department of Production Technology at Massey University was 

commissioned to complete a study to determine the feasibility of using imaging 

techniques for the automation of forest stand assessment. In particular, to identify one 

or more approaches that could be developed to the prototype stage. 
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Photographic imaging - System to capture visual images photographically 

Technically feasible and technology readily available, but working at the limit of 
normal resolution. Photographic film is only a temporary medium as the images 
require transfer to computer for later processing. Low technology cost but high 
per use cost with processing time delay. Need to capture several images at right 
angles to capture 3D information. 

CCD imaging - System to directly capture visual images electronically 

Technically feasible, but working past the limit of normal resolution, so may 
need to employ resourceful techniques. Medium technology development cost. 
Images captured directly into computer so low per image cost and no processing 
delay. Need to capture several images at an angle to get 3D information. Large 
quantities of data involved so a high powered computer or video tape required to 
capture and store large quantities of data in the field. 

Laser imaging - System to capture 3D locations of points on tree stem 

Probably technically feasible but a slow and very fragile system. High 
technology development cost. No images are required as 3D points are captured 
directly. 3D points can be captured directly into computer. Low powered 
computer required in the field with specialised imaging hardware. 

Ultrasonic - System to build up images by the reflected high frequency sound 

Can determine distance of objects in addition to direction. Technologically not 
feasible to achieve desired resolution. Moderate hardware development cost and 
low per image cost. High powered computer required to capture data in the 
field. 

Xray imaging - System to capture internal and external information 

Technically not feasible as the detector needs to be directly on the other side of 
the object being imaged. Very high development cost and image reconstruction 
techniques required to recreate tree information. Xray danger to the operator. 

Radar imaging - System to build up an image by reflected radar waves 

Can determine distance and direction. Technically not feasible as non metallic 
objects give poor radar echoes. Very difficult to get desired resolution. 

Figure 2.1 - Imaging technologies 
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Investigation proved that no existing electronic imaging system existed that met the 

requirements of this particular application. No existing system had an appropriate aspect 

ratio or adequate resolution. After experimenting using a photographic method of 

capturing images, two approaches for capturing images directly into a computer were 

identified as favourable solutions that could be taken to the prototype stage (Pugmire, 

1993). 
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1 . The most promising approach used a line scan camera that was stepped 

through a series of fixed angles to build up an image of the tree. A single image 

would be captured that contained significant perspective distortion. The image 

would be recorded directly on to portable computer for immediate processing. 

This would achieve an image resolution of 500 by 8000 pixels. 

2 • The second approach used a video camera to capture a series of images while 

recording camera tilt. This method would use a domestic video camera and store 

the information on video tape for later processing. This system is likely to be less 

development intensive but greater image processing is required. Individual video 

frames must be spliced together to form a single image, and perspective 

distortions within and between frames must be corrected for. 

The first approach is based on the premise of immediate processing by a system in the 

field, while the second approach is based on the premise of capturing lower quality 

images in the field and more extensive processing later. Both approaches were 

considered suitable to take into the prototype phase. 

In addition, methods for extracting tree parameters from the images were investigated. 

Using an operator assisted method of parameter extraction, suitable methods for image 

calibration and perspective distortion correction were determined. Heights, widths, 

branch size and position estimates could be relatively easily calculated. The possibility 

of automated parameter extraction was deemed to require further research. 

2.2.2 Alternative Approach 

In addition to the approaches highlighted by the feasibility study a third image capture 

approach, based on a high resolution CCD area camera, must be considered as a 

likely solution. 

The most important reason existing systems cannot be used for this application is that 

they do not have an aspect ratio of 40: 1. The specifications require a degree of accuracy 

in the horizontal direction and a somewhat lower resolution in the vertical direction. The 

resolution requirement of 8000 by 1000 pixels is based on equal resolution in the 

horizontal and vertical direction. If a compression lens or a curved mirror is used the 

image can be compressed in the vertical direction without loss of resolution in the 

horizontal direction. 

A high resolution CCD area sensor (for example 2000 by 1000) could be used instead 

of a line scan sensor and obtain similar results for sweep estimation as the system 8000 

by 1000 line scan system. This system has the advantage that the image capture 

involves one integration period only. As a result the integration period of the image 

capture will be 8000 times faster (2000 x 4). 



Chapter 2 - Improved Forest Stand Assessment Design Proposal 

Worst case image with Worst case image 
with area capture Tree oscillation in the wind line scan capture 

Small (negligible?) 
sweep introduced 
over any 6 m section. 

Significant wobble 
introduced during 
wind gusts. 

Figure 2.2 - Effects of wind on captured images 
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A second advantage of this system is that the shape of the tree stem would be instantly 

captured. If the tree was moving in the wind, given a worst case scenario, the image 

could be captured at the point of maximum tree deflection introducing a small amount of 

'apparent sweep' (see figure 2.2). With the line scan approach however the image is 

built up over time, tree movement in the wind could introduce a large 'apparent wobble' 

that may be difficult to distinguish from real stem deformation. 

Another advantage of this approach would be that the captured image is smaller. This 

would make it easier to process and store. One of the basic premises of image 

processing is reducing processing requirements by minimising raw data. 

This approach would be limited in the measurement of branch sizes and may not 

provide adequate vertical resolution near the top of the tree. Use of an alternative system 

for the measurement of branches could be considered. 

Figure 2.3 summarises the three alternative image capture approaches. It was decided 

that a prototype system based on the line scan approach should be built as this was the 

highest resolution system and provided the greatest flexibility for control of the system 

parameters during image capture. 

The next section will investigate the constraints that are imposed on such a system and 

that will need to be considered for the developed system to be successful. 



Line scan approach Video scan approach High res. CCD approach 

Property I ~:~ ~·~ 
I DJt~ 

Scan time at 10 mS per exposure 80 seconds 20 seconds 0.01 seconds + 1 second transfer 

Image size - Pixels 8000 x 1000 8000 x 500 2000 x 1000 

- Storage 8 megabytes 4 megabytes 2 megabytes 

Storage media Computer hard disk Video tape Computer hard disk 

Depth of field Small Average Large 

Aperture Wide open Average Small 

Development - Time Medium Low High 

- Cost Medium Low High 

Measure - Sweep Yes Yes Yes 
- Branch size Yes (horizontal I vertical) Yes (horizontal I vertical) No (horizontal only) 

- Height Yes Yes Yes 

Advantages Can adjust aperture during scan Fast image capture Instantaneous capture 

Can adjust focus during scan No computer req'd in field No mechanical moving parts 

Disadvantages I Slow as 8000 images captured Image splicing I processing req'd Difficult to develop 

Tree may move in wind Tree may move in wind Reduced vertical resolution 
N 
0 

Figure 2.3 - Alternative image capture approaches 



Chapter 2 - Improved Forest Stand Assessment Design Proposal 21 

2.3 Design Constraints 

Now that three specific solutions have been proposed, it is important to investigate the 

constraints imposed on a system. These constraints fall in two broad categories; 

constraints that result from the forest work environment, and constraints that are a 

result of fundamental technology limitations (see table 2.1 ). 

It is very important that all constraints are considered during the design of a system, as 

any one of the constraints is able to reduce the usefulness of the final system. Each 

constraint will be discussed in detail with examples drawn from the image capture 

systems proposed in section 2.2. 

2.3.1 Constraints Imposed by Forest Conditions 

The system must be capable of operating in normal forest conditions. This imposes 

seven constraints that need to be considered. Each constraint is discussed below: 

System robustness - Any implemented system must be rugged and able to withstand 

the knocks and vibration of work in the forestry industry. The intended users are 

accustomed to handling heavy duty forestry equipment and may not be accustomed to 

the sensitivity of electronic equipment. The system designer must take this into 

consideration. 

Tree stocking - Tree stocking varies from 200 to 800 stems per hectare. The stocking 

of the stand limits the image capture positions that can be used. If the imaging system is 

too close to the tree, visibility of tree trunk near the top will be obscured by the tree's 

own branches. If the imaging system is too far away the top of the tree trunk will be 

System Constraints 

Forest conditions Technology limitations 

System robustness Resolution 

Tree stocking Aspect ratio 

Terrain and undergrowth Perspective distortion 

Outdoor weather conditions Image size 

Tree wind movement Image storage requirements 

Lighting and contrast levels Tree parameter extraction 

Table 2.1 - System design constraints 
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obscured by the branches of other trees. A compromise needs to be made where the 

most important section of the tree stem can be reliably imaged without getting obscured. 

Terrain and undergrowth - Terrain that must be inventoried varies from steep 

(slope of 40 degrees) to flat and there is normally some undergrowth present. Currently 

any significant undergrowth is cleared within the plot before the inventory assessment 

is made. A system should be capable of being used in situations where the terrain is 

steep and the undergrowth is present. 

Outdoor weather conditions - A system must be reasonably weatherproof for two 

reasons. Current inventory crews work all year around, so a lot of the time it will be 

raining or misty. Secondly the undergrowth in the forest floor will usually be wet for a 

large part of the day. A system should be able to withstand a reasonable degree of 

moisture. 

Tree wind movement - Trees do not remain perfectly still to allow image capture 

over a long time frame. For example with a wind of approximately ten knots the tops of 

the trees in an exposed stand will move up to one metre with an oscillation period of 

around five seconds. This is significant as the stem position is being imaged to within 

± 1 cm. 

Lighting and contrast levels - Overall lighting conditions in a forest vary greatly. 

There are changes in ambient lighting from very dark to very light depending on 

weather conditions and density of foliage. In bright daylight the conditions are good for 

normal photography. In overcast conditions the lighting is barely adequate for normal 

photography. There is also a large variation in contrast and lighting between the top and 

bottom of a typical tree. Near the bottom the image will be of a low light, low contrast, 

front lit object. Near the top of the tree the image will be of a high contrast, high 

lighting, back lit situation. It is difficult to capture good images in these conditions with 

any imaging system. 

2.3.2 Constraints Imposed by Technology Limitations 

Design constraints imposed by fundamental technology limitations must also be 

considered. The system must be based on practical technology and physically capable 

of delivering accurate results regardless of expected variation in operating conditions. 

There are seven technology constraints : 

Resolution - An accuracy requirement of ± 1 cm near the top of the tree requires a 

minimal resolution of about 0.5 cm per pixel. This relates to an image resolution of 

approximately 8000 pixels by 1000 pixels. At the bottom the pixel resolution will be 

0.2 cm per pixel. This is not available in any existing imaging systems. Normal CCD 

video cameras use an image resolution of approximately 500 by 400, with digital 
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camera technology typically using a resolution of 2000 by 1500 pixels. Line scan CCD 

cameras are available from 128 pixels to 8000 pixels. 

Aspect ratio - The aspect ratio of a standing tree is approximately 80: 1. As a result of 

the perspective distortion a desirable image aspect ratio is approximately 8: 1. Images 

can be captured at this aspect ratio or techniques could be used to capture images of a 

more standard aspect ratio. This could be achieved through the use of a non circular 

lens such as those used by the wide screen cinema industry or through the use of a 

curved mirror as discussed in the high resolution CCD area camera approach. 

Perspective distortion - The tree being imaged is viewed from below introducing a 

perspective distortion that can be corrected ~using a calculation, if the geometry of the 

imaging situation is accurately known. This may be achieved through the use of a 

calibration object in the captured images. Distortion correction is more difficult for the 

video approach than the line scan approach. 

Image size - The sheer size of the tree images of these dimension make the images 

very difficult to work with. If an image consists of 8000 by 1000 pixels at 8 bit 

greyscale this corresponds to 8 megabytes of data. With images this size the computing 

power required to load, save and process the images is large. This is important as 

processing power of computers is limited. With the video scan system, overlapping 

images must first be spliced together and then processed. This will make the processing 

requirements even higher, but can be completed using batch processing out of the 

forest. 

Image storage requirements - The data storage requirements for images of this size 

are very high. A typical high performance portable computer may contain 160 

megabytes of hard disk space. This is the equivalent of 20 images or ten imaged trees . 

In contrast MARYL information for the same tree consists of approximately 100 bytes 

of text. This is one 80 OOOth the size of a single image. Video tape as used by the video 

scan approach is a very cost effective method of storing large quantities of image data. 

Tree parameter extraction - The captured image is only raw data. Tree stem size 

information must be extracted from the image so a three dimensional model can be 

generated. This involves some form of processing of the raw data (image) to get out the 

desired tree size information. This is a task humans can complete readily but is difficult 

to automate. 
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2.4 Proposed System 

2.4.1 Improved Assessment Outline 

The image capture system is the first part of a sequence of steps in the proposed method 

for improved forest stand assessment. The images captured need to be processed to 

extract the tree parameters which define the dimensions of the three dimensional model. 

This model can then be processed by an optimisor to determine the optimal log 

breakdown for a particular cutting strategy. The recoverable yield and value of the stand 

for the optimal log breakdown can then be predicted (see figure 2.4). 

Forest 
Stand 

r---- - -------------- - -----------1 
I I 
I I 

: : Recoverable 
1 Growth~ Log 1 Volume 

Modelling Optimiser Y and 
1 

Stand Value 
I 
I 
I t TreeScan system 

Cutting : 
Strategy 1 

I I L _ __ _________ __ _________________ J 

Improved Forest Stand Assessment 

Figure 2.4 - Improved forest stand assessment overview 

The proposed TreeScan imaging system works by capturing calibrated images of a tree. 

Based on calibration data and the position of features in the image, the position of the 

tree features and shape of the stem can be estimated. This is the tree parameter 

extraction. By capturing two images at right angles a three dimensional model of each 

tree is generated. 

2.4.2 Proposed Image Capture System Overview 

The proposed image capture system is a custom designed scanner capable of capturing 

high resolution images with a high aspect ratio directly into a computer. 

The scanner would use a line scan camera that is stepped through a series of fixed 

angles to build up an image of the tree (as outlined in section 7.3 of the feasibility study 

- Pugmire, 1993). The system would capture a single horizontal scan line for each 

position of the rotating mechanism. The consequences of this are that the image is 

slowly built up one line at a time as the mechanism rotates (see figure 2.5). 
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Either a rotating lens and camera unit, or a fixed camera with a rotating mirror or prism 

could be used. A rotating mirror has the advantage that the sensor and cabling can be 

fixed and that the mechanism has less mass to rotate. 

The image would be recorded directly into a portable computer eliminating the need for 

storage on photographic film or other temporary medium. A portable computer would 

be taken into the field during image capture, so the image could be immediately 

processed if required. 
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..... -Line ray _,,... 

Lens ,,.......-
sensor ,,.......-

.._-r--~ (J +--~otating 
Prism 

Controller 

One horizontal scan is collected 
at each angle of elevation 

Figure 2.5 - Image capture system principle 
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2.5 Design specification 

The aim of current work by Massey University has been to develop a prototype line 

scan based image capture system for the improvement and automation of forest stand 

assessment as specified in "Line Scan Camera Image Capture Project - Sub Project 1 

Proposal" (see appendix D). 

It was the intention of the project to rapidly produce a working proof of concept 

prototype to allow the capture of images of trees and transfer these directly to a portable 

computer. The captured images would be in a format that could initially be analysed 

using the NIH Image package and the macros produced as part of the feasibility study. 

The system needed to be capable of imaging ten trees per hour under normal forest 

conditions. Normal forest conditions include low natural lighting, variation in tree 

dimensions and in tree stocking, presence of undergrowth, and a large variation in 

terrain. 

The accuracy specifications state that the height estimates need to be accurate to within 

± 0.5 metres and stem diameter estimates need to be accurate to within ± 1 cm. This 

relates to an image resolution of approximately 8000 by 200 for a 40 metre tree. 

Imaging the bottom two thirds of the stem may be sufficient as this is the most valuable 

section. The top of the tree would normally be obscured by branches. In addition to the 

stem sweep determination, estimation of branch size was classified as being desirable. 

The initial aim was to develop a prototype system by July 1994. Due to several 

development obstacles the prototype system was delayed until November 1994. 
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TreeScan is the name given to the prototype tree imaging system developed. The aim of 

this chapter is to show that the TreeScan design is a technologically feasible solution. 

This will be accomplished by discussing the design considerations and theoretical 

foundations of likely areas of technical difficulty. Key areas of technical difficulty are 

individually analysed. As a result each section in this chapter is an almost standalone 

analysis and discussion. 

To provide an introduction section 3.1 and section 3.2 will discuss the TreeScan design 

at a systems level and show how individual design aspects interrelate, after which 

sections 3.3 to 3.7 will analyse individual design aspects in greater detail. 

3.1 Design Overview 

Once the direction of this research and development had been established the design 

phase was entered and research was started to determine the best method to realise the 

design concept. This research involved determining the limiting factors of the 

technology, calculating precise technology requirements, and scoping technologies 

currently on the market. 

The TreeScan system will fit into the improvement of forest stand assessment as shown 

in figure 2.4 in the previous chapter. The system input boundary lies at the physical 

geometry of the trees that need to be measured. The system output boundary lies at the 

actual three dimensional tree model produced by the software. To get from input to the 

system output involves a series of steps (see figure 3.1) each one of which could affect 

the integrity of the information produced by the system and the feasibility of the whole 

design. Each of these steps is a possible area of technical difficulty which may limit the 

system and must be carefully analysed. 
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The principle of operation of the TreeScan system is discussed in section 3.2. This 

describes how the system works from a conceptual viewpoint. The discussion remains 

at a systems level and covers the TreeScan system from input to output. 

The largest part of the design involved the design of the actual image capture system. In 

section 3.3 image capture technology is reviewed. This covers both the system optics 

and CCD technology. The differences between conventional imaging techniques (such 

as photographic and area CCD) and the TreeScan system are also discussed. 

As the images that will be captured are very large, image transfer and storage 

requirements are an important consideration. These are discussed is section 3.4. Image 

transfer and storage requirements also have an impact on the computer that will be used. 

Image calibration and the mathematical correction of various forms of image distortion 

are discussed in section 3.5. This includes the placing of a calibration rod of known 

dimensions in the image to determine the image capture geometry. 

Section 3.6 discusses the generation of a three dimensional model from multiple views, 

and lastly the expected effects of the geometry of the imaging situation are calculated. 

This provides expected errors that the results of experiments with the TreeScan system 

can be compared against. 

Section 3.11 provides a brief note on the systems integration aspects of the project. 

3.1.1 Systems Integration Project 

The design and development of a custom instrument such as the TreeScan scanner is 

primarily a systems integration task. Only by combining knowledge , theory, and 

hardware from a large number of specialist engineering disciplines is it possible to 

develop a successful system. 

The main engineering disciplines that have been called on during design and 

development of TreeScan are: 

• Image processing - For the use of image capture technology (CCD cameras) 

and image processing techniques. 

• Optics - To determine lens and mirror requirements, and techniques for 

calculation image depth of field and resolution. 

• Mechanical engineering - To machine the precision mechanisms required to 

rotate the mirror. 

• Electronics and computer interfacing - To interface all individual 

components and provide control over the scanner functions. 
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• Computer programming and software development - Techniques for the 

custom computer software development and microcontroller programming. 

• Mathematics and photogrammetry - To allow perspective distortions to be 

corrected for in software. 

• Product development - For the overall design and usability of the system to 

meet the needs of the user. 

In a project that draws from each of these engineering disciplines there is generally a 

team of people involved, as has been the case with the development of TreeScan. In 

such a team environment communication and project management tasks become as 

important, if not more so, than the technical aspects. Work being completed in each 

subsection must remain coordinated and team members must remain in constant 

communication with the rest of the project team to prevent misinterpretation or 

misunderstanding. 
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3.2 TreeScan Operating Principle 

The TreeScan system is a system for the estimation of tree shape and dimensions. The 

TreeScan system is based on capturing calibrated images of a tree. A calibrated image is 

an image captured in a situation of known geometry (or in which the geometry can be 

derived from the image) that can be used to make estimates of real world object 

dimensions. 

It is important to distinguish between the use of the terms measurements and 

estimates. The use of the term 'measurement' will imply the dimension has been 

physically measured, while the use of the term 'estimate' will refer to a dimension 

based on a calculation performed on other measurements. This implies that the image is 

measured and the calibration rod is measured. Tree dimensions are estimates calculated 

based on image measurements, some simplifying assumptions, and known calibration 

rod dimensions. 

The calibration rod is an object of known dimensions that is used to determine the 

image capture geometry. Two calibration rods have been used; the first is a pole with 

two crossbars, the second is a pole with one crossbar and a reference circle. The 

discussion that follows holds for both calibration methods. 

The plane through the calibration rod is the calibration plane. The calibration rod is 

placed against the tree so that the calibration plane lies as close as possible to the plane 

of the tree. The principal scanner axis must be perpendicular to the bottom crossbar of 

the calibration rod. The scanner should be positioned at a distance so that the majority 
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\,f the stem is visible. The range of 12 to 20 metres out from the tree provides a good 

pl)Sition in typical tree stockings. The scanner position may be at any height with 

respect to the calibration rod. 

The image captured contains perspective distortion, which implies tree feature 

dimensions cannot be directly measured from the image. A calculation, discussed in 

detail in section 3.5, is used to correct for this distortion and follows the principle that: 

1 . The scanner position is estimated by taking measurements from the image 

of the calibration rod, and making use of known dimensions of the calibration 

rod. 

2. Tree feature dimension estimates are calculated using the estimated camera 

position and measured tree image dimensions. 

The procedures being used are inherently two dimensional. When estimating the size of 

three dimensional objects, it is the size of the object's projection on to a two 

dimensional plane that is being estimated. If the three dimensional object does not lie 

exactly on the calibration plane an expected error will be introduced into the size 

estimates (see figure 3.3). This is discussed in greater detail in section 3.7. The use of 

[nclinometers for estimation tree heights suffers from the same limitation, which is 

inherent in the geometry. 

~ach image can provide information on the vertical axis (height) and one horizontal 

1xis. By capturing multiple images at a known angle to each other, the system can be 

!Xtended to deduce the three dimensional shape of objects. Two or more images from &­

iifferent direction;can be combined to build up a three dimensional model of the tree. A 

ninimum of two views of the tree are required, with improvements in accuracy as more 
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Figure 3.4 - TreeScan estimates 

views are incorporated. If two images are used to build up the full model of the tree, the 

optimal view points are at right angles to each other. 

3.2.1 TreeScan Estimates 

The TreeScan system inherently makes position estimates. A position estimate is a 

point estimate that consists of a vertical offset and a horizontal offset from the 

calibration reference. Thus for any point of the tree a height from the calibration rod and 

a horizontal offset from the vertical calibration reference can be calculated. Distance 

estimates between two points on the tree can be calculated by taking the difference 

between two position estimates. All tree dimension estimates other than offsets from the 

calibration reference are distance estimates. Distance estimates can be either horizontal, 

vertical, or a combination of the two. 

The TreeScan system is intended to estimate five tree parameters; height, sweep, stern 

diameter, branch diameter, and feature separation such as intemodal distance. 

• Height estimates are based on the vertical component of a position estimate 

and are calculated from ground level using the calibration reference. 

• Stem diameter, branch diameter, and feature separation are distance 

estimates. Distance estimates can be made at any orientation. 

• Sweep estimates are slightly more complicated. By definition (see appendix B) 

sweep is the amount the tree stem is offset from a straight line over a given 

length. This means that sweep is a combination between horizontal and vertical 

distance estimates. 

It is important to consider what kind of estimates are being made because each is 

affected in a different way by the geometric inaccuracies as discussed in 3.7. 



34 

The model of the tree is defined by three dimensional stern midpoint position estimates 

and stern diameter estimates at fixed height intervals along the stem. These stern 

estimates are defined using the stem edges visible in each view. Stem diameter and stem 

midpoint are calculated using the difference in edge position and the average of the two 

edge positions respectively. 

It should be noted that this method of describing the tree stem contrasts with the method 

currently used by the MARVL system which describes the tree in sections of variable 

length with predefined sweep classes. TreeScan does not define sweep classes, 

but implicitly defines sweep by providing stem position information at fixed 

height intervals. This reduces the loss of three dimensional information. 
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3.3 Image Capture 

This section serves two purposes. First a background to digital image capture and CCD 

technology is provided for the forestry reader who may not be familiar with the 

operation of a digital image capture system, and secondly important image capture 

aspects of the TreeScan system are discussed. This includes important optical 

considerations as well as the difference between images captured using an area camera 

and images captured using a line scan approach such as the TreeScan system. 

3.3.1 Digital Image Capture 

Digital image capture is the conversion of light from a scene into an array of numbers 

inside a computer (a digital image), which consists of individual pixels (square blocks 

when zoomed right in). Each pixel has intensity value associated with it. By displaying 

pixels of different intensities in a rectangular grid the digital image can be viewed. 

The conversion from light to a digital image requires a sequence of steps (see figure 

3.5). Light from the scene is focused on a sensor (taking the place of the camera film) , 

which converts the light into an analog voltage signal. The sensor contains many 

individual sensing elements (up to 1 million per square cm), each capturing the light for 

a single pixel. The sensor converts the continuous light signal into a voltage signal 

consisting of individual pulses (spatial quantisation). The number of elements on the 

sensor determines the resolution of the digital image. 

The second step in digital image capture is the conversion of the analog voltage signals 

into a digital representation using an analog to digital converter. The analog to digital 

converter samples the intensity of the analog voltage of each pixel and converts it into a 
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number. There are only a certain number of intensity values each pixel in the digital 

image can have (amplitude quantisation), which is typically an 8 bit number allowing 

256 shades of grey to be discriminated. The numbers representing this digital image are 

then transferred to the computer and stored in an array in RAM (computer memory). 

There are several types of sensor technology available including: CCD (Charge Coupled 

Device), CID (Charge Injection Device), and older vacuum tube sensors. The CCD 

sensor is the most commonly used including every domestic video camera. 

3.3.1.1 CCD Technolo~y 

CCD sensors are electronic light integrating devices that generate a charge proportional 

to the exposed light intensity. CCD sensors are available in both linear one dimensional 

arrays and two dimensional area detector arrays. 

CCD technology is based on the principle that photogenerated charge accumulated in a 

'well' (defined by voltage potentials at the surface of a MOS structure) may be moved 

about by moving the local potential minimum. Electrons are accumulated under the 

transparent photogate, then transferred to a shift register so the data can be read out as a 

serial data stream. 

The sensor consists of a P-type substrate of polycrystaline silicon with areas of N-type 

material at the surface (see figure 3.6). Over the semiconductor are a series of metal 

electrodes insulated by a layer of silicon dioxide. If one of the electrodes is energised 

this creates a depletion region or potential 'well'. Light passing through the transparent 

photogate electrode generates electrons. While the photo gate is energised (during 

integration) these electrons collect in the depletion region under the photogate. As soon 

as the opaque transfer register electrode is energised collected electrons are transferred 

into a shift register which presents the data to the on-chip amplifier as a serial data 

stream. 
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3.3.2 Primary Imaging Considerations 

When designing an image capture system there are a large number of considerations that 

need to be taken into account, but there are two fundamental principles that should 

govern the design of the system: 

1. Capture 'good' images - The image capture conditions should be modified to 

capture images that are of the best possible quality for their intended purpose. It is 

relatively straight forward to ensure the captured image contains the desired 

information. It is more difficult to extract this information through the extensive 

processing of a poor quality image. 

2. Keep the image data content low - Image processing is a computationally 

intensive process, lessened if the desired information can be extracted while 

keeping the raw image data content low. 

With these general principles there are a number of factors that need to be considered 

when capturing images. The most important factors are: 

Object illumination and contrast - This has a critical impact on the image 

captured. Changes in both illumination and contrast can improve image quality. In a 

forestry situation the lighting conditions are difficult to cope with, and difficult to 

modify. The use of a green filter is one possibility for enhancing the contrast near the 

bottom of the tree. 

Resolution and accuracy - The image capture system must have the provision for 

sufficient resolution and accuracy to measure the desired image features. In a forestry 

situation branch size estimation will require a different accuracy than feature height 

estimation. 

Avoidance of distortion - It is important to consider the possible distortion effects 

that may affect the system. Distortion can be introduced in several ways including both 

perspective distortion and any form of distortion introduced by the optical components. 

Image calibration - Some method must be set up to enable measurements defined on 

the image to be translated into real world measurements. 

Speed of image capture - The speed of image capture must be suited to the 

application. Ideally instantaneous image capture is desirable, but a trade off may need to 

be made against other factors such as cost. 
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3.3.3 Area Sensor vs. Line Scan Build-up 

A system with an area camera such as a conventional photographic camera or an area 

CCD camera directly captures an entire image. The TreeScan scanner uses a tilting 

mirror mechanism to build up an image. This introduces a fundamental difference in the 

image generated. This difference is visually difficult to distinguish, but must be taken 

into account when taking size estimates from the image. The difference between the 

images captured with an area camera and the TreeScan scanner are discussed below. 

3.3.3.1 Area camera 

In an conventional photographic camera (also CCD area camera) the lens focuses an 

image of the object on to the film. More precisely the object is said to lie in the object 

plane, and the area in which the image is in sharp focus is called the image plane. 

If the image plane is parallel to the object plane, the object is simply scaled down by the 

magnification factor to produce the image (see figure 3.7). Equal steps in the image 

plane relate to equal steps in the object plane and parallel lines on the object plane 

remain parallel in the image plane. This has the implication that a one meter object will 

cover the same number of pixels whether it lies near the top, or bottom, of the tree. 

Specialised photographic equipment is required to photograph tall objects like pine trees 

in this way. 

Using normal photographic equipment, the image plane will not be parallel to the object 

plane, this introduces a perspective distortion. The perspective distortion is a linear 

distortion such that parallel lines in the object plane appear as straight lines, converging 

to a point at infinity in the image plane. This distortion must be corrected for when 

measuring objects from the image. 

Area image capture system 

Image plane parallel to object plane Image plane oblique to object plane 

I ~ ~ ------~ ----
1 

Image plane Object plane Image plane Object plane 

D < D [j < D 
Image Object Image Object 

Figure 3.7 Photographic image capture distortion 
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A photographic system has several limitations: 

1 . In order to capture a whole pine tree using normal photographic equipment from a 

distance of about 15 metres from the base of the tree a 28 mm wide angle lens is 

required. This introduces nonlinear lens distortions (see section 3.3.3) which 

must be compensated for when making size estimates from the image. 

2. Any integration based system has the trade-off between depth of field and 

exposure time (see section 3.3.3). If the entire tree is imaged, a large depth of 

field (closed aperture) is required and a long exposure time must be used. 

3. There is a large variation in lighting and contrast between the forest floor and 

canopy. In an area camera the same exposure must be used for the entire image. 

3.3.3.2 TreeScan scanner 

The TreeScan scanner uses a different approach to capturing images. The image is 

'built up' one line at a time as a mirror is incrementally rotated. This introduces an 

additional distortion. 

In the photographic system each image pixel is related to equal step sizes in the object 

plane. In the TreeScan system each image pixel represents a constant angular step 

size (see figure 3.8). The consequences of this are that pixels near the top of the tree 

will represent larger distances on the object. What visually appears to happen is that the 

top of the image tends to get squashed together. This is a nonlinear distortion which 

must be corrected for in the distortion correction software (see section 3.5). 
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A line scan approach such as the TreeScan system has several advantages over an area 

capture approach. These are that: 

1 . A lens with longer focal length can be used as the field of view required is 

smaller. In practise this means there will be no significant lens distortion. 

2. The aperture and I or integration time can be adjusted during the scan to 

compensate for changing light and contrast levels. 

3. The lens can be refocused during the scan up the tree so a large depth of field is 

not required. This allows for the use of larger apertures and hence shorter 

integration times. 

The disadvantages of the line scan approach are that: 

1. The image is built up using multiple exposures over time. The image capture will 

be slower than a single image capture and if the tree sways in the wind this may 

be indistinguishable from local shape deformations in the tree. 

2 . Distortions can be introduced owing to the misalignment of scanner components 

such as camera, mirror, and axis of rotation, and imprecision in the driving of the 

tilting mirror mechanism. 
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3.3.4 Optical Considerations 

Image capture systems require a lens to focus an optical image on the image capture 

sensor. There are a number of factors that must be considered when deciding on a lens 

to use for a particular image capture application. There is the trade-off between aperture 

(hence depth of field) and exposure time as well as the considerations of lens quality. 

Lens quality is determined by the lens aberrations, lens modulation transfer function, 

and the lens' relative illumination. 

A lens consists of one or more pieces of glass all of whose centres lie on a common 

axis (Horder, 1971). A lens consisting of a single piece of glass is a simple lens, and 

one consisting of multiple pieces of glass is a compound lens. Most practical camera 

lenses are compound lenses with typically three to seven elements. Lens principles can 

be visualised using a simple lens. 

Light passing through a lens is limited by an aperture stop to control the exposure. The 

diameter of the aperture stop can be adjusted. The light passing ability of the lens is 

referred to as the relative aperture or f-number (Ray, 1979). Relative aperture is 

commonly referred to as 'aperture' or 'f-stop'. For a thin lens the relative aperture is the 

diameter of the aperture stop divided by the focal length of the lens. The aperture 

controls the brightness of the image on the film plane. Doubling the area of the aperture 

stop is referred to as one f-stop and doubles the amount of light coming into the camera. 

There is a standard series off-numbers shown in table 3.1 for a 75 mm lens: 

f-number 1 

Aperture 76 diam. (mm) 

A (N) 
focal length(!) 

perture = -----­
stop diameter(d) 

1.4 2 2.8 4 5.6 

54 38 27 19 13 

Table 3.1 - Standard /-numbers 

3.3.4.1 Lens focus 

8 11 16 22 

9 7 5 3 

The depth of field, or area of sharp focus, is dependent on aperture. There is a trade-off 

between aperture and exposure. A small aperture gives a large depth of field but 

requires a long exposure time. To reduce the exposure time the aperture must be 

increased or the sensor sensitivity increased. A large aperture reduces the depth of field. 

The depth of field for a different lens aperture can be calculated as follows: 

If a lens is defocused, a point in the object is rendered as a small circle in the image, 

called the circle of confusion. The circle of confusion determines what is defined as 

in focus or out of focus. In the following calculations the circle of confusion is taken to 
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Figure 3.9 - Depth of field 

be the size of a single element of the image sensor ( 13 µm in the case of the TreeScan 

sensor). For 35 mm photography 30 µm is typically used. 

Depth of field is defined by the following relationship, where Sc1ose and Sfar the near 

and far point of sharp focus, and So is the object distance : 

Depth of field = Sfar - Sc1ou 

S = hXS0 

c/ns~ h + (Sn - J) 

h hyperfocal distance = L 
Nxc 

For a 75 mm lens focused at 20 m figure 3.9 shows the depth of field for standard 

apertures two f-stops apart. 

If an aperture off 1.4 is used with the TreeScan system this provides a depth of field of 

2.5 m when focused at 20m. This is sufficient provided the lens is refocused eleven 

times during the scan. At/ 4 the same conditions provide a depth of field of 7.6 m and 

three refocuses during the scan are adequate. 

3.3.4.2 Lens diffraction 

Diffraction sets the maximum resolving power of a lens. When light from a point 

source passes through a narrow aperture it spreads out into a circle, or airy disc. When 

. the diameter of the airy disc equals the circle of confusion the lens is said to be 

diffraction limited, and has reached the limit of its resolving power (Jacobson, 1993). 

The diameter of the airy disc's first zero crossing can be shown to be: 

diameter 1st airy disc = 2. 44 A~ 
d 
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where /.., is the wavelength of the light, v the distance of the image from the lens, and d 

the effective aperture. Approximating d to the lens focal length f, and using the fact that 

aperture has diameter f/N it follows that the diameter of the first airy disc is: 

diameter 1st airy disc= 2. 44NA 

Assuming a circle of confusion of 13 µm and typical wavelength of green light of 

555 nm the lens diffraction limit can be calculated to be f9.6. No aperture smaller than 

f9.6 should be used. Atf 9.6 the depth of field is 13.8 to 36 meters. 

diffi . z· . N 0.013 f9 6 z ractzon zmzt = = = . 
2.44J.., 

3.3.4.3 Lens aberration 

Lenses vary in quality due to lens aberrations. Lens aberrations are image defects that 

result from the limitations in the way lenses can be designed. Aberrations can never be 

eliminated, only reduced. A lens can have the following aberrations (Jacobson, 1993): 

• Spherical aberration - Light passing through the edge of the lens is focused at 

a different distance than light striking near the centre. 

• Coma - Light passing through the edge of the lens focuses in a ring displaced 

radially from the point where the light passing through the centre is focused. 

• Astigmatism - Off axis points are focused at different distances in their radial or 

tangential direction. 

• Curvature of field - Points in a plane get sharply focused on a curved surface. 

• Distortion (pincushion and barrel) - The image of a square object has sides that 

curve in or out. 

• Chromatic aberration - The position of sharp focus varies with wavelength. 

• Lateral colour - The magnification varies with wavelength. 

Blur caused by all aberrations except distortion and lateral colour can be reduced by 

using a small aperture. Conversely with a large aperture a lot of aberrations will be 

introduced into the image. Aspherical lenses minimise lens aberrations but are very 

expensive. The effects of pincushion or barrel distortion is most significant to the 

TreeScan system as it could affect the estimates made. Ideally the captured images 

should have no distortion but if quantified the distortion may be corrected for. 
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3.3.4.4 Modulation transfer function and relative illumination 

The modulation transfer function provides an overall measure of lens performance that 

compares remaining modulation in the image plane with that of the original object as a 

function of spatial frequency. The result is expressed in percent, as a function of spatial 

frequency in line pairs per millimetre. As the spatial frequency increases the modulation 

transfer function and contrast level at which the lines are resolved decreases. 

All images from photographic lenses vary in intensity from their centre to the edge. This 

is called relative illumination. There is a natural decrease from the centre to the outer 

edge which varies to the fourth power of the cosine of the field angle. The second major 

factor is light being blocked by mechanical vignetting. The effect of vignetting can be 

reduced by using a smaller aperture. 

The modulation transfer function and relative illumination of a typical lens are shown in 

figure 3.10. Neither modulation transfer function or relative illumination is critical to the 

TreeScan development as absolute image intensity values are not used to estimate tree 

dimensions from captured images. 
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Figure 3.10 - Modulation transfer function and relative illumination 

The availability of lenses was investigated. Key features important to the choice of lens 

were; motorised controls, C mount, and one inch format. Lenses were available from a 

series of manufacturers. The lens implemented in the TreeScan scanner was a 

12 - 75 mm, f 1.8 - 360 Cosmicar TV zoom lens with motorised focus and zoom 

control and electromechanical aperture control. In the Mk2 model a manual fixed focal 

length (75 mm) C mount lens was implemented with a maximum aperture off 1.4. 
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3.3.5 Image Focus 

If a small aperture system is used there is sufficient depth of field to capture a single 

image without adjusting the focus. If however a large aperture system is used to obtain 

more light, focus adjustments will need to be made during the image capture. This 

should be implemented using some form of autofocus algorithm. 

In order to set up an autofocus algorithm, a suitable measure of focus is required. The 

assumption that well focused images contain more information than unfocused images 

provides the basis for the criterion functions used by many autofocus systems. The 

criterion functions can be classified as; frequency domain functions, gradient functions, 

information content functions, and grey level variance (Groen et al, 1985). 

Yeo et al (1993) evaluate four criteria functions for autofocusing in tissue microscopy 

that were selected for their computational simplicity and literature recommendation. The 

functions evaluated were the Tenengrad function, squared gradient function, Brenner 

function, and variance function . The results indicated all functions provided a good 

measure of focus. 

The Brenner function , which was implemented in the TreeScan system, is a simple 

criterion that is gradient related. The difference in grey level intensity is taken between 

pixels two pixels apart, squared, and summed over the focus area. 

f(l)= LL[l(x+2,y)-l(x,y)]2 
x )' 

During the image capture the distance from the lens to the object being imaged changes, 

so the focus position must be adjusted. Three approaches can be adopted to retain focus 

throughout a scan: 

• A single focus compromise can be set halfway up the tree. 

• An autofocus may be made at several places during a scan. 

• Focus during the scan can be calculated from one autofocus at the bottom 

and calculated geometry. 

The relative advantages of these approaches is further discussed in section 5.2.5 of the 

TreeScan software chapter. 
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3. 4 Scanner Interface and Image Storage 

The images captured by the system under development are very large, up to eight 

megabytes per image. As a result it becomes important to consider the scanner interface 

that will be used to transfer images to computer and the image storage requirements 

once the image has been transferred to computer. 

3.4.1 Scanner Interface 

There are a large number of interface methods that can be used to transfer data between 

a computer and an external peripheral device. The interface method used must be able to 

provide acceptable data transfer rates while retaining the flexibility to provide computer 

control over the scanner. 

The important difference between different interface methods is in transfer rates. 

Acceptable data transfer rates are determined by the time it takes the scanner to capture 

an image. For a fixed size image, as acquisition time decreases the data transfer rate 

required increases proportionally. In practise for an 8 megabyte image and an 

acquisition time of one minute the data rate required is 133 kByte Is. The table below 

shows the data transfer rate required for a variety of acquisition times: 

Image transfer time Data transfer rate 

10 seconds 800 kByte/s 

30 seconds 267 kByte Is 

1 minute 133 kByte Is 

5 minutes 26 kByte Is 

Table 3.2 - Image acquisition time vs. data transfer rate 

The interface between scanner and computer can be either analog or digital. Analog 

methods such as framegrabber cards provide high speed methods to transfer image data 

to the computer but are inflexible in the control they provide over the scanner. Digital 

methods provide more flexibility but are more restrictive for the high speed transfer of 

image data. Table 3.3 summarises the different interface methods available. 

Frame grabber cards are able to capture information at video rates and transfer the 

information to the computer at high speed using the computer bus. Frame grabber cards 

are not available for portable computers and do not provide the required degree of 

flexibility. 
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Interface method Data transfer rate Flexibility 

Analog 

Frame grabber video rate Low 

5 - 10 l\ffiyte Is 

Digital 

SCSI 41\ffiyte Is High 

Audio input 44 kByte Is (16 bit) Low 

Apple talk (serial RS422) 28.8 kByte I s High 

Serial 19.2 kByte Is High 

Table 3.3 - Scanner interface methods 

A variety of digital interface methods are available on a standard portable computer. It 

was decided to use the high speed digital SCSI communications interface to implement 

the data transfer between the scanner and computer as this provided more than adequate 

speed with very high flexibility in scanner control. 

3.4.2 Image Storage 

Image storage is an important consideration as the images captured are very large. Both 

temporary storage during processing and long term storage for image archiving must be 

considered. 

The images are captured straight on to computer and stored on hard disk. At eight 

megabytes per image a maximum of twenty images will fit on a typical 160 megabyte 

hard drive. At two images per tree this relates to ten imaged trees. In the short term a 

large (l-2 GByte) hard disk drive may need to be used for storage of images before 

process mg. 

Using the MARYL system a typical plot to be inventoried will contain about 15 trees to 

inventory. At a rate of 7 or 8 plots per day, this relates to 100 trees per day or 2 Gbytes 

of storage! 

Possible solutions for reducing this storage requirement are to process the images 

immediately, use image compression techniques, only keeping the section of the image 

with the tree in it, or vertical decimation by discarding horizontal lines. 

It is should be noted that video tape although a lossy storage medium is probably the 

most cost effective medium to store large quantities of image data. It is in this area that 

the video camera imaging method as discussed in section 2.2.1 would have significant 

advantages over a computer storage based technique. 
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3. 5 Parameter Extraction 

Once the images have been captured, the next task is to establish the relationship 

between image dimensions and the real world tree dimensions. This is the parameter 

extraction. Parameter extraction consists of image calibration and distortion 

correction: 

• Image calibration establishes what dimensions a single pixel represents on the 

object being imaged at the calibration reference point. 

• Distortion correction performs a mathematical correction, based on the 

calibration information, to compensate for the perspective distortions introduced 

for any point not at the calibration reference. Image calibration and distortion 

correction are closely related and will be discussed together. 

Planar transfonnation or geometric distortion correction? 

There are two fundamentally different approaches that can be taken to correct for 

perspective distortion: 

1 . The distortion can be seen as a planar transformation. Four points on the 

image and four points on the calibration rod uniquely identify the transformation. 

If the real world dimensions of the calibration rod are known, the position of any 

point on the tree can be calculated on the calibration plane. 

2. The task can be seen as geometric. If the position of the scanner is known in 

relation to the calibration rod, and the angle of the tree plane is known, the 

position of any point on the tree can be calculated on the calibration plane. 

Four distortion correction methods have been implemented, some based on planar 

Correction method Accuracy Based on 

Planar transformation correction 

Simple perspective correction Accurate Width of 2 cross bars & spacing 
(4 points in space) 

TreeScan perspective correction Approximate Width of 2 cross bars & spacing 
and imprecise in two correction steps 

Geometric correction 

TreeScan perspective correction Imprecise Width of 1 cross bar & calculated 
angle (using cross bars & spacing) 

TreeScan perspective correction Accurate Width of 1 cross bar & 
2 measured angles 

Table 3.4 - Comparison of distortion correction methods 
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transformation and some based on geometric correction. Each of these methods relies 

on different calibration information and has advantages and disadvantages. During the 

development precision problems were encountered when relying solely on image 

calibration rod dimensions as calibration information. As a result the calibration 

procedure was modified and additional angular information measured. All distortion 

correction methods are defined in this chapter with further discussion on the reasons for 

the final implementation in section 6.1. 

3.5.1 Image Calibration 

Image calibration involves having an object of known size (calibration rod) in the 

image. Using the dimensions of the calibration rod in the image, the dimensions of 

other objects the same distance from the scanner can be calculated. This will allow the 

size of features near the bottom of the tree to be estimated. The size of features near the 

top of the tree cannot be estimated this way because a calibration rod as tall as the tree 

would be required. 

It should be noted that in image processing, image calibration can be based on either 

linear measurement or area measurement. Image calibration based on linear 

measurement will provide a scaling factor of 'size per pixel' in the direction of the 

estimate. Calibration based on area measurement will provide a scaling factor in both x 

and y direction. Calibration based on area measurement has the advantage that it can be 

more precise and is resistant to image noise, but it is slightly more difficult to 

implement. 
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Depending on the approach taken to correct for image distortion different calibration 

information is required. Different types of calibration rod have been made to supply this 

information. 

The planar transformation distortion correction requires four fixed points and a 

calibration reference. A calibration rod with a vertical pole and two cross bars was used 

to generate this information. 

The calibration information required by geometric distortion correction with measured 

angle 0 is : a calibration reference, distance from this reference, and the combined dip I 

lean angle. In this case a smaller calibration rod is adequate. A single cross bar can be 

used to estimate distance with the centre as zero reference. A further improvement that 

can be made is to use a circular object instead of the single cross bar to use image 

calibration based on area measurement. 

The calibration method used for the final TreeScan system is to: 

• Have both a cross bar and calibration circle to provide two ways of estimating 

distance, with the intention of using only the circle in the future. 

• Measure the dip angle from the scanner to the calibration reference, and the angle 

of tree lean while capturing the second image at right angles. 

• Use centre of the circle I middle of the crossbar as the calibration reference. 

Both tree lean and dip angle as a result of elevated or lowered scanner position are 

combined into one angle 0 (see figure 3.17 for explanation). 
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3.5.2 Planar Transformation Distortion Correction 

The perspective distortion introduced during image capture can be interpreted as a 

planar transformation. Four points on the image and four points on the calibration rod 

uniquely identify the transformation. If the real world dimensions of the calibration rod 

are known the position of any point on the calibration plane can be estimated. 

3.5.2.1 Simple perspective correction 

If an area camera is used for image capture, the distortion introduced is a linear 

distortion from rectangular space to triangular space. This will be referred to as a simple 

perspective distortion. A planar transformation can be used to convert back from the 

triangular space to the rectangular space based on four points in the space. The four 

points used are the ends of the calibration crossbars. This is the correction method 

implemented for the macros developed for the experimental photographic system 

(Pugmire, 1994). 
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Figure 3.12 - Simple perspective correction 

The positions of the calibration rod end points are established using the real dimensions 

of the calibration rod (crossbar width d and d2, and distance apart a) and the image 

dimensions of the calibration rod (crossbar widths d' and d2 ', and distance apart a') . 

The real world x and y coordinates are calculated from the image coordinates using the 

following equations: 

y'a(l-P) 
y= , p, 

a- Y 
P= J- d1' 

d' 
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3.5.2.2 TreeScan perspective correction (approximation) 

If the TreeScan camera is used for image capture, the distortion will become nonlinear. 

This distortion (explained in section 3.3.3) will be referred to as the TreeScan 

perspective distortion. Four points still uniquely define the transformation, however 

image lines represent equal angular step sizes. The consequence of this is that pixels 

near the top of the TreeScan image will represent larger distances on the equivalent area 

scan image as shown in figure 3.13. 
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Figure 3.13 - Two step perspective correction 

This distortion can be corrected for in a two step process. Coordinates on the TreeScan 

image can be converted to equivalent coordinates within an area camera image using an 

angular correction. These coordinates are then processed by the simple perspective 

correction method described in the previous section. 

,, tan(y'a-0) 
y = 

tan a 

y"a(l- P) 
y= , p, 

a - y 

a = Step angle 

x'd( a ) x---
d' a'-Py" 

where P = 1 - d2 ' 

d' 

If the principal scanner axis is not normal to the calibration plane (the angle 0 is zero), 

this two step correction method becomes an approximation. 

The second restriction of this method is that it suffers from the precision problems 

discussed in the section on geometric correction. Given these restrictions the usefulness 

of this correction method is limited. 
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3.5.3 Geometric Distortion Correction 

The distortion correction task can also be interpreted as a geometric correction. This 

involves two steps; the scanner position relative to the calibration rod is determined to 

establish the image capture geometry, which is then used to estimate the position of any 

point on the calibration plane. 

3.5.3.1 TreeScan perspective correction - derived 0 (imprecise) 

Once the scanner position in relation to the calibration rod is known the coordinates of 

any position on the tree can be easily estimated using H, D and 0. They coordinate 

can be estimated using elementary trigonometry, and x is calculated using the fact that 

scaling in the x direction (or magnification) is inversely proportional to distance. To get 

the x coordinate, x' is scaled by the calibration factor did' and then by the ratio of 

distances Wi/W. 

,.. (x,y) 

d 

Figure 3.14 - Geometric correction using derived 0 

y=tan(y'a+O)xD - H x'd( cos(O) J 
x = 7 cos( y' a+ 0) 

The scanner position relative to the calibration rod can be calculated from 

the calibration rod dimensions in the image. This involves estimating distance W from 

the calibration reference using the image width of the lower calibration bar, and the 

calculation of the angle 0 from other image dimensions of the calibration rod. 

The situation is slightly redundant and different methods may be used to calculate 0 

from the calibration rod dimensions. Three methods implemented were the sine rule 

method, cosine rule method, and the Al method I as described in figure 3.15. 

However each of these methods suffers from a precision problem as a result of using a 

parameter to a degree of accuracy an order of magnitude greater than it can be measured 

from the image. 

I Thanks to Alistair Hall for help with the derivation of the mathematics for this method. 



Sine rule Cosine rule Al rule 

Sine rule method - This method to calculate 0 is based on the sine rule. 

The distance from the calibration reference can be estimated using the image 

width of the bottom cross bar, the angle A can be measured directly from the 

image using the image calibration rod height, and a (crossbar height) is 

physically measured. Using the sine rule 0 can be calculated. 

0=90-A-B A=a'a B . _1(W sinA) =szn 
a 

Cosine rule method - This method to calculate 0 is based on the cosine rule. 

The distance from the calibration reference can be estimated using the image 

width of the bottom calibration rod cross bar, the distance from the top of the 

calibration rod can be estimated using the image width of the top calibration rod 

crossbar, and a is measured. Using the cosine rule 0 can be calculated. 

0=90-A-B A=a'a B = cos-1(a2 + W/ + w2 J 
2aW 

Al rule method - This method is based on solved simultaneous equations 

describing the situation. Corrected x and y coordinates are directly calculated 

without the intermediate step of calculating 0 . 

The image widths of both the top and bottom cross bars are used, and the angle 

A is measured directly from the image using the image calibration rod height. 

[

cos( a' a)- d
2:J 

O=tan·1 d 
sin( a' a) 

cos(a'a+O) sin(y'a) 
y=a 

sin( a' a) cos(y' a+ 0) 

x'd( cos(O) J 
x=-;r cos(y'a+O) 

Figure 3.15 - Correction based on calibration rod dimensions 
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3.5 rn 

Height = 35 ± 3.5 m 

1. The relative ratio of the calibration rod crossbars is being used to estimate 

the calibration plane alignment. 

2 . A typical value of d' is 700 pixels. If the position of each end of the 

calibration rod crossbars can be determined to the nearest pixel, the image 

width of a crossbar is known to± 0.3%. 

3 . The ratio of the two crossbars is d2 '/ d' and used to estimate WIW2. This 

ratio is used to determine the alignment of the calibration rod 15 m away. 

WIW2 is known to ± 0.6% so the position of the top crossbar with respect 

to the bottom crossbar is known to ± 9 cm. 

5. At the top of a 35 m tree this represents an offset of 1.3 metres, which in 

return represents an error in height of 3.5 m. 

An optimal accuracy of 35 ± 3.5 m ! 

Figure 3.16 - Distortion correction imprecision 
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When estimating the scanner position what is effectively being done is the estimation of 

the alignment of the calibration plane (or rod) with respect to the scanner. It is the 

projection on this calibration plane of objects that is being measured, so in order to 

estimate the tree dimensions accurately, the positioning of the calibration plane must be 

known to a much higher degree of accuracy that the dimensions being estimated. 

If calibration rod points can be located on the image to 1 pixel accuracy this represents 

an optimal height accuracy of± 3.5 m at a height of 35 m (as shown in figure 3.16). In 

order to identify heights to a± 10 cm accuracy the calibration rod points need to be 

identified to a subpixel accuracy of 0.03 pixel. An alternative is to find a different 

method to determine the angle 0. 
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3.5.3.2 TreeScan perspective correction - measured 0 

This final distortion correction method is again based on the geometric correction that 

position coordinates can be calculated using known H, D and 0. The same equations 

used in the previous section are used to estimate these coordinates. 

y = tan( y' a + 0) x D - H x'd( cos(O) ) 
x=-;r cos(y'a+O) 

where 0 = Dip + Tree lean 

The angle 0 is however physically measured rather that derived from image calibration 

rod dimensions. By measuring 0 the imprecision experienced by the previous methods 

that derive 0 can be eliminated. 

The angle 0 is the combined angle of tree lean and dip as a result of a scanner position 

not level with the calibration rod. As a result the angle 0 is the sum of the tree lean 

measured from the vertical and the measured dip between the horizontal and the 

principal axis. 0 can be measured directly to the required degree of accuracy. 

The height deviation of± 3.5 m discussed in the previous section is equivalent to an 

accuracy in angle measurement of 2.2 degrees. Using a digital builders' level each of 

dip and lean can be measured to ± 0.1 degrees. This translates to an accuracy in height 

measurements of ± 30 cm. This is the method implemented in the Mk2 version of the 

TreeScan system. 
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Figure 3.17 - Measurement of angle 0 
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Note: A final comment that should be made is that the centre of the image should be 

used as the reference for x coordinates in this distortion correction as this is the only 

part of the image that remains horizontally undistorted. 
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3.6 Three Dimensional Model Generation 

Three dimensional model construction must combine stem shape information from 

multiple views to form a three dimensional model of the tree stem. 

To obtain a three dimensional model of a tree a minimum of two views at right angles is 

required. To ensure all branches have been observed a minimum of two views at 

180 degree spacing is required. Both a view of all branches and a three dimensional 

model for the assessment of sweep can be obtained from three views at 120 degree 

spacing. If only a sample of branches is required then two views at right angles is 

sufficient. 

The TreeScan software has been designed to estimate tree shape, and the size of visible 

branches from two views at right angles. 

The three dimensional model consists a series of stem diameter and stem position 

estimates along the length of the tree stem. The model should consist of sufficient 

'slices' to accurately determine any shape changes in the stem. 

Stem diameter and stem position estimates are obtained for the two edges of the stem. 

By combining edge information of two views at right angles a rectangle is defined 

within which the stem lies . It must be assumed that the centre of the rectangle represents 

the centre of the tree stem and that the stem diameter is the magnitude of an inscribed 

~~~ri:e- h . f . 3 18 as s own m igure . . 
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Figure 3.18 - Three dimensional model generation 
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Some trees will have a stern that is slightly oval in shape rather than circular. The two 

estimated diameters may or may not reflect this. If the major axis of the oval lies in the 

axis of one of the views the two diameter estimates will be diameter estimates along the 

major and minor axis of the tree stern. If the major axis does not lie in the axis of one 

of the views, both estimated diameters may be the same even though the tree stem is 

oval. 

It is important to note that height information is duplicated as it is available in both 

views. If a calibration error is introduced and the calibration plane does not lie exactly 

within the tree an expected height error is introduced in estimates (see section 3.7). This 

means that there will be a discrepancy between height information from the two views. 

By combining height information from the second image with that of the first image a 

more accurate height estimate could be made. This may be done in two ways: 

1. The height estimates of a feature common to both images could be compared and 

an indication could be gained of the accuracy of calibration. By adjusting other 

height estimates so that this particular height estimate matched in both views the 

average error could be reduced. This would require points to be marked in both 

images. 

2. Height estimate may be corrected slightly by modifying the calibration with the 

feature distance in front of or behind the calibration reference from the second 

view. This would provide a unique adjustment for each point on the stem and 

account to a certain extent for tree shape variation. Feature size estimation would 

become an iterative process which requires the marking of the full stem shape 

first. 

At this stage these modifications have not been made as the system is still undergoing 

testing. The improvement these two methods would make to the accuracy of the system 

is expected to be minimal. 
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3. 7 Implications of Image Capture Geometry 

The TreeScan system must be able to make accurate estimates from images captured 

under poor geometric image capture conditions, which may introduce a series of errors 

in the tree size estimates. These errors will be referred to as expected errors as their 

magnitude can be calculated. This section discusses the various sources of expected 

error and calculates their significance to the accuracy of the TreeScan system. 

The image capture geometry is poor because calibration information must be 

extrapolated. Images can only be captured and calibrated at ground level and must 

typically be captured in the range of ten to twenty metres from the base of the tree, this 

is drawn to scale in figure 3.19. The images are calibrated at the base of the tree 

providing good precision there. 

To estimate dimensions near the top of the tree the calibration information must be 

extrapolated using the distortion correction methods. As a result errors will be 

introduced. In addition to this, for estimates made at an oblique angle to the calibration 

plane (height estimates towards the top of the tree) the expected error will be 

accentuated. 

This image capture geometry is inherent in in-field tree imaging and cannot be improved 

upon without a conceptually different approach to the estimation of tree parameters. 

The image is captured fromG), 

the image is calibrated at®. 

estimates are made as high as@ ! 

20m 15m 10m 

40m 
tree 

Calibration 
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Figure 3.19 - Image capture geometry (to scale) 
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The effect of the image capture geometry is different on the various size estimates: 

• Branch diameters, stem diameters, and feature sizes are estimated 

perpendicular to the calibration plane and the introduced error will be small. 

• Height estimates are made at an oblique angle to the calibration plane and 

introduced errors will be larger. 

The expected errors in the TreeScan estimates can be divided into three sources: 

1 . Tree plane variation 

2 . Variation in calibration data 

3. Image processing and feature marking precision 

Table 3 .5 summarises the effects from each of these sources under typical operating 

conditions, which are taken to be: the estimation of parameters at a height of 30 m, and 

image capture distance of 15 m from the base of the tree. The magnitude of the expected 

error classified as: major (>0.5 x required specifications), minor (0.2 - 0.5 x 

specifications), and insignificant ( <0.2 x specification). 

Brief discussion of each relevant source of uncertainty is provided in sections 3. 7 .1 to 

3.7.3, with further calculations provided in appendix E. 

Cause of uncertainty Significance of expected error 

Height Stem diam. Branch diam. 

Tree plane variation 

Tree displacement Major Insignificant Insignificant 

Calibration alignment variation 

Variation in measured angle Major Minor Insignificant 

Calibration rod alignment Minor Minor Minor 

Calibration rod vertical placement Minor Insignificant Insignificant 

Calibration rod in front of tree Insignificant Minor Minor 

Image processing precision 

Calibration end pixel placement Minor Minor Minor 

Calibration centre point placement Minor Insignificant Insignificant 

Pixel placement on feature Insignificant Minor Major 

Table 3.5 - Sources of expected error in TreeScan 
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3.7.1 Tree Plane Variation 

If a section of tree is not straight (as a result of lean, sweep, or kink) so that the feature 

of interest is offset from the calibration plane there will be a tree displacement, 

introducing expected errors. For tree lean the error can be eliminated by aligning the 

scanner correctly, however for a tree with sweep or a kink this may not be possible and 

a compromise will need to be made in aligning the scanner. 
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Figure 3.20 - Tree plane variation 
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The software can be extended to use calibration information from the second view to 

modify the calibration information of the first view. This would reduce the magnitude 

of introduced errors, but implies any height must be iteratively refined by processing 

both views (see section 3.6). 

3. 7.1.1 Errors Introduced bv Tree Displacement 

Tree displacement can cause a major error in height estimates, as any error is 

accentuated by the geometry. As shown in table 3.6, a stem displacement of only 50 cm 

will cause a height to be overestimated by 1.03 m for a height estimate at 30 m from an 

imaging position 15 m away from the tree (see appendix E for more detail). 

Heiqht error (m) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiqht error (m) introduced by 0.5 degree error in 0 
1 0 0.00 0.53 1.05 1 .58 2 .11 
1 5 0 .00 0.34 0.69 1. 0 3 1.38 
20 0.00 0.26 0.51 0.77 1.03 

Table 3.6 - Height errors introduced by stem displacement 
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Width errors are not as badly affected by stern displacement as width estimates are 

based solely on distance from the feature. For the same situation described above the 

error in diameter estimates will be 3 mm for a 10 cm branch (see table 3.7). 

Width error (cm) 
Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Width error (cm) from 50 cm stem displacement (1 O cm branch) 
1 0 -0.5 -0.5 -0.5 -0.5 -0.5 
1 5 -0.3 -0.3 -0.3 -0.3 -0.3 
20 -0.2 -0.2 -0.2 -0.2 -0.2 

Table 3.7 - Width errors introduced by stem displacement 

The introduction of these expected errors can be minimised by ensuring the scanner and 

the calibration rod are closely aligned with the tree during image capture. 

Note that in all error tables (3.6 to 3.9) the error values for typical conditions, estimates 

at a height of 30 m imaged 15 rn away from the tree, are highlighted in bold. 

In short: 

• The variation in tree plane can introduce a major error in height estimates. Any 

errors in height estimates will be accentuated near the top of the tree. 

• The variation in tree plane can introduce a minor error in diameter estimates. 

Diameter estimate errors remain constant up the tree. 

3.7.2 Calibration Alignment Variation 

The image can only be calibrated to the degree of accuracy that the calibration 

information can be measured or estimated . This section discusses the effects of 

imprecise calibration information and calculates the degree of accuracy to which the 
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Figure 3.21 - Calibration alignment variation 
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calibration information needs to be measured. Any imprecision in calibration alignment 

of the Mk2 system can be divided into three sources; variation in measured angular 

position, variation in distance estimate, and calibration rod placement. 

Analysis of the variation in the calibration alignment of the Mkl system was more 

complicated (see Weehuizen 1994c for a discussion). 

3.7.2.1 Errors Introduced by Variation in Measured an2le 

If the angular position of the scanner w.r.t. the tree (angle 0) is inaccurately measured 

or not entered to calibrate the image, errors are introduced into the size estimates. 

Inaccurate measurement of 0 affects the 'alignment' of the calibration plane to which 

dimensions are being estimated (see table 3.8). 

• Inaccurate measurement of 0 can introduce a major error in height estimates. Any 

errors in height estimates will be accentuated near the top of the tree. 

• Inaccurate measurement of 0 does not introduce significant errors in width 

estimates. 

The angle 0 should be measured to an accuracy of ± 0.2 degrees. This provides a 

precision in the height estimates of± 20 cm for estimates taken at a tree height of 30 m 

from images captured at a position 15 m from the base of the tree. 

Height error (m) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiqht error (m) introduced by 0.5 deqree error in 0 
1 0 0.00 0 .09 0.36 0.81 1.45 
1 5 0.00 0.06 0.24 0.5 3 0.95 
20 0.00 0.04 0.18 0.40 0 .71 

Width error (cm) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Width error (cm) introduced bv 0.5 deqree error in 0 
1 0 0 .0 -0.2 -0. 1 -0. 1 - 0. 1 
1 5 0.0 -0.2 -0.2 - 0 . 1 - 0 . 1 
20 0.0 -0. 1 -0.2 -0.2 -0. 1 

Table 3.8 - Errors introduced by variation in measured angle 
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3.7.2.2 Errors Introduced by Calibration Rod Alienment 

The calibration distance is the distance from the point the image was captured to the 

calibration reference. The width of the calibration rod cross bars is used to estimate this 

calibration distance. If the calibration rod is not at right angles to the direction of image 

capture an error is introduced into the estimated calibration distance. 

A distance error of 25 cm (see table 3.9) implies the calibration rod has rotated by 10 

degrees (or each end of the calibration rod has moved by 18 cm). 

• Inaccurate measurement of calibration distance can introduce a minor error in 

height estimates. Errors in height estimates are accentuated near the top of the tree. 

• Inaccurate measurement of calibration distance does not introduce significant 

errors in width estimates. 

The calibration rod should be perpendicular to the principal axis to within ± 6 degrees 

(crossbar ends can move up to ± 11 cm). This estimates the calibration distance to 

± 10 cm and provides a height estimate precision of± 20 cm for estimates taken at a tree 

height of 30 m from images captured at a position 15 m away from the base of the tree. 

Hei<1ht error (m) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiqht error (m) introduced by 25 cm error in Dist. 
1 0 0.00 0.25 0.50 0.75 1.00 
1 5 0.00 0 . 17 0.33 0.50 0.67 
20 0.00 0.13 0 .25 0.38 0.50 

Width error (cm) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Width error (cm) introduced by 25 cm error in Dist. 
1 0 -0 . 2 -0.2 -0.2 -0.2 -0.2 
1 5 -0.2 -0.2 -0.2 - 0 . 2 -0.2 
20 -0. 1 -0. 1 -0. 1 -0. 1 -0. 1 

Table 3.9 - Errors introduced by distance error 

3.7.2.3 Errors Introduced by Calibration Rod Vertical Placement 

The calibration rod is used as the calibration reference. The calibration rod must be 

placed at the same height in both images to retain the same height as a calibration 

reference. If the rod is not placed at the same height this introduces: 

• Height estimate error of the size of the calibration rod displacement. 

• No width estimate errors. 

The calibration rod should be placed at the same height in both views to an accuracy of 

± 5 cm. This provides a precision of± 5 cm for height estimates 
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3.7.2.4 Errors Introduced by Calibration Rod Placement 

in Front of Tree 

Trees are three dimensional and the stem has depth. The calibration rod cannot be 

placed directly in line with the centre of the tree, instead it must be placed in front of the 

tree. The result of this is that there is a small stem offset error (half stem diameter) 

introduced near the base of the tree. The effect of stem offset error is described in 

section 3. 7 .1. 

• Calibration rod placement can introduce a minor error in height estimates. 

• Calibration rod placement does not introduce significant errors in width estimates. 

The calibration software can take this into account and correct both height and diameter 

estimates for this. 

3.7.3 Image Processing and Feature Marking Precision 

In order to calibrate the image and estimate feature sizes, points must be marked on the 

image. The placement of these points introduces imprecision as the marking relies on 

human judgement and the ability to see the feature of interest in the image. This section 

discusses the effects of imprecise image marking and calculates the degree of accuracy 

to which the points need to be marked. 

3.7.3.1 Errors Introduced by Calibration Rod End Pixel Placement 

The marking of the calibration rod end points provides information on their location in 

the image. Using these marked points and the known calibration rod width the 

calibration distance is calculated. 

• Minor error introduced in height estimates 

• No error introduced in diameter estimates 

The end points should be marked to within ± 1 pixel. This estimates the calibration 

distance to a precision of± 4 cm, which provides a precision in the height estimates as a 

result of calibration rod end pixel placement of ± 8 cm for estimates taken at a tree 

height of 30 m from images captured at a position 15 m from the base of the tree. 
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3.7.3.2 Errors Introduced by Calibration Rod 

Centre Pixel Placement 

The centre of the calibration rod is used as the calibration reference and taken to be at 

breast height. All estimates are made with reference to this. If the placement of this 

point is imprecise all height estimates will be out by several cm. 

• Minor error introduced in height estimates 

• No error introduced in diameter estimates 

The centre of the calibration rod must be marked to within ± I pixel. This provides a 

precision in the height estimates as a result of calibration rod centre pixel placement of 

± I cm for estimates taken at a tree height of 30 m from images captured at a position 

15 m from the base of the tree. 

3.7.3.3 Errors Introduced by Pixel Placement on Feature 

The pixel placement on features whose size is being estimated provides their location 

information. Imprecise placement has the following effect: 

• No significant error introduced in height estimates 

• Major error introduced in diameter estimates 

As diameter estimates are calculated using the differences in absolute position, and the 

two sides of a branch typically will be separated only by a diameter of several pixels 

estimates are very sensitive to precise feature marking. 

The end points of the line selection for branch sizes should be marked to sub pixel 

accuracy if possible. This provides a precision in branch size estimates of a pixel 

resolution of± 0.7 cm near the top of the tree. 
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This chapter describes the hardware of the TreeScan system. The main focus is on a 

description of the custom designed scanner. 

The scanner hardware is described by dividing the scanner into functional blocks. The 

interaction between these functional blocks is explained, then a number of aspects of 

each functional block are described in greater detail, including; operating theory, 

building blocks, schematics, reasons for the chosen implementation, and problems 

encountered during development. 

4.1 TreeScan Hardware Overview 

The TreeScan system is a complete system that consists of a portable computer, a 

custom designed scanner and a calibration rod. In addition to this there is a tripod on 

which to mount the scanner, a scope sight and digital level to align the scanner, a set of 

batteries to power the scanner, cables to connect the scanner to the computer and power 

supply, and a set of cases to house the entire system. 

Normal operation of the TreeScan system involves two separate operations: 

1. Image Capture: Images must be captured using the scanner under control of the 

portable computer. All system components must be taken into the forest to capture 

images. 

2 . Parameter Extraction: Tree dimensions must be estimated using routines 

implemented in software. The parameter extraction requires only the portable 

computer. This may be carried out at any time after the images have been 

captured, either in the forest or back in the office. 

The system configured for image capture consists of the scanner set up on the tripod 

and connected to the portable computer, as shown in figure 4.1. The scanner is pointed 

at the tree to be imaged with the calibration rod fully extended and placed against the 

tree. The scanner is then aligned with the tree using the scope sight and its angular 

position with respect to the tree recorded. The image can then be captured. 

The scanner captures the image data under control of the computer and passes the image 

data to the computer for storage. The computer sends high level scanner control 

commands ( SCCs) to the scanner. The microcontroller inside the scanner carries out 

tasks based on these. Scanner control commands are high level instructions such as; 

move the scanning mirror home, capture a block of lines, or move the lens focus to 

infinity. 
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Scanner 

rod 

Tripod 

cases 

Figure 4.1 - TreeScan system ready for image capture 

The portable computer and scanner batteries are permanently housed in the smaller of 

the two protective carrying cases (see figure 4.1 ). All other components including 

scanner, tripod, cabling, scope sight and digital level fit into the second protective case. 

The portable computer is an Apple Macintosh Powerbook 520c with 20 megabytes of 

RAM. The Powerbook 520c is based on the Motorola 68040 processor runnin,.g at 
L:Se~~ 1cn) 

25 MHz. Combined with the flexible NIH Image image processing software"the 

Powerbook provides a powerful image processing environment. The Powerbook also 

has inbuilt support to connect high speed external SCSI devices. 

The hardware and software are closely interrelated in any complex microprocessor 

based system such as the TreeScan system. The choice of hardware determines how the 

software is implemented and influences the flexibility of the system. The hardware 

implemented was chosen for its flexibility , relatively low cost, and to provide a short 

development time. Where the hardware has limitations, in some cases these can be 

circumvented by a resourceful software implementation. 
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4. 2 Scanner Hardware Overview 

The scanner is the "camera" in the system and is a custom designed scientific 

instrument. During an image capture there are a large number of time critical tasks to be 

coordinated. A dedicated microcontroller based instrument provides the ability to 

coordinate these tasks while retaining maximum control and flexibility. 

A microprocessor based instrument can be designed so that essential data processing is 

handled by the microcontroller itself or by dedicated hardware (such as specialised AID 

converters), which will be faster than the general purpose microcontroller hardware. 

However, the greatest flexibility will be maintained if the microcontroller hardware is 

used. For the TreeScan prototype it was decided that it was essential to maintain 

flexibility. 

~------------------------ --- --- ---- - -- ] 

1 6. Power supply 
I 
1 subsystem 
I 

~~~~ su;s~~~m 
I 

1· Microcontroller 4· Scanning mirror 
subsystem subsystem 

"---~ Lens 
subsystem Portable 

Computer 

I 
-----~ 

1 Scanner 
I I 

L-- -------- - -- ----- - --------- ----- - - --1 

Figure 4 .2 - TreeScan scanner functional block diagram 

The TreeScan scanner can be divided into six functional blocks (see figure 4.2), the 

physical layout of which is shown figure 4.3. These functional blocks are: 

I. Microcontroller subsystem 4. Scanning mirror subsystem 

2. SCSI subsystem 5. Lens subsystem 

3. Line scan camera subsystem 6. Power supply subsystem 

Microcontroller subsystem - Central to the scanner is the microcontroller 

subsystem. The microcontroller coordinates all functions of the TreeScan scanner and 

carries out tasks based on the SCC's passed from the portable computer. The 

microcontroller handles the actual image acquisition and image transfer to the computer, 

as well as the generation of signals to control the other five functional blocks. 

SCSI subsystem - Scanner control commands are passed from the computer to the 

scanner via a SCSI interface (Small Computer Systems Interface - see section 4.4 ). The 
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Cabling to 
computer 

SCSI interface is a high speed communications interface often used to communicate 

between a computer and peripheral devices. The SCSI specification incorporates a 

communications protocol that consists of a sequence of bus phases with a complex 

sequence of control signalling. A SCSI bus controller deals with the bus phases and 

bus signalling, providing a straight-forward interface to the SCSI bus for the 

microcontroller. 

Line scan camera subsystem - The third important block is the line scan camera 

subsystem. The image data is captured by the line scan camera and presented to the 

microcontroller as a series of analog video signals. The microcontroller converts these 

analog signals to a digital representation which is then sent to the computer using the 

SCSI controller. The line scan camera captures grey scale image information at a 

resolution of 1024 pixels per line. The line scan camera is controlled by two timing 

signals generated by the microcontroller; a line/integration clock and a pixel clock. 

Scanning mirror subsystem - The scanning mirror subsystem consists of a mirror 

mounted on a precision rotation mechanism. As the mechanism is slowly rotated the 

image is built up one line at a time. The mechanism is rotated using a worm wheel drive 

shaft attached to a stepper motor. The microcontroller software determines when the 

stepper motor is rotated. The rotation mechanism is precision machined and mounted on 

miniature roller bearings. Two optical position sensors are used to detect an exact home 

position for the mechanism. 
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Lens subsystem - The fifth functional block is the lens subsystem. The purpose of 

the lens is to focus an image of a real world object on to the sensor of the line scan 

camera. The lens has motorised focus control, motorised zoom control and 

electromechanical aperture control. This allows maximum flexibility during image 

capture. The infinity position of the focus stepper motor is detected by a limit switch. 

Power supply subsystem - The power supply subsystem provides power at the 

required voltage to all of the above modules from two external batteries. The power 

supply has two states controlled by the microcontroller: 

• Power save - during which power is turned off to all of the high consumption 

components. Only the CMOS microcontroller and SCSI controller are left 

powered so the computer can still communicate with the scanner. 

• Power on - during which power is turned on to all components. The scanner is 

in this state only during image capture. 

Figure 4.4 is a signal flow diagram that provides logical details of the signals that pass 

between individual functional blocks, each of which is discussed in detail in sections 

4.3 to 4.6. 

The TreeScan system is still undergoing continual improvement. During field trials with 

the Mkl prototype several problems were successfully identified (see section 6.2 for a 

discussion on these). As a result two aspects of the system were redesigned for the 

Mk2 prototype. The system is currently in the Mk2 prototype stage. Unless specifically 

stated otherwise, discussions on hardware will apply to both the Mkl and Mk2 

versions of the TreeScan system. 
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4.2.1 Scanner Controller Board 

A printed circuit board (PCB) has been designed and manufactured to accommodate all 

the scanner electronics. This consists of the microcontroller subsystem self-contained 

on the PCB, and the driving and interfacing electronics for the other functional blocks. 

The PCB is separated into three physical sections with separated power supply sections 

to reduce possible noise problems: 

• Digital - Microcontroller and SCSI controller 

These are operating at a clock speed of 16 MHz and could cause high frequency 

noise in the analog sections. 

• Analog - Line scan camera drivers, stepper motor drivers, and lens drivers 

Components in this section draw large currents which could cause supply voltage 

fluctuations. 

• Analog reference - ND reference voltages and video shield 

These are isolated from the digital and analog sections to reduce noise on the 

video signal. 

A small plugin daughter board contains the additional lens driving circuitry required for 

the Mk2 version of the scanner. 

SCSI bus controller 
and terminator 

Video signal 
input 

Microcontroller 
subsystem 

Line scan camera 
driver 

Mirror stepper 
driver 

Figure 4.5 - Scanner controller board layout 

Lens driving 
electronics 
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4.3 Microcontroller Subsystem 

General description 

At the core of the scanner lies the microcontroller coordinating the operations inside the 

scanner, many of which are time critical so a dedicated microcontroller is necessary. 

The microcontroller carries out tasks based on scanner control commands sent from the 

portable computer. The main task of the microcontroller is to perform the AID 

conversion of the analog video data and transfer this image data to the computer. In 

addition to this the microcontroller must generate signals to control the line scan camera, 

the lens, the SCSI bus controller, the power supply, and operate to the stepper motors. 

The microcontroller used in the scanner is the Siemens 80C517 A. The 80C5 I 7 A is an 

8-bit CMOS single chip microcontroller designed for control in hostile environments 

such as general instrumentation, and industrial and automotive control systems. The 

80C5 I 7 A is a high end member of the 8052 microcontroller family, chosen for its 100 

kHz on board A/D converter, the fastest available in this class of microcontroller. The 

80C517 A has numerous other advanced features including serial communications 

support, five 8-bit input I output communications ports, four clocks, and a four priority 

level interrupt handling system. 

The microcontroller performs a 10 bit AID conversion of the video signal, however 

normally only the top 8 bits are used in the TreeScan system to increase image capture 

speed. The reason for this is that the result of this A/D conversion is stored in two 

bytes. The top 8 bits in one byte and bottom 2 bits in another byte. This has the 

implication that the top 8 bits can be rapidly read out as an 8 bit conversion over the full 

AID dynamic range. If however an 8 bit conversion over the lower portion of the AID 

dynamic range or a I 0 bit conversion with 8 bit lookup table is required the relevant bits 

of the two bytes need to be combined. This requires extra processing time so increases 

the time required per pixel conversion. This matter is further discussed in the section on 

timing in the software chapter (see section 5.2.3.3). 

Both memory mapped 1/0 and port based 110 are used to communicate with other 

components in the scanner. The interface to the SCSI bus controller is through memory 

mapped 1/0 (see memory map - figure 4.7). Communications to all other functional 

blocks is port based. 
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Associated with the microcontroller is 32 k.Bytes of EPROM, 32 k.Bytes of external 

RAM, an address latch, and an oscillator. The microcontroller code is stored in EPROM 

and currently talces approximately 10 KBytes. The AID lookup tables are also stored in 

EPROM and take up 5 KBytes (5 x 1 KByte). This provides adequate space for further 

program expansion if required. The external RAM was provided as a precaution in case 

temporary data storage was required to buffer the image data. This is currently being 

used to allow lines to be resent if errors occur in the transfer of data over the SCSI 

interface. 

The microcontroller has two ports which are used as buses. A high order address bus 

and a multiplexed low order address and data bus. A 74HC573 address latch is used to 

decode the low order address bus from the multiplexed address data bus. The address 

latch is triggered by the ALE signal. Using the top address line (AH7) either the 

external RAM or the SCSI controller can be selected and n~'fck~ss decoding circuitry 

is required. The PSEN', RD', WR', and AH7 signals are used to select ROM, RAM, 

and the SCSI bus controller 

The 80C517 A will operate on a clock frequency anywhere from 3.5 MHz to 18 MHz. 

An operating frequency of 16 MHz was chosen because this provides the fastest AID 

conversion time of 7 µs (at 18 MHz AID conversion time is 12.4 µs). This clock signal 

is generated using a 16 MHz crystal oscillator which also provides a clock signal for the 

SCSI controller. 
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4.3.1 Microcontroller Subsystem Memory Organisation 

The organisation of the memory space of the 80C517 CPU is complicated; detailed 

information is provided in appendix H. The 80C517 CPU has separate address spaces 

for program and data memory, and manipulates operands in the four address spaces: 

• Up to 64 kBytes of program memory 

• Up to 64 kBytes of external data memory 

• 256 bytes of internal data memory 

• 128 bytes of special function registers 

Program memory can either be an external EPROM or up to 32 kBytes of factory 

programmed ROM on the micro controller chip. The active program memory is 

determined by the state of the EA pin during powerup. 

There are two forms of external data memory; up to 64 kByte external RAM and 

2 kBytes of on chip XRAM. The XRAM is accessed using identical instructions to 

those used for accessing external RAM but with bit 1 of the SYSCON register set. 

All registers, except the program counter and four general purpose register banks, 

reside in the special function register (SFR) area. The SFR's include arithmetic 

registers, pointers and registers to provide an interface between on chip peripherals . 

Registers which lie on 8 byte boundaries are bit addressable. 

The internal RAM contains four banks of registers and a 128 bit bit-addressable 

section overlapping a part of the internal RAM. The stack pointer is initialised to 08h in 

internal RAM on reset. There is an address overlap between the upper 128 bytes of 

TreeScan Microcontroller Memory Map 
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Figure 4. 7 - Microcontroller memory map 
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internal RAM and the SFR's. The addressing mode used determines whether the SFRs 

are addressed or whether internal RAM is addressed. 

The TreeScan scanner rnicrocontroller uses the following sections of the 80C517 A 

memory space (see figure 4.7): 

• 

• 

• 

32 kByte EPROM to store the microcontroller code and ND lookup tables . 

32 kByte RAM of which I kByte is used to buffer the SCSI transfer . 

SCSI controller registers repeatedly mapped into the top 32 kBytes of 

external data memory. 

• The lower internal RAM for working variables. 

• The special function registers. 

4.3.2 Microcontroller Subsystem Memory Timing 

In microprocessor design any external device must be fast enough to match the 

microprocessor read and write cycle timing. Problems are often encountered with 

EPROM read cycles. In this case: 

• Upon the falling edge of ALE the address latch is triggered. Assuming a 

maximum delay of 25 nS within the latch the low order address bus data becomes 

valid no later than 25 nS after falling edge of ALE. The data bus is expected to be 

valid no later than 233 nS after the falling edge of ALE. This allows the EPROM 

208 nS address access time from valid addressing to valid data (see figure 4.8). 

• PSEN' is used as EPROM output enable. PSEN' is asserted a minimum of 

150 nS before valid data, this allows for an OE' to output delay of 150 nS . 
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Figure 4.8 - EPROM read cycle timing 
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EPROMs must be selected which fit the above criteria. 200 nS EPROMs (75 nS OE' to 

output delay) would be usable but barely under the 208 nS address access time. To be 

safe 170 nS EPROMs were used (70 nS OE' to output delay). 
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4.4 SCSI Subsystem 

General description 

The SCSI subsystem provides a two way communications interlace between the 

microcontroller and the Macintosh computer over a SCSI communications bus using a 

SCSI bus controller. This interface is used to send scanner control commands to the 

scanner and transfer the image data back to the computer. 

SCSI stands for Small Computer Systems Inteiface and is a high speed, flexible 

communications interface commonly used to connect peripheral devices to computers 

(most hard disks are SCSI). The SCSI interface allows for multiple (up to seven) 

devices to be attached to a single SCSI bus using logical addressing, and allows for 

data rates up to 4 Mbytes per second. The SCSI communications protocol consists of a 

sequence of bus phases mediated by a complex sequence of control signals (see section 

4.4.1 for a discussion on implementing SCSI). 

A SCSI bus controller (SBC) chip provides a simple interface to the SCSI bus for a 

microcontroller. At the time of development, SCSI bus controllers were available from 

Texas Instruments, Western Digital, and AMD. The SN75C091A SCSI controller from 

Texas Instruments was incorporated into the design based on a short chip delivery time 

and the availability of reference information. 

Several problems were encountered while implementing the SCSI subsystem. The main 

obstacle was a result of unexpected timing fluctuations . Noise problems were also 

experienced on the development circuit implemented on veroboard. These are further 

discussed in section 4.4.3. 

Manufacturer SCSI Chip Availability 

Texas Instruments SN75C091A Available 

Western Digital WD33C93B Available - Delayed reference data 

AMO AM53C80APC Available - Delayed reference data 

Hitachi 64951 Not Available 

Table 4.1 - Availability of SCSI bus controllers 
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The SCSI subsystem consists of a SCSI bus controller and a SCSI bus terminator 

inside the scanner. Both the terminator and bus controller are attached to the SCSI bus 

which is connected to the computer. 

The SN75C091A SCSI bus controller consists of a 68 pin square PLCC package. The 

microcontroller communicates with the SCSI controller using 32 bytes of memory 

mapped registers. The SCSI controller is selected by the inverted top address line. By 

using the top address line no address decoding circuitry is required. This maps the 

SCSI registers repeatedly into the top 32K of the microcontroller address space. 

The SCSI bus must be correctly terminated. The scanner is internally terminated so it 

can only be the final device on a SCSI chain. The terminator used in the scanner is a 

UC5601 chip and powered from the TERMPOWER line on the SCSI bus. 
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4.4.1 Implementing SCSI : Design Specifications 

The SCSI interface is defined by the ANSI X3. l 31 - 1986 standard (ANSI, 1986). The 

standard defines the mechanical, electrical, and functional requirements for the SCSI 

bus, and the protocol command sets. The SCSI bus consists of 18 signal lines, nine of 

which are control signal lines and nine of which are data signal lines. The SCSI 

communications protocol consists of a sequence of bus phases mediated by a complex 

sequence of control signals. 

The SCSI interface allows for multiple devices attached to a single SCSI bus using 

logical addressing. The SCSI bus consists of a series of daisy-chained devices 

terminated at each end. The speCification allows for data rates up to 4M bytes per 

second and cable lengths up to 25 m dependent on the circuit implementation. Transfers 

may be implemented using either a synchronous or an asynchronous protocol. 

The standard specifies a maximum cable length of 6 m for an implementation with 

single ended drivers and receivers. A single ended implementation should use a cable 

with a 132 ohm characteristic impedance to match the terminators, and minimal media 

discontinuities to reduce signal reflections. Ideal conditions are not usually attainable 

and an implementation may require the trade-offs in shielding effectiveness, cable 

length, the number of loads, transfer rates, and cost to achieve satisfactory system 

operation (ANSI, 1986). Practically, this implies that a maximum cable length of l .8m 

(6 ft) is used to prevent data corruption during transfer. A cable length of 1.8 mis just 

adequate for the TreeScan system. 

A brief description of the SCSI bus protocols and general SCSI commands is provided 

here. Further details are presented in appendix I, or can be found in the reference 

material (ANSI, 1986) . 

4.4.1.1 SCSI Bus Protocols 

The SCSI protocol contains eight distinct phases (see next page). The SCSI bus can 

only be in one of these eight phases at any one time. A SCSI operation is a completed 

SCSI command or data transfer. A single SCSI operation consists of the execution of a 

carefully controlled sequence of these bus phases. 

The device that requests a SCSI operation is called the initiator. The device that 

performs the operation requested by the initiator is the target. During a SCSI operation 

control of the bus is handed back and forth between the initiator and the target until the 

operation is complete. Only a device that is in control of the SCSI bus may change the 

bus phase. 
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The eight bus phases consist of the following (see appendix n: 
• BUS FREE Phase 

• ARBITRATION Phase 

• SELECTION Phase 

• RESELECTION Phase 

• COMMAND Phase \ 

• DATA Phase I Collectively called the 

• ST ATVS Phase INFORMATION Phase 

• MESSAGE Phase I 

A completed SCSI operation will start with a BUS FREE phase and must proceed 

through an ARBITRATION phase, SELECTION phase, COMMAND phase, ST A TUS 

phase, and a MESSAGE phase. In addition to this the SCSI operation may include a 

RESELECTION phase and a DATA phase. This sequence can only be broken through 

a timeout or the undesirable assertion of the bus RESET signal at which time the bus 

must be released to the BUS FREE phase. 

During these bus phases the bus control signals are asserted in a complicated control 

and handshaking sequence. The sequence the control signals may be asserted is 

specified in the ANSI standard. A typical SCSI transfer is discussed in section 5.2.4. 

Minimal and maximal duration between signal transitions is also specified in the 

standard. The SCSI bus signals are listed below (all signals are active low): 

• Control signals: BSY, MSG, SEL, REQ, CID, ACK, 1/0, ATN, RST 

• Data signals: SDO - SD7, SDP 

4.4.1.2 General SCSI Commands 

At a higher level, SCSI commands are sent from the computer to the microcontroller. 

This consists of the tr an sf er of a command descriptor block. A command descriptor 

block is a data structure containing a command opcode and parameters associated with 

this opcode. The command descriptor block may be six, ten, or twelve bytes long. 

The first byte of the command descriptor block contains the operation code. The 

operation code is the SCSI command number. The top three bits of an operation code 

specify the group code. SCSI commands fall in several categories based on this group 

code: 

Group 0 : six byte commands Group S : 12 byte commands 

Group 1 : ten byte commands Group 6 - 7 : Vendor unique 

Group 2 - 4 : Reserved 
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bit 7 6 5 4 3 2 1 0 

Operation code 

Logical unit number I Reserved 

Command specific eg. Transfer length (MSB) 

Command specific eg. Transfer length (LSB) 

Control byte 

Figure 4.10 - Typical command descriptor block (ANSI, 1986) 

A typical command transfer block would contain the information shown in figure 4.10. 

In order for a device to adhere to the SCSI specification a number of general commands 

must be implemented. Out of 256 available commands four commands are classed as 

mandatory, four commands are for devices that support independant self configuring 

software, twenty two commands are optional, twenty three commands are vendor 

specific, with the rest reserved for future use. 

The classification of commands as mandatory or optional is dependent on the device 

type. Device types include direct access devices, sequential access devices, printer 

devices, processor devices and WORM devices (see appendix n. 
The TreeScan system implements 20 commands, all within the six byte command 

range. 
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4.4.2 SCSI Bus Controller ( SN75C091 A ) 

The SN75C091A SBC manufactured by Texas Instruments is a single ended flexible 

SCSI implementation for microprocessors. It provides DMA or programmed 1/0 

capabilities and can be interrupt driven to minimise host polling. The SN75C091A can 

execute multiphase commands to minimise host interrupts. Chip access is provided 

through 32 directly addressable registers (Texas Instruments, 1990). 

The SBC is driven by chip commands written to the COMMAND register. These 

commands are instructions from the microcontroller to the SBC to modify the current 

bus phase or transfer data. These commands fall in three categories: 

• Non interrupting commands 

• Single phase interrupting commands 

• Multi phase interrupting commands 

The SBC is controlled by the background loop of the microcontroller software. The 

TreeScan system uses mainly single phase interrupting commands in a processor polled 

loop (see section 5.2.4). Appendix J provides more detailed SBC specifications. 
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4.4.3 SCSI Subsystem Development Obstacles 

Several problems were encountered during the development of the SCSI interface: 

Problems were experienced with the TreeScan development boards; 

1. Noise problems were experienced during data transfer over the SCSI bus 

connection to the development board. This was probably due to lack of shielding 

of the SCSI bus connection to the SCSI bus controller (developed on the 

veroboard). This intermittent problem was solved by using the custom designed 

printed circuit board. 

2 . For testing the SBC was piggybacked in place of another memory mapped 1/0 

device on the microcontroller development board. The trigger pulse of the 

replaced 1/0 device was insufficient in duration to latch the SCSI registers. 

The second major problem involved unexpected timing fluctuations of the SCSI 

interface and was discovered during the development of the SCSI transfer algorithm 

(see section 5.2.4). 

1 . Although SCSI is a handshake system, with a 'wait if not ready' flag, there is 

insufficient time in the main capture loop to check this flag . It is assumed the 

SCSI interface (4 MBytes/s) is able to keep up with AID conversion (100 kHz). 

At times the SCSI controller of the Macintosh was unable to receive data for 

intervals of approx 15 mS in duration. This was probably due to background 

operating system tasks and caused image bytes to be lost as the reading out of the 

line scan camera data could not be delayed. An error detection and line resend 

scheme has been implemented (see section 5.2.4 for further detail). 

2 . The SCSI interface was slow to react to SCSI phase changes introducing a 

minimum SCSI transfer duration of approximately 170 mS (see section 5.2.4 for 

further detail). This transfer duration should be in the order of nanoseconds, and 

its cause should be further investigated. 

3. During the tracking of the above problems the SCSI clock frequency was 

increased to 20 MHz. The microcontroller still operated at 16 MHz. This 

introduced a timing mismatch which caused occasional (approx. 1 byte in 50 000) 

bytes to be gained during the transfer. This was rectified as soon as it was 

discovered, but the consequence of this was that the error detection and resend 

scheme was complicated unnecessarily. 
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4.5 Line Scan Camera Subsystem 

General description 

The line scan camera subsystem captures image data and converts it to an analog video 

signal which is used to generate the captured image. The line scan camera subsystem 

consists of a CCD line scan camera (LSC), interfacing buffers, and the analog reference 

section of the controller board. 

The line scan camera subsystem is a very important section of the TreeScan scanner. 

The video signal determines the image quality so it is important to ensure the video 

signal is well shielded and that the microcontroller analog reference voltages are stable. 

The image is captured at 256 level greyscale (8 bit digitisation) which is well within the 

2000: I RMS dynamic range of the line scan camera. 

The line scan camera being used is a Loral Fairchild CAM 1301R camera designed for 

incorporation into non-contact electro-optical measurement and process control 

systems. The CAM 1301R has a resolution of 1024 x 1 pixels and incorporates anti­

blooming and electronic exposure control. The camera accepts standard C mount 

lenses, with the option of using bayonet Nikon and Olympus mounts also available. 

A number of sources of line scan cameras or line scan camera systems were considered 

which are summarised in table 4.2. The Leaf and Chinon cameras are complete area 

scanning systems which make use of a line scan approach similar to the TreeScan 

system. Modification of these systems was investigated but not pursued. 

Line scan cameras are available with analog or digital output; digital output is preferred 

but the cost of these cameras is very high. Cameras with analog output are less 

specialised devices and are considerably less expensive. Analog cameras require signal 

ND conversion by some external device. This is completed by the microcontroller in 

the TreeScan system. It was decided to use the Loral Fairchild CAM 1301 R line scan 

camera based on cost and delivery time. 

Supplier Camera type Interface Resolution Price 

Loral Fairchild CAM/CCD 1000 series Analog 512 to 6000 Medium 

DALSAinc CL-CX series Analog, digital 128 to 4096 High 

i2S iDC I IVC 100 series Analog, digital 256 to 3456 High 

Pulnix J series miniature LSC Analog 1024 to 5000 Medium 

Leaf - System Leaf digital camera SCSI 2000 x 1500 Very high 

Chinon - System DS-3000 scanner Digital, SCSI 3328 x 2300 Low 

Table 4.2 - Line scan cameras available 
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Figure 4.11 - Imaging sensor photosite layout 
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The CAM 1301R is controlled by two timing signals. One signal that controls the line 

rate and integration time, and another signal that clocks the video data out. The camera 

derives two synchronisation signals from these timing signals which are returned and 

used to synchronise the microcontroller ND conversion (see section 4.5.2). 

The CAM 1301R contains a Loral Fairchild CCD134 imaging sensor. The CCD134 

sensor contains 1062 array elements of which 1024 are photosensitive. Each photosite 

is 13 µm x 13 µm on a centre spacing of 13 µm (see figure 4.11). Between photosites 

there is a 5 µm serpentine stop channel providing an active area per pixel of 13 x 8 µm. 

The sensor has a length of 13.8 mm. This relates to a one inch format for lens 

requirements. 

The main obstacle encountered during the development of the line scan camera 

subsystem was the timing constraints the line scan camera imposes on the rest of the 

TreeScan system. Image data is being clocked out of the camera at approximately 100 

kHz, during which time the subsequent line is being exposed. This implies the data 

being clocked out cannot be slowed or temporarily halted as this invalidates the data of 

the subsequent image line. The implications of this are further discussed in the software 

chapter, see section 5.2.1. 
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The line scan camera subsystem consists of a line scan camera, interfacing buffers, and 

analog reference section of the controller board. 

The CAM 1301R can be operated at a wide range of frequencies (up to 20 MHz) and is 

controlled by two timing signals generated as pulse width modulated signals by the 

microcontroller software, the DATA CLOCK and a LINE/il'rrEGRATE clock - see section 

4.5.2. These camera timing inputs are differential with signal levels converted to TTL 

levels by internal differential line receivers. At low data rates (<1 MHz) and short cable 

lengths ( <6 ft) single ended TTL input clock signals may be used provided the negative 

differential input is biased at + 1 V. This is the camera connection scheme used in the 

TreeScan scanner. All the clock signals sent to and from the camera are buffered by 

74HC04 inverters to act as line drivers and receivers. 

The video output is available as a 75 Q source impedance signal on either of two coaxial 

connectors on the rear of the camera. The video signal has a peak of +I volt at sensor 

saturation. 

The video signal is terminated by a 75Q resistor and passed to the microcontroller for 

AID conversion. The rnicrocontroller has an analog GND and+ 1 volt reference for the 

AID convertor which are isolated from the rest of the circuit using ferrite beads for noise 

suppression. 

The camera requires power supply inputs of +5, +15 and -15 volts DC. Internal 

regulators and filters provide noise immunity for the CCD sensor bias voltages. 
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4.5.1 Imaging Sensor Spectral Response 

The spectral response of the CCD134 imaging sensor covers light over the wavelengths 

of 35 nm to 1000 nm with a peak responsivity of 5.8 VµJ-lcm-2 at 800 nm. 

A Schott KG-1 infra-red cut off filter is made part of the standard camera. The filter 

transmission convolved with the spectral response of the imaging sensor gives the 

camera a response from about 350 nm to 800 nm, with a peak response at 600 nm 

(Loral Fairchild, 1991). This spectral response covers most of the visible spectrum with 

the greatest response in the red colour band. 
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Figure 4.13 - CCD sensor spectral response 

4.5.2 Line Scan Camera Subsystem Signal Timing 

The line scan camera is controlled by two timing signals; a DATA CLOCK and a 

LINE/INTEGRATE clock. The microcontroller generates both these timing signals in 

software using on board timers. 

• The DATA CLOCK rate determines the rate at which video data is clocked out of 

the camera. The DATA CLOCK rate is set at approximately 100 kHz, well under 

the maximum camera clock rate of 20MHz. 

• The LINEIINTEGRA TE clock determines both the line scan rate and the optical 

integration time (or exposure time). Integration time is controlled by the duty 

cycle of LINE/INTEGRATE clock, while the line scan rate is controlled by its 

frequency (see figure 4.14). 

Note: Terms in capital letters refer to actual signal lines. 
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The TreeScan system must operate under low light forestry conditions. It has been 

empirically determined that the integration time will typically be somewhere between 2 

and 50 mS using a large aperture lens. The frequency of the LINE/INTEGRATE clock 

varies with integration time, with a maximum frequency of 50 Hz (scan rate of 50 lines 

per second) determined by the AID speed of the microcontroller . 

The above timing signals are returned from the line scan camera as synchronisation 

signals: 

• The DATA RATE signal is the DATA CLOCK delayed by approximately 10 nS. 

• The LINE SYNCH signal indicates the start of line time and is derived from the 

LINF1IN1EGRATE clock with a delay of 1 - 2 DATA CLOCK cycles. 

The DATA RATE signal is used to trigger the AID conversion of each pixel. The LINE 

SYNCH signal is used for line synchronisation and precedes active video by 24 DAT A 

CLOCK cycles. 

The video signal contains 1024 individual pixel levels which corresponds to 1024 

DATA CLOCK cycles. Preceding and following the active video there is a 3 clock cycle 

dark reference. Following the final dark reference there is a two clock cycle white 

reference. As a result, a minimum of 1062 DATA CLOCK cycles are required to fully 

clock out the CCD 134 sensor. 
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Figure 4.14 - Line scan camera timing 

(LSC pamphlet - Loral Fairchild, 1992) 



92 

4. 6 Additional Hardware 

This section describes additional TreeScan hardware. This includes a discussion on the 

final three functional blocks (scanning mirror subsystem, lens subsystem, and power 

supply subsystem) and a description of the scanner chassis, the protective carrying 

cases, and the hardware used to monitor scanner status. 

4.6.1 Scanning Mirror Subsystem 

General description 

Images are built up one line at a time by incrementally rotating the scanning mirror. The 

scanning mirror subsystem, which provides control over the positioning of this mirror, 

consists of a mirror mounted on a precision rotation mechanism that is driven by a 

stepper motor. 

The custom made precision rotation mechanism consists of a shaft upon which the 

mirror is mounted and a wormwheel drive. The wormwheel drive has a direct 728 to 1 

reduction ratio and has been engineered to ensure minimal backlash in the gears. The 

shaft is mounted on ball bearings for smooth rotation. The reduction and precision of 

the rotation mechanism along with the step size of the stepper motor determines the 

vertical pixel spacing. The design and construction of the precision mechanism was 

completed by Mr Thomas Look. 

P~sition sensors 

Stepper motor 

Wormwheel 
drives haft 

Rotating 
mechanism 

Rotating shaft 

Figure 4.15 - Scanning mirror assembly 
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Two optical position sensors are used to determine the exact home position of the 

mechanism. The first sensor determines the position of the large wheel, with the second 

sensor detecting the position of the stepper motor within a single revolution. These are 

directly interfaced to the microcontroller. 

A four phase, bipolar stepper motor is used to drive the precision rotation mechanism. 

The stepper motor has a step angle of 1.8 degrees per step which relates to 200 steps 

per revolution of the stepper motor. This provides the flexibility of double the required 

resolution with 16000 stepper steps over the full tree height. 

Stepper motor detent torque of 70 mNm is more than adequate. The main shaft rotates 

freely and with a geared reduction of 728 : 1 results in negligible stepper motor torque 

requirements to rotate the mechanism. This allows the stepper motor to operate near its 

maximum rate of approximately 400 steps per second for this supply voltage. 

Technical description 

This section describes both the mechanics of the rotation mechanism as well as the 

stepper motor control circuitry. 

Mechanical design 

The mirror used to reflect the image to be captured is a float glass mirror with a metallic 

enhanced front surface coating suitable for wavelengths of 400 to 750 nm (>90% 

reflectance of all wavelengths). The glass thickness is 3.05 mm. 

The wormwheel drive consists of a 5.7 cm brass wheel with an M3 thread machined on 

the outer edge. A shaft was machined to mesh with this edge and is attached to the 

stepper motor shaft. The arrangement can be seen in figure 4.15. 

The precision rotation mechanism must produce accurate and repeatable mirror 

positioning with minimal gear backlash. Vertical image pixel spacing of 8000 pixels for 

a 40 metre tree required pixel angular spacing to be 11100 of a degree. Thus the mirror 

rotation per line must be 0.005 degrees. These are fine requirements given the 

machining facilities available. The shaft alignment had a similar requirement of bearing 

movement of less than 1 pixel. This means the shaft alignment must be repeatable to 

within 0.01 degrees (or shaft end position repeatable to± 0.017 mm). 

After machining the repeatability of the mechanism was tested by measuring the 

repeatability of a reflected laser point on a distant wall. There was no backlash or 

alignment movement to the limits of measurability ± 0.01 degrees (or ±2 pixels). 
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The four phase stepper motor is driven using a two phase bipolar stepper motor control 

circuit. The circuit consists of a stepper controller IC (L297 manufactured by SGS­

Thompson) used in conjunction with a darlington stepper motor driver chip (L298N ). 

Two modifications were made to the stepper motor of the Mk2 TreeScan unit. 

• The Mk 1 unit had a 1.8 degree per step stepper motor, with two motor steps for 

each mirror step (providing double the required resolution). In the Mk2 unit this 

motor was replaced by a 3.75 degree per step stepper motor. This allowed for a 

speed increase of 2 ms per line during image capture, and a speed increase by a 

factor of 2 when homing the mechanism. 

• The stepper motor supply voltage was increased from 5 V to + l 2V. This also 

allowed for a further speed increase. 

Time for 8000 mirror steps (Mk 1) 

Time for 8000 mirror steps (Mk2) 

= 16000 stepper steps @ 330 steps Is 

= 48 seconds 

= 8000 stepper steps @ 500 steps Is 

= 16 seconds 

The Mk2 stepper motor may be driven in full step or half step mode to provide smaller 

step sizes if required. 



Chapter 4 - TreeScan Hardware 95 

4.6.2 Lens Subsystem 

General description 

The lens focuses an optical image of a real world object on the line scan camera imaging 

sensor. Variations in object distance and lighting conditions require the focus and 

aperture to be electronically adjustable by the scanner. Focal length is the third lens 

parameter which can be modified on demand, provided a zoom lens is used. 

The Mk 1 system was designed with a Cosmicar TV zoom lens with motorised control 

of focus and zoom, and electronic aperture control. This provides the microcontroller 

with full control of the lens. Very good images were captured with this lens. 

Unfortunately some problems were highlighted with the use of the Cosmicar lens 

during the calibration and characterisation of the scanner: 

1. The Mkl lens did not have accurate focus positioning as it used DC servo motors. 

2. Lighting in forest conditions was very low so a lens was required that provided 

more light. 

3. The lens was unsuitable for the relatively long CCD imaging sensor. Light falling 

on the outer edges of the sensor was being attenuated through vignetting. 

A different lens was incorporated into the Mk2 system; a manual Jens of fixed focal 

length. A manual lens was used as this provides a larger aperture. A stepper motor was 

mounted on the focus ring to provide the microcontroller with motorised focus control 

(see figure 4.17). 

Mk 1 Lens system Mk 2 Lens system 

Figure 4.17 - Mkl and Mk2 lens assembly 
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Technical description 

Mkl Cosmicar lens 

The Mk 1 version of the TreeScan scanner contains a Cosmicar C6Z 1218M2ESP 

motorised zoom lens with auto iris. The 2/3 inch format lens has a C mount and a focal 

length range of 12.5 to 75 mm. The lens has a maximum aperture off 1.8 with a range 

off 1.8 to f 360. 

Both zoom and focus are controlled using 12 V DC servo motors. It takes 

approximately five seconds to drive the servos from one end of their operating range to 

the other. The direction of the servo motors may be reversed by reversing the polarity 

on the driving signal. The lens also has an auto iris which adjusts the aperture 

automatically based on an input video signal. 

The Cosrnicar lens was purchased because it provided flexibility in the implementation 

of the TreeScan . scanner. The zoom provides flexibility in horizontal image resolution 

and the auto iris allows automatic aperture adjustment without microcontroller 

intervention. 

The driving circuit for the Mkl lens provides a variable voltage to modify .the operation 

of the automatic aperture adjustment, and ± 10 V to drive the DC servo motors. 

Mk2 lens 

The Mk2 version of the TreeScan scanner contains a 75 mm fixed focal length manual 

lens. This lens, a one inch format TV lens with C mount, has a maximum aperture of 

f 1.4 with a range off I .4 to f 22. It was decided to purchase a manual lens and add 

motorised controls as this was the only one inch format, large aperture lens readily 

available. 

A stepper motor identical to the mirror drive stepper motor was attached to the focus 

ring to provide the rnicrocontroller with motorised focus control. An additional stepper 

driving circuit was built as an extention module and attached using the expansion area 

on the PCB. As a result a considerable amount of the Mkl driving electronics became 

redundant. These driving circuits are still available on the board for backward 

compatibility. 

By using the stepper motor in conjunction with an infinity position sensor absolute 

focus position information is available for the lens. This provides the capability of 

making a 'blind focus' during an image capture by estimating where the scanner should 

be focused, and moving the lens focus to this position. 

The problems with the Cosmicar lens have been successfully solved. However images 

captured with the Mk2 system appear to be somewhat blurred compared to the best 
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results obtained with the Mkl system. This could be due to focus problems or lens 

aberration at large apertures. Information regarding lens spectral response and lens 

modulation transfer function is not available. This problem is under investigation by Mr 

Aaron Drysdale as part of his masterate. 
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4.6.3 Power Supply Subsystem 

General description 

The scanner is a portable unit that must operate on battery power while in operation. It 

is important to make the power supply as small and lightweight as possible while 

retaining the ability to store adequate charge. The power supply of the computer and 

scanner are separate; the computer runs off its own internal two batteries, and the 

scanner operates off two sealed 6 volt lead acid batteries. 

A variety of voltages are required to power the TreeScan scanner. The power supply 

takes a nominal 6 V DC and 12 V DC battery input and produces +5V, +lOV, -lOV, 

+ 1 SV and -1 SV DC regulated DC supplies. 

The power supply has two states : 

• Power save during which a relay turns off power to all of the high consumption 

components. Only the CMOS microcontroller and SCSI controller are left 
I 

powered so the computer can still communicate with the scanner. 

• Power on during which power is turned on to all high consumption 

components. The scanner is in this state only during image capture. 

To conserve battery power the scanner is in the standby power save state at all times 

unless actually capturing an image. 

Two common types of battery used to power portable instruments are Nicad cells and 

lead acid batteries. The use of each of these has advantages and disadvantages: 

1 . Nicad batteries could be connected in series and tapped at various points 

to generate the variety of supply voltages required. This has the 

disadvantage that the batteries discharge at different rates due to varied 

current consumption from each tap, and would require a complex charger. 

2. A single lead acid battery could be used to generate the required supply 

voltages with the use of small invertors and regulators. This solution is 

cheaper and more straight forward than using Nicad batteries, but heavier. 

3. An invertor could be used to step up to 230V which could be stepped 

down to suitable voltages in the scanner. This approach would have the 

advantage that the system could be run from the mains power supply when 

used in a laboratory situation but would likely be too bulky for a portable 

system and involves considerable power loss. 
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Figure 4.19 - Power supply block diagram schematic 
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A compromise was made by using two 6 volt lead acid batteries to supply 6 and 12 

volts. A small inverter is used to generate the low current± 15 V supplies. The capacity 

of the batteries can be calculated so that both batteries drain at the same rate, and can be 

charged at the required rate. The design of the power supply subsystem was mainly the 

work of Mr Gary Allen. 

Technical description 

The 6V and 12V battery supplies are used to produce the required voltages. The 6V 

battery voltage is regulated down to 5V using a low dropout regulator to supply the 

CMOS components and power the mirror stepper motor. 

The 12 V battery voltage is converted to± 15V using a PowerBox DC to DC converter. 

This± 15V is used to power the line scan camera. Low current± lOV supplies are also 

produced by regulating the ± 15 V signals. 

The power saving relay switches the +12 V battery voltage and the regulated +5V 

powering the mirror stepper motor. 

The power supply has been designed to supply: 

• +15Vand-15Vat0.35A 

• + 5 Vat 1 A 

• +10 V and-10 Vat 100 mA 
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4.6.4.1 Power Consumption 

Power consumption calculations in this section are based on the Mkl scanner power 

requirements. The scanner components have the following maximum power 

requirements: 

• Line scan camera : + l 5V @ 250 mA, -15V @ 250 mA, + 5V @ 500 mA 

• Mirror stepper motor : + 5V @ 500 mA 

• Lens driving : +lOV@ 10 mA, -lOV@ 10 mA 

• IC 's ( 9 IC's ) : + 5V @ -100 mA 

These power requirements are absolute maximum requirements . Actual current 

consumption has been measured to be considerably lower. For a typical day of system 

operation the following power requirements have been calculated. These are based on 

measured current consumption and the assumptions that: 

- The system is operated for 10 hours per day 

- 100 trees per day are imaged 

- Time per image is 100 seconds 

- Voltage conversion efficiency of 65% 

- Voltage regulation efficiency of 85% 

These calculations indicate that for one day of operation powered from two 6V 

batteries, a battery capacity of 8.8 AHr and 2.0 AHr is required. Batteries of 10 AHr 

and 6 AHr were used in the power supply. 

Voltage Power required Conversion Battery 0-6V Battery 6-12V 

(mWHr) efficiency (%) (mAHr@ 6V) (mAHr@6V) 

+5V 23250 85 4560 

+15V 15420 65 990 990 

-15 v 4170 65 270 270 

+lOV 330 55 25 25 

-lOV 330 55 25 25 

5870 1310 

Safety factor x 1.5 x 1.5 

Total 8805 1965 

Table 4.3 - Scanner power requirements 
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4.6.4 User Feedback 

General description 

If a microcontroller based instrument such as the TreeScan scanner is not operating 

correctly it can be very difficult to get instrument status information . During the design 

of the system methods should be implemented which will allow the microcontroller 

code to be debugged and provide status information. 

Two features have been implemented to provide feedback to the user on scanner status; 

Three status LED's, and a serial interface for debugging. 

Three status LEDs indicate the scanner power status and microcontroller status; 

• A green LED indicates the scanner's 5V power is operational. 

• A red LED indicates the power on state has been entered and high consumption 

devices are switched on. 

• A yellow LED indicates microcontroller status. If the LED is flashing the 

microcontroller is ready to receive a SCSI command. If the yellow LED is 

switched on, this indicates the microprocessor is busy and will not accept any 

commands from the computer. 

A serial RS232 interface has been implemented to provide a secondary interface 

between the microcontroller and a computer for the debugging the SCSI interface 

during development. The microcontroller has an onboard serial interface which 

generates the required signals. The TIL level serial signal is converted to RS232 serial 

by the MAX232 line driver. 

The serial interface was tested and is operational but it never became necessary to use it 

to debug the development of the SCSI interface. 
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4.6.5 Scanner Chassis 

General description 

The chassis of the TreeScan scanner consists of a 60 cm section of 150 x 100 

aluminium channel. This provides a robust chassis inside which other components are 

mounted. By using this heavy duty channel, component alignment error due to chassis 

flex is eliminated. 

The rotation mechanism is permanently mounted within the scanner chassis. The line 

scan camera is bolted on to the chassis to prevent possible movement in alignment. The 

controller board is housed in an insulating plastic casing and bolted to the inside wall of 

the channel. 

The channel chassis is protected by a light sheet metal cover that contains a perspex 

window, allowing a scan angle of at least 90 degrees (70 degrees used). The scanner is 

mounted on a tripod during use to provide a steady base for the scanner. 

In order to align the scanner with the tree to be measured, a rifle scope has been 

mounted on the outside of the scanner. This rifle scope is free to rotate in the vertical 

plane. The scanner is aligned by aligning the scope on the centre of the calibration rod 

to establish a reference, then tilting the scanner using the tripod head until the scanner is 

closely aligned with the tree. 

All the mechanical development work was completed by Mr Thomas Look. 

Figure 4.20 - Scanner chassis 
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4.6.6 Carrying Cases 

General description 

Carrying cases for the TreeScan system serve two purposes; to enable the system to be 

carried around, and secondly to protect the system. Two carrying case possibilities have 

been considered: 

• A flexible backpack mounted system 

• Sturdy aluminium carrying cases 

A backpack carrying case will need to be constructed once the TreeScan system is in 

operation to aid the ease with which the system can be carried long distances through 

the forest. However, during the early stages of the development sturdy aluminium 

protective cases were more important. They were designed to accommodate all scanner 

components. 

4. 7 Hardware Development Environment 

The hardware development of the TreeScan system involved the development and 

integration of mechanical components of the system and electronic components of the 

system. Most of the scanner functionality is under software control so the use of testing 

software was integral to the hardware development. 

The microcontroller development board used during the development was the Mandino 

Granville 80C5 l 7 A microcontroller development board. Associated with this 

development board is the System 51 microcontroller development environment. This 

provides an integrated development environment that includes a compiler, assembler, 

microcontroller emulator, and a monitor program. 

The scanner electronic hardware was developed and tested in subsections built on 

veroboard. These subsections could be individually tested without the influence of other 

scanner components by connecting each section to the microcontroller development 

board. Once the subsections of the TreeScan controller board had been tested (see 

figure 4.21), a printed circuit board was designed to accommodate all subsystems. 

The development of circuit components on veroboard was very successful, but some 

noise problems were experienced. The main noise problem was with the use of 

veroboard for the connection of the SCSI bus from the SCSI controller to the computer 

over a 1.8 metre SCSI cable. 



104 

Protel Technology's Protel Shematic 3 was used to draw up the schematic during circuit 

design, and Protel Autotrax was used for the printed circuit board layout design (Protel 

Technology, 1989). The PCB routing was largely manual to facilitate later testing and 

debugging of the controller board. 

A Philips PM3055 60 MHz oscilloscope and a Philips PM3655 logic analyser were 

used to test signal levels during both the hardware and software development. 

Figure 4.21 - Hardware development environment 
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The TreeScan software chapter describes the algorithms implemented as part of the 

TreeScan system. This includes both the image capture software which is used to 

capture images with the scanner, and the parameter extraction software which 

provides facilities to estimate real world tree dimensions from captured images. 

The implementation of the algorithms was complicated by the fact that in order to create 

a system with the functionality of the TreeScan system, software needed to be 

implemented at four different levels; macros, Pascal, C and assembler. In addition to the 

functional breakdown there is a physical breakdown with different sections of the same 

algorithm operating in two different physical locations (see section 5.2.1). 

5. 1 TreeScan Software Overview 

The software developed for the TreeScan system falls into two basic functional 

categories reflecting the operation of the system; the image capture software and the 

parameter extraction software. 

Image Capture 
Software 

Deals mainly with critical 
timing of image capture and 
data transfer hardware. 

Parameter Extraction 
Software 

Deals mainly with the image 
calibration and distortion correction 
methods discussed in chapter 3. 

The image capture software interfaces the computer to the scanner and allows the 

capture of images using the scanner. This software implements the tasks that need to be 

done to capture images and deals mainly with critical timing of the image capture and 

data transfer hardware. The image capture software is distributed across the computer 

and the scanner, and consists of an acquisition plug-in for the computer and assembly 

code for the microcontroller. 

The parameter extraction software provides the facilities to process the captured 

images and estimate real world tree dimensions. It automates a series of image 

processing tasks and deals mainly with implementing the image calibration and 

distortion correction methods described in chapter 3. This software consists of NIH 

Image macros and NIH Image source additions in Pascal. 
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The NIH Image application has been used as the image processing environment. NIH 

Image is a public domain image processing package developed by Wayne Rasband at 

the National Institutes of Health in the USA (Rasband, 1993). NIH Image provides a 

flexible, easily extendible, and user friendly environment. In addition to this the 

software is public domain so the full pascal source code is available, and can be 

modified where necessary. NIH Image has been developed for use with Apple 

Macintosh computers. 

There are four levels of software in the TreeScan system, see figure 5.1. A philosophy 

of implementing all algorithms at the highest possible software level has been adopted to 

reduce development time. Image build-up algorithms have been implemented in 

the C acquisition plug-in, with low level tasks and time critical tasks implemented in the 

microcontroller assembly code. Parameter extraction algorithms have been 

implemented in the NIH Image macro language with NIH Image source modifications 

where additional speed or functionality was required. 
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5. 2 Image Capture Software 

5.2.1 Overview 

The image capture software controls the build-up of images using the TreeScan 

scanner. This software deals mainly with critical timing of the image capture hardware 

and critical timing of the image transfer to the computer. The image capture software 

also provides a straight-forward user interface and the capability to store images for later 

processing. 

The main section of the image capture software is the image build-up algorithm. The 

image build-up algorithm implements the sequence of high level tasks required to 

capture an image; sub-tasks include : performing an autofocus, capturing a section of 

image, overseeing the SCSI interface, and controlling the scanner hardware (see 

figure 5.2). 

In addition to the functional breakdown, there is a second breakdown that can be made 

for the image capture software. The image capture software is physically distributed 

across two locations; the portable computer and the scanner. As a consequence of this, 

the image capture software consists of two separate programs running on two 

processors interconnected using a SCSI bus interface. 

The image capture software implemented on the portable computer consists of an 

acquisition plug-in. This is a Macintosh code resource which complies with the Adobe 

Image buildup algorithm 

Autofocus 
algorithm 

commands 

Macintosh Portable Computer 

SCSI 

Microcontroller code 

I - -Image block 
capture algorithm 

I 
>( 'i( 

Scanner control 
commands 

TreeScan Scanner 

Figure 5.2 - Algorithms implemented in image capture software 
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interface specifications for plug-in code modules and can be used to extend an 

application without modifying the base application. Acquisition plug-ins may be 

executed from any application (typically image processing packages) that supports 

Adobe format plug-in modules, and are linked to the supporting application at run time. 

The acquisition plug-in implements the image build-up algorithm, provides a user 

interface, controls the computer SCSI communications hardware, controls the scanner 

by sending scanner control commands, and passes a data structure containing the 

captured image back to the calling application. 

The image capture software implemented on the microcontroller consists of an 

assembly language program stored in EPROM. The microcontroller code implements 

the time critical image block capture algorithm and implements the scanner hardware 

control in response to high level scanner control commands. Assembly language 

executes fast but it takes considerably longer to implement and debug a complicated 

algorithm than it does in a higher level language. The microcontroller code provides the 

simple building blocks that can be put together to perform the required action by using a 

series of commands. 

After a brief discussion of software constraints, key algorithms are outlined in sections 

5.2.2 to 5.2.5. Finally, the TreeScan image capture software is further discussed in 

sections 5.2.6 and 5.2.7. 

5.2.1.1 Imaee capture software desien constraints 

It was decided to maintain system flexibility and use the microcontroller to perform the 

ND conversion of the image data (see section 4.2). This led to timing constraints on the 

design of the software in the areas of: 

• AID conversion of image data (line scan camera timing) 

• SCSI transfer timing 

The AID conversion is a synchronous process; the SCSI transfer is an asynchronous 

process. In a normal situation involving synchronous data processing in operations such 

as this, at least one of the operations would be interrupt driven with buffering of data in 

RAM, however this approach would reduce overall speed. 

There is not sufficient time to implement an interrupt based approach at maximum AID 

conversion rates. Instead a dedicated hardware loop has been implemented (see section 

5.2.3 .1). The AID conversion must operate at a fixed rate while image data is clocked 

out of the camera. The SCSI interface can transfer data at a rate 40 times that of the ND 

conversion. To speed up the image capture the image block capture algorithm was 

designed to perform the AID conversion and to send the bytes directly to the SCSI bus 
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Micro image capture 
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Micro image capture 
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algorithm 

Execute move focus 
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The integration time for the current block and the number of lines to be captured is sent 

to the microcontroller as part of the command descriptor block. This allows the 

microcontroller image block capture algorithm to capture the required number of lines 

and to modify the integration time without the need for additional SCSI instructions. 

It was decided that an integration time adjustment should be made often. Integration time 

adjustments during the scan are calculated on the previous image data block and do not 

require additional lines to be captured. 
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1 . Power is turned on to the high current components by sending a PowerOn 
command to the scanner. 

2. The integration time is adjusted for the current light level by repeatedly 
capturing one line and adjusting the integration time until correct exposure 
is achieved. Up to 20 iterations of the loop are performed depending on 
lighting. 

3 . An autofocus is completed to focus the base of the tree at the start of image 
capture. This consists of finding the focus position by repeatedly capturing 
a line, calculating a measure of focus, and adjusting the lens focus position 
until the optimal focus position is found. This would typically involve 20 to 
50 iterations of the loop. 

4 . The mirror is stepped down by 500 steps so the image capture begins at the 
base of the tree. 

5. A loop is entered which captures blocks of 50 lines until the number of 
lines to be captured has been reached. A single image capture command is 
sent to the scanner and 50 lines of image data are received back. The timing 
involved for the capturing of each line is carried out by the microcontroller 
image block capture algorithm. The computer simply receives bytes until 
the correct number of image bytes have been received to fill the block. 

6. If the correct number of blocks have been received, exit the image capture 
loop. 

7. If still within the calibration rod area of the image, a refocus or integration 
time adjustment is not required. 

8. Adjust integration time for the next block based on the pixel values of the 
previously received block. No commands need to be sent to the scanner as 
the integration time is sent to the scanner as parameters in the image block 
capture command. 

9. & 10. If a focus adjustment is required, call the blind refocus routine to 
estimate correct focus position and send a command to the microcontroller 
to move the lens focus to the desired position. 

10. Perform the above loop until the desired number of lines have been 
captured. 

11 . Turn the power off to the high current components by sending a 
PowerSave command to the scanner. 

Figure 5.5 - Image build-up algorithm (description) 
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It has been decided to make 32 focus adjustments per complete image as this allows the 

tree to remain within the scanner depth of field without an undue increase in image 

capture time. 

Once the image is captured it is passed from the plug-in to NIH Image to be saved. The 

image can now be further processed by the parameter extraction software. 
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5.2.3 Image Block Capture Algorithm (Microcontroller) 

In the image build-up algorithm the capture of an image line or block of lines consisted 

of a single scanner control command sent to the microcontroller. This task of capturing 

one or more lines is the image block capture algorithm, consisting of a complicated 

sequence of events with critical timing aspects. 

The image block capture algorithm performs the AID conversion of the image data and 

transfer to the computer using the SCSI interface. In addition, the camera timing signals 

are produced, the mirror stepper motor is stepped between lines and a SCSI transfer 

error detection and correction method is implemented. These are time critical elements so 

they have been implemented in the microcontroller. 

When the microcontroller receives the command from the computer to capture a block of 

lines, the sequence of steps shown in figures 5.6 and 5.7 is executed. 

Image Block Capture Algorithm 
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Figure 5.6 - Image block capture algorithm 
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It is critical that the timing within the AID loop is optimised as this loop is executed 

8 million times for an 8000 line image. The line timing must also be optimised but this 

depends on a number of factors and is less critical. 

The time required to capture a block of lines depends on two main factors, either of 

which can be the limiting factor: the data conversion and transfer rate, and the 

integration time (exposure time). Data conversion and transfer and image integration 

take place in parallel. Data conversion and transfer takes a fixed period of time. 

Integration time depends on the lighting conditions. 

In normal daylight conditions the integration time is an order of magnitude shorter than 

the data conversion and transfer time, so the image capture time is limited by the data 

conversion and transfer time. If however the scene illumination is low, the situation may 

be reversed and the image capture time may be limited by the integration time. 

5.2.3.1 Dedicated Conversion and Transfer Loop 

The minimum time to perform an AID conversion is 7 µs for the microcontroller used. 

The guaranteed interrupt service time of the microcontroller is 7 µs. If interrupt based 

routines were used this would slow down the system. 

In a normal situation with synchronous data processing operations such as the AID 

conversion of image data, at least one of the operations would be set up to interrupt the 

processor with the buffering of data in RAM. 

Instead a dedicated hardware loop was implemented as there was not sufficient time to 

implement an interrupt based approach. 

1 . The number of lines to be captured is initialised from the command 
descriptor block, and the frequency of the camera clock signals is set based 
on the integration time information in the command descriptor block. 

2. The AID converter is initialised to run continuously triggered on the DATA 
RA TE signal returned from the camera. 

3. Wait for the LINE SYNCH signal indicating the start of a line. Image data 
will be valid after 24 DATA CLOCK cycles. 

4. Move the mirror position so the next line can be exposed. 

5. & 6. Enter the AID loop. Digitise the analog voltage signal and send each 
byte to the computer over the SCSI interface. 

7 . Loop for 1024 pixels in each image line. 

8 . Loop for the number of lines in this block. 

Figure 5.7 - Image block capture algorithm (description) 
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5.2.3.2 Imai:e Capture Line Timin2 

The data conversion and transfer time talces a fixed 12 ms per line (assuming 8 bit AID 

conversion and that a write to RAM is used). In parallel with this is the 2 mS delay to 

allow the stepper motor to settle and the variable length integration time as shown in 

figure 5.8 . The camera sensor integration starts on the falling edge of the 

LINEIINTEGRA1E signal, and the rising edge indicates the start of a new line. 

If the integration time is shorter than the 10 mS (daylight conditions) the data conversion 

and transfer time becomes critical and it talces 0.6 seconds to capture a 50 line block. 

The start of integration is delayed so that the end of integration is synchronised with the 

end of the line instructions. 

If however the integration time is longer than 10 mS (low light conditions) the situation 

is reversed and the integration time becomes critical. The integration starts at the end of 

the stepper settling time and the start of the next line is delayed to accommodate the 

integration time. The time to capture a 50 line block will be variable and dependent on 

lighting. The integration time maximum has been set to 120 ms (10000 DATA CLOCK 

cycles) which means it talces 6 seconds to capture a 50 line block (15 minutes I image)! 
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5.2.3.3 Image Capture AID Conversion Timing 

In the section on image capture line timing it was stated the data conversion and transfer 

time are fixed. This is not strictly true as these parameters depend on the implementation 

of the AID loop. The data conversion and transfer time consists of 1062 cycles of ND 

loop time. This section describes the timing within a single DATA CLOCK cycle. 

The AID converter is triggered by the falling edge of the DATA CLOCK after which the 

result of the ND conversion is ready after 7 µs . The result of the 10 bit conversion is 

stored in two registers. The top 8 bits are stored in the ADDA TH register and the bottom 

2 bits are stored in the ADDA TL register. The data must be read from these registers 

before the next AID conversion can start. After the pixel data has been read, the 

microcontroller must process it before the next ND conversion is completed. 

The minimum time that the ND loop can take is indicated in figure 5.9a. After the result 

of the AID conversion (top 8 bits of the converted value) has been read, it is transferred 

to the SCSI controller, a check is made to determine if the end of line has been reached, 
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if not the microcontroller loops back and waits for the next value. See figure 5.10 for 

the main AID loop and its timing in machine instruction cycles (0.75 µs). 

Two other AID conversion routines have been implemented to cater for low lighting 

conditions and SCSI related transfer problems (see sections 6.4.1 and 5.2.4.3). In both 

situations the minimum time for each AID conversion is lengthened, increasing the 

minimum time required to capture a block of lines. 

Several small timing reductions could be made to the ND conversion process, however 

in most forest conditions the data conversion and transfer time is not the critical time so 

it was deemed more important to deal with low light levels. One improvement that could 

be made is to have the end of line count interrupt driven instead of counter driven. This 

would reduce AID loop time by 1.5 µs (or approximately 10% speed increase). 
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5.2.4 SCSI Transfer Algorithm 

The SCSI transfer algorithm implements the interface between scanner and computer. It 

allows the computer to send control information to the scanner and allows the scanner to 

return the captured image data. 

Previously it has been stated that the microcontroller executes tasks based on scanner 

control commands passed to the scanner from the computer. Each scanner control 

command consists of a SCSI command sent by the acquisition plug-in to the 

microcontroller using the SCSI bus controllers in the Macintosh and the scanner. 

• At a logical level a SCSI command consists of the transfer of a command 

descriptor block. A command descriptor block is a data structure containing a 

command operation code and parameters associated with the opcode. Depending on 

the command opcode the SCSI command may involve further data transfer in either 

direction. 

• At a software level a SCSI command involves of a series of chip commands 

being sent to the SCSI bus controllers which perform the correct sequence of bus 

phase changes to facilitate the transfer of the command descriptor block and the 

image data. 

In the computer this requires a sequence of Macintosh Toolbox calls to the 

SCSI Manager. These calls operate directly on the computer SCSI bus 

controller. 

In the scanner this is completed by reading and writing to registers in the 

scanner SCSI bus controller. This involves both sending the correct chip 

commands and transferring any data in and out of the SCSI data buffer. 

• At the electrical level a SCSI command consists of a complex sequence of control 

signals on the nine SCSI bus control lines. The signal lines indicate bus phase 

status, and perform byte handshaking as data is transferred in either direction over 

the nine data lines. 

The detailed requirements of the SCSI protocol can be found in appendix I and a 

description of the scanner SCSI bus controller hardware in section 4.4. 

In this section implementation of the SCSI transfer algorithm is discussed. A normal 

SCSI transfer will be described after which the problems encountered during the SCSI 

software implementation and their solution are discussed. 
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A normal SCSI transfer involves the sequence of operations shown in figures 5.11 and 

5.12. The operations completed by both the plug-in and the rnicrocontroller software are 

listed with the critical path highlighted. The SCSI bus phases throughout the transfer are 

also shown. 

The computer must select a target device (the scanner) and wait for it to respond. Once 

the device responds the computers sends the command descriptor block to the scanner. 
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1 . When the scanner is powered up, the scanner SCSI bus controller is 
initialised. This includes the setting of SCSI ID number and enabling the 
selection of this device as a target. Now the scanner waits until it is selected. 

2. When a SCSI command transfer is started, the computer must first arbitrate 
for the SCSI bus. This is performed through a SCSIGet() toolbox call and 
allows the computer to become an initiator and gain control of the SCSI bus. 

3. Next the target device must be selected using a SCSISelect() call, with the 
target device SCSI ID number as a parameter. When the scanner's SCSI ID 
number is selected the microcontroller is interrupted with a select interrupt 
and the RECEIVE COMMAND chip command must be written to the scanner 
SBC. This acknowledges to the computer the scanner has been selected and 
is ready and waiting to receive a command descriptor block. 

4. The command descriptor block is transferred from the computer to the 
scanner using the SCSICMD() call with a pointer to the command descriptor 
block as a parameter. The information is transferred and arrives at the 
scanner with a function complete interrupt. The command descriptor block 
data is read out of the SCSI bus controller FIFO. The appropriate action is 
performed based on the information in the command descriptor block. 

5. If required the data phase is entered. The data phase involves the 
microcontroller sending data and the computer receiving it. Data is sent from 
the microcontroller by writing a SEND DAT A chip command to the SBC, 
writing the number of bytes to be transferred to a counter, and writing the 
bytes to be transferred to the SBC FIFO. At the computer the data transfer is 
performed using a SCSIRead() call with a TIB (Transfer Instruction Block) 
as a parameter. A TIB is a sequence of low level instructions for the 
computer SCSI bus controller (see appendix K). The TIB must contain the 
number of bytes to be read. 

6. If the number of bytes in the TIB, in the scanner SBC counter, and the 
actual bytes transferred do not match, synchronisation is lost and both the 
scanner and the computer can lock up waiting for each other to transmit data 
or change the bus phase. A timeout can be set that limits the maximum time 
the computer will wait while locked up. 

7. When the data transfer is completed the computer makes a single 
SCSIComplete() call. The microcontroller sends a status byte and a message 
byte. This involves both the status phase and the message phase. Once the 
status byte and message byte have been transferred the SCSI transfer is 
completed. The SCSI bus returns to the bus free phase and the scanner 
waits for the next SCSI command. 

Figure 5.12 - Normal SCSI transfer (description) 
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The scanner completes tasks based on the command descriptor block with the optional 

transfer of data (see figure 5.12, item 5). The command must then be completed by the 

transfer of two bytes to indicate whether the transfer was completed successfully. 

At the electrical level this involves the bus signalling indicated in figure 5.11 b. The BSY 

signal is activated at the start of the transfer, is briefly switched low during the selection 

phase and remains active throughout the duration of the transfer. The state of the CID 

(Command/Data) and 1/0 (Input/Output) lines determine the bus phase. During the 



122 

region marked 4 the command data is transferred and during the region marked 5 the 

image data is transferred. The transfer of each byte of data has an REQ/ACK handshake 

associated with it. 

If the SCSI command does not involve image transfer the data phase is simply omitted 

from the sequence. 

5.2.4.2 Obstacles Encountered implementine SCSI 

Two significant problems encountered during the development of the SCSI transfer 

algorithm were caused by unexpected timing fluctuations in the operation of the SCSI 

interface: 

1 . A byte loss problem as a result of transfer buffer overflow 

2 • Long delay times between the changing of SCSI bus phases 

A byte loss detection and correction algorithm was implemented to deal with both the 

byte loss problems. Images were captured in blocks of 50 lines per SCSI command to 

reduce the impact of long delays during bus phase changes. 

Byte loss 

As discussed in previous sections (4.4.3, 5.2.1.1 and 5.2.3.1), although SCSI is a 

handshake system with a 'wait if not ready' flag, there is insufficient time to check this 

flag so a dedicated loop converts image data and sends it to the SBC. This assumes the 

SCSI interface (4 MBytes/s) is able to keep up with AfD conversion (100 kHz). Small 

variations in transfer rates would be handled by the built in 32 byte buffer and hardware 

handshake. 

Sometimes however, the computer SCSI bus controller was unable to receive data for 

intervals up to 1.5 mS in duration. This delay, probably due to operating system 

background tasks, allowed image bytes to be lost as image data can only be buffered for 

Figure 5.13 - Image with byte loss problem 
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a maximum 0.5 mS by the 32 byte FIFO. As the image conversion continued, this 

allowed the FIFO to overflow and image bytes were lost. Figure 5 .13 shows a section 

of image captured with bytes lost in three places, as can be seen on the white alignment 

reference on the right of the image (see figure 5.13). 

There are several possible solutions to this problem: 

1 . Ideally the SCSI bus controller FIFO should be checked before any bytes are sent. 

If however the FIFO is full the ND conversions need to be delayed. This is not 

possible without losing camera timing synchronisation. 

2 . The capture and transfer of image data as two separate interrupt driven processes 

(as discussed in section 5.2.1.1 ). This increases the conversion and transfer time 

resulting in considerably longer image captures. 

3. A byte loss and detection scheme can be set up, as delays are rare, to resend the 

line from memory (checking whether FIFO is not full) if the some of the image 

bytes were lost during transfer. This requires the image bytes to be stored to 

memory during capture, but this results in minimal ND time increase. 

The final method has been implemented and is discussed in greater detail in the next 

section. 

An interesting aspect of the byte loss problem was that the delay in receiving bytes was 

more common on the portable Macintosh PowerBook 520c data acquisition computer 

than on the Macintosh Quadra, on which the plug-in was initially developed. On both 

computers all extensions were switched off to remove as many background tasks as 

possible without hacking into the operating system. This did not make a significant 

difference in the frequency of the problem. 

Minimum SCSI command time 

The second obstacle encountered was that the Macintosh SCSI bus controller appeared 

to be slow to react to SCSI phase changes (see figure 5.14). There was a delay of 

approximately 26 ms from the time the microcontroller wrote the RECEIVE COMMAND 

chip command to the time the command descriptor block data was received back from 

the computer. The same delay was present before the computer acknowledged the first 

byte of the data transfer, and a longer delay of 55 ms was present between the end of the 

data phase and the transfer of the status byte. 

These delays were expected to be three orders of magnitude smaller, similar to the 

arbitration and selection delays of approximately 20 µs. The cause of these delays 

should be further investigated and is still not fully explained. 
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Figure 5.14 - Extended delays during SCSI transfer 

These delays in the changing of bus phases introduced a minimum duration for a SCSI 

transfer of approximately 120 ms. If lines were captured one line per SCSI transfer this 

would allow the maximum transfer rate to be 8 lines per second. By capturing the image 

in blocks of 50 lines this minimum transfer delay becomes less significant and lines can 

be transferred at an average rate of 70 lines per second which is close to the maximum 

data rate of 83 lines per second. 

5.2.4.3 ·Byte Loss Detection and Resend Scheme 

The byte loss detection and resend scheme is an elaborate scheme to ensure transferred 

data is not corrupted by buffer overflow. It will correct for occasional buffer overflow 

of up to several hundred bytes. An overview of the byte loss detection and resend 

scheme is presented here, with details presented in appendix L. 

There are two restrictions that must be taken into account: 

1 . The TIB instruction set is very limited and can only execute seven types of 

instructions (see APPENDIX K for more detail on TIBs). 

2 • The scanner SCSI bus controller provides limited status information. There are 

flags that indicate whether the Transmit FIFO is full or half full, but not whether 

the transmit FIFO is empty. 

The detection and resend scheme works on the basic principle that the SBC expects to 

send a certain number of bytes. If at the end of the image line the SBC expects to send 

more bytes, the SBC FIFO must have overflowed during the AID conversion loop. The 

line that was sent must be ignored and the line resent from memory. 

A block of image lines is captured using a single Macintosh SCSI call. This means that 

the detection and resend scheme must be implemented within a single TIB. The TIB 

uses self modifying code to conditionally execute instructions. The microcontroller 
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Figure 5.15 - Byte loss detection and resend scheme 
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instructs the computer to overwrite the last line by modifying the TIB and transferring 

an increment to the pointer in memory where the image is stored. 

The implementation of this byte loss detection and resend scheme has little impact on the 

acquisition plug-in code. Only the TIB must be redeveloped to allow for significant self 

modification. 

The implementation of this byte loss detection and resend scheme does have an effect on 

the image capture timing. The AID conversion loop must write the image data to RAM 

as well as to the SCSI. This increases the AID conversion loop to 12 µs as shown in 

figure 5.9b. The capture image block algorithm (figure 5.6) has also been modified to 

accommodate the additional write to RAM, additional end of line checking, and a line 

resend if necessary. 
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5.2.5 Focus Algorithms 

There are two aspects to focusing the scanner; the scanner must initially focus on the 

base of the tree before the image capture starts, and correct focus must be retained 

throughout a scan. 

5.2.5.1 Focus Adjustment 

During an image capture scan the distance to the object changes, so the focus position 

must be adjusted. Three focus approaches can be adopted: 

• The focus can be set halfway up the tree so the whole of the tree remains 

within the depth of field and no focus adjustment is required. This requires a very 

small aperture and thus a large exposure time. 

• An autofocus may be made every time a change in focus is required. 

A smaller depth of field, and hence shorter integration time, could be used as a 

series of focus adjustments may be made up the tree. This method requires that 

the autofocus algorithm has been implemented and could focus in the wrong place 

if branches obscure the tree. 

• A method of 'blind focus' may be implemented. This method completes 

an autofocus at the bottom of the tree which is used to approximately determine 

the distance away from the tree. Based on this distance away from the tree, the 

estimated focus position is calculated for subsequent focus points. Throughout the 

scan the Jens is moved to the estimated point of focus. Branches will not affect 

this method of refocus up the tree. This method relies on absolute positioning of 

the focus and the assumption that the tree is approximately vertical. 

It was decided to adopt the third approach to retain focus throughout the image capture. 

This involved the development of an autofocus algorithm, a 'blind refocus' algorithm 

and a repeatable lens control mechanism. 

5.2.5.2 Autofocus Al2orithm 

The basis of an autofocus algorithm is that it must find the point of optimal focus, which 

is taken to be the lens position at which the measure of focus defined in chapter 3 is at 

its maximum. 

Two autofocus algorithms were implemented which operated on a slightly different 

principle. The Mkl lens system provided servo control only for the focus position of the 

lens, with the result of this was that absolute position information could not be used to 
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position the lens focus. Stepper motor control of the lens focus position was provided 

on the Mk2 system. This allowed the focus algorithm to make use of absolute 

positioning information, and allowed the blind refocus algorithm to be implemented. 

The final focus algorithm implemented on the Mk2 system is shown in figure 5.16. The 

microcontroller drives the lens to its infinity position. Next the lens is driven towards 

near focus in large steps. At each point a line is captured and focus number calculated. 

Once this number has reached a maximum and is getting smaller the optimal focus point 

has been passed. Next the algorithm searches around the best focus point it found, in 

smaller steps to find the optimal focus point to a high precision. Finally absolute 

positioning is used to move to the optimal focus point. 

The Mk 1 autofocus algorithm was based on a similar principle in that it drove forwards 

until over the focus peak, then reversed direction and drove back in smaller steps until 

the focus number started going down again. This is based on the assumption the curve 

is a monotonic rising and falling curve. If there is any noise or variation in calculated 

focus numbers this algorithm may not find the optimal focus point. 

In developing the autofocus algorithm it is very important to ensure the focus calculation 

is based on a region of the image where all the imaged objects are the same distance 

from the scanner. If this is not the case the focus graph will be a bimodal curve and it 

will become difficult to find the point of best focus. All focus algorithms are based on a 

single line in the image because it would be time consuming and introduce unnecessary 

wear on the mirror tilting mechanism to capture several lines and rapidly drive back and 

forth between them. 

An evaluation of the autofocus algorithm is presented in section 6.4.4. 
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5.2.6 TreeScan Plug-in Software 

The scanner control software implemented on the portable computer consists of an 

acquisition plug-in. This is a Macintosh code resource which complies with the Adobe 

interface specifications for version 3 plug-in code modules and may be used to extend 

applications. 

The TreeScan acquisition plug-in implements the image build-up algorithm, and 

provides a user interface so the operator can control image capture. The plug-in controls 

the scanner by sending scanner control commands. Each command is sent by interacting 

directly with the computer SCSI bus controller. The TreeScan image capture plug-in 

passes a data structure containing the captured image back to the calling application 

(NIH Image in this case). 

The TreeScan plug-in is programmed in C. It captures the image into memory during the 

start selector call. This allows the image to be displayed in a preview window as it is 

being captured. To be able to capture an 8000 line image, the plug-in requires 8 

megabytes of memory. After the image is captured in memory it is passed to NIH Image 

in small blocks during the continue selector call. 

The portable computer has 20 megabytes of RAM. To capture an 8000 line image 

& File Edit Options Enhance Analyze Special Stac.-1:~ Windouis User 

LUT Tools 

Status : Scanner idle 

Tree I Tree name:!~-----~ 

Uiew: 

Angles: 
GJ 

Dip:@=] 0 
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(Preuiew Image) 

( Capture Image ) 

Cancel '" 

Height of tree: ~ m liJ 
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4 

Figure 5.17 - TreeScan image capture user interface 
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requires two 8 megabyte image buffers; one for the plug-in and one for NIH Image to 

store the returned image. After these two buffers are allocated this leaves 4 megabytes. 

This is just enough for the operating system, NIH Image application, and memory 

required for the plug-in code. 

NIH Image also allocates a clipboard and undo buffer. In order to call a plug-in each 

needs to be the size of the image. This would require a further 16 megabytes. To avoid 

this the NIH Image source code was modified to deallocate the clipboard and undo 

buffers directly before an acquire plug-in call and reallocate the buffers directly after the 

acquire plug-in call. This frees 8 megabytes of memory which NIH Image can use 

during the image capture. 

The TreeScan plug-in source code consists of six source files (2700 lines of code) with 

associated header files and library files. A total of 6200 lines of code. Relevant source 

listing are provided in appendix M. 

The user interface consists of a dialog box which is presented when the plug-in is called 

(see figure 5.17). The dialog box has a number of button controls and an image window 

in which a small scale version of the captured image is displayed during capture. The 

buttons allow the user to set up the tree information, preview a small section of the 

image and capture a full image. A debug dialog is also implemented which can be used 

to execute individual scanner control commands to aid development and testing of the 

hardware. 

The image build-up algorithm (see section 5.2.2) is executed when the Capture Image 

button in the dialog box is pressed (see figure 5.17). 

5.2.6.1 Adobe Plui:-in modules 

As explained a plug-in module is a compiled Macintosh code resource which may be 

used to extend applications. Plug-ins are designed to complete specific image processing 

tasks and must comply with the Adobe interface specifications. Plug-ins are linked to a 

supporting application at run time and may be executed from any application (typically 

image processing applications) that supports Adobe format plug-in code extensions. 

Adobe Photoshop version 2.0 supports three types of plug-in modules; acquisition 

plug-ins, export plug-ins, and filter plug-ins. NIH Image also supports all of these. 

The requirement for an acquisition plug-in module is that it conforms to the Adobe 

interface specification as described by the documentation on writing plug-in modules 

(Knoll, 1991). Certain resource types must be correctly set and the plug-in should be 

called using the following Pascal calling conventions: 
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PROCEDURE Plugin ( selector: INTEGER; acqRec: Ptr; 

VAR data: LONGINT; VAR result: INTEGER); 

The plug-in must respond to the following sequence of selector values: 

1 . Prepare : allows the plug-in to adjust its memory allocation 

2 . Start : returns the parameters of the image being captured to the calling 

application and allows the plug-in to display it's dialog box 

3 . Continue : returns a section of an image to the calling application 

4. Finish : allows the plug-in to free any required memory 

The acqRec parameter is a pointer to an AcquireRecord structure which contains image 

information such as: the maximum memory available, image x and y dimensions, and a 

pointer to the image data area in memory. The data parameter is used by the plug-in as a 

pointer to its global data, and the result parameter allows the plug-in to return its status. 

5.2.7 Microcontroller Software 

The microcontroller code controls the scanner hardware and implements the time critical 

tasks. Hardware control is provided by responding to a series of scanner control 

commands (SCCs) passed from the acquisition plug-in. The image block capture 

algorithm is time critical and implemented in the microcontroller code. The 

microcontroller code was written entirely in assembly language. 

The structure of the code reflects its function . The microcontroller code consists of a 

background loop waiting for SCSI commands from the computer. When a SCSI 

command is received, the appropriate routine is called to perform the required function. 

The microcontroller then returns to the background loop waiting for the next SCSI 

command. 

The microcontroller source code consists of seven source files (2800 lines of code) with 

four extra files containing the 10 bit ND lookup tables. A well structured set of naming 

conventions was set up to keep the use of variable names and constant names consistent 

within the assembly code. 

The main file TASM120.ASM contains important code documentation. This includes 

microcontroller 1/0 port declarations, memory map, register usage, variable haming 

convention, modification history, constant declarations, and variable declarations. 

Relevant sections of the source listings can be found in appendix M. 
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5.3 Tree Parameter Extraction Software 

5.3.1 Overview 

The parameter extraction software provides the facilities to process captured 

images and to estimate real world tree dimensions. This software automates a series of 

image processing tasks and deals mainly with implementing the image calibration and 

distortion correction methods described in chapter 3. 

The parameter extraction software can be used in a variety of ways dependent on 

whether the images are just being browsed to determine the size of various features of 

interest or a systematic analysis of each image is being undertaken. Immediate feedback 

is provided for interactive processing. In addition key information such as the three 

dimensional stem model can be stored in a form suitable for later processing and stem 

breakdown optimisation. 

The processing of captured images is divided into three broad tasks: 

1 . Image calibration 

2 . 2D processing 

3 . 3D processing 

View1 View2 

Capture Image Capture Image 

------ -- ------------~------------------------------ -------------------L-- ----- -- ------ -- --T T 

Calibrate image j I Calibrate image I 

/ 
Interactive 20 
size estimates 

Mark stem 
edges 

Mark ste 
edge \ 

Create & display 
30 model 

/ 
Stored 3 Dstem 

model 

Interactive 20 
size estimates 

Interactive 30 
swee estimates 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 

L------------------------------------ -----------------------------------------------------J 

Optimisation 
software 

Parameter extraction software 

Figure 5.18 - Parameter extraction sequence 
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The image must first be calibrated to establish a relationship between the image 

dimensions and real world dimensions. Once the image has been calibrated, size 

estimates in two dimensions can be interactively made from a single image, or 

information from two calibrated images can be combined to estimate three dimensional 

shape. 

The two dimensional tree size estimates allow any dimensions on the 2D calibration 

plane (see section 3.2) to be estimated, these include: heights, stem diameters, branch 

diameters, intemodal distance and other distances between features. 

The three dimensional processing generates a three dimensional model of the tree 

stem shape. Interactive sweep estimates can be made on this stem shape model, and this 

model can be further processed by optimisation software to determine the optimal stem 

breakdown. 

The parameter extraction software consists of a number of macros written in a Pascal 

like macro programming language which is a feature of NIH Image. The macro 

language is used for the majority of the processing tasks. In some cases however where 

the macro language is too slow or lacks functionality, additional user routines have been 

added to the NIH Image application. This involves modifying the NIH Image source 

code and recompiling the application. 

In sections 5.3.6 and 5.3.7 the structure of the TreeScan parameter extraction software 

is described in greater detail. 

5.3.2 Image Calibration 

As discussed in section 3.5.l, image calibration is required to establish the geometry of 

the image capture situation before real world dimensions can be estimated from the 

image. Once the image capture geometry is established, the distortion correction 

methods can be used to estimate the size of features up the full length of the tree. 

During image calibration points on the calibration rod in the image are marked 

establishing the image capture geometry. 

Two different methods of image calibration have been implemented dependent on the 

distortion correction method used: 

• The first distortion correction method used was based on estimating the camera 

position based on the calibration rod with two crossbars. This involved marking 

six points on the image. From these six points the distance and angle 0 was 

determined. This method was found to be imprecise (see section 3.5.2.2) and not 

further developed. 
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The second distortion correction method used was based on estimating distance 

from the scanner to the tree using a calibration rod with only one crossbar and 

measuring dip and tree lean angles. These angles are measured using a digital level 

and entered into the plug-in dialog box which saves the data to file. Three points 

on the bottom crossbar are marked. 

Once the image is calibrated the information is available to estimate the real world 

position of any point on the image. The calibration data is also saved to file. This allows 

the image to be re-calibrated later without having to mark the points on the calibration 

rod again. 

The distortion correction method implemented is the 'TreeScan perspective correction -

measured O' as described in section 3.5.3.2. 

It should be noted that the software does not modify the entire image to correct for 

perspective distortion as this would involve considerable processing. Instead, only the 

coordinates of each point of interest are converted to real world coordinates. These may 

then be used to estimate tree parameters. 

Figure 5.19 - Marking of three calibration points 



5.3.3 Feature Size Estimation in Two Dimensions 

The two dimensional feature size estimation involves the estimation of feature sizes from 

a single calibrated image. This allows any dimensions on the 2D calibration plane to be 

estimated, these include: heights, stem diameters, branch diameters, internodal distance 

and other distances between features. 

Two dimensional feature size estimation involves three steps; identifying the feature of 

interest on the image, marking the feature of interest, and estimating the size of the 

feature of interest. 

1. Features of interest must first be visually iden~ified on the image. This may be 

more difficult than visually identifying features in the forest because two fixed 

views of each tree are captured. Some features or branches may be hidden in both 

views. Zoom and pan are available to change the displayed resolution. Features 

may be marked at any resolution. 

2 • Once identified, the feature must be marked by making a line selection for distance 

estimates, or placement of the cursor for height estimates. The selection must be 

manually made using judgement to correctly place the end points of the line or 

crosshair pointer (see figure 5.20). 
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Figure 5.20 - Two dimensional feature size estimates 
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3 • When the feature of interest is marked, the software processes the coordinates of 

the selection, correcting for image capture distortion and calculating a size 

estimate of the feature. Cursor placement provides height and offset from the 

calibration reference, while line selections provide a distance between end points 

of the selection. 

This sequence allows the dimensions of any tree feature to be estimated provided that it 

is visible in the image. The main disadvantage of this method of identifying features is 

that estimates depend on the manual placement of the cursor. In the estimation of branch 

diameters for example, the branch may only cover a few pixels. Research is currently 

underway by Dr Ralph Pugmire and Mr Ian Overington to automate some or all of the 

parameter extraction processing and to allow estimates to subpixel accuracy. 
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5.3.4 Three Dimensional Stem Shape Estimation 

To estimate sweep, the position of the tree stem in three dimensional space must be 

measured. This is completed by generating a model that is defined by the three 

dimensional tree shape. 

The generation of this three dimensional model consists of a process different from two 

dimensional feature estimation. Information from two views of the same tree must be 

combined, and rather than individual feature heights and offsets, shape information is 

required for the full length of the stem. Position estimates are made for sufficient points 

up the edge of the stem to fully define a three dimensional stem model. 

The processing required to generate the three dimensional model consists of a sequence 

of tasks shown in figure 5.21. The marking of the stem edges must be performed 

manually. This task is tedious but must be performed carefully as the dimensions of the 

tree stem model are based on the placement of these lines. The automatic detection of 

these tree edges is another task currently being investigated as part of the automatic 

parameter extraction research being undertaken by Dr Ralph Pugmire. 
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3. Correct each point and store edges as data file of real world tree stem 
coordinates. 

4. Generate model. Combine stem edge data file from two views to 
generate model of equally spaced slices 

5. Store model as data file and convert to a format suitable for log 
optimisor. 

6. Display model and make optional sweep estimates (see figure 5.22). 

Figure 5.21 - Generation of three dimensional stem model 
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Once the edges of the stem have been marked these are processed into a series of points, 

which are corrected to produce a file of stem shape coordinates. At this stage the model 

consists of points that are at equal pixel spacing in the image, or increasing spacing up 

the tree. 

The stem shape files from both views are processed to generate the three dimensional 

stem model. The stem data is interpolated to generate a model which consists of 'slices' 

spaced at fixed distances up the tree stem. This stem model is saved and converted to a 

format readable by the log optimisation software developed by Tasman Forestry in 

conjunction with Auckland University (Tasman, 1995). This software has been 

developed for the optimisation of felled tree stems on the skid site. 

The stem model can be displayed and rotated. Using the displayed model representation 

interactive sweep estimates can be made for variable or fixed length sections of the tree 

stem. 
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Maximum sweep= 21 cm 
at height = 8 .2 m 
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View2 30 stem model 

-50cm 50cm 

Ualues 
Sweep of 1.7 SED over 24 m section. 

Maximum sweep = 33 cm 
at height = 8 .8 m 
and sed = 20 cm 

Section max height = 25 .0 m 
Section min height = O .5 m 

Figure 5.22 - Sweep estimation from displayed tree model 
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5.3.5 Possible Improvements to Parameter Extraction 

The methods currently implemented are capable of generating all the required tree size 

estimates. However this processing is a tedious semi manual task during which the 

operator must mark all dimensions to be estimated. Research is currently underway by 

Dr Ralph Pugmire and Mr Ian Overington to automate some or all of the parameter 

extraction processing and allow estimates to be made to subpixel accuracy. 

There are two other ways in which the accuracy of parameter estimates could be 

improved: 

• The optimisation software determines the optimal stem breakdown based primarily 

on stem shape and branch sizes. The stem model currently passed to the log 

optimisor only contains stem shape information. Branch information should be 

added to the 3D tree stem description. This would provide a more useful system to 

determine optimal stem breakdown. This is currently being implemented. 

• In the two dimensional size estimation only information from one view is used to 

calibrate the image. If the tree is in front of or behind the calibration plane an 

expected error is introduced as described in section 3.7. The software could be 

modified to combine the stem position information from the second view to reduce 

this introduced error. If implemented the estimation of tree dimensions becomes 

an iterative task with a small improvement in estimates. 



140 

5.3.6 TreeScan Macros 

The TreeScan macros are a series of routines that perform the tasks discussed in the 

sections on image calibration (section 5.3.2), two dimensional feature size estimation 

(section 5.3.3) and three dimensional tree shape estimation (section 5.3.4). 

The TreeScan macros are written in a Pascal-like macro programming language that is a 

feature of NIH Image and can be used for automating complex or repetitive tasks. 

Loaded macros are accessible through the normal Macintosh menu interface or may be 

assigned to special key strokes. NIH Image macros consist of a text file that can be 

edited using the NIH Image in-built text editor. The macros can be easily modified and 

can be loaded by NIH Image at any time the application is active. The macros are 

interpreted at run time eliminating the need for software to be recompiled. 

The maximum size of the macro file is 32 kByte in size. The implemented macros are 

larger than 32 kByte, so TreeScan macros have been split up into two files . The main 

file contains the normal processing macros. The second file contains a large number of 

utility macros. 

Main TreeScan macros TreeScan Utility Macros 

Fl - Display help screen p - Print 50% image in A4 pages 

F2 - Capture image CMD P - Print full image in A4 pages 

F3 -Load image F - Filter to remove banding 

F4 - Remove white pixels D - Vertically decimate image 

( initialisation ) 

FS - Calibrate image T - Extract tree region 

F6 - Save edges to file B - Extract base region 

F7 - Perform 3D conversion and M - Extract target region 

save model to file 

FS - Display 3D model Q - Setup image thumbnail 

A - Paste left side thumbnail 

F9 - Display height s - Paste right side thumbnail 

F 10 - Display diameter 

F 11 - Display sweep ... 
F 12 - Draw scale on image 

CMD M - Load utility macros CMD M - Load TreeScan macros 

Figure 5.23 - TreeScan processing and utility macros 
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5.3.7 NIH Image Source Additions and Modifications 

In situations where the macro language was too slow or required additional 

functionality, additions have been made to the NIH Image source code to extend the 

application. 

NIH Image is written in Pascal and consists of 34 source files. It has . been designed to 

allow additional routines to be added in the user.p source file. This file has the calling 

structures in place so that a call to extra procedures can be made using the USERCODE() 

call with the correct parameters. The complete application needs to be recompiled if 

changes are made. 

The main routines added were routines for the processing of data files and the 

processing and display of the 3D model. This includes the saving and loading of the 

calibration file, combining of two stem data files into the 3D tree model, and displaying 

the tree model. 

Several modifications have also been made to the NIH Image application. The main 

modification is the de-allocation of the undo and clipboard buffers before an acquisition 

plug-in is called and the reallocation afterwards. This allows large images to be captured 

by freeing up as much memory as possible for the image capture (see section 5.2.6) . 
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5.4 Software Development Environment 

Each software level required development in a different programming language and a 

different development environment. 

ThinkC version 6.0 was used to develop the TreeScan plug-in, ThinkPascal version 4.0 

was used to modify the NIH Image source code, and ThinkReference version 2.0 was 

used as the main source of reference information for the Macintosh managers and the 

toolbox calls. Inside Macintosh volume I - VI were used. as important references, as 

well as reference information specifically for plug-in development and SCSI 

development (Knoll, 1991). 

The majority of the SCSI development was performed on a Macintosh Quadra with 8 

megabytes of RAM. The Quadra has a separate SCSI bus controller for external devices 

which provided greater safety during development as SCSI errors on the TreeScan 

system could not affect the internal hard disk. Once operational development was 

performed using a Macintosh Powerbook 520c. This portable computer is the computer 

that is used for the in forest image capture and contains 20 megabytes of RAM and a 

160 MByte hard disk. 

All microcontroller software development was completed using the Mandino Granville 

monitor software version 4.43 and assembler version 3.08 which purchased with the 

80C517 A microcontroller development board. 
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This chapter is an evaluation of the TreeScan system. It reports on the system 

capabilities and discusses the modifications necessary to convert the scanner as 

originally designed and built to an accurate scientific instrument. 

The evaluation of a prototype such as the TreeScan system is a cyclical testing process. 

Each time around the cycle more knowledge is gained as problems are solved and 

modifications are made to the system. Once modifications are made many of the 

previous tests need to be repeated to ensure the results are still valid. The material in this 

chapter has been collated into a logical sequence of experiments to establish the system 

capabilities. 

6.1 Overview of Evaluation 

_.\n evaluation of a system such as the TreeScan system should go through several 

stages. The system hardware must first be calibrated and characterised. Only once this 

has been completed can the actual accuracy of the instrument be evaluated. 

The initial scanner prototype is the Mkl system. A series of tests were completed to 

check the calibration and characterisation. Next experiments were completed to check 

lhe accuracy of TreeScan object size estimates. This successfully identified several 

~rious weaknesses of the Mkl system: 

• Calibration procedure was inherently imprecise 

• Insufficient light under forest conditions 

• Lens modification required 

A. second prototype (Mk2 version) was developed to overcome these weaknesses. The 

calibration procedure for the second prototype was modified, and a different lens with 

12Iger aperture was purchased to provide more light and solve several lens problems. 

A. second series of experiments was performed. These experiments showed the 

c.ccuracy of the Mk2 system to be good and within the required specifications. 

Experiments completed include hardware calibration, characterisation experiments, two 

dimensional accuracy tests, and three dimensional accuracy tests. 

Once accurate and repeatable results were attainable in both two and three dimensions 

kss critical functions such as the final user interface received attention. 
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6.2 Sequence of Evaluation Experiments 

An overview of the evaluation experiments performed is presented here in chronological 

order. This overview is provided to set the context for the results of important 

evaluation experiments presented in subsequent sections. The conclusions of each 

experiment are presented with the sequence of modifications and further experiments 

necessary to quantitatively establish the accuracy of the TreeScan system. 

Once the TreeScan system was developed to the stage that images could be reliably 

captured, an evaluation of the system was started. At this stage an autofocus algorithm 

had been implemented for the Mkl TreeScan system with good focus results. The 

internal scanner components were aligned to ensure no distortion during image capture. 

Next a test was made to see whether real world dimensions could be estimated. This 

involved capturing images of a tall building used as a calibration object. The results of 

this test proved that the system was imprecise (see section 6.5). 

Although imprecise, the system was operational so a field trial was undertaken to test 

the system under forest conditions. This was the first time the system was operated in 

conditions typical of a radiata pine forest. This field trial highlighted two points: 

• The lighting conditions were unexpectedly low resulting in very long image 

capture times (timeout maximum of 20 minutes). 

• It is very difficult to physically measure standing pine trees to the accuracy 

required to calibrate the TreeScan size estimates. 

In response to the difficulty in measuring a tree as a calibration object, a 'metal tree' 

was built for system calibration. The 30 metre calibration tree lies horizontally and has 

been used to evaluate the system accuracy in two and three dimensions. 

In an attempt to determine where the system imprecision lay, the perspective correction 

algorithm was redesigned. It was found that the two step correction method being used 
~tf 

was an approximation, howevey._did not explain the imprecision of the estimates. A 

different image correction method based on geometric calculations rather than planar 

transformation was implemented. By implementing three slightly different versions 

(see section 3.5.3) the cause of the imprecision was identified. 

The calibration method being used was mathematically correct, but calibration rod 

dimensions were being used in calculations to a precision much greater than the 

measured precision. This resulted in random fluctuations in height estimates of 

approximately 6 meters at a height of 40 meters. 
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At this stage the Mk2 system was developed. The calibration procedure was modified 

so the angle of the camera with respect to the tree is physically measured, rather than 

derived from the calibration rod image dimensions. 

A different lens was purchased to address the other two problems. The new lens had a 

larger aperture providing four times the light of the first lens. As no motorised wide 

aperture one inch format lenses were available a manual lens was purchased and a 

stepper motor fitted to drive the focus ring. 

A third modification that could be made is to increase the system sensitivity by 

implementing a video preamplifier. This would amplify the video signal before the AID 

converter. This is being developed as part of Mr Aaron Drysdale's masterate. 

The Mk2 system was a new unit so all evaluation tests, including calibration and 

characterisation tests needed to be repeated. The Mk2 system was tested under forest 

conditions by imaging an entire MARYL plot. This provided information on image 

capture timing and image quality, as well as providing sample images for the automated 

parameter extraction research being undertaken by Dr Ralph Pugmire. The trees were 

not physically measured so calibration tests could not be completed. Two image 

features were identified: the images contained considerable banding due to problems in 

the integration time adjustment routine, and the images were not as sharp as expected. 

The banding problem was easily corrected, but the source of the focus problem required 

further research undertaken as part of Mr Aaron Drysdale's masterate. The results 

showed the poor focus was primarily due to lens aberration at the wide aperture 

positions of the new lens. 

Accuracy tests were completed in both two dimensions and three dimensions with very 

good results. Both height and width estimates were within the required specifications. 

During this development cycle, software changes were continually made to; implement 

the modified algorithms, improve the functionality of the software, and allow images to 

be captured for specific experiments. Further testing on the use of the TreeScan system 

under forestry conditions is presently underway. 
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6.3 Hardware Calibration 

The scanner hardware must be calibrated to ensure the scanner is mechanically capable 

of producing estimates to the required degree of accuracy. 

The hardware calibration process consists of two tasks; the alignment of the scanner's 

internal components to avoid distortion, and the accurate measurement of the mirror 

step angle which is used in the parameter extraction software. 

6.3.1 Scanner Component Alignment 

Inside the scanner, the scanning mirror, the lens, and the CCD imaging sensor of the 

line scan camera must all be in alignment. If this is not the case several distortion effects 

will be introduced. Any of these distortions will have a significant effect on the 

dimension estimates taken from the images. There are four individual distortions that 

could be introduced or a combination of the four if more than one misalignment is 

present (see figure 6.1). 

The CCD imaging sensor is permanently mounted inside the line scan camera and it is 

assumed this has been correctly factory aligned. The lens is mounted directly on to the 

line scan camera using a screw-on C lens mount and is also assumed to be correctly 

~ -------r- ------

:_* :-
' ___ __ _ _ J ______ _ __ * ____ I - - ----

-- ----- ------

------- ------

Object Object 

r ------------------1 r --------------- - -- , 
I I I : : =t= : I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

I t I I 

' - --- ----- ------ - - -~ l----- -------- ---- -~ 
Image Image 

' -~----- --:-- - -

-
--

- -· 

Object 

r -- - - ------------ --1 
I I 
I I 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ______ ______ __ ___ _ J 

Image 

Figure 6.1 - Distortion introduced by camera misalignment 
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aligned. For the rest of this section the line scan camera and lens will be discussed as 

one unit and referred to as the 'camera'. 

The scanning mirror is mounted on the precision rotation mechanism. This is 

permanently fixed to the scanner chassis and cannot be adjusted. The camera can be 

misaligned with the axis of the rotation mechanism in three ways and the mirror could 

be misaligned with the axis of the rotation mechanism. Each of these is discussed. 

6.3.1.1 Camera Misalienment 

The camera can be misaligned with the axis of the rotation mechanism in three ways as 

shown in figure 6.1: 

1 . The principal ray of the camera may not be perpendicular to the rotation axis. The 

principal ray scans sideways up the object and introduces a horizontal shear into 

the captured image. 

2 • The principal ray of the camera may be offset from the rotation axis. This offsets 

the position on the imaged object by the change in camera to mirror distance. This 

offset is very small and the effect of this misalignment is negligible. 

3 • The view angle of the camera may be at an angle to the rotation axis. This 

introduces a vertical shear into the captured image. 

These misalignments must be corrected for. This can be completed by imaging a 

calibration grid and adjusting the position of the camera so that the camera and rotation 

axis are correctly aligned. By placing the scanner at 7.5 metres from a grid with lines 

1.3 mm wide, it is ensured the grid lines are exactly one pixel wide. 

If a captured image is distorted (see figure 6.2), this must be corrected for by aligning 

the camera in the horizontal plane to remove horizontal shear. If the image still contains 

a vertical shear the camera must be rotated until the image of the calibration grid is not 

distorted. Shims were used for fine adjustment of the camera position. 
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6.3.1.2 Mirror Misalienment 

The scanning mirror is mounted on the rotation mechanism. If there is a misalignment 

between the mirror and the axis of rotation of the mechanism, a nonlinear distortion will 

be introduced. 

The nature of this nonlinear distortion depends on the angular position of the rotation 

mechanism over which the image is captured. The distortion introduces an 'apparent 

sweep' into the captured images so must be corrected for. The physical system was 

modelled in Matlab to determine the nature of this distortion, see appendix E for further 

detail. 

The mirror was aligned to the axis of rotation of the mechanism to a within 

± 0 .01 degree. 
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Figure 6.3 - Distortion introduced by mirror misalignment 

6.3.2 Measurement of Step Angle 

The precision rotation mechanism has been designed so that the step angle is 

approximately 0.01 degrees. The actual value of this angle, denoted alpha, is important 

as this is determines the vertical pixel spacing. By using the number of pixels (steps) to 

a particular feature and the step angle, the real world feature dimensions are estimated 

using the perspective distortion correction discussed in chapter 3. 

The step angle for the Mkl system was measured to be (1.030±0.002)x10-2 degrees, 

by measuring the number of steps required to complete a full 360 degree rotation of the 

rotation mechanism. 
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If the measured value of alpha is incorrect this will introduce a consistently high or 

consistently low error into estimated heights. The value of alpha was later empirically 

modified to l.033x1Q-2 degrees, in order to correct for a consistently high error in 

height estimates during the two dimensional accuracy tests. 
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6.4 TreeScan Characterisation 

The TreeScan characterisation is completed to determine scanner characteristics and 

establish the conditions associated with normal TreeScan operation. This provides 

important information on the aspects of the system that are satisfactory and those that 

may require further development work. 

The TreeScan characterisation consists of a series of experiments to determine: the 

timing for a complete image capture cycle, the resolution to which features can be 

resolved, information on the integration time adjustment during image capture, and 

information on the performance of the autofocus algorithm. 

6.4.1 Image Capture Timing 

In this section the overall image capture timing is discussed. This section builds on the 

low level hardware timing discussed in section 5.2.3, and in section 6.1 where it was 

noted that the lighting under forest conditions was unexpectedly low. 

The system typically takes 4 minutes to capture an image. This is the fastest possible 

image capture and may be longer in low light conditions. The time it takes to capture an 

image depends on two main factors: 

1 . Data conversion and transfer time 

2. Integration time 

Other factors that affect the image capture time are initial integration time adjustment, 

initial autofocus time, refocus time, integration time adjustment, and time required for 

additional processing tasks (see figure 6.4). 

• In normal day light conditions the integration time is an order of magnitude 

smaller than the data conversion and transfer time. The scan time is limited by the 

data conversion and transfer time and the microcontroller is continually 

processing data. 

• In low light conditions, such as those experienced in forests, however the 

situation is reversed. The integration time needs to be longer and limits the scan 

time. In this situation the microcontroller remains idle for extended periods. 

The system must operate in a forest, and should operate as fast as possible. To speed 

up image capture in low light conditions modifications were made to the system to 

increase the light received by the imaging sensor and increase system sensitivity: 
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An AID conversion routine has been implemented that performs a 10 bit AID 

conversion with an 8 bit lookup table. This increases the sensitivity by a factor of 

four by using the bottom quarter of the AID dynamic range. However this is only 

a temporary measure as it requires more processing and extends the minimum 

scan time by 50% (see figures 5.9 and 6.4 for timing). 

• A new lens provides approximately four times the light by having a larger 

aperture. 

• A video amplifier is being built that will increase system sensitivity by amplifying 

the video signal before the AID conversion. 

The current timing of the Mk2 system is such that using the 10 bit AID conversion the 

scan time is normally limited by the hardware limitation of data conversion and transfer 

time (4 minutes). With the video amplifier this is expected to be such that the image 

capture under forest conditions will not be limited by integration time. 

Initial focus 
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Figure 6.4 - Image capture timing 
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6.4.2 TreeScan Resolution 

The resolution of the TreeScan system refers to the size of the smallest identifiable 

features on the TreeScan images. It is however important to distinguish between pixel 

resolution and discernible resolution; pixel resolution is the size a single image pixel 

represents on the real world object, discernible resolution is the resolution at which 

features of interest may be distinguished. 

Pixel resolution and discernible resolution may be the same or different. In a situation 

where the image is sharp and the feature of interest spans several pixels the discernible 

resolution will be subpixel resolution. If however the image is out of focus or contains 

blooming the discernible resolution will be several pixels. 

6.4.2.1 Pixel resolution 

The pixel resolution is the size a single pixel represents on a real world object. The pixel 

resolution of the TreeScan system varies with position in the image; the pixel resolution 

at the base of the tree will be higher than the resolution near the top of the tree. The 

pixel resolution measured from the image matches the pixel resolution calculated in 

chapter three. The TreeScan pixels resolution for an image captured at 15 m from the 

calibration reference with zero dip and lean is shown in table 6.1. 

Resolution Height up tree 

Om 20m 40m 

Horizontal resolution 0 .27 0.42 0.72 (cm I pixel) 

Vertical resolution 0.27 0.68 2.2 (cm I pixel) 

Table 6.1 - Measured pixel resolution 
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6.4.2.2 Discernible resolution 

The discernible resolution is the resolution at which features of interest can be 

distinguished. The discernible resolution depends on the quality of the image and the 

size and shape of the feature of interest. If an image is correctly focused and a feature 

spans several pixels it may be possible to determine the feature position to a sub pixel 

resolution. In a many situations however the image will not be perfectly focused or may 

suffer from defects such as blooming as a result of sensor saturation. In such a situation 

the image resolution will be less than the pixel resolution. 

Examples of reduced discernible resolution are shown in figure 6.4. Around the stem in 

strongly backlit situations such as the top of the tree there may be considerable 

blooming, the stem may be obscured, or poor focus can result in blurred tree edges (see 

figure 6.1). 

Blooming Stem obscured Poor focus 

Figure 6.5 - Image resolution effects 
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6.4.3 Integration Time Adjustment 

The integration time must be adjusted to prevent sensor saturation but provide enough 

light to allow adequate charge accumulation. If required, the integration time is adjusted 

throughout the scan. 

During a typical image capture the lighting will be low with high contrast near the base 

of the tree. Near the top of the tree the lighting will be high contrast and backlit. Figure 

6.5 shows the integration time adjustments for the capture of a 6000 line image. 

The integration time is reduced by a factor of four near the top of the tree compared to 

the bottom. Also note that the integration time is not adjusted while scanning the 

calibration rod as the calibration circle would influence the integration time adjustments. 

20 

(j) 15 .s 
Q) 

E 
:;; 10 
c: 
0 

ca 5 .. 
Cl 
Q) 

c: 
0 

0 

Image capture integration time adjustment 

Image cature time maximum 
hardware speed limit 

---~~-- -(~-~+----~- - ----
..-' 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 

Position in image (lines) 

Figure 6.6 - Integration time adjustment 
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6.4.4 Focus Tests 

The first verification that was completed was to characterise the focus measure under 

different operating conditions. It was found that the Brenner function worked well on 

both high and low contrast images. There was however variation in the focus measure 

as a result of variations in contrast, lighting, and the surface focused on. 

The autofocus algorithm was developed based on a high contrast inside image capture 

situation. The results of the Mkl system indicated that the focus algorithm worked very 

well on high and low contrast images both inside and out in the forest. The curve of the 

focus graph exhibited a sharp peak at the point of maximum focus. The curve was 

generally rising monotonically up to point of best focus then falling monotonically. 

With the new lens of the Mk2 system however the results of the tests were not as 

conclusive. The focus curves sometimes contained significant noise and no clear peak at 

the point of optimal focus. In addition to this the images captured at the point of optimal 

focus were not as 'visually sharp' as the images captured with the Mkl system. This 

required further characterisation and is currently under investigation as part of Mr Aaron 

Drysdale's masterate. 

Figure 6.7 shows the focus trial under typical operating conditions. Variation within 

repeats of each measurement taken 0.1 seconds apart at the same mirror position are 

shown by the boxes and dashed markers on the graph. Also note that the searching 

around the best focus number in small steps has been vertically offset to improve 

clarity. See section 5.2.5 for a discussion on the autofocus algorithm. 

A) 
Autofocus results 

40 
I 0 35 

0 30 0 -.... 25 Cl> 
.c 
E 20 
::I 
c 15 
U) 

::I 10 (.) 

0 
5 I u. 
0 

0 

Position of focus mechanism (steps from oo) 

Figure 6.7 - Focus results 
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6.5 Initial Accuracy Tests in Two Dimensions 

The aim of the accuracy tests is to validate that the TreeScan system is capable of 

providing sufficiently accurate and precise real world estimates. Initial testing restricted 

the dimensions to be estimated to the two dimensional calibration plane, reducing the 

possible sources of error by one degree of freedom. This section presents the results of 

the initial two dimensional accuracy tests which highlights the imprecision of the system 

when first developed. 

The first parameters to be evaluated were height estimates on the calibration plane. 

These are the most prone to discrepancies and will highlight any accuracy or precision 

problems. 

It is difficult to find a sufficiently tall (40 m) object that can be measured to within 

± 1 cm required to calibrate the TreeScan system. A building with a regularly repeating 

pattern up its side was used. The building was measured using an accurate surveyors 

measuring tape. 

The overall height estimates showed a very large error increasing with height. Height 

estimates produced systematically increasing or decreasing errors within single images, 

with magnitude and sign varying randomly within a group of images. 

These two dimensional calibration tests proved that the Mk 1 system did not have the 

required degree of precision and is further discussed in section 6.2. A detailed report 

can be found in Weehuizen and Pugmire (1994c). 
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6.6 Final Accuracy Tests in Two Dimensions 

Once the system had been modified and a more accurate calibration procedure 

established, further tests were complete to evaluate accuracy in two dimensions. These 

experiments validated that the TreeScan system is capable of providing sufficiently 

accurate and precise real world estimates. 

Again the front face of a building with regular features was used as the calibration 

surf ace. Both height and diameter estimates were made; height estimates were made 

using the heights of the regular features up the building, and diameter estimates were 

made on 10 cm and 1 m horizontal features up the building. 

A series of images was captured and estimates made from these. The resulting height 

estimates had a much greater precision, but contained a consistent offset of about 

0.5 m at a height of 30 m. This was the result of imprecision in the measured value of 

alpha (see section 6.3.2). The angle alpha was empirically changed by 0.3% to correct 

the offset. 

The final tests of the TreeScan system showed that: 

• Height estimates in two dimensions can be estimated to a worst case precision 

of± 20 cm at a height of 40 m (see figure 6.9a). There is an expected trend that 

errors in height estimates are larger near the top of the tree, with the result that the 

TreeScan precision is greater near the base of the tree. 

• Width estimates in two dimensions can be estimated to a precision of at least 

± 1 cm throughout the height of the tree (see figures 6.9b and 6.9c). The 

imprecision in width estimates is probably due to the manual placement of 

marking line endpoints to whole pixel accuracy. 

These accuracy tests on TreeScan height and width estimates are based on twelve 

images captured from different positions and were completed by Mr Gary Allen. A 

more detailed analysis of the data can be found in Allan and Drysdale (1995a). 
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6. 7 Accuracy Tests in Three Dimensions 

The three dimensional accuracy test involve whether the 3D position of the tree stem 

and hence the tree shape can be accurately determined. Tests were completed on tree 

sweep estimates of the generated three dimensional model. 

For these accuracy experiments it must be possible capture two orthogonal images of 

the calibration object. It must also be possible to modify the shape of the object in three 

dimensions to within± 1 cm. To facilitate this a horizontal 'metal tree' built out of sheet 

metal was used with one image captured horizontally at ground level, and one image 

captured from above looking directly downwards. 

It was found that although height and width estimates were good, an apparent sweep of 

approximately 6 cm was being introduced into sweep estimates. This was the result of 

slight mirror misalignment with the axis of rotation of the shaft introducing a slight 

curvature to the captured image (see section 6.3.1.2). 

The final tests of the TreeScan system showed that: 

• Sweep estimates in two dimensions can be estimated to a precision of ± 2 cm 

or typically one tenth stem diameter. 

Further trials should be undertaken to fully characterise the three dimensional stem 

position estimates generated by the TreeScan system. 
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The objective of this masterate research has been to develop a prototype line scan based 

computer imaging system to allow the dimensions of standing pinus radiata trees to be 

estimated. This has been successfully developed. However, the overall objective of this 

research has been to improve forest stand assessment by using imaging techniques to 

make the preharvest forest inventory information less subjective and more quantitative. 

This chapter draws conclusions from the findings of the TreeScan evaluation trials and 

discusses the contribution the TreeScan system can make to in-field tree imaging. The 

role of the system in the forestry industry is discussed by highlighting strengths and 

limitations of the system. Lastly recommendations are made for alternative uses of this 

technology and future research on tree imaging. 

7.1 TreeScan Strengths and Limitations 

A prototype in-field tree imaging system has been built to estimate the dimensions of 

standing pine trees. The TreeScan system has been described at a logical and technical 

level, but if it is to succeed the TreeScan system will need to be used operationally in 

the forestry industry. At this level it is the usability and productivity that is achievable in 

a forestry environment that will determine the final role of such a system. In this section 

the TreeScan system is evaluated from a forestry viewpoint. 

It should be remembered that the TreeScan system was developed as a "proof of 

concept" prototype and is the first generation of this technology. The main aim during 

the development was to develop a system that was physically capable of capturing 

images and providing accurate parameter estimates. 

The TreeScan system has a number of strengths and limitations that will govern the 

eventual role of the system. The main strength of TreeScan is that it is the first system 

to provide an objective tool to characterise the three dimensional shape of a standing tree 

stem. However, the image capture takes four minutes and the two people are required to 

operate the system. 

At this stage the use of the TreeScan system requires a trade-off between desired 

convenience and required accuracy of tree size information. For day to day operations it 

will remain more convenient to send a MARYL crew into the forest to visually estimate 

important tree parameters. The TreeScan system provides a research tool to gain more 

precise estimates of tree parameters, and provide calibration feedback on the accuracy of 

existing inventory methods. 
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TreeScan strengths TreeScan limitations 

• Generates a 3D stem model (for sweep). • Relatively slow image capture (-4 min) 

• Provides repeatable, accurate estimates ->Possible tree movement. 

of diameters and heights. • Semi manual processing of images. 

• Images can be processed in the forest. • System requires two operators and 

careful setting up. 

Other strengths : Other limitations : 

- Little experience necessary. - System is sensitive so could get 

- Can keep a visual record of the trees. damaged or broken. 

- Relatively high hardware costs. 

- Large image data storage requirements. 

Table 7.1 - TreeScan strengths and limitations 

TreeScan strengths 

The TreeScan system has three main strengths: 

• The TreeScan system generates a model that characterises the shape of the entire 

tree stem in three dimensions. From this ·model objective estimates of sweep can 

be made. We believe this is the first device in the world to provide these facilities. 

• In addition to sweep, the TreeScan system also allows other feature sizes to be 

estimated including; feature height, feature size, branch sizes, and stem diameter. 

Provided sufficient care is taken in image capture these estimates of tree size are 

very precise and accurate. 

• The images captured can be processed in the field providing immediate feedback. 

This is very useful if the system were to be used to calibrate current MARYL 

crews. 

Other strengths include; 

Estimation of tree parameters by the MARYL system requires considerable 

experience. This experience is not needed to operate the TreeScan system. A 

small amount of technical training is required to operate the TreeScan system. 

The system captures images of the trees which can provide a visual record of the 

trees that have been processed to be stored for future reference. This could be 

used to generate a forest des~ription database with detailed tree information. 
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TreeScan limitations 

The TreeScan system also has three main limitations: 

• 

• 

The image capture is relatively slow, typically 4 minutes per image, and in low 

light conditions could be longer. In addition to this the equipment needs to be set 

up for each scan, the computer started and the image saved. This could limit the 

productivity. 

During this long scan time, the tops of trees may move in the wind, introducing a 

tree stem wobble in the image that is difficult to distinguish from wobble in the 

actual stem shape (see section 2.2.2). This is a direct result from the line scan 

approach adopted by the system. 

The processing of the images to get tree size estimates requires considerable 

processing. This is a tedious semi manual task with the operator marking all 

dimensions to be estimated. Research is underway to further automate this task. 

• The system requires two · operators and is rather bulky . The system has a 

combined weight of approximately 24 kg (Computer 5kg, scanner 8kg, tripod 

4kg, scanner batteries 3kg, calibration rod 2kg) and is currently contained in two 

aluminium cases. The calibration rod needs to be carried separately. Backpack 

carrying cases should be investigated to make it easier to carry the system around 

the forest. 

Other limitations of the system include; 

The system is sensitive and could get damaged or broken as a result of being 

carelessly operated in a forestry environment, for example the system could get 

dirt into the plugs or water into the electronics. 

The cost per TreeScan system is relatively high, each system costing 

approximately $20000. This is considerably more than the equipment cost for a 

current MARYL crew, but this must be traded off against the unknown value of 

the extra information and precision it provides. 

The image data storage requirements are very high. If many images are going to 

be captured, some form of permanent large scale image archival system should be 

set up. 

A system such as the TreeScan system will always involve some degree of uncertainty 

in the estimates of real world dimensions because extrapolation of the calibration 

geometry is used to determine the estimates of tree parameter dimensions. It is 
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important though to keep in mind the limitations of alternative systems, and the reasons 

this research was undertaken in the first place. Tree shape information is required to a 

greater accuracy than human estimates can provide using the MARYL system. 

It is also important to distinguish between fundamental limitations and limitations of the 

implemented features. Fundamental limitations tend to be limitations of the 

hardware used or the geometry of the forestry situation. Fundamental limitations cannot 

be easily resolved or modified, for example, the distance from the tree at which images 

can be captured will typically need be in the range of 12 to 20 metres. This cannot be 

easily changed as other branches would obscure the tree stem being imaged. 

Limitations of implemented features however, tend to be implemented software 

algorithms, which can easily be modified. For example the type of user interface or the 

sequence of steps in the image capture algorithm. 
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7.2 Forestry Implications 

The TreeScan system was developed as a proof of concept prototype to evaluate the 

feasibility of using in-field tree imaging to improve the preharvest forest stand 

assessment. A system has been built and has been proven to be sufficiently accurate. It 

must now be evaluated in a holistic sense as a forestry tool. Possible roles of this 

technology in the forestry industry are discussed. Also discussed is the final role of the 

TreeScan system determined by its strengths and limitations. When evaluating the 

usefulness and potential of the TreeScan system it must be recognised that it is the first 

device of its kind in the world and that this is the first generation of this technology. 

The next stage of the evaluation cycle is to compare the information generated by the 

TreeScan system with the results of other systems. TreeScan results should be 

compared to those produced by a skid site log optimisation system currently under 

development by Tasman Forestry. The results should also be compared with existing 

systems such as MARYL and AVIS. The final role of the system will depend on the 

outcomes of these tests and the direction chose by both the management at Tasman 

forestry and the research and development team at Massey University. 

At this stage in-field tree imaging, and the TreeScan system in particular, could be 

envisaged in a variety of roles. The TreeScan system could be used as a tool for: 

1 . Research work only 

2. Measuring individual trees used for MARYL training 

3. Accurately measuring trees in research plots 

4 . An inventory replacement for MARYL 

5 . Measuring trees at skid sites prior to harvest 

6 • Making an inventory of every tree in the forest 

The final three roles are very ambitious and given the current state of the technology, 

considerable improvement and development would need to be completed before the 

system is anywhere near capable of these tasks. However the system would be very 

useful to; (i) serve as an accurate measurement device in the assessment of sweep 

during MARYL crew training exercises, and (ii) to make accurate measurements of the 

trees in research plots. 

During MARVL training exercises performed by the MARYL crews, trees are 

called by several crews then cut down and the actual dimensions compared. The 
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TreeScan system would provide an alternative method of measuring the tree while it is 

still standing. 

A number of research plots are maintained under a variety of management regimes. 

These are called permanent sample plots. Trees within permanent sample plots are 

measured every year. This information is used for research into tree growth under 

different conditions, and the development of growth models such as taper functions for 

individual areas. The trees in these plots need to be accurately measured. This would be 

a very good application of the TreeScan system. 

The TreeScan system could also provide advantages during valuation by providing 

quantitative evidence of the timber in a stand. This would also provide quantitative 

information for forest buyers. 

Lastly it must be remembered that the TreeScan system is only one implementation of 

in-field tree imaging technology. Many other implementations are possible. The video 

system (VideoScan) discussed in chapter two (see section 2.2.1) currently is under 

development as a separate project by Mr Farshad Nourozi as a masterate project under 

the supervision of Prof. RM. Hodgson and Dr. R.H. Pugmire. The Forestry Research 

Institute of New Zealand Ltd. are also working on an imaging system to capture tree 

sweep information. 
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7.3 Alternative Technology Uses 

The system developed here consists of a specialist high resolution scanner and a series 

of programs that customise the system to measure pine trees. Alt~mative uses of this 

technology fall in two categories; 

• The entire system could be used to measure large objects 

• The scanner could be used to capture high resolution images for any application 

The system developed here is a system designed for measuring tall or long two and 

three dimensional objects. In addition to the forestry industry the system could be used 

in a large number of other applications such as in the rapid measurement of buildings in 

the event of an earthquake. By rotating the scanner by 90 degrees a whole new 

dimension opens up and the system could be used to estimate parameters on any two 

dimensional horizontal surface, for example, position of boats over water or cars on a 

car park. 

The second possibility for alternative applications is the use of just the scanner to 

capture images. The scanner developed is a specialised high resolution scanner with a 

very high aspect ratio. This could be useful for other applications where a high 

resolution image with a high aspect ratio is required. Situations where this might be 

applied is in panoramic imaging without wide angle lens distortion, or the use of 

imaging in orchards. 

Applications will typically involve the imaging of objects that do not move around. If 

modifications are made to the system to allow faster image capture the system could 

even be used in applications that do require fast image capture. 

Another unique feature of the scanner is that it provides imaging technology with a 

constant angular step size between pixels in the vertical direction. The angular step size 

of pixels changes with the position in the image for normal area cameras. This could be 

very useful for certain applications. 
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7.4 Future V\fork 

In a complex system such as the TreeScan system, the system will never be finished 

and there will always be modifications and improvements that can be made. However at 

this stage the most important task still to be completed is to fit the TreeScan system as it 

stands into the inventory improvement framework. 

Possible uses for the system within Tasman Forestry should be explored. It is 

important that highlighted uses for the system are realistic and provide genuinely useful 

information. 

A series of trials should also be completed to compare the information generated by the 

TreeScan system with the information generated by other systems. The outcomes of 

these tests will determine the future direction of the system. This includes the 

deployment of the TreeScan system within Tasman Forestry Ltd. and possible 

commercialisation of the system. 

Other areas where future work could be completed can be divided into three areas: 

1 . Ongoing research on TreeScan system improvements 

Ongoing research on TreeScan system improvements includes research on a 

number of aspects of the system that have already been implemented but that 

could re improved. This includes research on automatic parameter extraction to 

replace the current semi manual method, hardware developments to reduce the 

image capture time, and other developments to make the system easier to operate 

and more manageable. 

Image capture speed can be improved by the implementation of a video amplifier 

to increase the scanner sensitivity and the implementation of faster AID 

technology such as dedicated AID hardware or use of digital signal processing 

(DSP) technology. 

The inclusion of in-built angle measurement sensors would make the system 

easier to operate, and backpack carrying cases would make the system more 

manageable. 

2 . Research on the use of alternative technologies 

There will always be alternative technologies which can be implemented to 

develop an in-field tree imaging system. 
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The use of alternative technologies that may have advantages over the TreeScan 

system must remain an option. The VideoScan approach under development at 

Massey University as a separate project falls into this category. 

Other methods to directly capture tree shape and dimensions that do not store 

images are also under consideration. A possible approach is the use of laser 

scanning techniques. 

3 . Alternative applications for TreeScan technology 

Lastly, alternative applications for the TreeScan technology have been discussed 

in the previous section. Entire projects could be set up on any one of these 

alternative applications. 
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8.1 Summary 

Quality inventory information is essential for optimal resource utilisation in the forestry 

industry. The present MARVL system used for the preharvest inventory assessment in 

the forestry industry has a number of weaknesses. The MARVL system uses 

predominantly subjective assessment of tree parameters and has been developed to the 

point where it is limited by this subjectivity. This is particularly true in the assessment 

of sweep. 

In-field tree imaging is a method which has been proposed to improve the 

preharvest inventory assessment of standing trees. It involves the application of digital 

imaging technology to this task. The method described generates a three dimensional 

model of each tree through the capture of two orthogonal images from ground level. 

Three ways of implementing in-field tree imaging were identified as promising in an 

earlier feasibility study. The first of these has been developed to a proof of concept 

prototype. This fully operational prototype has been named the "TreeScan" system. 

This thesis describes the design, development, and evaluation of the TreeScan system. 

The TreeScan system consists of a portable computer, a custom designed high 

resolution scanner with integral rnicrocontroller, a calibration rod, and custom designed 

processing software. Images of the tree are captured directly into the portable computer 

using the scanner which contains a CCD line scan camera and a precision scanning 

mechanism. Captured images are analysed on the portable computer using customised 

image processing software to yield estimated real world tree dimensions and shape 

parameters. This involves a semi manual task where the operator identifies the 

dimensions to be estimated. 

The TreeScan system provides quantitative estimates of five tree parameters; height, 

sweep, stem diameter, branch diameter, and feature separation such as intemodal 

distance. In addition to these estimates, a three dimensional model is generated which 

can be further processed to determine the optimal stem breakdown into logs. 

Design considerations 

In the development of a "high tech" instrument such as the TreeScan system, it is very 

important to consider the design constraints and key technical aspects of the system 

before development as any one of a large number of considerations could limit the 

usefulness of the final system. These are discussed in chapters two and three. 

Any system developed must be robust and capable of operating under normal forest 

conditions. These conditions include; difficult image capture geometry (see 
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section 3.7), poor lighting conditions, variable tree stocking, rugged and possibly steep 

terrain with undergrowth, tree movement in the wind, and outdoor weather conditions. 

The system must be based on practical technology and capable of producing accurate 

results. Key technical aspects that need to be considered include; required resolution, 

correction of image capture distortion, choice of imaging sensor, computer to scanner 

interface design, image storage requirements, optical design, and tree parameter 

extraction methods. 

TreeScan technical implementation 

A technical description of the implementation of the TreeScan system is presented in the 

hardware and software chapters (chapters 4 and 5). Key aspects of the implementation 

are discussed in detail, these include: 

• The image capture system 

A CCD line scan camera based image capture system has been developed to 

capture the image data. The line scan camera places critical timing constraints on 

the rest of the TreeScan system, introducing a complicated timing interrelation 

between: image integration, analog to digital conversion of image data, and 

transfer of data to the computer. 

• The SCSI communications interface 

A SCSI interface was developed for the scanner to provide a high speed 

communications interface between the scanner and computer. This interface is 

used to send control commands to the scanner and transfer image data back to the 

computer. 

• Distortion correction and tree parameter extraction algorithms 

Distortion correction and parameter extraction algorithms have been developed to 

correct for perspective distortion introduced during image capture and to process 

the captured images to provide tree parameter estimates. 

• Software development 

To develop a system with the functionality of the TreeScan system, software 

needed to be implemented at four different levels; Macros, Pascal, C and 

assembler. To minimise development time, a strategy was adopted to implement 

all algorithms at the highest level possible. 
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System evaluation 

The evaluation of a prototype such as the TreeScan system is a cyclical process of 

characterisation, calibration, and modification where necessary. During each cycle 

system knowledge is gained and modifications or improvements are made. Several 

limitations were identified in the Mkl version the TreeScan system. A second prototype 

was built (Mk2 version) which largely overcame those limitations. 

The Mk2 version of the TreeScan system has been fully characterised, calibrated and 

the accuracy of tree parameter estimation tested. The experiments performed confirmed 

that the TreeScan system is capable of providing sufficiently accurate and precise real 

world estimates. Height in two dimensions can generally be estimated to an accuracy of 

± 20 cm. Stem and branch diameters are estimated to an accuracy of± 1 cm, and tree 

sweep can normally be determined to an accuracy of± 2 cm (or typically one tenth stem 

diameter). 

The system developed has a number of strengths and limitations. The main strength is 

that it is the first imaging system in the world (we believe) to generate three dimensional 

models of standing trees and provide objective estimation of sweep. The main limitation 

of the system is that the image capture is slow (typically taking 4 minutes). This limits 

the productivity achievable with the system. There is also a danger that if the tree is 

moving in the wind an apparent stem wobble is introduced which is difficult to 

distinguish from tree shape deformation. 

Future directions 

The TreeScan system could be used in a variety of roles in the forestry industry, 

ranging from solely a research tool to a direct replacement for the current MARVL 

system. In the short term the most likely role for the TreeScan system is as a calibration 

device in the training of MARVL crews and as a method to measure trees within 

experimental research plots. 

Further work is required to evaluate how the TreeScan system can be part of the 

inventory improvement framework and what the final role of the system should be. 

This includes an evaluation of the performance of the TreeScan system in comparison to 

existing inventory assessment methods, and investigation into the value of accurate 

inventory information on standing trees. 

Other future work which should be undertaken is: improvement of the TreeScan 

system, research into the use of alternative technologies to implement in-field tree 

imaging, and research into alternative applications for the TreeScan technology. 
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Appendix A 

Development DocuITientation 
for the TreeScan System 

Reports Produced by Production Technology 

Automation of Forest Stand Assessment Feasibility Study, R.H. Pugmire, 

December 1993. ( 24 Pages + Appendices ) 

• An Experimental System for Forest Stand Assessment, R.H. Pugmire, 

January 1994. ( 7 Pages + Appendices ) 

• Brief outline of the Measurement Deviation of the Experimental Image Capture 

System from Actual Measured Parameters, M. Weehuizen, May 1994. 

( 2 Pages + Appendices ) 

TreeScan Characterisation and Calibration Report, M. Weehuizen & R.H. 

Pugmire, December 1994. ( 34 Pages) 

• TreeScan Two Dimensional Accuracy, G. Allen & A. Drysdale, August 1995. 

( 8 Pages+ Appendices) 

Operator Manual for the TreeScan System (version 1.0), G. Allen, January 1995. 

(33 Pages) 

• Technical Reference Manual for the TreeScan System, M. Weehuizen, 

September 1995. 

- Volume 1 - Main Manual. ( 50 Pages+ Appendices) 

- Volume 2 - Software Listings. ( 140 Pages) 

Reports Produced by Tasman Forestry 

Tree Imaging Project : Background Notes and Specifications, M. Colley, 

December 1993. ( 4 Pages ) 
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Project Proposals Produced by Production Technology 

• Sub-Project 1 Proposal : Line Scan Camera Image Capture Prototype, 

R.H. Pugmire, December 1993. ( 4 Pages ) 



Appendix B 

Sample Tree Analysis 

This appendix presents a sample set of images of one tree and follows these images 

through the processing stages to extract the tree parameters. The tree has a fork near the 

top of the tree . 
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Appendix C 

Forestry Terms 

C.1 Definitions 

These are definitions of forestry terms as defined for development of the log 

optimisation software developed by Tasman Forestry Ltd. 

Sweep 
The maximum deviation fro;n straightness along the length of the log 

• Sweep shall be specitied as Dh: over the log length . 
\\.here D !s the average diameter at the point of n~aximum deflection and 
xis the magnjrude of deflection . 
\faximum def1ectio:i shall be measured where the tap~ is stretchec.! from 
th~ middle of one end of the log to the middle of the other end of the log. 

At P~nl of Stniighc 

M1'A i _n'~"' I Line - -- --·- -----O~vi:.~ ---· _______ --e-- ~-/-

S fj maximum deflection Th d fi .. Note : weep has previously been de med as . e e mlt1on 
log small end diameter 

of sweep based on log SED is still used in most other forestry applications. 

\VolJble (cm) 

A ddect where the axis of the log deviates in 2 or more different directions 
along its length. (To a maximum of 6 ml?ters .) The bends in the log may be 
in ch~ same pbne, at righc angles to each other or from a log \vhich spirals. 

Wobble is the larger of the two deflections shown, not their sum. 
• \Vobble is expressed either as an absolute amount or as a ratio of the 

maximum deflection to the average log diameter at point of maximum 
deflection 



Kink (cm) 

Diameters 

A . .sJ-.ort deflection in the log affecting less than 2m of the log. 

• Kink is measured as the maximum deviation of the 
axis 

C2 

Small End Diameter (SED): 

• ~\tlinimum Diameter 
-~Of t\VO diameter measurements at right angles through pith .) 

• Measured under bark. 

Large End Diameter {LED): 

• Maximum diameter anywhere on the log. 
(Usually, but not necessarily, located at the large end .) 

• Measured under bark. 

Diameter Breast Height (DBH): 

Interuode 

• The average diameter of the tree measured at a point l.4m above 
ground. 

• DBH is expressed as an 'over bark' measurement 

• For Log Optimisation purposes breast height is l .4m minus the stump 
height from the butt. The average over bark diameter may be 
extrapolated from measurements taken above and below this point. 

Internode Minimum 
The minimum clear distance (in mm) between \".'horls on a log. 

Internode Maximum 
The maximum clear distance (in mm) between whorls on a log. 
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C.2 Log Grades 

On the skid site tree stems are cut into logs of a certain grade. The log grade is a 

measure of quality and value of each log. Each log grade has specifications which a log 

must meet. Tasman Forestry harvests over 50 different log grades. 

Log grade specifications are based on: 

Length - Minimum length, maximum length, and average length with a standard 

error are specified for each log grade. 

Diameter - Minimum, maximum and average values are specified for SED, 

LED, and average diameter are specified for each log grade. 

• Shape - Log shape restrictions specified by maximum sweep, wobble and kink 

allowances are specified for each log grade. 

Knots - Maximum knot size and knot frequency are important specifications for 

each log grade. 

Features and defects - Other features and defects such as rot, nodal swelling, 

and fluting are important specifications for each log grade. 

For example, a summarised specification of Japanese A Grade logs consists of: 

Minimum Lengths : 4.10 m 

8.10 m 

12.10 m 

Diameters: 

Knots: 

Wobble: 

Kink: 

Roundness: 

Pith: 

Fluting: 

Minimum SED 

Minimim average SED 

MaximumSED 

20 cm, or as directed. 

33 cm. 

70cm. 

Maximum 15 cm or 1/3 SED, including collar. 

Maximum spike knot 8 cm or 1/4 SED. 

Up to 5 cm wobble is permitted. 

Not permitted. 

No restriction. 

No restriction. 

No restriction. 



Bark Damage : 

General: 

Marking: 

Bark damage resulting in discolouration, decay, 

trimming flush with barrel of tree or cutface is not 

permitted 

No draw-wood. No rot, stain, or drywood. No splits. 

No saw cuts. No machine damage. Ends cut square. 

Every log to have a Green "A", Tasman logo, and 

crew no. in green on large end. 

C4 

For inventory management purposes five standard log grades are defined by Tasman 

Forestry: 

• pruned 

• Japan A 

• Korea K 

• domestic sawlog 

• pulp 

These are used when using the MARYL data to predict possible harvests for individual 

stands. 
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Original TreeScan 
Project Proposal 

The original TreeScan project proposal produced by the Department of Production 

Technology and the original background notes and specifications produced by Tasman 

Foresny are presented in this appendix : 

• Line Scan Camera Image Capture Prototype : Sub-Project 1 Proposal 

Tree Imaging Project : Background Notes and Specifications 
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Line Scan Camera Ima2'e Capture Prototype 

Sub-Project 1 Proposal 

Proiect Outline 

Development of a prototype line scan based image capture system for 
automation of forest stand assessment. 
The proposed image capture system is outlined in section 7.3 of the feasibility 
study prepared for Tasman Forestry by the Department of Production 
Technology. The system is intended to capture images which can then be 
used to determine important tree parameters including sweep, diameter of 
stem and branch size. The main components of the system are shown in the 
diagram below. 
This project is intended to produce a working prototype which will allow 
capture of images of trees and transfer to a portable computer. The captured 
images would be in a form that could initially be analysed using the NIH 
Image package and macro 's produced as part of the feasibility study. The 
intention is to produce a system with a resolution of approximately 8000 x 200 
which for a 40 metre tree will translate into a resolution of O.Scm at breast 
height. 
The intention is to produce a basic working system quickly, to which later 
refinements can be added. One such refinement could be the use of 
synchronised or structured lighting to improve contrast and aid in automatic 
extraction of tree parameters. 

One horizontal scan is 
collected at each angle 
of elevation 

I ~ 
Line 
sensor 

c..._---1 -... -

~~ Portable data collection 
computer wtth low 
resloution image display 

Format of nroiect 

Prism or lens control system 

Proposed System 

The project is to be handled as a funded masterate project supervised by 
Ralph Pugmire and Professor Bob Hodgson. In order to speed development of 
the prototype technical support of approximately 1/3 of a man year will be 
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made available to the project from within the Department of Production 
Technology. The masterate student and technical support personnel will be 
chosen by the department. 

Timing: 

The intention is to provide a prototype system by the 1st of July 1993. The 
masterate is expected to be completed within 12 months. 

Personnel 

The present project team is listed below although this may change during the 
course of the project. In particular technical support may be provided by a 
number of people within the Department and other academic staff with 
particular areas of expertise will be involved in parts of the project. 

Ralph Pugmire 

Marijn W eehuizen 

Prof Bob Hodgson 

Farshad N ourozi 

Project monitoring 

Project Leader, supervisor for masterate 

Masterate student 

First supervisor for masterate, 

Technical support 

Brief one page reports will be provided on the status of the project monthly. A 
meeting with Tasman personnel should be held at least once each three 
months. We would also recommend that a Vis-A-Vis system be purchased by 
Tasman to enable the project team to liaise with Tasman during the course of 
the project. 

Publication 

• Any publication of aspects of this work must be cleared by Tasman 
prior to publication. Tasman may require a delay in publication of 
up to twelve months if the publication contains commercially 
sensitive material. 

Naturally where possible we would like to publish the novel aspects of the 
work sooner than this and Tasman will endeavour not be overly restrictive in 
this area. 
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TASMAN FORESTRY LIMITED 

TREE IMAGING PROJECT 

BACKGROUND NOTES AND SPECIFICATIONS 

Jackground 

rasman Forestry routinely assesses stands of mature radiata pine one to two years prior to 
tarvest. This pre-harvest inventory typically involves the establishment of circular 0.04ha to 
>.06ha plots on a systematic grid throughout each stand. The ·current objective is to obtain an 
:stirnate of stand recoverable volume per hectare with a PLE (Probable Limit of Error) not 
:xceeding +/- 10% of the mean. In practice this requires a 2% to 4% sample by area of a 
ypical stand of20-40 hectares. 

rhe pre-harvest assessment involves measuring diameters at breast height of all trees on a plot, 
neasuring heights of a subset of trees, and an ocular assessment of features along the length of 
:ach tree in the plot. Features include branch size class, sweep (i.e. sinuosity) class, forks and 
Jroken tops. Information thus gathered is input to a computer which then proceeds to 
:stimate the volume of each tree and the breakdown of that volume into various specified log 
µ-ades, using an optimisation procedure that ensures the mix of log grades that will maximise 
1alue per tree is cut from each tree. 

rasman Forestry currently defines five standard log grades: 

• pruned 
• Japan A 
• KoreaK 
• domestic sawlog 
• pulp 

f'roin time to time other log grades will be specified and the pre-harvest assessment data will 
'Je used to estimate volumes and characteristics of these log grades. 

fhe pre-harvest inventory has the acronym "MARVL" standing for "Method of Assessment of 
Recoverable volume by Log Type". MARVL field procedure and computer analysis and 
>oftware was developed by NZ Forest Research Institute in 1979. Tasman Forestry has been 
·Jsing it since 1981 and has a large fund of experience in its use. 

[nfonnation from MARVL is a significant and critical part of Tasman Forestry's management 
information data base. It is used to: 

• estimate the volume of harvest, by log grade, up to three years ahead of harvest 
• draw up marketing plans 
• set targets and prices for contract logging crews 
• derive functions that allow log grade forecasts to be made for stands that are younger 

than those in the two to three year harvest plan · 
• estimate various parameters for each log grade at the time of harvest, e.g. average 

small end diameter7 average length. 

6Dcccmbcr1993 Documcnl3 
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It should be noted that usually the MARVL infonnation is "grown on" to the anticipated year 
of harvest before analysis is undertaken. Growing-on uses growth models developed by FRI 
and basically expands the diameter and height of each tree, assuming all features remain 
constant. 

The major drawback to MAR VL is the definition of a method to assess sweep, and then the 
ocular implementation of the chosen method. By comparison, branch class can be ocularly 
assessed quite accurately as can the heights to features such as forks. 

Tree Imaging 

Tasman Forestry has developed MARVL toward the limit of human ability. As noted, its 
major weakness is the subjective assessment of sweep. In order to make a quantum 
improvement it is necessary to capture a 3-dimensional image of standing trees. If this can be 
done, the need to define a method of assessing sweep in the field disappears - the image 
automatically embodies all the sweep in a tree. The need to ocularly assess sweep also 
disappears. 

The diagram below illustrates the concepts involved m analysis of the image within the 
computer. 

View of Image in Computer (One plane only) 

-.:-

Log Grades 
Lengths 
Minimum Small End Diameters (sed) 
Maximum Sweep 
Values 

- - T -
stu?er 

I 
12 ·I me.f.as ~I 

Computer tests first 12. lm section for log grade A. 

A;B 
12.1 metres; 8.1 metres 
200mm ; 1 OOmrn 
sed/2 ; sed/1 
A $100/m3; B $25/m3 

• estimates sweep is it \Yithin specification? 
• estimates sed is it within specification? 
• if YES, goes to next section 
• if NO, tries the next lower value grade (i.e. gradeB)of different specification 
• etc. 

6 December 1993 2 
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at Must Tree Imaging Achieve? 

achievements as currently foreseen, and the working environment, are: 

11ding Trees 
Standing trees, within nonnal forest stands in all their variety, are the subject.' By 
imaging standing trees, assessment can be done one or more years ahead of harvest, 
there is no cutting down, and therefore likely wastage of trees, and sweep is captured 
without being altered by gravity acting on a felled tree. 

ipling . 
Identical to current procedure. All trees on a 0.04. to 0.06ha plot will be imaged. 
Plots will sample 2% to 4% of a stand. 

ameters 
New Zealand plantations are now quickly moving toward a fairly uniform age of 
felling within the range 27-32 years. From now on mature trees will generally be 
around 40-45 metres in height, average 45-60 cm in diameter breast height (range 15-
100), and at stockings of 200-600 stems/hectare (occasionally up to I 000 sph and 
reducing to a range of200-300 sph after the tum of the century). 

m Two Directions 
Images should be captured from two positions at approximately 900 to one another. 
This will provide an outline of the shape of the stem in three dimensions . 

. uracy 
The following limits of accuracy are desirable 
• diameter± 1 cm 
• height± 0.5m 

'.Debes 
Branches on each tree are currently classified into three size classes 

0-7cm 
7- 14 cm 
>14cm 

Class 1 
Class 2 
Class 3 

For example a stem may be described as follows 

5.5m 
I.Om 

12.0m 
0.5m 
8.0m 

27.0m 

Class I branching 
Class 2 
Class I 
Class 3 
Class 1 
Total Height of Stem 

It would be desirable if imaging could also estimate branch size to within ±lcm .. 

eccmba- 1993 MCTREEIM.NTS 3 
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Ground Vegetation 
Stands can vary widely in the density of understorey, e.g. shrubs and tree fems up to 
several metres in height. As is often current practice, the understorey shrubs can 
conveniently be cut down before assessment talces place. 

Downloading 
Image data collected in the field could readily be downloaded at the end of each day 
to a computer based at forest HQ, as is current practice for the existing MAR VL 
assessment. Alternatively, downloading could be done through a radio data network 
to HQ at any time during the day. 

Number of Trees 
Current pre-harvest inventory crews comprising a team of two people assess around 
150-200 trees per day. 

Because the capability of an imaging system is unknown at this stage, a desirable level 
of productivity (trees captured per person-day) can not be stated. There is a trade­
off. For example, if two people can capture accurate images that provide the 
quantum jump in tree description, then 50 trees per two-person day may be 
acceptable. 

At this early stage of the project, the area of prime interest is the technical ability to 
capture accurate images of trees. 

13 December 1993 MCTREEIMNTS 4 
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Systetn Error Calculations 

This appendix provides additional information related to the discussion on the 

implications of image capture geometry (see section 3.7), and presents the modelling of 

the geometry of the mirror system to quantify the distortion introduced by a 

misalignment of the scanning mirror with the axis of rotation of the scanning 

mechanism (see section 6.3.1.2). 

• Geometric sensitivity calculation 

• Modelling of mirror misalignment 
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E.1 Tree Plane Variation 

E.1.1 Errors introduced by tree displacement 

Height errors caused by tree displacement for a tree displacement of± lm, ± 50 cm and 

+ 10 cm. See section 3. 7 .1.1 for discussion. 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heioht error (m) from 100 cm disQlacement towards scanner 
1 0 0.00 1 . 1 1 2.22 3.33 4.44 
1 5 0.00 0. 71 1 .43 2. 1 4 2 .86 
20 0.00 0.53 1.05 1 .58 2 . 11 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heioht error (m) from 50 cm disol9_g~!)Jent towards scanner 
1 0 0 .00 0.53 1.05 1 .58 2 .11 
1 5 0.00 0 .3 4 0.69 1. 0 3 1 .38 
20 0.00 0.26 0.51 0. 77 1 .03 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heioht error {m) from 10 cm displacement towards scanner 
1 0 0 .00 0 . 1 0 0 .20 0.30 0.40 
1 5 0 .0 0 0 .0 7 0.13 0 . 2 0 0.27 
20 0.00 0 .05 0.1 0 0.15 0.20 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiqht error (m) from 50 cm displacement away from scanner 
1 0 0.00 . 0 .48 -0. 95 - 1. 4 3 -1 . 9 0 
1 5 0.00 -0.32 - 0 .65 - 0. 9 7 - 1 . 2 9 
20 0.00 -0.2 4 -0 .49 -0 . 73 -0 . 98 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heioht error (m) from 100 cm displacement away from scanner 
1 0 0 . 00 - 0 . 91 - 1 . 8 2 -2. 73 -3 .64 
1 5 0.00 -0 .63 - 1 . 2 5 - 1 . 8 7 - 2 .50 
20 0.00 - 0.4 8 -0. 95 -1. 4 3 - 1 . 9 0 
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E.1.2 Errors introduced by measured angle variation 

Height errors caused by error in measured angle under standard operating conditions 

for errors in angle of +3 degrees, ±1 degree, +0.5 degree, and +0.1 degree. See section 

3.7 .2.1 for discussion. 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Height error {m) introduced bi'. 3 degree error in 0 
1 0 0.00 0 .57 2.37 5.65 10.68 
1 5 0.00 0.38 1 .53 3. 5 6 6.56 
20 0.00 0.28 1 . 1 4 2.60 4.74 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Height error (m) introduced by 1 deqree error in 0 
1 0 0.00 0 .18 0.73 1 .66 3.01 
1 5 0 .00 0 .12 0.48 1. 0 9 1.96 
20 0 .00 0.09 0.36 0.81 1 .45 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Height error (m) introduced by 0.5 degree error in 0 
1 0 0.00 0 . 1 8 0.73 1.66 3.01 
1 5 0.00 0. 1 2 0.48 1. 0 9 1 .96 
20 0.00 0.09 0.36 0.81 1 .45 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Height error {m) introduced by 0.1 dearee error in 0 
1 0 0.00 0 .02 0 .07 0. 16 0.28 
1 5 0 .00 0 .01 0.05 0. 11 0 .19 
20 0.00 0 .01 0.03 0 .08 0 .14 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Height error {m} introduced by -1 degree error in 0 
1 0 0 .00 -0 . 1 7 - 0. 6 7 -1 . 4 9 -2 .60 
1 s 0.00 - 0 . 1 1 -0 .45 - 1 . 0 1 -1 . 77 
20 0 .00 -0. 09 -0 .34 -0. 76 -1 . 34 
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E.1.3 Errors introduced by estimated distance variation 

Height errors caused by error in estimated distance from scanner to tree for standard 

operating conditions for an error of +0.5 m, +0.25 m, +0.1 m, and 0.02 m. See section 

3.7.2.2 for discussion. 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiaht error (m) introduced by 50 cm error in Dist. 
1 0 0.00 0.50 1.00 1.50 2.00 
1 5 0.00 0.33 0.67 1.0 0 1 .33 
20 0.00 0.25 0.50 0.75 1.00 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Height error (m) introduced bv 25 cm error in Dist. 
1 0 0.00 0.25 0.50 0.75 1.00 
1 5 0 .00 0.17 0.33 0 .50 0 .67 
20 0.00 0.13 0.25 0.38 0.50 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiaht error (m) introduced by 1 O cm error in Dist. 
1 0 0.00 0.1 0 0.20 0.30 0.40 
1 5 0.00 0.07 0.13 0 .20 0.27 
20 0.00 0.05 0.10 0.15 0.20 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Height error {m} introduced by 2 cm er~~r in Dist. 
1 0 0.00 0.02 0.04 0.06 0.08 
1 5 0.00 0.01 0.03 0 .0 4 0.05 
20 0.00 0.01 0.02 0.03 0.04 
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E.2 Modelling of Mirror Misalignment 

If there is a misalignment between the plane of the mirror and the axis of rotation of the 

mechanism, a nonlinear distortion will be introduced into captured images (see figure 

E.1 and section 6.3.1.2). The nature of this nonlinear distortion depends on the angular 

position of the rotation mechanism over which the image is captured. This nonlinear 

distortion was measured as approximately 6.8 cm of sweep over the calibration building 

and was measured as significant using a laser in a laboritory situation. 

This appendix presents the Matlab modelling completed to determine the nature of this 

distortion. 

Path on calibra1ion 
plane traced by mirror 

Mirror 

Figure E.1 - Mirror geometry 

E.2.1 Analysis Approach 

Offset angle 

Camera 

~osition 

In a normal image capture situation, the scanner is placed at approximately 45° to the 

horizontal, and the image is captured over a 70° angle (see figure E.2). The bottom of 

the image capture may be slightly above or below the horizontal. 

Offset problems between 
mirror and axis of rotation 

Introduced offset 

Figure E.2 - Scanner alignment during image capture 
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The following sequence is followed: 

1 . From mirror angles determine three arbitrary points on the mirror plane. 

2. Using cross products of two vector differences, calculate normal to the plane. 

3. Using the normal to the plane and one point calculate the equation of the plane. 

4 . Calculate the equation of the camera 'light ray'. 

5. Calculate intercept between camera ray and mirror plane. 

6 . Calculate the equation of the reflected ray using the angle between the camera ray 

and the normal to the plane. 

7. Calculate the difference in angle between reflected ray and the ideal reflected ray if 

there was no mirror deviation; or calculate the wall intercept in a similar fashion as 

steps 1 to 5. 

8. Repeat steps 1-7 for a series of rotation steps representing a normal scan. 

E.2.2 Mathematical Analysis 

1. Three points on the mirror plane are: 

Three arbitrary points on the mirror plane are defined: 

To rotate the points on the mirror plane abount the origin in three dimensions multiply 

by: 

[

cos(8) 0 -sin(B)l 
ofsmirr = 0 1 0 

sin( 8) 0 cos( 8) 

Rotation about y axis 

(mi rror misalignment) 

[

1 0 0 ] 
rotmirr = 0 cos(¢) -sin(¢) 

0 sin(¢) cos(¢) 

Rotation about x axis (scanning) 

The new loactions of P1 to P3 in 3D space are be found by: 

P = rotmirr x (ofsmirr x P) 

2. Find the normal to the plane 

A vector normal to the plane is the cross product between any two vectors on the plane. 
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2 

1.5 
Out ray 

z 
0.5 

0 

·0.5 
2 

-2 -0.5 

Figure E.3 - Math ematical geom etry 

3. Find the equa tion of the pla ne 

The equation of any plane is Ax+By+Cz+D = 0. 

from its normal N = [ ~] and any point P 0 = [ ~:] 
~Equation of the mirror plane: A(x - x0 ) + B(y - y0 ) + C(z- z0 ) = 0 

4. F ind the equa tio n of the came ra ra v a nd inte rcept point 

The paramerric equation of any line in three dimensional space is given by: 

x = x0 + t (x1 - x0 ) , y = y0 + t(y1 - y0 ) , z = z0 + t(z1 - z0 ) given 

any two points P0 and P1• 

5. Find the inte rce pt 

Using: rx·] [X0

] [A] [XP] 
In ray = ~: and In ray0 = ~·: to find PI> with N = ~ and P0 = ~: ,and 

substituting in the equation of the plane: 

A(x0 +ex. - xP) + B(y0 + l)'. - yP) + C(z0 + tz. - zP) = 0 

Rearrange to find the value oft at the intercept : 

. . c(A.x. +By.+ Cz.) = A(xP - X0 ) + B(yP - y0 ) + C(zP - z0 ) 

A(xP - x0 ) + B(yP - y0 ) + C(zP - z0 ) 
. . I = ---'-------------'----

Ax. +By. + Cz. 

E7 
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The intercept point between the camera ray and the mirror plane can be found by 

substituting the value oft back into the line equations. 

6. calculate reflected rav 

The equation of the reflected ray is calculated using the normal to the mirror plane and 

the camera ray. 

If r = In ray, and q = Out ray, then 

r = 2cos(8)N -q 

For any two vectors a and b with angle 28 between them 

a.b = Jajjbjcos(8) e a.b 
=> cos( ) = -

1 1
-

1 ajh 

· Vector representing reflected ray = r = 2( 1~~~1 }v -.j 
7. Calculate error angle 

Calculate the difference in spatial angle between the refelcted ray and theoretical 

reflected ray if there was no mirror deviation. In this case: 

out angle = atan(;) 

v h= .; 
cos( out angle) 

error angle = tan ·1 
( ~) 

To calculate the path traced by the reflected ray on the calibration plane the same 

sequence of steps (steps 1 to 5) can be used to find the intercept point between the 

reflected ray and the calibration plane (see program listing in section E.2.4). 



Appendix E - System Error Calculations E9 

E.2.3 Results 

The magnitude and shape of the deviation introduced varies with the position of rotation 

of the mirror. If the plane of the mirror is parallel to the camera ray the ray is not 

reflected, and thus not deviated. If the plane of the mirror is perpendicular the camera 

ray the deviation is at a maximum of twice the offset angle. 

Two scenareos were modelled. The first a typical image capture situation where the 

object (at the calibration plane) being imaged was 15 m away from the scanner, the 

second was the controlled lab situation under which the deviation was measured. 

The results showed that a misalignment of 0.8° (1 mm at one end of the mirror) 

introduced an apparent sweep with maximum deflection of 7 cm (see figure E.4). To 

reduce this to an acceptable 1 cm the mirror must be aligned to 0.1° (0.14 mm at one 

end of the mirror). 

4000 

3500 

:[3000 
Q) 

~ 2500 
.(!I 
<ll 

~ 2000 
1: 
en 
a; 1500 
I 

1000 

500 

Ci..rved path on flat surface 

O'--~-'-~~..._~__.~~....._~~~~~~~ 

-70 -65 -60 -55 -50 -45 -40 -35 
Offset (cm) 

4500 

4000 

3500 

:[3000 
(J) 

~ 2500 
.(!I 
I/) 

~ 2000 
:c 
en 
·a; 1500 
I 

1000 

500 

Ci..rved path on flat surface 

wall : 15 m at45° 

mirr: 0.82°(1 .00 mm) 

Max dev: 6 .82 cm 

5 10 15 20 25 30 35 40 45 
Deviation (cm ) (magnif 100: 1) 

Figure E.4 - Typical image capture with 0.82 ° mirror deviation 



E.2.4 Matlab Model 

%:============================== 
% Marijn Weehuizen 12 September 1995 
%>--~~~~~~~~~ 

% Model of the mirror mechanism to 
% investigate a curved deviation in the 
% captured images. 
%>--~~~~~~~~~ 

% Output: 
% Store( loop errangle outangle wally wallx) 
%i============================= 
clear 

%>--~~~~~~~~~ 

% Define constants 
%>--~~~~~~~~~ 

% Angle of wall ( 0 = lab stetup, 45 = vet tower setup) 
% Distance to wall (cm) 

% wallangle =45; walldist = 1500; 
% wallangle =0; walldist = 210; 
wallangle =O; walldist = 1500; 

%ofsangle = atan(O. ln)* 180/pi; 
ofsangle = O; 

loopstop = 90-wallangle/2; loopangle = 35; 

% Vet tower 
% Lab setup 
% Tests 

% Mirror ofset angle 
% Mirror ofset angle 

step = 5; % Rotation of mirror steps 
x=l; y=2; z=3; 
count=l; 
ofsangle = ofsangle I 180 *pi; 
wallangle= wallangle I l 80*pi * (-1) ; 

%i============================ 
% Set up wall 
%:i--~~~~--~~~~ 

di = cos(-wallangle)*walldist; 
d2 = cos(90/180*pi - (-wallangle))*(tan(-wallangle)*walldist); 
wdist = d 1 +d2; 

%:i--~~~~~~~~~ 

for loop=loopstop-loopangle:step: loops top 
%for loop=67.5:step:67.5 
rotangle =loop I 180 * pi; 

%'>--~~~~~~~~~ 

%Setup light ray 
%'>--~~~~~~~~~ 

hold off 

%rofs=tan(O/I 80*pi)*2; 
%ray=[rofs; 2; OJ; 
%ray0=[-rofs; -2; OJ; 

rofs=tan( 1/180*pi)*2; 
ray=[rofs; 2; OJ; 
rayO=[O; -2; OJ; 

EIO 
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plot3([ rayO(l) rayO(l )+ray(l)] , [ ray0(2) ray0(2)+ray(2)], [ ray0(3) ray0(3)+ray(3)]) 
hold on 

plot3(1,l,l); 

%1---------
% Set up mirror plane 
%1---------

p=[O 0 1; 
I -1 0; 
0 0 O]; 

po= 3.5; 
pofs=[ po po po; 

0 0 O; 
0 0 O]; 

ofsmirr = [ 

rotmirr = [ 

p=ofsmirr*p; 
p=rotmirr*p; 
p=p-pofs; 

cos( ofsangle) 
0 
sin( ofsangle) 

1 
0 
0 

0 
l 
0 

0 
cos(rotangle) 
sin(rotangle) 

plot3([p( I ,:) p(l, 1) ],[p(2,:) p(2, I )],[p(3,:) p(3, l) ] ) 
% 
% find normal 
%---------
vl = p(:,2)-p(:, 1); 
v2=p(:,3)-p(:,1 ); 
N=cross(v l ,v2); 

%---------------
% find equation of plane 
%-----------

(-sin( ofsangle)); 
0; 
cos(ofsangle)]; 

O; 
(-sin(rotangle)); 
cos(rotangle)]; 

%t=( A(xp - xO) + B(yp - yO) + C(zp - zO) )/(A *xv + A *xv +A *xv) 

t=( N(l)*(p(l,1) - rayO(l)) + N(2)*(p(2, l) - ray0(2)) + N(3)*(p(3,1) - ray0(3))) /(N(l)*ray(l) + 
N(2)*ray(2) + N(3)*ray(3)); 

intpnt=[rayO(l) + t * ray(l ); 
ray0(2) + t * ray(2); 
ray0(3) + t * ray(3)]; 

plot3(intpnt( 1 ), intpnt(2), intpnt(3),'cx'); 

plot3([intpnt(l) intpnt(l)+N(l)], [intpnt(2) intpnt(2)+N(2)], [intpnt(3) intpnt(3)+N(3)], 'c') 

%pause 
%·---------
% Calculate reflected ray of light 

~o----------

outray = -(2*(dot(ray,N)/(sqrt(sum(ray:''2))*sqrt(sum(N."2)))) * N - ray); 

Ell 

plot3([intpnt(x) intpnt(x)+outray(x)], [intpnt(y) intpnt(y)+outray(y)], [intpnt(z) intpnt(z)+outray(z)]) 



% Calculate offset angle 
%'---·~------
mirran gl e = loop 

outangle = atan( outray(z)/outray(y))* 180/pi; 
if outangle<O outangle = 180 + outangle; end 
outangle = 180-outangle; 

h = outray(2)/cos( outangle/l 80*pi); 
errangle = atan(outray(x)/h)*l80/pi; 

store(count,1:3)=[loop errangle outangle]; 

%~=========================== 
% Set up wall 
%'>-----------

w=[ 0 
-wdist 
0 

wO=[O; -wdist; O]; 

rotwall = [ I 
0 
0 

-wdist 
0 

0 

o· , 
-wdist; 
2]; 

cos( wallangle) 
sin(wallangle) 

O; 
(-sin(wallangle) ); 
cos(wallangle)] ; 

w(:,l)=w(:,1)-wO; w(: ,2)=w(:,2)-w0; w(:,3)=w(:,3)-w0; 
w=rotwall*w; 
w(:, I )=w(:, l)+wO; w(:,2)=w(:,2)+w0; w(:,3)=w(:,3)+w0; 

plot3([w(I,:) w(l,l) ],[w(2,: ) w(2, l)] ,[w(3,:) w(3,l)]) 
%'>-----------
% find normal 
%'}--------
w v l = w(:,2)-w(:,l); 
wv2 = w(:,3)-w(:,l); 
wN=cross(wvl ,wv2); 

%>~----------
% find equation of plane 
%-·---------
%t=( A(xp - xO) + B(yp - yO) + C(zp - zO) )/(A *xv +A *yv + A *zv) 

t=( wN(x)*(w(x,1) - intpnt(x)) + wN(y)*(w(y,l) - intpnt(y)) + wN(z)*(w(z,1) - intpnt(z))) 
/(wN(x)*outray(x) + wN(y)*outray(y) + wN(z)*outray(z)); 

wallpnt=[intpnt(x) + t * outray(x); 
intpnt(y) + t * outray(y); 
intpnt(z) + t * outray(z)]; 

plot3(wallpnt(x), wallpnt(y), wallpnt(z),'cx') ; 

E12 

plot3([wallpnt(x) wallpnt(x)+wN(x)], [wallpnt(y) wallpnt(y)+wN(y)), [wallpnt(z) wallpnt(z)+wN(z)], 'c') 

%-

wp=wallpnt-wO; 
wp=rotwall'*wp; 
wallx=wp(x); wally=wp(z)-walldist*tan(-wallangle); 
store(count,4:5)=[wally wallx]; 
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%pause 
count=count+ I; 
end 

%, __________ _ 

% Calculate deviation 
o/c>------- ·----

% not required 

%1-------
% Correct curve 
o/co--------
loop = I; 
maxloop = size( store, 1) 

corrangle = atan ((store(l,5) - store(maxloop,5)) I (store(l,4)- store(maxloop,4)) ); 
corrangle* 180/pi 
rotcorr = ( cos( corrangle) 

sin( corrangle) 

for loop= 1 :max loop 

(-sin( corrangle) ); 
cos(corrangle)]; 

temp(x, I )=store(loop,5)-store(maxloop,5); temp(y, I )=store(loop,4 )-store(maxloop,4 ); 
temp=rotcorr*temp; 
%temp(x)=temp(x)+store(maxloop,5); 
temp(y )=temp(y )+store( maxloop, 4 ); 

store(loop,6:7)=[temp(y, I) temp(x, I)]; 
end 

maxdev = sign(store(5,7))*max(abs(store(:,7))) 

o/c:;:::::============================== 
% Plot graphs 
%-----

hold off 

%plot(store(:,3),store(:,2)) 
%title('Deviation of ray from view plane for mirror deviation of 5deg') 
%xlabel('Angle between mirror incident light and reflected light (degrees)') 
%ylabel('degrees') 

plot( store(: ,5),store(: ,4 ), 'w') 
title('Curved path on flat surface') 
xlabel('Offset ( cm )') 
ylabel('Height I distance (cm)') 

pause 

plot( store(:, 7) ,store(: ,6), 'w') 
title('Curved path on flat surface') 
xlabel('Deviation (cm) (magnif 100:1)') 
ylabel('Height I distance (cm)') 

yrnin=store(maxloop,6); 
ymax= max(store(:,6))*1.1; 

ifmaxdev>O 
% AXIS([ymin ymax/100 yrnin ymax]); 

AXIS([O 30 ymin ymax]); 

El3 

text(0.5*ymax/100, 0.9*ymax, sprintf('wall: %dm at %.Ofoo',walldist, wallangle*180/pi*(-1))); 
text(0.5*ymax/100, 0.8 *ymax,sprintf('mirr: %.2foo(%.2f mm)',ofsangle* 180/pi,tan( ofsangle )*70)); 
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text(O.S*ymax/100, 0.7*ymax, sprintf('Max dev: %.2f cm', maxdev)); 
else 

AXIS([ -ymax/100 -ymin ymin ymax]); 
text( -0.9*ymax/100, 0.9*ymax, sprintf('wall: %dm at %.Ofoo',walldist, wallangle*180/pi*(-l))); 
text( -0.9*ymax/100, 0.8*ymax, sprintf('mirr: %.2foo(%.2f mm)',ofsangle* 180/pi,tan(ofsangle)*70)); 
text( -0.9*ymax/100, 0.7*ymax, sprintf('Max dev: %.2f cm', maxdev)); 

eOO 

store 



Appendix F 

TreeScan Component List 

F.1 TreeScan System Component List 

The TreeScan system has been designed as a complete working system and consists of 

the following components: 

1. Portable computer (Macintosh PowerBook 520c, 160 MByte hard disk, 

20 MByte RAM) 

2. TreeScan scanner 

3. Calibration rod 

4. Tripod 

5 . SCSI cable (computer to scanner) 

6. Power cable (batteries to scanner) 

7. Set of two batteries (for scanner) 

8. Set of two carrying cases 

9. Scope sight for scanner 

10. Digital level to measure alignment 

The above items are required during image capture. In addition to this, system comes 

complete with: 

• Charger for scanner batteries 

• Charger for the computer's internal batteries 

• Documentation 

A. TreeScan Operator Manual 

B . TreeScan Technical Reference Manual 

The computer and batteries are contained in the computer carry case. All other 

components from 1 to 10 are carried in the scanner carrying case. 
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F.2 TreeScan Scanner Component List 

The TreeScan scanner has been custom built and contains the following components: 

• Chassey (made from 45 cm of 150 x 75 mm Al channel) 

• Rotating mirror mechanism 

Brass shaft 

Brass wormwheel with steel rotation shaft 

2 x pivots mounted on ball bearing 

Stepper motor (3.75 degree I step) 

2 x opto interrupter position sensors 

• Line scan camera (Loral Fairchild CAM 1301R) 

• Lens (Fixed 75 mm focal length, manual aperture, motorised focus) 

• Focus Mechanism 

Stepper motor (3.75 degree I step) 

Teflon wormwheel drive mechanism 

• Controller board 

Siemens 80C517 A microcontroller 

27256 EPROM (32 kByte, 170 nS) 

16 MHz oscillator 

SN75C091A SCSI bus controller 

2 x L297 stepper motor controller 

74HC573 address latch 

62256 RAM (32 kByte) 

UC5601 SCSI bus terminator 

2 x 74HC04 inverter 

2 x L298N stepper motor driver 74HC08 And gate 

PowerBox 12V to 15V DC-DC converter 

LM2938-5 low dropout 5V regulator 

Relay 

Various resistors 

Decoupling capacitors 

LM 317L + 15V regulator 

LM 337L-15V regulator 

Various capacitors 



Appendix G 

TreeScan Schetnatics 
and 

Controller Board Layout 

This appendix provides full TreeScan schematics and controller board PCB layout. 

The schematics are of the controller ooard in the Mk2 TreeScan system. 

To develop the Mk2 controller board, modifications were wired on to the back of 

the PCB used for the Mk 1 system. Hence the controller board PCB layouts 

provided are as the Mkl system was manufactured. 



,. 

B 

c 

D 

ll 

F 

1 

"' 

z 3 4 5 (, 

l>CPll"SIOH 

I "' U QI 27251 
flit u Ol -

A2 > 02~E~~l ;~-j~~ ... ll=t-==iiu~~i H ~ 
r .r~"-..LU =~I 
r ,--f!!+..J.l.!.J • II 

•••• 22 ~~ J 
-b -=~ 1 I "Cr ~ D • 

.,... ..........___.., un.. " a ttlCllO 

1 ~~l~~is~2~,.l . I ~ ~ llCl\11111 
Pl. l , > Pl. 1 2l ...... ---.au 

_ :u ;u ... ' .. 

~ 
••· • n. J • -

'--J =::: :~:=~~~~J·~or~~C:==-
PI. 7 Vlf?J.6 

111111 .;·PULH _JO Pl , O TirPJ , 7 n 

J.--H--'le!IU_A_l...Ju1--o-. '1~256 • • • Pl. I P4,. l-""-'"'4---' '•I u 01 Pl.2 '4 , 1 o ........ . 

l~m~~~A2 :> 02 ............ _ =:· l ... 2 . . Al OJ • 4 P4, l r 

=: g: -. . ... ~u ~::: ...... 
A• o• , Pl.7 P4 , I ._ 1;:~i:::n:J:: 07 41 Pl . . • •• 7 >-''-

l§·~ ~~§:r. :u ;:,: " ,. ,. All " PZ , l P .. 2 ~ 
• •12 \. ~~· 4 PS , ] • M,.... =:~ .. :: ~u . -

rr====~·t·:::i·~· ·~ p 2. 1 , s. • - ra I " , tt " - '" -

1----..11 •'.11"L. '-'-,!..!"'D ~ ! ,. . 1 11 r... • . 
v .. rr '-·I · • <• u 

! - 11 uurr ~t ~ '-""'u~o '"·" :: •• • •. s ~ •·•••• 
""!'" '" " out ,., ' ....; '" 

I 

iitla a l'T!SUC P ... 1 --: _ - ··- == ,,_, .. --·---..... - ..L C1b VCL •• ~ P7. I •• • 

-----~~--------======================·~'li"==-~----?=~4~. :7~u-t===~~~~ P?.2 -·~~itr---.-- P7 , J -

T ••• ~~ rr ~u..., ;... 
l(h 7'~ ~~:~:::::: 

'41 P'•.t ~o 
"'' .. --;;.... Ml l\L \ Pl. I 

I 

CU ............... NTAL2 Pl 2 

RS2l2 llu ~ ., Pa : J 

"""2]2 .. ~ ~ ~ .. - • ...1.. ,, 

21'---Lc., ::! v+ • =;=c 26 ;;;~" 
....:::I: Ct - :> llu 

22 ;:::! c 2' v- 1-.i...'---" ... l 'l' -
-:::tt ~m gm~· I~~~ ~ ~1 LATCH ~ 
-::i llOUT lllH . •L~ 4 1Jt" HHC57l 

R20UT UIH ~ C :! ~ 2 > 

1~ l:~!~!n~~~~t:;'I '"• II ji," ?1.'·-, .. ~ ~~" - .. n , ... "'J__,_ " 
7D ~ 70 L_ 'T' 

um:u BO • BO' ~ 1 . 
b 

""!'" 

1 z 3 4 5 ,, 

7 

~ 

~ 

~ 

·p 

~ 
124 
I 2k 

_.\I. 

12' 
]k) 

·CIA 

0 

SENBOll 
Ol"IK 

a(j"" 
POW RA 

m:w ifl" 
Ll"S 
12PI" 

~ums ii 
.0 

(Re4•n4ant In ttk2)1 

l"C-'5Ht[LD 

CAlll!All 
011.S 

1 "-

-1 
cc-De Tn!iyncH -~ 

cw tr1 "' 
< •ll ,.k 

UIDIO 

Micro 

,. 

B 

c 

D 

ll 
I 

I I 

Ir' 

f 

I 

::I e: 
>< 
C) 
I 

~ en 
() 

§ 
en 
() 
::r 
0 
3 
Pol g. 
en 
Pol 
::I 
0. 

n 
0 
::I a 
~ 
to 
0 a 
[;;' 
'< 
0 
t:: .... 

C) 
1t-..:l 



"' 

9 

c 

D 

I 

' 

1 

R33 
Ilk 

2 

2 

R32 
Uk 

3 1 

SCSI 
~~~~~~~~~~~SH?SCt,lA 

11: mt.. 
.-Nn .. 
uuuu 
~~~~ '51JT 

>UT j •UITII m ff,-ITI2 

'ITT >at" 
)2 

"' m "' •2 

"' •• irnr s 

~ 
•• ..,.... 
"' m "' •• imr 

~ 

±!: 00 :nr 
rr"J 

" rr 
rnr 

~ ITc 01 • 
0' 
02 i .. Ol •• 04 

•t OS '. •2 O• 
Al 07 

.. 1ff" 
OP !..!.... 

~ tHT•O 
Cl.It -Nn•ia41,.. 

0000000 
«CC.IE C ICll: 
tJllD .... IOCI .. 

~. 
A/D Bus 

SCS ITERl1 
UCS&lll 

..---f •u• - c•t1o• f9 TIO 
fO Tl I 

" Tl 2 < 

" T 1l : 
" Tl. .. Tl I . 

r Tl T 16 ;..- 4: .. ~ .. ........ -
f2 Tl. 
Tl 1 tt <•"" 

r- ONO + llul +I . tut 
Cl C2 

,~ 

' 

3 1 

5 

SCSI lu• 

,scst Bus 

•r - .... . ,.a 

RCE I g, 

5 

,, 

····· 

-~ 

,, 

cs 
SllPIH 
,~ 

~ 

\ \ \• 

7 e 

II 

)> 
"O 

'8 
::l 
0. ..... 
>< 
0 
I 

~ ... 
Bl I~ 

fJ 
::l 
en 
(") 

::r 
~ 

3 
~ r;· 
V> 

"' Cl I g_ 
() 
0 g ., 
e. 
~ ... 
tp 
0 a. 

DI 1r 
"' '< 
0 
c: ,.. 

I 

Int.erf ace SCSI 
0 w 

p 

•• Tll8"1, 2 



1 I a I 3 I 1 I s I r. I 1 I e 

Carnera l/O I Stepper Control 
Al >-

Ul: A II 't:l 
74HCl4 1i 

C-LIMCllHJ 1[_>2 PC - LIHC/JNJ ::l 
e: 

Ul :c Ll LZ >< 
74HCl4 . L2'7 L2'8" .. 0 

c .. 1.1ncs~r:u::tt •<JS rc-1. uu:s::t1:u:tt 
~ "' 

I 

H • IN\ "' ~ • IM2 > u2:c Ul: I Uk HIT'llL c IMl 

HHCH HHCl4 
D IM4 

n'nT 
cs [ Hlitil LC Til1lr • CMO CJ) • , 

IJRtr Tll1f7 CMI () 

Bl J tin a I>) 
CDHT• SCMSCl SC HS/A ::l 
SYNC S[N5C2 SENS/I 

74HC14 HO"C CJ) 

o<J' i IS 

.. (") 
c-ap1111 rc-pere5ynCH DSC " ::r .. .. Cl> 

~ 
.. 3 

117 RB I>) .. ' .. ' et . 
(") 

Rl r· -8 ..L "' lk 
Ilk == ...,.. I>) 

::l 
•l!J:IU:[ i llrd 

0. 

IC3 i :.~ l~g:&~~~'~;~-1 RZl n Cl 
7 "" 

c 0 
Jlnf ::l 

~ ~ 
c:; 
g 
~ 

Lens Zoom / Foes Ctl Mirror Posn Sensors 

~ 
t::P 
0 
I>) 

C Redundant in Mk21 
.., 
0. 

Tl r RlJ 

. l' 

~ 
U4: IC 

I>) 

A9 RlS '< DI •1 LK324 
'" 2. 2k 74HCl4 0 

2k7 t= 
I .... 

M-S tA M- SU 

I ~~-[g~u~ I 
Rlll 
2k? 
'VV'------]_T2 I I + ...1... 

U3!1 
...,.. 

Ull24 

sl . . I£ 
Tl Rl4 Rlr. U4:D ... 2 . 2k ?4HCl4 

U3:C 
Rll 
2k? "-S2A M-S21 

U3:D 
L"324 RU I, I I~ 2k? 

~4 
,,. 

'F'I ~-_,,/' I h' i• Periphery l 
eY\ •\Oft 

u2.11 

I ~m! lMHIZPn 1m:~
0

1w1 11 

1 I 2 I 3 I 4 I s I r. I 1 I 8 



1 

II 

• 

c 

0 

I 

' 

2 3 

Power Supplies 

Al LAV 
Ill 

• o-~~·'-'-'"'-~~~~~~--'Ll 

REGS . ,,_____.!.i!L 
Lt129Jl~S 

ia1••v • VIH I v,n 

0 

C14 I ~ I 
• 47u 

• C15 
) 22uf 

122 
Ilk 

12) 
••• 

2 

cs• < ' Oh .. PU 

Lens aperture ctl 
(Redundant in Mk2l 

3 

TS 
8Cl21 

5 

5 

f, I 7 I 

lllG3 
L"l \ lL 

v'" 
Al8 
271 

_L C12 
I \ul 

lkO 

-
•19 
lkO 

lc13 
-,- lul 

Decoupling Capacitors 

irrrr1 
TTTTTT --- -- ----- ------- ~ 

C\lt Ctl\ C\11 C\ll C\14 CtlS ,... 
tu \u lu lu lu \u 

0

Powar Suppl~ 
TllBKl. 4 

6 

8 

I. 

le 

I 
c 

0 

I 

F 

i ::s 
e: 
:>< 
0 
' 

~ 
(/l 
(') 

~ 
(/l 
(') 
:r 

3 
i:» 

R· 
C/) 

"' ::s 
0. 
(J 
0 ::s 

~ 
~ 
tn 
0 

a. 
t-< 
"' '< 
0 
i:: .... 

f2 



II 

I 

c 

D 

I 

rl 

1 I 

2 J 

External LED Module 
01112 Oft\\j) 

11351 { UL 

LCDl ~ LID2 ... ... ... ... 

2 I J 

1 

1137 

~ 
LIDJ 

I 

I 
I 1 

5 ' 
External Focus 

C Mk2 on 1 y) 

L1 
L2'1 

7 

Control 
UY 

c .,.,,..,. ._.,.,,..,, 

LZ 
L2HN .. I 

~~u •=u1:: > I IN2 > 
H C 10 
TCTIT o 1•4 
CMAILC TJnn"" 6 [llU 
v •er Tl!1IT t"' 
CONT• S:CNS:C• SCMS/A 
S:¥NC SCMS:C2 SCNS/I 

"!" 

I s 

HO"( 

osc 

I 

.. . 
0 n RB .. ' .. ' 

~
110TOA 2 

• . 
. 

" I 

.. . .. 

... 

H 

'" 

lfm! llsHl1zPH 
1 I 

R2 
1. 2~ 

a 

1 
evt'i"'i"i"'ft 
Ul.8 

I l~m 
1

1w~· 1 
8 

II 

• 

c 

D 

I 

r 
I 

~ g 
e: 
0 

I 

"'"'l 

[ 
(') 
!» ::s 
(/) 
(') 

::r 
0 
3 
!» c:. 
(') 

"' 
~ 
Q. 

() 
0 ::s 

~ 
~ 
to 
0 

a. 
!;;' 
'< 
0 
~ 

I 
~ 



POWER Dt'I ,..., :G1 I I 03 Rl7 18 

iJ ocr 0c.. oo C2l 

J T:5 CUD MD 
Cl4 C1:5 0 w - R24 R2:5 

DD D ~4Rl9 R20 .---I II t Fa 
R32 -c=:J- I 12 I A1 

v 
MICRO 

It CIOI 

C10:5 

R1 
-c=:J-

R2 

i:!b 

O
ut ~ ou:s I c20 I 

[§!] ~ffi 
C19 R29 ~ 

~ 9 

U3o ~8 g~o 
:8: R23 
-c=:J- -c:::J-

CIO~ 

~ ~ ~ L: ... ol· ~~9~ I~ 
~QQ o o ss~s ~Q 

CIOO SCSITERM 

I l 
~c 

C1 C2 LATCH II 
'----· --DD I ~ ~ 

CZ 

T ASMllO Top Dverl0Lj 

~ 
'8 
::I 
p.. 
)<' 

0 
I 

~ 
(/} 

g 
::I 
(/} 
(") 
:r 

3 
C>) 
C'. 
(") 
(I) 

C>) 
::I p.. 
() 
0 
::I 

~ 
&" 
to 
0 

a. 
l' 
C>) 

'< 
0 
c:: 
~ 

0 
....] 



Appendix G - TreeScan Schematics and Controller Board Layout G8 

••••• • • ..... J • 
• •• • 

• ~ 
• • • 
• • • 
• •• • -- • 

• 

• •• • •• •• • •• • •• •• • •• • 

• 
• • • • • • • • • • • 

L • • • ClJ ~ 
u y .. • ...,31 • Oa (7\ 
Lg !!: c5 11.0 
31C ::JI _J L.C~ 

~ ~ Ulft 
lft Ill L -...... •"'> 
Lc~c., 

{!_ .2:§.,g 0. Q_ ... cl 31 
cu~.,,.. 

0 cl~ •N 0 
c"' • ... 
lft 0 lft > 0 
cl L cl• L I-1-11.::ICZ:ll. •• • • • 

t.f •• •• • 0 •• •• ~ • •• •• • •• •••• • • ~ 

• • • .... .... L: • '- • • (/) 

• • • • <I 
I-



Appendix G - TreeScan Schematics and Controller Board Layout 

• • • • 

• 

~ 
ClJ 
y 
d 

_J 

£ 
0 

-P 
-P 
0 
~ 

G9 



Appendix H 

Microcontroller Specifications 
and 

Memory Space Organisation 

H.1 80C517 A Microcontroller Features 

High-Performance SAB 80C517A / 83C517A-5 
8-Bit CMOS Single-Chip Microcontroller 

Preliminary 

SAB 83C517 A-5 
SAB 80C517A 

Microcontroller with factory mask-programmable ROM 
Micro controller for external ROM 

e SAB 80C517A / 83C517A-5, 
up to 18 MHz operation 

e 32 K x 8 ROM (SAB 83C517A-5 only, 
ROM-Protection available) 

e 256 x 8 on-chip RAM 
e 2 K x 8 on-chip RAM (XRAM) 
• Superset of SAB 80C51 architecture: 

- 1 µS instruction cycle time at 12 MHz 
- 666 ns instruction cycle time at 18 MHz 
- 256 directly addressable bits 
- Boolean processor 
- 64 Kbyte external data and 

program memory addressing 
• Four 16-bit timer/counters 
• Powerful 16-bit compare/capture unit 

(CCU) with up to 21 high-speed or PWM 
output channels and 5 capture inputs 

• Versatile "fail-safe" provisions 
• Fast 32-bit division, 16-bit multiplication, 

32-bit normalize and shift by peripheral 
MUUDIV unit (MDU) 

• Eight data pointers for external memory 
addressing 

• Seventeen interrupt vectors, four priority 
levels selectable 

• Genuine 10-bit A.JD converter with 
12 multiplexed inputs 

• Two full duplex serial interfaces with 
programmable Baudrate-Generators 

• Fully upward compatible with SAB 80C515, 
SAB 80C517, SAB 80C515A 

• Extended power saving mode 
• Fast Power-On Reset 
• Nine ports: 56 110 lines, 12 input lines 
• Three temperature ranges available: 

o to 70 °C (T1) 
- 40 to 85°C (T3) 
- 40 to 110°C (T4) 

e Plastic packages: P-LCC-84, P-MRFP-100 

The SAS 80C517A.J83C517A-5 is a high-end member of the Siemens SAS 8051 family of 
microcontrollers. It is designed in Siemens ACMOS technology and based on SAS 8051 
architecture. ACMOS is a technology which combines high-speed and density characteristics 
with low-power consumption or dissipation.package (P-LCC-84) and in a 100-pin plastic quad 
flat package (P-MRFP-100). 

While maintaining all the SAB 80C517 features and operating characteristics the 
SAS 80C517A is expanded in its "fail-safe" characteristics and timer capabilities.The 
SAB 80C517A is identical with the SAB 83C517A-5 except that it lacks the on-chip program 
memory. The SAB 80C517A / 83C517A-5 is supplied in a 84-pin plastic leaded chip carrier 
package (P-LCC-84) and in a 100-pin plastic quad flat package (P-MRFP-100). 
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H.3 Microcontroller Pin Configuration 

V.c•O 
P7 .7 
P7 .6 
P7 .5 
P7.4 
P7.3 
P7.2 
P7 .1 
P7.D 
P3.0 
P3.1 
P3 .2 
P3 .3 
P3.4 
P3 .5 
P3.6 
P3. 7 
Pl.7 
P1.6 
P1.5 
P1.4 

<....> 

~-~~·~~N-0 ~N-0-~~ 
'~~·•~••w•••,~,~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

SAS 

80C517 A/83C517 A-5 

33 

74 

54 

P6 .4 
P6 .3 
P6.2 
P6 .1 
P6 .0 
OW[ 
P5.0 
P5.1 
PS.2 
P5.3 
PS.4 
PS .5 
P5 .6 
P5.7 
HWPO 
P0.7 
P0 .6 
P0 .5 
P0 .4 
P0 .3 
P0 .2 

WCP0 1479 

H.3 Microcontroller Electrical Characteristics 

Absolute Maximum Ratings 

Ambient temperature under bias .. ....... ... ....... .............. ....................... .. ....... - 40 to 110· C 
Storage temperature ......... ............ .. ...... ........... .. .... ... ...... .. .. .... ......... ...... ... .. - 65 to 150 °C 
Voltage on Vee pins with respect to ground (V55) ........ .. ................. ... ... ..... - 0.5 V to 6.5 V 
Voltage on any pin with respect to ground (Vss) ......... .... ...... ..... .... ........... - 0.5 to Vee +0.5 V 
Input current on any pin during overload condition ...... ...... ... .. ..... .. ......... .... - 1 OmA to + 1 OmA 
Absolute sum of all input currents during overload condition ....... .... ........... 1 OOmA 
Power dissipation .......... .... ............ ... .. .......... .... .... ...... ............. .................... 1 W 

Note Stresses above those listed under "Absolute Maximum Ratings • may cause permanent 
damage of the device. This is a stress rating only and functional operation of the device 
at these or any other conditions above those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating conditions for longer 
periods may affect device reliability. During overload conditions (VIN > Vee or VIN < 
Vss) theVoltage on Vee pins with respect to ground fVssJ must not exeed the values 
definded by the absolute maximum ratings. 
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DC Characteristics 

Vee= s v + 10 %, - 1 s %; Vss = o v 

Parameter 

Input lo~ol~ ___ 
(except EA, RESET, HWPO) 

Input low voltage (EA) 

Input low voltage (HWPD, 
RESET) 

Input high voltage (e~ 
RESET, XTAL2 and HWPD 

Input high voltage to XT AL2 

Input high voltage to RESET 
and HWPO 

DC Characteristics (cont'd) 

Parameter 

Output low voltage 
(ports 1, 2, 3 , 4. 5, 6) 

Output low voltage _ 
(ports ALE, PSEN, RO) 

Output high voltage 
(ports 1, 2. 3 , 4, 5, 6) 

Output high voltage 
(port 0 in external bus mode, 
ALE, PSEN, RO) 

Logic input low current 
(ports 1, 2, 3 , 4, 5, 6) 

Logical 1-to-O transition current 
(ports 1, 2, 3 . 4, 5, 6) 

Input leakage current __ 
(port 0, EA, ports 7, 8, HWPD) 

Input low current to RESET 
for reset 

Input low current (XTAL2) 

~t low current 
(PE/SWD, OWE) 

Pin capacitance 

Power supply current: 
Active mode, 12 MHz7l 

Active mode, 18 MHz7l 

Idle mode, 12 MHz7> 
Idle mode, 18 MHz7l 

Slow down mode, 12 MHz 
Slow down mode, 18MHz 
Power Down Mode 

TA= 0 to 70 °C for the SAB 80C517A/83C517A-5 
TA=- 40 to 85 °C for the SAB 80C517A-T3/83C517A-5-T3 
TA=-40to 110 °CfortheSAB80C517A-T4/83C517A-5-T4 

Symbol Limit Values Unit Test condition 

min. max. 

VIL -0.5 0.2 Vee- v -
0.1 

V1u -0.5 0.2 Vee- v -
0.3 

v,L2 -0.5 0.2 Vee v -
+ 0.1 

V 1H 0.2 Vee Vee+ o.s v -
+ 0.9 

V1H1 0.7 Vee Vee+ o.5 v -

V IH2 0.6 Vee Vee+ o.s v -

Symbol Limit Values Unit Test condition 

min. max. 

Vol - 0.45 v loL =1.6 mA 11 

Vou - 0.45 v 'oL =3.2mA 11 

VoH 2.4 - v /oL=-80 µA 
0.9 Vee - v /oL=- 10 µA 

VOH1 2.4 - v fol =-800 µA2) 
0.9 Vee - v /oL =-80 µA2) 

/ 1L -10 -70 µA VIN= 0.45 V 

/TL -65 - 650 µA VIN= 2 V 

'u - ± 100 nA 0.45 < v1N < Vee 

± 150 nA 0.45 < v1N < Vee 
TA>100°C 

l1L2 -10 -100 µA V1N = 0.45 V 

,,L3 - -15 µA V1N = 0.45 V 

/IL4 - -20 µA V1N = 0.45 V 

C10 - 10 pF Jc= 1 MHz 
TA= 25°C 

'cc - 28 mA Vee= 5 v,•i 
Ice - 37 mA Vee =5 v:i 
'cc - 24 mA Vee= 5 V,si 
'cc - 31 mA Vee = 5 V,si 
Ice - 12 mA Vee= 5 v,si 
'cc - 16 mA Vee= s v.si 
/PO - so µA Vee= 2 ... s.s v, 3l 

H4 
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AID Converter Characteristics 

V CC= 5 V + 10 %, - 15 %; V SS= 0 V 

v AREF = Vee ± 5%; v AGND = Vss ± 0.2 V; 
TA= 0 to 70 °C for the SAS 80C517A/83C517A-5 
TA=-40to85 ° C fortheSAB80C517A-T3/83C517A-5-T3 
TA= -40 to 110 °C for the SAS 80C517A-T4/83C517A-5-T4 

Parameter Symbol Limit values Unit 

min. typ. max. 

Analog input capacitance C1 25 70 pF 

Sample time Ts 4rCr'' ' µS 

(inc . load time) 

Conversion time ! Tc 14rCr'' ' µS 
(inc. sample time) I 
Total unadjusted error TUE ±2 LSB 

V AREF supply current IREF ±20 µA 

AOCL AOCL 
'' / CY= (8"2 1 !Jose: (icy= 1//A.oc: fAoc = /oscl<B"2 )) 

Test condition 

2) 

3) 

VAREF =Vee 

VAGND = Vss 

4 ) 

21 This parameter specifies the time during the input capacitance C1 can be charged/discharged by the 
e>Cternal source. It must be guaranteed. that the input capacitance C1 , is fully loaded within this time. 
4TCY is 2 µs at the Jose= 16 MHz. Aller the end of the sample time 'Ts changes of the analog input 
voltage have no ettect on the conversion result. 

31 This parameter includes the sample time Ts. 14TCY is 7 µsat Jose= 16 MHz. 
41 The ditterencial impedance r 0 of the analog reference source must be less than 1 Kn at reference supply 

voltage. 
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H.4 Memory space organisation 

The memory space organisation of the 80C5 l 7 CPU is complicated. The 80C517 CPU 

has separate address spaces for program and data memory, and manipulates operands in 

the following four address spaces: 

• Up to 64 kByte of program memory 

• Up to 64 kByte of external data memory 

• 256 bytes of internal data memory 

• 128 byte special function register area 

Program memory can be external (EPROM) or up to 32 kByte on the micro controller 

chip determined by the state of the EA pin during powerup. The 80C5 l 7 A also has 2 

kByte on chip XRAM. The XRAM is accessed using identical instructions to accessing 

external RAM but with bit I of SYSCON register set. 

80C517 A Memory Space Organisation 

FFFF 

8000 

7FFF 

External 
Program 
Memory 

1 External 
Program 
Memory 

(EA=O) 
0000 ..,,.__ __ ..,_, ~--~ 

FFFF~I 
Ftro (XMAP=O 

External Data 
Memory 

(XMAP=1) 
'----- --' 

F7FF 

External 
Data 

Memory 

FF . 
i 

ro 
7F 

00 

FF 
Upper Special 
Internal Function 
RAM Registers 

8J 

Lower 
Internal 

RAM 

Code Space External Data Space Internal Data Space 

Figure H.I - Microcontroller memory space organisation. 

All registers, (except the program counter and four general purpose register banks), 

reside in the special function register (SFR) area. The SFR's include arithmetic 

registers, pointers and registers to provide an interface between on chip peripherals 

(eg.10 Ports). Registers which lie on 8 Byte boundaries are bit addressable. 

There is an address overlap between the upper 128 bytes of internal RAM and the 

SFR's. The addressing mode used determines whether the SFR's are addressed or 
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whether internal RAM is addressed. The internal RAM contains four banks of registers 

and 128 bit addressable bits overlapping internal RAM. The stack pointer is initialised 

to 08h in internal RAM after reset. 

The TreeScan scanner microcontroller uses the following sections of the 80C517 A 

memory space (see figure 4.7) : 

7FFF 

::::;: 
0 
a: 
(l_ 
w 
::.:: 
N 
(") 

0000 

• 32K byte EPROM to store the microcontroller code and ND lookup tables 

• 32K byte RAM of which IK byte is used to buffer the SCSI transfer 

• SCSI controller registers repeatedly mapped into the top 32K bytes of 

external data memory 

• the lower internal RAM ( for working variables ) 

• the special function registers 

TreeScan Microcontroller Memory Map 
FFFF ,.--------..., 

FF I 
Upper I FF I SFR 

ND 
Tables 

I Internal 
F81F-SCSI 

8J I 
RAM SFR's 

;;~,! I i 8J 

7F I L RAM 
(2 : 

Micro 

::.:: 

I SCSI line 
Variables N 

(") 

Code 0000 buffering CXl 

Program memory External data memory Internal RAM SFR's 

Figure H.2 - TreeScan Microcontroller memory map 



Appendix I 

Additional SCSI Interface 
Specifications 

Appendix I provides SCSI interface specifications additional to the discussion in 

sections 4.4.1 and 5.2.4. Note that this information relates to the implementation of a 

SCSI I system. 

1.1 SCSI Bus Phases 

The SCSI contains eight distinct phases of the SCSI bus. The SCSI bus can only be in 

one of these phases at any one time. Each of the eight possible phases has a specific 

purpose: 

• BUS FREE phase 

The BUS FREE phase is used to indicate that no SCSI device is actively using 

the SCSI bus and that it is available to subsequent to devices. 

• Arbitration phase 

The ARBITRATION phase allows one device to gain control of the SCSI bus 

so that it can assume the role of an initiator or target. The device with the highest 

ID number wins the arbitration. 

• Selection phase 

The SELECTION phase allows an initiator to select a target for the purpose of 

initiating some target function. eg. a data transfer command. 

• Reselection phase 

In systems which implement reselection this allows the target to reconnect to the 

initiator to continue some operation that was previously started by the initiator 

and suspended by the target. The RESELECTION phase is not implemented on 

the Macintosh computer. 
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• Command phase 

The COMMAND phase allows the target to request command information from 

the initiator. The command information instructs the target what function it is 

expected to complete. 

• DATA phase 

The DATA phase allows the transfer of parameters or data from the target to the 

initiator or from the initiator to the target. 

• ST A TUS phase 

The ST A TUS phase allows the target to request that transfer status information 

be sent from the target to the initiator. 

• Message phase 

The MESSAGE phase allows message information to be sent from the target to 

the initiator or from the initiator to the target. Multiple messages may be 

transferred. 

A completed SCSI operation will start with a BUS FREE phase and must proceed 

through an ARBITRATION phase, SELECTION phase, COMMAND phase, STATUS 

phase, and a MESSAGE phase. In addition to this the SCSI operation may include a 

RESELECTION phase and a DATA phase. This sequence can only be broken through 

a time-out or the undesirable assertion of the bus RESET signal at which time the bus 

must be released to the BUS FREE phase. 

The Macintosh does not support the RESELECTION phase. 

1.2 SCSI Bus Signalling 

The SCSI bus consists of 18 signal lines, nine of which are control signal lines and 

nine of which are data signal lines. 

During a sequence of bus phases the bus control signals are asserted in a complicated 

control and handshaking sequence. The sequence the control signals may be asserted is 

specified in the ANSI standard. A typical SCSI transfer is discussed in section 5.2.4. 

Minimal and maximal duration between signal transitions is also specified in the 

standard. The SCSI bus signals are described below (all signals are active low): 

• BSY (Busy) : An 'or-tied' signal that indicates the bus is being used. 
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• SEL (Select) : A signal used by an initiator to select a target or by a target to 

reselect an initiator. 

• CID (Command/Data) : A signal driven by the target that indicates control or 

data information is on the bus. True (active low) indicates control data. 

• 110 (Input/Output) : A signal driven by the target that controls the direction of 

data movement on the data bus with respect to the initiator. True indicates input to 

the initiator. 

• MSG (Message) : A signal driven by the target during the message phase. 

• REQ (Request) : A signal driven by a target to indicate the request for a 

REQ/ ACK data transfer handshake. 

• ACK (Acknowledge) : A signal driven by an initiator to indicate an 

acknowledgement for a REQ/ACK data transfer handshake. 

• A TN (Attention) : A signal driven by an initiator to indicate the attention 

condition. 

• RST (Reset) : An 'or-tied' signal that indicates the reset condition. 

• DB(7-0,P) : Eight data bit signals , plus a parity bit signal that form the data bus. 

Certain SCSI bus signals are driven only by the initiator or only by the target. Others 

are driven either by the initiator or by the target depending on the bus phase. The 

following table lists all the SCSI bus signals (except RST) and their relationship to the 

bus phases. RST can be driven by any device but is completely asynchronous and is 

not constrained to any bus phases. 

SIGNALS AND THEIR DRIVE SOURCES 

SDO- CID, 
BUS PHASE BSY SEL SD7, 1/0 MSG, ATN ACK 

SOP REQ 

Bus free None None None None None None None 

Arbitration All Winner ID bit None None None None 

Selection 
Initiator, 

Initiator Initiator None None Initiator None 
Target 

Reselection 
Initiator, 

Target Target Target None None None Target 

Data out Target None Initiator Target Target Initiator Initiator 

Data in Target None Target Target Target Initiator Initiator 

Command out Target None Initiator Target Target Initiator Initiator 

Status in Target None Target Target Target Initiator Initiator 

Message out Target None Initiator Target Target Initiator Initiator 

Message in Target None Target Target Target Initiator Initiator 

Fig 1.1 - SCSI Signal Sources (SBC Data Manual, 1990) 
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1.3 General SCSI Commands 

As discussed in section 4.4.1.2 the completion of a SCSI command involves the 

transfer of a command descriptor block from the initiator to the target. In order for a 

device to adhere to the SCSI specification a number of general commands must be 

implemented. Out of 256 available commands four commands are classed as 

mandatory, four commands are for devices that support independent self configuring 

software, twenty two commands are optional, twenty three commands are vendor 

specific, with the rest reserved for future use. 

The classification of commands as mandatory or optional is dependant on the device 

type. Device types include direct access devices, sequential access devices, printer 

devices, processor devices and WORM devices. The list below summarises important 

commands for processor devices, direct access device and commands common to all 

device types: 

Op Code Type Command name 

Group 0 commands common to all device types : 

OOh Optional Test Unit Ready 

03h Mandatory Request Sense 

12h Self Conf. SW Inquiry 

18h Optional Copy 

1 Ch Optional Receive Diagnostic Results 

lDh Optional Send Diagnostic 

Group 1 commands common to all device types : 

39h Optional Compare 

3Ah Optional Copy and Verify 

Group 0 commands for Processor Devices : 

08h . Optional Receive 

OAh Mandatory Send 

Group 0 commands for Direct-Access Devices 

01 h Optional Rezero Unit 

04h Mandatory Format Unit 

07h Optional Reassign Blocks 

08h Mandatory Read 

OAh Mandatory Write 
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OBh Optional 

15h Optional 

16h Optional 

17h Optional 

18h Optional 

!Ah Optional 

lBh Optional 

!Eh Optional 

Seek 

Mode Select 

Reserve 

Release 

Copy 

Mode Sense 

Start/Stop Unit 

Prevent/ Allow Medium Removal 

15 



Appendix J 

SCSI Bus Controller Specifications 

The SN75C091A SBC manufactured by Texas Instruments is a single ended flexible 

SCSI implementation for microprocessors . It provides DMA or programmed I/O 

capabilities and can be interrupt driven to minimise host polling. The SBC consists of a 

single 68 pin PLCC package. The SN75C091A can execute multiphase commands to 

minimise host interrupts. Chip access is provided through 32 directly addressable 

registers (Texas Instruments, 1990). 

J.1 SBC Features 

SCSI Bus Interface 

Complies with ANSI X3.131-1986 SCSI standard 

Performs INITIATOR and TARGET functions 

Supports arbitration, selection, and reselection 

Performs asynchronous data transfers of up to 5 Megabytes/second (MBps) 

Performs synchronous data transfers of up to 5 Megabytes/second (MBps) with 
programmable offset up to 15 

Has on-chip 48-mA transceivers 

Provides optional parity generation, checking, and pass-through 

Reduces overhead associated with initiator multi-threading by automatically 
handling save-data-pointer messages. disconnects. and reconnects 

Performs automatic message and command-length decoding 

Has two 32-byte FIFOs for command and message preloading 

Microprocessor Interface 

Provides chip control via directly-addressable registers 

Has optional address latch line for multiplexed address/data buses 

Allows OMA- or programmed-1/0 data transfers 

Is interrupt-driven to minimize host polling 

Can execute multi-phase commands to minimize interrupts 

Has 24-bit transfer counter 

Provides byte-stacking control to accommodate 8-, 16-, and 32-bit systems 
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J.2 Block Diagram 

Byte St.ck 
Control 

~ 
I ' 

h -OMA Receive ..-- Interface r-- FIFO 
--+ ,.._ r-+-

I I I I Parity 
GEN/CHK Command Parity ~ Sequencer GEN/CHK 

I I Parity 
GEN/CHK 

I I ' Transmit ,.---

s FIFO ..---
4~ 

Micro--- Proceuor 
- Interface 

ARB/SEL ~ rr-Control . 
~ r-

Register r-

Fiie 

Interrupt I 
SCSI Handler . 

~ 

REO/ACK ~ 
. Handshake ~ 

Controller 
~ 

Fig J.1 - SN75C091A Functional Block Architecture 

(SBC Data Manual, 1990) 

The SBC provides a microprocessor port for information transfer and chip control. A 

separate DMA port is also provided for SCSI data transfers between memory and the 

SCSI bus. The DMA port may be connected directly to an 8-bit system or through byte 

stack registers to 16-, 24-, and 32-bit systems. 

J.3 Registers 

REGISTER ADDRESSES 

A4 A3 A2 A1 AO READ/WRITE REGISTER 

0 0 0 0 0 R Receive FIFO 

0 0 0 0 0 w Transmit FIFO 

0 0 0 0 1 R/W Command 

0 0 0 1 0 R Transfer status 

0 0 0 1 1 R Bus phase status 

0 0 1 0 0 R Function interrupt status 

0 0 1 0 1 R Error interrupt status 

0 0 1 1 0 R/W Interrupt enable 
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REGISTER ADDRESSES 

A4 A3 A2 A1 AO READ/WRITE REGISTER 

0 0 1 1 1 (Reserved) 

0 1 0 0 0 R/W Control 

0 1 0 0 1 R/W Byte stack control 

0 1 0 1 0 R/W Parity control 

0 1 0 1 1 R/W Synchronous transfer 

0 1 1 0 0 R/W Selection or Reselection timeout 

0 1 1 0 1 R/W Self-ID 

0 1 1 1 0 R/W Destination ID 

0 1 1 1 1 R Source ID 

1 0 0 0 0 R/W Target LUN 

1 0 0 0 1 RN/ Command state 

1 0 0 1 0 R/W Transfer counter Oeast significant byte) 

1 0 0 1 1 RN/ Transfer counter (middle byte) 

1 0 1 0 0 RN/ Transfer counter (most significant byte) 

1 0 1 0 1 R Backup counter (least significant byte) 

1 0 1 1 0 R Backup counter (middle byte) 

1 0 1 1 1 R Backup counter (most significant byte) 

1 1 0 0 0 RN/ Offset counter 

1 1 0 0 1 (Reserved) 

1 1 0 1 0 RN/ Test control 

1 1 0 1 1 R Test points register O 

1 1 1 0 0 (Reserved) 

1 1 1 0 1 (Reserved) 

1 1 1 1 0 (Reserved) 

1 1 1 1 1 (Reserved) 

• Transmit & Receive FIFOs 

Two 32-byte transmit and receive registers are used to buffer the SCSI bus 

information transfers . The Receive and Transmit FIFOs are accessed through 

the microprocessor port at register file address OOOOOh. Writing loads a byte 

into the transmit FIFO through the microprocessor port; reading enables the 

information onto the microprocessor port and unloads the byte from the receive 

FIFO. 

• Command Register 

The command register stores the commands written by the microprocessor. 

Each command is executed immediately upon being sent to the chip. Generally 

the microprocessor should not issue a new command to the SBC while the 

previous command is still active. 
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• Transfer Status & Bus Phase Status Register 

Registers that contain status bits which reflect the status of the SBC chip and of 

the SCSI bus. 

• Functional Interrupt Status & Error Interrupt Status Register 

Registers that contain status bits which reflect the status of the SBC functional 

interrupts and error condition interrupts. 

• Variety of other registers 

Variety of other registers that contain control information, status information, 

SCSI ID information, and transfer counters. 

J.4 SBC Chip Commands 

The SBC is driven by chip commands written to the COMMAND register. These 

commands are instructions from the microcontroller to the SBC to modify the current 

bus phase or transfer data. These commands fall in three categories: 

• Non interrupting commands 

• Single phase interrupting commands 

• Multiphase interrupting commands 

. Noninterrupting Commands 

COMMAND 
COMMAND NAME 

ISSUED RESULT 
CODE STATE STATE 

00000 Chip Reset ANY 0 

00001 Disconnect T, TO 0 

00010 Pause I, T I. T 

00011 Assert ATN I I 

00100 Negate ACK I I 

00101 Clear Receive FIFO 0,1,T D, I, T 

00110 Clear Transmit FIFO 0, I. T 0 , 1, T 

Single-Phase Interrupting Commands 

COMMAND 
COMMAND NAME 

ISSUED RESULT 
CODE STATE STATE 

00111 SCSI Bus Reset ANY 0 

01000 Select with ATN 0 I 

01001 Select without ATN 0 I 

01010 Reselect 0 T 
01011 (reserved) - -
01100 Receive Command T T 
01101 Receive Data T T 
01110 Receive Message Out T T 
01111 Receive Unspecified Information Out T T 
10000 Send Status T T 
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10001 Send Data 

10010 Send Message In 

10011 Send Unspecified Information In 

10100 Transfer Information 

10101 Transfer Pad 

10110 (reserved) 

10111 (reserved) 

· Multiphase Interrupting Commands 

COMMAND COMMAND NAME 
CODE 

11000 Select wilh ATN and Transfer 

11001 Select withoul ATN and Transfer 

11010 Reselect and Receive Data 

11011 Reselect and Send Data 

11100 Wait for Select with A TN and Receive 

11101 Wait for Select without ATN and Receive 

11110 Conclude 

11111 Link to Next Command 

D = Disconnected 
I = Initiator 
T =Target 
TO = Time-Out 

JS 

T T 

T T 

T T 

I I 

I I 

- -
- -

ISSUED RESULT 
STATE STATE 

0,1 D 

D D 

D T 

D T 

D,T T 

D, T T 

T D 

T T 

A normal command sequence for the SBC used in a target role would involve waiting 

for the chip selection using the an interrupting multiphase command or by directly 

polling the transfer status register. 

Once the chip has been selected a receive command command would be sent to 

receive the SCSI command command descriptor block. Based on the information 

in the command descriptor block additional data transfer command may be executed. 

To complete the SCSI transfer a message byte and a status byte need to be sent. This 

can be completed using the conclude command. 



J.5 SBC Electrical Characteristics 

Absolute Maximum Ratings Over Free-Air Temperature 
Range (Unless Otherwise Noted) 

Supply voltage range, V cc (see Note 1) • . . . . • . . • • . . . . . . . - 0.5V to 7 V 
Input voltage range, V1, at any input . . • • . . . . . • • . . . . . . . . . . - 0.5V to 7 V 
Output voltage range, v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5V to 7 V 
Storage temperature range . . . • . . . . • . . . . . . • . . . . . . . . . - ss·c to 1 so·c 
Case temperature for 1 o seconds • . . . . • . . . . . . . • . . . . . . . . . . . . . . 2so·c 
NOTE 1: All vohage values are with respect to GNO. 

Recommended Operating Conditions 
MIN NOM MAX UNIT 

Supply voltage. Vee 4.75 5 5.25 v 
High-level input voltage. V1H 2 Vee v 
Low-level input voltage. Vrl t -0.5 0.8 v 
Clock frequency. fclock 20 MHz 

Operating free·air temperature. TA 0 70 ·e 

t The algebraic convention, in which the least positive (most negative) value is designated 
minimum, is used in this data manual for logic voltage levels only. 

Electrical Caracteristics Over Recommended Ranges of 
Supply Voltage and Operating Free-Air Temperature (Unless 
Otherwise Noted) 

PARAMETER TEST CONDITIONS 

VoH 
loH=-4mA(seeNote2) 

High-level output voltage loH=- 2mA(seeNote3) 

lol = 48 mA (see Note 4) 

Vol low-level output voltage lol = 4 mA (see Note 2) 

IOl = 2 mA (see Note 3) 

11 Input current Vee =5.2s v. 
V1 = 0 to 5.25 V 

'oz 
High-impedance output vce = 5.25 v. 
current V1 = 0 to 5.25 V 

'cc Supply current 
No load on outputs, 
f = 20 MHz 

Input pins 

Ci 
Input Bidirectional Vee = 5 v. TA= 25•c 
capacitance pins 

Co 
Output 

Vee = 5 v. TA= 25·c 
capacitance Output pins 

t All typical vaules are at Vee = 5 v and TA= 25°C. 
NOTES: 2. Applies to MP, M(0:7) and DP, 0(0:7) only. 

3.Applies to all other outputs or bidirectional signals. 
4.Applies to SCSI interface signals only. 

MIN TYPt MAX UNIT 

3.7 v 

0.5 v 

:I: 10 µA 

:I: 10 µA 

30 mA 

5 pF 

13 pF 

8 pF 

16 
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Macintosh SCSI Manager 

The Macintosh SCSI Manager must be used to program the SCSI interlace on the 

Macintosh computer. 

K 1 Macintosh SCSI Manager SCSI Calls 

The Macintosh SCSI manager provides the following SCSI calls: 

• SCSIGet() 

Arbitrate for the SCSI bus. 

• SCSISelect(targetID) 

Select a SCSI device with a specific ID (targetlD). 

• SCSICmd(buffer, count) 

Send a command to the selected target device. Where buffer is a pointer to a 

command descriptor block and count is the size of the command descriptor 

block pointed to by buffer. 

• SCSIComplete(stat, message, wait) 

Gives the current command a given number of ticks to complete. The status and 

message bytes returned by the target device are returned in stat and message. 

The maximum number of ticks to wait (time-out) is specified in wait. 

• SCSIRead(tibPtr) 

Transfer data from the target to the initiator, as specified in the transfer 

instruction block pointed to by tibPtr. 

• SCSIWrite(tibPtr) 

Transfer data from the initiator to the target, as specified in the transfer 

instruction block pointed to by tibPtr. 
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• SCSIRBlind(tibPtr) 

Transfer data from the target to the initiator, as specified in the transfer 

instruction block pointed to by tibPtr, without byte handshaking by polling and 

waiting for the /REQ line after each byte. 

• SCSIWBlind(tibPtr) 

Transfer data from the initiator to the target, as specified in the transfer 

instruction block pointed to by tibPtr, without byte handshaking by polling 

and waiting for the /REQ line after each byte. 

• SCSISelAtn(targetlD) 

Select a SCSI device and signal the intention to send a message by asserting the 

ATN line. 

• SCSIStat() 

Return a bitmap of the SBC control and status registers. 

• SCSIMsgln(message) 

Get a message from the SCSI device. 

• SCSIMsgOut(message) 

Send a message to the SCSI device. 

• SCSIReset() 

Reset the SCSI bus by asserting the RST line. 

All SCSI Manager SCSI calls return an error code indicating the success or failure of 

the function. Error codes are 0 = no error, while any other value indicates a command 

specific error has occurred. 
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K 1 Transfer Instruction Blocks ( TIBs ) 

The transfer of data from the target to the initiator or vice versa requires a transfer 

instruction block (TIB) for the data transfer calls on the Macintosh. A TIB is a sequence 

of low level instructions that tell the SCSI Manager what to do with the data bytes 

transferred during the data phase. A TIB contains a pseudo-program consisting of a 

variable number of instructions which are interpreted by the SCSI Manager. TIB 

instructions are similar to assembly code but with a very limited instruction set. 

Eight instructions are available: 

• seine buff er count 

The seine instruction moves count bytes to or from buffer, incrementing 

buffer by count when done. 

• scNolnc buffer count 

The scNoinc instruction moves count bytes to or from buffer, leaving buffer 

unmodified. 

• scAdd addr value 

The scAdd instruction adds value to the address in addr (performed as 

MC68000 addition operation). 

• scMove addrl addr2 

The scMove instruction moves the value of the location pointed to by addr 1 to 

the location pointed to by addr2 (performed as MC68000 move operation). 

• scLoop relAddr count 

The scLoop instruction decrements count by 1. If the result is greater than 0, 

the pseudo-program execution resumes at the current address + relAddr. If 

the result is 0, execution resumes at the next instruction. RelAddr should be a 

signed multiple of the instruction size (10 bytes). For example, to loop to the 

immediately preceding instruction , the relAddr field would contain -10. 

• scNop nil nil 

The scNop instruction does nothing. 

• scStop nil nil 

The scStop instruction terminates pseudo-program execution, returning to the 

calling SCSI Manager routine. 
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• scComp addr count 

The scComp instruction may be used for data verification and can be used only 

with a read command. Beginning at addr, it compares incoming data bytes with 

memory, incrementing addr by count when done. If the bytes do not compare 

equally, an error is returned to the SCSI Manager read command. 

For example, a TIB to transfer six 512 byte blocks of data from or to address Ox67B50: 

scOpcode 

sclnc 

scLoop 

scStop 

scParaml 

Ox67B50 

-10 

scParam2 

512 

6 

Tills can read in variable length data blocks by using self modifying code. For 

example, if the first bytes in a data block sent from another SCSI device contains the 

length of the data block, these bytes may be read into the second parameter of the next 

sclnc instruction to correctly read in the required number of bytes. This capability is 

used in the SCSI transfer byte loss detection and resend scheme. 
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SCSI Byte Loss Detection and 
Resend Scheme 

L 1 Byte Loss Detection and Resend Scheme 

The byte loss detection and resend scheme is an elaborate scheme to esure transferred 

data is not corrupted by buffer overflow (see section 5.2.4.2). It will correct for 

occasional buffer overflow of up to several hundred bytes. 

The implementation of the byte loss detection scheme required some major algorithm 

and software changes. The detection and resend scheme works on the basic principle 

that the SBC expects to send a certain number of bytes. If at the end of the image line 

the SBC expects to send more bytes, the SBC FIFO must have overflowed during the 

AID conversion loop. The line that was sent must be ignored and the line resent from 

the scanner memory. 

Two restrictions that must must be taken into account are that: 

1. The TIB instruction set is very limited and can only execute seven types of 

instructions (see APPENDIX K for more detail on TIBs). 

2. The scanner SCSI bus controller provides limited status information. There are 

flags that indicate whether the Transmit FIFO is full or half full, but not whether 

the transmit FIFO is empty. 
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The detection and correction scheme works on the following principle: 

1. Once all the image bytes for a line have been sent and the FIFO is less than half 

full, send another 15 filler bytes. Wait until all bytes have been transmitted. If the 

SBC transfer counter is not equal to zero more than 15 bytes have been lost and 

the line needs to be resent. Send one more filler byte and wait until it could have 

been sent. If the SBC FIFO half full flag has not been set, less than 15 bytes have 

been lost and the line needs to be resent (see point 4). 

2. If no bytes were lost the FIFO will now contain 16 filler bytes which must be 

cleared before the next line is transferred. 

3. Now if the transfer of the image line was successful the TIB needs to increment 

the pointer to memory where the image is stored so the next line can be captured. 

If however the bytes were lost, the memory will contain invalid information and 

the next line must be captured to overwrite the invalid information. This is 

achieved by using the feature that TIBs can contain self modifying code. The 

microcontroller has determined whether the line is valid. Based on this an 

increment number is transferred which the TIB uses as the amount by which to 

increment the memory data pointer. A second number must be transferred which 

the amount by which to decrement the TIB loop counter to ensure the correct 

number of lines are captured (see TIB in figure L.2). 

4. If however bytes were lost during the line, the line must be resent. This involves 

sending filler bytes until the correct number of bytes been sent (transfer counter= 

zero). The scanner SBC is then cleared of filler bytes and a memory increment 

and TIB loop decrement for an invalid line are sent. This means the last line is 

disregarded. The line is resent from memory, and the memory increment and TIB 

loop decrement for a valid line are sent. 

5. Now the microcontroller can loop back and capture the next line. 

The implementation of this byte loss detection and resend scheme has little impact on 

the acquisition plug-in code. Only the TIB required additions to allow for significant 

self modification. 

The implementation of this byte loss detection and resend scheme does have 

implications on the structure of the microcontroller image block capture algorithm, and 

timing of the AID conversion loop discussed in section 5.2.3. The AID conversion loop 

must write the image data to RAM as well as to the SCSI. This increases the AID 

conversion loop to 12 µs as shown in figure 5.9. Secondly the image block capture 
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Pre A!D Initialisation 
Set up initial counts for line (Total= Line Bytes) 

Next Line: Wait for line Synchronisation <-----

'I 
Do 1st motor step & enable auto step 
Complete A!D ->(SCSI, RAM) conversion loop 

( const interloop timing, exit after poking count bytes) 
I Disable auto stepper step I 
I OK: Wait until FIFO< 1/2 full (ensure we don't overflow FIFO) 
I Poke 15 bytes into FIFO I 
I Wait until FIFO <1/2 full 
i Tsf Counter :;e 0 =>Resend (Lost many bytes) --1 

l Poke one byte to half fill FIFO I 
I 

Wait until FC flag I 
I 

If FIFO < 1/2 full => Resend2 (Lost <16 bytes) -: I 
I 

2. X: Clear FIFO v I 

v 
A - - Exit if last line 

3 . Set up counts for next line (Total =Line Bytes + 8) 
Poke synch bytes "Good" into FIFO 

y I Loop to Next Line 

Exit: ~ Set up counts for last synch bytes (Total = 8) 
Poke synch bytes "Good" 
Wait for FC flag 
Return to main loop 

A 

4. Resend: Send filler bytes if FIFO < 1/2 full, until Tsf Ctr = 0 
Wait until FC flag 
Clear FIFO 

~ Resend2: Set up counts for resend line (Total= Line Bytes+ 8) I 

Poke synch bytes "Bad" I 
I 

" Send bytes to SCSI from RAM loop (wait if necessary) I 
I 

Wait for FC flag I 

5 . I 

Continue at X 
__ I 

where Setup Tsf Counts = 
Setup Transfer Counter 
Setup iterations of AID loop 
Reset RAM DPTR 

Figure L.1- Byte loss detection and resend scheme 

algorithm (figure 5.6) must be modified to accommodate the additional write to RAM, 

additional end of line checking, and a line resend if necessary. The principle of the 

Image block capture algorithm does remain the same. 



myTIB[O].scOpcode = scNolnc; 
myTIB[O].scParam1 = bufferPtr; 
myTIB[O].scParam2 = 1; 

myTIB[1 ].scOpcode = scNolnc; 
myTIB[1 ].scParam1 = bufferPtr; < 
myTIB[1 ].scParam2 = lwidth; 

Read in one image line 

myTIB[2].scOpcode = scNolnc; 
myTIB[2].scParam1 = &myTIB[3].scParam2+3; 

::::::::::::::::: :~Nolnc; I 
myTIB[3].scParam1 =&Dummy; 
myTIB[3].scParam2 = O; ~--

----r 
I 
I 

: Fix for byte gain 
: problem 
I 
I 
I 
I 
I 

IA 

myTIB[4].sc0pcode = scNolnc; 
myTIB[4].scParam1 = &myTIB[6].scParam2;- - - ·, R~ad b~ffer memory 
myTIB[4].scParam2 = 4; / ! pointer increment 

myTIB[5].scParam1 =&myTIB[7].scParam2 --- ~- - 1 Read TIB loop 
myTIB[S].scOpcode = scNolnc; I i 

myTIB[5].scParam2 = 4; ; l decrement 
I I I I I 

myTIB[6] .sc0pcode = scAdd; / : : 
myTIB[6].scParam1 = &myTIB[1] .scParam1; : : Increment memory 
myTIB[6].scParam2 =!width; -<-- --- 1 i pointer by O or 1024 

I 
I 

myTIB[7] .scOpcode = scAdd; : 
myTIB[7].scParam1 = &myTIB[8].scParam2; i Increment loop counter 
myTIB[7).scParam2 = o; -<-- --- ----' by 1 or O 

myTIB[8].sc0pcode = scloop; 
myTIB[8].scParam1 = -70 ; 
myTIB[8).scParam2 = Lines; < 

myTIB[9).scOpcode = scStop; 
myTIB[9].scParam1 =nil; 
myTIB[9).scParam2 =nil; 

Capture lines until 
#Lines captured 

Figure L.2 - TIB for byte loss detection and resend scheme 

(for source see Appendix M - File Functions.c) 
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Scanner Control Software 

This appendix presents relevant sections of the scanner control software. An overview 

of the code is provided with a breakdown into files. Listings are also provided of 

relevant sections of code. This includes the microcontroller assembly code as well as 

the TreeScan acquire plug-in. 

Microcontroller code (version 2.0) 

TreeScan Acquire Plug-in (version 3.28) 
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M.1 Microcontroller Code (Version 2.0) 

The microcontroller source code is written in assembly language and is divided into 

seven source files (2800 lines of code) with four extra files containing the 10 bit AID 

lookup tables. The main file T ASM200.ASM contains important code documentation. 

This includes microcontroller 1/0 port declarations, memory map, register usage, 

variable naming convention, modification history, constant declarations, and variable 

declarations. 

Microcontroller code source files 

T ASM200.ASM 

REDEF517.ASM 

INIT.ASM 

MACLIB.ASM 

SUBRTl.ASM 

SUBRT2.ASM 

SUBRT3.ASM 

ADTABLES.ASM 

ADTABLEl.ASM 

ADTABLE2.ASM 

ADTABLE3.ASM 

Main file which #includes all other source files . Contains 

important code documentation, variable and constant 

declaration, and main SCSI background loop. 

Register redefinition to allow assembler to assemble for the 

80C5 l 8A microcontroller. 

Bootup register and port initialisations. 

Inline macro libraries. 

Subroutine library 1 : Implementation of most of the SCSI 

command routines and other subroutines. 

Subroutine library 2 : Image block capture routine (8-bit). 

Subroutine library 3 : Image block capture routine (10-bit). 

10-bit AID lookup table implementation. 

ND lookup table 1. 

ND lookup table 2. 

ND lookup table 3. 

A complete listing of the files implementing interesting and relevant code has been 

included in this appendix (files highlighted in bold). 
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M.1.1 

;* 
. * 
. * 

; * 
-* 

; * 
;* 
. * 
; * .. 

; * .. 

; * 
; * 
. * 
; * 
; * 
. * 
; * 
; * 
; * 
; * 
; * 
;* 
;* 
. * 
; * 
; * 
; * 
; * 
; * 
; * 
. * 
; * 
; * 
; * 
;* 
. * 
; * 
; * 

TASM200.ASM Source Listing 

TreeScan Microcontroller Software Version 2.0 ( 1/ 2/95) 

Siemens 80C517A with 16 MHz clock 

?ort based I/O 
Port 0 Multiplexed data and low order address bus 

Port 1 

?ort 2 

Port 3 

Port 5 

Po:::t 7 

Port 8 

Memory Mapped 
FEOOh 
FEOlh 
FE02h 
to FEFFh 

Pi. 0 
Pl.l 
Pl. 2 
Pl. 3 
Pl. 4 
Pl. 5 
Pl.6 
?1. 7 

P3.0 
P3 . l 
F3.2 
?3. 3 
?3.4 
P3. 5 
P3 . 6 
?3.7 

P4.0 
P4.l 
P4.2 
?4.3 
?4.4 
?4.5 
?4.6 
?4. 7 

?5.G 
PS.l 
PS.2 
PS.3 
?5.4 
?5.5 
?5.6 
?5.7 

P6.0 

P6 . l 
P6. 2 
P6 . 3 
P6.4 
?6. 5 
?6.6 
?6.7 

P7.0 
P7. ~ 
P7.2 
P7.3 
?7.4 
P7.5 
P7.6 
P7.7 

PB . 0 
PB.l 
PB.2 
P8.3 

I/O 

Mi rror Stepper clock 
Line/Integration 

Data rate Control 

T2 A/D co~nt input 

Higr. orde~ Cata b~s 

RS232 Rx 
RS232 Tx 
Steooer d:rection 
Ste.p'?er iv.ode (full/hal:) 
Focus stepper direction 
Focus steooe::: Clock 
Addressing- -WR signal 
Addressing -RD signal 

;.,ens aperture signal (16 level) 
?c~seC da~a =ate 
L~D Output (cebug2) 
Steppe= ?~lse signal 

Le:'!s zoo!TI cu:. 
Lens zoo::-. i co 
Lens focus Far: 
Lens foc""Js ~ear 
Ho:ne pos 
Ho:ne !JCS 2 

A/D start t=igger 
Returned 0ata Synch signal 
Line Synch in 

A/J video s ignal in 
Lens focus feedback 
l ens zoom feedback 

SCS I FIFO 
SCSI Command register 
SCSI Transfer status rec 
SCSI Further :::egisters , 

Memory Map 
Code Space 

0000 to FFFF Program memory (RAM) 

(out) 
(out) 
( ) 
( ) 

(out) 
( ) 

(in) 

(in) 
(out) 
(out) 
(out) 
(out) 
(out) 
(out) 
(out) 

(out) 
(out) 
(out) 
(out) 
( ) 
( ) 
( ) 

(out) 
(out) 
(out) 
(out) 
(in ) 
(in ) 
( ) 
( ) 

(in) 
(in 
( 
( 

( 
( 
( 

( 

(in) 
(in) 
(in) 
( 
( 

( 
( 
( 
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* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 

* 

* 
* 
* 
* 
* 
* 
* 
* 

* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 



;* 
;* 
;* 
;* 
;* 
; * 
;* 
;* 
;* 
; * 
; * ... ... 
' ; * 
; .. 
;* 
; .. 
;* 
; .. 
;* 
;* 

; .. 
;* 
; * 
; * 
;* 
; * 
;* ... 
' 
;* 
; * 
;* ... 
;* 

; * 
; * .. 

Data Space 
0000 to FDFF 
FEOO to FEFF 
FFOO to FFFF 

External RAM 
SCSI chip memory mapped IO 
P2 Regen registers 

CPU Register bank usage 
Bank 0 
Bank 1 
Bank 2 
Bank 3 

Register usage within banks 
RO 
Rl 
R2-R3 

R4-R5 
R6-R7 

Data Pointer 
DPTR 0 
DPTR 1 
DPTR 2 
DPTR 3 
DPTR 4 
DPTR 5 

Counters for inside AD Loop (H & 
Return values for maths routines 
Flashing LED counters (H & L) 
Delay Loop counters (H & L) 
Temporary Register (H & L) 

Useage 
Miscellaneous SCSI Registers 
SCSI FIFO 
SCSI Command Reg i ster 
SCSI Transfer Status Register 
Temporary Data B~ffer in Memory 
DPTR to point to ADTables 

Variable and Constant Naming Convention 

Subroutine name 
Macro name 

Area of application 
s.... SCSI Related 
!'.\ •••• 

c .... 
l.. 
o .... 

Mota= Rela.:.ed 
Ca:7le:-a Relat.ed 
lens related 
Top level variable 

L) 
(H & L) 

;* Variable I constant type 
·• .v... Variable 
; * . c. . . Corn:nand to do 
; .. 
. * 
;* 
; * 
. * 
;* 
. * 

.x .. . 

. r .. . 

.m .•. 

. ba .. 

.p .. . 

. s .. . 
.q. 

Constant 
Register 
8 bit Mask 
Bit in the accumulator 
Pinout Name 
Status variable 
Parameter passed in parameter block 

;* Program Overview 
;* 
; .. 
; .. 
;* 
; .. 
; .. 
; * 
; * 
; * 
. * 
; .. 
;* ... 
;* 
; * 
; * 
;* 
; .. 

Change History 

2- 6-94 MW Initi a l Programming ( Vl.0 - Marijn Weehuizen ) 

25- 6-94 MW Start on Vl.2 - Working SCSI loop 

6-10-94 MW Software fully operational for TreeScan Prototype 1 

7-11-94 MW Start on Vl.3 - Code standardisation and documentation 

8-11-94 MW Code Mods - Flash LED if idle 
- Up Stepper rate to 330 Hz -> 500 Hz 
- Impl ement automatic return from command 

25- 1-95 MW Implemented Stepper focus routines (@250 Hz) 

M4 

; .. 
;* 
; * 
;* 

1- 2-95 MW Fix immeciate return, imlement power off after home mechn 

23- 5-95 MW Reverse High/Low state of infinity posn on focus stepper 

SDEBUG 

.. 
* 
* 
* 
* 
* 
* 
* .. 

.. .. 
* 
.. 
.. 

* 
* 
* 

* 
* 
* 

* 

* 
* 
* 

* 

* 

* 
* 

* 

* 
* 
* 
* 

;-------------------------------------------------------------------------------
Definition of 

Segment Usage 
Constants 
Variables 
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Registers 
Commands 
Status Vari ables 

MS 

;-------------------------------------------------------------------------------
Code and data space segment names 

EPROM 
SCRATCH 
BITS 
INDRCT 

SEGMENT CODE 
SEGMENT DATA 
SEGMENT BIT 
SEGMENT IDATA 

Data Pointer Definitions 

sxDPTRRegs 
sxDPTRFIFO 
sxDPTRCMD 
s xDPTRT s fStat 
sxDPTRBuf fer 
sxDPTRTables 

EQU 
EQU 
EQU 

:S QU 
EQU 
EQU 

OOh 
Olh 
02h 
03h 
04h 
OSh 

;name of code space 
;name of internal direct data space 
;name of bit a ddressable space 
;name of internal indi rect data space 

; DPS EL to point to SCSI Reg's 
; DP SEL to point DPTR to FIFO 
; DP SSL to point DPTR to Command Reg 
; DPS EL to point DPTR to Tsf Stat Reg 
; DPS EL to point DPTR to Line Buffer 
; DP SEL to point. DPTR to AD Tables 

Macintosh SCSI command Definitions 

scmResetDev :::QU OCh 
scmRe set Mech :::QU GSh 
scmDoXSteps :::Qu OFh 
scmPowe= EQ i..i ~Oh 

scmEnq EQ U 12h 
scmGetXLinesB b 2QJ 14h 
scmSe::.CamOn :::QU : 6h 
scmSetCamof: EQU 17h 
scmZoo~ EQ J :eh 
scmFocus EQ J !9h 
scr.\Ape r ture :SQU :Ah 
scmGe tXL ineslOb EQC lBh 
scmSe ::. ADTable SQU lCh 
scmFocus2 EQ U :ch 
scmFocus2I EQ i..i : Eh 

SCSI Reg:ster Definitions 

sIOBase EQU O:'EOOH 

sr:'IFO EQ :J sI03ase - OOh 
srCMD EQU sI03ase - Olh 
sr T sfS~a~ EQC sIOBase + C2h 
sr3us5:.a:. EQU sICBase + 03h 
srir.::.S::.at EQU sI03ase + 04h 
srintErrStat EQU s:OBase + OSh 
srint.C:;iao EQU sIOBase + C6h 
srCTL SQU sIOBase ~ 0 8'1 
srBSCTi. SQU sIOBase + 09h 
srPa=C7L EQU sI03ase OAh 
srsychrs: EQU sIOBase + OBh 
srTimOu::. EQU sIOBase + Och 
srSelfID EQ U s~OBase + ODh 
srDe s::.I ::: EQ U s:OBase + OEh 
srSourceID .C:Q U sIOBase + CFh 
srTargLi.iN EQU sIOBase + lCh 
srCl".DState EQU s IOBa se + llh 
srTsfCtrL EQU sIOBase + 12h 
srTsfCt.rM EQU sIOBase + 13h 
srTsfC::.rfi EQU sIOBase + 14h 
srBak.C:rL EQU sIOBase + 15h 
srBak.C::.rM EQU sIOBase + l 6h 
srBak.Ctr fi EQU sIOBase ~ 17h 
srOffstCtr EQU sIOBase + 18h 
srTestCt:!. EQU sIOBase + l Ah 
srTest.Pt. EQU s:::OBase + lBh 

SCSI Command Defini::.ions 

scC hRe se t EQ U OOOOOb 
scClrTx:' I FO EQU OOllOb 
scRxCMD EQU CllCOb 
scRxDATA EQU CllClb 
scRxMSGOut EQU OlllOb 
scRxinf Out EQU Cllllb 
scTxStat EQU lCOOCb 
scTxDATA EQU lCCOlb 
scTxMSGi n EQU 10010b 
scTxinfin EQU l COllb 
scConclude EQU l lllOb 

;ms b 

; 32 g::~t Reg 
; DMA 'Y./a DDIR cc~ 

;INT R:'2 RFfiF TFF 
; INIT 7ARG - ATN 
;SSL BUS ATN FC 
;PE :J:V.S SRST T- 0 

;SE RE HA MPS 
; DM D 
;P MPE M?CE MPGE ??C:: 

; TP3 TP2 TPl TPO 
;T07 

;l DSCPRV LUNTAR ­
;SDP 
; \ 
; I 1 Register 
; I 
; \ 
; I 1 !<.egis t.er 
; I 

; OC7 

CC 3 CC2 
TFHF TCO 
MSG C/D 
DIS 
NVC CNTL 

FCIE 
AAPS HD 
WLl WLO 
?PGE SPE 
OL3 OL2 

ID2 
ID2 
ID2 
TL2 

CS3 CS2 

CCl 
oco 
:10 
RSL 
NEWLN 
AIE 
HAAM 
BOFl 
SPC::: 
OLl 

IDl 
IDl 
IDl 
TLl 
CSl 

lsb 

CCC 
CDACT 
SRST 
ABEND 
HALT 
MIE 
ATNDS 
BOFC 
SPGE 
OLO 
TOO 
IDO 
IDC 
IDC 
TLC 
csc 

occ 
Loopback. 



Additional SCSI definitions 

sxSelfID 
sxintEnab 
sxCTL 

EQU 
EQU 
EQU 

4 
llOb 
lOOOOOOOb 

sxPar i ty EQU OOOOOOOOb 
sxADCountH EQU 04h 
sxADCountL EQU 26h + Sh 
sxSynchBytes EQU 08h 
sxTestEmptyBytes EQU OF h 

sbaintPend EQU 
sbaSelint EQU 
sbaFCint EQU 
sbaDDIR EQU 
sbaTsfCtrZero EQU 
sbaTxFIFOFull EQU 
sbaTxFIFOHFull EQU 

Acc.7 
Acc .7 
Acc. 4 
Acc. S 

Acc.2 
Acc.4 
Acc .3 

spSCSIReset EQU Pl.O 

sxBuffer EQU OOOOh 

Motor definitions 

mpMotorCLK 
mpCWDir 
mpMode 

mbaPosSensl 
mbaPosSens2 
mxResetForwH 
mxResetForwL 

EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 

Pl. l 
P3.2 
P3.3 

Acc. 4 
Acc.S 
02h 
OOh 

Camera defintions 

cxDRatePerSlow EQU 

cxDRateCmpSlow EQU 
cxDRatePerFast EQU 
cxDRateCmpFast EQU 
cxADCount H EQU 
cxADCcuntL EQU 
cxADCountZ H EQU 
cxADCcuntZL EQU 
cxADCONOinit EQU 
cxADCONl init EQU 
cxT2CntRld EQU 
cxStepsO EQU 
cxStepsl EQU 
cxStepDelayH EQU 
cxStepDelayL EQU 
cxOptintTimeH EQU 
cxOptintTimeL EQU 

c moCMSELOSet EQU 
cmoCMENOSet EQU 
cmaDRateCTcon EQU 
c maCClDisab EQU 
cmoCClEnab EQU 
cmoCC2Enab EQU 
cmoCCl 2Enab EQU 
cmaT2Stop EQU 
cmaCCl 2Disab EQU -
crCountH EQU 
crCountL EQU 

cpLineinteg EQU 
cpDataRate EQU 

cpT2CountIP EQU 

8Ah ; 84h 

4Sh ;~2h 
60h 
30h 

04h 
26h 
OFBh 
ODAh 
OOlOOOOOb 
OOOOOOCOb 
00010010b 
0 
1 
OOh 
OC8h 
02h 
OAOh 

OOOOOlOOb 
OOOOO lOOb 
11111000b 
111100llb 
OOOOlOOOb 
OOlOOOOOb 
00101000b 
llllllOOb 
llOOOOllb 

R2 
R3 

Pl. 2 
P4. 0 

Pl. 7 

Lens definitions 

lpLens EQU PS 
lmoZoomin EQU OOOOOOOlb 
lmoZoomOut EQU OOOOOOlOb 
lmoFocusNear EQU OOOOOlOOb 
lmoFocusFar EQU 00001000b 
lmoCMSELlSet EQU OOOOOOlOb 

;SelfID = 4 on SCSI Bus 
;All interrupt enables 
;Selection enab, resel disab, 
; no halt on ATN , cont on par err, 
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; no ATN on par err, no halt on discnct, 
; no hold ATN, ATN not disab. 
;Disable all parity c hecks 
;Set up to make 1062 AD con versions 

; (1062+8) = 4*2S6 + (26+8)h 
;Number of synch bytes at end of line 
;Bytes to send to test whether FIFO 
; is indeed empty. 

;Polled int detection mask 
;Target selection mask 
;Function Complete mask 
;Data Direction Bit 

;SCSI Transmit FIFO full bit 
;SCSI Transmit FIFO half full bit 

;SCSI reset line 

;Square wave period 
;20MC=26.6us = * 12 I 2 = 78h 
; Sus= 28h X l/(f(osc)/2) 
; Square wave period 
; Sus= 28h X l/(f (osc)/2) 
; Set up to make 1062 AD conversions 
; 1062 = 4•2S6 + 26h 
; -1062 bytes 

;External A/D init ->Ex ternal trig, 
; External A/C init - >7uS conv time 
; Set T2 to Counter, reload 
; Steps to take between scan lines 

; \Delay to allow steppe r to sett le 
; / approx 2 ms - 200 pulses 
; Optimal integration time 

approx 6 ms 

;Or Mask to set CMSELO 
;Or Mask to set CMENO 

ipO 

;And mask to set CT input freq 
;And mask to disable CCl 

f(osc)/2 

;Or mask to enable CCl 
; or mask to enable CC2 
;Or mask to enable CCl & CC2 
;And mask to stop T2 
;And mask to disable eel & CC2 

; Registers to use as c ou nt in AD Loop 

;Or masks to set appropr iate lens 
; focus and zoom control bits 

;Or Mask to set CMSE~l 
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lmoCMENlSet EQU OOOOOOlOb 

lmaZoomin EQU lllllllOb 
lmaZoomOut EQU llllllOlb 
lmaFocusNear EQU lllllOllb 
lmaFocusFar EQU 111101 llb 

lmaLensClear EQU llllOOOOb 

lpCWDir EQU P3.4 
lpMotorCLK EQU P3.5 

lba!nfinity EQU Acc . 6 

Miscellaneous ciefini tions 

orDelayCountE EQU R4 
orDelayCountL EQU RS 
opPowe:-Sav EQU ?l.3 
orRetByteE EQU R3 
orRetByteL :SQU R2 

orLEDH :SQU R2 
o:-LEDL SQU R3 

;opLED SQU ?~.3 

ox LE DE EQU :l7fh 
oxi...ED:.. EQ:J :ior. 

oxRetu!'.n EQU OOh 

.l>.D Look".Jp table ::,ase 

oTablel -
oTablel -oTablel -
oTablel -oTablel -

oTable2 -oTable2 -oTable2 
oTable2 -oTable2 

oTable3 -oTable3 -oTable3 
oTable3 -oTable3 

spDeb:.ig2 

lBase EQU 4000'1 
2Base EQ C 4100h 
3:aase EQl 4200h 
4Base EQl: 4300h 
SBase :SQ l 44001: 

l:aase :::cc 4SO:Jl-. 
2Base EQ U 4600t 
3Base :::cc 4700h 
4Base :SQ U 4800h 
SBase :SQU 4900t 

13ase EQ U 5000h 
2Base EQU SlOOh 
3Base EQU 52001; 
4Base :SQU 53001: 
SBase :::cu 5400t 

Deb~g DefinitiOC\S 

EQU ?:.c ;4.3 

Incii:-ect Memory area 
RSEG SCRATC:C 

address 

;Or Mask to set CMENl 

;And masks to clea r approprate lens 
focus and zoom control bits 
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;And mask to clear all lens zoom I focus 

; Lens focus directi on control 
; Lens focus clock control 

; Bit to test whether Infinity has been 
; on manual lens focus 

;Registers to use as count in Delay Loops 

;LED Count High order byte 
; LED Count Low orde:- byte 

;~ED pin to be toggled 

defini tioCls 

;SCSI reset line 

LocatioC\ of the SCSI command block received 

sCmdBlcckO: 
sCmdBlcckl: 
sCmdBlcck2: 
sCmdBlcck3: 
sCmdBlcck4: 
sCmdBlcckS: 

DS 
DS 
OS 
DS 
DS 
DS 

: 
l 

l 
l 

Locat ion of current status variables 

ssCMDCc~nt: DS l 
ssErrCount: DS l 

msPositionH : DS 1 
msPositionL : DS l 

csCycleTime: DS l 
csintegTime: DS l 

csintegTimeH: DS l 
csintegTimeL: DS 1 

ls?osition: DS ~ 
lsAperture: DS 1 



csTableAddrH: OS 

Additional 

cvLineCountH: OS 
cvLineCountL: OS 

cvCountH: OS 
cvCountL: OS 

dvDebl: OS 
dvDeb2: OS 

ovReturn: OS 

1 

Variables 

1 
1 

1 
1 

1 
1 

1 

;Tables must start on page boundaries 

;Line count variable to be used in 
;r_GetXLines routine 

;Variables to store adcounts for 
;current line 

; Immediate return from command 
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;-------------------------------------------------------------------------------
SCSI Command block parameters 

;-------------------------------------------------------------------------------
GetXLines Command 

cqLineCountH 
cqLineCountL 

cqintTimeH 
cqintTimeL 

EQU 
EQU 

EQU 
EQU 

sCmdBlockl 
sCmdBlock2 

sCmdBlock3 
sCmdBlock4 

cqStepperSteps EQU sCmdBlockS 

ResetMechn Command 

mqReturn EQU sCmdBlockl 

RSEG EPROM 

1 jmp 
ljmp 

ByPass 
Ir.it 

;-------------------------------------------------------------------------------
Harciware coded 

Version Number 
Date Created 
Massey Reference 

;-------------------------------------------------------------------------------

Version nt.:mbe !:" and date createc 

Ver: DB 01 ; \ 
DB 00 Version 1. 00 
DB 00 ; I 

Date: DB 02 ; \ 
DB 06 I 2 June 1994 
DB 94 ; I 

;-------------------------------------------------------------------------------
Include appropriate files 

Register Redefinitions 
Macro Library 
Interrupt Service Routines 
Subroutine Library 

;-------------------------------------------------------------------------------
Siemens 80C517A Register Redefi~ition 
Due to lack of 517 support all S?R's need to be explicitly 
defined in the source code. 

Sinclude RedefSl 7. asm 

Macro Definitions 

Sinclude MacLib. asm 

Interrupt service routines 

$include ISR.asm 

Subroutine Definitions 

Sinclude Subrtl.asm 
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Sinclude Subrt2.asm 
$include Subrt3.asm 

LT ab: 

FocusTab: 

MStr: 
MSt::-Len 
MAStrLen 

Ir.it: 

Lookup table implementation 

DB llOOOOOOb 
DB lllOOOOOb 
DB llllOOOOb 

DB 0000000 Ob 
DB OOOOOOllb 
DB OOOOllllb 
DB OOllllllb 
DB llllllllb 

DB 'qedMarijn Jun 1994' 
i':QU 19 
SQU 100 

Ir.itialisation and configuration 

Include Initialisation File 

ie . CP U initialisation 
SCSI chip reg i ster setup 

zero 
one 
six 

; Start of focus 
;modification 1 
;modificat ion 2 
;modification 3 
;modification 4 

Sinclude ir.it . asm 

J3: 

Mair. p::-ogram loop 

Software waits tc be inte=rupted by macintosh 
SCSI Bus phases ~ar.dlec 
Call comma~C routi~e ~ased on SCSI ccmmand 
~o~~iete SCSI trar.sacticr. 

~ WaitSCSIIntLED 
m -IsintSe l 

; Wait for SCSI int, flashing LED 
;ensure it iS a Select 

Ser. d 'Rece ive Command' com~and and wait til l completed 

Move 

mov DPTR , ~srCMD 
mov A, # scRxCMD 
movx @DPT~ ,A 

m WaitSCSIInt 
rr. I sintFC 

Command Block out 

:nov DPTR, ~ srFIFO 
movx A,@DPTR 
mov sCmdBlockO,A 
movx A,@DPTR 
mov sCmdBlockl, P.. 
movx A, @DPTR 
mov sCmdBlock2,A 
movx A, @DPTR 
mov sCmdBlock3,A 
movx A,@DPTR 
mov sCmdBlock4,A 
movx A,@DPTR 
mov sCmdBlockS,A 

;Send ' Receive co~~and' command 

;Wait for i~terup~ and 
;ensure it is a ?untion Complete 

of the FIFO 

; Move command block fro~ FIFO 

Receive Command and select action based on command 

mov A, sCmdBlockO 

cjne A.-#scmEnq , J3 
lcall r_Inquiry 
1 jmp Canel ude 

c jne A,#scmGetXLinesBb,JS 
lcall r GetXLines Bb 
1 jmp Canel ude 

;Is command enquiry? 

;Is command 8 bit get X Lines? 

M9 



JS: 

J6: 

J7: 

JS: 

J9: 

JlO : 

Jll: 

Jl2: 

Jl3: 

Jl4: 

JlS: 

Jl6: 

Jl7: 

JF: 

cjne A,#scmSetCamOn,J6 
lcall r SetCamOn 
1 jmp Conclude 

cjne A, #scmSetCamOff,J7 
lcall r SetCamOff 
ljmp Conclude 

cjne A, #scmDoXSteps,J8 
lcall r DoXSteps 
ljmp Conc lude 

cjne A,#scmResetMech,J9 
lcall r ResetMechn 
mov A, ovReturn 
cjne A, #oxReturn,RetCtl 
ljmp Conclt:de 

cjne A,#scr.Focus,JlO 
lcall r Focus 
ljmp Conclude 

cjne A,#scmZoom,Jll 
lcall r Zoom 
ljmp Conclude 

cjne A,#sc~~perture,Jl2 
lcall r Aperture 
l jmp conc-1 ude 

cjne A,#scmResetDev,Jl3 
lcall r ResetDev 
l jmp Conclude 

cjne A, #scr.Power ,Jl4 
lcall r Power 
ljmp Conc~ude 

cjne A,#scmGetXLineslOb,JlS 
lcall r3 GetXLineslOb 
1 jm;:i Conclude 

cjne A,#scmSetADTable,J l6 
lcall r SetADTable 
l jm;:: conclude 

cjne A,#scmFocus2 , Jl7 
lcall r Focus2 
ljmp Conc lude 

cj ne A, #scmFocus2I,JF 
lcall r Focus2I 
l jmp Conclude 

LJMP ErrorTrap 

MIO 

; Is command Set Camera On? 

;Is command Set Camera Off? 

;Is command Do X Steps? 

;Is command Reset Mechanism? 

; Is command Focus (motor lens)? 

;Is command Zoo m (motor lens)? 

;Is command Set Apertu re 
(motor lens)? 

;Is command complete reset? 

;Is command ?ower on I off? 

;Is command 10 bit get X lines? 

; Is ccmmand set A/D table? 

;Is command Focus? (stepper motor) 

; Is ccmma~d ?ocus at infinity? 
(stepper motor) 

Return Status, wait for an interrupt and chec~ it is a function 
complete interrupt. 

Conclude: 
m Conclude OOh 
m-Wai tSCSIInt 
m-IsintFC 

Intercommand actions 
RetCtl : 

mov ovReturn,#00 
inc ssCMDCount 

ljmp MainLp 

;Clear immediate command return 
;Increment the command counter 

;Loop back to get another command 

;-------------------------------------------------------------------------------
Error trap and handl ing 

ErrorTrap: inc ssErrCount 

jmp Conclude 

setb spDebi..:g2 
clr spDebug2 
setb spDebug2 

;Increment the error count 
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Main loop bypass - for code testing purposes 

;-------------------------------------------------------------------------------
ByPass: 

cpl !?4. 3 ; opLED 

ljmp ByPass 

;-------------------------------------------------------------------------------
Include three versions of the 10 bit A/D lookup table 

Tablel - Linear range over 100 % of input (equ iv to 8 bit ) 
Table2 Linear range over 25 % of input 
Table) - Non linear function over full range 

·-------------------------------------------------------------------------------
S nclude ADTablel . asm 
S nclude ADTable2.asm 
S nclude ADTable3.asm 
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M.1.2 SUBRT2.ASM Source Listing 

;*************************************************** ************************** ** 
;* 
;* 
; * 
; * 
; * 
;* 

Subroutine Library 2 for TreeScan Microcontroller Software 

RTName Description of what the subroutine does 

r GetXLinesSb S bit get block of x lines Command 

* 
* 
* 
* 

; * * 
;*********** ******************************************************************** 

Act on S Bit SCSI Get X Lines command 

The desired number of lines are captured from the camera and sent 
to the Mac via the SCSI port 

;-------------------------------------------------------------------------------
Command block calling parameters 

No of lines H,L 
( Int Pulses H, L ) 
Stepper steps (0 , 1 or 2) 

SCSI Info sent to Mac : 

;---------------------------------- -------------------- ---------------- ---------
r GetXLinesSb: 

React to parameters passed in command block 

mov cvLineCountL,cqLineCountL 
mov cvLineCountH , cqLineCountH 
inc cvLineCountE 
lcall r Setinteg 

Set data rate clock to fast 

m SetDataRateClkFast 

Set stepper motor direction 

clr mpCWDir 

Do any A/D initialisation 

mov ADCONO,#cxADCONO i nit 
mov ADCONl,#cxADCONlinit 

Set up SCSI data phase 

m SCSICmdToDataPhase 

Setup initial counters for next line 

m_SetupTsfCtr l stLine 

mov crCountH,#cxADCountH 
inc crCountH 
mov crCountL,#cxADCountL 

mov OPSEL, #sxDPTRBuffer 
mov DPTR,#sxBuffer 

Wait for line synchronisation 
r LS_Synch : 

clr TF2 
m WaitTF2 

;Set up the nu~ber of lines 
; to capt.-..::-e 

;Set ir.teg ra t icn ~ime 

;Select cha~nel 0 for analog inp~t, 
;exte=~a~ ~rigger 

; Send n~li data Tsf Command 

; \ 
; I Set up iterations of AD Loop 

; I 

; Initialise DPTR to point to 
; temporary buffer 

;Wait for start of line 

Depending on the number of steps byte passeci 

r LS Jl: 

Manually complete 1st step of stepper ~otor :f necessary 

mov A,cqStepperSteps 
cjne A,#cxStepsO,r LS J l 
jmp r LS J3 -
m_ManualstepperStep 

Restart auto stepper step 

mov A,cqStepperSteps 
cjne A,#cx Stepsl,r LS J2 
jmp r_LS_J4 - -
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r_LS_J2: 

r LS J3: 

r LS J4: 

orl CCEN,icmoCClEnab 
jrr.? :: LS ad 

nop 
nop 
nop 
nop 
nop 
nop 
nop 
no;:> 

nop 
nop 
nop 
nop 

:10p 
nop 

MI3 

;Set up auto motor stepping again 

; \ 
; I 
; I Wait for m_ManualStepper Step 
; I duration if not required 

; I 
; I 
; I 
; I 

; \ mov A,cqStepperSteps 
; I 

; \ cjne A,cxZeroSteps,r_LS J4 
; I 

; \ o ::l CCEN,#cmoCClEnab 
; I 

; \ jmp r_LS_ad 
; I 

Get :nto loop capturing data a:1d sending it to SCSI 
•* • ••••ww ww ww•W•• • ••• • •••••••••••••, • ••• • •••••••••••****** * * * * * 

r LS ad: 

:: LS ad2 : 

r.op 
:10p 
jb 3SY ,:: LS ad2 
r:1ov A, ADDATH-
mov DPS~L ,#sx DPTRFIFO 
:novx ~DPT!<,A 

mov D?SEL,;sxD?TR3u:fe:: 
movx @DPTR,A 
ir.c L:?TR 

cijr.z crCou:itL,r LS ad 
cijr.z crCOU:1t~, ::_LS_ad2 

an: ::EN ,~c~aCClDisab 
clr ::ipMoto::CLK 

wa :t ur.til FIFO er:1pty 

:: LS Ll: 

r LS JS: 

i.\ :.\ai:.::I?O~?ul.:. 

mov CPS~L,#sxD?T!<FIFO 

mov :<6,#sxTest~~pty3y:es 
mov A,#02:: 
movx @D?T:< , A 
cijr.z :<6, :: !..S :..1 

m Wai:.?::i:FOHE"ull 

Jump to Resend if we have lost 

mov S?SEL,# sxD?TRTsfSta: 
movx A,@DPTR 
j b sbaTsfC:::Zero,r LS J5 
jmp :: LS :<esend -

mov D?SEL, !sxDPTRFIFO 
mov A, #C2h 
movx @DPTR,A 

m WaitSCS!ln: 
m=:rs:r.tFC 

mov DPSEL.~sxDPTRTsfStat 
movx A, E!DPTR 
jb sbaTxFIFOHFull,r LS Co:it 
jmp r_LS_Resend2 - -

r_LS_Cont: m_SCSICmdClea r FIFO 

m SCSICmdToDataPhase 
m=:scsr cmdToDataPhase 

Decrement line counter and Ex it 

d jnz cvLineCoun tL,r LS J6 
d jnz cvLineCoun tH,r- LS-J6 
jmp r_LS_Exi t 

;Wai: U:1til AD complete 
;read data out 

; move data to SCSI 

; 1 
;l 
; 2 
; 1 
;l 
;2 

; 1 
;2 
;l 

;2 

;16 +4 

;wait ur. :i ~ FIFO < Half Full 

; \ 
: i Send 15 =:ytes 
; I 

; I 

;~ait until FIFO < Hal: Full 

; \ 
;I ~f Tsf Ctr not zero, many 

;/ =:ytes have been l ost -> resend 

; \ 
; I Should half fill FIFO if 
; / everything OK 

;Wait for inte r upt and 
;er.sure it is a Funtion Complete 

; \ 
; I i : FIFO not l / 2 full lost 

; I < 15 bytes, Resend line 

;Clear additional 15+1 bytes 
;in FIFO 

; Send dummy byte 
; Send dummy byte 

Las: line 



r LB J6: 
Setup counters for next line 

m_SetupTsfCtr4Line 

mov crCountH,#cxADCountH 
inc crCountH 
mov crCountL,#cxADCountL 

mov DPSEL,#sxDPTRBuffer 
mov DPTR,#sxBuffer 

Send Synchronisation bytes "Good" 

; \ 
; !Set up iterations of AD Loop 

; I 

;Initialise DPTR to point to 
;temporary buffer 

m SendSynchBytes cxADCountH, cxADCountL, 00, 00 
m=SendSynchBytesN cxADCountZH, cxADCountZL, 00, 00 

Jump Back for another line 

ljmp r_LB_synch 

Resend line from RAM to SCSI and wait for end of line 
*************************************************************** 

r LB Resend: 

Send filler bytes if any requ~red 

r LB Resenci2: 

m Wai::.FIFOHFull 

mov DPSEL,#sxDPTRFIFO 
mov A,#02h 
:novx @DPTR,A 

mov DPSEL,#sxDPTRTsfStat 
movx A,@DPTR 
Jnb sbaTsfCtrZero,r LB Resend 

m WaitSCSIInt 
m-IsintFC 

m SCSICmdClearFIFO 

m SCSICmdToDataPhase 
m-SCSICmdToDataPhase 

Setup counters for resend line 

m_SetupTsfCtr4Line 

; Wait until FIFO < Half Full 

; \ 
; I Send single fill byte 

; I 

; \ 
; ! If Tsf Ctr not zero , send 
; / filler byte and resend line 

; Wait for interupt and 
;ensure i t is a Funtion Complete 

;C l ear FIFO 

;Send du~my byte 
;Se nd du~my byte 

; \ 

Ml4 

mov crCountE,#cxADCount E 
inc crCount E 
mov crCountL,#cxADCount L 

; I Set up iterations of Resend Loop 
; I 

mov DPSEL,#sxDPTRBuffer 
mov DPTR,#sxBuffer 

Send Synchroni sat i on bytes "Bad" 

m_SendSynchBytes 00, 00, 00 , 01 

;Initialise D?TR to pain::. to 
;~emporary buffer 

Get into loop sending data to SCSI from RAM 

r LB ad3: 

r LS L2: 

mov DPSEL,#sxDPTRBuffer 
movx A,@DPTR 
inc DPTR 

mov DPSEL,#sxDPTRFIFO 
movx @DPTR,A 

mov D?SEL,#sxD?TRTsfStat 
movx A, @DPTR 
jb sbaTxFIFOHFull,r_LB_L2 

djnz crCountL,r LB ad3 
djnz crCountH,r-LB-ad3 

Wait until finished 

m WaitSCSIInt 
m-IsintFC 

; mo ve data from RAM 

;move data to SCS I 

;Wait for interupt and 
;ensure it is a Funtion Complete 

Jump to security check whether line sent OK 

jmp r LB Cont 
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Conlude las: line and finish command 

r :,a Exit: 
Setup counter for synch bytes of last line 

r:lOV D?SEL.~sxDPTRRegs 

mov DPTl'(,#srTsfCtrL 
mov A,:sxSynchBytes 

movx @DPB,A 

mov DPSEL,#sxDPTRCMD 
mov A,l!scTxDATA 
movx @DPT?-, A 

Send Synchronisation bytes "Good" 

;Set transfe r counter to bytes 
;to s end 

;Retu r n x bytes command 

m SendSynchBytes cxA~CountE, cxAJCountL, 00, 00 
m=SendSynch3ytesN cx/l.DCo:.mtZ'!, cxADCountZL, 00, 00 

Sto? automatic ste?pe= steo 
(Leave line ra:e gc:ngl 

anl CCEN,=cr.aCClDisa~ 

Re:urn cata =ate :c slo~ S?eed 

m SetDa~aRateC!kS!c~ 

Wait ~n:i: scs: :=ans:e= :s complete 

m Wai:SCSII:-it 
rr.-:sint::c 

;~ait for inter upt ' 
;check ~hether it is FC 

MIS 
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M.1.3 SUBRT1 .ASM Source Listing 

;•*****************************************····~································ 

;* Subroutine Library 1 for TreeScan Microcontroller Software * 
; .. 
;* RTName Description of what the subroutine does 
; .. * 
; .. r _WaitlmS Routine to pause 1 ms .. 
. * r Wait2mS Routine to pause 2 ms * -; * r WaitlOmS Routine to pause 10 ms 
; * r-Wait40mS Routine to pause 40 ms * 
; * r-Wait80mS Routine to pause 80 ms * 
;• r-Inquiry Enquiry command 
; * r-Autofocus Complete autofocus at micro level 
; * r ResetMech Move mechanism to home position -;* r Set Camon Turn camera signals on 
;* -SetCamOf f Turn Camera signals off * r 
; * r=DoXSteps Move stepper mo:: or x steps 
;* r Focus Move lens focus con::.rols -;• r Zoom Move lens zoom cont::ols 
; . r=Aperture Set lens apertu::e signal .. r Focus2 Act on SCSI Focus using ste?pe = rr.otor -. * r Focus2I Focus at infinity using stepper motor 
;* r -Reset Dev Complete reset of device -. * r Power Turn power on I off .. (~Setlnteg Routine to set integ::ation tirr.e based on Cmdblk3 ' 4 * .. r SetADTable Set A/D lookup table -. * 
;********************************TWTTTT•T•TYTT~••~TTTTTT*********************•** 

;-------------------------------------------------------------------------------
Routine to pause 1 mS 

;-------------------------------------------------------------------------------
orDelaycountH 
Loops 
orDelayCountL 

EQU R4 

EQU RS 

; Reg i sters to use as co1.:nt in Delay 

r_WaitlmS: 

r_Waitl_Ll: 

mov orDelayCountH,#3h 
mov orDelayCountL,:99h 
djnz orDelayCountL,r Waitl Ll 
djnz o::DelayCoun::.H,r=Wait l =Ll 

ret 

;-------------------------------------------------------------------------------
Routine to pause 2 mS 

;-------------------------------------------------------------------------------
r_wait2mS: 

r wait2 Ll: 

mov orDelayCountH , #6h 
mov orDelayCountL,#33h 
djnz orDelayCountL,r Wait2 Ll 
djnz orDelayCountH,r=Wa i t2=Ll 

ret 

Routine to pause 10 mS 
;-------------------------------------------------------------------------------
r WaitlOmS: 

r WaitlO Ll: 

mov orDelayCountH,~lAh 
mov orDelayCountL,#4Ah 

djnz o rDelayCountL,r WaitlO Ll 
djnz orDelayCountH,r=WaitlO=Ll 

ret 

Routine to pause 40 mS 

r_Wait40mS: 

r Wait40 Ll: - -

mov orDelayCountH,#69h 
mov orDelayCountL,#29h 

djnz orDelayCountL,r Wait40 Ll 
djnz orDelayCount H,::=Wait40=Ll 

ret 

Routine to pause 80 ms 

r Wait80mS: mov orDelayCountH,#OD2h 
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r Wait80 Ll: - -
mov orDelayCountL,#52h 

djnz orDelayCountL,r Wait80 Ll 
djnz orDelayCountH,r: waitSO=Ll 

ret 
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;-------------------------------------------------------------------------------
Ac: on SCSI Inquiry command 

Info=mation is sent back to the enquirer as to what this 
device is . 

;-------------------------------------------------------------------------------
Command block calling parameters : 

none 

SCSI In!c sent to Mac : 
5 bytes + MStrLen(l9) bytes 

;-------------------------------------------------------------------------------
r Inquiry: 

=_Inq_L:: 

mov ~PSEL,#sxOPTRRegs 

mov OPTR,#s:TsfCt : L 
mov A,#S+~StrLen 

movx @DPTR,A 

:nov D?SEL,;sxD?TRCMD 
mov A,#scTxDATA 
r::ovx @DPTR,A 

mov J?SEL ,!sxD?TRF I?O 
mov .4,#03 
movx @DPTR,A 

:nov n,ssCMDCount. 
movx @DPTR,A 
mcv A, ssE:- =C: ot.:r.t. 
mov x @DPTR , f:.. 
i:'lOV A.~oo 
~ovx ~DPTR, A 
:7.:::V fl .• #1-'.StrLer. 
l'i.OVX @DPTR,A 

:ncv RC, 110 
:nov JPTR, #MS:r 
:nov .;,RO 
move .;, @A+O?TR 

~ov DPTR,#s :?IFO 
:novx @DPTR, A 
:nc RO 
cjne RO, llMSt::Len, r - Inq_ 

~-~a::~~~II~: 
1 .. ... sin ... c .... 

::e:: 

;Return x bytes 

;Returr. x bytes cor.'\11\and 

;P rocessor device 

; \ 
; I Misc bytes 
; I 
; I 
; I 

;3 Additional bytes 

; \ 

;~ai: for interupt & 
; check ~hether it is FC 

;-------------------------------------------------------------------------------
Act or. s:s! Au~of ocus co~ma~c 

An auto!ocus oo=cecure is comoleteci based on the parameters sent in 
the co~~a:ici oiock . . 

;-------------------------------------------------------------------------------
Co~~anc ~lock ca:ling parameters : 

:ione 

s~s: Inf c ser.t to Xac : 

;-------------------------------------------------------------------------------
r_Autofocus: 

Capture the current line i:ito memory 

Process the line 

Make foc~s modification 

Capture the next line into memory 

Process the line 
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If better, loop back to focus modification 

Return to best focus position 

ret 

·-------------------------------------------------------------------------------' Act on SCSI Reset Mechanism command 

The stepper motor is driven back to i:'s home position based on the 
input from its position sensors. 

Command block calling parameters : 
Byte 1 ( 0 Keep control, Else return immediately) 
Byte 2 ( 0 = No effect, 1 = T~rn power off) 

SCSI Info sent to Mac : 

r ResetMechn: 
Respond to command block parameters 
Return SCSI ctl immediately if required 

mov 
mov 
cjne 
jmp 

A,mqReturn 
ovReturn ,A 
A,~oxReturn,r Rst Mch J2 
::- RstMch Jl 

Return control immediately 

r RstMch J2: clr P4.3 

m Conclude OOh 
rc-WaitSCSIInt 
m-IsintFC 

Actual l y go home 

r RstMch Jl: m Motorforwards 

Drive mecha nis m forward x steps to ge~ away from home posit io n there 

r RstMch Ll: mov R2,#rc~ResetForwH 
inc R2 
mov R3,#mxResetForwL 

r RstMch L2: m MotorStep 3mS 

djnz 
djnz 

R3,r RstMch L2 
R2, r::::Rs tMch L2 

mov A,PS 
jnb mbaPosSensl,r_RstMch L: ~f low still at home pos 

Drive mechanism back unti l first senso::- input is reached 

m MotorReverse 

m_MotorStep_3mS 

r RstMch L3: m MotorStep 2mS 

mov A,PS 
jb mbaPosSensl,::-_ RstMch L3 If high, not home yet 

continue for x steps past the sensor 

Drive mechanism forwards until second nosition sensor is reached 
and mechanism is home without hysteresis. 

m MotorForwards 

r RstMch L4: m_MotorStep_ 3mS 

mov A,PS 
jnb mbaPosSens2,r RstMch L4 If high, not home yet 
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Check whe:her power needs to be turned off as well 
Byte 2 ( 0 = No effect, 1 = Turn power off) 

mov A,sCmdBlock2 
cjne A,#01,r RstMch J3 
setb opPowerSav 

r RstMch J3: 
re: 

Act on SCSI Set Camera On command 

Conmand block calling parameters : 
nor1e 

SCSI In:o sent to Mac : 
none 

r setCamOn: 

0 

Se: cia:a ra:e clock:ng 

m SetDa:aRateClkSlcw 

Do ir1tegraticr1 time Ste??e= Pulse 2 Ini:ialisation 

mov Ti-!2, #O:?Bh 
mcv TL2,#0C7!1 

mcv cRc;; , #O:rsr. 
mcv CRCL, #OC7h 

mov con, # OFCh 
mov CCL,:; 08Fh 

mov CC:12,~0FDh 

mov CCL2,=857h 

mov T2CON,#cxT2CntRic 

;Set initial T2 value 

; Set T2 reload 

;Set Delay 84 2nd ste? @ 200 pulses 

;Set Delay B~ int time @ 400 pulses 

;set T2 as counter,auto_reload, mode 

o=l CCE~,#cmoCC2Enab ;cmoCCl 2Enab ;Set up CCl & CC2 on T2 

Act on SCSI Set Camera Off command 

Command block calling parameters : 
nc:-1e 

SCS I :~:o sen~ tc Mac 
no::e 

;-------------------------------------------------------------------------------
r SetCamOff: 

0 

Stop automatic stepping and Line =ate pulse 

an~ T2CON,#cmaT2Stop ;set T2 as ccunter,auto_relcad, mode 

anl CCEN,#cmaCC1_2Disab ;Set up CCl & CC2 on T2 

Wait until SCSI transfer is complete 

re: 

Act en SCSI do X Steps command 

The steppe= meter is driven back to it's home position based on the 
input from its position sensors. 

;-------------------------------------------------------------------------------
Command block calling parameters 

Byte 2 dir (bit 1 only) 
Byte 3&4 Number of s teps H & L 



SCSI Info sent to Mac : 

r DoXSteps: 

Check direction 

mov A,sCmdBlock2 
jb Acc.O,r XStep Jl 
m MotorReverse -
jmp r xstep J2 

r XStep Jl: m MotorForwards 
r -XStep- J2: 
- - Set up Steps in byte R2, R3 

mov R2,sCmdBlock3 
mov R3,sCmdBlock4 

Do appropriate number of stepper steps 

r_XStep_Ll: cjne R3,#00,r XStep Llb 
cjne R2,#00,r=XStep=Lla 
ret 

r XStep Lla: dee R2 
r=XStep=Llb: dee R3 

r_XStep_Llc: 

jmp r XStep_Llc 

setb mpMotorC LK 
lcall r waitlmS 
clr mpMotorCLK 
lcall r waitlmS 

jmp r_XStep_Ll 

Act on SCSI =ccus Command 

; Do Fast stepping 
; SOD Hz 

The lens output is generated fc c~ssed near or far. 
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· --------------------------- ---------- ----------------- -------------------------' 

r Focus: 

Command block calling parameters 
Byte 1 
3yte 2 dir (bit l only) 
Byte 3&4 Number of steps ~ & L 

SCSI Info sent to Mac : 

Set up nurrber of steps 

mov R2 ,sCmdBlock3 
inc R2 
mov R3 ,sCmdBlock4 

Check direction 

mov A,sCmdBlock2 
jnb Acc.0,r_Focus Near 

Complete Focus Far Step 
r Focus Far: 

orl PS,#lmoFocusFar 
lcall r WaitlOmS 
anl PS,#lmaFocusFar 

djnz R3,r Focus Far 
djnz R2,r-Focus-Far 
jmp r Focus Jl -

Complete Focus Near Step 
r Focus Near: 

r_Focus Jl: 

orl PS,#lmoFocusNear 
lcall r WaitlOmS 
anl ?5,#lmaFocusNear 

djnz R3,r Focus Near 
djnz R2,r=Focus=Near 

jmp r Focus Jl 

ret 
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;-------------------------------------------------------------------------------
Act on SCSI Zoom Command 

The lens output is generated zoomed in or out. 
;-------------------------------------------------------------------------------

Command block calling parameters 
Byte 1 
Byte 2 dir (bit 1 only) 
Byte 3&4 Number of steps H & L 

SCSI Info sent to Mac : 

;----------------------------------------------------------- --------------------
r Zoom: 

Set up number of steps 

mov R2,sCmdBlock3 
inc R2 
mov R3,sCmdBlock~ 

Check di re ct ion 

mov A,sCmdBlock2 
jnb Acc . 0, r Zoom_, .. 

Complete Focus Far Step 
r Zoor., Out: 

orl ?5,#lmoZoomOu: 
lcall :: wa:.t40r::S 
lcall r - wa:.t40mS 
lcall ::-Wa it40r::S 
anl PS,#lmaZoomOut 

djnz R3,r Zoor. Out 
djnz R2,r-Zoo~-ou: 
jm;:> r Zoom Jl -

Complete Focus Near S:e? 
r Zoom I:-i: 

r Zoom Jl : 

orl PS , #l~oZoonin 

lcall :: wa:.t~O;:-:S 
lcall ::-Wa i t40r::S 
lcall ::-Wait~Or:is 
an l ?5 ,#lmaZoor:iin 

djnz R3,:: Zoom In 
djnz R2,r-Zoom=I:-i 

jmp r Zoom Jl 

ret 

Act on SCSI Aperture Adjust Command 

The lens output is generated zoomed in o:: out. 

Command block calling parame ters 
Byte 1 No of pulses of duty cycle high 

SCSI Info sent to Mac : 

;------------------------------------------------------ -------------------------
r_Aperture: 

mov cmhl,#OF!!i 
clr c 
mov A,#OFFh 
subb A,sCmdBlockl 
mov cmll,A 

orl CMSEL,#lmoCMSELlSe : 
orl C~£N,#lmoCY.~~1 Se: 

ret 

;Set compare value for aperture 

;signal 

;Set CMl to CT 
;Se t CMl operational 

;-------------------------------------------------------------------------------
Act on SCSI Focus using stepper motor Command 

The lens output is ge:-ierateci focussed near or far. 

Command block calli:-ig parameters 
Byte l 



Byte 2 dir (bit 1 only) 
Byte 3&4 Number of steps H & L 

SCSI Info sent to Mac : 

r Focus2: 
Set up number of steps 

mov R2,sCmdBlock3 
inc R2 
mov R3,sCmdBlock4 

Check direction 

mov A,sCmdBlock2 
jnb Acc.O,r Focus2 Jl 
m Focus2Forwards 
jmp r Focus2 J2 

r Focus2 Jl: m Focus2Reverse 
r-Focus2-J2: - -

Complete Focus Steps 

r Focus2 Ll: m_Focus2Step_Sms 

djnz R3,r Focus2 Ll 
djnz R2,r=Focus2 Ll 

ret 

Act on SCSI Focus at infinity using stepper motor Command 

The lens is focussed far until limit switch. 

Comma nd block calling parameters : 
( Byte l ( 0 = Keep co~trol, Else return immediately)) 

SCSI Info sent to Mac : 

r Focus2I: 

Drive mechanism back until firsc sensor i~p~t is =eached 

m Focus2Reverse 

r Focus2I L3: 
m_Focus2Step_SmS 

mov A,PS 
jnb lbainfinity,r Focus2I L3 If low, r.ot home yet 

ret 
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·-------------------------------------------------------------------------------, 
Act on SCSI Reset Device Command 

·-------------------------------------------------------------------------------, 
Command block ca lling parameters 

SCSI Info sent to Mac 

r ResetDev: 
Return Status, wait for an inte rrupt and c~eck it is a function 
complete interrupt. 

m Conclude OOh 
m-WaitSCSIInt 
m-IsintFC 

ljmp Init 

Act on SCSI Power on Unit 

;Reset device from scratch 

·-------------------------------------------------------------------------------, 
Command block calling parameters 

Byte 1 l =on O=off 
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SCSI Info sent to Mac : 

;-------------------------------------------------------------------------------
r Power: mov A,sCmdBlockl 

jb Acc.O,r_Power_J l 

setb ooPowerSav 
lcall ~ SetCamOff 
ret 

r_Po.:er_Jl: lcal l r SetCamOn 
clr opPowerSav 
ret 

;-------------------------------------------------------------------------------
Routine to check an= set up integration time based on CmdBlk3 & 4 

;-------------------------------------------------------------------------------
r_Setinteg: 

Check whether integ time has changed 

wov A,cs:n:.egTime~ 
cjne A, c~:r1:. ':'imei-:, r_Set:nt Se~ 

mov A,cs:r.tegTimeL 
c j ne A,cq!ntTimeL,r_Setlnt_Set 

ret 

Do integratior. time I Stepper ?ulse 2 Initialisation 
Check whether integration time>l02~ then a:=lO; 

r Se:!r:: Set: 
mov A,cc!nt:i~eH 

cjne A,fcxop:Ir.tTimeH,s~oa~ 
mov A,cqint7imeL 
cjne A,~cx0?~~nt7imeL,S+03~ 
jc S- 5 
lJmp r 5etlnt :; 

:r.tegration time < 10 mS (<~E!! l 
- Calcu~ate set time fer :n:egraticr. time 

m Subtr •O?"Fh, • O:'Fh, 
mov CC~2,or~etByten 
mov CCL2,or~etByteL 

cqintTimeH, cq!ntTime L 
;Set integration time 

Calculate Second steo value :rem m::.n constantintegration time 
m S:i!:>tr ~O!"!"h, #OF!"h·, ¥cx0ptl:1t 7 imeH, #cxOptintTimeL 
m=:sub::.r o.:-Re::.Byt eH, orRe::Byte!.., :cxS::.epDelayH, #cxStep::::elayL 

mov CCH:,or~et3yteH 
mov CCLl,orRetByteL 

;Set Delay B4 2nd step @ 200 pulses 

Calculate reloaci value :ro~ i:1tegratior. time 
m_ Subtr orRetByteH, orRet3ytei.., #cxStepDelayH, ~cxStepJelayL 

mov T~2,orRetByten 
mov TL2,orRetByteL 

mov CRCH,orRetByteH 
mov CRCL,orRetByteL 

;Set ini tial T2 value 

;Set T2 reload 

Wait for line synchronisation t o settle camera output 

clr TF2 
m WaitTF 2 ;Wait for start of line 

ret 

r Setint Jl: 
Integration time > 10 ms (>468) 

- Ca lcul ate set time for integratior. time 

m Subtr #OFFh, ~OFFh, CGlntTi:neH, cqintTimeL 
mov CCH2,orRetByteH ;Set integration time 
mov CCL2,orRetByteL 

- Calculate Second steo value from :n::.egration time 
m_ Subtr orRetByteH, "orRet3yteL, #cxSte?Del ayH, #cxStepDelayL 

mov CCHl,orRet3yteH 
mov CCLl,orRet8yteL 

;Set Delay B4 2nd ste p @ 200 pulses 



Calculate reload value from intecration time 
m_Subtr orRetByteH, orRetByteL, #cxStepDelayH, #cxStepDelayL 

mov TH2,orRetByteH 
mov TL2,orRetByteL 

mov CRCH,orRetByteH 
mov CRCL,orRetByteL 

;Set initial , T2 value 

; Set T2 reload 

Wait for line synchronisation to settle camera output 

clr TF2 
m WaitTF2 ;Wait for start of line 

ret 
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;-------------------------------------------------------------------------------
Act on SCSI Set A/D Table Command 

;-------------------------------------------------------------------------------
Command block calling parameters : 

Byte l AD Table to change use (1, 2 or 3) 

SCSI Info sent to Mac : 

;-------------------------------------------------------------------------------
r SetADTable: 

mov A,sCmdBlockl 
cjne A, #3, r SetAD Jl - -
mov csTableAddrH,#HIGH(oTable3 i3ase) ;Se t up ADTable3 

ret 

r SetAD Jl: 
cjne A,#2,r - SetAD J2 

mov csTableAddrH,#HIGH(oTable2 l Base) ;Set up ADTable2 
ret 

r SetAD J2: mov csTableAddrH,#HIGH(oTablel 13ase) ;Set up ADTablel 
ret 
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M.2 TreeScan Plug-in Code (Version 3.28) 

The TreeScan plug-in is written in C and is divided into seven source files with 

associated header files and #include Ii braries. 

TreeScan plug-in source files 

Main.c Main TreeScan program file which contains the dispatching 

routine calling routines in Operations.c dependant on the value 

of the selector parameter passed from the calling application. 

Modification History .c A comprehensive modification history within a comment 

Operations.c 

Utilities.c 

Debug.c 

Functions.c 

Integ/Focus.c 

Contains the main routines for the plug-in. This includes the 

implementation of the main TreeScan dialog window, as well as 

code to initialise and complete a plug-in call. 

Library of utility routines. 

Implementation of the debug I development dialog window 

which allows individual commands to be sent to the scanner and 

tested. 

Miscellaneous functions for the TreeScan plug-in. These include 

all routines to send SCSI commands to the scanner and receive 

image data. 

Implementation of integration time adjustment routines, 

autofocus routines, and blind refocus routines. 

This appendix contains a complete listing of Main.c, Modification History.c, and 

Operations.c. Relevant sections have been included from Functions.c and 

Integ!Focus.c. 
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M.2.1 Modification History .c Source Listing 

/* Modifi c ation History 

We need to keep a modification history so I'm putting it in a separate file . c so 
I can make it part of the project . Contains one large comment and no code . 

Vers. Author Date 
9 91 MW 27I1I95 

2 .0 
2 . 1 MW 
2 . 2 RHP 1/2/95 

2.3 

2.4 

2.8 
2.9 

3 .0 

3.1 

3.2 
3.3 

3.4 

3 .5 

3. 6 

3.6b 

3.7 
3.8 

3 . 9 

3 . lOml 

3.10m2 
3.10m3 
3.10m4 
3 . 10m5 
3.10m7 

3 . lOmlO 

3 .11 
3.llb 

RH? 

REP 

Y.W' AD 

MW, AD 

MW 

MW 
RHP 

AD 

MW 

MW 
MW 

Comments 
Software For Treescan 2 System . Software includes ima ge image 
capture plugin including image capture algorithm, sending of SCSI 
commands, etc. 
ie. Fully operational image capture software with modifications 
for stepper motor control on autofocus & refocus 
New naming convention 
1/2/95 Autofocus algorithm redesigned and reprogrammed 
Tidied up several return O's to beep break so dialog box is still 
active; check viewname file doesnt already exist; Ask user if 
view l or view 2 and if view 2 is is cw or ccw from vl; Ask user 
for dip and lean angles and save to file treename vl.dat or 
treename v2.dat; send a go home with immediate return when we 
exit; I -have assumed that we have enclosing:something:image 
folder : image app; and we will store al ll data and image files in 
a folder enclosing : Treescan Images ; On full scan we check 
filename does not already exist.; Move down about 70cm befo re 
starting scan. So we focus at breast height but capture from 70cm 
up. 
vref number is set on fullscan so it gets passed back to image so 
image will go in the correct folder 
Refocus options no refocus , auto.refocus, blind refocus; displays 
fnum and fstepno at end of autofoci:s; loads ftable from file 

fixed blindrefocus 
fixed saturation proble:r: by halving int time if new int> lOX old 
int 
Blind refocus eve~y 250 steps 
AutoRefocus every 1000 steps 
Select viewname on entry te plugin dialog 
turn off refocus data files 
print wn te log file ;Q unless doing blindrefocus 
wn sti ll was not being printed i n l og file - fixed 
partial shots were returning full image - fixed 
setup image name and vrefnum for preview 
eheight was > chunksize so we got oscillation as we 
were looking at stuff before previous correction 
fixed what int routine looks at p-lump to p-lump+eheight 
Set int time again after we move down for start of shot 
Modify required average light leve l to be 100 
Dent clear focussed at end of oreview 
try and speed up initial set i~t time by rough g uess 
Modified getline to al lo., comments in file ! lkjlk 
and dist,fstepnum en each line , dis::. is ignored 
Try and unload the other segments of code resource on return from 
finish call 
Conservatism factor of 80% if change >20%, write aperture data 
to log files; fixed double integtra::.ion adjustment bug. 

NoRefocus changes to Nofocus, No adjust integrat i on time button 
added (each call to Refocus modified), Make preview move back 
StepsBack lines 
No aperture adjustment and no focus adjustment during lines bac k! 
Fixed the return partial image if capture is cancelled. 
Combined Mk l I M2 software corr.pati:Oility . 
Write variety of focus numbers to file 
seperations; fixed file name for focus data 
button. - not initialised ; she.rter.ed delays in 
routines; preview is now centered vertically on 

ie 2,4 , 8 pixel 
on use of focus 
focus and preview 
focus line 

New control for steps perl line in getlines 
getchunk passes micro ~ steps to ~eve for each line 
calls different scsi cmd fer getchi: r.k - requires eprom 
version 3 . 9, board revision 3.9 
Redevelop plugin with new user frie ndly u ser interface. 
Completed entering new dialog boxes 
Aim to get compiling 
Video debug dialog operational 
Start on debug box 
Debug box commands implemented, about. to split functions file 
Front window commands imolemented, correct steps /angle in 
preview, implemented the hiding of chunklines 
View button operating correctly, ca:i use up arrow & down arrow to 
t a b, use enter & return to operate but tons 
Plugin with new interface I structure fully operational 
In debug aper I focus commands do:i' t turn power off if set o n, 
clarification of focus step buttons, s wit ched display of f ocus 
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3 .lld RHP 

3.lle MW 
3.llf RHP 

3.12 RHP 

3.12b MW 
3.12c MW 

3.12e MW 
3.12f RHP 

3. 16 RHP 
3.17 RHP 

3.18 RHP 

3.19 MW 
3.20 RHP 
3.20a AD, MW 
3.21 RHP 

3.22 RHP 

3.25 
3 .2 6 
3.27 
3.28 

Ri-iP 
RHP 
RHP 
RHP 

TO DO 

Debug code 

( Str255 s; 

numbers for autofocus, max distance 1800 steps, set aperture done 
flag in preview & capture. 
Only store globals after start or finish call 
Allocate storage for globals in heap when we store them not at 
the begining; dont cal l store globals after we have done 
unloadsega4; reorder allocation of space in start routine so we 
allocate the big bit first. 
fixed 1st char bug, slider getting updated on entry. 
To work with NIH Image TF 3.3a which tells us about all the free 
mem on entry not only half of it. 
Switch to tenbit aut omati cally if inttime>SOOO 
only allow the lines we have space for in terms of contiguous 
free mem when we return to NIH 
Autofocus and blind refocus should be at x/stepsperline to make 
s izes stay same 
fixed overflow in reading number of lines 
Fixed blind focus crashing problem increased size of temp 
string s ) 
fixed bug in log files 
print better error message on fail in getchunk. 
hold off on adj exposure and refocus should depend on 
s:epsperline 
Reads bat voltage ok . checks before capture 
Make sure we move forward before going home for focus to insure 
we dont try and drive pas: the infinity position 
In autofocus dont s earch back past 0 fstep 
Refocus routine h ad never been tidied up and bugs fixed - done 
but needs testing still 
au:ofocus goes co lObit if first loop is taking it past 3000 
refocus now prir.ts distance estimate and then fstep 
blind focus. was igno r ing stepsperline - fixed 
Fixed .dat file ;::iroblem 
Was not reading la st ele~ent of focus table - fixed 
loosing character in dialog box fixed 
s~itch back an fo rw ard be:ween 8 and 10 bit as we go up tree 
log max min av of pixels in focus log file 
focusnum - float and use av inten sity in ca lculating it 

add calls for changing video amp gain 
s~:p reset,poweror. etc i: control key is 
~ake it if op~~on key is pressed 
A~:o set video gain to ideal value 

down on plugin entry 

sprintf((char•)s, "%d,%d,%d Alpha= %f, Dist = 

*/ 

%d",i,ftable[i),fstepnu~.al;::iha,Dist); 
CtoPstr((char •)s); 
ParamText (s "\o" " \o " " \o ") · 
Alert (!".sgAl~rti:o'. nii l;' · ' 
} 
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M.2.2 Main.c Source Listing 
/************************************************************************************* 
************************************************************************************** 
* 
* 
* 
* 
* 
* 
* 

TreeSca n Photoshop Plugin Module 

Copyright 1994 Massey University 

Ralph Pugmire 

************************************************************************************** 
*************************************************************************************/ 

/********************************************************************~**************** 

* 
File Main.c * 

* 
* 
* 

Contains the main dispatching routine. 

#include 
#include 
#include 

#include 

TGlobals 
Tpref 
Ptr 

<SetUpA4.h> 
<SCSI.h> 
"Acquireinterface . h" 

"TreeScan.h" 

myGlobals; 
pref; 
base; 

//structure for globals that are kept in rsrc 
//structure for plugin preference variables 
//pointer to plugin image memory area 

Cursor 
CursHandle 

WatchCrsr; 
cursH; 

1 ~ allocate a 68-byte str~ct */ 

int. 
int 
int 
int 
double 
int 
float 

tabitem; // Current Tabbed item 
rfnum; // nth :-efocus up tree 
fstepnum; // cu:-rent number of fsteps back from infinity 
vgainstep; // Curent video gain step 
focusnurn,focusnum2,focu snum4,focusn~m8; 
bfst:eps, 1 fsteps, min, max; 
av; 

pas cal void main (int selector, AcquireReco:-dPtr myRecPtr, long *dataPtr, int 
•resultPtr) { 

Remember AO ( ) ; 
Set UpA4 () ; 

if (FirstTime (dataPtr)) 
InitGlobals (dataPtr); 

else 
RestoreGiobals (dataPtr) 

switch (selector) 
{ 
case acquireSelectorAbout: 

*resultP:r = DoAbout (); 
break; 

case acquireSelectorPrepare: 
*resultPtr = DoPrepare (myRecPtr); 
break; 

case acquireSelectorStart:: 
*resultPtr = DoStart (myRecPtr , dataPtr); 
StoreGlobals (dataPt:-); 
break; 

case acquireSelectorContinue: 
*resultPtr = DoContinue (myRe~Ptr, cataPt:rl; 
break; 

case acquireSelectorFinish: 
*resultPtr = DoFinish (dataPtr); 
StoreGlobals (dataPtr); 
UnloadA4Seg(OL); 
break; 

defa ult: 
*resultPtr 

RestoreA4 ( ); 

acquireBadParameter:s; 
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M.2.3 Operations.c Source Listing 

/************************************************************************************* 

* 
File Operations.c 

Contains the main routines for the Treescan plugin 

#include <Events.h> 
#include <Quickdraw.h> 
#include <Files. h> 
#include <Script:. h> 
#include <ToolUtils.h> 
#include <std~o.h> 

#include <string . h> 
#include <SCSI . h> 
#include 
#include 
#include 

<Memo=y. h> 
"Utilities . h 11 

' 1 Acqu ire!~terface . h 11 

#include 
#include 

extern 
extern 
extern 

exte=n 
extern 

extern 

"TreeScan . h " 
"ma tr. . h " 

TGlobals 
'!'pref 
i't r 

Cursor 
CursHand le 

int 

myG lcba:s; 
pref; · 
base; 

Wat=hCrsr ; 
C:J.:.-s:-1; 

:abitem; 

II allocate a 68-byte struct 

extern int r:n ~.m ; I I nth refoc;.is t.:p t=ee 
exte=n int fscep num ; II current no of fs :eps back from infinity 
extern float fccusr.U:":":, fccusr.u :n2 , focusn~m4, foci.:snt:mB ; 

11 Operations file glcbals 
int gotlines, 

Gotimage; II 1=> We have an image ready for transfer to NIH 
int 
char 

GNextRow; ll~excRow to send to Image 
~inebuf[llOO]; II soace for one line from camera 

int partialheight,capcu=ecihelght; 

II Displays the about box for the module 
II --------------------------------------
int DoAbout (void) { 

sho=: 
DialocP"r 
DialogT8nd l 

i terr.; 
myDia:cgPt= ; 
myDialogTHndl; 

myDialogTHndl (Dia logTHncil) GetRescurce ( ' DLOG' , AooutDialogID); 
HNoPurge ( (Eandle) myDialogTHndl); 
CenterDialog (myDialogTHndl); 

myDialogPtr = GetNewDia l og (AooutDialogID , nil, (DialogPtr) -1); 
ModalDialog (nil, &iten); 
DisposDia~og (myDialogPtr); 

HPurge ( (Handle) myDialogTHndl); 

return noErr; 

II Reduces the memory set aside :or :he module if possible 
II --------------------------------------------------------
int DoPrepare (AcquireRecordPt= myReci'tr) { 

long maxmem; 

maxmem = myRecPtr->maxData; 
maxmem = (maxmeml2J; 
if (maxmem>= ( ((long) lwidth * Init Lines) +50000)) { 

maxmem =(((long)lwidth * Init Lines)+50000); 
pref .maxlines Init Lines; 

}else -
pref.maxlines ((maxmem - 50000 )I lwidth); 

myRecPtr->maxData maxmem; 
return noErr; 

II Determines image paramete=s and informs the host 
II ------------------------------------------------



int DoStart (AcquireRecordPtr myRecPtr, ·long *dataPtr) ( 

Tsstat 
sstatPtr 

scannerstatus; 
sstat; 

11 Scanner status structure 

DialogTHndl 
DialogPtr 
short 

myDialogTHndl; 
myDialogPtr; 
item; 
done; 

II 
II 
II 
II 

\ 
I Control of dialog box 
I 
I int 

EventRecord theEvent; II Cancel image capture event 

ControlHandle 
short 
Re ct 

StepAdjScroll,toggle3utton; 
toggleType, StepAdj Type; 
toggleBox, StepAdjBox; 

II 
II 
II 

\ 

\ 
i 
I 

int 
char 
SCSI Instr 
cmdblk 
OSErr 
short 

err; 
buffer[512]; 
myTIB[l2]; 
mycmd; 
errors[6]; 
stat, message; 

II 
II 
II 
II 
II 
II 

I Vars for SCSI commands 
I 
I 
I 
I 

char 
long 

s [256]; 
templong; 

11 Temporary string 

int 
long 

i, vie;..JPoint, last!t.ern; 
count.; 

float dip,lean,tilt,bat volts; 
Str255 
FSSpec 
short 
EvQEl 
StatusBlock 

lfname; -
infile , outfile; 
inrefNum, outrefNt:m; 
*myPt:::; 
sb; 

if ((base = NewPtr ((long) lwidth * p:::ef.maxlines)) == 0 ) return mer..Full=:rr; 
if (MaxBlock() < ((long)lwi dth * pref.maxl i nes + 50 0 00) l ! 

SysBeep(l); 
pref .maxlines = (MaxBlock () -50 00 0) /lwidth; 

cursH = GetCu:::so:::( watchCurscr ); 
HLock ((Handle) curs:J); 

I* conscant ~ .. :'oolboxUtil.h * I 

WatchCrsr = **cursH; 
HUnlock ((Handle) cursH); 

I * copy the data * / 

sstat = &scannerstatus; 
partialheight = 0; 
sstat->intsteps = myGlobals.intsteps; 
if (myGlobals.height>pref.maxli nes) i 

myGlobals.height pref .maxlines; 

SetupStatus(); II Setup piugin prefe:::ences 

myDialogTHndl = (DialogTHndl) GetResource ( 'DLOG', VicieoDialogID); 
HNoPurge ( (Handle) my Di al ogTHndl) ; 
myDialogPtr = GetNewDialog (VideoDi.alogID, nil, (CialogPtr) -1); 

CenterDialog (myDialcgTHndll; 
if (pref. Devt) 

SizeWindow(myDialogPtr,580,420,true); 
else 

SizeWindow(myDialogPtr,580,375,true); 
SetPort(myDialogPtr); 

EstimateLines(myDialogPtr); 

SetDString (myDialogPtr, VersionID, Sir/Version); 
SetDNum (my Di alogPtr, T reeHeight ID, myGl ob al s. T reef-iei g'"it); 
SetDNum(myDialogPtr, StepAdjtxtID, myGlobals.StepAdjl; 

GetDitem (my Di alogPt r, StepAdjID, & StepAd jType, (!-la ndle * l & StepAd jScroll, 
&StepAdjBox); 

SetCtlValue (StepAdjScroll, myGloba2.s.StepAdj); 

SelIText (myDialogPtr, ViewNameID, 0 , 32767); 

if ( ! isPressed (OptionKey)) { 11 if control key is dowr. skip startup calls 
DoReset (); 11 Send reset to micro 
DoPowerOn () ; 
Delay{30,&templong); 

II Check supply level before we go 
GetStatus (&sb); 
bat volts = sb.s.voltage I 1023.0 * v calib; 
if (bat volts<lll { 

Str255 s; 
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SysBeep (l); 
DoPowerOff() ; 
sprintf{{char*)s, "Battery Voltage is two low 
CtoPstr((char *)s); 
ParamText(s,"\p", 11 \p "," \p ") ; 
Alert (MsgAlertID, nil); 
Gotimage=O; done = C; 
Di sposPt r(base) ; 
Cispo s Dialog (myDia:!.og?tr); 
HPurge ( (Handle) myi:::i alogTH ndl) ; 
return 1; 

sstat->AtHome = DoHomeRe:?wr (); 

%.lf " ,bat_volts); 

sstat->viewnum = l; viewPoir.: = vl; 
SetViewButton ( myDialogPtr , vie1.·Point, sstat); 

sstat->Focused = sstat->In:ecO~ = sstat - >AtHome sstat - >CameraOn tabitem 
Got Image done = fa 1 se ; 
lastitem = Vi ewNameID; 

do{ 
InitCursor(); 
ModalDialog ( (ModaiFilter?roc?tr) MyEvent=-ilter, &item); 

for(i= O; i<(max tabiter:is - l); i++I 
if ((item=;;;-tabitems [ i ]) && (item:=lastitem)) 

t.abitem=SetTab(myDialogTH:-:dl, myDialogPt r, i, tabitem, false) ; 
lastitem = item; 

switch ( i tern) ( 
case returnID: 

done = true; 
break; 

case DevtID: 
pref.Devt :p ref.Devt; 
if (p.::-ef. Devt.) 

SizeWindow(myCialog?tr,580 , 420,true); 
else 

SizeWindow(myDialcgPtr,580,375,:rue); 
break; 

case TabID : 
tabitem=SetTab (r:iyDia:!.ogTHndl , myDialcgPt r, tabitem+l, tabitem , 

false); 
lastitem = tabitems [ tabitem ] ; 
brea k ; 

case backTabID: 
tab I tem=Set Tab (r::yDi a:!. ogTr.ndl, my Di alogPt r, tabitern - 1, t abitem, 

:alse); 
last.Item= tab!tems [ tab!tem]; 
break; 

case cmciTabID: 
tabitem=Set Tab (my Di al ogTHndl, my Di alogPt r , tabitem+ 1, tabitem, 

;:.rue); 
last.Item= tab:tems [ tabitem ] ; 
break; 

case cmdbackTabID : 
tabitem=Set Tab (myDial ogTHndl, rnyDialog?tr, tabitem-1, tabitem, 

t.rue); 
last.Item= tabitems[tabitem] ; 
break; 

case ViewNumI D2: 
case Vie,.·IconID: 
case vl:i:D: 
case v 2c,.·I D: 
case v2ccwID: 

if (•+viewPcint > 3) viewPoint = :!.; 
SetViewButton ( myDialogPtr, viewPoint , sstat); 
break; 

case TreeHeightID: 
{ 

int t.Eeight; 
tneig t": t . = GetDNum (:;-.yDialogPt.r, TreeHei ght I D); 
if ( ':.He1ght<O 11 :P.eight>maxtHeight) { 

i ~ (tHeight>maxt.Height) 
tHeight=max~ncicht· 

else - ' 
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0; 



) 

tHeight=O; 
SetDNum(myDialogPtr, TreeHeightID, tHeight); 
SelIText (myDialogPtr, TreeHeightI D, 0, 32767); 
SysBeep (1); 

myGlobals.TreeHeight = tHeight; 
EstimateLines(myDialogPtr); 

break; 
) 

case TreeHeightUpID: 
{ 
int tHeight; 
tHeight = myGlobals.TreeHeight + HeightStep; 
SelIText (myDialogPtr, TreeHeightID , 0, 0); 
if (tHeight>maxtHeigh t ) { 

tHeight=maxtHeight; 
SelIText (myDialogP tr , TreeHeightID, 0 , 32767); 
Sy sBeep ( 1) ; 

SetDNum(myDialogPtr, TreeHei ghtI D, tHeight); 
myGlobals.TreeHeight = tHeight; 
EstimateL ine s(myDialogPtr); 
) 
break; 

case TreeHeightDwnI D: 
{ 

int tHeight; 
tHeight = myGlobals.TreeHeight - HeightStep; 
SelIText (myDialogPtr, '!'reeHeightID , 0 , 0); 
if (tHeight<O) { 

) 

tHeight=O; 
SelIText (myDialogP::r, TreeHe ightID, 0, 32767); 
SysBeep{l); 

SetDNum(myDialogPtr, TreeHeightID , ::.Heigh::); 
myGlobals .TreeHeight = tHeight; 
EstimateLines(myDialog?tr); 
) 

break; 

case StepAdjID: 
SetDNum (myDialogP::r, StepAdjtxtID , myGlobals. StepAdj) ; 
EstimateLines(myDialog?tr); 
break; 

case PreviewID: ( 
int lump, p; 

DoPowerOn(); 
Se tCu rsor(&Wa tchCrsr); 
Gotimage = 0; 

GetDString (myDialogPtr, ViewNameID , sstat - >ViewName); 
strncpy ( &s [ 1 I, (char*) & ssta t ->ViewName [ 1) , sstat->ViewName [ 0 ] ) ; 
s[O] = sstat->ViewName [ O]; 
Pt oCstr((uns igned char *)s) ; 
if (sstat->viewnum==l) 

strcat.(s," vl"); 
else -

strca:.{s," v2"); 
strcpy({char *JmyRecPtr->filename,s); 
CtoPstr((char *)myRec?tr->filename); 
sprintf{(char*)lfname , ":::Treescan Images:%s",s); 

CtoPstr((ch ar*)lfname); 
if (!FSMakeFSSpec{O,O,lfname,&outfile)) { 

II File exists so beep and ask do you want to overwrite 
ParamText("\pTree Image ",myRecPtr->filename , "\p already 

exists.", 
" \p\rPlease use another name"); 

Alert (MsgAlertID, nil) ; 
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tabiterr. = Set Tab (myDialogTHndl, myDialogPtr, 0 , tabitem, false); 
Sy sBeep (1) ; 
break; 

myRecPtr- >vRe fNum = outfile.vRefNum; 

II Move up to focus centre halve preview lines above home 
DoSteps(previewlinesl2); 

if (!sstat->IntegOK && (pref.IntegAd j>=NoAdjinteg) ) { 
SetDString (rnyDialogPtr, StatusID, s integ); 
sstat->intsteps = DoAd j int(myDialogPtr,sstat->intsteps); 
sstat->IntegOK = true; 
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II 

if (pref. Integ.Z\.cj==Fixedinteg ) { 

i 

sstat->intsteps = pref .FixedintegTime; 
sprintf ((char*) s, " %d ", sstat->intsteps); 
SetDSt:-ing (myDialogPtr, StatintNoID, Ct oPstr (s)); 

if ( ! ssta: - >Focused && (pref. focus>=NoRefocus) ) { 
SetDString (myDialogPtr , StatusID , s focus); 
sstat->Focused = DoFocus(myDialogPtr, sstat); 

II Move down a bit to centre focus point 
De ay(3,&templcng); 
Do teos( - (previewlinesl2+20)) ; 
De ay~3 , &t~mplong); 
De :eps(20); 

Se:DString (myDialoaPtr, Sta:usID, s capt); 
for (p= (previewlin~slmyGlobals . StepA-dj); p>O; p - = chunklines) { 

if (Wa:tNextEvent (::iouseDownlkeyDown, &theEvent, l, nil) 
break; 

if (p<chunkL.nes) 
lt.:::ip - ,.,, 

e:se 
lump = chunklines; 

if (GetChu:"'.k (lump, p - lump, ssta:->intsteps, myGlobals. StepAdj) <4) { 
/ / scsi erro:-

Sys3eep (1); 
break; 

Disp:ay(p-lump ,p, (preview"ines l myGlobals . S:epAdj),0 ,pref.detail, 
myDiaiogPtr ) ; 

ssta:->A::-'.ome = false ; 
Delay(3,&:emplcng); 
SetDStr in::; (myc:alog?tr, Sta:usID, s home); 
Dc!-:c:ne () ; 
Do?owero:!'(); 
SetDStrins (myCialog?:r, Sta:i.:sIC, s idle); 
Gctlmage = l; 

Co~e=: ; JI Se: t o cap~~=e preview i mage 
F::..:sh=:ve:--.:s (Cx??=r, 8); 
.b:-eak; 

case F~:lsca~:J: { 

in: a:,ef,? , lu~p,wr.; 
Bvte 
l::r.g 
c!:a:-

•p;:>; 
startti~~s,ticks; 

S:256j ; 
i '.'. t c: i rs t., cl as t, c: n c, i, c, Ji s c, f::. able [ 50 0 j ; 

o ,a ipha ; ::oat 
1:-.: '.:eight; 

I I c'.:eck dip is valid in case we need it for blind refocus 
d:p = Ge:DKea~(myCialogPtr,D i pID); 
i!' Cdip>90 11 c:p<-90); 

} 

?ara"':ext( " \:,:>Di? an::; l e i nvalid. ","\:,:>" , "\p" 
" \c\r?lease re enter " ); 

Alert IMsgAle,:tID, nil); 
Sy sBee:,:> Cl) ; 
break; 

t: ~ : = GetDReall:nyDia~og?tr,:iltID); 
i!' Ctilt>9C I! tilt< - 90) { 

?aram~ext("\;:>Tilt angle :nvalid. 11
,

11 \p", 11 \p " 
"\p\:-? lease re enter"); 

Alert (MsgAlertID, nil); 
Sy sBeep Cl) ; 
b:-eak; 

Se:Cursor(&WatchCrsr); 
rfr.um = 0 ; 
done = :; II Return at end of image unless reset in the loop 

II ----------- Check :~age file exists & Setup log file -----------
GetJString (myDialog?tr , ViewNameID , sstat - >ViewName); 
strncpy (& s [l] , (char•) &ss~at->ViewName [ l] , sstat->ViewName [ 0)); s [0 ) 

sstat->ViewName[O]; 
PtoCstr ( (:.:nsic;nec char •) s); 
i: (ssta:. - >viewnurr.==1.) 

strcat (s, "_v:C "); 
e2.se 

strca~(s," v2"); 
strcpy((char *l~yRec?:r- >filename , s); 
CtoPstr ( (c:iar •)myRec?t r ->f:lename); 
sprintf((char*) lfname, ":: :T:-eescan Images:%s",s); 

CtoPstr((char•)lfname); 



II 

if (!FSMakeFSSpec(0,0,lfname,&outfile)) { 
II File exists so beep and ask do you want to 
ParamText (" \pTree Image ", myRecPtr-> file name, 

exists.", 
"\p\rPlease use a nother name"); 

Alert (MsgAlertID, nil); 
tabitem = SetTab(myDialogTHndl, myDialogPtr, 
SysBeep(2); done= O; break; 

myRecPtr->vRefNum = outfile.vRefNum; 
if (pref.LogFiles) { 

overwrite 
"\p a lready 

0, tabitem, 

sprintf((char*)lfname,":::Treescan Images:%s.log",s); 
CtoPstr((char*)lfname); 

err = FSMakeFSSpec(0,0,lfname,&outfile); 
err = FSpDelete(&outfile); 
err = FSpCreate(&outfile, 'Imag', 'TEXT',smSystemScript); 
if (err) { SysBeep (2); done = O; break;} 
err = FSpOpenDF(&outfile,fsCurPerm,&outrefNum); 
if (err) {SysBeep (2); done = O; break;} 

if (pref. focus == BlindRefocus) 
af = bafchunks/myGlobals.StepAdj; 

else 
af = afchunks /myGlobal s.StepAdj ; 

Dist = O; 

DoPowerOn(); 
Delay(l20,&templong); 
II Check supply level before we go 
GetStatus (&sb); 
bat volts = sb.s.voltage I 1023.0 • v _calib; 
if {bat volts<ll) { 

Str25-5 s; 

SysBeep (1); 
DoPowerOff (); 
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false); 

sprintf( (char*) s, " Baccery Voltage is two low 
CtoPstr((char •)s); 

%. lf" , bat_ volts); 

ParamText (s," \p", "\p ","\p"); 
Alert (MsgAlertID, nil); 
Gotimage=O; done = 0; break; 

II Move up to focus centre halve preview lines above home 
DoSteps(previewlines/2); 

II ----------- Set integration & perform autofocus -----------
if ( ! sstat->IntegOK && (pref. IncegAdj>=NoAdjinteg) ) { 

SetDString (myDialogPtr, StatusID, s_integ); 
ssta t - >intsteps = DoAdjint(myDialogPtr,sstat - >intsteps ); 
sstat->IntegOK = true ; 

if (pref. IntegAdj ==F ixedinteg ) { 
sstat->intsteps = pref.FixedintegTime; 
sprintf((char*)s,"%d ", sstat->intsteps); 
SetDString (myDialogPtr , StatintNoID, CtoPstr (s)); 

if (!sstat->Focused && (pref.focu s>=NoRefocus) ){ 
SetDString (myDialogPtr, StatusID, s focus); 
sstat-> Focused = DoFocus (myDialog?tr, sstat); 

II ----------- Start setup for blind refocus -----------
if (true) {I I Always read bl ind focus table 

II First load the ftable from file Treescan . ftable 
err = FSMakeFSSpec(0,0,"\pTreescan.ftable",&infile ) ; 
err = FSpOpenDF (&infile, fsCurPerm, &inrefNum); 
if (er::) { 

ParamText(" \pCant open blind refocus data file","\p ", " \p " 
"\p"); 

Alert (MsgAlertI D, nil); 
SysBeep(l); done= 0; break; 

// get next line from the file 
if (get line (inrefNum, s, 100) ! =noErr) { 

) 

ParamText ("\pError reading ft able file", " \p" , "\p " 
Ale::-t (MsgAlertID, nil); 
SysBeep(l); done= 0; brea~; 

" \p" ); 

sscanf(s, "%f,%d,%d,%d", &alpha, &dfirsc, &dlast, &dine); 

//Make space for the table 

for (i=O; i<= ( (dlast -df i ::-st) /dine); i++) ! 
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II 

II get next line from the file 
if (getline (inrefNum, s , 100) 1 =noErr) { 

ParamText("\pError reading ftable file " ,"\p", "\p" 
Alert (MsgAlertID, nil); 
SysBeep( l ); done = O; break; 

sscanf(s, "%d,%d", &d, &ftable[i)); 
if ( (dfirst+i •dine)! =d) ( 

Str255 s; 
sprintf((ch ar" )s ,"Error in focus table line %d 

%d<>%d",i,d,dfirst+i*dinc) ; 
CtoPstr((cha:: *)s); 
ParamText(s , " \p ", " \p ", " \p") ; 
Alert (MsgAlertID , nil ); 
break; 

FSClose(inrefNum); 

II find our distance 
for (i=O; i< ( (dlast -dfirst ) / dine ) ; i++) 

if (ftable'.il <= fste;:::-i:.:m) break ; 
Dist = dfirst + (i • dine); 

if (Dist>2500) Dis;: = 15CJC; 
s;nintf((cha r •)s, " D'..st: %3.2f m", (float ) Dist/100) ; 
SetDString (myJ'..alcgPtr , StatFocusNo3ID , CtoPst:r (s)); 

//c a lc :ines; 

" \p"); 

myGlo:Oals . height = '1eighttoLines (myGlobals.TreeHeight, dip, Dist); 
sorintf((c'iar*)s, " %d (calcl", myGl o:Oals . height); 
S~tDS:.ring (myDialogPtr, S tat LineNoID, CtoPstr (s)); 

(myGl obal s . height>pre: .maxlines) { 
Str255 s; 
i71.yGlobals . :-ieic:;l":t = ?=e: . ::-:c.xlines; 
myGlobals.TreeHeight. = 

Li:-iest.oHeigh;:(myGlobals . heig'it,dip ,D ist ) / 100; 
sprintf((c!car*)s, "Car. only capture to %4 . lf metres high.", 

LinestoMeight(myGlobals.height , dip , Dist ) / 100); 
CtoPstr ( (chac •) s l; 
?ara::iText(s ," \?", " \p " , " \ p" ) ; 
Ale r t ("isgAlertID , :-iil); 
SetJNum (my o: a 1 ;:,g?:: r, T ree:.;e ight ID , myGl ob al s . T reeHeight); 

'">eight = myGlobals.!"lciglct; 

End setup fer blind refocus 

GetJ:te'71 (myDialogP::r , FullScanID, &toggleType, 
(Ha:-:cle*) &togg l ei3utton, &t oggleBox); 

SetC ~i ::le (tc:;gleBut::cn, " \p!<eturn Image"); 
Ge::J:te'71 (myDialogP:.r, Ca:1cel:D, &toggleType , 

(Hancle•) &tcgg~eButtcn, &toggleBox); 
SetC!:.tle (toggleButton , " \pAbo r t " ); 

ef = echunks; 
Gotimage = 2; 
star::ticks = TickCcun:. (); 

II Move down a bit to start picture about 0 .7 b elow focus po int 
Delay(30 ,& templcr.g); 
DoSteps ( - (StepsBack+20)); 
Delay(30,&templong ); 
DoSteps(20); 

// •w•w** ... w"'** Start image ca?ture loo? ""********** 
for (p=height; p>O; p -= chunidines) ( 

SetDString (my Dial og ? t.r, S::atusID, s capt); 

sprintf ((char*) s, "%ci cf %c ",(he ight-pl, myGlobals.height) ; 
SetDStr i ng (myDialogPtr, StatLineNoID, CtoPstr (s)); 

sprintf((char*)s,"C:aptur ir.g image at %4.lf m 
", LinestoHeight ((he i ght-p),dip,Dist)/100); 

SetDStr ir.g (myDialogP tr, StatusID, CtoPstr (s)); 

II *••w* * w** * w Check f or user image capture break *********** 
i: (WaitNextEvent(mcuseDown lkeyDown, &theEvent, 1, nil) ) 

II Chec k if the event received is Stop or else cancel 
Re ct 
shor t 
Point 
Control Handle 

itemBox; 
i:.emType; 
the?oint; 
theCont rol, i t e mHandle ; 



GetDitem (myD i alogPtr, Ful 1 ScanID, & i temType, 
(Handle*) &itemHandle, &itemBox); 

thePoint = theEvent.where; 
GlobalToLocal (&thePoint); 
FindControl (thePoint , myDialogPtr , &theControl); 
if (theControl == itemHandle && p<height){ //Stop 

got lines height-p; 
Gotirnage = 3; 
break; 

} 
else{ 

got lines 
Got I mage 
done = O; 
break; 

//Cancel 
height-p; 
3; 
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II *********** Capture one chunk *********** 
if (p<chunklines) 

lump = p; 
else 

lump = chunklines ; 
i f (GetChun k (lump, p-lump, sst.at->intsteps, myGlobals .StepAdj) <4) { 

} 

II scsi error 
SysBeep (1); 
sprintf((char*)s,"Error in Get Chunk"); 
ParamText (CtoP str (s), "\p", " \p ", " \p"); 
Gotimage=O; done = 0; break; 

if (pref. ChunkMarks) 
fo= (pp =(Byte*) ( ( (long)p*lwidth)+base+250); 

pp<(Byte*) (((long)p*lwidth)+base+300); pp++) 
*pp = 255; 

Display(p-lump,p,height,O,pref . detail , myDialogPtr); 

II *********** Store relevant information to log file ***lf******* 
if (?ref.LogFiles) { 

II 

ticks = TickCount(); 
o = ( (height-p+lump/2+chunklines) *alpha*myGlobals. StepAdj) + 

dip ; 
wn = Dist/cos(o/180*3.14159); 

sprint.f((char*)s,"\r%d %ld %d %d %ld %.lf %d %d %d " 
p,ticks-startticks,af,ef,sstat-

>intsteps,focusnum,rfnum,fstepnum,wn); 
CtoPst!:"(s); count= s[O]; 
e=r = FSW=it e(outrefNum ,&cou n: , &s[l]); 
if (err) {SysBeep(2); FSClose(outrefNum); done= 0; break;} 

if ( (p-chunklines) <= 0) break; 

**********• Adjust integration and do refocus 'lt1'f****•**lf* 
if ( 1 (--af)) { 

rfnum++; 

} 

ef = echunks; 
if ((pref. IntegAdj == Adjinteg) && ((height­

p} > (StepsBack/myGlobals. StepAdj)) 
sstat->intsteps = DoAdjint2(myDialogPtr, sstat->intsteps, p­

lump, outrefNum); 
if (oref. focus == AutoRefocus) { 

af = afchunks /myGlobals.StepAdj ; 
if ((he ight -p) >(StepsBack/ myGloba ls.StepAdj )) { 

SetDString (myDialogPtr, StatusID, s adj focus); 
sstat->Focused = DoReFocus(myDialogPtr,p+lump,sstat); 

if (pref. focus == BlindRefocus) { 
af = bafchunks/myGlobals.StepAdj; 
if ( (height-p) > (StepsBack /myG loba ls. StepAdj)) { 

SetDString (myDialogPtr, StatusID, s adj focus); 
sstat->Focused = DoBlindRefocus (myD[alogPtr, p+lump, 

alpha, Dist, dip, 
height-p+lump/2+chunklines, ftable, dfirst, dine, 
dlast, sstat); 

else if ( ! (--ef)) { 
ef = echunks; 
if ((pref. IntegAdj == Adjinteg) && ((height­

p) > (StepsBack/myGlobals. StepAdj)) 
sstat->intsteps = DoAdjint2(myDialogPtr, sstat->intsteps, p­

lump, o utrefNu m); 

II *********** End of image capture loop •*lf******** 
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} 
if (pref. ChunkMarks) 

for (pp =(Byte*) ( ((long) (he ight-
StepsBacklmyGlobals. StepAdj) *lwidth) +base+l mid -
fwidthl2 + foffset); 

) 

pp<(Byte*) (((long) (height­
StepsBa ck lmyGloba ls.StepAdj)*lwidth)+base+lmid + 
fwidthl2 + foffset); pp++) 

*pp = 255; 

if (pref. Log!:iles) FSClose (outrefNum); 

GetDitem (myDialogPtr, FullScanID, &toggleType, 
(Handle•) &toggleButton, &toggleBox); 

SetCTitle (toggleButton , "\pCapture Image"); 
GetDitem (myDialogPtr, CancelID , &toggleType, 

(Handle•) &toggleButton, &toggleBox); 
SetCTitle (toggleButton, " \pCancel "); 

FlushEvents (OxFFFF, 0) ; 

if (:done) 
SetDString (myDialogPtr , StatusID, s home); 
DoHome() ; 
DoPo werOf f(); 
sstat - >AtHome = true; 
sstat - >Focused false ; 
sstat - >IntegOK = false; 

else 
DoHomeRe:?wr (); 
SetDString (myDialogPc.r, Sc.atus:::D, s id~e); 

break; 
) 

case CancelID: 
done = l; 
break; 

case HomeI;:J : 
SetCursor(&WatchCrsr); 
DoPowerOn(); 
sstac.->AtHome = DoHome(); 
DoPowerOff (); 
break; 

case Debug ID : 
Debug (sstat); 
~s timateLines(myD:alog?:rl; 
SetDNum(myDialogPtr, TreeHeight~ D , myGlobals. TreeHeight); 
::neak; 

)while (!done); 

DisposDialog (myDialog?tr); 
HPurge ((Handle) myDialogTHndl); 

capturedheight = myGlobals.height; 

myRecPtr->imageMode = l; 
myRecPtr->imageSize.h = myGlobals.width ; 
myRec?tr->rowBytes = lwid:h; 
myRecPtr->imageSize. v = capturedheight; 
myRecPtr->depth = 8; 
myRecPtr->planes = l; 
myRec?t r->data = nil; 

if (item != CancelID) ( 
myGlobals . intsteps = sstat - >intsteps; 
myGlobals.height = capturedheight; 
StorePrefs (); 
GNextRow = 0; 
if (Got image==l) ( 

) 

myRecPtr->imageSize .v = previewlines/myGlobals.StepAdj; 
capturedheight = previewlines/myGlobals .S tepAdj; 

if (Gotimage==3) { 
myRe c Ptr->imageSize . v = gotlines; 
partialheight = capturedheight - gotlines ; 
capturedheight = gotlines; 
Sy sBeep ( 1) ; 

if (Gotimage) { 
II create the .dat file with dip ,lean and v2rot in i t . 
if (tilt>O) 



lean 90-tilt; 
else 

lean -(90+ti lt) ; 
strncpy(&s[l], (char*)&sstat->ViewName[l],sstat->ViewName[O]); 
s[O] = sstat->ViewName[O]; 
PtoCstr((unsigned char *)s); 
if (sstat->viewnum==l) 

strcat(s,"_vl"); 
else 

strcat(s," v2"); 
sprintf( (char*)lfname, ":: :Treescan Images:%s.dat", s); 

CtoPstr ( (char*)l fname ) ; 
err = FSMakeFSSpec(O,O,lfname,&outfile); 
err = FSpDelete(&outfile); 
if (FSpCreate ( & ou t file, •I mag' , 'TEXT• , smSy stemScr ipt) ) 

SysBeep (2); 
if (FSpOpenDF (&out file, fsCurPerm, &outrefNum)) 

SysBeep(2); 
if (sstat->viewnum==l ) 

sprintf((char*)s,"%d\r%f\r%f\r",myGloba ls.StepAd j,dip,lean ); 
e lse 
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sprintf((char•)s,"%d\r%f\r%f\r%d\r",myGlobals.Step 
Adj,dip,lean,sstat->v2rot); 

CtoPstr(s); count= s[O]; 
FSWrite(outrefNum,&count,&s[l]); 
FSClose(outrefNum); 

return noErr; 

DisposPtr(base); 
return l; 

!!do it he r e as finish only called if return without error 

II Returns the data to the host 
int DoContinue (Acqui ::-eRecordPtr my!'(ecPtr , lo ng •cata?tr) { 

long count; 

if ( !myGlobals . width) 
return 1; 

if ( !Gotimage) 
return 1; 

if (CallPascalB (myRecPt::-->abortProc)) 
return 1; 

CallPascal (GNextRow, capturedheight, myRecPtr - >;o::-ogressProc); 

if (GNextRow >= ca;oturedheight) { 
myRecPtr->data = nil; 
SetRect (&myRecPtr->theRect, 0 , 0 , 0 , 0); 
return O; 

count (myRecPtr->maxData (pref.maxlines*lwidth))/ lwidth ; 
if (count < i) 

return memFullErr; 

if (count > capturedheight - GNextRow) 
count capturedheight - GNextRow; 

SetRect ( &myRecPt r ->theRect, 0, GNextRow, myGl obal s. width, GNextRow+count) ; 

myRecPtr->loPlane = 0; 
myRecPtr->hiPlane = 0; 
myRecPtr->colBytes l; 
myRecPtr->rowBytes lwidth; 
if ( Gotimage == 3 

myRecPtr->data base + ( (long)partialheight • lwidth) + 
((long)GNextRow • lwidth) + lmid - myGlobals.width/2; 

else 
myRecPtr->data 

GNextRow += count; 

return noErr; 

base + ( (long)GNextRow • lwidth) + lmid - myGlobals.widthl2 ; 

II Clears the permanent variables 
int DoFinish (iong *dataPtr) { 

*dataPtr = O; 
DisposPtr (base); 
return no Err; 
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M.2.4 Extracts from Functions.c Source Listing 

/*******•*•···················•**••········································*********** . 
File Functions.c 

* Contains miscellaneous functions for Treescan plugin 

//------------------------------------------------------
/! Do Home mirror mechanism 
/1------------------------------------------------------
int DoHome () ! 

int 
cmdblk 
OSErr 
short 
Str255 

er"::'; 
mycmd; 
errors(6]; 
stat., message; 
s; 

mycmd.O?Code = scmResetMecn; 
mycmci.r: • mycmc . r2 = mycmci.r3 = myc:::c.r4 = mycmd.r5 = 0; 
err = SCSISen::!Cor:-.rnanc! s(&mycmc!, :::yGlcba:s.SCSI ID, errors, &sta::., &r:-,essage); 
if (err<3) { - -

Nu::iTcStr:ng(err,s); 
Parar.:Tex::.("\pSCSI Erro:- coun::.= " ,s, " \pin home command", " \p" ); 
Aler:. (MsgAlert.ID, ni.l); 
ret.urn O; 

::et.urn :; 

/!------------------ ------------------------------------
// Do Home ~:::.h oo~er off a:id immedia::.e :-e::.urn // --------------: _________________ _______ ______________ _ 
ir.t DoHomeRet?wr()i 

int 
cmdblk 
OSErr 
short. 
s::.r255 

err; 
rnycmd; 
er::ors ( 6 j ; 
st.at~ message; 
s; 

mycmd . O?Ccde = scmResetMec~; 
mycmd.r: = mycmc.r2 = l; 
mycmd.r3 = ~ycmc.:::4 • mycm<:i.r5 c O; 
err = SCS:.'.Senc!Comrnand s (&mycmd, myGlooals. SCSI_ID, errors, &st.a::., &message); 
if <err<3l { -

NumToStr:ng(err,s); 
ParamText.("\pSCSI Error count.=",s, " \pin home command", " \p" ); 
Ale:::. (MsgAlertID , :iil); 
retu:::i O; 

return :; 

!!------------------------------------------------------
// Reset Mic::c 
/1------------------------------------------------------
void DoRese::. () { 

int 
cmdblk 
OS Err 
s hort 
Str255 

err; 
mycmd; 
errors ( 6j; 
stat, message; 
s. 

mycmd. OpCode • scmReset.Dev; 
mycmd.r l • mycmd .r2 • mycmd.r3 • mycmd.r4 • mycmd .rS = O; 
err • SCSISendCommand(&mycmd, myGlobals.SCSI ID, errors, &stat, &message); 
if (e rr<~) { -

Nurr.ToSt.ring(err,s); 
ParamText("\pSCSI Error Count= " ,s, " \pin reset command", "\p"); 
Alert (MsgAlertID, nil); 



II -----------------------------------------------------
1 I Move Focus 
II Decide whether the Mkl or Mk2 focus routine should 
II be used. 
II -----------------------------------------------------
void OoMoveFocus (steps) 
{ 

if ( pref.Mk2 ) 
OoMoveFocusMk2(steps); 

else 
OoMoveFocusMkl (steps•l); 11 x Adjustment factor- btwn mkl & mk2 

II -----------------------------------------------------
11 Move Focus Mkl 
II -----------------------------------------------------
void OoMoveFocusMkl(stepsl { 

int err,dirn; 
cmdblk mycmd; 
OSErr errors[6 J ; 
short stat, message; 
Str255 s; 

if (steps<O) { 
steps = -steps; 
dirn = O; 

)else 
dirn = l; 

mycmd.OpCode = scmFocus; 
mycmd.rl O; 
mycmd. r2 dirn; 
mycmd.r3 stepsl256; 
mycmd.r4 steps%256; 
mycmci.r5 0; 

err s SCSISendCommand(&mycmd, myGlobals. SCSI_ID, e::::o::s, &st.a::, &messag e); 
if (err<4 ) { 

NumToString(err,sl; 
ParamText ( " \pSCSI Error Count• 11 , s, 11 \p in AC jcsr. :oc:Js co~rr1anci " , 0 \p"); 
Alert (MsgAlertIO, nil); 

II ------------------- ---- ------------------------------
11 Move Focus Mk2 (Stepper controlled foc~s) 

II -----------------------------------------------------
void OoMoveFocusMk2(steps) ( 

int err,dirn; 
cmdblk mycmd; 
OSErr errors[6 ] ; 
short stat, message; 
Str255 s; 
long x; 

if (steps>l800) {SysBeep(l); return;} 
if (steps<-1800) {SysBeep(l); return;! 
if (steps••O) return; 
fstepnum +• steps; 
if (steps<O) { 

steps = -steps; 
di rn = O; 

}else 
dirn = l; 

mycmd.OpCode = scmFocus2; 
mycmd.rl = O; 
mycmd. r2 dirn; 
mycmd. r3 stepsl25 6; 
mycmd.r4 steps%256; 
mycmd . r5 = O; 

err = SCSISendCommand(&mycmd, myGlobals.SCSI ID, e=rors, &stat, &message); 
if (err<41 { 

I 

NumToString(err,s); 
ParamText ( "\pSCSI Error Count= " , s, " \p in Acij:;s:: :ocu s cor.mand " , " \p " ); 
Alert (MsgAlertIO, nil); 

II Oelay(l,&x); II let it settle 
I 

11------------------------------------------------------
11 Send a SCSI Command 
II returns nurr~er of s uccesful steps 
11------------------------------------------------------
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int SCSISendCommand(cmdblk •mycmd, int SCSI ID, OSC:rr •err, short •status, short 
"message) (-

int i, rerror; 

for (i=O; i<S; i++) err(i] = 0; 
"status = •message = O; 

if {(err[O] SCSIGet:()) '= no2rr) return O; 
if ((err{l] = SCSISelect:(SCSI ID)) != noErr) ret:urn l; 
if ((err{2] = SCSICmd((Pt:r)mycmd,6)) == noErr){ rerror = 3; )else rerror 2; 
if ( (e!"r[4] = SCS IComplet:e( st:atus,message,TimeOut)) noErr) 

if (!"error==3) ret:urn 4; 
return rerror; 

1/----------------------------------------------------------
11 Send a SCSI Command with read command 
II return error i s number of sequentia: succesful steps 4=perfect: 
1/----------------------------------------------------------
int SCSIDataCommand (cmdbli< "mycmd, SCSII:->str •myTIB, int SCSI_ID, OSErr *err, short 

•status, shcrt •message) ( 
int i, rerrcr; 

for (i=O; i<5; i+ +) er!"[i] = 0; 
•status = *message = 0; 

if ((err [OJ = SCSIGet ()) ! = noErrl ::etur:-1 0; 
if ( (e rr {l] = SCSISe lec: (SCSI ID)) ! = noEr=> ::et:urn l; 
if <(err [2 J = SCSICmd ((Pt:::) mycmd, 6)) == nor:::::) ( 

rerror = 3; 
if ( (e!"r[3 } = SCSIRead(_(?tr)my1I3)) == no:Srr) rer::or 4 ; 

)eise 
rerro= = 2; 

if ((err [ ~ J = scs:Complete (status, message, Timeout)) no:Srr) 
if (rerrc r== 4) ret urn 5; 

rett:!"n rerror; 

II ----- ---- ----------------------- ---------------------------------
11 Get a chunk of x ~:nes anc sto:e :~ b~:fer w:th an of:set 
II - - ---------------------------------------------------------------
int GetChunk (int Li:-:es, long o!"fset, !nt i:-1t_:i::-.e, ir.t stepsperline) { 

int 
SCSIInst:r 
cmd'::>lk 
OSErr 
sh ort 
Ptr 
lor.g 

my:I3 [ 15}; 
mycmd; 
errors(6}; 
stat, message; 
bu:fer?tr; 
Duu.;ny; 

if ("ref .ADlOJ 
~ycmd.OpCode = scmGetX:..inesN3; 

else 
mycmd.Opcode = scmGetXLinesBbm; 

mycmd. rl Lines/ 25 6; 
mycmd.r2 Lines\256; 
mycmd . r3 int time/256; 
mycmd. r4 int -time %2 5 6; 
mycmci.rS stepspe!"line; 

buf fe r Pt= = base + {o!"fset • lwidth); 
if {Lines) buffer?tr += {long) (Lines-1) • lwid.th; 

myTIB[O] . scOpcode 
myTIB[O] .scParaml 
myTIB[O] .scParam2 

myTIB[l] .scOpcode 
myTIB[l) . scParaml 
myTIB[l ) .scParam2 

scNoinc; 
{unsigned long) b-.iffer?tr; 
l; 

scNoinc; 
(unsigned long) '::>-.iffer?tr ; 
!width; 

myTIB[2] .scOpcode scNoinc; 
myTIB[2 ] . scParaml = {unsigned long) &myTIB{ 3). scParam2+3; 
myTIB[2 ) .scParam2 = l; 

myTIB[3 ) .scOpcode 
myTIB[3 ). scParaml 
myTIB[3 ) .scParam2 

myTIB[4 ) .scOpcode 
myTIB[4) . scParaml = 
myTIB[4 ] .scParam2 

myTIB[S) . scOpcode 
myTIB[S) .scParaml 

scNoinc; 
{unsigned long) 
O; 

scNoinc; 
{unsigned long) 
4; 

scNoinc; 
(unsigned lor.g) 

•Dummy; 

&myTIB[6] . scParam2; 

&myT!B[7].scParam2; 
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myTIB[S] .scParam2 4; 

myTIB[6].scOpcode scAdd; 
myTIB[6).scParaml (uns igned long) &myTIB[l ) .scPa=aml; 
myTIB[6].scParam2 lwidth; 

myTIB[7].scOpcode scAdd; 
myTIB[7].scParaml (unsigned long) &myTIB[B] .scPa=am2; 
myTIB[7] .scParam2 O; 

myTIB[B) .scOpcode scLoop; 
myTIB(B] .scParaml -70; 
myTIB[8).scParam2 Lines; 

myTIB[9] .scOpcode scStop; 
myTIB[9] .scParaml (unsigned long) nil; 
myTIB[9] .scParam2 (unsigned long) nil; 

err= SCSIDataCommand{&mycmd, {SCS IIn str*)&myT IB , :'"1yGlobals.SCSI ID, errors, 
&stat, &message); 

if (err<4) { 
c har s[256]; 
sprintf(s,"Getlines SCSI Error count = %d",errJ; 
ParamText(CtoPstr(s), " \p","\p" ," \p"); 
Alert (MsgAlertID, nil); 

return err; 
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M.2.5 Extracts from lnteg/Focus.c Source Listing 

File InteglFoc1.:s . c 

Contains Apert1.:re ar.d Focus functicr.s :or Treescan plugin 

II ------ - - ------------------------- --------------------
11 Ad just integrati on ti~e 
II get a line and ad just i::tegratio:: :1r.e :c nake signal almost sa:;;ra:e ... 
11 Passed: Curren: :.r.tegration tl~e 
II Returns: Suggested new integratic:: ::~e 

II -------------- - ---------------- - ---------------------
long DoAdjint <::::alogP<:r myD:alog? :!", in: ir.tstepsl { 

long x,1,s: a ~ts ~eps,~steps , tsteps; 
l o ng total .average; 
Byte max, • p; 
char s[2S6:; 
int intIC ; 

if {Cc1.:ntD!TL (myc:.alog?tr l < {do3cxite~Ccun:-::ii 
in: : o Sta::::.:Nc:D; II ~a in dialog 

else 
int ID d~_1n:ID; I I )eb'1g d1a:og 

//T ry ar.d speed :t ge:::ng a rc'1gn es::~ate c f ~ne re : o start 

II ti:nes ~ as oes: we car. do is d:v ov :ou!" 
for (ts:eps = r..: r. i:it steps • ~; :s:c?s<:nax :n::. ste;::s; -.steps · = :::)) { 

·" (Ge:C:-:;;:-i:«:. c-; tsteos, ::;) <l): 
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Sys3ee;:: (1 l; =e:.;::n ints:eos;' 
:f (pre:.c:sp:ayl D:s;::lay(O,:.":ryG!coals.::e:gn:, :.;::re~ . oe:a::, r.-.yDialog?tr); 

l 

m.?.x ::.c:.?.: = ::J; 
:o::(p = (3y-.e · Joase - l w1dtn l2 - e •.-:cthi2 ; p<(<Syte•Joase - l w1dt:i12 + 

ew:c:n/2); ? --l ( 
to:a: -= · p; 
i: < .... ::: > max) nax • • p; 

average = :o:al/e~id:::; 
(pre: . A::: oi 

S?=:r.:: < (c:ia:- .... ) s , " ~~Ca ... %id ", :ste?S, average}; 
else 

spr:r.:f((c:iar • Js, " \:d<!. %le ", :s:eps, .?.verage); 
SetDSt:::ng (r.yD:.alogP:r, int,J, C:c?s:r Isl!; 
· ' (ave=aae>5l !:)::ea1c; 

((!pre~ . . l\)10) U (tsteps>20'.J)J • 
?:e:.P.~::; = :rue; 
tste;::s /= :o; //ie try ag.?.1n w:th : ::01-. 

if (ts::.eps>max :.::t steps) i 
Sys3ee?(:); ~et~r~ ~ax in: ste ?s; 

startsteps = ( c::oat)eav erage/average • :steps) /2. 0; 

for (isteps = s;;artsteps; isteps < r:iax :nt s<:eps; isteps • • in<: s::ep_mult) 
if (GetC~un:.C(l, 0, isteps,0)<4>: 

Sys3eep (1) ; ret'1rn ints:eps; j 
• & (pre:. di sp:..ay) Di splay ( 0. i, ;r.yG: coals . i":eight , :, pre f. ciet a : l. myDia log?tr); 
max tot.a: = 0 ; 
:or(p = (i3y:ew>base + b>idth/2 - ewidth/2; p<((9yte•)base.,. lwidt h/2 + 

ew i ct h I 2) ; ? +-'-) ( 
total - = •p; 
if (•p > max) max = • p; 

average = tota:/ewid:n; 
i: (pref.ADlO) 

sprin:f({char•)s ,"%ldb • lld", 
else 

:s::.eps, a verage) ; 

sprintf ((char• ) s, " \ldb \ld", :s:eps, average); 
SetDString Cr:iyDialogPtr, intlD, C:c? s:r (s)); 
if (average>eaverage) b reak; 

if (!pref .ADlC && isteps>2000) { 
pref.ADlC = true; 
for (is t eps • startsteps/4; isteps < max int steps; isteps • • int_step_mul t) { 



if (GetChunk (1, 0, isteos, 0) <4) i 
SysBeep (1); returr. · intsteps;) 

if (pref. display) Di splay (0, l , myGlobal s. height , l, pref. detai l, 
myDialogPtr); 

max total = O; 
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for(p (Byte*)base + lwidth/2 - ewidth/2; p<((Byte*)base + lwidth/2 + 
ewidth/2); p ++) ( 

total += *p; 
if (*p > max) max = *p; 

} 

) 
average = total/ewidth; 
sprintf ((char*) s, "%ldc* %ld", isteps, average); 
SetDString (myDialogPtr, intID, CtoPstr (s)); 
if ( average>eave rage) break; 

if ( J. steps>= max int steps) { 
SysBeep(l); 
return max int steps; 

}else 
return is teps; 

II -----------------------------------------------------
!/ New Adjust integration time 
II Calculate average expos~re for an area and gues new integration time 
// Passed: Current integration time, number of lines already captured 
II Returns: Suggested new integration time 
II -----------------------------------------------------
long DoAdjint2 (DialogPtr myDiaiogPtl'., long int steps, int pp, shol'.t outrefNum) { 

long x,i, j ,isteps; 
long maxh,total,count; 
Byte max ,av, *p; 
char s[lOO); 
int err; 

av = O; 
isteps = intsteps; 
maxh = eheight; 
if (maxh) { 

max = total = 0; 
for ( j = (pp}; j<pp+maxt; j+~) { 

for ( p = (Byte*) (base • (long)lwidth*j) + lwidth/2 - ewidth/2; 
p<((Byte*)(base + <long)lwidth*j) • lwid::h/2 + ewidth/2); 
p ++) { 

total +== *p; 
if (*p > max) max *p; 

av (Byte) (total I maxh I e1.· idth); 
isteps = (float)eaverage / av * intsteps; 

if (true && (isteos>2000) && ! Pl'.ef .AD10) ( 
isteps /= 4; · · 
pref.ADlO = true; 

)else if {true && (isteos<500) && pref.AD10) { 
isteps *= 4; · 
pref .ADlO = false; 

if (pref.Log?il es) { 
sprintf((char*)s,"%ld %d %d %ld %ld ", 

· total, max, av, intsteps, isteps); 
CtoPstr (s); count = s [OJ; 
err = FSWrite(outrefNum,&count,&s[l)); 
if (err) {SysBeep (2) ;FSClose (outrefNu;:i); J 

if ( (isteps/intsteps<O. 8) 11 (isteps/intsteps) >1.2) 
isteps = (isteps - intsteps) * C.BC + in::steps; 

if (isteps> (intsteps*lO)) isteps = ir.tsteps/2; //try to trap silly 
saturatior. 

if (isteos>max int steos) 
iste-ps = max :lnt ~teps; 

else if (iste;:is<m"'ln int steps) { 
isteps =-min int st-epsi 

if (pref.AD10) 
sprint f ( (char*)s,"%ld->%:d* ints::e;::s, i.steps , av); 

else 
sprintf ((char*) s, "%ld->%ld %d", int steps, isteps , av); 

SetDString(myDialogPtr, StatAdjlntNoID, Cto?str (s)); 
return isteps; 
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//********************************************************************* 
II Do auto Focu s 
II Decide whethe= the Mkl or Mk2 routine should be used. 
//********************************************************************* 
int DoFocus (DialogPtr myDialogPtr, sstatPtr sstat) 
{ 

II 
II 
II 

if ( pref .Mk2 ) 
return DoFocusMk2 (myDialogPtr, sstat); 

else 
return DoFocusMkl (myD:.alogPtr, sstat); 

II Return ~ if focused ok 

(Using 

int DoFocusMk2 (DialogPt r myDialog?tr, sstat?tr sstat ) { 
int a, b,i,j,mi , ni,m i l; 
Byte •p; 
char s~256]; 
double mf,mfl; 
Even:Reco rd theEvent ; 
long 
OSEr= 
FSSoec 
s;:.r2ss 
s:,o=t 
irit 

count,x; 
err; 
out file; 
dname= " \ ;:>Focus Data " ; 
ou:re f Kum ; 
friu:T'.:!:C , :ocusr.I::; ; 

if (C ount.D:LT!., (myuialog?t::) < (d baox:i:temCount - 10)) i 

stepper) 

M45 

focusnIC Stat.FocusNc' E l; :m:::1ID = Stat?oc-..is0\o2 : D;} II Main dialog 
el se { 

:ocusnIC db_:oc usnID; 

:f (:;o :: ef.LcgFi~es)( 

fnumID = db fnu~ID ; i 
Debug dialog 

s ::. r n c? y ( & s [ l ] , ( ch a r • ) & s st a t - >View Na "'e [ 1 l , s s;:. a::. - > V:. e w Na me [ 0 ] ) ; s [ 0 ] 
>Vie;.;Nar:-,e[:J] ; 

?:cCs;:.r ( (-.:nsigned er.a:: •) s) ; 
:.. f (sst2: - >vie1 .. :nt;:-;;==:) 

s:::ca: (s, " vl " ) ; 
else 

strcat(s ," v2"); 
s:;orin:f((char•)aname,":::Treescan Images:%s Focus Data ", s} ; 

CtoPstr( (cha=•Jdname) ; 
err FSMakeFSSpec(O,C,dname,&out:i l e); 
err ?S;:>Delete (&cu::: ~el; 
e ::r FS pC::eate ( &ou:. f: l e, ' I mag ' . 'TSXT ' , srr.Sys:eClSc r ipt); 
:.f (e:: :: ) ·:Sysaee;:i(2) ; re:-..: :: n 0 ; } 

e=r = FS:;oCpenDF (&cu;:.fi~e, fsC-..i::?crm, &ou::.::ef:-<:.:m) ; 
if !e=rl '.Sy saeep(2J ;re:u :: n O; : 

DoMoveFocusinfinityMk2( ); //focus at infi n ity 
mi = O; mf = O; ni = O; 
:or ( i =O; i<f2gcs:eps; i+=:2b st eps) { 

SetDNum(~yDialog?tr, focusnID, fstepnu~); 
if (Ge:Chunk(l , C, sst at - >ints:eps , O)<qi 

SysBeep(l); ret.ur:. 0; } 
calcfnum(s,&min,&max,&av}; 
spri nt.f(( c har*)s ," > %f" ,focus num ) ; 
SetDString (myDialogPt::, fnumI D, CtoPstr (s) ) ; 

II 

sstat-

if <p=ef. di splay) Di s:;o l ay ( 0, ~, myGl obals. he i ght, 1 , :;ore f. detai 1 , myDialogPt.r) ; 
if (pref .Loc;F ile s) ( 

sprintf((char•)s,"%d %f %. Of %.Of %.Of %d %d %.lf\r" 
,i,focusnum,fccus~um2 , fo c ~s~um4 , focu s ~um8 ,m in , max ,av); 
CtoPst::(s) ; ccun;:. = s[O]; 
e=r = ?SWri:e(ou:::efNum,&coun:,&s(l]J; 
:f !e=rl {SysBeep (2J;FSC l ose(outrefNum);return 0;} 

if ( focusnum>mf} { 
mi i; 
mf = focu s num; 

i: ( focusnum< (mf*O . 6) 
bre a k ; 

&& f ccus!lum>l .0) 

DoMoveFocusMk2(f2bste;:isl; 

ni = i; //remember i steps reache d 

mil = 0 ; mfl = 0; 
DoMoveFo cusMk2((mi+f2bstepsl - ni); II Move to almost ma x focus 



II 
II 
II 

for {i= {mi+f2bsteps); i> {mi-f2retsteps); i-=f2sst.eps) { 
if (i<O) break; // dent try and go !:ia:::k j'.>aSt infinity 
SetDNum{myDialogPtr,focusnID, f st epnum); 
if {GetChunk (1, 0, sstat->intsteps, 0) <4) { 

SysBeep{l); return 0;) 
calcfnum{s,&min,&max,&av); 
sprintf {{char*) s, "< %f", focusnum); 
SetDString{myDialogPtr, fnumID, CtoPstr{s)); 
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if {pref. di splay) Di splay { 0, l, myGl obal s. height, l, pref. det ai 1, my Di alogPt r) ; 
if {pref.LogFiles) { 

sprintf{{char*)s,"%d %f %.Of %.Of %.Of %d %d %.lf ssb\r" 
,l,focusnum,focusnum2,focusnum4 ,focusnu m8 , min ,max,av); 
CtoPstr{s); count= s(O]; 
err = FSWrite (outrefNum, &count , &s (1 j); 
if (err) {SysBeep{2);FSClose(outrefNum);return 0;} 

} 
if {focusnum>mfl) { 

mil = i; 
mfl = focusn um ; 

} 
DoMoveFocusMk2{-f2ssteps); 

if {mfl>mf) { 
DoMoveFocusMk2(mil-i); //move to mil max focus 
sprintf({char*)s,".%d", {int) (mfl/100 . 0)) ; 
SetDString{myDialogPtr, fnumID, CtoPstr{s)); 
sprintf{(char*)s,"%d %.Of fs - mil\r" , mil , (float) (mfl)); 

} 
else{ 

} 

DoMoveFocusMk2{mi-~); //move to mi max focus 
sprintf{(char*)s, " .%d", (int) (mf/100.0)); 
SetDString {myDialogPtr, fnumID, CtoPst.r (s)); 
sprintf((char*)s," %d %.Of fs-mi\r",mi, (float.) (mf)); 

SetDNum(myDia logPtr ,focusnID,fst.e pnum) ; 
if (GetChunk( l, 0, sstat.->int.steps,0)<4) { 

SysBeep{l); return O;} 
calcfnum(s,&min,&max,&av); 
sprintf( (char*) s, ". %f", focusnum); 
SetDString(myDialogPtr, fnumID, CtoPstr(s)); 
if (pref. display) Di splay (0, 1 , myGlobal s. height, 1 , pref. detail, myDia logPtr); 
if {pref.LogFiles) { 

} 

sprintf{{char*)s,"%d %.Of %.Of %. Of %d %d %. lf !inal posn\r" 
,i,focusnum,focusnum2,focusnum4,focusnum8,min,max,av); 
CtoPstr{s); count = s [O]; 
err = FSWrite{out.refNum,&count ,&s (l] ); 
if {err) {SysBeep(2);FSClose(outrefNum);return 0 ; } 

if (pref. LogFiles) E"SClose (out.refNum); 
return l; 

x***** Do Blind Refocus {us i ng stepper) •**X**"'* 

II Use geometry to estimate ac tual distance and then use lookup table to adjust focus 
step position 

II Return 1 as we assume we are still focussed 
int DoBlindRefocus (DialogPtr myDialogPtr, int got lines, float alpha, int 

dip, int ys 
Dist, float. 

, int *ft.able, int dfirst, int dine, int dlast, 
a , b I i I j I mi ; 

sstatPtr sstat) { 
int 
Byte 
char 
double 

*p; 

EventRecord 
long 

s (256]; 
mf,last; 
theEvent; 
count.,x ; 

OSErr 
int 
float 

err; 
wn,wstep; 
o; 

o = (ys*alpha*myGlobals . StepAdj) + dip; 
wn = Dist/cos(o/180*3.14159); 
if { wn <= dlast) 

wstep = ftable[ (wn-dfi.::st) /dine]; 
else 

wstep = ftable [ (dlast-dfirst.) /dine] ; 
/* { Str255 s; 
sprintf({char*)s,"o = %f, wn = %d\r, wstep 

wstep, fstepnum); 
CtoPstr{(char *)s); 
ParamText(s,"\p", "\p ","\p"); 
Alert (MsgAlertID, nil); 
}*/ 

%d fstepnum %d 11
, o, wn, 
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II fstepnum contains curent number of steps from infinity so if wstep is stenum I 
want 

II then we should move wstep-fste?nu~ 
DoMoveFocusMk2(wstep - fstepnu~); 
Delay(fdelay,&x); 

if (pre f.LogFiles) { 
SetDNum(my DialogPtr , StatRefocusNo2ID,fstepnum) ; 
if (GetChu nk (1, 0, sstat - >in;:steps, 0) <4) { 

SysBeep(l); return 0 ; ) 
i: (pref . display) Di splay ( 0, 1, myGlobals . height, 1 , pref. detail, myDialogPtr) ; 
calcfnum(s , &min,&max,&av); 
SetDNum(myDialog?tr , St.atRefocusNo:ID,wn) ; 

return l; 
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Image Processing Software 

This appendix presents relevant sections of the image processing software. An 

overview of the code is provided with a breakdown into files. Listings are also 

provided of relevant sections of code. This includes the parameter extraction macros as 

well as the NIH Image additions. 

• Parameter extraction macros (version 3.22) 

• NIH Image modifications (version TF 3.5f) 
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N.1 Parameter Extraction Macros (Version 3.22) 

The parameter extraction macros have been split into three files as a result of NIH 

Image only being able to load 32 kByte macro files. 

Parameter extraction source files: 

Image Macros 

UTILMacros 

Modif History 

Main macro file which contains all the macros for normal 

processing. This includes calibration, height and diameter 

estimation, tree stem model generation, display of 3D stem 

model, and sweep estimation. 

Utility macros which implement processing functions not part of 

the normal processing sequence. This includes printing, 

generation of thumbnail images, image feature removal, and 

filtering operations. 

TreeScan macros modification history. 

This appendix contains a full listing of the Image Macros file. 
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N.1.1 Image Macros Source Listing 

** TreeScan *• image ca?ture and image analysis macros 
Production Technology, Massey Ur.:!. ver si ty , 1995. 

N3 

Version 2. 23 (Note version number in 2 places in file please update both) 

Requires modified version of Image (version TF3 . 3) 
which inc lude s modified user.p, image.rsrc & image.p 

For modi:ication ~i story see se?era:e file. 
Computer spec :!. fie : NIH?ath, 
Requires 'Background', 'TreeScan Help' 

Assoc:ated with utilities file 

global variables 
Var {image macros} 

b,d,ds,d2,d2s,a,as,dbds,d2sbds,xoffset:real; 
bcounc,bzCount,grxS,grxSOrig,gryS,dec:mation::!.nteger ; 

alpha, reala ~?'.Ja ,C::- oC: real ; 
t heta , tariTheta., cosT:ieta, s:..:1Theta: :-ea:; 
cosasa lpha, s i nasal;:fr:a: rea~; 
dname, version, calibra:edirr,age, :!.mage4model, modellmage:string; 
pi : real; 
Dist, Ht , W , d:p, lean: real; 
Nkr, kr, mag : real; 
useo, mo, gotd ipl, optionKey : boo i ea:i ; 
progress : integer ; 
NIHPath:string; 

(30 display global variables} 
xll,xl2,x l3 , yl,iy,ix,x,y,pixstep,dmeas,scale:integer; 
SliceSize , c:'reeHeight, Slices: rea l; 
HS, VS , ro tation, thi , thet.a, thetastep: rea l; 

bcoun t, :ni:iT=-eeHgt., ~axTreengt : ir:~ege:- ; 
fthe:.a: real; 
clearb4paint : boolean ; 
minTreeHgt:., maxTreeHg~ : i~ :.ege:-; 

{••*•••***•*•*•*• proceciures ••••w••T•••••••* i 

(--------------------------------------------------------------------------} 
procedure CheckO?:ionKey; 
begin; 

SetCounter(7); 
rX [ 7] : = 0; 
Usercode(6,l,2 , 3); 
if rX [ 7] = 1 then O!"tion!<ey:=t::ue else op:ion!<ey:=false; 

end; 
{- ---------- --------------- ------------ ------------- ----------------------- } 
procedure set.Path; 
begin; 

NIHPath :='Tasman H8:Ap?s:NIP. !rr,as;e: '; 
end; 

{- -------------------------------------- --- --------------------------------} 
procedure LoadCalibDat; 
begin; 

SetOptions('X-Y Center,Userl,0ser2'); 
SetCounter (7); 
rUserl[4 ) := O; {d} 
Usercode(2,l,2,3); {Load calib data into measurements arrays} 

{ if (rUserl[4)=0) then 
Beep 

else 
ShowResults;} 

end; 

{--------------------------------------------------------------------------} 
Procedure LoadDipLean; 
begin; 

SetCounter (7); 
rX [7) : = 0; 
Usercode(3,l,2,3);{Load c1p and lea:i :rom the two data files and combine) 
if rX[7] = l then gotdipl:=true else gotdipl:=false; 
if gotdipl = true then begin 

decimation := rY[7); 
dip : = rUserl[S]/lBO*pi; 
lean := rUserl[6]/180*pi; 
ShowMessage('dip = ',dip /pi*180, lean ',lean/pi*l80) 

end else 
beep; 
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end; 

{--------------------------------------------------------------------------} 
procedure RemovePerspecti ve; 
var 

otheta, xs, ys: real; 
temp, txl, tyl, tx2, ty2, i, orCount, width, height, tempdec:integer; 
tempStr : string; 

begin; 
if rCount=O then begin 

LoadCalibDat; 

end 

if {rUserl[4]=0) then begin {No .calib file} 
PutMessage {'No saved calibration data. Mark the left, centre, and 

right of the bottom calibration bar with the cross 
hair tool and then re-run this macro.'); 

ResetCounter; 
exit; 

end; 
d2 : = rUserl [ 1]; { actually 

accordingly 
a := rUserl [2]; 
b .- rUserl [3]; 
d .- rUserl[4]; 
decimation := rY[7]; 
dip : = rUserl[S]*pi/180; 
lean := r Userl[G]*pi /180; 
checkOptionKey; 
if optionKey then begin 

we will pretend d2 d and then scale d2s 

tempdec := Get Number {'Enter value 
fo r i :=l to 

rY[i] := rY(i]/tempdec; 
decimation:= decima~ion * tempdec; 

for image decirr.ation',l); 
rCoun: do 

end; 
alpha := realalpha*decimation; 

gryS : = rY [ 5] ; 
grxSOrig := rX[S]; 
GetPicSize{width,height); 
grxS : = width/2; 
ds := rUser2(1]; 
as := r 0ser2[2]; 
theta := rUser2[3]*pi/ 180; 
d2s := rUser2[4]; 
Dist := rUser2(5]; 
Ht:= rJser2[6]; 
if rUserl[7] = 1 then mo :=true 
else mo:= false; 
if rUser2[7] = 1 then useo := true 
else useo:= false; 

dbds := d/ds; 
d2sbds := d2s/ds; 
cosasalpha := cos(as*alpha); 
sinasalpha := sin{as*alpha); 
tantheta : = {cosasalpha - d2sbds) /sinasalpha; 

mag : = d/ds; 
W := mag/kr; 

if usec=true then 
if mo=true then 

if gotdipl=true then begin 
tempStr:='Ca libration data loaded from file. \ - using 0 -
dip I lean from data f ile\ '; 

end else begin 
tempStr:='Calibration data loaded from file.\ - using 0 -
dip I lean manual entry\'; 

end else begin 
tempStr: ='Calibration data loaded from file.\ - using 0 from 

modified 0\'; 
end else begin 

end; 

tempStr:='Calibration data loaded from file. \ - using Al 
method \ '; 

ShowMessage{tempStr,'O -', theta/pi*l80:2:1, D -' Dist:4:1, 
Mag =',Mag: 6: 4, ' Ht =',Ht:4:1 , ' Nk r =',N kr :6:6,' 

W =',W:4:1, Dip ',d ip/pi*l80 , Lean ' 
lean/pi*l80, Decimation =', decimation); 

else if {rCount<>3) and {rCount<>6) then begin 
PutMessage('Mark 3 points on the bottom bar or 6 points on both bars of 

the calibration rod and then re-run this macro'); 

end 

ResetCounter; 
exit; 

else begin 
UserCode(l,1,2,3); {Enter real world calibration rod dimensions} 
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if rCount=3 then {must be enter ing 0 so 
mo := true; useo := true 

just use bottom bar} begin 

end else begin 
mo := false; 
useo := false 

end; 
d2 .- rUserl[l];{ actually we will 

accordingly ) 
a .- rUserl[2]; 
b .- rUserl[3]; 
d .- rUserl(4]; 

If mo=true then begin 
SetCounter(6); 
rX [ 4] : =rX [ 1 J ; 
rX[S] :=rX[2]; 
rX [ 6] : =rX [ 3]; 
rY [ 4] : =rY [ 1] ; 
rY[S] :=rY[2]; 
rY[ 6) :=rY (3); 

pretend d2 

rY[2]:=rY[2]+10; {just to stop divide by 0) 

d and the n 

a .- O; {so calculated y from these will all be b=l40) 
end; 

g ry 5 : = rY [ 5 ] ; 
grxS := rX[S]; 
rX[l ] :=rX[l]-grxS; 
rX[2 } :=rX(2]-grx5; 
rX [ 3 ) :=rX[3)-grx5; 
rX(4 ; :=rX [ 4)-grx5; 
rX(6: :=rX[6 ] -g rx5 ; 

checi<.O;>tior.Key; 
Load.JipLean; 

r':'[l ) := rY [l) -g ryS; 
rY[2 ] :=rY(2) -gry5 ; 
r':'(3] :=rY(3]-gry5; 

if cpt.icnKey er gotdipl=false t~en 
decimation := Get.Number( 'Snter value for steps per line ',l ); 

alpha := realalph a*cieci:r.a t.ior.; 

ds:= sqrt.(sqr(rX[6 ] - rX[4]) + sc;r(r':' [6] -rY [4])); 
as := rY[2); 
ci2s:= (sqrt{sqr(rX (3] - rX[l]) - sqr(!::Y[3]-rY[l])))*c/d2 ; 
d2 : = d; 
dbds := d / ds; 
d2sbds := d2s / ds; 
cosasalpha := cos{as•alpha); 
s i nasalpha := sir.(as*alpha); 
tant.heta := (cosasalpha - d2sbds)/sinasalpha ; 
the:. a : = arctan (tant.het.a); 
mac := d/ds; 
Nk~ := mag I 1500; 
W := :nag/kr; 

if ~==true then begin 
if gotdipl=false then begin 

er.d; 

deci:nation := GetNu:nber(':Snt.er value for ste:::>s per line',0); 
dip:= GetNumber('Enter value for dip in deg.ree.s',0)/180*pi; 
lean . - GetNumber('Enter value for l ean in degrees',0)/180*pi; 

theta . - dip ~ lean; 
end else begin 

otheta := theta; 

scale 

theta := GetNumber{'Calculat.ed val u e of 0 is ' ,theta/pi*l80 )/180*pi; 
if {abs{theta-otheta)/pi*lBD>C.l} then 

useo := true; 
enci; 
Dist .- W * cos (theta); 
Ht:= W * sin{theta); 

if u seo=true then 
if mo=t rue then 

if gotdipl=true then begin 

NS 

d2s 

tempStr:='Calibration data calculated.\ - using 0 - dip I lean 
fr-o~ data file\'; 

end else begin 
tempStr:='Calibration data calculated.\ - using 0 - dip I lean 

manual entry\'; 
end else begin 

tempStr:='Calibration data calculated.\ - using 0 from modified 
0\'; 

e:--:C. else begin 
tempSt.r:='Calibration data calculated.\ - using Al method\'; 

end; 
s=:owMessage{tempStr, '0 =', theta / p i '"l80:2:1, D =' Dist:4:1, Ht 

=',Et.:4:1,' Nk r =',Nkr:6:6,' Mag =',Mag:6:4,' 
W =',W:4:1, Dip ',dip/pi*l80, ' Lean ' 
lean/pi *180, Decimation =' decimation); 



N6 

{Save calibration stuff to a in measurements arrays and then store to a file} 
setCounter(7); 
setUserlLabel('Calib Data'); 
setUser2Label('Calc Data'); 
rUserl[SJ .- dip/pi*l80; 
rUserl[6 ) .- lean/pi*l80; 

rUserl [2) . - a; 
rUser2[1) .- ds; 
rUser2[2) .- as; 
rUser2[3) .- theta/pi*l80; 
rUser2[4] .- d2s; 
rUser2 [5] : = Dist; 
rUser2(6] .- Ht; 
rY[7) := decimation; 
if mo=true then rUserl[7) : = 1 else rUser1[7) := O; 
if useo=true then rUser2[7] := 1 e lse rUser2[7 ] := 0; 
SetOptions('X-Y Center,Userl,User2'); 
SetExport('Measurement s'); 
Export(concat(WindowTitle, '.calib ' ) ); {try :2 to indicate dont put up dlog box} 
end; 

end; 
{--------------------------------------------------------------------------} 
procedure CheckCa libration; 
begin; 

if progress <>3 then begin 

end; 

PutMessage('Image has not been calibrated. 
<FS> '); 

exit; 

if (calibratedi rr.age <> WindowTitle ) then 

Run calibration macro: 

PutMessage('The calibration data for this image is not loaded 
( ', calibratedimage,' is loaded) . Calibrate 
image first using [FS) .'); 

end; 
{------------------------------------- ------ ------------------------------- } 
procedure setupText; 
begin; 

Savestate; 
SetFont('Geneva'); 
SetFontSize(9); 
SetText('Left'); 

end; 
{--------------------------------------------------------------------------} 
procedure PlotTreeGrid; 
var 

i:integer; 
begin; 

if clearB4Paint then begin 
makeroi(x-50,y-3.S*pixstep,100,4*pixs tep) ; 

clear; 
end; 

MoveTo(x,y); 
LineTo(x,y-3.S*pixstep); 

for i:= 0 to 3 do begin 
MoveTo(x-50,y-i*pixstep); 
LineTo(x+SO,y-i*pixstep); 

end; 
end; 

{--------------------------------------------------------------------------} 
procedure Plot3DTree; 
begin; 

rLength[l] :=xl3; 
rLength [2]: =yl; 
Usercode(9,theta,HS,VS); {Plot a 3D tree} 

end; 

{-------------------------------------------------------------------------- } 
procedure plotscaleline; 
var 

step: integer; 
begin; 

MoveTo(x,y); 
LineTo(x,y+S); 
MoveTo(x-15,y+l3); 
writeln(scale:3:0, ' c m '); 

end; 
{--------------------------------------------------------------------------} 
procedure plot scale; 
var 

step: real; 
begin; 

scale:=SO; 
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x:=xll+scale"HS; y:=yl; 
plotscaleline; 
x:=xl2+scale"HS; y:=yl; 
plotscaleline; 
x:=xl3+scale*ES; y: =yl; 
plotscaleline; 
scale:=-50; 
x: =xll+scale*H S; y:=yl; 
plotscaleline; 
x :=xl2+scale*HS; y:=yl; 
plotscaleline; 
x:=xl3+scale"HS; y:=yl; 
plotscaleline; 

end; 

{-------------------------------------------------------------------------- ) 
procedure cross; 
begin; 

end; 

MoveTo(xs , ys -s i ze); 
LineTo(xs,ys+size); 

MoveTo(xs-size,ys); 
LineTo(xs+size,ys); 

{-------------- - ----------------------------------------------------------- ) 
procedure Modeli:ifo; 
var 

DiamBE, SEiJ, maxSw? , maxS;;pHgt, r:iaxSwpSEJ: real; 
temp : real; 
temp l , temp2 : str!ng ; 

begin; 
maxTreeHgt:=rA=ea[i]; 
minTreeHgt:=rMean[i ] ; 
DiamBH:=rStdDev [l ]; 
Si::D: ==a r.g le [ 2. ] ; 
maxSwp:=rArea[2]; 
maxSwpHgt:=rMean[2]/10C ; 
rr.axSwoSED:=rS:dDev [2]; 
slice; := r Userl[l ] ; 
sl i ceSize := r User2[1 ] ; 
if (:-:iaxS;;pSE CJ/maxSwp<l) t hen oeg in 

temp l .- ''· :emp2 .- ' SED '; tern? := maxSwp/maxSwpSED; 
end else begir. 

temp:. 'SED/'; te:-:ip2 :emp . - maxSwpSED/maxSwp; 
end 

N7 

ShowMessage('S-cem mode~ i oacieci. \\Max ::icdei Hgt 
m \ Min mode: Hg: 
\Dia me:er at breas: Hg: 
', SEO,' cm \Max sweep: 

(maxTreeHg: /10 0) : 4 :2, 

enci; 

height maxSwpHgt:4:1, 
',slices:2: 0 ,' s li ces,\ 
1 ,s l iceSize:2:0,' c:-n. ' ); 

SelectWindow(' Values'); 

Macros 

(minTreeHgt/!00) : 4: 2, m 
',D:.amBP.:2:1,' cm \Stem SED 

templ,temp:2 : 0,temp2,' at 
re \ \ Model consists of 

spaced at 

{-------------------------------------------------------------------------- ) 
macro 'TreeScan 
begin; 

set? a th; 

Help [~l] ' · 

Open(concat(NIH?ath, 'TreeScan Help')); 
end; 
{-------------------------------------------------------------------------- ) 
macro 'Image Capture('; 
{--------------------------------------------------------------------------) 
macro ' 
var 

Aguire Image from Treescan[F2] ' · 

test: string; 
begin; 

test := WindowTitle ; 
Acquire('Treescan'); 
if test<>WindowTitle then 

save; 
end; 

{save if new image returned } 

{--------------------------------------------------------------------------} 
macro 'Pa rameter Extraction('; 
{--------------------------------------------------------------------------} 
macro ' Load an image [F3] '; 
begin; 

Open (' '); 
progress : =l; 
resetCounter; 

end; 



{--------------------------------------------------------------------------} 
procedure F4MacroProcedure; 
var 

tempH, tempW:integer; 
begin; 

version := 'TreeScan Utility Macros\ 
setPath; 

ShowMessage(version); 

pi := 3.14159265; 

version TF 2.23'; 

kr := 0.000175; {given mag in cm/pix and dist in cmj 
realalpha := 0.0103021978 * pi I 180; {0.010332} 
dname := WindowTitle; 
setOptions(''); 
InvertY(l); 
killRoi; 
measure; 
If (histogram[O)) >0 then begin 

AddConstant (1); 
end; 

SetForegroundColour(255); 
SetScale(O, 'pixels'); 
ResetCounter; 

bCount : = 0 ; 
bzCount . - O; 

GetPicSize(tempW,tempH); 
ShowMessage(version); 
progress .- 2; 

end; 

macro Remove white pixels[F4] '; 
{ Removes white pixels by adding 1 to all grey levels if necessary 

then sets forground to black. Should then set correct tool for marking 
6 points on the calibration rod. 

begin 
F4MacroProcedure; 

end; 

{--------------------------------------------------------------------------} 
macro ' Perspective Calibration[F5j '; 
( Assumes calibration data saved on d~sk) 
begin; 

if progress<>2 then 
if rCount=O then begin 

PutMessage('Remove white pixels using ?4 macro first.'); 
exit; 

end else begin 
ResetCounter; 
F4MacroProcedure; 

end; 
ShowMessage(version); 
RemovePerspective; 
xoffset .- (grx50rig- grx5) *dbds*ccs (thet.a ) /cos (theta+O*alpha); 
setUserlLabel('X in cm'); 
setUser2Label('Y in cm'); 
setPrecision(l); 
setScale(O, 'pixels'); 
SetForegroundColour(O); 
ResetCounter; 
calibratedimage := WindowTitle; 
progress : = 3; { Image Calibrated ·for Perspective) 

end; 

{-------------------------------------------------------------------------- } 
macro ' Tree edges to data points [F6] '; 
{ 

NS 

Requires an image of a tree trunk with the edges of the trunk marked in white 
} 
var 

w,h,xs,ys,yint,left,top,width,height,i,ii,nPixels,mean,mode,min, 
max:integer; 

lasty, lastx, x, y: real; 
pointsThisLine,spacing:integer; 

begin 
CheckCalibration; 
RequiresVersion(l.45); 
Measure; 
GetResults(nPixels,mean,mode,min,max); 
if (histogram(O]) <100 then begin , . 

PutMessage('First mark the eages ir. whi te' ); 
exit; 

end; 
SaveState; 
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GetRoi(left,top , width , height) ; 
GetPicSize(w,h); 
if width=O then begin 

Se lectAll; 
GetRoi (left,top,width,height); 

end; 
Duplicate ('Tree Edges'); 
Invert; 
SetForegroundColor( O) ; 
SetLineWidth(l); 
SetThreshold(255) ; 
checkOptionKey; 
spacing := 10; 
if optionKey then 

spacing : =get Number ( ' Mea su::-eme:-:t. spacing (pixels) : ' , 2); 
i:=l ; ii := l ; 

::-epeat 
MoveTo(O , i); LineTo(width,il ; 
i:=i+l; 
ii :=i i+l ; 
if ii=spacing t h en beg i n 

ii:=l; 
i :=i +l; 

end; 
until i>height; 
set UseriLabel('X in err.'); 
setUser2Label('Y in er.. ' ); 
setP recision (1 l; 
set0pt.ions( ' Area, U ser~, U ser2 ' l; 
LabelParticles(false ) ; 
Se:?ar:icleSize(l,999999); 
AnalyzeParticles; 
ii:=l; 
lasty:=O; 
poir.tsThisLine: =O ; 
for i: =l to rCou nt d o begin 

xs := rX[i;- grx5; 

~x r i ; 
::Y [ i ; 

.- ::- x : iJ T : eft. ; 

.- r':'.[i ) +h - t.cp - :"leight; 

ys :;:: ~': ~ :..: - c;ry5; 
useo =t::ue :he:-, 

y :=sin(theta + ys • alphal/cos(:he:a • ys • alpha)•Cist - ~:+b 
else 
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y := a•ccs(theta•as•alphal / sinasa_pha"sin(ys•a:pha)/cos(theta+ys*alpha) 
- b ; 

x .- xs•dbds•cos(theta) / cos(t.he:a+ys•aipha)-xo::set.; 

(pointsThisLir.e= O) a:-:d (y<>:as:y ) t.he:1 '::iegin 
rA::ea [ii) :=y; {acce::i t L::s: pci:1t.) 
rUserl [ii ; :=x ; 
pointsThisL ir.e :=:; 

e nd else if poir.tsThisLine=l : r.en begi:-: 
if y=lasty the:-: begin 

if (x-:as:.x) >10 ::"len begi:1 '.provi ded >lOcm apart -> record 

e~ci; 

as ::i:2 ) 
~User2 t i.i j : =x; 
ii: =ih:; 
pointsThis~i:1e:= O ; 

end else begin 
rArea [ L] :=y; 

end; 
e:1d; 
lastx:=x; 
lasty:=y; 

end; 
RestoreState; 

first ?Oir.t } 
rUserl [ii]: =x ; 
pointsThisLine:= l ; 

SetCounter(ii-1); 
Dispose; 
ShowResults; 
SetExport('Measurements'); 
Export (concat(dname,' .stem ' )); 

enci; 

{y changed -> replace as 

{------ -- ------------ ------ ---------- -- ------------------- - ---------------- } 
macro ' Do 3D f ile conversion[;:-7 ] '· 
var 
spacing 
begir.; 

real; 

{ 

SetCounter(7); 
rX [7 ] := O; 
Usercode (7, l,2 , 3); 
if (rX(7]=0) then begin 

~rogress:=S;} 

{Loa d 2 .stem files and comi::ine} 
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Beep; 
PutMessage ('Edge files not found. Please ensure both views have been 

processed and one of the views is selected.'); 
end else begin 

PutMessage('3D conversion completed. Model in memory and saved to disk.'); 
ShowResults; ) 

Model Info; 

progress: =6; 
end; 

end; 

image4model := calibratedimage; 

{--------------------------------------------------------------------------) 
macro ' Display 3D model [FB] '; 
var 

lasti, i, ii: integer; 
tempXAv, tempXD, tempZAv, tempZD:real; 
firstpoint:boolean; 

begin; 
if progress<>6 then begin 

PutMessage('Load 3D model f irst .'); 
exit; 

end; 

xll:=l50; xl2:=250; xl3:=400; yl := 400 ; iy:=450; ix:=550; pixstep:=lOO; 
pi:=3.1416; thetastep:=45; 
Slice Size: =rUser2 [ 1] ; Slices: =rUse::-1 [ 1] ; T reeHeight: =S lices• Sl i ceSi ze; 

HS := 0.5; {?ixels/cm horizontal) 
VS:= (4*pixstep /4000 )*SliceSize ; !?ixels/slice vertical (pix/cm*stepsize)) 
Open(concat(NIHPath, 'Background') ); 

plotScale; 

{Plot 1st view of the tree) 
i:=rCount; 
firstpoint:=t::-ue; 
for ii:=O to (Sl ices - 1) do begin 

if firstpoint then MoveTo(xll+(rUserl [ i}+rMean[i ] /2)*HS ,y l - ii*VS); 
if rAngle[i ]=l then begin 

LineTo(xll+((rUserl[i]-rMean [ i]/2)*HS),yl -ii*VS); 
firstPoint:=false; 
lasti:=i; 

end; 
i:=i-1; 

end; 
LineTo(xll+((rUserl[Lasti]+rMean[:asti]/2l*HS) ,y l -(rCount-lasti)*VS); 
i: =rCount; 
firstpoint:=true; 
for ii:=C to (Sl ices - 1) do bec in 

if firstpoint then MoveTo(xll+(::- Userl[i]+rMean[i]/2)*HS,y:-ii*VS); 
if rAngle[ i]=l then begin 

LineTo(xll+((rUserl[i]+rMean [ i]/2)*HS ),y l - ii*VS); 
firstPoint:=false; 

end; 
i:=i-1; 

end; 

{Plot 2ndview of the tree) 
i: =rCount; 
firstpoint:=true; 
for ii : =0 to (Slices-1) do begin 

if firstpoin t then MoveTo(xl2+((rUser2(ij+rStdDev [ i]/2)*ES),yl - ii*VS); 
if rAngle[i]= l then begin 

LineTo(xl2+((rUser2[i]-rStd~ev[i]/2)*HS),yl-ii*VS); 
firstPoir.t:=false; 
lasti:=i; 

end; 
i:=i-1; 

end; 
LineTo(xl2+( (rUser2[Lasti]+rStdDev[lasti]/2)*HS),yl-(rCount-lasti)•VS); 
i:=rCount; 
firstpoint:=true; 
for ii:=O to (Sl ices -1) do begin 

if firstpoint then MoveTo(xl2+((::-User2[i]+rStdDev[i)/2)*HS),yl-ii*VS); 
if rAngle[i ]=l then begin 

LineTo(xl2+((rUser2[i]+rStd~ev[i]/2)*HS),yl-ii*VS); 
firstPoint:=false; 
lasti:=i; 

end; 
i:=i-1; 

end; 

theta:=O; 
Plot3DTree; 
progress:=?; 
saveas(concat(image4model, • .3D pie')); 
model!mage := WindowTitle; 
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end; 
{-------------------------------------------------------------------------- ) 
macro ' ('; 
{--------------------------------------------------------------------------) 
macro ' Di sp l ay x,y posn in cm[F9]' 
va :: 

test, x, y, yn , xs , ys: real ; 
width,height: i ntege::; 

begin; 
CheckCa librat icn; 

GetPicSize(width,hei ght ); 
Get Mou se( xs ,ys); 
checkOptionKey ; 
if op:ionKey then beg~n 

l':oveTo (xs - 2 , ys-2); Line To (xs .,-2 , y s+2); 
MoveTo(xs-2,ys +2 ); LineTc(xs+2,ys-2); MoveTo(xs+lO,ys); 

end; 

ys : =he i ght-ys-1 ; 
xs .- (xs- c;::xS); 
ys := ys - gryS; 

{PutMessage('?ix >/\:xs :', XS 1 
I ys: I ys);) 

x := xs*dbds •c os (t heta)/cos(tr.e :a ~ ys•a l ?~a)-xoffse:; 

Nll 

y := a•ccs (:'.:e:a+as ·a ~?ha) / sir:asa ~pha ·s ~n (ys•al?!°:a) /cos(theta•ys*alpha) + b; 
yn :=~i'."l(theta ~ ys • a~pha) / cos(:het a • ys • al?ha)*Dis:- Ht+b; 
S howt>'.essage( ' Eeigh:\ ', Cyr. /100):3 :2,' m\ '1orizon:al offset\ 

I 1 X: 0: l, I Ci7: I ); 

Show~essage ( '(X,Ya l,':'o) \( ',x: O:l,', ' ,y :3:1,', 
theta : = GetNumber(' 0 is',theta/pi•l8C)/180•pi; 

if op:ionKey then begin 

e:-id; 
end; 

se:-.:oText; 
if u~eo=tr~e then begin 

>;rite l n( ' (', x:O:l , ', ' , yn:J:l, ' ) '); 
e nd else bec;in 

;.·riteln(' C'.x:O: l ,' ', y:3::, ') ' ); 
er.d; 
:-esto:-eState ; 

' , yn: 3: l, ' ) cm' ) ; 
) 

{------------- ----------------------------------------------- --------------) 
Di s play distance in cm [::O~O ] ' 

va :: 
d ia ,he i , x2s,y2s,xls , yls , yint:reai; 
xl,x2,y:,y2,to?,lef~,~eig~t:intese:; 
width,he ight :in tec;e::; 

beg ii!; 
Chec kCalibraticn; 
GetLine(xls,yls,x2s,y2s,~idth); 
if xls<O then begin 

Put~essage('This macro requi::es a line selection .'); 
exit; 

end; 

setFc::zgroundColo~ :: (l); 
checkO?tionKey; 
if op:icnKey :hen begin 

MoveTo (xls, yls); Line To (x2s, y2s); MoveTo (x2s+l0, y2s); 
enci; 
GetPicSize(w idth , height) ; 

yls :=height-yls-1; 
xls xls- g::x5 ; 

yl s := yls-g::yS; 
xl .- xls*dbds•cos(theta)/cos(theta+yls•alpha)-xoffset; 

if useo=t::ue then 
vl 

else 
:=sin(theta + yls * alpha)/cos(theta + yls * alpha)*Dist- Ht+b 

yl := a*cos(theta+as*alpha)/sinasal?ha*sin(yls*alpha)/cos(theta+yls*alpha) 
+ b; 

y2s :=height-y2s-l; 
x2s .- (x2s- grx5) ; 

x2 
y2s := y2s-gry5; 

:= x2s*dbcis*cos(theta)/cos(thcta•y2s•alpha)-xoffset; 
if useo=true then 

:=s in( :heta + y2 s * alpha) / cos(theta + y2s * al?ha)*Dist- Ht+b v2 
e:!.se­

y2 := a•cos(theta+as*alphaJ /sinasa l pha•sin(y2s•alpha) /cos(theta+y2s*alpha ) 
+ b; 

dia . - sqrt (sqr (xl-x2) + sqr (yl-y2)); 
hei .- (yl+y2) /2; 



ShowMessage('Diameter\ ',dia:O:l,' cm',chr(l3), 'Av height\ 
',hei/100:0:2,' m'); 

if optionKey then begin 
setupText; 
writeln(dia:O:l,'@ ',hei:O:l); 
restoreState; 

end; 
setForegroundColour(O); 

end; 

{--------------------------------------------------------------------------) 
macro ' Display sweep[Fll )' 
var 

height, sweeplow, sweephigh, sweepHgt , :e::ip: integer; 
templ, temp2:string; 
xls, yls, x2s, y2s, width: integer ; 

begin; 
if progress<>7 then begin 

PutMessage('Display 3D model first.'); 
exit; 

end; 
GetLine(xls,yls,x2s,y2s,width); 
if (xls>=O) then begin 

if yls=y2s then yls:=y2s+l; 
if (yls>y2s) then begin 

sweepl ow:=(yl-yls)/VS *SliceSize ; 
sweephigh:=(yl-y2s) /VS*Sli ceSize ; 

end else begin 
sweeplow:=(y l -y2s) /VS*Slice5ize ; 
sweephigh:=(yl -yls) / VS*SliceSize; 

end; 

sweepHgt . - sweephic;:-0 - s weep low; 
end else begin 

end; 

end; 

end; 

sweepHgt := 600; 
GetMouse( xl s,yls); 
sweeplow:=(yl-yls)/VS*SliceSize - s~eepHgc/2; 
sweephigh:=(yl-yls)/VS*SliceSize + s~eepHgc/2; 
MakeLineROI(xls,y l s-(sweepHgt/2/sliceSize *VS ) ,xls, 

yls+(sweepHgt / 2 / sliceSize•VS)) ; 

if (s;.·eeplow<minTreeHgt) then begin 
sweeplow := minTreeHgt; 
if ({sweeplow+sweepHgt) <maxT=eeHgt) ::.en 

sweephigh .- mi nTreeHgt + sweeph<;t; 

if (s·,·eephi gh> maxTreeHgt) -:hen begin 
sweephigh := maxTreeHgt; 
if ( (sweephigh-sweepHgt) >r:linTreeEgc) :~er. 

sweeplow := maxTreeHgt - sweepHg:; 

Usercode(S,sweeplow sweephigh , ruser2 [ ~ ] 1 ; {Cal c ul ate sweep) 
if ( rX[2)/rX[3)<1) then begin 

templ := ''; temp2 := ' SED '; ce::ip :; rX[3 j/rX[2 ) ; 
end else begin 

templ :='SEO/'; temp2 :=";tern,:::= rX (2]/ rX (3] ; 
end 
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ShowMessage('Sweep of ',templ,temp:2::,temp2,' over ',rX( l)/100 :1:0,' m 
section. \\ Maximum s weep = ',rX(3],' cm\ at height = , 
rX[4)/100:3:1,' m\ a:-:d sed =',rX(2] :3:0,' cm \\ Section 
max height = , swee;friigh/100:2:1,' m\Section min height 
= ' sweeplow/100:2::,' m' ); 

SelectWindow('Values'); 
end; 

{---------------- -- ---------------------------------------------------- ----) 
macro ' Mark Scale(Fl2 ) ' 
var 

yi,xi,xs,ys,ysi,xsi,,yz,yint, xscale, yscc.2.e:rea l ; 
OTH, OrgW, OrgH, NewW, NewH, xo, yo ,x, y:in:eger; 

OrgPic, NewPic, Pix, RefH , N, size: intege=; 
begin; 

CheckCalibration; 
N:=l; size:=lO; 
GetPicSize(OrgW,OrgH); 
for yo:=O to 40 do 
begin 

for xo:=-N to N do 
begin 

ysi .- (arctan ( ( (yo*lOOJ +Ht-bl /D:.s:) - theta) /alpha; 
xsi .- (xo*lOO+xoffset)*cos(theca +ysi*alpha)/(dbds*cos(theta)); 

xs := xsi+g:-x5; 
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end; 
end; 

end; 

ys:= OrgH-(ysi+l+gryS); 

if ((Round (yo/10) =yo/10) and (xo=O)) then 
begin 

end 

size:=20; 
MoveTo(xs+25,ys); 
MoveTo(xs-50,ys); 

writeln(yo, ' m' 
writeln(yo,' m' 

) ; 
) ; 

else if ((Round(yo /S) =yo /5) and ( xo=O)) then 
begin 

end 

size:=lO; 
MoveTo(xs-50,ys); 
MoveTo(xs+25,ys); 

else size:=S; 

w:::iteln(yo,' m' 
w:::iteln(yo,' m' 

cross; 

) ; 
) ; 

ShowMessage(' (x,y) \(',xi:O:l , ' , ',yi:3: 1 , ') '); 

{•••*•******•**** Additional macros •***************} 
{------------------------------- ------------------------------------------- ) 
macro ' Utilities('; 
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{--------------------------------------------------------------------------) 
mac:-o 1 

va::: 
:..oaC. 3D file ir::or:r:atic~[BJ 1

; 

s?aci:-:g :::eal; 
begi:-; 

set?ath; 
Se:Counter(7); 
rX [ 7] : = O; 
Use:::code(B,l,2,3); 
i: (:::X [7] =0) then begin 

3eep; 

i Lcad .30 file) 

?utMessage ( '3::J moC:el file no: found. Sr.sure 3D conversion 
cc:-:ipleteC anC cr.e of t.ile views is selected.'); 

e n ci e 1 se ::::eg in 
i~age4model .- Windc~Ti:!e; 

~ode l Info; 
?=ogress:=6; 

er.d; 
e:-:ci; 

has 

{-------------------------------------------------------------------------- ) 
mac:.-o ' Rota:.e 3D mociel right [ ; 1

; 

va::: 
ii : integer; 

tem?XAv, tempXD , tempz.rw, te!n;:>ZD:::eal; 
begi:-.; 

i : (modellmage <> Wir.do.,::tle :hen 
begin 

Use:::code(~ , 4,2 , 3); 

ex it ; 
e:iC.; 
:he:a:=theta-thetastep*pi/180; 

clearB4Paint:=true; 
x:=x:3; y:=yl; 
Plo:T:::eeG:::id; 
MoveTo{x,y); 
LineTo(x-30 , y+30); 

?lot30Tree; 
plo:Scale; 

end; 
{--------------------------------------------------------------------------) 
macro ' Rotate 30 model left [ ) '; 
va::: 

i, ii : integer; 
tempXAv, tempXO, tempZAv, tempZD:real; 

begin; 
if (modellmage <> WindowTitle then 
begin 

Usercode(4,3 ,2,3 ); 
exit.; 

enci; 

theta:=theta+thetastep•pi/180; 

clearB4Paint:=true; 
x: =xl3; y :=yl; 
Plo;:TreeGrid; 
MoveTo(x,y); 
LineTo(x-30,y+30); 

Plo;:3DTree; 
plotScale; 

been 



end; 
{--------------------------------------------------------------------------} 
macro ' ScrollUp[-) '· 
begin; 
Usercode(4,l,2,3); 
end; 

{--------------------------------------------------------------------------) 
macro ' Scroll Down [] '; 
begin; 

Usercode(4,2,2,3); 
end; 
{--------------------------------------------------------------------------} 
macro ' Deselect [ ] ' {esc} 
begin; 

killROI; 
end; 
{--------------------------------------------------------------------------} 
macro ' Load processing macros/M'; 
begin; 

setPath; 
Open(concat(NIHPath,'UTIL Macros')); 
ShowMessage('Loading:\ TreeScan Utility Macros'); 
Usercode(l0,1,2,3); 

end; 

Nl4 
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N.2 NIH Image Additions (Version TF 3.5f) 

The NIH Image source files are set up in such a way that a programmer can add their 

own routines to the User.p file. These code routines can then be called from the macro 

language using the Usercode() call. Ten routines have been added to the User.p file for 

the TreeScan system. 

NIH Image Additions source files 

User.p File to which pascal user routines may be added to NIH Image 

to speed up or add additional capabilities to the NIH Image 

macro language. 

This appendix contains several relevant sections out of the User.p file. 



N.2.1 User.p Source Listing 

unit User; 

{Modification 
{30/1/95 RHP 
{ } 
{ 
{ 
{ 31/1/95 RHP 
{ 
{ 1/2/95 RHP 
{ 
{ 
{ 
{ 

History) 
V2.0 for Tasman) 

V2.l 

V2.2 

Add a user routine to load calib data from a file ) 
Image.calib which is written by the calibrat ion macro} 
Allow for calibration rod with unequal bars} 
load calib data file now doesnt show file chooser dlog) 
Load data file with lean and dip angles in them} 
modified plugins.p to try and get image name set in} 
plugin back into image} 
: 
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{ 

V2.3 
V2.4 
V2.5 Copy the vref from acquire plugin so we save image to correct 

folder) 
V2.7 when loading .dat files with dip and lean use file name uip to 

vl or v2; ) 

9/3/95 MW 
user7 routine which returns l if the option key is down ) 

V2.8 20 to 30 file conversion, load 30 information} 
V2.9 Plot 30 tree routine) 
V3.0 Modified calib rod default to 200 .5 5cm) 

20/9/95 MW 
11/10/95 MW 
12/10 /95 RHP 

V3.l Added .300 cutout fil e for~at) 
V3.2 Modified .300 output file format(LF->CR/LF , ! on pcode no 's)) 
V3.3 We didnt put buffers back if there was an error - fixed) 
V3.3a On call plugin tell them they can use all space including cut & 

undo :Ouf not/2} 
16/10/95 MW V3.~ Sideways arrows, .30 additional info, calculate sweep & 

maxsweep, several other updates} 
24/10/95 MW 

8/11/95 MW 
V3 .5 
V3. Sb 
V3 .5::: 

Mino r 300 output fo rmat modifi cations ) 
30 display position line fix ) 

16/11/95 
17/11/95 
20/11/95 

MW 
MW 
MW 

User .a code to load macros from within a macro ) 
V3.5ci Rer..ove buffer size checkir.g in LineROI (Image.pl 
V3.5f Sorting the loaded branch data (Oevt)) 

procedure RHPCalibrod; 
var 

itemhit, mydialogid : integer; 
pmydialog: OialogPtr; 

begin 
mydialogid : = 129 ; 
pmydialog := GetNewD~alog(myciialogid, r:il, ?OINTER(-1)); 
if (pmydialog <> nil) then begin 

SetPort(pmycii a l og); 
ShowWindow(pmydialog); 
SelIText (pmyciialog, 3, 0, 32767); 
repeat 

ModalOialog(nil, itemhit); 
if itemhit = 4 t~en 
itemhit := 4 ; 

until (itemhit = ok) or (itemhit = cancel); 
UserlA(l] := GetOReal(pmydialog, 3) 
Userl A (2] := GetOReal (pmydialog, 4) 
Userl A [ 3] : = GetOReal (pmydialog, 5) 
Userl A ( 4] : = GetOReal(pmydialog, 6) 
if itemhit = cancel then begin 

OisposOialog(pmydialog); 
exit(RHPCalibrod); 

end; 
DisposDialog(pmydialog); 

end; 
end; 

procedure RHPLoadCalibData; 
var 

fname: str255; 
err: OSErr; 
RefNum, nValues, i: integer ; 
rLine: RealLine; 
Finderinfo: Finfo; 

begin 
fname := concat(InfoA.title, '.ca lib'); 
RefNum := InfoA.vref; 
if not (GetFinfc(fname, RefNum, Finderinfo) 

exit(RHPLoadCalibData); 
ShowMessage(con:::at(' Loading from' fname)) ; 
InitTextinput(fname, RefNum); 

noerr) then 
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i : = 1; 
while not TextEOF do begin 

GetL:.neFromText (rLine, nValues) ; 
xcenterA[i) := rLine[l]; 
ycenterA[i) := rLine [2] ; 
UserlA[i] .- =Line[3]; 
Userr[i) . - =Line[4 ] ; 
i := i + l; 

end; 
end; 

procedure MWScroll (Paraml: extended); 
var 

DeltaH, DeltaV, width, he ight, ScrollDi::-ection: integer; 
lee: point; 
Sa veSR: re ct; 
WasDigi ti zing: boolean; 

begin 
with infoA do oegin 

if ScaleToFitWinciow ther. begin 
PutMessage('Scrolling does not work in "Scale to Fit Window" mode .'); 
exit(MWScroll) 

end; 

ScrollDirection := rou nd(para~l); 
witr. S::-cRect do begin 

width := righ: - left; 
height := bot:on - tcp 

end; 
SaveSR . - SrcRect; 

DeltaE .- O; 
Del taV . - O; 

case ScrollDi::-ection of 
1: 

DeltaV . - round (-heigr.: • C. Bl ; 
2: 
De~taV .- round(height • C.8); 

3: 
Del:aH .- rounci(-width • 0.5) ; 

4: 
Del :a H .- roc:nd(widtr. • 0 . 5); 

ot'1e::-wise 
ShowNoCodeMessage; 

end; 

with S=cRec: de becin 
left : = SaveSR. l~ft + Delta'C; 
top : = SaveSR.top - DeltaV; 

Le:t 

Right 
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if OptionKeyDown and ((Scroll Direction = l) or (ScrollDirection 
begin 

2)) then 

left := (PicRect.right - PicRec:.left) div 2 - width div 2; 
{Centre left I righti 

right.- (?icRect.right - PicRect.~eft) div 2.,. width div 2; 
end; 

i: OptionKeyDown then 
case ScrollDi::-ection of 

top . - ?icRect. to?; 
2: 

top . - ?icRect.bottom 
3: 

left . - PicRect.left; 
4: 

left . - PicRect. right 
end; 

if left < 0 then 
left : = O; 

- height; 

- height; 

if (left + width) > PicRect . right then 
left .- PicRect.right - width; 

right := left + width; 

i: top < 0 :hen 
top := O; 

if (top + height) > ?icRect.octton then 
top := PicRect.oottom - height; 

bottom := top + height; 

end; 
UpdatePicWindow; 
DrawMyG rowlcon(wptr); 

WhatToUndo := NothingToUndo; 

Up } 

Down 

Left 

Kight 



ShowRoi; 
end; (with infoA) 

end; 

procedure MeasMaxSweep (Paraml, Param2: extended); 
var 

distance, slice, loop, heightl, height2: integer; 
TDmaxSweep, TDmaxSweepHgt, TDmaxSweepSED: real; 
templ, temp2, temp3, temp4: str255; 

begin 
heightl : = round (!'araml); 
height2 : = round (?aram2); 
distance : = 600; 
slice := round(User2A[l]); 
TDmaxSweep := O; 

if (he ight2 - heightl) 
for loop := heightl 

MWMeasSweep(loop, 
if (xcenterA[3 ] > 

> distance then begin 
to (height2 - distance) do 
loop + distance, slice); 
7DmaxSweep) then begin 

begi:i 

TDmaxSweep := xcenterA[3]; 
TDmaxSweepHgt .- xcenterA[4]; 
TDmaxSweepSED := xcenterA [2]; 

end; 

Max sweep in cm ) 
Height of max sweep 
Heigh~ o~ rnax s~eep 

loop := loop + slice; 
end; 
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xcenterA[l] . - C. ist ance; 
xcenterA [ 2] . - TDmaxSweepSED; 
xcenterA [ 3 ] . - 'i:DmaxSweep; 
xcenterA [ 4] . - TDmaxSweepf-:gt; 

{Di sta~ce cf sweep rneas~=ement in cm} 
{ SED ) 

Max sweeo ir. cm } 
~eigh~ o~ max s~eep 

end; 
e:id; 

?rocedure MWPlot3DTree (!'araml, ?aram2 , Param3 : exter.deC:); 
var 
i, ii: int.ec;e.::- ; 
tempXD, tempZD, tempXAv, tempZAv: extenced; 
theta , HS, VS : extended; 
left, top, width, height , xl3, yl: int.eger; 
pl, p2: point.; 

begin 
{?lot 3D view of the tree) 

i : = mCount; 
theta := paraml; 
HS : = param2; 
VS := param3; 
xl3 := round(plengthA[l]); 
yl := round(plengthA[2]) ; 

CurrentX := xi3 - 2; \Moveio . .. } 
CurrentY := yl - 2; 
tempXAv := 0 * cos(theta) + (-70) "sin(theta); 
tempZAv := - 0 " s:. n (theta) + (-7 0) " cos (theta); 

LineWidth : = 5; 
MWLineTo(round(xl3 - 2 + (tempXAv + tempZll.v • 0 . 7C7) • HS) , rour.d(y: - 2 + (­

tempZAv * 0 .7 07 ) "HS)); 
LineWidth := l; 

for ii := 1 to (mCount 
if orientationA [i] = 
begin 

tempXD .- meanA[i); 
tempZD .- sdA[ i] ; 

- ~) do begin 
then · -c 

\ l. s::.ce has valid diameters) 

tempXAv := UserlA[i] • cos(theta) - User2A[i ] • si,.,(theta); 
tempZAv : = -UserlA [i] • sin(theta) + User2A[i] • cos(theta); 

with InfoA do begin 
{MakeCvalRoi command) 

RoiType := OvalRoi ; 
left .- round(xl3 + (tempXAv + te;;ioZAv • C. /'J? - tempXD I 2) " HS) ; 
top := round(yl - ii *vs + (-tempZAv • :.707 - tempZD / 2 * 0.707) 
HS); 

width := round(tempXD • HS); 
height := round(tempZD * 0.707 • HS); 
SetRec t (RoiRect, left , to;>, l eft + width, top + height) ; 
MakeRegion; 
end; 

SetForegrou ndColor(O); 
DoOperation(PaintOp); 
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SetForegroundColor(255); 
DoOperation(FrameOp) ; 
with InfoA do begin 

UpdateScreen(RoiRect); 
end; 
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if (mAreaA[i) 500) 
(mAreaA[i) = 2000) or 

o:: (rr.AreaA[i] 1000) c:: (mAreaA[i) 1 500) or 
(mAreaA [i) = 2500) then begin 

CurrentX := xl3; {Move To ... } 
CurrentY := round(yl - (ii - 2) * VS); 
MWLineTo(round(xl3 + tempXAv *HS), round (yl - (ii - 2) *VS)); 
MWLineTo(round(xl3 + (tempX1\v + tempZAv * 0 . 707) * HS) , round(yl -
2) * VS + (-tempZAv * 0. 707) * HS)); 

MWLineTc (round(xl3 + (tempZAv * 0 . 707) *HS) , ::ound(yl - (ii - 2 ) 
(-tempZAv * 0 . 707) *HS)); 

MWLineTo(round(xl3) , round(yl - (ii - 2) w VS)); 
end; 

end ; 
i := i - l; 

end; 
end; 

(ii -

* VS + 

p::ocedure OldUserMac roC ode (CodeNumbe::: integer; ?a::aml, Pa::am2 , Param3: 
extended) ; 

begin 
case CodeNu~be:: of 
1: 

RHPCalibrod; 
2: 

RHPLoadCalibuata; 
3: 

RHPLoadDipLean ; 
4: 

MWSc ::oli(?ararr.l) ; 
5: 

MWMeasSweeo (Pa::am l , ?a::arr.2, Param3) ; 
6: . 

MWCheckOptionKey; 
7: 

MWCorive::t3D; 
8: 

MWLoa::!3DData; 
9: 

MWPlot3DTree (Param: , Pa::am2, ?a ::am3); 
10: 

MWLoadMac::os; 
otherwise 

ShowNoCodeMessage; 
end; 

end; 




