Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Development of an
In-field Tree Imaging
System

A thesis
presented in partial fulfilment
of the requirements for the degree
of
Master of Technology
at
Massey University

By
Marijn Weehuizen

1996

_’,////

N9

MAZSEY UMIVERZITY

I |Il

- -

1ii

Abstract

Quality inventory information is essential for optimal resource utilisation in the forestry
industry. In-field tree imaging is a method which has been proposed to improve the
preharvest inventory assessment of standing trees. It involves the application of digital
imaging technology to this task. The method described generates a three dimensional

model of each tree through the capture of two orthogonal images from ground level.

The images are captured and analysed using the "TreeScan" in-field tree imaging
system. This thesis describes the design, development, and evaluation of the TreeScan
system. The thesis can also be used as a technical reference for the system and as such

contains appropriate technical and design detail.

The TreeScan system consists of a portable computer, a custom designed high
resolution scanner with integral microcontroller, a calibration rod, and custom designed
processing software. Images of trees are captured using the scanner which contains a
CCD line scan camera and a precision scanning mechanism. Captured images are
analysed on the portable computer using customised image processing software to

estimate real world tree dimensions and shape.

The TreeScan system provides quantitative estimates of five tree parameters; height,
sweep, stem diameter, branch diameter, and feature separation such as internodal
distance. In addition to these estimates a three dimensional model is generated which

can be further processed to determine the optimal stem breakdown into logs.

Table of Contents

Abstract il
Table of Contents 7
List of Figures viii
List of Tables X1
Publications Xi
Acknowledgements Xiii
Glossary xvii
CHAPTER 1 - INTRODUCTION AND BACKGROUND 1
1.1 Scope of Research 2
1.2 Thesis Overview 2
1.3 Forest Industry Background 4
1.3.1 Introduction 4
1.3.2 Forestry and Sawmilling 5
1.3.3 Forest Operations 5
1.3.4 Inventory Assessment --- 6
1.4 Preharvest Inventory Assessment)
1.4.1 MARVL Inventory Assessment - 8
1.4.2 Weaknesses of the MARVL System 9
1.4.3 Possible Improvements 11
CHAPTER 2 - IMPROVED FOREST STAND ASSESSMENT
DESIGN PROPOSAL -- - 13
2.1 In-field Tree Imaging to Improve Stand Assessment 14
2.1.1 Previous Research on Standing Tree Imaging 15
2.2 General Technology Options oo - 16
2.2.1 Massey University Feasibility Study 16
2.2.2 Alternative Approach ---------------——--—-—- 18
2.3 Design Constraints - -- - 21
2.3.1 Constraints Imposed by Forest Conditions 21
2.3.2 Constraints Imposed by Technology Limitations ----------------- 22
2.4 Proposed System 24
2.4.1 Improved Assessment Outline 24
2.4.2 Proposed Image Capture System overview 24
2.5 Design specification 26
CHAPTER 3 - TREESCAN DESIGN CONSIDERATIONS
AND THEORETICAL FOUNDATIONS --—------ 27
3.1 Design Overview 28
3.1.1 Systems Integration Project 29
3.2 TreeScan Operating Principle 31
3.2.1 TreeScan Estimates 33
3.3 Image Capture 35
3.3.1 Digital Image Capture 35

3.3.2 Primary Imaging Considerations 37

vi

3.3.3 Area Sensor vs. Line Scan Build-up 38
3.3.4 Optical Considerations - 41
3.3.5 Image Focus 45
3.4 Image Transfer and Storage 46
3.4.1 Scanner Interface 46
3.4.2 Image Storage 47
3.5 Parameter Extraction 48
3.5.1 Image Calibration 49
3.5.2 Planar Transformation Distortion Correction = |
3.5.3 Geometric Distortion Correction 53
3.6 Three Dimensional Model Construction 57
3.7 Implications of Image Capture Geometry 58
3.7.1 Tree Plane Variation 61
3.7.2 Calibration Alignment Variation ---- 62
3.7.3 Image Processing and Feature Marking Precision ----------=-=--- 64
CHAPTER 4 - TREESCAN HARDWARE - 67
4.1 TreeScan Hardware Overview 68
4.2 Scanner Hardware Overview 70
4.2.1 Scanner Controller Board - 74
4.3 Microcontroller Subsystem i
4.3.1 Microcontroller Subsystem Memory Organisation --------------- i
4.3.2 Microcontroller Subsystem Memory Timing --- 78
4.4 SCSI Subsystem ---- - —- 80
4.4.1 Implementing SCSI : Design Spemﬁcauons 82
4.4.2 SCSI Bus Controller (SN75C091A) --------- 85
4.4.3 SCSI Subsystem Development Obstacles --- 86
4.5 Line Scan Camera Subsystem 87
4.5.1 Imaging Sensor Spectral Response -- 90
4.5.2 Line Scan Camera Subsystem Signal Timing --------------—--—--- 90
4.6 Additional Hardware - --- 02
4.6.1 Scanning Mirror Subsystem -- 92
4.6.2 Lens Subsystem - -- 95
4.6.3 Power Supply Subsystem —-----mmemomm 98
4.6.4 User Feedback - -- 101
4.6.5 Scanner Chassis - -- 102
4.6.6 Carrying Cases -- -- 103
4.7 Hardware Development Environment 103
CHAPTER 5 - TREESCAN SOFTWARE 105
5.1 TreeScan Software Overview e ee 106
5.2 Image Capture Software --- 108
5.2.1 Overview - 108
5.2.2 Image Build-up Algorithm 111
5.2.3 Image Block Capture Algorithm (Microcontroller) ----------==-n- 114
5.2.4 SCSI Transfer Algorithm - - 118
5.2.5 Focus Algorithms 126
5.2.6 TreeScan Plug-in Software 129
5.2.7 Microcontroller Software - 131
5.3 Tree parameter Extraction Software - 132
5.3.1 Overview 132
5.3.2 Image Calibration 133
5.3.3 Feature Size Estimation in Two Dimensions 135
5.3.4 Three Dimensional Stem Shape Estimation 137
Hq 2
wee€

2o

vil

5.3.5 Possible Improvements to Parameter Extraction 139
5.3.6 TreeScan Macros 140
5.3.7 NIH Image Source Additions and Modifications ---------——-—-- 141
5.4 Software Development Environment 142
CHAPTER 6 - TREESCAN EVALUATION 143
6.1 Overview of Evaluation 144
6.2 Sequence of Evaluation Experiments 145
6.3 Hardware Calibration 147
6.3.1 Scanner Component Alignment 147
6.3.2 Measurement of Step Angle 149
6.4 TreeScan Characterisation 151
6.4.1 Image Capture Timing 151
6.4.2 TreeScan Resolution 153
6.4.3 Integration Time Adjustment 155
6.4.4 Focus Tests 156
6.5 Initial Accuracy Tests in Two Dimensions 157
6.6 Final Accuracy Tests in Two Dimensions --- 158
6.7 Accuracy Tests in Three Dimensions 160
CHAPTER 7 - FORESTRY IMPLICATIONS AND RECOMMENDATIONS --------- 161
7.1 TreeScan Strengths and Limitations 162
7.2 Forestry Implications 166
7.3 Alternative Technology Uses -- 168
7.4 Future Work - 169
CHAPTER 8 - SUMMARY 171
8.1 Summary 172
REFERENCES - 175
Appendix A Development Documentation for the TreeScan System
Appendix B Sample Tree Analysis
Appendix C Forestry Terms
Appendix D Original TreeScan Project Proposal
Appendix E System Error Calculations
Appendix F TreeScan System Component List
Appendix G~ TreeScan Schematics & Board Layout
Appendix H Microcontroller Specifications and Memory Space Organisation
Appendix I Additional SCSI Interface Specifications
Appendix J SCSI Bus Controller Specifications
Appendix K Macintosh SCSI Manager
Appendix L SCSI Byte Loss Detection and Resend Scheme
Appendix M Scanner Control Software
Appendix N Image Processing Software

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 3.10 - Modulation transfer function and relative illumination
Figure 3.11 - Definition of terms
Figure 3.12 - Simple perspective correction
Figure 3.13 - Two step perspective correction
Figure 3.14 - Geometric correction using derived O
Figure 3.15 - Correction based on calibration rod dimensions
Figure 3.16 - Distortion correction imprecision
Figure 3.17 - Measurement of angle O
Figure 3.18 - Three dimensional model generation
Figure 3.19 - Image capture geometry
Figure 3.20 - Tree plane variation
Figure 3.21 - Calibration alignment variation

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10 - Typical command descriptor block
Figure 4.11 - Imaging sensor photosite layout
Figure 4.12 - LSC interface block diagram schematic
Figure 4.13 - CCD sensor spectral response
Figure 4.14 - Line scan camera timing

List of Figures

- Information loss inherent in the MARVL tree description -----—--- 10

- Imaging technologies

- Effects of wind on captured images
- Alternative image capture approaches

- Improved forest stand assessment overview

- Image capture system principle

- Possible areas of technical difficulty

- TreeScan image capture

- Projection on a two dimensional plane
- TreeScan estimates

- Digital image capture

- CCD technology

- Photographic image capture distortion

- TreeScan image capture distortion

- Depth of field

- TreeScan system ready for image capture

- TreeScan scanner functional block diagram

- The scanner internal layout
- System signal flow diagram

- Scanner controller board layout

- Microcontroller block diagram schematic

- Microcontroller memory map
- EPROM read cycle timing

- SCSI block diagram schematic

17
19
20
24
25

28
31
32
33
35
36
38
39
42
44
49
51
52
53
54
35
56
R
59
61
62

69
70
71
73
74
76
77
78
81
84
88
89
90
91

iX

Figure 4.15 - Scanning mirror assembly 92

Figure 4.16 - Stepper motor controller block diagram schematic 94

Figure 4.17 - Mk1 and MKk2 lens systems -- 95

Figure 4.18 - Mk1 and MKk2 lens driving interface 97

Figure 4.19 - Power supply block diagram schematic 99

Figure 4.20 - Scanner chassis 102
Figure 4.21 - Hardware development environment 104
Figure 5.1 - Levels of TreeScan software 107
Figure 5.2 - Algorithms implemented in image capture software --------------——-- 108
Figure 5.3 - Image build-up sequence 111
Figure 5.4 - Image build-up algorithm 112
Figure 5.5 - Image build-up algorithm (description) 113
Figure 5.6 - Image block capture algorithm --- 114
Figure 5.7 - Image block capture algorithm (description) 115
Figure 5.8 - Line signal timing 116
Figure 5.9 - A/D signal timing 117
Figure 5.10 - A/D conversion (8 bit) microcontroller code 118
Figure 5.11 - Normal SCSI transfer -120
Figure 5.12 - Normal SCSI transfer (description) --- -- 121
Figure 5.13 - Image with byte loss problem -122
Figure 5.14 - Extended delays during SCSI transfer -------- 124
Figure 5.15 - Byte loss detection and resend scheme 125
Figure 5.16 - Final autofocus algorithm 127
Figure 5.17 - TreeScan image capture user interface -- 129
Figure 5.18 - Parameter extraction sequence 132
Figure 5.19 - Marking of calibration points 134
Figure 5.20 - Two dimensional feature size estimates - 135
Figure 5.21 - Generation of three dimensional stem model 137
Figure 3.22 - Sweep estimation from displayed tree model 138
Figure 5.23 - TreeScan processing and utility macros -- 123
Figure 6.1 - Distortion introduced by camera misalignment 147
Figure 6.2 - Camera alignment procedure 148
Figure 6.3 - Distortion introduced by mirror misalignment 149
Figure 6.4 - Image capture timing 152
Figure 6.5 - Image resolution effects 154
Figure 6.6 - Integration time adjustment 155
Figure 6.7 - Focus results 156
Figure 6.8 - Height errors with high imprecision 157

Figure 6.9 - Final accuracy tests in two dimensions 159

List of Tables

Table 2.1 - System design contraints 21
Table 3.1 - Standard f-numbers 41
Table 3.2 - Image acquisition time vs. data transfer rate 46
Table 3.3 - Scanner interface methods 47
Table 3.4 - Comparison of distortion correction methods 48
Table 3.5 - Sources of expected error in TreeScan 60
Table 3.6 - Height errors introduced by stem displacement 61
Table 3.7 - Width errors introduced by stem displacement 62
Table 3.8 - Errors introduced by variation in measured angle 63
Table 3.9 - Errors introduced by distance error 64
Table 4.1 - Availability of SCSI bus controllers 80
Table 4.2 - Line scan cameras available 87
Table 4.3 - Scanner power requirements 100
Table 6.1 - Measured pixel resolution 153
Table 7.1 - TreeScan strengths and limitations 163

Publications

The following publications were prepared during the research for this thesis:

* Weehuizen, M., Pugmire, R.H. (1994): The use of in-field tree imaging in the
pre-harvest inventory assessment in the logging industry, Proceedings of New
Zealand Postgraduate Conference for Engineering and Technology Students,
Department of Production Technology, Massey University, 1994.

* Weehuizen, M., Pugmire, R.H. (1994): The use of in-field tree imaging in the
pre-harvest inventory assessment in the logging industry, Proceedings of the
Second New Zealand conference on Image Vision and Computing, Department of
Production Technology, Massey University, 1994.

Xiii

Acknowledgements

I would like to thank all the people who have been involved with the Tasman project

over the last two years for making this research and development possible.

In particular I would like to thank my two supervisors Prof. Bob Hodgson and
Dr. Ralph Pugmire for their valuable support and their vision in the project guidance.
Thanks to Ralph Pugmire for his help during the many hours spent of poring over the

'unexplainable’ development obstacles.

The contribution of Thomas Look was invaluable in the design and engineering of the

mechanical components of the system.

Thanks also to the Gary Allen for the time spent constructing and testing the electronic

aspects of the TreeScan system, and to Farshad Nourozi for his input into the design of

the system.

I would also like to thank Tasman Forestry Ltd. for their backing of the development of
the TreeScan system and continued support for further research. In particular I would
like to thank Mike Colley (unfortunately moved on early in the project) for initiating the

commitment of Tasman Forestry to in-field tree imaging.

Lastly, but certainly not least, I would like to thank Diana Foster for her editing skills
on many chapter drafts and her unfaltering commitment whenever the project demanded

more than its fair share of my time.

Xv

I must go down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by,
And the wheel's kick and the wind's song and the white sail's shaking,

And a grey mist on the sea's face and a grey dawn breaking.

I must go down to the seas again, for the call of the running tide
Is a wild call and a clear call that may not be denied;
And all I ask is a windy day with the white clouds flying,

And the flung spray and the blown spume, and the sea-gulls crying.

I must go down to the seas again, to the vagrant gypsy life,

To the gull's way and the whale's way where the wind's like a whetted
knife;

And all I ask is a merry yarn from a laughing fellow-rover,

And quiet sleep and a sweet dream when the long trick's over.

" Sea-Fever " by John Masefield

CCD
CMOS
EPROM
Kink

Log

Log grade

LSC
MARVL

Plug-in

ROM
SCC
SCSI

SED
Stem
Sweep

Wobble

XVii

Glossary

Analog to Digital, used as A/D convertor.
Charge Coupled Device

Complementary Metal Oxide Semiconductor
Erasable/Programmable Read Only Memory

A short deflection of a log affecting less than 2 m of the log (see
appendix C).

A single section from a tree stem which has been cut into sections. A tree
stem is cut into a number of logs for transport to the mill (typically 6-12 m
in length).

A measure of log quality and value. Each log grade has specifications

which a log must meet (see appendix C).
Line Scan Camera

Method of Assessment based on Recoverable Volume by Log type. The

preharvest inventory system used by many forestry companies.

Macintosh code resource which complies with the Adobe interface

specification and may be used to extend applications.
Random Access Memory

Read Only Memory

Scanner Control Command

Small Computer Systems Interface, a high speed flexible computer
interface commonly used to connect peripheral devices to computers.

Small End Diameter, minimum diameter of a log.
A tree which has been felled but not yet cut into logs.
Deviation from straightness along a length of log (see appendix C).

Deviation from straightness of a log where the axis of a log deviates in two

or more directions (see appendix C).

SCSI Bug Co~hpllev

1.1
1.2
13

1.4

Chapter 1

INTRODUCTION
AND

BACKGROUND

Scope of Research

Thesis Overview

Forest Industry Background

Preharvest Inventory Assessment

~ AN

1.1 Scope of Research

The strategic objective of this research is to improve forest stand assessment by using
imaging techniques to make the preharvest inventory assessment more quantitative. If
successful this will have a far reaching impact on mensuration in the forestry industry.

In order to make the preharvest inventory assessment more quantitative two aspects are
important; the dimensions of the standing radiata pine trees must be measured, and the
method used to calculate recoverable volume from tree dimensions must be modified.
The research for this masters project focuses on the development of a suitable image
capture and processing system which can be used to accurately estimate tree

dimensions.

More specifically, the objective of this masters project was to develop a line scan based
image capture system that would allow the dimensions of standing pine trees to be
estimated. As a result of this clearly defined objective this masterate has been a

technology development project rather than a theoretical research project.

1.2 Thesis Overview

The research and development for this study takes the project from the design concept
stage through the design and development stage up to the final testing stage. The

structure of the thesis reflects this design path.

Chapter 1 provides an introduction and context for the research. The scope of the
research is defined and a background to the forestry industry is provided with an
emphasis on the preharvest inventory assessment. This chapter presents a statement of
problem, independent of the proposed solution.

In chapter 2 alternative methods for improving inventory assessment are reviewed. The
approaches identified in a Massey University feasibility study are outlined and analysed
for design constraints. Based on this analysis a design proposal is put forward which

provides the basis of the subsequent development work.

In chapter 3 the design considerations and theoretical foundations upon which the
development is based are explored. This chapter describes how the system works in
principle and proves that the solution is technologically feasible. Key areas of technical
difficulty are identified and individually analysed.

Chapter 1 - Introduction and Background 3

Chapter 4 describes the hardware of the TreeScan system, with an emphasis on the
custom designed scanner. Functional blocks of the scanner are described in detail and
the reasons for this particular implementation are presented. In addition to this the
obstacles encountered during hardware development are briefly discussed.

In chapter 5 the algorithms implemented in the TreeScan software are described. This
includes both the image capture software used to capture images with the scanner and

the parameter extraction software which is used to estimate actual tree dimensions.

Chapter 6 is an evaluation of the system accuracy and discusses the modifications made
to convert the scanner, as originally designed and built, to an accurate scientific

instrument.

In chapter 7 possible implications of this technology on the forestry industry are
presented. Strengths and limitations of the TreeScan system are discussed and
recommendations are made regarding the future directions for this research and

development work.

To conclude the thesis, the main points of this research are summarised in chapter 8.

Relevant detailed technical documentation and software listings are included in the

appendices.

Unless noted to the contrary in the text, all work is the authors own work. This
includes; analysis of design considerations, system sensitivity analysis, design and
testing of all digital hardware, design and testing of the majority of analog hardware, all
microcontroller software development, and the majority of the system evaluation tasks.

The development of the image acquisition plug-in, the distortion correction methods,
and the image processing macros were a joint effort between the author and his
supervisor (Dr. Ralph Pugmire).

Notable tasks completed by other development team members were all mechanical
engineering, design and testing of stepper motor controller, design and testing of power
supply, and the final accuracy tests in two dimensions.

1.3 Forest Industry Background

The aim of this section is to provide a forestry background to set the context for this
research. It is aimed at the reader with very little forestry experience, providing a brief
overview of key aspects of the industry. It is intended to be an introduction and does
not comprehensively cover all aspects of the forestry industry.

1.9.3 Introduction

Plantation forestry is the sector of forestry that deals with production forests.
Production forests are forests specifically planted with the aim of being harvested.
Plantation forestry does not include the felling of natural forests and is therefore a
sustainable and renewable industry.

Plantation forestry is a major export industry of New Zealand. In 1993 the export of
forestry products constituted New Zealand's third largest export earner, generating 2.5
billion dollars. This is almost on par with meat and dairy exports, 3.0 and 2.8 billion
dollars respectively (Forestry Facts & Figures, 1994).

New Zealand production forests are predominantly radiata pine (90%), with smaller
quantities of douglas fir, softwoods, and native hardwoods. The New Zealand radiata
pine estate constitutes 34% of the global radiata pine estate (Forestry Facts & Figures,
1994). New Zealand radiata pine plays an important role in the New Zealand economy

and constitutes a large proportion of the global radiata pine market.

The main plantation forestry area in New Zealand is the Rotorua district in the Central
North Island with smaller scale forestry blocks scattered throughout the country. The
ownership of these forests is divided between three large forestry companies and a
significant number of smaller owners. The three largest owners are Fletcher Challenge
Ltd., Carter Holt Harvey Ltd., and the Forestry Corporation of New Zealand. They
own 16%, 25% and 13% of plantation forestry resources respectively (Forestry Facts
& Figures, 1994).

The forestry industry has seen a phenomenal growth over the last three years. This is
largely a result of increased international demand driving world timber prices up. As the
value of sawn timber rises, the value of the raw product also rises and it becomes
important to maximise the use of business resources. Good tree breakdown is no longer
good enough, the tree breakdown must be optimal.

Chapter 1 - Introduction and Backeround 5

1.3.2 Forestry and Sawmilling

The timber industry traditionally contains a clear distinction of roles. The role of
forestry operations is very different from the role of sawmilling operations.

+ The role of forestry operations is to produce logs. In practise, forestry
operations includes the planting, growing, and maintenance of the trees during the
time they are growing. Once the trees are ready to harvest they are felled and cut

into logs of one of a number of specified grades (see appendix C).

» The role of the sawmilling operations is to process logs. The sawmilling
operations commence with the raw product of logs of a certain grade and process

these into sawn timber and other wood products.

The result of this division in the industry is that a sub optimal resource optimisation
may be achieved. If this division is reduced and the tree optimisation can be based on
final timber usage rather than log breakdown, resource optimisation could be improved.

Many companies are currently restructuring to reduce this division.

1.3.3 Forest Operations

The basic unit of measurement in the forestry industry is the stand. A stand is a block of
trees of similar age, size and other characteristics. Each forest is subdivided into even
aged stands of typically 20 to 40 hectares. Stands are harvested as a whole at a tree age
of 25 to 30 years.

The life cycle or rotation of a stand of radiata pine begins when the trees are planted. It
is split into three phases, with an inventory assessment made during each phase:

* Early growth during which pruning and thinning operations may be completed
* Mid rotation during which the trees are left to grow largely unattended
e Harvest during which the trees are felled

The early growth phase, O - 10 years, determines the quality of the trees in a stand.
Trees are pruned in successive lifts up to a maximum of 6 or 8 m. The result of pruning
is trees which grow straight and have large sections of clearwood. Clearwood is wood
which does not contain any knots or defects outside a defect core.

Stands will undergo two thinnings to select the best trees and reduce the stocking to a
level that will produce a maximum tree growth rate. The first thinning is at a tree age of
4 to 6 years, the second at 7 to 9 years.

During the mid rotation phase, 10 - 25 years, very little tree maintenance is required.
Generally the only task completed is the mid rotation inventory assessment.

During the harvest phase, 25 - 30 years, the trees are felled to produce stems. These
stems are then cut into logs based on the current cutting strategy.

Once the trees in a stand are felled, the stems are taken to a skid site. A skid site is a
small area of the stand which has been cleared and where the stems are cut into logs.
Typically there will be several skid sites per stand. There are two primary methods of
stem removal; the skidder and the hauler. A skidder is a large wheeled vehicle which
drags the stems to the skid site. The hauler is a cable based pulling system which must
be used when the terrain is too steep for a skidder.

On the skid site the stems are cut into logs. This breakdown is intended to optimise the
use of a tree, but is a compromise between maximising value and meeting orders. The
log maker decides on the best breakdown for a particular stem based on the log maker's
assessment of stem shape and features, and the current log requirements. The total
value of the recovered logs depends on the performance of the log makers. Generally
the performance of a log maker is very géod, typically 95% of optimal. If the
performance of a log maker drops below this level, this results in a very large loss in

stem value.

Once the stem is cut into logs they are stacked until they can be trucked out of the

forest.

1.3.4 Inventory Assessment

Assessing the value and potential yield of a stand of trees is one of the basic concerns of
commercial forest growers. During each of the three phases in the stand life cycle an
inventory assessment is made. This involves gathering information on a representative

sample of trees from a particular stand.

The first inventory assessment is made during early growth phase, at a tree age of 4-10
years. This is the quality control inventory which allows the forest owner to check
that the pruning and thinning have been completed properly. Basic information is
collected regarding the condition of the stand as a whole such as total tree stocking, tree
diameter, tree height and the pruned height.

At a tree age of 15-16 years the mid rotation inventory assessment is made. This

enables the owner of the forest to gain information on the growth progress of the trees.

The preharvest inventory assessment is made 1-2 years prior to harvest, at a tree
age of 23-28 years. The main aim of this final inventory assessment is to aid in market
planning and harvest scheduling. Information is collected regarding the stocking of the
stand as well as detailed information regarding the characteristics of individual trees.
Section 1.4 will discuss the preharvest inventory assessment in greater detail.

Chapter 1 - Introduction and Background 7

1.4 Preharvest Inventory Assessment

As stands mature growers require detailed inventory information to plan harvesting,
marketing and utilisation of the timber. Logs are cut on a 'to order' basis, with no
buffering of stock on hand. This implies that good inventory information is necessary
to determine what log grades can be expected from a particular stand. On a short term
basis if there are not enough logs to meet a particular order, higher quality logs may be
downgraded to fill the outstanding order. The result of this is a serious loss in
profitability.

The aim of the preharvest inventory is to provide information regarding the value and

quality of individual stands. This information is used in :

» Harvest planning - The log grades which can be most profitably cut from a
stand are estimated. Harvesting operations are planned based on which stand can

provide the optimal log grades to meet particular orders.

« Market planning - The volume of harvest, by log grade, is estimated up to
three years ahead of harvest. Export contracts are based on the estimated volume

of harvest.

- Valuation - The absolute value of a particular forest block can be estimated from
the inventory information. The value of a forest may need to be established if the

forest is sold or if company assets are valued.

The assessment of total volume and quality should be based on the actual measured
condition of the trees. The effect of disease and damage, and management operations
such as pruning and thinning must be directly taken into account. However the data
collected should be flexible enough to allow harvest to be estimated even if log
specifications change after the inventory team has visited the stand.

There are two important aspects of any tree which must be measured in order to be able
to estimate the optimal log breakdown; the shape of the stem, and the quality of the
stem. The shape of the stem, or sinuosity, is defined by the amount of sweep and
wobble the tree has (see glossary or appendix C). The quality of the stem is defined by
the branch sizes, pruned height and defects such as rot, broken tops, forks and nodal
swelling.

Currently the 'MARVL' (Method of Assessment based on Recoverable Volume by Log
type) system is being used by most major forestry companies in New Zealand.
MARVL is an inventory assessment method designed specifically for the preharvest
inventory.

1.4.1 MARVL Inventory Assessment

MARVL was developed by the Forestry Research Institute of New Zealand in the
1970's in response to the need for a general purpose inventory tool and is now widely
used in Australia and the Pacific as well as New Zealand. It is based on the visual
assessment of a sample of trees. In addition to the visual assessment, a number of tree

parameters are measured. From this information log production estimates are calculated.

The MARVL system is a general purpose method which has been designed to allow
flexibility in its use (Deadman & Goulding, 1979). As result, each user of the MARVL
system has a slightly different implementation. The MARVL system involves three

steps: sampling, cruising, and estimating log production.
Sampling

A series of bounded plots are defined as a representative sample of the stand. Each plot
covers an area of 0.04 to 0.06 hectare, with a total of approximately 4% of the stand
area sampled. The number of plots per stand is based on stand area. A typical number
of plots per stand is 15, but can vary from 10 to 100.

Cruising

Once the plots have been established, a team of two people is sent out to assess each
plot. During the assessment the heights of two trees are measured using a clinometer,
stem diameter at breast height is measured for each tree and an visual assessment is

made for each tree.

The visual assessment estimates sinuosity (in three classes of sweep), and quality
features from the base of the tree. The sinuosity of the tree is recorded by describing the
stem as consisting of sections of estimated length with a given sweep class and branch

size class. For example:
* Sweep may be classified into three classes: <SED/4, SED/4-SED/2, >SED/2.
» Branch size may be classified into three classes: <7 cm, 7-14 cm, >14 cm.

There are a large number of quality features. Quality features include pruned height and
other defects such as rot, broken tops and forks (see appendix C). The height of each

feature of interest is estimated and recorded.

The measured and estimated parameters are entered into a portable computer used as a
data logger during the work out in the field.

Chapter 1 - Introduction and Background 9

Estimating log production

The recorded data is down-loaded from the data logger onto a computer running the
MARVL software to estimate log production. If necessary the trees are "grown on" to
harvest age, using growth models. The data from each tree is individually processed to
calculate the best log breakdown. Essential cuts such as those at the position of forks
and stumps are made first with simulated felling breakage if required. The resulting
yield for the plots is statistically extrapolated to provide an estimate of recoverable

volume by log type of the entire stand.

1.4.2 Weaknesses of the MARVL System

The MARVL system provides essential information, however it has limitations. Several
aspects of the assessment are subjective, and the system has been developed to the point
where it is limited by this subjectivity. This has been the result of an increasing need for
more detailed and accurate inventory information and a greater variety of markets since

the system was developed.

The log volumes actually cut from a particular stand often do not match the log volumes
as predicted by MARVL. The total volume estimate is very good, typically within
+ 5%. but the breakdown of this the volume by individual log types may vary between
+ 10% to £80%. This is not solely due to the limitations of MARVL as logs actually cut
depend on a large number of interrelated factors. For example, a sub optimal cutting

strategy may have been used intentionally to fill a particular order.
The results of MARVL depend on:
+ The ability of crews to accurately estimate tree parameters.
- Information loss inherent in the method of calling particular trees.

= The ability of the MARVL software to extract the desired information from

the recorded descriptions.
« Size of the sample and how representative this is of the stand.

MARVL depends largely on the accuracy of human estimates. Branch class, tree
height and the height of quality features can be surprisingly accurately identified. The
greatest limitation of MARVL is that the estimation of sweep is subjective. Estimation
of sweep is difficult as it involves making an estimate of sinuosity in two dimensions
for sections of the tree. Two different people calling the same tree can give two different

classifications.

A second limitation of the MARVL system is that there is information loss when
describing a tree. Ambiguity can develop if all the relevant information is not retained.

10

3D information disregarded Sweep definition inadequate
. [
s |
i I
#
[|
| I
| |
| T
| n
| iL i
P oA 4 = o
|
| | |
I 11
I b
| | I
| 1o
{ 4 | I
i =l I
| I
|
! Two sections Overall wobble Overall sweep
with certain [Assumed by
hape
a0 ahag sweep MARVL]

Figure 1.1 - Information loss inherent in the MARVL free description

wo examples of this ambiguity are:

1. MARVL is a two dimensional system. Three dimensional information is
disregarded. If a tree is called as consisting of two sections of certain sweep, this
could indicate the sweep is in the same plane or at right angles. This information
which has an important impact on the optimisation of stem breakdown is
disregarded (see figure 1.1).

2. Secondly the definition of sweep for different log lengths is inadequate. If a tree
is called as consisting of two sections of certain sweep, this could indicate one of
two situations. The tree could have a large sweep over the combined length or the
tree could have wobble over the combined length (see figure 1.1).

' the above situation MARVL is not able to extract necessary information from the log
:scription, so a simplifying assumption is made. MARVL assumes that a long log of
e same sweep class as the greatest sweep of its subsections can be cut. i.e. that the log
mtains wobble in a single plane.

istly the sample must be statistically representative of the stand. Often there is a large
riation of tree growth even within a stand. As a result the sampling procedure or

ind area sampled may need to be modified.

Chapter 1 - Introduction and Background 11

1.4.3 Possible Improvements

In order to improve the forecasting system, one or more of the above weaknesses must
be targeted for improvement. If a more quantitative system can be provided which does
not suffer from loss of information, this would mean a great improvement for the

preharvest inventory assessment.

A key consideration to maintaining high quality while retaining MARVL, is feedback to
the staff involved regarding the results of subjective estimates. The more frequent and
precise this feedback is the more successful it will be in maintaining the accuracy of the
subjective assessment. However this is difficult in the assessment of sweep. The only
reference to compare an assessment of a single tree, is how a more experienced person
would call the tree. Even if the tree is felled, the extent to which the sweep was called

correctly is difficult to determine.

In chapter two, several methods are proposed that can be used to improve the inventory
accuracy using a partially automated system. This will produce more accurate and

repeatable results.

12

2.1
2.2
2.3
2.4
29

Chapter 2

IMPROVED
FOREST STAND ASSESSMENT
DESIGN PROPOSAL

In-field Tree Imaging to Improve Stand Assessment --------------=-comoemeeeee

General Technology Options

Design Constraints

Proposed SyStem -—------=--mmmmmmm oo

Design specification

16
21
24
26

14

This chapter reviews alternative imaging methods which could be used to improve
inventory assessment. The approaches identified by the Massey University feasibility
study are discussed in detail and analysed for design constraints. A final design
proposal is put forward providing the basis for the rest of the development.

2.1 In-field Tree Imaging to Improve

Stand Assessment

Over recent years the increase in computing power and improved digital image
processing techniques have led to the exponential growth of electronic tools making use
of digital image processing in many commercial and industrial applications.

The sawmilling operations of the timber industry have seen much development of
scanning technology within the sawmill. This includes the scanning of log profile for
optimised cross cutting, plank profiling for optimisation during edging and trimming,
and internal scanning of logs to detect defect core structure. However this technology
has made very little impact in the forestry industry. With in-field tree imaging this is

changing.

In-field tree imaging is a method proposed to apply digital imaging technology to
improve and automate forest stand assessment. This method involves generating a three
dimensional model of a standing tree by capturing one or more images from ground
level. This three dimensional model will provide more quantitative inventory

information.

The three dimensional model fully defines the tree shape including sweep. This
addresses the two main weaknesses of the MARVL based system as discussed in
chapter one; the need to make a visual assessment of sweep in the field disappears and
so human subjectivity is eliminated and there is no information loss. By removing the
human subjectivity, the inventory system will be able to make more repeatable and
accurate estimates of tree dimensions and as a result more quantitative inventory
information will be available as basis for stand yield estimates.

Chapter 2 - Improved Forest Stand Assessment Design Proposal 15

Requirements of In-field Tree Imaging

If in-field tree imaging is to succeed the developers of a system will need to overcome a
number of obstacles. These include the substantial technical difficulties in producing a
working system that is robust enough to operate in a hostile forest environment.

The requirements of an in-field tree imaging system are that it must :
1. Work under forest conditions.
2. Produce accurate and repeatable results.
3. Be usable and productive.

A system must be capable of working in conditions typically experienced in a forest.
This includes dense tree stocking, terrain and undergrowth variation, outdoor weather

conditions, tree movement in the wind, and low levels of ambient lighting.

The system must be technically capable of producing accurate results that are repeatable
regardless of expected variation in normal operating conditions.

The first two requirements are most important at this stage, but the system must also be
usable and productive. This involves ease of operation by non technical users,
acceptable portability (weight and ease of carrying), and acceptable productivity
compared with existing methods of inventory.

2.1.1 Previous Research on Standing Tree Imaging

As the inventory of forests is a universal problem it was expected that there would have
been previous research on the use of imaging techniques to improve inventory methods.
This was not the case. After a comprehensive search no reference has been found to any
other development work in tree imaging, tree sizing, tree assessment, or forest

inventory assessment using imaging techniques.

The only reference found to other work specifically on standing tree imaging is a project
by the Forest Research Institute of New Zealand, which is researching technology to
solve the same problem as the development at Massey University. This was started
approximately 18 months after development at Massey University was started.

16

2.2 General Technology Options

There are a large number of technology options that could be employed to develop a
system to meet the above requirements. However, no technology can be said to provide
the best or the worst solution. The use of each technology has advantages and
disadvantages which must be considered. What is required is the lowest cost, easily
developed, sufficiently accurate technology. This involves judgements by the

developers based on past experience.

The most important consideration is a cost versus technology trade-off. Certain
technologies may be faster or more accurate, however the cost in development expense
and development time may be much higher. The requirements and benefits need to be
carefully weighed up against the funds available to determine the best technologically
feasible solution.

In the measurement of standing trees some form of remote sensing technique is required
as the tree cannot be directly physically measured without climbing the tree or felling it,
either of which would be unsatisfactory. The options available are some form of
imaging using electromagnetic imaging (visual, infrared, Xray, or radar) or ultrasonic
imaging. Each imaging method is briefly examined for technical feasibility in

figure 2.1.

The imaging method employed must capture three dimensional tree information. Some
imaging methods, such as laser and ultrasonic imaging, can directly incorporate three
dimensional information. Other imaging methods are inherently two dimensional and
the three dimensional information must be captured by some other means. Techniques
that could be used are stereo imaging, multiple views from different directions, or
structured lighting techniques.

The most promising solution is to use some form of imaging technique based on the
visible spectrum. Investigation should be made into both the use of photographic
systems and CCD based technology to capture images. The use of either infrared or
ultraviolet imaging might also prove useful and should be investigated.

2.2.1 Massey University Feasibility Study

In late 1993 the Department of Production Technology at Massey University was
commissioned to complete a study to determine the feasibility of using imaging
techniques for the automation of forest stand assessment. In particular, to identify one
or more approaches that could be developed to the prototype stage.

Chapter 2 - Improved Forest Stand Assessment Design Proposal 17

Photographic imaging - System to capture visual images photographically

Technically feasible and technology readily available, but working at the limit of
normal resolution. Photographic film is only a temporary medium as the images
require transfer to computer for later processing. Low technology cost but high
per use cost with processing time delay. Need to capture several images at right
angles to capture 3D information.

CCD imaging - System to directly capture visual images electronically

Technically feasible, but working past the limit of normal resolution, so may
need to employ resourceful techniques. Medium technology development cost.
Images captured directly into computer so low per image cost and no processing
delay. Need to capture several images at an angle to get 3D information. Large
quantities of data involved so a high powered computer or video tape required to
capture and store large quantities of data in the field.

Laser imaging - System to capture 3D locations of points on tree stem

Probably technically feasible but a slow and very fragile system. High
technology development cost. No images are required as 3D points are captured
directly. 3D points can be captured directly into computer. Low powered
computer required in the field with specialised imaging hardware.

Ultrasonic - System to build up images by the reflected high frequency sound

Can determine distance of objects in addition to direction. Technologically not
feasible to achieve desired resolution. Moderate hardware development cost and
low per image cost. High powered computer required to capture data in the
field.

Xray imaging - System to capture internal and external information

Technically not feasible as the detector needs to be directly on the other side of
the object being imaged. Very high development cost and image reconstruction
techniques required to recreate tree information. Xray danger to the operator.

Radar imaging - System to build up an image by reflected radar waves

Can determine distance and direction. Technically not feasible as non metallic
objects give poor radar echoes. Very difficult to get desired resolution.

Figure 2.1 - Imaging technologies

Investigation proved that no existing electronic imaging system existed that met the
requirements of this particular application. No existing system had an appropriate aspect
ratio or adequate resolution. After experimenting using a photographic method of
capturing images, two approaches for capturing images directly into a computer were
identified as favourable solutions that could be taken to the prototype stage (Pugmire,
1993).

18

1. The most promising approach used a line scan camera that was stepped
through a series of fixed angles to build up an image of the tree. A single image
would be captured that contained significant perspective distortion. The image
would be recorded directly on to portable computer for immediate processing.
This would achieve an image resolution of 500 by 8000 pixels.

2. The second approach used a video camera to capture a series of images while
recording camera tilt. This method would use a domestic video camera and store
the information on video tape for later processing. This system is likely to be less
development intensive but greater image processing is required. Individual video
frames must be spliced together to form a single image, and perspective
distortions within and between frames must be corrected for.

The first approach is based on the premise of immediate processing by a system in the
field, while the second approach is based on the premise of capturing lower quality
images in the field and more extensive processing later. Both approaches were

considered suitable to take into the prototype phase.

In addition, methods for extracting tree parameters from the images were investigated.
Using an operator assisted method of parameter extraction, suitable methods for image
calibration and perspective distortion correction were determined. Heights, widths,
branch size and position estimates could be relatively easily calculated. The possibility

of automated parameter extraction was deemed to require further research.

2.2.2 Aliernative Approach

In addition to the approaches highlighted by the feasibility study a third image capture
approach, based on a high resolution CCD area camera, must be considered as a

likely solution.

The most important reason existing systems cannot be used for this application is that
they do not have an aspect ratio of 40:1. The specifications require a degree of accuracy
in the horizontal direction and a somewhat lower resolution in the vertical direction. The
resolution requirement of 8000 by 1000 pixels is based on equal resolution in the
horizontal and vertical direction. If a compression lens or a curved mirror is used the
image can be compressed in the vertical direction without loss of resolution in the

horizontal direction.

A high resolution CCD area sensor (for example 2000 by 1000) could be used instead
of a line scan sensor and obtain similar results for sweep estimation as the system 8000
by 1000 line scan system. This system has the advantage that the image capture
involves one integration period only. As a result the integration period of the image
capture will be 8000 times faster (2000 x 4).

Chapter 2 - Improved Forest Stand Assessment Design Proposal 19

Worst case image Worst case image with
with area capture 1/c¢ oscillation in the wind line scan capture
; a— N
!
Small (negligible?) Significant wobble ‘|
sweep introduced introduced during
over any 6 m section. wind gusts.

Figure 2.2 - Effects of wind on captured images

A second advantage of this system is that the shape of the tree stem would be instantly
captured. If the tree was moving in the wind, given a worst case scenario, the image
could be captured at the point of maximum tree deflection introducing a small amount of
‘apparent sweep' (see figure 2.2). With the line scan approach however the image is
built up over time, tree movement in the wind could introduce a large 'apparent wobble'

that may be difficult to distinguish from real stem deformation.

Another advantage of this approach would be that the captured image is smaller. This
would make it easier to process and store. One of the basic premises of image
processing is reducing processing requirements by minimising raw data.

This approach would be limited in the measurement of branch sizes and may not
provide adequate vertical resolution near the top of the tree. Use of an alternative system
for the measurement of branches could be considered.

Figure 2.3 summarises the three alternative image capture approaches. It was decided
that a prototype system based on the line scan approach should be built as this was the
highest resolution system and provided the greatest flexibility for control of the system
parameters during image capture.

The next section will investigate the constraints that are imposed on such a system and
that will need to be considered for the developed system to be successful.

Property

Line scan approach

Video scan approach

High res. CCD approach

A

:

!

A

:

(L[

1

g

Scan time at 10 mS per exposure
Image size - Pixels
- Storage

Storage media

Depth of field
Aperture
Development - Time
- Cost
Measure - Sweep
- Branch size
- Height
Advantages
Disadvantages

80 seconds

8000 x 1000

8 megabytes
Computer hard disk

Small
Wide open

Medium
Medium

Yes
Yes (horizontal / vertical)
Yes

Can adjust aperture during scan

Can adjust focus during scan

Slow as 8000 images captured

Tree may move in wind

20 seconds
8000 x 500
4 megabytes
Video tape

Average
Average

Low
Low

Yes
Yes (horizontal / vertical)
Yes

Fast image capture

No computer req'd in field

Image splicing / processing req'd
Tree may move in wind

0.01 seconds + 1 second transfer
2000 x 1000

2 megabytes

Computer hard disk

Large
Small

High
High
Yes

No (horizontal only)
Yes

Instantaneous capture

No mechanical moving parts

Difficult to develop

Reduced vertical resolution

Figure 2.3 - Alternative image

capture approaches

0z

Chapter 2 - Improved Forest Stand Assessment Design Proposal 21

2.3 Design Constraints

Now that three specific solutions have been proposed, it is important to investigate the
constraints imposed on a system. These constraints fall in two broad categories;
constraints that result from the forest work environment, and constraints that are a
result of fundamental technology limitations (see table 2.1).

It is very important that all constraints are considered during the design of a system, as
any one of the constraints is able to reduce the usefulness of the final system. Each
constraint will be discussed in detail with examples drawn from the image capture
systems proposed in section 2.2.

2.3.1 Constraints Imposed by Forest Conditions

The system must be capable of operating in normal forest conditions. This imposes

seven constraints that need to be considered. Each constraint is discussed below:

System robustness - Any implemented system must be rugged and able to withstand
the knocks and vibration of work in the forestry industry. The intended users are
accustomed to handling heavy duty forestry equipment and may not be accustomed to
the sensitivity of electronic equipment. The system designer must take this into

consideration.

Tree stocking - Tree stocking varies from 200 to 800 stems per hectare. The stocking
of the stand limits the image capture positions that can be used. If the imaging system is
too close to the tree, visibility of tree trunk near the top will be obscured by the tree's

own branches. If the imaging system is too far away the top of the tree trunk will be

System Constraints
Forest conditions Technology limitations
System robustness Resolution
Tree stocking Aspect ratio
Terrain and undergrowth Perspective distortion
Outdoor weather conditions Image size
Tree wind movement Image storage requirements
Lighting and contrast levels Tree parameter extraction

Table 2.1 - System design constraints

22

obscured by the branches of other trees. A compromise needs to be made where the
most important section of the tree stem can be reliably imaged without getting obscured.

Terrain and undergrowth - Terrain that must be inventoried varies from steep
(slope of 40 degrees) to flat and there is normally some undergrowth present. Currently
any significant undergrowth is cleared within the plot before the inventory assessment
is made. A system should be capable of being used in situations where the terrain is

steep and the undergrowth is present.

Outdoor weather conditions - A system must be reasonably weatherproof for two
reasons. Current inventory crews work all year around, so a lot of the time it will be
raining or misty. Secondly the undergrowth in the forest floor will usually be wet for a
large part of the day. A system should be able to withstand a reasonable degree of

moisture.

Tree wind movement - Trees do not remain perfectly still to allow image capture
over a long time frame. For example with a wind of approximately ten knots the tops of
the trees in an exposed stand will move up to one metre with an oscillation period of
around five seconds. This is significant as the stem position is being imaged to within

+1cm.

Lighting and contrast levels - Overall lighting conditions in a forest vary greatly.
There are changes in ambient lighting from very dark to very light depending on
weather conditions and density of foliage. In bright daylight the conditions are good for
normal photography. In overcast conditions the lighting is barely adequate for normal
photography. There is also a large variation in contrast and lighting between the top and
bottom of a typical tree. Near the bottom the image will be of a low light, low contrast,
front lit object. Near the top of the tree the image will be of a high contrast, high
lighting, back lit situation. It is difficult to capture good images in these conditions with
any imaging system.

2.3.2 Constraints Imposed by Technology Limitations

Design constraints imposed by fundamental technology limitations must also be
considered. The system must be based on practical technology and physically capable
of delivering accurate results regardless of expected variation in operating conditions.

There are seven technology constraints :

Resolution - An accuracy requirement of = 1 cm near the top of the tree requires a
minimal resolution of about 0.5 cm per pixel. This relates to an image resolution of
approximately 8000 pixels by 1000 pixels. At the bottom the pixel resolution will be
0.2 cm per pixel. This is not available in any existing imaging systems. Normal CCD
video cameras use an image resolution of approximately 500 by 400, with digital

Chapter 2 - Improved Forest Stand Assessment Design Proposal 23

camera technology typically using a resolution of 2000 by 1500 pixels. Line scan CCD
cameras are available from 128 pixels to 8000 pixels.

Aspect ratio - The aspect ratio of a standing tree is approximately 80:1. As a result of
the perspective distortion a desirable image aspect ratio is approximately 8:1. Images
can be captured at this aspect ratio or techniques could be used to capture images of a
more standard aspect ratio. This could be achieved through the use of a non circular
lens such as those used by the wide screen cinema industry or through the use of a
curved mirror as discussed in the high resolution CCD area camera approach.

Perspective distortion - The tree being irggged is viewed from below introducing a
perspective distortion that can be corrected fof using a calculation, if the geometry of the
imaging situation is accurately known. This may be achieved through the use of a
calibration object in the captured images. Distortion correction is more difficult for the

video approach than the line scan approach.

Image size - The sheer size of the tree images of these dimension make the images
very difficult to work with. If an image consists of 8000 by 1000 pixels at 8 bit
greyscale this corresponds to 8 megabytes of data. With images this size the computing
power required to load, save and process the images is large. This is important as
processing power of computers is limited. With the video scan system, overlapping
images must first be spliced together and then processed. This will make the processing
requirements even higher, but can be completed using batch processing out of the
forest.

Image storage requirements - The data storage requirements for images of this size
are very high. A typical high performance portable computer may contain 160
megabytes of hard disk space. This is the equivalent of 20 images or ten imaged trees.
In contrast MARVL information for the same tree consists of approximately 100 bytes
of text. This is one 80 000th the size of a single image. Video tape as used by the video
scan approach is a very cost effective method of storing large quantities of image data.

Tree parameter extraction - The captured image is only raw data. Tree stem size
information must be extracted from the image so a three dimensional model can be
generated. This involves some form of processing of the raw data (image) to get out the
desired tree size information. This is a task humans can complete readily but is difficult

to automate.

24

2.4 Proposed System

2.4.1 Improved Assessment Outline

The image capture system is the first part of a sequence of steps in the proposed method
for improved forest stand assessment. The images captured need to be processed to
extract the tree parameters which define the dimensions of the three dimensional model.
This model can then be processed by an optimisor to determine the optimal log
breakdown for a particular cutting strategy. The recoverable yield and value of the stand
for the optimal log breakdown can then be predicted (see figure 2.4).

|

I

: I Recoverable
Forest | mage Tree Growth Log Volume
Stand | Capture Parameter Modelling Optimiser |] and

| System Extraction | Stand Value

, T |

f TreeScan system i

| Cutting |

[Strategy |

| |

Improved Forest Stand Assessment

Figure 2.4 - Improved forest stand assessment overview

The proposed TreeScan imaging system works by capturing calibrated images of a tree.
Based on calibration data and the position of features in the image, the position of the
tree features and shape of the stem can be estimated. This is the tree parameter

extraction. By capturing two images at right angles a three dimensional model of each

tree 1s generated.

2.4.2 Proposed Image Capture System Overview

The proposed image capture system is a custom designed scanner capable of capturing
high resolution images with a high aspect ratio directly into a computer.

The scanner would use a line scan camera that is stepped through a series of fixed
angles to build up an image of the tree (as outlined in section 7.3 of the feasibility study
- Pugmire, 1993). The system would capture a single horizontal scan line for each
position of the rotating mechanism. The consequences of this are that the image is
slowly built up one line at a time as the mechanism rotates (see figure 2.5).

Chapter 2 - Improved Forest Stand Assessment Design Proposal 25

Either a rotating lens and camera unit, or a fixed camera with a rotating mirror or prism
could be used. A rotating mirror has the advantage that the sensor and cabling can be
fixed and that the mechanism has less mass to rotate.

The image would be recorded directly into a portable computer eliminating the need for
storage on photographic film or other temporary medium. A portable computer would
be taken into the field during image capture, so the image could be immediately

processed if required.

-

Light ///, 1
Line L ray/,/ Tree
ens o - stem

@ sensor _
= > #ﬂ@'mating

T Prism
Controller

One horizontal scan is collected
at each angle of elevation

Figure 2.5 - Image capture system principle

26

2.5 Design specification

The aim of current work by Massey University has been to develop a prototype line
scan based image capture system for the improvement and automation of forest stand
assessment as specified in "Line Scan Camera Image Capture Project - Sub Project 1

Proposal” (see appendix D).

It was the intention of the project to rapidly produce a working proof of concept
prototype to allow the capture of images of trees and transfer these directly to a portable
computer. The captured images would be in a format that could initially be analysed
using the NIH Image package and the macros produced as part of the feasibility study.

The system needed to be capable of imaging ten trees per hour under normal forest
conditions. Normal forest conditions include low natural lighting, variation in tree
dimensions and in tree stocking, presence of undergrowth, and a large variation in

terrain.

The accuracy specifications state that the height estimates need to be accurate to within
+ 0.5 metres and stem diameter estimates need to be accurate to within + I cm. This

relates to an image resolution of approximately 8000 by 200 for a 40 metre tree.

Imaging the bottom two thirds of the stem may be sufficient as this is the most valuable
section. The top of the tree would normally be obscured by branches. In addition to the

stem sweep determination, estimation of branch size was classified as being desirable.

The initial aim was to develop a prototype system by July 1994. Due to several
development obstacles the prototype system was delayed until November 1994.

THEORETICAL FOUNDATIONS

3.1
3.2
3:3
3.4
3.5
3.6
3.7

Chapter 3

TREESCAN

DESIGN CONSIDERATIONS
AND

Design Overview
TreeScan Operating Principle

Image Capture

Scanner Interface and Image Storage

Parameter Extraction

Three Dimensional Model Generation

Implications of Image Capture Geometry

28
31
35

— 46

48
I
58

28

TreeScan is the name given to the prototype tree imaging system developed. The aim of
this chapter is to show that the TreeScan design is a technologically feasible solution.
This will be accomplished by discussing the design considerations and theoretical
foundations of likely areas of technical difficulty. Key areas of technical difficulty are
individually analysed. As a result each section in this chapter is an almost standalone

analysis and discussion.

To provide an introduction section 3.1 and section 3.2 will discuss the TreeScan design
at a systems level and show how individual design aspects interrelate, after which

sections 3.3 to 3.7 will analyse individual design aspects in greater detail.

3.1 Design Overview

Once the direction of this research and development had been established the design
phase was entered and research was started to determine the best method to realise the
design concept. This research involved determining the limiting factors of the
technology, calculating precise technology requirements, and scoping technologies

currently on the market.

The TreeScan system will fit into the improvement of forest stand assessment as shown
in figure 2.4 in the previous chapter. The system input boundary lies at the physical
geometry of the trees that need to be measured. The system output boundary lies at the
actual three dimensional tree model produced by the software. To get from input to the
system output involves a series of steps (see figure 3.1) each one of which could affect
the integrity of the information produced by the system and the feasibility of the whole
design. Each of these steps is a possible area of technical difficulty which may limit the
system and must be carefully analysed.

Second view
Key areas of technical difficul q
Y e O p N
First view
b-3-m)- OO
Physical Calibration Precision Optics CCD Interface Computer Acquisition Analysis 3D
environment mechanics camera HW Software software Software
«—> —> e > € > —r —
System Calibration Image capture Image transfer Calibration 3D tree
Geometry & storage & correction model
F i L%
b Principle of operation g

Figure 3.1 - Possible areas of technical difficulty

Chapter 3 - Theoretical Foundations and Design Considerations 29

The principle of operation of the TreeScan system is discussed in section 3.2. This
describes how the system works from a conceptual viewpoint. The discussion remains
at a systems level and covers the TreeScan system from input to output.

The largest part of the design involved the design of the actual image capture system. In
section 3.3 image capture technology is reviewed. This covers both the system optics
and CCD technology. The differences between conventional imaging techniques (such
as photographic and area CCD) and the TreeScan system are also discussed.

As the images that will be captured are very large, image transfer and storage
requirements are an important consideration. These are discussed is section 3.4. Image

transfer and storage requirements also have an impact on the computer that will be used.

Image calibration and the mathematical correction of various forms of image distortion
are discussed in section 3.5. This includes the placing of a calibration rod of known
dimensions in the image to determine the image capture geometry.

Section 3.6 discusses the generation of a three dimensional model from multiple views,
and lastly the expected effects of the geometry of the imaging situation are calculated.
This provides expected errors that the results of experiments with the TreeScan system

can be compared against.

Section 3.11 provides a brief note on the systems integration aspects of the project.

3.1.1 Systems Integration Project

The design and development of a custom instrument such as the TreeScan scanner is
primarily a systems integration task. Only by combining knowledge, theory, and
hardware from a large number of specialist engineering disciplines is it possible to

develop a successful system.

The main engineering disciplines that have been called on during design and
development of TreeScan are:

« Image processing - For the use of image capture technology (CCD cameras)

and image processing techniques.

« Optics - To determine lens and mirror requirements, and techniques for
calculation image depth of field and resolution.

« Mechanical engineering - To machine the precision mechanisms required to
rotate the mirror.

e Electronics and computer interfacing - To interface all individual
components and provide control over the scanner functions.

30

 Computer programming and software development - Techniques for the
custom computer software development and microcontroller programming.

* Mathematics and photogrammetry - To allow perspective distortions to be
corrected for in software.

* Product development - For the overall design and usability of the system to
meet the needs of the user.

In a project that draws from each of these engineering disciplines there is generally a
team of people involved, as has been the case with the development of TreeScan. In
such a team environment communication and project management tasks become as
important, if not more so, than the technical aspects. Work being completed in each
subsection must remain coordinated and team members must remain in constant
communication with the rest of the project team to prevent misinterpretation or

misunderstanding.

Chapter 3 - Theoretical Foundations and Design Considerations 31

3.2 TreeScan Operating Principle

The TreeScan system is a system for the estimation of tree shape and dimensions. The
TreeScan system is based on capturing calibrated images of a tree. A calibrated image is
an image captured in a situation of known geometry (or in which the geometry can be
derived from the image) that can be used to make estimates of real world object

dimensions.

It is important to distinguish between the use of the terms measurements and
estimates. The use of the term 'measurement’ will imply the dimension has been
physically measured, while the use of the term ‘estimate’ will refer to a dimension
based on a calculation performed on other measurements. This implies that the image is
measured and the calibration rod is measured. Tree dimensions are estimates calculated
based on image measurements, some simplifying assumptions, and known calibration

rod dimensions.

The calibration rod is an object of known dimensions that is used to determine the
image capture geometry. Two calibration rods have been used; the first is a pole with
two crossbars, the second is a pole with one crossbar and a reference circle. The

discussion that follows holds for both calibration methods.

The plane through the calibration rod is the calibration plane. The calibration rod is
placed against the tree so that the calibration plane lies as close as possible to the plane
of the tree. The principal scanner axis must be perpendicular to the bottom crossbar of

the calibration rod. The scanner should be positioned at a distance so that the majority

i
-~

N
X
i ﬁ;_#_._-—-— Feature being estimated

ﬂ_:‘a‘“‘ Calibration plane
" Vertical calibration reference

L,/:/’// Calibration rod

1 'E Calibration reference

Horizontal calibration reference
S~ N1 Principal scanner axis
2\ "___“

S

canner position

Figure 3.2 - TreeScan image capture

32

of the stem is visible. The range of 12 to 20 metres out from the tree provides a good
position in typical tree stockings. The scanner position may be at any height with
respect to the calibration rod.

The image captured contains perspective distortion, which implies tree feature
dimensions cannot be directly measured from the image. A calculation, discussed in
detail in section 3.5, is used to correct for this distortion and follows the principle that:

1. The scanner position is estimated by taking measurements from the image
of the calibration rod, and making use of known dimensions of the calibration
rod.

2. Tree feature dimension estimates are calculated using the estimated camera

position and measured tree image dimensions.

The procedures being used are inherently two dimensional. When estimating the size of
three dimensional objects, it is the size of the object's projection on to a two
dimensional plane that is being estimated. If the three dimensional object does not lie
exactly on the calibration plane an expected error will be introduced into the size
sstimates (see figure 3.3). This is discussed in greater detail in section 3.7. The use of
[nclinometers for estimation tree heights suffers from the same limitation, which is
nherent in the geometry.

=ach image can provide information on the vertical axis (height) and one horizontal
ixis. By capturing multiple images at a known angle to each other, the system can be
>xtended to deduce the three dimensional shape of objects. Two or more images from &
lifferent directiorscan be combined to build up a three dimensional model of the tree. A

ninimum of two views of the tree are required, with improvements in accuracy as more

Projection of 3D object on a 2D plane

[e Object offset

| Wi introducing an
i i / V expected error
I |
Y &
o }1/4 Calibration offset

|

i

introducing an
! expected error

i
1
I
1
1
|

P ot . s e, e . i i i i - e A S

Figure 3.3 - Projection on a two dimensional plane

Chapter 3 - Theoretical Foundations and Design Considerations 33

Position estimates Distance estimates
A
(%)
\ Branch diameter
A
| L :
; (xy) Heights Feature Internodal distance
‘ / separation

' ‘ — K— Stem diameter

-

Figure 3.4 - TreeScan estimates

views are incorporated. If two images are used to build up the full model of the tree, the

optimal view points are at right angles to each other.

3.2.1 TreeScan Estimates

The TreeScan system inherently makes position estimates. A position estimate is a
point estimate that consists of a vertical offset and a horizontal offset from the
calibration reference. Thus for any point of the tree a height from the calibration rod and
a horizontal offset from the vertical calibration reference can be calculated. Distance
estimates between two points on the tree can be calculated by taking the difference
between two position estimates. All tree dimension estimates other than offsets from the
calibration reference are distance estimates. Distance estimates can be either horizontal,

vertical, or a combination of the two.

The TreeScan system is intended to estimate five tree parameters; height, sweep, stem

diameter, branch diameter, and feature separation such as internodal distance.

* Height estimates are based on the vertical component of a position estimate

and are calculated from ground level using the calibration reference.

« Stem diameter, branch diameter, and feature separation are distance

estimates. Distance estimates can be made at any orientation.

e Sweep estimates are slightly more complicated. By definition (see appendix B)
sweep is the amount the tree stem is offset from a straight line over a given
length. This means that sweep is a combination between horizontal and vertical
distance estimates.

It is important to consider what kind of estimates are being made because each is
affected in a different way by the geometric inaccuracies as discussed in 3.7.

34

The model of the tree is defined by three dimensional stem midpoint position estimates
and stem diameter estimates at fixed height intervals along the stem. These stem
estimates are defined using the stem edges visible in each view. Stem diameter and stem
midpoint are calculated using the difference in edge position and the average of the two
edge positions respectively.

It should be noted that this method of describing the tree stem contrasts with the method
currently used by the MARVL system which describes the tree in sections of variable
length with predefined sweep classes. TreeScan does not define sweep classes,
but implicitly defines sweep by providing stem position information at fixed
height intervals. This reduces the loss of three dimensional information.

Chapter 3 - Theoretical Foundations and Design Considerations 35

3.3 Image Capture

This section serves two purposes. First a background to digital image capture and CCD
technology is provided for the forestry reader who may not be familiar with the
operation of a digital image capture system, and secondly important image capture
aspects of the TreeScan system are discussed. This includes important optical
considerations as well as the difference between images captured using an area camera

and images captured using a line scan approach such as the TreeScan system.

3.3.1 Digital Image Capture

Digital image capture is the conversion of light from a scene into an array of numbers
inside a computer (a digital image), which consists of individual pixels (square blocks
when zoomed right in). Each pixel has intensity value associated with it. By displaying

pixels of different intensities in a rectangular grid the digital image can be viewed.

The conversion from light to a digital image requires a sequence of steps (see figure
3.5). Light from the scene is focused on a sensor (taking the place of the camera film),
which converts the light into an analog voltage signal. The sensor contains many
individual sensing elements (up to 1 million per square cm), each capturing the light for
a single pixel. The sensor converts the continuous light signal into a voltage signal
consisting of individual pulses (spatial quantisation). The number of elements on the

sensor determines the resolution of the digital image.

The second step in digital image capture is the conversion of the analog voltage signals
into a digital representation using an analog to digital converter. The analog to digital

converter samples the intensity of the analog voltage of each pixel and converts it into a

Digital Image Capture

X X
Scene
/\[\Jﬂr\ur)" Y
Arns ¥ > | AD 5>
Light Convertor K
SENSOR Digital image

XxY array in RAM

L SO il o= Rl i e T
{] p

| / XxY data bytes
XxY analog voltage .//
pulses

Figure 3.5 - Digital image capture

36

number. There are only a certain number of intensity values each pixel in the digital
image can have (amplitude quantisation), which is typically an 8 bit number allowing
256 shades of grey to be discriminated. The numbers representing this digital image are
then transferred to the computer and stored in an array in RAM (computer memory).

There are several types of sensor technology available including: CCD (Charge Coupled
Device), CID (Charge Injection Device), and older vacuum tube sensors. The CCD
sensor is the most commonly used including every domestic video camera.

3.3.1.1 CCD Technology

CCD sensors are electronic light integrating devices that generate a charge proportional
to the exposed light intensity. CCD sensors are available in both linear one dimensional

arrays and two dimensional area detector arrays.

CCD technology is based on the principle that photogenerated charge accumulated in a
‘well' (defined by voltage potentials at the surface of a MOS structure) may be moved
about by moving the local potential minimum. Electrons are accumulated under the
transparent photogate, then transferred to a shift register so the data can be read out as a
serial data stream.

The sensor consists of a P-type substrate of polycrystaline silicon with areas of N-type
material at the surface (see figure 3.6). Over the semiconductor are a series of metal
electrodes insulated by a layer of silicon dioxide. If one of the electrodes is energised
this creates a depletion region or potential 'well'. Light passing through the transparent
photogate electrode generates electrons. While the photogate is energised (during
integration) these electrons collect in the depletion region under the photogate. As soon
as the opaque transfer register electrode is energised collected electrons are transferred
into a shift register which presents the data to the on-chip amplifier as a serial data

stream.
Integration Transfer
h_|
TRANSPARENT TRANSFER
PHOTOGATE . REGISTER
e ——" T Ef—— e |
Leees | TN e
- -

Figure 3.6 - CCD technology

Chapter 3 - Theoretical Foundations and Design Considerations 37

3.3.2 Primary Imaging Considerations

When designing an image capture system there are a large number of considerations that
need to be taken into account, but there are two fundamental principles that should
govern the design of the system:

1. Capture 'good' images - The image capture conditions should be modified to
capture images that are of the best possible quality for their intended purpose. It is
relatively straight forward to ensure the captured image contains the desired
information. It is more difficult to extract this information through the extensive

processing of a poor quality image.

2. Keep the image data content low - Image processing is a computationally
intensive process, lessened if the desired information can be extracted while

keeping the raw image data content low.

With these general principles there are a number of factors that need to be considered
when capturing images. The most important factors are:

Object illumination and contrast - This has a critical impact on the image
captured. Changes in both illumination and contrast can improve image quality. In a
forestry situation the lighting conditions are difficult to cope with, and difficult to
modify. The use of a green filter is one possibility for enhancing the contrast near the

bottom of the tree.

Resolution and accuracy - The image capture system must have the provision for
sufficient resolution and accuracy to measure the desired image features. In a forestry
situation branch size estimation will require a different accuracy than feature height

estimation.

Avoidance of distortion - It is important to consider the possible distortion effects
that may affect the system. Distortion can be introduced in several ways including both
perspective distortion and any form of distortion introduced by the optical components.

Image calibration - Some method must be set up to enable measurements defined on

the image to be translated into real world measurements.

Speed of image capture - The speed of image capture must be suited to the
application. Ideally instantaneous image capture is desirable, but a trade off may need to
be made against other factors such as cost.

38

3.3.3 Area Sensor vs. Line Scan Build-up

A system with an area camera such as a conventional photographic camera or an area
CCD camera directly captures an entire image. The TreeScan scanner uses a tilting
mirror mechanism to build up an image. This introduces a fundamental difference in the
image generated. This difference is visually difficult to distinguish, but must be taken
into account when taking size estimates from the image. The difference between the
images captured with an area camera and the TreeScan scanner are discussed below.

3.3.3.1 Area camera

In an conventional photographic camera (also CCD area camera) the lens focuses an
image of the object on to the film. More precisely the object is said to lie in the object
plane, and the area in which the image is in sharp focus is called the image plane.

If the image plane is parallel to the object plane, the object is simply scaled down by the
magnification factor to produce the image (see figure 3.7). Equal steps in the image
plane relate to equal steps in the object plane and parallel lines on the object plane
remain parallel in the image plane. This has the implication that a one meter object will
cover the same number of pixels whether it lies near the top, or bottom, of the tree.
Specialised photographic equipment is required to photograph tall objects like pine trees
in this way.

Using normal photographic equipment, the image plane will not be parallel to the object
plane, this introduces a perspective distortion. The perspective distortion is a linear
distortion such that parallel lines in the object plane appear as straight lines, converging
to a point at infinity in the image plane. This distortion must be corrected for when

measuring objects from the image.

Area image capture system

Image plane parallel to object plane Image plane oblique to object plane

Image plane Object plane Image plane Object plane
Image Object Image Object

Figure 3.7 - Photographic image capture distortion

Chapter 3 - Theoretical Foundations and Design Considerations 39

A photographic system has several limitations:

In order to capture a whole pine tree using normal photographic equipment from a

distance of about 15 metres from the base of the tree a 28 mm wide angle lens is

required. This introduces nonlinear lens distortions (see section 3.3.3) which

must be compensated for when making size estimates from the image.

Any integration based system has the trade-off between depth of field and

exposure time (see section 3.3.3). If the entire tree is imaged, a large depth of

field (closed aperture) is required and a long exposure time must be used.

There is a large variation in lighting and contrast between the forest floor and

canopy. In an area camera the same exposure must be used for the entire image.

3.3.3.2 TreeScan scanner

The TreeScan scanner uses a different approach to capturing images. The image is

'built up' one line at a time as a mirror is incrementally rotated. This introduces an

additional distortion.

In the photographic system each image pixel is related to equal step sizes in the object

plane. In the TreeScan system each image pixel represents a constant angular step

size (see figure 3.8). The consequences of this are that pixels near the top of the tree

will represent larger distances on the object. What visually appears to happen is that the

top of the image tends to get squashed together. This is a nonlinear distortion which

must be corrected for in the distortion correction software (see section 3.5).

Area scan system

Changing step angle
for each pixel

Image plane Object plane
nge Object

TreeScan system

Equal step angle
for each pixel

/ —
Pixels \'-~
My
Image plane Object plane
Image Object

Figure 3.8 - TreeScan image capture distortion

40

A line scan approach such as the TreeScan system has several advantages over an area

capture approach. These are that:

L 8

A lens with longer focal length can be used as the field of view required is

smaller. In practise this means there will be no significant lens distortion.

The aperture and / or integration time can be adjusted during the scan to

compensate for changing light and contrast levels.

The lens can be refocused during the scan up the tree so a large depth of field is
not required. This allows for the use of larger apertures and hence shorter

integration times.

The disadvantages of the line scan approach are that:

8

The image is built up using multiple exposures over time. The image capture will
be slower than a single image capture and if the tree sways in the wind this may
be indistinguishable from local shape deformations in the tree.

Distortions can be introduced owing to the misalignment of scanner components
such as camera, mirror, and axis of rotation, and imprecision in the driving of the

tilting mirror mechanism.

Chapter 3 - Theoretical Foundations and Design Considerations 4]

3.3.4 Optical Considerations

Image capture systems require a lens to focus an optical image on the image capture
sensor. There are a number of factors that must be considered when deciding on a lens
to use for a particular image capture application. There is the trade-off between aperture
(hence depth of field) and exposure time as well as the considerations of lens quality.
Lens quality is determined by the lens aberrations, lens modulation transfer function,
and the lens' relative illumination.

A lens consists of one or more pieces of glass all of whose centres lie on a common
axis (Horder, 1971). A lens consisting of a single piece of glass is a simple lens, and
one consisting of multiple pieces of glass is a compound lens. Most practical camera
lenses are compound lenses with typically three to seven elements. Lens principles can

be visualised using a simple lens.

Light passing through a lens is limited by an aperture stop to control the exposure. The
diameter of the aperture stop can be adjusted. The light passing ability of the lens is
referred to as the relative aperture or f-number (Ray, 1979). Relative aperture is
commonly referred to as 'aperture’ or 'f-stop'. For a thin lens the relative aperture is the
diameter of the aperture stop divided by the focal length of the lens. The aperture
controls the brightness of the image on the film plane. Doubling the area of the aperture
stop is referred to as one f-stop and doubles the amount of light coming into the camera.
There is a standard series of f-numbers shown in table 3.1 for a 75 mm lens:

focal length(f)

Aperture(N) = .
stop diameter(d)

f-number 1 14 2 28 4 356 B 11 16 22

Aperture
diam. (mm) 76 54 38 27 19 13 9 7 5 3

Table 3.1 - Standard f-numbers

3.3.4.1 Lens focus

The depth of field, or area of sharp focus, is dependent on aperture. There is a trade-off
between aperture and exposure. A small aperture gives a large depth of field but
requires a long exposure time. To reduce the exposure time the aperture must be
increased or the sensor sensitivity increased. A large aperture reduces the depth of field.
The depth of field for a different lens aperture can be calculated as follows:

If a lens is defocused, a point in the object is rendered as a small circle in the image,
called the circle of confusion. The circle of confusion determines what is defined as
in focus or out of focus. In the following calculations the circle of confusion is taken to

42

Depth of field
Rl == |
f8 I 17 M 65m
f4 I 8 m
f2 37 m
f1 Misgm
G LRI —————
IfWL’s rangel 1 L L 1
0 10 20 30 40 50
Distance (m)

Figure 3.9 - Depth of field

be the size of a single element of the image sensor (13 pm in the case of the TreeScan
sensor). For 35 mm photography 30 pm is typically used.
Depth of field is defined by the following relationship, where S¢|oge and Sfar the near

and far point of sharp focus, and So is the object distance :

Depth of field = S, - S,,...

e hxS, _ hxS,
close h+(so_f} far h_(so_f)

2

h = hyperfocal distance =
Nxc

For a 75 mm lens focused at 20 m figure 3.9 shows the depth of field for standard
apertures two f-stops apart.

If an aperture of f 1.4 is used with the TreeScan system this provides a depth of field of
2.5 m when focused at 20m. This is sufficient provided the lens is refocused eleven
times during the scan. At f4 the same conditions provide a depth of field of 7.6 m and
three refocuses during the scan are adequate.

3.3.4.2 Lens diffraction

Diffraction sets the maximum resolving power of a lens. When light from a point
source passes through a narrow aperture it spreads out into a circle, or airy disc. When
the diameter of the airy disc equals the circle of confusion the lens is said to be
diffraction limited, and has reached the limit of its resolving power (Jacobson, 1993).

The diameter of the airy disc's first zero crossing can be shown to be:

diameter Ist airy disc = 2. 44/15

Chapter 3 - Theoretical Foundations and Desien Considerations 43

where A is the wavelength of the light, v the distance of the image from the lens, and d
the effective aperture. Approximating d to the lens focal length f, and using the fact that
aperture has diameter f/N it follows that the diameter of the first airy disc is:

diameter Ist airy disc = 2.44NA

Assuming a circle of confusion of 13 pm and typical wavelength of green light of
555 nm the lens diffraction limit can be calculated to be f9.6. No aperture smaller than
£9.6 should be used. At 9.6 the depth of field is 13.8 to 36 meters.

0.013 _

di tion limit= N =———=
iffraction limi > 40

19.6

3.3.4.3 Lens aberration

Lenses vary in quality due to lens aberrations. Lens aberrations are image defects that
result from the limitations in the way lenses can be designed. Aberrations can never be

eliminated, only reduced. A lens can have the following aberrations (Jacobson, 1993):

» Spherical aberration - Light passing through the edge of the lens is focused at

a different distance than light striking near the centre.

» Coma - Light passing through the edge of the lens focuses in a ring displaced

radially from the point where the light passing through the centre is focused.

e Astigmatism - Off axis points are focused at different distances in their radial or

tangential direction.
* Curvature of field - Points in a plane get sharply focused on a curved surface.

» Distortion (pincushion and barrel) - The image of a square object has sides that

curve in or out.
¢ Chromatic aberration - The position of sharp focus varies with wavelength.
* Lateral colour - The magnification varies with wavelength.

Blur caused by all aberrations except distortion and lateral colour can be reduced by
using a small aperture. Conversely with a large aperture a lot of aberrations will be
introduced into the image. Aspherical lenses minimise lens aberrations but are very
expensive. The effects of pincushion or barrel distortion is most significant to the
TreeScan system as it could affect the estimates made. Ideally the captured images
should have no distortion but if quantified the distortion may be corrected for.

3.3.4.4 Modulation transfer function and relative illumination

The modulation transfer function provides an overall measure of lens performance that
compares remaining modulation in the image plane with that of the original object as a
function of spatial frequency. The result is expressed in percent, as a function of spatial
frequency in line pairs per millimetre. As the spatial frequency increases the modulation
transfer function and contrast level at which the lines are resolved decreases.

All images from photographic lenses vary in intensity from their centre to the edge. This
is called relative illumination. There is a natural decrease from the centre to the outer
edge which varies to the fourth power of the cosine of the field angle. The second major
factor is light being blocked by mechanical vignetting. The effect of vignetting can be
reduced by using a smaller aperture.

The modulation transfer function and relative illumination of a typical lens are shown in
figure 3.10. Neither modulation transfer function or relative illumination is critical to the
TreeScan development as absolute image intensity values are not used to estimate tree
dimensions from captured images.

MTF as a function of spatial frequency cos4 w-law of relative illumination
100 100 ;

= N 9 [

T80 \ £ 80 \

R c

7] =

© 60 \: w® 60 i

€ \ £ \

840 5 40 N
20 20 f b

30 60 90 120 150 10 200 30" 40° 50

spatial frequency R in line pairs per mm field angle w

Figure 3.10 - Modulation transfer function and relative illumination

The availability of lenses was investigated. Key features important to the choice of lens
were; motorised controls, C mount, and one inch format. Lenses were available from a
series of manufacturers. The lens implemented in the TreeScan scanner was a
12 - 75 mm, f 1.8 - 360 Cosmicar TV zoom lens with motorised focus and zoom
control and electromechanical aperture control. In the Mk2 model a manual fixed focal
length (75 mm) C mount lens was implemented with a maximum aperture of f 1.4.

Chapter 3 - Theoretical Foundations and Design Considerations 45

3.3.5 Image Focus

If a small aperture system is used there is sufficient depth of field to capture a single
image without adjusting the focus. If however a large aperture system is used to obtain
more light, focus adjustments will need to be made during the image capture. This
should be implemented using some form of autofocus algorithm.

In order to set up an autofocus algorithm, a suitable measure of focus is required. The
assumption that well focused images contain more information than unfocused images
provides the basis for the criterion functions used by many autofocus systems. The
criterion functions can be classified as; frequency domain functions, gradient functions,

information content functions, and grey level variance (Groen et al, 1985).

Yeo et al (1993) evaluate four criteria functions for autofocusing in tissue microscopy
that were selected for their computational simplicity and literature recommendation. The
functions evaluated were the Tenengrad function, squared gradient function, Brenner
function, and variance function. The results indicated all functions provided a good

measure of focus.

The Brenner function, which was implemented in the TreeScan system, is a simple
criterion that is gradient related. The difference in grey level intensity is taken between

pixels two pixels apart, squared, and summed over the focus area.

F0 =Y 3 [lx+2,9)-Ux]

During the image capture the distance from the lens to the object being imaged changes,
so the focus position must be adjusted. Three approaches can be adopted to retain focus

throughout a scan:
* A single focus compromise can be set halfway up the tree.
* An autofocus may be made at several places during a scan.

« Focus during the scan can be calculated from one autofocus at the bottom

and calculated geometry.

The relative advantages of these approaches is further discussed in section 5.2.5 of the

TreeScan software chapter.

46

3.4 Scanner Interface and Image Storage

The images captured by the system under development are very large, up to eight
megabytes per image. As a result it becomes important to consider the scanner interface
that will be used to transfer images to computer and the image storage requirements
once the image has been transferred to computer.

3.4.1 Scanner Interface

There are a large number of interface methods that can be used to transfer data between
a computer and an external peripheral device. The interface method used must be able to
provide acceptable data transfer rates while retaining the flexibility to provide computer

control over the scanner.

The important difference between different interface methods is in transfer rates.
Acceptable data transfer rates are determined by the time it takes the scanner to capture
an image. For a fixed size image, as acquisition time decreases the data transfer rate
required increases proportionally. In practise for an 8 megabyte image and an
acquisition time of one minute the data rate required is 133 kByte / s. The table below

shows the data transfer rate required for a variety of acquisition times:

Image transfer time Data transfer rate
10 seconds 800 kByte /s
30 seconds 267 kByte /s
1 minute 133 kByte /s
5 minutes 26 kByte / s

Table 3.2 - Image acquisition time vs. data transfer rate

The interface between scanner and computer can be either analog or digital. Analog
methods such as framegrabber cards provide high speed methods to transfer image data
to the computer but are inflexible in the control they provide over the scanner. Digital
methods provide more flexibility but are more restrictive for the high speed transfer of
image data. Table 3.3 summarises the different interface methods available.

Frame grabber cards are able to capture information at video rates and transfer the
information to the computer at high speed using the computer bus. Frame grabber cards
are not available for portable computers and do not provide the required degree of
flexibility.

Chapter 3 - Theoretical Foundations and Design Considerations 47

Interface method Data transfer rate | Flexibility
Analog

Frame grabber video rate Low

5-10MByte /s

Digital

SCSI 4 MByte /s High

Audio input 44 kByte /s (16 bit) | Low

Apple talk (serial RS422)| 28.8 kByte / s High

Serial 19.2 kByte / s High

Table 3.3 - Scanner interface methods

A variety of digital interface methods are available on a standard portable computer. It
was decided to use the high speed digital SCSI communications interface to implement
the data transfer between the scanner and computer as this provided more than adequate

speed with very high flexibility in scanner control.

3.4.2 Image Storage

Image storage is an important consideration as the images captured are very large. Both
temporary storage during processing and long term storage for image archiving must be

considered.

The images are captured straight on to computer and stored on hard disk. At eight
megabytes per image a maximum of twenty images will fit on a typical 160 megabyte
hard drive. At two images per tree this relates to ten imaged trees. In the short term a
large (1-2 GByte) hard disk drive may need to be used for storage of images before

processing.

Using the MARVL system a typical plot to be inventoried will contain about 15 trees to
inventory. At a rate of 7 or 8 plots per day, this relates to 100 trees per day or 2 Gbytes

of storage!

Possible solutions for reducing this storage requirement are to process the images
immediately, use image compression techniques, only keeping the section of the image
with the tree in it, or vertical decimation by discarding horizontal lines.

It is should be noted that video tape although a lossy storage medium is probably the
most cost effective medium to store large quantities of image data. It is in this area that
the video camera imaging method as discussed in section 2.2.1 would have significant
advantages over a computer storage based technique.

48

3.5 Parameter Extraction

Once the images have been captured, the next task is to establish the relationship

between image dimensions and the real world tree dimensions. This is the parameter

extraction. Parameter extraction consists of image calibration and distortion

correction:

Image calibration establishes what dimensions a single pixel represents on the
object being imaged at the calibration reference point.

Distortion correction performs a mathematical correction, based on the
calibration information, to compensate for the perspective distortions introduced
for any point not at the calibration reference. Image calibration and distortion
correction are closely related and will be discussed together.

Planar transformation or geometric distortion correction?

There are two fundamentally different approaches that can be taken to correct for

perspective distortion:

1

o

The distortion can be seen as a planar transformation. Four points on the
image and four points on the calibration rod uniquely identify the transformation.
If the real world dimensions of the calibration rod are known, the position of any

point on the tree can be calculated on the calibration plane.

The task can be seen as geometric. If the position of the scanner is known in
relation to the calibration rod, and the angle of the tree plane is known, the
position of any point on the tree can be calculated on the calibration plane.

Four distortion correction methods have been implemented, some based on planar

Correction method Accuracy Based on
Planar transformation correction
Simple perspective correction Accurate Width of 2 cross bars & spacing
(4 points in space)
TreeScan perspective correction Approximate | Width of 2 cross bars & spacing
and imprecise | in two correction steps
Geometric correction
TreeScan perspective correction Imprecise Width of 1 cross bar & calculated
angle (using cross bars & spacing)
TreeScan perspective correction Accurate Width of 1 cross bar &
2 measured angles

Table 3.4 - Comparison of distortion correction methods

Chapter 3 - Theoretical Foundations and Design Considerations 49

transformation and some based on geometric correction. Each of these methods relies
on different calibration information and has advantages and disadvantages. During the
development precision problems were encountered when relying solely on image
calibration rod dimensions as calibration information. As a result the calibration
procedure was modified and additional angular information measured. All distortion
correction methods are defined in this chapter with further discussion on the reasons for

the final implementation in section 6.1.

3.5.1 Image Calibration

Image calibration involves having an object of known size (calibration rod) in the
image. Using the dimensions of the calibration rod in the image, the dimensions of
other objects the same distance from the scanner can be calculated. This will allow the
size of features near the bottom of the tree to be estimated. The size of features near the
top of the tree cannot be estimated this way because a calibration rod as tall as the tree

would be required.

It should be noted that in image processing, image calibration can be based on either
linear measurement or area measurement. Image calibration based on linear
measurement will provide a scaling factor of 'size per pixel' in the direction of the
estimate. Calibration based on area measurement will provide a scaling factor in both x
and y direction. Calibration based on area measurement has the advantage that it can be
more precise and is resistant to image noise, but it is slightly more difficult to

implement.
Real World Dimensions) Image Dimensions
from calibration >3
reference [|
: (X', y)
s
[:
a‘
—— _'!F'
«—F
d’

Figure 3.11 - Definition of terms

50

Depending on the approach taken to correct for image distortion different calibration
information is required. Different types of calibration rod have been made to supply this
information.

The planar transformation distortion correction requires four fixed points and a
calibration reference. A calibration rod with a vertical pole and two cross bars was used
to generate this information.

The calibration information required by geometric distortion correction with measured
angle O is : a calibration reference, distance from this reference, and the combined dip /
lean angle. In this case a smaller calibration rod is adequate. A single cross bar can be
used to estimate distance with the centre as zero reference. A further improvement that
can be made is to use a circular object instead of the single cross bar to use image

calibration based on area measurement.
The calibration method used for the final TreeScan system is to:

» Have both a cross bar and calibration circle to provide two ways of estimating

distance, with the intention of using only the circle in the future.

* Measure the dip angle from the scanner to the calibration reference, and the angle

of tree lean while capturing the second image at right angles.
e Use centre of the circle / middle of the crossbar as the calibration reference.

Both tree lean and dip angle as a result of elevated or lowered scanner position are

combined into one angle O (see figure 3.17 for explanation).

Chapter 3 - Theoretical Foundations and Design Considerations 51

3.5.2 Planar Transformation Distortion Correction

The perspective distortion introduced during image capture can be interpreted as a
planar transformation. Four points on the image and four points on the calibration rod
uniquely identify the transformation. If the real world dimensions of the calibration rod
are known the position of any point on the calibration plane can be estimated.

3.5.2.1 Simple perspective correction

If an area camera is used for image capture, the distortion introduced is a linear
distortion from rectangular space to triangular space. This will be referred to as a simple
perspective distortion. A planar transformation can be used to convert back from the
triangular space to the rectangular space based on four points in the space. The four
points used are the ends of the calibration crossbars. This is the correction method
implemented for the macros developed for the experimental photographic system
(Pugmire, 1994).

\ Corrected
Object '\\ = | Image

| _ |
. x L

; i X
i (x! Y} |[" I'I |

: LY
; d2 _ do' ‘
| | |
a ! a' :
d a5
| |

Real Object Image

Figure 3.12 - Simple perspective correction

The positions of the calibration rod end points are established using the real dimensions
of the calibration rod (crossbar width d and d2, and distance apart a) and the image
dimensions of the calibration rod (crossbar widths d’ and d2', and distance apart a”).
The real world x and y coordinates are calculated from the image coordinates using the

following equations:

T _P r r
}’=1M x=ﬂ = where P::}’—d—2
a'—-Py d' \ a'-Py' "

52

3.5.2.2 TreeScan perspective correction (approximation

If the TreeScan camera is used for image capture, the distortion will become nonlinear.
This distortion (explained in section 3.3.3) will be referred to as the TreeScan
perspective distortion. Four points still uniquely define the transformation, however
image lines represent equal angular step sizes. The consequence of this is that pixels
near the top of the TreeScan image will represent larger distances on the equivalent area
scan image as shown in figure 3.13.

v Corrected .)
Object Image General situation
JV"—\ I A
y” : " y;i
SN D SR ‘:‘. ','I‘ A
i b4 ".'
':,' (xu’ r!)‘. ‘:.
L > e fsne i v ’-"
—-__» r":
TreeScan image Equivalent area

camera image

Figure 3.13 - Two step perspective correction

This distortion can be corrected for in a two step process. Coordinates on the TreeScan
image can be converted to equivalent coordinates within an area camera image using an
angular correction. These coordinates are then processed by the simple perspective

correction method described in the previous section.

”= M o = Step ang!e
tan o
e o ali—F) g B _ where P:l’——d2
ar_Py.r dl‘ af_Pyu dr

If the principal scanner axis is not normal to the calibration plane (the angle O is zero),
this two step correction method becomes an approximation.

The second restriction of this method is that it suffers from the precision problems
discussed in the section on geometric correction. Given these restrictions the usefulness

of this correction method is limited.

Chapter 3 - Theoretical Foundations and Design Considerations B3

3.5.3 Geometric Distortion Correction

The distortion correction task can also be interpreted as a geometric correction. This
involves two steps; the scanner position relative to the calibration rod is determined to
establish the image capture geometry, which is then used to estimate the position of any
point on the calibration plane.

3.5.3.1 TreeScan perspective correction - derived O (imprecise

Once the scanner position in relation to the calibration rod is known the coordinates of
any position on the tree can be easily estimated using H, D and O. The y coordinate
can be estimated using elementary trigonometry, and x is calculated using the fact that
scaling in the x direction (or magnification) is inversely proportional to distance. To get
the x coordinate, x' is scaled by the calibration factor d/d' and then by the ratio of
distances Wi/W. '

a(xy)

yo /W/ R

0

Figure 3.14 - Geometric correction using derived O

sEwyaLojeD - B z=22| 210
d' \cos(y'c+0)

The scanner position relative to the calibration rod can be calculated from
the calibration rod dimensions in the image. This involves estimating distance W from
the calibration reference using the image width of the lower calibration bar, and the

calculation of the angle O from other image dimensions of the calibration rod.

The situation is slightly redundant and different methods may be used to calculate O
from the calibration rod dimensions. Three methods implemented were the sine rule
method , cosine rule method, and the Al method ! as described in figure 3.15.

However each of these methods suffers from a precision problem as a result of using a
parameter to a degree of accuracy an order of magnitude greater than it can be measured
from the image.

1 Thanks to Alistair Hall for help with the derivation of the mathematics for this method.

54

Sine rule Cosine rule Al rule

Sine rule method - This method to calculate O is based on the sine rule.

The distance from the calibration reference can be estimated using the image
width of the bottom cross bar, the angle A can be measured directly from the
image using the image calibration rod height, and a (crossbar height) is
physically measured. Using the sine rule O can be calculated.

D= i=A~B A=a'a B=s:’n"(wsmA)
a

Cosine rule method - This method to calculate O is based on the cosine rule.

The distance from the calibration reference can be estimated using the image
width of the bottom calibration rod cross bar, the distance from the top of the
calibration rod can be estimated using the image width of the top calibration rod
crossbar, and a is measured. Using the cosine rule O can be calculated.

a’+ W, +Ww? J

0=90-A-B A=ad'«a B=cos™
2aW

Al rule method - This method is based on solved simultaneous equations
describing the situation. Corrected x and y coordinates are directly calculated
without the intermediate step of calculating O.

The image widths of both the top and bottom cross bars are used, and the angle
A is measured directly from the image using the image calibration rod height.

Li

t 2
i cos(aa)—y __cos(a'a+0) sin(y'a)
O=tan”'| — = =a
sin(a' o) sin(a'a) cos(y'a+0)
x_x'd cos(0)
T d cos(y'a+0)

Figure 3.15 - Correction based on calibration rod dimensions

Chapter 3 - Theoretical Foundations and Design Considerations 55

A

3.5m

/m» + Height=35+3.5m |

s {

700 + 2 pixels

1. The relative ratio of the calibration rod crossbars is being used to estimate
the calibration plane alignment.

2. A typical value of d' is-700 pixels. If the position of each end of the
calibration rod crossbars can be determined to the nearest pixel, the image
width of a crossbar is known to £ 0.3%.

3. The ratio of the two crossbars is d2'/ d' and used to estimate W/W2. This
ratio is used to determine the alignment of the calibration rod 15 m away.
W/W32 is known to * 0.6% so the position of the top crossbar with respect
to the bottom crossbar is known to £ 9 cm.

5. At the top of a 35 m tree this represents an offset of 1.3 metres, which in
return represents an error in height of 3.5 m.

An optimal accuracy of 35+ 3.5 m !

Figure 3.16 - Distortion correction imprecision

When estimating the scanner position what is effectively being done is the estimation of
the alignment of the calibration plane (or rod) with respect to the scanner. It is the
projection on this calibration plane of objects that is being measured, so in order to
estimate the tree dimensions accurately, the positioning of the calibration plane must be
known to a much higher degree of accuracy that the dimensions being estimated.

If calibration rod points can be located on the image to 1 pixel accuracy this represents
an optimal height accuracy of = 3.5 m at a height of 35 m (as shown in figure 3.16). In
order to identify heights to a £ 10 cm accuracy the calibration rod points need to be
identified to a subpixel accuracy of 0.03 pixel. An alternative is to find a different
method to determine the angle O.

56

3.5.3.2 TreeScan perspective correction - measured O

This final distortion correction method is again based on the geometric correction that
position coordinates can be calculated using known H, D and O. The same equations
used in the previous section are used to estimate these coordinates.

y=tan(y'a+0)xD - H x=Xd cos(0)
d' \cos(y'a+0)

where O = Dip + Tree lean

The angle O is however physically measured rather that derived from image calibration
rod dimensions. By measuring O the imprecision experienced by the previous methods
that derive O can be eliminated.

The angle O is the combined angle of tree lean and dip as a result of a scanner position
not level with the calibration rod. As a result the angle O is the sum of the tree lean
measured from the vertical and the measured dip between the horizontal and the

principal axis. O can be measured directly to the required degree of accuracy.

The height deviation of + 3.5 m discussed in the previous section is equivalent to an
accuracy in angle measurement of 2.2 degrees. Using a digital builders' level each of
dip and lean can be measured to * 0.1 degrees. This translates to an accuracy in height
measurements of = 30 cm. This is the method implemented in the Mk2 version of the

TreeScan system.

Equivalent
ltc: tree lean

90-Tree lean

\

/
/
/
O =Dip + Lean

O = Dip + Lean

Figure 3.17 - Measurement of angle O

Note: A final comment that should be made is that the centre of the image should be
used as the reference for x coordinates in this distortion correction as this is the only

part of the image that remains horizontally undistorted.

Chapter 3 - Theoretical Foundations and Design Considerations 57

3.6 Three Dimensional Model Generation

Three dimensional model construction must combine stem shape information from

multiple views to form a three dimensional model of the tree stem.

To obtain a three dimensional model of a tree a minimum of two views at right angles is
required. To ensure all branches have been observed a minimum of two views at
180 degree spacing is required. Both a view of all branches and a three dimensional
model for the assessment of sweep can be obtained from three views at 120 degree
spacing. If only a sample of branches is required then two views at right angles is

sufficient.

The TreeScan software has been designed to estimate tree shape, and the size of visible

branches from two views at right angles.

The three dimensional model consists a series of stem diameter and stem position
estimates along the length of the tree stem. The model should consist of sufficient

'slices' to accurately determine any shape changes in the stem.

Stem diameter and stem position estimates are obtained for the two edges of the stem.
By combining edge information of two views at right angles a rectangle is defined
within which the stem lies. It must be assumed that the centre of the rectangle represents
the centre of the tree stem and that the stem diameter is the magnitude of an inscribed
“é‘iééé’%s shown in figure 3.18.

Generation of 3D model from two 2D views

3D stem
model

diameter 2

> m%:

Figure 3.18 - Three dimensional model generation

58

Some trees will have a stem that is slightly oval in shape rather than circular. The two
estimated diameters may or may not reflect this. If the major axis of the oval lies in the
axis of one of the views the two diameter estimates will be diameter estimates along the
major and minor axis of the tree stem. If the major axis does not lie in the axis of one
of the views, both estimated diameters may be the same even though the tree stem is

oval.

It is important to note that height information is duplicated as it is available in both
views. If a calibration error is introduced and the calibration plane does not lie exactly
within the tree an expected height error is introduced in estimates (see section 3.7). This
means that there will be a discrepancy between height information from the two views.
By combining height information from the second image with that of the first image a
more accurate height estimate could be made. This may be done in two ways:

1. The height estimates of a feature common to both images could be compared and
an indication could be gained of the accuracy of calibration. By adjusting other
height estimates so that this particular height estimate matched in both views the
average error could be reduced. This would require points to be marked in both

images.

2. Height estimate may be corrected slightly by modifying the calibration with the
feature distance in front of or behind the calibration reference from the second
view. This would provide a unique adjustment for each point on the stem and
account to a certain extent for tree shape variation. Feature size estimation would
become an iterative process which requires the marking of the full stem shape

first.

At this stage these modifications have not been made as the system is still undergoing
testing. The improvement these two methods would make to the accuracy of the system

is expected to be minimal.

Chapter 3 - Theoretical Foundations and Design Considerations 59

3.7 Implications of Image Capture Geometry

The TreeScan system must be able to make accurate estimates from images captured
under poor geometric image capture conditions, which may introduce a series of errors
in the tree size estimates. These errors will be referred to as expected errors as their
magnitude can be calculated. This section discusses the various sources of expected

error and calculates their significance to the accuracy of the TreeScan system.

The image capture geometry is poor because calibration information must be
extrapolated. Images can only be captured and calibrated at ground level and must
typically be captured in the range of ten to twenty metres from the base of the tree, this
is drawn to scale in figure 3.19. The images are calibrated at the base of the tree

providing good precision there.

To estimate dimensions near the top of the tree the calibration information must be
extrapolated using the distortion correction methods. As a result errors will be
introduced. In addition to this, for estimates made at an oblique angle to the calibration
plane (height estimates towards the top of the tree) the expected error will be

accentuated.

This image capture geometry is inherent in in-field tree imaging and cannot be improved

upon without a conceptually different approach to the estimation of tree parameters.

/(@
The image is captured from @. /1
the image is calibrated at @ /-"
estimates are made as high as @ ! / f.f’ /
s
£y
A
7
/]
/ .!x /
/ f
’r/ f.’f |IIIII
S 40m

/ .f’r f /
/ /’I f,. @ Calibration
[@ | h fod

20m 15m 10m

Figure 3.19 - Image capture geometry (to scale)

60

The effect of the image capture geometry is different on the various size estimates:

* Branch diameters, stem diameters, and feature sizes are estimated

perpendicular to the calibration plane and the introduced error will be small.
 Height estimates are made at an oblique angle to the calibration plane and
introduced errors will be larger.
The expected errors in the TreeScan estimates can be divided into three sources:
1. Tree plane variation
2. Variation in calibration data
3. Image processing and feature marking precision

Table 3.5 summarises the effects from each of these sources under typical operating
conditions, which are taken to be: the estimation of parameters at a height of 30 m, and
image capture distance of 15 m from the base of the tree. The magnitude of the expected
error classified as: major (>0.5 x required specifications), minor (0.2 - 0.5 x

specifications), and insignificant (<0.2 x specification).

Brief discussion of each relevant source of uncertainty is provided in sections 3.7.1 to

3.7.3, with further calculations provided in appendix E.

Cause of uncertainty Significance of expected error
Height Stem diam. |Branch diam.
Tree plane variation
Tree displacement Major Insignificant | Insignificant
Calibration alignment variation
Variation in measured angle Major Minor Insignificant
Calibration rod alignment Minor Minor Minor
Calibration rod vertical placement Minor Insignificant | Insignificant
Calibration rod in front of tree Insignificant | Minor Minor
Image processing precision
Calibration end pixel placement Minor Minor Minor
Calibration centre point placement Minor Insignificant | Insignificant
Pixel placement on feature Insignificant | Minor Major

Table 3.5 - Sources of expected error in TreeScan

Chapter 3 - Theoretical Foundations and Desiegn Considerations 61

3.7.1 Tree Plane Variation

If a section of tree is not straight (as a result of lean, sweep, or kink) so that the feature
of interest is offset from the calibration plane there will be a tree displacement,
introducing expected errors. For tree lean the error can be eliminated by aligning the
scanner correctly, however for a tree with sweep or a kink this may not be possible and
a compromise will need to be made in aligning the scanner.

Lean Sweep Kink
. : % Apparent height

error (+ve)

| 1

L Actual height

N
Tree axis Calibration plane

Figure 3.20 - Tree plane variation

The software can be extended to use calibration information from the second view to
modify the calibration information of the first view. This would reduce the magnitude
of introduced errors, but implies any height must be iteratively refined by processing

both views (see section 3.6).

3.7.1.1 Errors Introduced bv Tree Displacement

Tree displacement can cause a major error in height estimates, as any error is
accentuated by the geometry. As shown in table 3.6, a stem displacement of only 50 cm
will cause a height to be overestimated by 1.03 m for a height estimate at 30 m from an
imaging position 15 m away from the tree (see appendix E for more detail).

Height error (m)

Dist from Height of tree estimates (m)

tree (m) 0 10 20 30 40
' Height error (m) introduced by 0.5 degree error in O
10 0.00 0.53 1.05 1.58 2.11
15 0.00 0.34 0.69 1.03 1.38
20 0.00 0.26 0.51 0.77 1.03

Table 3.6 - Height errors introduced by stem displacement

62

Width errors are not as badly affected by stem displacement as width estimates are

based solely on distance from the feature. For the same situation described above the

error in diameter estimates will be

3 mm for a 10 cm branch (see table 3.7).

Width error (cm)
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Width error (cm) from 50 cm stem displacement (10 cm branch)
10 -0.5 -0.5 -0.5 -0.5 -0.5
15 -0.3 -0.3 -0.3 -0.3 -0.3
20 -0.2 -0.2 -0.2 -0.2 -0.2

Table 3.7 - Width errors introduced by stem displacement

The introduction of these expected errors can be minimised by ensuring the scanner and

the calibration rod are closely aligned with the tree during image capture.

Note that in all error tables (3.6 to 3.9) the error values for typical conditions, estimates

at a height of 30 mimaged 15m a

In short:

way from the tree, are highlighted in bold.

errors in height estimates will be accentuated near the top of the tree.

Diameter estimate errors remain constant up the tree.

3.7.2

Calibration Alignment Variation

The variation in tree plane can introduce a major error in height estimates. Any

The variation in tree plane can introduce a minor error in diameter estimates.

The image can only be calibrated to the degree of accuracy that the calibration

information can be measured or estimated. This section discusses the effects of

imprecise calibration information and calculates the degree of accuracy to which the

Error in angle

Error in distance
estimate L7

Scanner o
Position °

measureme nt//
/

Vv |/

A T

i A
\ "~!-.. Error in vertical

5 placement

Figure 3.21 - Calibration alignment variation

Chapter 3 - Theoretical Foundations and Design Considerations 63

calibration information needs to be measured. Any imprecision in calibration alignment
of the Mk2 system can be divided into three sources; variation in measured angular
position, variation in distance estimate, and calibration rod placement.

Analysis of the variation in the calibration alignment of the Mk1 system was more
complicated (see Weehuizen 1994c¢ for a discussion).

3721 Errors Introduced by Variation in Measured angle

If the angular position of the scanner w.r.t. the tree (angle O) is inaccurately measured
or not entered to calibrate the image, errors are introduced into the size estimates.
Inaccurate measurement of O affects the 'alignment' of the calibration plane to which

dimensions are being estimated (see table 3.8).

» Inaccurate measurement of O can introduce a major error in height estimates. Any

errors in height estimates will be accentuated near the top of the tree.

* Inaccurate measurement of O does not introduce significant errors in width

estimates.

The angle O should be measured to an accuracy of + 0.2 degrees. This provides a
precision in the height estimates of + 20 cm for estimates taken at a tree height of 30 m

from images captured at a position 15 m from the base of the tree.

Height error (m)

Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 0.5 degree error in O
10 0.00 0.09 0.36 0.81 1.45
15 0.00 0.06 0.24 0.53 0.95
20 0.00 0.04 0.18 0.40 0.71
Width error (cm)
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Width error (cm) introduced by 0.5 degree error in O
10 0.0 -0.2 -0.1 -0.1 -0.1
15 0.0 -0.2 -0.2 -0.1 -0.1
20 0.0 -0.1 -0.2 -0.2 -0.1

Table 3.8 - Errors introduced by variation in measured angle

64

3.7.2.2 Errors Introduced by Calibration Rod Alignment

The calibration distance is the distance from the point the image was captured to the
calibration reference. The width of the calibration rod cross bars is used to estimate this
calibration distance. If the calibration rod is not at right angles to the direction of image
capture an error is introduced into the estimated calibration distance.

A distance error of 25 cm (see table 3.9) implies the calibration rod has rotated by 10
degrees (or each end of the calibration rod has moved by 18 cm).

* Inaccurate measurement of calibration distance can introduce a minor error in
height estimates. Errors in height estimates are accentuated near the top of the tree.

* Inaccurate measurement of calibration distance does not introduce significant

errors in width estimates.

The calibration rod should be perpendicular to the principal axis to within * 6 degrees
(crossbar ends can move up to = 11 cm). This estimates the calibration distance to
+ 10 cm and provides a height estimate precision of £ 20 cm for estimates taken at a tree
height of 30 m from images captured at a position 15 m away from the base of the tree.

Height error (m)

Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 25 cm error in Dist.
10 0.00 0.25 0.50 0.75 1.00
15 0.00 0.17 0.33 0.50 0.67
20 0.00 0.13 0.25 0.38 0.50
Width error (cm)
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Width error (cm) introduced by 25 cm error in Dist.
10 -0.2 -0.2 -0.2 -0.2 -0.2
15 -0.2 -0.2 -0.2 -0.2 -0.2
20 -0.1 -0.1 -0.1 -0.1 -0.1

Table 3.9 - Errors introduced by distance error

3.7.2.3 Errors Introduced by Calibration Rod Vertical Placement

The calibration rod is used as the calibration reference. The calibration rod must be
placed at the same height in both images to retain the same height as a calibration

reference. If the rod is not placed at the same height this introduces:
« Height estimate error of the size of the calibration rod displacement.
* No width estimate errors.

The calibration rod should be placed at the same height in both views to an accuracy of
+ 5 cm. This provides a precision of + 5 cm for height estimates

Chapter 3 - Theoretical Foundations and Design Considerations 65

3.7.2.4 _Errors Introduced by Calibration Rod Placement
in Front of Tree

Trees are three dimensional and the stem has depth. The calibration rod cannot be
placed directly in line with the centre of the tree, instead it must be placed in front of the
tree. The result of this is that there is a small stem offset error (half stem diameter)
introduced near the base of the tree. The effect of stem offset error is described in
section 3.7.1.

¢ (Calibration rod placement can introduce a minor error in height estimates.
« Calibration rod placement does not introduce significant errors in width estimates.

The calibration software can take this into account and correct both height and diameter
estimates for this.

3.7.3 Image Processing and Feature Marking Precision

In order to calibrate the image and estimate feature sizes, points must be marked on the
image. The placement of these points introduces imprecision as the marking relies on
human judgement and the ability to see the feature of interest in the image. This section
discusses the effects of imprecise image marking and calculates the degree of accuracy
to which the points need to be marked.

3.7.3.1 Errors Introduced by Calibration Rod End Pixel Placement

The marking of the calibration rod end points provides information on their location in
the image. Using these marked points and the known calibration rod width the
calibration distance is calculated.

* Minor error introduced in height estimates
* No error introduced in diameter estimates

The end points should be marked to within = 1 pixel. This estimates the calibration
distance to a precision of = 4 cm, which provides a precision in the height estimates as a
result of calibration rod end pixel placement of + 8 cm for estimates taken at a tree
height of 30 m from images captured at a position 15 m from the base of the tree.

66

3.7.3.2 Errors Introduced by Calibration Rod
Centre Pixel Placement

The centre of the calibration rod is used as the calibration reference and taken to be at
breast height. All estimates are made with reference to this. If the placement of this
point is imprecise all height estimates will be out by several cm.

* Minor error introduced in height estimates
e No error introduced in diameter estimates

The centre of the calibration rod must be marked to within * 1 pixel. This provides a
precision in the height estimates as a result of calibration rod centre pixel placement of
+ 1 cm for estimates taken at a tree height of 30 m from images captured at a position
15 m from the base of the tree.

3.7.3.3 __Errors Introduced by Pixel Placement on Feature
The pixel placement on features whose size is being estimated provides their location
information. Imprecise placement has the following effect:
* No significant error introduced in height estimates

e Major error introduced in diameter estimates

As diameter estimates are calculated using the differences in absolute position, and the
two sides of a branch typically will be separated only by a diameter of several pixels

estimates are very sensitive to precise feature marking.

The end points of the line selection for branch sizes should be marked to sub pixel
accuracy if possible. This provides a precision in branch size estimates of a pixel

resolution of + 0.7 cm near the top of the tree.

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Chapter 4

TREESCAN HARDWARE

TreeScan Hardware Overview

Scanner Hardware Overview

Microcontroller Subsystem

SCSI Subsystem

Line Scan Camera Subsystem

Additional Hardware

Hardware Development Environment

68
70
13
80
87
92
103

68

This chapter describes the hardware of the TreeScan system. The main focus is on a
description of the custom designed scanner.

The scanner hardware is described by dividing the scanner into functional blocks. The
interaction between these functional blocks is explained, then a number of aspects of
each functional block are described in greater detail, including; operating theory,
building blocks, schematics, reasons for the chosen implementation, and problems

encountered during development.

4.1 TreeScan Hardware Overview

The TreeScan system is a complete system that consists of a portable computer, a
custom designed scanner and a calibration rod. In addition to this there is a tripod on
which to mount the scanner, a scope sight and digital level to align the scanner, a set of
batteries to power the scanner, cables to connect the scanner to the computer and power

supply, and a set of cases to house the entire system.
Normal operation of the TreeScan system involves two separate operations:

1. Image Capture: Images must be captured using the scanner under control of the
portable computer. All system components must be taken into the forest to capture

images.

2. Parameter Extraction: Tree dimensions must be estimated using routines
implemented in software. The parameter extraction requires only the portable
computer. This may be carried out at any time after the images have been
captured, either in the forest or back in the office.

The system configured for image capture consists of the scanner set up on the tripod
and connected to the portable computer, as shown in figure 4.1. The scanner is pointed
at the tree to be imaged with the calibration rod fully extended and placed against the
tree. The scanner is then aligned with the tree using the scope sight and its angular
position with respect to the tree recorded. The image can then be captured.

The scanner captures the image data under control of the computer and passes the image
data to the computer for storage. The computer sends high level scanner control
commands (SCCs) to the scanner. The microcontroller inside the scanner carries out
tasks based on these. Scanner control commands are high level instructions such as;
move the scanning mirror home, capture a block of lines, or move the lens focus to
infinity.

Chapter 4 - TreeScan Hardware 69

Scanner Calibration
rod
Tripod
Carrying
cases
Computer

Figure 4.1 - TreeScan system ready for image capture

The portable computer and scanner batteries are permanently housed in the smaller of
the two protective carrying cases (see figure 4.1). All other components including

scanner, tripod, cabling, scope sight and digital level fit into the second protective case.

The portable computer is an Apple Macintosh Powerbook 520c with 20 megabytes of
RAM. The Powerbook 520c is based on the Motorola 68040 processor runnincgs 3.:5
25 MHz. Combined with the flexible NIH Image image processing softwareathe
Powerbook provides a powerful image processing environment. The Powerbook also
has inbuilt support to connect high speed external SCSI devices.

The hardware and software are closely interrelated in any complex microprocessor
based system such as the TreeScan system. The choice of hardware determines how the
software is implemented and influences the flexibility of the system. The hardware
implemented was chosen for its flexibility, relatively low cost, and to provide a short
development time. Where the hardware has limitations, in some cases these can be
circumvented by a resourceful software implementation.

page 107)

70

4.2 Scanner Hardware Overview

The scanner is the "camera" in the system and is a custom designed scientific
instrument. During an image capture there are a large number of time critical tasks to be
coordinated. A dedicated microcontroller based instrument provides the ability to
coordinate these tasks while retaining maximum control and flexibility.

A microprocessor based instrument can be designed so that essential data processing is
handled by the microcontroller itself or by dedicated hardware (such as specialised A/D
converters), which will be faster than the general purpose microcontroller hardware.
However, the greatest flexibility will be maintained if the microcontroller hardware is
used. For the TreeScan prototype it was decided that it was essential to maintain
flexibility.

i —————————

: o Pouéer s;jpply i Line scan camera !

' ol okl subsystem '

| Y//_ Y :

I - -

| 2 scsl - 1-[Microcontroller 4.["Scanning mirror

| " subsystem subsystem ~ subsystem !

| A !

: \5) Lens ;
Portable : subsystem :
Computer : Scanner i

]

Figure 4.2 - TreeScan scanner functional block diagram

The TreeScan scanner can be divided into six functional blocks (see figure 4.2), the

physical layout of which is shown figure 4.3. These functional blocks are:

1. Microcontroller subsystem 4. Scanning mirror subsystem
2. SCSI subsystem 5. Lens subsystem
3. Line scan camera subsystem 6. Power supply subsystem

Microcontroller subsystem - Central to the scanner is the microcontroller
subsystem. The microcontroller coordinates all functions of the TreeScan scanner and
carries out tasks based on the SCC's passed from the portable computer. The
microcontroller handles the actual image acquisition and image transfer to the computer,
as well as the generation of signals to control the other five functional blocks.

SCSI subsystem - Scanner control commands are passed from the computer to the
scanner via a SCSI interface (Small Computer Systems Interface - see section 4.4). The

Chapter 4 - TreeScan Hardware 71

Scanning Controller Line scan
mechanism Status LED's camera

Scope Mirror Lens Focus Scanner Cabling to
mount mechanism chassis computer

Figure 4.3 - The scanner internal layout

SCSI interface is a high speed communications interface often used to communicate
between a computer and peripheral devices. The SCSI specification incorporates a
communications protocol that consists of a sequence of bus phases with a complex
sequence of control signalling. A SCSI bus controller deals with the bus phases and
bus signalling, providing a straight-forward interface to the SCSI bus for the
microcontroller.

Line scan camera subsystem - The third important block is the line scan camera
subsystem. The image data is captured by the line scan camera and presented to the
microcontroller as a series of analog video signals. The microcontroller converts these
analog signals to a digital representation which is then sent to the computer using the
SCSI controller. The line scan camera captures grey scale image information at a
resolution of 1024 pixels per line. The line scan camera is controlled by two timing

signals generated by the microcontroller; a line/integration clock and a pixel clock.

Scanning mirror subsystem - The scanning mirror subsystem consists of a mirror
mounted on a precision rotation mechanism. As the mechanism is slowly rotated the
image is built up one line at a time. The mechanism is rotated using a worm wheel drive
shaft attached to a stepper motor. The microcontroller software determines when the
stepper motor is rotated. The rotation mechanism is precision machined and mounted on
miniature roller bearings. Two optical position sensors are used to detect an exact home
position for the mechanism.

72

Lens subsystem - The fifth functional block is the lens subsystem. The purpose of
the lens is to focus an image of a real world object on to the sensor of the line scan
camera. The lens has motorised focus control, motorised zoom control and
electromechanical aperture control. This allows maximum flexibility during image
capture. The infinity position of the focus stepper motor is detected by a limit switch.

Power supply subsystem - The power supply subsystem provides power at the
required voltage to all of the above modules from two external batteries. The power
supply has two states controlled by the microcontroller:

* Power save - during which power is turned off to all of the high consumption
components. Only the CMOS microcontroller and SCSI controller are left
powered so the computer can still communicate with the scanner.

* Power on - during which power is turned on to all components. The scanner is
in this state only during image capture.

Figure 4.4 is a signal flow diagram that provides logical details of the signals that pass
between individual functional blocks, each of which is discussed in detail in sections
4.3 to 4.6.

The TreeScan system is still undergoing continual improvement. During field trials with
the MKk1 prototype several problems were successfully identified (see section 6.2 for a
discussion on these). As a result two aspects of the system were redesigned for the
Mk2 prototype. The system is currently in the Mk2 prototype stage. Unless specifically
stated otherwise, discussions on hardware will apply to both the Mkl and Mk2

versions of the TreeScan system.

Image data

emrws o

]
4

Macintosh
Portable Computer

SCSI

AN

SCSI commands

~ subsystem

Power

supply
subsystem

TreeScan Scanner

Image data

AN

Control signals

- Power
Leeansnas

Microcontroller
subsystem

. |mage data (video)

Ty

Line scan

Timing signals

»

camera

"\ Synch signals

subsystem

Stepper motor control””

Lens

™ Home position

mEEsmsees e

asms

subsystem

Stepper motor control

"\ Home position

Scanning
mirror
subsystem

sEsee .-

BT s

! Image data
I (iight)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

Figure 4.4 - System signal flow diagram

aIeMpIeH UBdSaal] - ¢ 191dey)

€L

74

4.2.1 Scanner Controller Board

A printed circuit board (PCB) has been designed and manufactured to accommodate all
the scanner electronics. This consists of the microcontroller subsystem self-contained
on the PCB, and the driving and interfacing electronics for the other functional blocks.

The PCB is separated into three physical sections with separated power supply sections
to reduce possible noise problems:

= Digital - Microcontroller and SCSI controller
These are operating at a clock speed of 16 MHz and could cause high frequency
noise in the analog sections.

* Analog - Line scan camera drivers, stepper motor drivers, and lens drivers
Components in this section draw large currents which could cause supply voltage

fluctuations.

* Analog reference - A/D reference voltages and video shield
These are isolated from the digital and analog sections to reduce noise on the

video signal.

A small plugin daughter board contains the additional lens driving circuitry required for

the Mk2 version of the scanner.

Video signal Line scan camera Lens driving
driver electronics

Power supply :
subsystem input

SCSI bus controller Microcontroller Mirror _stepper Daughter
and terminator subsystem driver board

Figure 4.5 - Scanner controller board layout

Chapter 4 - TreeScan Hardware 75

4.3 Microcontroller Subsystem

General description

At the core of the scanner lies the microcontroller coordinating the operations inside the
scanner, many of which are time critical so a dedicated microcontroller is necessary.
The microcontroller carries out tasks based on scanner control commands sent from the
portable computer. The main task of the microcontroller is to perform the A/D
conversion of the analog video data and transfer this image data to the computer. In
addition to this the microcontroller must generate signals to control the line scan camera,
the lens, the SCSI bus controller, the power supply, and operate to the stepper motors.

The microcontroller used in the scanner is the Siemens 80C517A. The 80C517A is an
8-bit CMOS single chip microcontroller designed for control in hostile environments
such as general instrumentation, and industrial and automotive control systems. The
80C517A is a high end member of the 8052 microcontroller family, chosen for its 100
kHz on board A/D converter, the fastest available in this class of microcontroller. The
80C517A has numerous other advanced features including serial communications
support, five 8-bit input / output communications ports, four clocks, and a four priority

level interrupt handling system.

The microcontroller performs a 10 bit A/D conversion of the video signal, however
normally only the top 8 bits are used in the TreeScan system to increase image capture
speed. The reason for this is that the result of this A/D conversion is stored in two
bytes. The top 8 bits in one byte and bottom 2 bits in another byte. This has the
implication that the top 8 bits can be rapidly read out as an 8 bit conversion over the full
A/D dynamic range. If however an 8 bit conversion over the lower portion of the A/D
dynamic range or a 10 bit conversion with 8 bit lookup table is required the relevant bits
of the two bytes need to be combined. This requires extra processing time so increases
the time required per pixel conversion. This matter is further discussed in the section on

timing in the software chapter (see section 5.2.3.3).

Both memory mapped I/O and port based /O are used to communicate with other
components in the scanner. The interface to the SCSI bus controller is through memory
mapped I/O (see memory map - figure 4.7). Communications to all other functional
blocks is port based.

76

Additional
/O lines
= AH7

High order address bus (AHO-AH6)

H Low order address bus
AO0-A4
\ W R 7 I

SCsSi = '
| " RAM & ROM [Latch Microcontroller
controlleryg J,,% &= | | 'Gj _
\ AN NS N L] ;T\ l
! =
wa
|
s

Mux address / data bus 16 MHz

| Rl

—8

g

Figure 4.6 - Microcontroller block diagram schematic

Technical description

Associated with the microcontroller is 32 kBytes of EPROM, 32 kBytes of external
RAM, an address latch, and an oscillator. The microcontroller code is stored in EPROM
and currently takes approximately 10 KBytes. The A/D lookup tables are also stored in
EPROM and take up 5 KBytes (5 x 1 KByte). This provides adequate space for further
program expansion if required. The external RAM was provided as a precaution in case
temporary data storage was required to buffer the image data. This is currently being
used to allow lines to be resent if errors occur in the transfer of data over the SCSI

interface.

The microcontroller has two ports which are used as buses. A high order address bus
and a multiplexed low order address and data bus. A 74HC573 address latch is used to
decode the low order address bus from the multiplexed address data bus. The address
latch is triggered by the ALE signal. Using the top address line (AH7) either the
external RAM or the SCSI controller can be selected and nqﬁ@ﬁlare&s decoding circuitry
is required. The PSEN', RD', WR', and AH7 signals are used to select ROM, RAM,
and the SCSI bus controller

The 80C517A will operate on a clock frequency anywhere from 3.5 MHz to 18 MHz.
An operating frequency of 16 MHz was chosen because this provides the fastest A/D
conversion time of 7 us (at 18 MHz A/D conversion time is 12.4 ps). This clock signal
is generated using a 16 MHz crystal oscillator which also provides a clock signal for the
SCSI controller.

Chapter 4 - TreeScan Hardware 77

4.3.1 Microcontroller Subsystem Memory Organisation

The organisation of the memory space of the 80C517 CPU is complicated; detailed
information is provided in appendix H. The 80C517 CPU has separate address spaces
for program and data memory, and manipulates operands in the four address spaces:

» Up to 64 kBytes of program memory
» Up to 64 kBytes of external data memory
* 256 bytes of internal data memory

» 128 bytes of special function registers

Program memory can either be an external EPROM or up to 32 kBytes of factory
programmed ROM on the micro controller chip. The active program memory is

determined by the state of the EA pin during powerup.

There are two forms of external data memory; up to 64 kByte external RAM and
2 kBytes of on chip XRAM. The XRAM is accessed using identical instructions to
those used for accessing external RAM but with bit 1 of the SYSCON register set.

All registers, except the program counter and four general purpose register banks,
reside in the special function register (SFR) area. The SFR's include arithmetic
registers, pointers and registers to provide an interface between on chip peripherals.

Registers which lie on 8 byte boundaries are bit addressable.

The internal RAM contains four banks of registers and a 128 bit bit-addressable
section overlapping a part of the internal RAM. The stack pointer is initialised to O8h in
internal RAM on reset. There is an address overlap between the upper 128 bytes of

TreeScan Microcontroller Memory Map
FFFF]
I —
/| Upper [seR
— | Intemal | — ‘
rooo IR SCS| rav | [: | SFR's
7FFF F7FF | | B —
AD | 0 ‘ &0
% Tables s | 7F | L RAM
|
x —_— 3| I | | Variables
o e T SCSl line —_—
0000 Code o000 buffering ®
Program memory External data memory Internal RAM SFR’s

Figure 4.7 - Microcontroller memory map

78

internal RAM and the SFR's. The addressing mode used determines whether the SFRs
are addressed or whether internal RAM is addressed.

The TreeScan scanner microcontroller uses the following sections of the 80C517A
memory space (see figure 4.7) :

* 32 kByte EPROM to store the microcontroller code and A/D lookup tables.

» 32 kByte RAM of which 1 kByte is used to buffer the SCSI transfer.

* SCSI controller registers repeatedly mapped into the top 32 kBytes of
external data memory.

* The lower internal RAM for working variables.

» The special function registers.

4.3.2 Microcontroller Subsystem Memory Timing

In microprocessor design any external device must be fast enough to match the
microprocessor read and write cycle timing. Problems are often encountered with
EPROM read cycles. In this case:

* Upon the falling edge of ALE the address latch is triggered. Assuming a
maximum delay of 25 nS within the latch the low order address bus data becomes
valid no later than 25 nS after falling edge of ALE. The data bus is expected to be
valid no later than 233 nS after the falling edge of ALE. This allows the EPROM
208 nS address access time from valid addressing to valid data (see figure 4.8).

= PSEN' is used as EPROM output enable. PSEN' is asserted a minimum of
150 nS before valid data, this allows for an OE' to output delay of 150 nS.

e 233nS
ALE \ 5

‘ Sn§

an

\< 15008 !

PSEN |
> 208 nS? >

A/D bus : ;

Figure 4.8 - EPROM read cycle timing

Chapter 4 - TreeScan Hardware 79

EPROMSs must be selected which fit the above criteria. 200 nS EPROMSs (75 nS OE' to
output delay) would be usable but barely under the 208 nS address access time. To be
safe 170 nS EPROMs were used (70 nS OE' to output delay).

80

4.4 SCSI Subsystem

General description

The SCSI subsystem provides a two way communications interface between the
microcontroller and the Macintosh computer over a SCSI communications bus using a
SCSI bus controller. This interface is used to send scanner control commands to the
scanner and transfer the image data back to the computer.

SCSI stands for Small Computer Systems Interface and is a high speed, flexible
communications interface commonly used to connect peripheral devices to computers
(most hard disks are SCSI). The SCSI interface allows for multiple (up to seven)
devices to be attached to a single SCSI bus using logical addressing, and allows for
data rates up to 4 Mbytes per second. The SCSI communications protocol consists of a
sequence of bus phases mediated by a complex sequence of control signals (see section
4.4.] for a discussion on implementing SCSI).

A SCSI bus controller (SBC) chip provides a simple interface to the SCSI bus for a
microcontroller. At the time of development, SCSI bus controllers were available from
Texas Instruments, Western Digital, and AMD. The SN75C091A SCSI controller from
Texas Instruments was incorporated into the design based on a short chip delivery time
and the availability of reference information.

Several problems were encountered while implementing the SCSI subsystem. The main
obstacle was a result of unexpected timing fluctuations. Noise problems were also
experienced on the development circuit implemented on veroboard. These are further
discussed in section 4.4.3.

Manufacturer SCSI Chip Availability

Texas Instruments SN75C091A Available

Western Digital WD33C93B Available - Delayed reference data
AMD AMS3C80APC Available - Delayed reference data
Hitachi 64951 Not Available

Table 4.1 - Availability of SCSI bus controllers

Chapter 4 - TreeScan Hardware 81

| terminator

Low order address bus

AO0-A4
\ E B PAHZ
N, SCS el

|
; o Microcontroller |
ScsiBus “ | controller L@] i

AN _@_H /\[J
ax L]U-

DO-D7 L ve |

.I |
16 MHz

Data Bus

Figure 4.9 - SCSI block diagram schematic

Technical description

The SCSI subsystem consists of a SCSI bus controller and a SCSI bus terminator
inside the scanner. Both the terminator and bus controller are attached to the SCSI bus

which is connected to the computer.

The SN75C091A SCSI bus controller consists of a 68 pin square PLCC package. The
microcontroller communicates with the SCSI controller using 32 bytes of memory
mapped registers. The SCSI controller is selected by the inverted top address line. By
using the top address line no address decoding circuitry is required. This maps the

SCSI registers repeatedly into the top 32K of the microcontroller address space.

The SCSI bus must be correctly terminated. The scanner is internally terminated so it
can only be the final device on a SCSI chain. The terminator used in the scanner is a
UC5601 chip and powered from the TERMPOWER line on the SCSI bus.

82

4.4.1 Implementing SCSI : Design Specifications

The SCSI interface is defined by the ANSI X3.131 - 1986 standard (ANSI, 1986). The
standard defines the mechanical, electrical, and functional requirements for the SCSI
bus, and the protocol command sets. The SCSI bus consists of 18 signal lines, nine of
which are control signal lines and nine of which are data signal lines. The SCSI
communications protocol consists of a sequence of bus phases mediated by a complex
sequence of control signals.

The SCSI interface allows for multiple devices attached to a single SCSI bus using
logical addressing. The SCSI bus consists of a series of daisy-chained devices
terminated at each end. The specification allows for data rates up to 4M bytes per
second and cable lengths up to 25 m dependent on the circuit implementation. Transfers

may be implemented using either a synchronous or an asynchronous protocol.

The standard specifies a maximum cable length of 6 m for an implementation with
single ended drivers and receivers. A single ended implementation should use a cable
with a 132 ohm characteristic impedance to match the terminators, and minimal media
discontinuities to reduce signal reflections. Ideal conditions are not usually attainable
and an implementation may require the trade-offs in shielding effectiveness, cable
length, the number of loads, transfer rates, and cost to achieve satisfactory system
operation (ANSI, 1986). Practically, this implies that a maximum cable length of 1.8m
(6 ft) is used to prevent data corruption during transfer. A cable length of 1.8 m is just
adequate for the TreeScan system.

A brief description of the SCSI bus protocols and general SCSI commands is provided
here. Further details are presented in appendix I, or can be found in the reference
material (ANSI, 1986) .

4.4.1.1 CSI Bus Protocols

The SCSI protocol contains eight distinct phases (see next page). The SCSI bus can
only be in one of these eight phases at any one time. A SCSI operation is a completed
SCSI command or data transfer. A single SCSI operation consists of the execution of a
carefully controlled sequence of these bus phases.

The device that requests a SCSI operation is called the initiator. The device that
performs the operation requested by the initiator is the target. During a SCSI operation
control of the bus is handed back and forth between the initiator and the target until the
operation is complete. Only a device that is in control of the SCSI bus may change the

bus phase.

Chapter 4 - TreeScan Hardware 83

The eight bus phases consist of the following (see appendix I):

* BUS FREE Phase

* ARBITRATION Phase

* SELECTION Phase

* RESELECTION Phase

* COMMAND Phase \

* DATA Phase | Collectively called the
 STATUS Phase I INFORMATION Phase
* MESSAGE Phase /

A completed SCSI operation will start with a BUS FREE phase and must proceed
through an ARBITRATION phase, SELECTION phase, COMMAND phase, STATUS
phase, and a MESSAGE phase. In addition to this the SCSI operation may include a
RESELECTION phase and a DATA phase. This sequence can only be broken through
a timeout or the undesirable assertion of the bus RESET signal at which time the bus
must be released to the BUS FREE phase.

During these bus phases the bus control signals are asserted in a complicated control
and handshaking sequence. The sequence the control signals may be asserted is
specified in the ANSI standard. A typical SCSI transfer is discussed in section 5.2.4.
Minimal and maximal duration between signal transitions is also specified in the

standard. The SCSI bus signals are listed below (all signals are active low):
» Control signals: BSY, MSG, SEL, REQ, C/D, ACK, /O, ATN, RST
* Data signals: SDO - SD7, SDP

4.4.1.2 General SCSI Commands

At a higher level, SCSI commands are sent from the computer to the microcontroller.
This consists of the transfer of a command descriptor block. A command descriptor
block is a data structure containing a command opcode and parameters associated with

this opcode. The command descriptor block may be six, ten, or twelve bytes long.

The first byte of the command descriptor block contains the operation code. The
operation code is the SCSI command number. The top three bits of an operation code
specify the group code. SCSI commands fall in several categories based on this group
code:
Group 0 : six byte commands Group 5 : 12 byte commands
Group 1 : ten byte commands Group 6 - 7 : Vendor unique
Group 2 - 4 :Reserved

84

bit 7 6 > 4 3 2 1 0
Operation code
Logical unit number Reserved

Command specific eg. Transfer length (MSB)

Command specific eg. Transfer length (LSB)

Control byte

Figure 4.10 - Typical command descriptor block (ANSI, 1986)

A typical command transfer block would contain the information shown in figure 4.10.

In order for a device to adhere to the SCSI specification a number of general commands
must be implemented. Out of 256 available commands four commands are classed as
mandatory, four commands are for devices that support independant self configuring
software, twenty two commands are optional, twenty three commands are vendor

specific, with the rest reserved for future use.

The classification of commands as mandatory or optional is dependent on the device
type. Device types include direct access devices, sequential access devices, printer

devices, processor devices and WORM devices (see appendix I).

The TreeScan system implements 20 commands, all within the six byte command

range.

Chapter 4 - TreeScan Hardware 85

4.4.2 SCSI Bus Controller (SN75C091A)

The SN75C091A SBC manufactured by Texas Instruments is a single ended flexible
SCSI implementation for microprocessors. It provides DMA or programmed I/O
capabilities and can be interrupt driven to minimise host polling. The SN75C091A can
execute multiphase commands to minimise host interrupts. Chip access is provided
through 32 directly addressable registers (Texas Instruments, 1990).

The SBC is driven by chip commands written to the COMMAND register. These
commands are instructions from the microcontroller to the SBC to modify the current
bus phase or transfer data. These commands fall in three categories:

* Non interrupting commands
» Single phase interrupting commands
* Multi phase interrupting commands
The SBC is controlled by the background loop of the microcontroller software. The

TreeScan system uses mainly single phase interrupting commands in a processor polled
loop (see section 5.2.4). Appendix J provides more detailed SBC specifications.

86

4.4.3 SCSI Subsystem Development Obstacles

Several problems were encountered during the development of the SCSI interface:

Problems were experienced with the TreeScan development boards;

1.

Noise problems were experienced during data transfer over the SCSI bus
connection to the development board. This was probably due to lack of shielding
of the SCSI bus connection to the SCSI bus controller (developed on the
veroboard). This intermittent problem was solved by using the custom designed
printed circuit board.

For testing the SBC was piggybacked in place of another memory mapped I/O
device on the microcontroller development board. The trigger pulse of the
replaced I/O device was insufficient in duration to latch the SCSI registers.

The second major problem involved unexpected timing fluctuations of the SCSI

interface and was discovered during the development of the SCSI transfer algorithm

(see section 5.2.4).

s

2

Although SCSI is a handshake system, with a 'wait if not ready' flag, there is
insufficient time in the main capture loop to check this flag. It is assumed the
SCSI interface (4 MBytes/s) is able to keep up with A/D conversion (100 kHz).
At times the SCSI controller of the Macintosh was unable to receive data for
intervals of approx 15 mS in duration. This was probably due to background
operating system tasks and caused image bytes to be lost as the reading out of the
line scan camera data could not be delayed. An error detection and line resend
scheme has been implemented (see section 5.2.4 for further detail).

The SCSI interface was slow to react to SCSI phase changes introducing a
minimum SCSI transfer duration of approximately 170 mS (see section 5.2.4 for
further detail). This transfer duration should be in the order of nanoseconds, and
its cause should be further investigated.

During the tracking of the above problems the SCSI clock frequency was
increased to 20 MHz. The microcontroller still operated at 16 MHz. This
introduced a timing mismatch which caused occasional (approx. 1 byte in 50 000)
bytes to be gained during the transfer. This was rectified as soon as it was
discovered, but the consequence of this was that the error detection and resend
scheme was complicated unnecessarily.

Chapter 4 - TreeScan Hardware 87

4.5 Line Scan Camera Subsystem

General description

The line scan camera subsystem captures image data and converts it to an analog video
signal which is used to generate the captured image. The line scan camera subsystem
consists of a CCD line scan camera (LSC), interfacing buffers, and the analog reference

section of the controller board.

The line scan camera subsystem is a very important section of the TreeScan scanner.
The video signal determines the image quality so it is important to ensure the video
signal is well shielded and that the microcontroller analog reference voltages are stable.
The image is captured at 256 level greyscale (8 bit digitisation) which is well within the
2000:1 RMS dynamic range of the line scan camera.

The line scan camera being used is a Loral Fairchild CAM 1301R camera designed for
incorporation into non-contact electro-optical measurement and process control
systems. The CAM 1301R has a resolution of 1024 x 1 pixels and incorporates anti-
blooming and electronic exposure control. The camera accepts standard C mount

lenses, with the option of using bayonet Nikon and Olympus mounts also available.

A number of sources of line scan cameras or line scan camera systems were considered
which are summarised in table 4.2. The Leaf and Chinon cameras are complete area
scanning systems which make use of a line scan approach similar to the TreeScan

system. Modification of these systems was investigated but not pursued.

Line scan cameras are available with analog or digital output; digital output is preferred
but the cost of these cameras is very high. Cameras with analog output are less
specialised devices and are considerably less expensive. Analog cameras require signal
A/D conversion by some external device. This is completed by the microcontroller in
the TreeScan system. It was decided to use the Loral Fairchild CAM 1301R line scan
camera based on cost and delivery time.

Supplier Camera type Interface Resolution Price
Loral Fairchild CAM/CCD 1000 series | Analog 512 to 6000 Medium
DALSA Inc CL-CX series Analog, digital 128 to 4096 High

i2S iDC / IVC 100 series Analog, digital 256 to 3456 High
Pulnix J series miniature LSC | Analog 1024 to 5000 | Medium
Leaf - System Leaf digital camera SCSI 2000 x 1500 Very high
Chinon - System | DS-3000 scanner Digital, SCSI 3328 x 2300 Low

Table 4.2 - Line scan cameras available

88

PHOTOELEMENT DIMENSIONS

PHOTOGATE

8\

/
ALUMINUM
LIGHT SHIELD

et

"li

/
r/ SERPENTINE
/ ;TDP

All gimensions are typcal values.

Al

SIS SN

L
|l
N

Figure 4.11 - Imaging sensor photosite layout

The CAM 1301R is controlled by two timing signals. One signal that controls the line
rate and integration time, and another signal that clocks the video data out. The camera
derives two synchronisation signals from these timing signals which are returned and
used to synchronise the microcontroller A/D conversion (see section 4.5.2).

The CAM 1301R contains a Loral Fairchild CCD134 imaging sensor. The CCD134
sensor contains 1062 array elements of which 1024 are photosensitive. Each photosite
1s 13 pm x 13 wm on a centre spacing of 13 um (see figure 4.11). Between photosites
there is a 5 um serpentine stop channel providing an active area per pixel of 13 x 8 um.

The sensor has a length of 13.8 mm. This relates to a one inch format for lens

requirements.

The main obstacle encountered during the development of the line scan camera
subsystem was the timing constraints the line scan camera imposes on the rest of the
TreeScan system. Image data is being clocked out of the camera at approximately 100
kHz, during which time the subsequent line is being exposed. This implies the data
being clocked out cannot be slowed or temporarily halted as this invalidates the data of
the subsequent image line. The implications of this are further discussed in the software

chapter, see section 5.2.1.

Chapter 4 - TreeScan Hardware 89

+15V, 45V,
GND
Data clock _ ‘
! Line / Integrate ~_ i
L H {]
l | e
. - Data rate ! H
Y — . Line scan }
Microcontroller i i Line synch | Saram
"1, Videosignal il
Analog reference— = &
S <& Shield ’
Analog GND

Figure 4.12 - LSC interface block diagram schematic

Technical description

The line scan camera subsystem consists of a line scan camera, interfacing buffers, and

analog reference section of the controller board.

The CAM 1301R can be operated at a wide range of frequencies (up to 20 MHz) and is
controlled by two timing signals generated as pulse width modulated signals by the
microcontroller software, the DATA CLOCK and a LINE/INTEGRATE clock - see section
4.5.2. These camera timing inputs are differential with signal levels converted to TTL
levels by internal differential line receivers. At low data rates (<1 MHz) and short cable
lengths (<6 ft) single ended TTL input clock signals may be used provided the negative
differential input is biased at +1V. This is the camera connection scheme used in the
TreeScan scanner. All the clock signals sent to and from the camera are buffered by

T4HCO04 inverters to act as line drivers and receivers.

The video output is available as a 75 Q source impedance signal on either of two coaxial
connectors on the rear of the camera. The video signal has a peak of +1 volt at sensor

saturation.

The video signal is terminated by a 75Q resistor and passed to the microcontroller for
A/D conversion. The microcontroller has an analog GND and +1 volt reference for the
A/D convertor which are isolated from the rest of the circuit using ferrite beads for noise

suppression.

The camera requires power supply inputs of +5, +15 and -15 volts DC. Internal
regulators and filters provide noise immunity for the CCD sensor bias voltages.

90

4.5.1 Imaging Sensor Spectral Response

The spectral response of the CCD134 imaging sensor covers light over the wavelengths
of 35 nm to 1000 nm with a peak responsivity of 5.8 VuJ-lem-2 at 800 nm.

A Schott KG-1 infra-red cut off filter is made part of the standard camera. The filter
transmission convolved with the spectral response of the imaging sensor gives the
camera a response from about 350 nm to 800 nm, with a peak response at 600 nm
(Loral Fairchild, 1991). This spectral response covers most of the visible spectrum with
the greatest response in the red colour band.

Typical spectral response

=il M~
2 ™ - Sensor response

A .
// #____Ai,—f Camera response
\

7 iﬁf
[

N W A 0O

Responsivity (VuJ-1om2)

-

400 500 600 700 800 900 1000 1100
Wavelength (nm)

o

Figure 4.13 - CCD sensor spectral response

4.5.2 Line Scan Camera Subsystem Signal Timing

The line scan camera is controlled by two timing signals; a DATA CLOCK and a
LINE/INTEGRATE clock. The microcontroller generates both these timing signals in
software using on board timers.

» The DATA CLOCK rate determines the rate at which video data is clocked out of
the camera. The DATA CLOCK rate is set at approximately 100 kHz, well under
the maximum camera clock rate of 20MHz.

« The LINE/INTEGRATE clock determines both the line scan rate and the optical
integration time (or exposure time). Integration time is controlled by the duty
cycle of LINE/INTEGRATE clock, while the line scan rate is controlled by its
frequency (see figure 4.14).

Note : Terms in capital letters refer to actual signal lines.

Chapter 4 - TreeScan Hardware 91

The TreeScan system must operate under low light forestry conditions. It has been
empirically determined that the integration time will typically be somewhere between 2
and 50 mS using a large aperture lens. The frequency of the LINE/INTEGRATE clock
varies with integration time, with a maximum frequency of 50 Hz (scan rate of 50 lines
per second) determined by the A/D speed of the microcontroller .

The above timing signals are returned from the line scan camera as synchronisation

signals:
e The DATA RATE signal is the DATA CLOCK delayed by approximately 10 nS.

e The LINE SYNCH signal indicates the start of line time and is derived from the
LINE/INTEGRATE clock with a delay of 1 - 2 DATA CLOCK cycles.

The DATA RATE signal is used to trigger the A/D conversion of each pixel. The LINE
SYNCH signal is used for line synchronisation and precedes active video by 24 DATA
CLOCK cycles.

The video signal contains 1024 individual pixel levels which corresponds to 1024
DATA CLOCK cycles. Preceding and following the active video there is a 3 clock cycle
dark reference. Following the final dark reference there is a two clock cycle white
reference. As a result, a minimum of 1062 DATA CLOCK cycles are required to fully
clock out the CCD134 sensor.

TIMING DIAGRAM

Y1134 L., 19.30.20.22.700. 0102,
DATA RATE MUy U oo U nunuounuo oo

I—— INTEGRATION PERIOD 4"].

L f

LINE /INTEGRATE —/

1

1

L]

1
IN . ! |
—.{ [i]i= LINE RATE i

L]

I

LINE SYNC 1 I L
ouT i
' 1 WHITE
1 : REFERENCE
I iy nwn
' —a 3 g
[DARK i DARK
" ‘m a—
VIDEO e
! ISOLATION ISOLATION
CELLS CELLS

NOTE B DELAY IS 1-2 DATA RATE CLOCK CYCLES
TIMING RELATION DEPENDS UPON INTERNAL SYNCHRONIZATION CIRCUITRY
CONSEQUENTLY LINE SYNC SHOULD BE USED FOR EXTERNAL PROCESSING

Figure 4.14 - Line scan camera timing
(LSC pamphlet - Loral Fairchild, 1992)

92

4.6 Additional Hardware

This section describes additional TreeScan hardware. This includes a discussion on the
final three functional blocks (scanning mirror subsystem, lens subsystem, and power
supply subsystem) and a description of the scanner chassis, the protective carrying

cases, and the hardware used to monitor scanner status.

4.6.1 Scanning Mirror Subsystem

General description

Images are built up one line at a time by incrementally rotating the scanning mirror. The
scanning mirror subsystem, which provides control over the positioning of this mirror,
consists of a mirror mounted on a precision rotation mechanism that is driven by a

stepper motor.

The custom made precision rotation mechanism consists of a shaft upon which the
mirror is mounted and a wormwheel drive. The wormwheel drive has a direct 728 to 1
reduction ratio and has been engineered to ensure minimal backlash in the gears. The
shaft is mounted on ball bearings for smooth rotation. The reduction and precision of
the rotation mechanism along with the step size of the stepper motor determines the
vertical pixel spacing. The design and construction of the precision mechanism was
completed by Mr Thomas Look.

Wormwheel
driveshaft Mirror

Paosition sensors

Stepper motor Rotating Rotating shaft
mechanism

Figure 4.15 - Scanning mirror assembly

Chapter 4 - TreeScan Hardware 93

Two optical position sensors are used to determine the exact home position of the
mechanism. The first sensor determines the position of the large wheel, with the second
sensor detecting the position of the stepper motor within a single revolution. These are
directly interfaced to the microcontroller.

A four phase, bipolar stepper motor is used to drive the precision rotation mechanism.
The stepper motor has a step angle of 1.8 degrees per step which relates to 200 steps
per revolution of the stepper motor. This provides the flexibility of double the required
resolution with 16000 stepper steps over the full tree height.

Stepper motor detent torque of 70 mNm is more than adequate. The main shaft rotates
freely and with a geared reduction of 728 : 1 results in negligible stepper motor torque
requirements to rotate the mechanism. This allows the stepper motor to operate near its

maximum rate of approximately 400 steps per second for this supply voltage.

Technical description

This section describes both the mechanics of the rotation mechanism as well as the

stepper motor control circuitry.
Mechanical design

The mirror used to reflect the image to be captured is a float glass mirror with a metallic
enhanced front surface coating suitable for wavelengths of 400 to 750 nm (>90%
reflectance of all wavelengths). The glass thickness is 3.05 mm.

The wormwheel drive consists of a 5.7 cm brass wheel with an M3 thread machined on
the outer edge. A shaft was machined to mesh with this edge and is attached to the

stepper motor shaft. The arrangement can be seen in figure 4.15.

The precision rotation mechanism must produce accurate and repeatable mirror
positioning with minimal gear backlash. Vertical image pixel spacing of 8000 pixels for
a 40 metre tree required pixel angular spacing to be 1/100 of a degree. Thus the mirror
rotation per line must be 0.005 degrees. These are fine requirements given the
machining facilities available. The shaft alignment had a similar requirement of bearing
movement of less than 1 pixel. This means the shaft alignment must be repeatable to
within 0.01 degrees (or shaft end position repeatable to + 0.017 mm).

After machining the repeatability of the mechanism was tested by measuring the
repeatability of a reflected laser point on a distant wall. There was no backlash or
alignment movement to the limits of measurability £ 0.01 degrees (or 2 pixels).

94

, Stepper
ANLI=N motor

Pulse | —Iri } E

Direction mg Stepper

Microcontroller

Mode controller _Enbl(2)! driver
Sense IYY VY
759 i
+5 Home position
e e 160 i sensors x2

o * Lwg,

n—Lr %M—l

Figure 4.16 - Stepper motor controller block diagram schematic

Stepper motor control

The four phase stepper motor is driven using a two phase bipolar stepper motor control
circuit. The circuit consists of a stepper controller IC (L297 manufactured by SGS-
Thompson) used in conjunction with a darlington stepper motor driver chip (L298N).

Two modifications were made to the stepper motor of the Mk2 TreeScan unit.

e The Mk1 unit had a 1.8 degree per step stepper motor, with two motor steps for
each mirror step (providing double the required resolution). In the Mk2 unit this
motor was replaced by a 3.75 degree per step stepper motor. This allowed for a
speed increase of 2 ms per line during image capture, and a speed increase by a

factor of 2 when homing the mechanism.

* The stepper motor supply voltage was increased from 5 V to +12V. This also
allowed for a further speed increase.

Time for 8000 mirror steps (Mk1) = 16000 stepper steps @ 330 steps /s
= 48 seconds

Time for 8000 mirror steps (Mk2) = 8000 stepper steps @ 500 steps /s
= 16 seconds

The Mk2 stepper motor may be driven in full step or half step mode to provide smaller
step sizes if required.

Chapter 4 - TreeScan Hardware 95

4.6.2 Lens Subsystem

General description

The lens focuses an optical image of a real world object on the line scan camera imaging
sensor. Variations in object distance and lighting conditions require the focus and
aperture to be electronically adjustable by the scanner. Focal length is the third lens

parameter which can be modified on demand, provided a zoom lens is used.

The Mk1 system was designed with a Cosmicar TV zoom lens with motorised control
of focus and zoom, and electronic aperture control. This provides the microcontroller
with full control of the lens. Very good images were captured with this lens.

Unfortunately some problems were highlighted with the use of the Cosmicar lens

during the calibration and characterisation of the scanner:
1. The MKk1 lens did not have accurate focus positioning as it used DC servo motors.

2. Lighting in forest conditions was very low so a lens was required that provided

more light.

3. The lens was unsuitable for the relatively long CCD imaging sensor. Light falling

on the outer edges of the sensor was being attenuated through vignetting.

A different lens was incorporated into the Mk2 system; a manual lens of fixed focal
length. A manual lens was used as this provides a larger aperture. A stepper motor was
mounted on the focus ring to provide the microcontroller with motorised focus control
(see figure 4.17).

Mk 1 Lens system Mk 2 Lens system

Figure 4.17 - Mkl and Mk2 lens assembly

96

Technical description
Mk1 Cosmicar lens

The Mk1 version of the TreeScan scanner contains a Cosmicar C6Z1218M2ESP
motorised zoom lens with auto iris. The 2/3 inch format lens has a C mount and a focal
length range of 12.5 to 75 mm. The lens has a maximum aperture of f 1.8 with a range
of f 1.8 to f 360.

Both zoom and focus are controlled using 12 V DC servo motors. It takes
approximately five seconds to drive the servos from one end of their operating range to
the other. The direction of the servo motors may be reversed by reversing the polarity
on the driving signal. The lens also has an auto iris which adjusts the aperture
automatically based on an input video signal.

The Cosmicar lens was purchased because it provided flexibility in the implementation
of the TreeScan scanner. The zoom provides flexibility in horizontal image resolution
and the auto iris allows automatic aperture adjustment without microcontroller

intervention.

The driving circuit for the Mk1 lens provides a variable voltage to modify the operation
of the automatic aperture adjustment, and + 10 V to drive the DC servo motors.

Mk2 lens

The Mk2 version of the TreeScan scanner contains a 75 mm fixed focal length manual
lens. This lens, a one inch format TV lens with C mount, has a maximum aperture of
f 1.4 with a range of f 1.4 to f 22. It was decided to purchase a manual lens and add
motorised controls as this was the only one inch format, large aperture lens readily

available.

A stepper motor identical to the mirror drive stepper motor was attached to the focus
ring to provide the microcontroller with motorised focus control. An additional stepper
driving circuit was built as an extention module and attached using the expansion area
on the PCB. As a result a considerable amount of the Mk1 driving electronics became
redundant. These driving circuits are still available on the board for backward
compatibility.

By using the stepper motor in conjunction with an infinity position sensor absolute
focus position information is available for the lens. This provides the capability of
making a 'blind focus' during an image capture by estimating where the scanner should
be focused, and moving the lens focus to this position.

The problems with the Cosmicar lens have been successfully solved. However images
captured with the Mk2 system appear to be somewhat blurred compared to the best

Chapter 4 - TreeScan Hardware

97

r

Mk1 servo based lens interface

Aperture

PWM signal ‘LP
| Fi
L

Tfte:

3

|
|

‘ +12V
‘ Microcontroller | T >—N@7|“‘ ‘ | MK1 lens
" |Drive Fwd.> L—
‘ !Focus i
. Drive Rev B . | Zoom
] _
2V | i
| A2v |

x2 (focus and zoom)

Mk2 stepper motor lens interface

+12V

Pulse
Direction
Mode

Microcontroller

|

—_—— . =t §
Stepper . Stepper [T

controller |Enbl(2)| driver
I'Sense(?) | f

Focus
stepper
motor

o) Lann)

#
x

AXxA =

Infinity position
sensor

Figure 4.18 - Mkl and Mk2 lens driving interface

results obtained with the Mk1 system. This could be due to focus problems or lens
aberration at large apertures. Information regarding lens spectral response and lens

modulation transfer function is not available. This problem is under investigation by Mr
Aaron Drysdale as part of his masterate.

98

4.6.3 Power Supply Subsystem

General description

The scanner is a portable unit that must operate on battery power while in operation. It
is important to make the power supply as small and lightweight as possible while
retaining the ability to store adequate charge. The power supply of the computer and
scanner are separate; the computer runs off its own internal two batteries, and the
scanner operates off two sealed 6 volt lead acid batteries.

A variety of voltages are required to power the TreeScan scanner. The power supply
takes a nominal 6 V DC and 12 V DC battery input and produces +5V, +10V, -10V,
+15V and -15V DC regulated DC supplies.

The power supply has two states :

* Power save during which a relay turns off power to all of the high consumption
components. Only the CMOS microcontroller and SCSI controller are left

powered so the computer can still communicate with the scanner.

* Power on during which power is turned on to all high consumption
components. The scanner is in this state only during image capture.

To conserve battery power the scanner is in the standby power save state at all times
unless actually capturing an image.

Two common types of battery used to power portable instruments are Nicad cells and
lead acid batteries. The use of each of these has advantages and disadvantages:

1. Nicad batteries could be connected in series and tapped at various points
to generate the variety of supply voltages required. This has the
disadvantage that the batteries discharge at different rates due to varied
current consumption from each tap, and would require a complex charger.

2. A single lead acid battery could be used to generate the required supply
voltages with the use of small invertors and regulators. This solution is
cheaper and more straight forward than using Nicad batteries, but heavier.

3. An invertor could be used to step up to 230V which could be stepped
down to suitable voltages in the scanner. This approach would have the
advantage that the system could be run from the mains power supply when
used in a laboratory situation but would likely be too bulky for a portable

system and involves considerable power loss.

Chapter 4 - TreeScan Hardware 99

0V +10V
— .. 445V | regulator
l DC-DC |
| — convertor | B S—
| ’ 15V N\ -10V -10V
‘ = regulator
Batt] +12V (switched, unregulated)
+12V i .,—I
- +5V +5V (switched)
regulator | £ [—ﬂ—
GND —[—' l — = 4
X i S el

Figure 4.19 - Power supply block diagram schematic

A compromise was made by using two 6 volt lead acid batteries to supply 6 and 12
volts. A small inverter is used to generate the low current + 15 V supplies. The capacity
of the batteries can be calculated so that both batteries drain at the same rate, and can be
charged at the required rate. The design of the power supply subsystem was mainly the
work of Mr Gary Allen.

Technical description

The 6V and 12V battery supplies are used to produce the required voltages. The 6V
battery voltage is regulated down to 5V using a low dropout regulator to supply the
CMOS components and power the mirror stepper motor.

The 12 V battery voltage is converted to = 15V using a PowerBox DC to DC converter.
This £ 15V is used to power the line scan camera. Low current = 10V supplies are also

produced by regulating the + 15 V signals.

The power saving relay switches the +12 V battery voltage and the regulated +5V

powering the mirror stepper motor.

The power supply has been designed to supply:
e +I15Vand-15Vat0.35A
 +5VatlA
e +10Vand-10V at 100 mA

100

4.6.4.1 Power Consumption

Power consumption calculations in this section are based on the Mk1 scanner power
requirements. The scanner components have the following maximum power
requirements:

e Line scan camera 415V @ 250 mA, -15V @ 250 mA, +5V @ 500 mA
* Mirror stepper motor : + 5V @ 500 mA

* Lensdriving :+10V @ 10 mA, -10V @ 10 mA

e IC's(9ICs) :+5V @ ~100mA

These power requirements are absolute maximum requirements. Actual current
consumption has been measured to be considerably lower. For a typical day of system
operation the following power requirements have been calculated. These are based on

measured current consumption and the assumptions that:

- The system is operated for 10 hours per day

100 trees per day are imaged

Time per image 1s 100 seconds

Voltage conversion efficiency of 65%

Voltage regulation efficiency of 85%

These calculations indicate that for one day of operation powered from two 6V
batteries, a battery capacity of 8.8 AHr and 2.0 AHr is required. Batteries of 10 AHr
and 6 AHr were used in the power supply.

Voltage Power required | Conversion Battery 0-6V Battery 6-12V
(mWHr) efficiency (%) | (mAHr @ 6V) | (mAHr @ 6V)
+5V 23250 85 4560
+15V 15420 65 990 990
-15V 4170 65 270 270
+10V 330 55 25 25
-10V 330 55 25 25
5870 1310
Safety factor % 13 %13
Total 8805 1965

Table 4.3 - Scanner power requirements

Chapter 4 - TreeScan Hardware 101

4.6.4 User Feedback

General description

If a microcontroller based instrument such as the TreeScan scanner is not operating
correctly it can be very difficult to get instrument status information. During the design
of the system methods should be implemented which will allow the microcontroller

code to be debugged and provide status information.

Two features have been implemented to provide feedback to the user on scanner status;

Three status LED's, and a serial interface for debugging.

Three status LEDs indicate the scanner power status and microcontroller status;
* A green LED indicates the scanner's 5V power is operational.

* Ared LED indicates the power on state has been entered and high consumption

devices are switched on.

+ A yellow LED indicates microcontroller status. If the LED is flashing the
microcontroller is ready to receive a SCSI command. If the yellow LED is
switched on, this indicates the microprocessor is busy and will not accept any

commands from the computer.

A serial RS232 interface has been implemented to provide a secondary interface
between the microcontroller and a computer for the debugging the SCSI interface
during development. The microcontroller has an onboard serial interface which
generates the required signals. The TTL level serial signal is converted to RS232 serial
by the MAX?232 line driver.

The serial interface was tested and is operational but it never became necessary to use it

to debug the development of the SCSI interface.

102

4.6.5 Scanner Chassis

General description

The chassis of the TreeScan scanner consists of a 60 cm section of 150 x 100
aluminium channel. This provides a robust chassis inside which other components are
mounted. By using this heavy duty channel, component alignment error due to chassis
flex is eliminated.

The rotation mechanism is permanently mounted within the scanner chassis. The line
scan camera is bolted on to the chassis to prevent possible movement in alignment. The
controller board is housed in an insulating plastic casing and bolted to the inside wall of
the channel.

The channel chassis is protected by a light sheet metal cover that contains a perspex
window, allowing a scan angle of at least 90 degrees (70 degrees used). The scanner is
mounted on a tripod during use to provide a steady base for the scanner.

In order to align the scanner with the tree to be measured, a rifle scope has been
mounted on the outside of the scanner. This rifle scope is free to rotate in the vertical
plane. The scanner is aligned by aligning the scope on the centre of the calibration rod
to establish a reference, then tilting the scanner using the tripod head until the scanner is
closely aligned with the tree.

All the mechanical development work was completed by Mr Thomas Look.

Figure 4.20 - Scanner chassis

Chapter 4 - TreeScan Hardware 103

4.6.6 Carrying Cases

General description

Carrying cases for the TreeScan system serve two purposes; to enable the system to be
carried around, and secondly to protect the system. Two carrying case possibilities have

been considered:
* A flexible backpack mounted system
* Sturdy aluminium carrying cases

A backpack carrying case will need to be constructed once the TreeScan system is in
operation to aid the ease with which the system can be carried long distances through
the forest. However, during the early stages of the development sturdy aluminium
protective cases were more important. They were designed to accommodate all scanner

components.

4.7 Hardware Development Environment

The hardware development of the TreeScan system involved the development and
integration of mechanical components of the system and electronic components of the
system. Most of the scanner functionality is under software control so the use of testing

software was integral to the hardware development.

The microcontroller development board used during the development was the Mandino
Granville 80C517A microcontroller development board. Associated with this
development board is the System 51 microcontroller development environment. This
provides an integrated development environment that includes a compiler, assembler,

microcontroller emulator, and a monitor program.

The scanner electronic hardware was developed and tested in subsections built on
veroboard. These subsections could be individually tested without the influence of other
scanner components by connecting each section to the microcontroller development
board. Once the subsections of the TreeScan controller board had been tested (see
figure 4.21), a printed circuit board was designed to accommodate all subsystems.

The development of circuit components on veroboard was very successful, but some
noise problems were experienced. The main noise problem was with the use of
veroboard for the connection of the SCSI bus from the SCSI controller to the computer
over a 1.8 metre SCSI cable.

104

Protel Technology's Protel Shematic 3 was used to draw up the schematic during circuit
design, and Protel Autotrax was used for the printed circuit board layout design (Protel
Technology, 1989). The PCB routing was largely manual to facilitate later testing and
debugging of the controller board.

A Philips PM3055 60 MHz oscilloscope and a Philips PM3655 logic analyser were
used to test signal levels during both the hardware and software development.

Figure 4.21 - Hardware development environment

3.1
3.2
5:3
5.4

Chapter 5

TREESCAN SOFTWARE

TreeScan Software Overview

Image Capture Software

Tree Parameter Extraction Software

Software Development Environment

106
108
132
142

106

The TreeScan software chapter describes the algorithms implemented as part of the
TreeScan system. This includes both the image capture software which is used to
capture images with the scanner, and the parameter extraction software which
provides facilities to estimate real world tree dimensions from captured images.

The implementation of the algorithms was complicated by the fact that in order to create
a system with the functionality of the TreeScan system, software needed to be
implemented at four different levels; macros, Pascal, C and assembler. In addition to the
functional breakdown there is a physical breakdown with different sections of the same
algorithm operating in two different physical locations (see section 5.2.1).

5.1 TreeScan Software Overview

The software developed for the TreeScan system falls into two basic functional
categories reflecting the operation of the system; the image capture software and the

parameter extraction software.

TreeScan Software

. 1
| |
— i__._.-—-—'—'_-_-_'___‘_—‘——__.__
7" Image Capture / Parameter Extraction™
Software Software

Deals mainly with critical Deals mainly with the image
timing of image capture and calibration and distortion correction
data transfer hardware. methods discussed in chapter 3.

The image capture software interfaces the computer to the scanner and allows the
capture of images using the scanner. This software implements the tasks that need to be
done to capture images and deals mainly with critical timing of the image capture and
data transfer hardware. The image capture software is distributed across the computer
and the scanner, and consists of an acquisition plug-in for the computer and assembly

code for the microcontroller.

The parameter extraction software provides the facilities to process the captured
images and estimate real world tree dimensions. It automates a series of image
processing tasks and deals mainly with implementing the image calibration and
distortion correction methods described in chapter 3. This software consists of NIH

Image macros and NIH Image source additions in Pascal.

Chapter 5 - TreeScan Software 107

NIH Image

application | Software developed

2
| Source additions Iﬁ ~__— forTreeScan

1. | ‘% 3- .‘-/ |

extraction | acquisition | 4 ~ -
macros plugin \“‘“‘“ — ("Microcontroller code
¥4 2|\ .
Macintosh Computer TreeScan Scanner
SwW Language Use Lines of code
1 | Parameter extraction | Macro code interpreter | Parameter extraction | 1100
Macros (Pascal - like) (high level) (code)
2 | NIH Image source Pascal Parameter extraction | 900
code additions (low level) (code additions)
3 | Acquisition plug-in | C Image capture 2700 + 3500
(high level) (code + header files)
4 | Microcontroller code | Assembly Image capture 2800 + 5300
(low level) (code + lookup tables)

Figure 5.1 - Levels of TreeScan software

The NIH Image application has been used as the image processing environment. NIH
Image is a public domain image processing package developed by Wayne Rasband at
the National Institutes of Health in the USA (Rasband, 1993). NIH Image provides a
flexible, easily extendible, and user friendly environment. In addition to this the
software is public domain so the full pascal source code is available, and can be
modified where necessary. NIH Image has been developed for use with Apple
Macintosh computers.

There are four levels of software in the TreeScan system, see figure 5.1. A philosophy
of implementing all algorithms at the highest possible software level has been adopted to
reduce development time. Image build-up algorithms have been implemented in
the C acquisition plug-in, with low level tasks and time critical tasks implemented in the
microcontroller assembly code. Parameter extraction algorithms have been
implemented in the NIH Image macro language with NIH Image source modifications
where additional speed or functionality was required.

108

5.2 Image Capture Software

5.2.1 Overview

The image capture software controls the build-up of images using the TreeScan
scanner. This software deals mainly with critical timing of the image capture hardware
and critical timing of the image transfer to the computer. The image capture software
also provides a straight-forward user interface and the capability to store images for later

processing.

The main section of the image capture software is the image build-up algorithm. The
image build-up algorithm implements the sequence of high level tasks required to
capture an image; sub-tasks include : performing an autofocus, capturing a section of
image, overseeing the SCSI interface, and controlling the scanner hardware (see

figure 5.2).

In addition to the functional breakdown, there is a second breakdown that can be made
for the image capture software. The image capture software is physically distributed
across two locations; the portable computer and the scanner. As a consequence of this,
the image capture software consists of two separate programs running on two

processors interconnected using a SCSI bus interface.

The image capture software implemented on the portable computer consists of an
acquisition plug-in. This is a Macintosh code resource which complies with the Adobe

Image Acquisition
plugin

Microcontroller code

|

.

SCsSli

|| transfer / mage block
7 Rrtokoons ‘ '”‘:a?et:r'zck algorithm ’@ture algorithm
algorithm /1 | 2 $

Scanner control
commands

Scanner control
> commands

Macintosh Portable Computer TreeScan Scanner

Figure 5.2 - Algorithms implemented in image capture software

Chapter 5 - TreeScan Software 109

interface specifications for plug-in code modules and can be used to extend an
application without modifying the base application. Acquisition plug-ins may be
executed from any application (typically image processing packages) that supports
Adobe format plug-in modules, and are linked to the supporting application at run time.

The acquisition plug-in implements the image build-up algorithm, provides a user
interface, controls the computer SCSI communications hardware, controls the scanner
by sending scanner control commands, and passes a data structure containing the
captured image back to the calling application.

The image capture software implemented on the microcontroller consists of an
assembly language program stored in EPROM. The microcontroller code implements
the time critical image block capture algorithm and implements the scanner hardware
control in response to high level scanner control commands. Assembly language
executes fast but it takes considerably longer to implement and debug a complicated
algorithm than it does in a higher level language. The microcontroller code provides the
simple building blocks that can be put together to perform the required action by using a

series of commands.

After a brief discussion of software constraints, key algorithms are outlined in sections
5.2.2 to 5.2.5. Finally, the TreeScan image capture software is further discussed in
sections 5.2.6 and 5.2.7.

5.2.1.1 Image capture software design constraints

It was decided to maintain system flexibility and use the microcontroller to perform the
A/D conversion of the image data (see section 4.2). This led to timing constraints on the

design of the software in the areas of:
* A/D conversion of image data (line scan camera timing)
*» SCSI transfer timing

The A/D conversion is a synchronous process; the SCSI transfer is an asynchronous
process. In a normal situation involving synchronous data processing in operations such
as this, at least one of the operations would be interrupt driven with buffering of data in
RAM, however this approach would reduce overall speed.

There is not sufficient time to implement an interrupt based approach at maximum A/D
conversion rates. Instead a dedicated hardware loop has been implemented (see section
5.2.3.1). The A/D conversion must operate at a fixed rate while image data is clocked
out of the camera. The SCSI interface can transfer data at a rate 40 times that of the A/D
conversion. To speed up the image capture the image block capture algorithm was
designed to perform the A/D conversion and to send the bytes directly to the SCSI bus

112

Setup Scanner
Call plugin
nter image detail

Preview image

it

Power on !

2J!!u:iju.s'.'(integration

Autofocus

Move mirror !

w

&

5
Capture an image
block

|
il |

Y <& Final block?
I N
Above i
7 calibration
rod?

| . —

3 -
Adjust integration i
time

|

Refocus N
2 required?

| ¥
Refocus |

Power save [

]:a

| Return image
. __toNIH Image

Save Image

—

1-20

(=]
>

>

(O

SCSI
Commands
sent
_Poweron -
line
Capture line .
_Maovelens -

focus
—Move mirmor ~

__Capture X lines.

Image Build-up Algorithm

Image data
transferred

Line of image data } g;corgﬂmage capture

e ———

Microcontroller
routines

Execute power on

3 Micro image capture
 algorithm
Execute move focus

Execute move mirror

)
\ Micro image capture
J algorithm

Execute move focus

Execute power save

Figure 5.4 - Image build-up algorithm

The integration time for the current block and the number of lines to be captured is sent
to the microcontroller as part of the command descriptor block. This allows the

microcontroller image block capture algorithm to capture the required number of lines
and to modify the integration time without the need for additional SCSI instructions.

It was decided that an integration time adjustment should be made often. Integration time
adjustments during the scan are calculated on the previous image data block and do not

require additional lines to be captured.

Chapter 5 - TreeScan Software

113

Power is turned on to the high current components by sending a PowerOn
command to the scanner.

The integration time is adjusted for the current light level by repeatedly
capturing one line and adjusting the integration time until correct exposure
is achieved. Up to 20 iterations of the loop are performed depending on
lighting.

An autofocus is completed to focus the base of the tree at the start of image
capture. This consists of finding the focus position by repeatedly capturing
a line, calculating a measure of focus, and adjusting the lens focus position
until the optimal focus position is found. This would typically involve 20 to
50 iterations of the loop.

The mirror is stepped down by 500 steps so the image capture begins at the
base of the tree.

A loop is entered which captures blocks of 50 lines until the number of
lines to be captured has been reached. A single image capture command is
sent to the scanner and 50 lines of image data are received back. The timing
involved for the capturing of each line is carried out by the microcontroller
image block capture algorithm. The computer simply receives bytes until
the correct number of image bytes have been received to fill the block.

If the correct number of blocks have been received, exit the image capture
loop.

If still within the calibration rod area of the image, a refocus or integration
time adjustment is not required.

Adjust integration time for the next block based on the pixel values of the
previously received block. No commands need to be sent to the scanner as
the integration time is sent to the scanner as parameters in the image block
capture command.

9. & 10. If a focus adjustment is required, call the blind refocus routine to

10.

L1

estimate correct focus position and send a command to the microcontroller
to move the lens focus to the desired position.

Perform the above loop until the desired number of lines have been
captured.

Turn the power off to the high current components by sending a
PowerSave command to the scanner.

Figure 5.5 - Image build-up algorithm (description)

It has been decided to make 32 focus adjustments per complete image as this allows the

tree to remain within the scanner depth of field without an undue increase in image

capture time.

Once the image is captured it is passed from the plug-in to NIH Image to be saved. The

image can now be further processed by the parameter extraction software.

114

5.2.3 Image Block Capture Algorithm (Microcontroller)

In the image build-up algorithm the capture of an image line or block of lines consisted
of a single scanner control command sent to the microcontroller. This task of capturing
one or more lines is the image block capture algorithm, consisting of a complicated

sequence of events with critical timing aspects.

The image block capture algorithm performs the A/D conversion of the image data and
transfer to the computer using the SCSI interface. In addition, the camera timing signals
are produced, the mirror stepper motor is stepped between lines and a SCSI transfer
error detection and correction method is implemented. These are time critical elements so

they have been implemented in the microcontroller.

When the microcontroller receives the command from the computer to capture a block of

lines, the sequence of steps shown in figures 5.6 and 5.7 is executed.

Image Block Capture Algorithm

. SCSl image |
| capture command |
[

1

[Setclock rate |
1

2 |nitialise A/D

convertor

g

| 3 Wait for start of |

——

line |
_ ' !
|4 Move mirmor !

! step
a | |
o ‘_—._ |
9 i
t) 5| o -
2 -
= o conversion
g\ §) ' .
g\ @ 6 Sendbyteto | .
sl SCSI controller | |
| § |
(&)
o |
1 <
|
Conclude SCSI
command

Figure 5.6 - Image block capture algorithm

Chapter 5 - TreeScan Software 115

It is critical that the timing within the A/D loop is optimised as this loop is executed
8 million times for an 8000 line image. The line timing must also be optimised but this
depends on a number of factors and is less critical.

The time required to capture a block of lines depends on two main factors, either of
which can be the limiting factor: the data conversion and transfer rate, and the
integration time (exposure time). Data conversion and transfer and image integration
take place in parallel. Data conversion and transfer takes a fixed period of time.

Integration time depends on the lighting conditions.

In normal daylight conditions the integration time is an order of magnitude shorter than
the data conversion and transfer time, so the image capture time is limited by the data
conversion and transfer time. If however the scene illumination is low, the situation may

be reversed and the image capture time may be limited by the integration time.

5.2.3.1 Dedicated Conversion and Transfer Loop

The minimum time to perform an A/D conversion is 7 us for the microcontroller used.
The guaranteed interrupt service time of the microcontroller is 7 ps. If interrupt based

routines were used this would slow down the system.

In a normal situation with synchronous data processing operations such as the A/D
conversion of image data, at least one of the operations would be set up to interrupt the
processor with the buffering of data in RAM.

Instead a dedicated hardware loop was implemented as there was not sufficient time to

implement an interrupt based approach.

1. The number of lines to be captured is initialised from the command
descriptor block, and the frequency of the camera clock signals is set based
on the integration time information in the command descriptor block.

2. The A/D converter is initialised to run continuously triggered on the DATA
RATE signal returned from the camera.

3. Wait for the LINE SYNCH signal indicating the start of a line. Image data
will be valid after 24 DATA CLOCK cycles.

. Move the mirror position so the next line can be exposed.
. & 6. Enter the A/D loop. Digitise the analog voltage signal and send each

5

byte to the computer over the SCSI interface.
7. Loop for 1024 pixels in each image line.
8. Loop for the number of lines in this block.

Figure 5.7 - Image block capture algorithm (description)

116

5.2.3.2 Image Capture Line Timing

The data conversion and transfer time takes a fixed 12 ms per line (assuming 8 bit A/D
conversion and that a write to RAM is used). In parallel with this is the 2 mS delay to
allow the stepper motor to settle and the variable length integration time as shown in
figure 5.8. The camera sensor integration starts on the falling edge of the
LINE/INTEGRATE signal, and the rising edge indicates the start of a new line.

If the integration time is shorter than the 10 mS (daylight conditions) the data conversion
and transfer time becomes critical and it takes 0.6 seconds to capture a 50 line block.
The start of integration is delayed so that the end of integration is synchronised with the

end of the line instructions.

If however the integration time is longer than 10 mS (low light conditions) the situation
is reversed and the integration time becomes critical. The integration starts at the end of
the stepper settling time and the start of the next line is delayed to accommodate the
integration time. The time to capture a 50 line block will be variable and dependent on
lighting. The integration time maximum has been set to 120 ms (10000 DATA CLOCK

cycles) which means it takes 6 seconds to capture a 50 line block (15 minutes / image)!

A) 2 . o For timing within one
Line signal timing A/D cycle see figure 5.9
7
Start of line ;” // Start of next line
:1 /'r/ r—
LINE/INTEGRATE |— 77
signal : 3
DATA RATE IMTIjl.FLWF UL L LA UL LU lﬂﬁ‘/j,‘.“;‘u’ﬁﬂ TR AL
signal : _/
Video signal B / _/\/X/_\‘“—-/—.___‘_ T £ N
Day light conditions '
Move mirror I .-_2 — :
1 &——> max10ms | A—
Integration time e
L 12ms :
Conversion & transfer | T,
. - 0.2msH
Line end processing :
B) T 1 i iti :
Move mlior — Low light conditions -
Integration time 1 _
Conversion & transfer — E
T R
Line end processing| ! H
t t t t t t t t t
0 2 4 6 8 10 12 14 16
Time (mS)

Figure 5.8 - Line signal timing

Chapter 5 - TreeScan

Software 117

5.2.3.3 Image Capture A/D Conversion Timing

In the section on image capture line timing it was stated the data conversion and transfer

time are fixed. Thi

s 1s not strictly true as these parameters depend on the implementation

of the A/D loop. The data conversion and transfer time consists of 1062 cycles of A/D

loop time. This section describes the timing within a single DATA CLOCK cycle.

The A/D converte

r is triggered by the falling edge of the DATA CLOCK after which the

result of the A/D conversion is ready after 7 us. The result of the 10 bit conversion is

stored in two regis

ters. The top 8 bits are stored in the ADDATH register and the bottom

2 bits are stored in the ADDATL register. The data must be read from these registers

before the next A/D conversion can start. After the pixel data has been read, the

microcontroller must process it before the next A/D conversion is completed.

The minimum time that the A/D loop can take is indicated in figure 5.9a. After the result

of the A/D conversion (top 8 bits of the converted value) has been read, it is transferred

to the SCSI controller, a check 1s made to determine if the end of line has been reached,

A)
DATA RATE
signal

A/D conversion

Microcontroller busy

8 bit A/D conversion
9.3 s

Start of
conversion

IMove | i f hi [Move 1 Loop |
to SCS oD 10SCS! back

read

Loop
back

i
T

8 Time (uS)

A/D conversion

Microcontroller busy

8 bit A/D conversion with write to RAM (currently used)
f P12
[= el] :h
e === = e S

| Loop |
back

]
' Synchl
loop

Move tol
! RAM

1 'l
IMove to |
scsl

read

 Move to
RAM

Q)

A/D conversion

Microcontroller busy

-

10 bit A/D conversion with 8 bit lookup table and write to 1!3)_}1".1

: 7 us
[EE=ples " — 4
EEE———— saessesama—————ee

: | §
' I Loop 1
Raw © back

(] " "
L]
Setup A/D read & lookup]Move | Move to

1 s I
100p A/D lookup to SCSI RAM

Figure 5.9 - A/D signal timing

Fhkdhkhkhkdkdddrrdrhhdrdhrr b hrrrdrdrd bk ddrdrddrhbhhhkhrhhbhdddrdhrhdhthrrthhitdd

Get into loop capturing data and sending it to SCSI

A RS RS RS S R E S R RS R R R R R R R 2 R R R R R R

r_L8_ad: nop
nop

r_L8 ad2: ijb
mov
mov
movx

mov
movx
inc

djnz
dinz

8

:1
BSY,r_L8_ad2 ;Wait until AD complete ;2
A ,ADDATH ;read data out b3 E
DPSEL, #sxDPTRFIFO il
@DPTR, A ;copy data to SCSI)
DPSEL, #sxDPTRBuffer ;1
@DPTR, A ;buffer data to RAM ;2
DPTR 7l
crCountL,r_L8_ad 2
crCountH, r_L8_ad2 ;1

;16 +4

Figure 5.10 - A/D conversion (8 bit) microcontroller code

if not the microcontroller loops back and waits for the next value. See figure 5.10 for

the main A/D loop and its timing in machine instruction cycles (0.75 ps).

Two other A/D conversion routines have been implemented to cater for low lighting
conditions and SCSI related transfer problems (see sections 6.4.1 and 5.2.4.3). In both

situations the minimum time for each A/D conversion is lengthened, increasing the

minimum time required to capture a block of lines.

Several small timing reductions could be made to the A/D conversion process, however
in most forest conditions the data conversion and transfer time is not the critical time so
it was deemed more important to deal with low light levels. One improvement that could

be made is to have the end of line count interrupt driven instead of counter driven. This

would reduce A/D loop time by 1.5 pus (or approximately 10% speed increase).

Chapter 5 - TreeScan Software 119

5.2.4 SCSI Transfer Algorithm

The SCSI transfer algorithm implements the interface between scanner and computer. It
allows the computer to send control information to the scanner and allows the scanner to

return the captured image data.

Previously it has been stated that the microcontroller executes tasks based on scanner
control commands passed to the scanner from the computer. Each scanner control
command consists of a SCSI command sent by the acquisition plug-in to the
microcontroller using the SCSI bus controllers in the Macintosh and the scanner.

» At a logical level a SCSI command consists of the transfer of a command
descriptor block. A command descriptor block is a data structure containing a
command operation code and parameters associated with the opcode. Depending on
the command opcode the SCSI command may involve further data transfer in either

direction.

» At a software level a SCSI command involves of a series of chip commands
being sent to the SCSI bus controllers which perform the correct sequence of bus
phase changes to facilitate the transfer of the command descriptor block and the

image data.

- In the computer this requires a sequence of Macintosh Toolbox calls to the
SCSI Manager. These calls operate directly on the computer SCSI bus

controller.

- In the scanner this is completed by reading and writing to registers in the
scanner SCSI bus controller. This involves both sending the correct chip

commands and transferring any data in and out of the SCSI data buffer.

e Atthe electrical level a SCSI command consists of a complex sequence of control
signals on the nine SCSI bus control lines. The signal lines indicate bus phase
status, and perform byte handshaking as data is transferred in either direction over

the nine data lines.

The detailed requirements of the SCSI protocol can be found in appendix I and a
description of the scanner SCSI bus controller hardware in section 4.4.

In this section implementation of the SCSI transfer algorithm is discussed. A normal
SCSI transfer will be described after which the problems encountered during the SCSI
software implementation and their solution are discussed.

120

A) Software Level
Computer Critical timing Microcontroller Bus phases
SCsiGet(2. | 1 initialise SCSI during | Aritration phase
SCSlSelect 4 RO A
(TargetiDNo) = '_ Wait for select interrupt Selection phase
Write receive chip command v
———
R et e—
. 8izeCMD) -=--—eeco ait for function complete int
T Read CMD descriptor block from phiose
FIFO
5 Determine command and v
- appropriate action
__________ Write send data chip command A Optional
SCSIRead(TIBPY) <~~~ -~ Send image data Data phase
g— A 4
Sciglta?ohﬂgl‘:iﬁeom} ———— Waitforfunction complete int
Sty S22 Send status byte Status phase and
Y Send message byte message phase
-— v
Command completed Command completed
8 Electrical Level
) 2. 3,
- siiith ! <2] o |}
BSY I 1 s N
SEL P ; i :
cD T r l i
10 I | | ¥
T : TN HF [
FE0 1IN L JARRL - [
ACK i 11§12 I Ul i
MSG § 5 i g
DATA 4 Y | CEERE
RST : : : i ;
ATN PE i »< < >
—<—>» " Command phase Optional | Status phase and !
. / ‘ : Data phase : message phase
Arbitration Selection
phase phase

Figure 5.11 - Normal SCSI transfer

5.2.4.1 Normal SCSI Transfer

A normal SCSI transfer involves the sequence of operations shown in figures 5.11 and
5.12. The operations completed by both the plug-in and the microcontroller software are
listed with the critical path highlighted. The SCSI bus phases throughout the transfer are

also shown.

The computer must select a target device (the scanner) and wait for it to respond. Once
the device responds the computers sends the command descriptor block to the scanner.

Chapter 5 - TreeScan Software 121

1. When the scanner is powered up, the scanner SCSI bus controller is
initialised. This includes the setting of SCSI ID number and enabling the
selection of this device as a target. Now the scanner waits until it is selected.

2. When a SCSI command transfer is started, the computer must first arbitrate
for the SCSI bus. This is performed through a SCSIGet() toolbox call and
allows the computer to become an initiator and gain control of the SCSI bus.

3. Next the target device must be selected using a SCSISelect() call, with the
target device SCSI ID number as a parameter. When the scanner's SCSI ID
number is selected the microcontroller is interrupted with a select interrupt
and the RECEIVE COMMAND chip command must be written to the scanner
SBC. This acknowledges to the computer the scanner has been selected and
is ready and waiting to receive a command descriptor block.

4. The command descriptor block is transferred from the computer to the
scanner using the SCSICMD() call with a pointer to the command descriptor
block as a parameter. The information is transferred and arrives at the
scanner with a function complete interrupt. The command descriptor block
data is read out of the SCSI bus controller FIFO. The appropriate action is
performed based on the information in the command descriptor block.

5. If required the data phase is entered. The data phase involves the
microcontroller sending data and the computer receiving it. Data is sent from
the microcontroller by writing a SEND DATA chip command to the SBC,
writing the number of bytes to be transferred to a counter, and writing the
bytes to be transferred to the SBC FIFO. At the computer the data transfer is
performed using a SCSIRead() call with a TIB (Transfer Instruction Block)
as a parameter. A TIB is a sequence of low level instructions for the
computer SCSI bus controller (see appendix K). The TIB must contain the
number of bytes to be read.

6. If the number of bytes in the TIB, in the scanner SBC counter, and the
actual bytes transferred do not match, synchronisation is lost and both the
scanner and the computer can lock up waiting for each other to transmit data
or change the bus phase. A timeout can be set that limits the maximum time
the computer will wait while locked up.

7. When the data transfer is completed the computer makes a single
SCSIComplete() call. The microcontroller sends a status byte and a message
byte. This involves both the status phase and the message phase. Once the
status byte and message byte have been transferred the SCSI transfer is
completed. The SCSI bus returns to the bus free phase and the scanner
waits for the next SCSI command.

Figure 5.12 - Normal SCSI transfer (description)

The scanner completes tasks based on the command descriptor block with the optional
transfer of data (see figure 5.12, item 5). The command must then be completed by the
transfer of two bytes to indicate whether the transfer was completed successfully.

At the electrical level this involves the bus signalling indicated in figure 5.11b. The BSY
signal is activated at the start of the transfer, is briefly switched low during the selection
phase and remains active throughout the duration of the transfer. The state of the C/D
(Command/Data) and I/O (Input/Output) lines determine the bus phase. During the

122

region marked 4 the command data is transferred and during the region marked 5 the
image data is transferred. The transfer of each byte of data has an REQ/ACK handshake
associated with it.

If the SCSI command does not involve image transfer the data phase is simply omitted
from the sequence.

5.24.2 bstacles Encountered implementin CSI

Two significant problems encountered during the development of the SCSI transfer
algorithm were caused by unexpected timing fluctuations in the operation of the SCSI

interface:
1. A byte loss problem as a result of transfer buffer overflow
2. Long delay times between the changing of SCSI bus phases

A byte loss detection and correction algorithm was implemented to deal with both the
byte loss problems. Images were captured in blocks of 50 lines per SCSI command to
reduce the impact of long delays during bus phase changes.

Byte loss

As discussed in previous sections (4.4.3, 5.2.1.1 and 5.2.3.1), although SCSI is a
handshake system with a 'wait if not ready' flag, there is insufficient time to check this
flag so a dedicated loop converts image data and sends it to the SBC. This assumes the
SCSI interface (4 MBytes/s) is able to keep up with A/D conversion (100 kHz). Small
variations in transfer rates would be handled by the built in 32 byte buffer and hardware
handshake.

Sometimes however, the computer SCSI bus controller was unable to receive data for
intervals up to 1.5 mS in duration. This delay, probably due to operating system
background tasks, allowed image bytes to be lost as image data can only be buffered for

.

J
f
i
£
3
L
|
]
i
i
i
i

.

Figure 5.13 - Image with byte loss problem

Chapter 5 - TreeScan Software 123

a maximum 0.5 mS by the 32 byte FIFO. As the image conversion continued, this
allowed the FIFO to overflow and image bytes were lost. Figure 5.13 shows a section
of image captured with bytes lost in three places, as can be seen on the white alignment
reference on the right of the image (see figure 5.13).

There are several possible solutions to this problem:

1. Ideally the SCSI bus controller FIFO should be checked before any bytes are sent.
If however the FIFO is full the A/D conversions need to be delayed. This is not

possible without losing camera timing synchronisation.

2. The capture and transfer of image data as two separate interrupt driven processes
(as discussed in section 5.2.1.1). This increases the conversion and transfer time

resulting in considerably longer image captures.

3. A byte loss and detection scheme can be set up, as delays are rare, to resend the
line from memory (checking whether FIFO is not full) if the some of the image
bytes were lost during transfer. This requires the image bytes to be stored to
memory during capture, but this results in minimal A/D time increase.

The final method has been implemented and is discussed in greater detail in the next

section.

An interesting aspect of the byte loss problem was that the delay in receiving bytes was
more common on the portable Macintosh PowerBook 520c data acquisition computer
than on the Macintosh Quadra, on which the plug-in was initially developed. On both
computers all extensions were switched off to remove as many background tasks as
possible without hacking into the operating system. This did not make a significant

difference in the frequency of the problem.

Minimum SCSI command time

The second obstacle encountered was that the Macintosh SCSI bus controller appeared
to be slow to react to SCSI phase changes (see figure 5.14). There was a delay of
approximately 26 ms from the time the microcontroller wrote the RECEIVE COMMAND
chip command to the time the command descriptor block data was received back from
the computer. The same delay was present before the computer acknowledged the first
byte of the data transfer, and a longer delay of 55 ms was present between the end of the
data phase and the transfer of the status byte.

These delays were expected to be three orders of magnitude smaller, similar to the
arbitration and selection delays of approximately 20 ps. The cause of these delays
should be further investigated and is still not fully explained.

124

Command phase Data phase Status phase and
; g : message phase
BSY j
oo | | | .
1o ’ »
DATA g g]
i 2mS i 26mS _© 55 mS J
Y X (.Y 7

Figure 5.14 - Extended delays during SCSI transfer

These delays in the changing of bus phases introduced a minimum duration for a SCSI
transfer of approximately 120 ms. If lines were captured one line per SCSI transfer this
would allow the maximum transfer rate to be 8 lines per second. By capturing the image
in blocks of 50 lines this minimum transfer delay becomes less significant and lines can
be transferred at an average rate of 70 lines per second which is close to the maximum

data rate of 83 lines per second.

5.2.4.3 Bvte Loss Detection and Resend Scheme

The byte loss detection and resend scheme is an elaborate scheme to ensure transferred
data is not corrupted by buffer overflow. It will correct for occasional buffer overflow
of up to several hundred bytes. An overview of the byte loss detection and resend
scheme is presented here, with details presented in appendix L.

There are two restrictions that must be taken into account:

1. The TIB instruction set is very limited and can only execute seven types of
instructions (see APPENDIX K for more detail on TIBs).

2. The scanner SCSI bus controller provides limited status information. There are
flags that indicate whether the Transmit FIFO is full or half full, but not whether
the transmit FIFO is empty.

The detection and resend scheme works on the basic principle that the SBC expects to
send a certain number of bytes. If at the end of the image line the SBC expects to send
more bytes, the SBC FIFO must have overflowed during the A/D conversion loop. The
line that was sent must be ignored and the line resent from memory.

A block of image lines is captured using a single Macintosh SCSI call. This means that
the detection and resend scheme must be implemented within a single TIB. The TIB

uses self modifying code to conditionally execute instructions. The microcontroller

Chapter 5 - TreeScan Software

125

Start image capture

<

Send one image line |
and save in RAM
(1024 + 38 bytes) |

Any bytes left No
“_ to send? A

Yes .
(Byte loss) i

Send rest of 1062 bytes
as filler bytes

| Send ‘bad’ line bytes

‘ Resend line from RAM
(check for overflow)
!

\ 4 _ ‘
i Send ‘good’ line bytes '

—

ot g cnre>

Figure 5.15 - Byte loss detection

and resend scheme

instructs the computer to overwrite the last line by modifying the TIB and transferring

an increment to the pointer in memory where

the image is stored.

The implementation of this byte loss detection and resend scheme has little impact on the

acquisition plug-in code. Only the TIB must be redeveloped to allow for significant self

modification.

The implementation of this byte loss detection and resend scheme does have an effect on

the image capture timing. The A/D conversion loop must write the image data to RAM

as well as to the SCSI. This increases the A/D conversion loop to 12 ps as shown in

figure 5.9b. The capture image block algorithm (figure 5.6) has also been modified to

accommodate the additional write to RAM, additional end of line checking, and a line

resend if necessary.

126

5.2.5 Focus Algorithms

There are two aspects to focusing the scanner; the scanner must initially focus on the
base of the tree before the image capture starts, and correct focus must be retained

throughout a scan.

5.2.5.1 Focus Adjustment

During an image capture scan the distance to the object changes, so the focus position

must be adjusted. Three focus approaches can be adopted:

¢ The focus can be set halfway up the tree so the whole of the tree remains
within the depth of field and no focus adjustment is required. This requires a very
small aperture and thus a large exposure time.

* An autofocus may be made every time a change in focus is required.
A smaller depth of field, and hence shorter integration time, could be used as a
series of focus adjustments may be made up the tree. This method requires that
the autofocus algorithm has been implemented and could focus in the wrong place

if branches obscure the tree.

*« A method of 'blind focus' may be implemented. This method completes
an autofocus at the bottom of the tree which is used to approximately determine
the distance away from the tree. Based on this distance away from the tree, the
estimated focus position is calculated for subsequent focus points. Throughout the
scan the lens is moved to the estimated point of focus. Branches will not affect
this method of refocus up the tree. This method relies on absolute positioning of

the focus and the assumption that the tree is approximately vertical.

It was decided to adopt the third approach to retain focus throughout the image capture.
This involved the development of an autofocus algorithm, a 'blind refocus' algorithm
and a repeatable lens control mechanism.

5.2.5.2 Autofocus Algorithm

The basis of an autofocus algorithm is that it must find the point of optimal focus, which
is taken to be the lens position at which the measure of focus defined in chapter 3 is at

11S maximum.

Two autofocus algorithms were implemented which operated on a slightly different
principle. The Mk1 lens system provided servo control only for the focus position of the
lens, with the result of this was that absolute position information could not be used to

Chapter 5 - TreeScan Software

127

|
,‘ Move lens to focus |
! at e |

Focus maximum = 0 ‘
Focus measure =0

measure < 0.5 x Max
orfocusat7 m

Move to best focus
+ 1 large step

>

< |
] Capture Line ' |Move focus large step
Calculate focus measure ! closer
: |
Loop until |I

| Capture Line Move focus small step |
Calculate focus measure| L towards eo '

Loop until
position = best focus
- 1 large step

‘ Move to best focus

B e~

Focus number

—

1=

s
-—a = =0
0 = .

| Best focus

Position of focus mechanism from =

Figure 5.16 - Final autofocus algorithm

128

position the lens focus. Stepper motor control of the lens focus position was provided
on the Mk2 system. This allowed the focus algorithm to make use of absolute
positioning information, and allowed the blind refocus algorithm to be implemented.

The final focus algorithm implemented on the Mk2 system is shown in figure 5.16. The
microcontroller drives the lens to its infinity position. Next the lens is driven towards
near focus in large steps. At each point a line is captured and focus number calculated.
Once this number has reached a maximum and is getting smaller the optimal focus point
has been passed. Next the algorithm searches around the best focus point it found, in
smaller steps to find the optimal focus point to a high precision. Finally absolute
positioning is used to move to the optimal focus point.

The Mk1 autofocus algorithm was based on a similar principle in that it drove forwards
until over the focus peak, then reversed direction and drove back in smaller steps until
the focus number started going down again. This is based on the assumption the curve
is a2 monotonic rising and falling curve. If there is any noise or variation in calculated
focus numbers this algorithm may not find the optimal focus point.

In developing the autofocus algorithm it is very important to ensure the focus calculation
is based on a region of the image where all the imaged objects are the same distance
from the scanner. If this is not the case the focus graph will be a bimodal curve and it
will become difficult to find the point of best focus. All focus algorithms are based on a
single line in the image because it would be time consuming and introduce unnecessary
wear on the mirror tilting mechanism to capture several lines and rapidly drive back and

forth between them.

An evaluation of the autofocus algorithm is presented in section 6.4.4.

Chapter 5 - TreeScan Software 129

5.2.6 TreeScan Plug-in Software

The scanner control software implemented on the portable computer consists of an
acquisition plug-in. This is a Macintosh code resource which complies with the Adobe
interface specifications for version 3 plug-in code modules and may be used to extend

applications.

The TreeScan acquisition plug-in implements the image build-up algorithm, and
provides a user interface so the operator can control image capture. The plug-in controls
the scanner by sending scanner control commands. Each command is sent by interacting
directly with the computer SCSI bus controller. The TreeScan image capture plug-in
passes a data structure containing the captured image back to the calling application

(NIH Image in this case).

The TreeScan plug-in is programmed in C. It captures the image into memory during the
start selector call. This allows the image to be displayed in a preview window as it is
being captured. To be able to capture an 8000 line image, the plug-in requires 8
megabytes of memory. After the image is captured in memory it is passed to NIH Image

in small blocks during the continue selector call.

The portable computer has 20 megabytes of RAM. To capture an 8000 line image

% File Edit Options Enhance RAnalyze Special Stacks Windows User @ 4

SN SR
N

Version : 3.19

Tree name: |]

Caplure lmage

Height of tree: [35 |m %

Speed: Slow
Resolution: High

Figure 5.17 - TreeScan image capture user interface

130

requires two 8 megabyte image buffers; one for the plug-in and one for NIH Image to
store the returned image. After these two buffers are allocated this leaves 4 megabytes.
This is just enough for the operating system, NIH Image application, and memory
required for the plug-in code.

NIH Image also allocates a clipboard and undo buffer. In order to call a plug-in each
needs to be the size of the image. This would require a further 16 megabytes. To avoid
this the NIH Image source code was modified to deallocate the clipboard and undo
buffers directly before an acquire plug-in call and reallocate the buffers directly after the
acquire plug-in call. This frees 8 megabytes of memory which NIH Image can use

during the image capture.

The TreeScan plug-in source code consists of six source files (2700 lines of code) with
associated header files and library files. A total of 6200 lines of code. Relevant source
listing are provided in appendix M.

The user interface consists of a dialog box which is presented when the plug-in is called
(see figure 5.17). The dialog box has a number of button controls and an image window
in which a small scale version of the captured image is displayed during capture. The
buttons allow the user to set up the tree information, preview a small section of the
image and capture a full image. A debug dialog is also implemented which can be used
to execute individual scanner control commands to aid development and testing of the

hardware.

The image build-up algorithm (see section 5.2.2) is executed when the Capture Image
button in the dialog box is pressed (see figure 5.17).

5.2.6.1 Adobe Plug-in modules

As explained a plug-in module is a compiled Macintosh code resource which may be
used to extend applications. Plug-ins are designed to complete specific image processing
tasks and must comply with the Adobe interface specifications. Plug-ins are linked to a
supporting application at run time and may be executed from any application (typically
image processing applications) that supports Adobe format plug-in code extensions.

Adobe Photoshop version 2.0 supports three types of plug-in modules; acquisition
plug-ins, export plug-ins, and filter plug-ins. NIH Image also supports all of these.

The requirement for an acquisition plug-in module is that it conforms to the Adobe
interface specification as described by the documentation on writing plug-in modules
(Knoll, 1991). Certain resource types must be correctly set and the plug-in should be

called using the following Pascal calling conventions:

Chapter 5 - TreeScan Software 131

PROCEDURE PlugIn (selector: INTEGER; acgRec: Ptr;

VAR data: LONGINT; VAR result: INTEGER);

The plug-in must respond to the following sequence of selector values:
1. Prepare : allows the plug-in to adjust its memory allocation

2. Start : returns the parameters of the image being captured to the calling
application and allows the plug-in to display it's dialog box

3. Continue : returns a section of an image to the calling application
4. Finish : allows the plug-in to free any required memory

The acqRec parameter is a pointer to an AcquireRecord structure which contains image
information such as: the maximum memory available, image x and y dimensions, and a
pointer to the image data area in memory. The data parameter is used by the plug-in as a

pointer to its global data, and the result parameter allows the plug-in to return its status.

5.2.7 Microcontroller Software

The microcontroller code controls the scanner hardware and implements the time critical
tasks. Hardware control is provided by responding to a series of scanner control
commands (SCCs) passed from the acquisition plug-in. The image block capture
algorithm is time critical and implemented in the microcontroller code. The

microcontroller code was written entirely in assembly language.

The structure of the code reflects its function. The microcontroller code consists of a
background loop waiting for SCSI commands from the computer. When a SCSI
command is received, the appropriate routine is called to perform the required function.
The microcontroller then returns to the background loop waiting for the next SCSI

command.

The microcontroller source code consists of seven source files (2800 lines of code) with
four extra files containing the 10 bit A/D lookup tables. A well structured set of naming
conventions was set up to keep the use of variable names and constant names consistent
within the assembly code.

The main file TASM120.ASM contains important code documentation. This includes
microcontroller I/O port declarations, memory map, register usage, variable naming
convention, modification history, constant declarations, and variable declarations.
Relevant sections of the source listings can be found in appendix M.

132

5.3 Tree Parameter Extraction Software

5.3.1 Overview

The parameter extraction software provides the facilities to process captured
images and to estimate real world tree dimensions. This software automates a series of
image processing tasks and deals mainly with implementing the image calibration and
distortion correction methods described in chapter 3.

The parameter extraction software can be used in a variety of ways dependent on
whether the images are just being browsed to determine the size of various features of
interest or a systematic analysis of each image is being undertaken. Immediate feedback
is provided for interactive processing. In addition key information such as the three
dimensional stem model can be stored in a form suitable for later processing and stem

breakdown optimisation.

The processing of captured images is divided into three broad tasks:
1. Image calibration
2. 2D processing
3. 3D processing

View 1 View 2
1 Capture Image ‘ Capture Image ‘
_____________________ L s s S Rttt it e s i et
| \{ i i
Calibrate image ! Calibrate image ‘ |
‘I / Mark stem Mark ste \ E
g edges edge i
Interactive 2D "_“9"30:?"9 2D| |
i - size estimates| |
_ size estimates Creale & display | :
Sored A5 Interactive 3D
model sweep estimates |
""""""""""""""""""""" T Famatar axieaction sofware
Optimisation
software

Figure 5.18 - Parameter exfraction sequence

Chapter 5 - TreeScan Software 133

The image must first be calibrated to establish a relationship between the image
dimensions and real world dimensions. Once the image has been calibrated, size
estimates in two dimensions can be interactively made from a single image, or
information from two calibrated images can be combined to estimate three dimensional
shape.

The two dimensional tree size estimates allow any dimensions on the 2D calibration
plane (see section 3.2) to be estimated, these include: heights, stem diameters, branch

diameters, internodal distance and other distances between features.

The three dimensional processing generates a three dimensional model of the tree
stem shape. Interactive sweep estimates can be made on this stem shape model, and this
model can be further processed by optimisation software to determine the optimal stem

breakdown.

The parameter extraction software consists of a number of macros written in a Pascal
like macro programming language which is a feature of NIH Image. The macro
language is used for the majority of the processing tasks. In some cases however where
the macro language is too slow or lacks functionality, additional user routines have been
added to the NIH Image application. This involves modifying the NIH Image source

code and recompiling the application.

In sections 5.3.6 and 5.3.7 the structure of the TreeScan parameter extraction software

is described in greater detail.

5.3.2 Image Calibration

As discussed in section 3.5.1, image calibration is required to establish the geometry of
the image capture situation before real world dimensions can be estimated from the
image. Once the image capture geometry is established, the distortion correction
methods can be used to estimate the size of features up the full length of the tree.

During image calibration points on the calibration rod in the image are marked

establishing the image capture geometry.

Two different methods of image calibration have been implemented dependent on the

distortion correction method used:

* The first distortion correction method used was based on estimating the camera
position based on the calibration rod with two crossbars. This involved marking
six points on the image. From these six points the distance and angle O was
determined. This method was found to be imprecise (see section 3.5.2.2) and not
further developed.

134

* The second distortion correction method used was based on estimating distance
from the scanner to the tree using a calibration rod with only one crossbar and
measuring dip and tree lean angles. These angles are measured using a digital level
and entered into the plug-in dialog box which saves the data to file. Three points

on the bottom crossbar are marked.

Once the image is calibrated the information is available to estimate the real world
position of any point on the image. The calibration data is also saved to file. This allows
the image to be re-calibrated later without having to mark the points on the calibration

rod again.

The distortion correction method implemented is the "TreeScan perspective correction -

measured Q' as described in section 3.5.3.2.

It should be noted that the software does not modify the entire image to correct for
perspective distortion as this would involve considerable processing. Instead, only the
coordinates of each point of interest are converted to real world coordinates. These may

then be used to estimate tree parameters.

Figure 5.19 - Marking of three calibration points

LATEPLEL 0~ VLT aLall QWL v L

5.3.3 Feature Size Estimation in Two Dimensions

The two dimensicnal feature size estimation mvolves the estimation of feature sizes from
a single calibrated image. This allows any dimensions on the 2D calibration plane to be

estimated, these include: heights, stem diameters, branch diameters, internodal distance

and other distances between features.

Two dimensional feature size estimation involves three steps; identifying the feature of
interest on the image, marking the feature of interest, and estimating the size of the
feature of interest.

1. Features of interest must first be visually identified on the image. This may be
more difficult than visually identifying features in the forest because two fixed
views of each tree are captured. Some features or branches may be hidden in both
views. Zoom and pan are available to change the displayed resolution. Features
may be marked at any resolution.

2. Once identified, the feature must be marked by making a line selection for distance
estimates, or placement of the cursor for height estimates. The selection must be

manually made using judgement to correctly place the end points of the line or

crosshair pointer {see figure 5.20).

b Lo bt T = -
—— lUslurs ==|=—=—= Ualuers ==| === Halues ==}
Helight Diameter Trameter

= 1402 m = ZT99 am =53 oW
Horizontal offset & height &y height

= -29.1 o =14.2%m =1412m

Figure 5.20 - Two dimensional feature size estimates

136

3. When the feature of interest is marked, the software processes the coordinates of
the selection, correcting for image capture distortion and calculating a size
estimate of the feature. Cursor placement provides height and offset from the
calibration reference, while line selections provide a distance between end points

of the selection.

This sequence allows the dimensions of any tree feature to be estimated provided that it
is visible in the image. The main disadvantage of this method of identifying features is
that estimates depend on the manual placement of the cursor. In the estimation of branch
diameters for example, the branch may only cover a few pixels. Research is currently
underway by Dr Ralph Pugmire and Mr Ian Overington to automate some or all of the
parameter extraction processing and to allow estimates to subpixel accuracy.

Chapter 5 - TreeScan Software 137

5.3.4 Three Dimensional Stem Shape Estimation

To estimate sweep, the position of the tree stem in three dimensional space must be
measured. This is completed by generating a model that is defined by the three
dimensional tree shape.

The generation of this three dimensional model consists of a process different from two
dimensional feature estimation. Information from two views of the same tree must be
combined, and rather than individual feature heights and offsets, shape information is
required for the full length of the stem. Position estimates are made for sufficient points
up the edge of the stem to fully define a three dimensional stem model.

The processing required to generate the three dimensional model consists of a sequence
of tasks shown in figure 5.21. The marking of the stem edges must be performed
manually. This task is tedious but must be performed carefully as the dimensions of the
tree stem model are based on the placement of these lines. The automatic detection of
these tree edges is another task currently being investigated as part of the automatic

parameter extraction research being undertaken by Dr Ralph Pugmire.

28: | | [+ =

1. Mark tree edges using white lines.
Convert edges to points equally spaced in the image.

3. Correct each point and store edges as data file of real world tree stem
coordinates.

4. Generate model. Combine stem edge data file from two views to
generate model of equally spaced slices

5. Store model as data file and convert to a format suitable for log
optimisor.

6. Display model and make optional sweep estimates (see figure 5.22).

Figure 5.21 - Generation of three dimensional stem model

138

Once the edges of the stem have been marked these are processed into a series of points,
which are corrected to produce a file of stem shape coordinates. At this stage the model

consists of points that are at equal pixel spacing in the image, or increasing spacing up
the tree.

The stem shape files from both views are processed to generate the three dimensional
stem model. The stem data is interpolated to generate a model which consists of 'slices'
spaced at fixed distances up the tree stem. This stem model is saved and converted to a
format readable by the log optimisation software developed by Tasman Forestry in
conjunction with Auckland University (Tasman, 1995). This software has been
developed for the optimisation of felled tree stems on the skid site.

The stem model can be displayed and rotated. Using the displayed model representation

interactive sweep estimates can be made for variable or fixed length sections of the tree
stem.

Yiew 1 View 2 3D stem model

|

I

I

1

1

]

20 m / :
:

I

1

]

I

|

L

I

7 |

10 m \ :
(| l

| 1

1]

]]

[]

L 1

“ 1

5 I

1 I

]]

] I

om : "I ' y
-50cm f S0cm -50cm S50cm -50cm SO0cm
¥
&= palues = | E—— values ———=

Sweep of SED/1.7 over 12 m section. Sweep of 1.7 SED over 24 m section.
Maximum sweep = 21 cm
atheight=82m

and sed = 36 cm

Maximum sweep = 33 ¢cm
at height =88 m
and sed = 20 ¢cm

Section max height = 12.0 m

Section max height = 25.0 m
Section min height =0.6 m

Section min height = 0.5 m

Figure 5.22 - Sweep estimation from displayed tree model

Chapter 5 - TreeScan Software 139

5.3.5 Possible Improvements to Parameter Extraction

The methods currently implemented are capable of generating all the required tree size
estimates. However this processing is a tedious semi manual task during which the
operator must mark all dimensions to be estimated. Research is currently underway by
Dr Ralph Pugmire and Mr Ian Overington to automate some or all of the parameter

extraction processing and allow estimates to be made to subpixel accuracy.

There are two other ways in which the accuracy of parameter estimates could be

improved:

e The optimisation software determines the optimal stem breakdown based primarily
on stem shape and branch sizes. The stem model currently passed to the log
optimisor only contains stem shape information. Branch information should be
added to the 3D tree stem description. This would provide a more useful system to
determine optimal stem breakdown. This is currently being implemented.

* In the two dimensional size estimation only information from one view is used to
calibrate the image. If the tree is in front of or behind the calibration plane an
expected error is introduced as described in section 3.7. The software could be
modified to combine the stem position information from the second view to reduce
this introduced error. If implemented the estimation of tree dimensions becomes

an iterative task with a small improvement in estimates.

140

5.3.6 TreeScan Macros

The TreeScan macros are a series of routines that perform the tasks discussed in the
sections on image calibration (section 5.3.2), two dimensional feature size estimation
(section 5.3.3) and three dimensional tree shape estimation (section 5.3.4).

The TreeScan macros are written in a Pascal-like macro programming language that is a
feature of NIH Image and can be used for automating complex or repetitive tasks.
Loaded macros are accessible through the normal Macintosh menu interface or may be
assigned to special key strokes. NIH Image macros consist of a text file that can be
edited using the NIH Image in-built text editor. The macros can be easily modified and
can be loaded by NIH Image at any time the application is active. The macros are
interpreted at run time eliminating the need for software to be recompiled.

The maximum size of the macro file is 32 kByte in size. The implemented macros are
larger than 32 kByte, so TreeScan macros have been split up into two files. The main
file contains the normal processing macros. The second file contains a large number of

utility macros.

Main TreeScan macros TreeScan Utility Macros
F1 - Display help screen P - Print 50% image in A4 pages
F2 - Capture image CMD P - Print full image in A4 pages
F3 -Loadimage F - Filter to remove banding
F4 - Remove white pixels D - Vertically decimate image
(initialisation)
F5 - Calibrate image T - Extract tree region
F6 - Save edges to file B - Extract base region

F7 - Perform 3D conversion and M - Extract target region
save model to file '

F8 - Display 3D model Q - Setup image thumbnail
A - Paste left side thumbnail
F9 - Display height S - Paste right side thumbnail

F10 - Display diameter
F11 - Display sweep

F12 - Draw scale on image
CMD M - Load utility macros CMD M - Load TreeScan macros

Figure 5.23 - TreeScan processing and utility macros

Chapter 5 - TreeScan Software 141

5.3.7 NIH Image Source Additions and Modifications

In situations where the macro language was too slow or required additional
functionality, additions have been made to the NIH Image source code to extend the

application.

NIH Image is written in Pascal and consists of 34 source files. It has been designed to
allow additional routines to be added in the user.p source file. This file has the calling
structures in place so that a call to extra procedures can be made using the USERCODE()
call with the correct parameters. The complete application needs to be recompiled if

changes are made.

The main routines added were routines for the processing of data files and the
processing and display of the 3D model. This includes the saving and loading of the
calibration file, combining of two stem data files into the 3D tree model, and displaying

the tree model.

Several modifications have also been made to the NIH Image application. The main
modification is the de-allocation of the undo and clipboard buffers before an acquisition
plug-in is called and the reallocation afterwards. This allows large images to be captured

by freeing up as much memory as possible for the image capture (see section 5.2.6).

142

5.4 Software Development Environment

Each software level required development in a different programming language and a

different development environment.

ThinkC version 6.0 was used to develop the TreeScan plug-in, ThinkPascal version 4.0
was used to modify the NIH Image source code, and ThinkReference version 2.0 was
used as the main source of reference information for the Macintosh managers and the
toolbox calls. Inside Macintosh volume I - VI were used as important references, as
well as reference information specifically for plug-in development and SCSI
development (Knoll, 1991).

The majority of the SCSI development was performed on a Macintosh Quadra with 8
megabytes of RAM. The Quadra has a separate SCSI bus controller for external devices
which provided greater safety during development as SCSI errors on the TreeScan
system could not affect the internal hard disk. Once operational development was
performed using a Macintosh Powerbook 520c. This portable computer is the computer
that is used for the in forest image capture and contains 20 megabytes of RAM and a
160 MByte hard disk.

All microcontroller software development was completed using the Mandino Granville
monitor software version 4.43 and assembler version 3.08 which purchased with the

80C517A microcontroller development board.

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter 6

TREESCAN EVALUATION

Overview of Evaluation

Sequence of Evaluation Experiments

Hardware Calibration

TreeScan Characterisation

Initial Accuracy Tests in Two Dimensions

Final Accuracy Tests in Two Dimensions

Accuracy Tests in Three Dimensions

145
147
151
157
158
160

144

This chapter is an evaluation of the TreeScan system. It reports on the system
capabilities and discusses the modifications necessary to convert the scanner as
criginally designed and built to an accurate scientific instrument.

The evaluation of a prototype such as the TreeScan system is a cyclical testing process.
Each time around the cycle more knowledge is gained as problems are solved and
modifications are made to the system. Once modifications are made many of the
previous tests need to be repeated to ensure the results are still valid. The material in this
chapter has been collated into a logical sequence of experiments to establish the system

capabilities.

6.1 Overview of Evaluation

An evaluation of a system such as the TreeScan system should go through several
stages. The system hardware must first be calibrated and characterised. Only once this
has been completed can the actual accuracy of the instrument be evaluated.

The initial scanner prototype is the Mk1 system. A series of tests were completed to
check the calibration and characterisation. Next experiments were completed to check
the accuracy of TreeScan object size estimates. This successfully identified several

serious weaknesses of the Mk1 system:
» Calibration procedure was inherently imprecise
» Insufficient light under forest conditions
» Lens modification required

A second prototype (Mk2 version) was developed to overcome these weaknesses. The
calibration procedure for the second prototype was modified, and a different lens with

larger aperture was purchased to provide more light and solve several lens problems.

A second series of experiments was performed. These experiments showed the
accuracy of the Mk2 system to be good and within the required specifications.
Experiments completed include hardware calibration, characterisation experiments, two

dimensional accuracy tests, and three dimensional accuracy tests.

Once accurate and repeatable results were attainable in both two and three dimensions
less critical functions such as the final user interface received attention.

Chapter 6 - TreeScan Evaluation 145

6.2 Sequence of Evaluation Experiments

An overview of the evaluation experiments performed is presented here in chronological
order. This overview is provided to set the context for the results of important
evaluation experiments presented in subsequent sections. The conclusions of each
experiment are presented with the sequence of modifications and further experiments

necessary to quantitatively establish the accuracy of the TreeScan system.

Once the TreeScan system was developed to the stage that images could be reliably
captured, an evaluation of the system was started. At this stage an autofocus algorithm
had been implemented for the Mkl TreeScan system with good focus results. The

internal scanner components were aligned to ensure no distortion during image capture.

Next a test was made to see whether real world dimensions could be estimated. This
involved capturing images of a tall building used as a calibration object. The results of
this test proved that the system was imprecise (see section 6.5).

Although imprecise, the system was operational so a field trial was undertaken to test
the system under forest conditions. This was the first time the system was operated in
conditions typical of a radiata pine forest. This field trial highlighted two points:

* The lighting conditions were unexpectedly low resulting in very long image

capture times (timeout maximum of 20 minutes).

« It is very difficult to physically measure standing pine trees to the accuracy

required to calibrate the TreeScan size estimates.

In response to the difficulty in measuring a tree as a calibration object, a 'metal tree'
was built for system calibration. The 30 metre calibration tree lies horizontally and has
been used to evaluate the system accuracy in two and three dimensions.

In an attempt to determine where the system imprecision lay, the perspective correction
algorithm was redesigned. It was found that the two step correction method being used
was an approximation, howcvey\dld not explain the imprecision of the estimates. A
different image correction method based on geometric calculations rather than planar
transformation was implemented. By implementing three slightly different versions
(see section 3.5.3) the cause of the imprecision was identified.

The calibration method being used was mathematically correct, but calibration rod
dimensions were being used in calculations to a precision much greater than the
measured precision. This resulted in random fluctuations in height estimates of

approximately 6 meters at a height of 40 meters.

146

At this stage the Mk2 system was developed. The calibration procedure was modified
so the angle of the camera with respect to the tree is physically measured, rather than
derived from the calibration rod image dimensions.

A different lens was purchased to address the other two problems. The new lens had a
larger aperture providing four times the light of the first lens. As no motorised wide
aperture one inch format lenses were available a manual lens was purchased and a

stepper motor fitted to drive the focus ring.

A third modification that could be made is to increase the system sensitivity by
implementing a video preamplifier. This would amplify the video signal before the A/D
converter. This is being developed as part of Mr Aaron Drysdale's masterate.

The Mk2 system was a new unit so all evaluation tests, including calibration and
characterisation tests needed to be repeated. The Mk2 system was tested under forest
conditions by imaging an entire MARVL plot. This provided information on image
capture timing and image quality, as well as providing sample images for the automated
parameter extraction research being undertaken by Dr Ralph Pugmire. The trees were
not physically measured so calibration tests could not be completed. Two image
features were identified: the images contained considerable banding due to problems in

the integration time adjustment routine, and the images were not as sharp as expected.

The banding problem was easily corrected, but the source of the focus problem required
further research undertaken as part of Mr Aaron Drysdale's masterate. The results
showed the poor focus was primarily due to lens aberration at the wide aperture

positions of the new lens.

Accuracy tests were completed in both two dimensions and three dimensions with very
good results. Both height and width estimates were within the required specifications.

During this development cycle, software changes were continually made to; implement
the modified algorithms, improve the functionality of the software, and allow images to
be captured for specific experiments. Further testing on the use of the TreeScan system

ander forestry conditions is presently underway.

Chapter 6 - TreeScan Evaluation 147

6.3 Hardware Calibration

The scanner hardware must be calibrated to ensure the scanner is mechanically capable
of producing estimates to the required degree of accuracy.

The hardware calibration process consists of two tasks; the alignment of the scanner's
internal components to avoid distortion, and the accurate measurement of the mirror

step angle which is used in the parameter extraction software.

6.3.1 Scanner Component Alignment

Inside the scanner, the scanning mirror, the lens, and the CCD imaging sensor of the
line scan camera must all be in alignment. If this is not the case several distortion effects
will be introduced. Any of these distortions will have a significant effect on the
dimension estimates taken from the images. There are four individual distortions that
could be introduced or a combination of the four if more than one misalignment is

present (see figure 6.1).

The CCD imaging sensor is permanently mounted inside the line scan camera and it is
assumed this has been correctly factory aligned. The lens is mounted directly on to the

line scan camera using a screw-on C lens mount and is also assumed to be correctly

~
~
e
e S
4
N
A A
Object Object
| % ': |
| | | |
SIR— S g
Image Image

Figure 6.1 - Distortion introduced by camera misalignment

148

aligned. For the rest of this section the line scan camera and lens will be discussed as
one unit and referred to as the ‘camera’.

The scanning mirror is mounted on the precision rotation mechanism. This is
permanently fixed to the scanner chassis and cannot be adjusted. The camera can be
misaligned with the axis of the rotation mechanism in three ways and the mirror could
be misaligned with the axis of the rotation mechanism. Each of these is discussed.

6.3.1.1 Camera Misalignment

The camera can be misaligned with the axis of the rotation mechanism in three ways as
shown in figure 6.1:

1. The principal ray of the camera may not be perpendicular to the rotation axis. The
principal ray scans sideways up the object and introduces a horizontal shear into

the captured image.

2. The principal ray of the camera may be offset from the rotation axis. This offsets
the position on the imaged object by the change in camera to mirror distance. This
offset is very small and the effect of this misalignment is negligible.

3. The view angle of the camera may be at an angle to the rotation axis. This

introduces a vertical shear into the captured image.

These misalignments must be corrected for. This can be completed by imaging a
calibration grid and adjusting the position of the camera so that the camera and rotation
axis are correctly aligned. By placing the scanner at 7.5 metres from a grid with lines

1.3 mm wide, it is ensured the grid lines are exactly one pixel wide.

If a captured image is distorted (see figure 6.2), this must be corrected for by aligning
the camera in the horizontal plane to remove horizontal shear. If the image still contains
a vertical shear the camera must be rotated until the image of the calibration grid is not
distorted. Shims were used for fine adjustment of the camera position.

Object Image V Image
Horizontal Camera
alignment rotation

Figure 6.2 - Camera alignment procedure

Chapter 6 - TreeScan Evaluation 149

6.3.1.2 Mirror Misalignment

The scanning mirror is mounted on the rotation mechanism. If there is a misalignment
between the mirror and the axis of rotation of the mechanism, a nonlinear distortion will
be introduced.

The nature of this nonlinear distortion depends on the angular position of the rotation
mechanism over which the image is captured. The distortion introduces an 'apparent
sweep' into the captured images so must be corrected for. The physical system was
modelled in Matlab to determine the nature of this distortion, see appendix E for further
detail.

The mirror was aligned to the axis of rotation of the mechanism to a within
£ 0.01 degree.

5
)
S
|
~t

Figure 6.3 - Distortion introduced by mirror misalignment

6.3.2 Measurement of Step Angle

The precision rotation mechanism has been designed so that the step angle is
approximately 0.01 degrees. The actual value of this angle, denoted alpha, is important
as this is determines the vertical pixel spacing. By using the number of pixels (steps) to
a particular feature and the step angle, the real world feature dimensions are estimated
using the perspective distortion correction discussed in chapter 3.

The step angle for the Mk1 system was measured to be (1.030 + 0.002))(10'2 degrees,
by measuring the number of steps required to complete a full 360 degree rotation of the

rotation mechanism.

150

If the measured value of alpha is incorrect this will introduce a consistently high or
consistently low error into estimated heights. The value of alpha was later empirically
modified to 1.033x10-2 degrees, in order to correct for a consistently high error in

height estimates during the two dimensional accuracy tests.

Chapter 6 - TreeScan Evaluation 151

6.4 TreeScan Characterisation

The TreeScan characterisation is completed to determine scanner characteristics and
establish the conditions associated with normal TreeScan operation. This provides
important information on the aspects of the system that are satisfactory and those that

may require further development work.

The TreeScan characterisation consists of a series of experiments to determine: the
timing for a complete image capture cycle, the resolution to which features can be
resolved, information on the integration time adjustment during image capture, and

information on the performance of the autofocus algorithm.

6.4.1 Image Capture Timing

In this section the overall image capture timing is discussed. This section builds on the
low level hardware timing discussed in section 5.2.3, and in section 6.1 where it was

noted that the lighting under forest conditions was unexpectedly low.

The system typically takes 4 minutes to capture an image. This is the fastest possible
image capture and may be longer in low light conditions. The time it takes to capture an

image depends on two main factors:
1. Data conversion and transfer time
2. Integration time

Other factors that affect the image capture time are initial integration time adjustment,
initial autofocus time, refocus time, integration time adjustment, and time required for

additional processing tasks (see figure 6.4).

* In normal day light conditions the integration time is an order of magnitude
smaller than the data conversion and transfer time. The scan time is limited by the
data conversion and transfer time and the microcontroller is continually
processing data.

« In low light conditions, such as those experienced in forests, however the
situation is reversed. The integration time needs to be longer and limits the scan
time. In this situation the microcontroller remains idle for extended periods.

The system must operate in a forest, and should operate as fast as possible. To speed
up image capture in low light conditions modifications were made to the system to

increase the light received by the imaging sensor and increase system sensitivity:

152

* An A/D conversion routine has been implemented that performs a 10 bit A/D
conversion with an 8 bit lookup table. This increases the sensitivity by a factor of
four by using the bottom quarter of the A/D dynamic range. However this is only
a temporary measure as it requires more processing and extends the minimum
scan time by 50% (see figures 5.9 and 6.4 for timing).

* A new lens provides approximately four times the light by having a larger

aperture.

e A video amplifier is being built that will increase system sensitivity by amplifying
the video signal before the A/D conversion.

The current timing of the Mk2 system is such that using the 10 bit A/D conversion the
scan time is normally limited by the hardware limitation of data conversion and transfer
time (4 minutes). With the video amplifier this is expected to be such that the image

capture under forest conditions will not be limited by integration time.

Daylight image capture Total time = 3 min 6 sec

Initial focus
Integ. time

Integration time
Capture & transfer

Refocus time
Exposure control
Processing (5%)

[l Il =¥ L
L} LI T T T

0 50 100 150 200 Time (S)

y Low light image capture Total time = up to 17 min
Initial focus

Integ. time

Integration time
Capture & transfer
Refocus time

Exposure control
Processing (5%)

50 100 150 200 Time (S)

Initial focus 10 bit A/D image capture Total time = 4 min 50 sec
Integ. time

Integration time
Capture & transfer

Refocus time
Exposure control
Processing (5%)

1 1 Il 1 i
i L] L) L) T 1

0 50 100 150 200 Time (S)

Figure 6.4 - Image capture timing

Chapter 6 - TreeScan Evaluation 153

6.4.2 TreeScan Resolution

The resolution of the TreeScan system refers to the size of the smallest identifiable
features on the TreeScan images. It is however important to distinguish between pixel
resolution and discernible resolution; pixel resolution is the size a single image pixel
represents on the real world object, discernible resolution is the resolution at which

features of interest may be distinguished.

Pixel resolution and discernible resolution may be the same or different. In a situation
where the image is sharp and the feature of interest spans several pixels the discernible
resolution will be subpixel resolution. If however the image is out of focus or contains

blooming the discernible resolution will be several pixels.

6.4.2.1 Pixel resolution

The pixel resolution is the size a single pixel represents on a real world object. The pixel
resolution of the TreeScan system varies with position in the image; the pixel resolution
at the base of the tree will be higher than the resolution near the top of the tree. The
pixel resolution measured from the image matches the pixel resolution calculated in
chapter three. The TreeScan pixels resolution for an image captured at 15 m from the

calibration reference with zero dip and lean is shown in table 6.1.

Resolution Height up tree
Om 20 m 40 m
Horizontal r;solution 0.27 0.42 0.72
(cm/ pixel)
Vertical resolution
(cm /pixel) 0.27 0.68 2.2

Table 6.1 - Measured pixel resolution

154

6.4.2.2 Discernible resolution

The discernible resolution is the resolution at which features of interest can be
distinguished. The discernible resolution depends on the quality of the image and the
size and shape of the feature of interest. If an image is correctly focused and a feature
spans several pixels it may be possible to determine the feature position to a sub pixel
resolution. In a many situations however the image will not be perfectly focused or may
suffer from defects such as blooming as a result of sensor saturation. In such a situation
the image resolution will be less than the pixel resolution.

Examples of reduced discernible resolution are shown in figure 6.4. Around the stem in
strongly backlit situations such as the top of the tree there may be considerable
blooming, the stem may be obscured, or poor focus can result in blurred tree edges (see

figure 6.1).

Blooming Stem obscured Poor focus

Figure 6.5 - Image resolution effects

Chapter 6 - TreeScan Evaluation 155

6.4.3 Integration Time Adjustment

The integration time must be adjusted to prevent sensor saturation but provide enough
light to allow adequate charge accumulation. If required, the integration time is adjusted

throughout the scan.

During a typical image capture the lighting will be low with high contrast near the base
of the tree. Near the top of the tree the lighting will be high contrast and backlit. Figure
6.5 shows the integration time adjustments for the capture of a 6000 line image.

The integration time is reduced by a factor of four near the top of the tree compared to
the bottom. Also note that the integration time is not adjusted while scanning the

calibration rod as the calibration circle would influence the integration time adjustments.

Image capture integration time adjustment

n
o
1

Image cature time maximum
,'\ hardware speed limit

o

>
=y
[
L~
]
.
L5

>

\

7
E
£ .-
= 10 \ r
i /

& \./ \/\A]\/\/\\
= S
= 5+ —
o o
2 —rN
£

0 : - . : : ; i : - —

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Position in image (lines)

Figure 6.6 - Integration time adjustment

156

6.4.4 Focus Tests

The first verification that was completed was to characterise the focus measure under
different operating conditions. It was found that the Brenner function worked well on
both high and low contrast images. There was however variation in the focus measure
as a result of variations in contrast, lighting, and the surface focused on.

The autofocus algorithm was developed based on a high contrast inside image capture
situation. The results of the Mk1 system indicated that the focus algorithm worked very
well on high and low contrast images both inside and out in the forest. The curve of the
focus graph exhibited a sharp peak at the point of maximum focus. The curve was
generally rising monotonically up to point of best focus then falling monotonically.

With the new lens of the Mk2 system however the results of the tests were not as
conclusive. The focus curves sometimes contained significant noise and no clear peak at
the point of optimal focus. In addition to this the images captured at the point of optimal
focus were not as 'visually sharp' as the images captured with the Mk1 system. This
required further characterisation and is currently under investigation as part of Mr Aaron

Drysdale's masterate.

Figure 6.7 shows the focus trial under typical operating conditions. Variation within
repeats of each measurement taken 0.1 seconds apart at the same mirror position are
shown by the boxes and dashed markers on the graph. Also note that the searching
around the best focus number in small steps has been vertically offset to improve
clarity. See section 5.2.5 for a discussion on the autofocus algorithm.

Autofocus results J,Beg focus

Focus number (000)

0 200 400 600 800 60

Position of focus mechanism (steps from o)

Figure 6.7 - Focus results

Chapter 6 - TreeScan Evaluation 157

6.5 Initial Accuracy Tests in Two Dimensions

The aim of the accuracy tests is to validate that the TreeScan system is capable of
providing sufficiently accurate and precise real world estimates. Initial testing restricted
the dimensions to be estimated to the two dimensional calibration plane, reducing the
possible sources of error by one degree of freedom. This section presents the results of
the initial two dimensional accuracy tests which highlights the imprecision of the system

when first developed.

The first parameters to be evaluated were height estimates on the calibration plane.
These are the most prone to discrepancies and will highlight any accuracy or precision

problems.

It is difficult to find a sufficiently tall (40 m) object that can be measured to within
+ 1 cm required to calibrate the TreeScan system. A building with a regularly repeating
pattern up its side was used. The building was measured using an accurate surveyors

measuring tape.

The overall height estimates showed a very large error increasing with height. Height
estimates produced systematically increasing or decreasing errors within single images,

with magnitude and sign varying randomly within a group of images.

These two dimensional calibration tests proved that the Mk1 system did not have the
required degree of precision and is further discussed in section 6.2. A detailed report
can be found in Weehuizen and Pugmire (1994c).

6T Error in estimated height from ground

4 -+

2T Max
T Av+SD
s 0 Av-SD
5 Min
£ 27
4=y
T

s

I

0 5 10 15 20 25 30 35 40
Height (m)

Figure 6.8 - Height errors with high imprecision

158

6.6 Final Accuracy Tests in Two Dimensions

Once the system had been modified and a more accurate calibration procedure
established, further tests were complete to evaluate accuracy in two dimensions. These
experiments validated that the TreeScan system is capable of providing sufficiently
accurate and precise real world estimates.

Again the front face of a building with regular features was used as the calibration
surface. Both height and diameter estimates were made; height estimates were made
using the heights of the regular features up the building, and diameter estimates were

made on 10 cm and 1 m horizontal features up the building.

A series of images was captured and estimates made from these. The resulting height
estimates had a much greater precision, but contained a consistent offset of about
0.5 m at a height of 30 m. This was the result of imprecision in the measured value of
alpha (see section 6.3.2). The angle alpha was empirically changed by 0.3% to correct
the offset.

The final tests of the TreeScan system showed that:

* Height estimates in two dimensions can be estimated to a worst case precision
of + 20 cm at a height of 40 m (see figure 6.9a). There is an expected trend that
errors in height estimates are larger near the top of the tree, with the result that the

TreeScan precision is greater near the base of the tree.

= Width estimates in two dimensions can be estimated to a precision of at least
+ 1 cm throughout the height of the tree (see figures 6.9b and 6.9c). The
imprecision in width estimates is probably due to the manual placement of

marking line endpoints to whole pixel accuracy.

These accuracy tests on TreeScan height and width estimates are based on twelve
images captured from different positions and were completed by Mr Gary Allen. A
more detailed analysis of the data can be found in Allan and Drysdale (1995a).

Chapter 6 - TreeScan Evaluation 159

A Error in estimated height from ground
3
9,
S
@
=
{@)]
‘©
T
0 5 10 15 20 25 30 35 40
Height (m)
B)
Errors in width estimates of a 100 cm feature
155
1.0
5 05 | Max
S) Av+SD
o 0.0 Av-SD
%_0‘5 | Min
B
a-1.0 |
-1.5
0 5 10 15 20 25 30 35 40
Height (m)
% Errors in width estimates of a 14 cm feature
7 L -
g_ [0) A SR PR SR
2 05 4 Max
E Av+SD
% 0.0 4 $ I: 4 + 4 4 Av-SD
g 05 | Min
e}
B e e T L T e D e
-1.5 0 5 10 15 20 25 30 35 40
Height (m)

Figure 6.9 - Final accuracy tests in two dimensions

160

6.7 Accuracy Tests in Three Dimensions

The three dimensional accuracy test involve whether the 3D position of the tree stem
and hence the tree shape can be accurately determined. Tests were completed on tree

sweep estimates of the generated three dimensional model.

For these accuracy experiments it must be possible capture two orthogonal images of
the calibration object. It must also be possible to modify the shape of the object in three
dimensions to within & 1 cm. To facilitate this a horizontal 'metal tree' built out of sheet
metal was used with one image captured horizontally at ground level, and one image
captured from above looking directly downwards.

It was found that although height and width estimates were good, an apparent sweep of
approximately 6 cm was being introduced into sweep estimates. This was the result of
slight mirror misalignment with the axis of rotation of the shaft introducing a slight

curvature to the captured image (see section 6.3.1.2).
The final tests of the TreeScan system showed that:

* Sweep estimates in two dimensions can be estimated to a precision of + 2 cm

or typically one tenth stem diameter.

Further trials should be undertaken to fully characterise the three dimensional stem

position estimates generated by the TreeScan system.

71 |
o
13
7.4

Chapter 7

FORESTRY IMPLICATIONS
AND

RECOMMENDATIONS

TreeScan Strengths and Limitations

Forestry Implications

Alternative Technology Uses

Future Work

162
166
168
169

162

The objective of this masterate research has been to develop a prototype line scan based
computer imaging system to allow the dimensions of standing pinus radiata trees to be
estimated. This has been successfully developed. However, the overall objective of this
research has been to improve forest stand assessment by using imaging techniques to

make the preharvest forest inventory information less subjective and more quantitative.

This chapter draws conclusions from the findings of the TreeScan evaluation trials and
discusses the contribution the TreeScan system can make to in-field tree imaging. The
role of the system in the forestry industry is discussed by highlighting strengths and
limitations of the system. Lastly recommendations are made for alternative uses of this
technology and future research on tree imaging.

7.1 TreeScan Strengths and Limitations

A prototype in-field tree imaging system has been built to estimate the dimensions of
standing pine trees. The TreeScan system has been described at a logical and technical
level, but if it is to succeed the TreeScan system will need to be used operationally in
the forestry industry. At this level it is the usability and productivity that is achievable in
a forestry environment that will determine the final role of such a system. In this section

the TreeScan system is evaluated from a forestry viewpoint.

It should be remembered that the TreeScan system was developed as a "proof of
concept” prototype and is the first generation of this technology. The main aim during
the development was to develop a system that was physically capable of capturing

images and providing accurate parameter estimates.

The TreeScan system has a number of strengths and limitations that will govern the
eventual role of the system. The main strength of TreeScan is that it is the first system
to provide an objective tool to characterise the three dimensional shape of a standing tree
stem. However, the image capture takes four minutes and the two people are required to

operate the system.

At this stage the use of the TreeScan system requires a trade-off between desired
convenience and required accuracy of tree size information. For day to day operations it
will remain more convenient to send a MARVL crew into the forest to visually estimate
important tree parameters. The TreeScan system provides a research tool to gain more
precise estimates of tree parameters, and provide calibration feedback on the accuracy of

existing inventory methods.

Chapter 7 - Forestry Implications and Recommendations 163

TreeScan strengths

TreeScan limitations

* Generates a 3D stem model (for sweep).

* Provides repeatable, accurate estimates
of diameters and heights.

» Images can be processed in the forest.

» Relatively slow image capture (~4 min)
-> Possible tree movement.

e Semi manual processing of images.

» System requires two operators and

Other strengths :
- Little experience necessary. -

- Can keep a visual record of the trees.

careful setting up.

Other limitations :

System is sensitive so could get
damaged or broken.

- Relatively high hardware costs.

- Large image data storage requirements.

Table 7.1 - TreeScan strengths and limitations

TreeScan strengths

The TreeScan system has three main strengths:

The TreeScan system generates a model that characterises the shape of the entire
tree stem in three dimensions. From this 'model objective estimates of sweep can

be made. We believe this is the first device in the world to provide these facilities.

In addition to sweep, the TreeScan system also allows other feature sizes to be
estimated including; feature height, feature size, branch sizes, and stem diameter.
Provided sufficient care is taken in image capture these estimates of tree size are

very precise and accurate.

The images captured can be processed in the field providing immediate feedback.
This is very useful if the system were to be used to calibrate current MARVL

CIews.

Other strengths include;

Estimation of tree parameters by the MARVL system requires considerable
experience. This experience is not needed to operate the TreeScan system. A

small amount of technical training is required to operate the TreeScan system.

The system captures images of the trees which can provide a visual record of the
trees that have been processed to be stored for future reference. This could be
used to generate a forest description database with detailed tree information.

164

TreeScan limitations

The TreeScan system also has three main limitations:

The image capture is relatively slow, typically 4 minutes per image, and in low
light conditions could be longer. In addition to this the equipment needs to be set
up for each scan, the computer started and the image saved. This could limit the

productivity.

During this long scan time, the tops of trees may move in the wind, introducing a
tree stem wobble in the image that is difficult to distinguish from wobble in the
actual stem shape (see section 2.2.2). This is a direct result from the line scan

approach adopted by the system.

The processing of the images to get tree size estimates requires considerable
processing. This is a tedious semi manual task with the operator marking all

dimensions to be estimated. Research is underway to further automate this task.

The system requires two operators and is rather bulky. The system has a
combined weight of approximately 24 kg (Computer 5kg, scanner 8kg, tripod
4kg, scanner batteries 3kg, calibration rod 2kg) and is currently contained in two
aluminium cases. The calibration rod needs to be carried separately. Backpack
carrying cases should be investigated to make it easier to carry the system around

the forest.

Other limitations of the system include;

The system is sensitive and could get damaged or broken as a result of being
carelessly operated in a forestry environment, for example the system could get

dirt into the plugs or water into the electronics.

The cost per TreeScan system is relatively high, each system costing
approximately $20000. This is considerably more than the equipment cost for a
current MARVL crew, but this must be traded off against the unknown value of
the extra information and precision it provides.

The image data storage requirements are very high. If many images are going to
be captured, some form of permanent large scale image archival system should be

set up.

A system such as the TreeScan system will always involve some degree of uncertainty
in the estimates of real world dimensions because extrapolation of the calibration

geometry is used to determine the estimates of tree parameter dimensions. It is

Chapter 7 - Forestry Implications and Recommendations 165

important though to keep in mind the limitations of alternative systems, and the reasons
this research was undertaken in the first place. Tree shape information is required to a
greater accuracy than human estimates can provide using the MARVL system.

It is also important to distinguish between fundamental limitations and limitations of the
implemented features. Fundamental limitations tend to be limitations of the
hardware used or the geometry of the forestry situation. Fundamental limitations cannot
be easily resolved or modified, for example, the distance from the tree at which images
can be captured will typically need be in the range of 12 to 20 metres. This cannot be
easily changed as other branches would obscure the tree stem being imaged.

Limitations of implemented features however, tend to be implemented software
algorithms, which can easily be modified. For example the type of user interface or the

sequence of steps in the image capture algorithm.

166

7.2 Forestry Implications

The TreeScan system was developed as a proof of concept prototype to evaluate the
feasibility of using in-field tree imaging to improve the preharvest forest stand
assessment. A system has been built and has been proven to be sufficiently accurate. It
must now be evaluated in a holistic sense as a forestry tool. Possible roles of this
technology in the forestry industry are discussed. Also discussed is the final role of the
TreeScan system determined by its strengths and limitations. When evaluating the
usefulness and potential of the TreeScan system it must be recognised that it is the first
device of its kind in the world and that this is the first generation of this technology.

The next stage of the evaluation cycle is to compare the information generated by the
TreeScan system with the results of other systems. TreeScan results should be
compared to those produced by a skid site log optimisation system currently under
development by Tasman Forestry. The results should also be compared with existing
systems such as MARVL and AVIS. The final role of the system will depend on the
outcomes of these tests and the direction chose by both the management at Tasman

forestry and the research and development team at Massey University.

At this stage in-field tree imaging, and the TreeScan system in particular, could be

envisaged in a variety of roles. The TreeScan system could be used as a tool for:
1. Research work only

. Measuring individual trees used for MARVL training

. Accurately measuring trees in research plots

. An inventory replacement for MARVL

. Measuring trees at skid sites prior to harvest

S U A W N

. Making an inventory of every tree in the forest

The final three roles are very ambitious and given the current state of the technology,
considerable improvement and development would need to be completed before the
system is anywhere near capable of these tasks. However the system would be very
useful to; (i) serve as an accurate measurement device in the assessment of sweep
during MARVL crew training exercises, and (ii) to make accurate measurements of the

trees in research plots.

During MARVL training exercises performed by the MARVL crews, trees are
called by several crews then cut down and the actual dimensions compared. The

Chapter 7 - Forestry Implications and Recommendations 167

TreeScan system would provide an alternative method of measuring the tree while it is

still standing.

A number of research plots are maintained under a variety of management regimes.
These are called permanent sample plots. Trees within permanent sample plots are
measured every year. This information is used for research into tree growth under
different conditions, and the development of growth models such as taper functions for
individual areas. The trees in these plots need to be accurately measured. This would be

a very good application of the TreeScan system.

The TreeScan system could also provide advantages during valuation by providing
quantitative evidence of the timber in a stand. This would also provide quantitative

information for forest buyers.

Lastly it must be remembered that the TreeScan system is only one implementation of
in-field tree imaging technology. Many other implementations are possible. The video
system (VideoScan) discussed in chapter two (see section 2.2.1) currently is under
development as a separate project by Mr Farshad Nourozi as a masterate project under
the supervision of Prof. R.M. Hodgson and Dr. R.H. Pugmire. The Forestry Research
Institute of New Zealand Ltd. are also working on an imaging system to capture tree

sweep information.

168

7.3 Alternative Technology Uses

The system developed here consists of a specialist high resolution scanner and a series
of programs that customise the system to measure pine trees. Alternative uses of this
technology fall in two categories;

* The entire system could be used to measure large objects
* The scanner could be used to capture high resolution images for any application

The system developed here is a system designed for measuring tall or long two and
three dimensional objects. In addition to the forestry industry the system could be used
in a large number of other applications such as in the rapid measurement of buildings in
the event of an earthquake. By rotating the scanner by 90 degrees a whole new
dimension opens up and the system could be used to estimate parameters on any two
dimensional horizontal surface, for example, position of boats over water or cars on a

car park.

The second possibility for alternative applications is the use of just the scanner to
capture images. The scanner developed is a specialised high resolution scanner with a
very high aspect ratio. This could be useful for other applications where a high
resolution image with a high aspect ratio is required. Situations where this might be
applied is in panoramic imaging without wide angle lens distortion, or the use of

imaging in orchards.

Applications will typically involve the imaging of objects that do not move around. If
modifications are made to the system to allow faster image capture the system could

even be used in applications that do require fast image capture.

Another unique feature of the scanner is that it provides imaging technology with a
constant angular step size between pixels in the vertical direction. The angular step size
of pixels changes with the position in the image for normal area cameras. This could be

very useful for certain applications.

Chapter 7 - Forestry Implications and Recommendations 169

7.4 Future Work

In a complex system such as the TreeScan system, the system will never be finished
and there will always be modifications and improvements that can be made. However at
this stage the most important task still to be completed is to fit the TreeScan system as it

stands into the inventory improvement framework.

Possible uses for the system within Tasman Forestry should be explored. It is
important that highlighted uses for the system are realistic and provide genuinely useful

information.

A series of trials should also be completed to compare the information generated by the
TreeScan system with the information generated by other systems. The outcomes of
these tests will determine the future direction of the system. This includes the
deployment of the TreeScan system within Tasman Forestry Ltd. and possible

commercialisation of the system.

Other areas where future work could be completed can be divided into three areas:
1. Ongoing research on TreeScan system improvements

Ongoing research on TreeScan system improvements includes research on a
number of aspects of the system that have already been implemented but that
could be improved. This includes research on automatic parameter extraction to
replace the current semi manual method, hardware developments to reduce the
image capture time, and other developments to make the system easier to operate

and more manageable.

Image capture speed can be improved by the implementation of a video amplifier
to increase the scanner sensitivity and the implementation of faster A/D
technology such as dedicated A/D hardware or use of digital signal processing
(DSP) technology.

The inclusion of in-built angle measurement sensors would make the system
easier to operate, and backpack carrying cases would make the system more

manageable.
2. Research on the use of alternative technologies

There will always be alternative technologies which can be implemented to

develop an in-field tree imaging system.

170

The use of alternative technologies that may have advantages over the TreeScan
system must remain an option. The VideoScan approach under development at
Massey University as a separate project falls into this category.

Other methods to directly capture tree shape and dimensions that do not store
images are also under consideration. A possible approach is the use of laser
scanning techniques.

Alternative applications for TreeScan technology

Lastly, alternative applications for the TreeScan technology have been discussed
in the previous section. Entire projects could be set up on any one of these

alternative applications.

Chapter 8

SUMMARY

8.1 Summary 172

172

8.1 Summary

Quality inventory information is essential for optimal resource utilisation in the forestry
industry. The present MARVL system used for the preharvest inventory assessment in
the forestry industry has a number of weaknesses. The MARVL system uses
predominantly subjective assessment of tree parameters and has been developed to the
point where it is limited by this subjectivity. This is particularly true in the assessment

of sweep.

In-field tree imaging is a method which has been proposed to improve the
preharvest inventory assessment of standing trees. It involves the application of digital
imaging technology to this task. The method described generates a three dimensional
model of each tree through the capture of two orthogonal images from ground level.

Three ways of implementing in-field tree imaging were identified as promising in an
earlier feasibility study. The first of these has been developed to a proof of concept
prototype. This fully operational prototype has been named the "TreeScan" system.
This thesis describes the design, development, and evaluation of the TreeScan system.

The TreeScan system consists of a portable computer, a custom designed high
resolution scanner with integral microcontroller, a calibration rod, and custom designed
processing software. Images of the tree are captured directly into the portable computer
using the scanner which contains a CCD line scan camera and a precision scanning
mechanism. Captured images are analysed on the portable computer using customised
image processing software to yield estimated real world tree dimensions and shape
parameters. This involves a semi manual task where the operator identifies the

dimensions to be estimated.

The TreeScan system provides quantitative estimates of five tree parameters; height,
sweep, stem diameter, branch diameter, and feature separation such as internodal
distance. In addition to these estimates, a three dimensional model is generated which
can be further processed to determine the optimal stem breakdown into logs.

Design considerations
In the development of a "high tech" instrument such as the TreeScan system, it is very
important to consider the design constraints and key technical aspects of the system

before development as any one of a large number of considerations could limit the
usefulness of the final system. These are discussed in chapters two and three.

Any system developed must be robust and capable of operating under normal forest
conditions. These conditions include; difficult image capture geometry (see

Chapter 8 - Summary 173

section 3.7), poor lighting conditions, variable tree stocking, rugged and possibly steep
terrain with undergrowth, tree movement in the wind, and outdoor weather conditions.

The system must be based on practical technology and capable of producing accurate
results. Key technical aspects that need to be considered include; required resolution,
correction of image capture distortion, choice of imaging sensor, computer to scanner
interface design, image storage requirements, optical design, and tree parameter

extraction methods.

TreeScan technical implementation

A technical description of the implementation of the TreeScan system is presented in the
hardware and software chapters (chapters 4 and 5). Key aspects of the implementation

are discussed in detail, these include:
* The image capture system

A CCD line scan camera based image capture system has been developed to
capture the image data. The line scan camera places critical timing constraints on
the rest of the TreeScan system, introducing a complicated timing interrelation
between: image integration, analog to digital conversion of image data, and

transfer of data to the computer.
¢ The SCSI communications interface

A SCSI interface was developed for the scanner to provide a high speed
communications interface between the scanner and computer. This interface is
used to send control commands to the scanner and transfer image data back to the

computer.
» Distortion correction and tree parameter extraction algorithms

Distortion correction and parameter extraction algorithms have been developed to
correct for perspective distortion introduced during image capture and to process
the captured images to provide tree parameter estimates.

» Software development

To develop a system with the functionality of the TreeScan system, software
needed to be implemented at four different levels; Macros, Pascal, C and
assembler. To minimise development time, a strategy was adopted to implement
all algorithms at the highest level possible.

174

System evaluation

The evaluation of a prototype such as the TreeScan system is a cyclical process of
characterisation, calibration, and modification where necessary. During each cycle
system knowledge is gained and modifications or improvements are made. Several
limitations were identified in the Mk1 version the TreeScan system. A second prototype
was built (Mk2 version) which largely overcame those limitations.

The Mk2 version of the TreeScan system has been fully characterised, calibrated and
the accuracy of tree parameter estimation tested. The experiments performed confirmed
that the TreeScan system is capable of providing sufficiently accurate and precise real
world estimates. Height in two dimensions can generally be estimated to an accuracy of
+ 20 cm. Stem and branch diameters are estimated to an accuracy of £ 1 cm, and tree
sweep can normally be determined to an accuracy of + 2 cm (or typically one tenth stem
diameter).

The system developed has a number of strengths and limitations. The main strength is
that it is the first imaging system in the world (we believe) to generate three dimensional
models of standing trees and provide objective estimation of sweep. The main limitation
of the system is that the image capture is slow (typically taking 4 minutes). This limits
the productivity achievable with the system. There is also a danger that if the tree is
moving in the wind an apparent stem wobble is introduced which is difficult to
distinguish from tree shape deformation.

Future directions

The TreeScan system could be used in a variety of roles in the forestry industry,
ranging from solely a research tool to a direct replacement for the current MARVL
system. In the short term the most likely role for the TreeScan system is as a calibration
device in the training of MARVL crews and as a method to measure trees within

experimental research plots.

Further work is required to evaluate how the TreeScan system can be part of the
inventory improvement framework and what the final role of the system should be.
This includes an evaluation of the performance of the TreeScan system in comparison to
existing inventory assessment methods, and investigation into the value of accurate

inventory information on standing trees.

Other future work which should be undertaken is: improvement of the TreeScan
system, research into the use of alternative technologies to implement in-field tree

imaging, and research into alternative applications for the TreeScan technology.

REFERENCES

Allen, G. and Drysdale, D. (1995a) : TreeScan Two Dimensional Accuracy Report,
Department of Production Technology, Massey University, 1995.

Allen, G. (1995b) : Operator Manual for the TreeScan System (version 1.0),
Department of Production Technology, Massey University, 1995.

ANSI (1986) : American National Standard for Information Systems - Small Computer
Systems Interface (SCSI), American National Standards Institute, 1986.

Deadman, M. W and Goulding, C. J. (1979) : A Method of Assessment of Recoverable
Volume by Log Type, New Zealand Journal of Forestry Science 9(2):225-239, 1979.

Forestry Facts & Figures (1994) : Forestry Facts & Figures, New Zealand Forest
Owners Association Inc. in co-operation with The Ministry of Forestry, 1994.

Groen, F.C.A., Young, I.T. and Ligthart, G. (1985) : A Comparison of Different
Focus Functions for use in Autofocus Algorithms, Cytometry, Vol 6, 1985.

Heavers, O.S. and Dichburn, R.-W. (1991) : Insight into Optics, John Wiley and Sons
Ltd., 1991.

Horder, A. (1972) : The Manual of Photography, Focal Press Ltd., 1972.

Jacobson, D. (1993) : Frequently Asked Questions Regarding Lenses, Electronic
Internet Document : Lens FAQ, 1993.

Jain, A. K. (1989) : Fundamentals of Digital Image Processing, Prentice Hall, 1989.

Knoll, T. (1991) : Writing Plug-in Modules for Adobe Photoshop, Plug-in Developers
Kit, Apple Software Developers CD.

Loral Fairchild (1991) : Loral Fairchild 1991 CCD Imaging Databook, Loral Fairchild
Imaging Sensors, 1991.

176

Protel Technology (1989) : Reference manual to Protel Schematic 3 and Protel
Autotrax, Protel Technology Pty Ltd, 1989.

Pugmire, R. (1993) : Automation of Forest Stand Assessment Feasibility Study,
Department of Production Technology, Massey University, 1993.

Pugmire, R. (1994) : An Experimental System for Forest Stand Assessment,
Department of Production Technology, Massey University, 1994.

Rasband, W. (1993) : NIH Image User Manual, Wayne Rasband, 1993.
Ray, S. (1979) : The Photographic Lens, Focal Press Ltd., 1979.
Russ, J. C. (1992) : The Image Processing Handbook, CRC Press, 1992.

Schreiber, W. F. (1986) : Fundamentals of Electronic Imaging Systems, Massachusetts
Institute of Technology, 1986.

Tasman (1995) : Technical Documentation for LOGOPT Log Optimiser, M. Ronnqgvist
and D. Ryan, Tasman Forestry Ltd., 1995.

Texas Instruments (1990) : SN75C091A SCSI Bus Controller Data Manual, Texas

Instruments Inc, 1990.
Vivino, M. (1993) : Inside NIH Image Manual, Mark Vivino, 1993.

Weehuizen, M., Pugmire, R.H. (1994a): The use of In-field Tree Imaging in the Pre-
harvest Inventory Assessment in the Logging Industry, Proceedings of New Zealand
Postgraduate Conference for Engineering and Technology Students, Department of
Production Technology, Massey University, 1994.

Weehuizen, M., Pugmire, R.H. (1994b): The use of In-field Tree Imaging in the Pre-
harvest Inventory Assessment in the Logging Industry, Proceedings of the Second
New Zealand conference on Image Vision and Computing, Department of Production
Technology, Massey University, 1994.

Weehuizen, M. and Pugmire, R.H. (1994c¢) : TreeScan Characterisation and Calibration
Report, Department of Production Technology, Massey University, 1994.

References 177

Weehuizen, M. (1995) : Technical Reference Manual for the TreeScan System
(Volume 1 - Main Manual, Volume 2 - Software Manual), Department of Production
Technology, Massey University, 1995.

Wolf, P. R. (1974) : Elements of Photogrammetry (With Air Photo Interpretation and
Remote Sensing), McGraw Hill, 1974.

Yeo, T.T.E., Ong, S.H., Jayasooriah and Sinniah, R. (1993) : Autofocussing for
Tissue Microscopy, Image and Vision Computing, Volume 11 Number 10, 1993.

Appendix A

Development Documentation
for the TreeScan System

Reports Produced by Production Technology

Automation of Forest Stand Assessment Feasibility Study, R.H. Pugmire,
December 1993. (24 Pages + Appendices)

An Experimental System for Forest Stand Assessment, R.H. Pugmire,
January 1994. (7 Pages + Appendices)

Brief outline of the Measurement Deviation of the Experimental Image Capture
System from Actual Measured Parameters, M. Weehuizen, May 1994.
(2 Pages + Appendices)

TreeScan Characterisation and Calibration Report, M. Weehuizen & R.H.
Pugmire, December 1994. (34 Pages)

TreeScan Two Dimensional Accuracy, G. Allen & A. Drysdale, August 1995.
(8 Pages + Appendices)

Operator Manual for the TreeScan System (version 1.0), G. Allen, January 1995.
(33 Pages)

Technical Reference Manual for the TreeScan System, M. Weehuizen,
September 1995.

- Volume 1 - Main Manual. (50 Pages + Appendices)

- Volume 2 - Software Listings. (140 Pages)

Reports Produced by Tasman Forestry

Tree Imaging Project : Background Notes and Specifications, M. Colley,
December 1993. (4 Pages)

Project Proposals Produced by Production Technology

* Sub-Project 1 Proposal : Line Scan Camera Image Capture Prototype,
R.H. Pugmire, December 1993. (4 Pages)

Appendix B
Sample Tree Analysis

This appendix presents a sample set of images of one tree and follows these images
through the processing stages to extract the tree parameters. The tree has a fork near the

top of the tree.

Parameter Extraction Sequence

Source images Image calibration Height and width
estimates
BB
e N
S

Model File —— —

Model file for Tree stem Stem edge
optimistaion model processing

B2

(s1exid ¥201X5529) g MBIA (siexid $201x.269) | MAIA
9]eas ||n} % Gz 1e sabewi 82inog

Marking of calibration points

B4

TR
il gt Pt T

Appendix B - Sample Tree Analysis B3

Source images vertically decimated by 4 and lines marked
for 3D model generation at 30 % full scale
s TSN, (line width increased to visually improve the image)

od

Appendix B - Sample Tree Analysis B5

v 5

= 40.0 em

o Av height
=1040m

meter

ety 2=
. .-r

Y:2845
i Value: 115

X:494

imensions

ionintwod

t

ima

...-<.‘ \h'- - 5
o OGN S e e

& 1) v]
B _ -
3 g 2 : e ~
. i - -

B
-

Tree parameter est

ht)

ter

19

-
£ £
n -m
8 :
- £ § L= E e .
g oest @ g |
alu 2z & O . om?t =352 ..Qlu.. ™
g2 V8. o g Bl .
“>s £ £ X>> & < =
™ o= - — T Ty -
....V.n.l . %) -.J%H.

(point size increased and frequency reduced
to visually improve the image)

Stem edge points

Appendix B - Sample Tree Analysis

B7

.
.t . Py .
- .
i Cetey, i
e .
w®y *
"
ee" P . . P © L e ESY L gy e (e
5 .. 4 . Tage s s v saanst®
as
T
L]
(7
ftaa, e
- -
L R AR AR A RS B I I LR R e
LR R IR
.
" wie
.
. P At e e ad s e g ot e et antdy, o e snasresnt®®
3L
.
.
.
.
.
S . ® il SR
. o o L S,
g ,l.-' Ve g atdie
-
o Teste syt n nayn"

Display of stem model allowing sweep estimates
to be made

30 m K\

n
) (

% Values =

X:410
¥:66
Value:255
Sweep of SED/4.0 over 18 m section.
ﬁ Values |
X:42 Maximum sweep = 11 cm
¥:1475 atheight =35 m
Value:Q and sed = 44 em
Section max height = 18.8 m
Gaenimetel ey, 10m Section min height = 0.8 m
Max model Hgt = 32.00 m
Min model Hgt = 0. 7S m
Diameter at breast Hgt = 49.0 cm
Stem SED = 19.0 em
Max sweep: SED/ 2 at height =205 m
Model consists of : 142 slices,
spaced at : 25 em.
Om

8d

Appendix C
Forestry Terms

C.1 Definitions

These are definitions of forestry terms as defined for development of the log
optimisation software developed by Tasman Forestry Ltd.

Sweep
The maximun: deviation from straightness along the length of the log.

« Sweep shall be specified as D/ix over the log length.

« Where D is the dverage diameter at the point of maximum deflection and
x is the magnitude of deflection.

« Maximum deflection shall be measured where the tape is stretched from
thi2 middle of one cnd of the log to the middle of the other end of the log.

At Puint of Straight

Aaximam / Line
Dewiation e e S

Note : Sweep has previously been defined as e e deﬂfacnon . The definition
log small end diameter

of sweep based on log SED is still used in most other forestry applications.

Wobble (em)
A deiect where the axis of the log deviates in 2 or moie different directions
along its length. (To a maximum of 6 ineters.) The bends in the log may be
in the same plane, at right angles to each other or from a log which spirals.

« \Vobble is the larger of the two deflections shown, not their sum.
« Wobble is expressed either as an absolute amount or as a ratio of the

maximum deflection to thc average log diameter at point of maximum
deflection.

c2

Kink (cm)
A stort deflection in the log affecting less than 2m of the log.
« Kink is measured as the maximum dewviation of the
axis
Diameters

Small End Diameter (SED):

+ Minimum Diameter
‘Of two diameter measurements at right angles through pith.)
E Measured under bark.

Large End Diameter (LED):

. Maximum diameter anywhere on the log.
{(Usually, but not necessarily, located at the large end.)
. Measured under bark.

Diameter Breast Height (DBH):

. The average diameter of the tree measured at a point 1.4m above

ground.
o DBH is expressed as an 'over bark' measurement

« For Log Optimisation purposes breast height is 1.4m minus the stump

height from the butt. The average over bark diameter may be
extrapolated from measurements taken above and below this point.

Internode

Internode Minimum
The minimum clear distance (in mm) between whorls on a log.

Internode Maximum
The maximum clear distance (in iun) between whorls on a log.

Appendix C - Forestry Terms C3

C.2 LogGrades

On the skid site tree stems are cut into logs of a certain grade. The log grade is a
measure of quality and value of each log. Each log grade has specifications which a log
must meet. Tasman Forestry harvests over 50 different log grades.

Log grade specifications are based on:

« Length - Minimum length, maximum length, and average length with a standard

error are specified for each log grade.

« Diameter - Minimum, maximum and average values are specified for SED,

LED, and average diameter are specified for each log grade.

« Shape - Log shape restrictions specified by maximum sweep, wobble and kink
allowances are specified for each log grade.

« Kbnots - Maximum knot size and knot frequency are important specifications for

each log grade.

» Features and defects - Other features and defects such as rot, nodal swelling,

and fluting are important specifications for each log grade.

For example, a summarised specification of Japanese A Grade logs consists of:

Minimum Lengths : 4.10 m
8.10 m
12.10 m

Diameters : Minimum SED 20 cm, or as directed.
Minimim average SED 33 cm.
Maximum SED 70 cm.

Knots : Maximum 15 ¢cm or 1/3 SED, including collar.
Maximum spike knot 8 cm or 1/4 SED.

Wobble : Up t0 5 cm wobble is permitted.
Kink : Not permitted.
Roundness : No restriction.
Pith : No restriction.

Fluting : No restriction.

C4

Bark Damage : Bark damage resulting in discolouration, decay,
trimming flush with barrel of tree or cutface is not
permitted

General : No draw-wood. No rot, stain, or drywood. No splits.

No saw cuts. No machine damage. Ends cut square.

Marking : Every log to have a Green "A", Tasman logo, and

crew no. in green on large end.

For inventory management purposes five standard log grades are defined by Tasman

Forestry:
< pruned
« Japan A
+ Korea K

« domestic sawlog

* pulp
These are used when using the MARVL data to predict possible harvests for individual

stands.

Appendix D

Original TreeScan
Project Proposal

The original TreeScan project proposal produced by the Department of Production
Technology and the original background notes and specifications produced by Tasman
Forestry are presented in this appendix:

* Line Scan Camera Image Capture Prototype : Sub-Project 1 Proposal

+ Tree Imaging Project : Background Notes and Specifications

D2

Line Scan Camera Image Capture Prototvpe

Sub-Project 1 Proposal
Proj 1i
Development of a prototype line scan based image capture system for
automation of forest stand assessment.
The proposed image capture system is outlined in section 7.3 of the feasibility
study prepared for Tasman Forestry by the Department of Production
Technology. The system is intended to capture images which can then be
used to determine important tree parameters including sweep, diameter of
stem and branch size. The main components of the system are shown in the
diagram below.
This project is intended to produce a working prototype which will allow
capture of images of trees and transfer to a portable computer. The captured
images would be in a form that could initially be analysed using the NIH
Image package and macro's produced as part of the feasibility study. The
intention is to produce a system with a resolution of approximately 8000 x 200
which for a 40 metre tree will translate into a resolution of 0.5cm at breast
height.
The intention is to produce a basic working system quickly, to which later
refinements can be added. One such refinement could be the use of
synchronised or structured lighting to improve contrast and aid in automatic
extraction of tree parameters.

\~ Tree stem
One horizontal scan is

collected at each angle

of elevation Light ra

Line
sensor

/

4 poml
Portable data collection

computer with low
resloution image display

Prism or lens control system

Proposed System

Format of project

The project is to be handled as a funded masterate project supervised by
Ralph Pugmire and Professor Bob Hodgson. In order to speed development of
the prototype technical support of approximately 1/3 of a man year will be

* _Appendix D - Original TreeScan Project Proposal D3

made available to the project from within the Department of Production
Technology. The masterate student and technical support personnel will be
chosen by the department.

iming:

The intention is to provide a prototype system by the 1st of July 1993. The
masterate is expected to be completed within 12 months.

Personnel

The present project team is listed below although this may change during the
course of the project. In particular technical support may be provided by a
number of people within the Department and other academic staff with
particular areas of expertise will be involved in parts of the project.

Ralph Pugmire Project Leader, supervisor for masterate
Marijn Weehuizen Masterate student

Prof Bob Hodgson First supervisor for masterate,

Farshad Nourozi Technical support

Project monitoring

Brief one page reports will be provided on the status of the project monthly. A
meeting with Tasman personnel should be held at least once each three
months. We would also recommend that a Vis-A-Vis system be purchased by
Tasman to enable the project team to liaise with Tasman during the course of
the project.

Publication
* Any publication of aspects of this work must be cleared by Tasman
prior to publication. Tasman may require a delay in publication of

up to twelve months if the publication contains commercially
sensitive material.

Naturally where possible we would like to publish the novel aspects of the
work sooner than this and Tasman will endeavour not be overly restrictive in
this area.

TASMAN FORESTRY LIMITED

TREE IMAGING PROJECT

BACKGROUND NOTES AND SPECIFICATIONS

3ackground

Fasman Forestry routinely assesses stands of mature radiata pine one to two years prior to
1arvest. This pre-harvest inventory typically involves the establishment of circular 0.04ha to
).06ha plots on a systematic grid throughout each stand. The current objective is to obtain an
:stimate of stand recoverable volume per hectare with a PLE (Probable Limit of Error) not
xceeding +/- 10% of the mean. In practice this requires a 2% to 4% sample by area of a
ypical stand of 20-40 hectares.

Che pre-harvest assessment involves measuring diameters at breast height of all trees on a plot,
neasuring heights of a subset of trees, and an ocular assessment of features along the length of
:ach tree in the plot. Features include branch size class, sweep (i.e. sinuosity) class, forks and
rroken tops. Information thus gathered is input to a computer which then proceeds to
:stimate the volume of each tree and the breakdown of that volume into various specified log
srades, using an optimisation procedure that ensures the mix of log grades that will maximise
salue per tree is cut from each tree.

[asman Forestry currently defines five standard log grades:

pruned

Japan A

Korea K
domestic sawlog

pulp

® o o 0 o

from time to time other log grades will be specified and the pre-harvest assessment data will
2e used to estimate volumes and characteristics of these log grades.

The pre-harvest inventory has the acronym "MARVL" standing for "Method of Assessment of
Recoverable volume by Log Type". MARVL field procedure and computer analysis and
software was developed by NZ Forest Research Institute in 1979. Tasman Forestry has been
1sing it since 1981 and has a large fund of experience in its use.

[nformation from MARVL is a significant and critical part of Tasman Forestry's management
information data base. It is used to:

estimate the volume of harvest, by log grade, up to three years ahead of harvest

draw up marketmg plans

set targets and prices for contract logging crews

derive functions that allow log grade forecasts to be made for stands that are younger
than those in the two to three year harvest plan

estimate various parameters for each log grade at the time of harvest, e.g. average
small end diameter, average length.

6 December 1993 ‘ Document3

* Appendix D - Original TreeScan Project Proposal D5

It should be noted that usually the MARVL information is "grown on" to the anticipated year
of harvest before analysis is undertaken. Growing-on uses growth models developed by FRI
and basically expands the diameter and height of each tree, assuming all features remain
constant. :

The major drawback to MARVL is the definition of a method to assess sweep, and then the
ocular implementation of the chosen method. By comparison, branch class can be ocularly
assessed quite accurately as can the heights to features such as forks.

Tree Imaging

Tasman Forestry has developed MARVL toward the limit of human ability. As noted, its
major weakness is the subjective assessment of sweep. In order to make a quantum
improvement it is necessary to capture a 3-dimensional image of standing trees. If this can be
done, the need to define a method of assessing sweep in the field disappears - the image
automatically embodies all the sweep in a tree. The need to ocularly assess sweep also
disappears.

The diagram below illustrates the concepts involved in analysis of the image within the

computer.
View of Image in Computer (One plane only)
Log Grades A;B
Lengths 12.1 metres ; 8.1 metres
Minimum Small End Diameters (sed) 200mm ; 100mm
Maximum Sweep sed/2 ; sed/1 _
Values A $100/m3 ; B $25/m3

E-.__ﬁ J.\i /
R S /

S weep ‘
I

(2 mekes B"I

Computer tests first 12.1m section for log grade A.

estimates sweep is it within specification?

estimates sed is it within specification?

if YES, goes to next section

if NO, tries the next lower value grade (i.e. grade B)of different specification
etc.

e © o o o

6 December 1993 Document3) 2

at Must Tree Imaging Achieve?
achievements as currently foreseen, and the working environment, are:

nding Trees
Standing trees, within normal forest stands in all their variety, are the subject. By
imaging standing trees, assessment can be done one or more years ahead of harvest,
there is no cutting down, and therefore likely wastage of trees, and sweep is captured
without being altered by gravity acting on a felled tree.

ipling ,
Identical to current procedure. All trees on a 0.04 to 0.06ha plot will be imaged.
Plots will sample 2% to 4% of a stand.

ameters
New Zealand plantations are now quickly moving toward a fairly uniform age of
felling within the range 27-32 years. From now on mature trees will generally be
around 40-45 metres in height, average 45-60 cm in diameter breast height (range 15-
100), and at stockings of 200-600 stems/hectare (occasionally up to 1000 sph and
reducing to a range of 200-300 sph after the turn of the century).

m Two Directions
Images should be captured from two positions at approximately 90° to one another.
This will provide an outline of the shape of the stem in three dimensions.

uracy
The following limits of accuracy are desirable
e diameter £lcm
® height£+0.5m

nches
Branches on each tree are currently classified into three size classes "

0-7cm Class 1
7-14cm Class 2
>14cm Class 3

For example a stem may be described as follows

5.5m Class 1 branching
1.0m Class 2
120 m Class 1
0.5m Class 3
80m Class 1
270m Total Height of Stem

It would be desirable if imaging could also estimate branch size to within £1cm..

ecember 1993 . MCTREEIM.NTS 3

i

* _Appendix D - Original TreeScan Project Proposal D7

Ground Vegetation
Stands can vary widely in the density of understorey, e.g. shrubs and tree ferns up to
several metres in height. As is often current practice, the understorey shrubs can

conveniently be cut down before assessment takes place.

Downloading
Image data collected in the field could readily be downloaded at the end of each day

to a computer based at forest HQ, as is current practice for the existing MARVL
assessment. Alternatively, downloading could be done through a radio data network
to HQ at any time during the day.

Number of Trees
Current pre-harvest inventory crews comprising a team of two people assess around

150-200 trees per day.

Because the capability of an imaging system is unknown at this stage, a desirable level
of productivity (trees captured per person-day) can not be stated. There is a trade-
off. For example, if two people can capture accurate images that provide the
quantum jump in tree description, then 50 trees per two-person day may be
acceptable.

At this early stage of the project, the area of prime interest is the technical ability to
capture accurate images of trees.

13 December 1993 MCTREEIM.NTS 4

Appendix E
System Error Calculations

This appendix provides additional information related to the discussion on the
implications of image capture geometry (see section 3.7), and presents the modelling of
the geometry of the mirror system to quantify the distortion introduced by a
misalignment of the scanning mirror with the axis of rotation of the scanning
mechanism (see section 6.3.1.2).

+ Geomertric sensitivity calculation

+ Modelling of mirror misalignment

E2

E.1 Tree Plane Variation

E.1.1 Errors introduced by tree displacement

Height errors caused by tree displacement for a tree displacement of + 1m, * 50 cm and
+ 10 cm. See section 3.7.1.1 for discussion.

Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) from 100 cm displacement towards scanner
10 0.00 7 2.22 3.33 4.44
15 0.00 0.71 1.43 2.14 2.86
20 0.00 0.53 1.05 1.58 2.11
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) from 50 cm displacement towards scanner
10 0.00 0.53 1.05 1.58 2149
15 0.00 0.34 0.69 1.03 1.:38
20 0.00 0.26 0.51 0.77 P
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) from 10 cm displacement towards scanner
T 0 0.00 0.10 0.20 0.30 0.40
15 0.00 0.07 0.13 0.20 0.27
20 0.00 0.05 0.10 0.15 0.20
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) from 50 cm displacement away from scanner
10 0.00 -0.48 -0.95 -1.43 -1.90
15 0.00 -0.32 -0.65 -0.97 -1.29
20 0.00 -0.24 -0.49 -0.73 -0.98
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) from 100 cm displacement away from scanner
10 0.00 -0.91 -1.82 -2.73 -3.64
15 0.00 -0.63 =5 I8~ -1.87 -2.50
20 0.00 -0.48 -0.95 -1.43 -1.90

Appendix E - System Error Calculations E3

E.1.2 Errors introduced by measured angle variation

Height errors caused by error in measured angle under standard operating conditions
for errors in angle of +3 degrees, 1 degree, +0.5 degree, and +0.1 degree. See section
3.7.2.1 for discussion.

Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 3 degree error in O
10 0.00 0.57 2.37 5.65 10.68
15 0.00 0.38 153 3.56 6.56
20 0.00 0.28 1.14 2.60 4.74
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 1 degree error in O
10 0.00 0.18 0.73 1.66 3.01
15 0.00 0.12 0.48 1.09 1.96
20 0.00 0.09 0.36 0.81 1.45
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 0.5 degree error in O
10 0.00 0.18 0.73 1.66 3.01
15 0.00 0.12 0.48 1.09 1.96
20 0.00 0.09 0.36 0.81 1.45
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 0.1 degree error in O
10 0.00 0.02 0.07 0.16 0.28
1:5 0.00 0.01 0.05 0.11 0.19
20 0.00 0.01 0.03 0.08 0.14
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by -1 degree error in O
10 0.00 -0.17 -0.67 -1.49 -2.60
15 0.00 -0.11 -0.45 -1.01 = 1. 07
20 0.00 -0.09 -0.34 -0.76 -1.34

E.1.3 Errors introduced by estimated distance variation

Height errors caused by error in estimated distance from scanner to tree for standard
operating conditions for an error of +0.5 m, +0.25 m, +0.1 m, and 0.02 m. See section
3.7.2.2 for discussion.

Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 50 cm error in Dist.
10 0.00 0.50 1.00 1.50 2.00
15 0.00 0.33 0.67 1.00 1.33
20 0.00 0.25 0.50 0.75 1.00
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 25 cm error in_Dist.
10 0.00 0.25 0.50 0.75 1.00
1.5 0.00 0.17 0.33 0.50 0.67
20 0.00 0.13 0.25 0.38 0.50
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 10 ¢m error in Dist.
10 0.00 0.10 0.20 0.30 0.40
156 0.00 0.07 0.13 0.20 0.27
20 0.00 0.05 0.10 .35 0.20
Dist from Height of tree estimates (m)
tree (m) 0 10 20 30 40
Height error (m) introduced by 2 cm error in Dist.
10 0.00 0.02 0.04 0.06 0.08
15 0.00 0.01 0.03 0.04 0.05
20 0.00 0.01 0.02 0.03 0.04

_Appendix E - System Error Calculations ES

E.2 Modelling of Mirror Misalignment

If there is a misalignment between the plane of the mirror and the axis of rotation of the
mechanism, a nonlinear distortion will be introduced into captured images (see figure
E.1 and section 6.3.1.2). The nature of this nonlinear distortion depends on the angular
position of the rotation mechanism over which the image is captured. This nonlinear
distortion was measured as approximately 6.8 cm of sweep over the calibration building

and was measured as significant using a laser in a laboritory situation.

This appendix presents the Matlab modelling completed to determine the nature of this

distortion.

Normal 1o
Path on calibration \ | mnvor ol o

plane traced by mirror

el
< axis of rotation

Camera

/ /'\pos'rtion
4 P L

—

/
Mirror

Figure E.I - Mirror geometry
E.2.1 Analysis Approach

In a normal image capture situation, the scanner is placed at approximately 45° to the
horizontal, and the image is captured over a 70° angle (see figure E.2). The bottom of

the image capture may be slightly above or below the horizontal.

Offset problems between
mirror and axis of rotation

\\‘ Typ. 70 degrees

1

Rotating

mirror

Introduced offset

45 degrees /
{

{

Figure E.2 - Scanner alignment during image capture

E6

The following sequence is followed:
From mirror angles determine three arbitrary points on the mirror plane.
Using cross products of two vector differences, calculate normal to the plane.
Using the normal to the plane and one point calculate the equation of the plane.

I

2.

3

4. Calculate the equation of the camera 'light ray'.

5. Calculate intercept between camera ray and mirror plane.
6

. Calculate the equation of the reflected ray using the angle between the camera ray
and the normal to the plane.

7 . Calculate the difference in angle between reflected ray and the ideal reflected ray if
there was no mirror deviation; or calculate the wall intercept in a similar fashion as

steps 1 to 5.

8. Repeat steps 1-7 for a series of rotation steps representing a normal scan.

E.2.2 Mathematical Analysis
1. Three points on the mirror plane are:

Three arbitrary points on the mirror plane are defined:

0 0 1 001
P=|1| P =|-1|P,=|0| P=|1-10
0 0 0 000

To rotate the points on the mirror plane abount the origin in three dimensions multiply
by:

[cos(8) 0 —sin(6)]
ofsmirr=| 0 1 0

| sin(6) 0 cos(6) |

Rotation about y axis

(mirror misalignment)

10 0
rotmirr =|0 cos(¢) —sin(¢) Rotation about x axis (scanning)

0 sin(¢) cos(e)

The new loactions of P1 to P3 in 3D space are be found by :
P = rotmirr x (ofsmirr x P)

2. Find the normal to the plane

A vector normal to the plane is the cross product between any two vectors on the plane.

~ — - - "T:- -
V,=P,-P, V,=P,— P, N=V¥, XV,

Appendix E - System Error Calculations

E7

Figure E.3 - Mathematical geometry

3. Find the equation of the plane

The equation of any plane is Ax+By+Cz+D = 0.

A X
from its normal N =| B | and any point P, =¥,
i a

= Equation of the mirror plane : A(x - x,)+B(y-y,)+C(z-2,)=0

4. Find the equation of the camera rav and intercept point

The parametric equation of any line in three dimensional space is given by:
X=X, +t(X, - X5) , Y=Y, +t(¥-¥), z=2,+1(z,-2,) given

any two points P, and P,.

5. Find the intercept

Using: X, X A x

P

Inray =|y, |and Inray, =]y, |tofind P,, with N =| B | and P, =y, |.and
z Z, 48 z

v

P
substituting in the equation of the plane:
ALXy + B~ X)+ B0+~ 3,) # Clz,+ 1z, - z,)= 0
Rearrange to find the value of t at the intercept :
. 1(Ax, +By, +Cz,)= A(x, —x;) + B(y, — y,) + C(z, — 2,)

_ Alx, =x)+B(y, =3%)+C(z, =~ z)
Ax, +By, +Cz,

The intercept point between the camera ray and the mirror plane can be found by

substituting the value of ¢ back into the line equations.
X=Xy +t(X,-Xp) » Y=Yo+t(-Y) » Z2=25+1(z, - 2)

6. calculate reflected ray

The equation of the reflected ray is calculated using the normal to the mirror plane and

the camera ray.
If = Inray, and ¢ = Outray, then

F=2cos(6)N — G

For any two vectors 4 and b with angle 26 between them

a.b =|alb|cos(8) = -
lallh]

1

=1
2

~. Vector representing reflectedray = 7 =2 % N-g

7. Calculate error_angle

Calculate the difference in spatial angle between the refelcted ray and theoretical

reflected ray if there was no mirror deviation. In this case:

Error angle

z
out angle = atan[—J

5
h=)
cos(out angle)

Qutangle

af X
error angle = tan (l_)
(

To calculate the path traced by the reflected ray on the calibration plane the same
sequence of steps (steps 1 to 5) can be used to find the intercept point between the

reflected ray and the calibration plane (see program listing in section E.2.4).

Appendix E - System Error Calculations E9

E.2.3 Results

The magnitude and shape of the deviation introduced varies with the position of rotation
of the mirror. If the plane of the mirror is parallel to the camera ray the ray is not
reflected, and thus not deviated. If the plane of the mirror is perpendicular the camera
ray the deviation is at a maximum of twice the offset angle.

Two scenareos were modelled. The first a typical image capture situation where the
object (at the calibration plane) being imaged was 15 m away from the scanner, the
second was the controlled lab situation under which the deviation was measured.

The results showed that a misalignment of 0.8° (I mm at one end of the mirror)
introduced an apparent sweep with maximum deflection of 7 cm (see figure E.4). To

reduce this to an acceptable 1 cm the mirror must be aligned to 0.1° (0.14 mm at one
end of the mirror).

Curved path on flat surface
4500 T : - "

w a
& 8
=2

()
8
S

Height/ distance (cm)
n
8
o

g 8
2

g

o

65 -60 -55 -50 -45 -40 -35
Offset (cm)

&
o

Curved path on flat surface
4500F ’ L2 ¥ . i ; T

4000 wall: 15 mat45° E

mirr: 0.82°(1.00 mm)

]
&
=

Max dev: 6.82 cm

Height/ distance (cm)
5 8 8
5 8 8

-
&
o

10001]

L

5 10 15 20 25 30 35 40 45
Deviation (em) (magnif 100:1)

Figure E.4 - Typical image capture with 0.82° mirror deviation

El10

E.2.4 Matlab Model

Q7.

% Marijn Weehuizen 12 September 1995
Lo/

/0

90 Model of the mirror mechanism to
% investigate a curved deviation in the
% captured images.

o7

i

% Output:
% Store(loop errangle outangle wally wallx)

i

clear

%
% Define constants

% Angle of wall (0 = lab stetup, 45 = vet tower setup)
% Distance to wall (cm)

% wallangle =45; walldist = 1500, % Vet tower

% wallangle =0; walldist = 210; % Lab setup
wallangle =0; walldist = 1500; 90 Tests

Joofsangle = atan(0.1/7)*180/p1; 9% Mirror ofset angle
ofsangle = 0; 9 Mirror ofset angle

loopstop = 90-wallangle/2; loopangle = 35;

step = 5; % Rotation of mirror steps
=]ry=2r=3;

count=1;

ofsangle = ofsangle / 180 * pi;

wallangle= wallangle / 180*p1 * (-1) ;

o7

% Set up wall
%o

d1 = cos(-wallangle)*walldist;
d2 = cos(90/180*pi - (-wallangle))*(tan(-wallangle)*walldist);
wdist = d1+d2;

o
for loop=loopstop-loopangle:step:loopstop
Jofor loop=67.5:step:67.5

rotangle = loop / 180 * pi;

%
% Setup light ray
ar.

i%

hold off

Forofs=tan(0/180*pi)*2;
Yoray=[rofs; 2; 0];
GorayO=[-rofs; -2; 0];

rofs=tan(1/180*pi)*2;
ray=[rofs; 2; 0];
ray0=[0; -2; 0];

Appendix E - System Error Calculations

Ell

El(;?([rayﬂ(l} ray0(1)+ray(1)],[ray0(2) rayO(2)+ray(2)], [ray0(3) rayO(3)+ray(3)])
0ld On

plot3(1,1,1);

[274

10

%Set up mirror plane
ar,

L4

p=[0 O 1;
1 -10;
0 0 0]
po=3.5;
pofs=[po po po;
000
0 0 0];

ofsmirr = [cos(ofsangle) 0 (-sin(ofsangle));
0 1 0;
sin(ofsangle) 0 cos(ofsangle)];

rotmirr = [1 0 0;
0 cos(rotangle) (-sin(rotangle));
0 sin(rotangle) cos(rotangle)];

p=ofsmirr*p;

p=rotmirr*p;

p=p-pofs;

plot3([p(1,:) p(1,1) 1.[p(2,5) p(2.)).[p(3.:) p(3.1) 1)

%

% find normal

or

vvl = p(:;,2)-p(:,1);
v2 = p(:,3)-p(:,1);
N=cross(v1,v2);

o7

% find equation of plane
or

Tot=(A(xp - x0) + B(yp - y0) + C(zp - z0))/(A*xv + A*Xv + A*xv)

t=(N(1)*(p(1,1) - ray0(1)) + N(2)*(p(2.1) - ray0(2)) + N(3)*(p(3,1) - ray0(3))) /((N(1)*ray(l) +
N(2)*ray(2) + N(3)*ray(3));

intpnt=[ray0(1) + t * ray(1);
ray0(2) + t * ray(2);
ray0(3) + t * ray(3)];
plot3(intpnt(1), intpnt(2), intpnt(3),'cx");
plot3([intpnt(1) intpnt(1)+N(1)], [intpnt(2) intpnt(2)+N(2)], [intpnt(3) intpnt(3)+N(3)], 'c)

Jepause
a,

% Calculate reflected ray of light
[+

L%

outray = -(2*(dot(ray,N)/(sqrt(sum(ray.*2))*sqrt(sum(N.*2)))) * N - ray);

plot3([intpnt(x) intpnt(x)+outray(x)], [intpnt(y) intpnt(y)+outray(y)], [intpnt(z) intpnt(z)+outray(z)])

%

E12

% Calculate offset angle
%
mirrangle = loop

outangle = atan(outray(z)/outray(y))* 180/pi;
if outangle<0 outangle = 180 + outangle; end
outangle = 180-outangle;

h = outray(2)/cos(outangle/180*pi);
errangle = atan(outray(x)/h)*180/pi;

store(count,1:3)=[loop errangle outangle];

[

%0 Set up wall
(24

Fi%

w=[0 1 0;
-wdist -wdist -wdist;
0 0 2];
wO0=[0; -wdist; 0];
rotwall = [1 0 0;
0 cos(wallangle) (-sin(wallangle));
0 sin(wallangle) cos(wallangle)];

w(, D=w(:, 1)-w0; w(:,2)=w(:,2)-w0; w(:,3)=w(:,3)-w0;
w=rotwall*w;

w(:, 1)=w(:, 1)+w0; w(:,2)=w(,2)+w0; w(:,3)=w(:,3)+w0;

plot3([w(1,:) w(1,1) 1,Iw(2,:) w(2,1)],[w(3,:) w(3,1)])
To-

% find normal
ar.

wvl = w(;,2)-w(:,1);
wv2 = w(:,3)-w(:,1);
wN=cross(wv1,wv2);

ar.

% find equation of plane
ar

%ot=(A(xp - x0) + B(yp - y0) + C(zp - z0) J/(A*xv + A*yv + A*zv)

t=(wN(x)*(w(x,1) - intpnt(x)) + wN(y)*(w(y,1) - intpnt(y)) + wN(z)*(w(z,1) - intpnt(z)))
/(wN(x)*outray(x) + wN(y)*outray(y) + wN(z)*outray(z)),

wallpnt=[intpnt(x) + t * outray(x);

intpnt(y) + t * outray(y);

intpnt(z) + t * outray(z)];
plot3(wallpnt(x), wallpnt(y), wallpnt(z),’cx");

plot3([wallpnt(x) wallpnt(x)+wN(x)], [wallpnt(y) wallpnt(y)+wN(y)], [wallpnt(z) wallpnt(z)+wN(z)], c')

%o

wp=wallpnt-w0;

wp=rotwall'*wp;

wallx=wp(x); wally=wp(z)-walldist*tan(-wallangle);
store(count,4:5)=[wally wallx];

Yo

Appendix E - System Error Calculations

El3

Yopause
count=count+1;
end

ar,

% Calculate deviation
[

o

% not required

o

% Correct curve
O

loop = 1;

maxloop = size(store,1)

corrangle = atan ((store(1,5) - store(maxloop,5)) / (store(1,4) - store(maxloop,4))):
corrangle*180/pi

rotcorr = [cos(corrangle) (-sin(corrangle));
sin(corrangle) cos(corrangle)];

for loop=1:maxloop

temp(x, 1)=store(loop,5)-store(maxloop,5); temp(y, 1)=store(loop,4)-store(maxloop,4);

temp=rotcorr*temp;
Jetemp(x)=temp(x)+store(maxloop,5);
temp(y)=temp(y)+store(maxloop,4);

store(loop,6:7)=[temp(y,1) temp(x,1)];
end

maxdev = sign(store(5,7))*max(abs(store(:,7)))

ar

% Plot graphs
7

0

hold off

%plot(store(:,3),store(:,2))

Ztitle('Deviation of ray from view plane for mirror deviation of 5deg')
%xlabel('Angle between mirror incident light and reflected light (degrees)')
%ylabel('degrees’)

plot(store(:,5),store(:,4),'w")
title("Curved path on flat surface')
xlabel('Offset (cm))
ylabel('"Height / distance (cm)’)

pause

plot(store(:,7).store(:,6),'W")
title('Curved path on flat surface’)
xlabel('Deviation (cm) (magnif 100:1)")
ylabel('Height / distance (cm)’)

ymin=store(maxloop,6);
ymax= max(store(:,6))*1.1;

if maxdev>0)
% AXIS([ymin ymax/100 ymin ymax]);
AXIS([0 30 ymin ymax]);

text(0.5*ymax/100, 0.9*ymax, sprintf('wall: %dm at %.0fe',walldist, wallangle*180/pi*(-1)));

text(0.5*ymax/100, 0.8*ymax,sprintf('mirr: %.2fes(%.2f mm)',ofsangle*180/pi,tan(ofsangle)*70));

. El4

text(0.5*ymax/100, 0.7*ymax, sprintf('Max dev: %.2f cm', maxdev));

else
AXIS([-ymax/100 -ymin ymin ymax]);
text(-0.9*ymax/100, 0.9*ymax, sprintf(‘'wall: %dm at %.0fe',walldist, wallangle*180/pi*(-1)));
text(-0.9*ymax/100, 0.8*ymax, sprintf('mirr: %.2fes(%.2f mm)',ofsangle*180/pi,tan(ofsangle)*70));
text(-0.9*ymax/100, 0.7*ymax, sprintf('Max dev: %.2f cm', maxdev));

end

store

Appendix F
TreeScan Component List

F.1 TreeScan System Component List

The TreeScan system has been designed as a complete working system and consists of

the following components:

1. Portable computer (Macintosh PowerBook 520c, 160 MByte hard disk,
20 MByte RAM)

2. TreeScan scanner
Calibration rod
Tripod

SCSI cable (computer to scanner)

L]

Power cable (batteries to scanner)
Set of two batteries (for scanner)

Set of two carrying cases

© ® N o v e

Scope sight for scanner
10. Digital level to measure alignment

The above items are required during image capture. In addition to this, system comes
complete with:

+ Charger for scanner batteries
» Charger for the computer's internal batteries
* Documentation
A. TreeScan Operator Manual
B. TreeScan Technical Reference Manual

The computer and batteries are contained in the computer carry case. All other

components from 1 to 10 are carried in the scanner carrying case.

F2

F.2 TreeScan Scanner Component List

The TreeScan scanner has been custom built and contains the following components:
» Chassey (made from 45 cm of 150 x 75 mm Al channel)
« Rotating mirror mechanism
Brass shaft
Brass wormwheel with steel rotation shaft
2 x pivots mounted on ball bearing
Stepper motor (3.75 degree / step)
2 X Opto Interrupter position sensors
* Line scan camera (Loral Fairchild CAM 1301R)
« Lens (Fixed 75 mm focal length, manual aperture, motorised focus)
» Focus Mechanism
Stepper motor (3.75 degree / step)
Teflon wormwheel drive mechanism
» Controller board
Siemens 80C517A microcontroller 74HC573 address latch
27256 EPROM (32 kByte, 170 nS) 62256 RAM (32 kByte)

16 MHz oscillator

SN75C091A SCSI bus controller UC5601 SCSI bus terminator
2 x 297 stepper motor controller 2 x 74HC04 inverter

2 x L298N stepper motor driver 74HCO08 And gate

PowerBox 12V to 15V DC-DC converter

L.M2938-5 low dropout 5V regulator =~ LM 317L +15V regulator
Relay LM 337L -15V regulator
Various resistors Various capacitors

Decoupling capacitors

Appendix G

TreeScan Schematics
and
Controller Board Layout

This appendix provides full TreeScan schematics and controller board PCB layout.
» The schematics are of the controller board in the Mk2 TreeScan system.

» Todevelop the Mk2 controller board, modifications were wired on to the back of
the PCB used for the Mkl system. Hence the controller board PCB layouts
provided are as the Mk1 system was manufactured.

Appendix G - TreeScan Schematics and Controller Board Layout

G2

< @ _ 7] o w _ e
-
[4 a €
@] = w= o & HI
- -
xx = 3= xa = e = o
!.._ _ .un.ﬁr _ Onﬁ B o Ca > 2]
we b 9 - e Vo =
|w.. T < _ i
-~
ot - e
i £
o fefn -
- - o u
= b 14 p- b "
L) i =D | b
Fisss B .“ = - m - -
NN > 4= 1=00000 = (=]
< E
~ T 11 P 3
n
(i ule
_..-l
b Rl H
fit - I, i : w5
L *1 e ~x o
- - = "
z = -
= = =
w m 1l
&€ = o e Yy e FY
[-5%-% i s “ ..“
na e — A a0 —
- ™ B .‘l‘q-.-np -.u -__-J.I.-_.I- UL m OUILL
b= - pS & | =
MR o2 :
= =] FLLLE LLLEL
“E A = | LL| = <] okbdbfelabol| = o i ol | NTWK -
= 7 = T Pri | TCITTrrr e
A hoy— L. =" | B=NATUES~ S—=NHATUI S=NATOE~ S=NATVUSS~ B=NATOOI~ &=
q44d 5 9 ﬂ ARRAAAAR sesrsrss VNUBLLNG SSos4044 ARRRAARA asoa
4 "'l.l—l-mm GCALAdALd dAAGdddis GQLAGACAdd AcAddAcd Asan
-l o~ |
L
*8 | 234 £50 HI?. s 3
T EEL ssn ¢ e
ol e
wed I
o @
wa E — ™~ w
D=NATVLr SB—NMATBaN “M -t_fs.. ”—ﬂ-
e N L L L L] ac U"W W. - 3
ccicdedd cacdacaan 22> o a xx
LiL
: SRR SRR R
T
v
L r~ ol j gy r b-—t
Eaah | EEEsNEES =7 EERREE
] f((/rF) £z
- P
El
“? 0000000
. .+ i c_q. —MNMTnar-o
-
i a7 398 ane i
ococo00000
U =NATeLrD
I o =
-
% 4
m
\ oF
v g
paetes]
= - N
- ;
or < —
= = =
| - N R « 3 ~2 -
Sacosaas cooooooo e - o .
-
571 39n ans 1t G571 390 ans ik g4 I £
|t - LB Tl 3 o
| @ =P DD o= s = 0 U U o D O WW vl
€€ sccCcECEaTCITT wwu cfagcCCcaTEqaaECaaT “ ™
- S~ w3 vt 15 2 =
~e il & bl
d ot - 1 - EX
= e
Ahm Ir. i
Ll e
cim EEL) . L] iulm 13 -
xXx 25
- 44 st == oo
e o e —e
ﬂﬂ oo ﬂ..- T“u (13 .
nE
& H =
~ - -
o o

Appendix G - TreeScan Schematics and Controller Board Layout G3

< T = T 3 s | - | =
{3
]
-
=™

@ ONU (]

1

n

"

[

[]
- ol
Cl=
— |5
b=
in.
Sl

wm
g E e
- - |- ¢

s

i
*

&

]
SBAIN
%

¥

{0

4]

0

&

o=
)/

=
0020000} 20200

L
L b
3 k
- =
iy =
.
=1 v - ——
]
7]
X w
n
3
@
- L]
3,
w8
o of
7 -
— [~ -
T s [E,
=
s ﬁ
L - m \
-
. Mﬂﬂuﬂﬂﬂn"&n ﬁﬂ~ ‘r (i
- o - -
we > =
ox o o I_l-..w hpa vy
g LT
A oancocosaan
¢ r I 1 L. o
= S=MAYEe @FEo 23
ot cmmm——— =X -
— o - R e - ™~
Laws —§ - - —
- &L “M"“ 45 85“901.‘13 - "“
b £33n - H m *v MW Pttt ol At
m T 2330 [T TH n -
£3 | 120 Eole sz 3 o o — F}
e tews b7 e-
=
& m mwm ¥ 5 e & i -
E3RR ErIEsegc: &5 bRRe zeate ki ﬂ

H R : /

|
y il
ke
[

R32
181
qs

R33

1ok
uaz ¢
T4HC B4

AH?
iChie g4lectron

1 | 2] 3

] 3 I 7

Camera I-70

ul:a
TAHCBA
C-LINEZINT (e 050, PC-LIMEZINT
us:c
24HCH4
L=l INCSYNCH ‘4 s PC-LINESYNCH
u2:c ui:e
T4HCRD 74HCR4
m. }i] {>°¢ PL-DATARATE
uL:p
TAHC B4
C-ARTRIE %x::]_L_.___d_______JS:lHIBSILUL
R1
18k
+IVRLF
5
c3 40

AdInl

i

Stepper Control

3 : £ Istappar supplul
G o - :E':kz:k:’:&'

R
}uz oury | -1 EH=1A
n
: oura L2 PH-18
ENA 2
1] cue oura |l PH-
; SCHS/A OuTs |lS .53
SENS/B ps_ps_p7_pe
2 r Y i W ¥
@
Ll
R8
.5
=

Lens Zoom 7/ Focs Ctl
(Redundant in Mk2)

sLEBV
u3l:a
¥ Lna2e R9
3y 3 5 2u?

-
-

*

_L-FOCUSHCAR 2| v
16Y
R18
L=FOCUSFAR [}\\ au? T2

LHI2

:
2

Mirror Posn Sensors

.

R13 Ris U4:E
[2.2% 14nced

PHR-S18

Rib u4:o

n0Ke pIeOg I9[[0NIUOD) PUB SONBWAYDS UBDSIDI]T -) X1puaddy

T3
p3ic 2.2k TAHCO4)
LAl24 Ri1
42y l.‘:\\ " zu?L PH-528
—e-zoomour 94~ =
vaie =
LMI24
—L-zooMiN 12|
2y !!‘*"\; L i T4
‘ " = (6] ™ Periphery 1
) Y rasna. 3
1 | 2 | 3 | 3 [

| 2 | 3 | ' | s I 3 I 7 8

Power Supplies

REG3
LA3LTL
e vin veud | voUL, a10y
a R18
H 278
T cia 1 c1z
RELAY REC1 8. tul = ful
118 OC-0C COMY A7
_BATei2Y s 212y L{viav reyg e / 2
REGS SV P {'] COMHON a
LH2938-8 d . MO
T YT VIN T ssvvouT vee _I.'LP_‘— COMRON =18V
g ~
=L c14 u s C15 Lc13
4Tu = r22u1 " 2 REG4 e
2 F['fs' ¢t Oha by :E::: LnId7L
& RZA
AND ong 374
i = ~19Y

Decoupling Capacitors
Lens aperture ctl
; 13
(Redundant in Mk2)

ae, L Al fn i, g

= == == = == ==
[

Cie® CL8l CLB2 CLlB) Cl84 CHIES i

iuw iu 1w fuw v v

" Power Supply
- [I.\u.\nl\

N0Ke preog I2][0NU0)) PUB SONBWAYDS UBISRI] - O Xipuaddy

1S9

| 2 | 3 | 4 | 5 | 6 | ? |

External Focus Control

External LED module (Mk2 only) Rt
(Hk2 only) n " .T(l\lllll' suppiv)
L2
I T | R
+ “ w
LED s 3 iy & 2
4PN R351 R36 R37 : i wnp .
CNABLE TERT |- (3T o] = -
TRAT |2 T ens outa |12 BL-
\"‘“' \unz \una sensey g Ll scus/n outa |14 PL-28
] :] SENSEZ SENS/B s pe p7 b8
1 | 1
LEDY e
L

1' EXPAMSIONB
PN

i HOTOR 2
- oy~ 1

o =2

.5V o

r—

[T—0AT+12V

.ﬂf

':Em—

™ Modifications 1

RKavizron

ar
TASM1.5

1 al

1N0ART pfeog I2[[0NUO0)) PUB SONBWAYIS UBISIAI] - O x1puaddy

REG! REG3 R17
POWER ppi Ay

8
— ==
El TS cuD Dcxagﬁ ‘E ﬁ “F [cie]
c14 c15() t]:] c:s
_— D REG‘m ﬁ
| 12 |
R32 - J-
rRa3 T “Su RAM ROM Ral mc:u
:) e C103 N R‘Halﬁ
C101 D D
C105
D 13a15
coof | scsr:snn i R‘ '
R8 p7
J . LATCH — Ij
R6
N il 2 |« e L] L] Dﬁ]
—F 5 cs

TASM110 Top Overlay

14 l-|

NOART PIBOE I9[[01IUOD) PUB SONBWAYDS UBISRI] - 0) X1puaddy

MOTOR

L.I___I[

Lo

S0

7 woyrog OITWSYL

Appendix H

Microcontroller Specifications
and
Memory Space Organisation

H.1 80C517A Microcontroller Features

High-Performance

8-Bit CMOS Single-Chip Microcontroller

Preliminary

SAB 83C517A-5
SAB BOC517A

® SAB 80C517A/83C517A-5, e Eight data pointers for external memory
up to 18 MHz operation addressing
@ 32 Kx 8 ROM (SAB 83C517A-5 only, @ Seventeen interrupt vectors, four priority
ROM-Protection available) levels selectable
® 256 x 8 on-chip RAM @ Genuine 10-bit A/D converter with
® 2 K x 8 on-chip RAM (XRAM) 12 multiplexed inputs
e Superset of SAB 80C51 architecture: @ Two full duplex serial interfaces with
— 1 psinstruction cycle time at 12 MHz programmable Baudrate-Generators
— 666 ns instruction cycle time at 18 MHz @ Fully upward compatible with SAB BOC515,
— 256 directly addressable bits SAB 80C517, SAB 80C515A
— Boolean processor @ Extended power saving mode
— 64 Kbyte external data and ® Fast Power-On Reset
program memory addressing @ Nine ports: 56 I/O lines, 12 input lines
@ Four 16-bit timer/counters @ Three temperature ranges available:
@ Powerful 16-bit compare/capture unit 0to 70°C (T1)
(CCU) with up to 21 high-speed or PWM - 4010 85°C (T3)
output channels and 5 capture inputs — 40 to 110°C (T4)
@ Versatile "fail-safe" provisions @ Plasticpackages: P-LCC-84, P-MRFP-100
e Fast 32-bit division, 16-bit multiplication,

32-bit normalize and shift by peripheral
MUL/DIV unit (MDU)

SAB 80C517A / 83C517A-5

Microcontroller with factory mask-programmable ROM
Micro controller for external ROM

The SAB B0CS517A/83C517A-5 is a high-end member of the Siemens SAB 8051 family of
microcontrollers. It is designed in Siemens ACMOS technology and based on SAB 8051
architecture. ACMOS is a technology which combines high-speed and density characteristics
with low-power consumption or dissipation.package (P-LCC-84) and in a 100-pin plastic quad
flat package (P-MRFP-100).

While maintaining all the SAB 80C517 features and operating characteristics the
SAB 80C517A is expanded in its “fail-safe” characteristics and timer capabilities.The

SAB 80C517A is identical with the SAB 83C517A-5 except that it lacks the on-chip program
memory. The SAB 80C517A / 83C517A-5 is supplied in a 84-pin plastic leaded chip carrier
package (P-LCC-84) and in a 100-pin plastic quad flat package (P-MRFP-100).

H.2 Microcontroller Block Diagram

e e e e e I SR T S e e -|[
|
. Oscillator i
0 : Wotchdog |
|
| it ;
|
L oscx XRAM RAM ROM ,
! Timing k8 2% 18 kx8 |!
! B BKCS1TA-5 :
I i |
|
! Lt _fqf
RESET ——a1 i
- - cPu = ;
AE ——-—rg |
Porl 0
PSEN ——— Programmable :1_ ort 0 Y i
7] ——---: Wa'chdog Timer] :> <:Lv['> 8-bit digt. 1/
! I
g] Port |
: D-‘"fugi'-unit <—_‘ :>| Port 1 <::> B-bil d—lg"l. [.m
' I
! [
L e f A— A1 Pod 2
N : gt N raz K sobi gl 10
I I
FWPD ——=! Timer 1 | Pot 3
|
1 N rs K5 b dgt 1/0
I Timer 2 f..
: ________ Pord 4
, Caplure > :) Pert 4 8-bil digh. 1/0
| Compare Unil :/] | |
! I
| | N T i Port 5
! Compare Timer N \:> Fed 5 ﬁ g-bit digit. 1/0
| [
| |
Inferrup! Unit i ir. Pord B
: - S s K2 s-bi digh. 1/0
! |
DL o SecaConel O <:j L pod 7
i Progr. Boud Role Pt 7 K- _"': 8-bil d.:-f.,:
| Generalor e ' I anolog Irpu
: ' Pt 8
| Seriol Chomnel 1| pds —— ‘:“ :;;ﬂoqoﬁarl_é
- Progr. Boud Rate | P
! Generafor — i
|
!
]
Var—7] A/D Converter |
Voo — 10-bit — :
|
1
|
|
] S wux R :
I J
L i i oo o b P s] e e e -

Appendix H - Microcontroller Specifications and Memory Space Organistion

H3

H.3 Microcontroller Pin Configuration

M YT IR ISR PP EErEy

11 1 84 15
Vacwo 12 74 P64
7.7 P6.3
P76 P6.2
P75 1 P61
P7.4 1 p6.0
P7.3 1 owe
7.2 1 ps.0
P7.1] ps.1
P7.0] ps.2
P3.0 SAB] P53
P3.1
i 80C517A/83C517A-5 g
P13 (] P5.6
P3.4 0 ps.7
P35 N AwPD
P36] P07
P37] P06
P1.7 1 P05
P1.6 1 P04
P1.5 1 P03
P1.4 32 s4 [] P02

33 3)

5 5 0 5 5] 0 5 | 9] 5 | | 8 | | {5 | o

i st - el Sty Hlag J Sl s B ¥ ol s S

zzaz™ 35322232322" ee WCPO147%

H.3 Microcontroller Electrical Characteristics

Absolute Maximum Ratings

Ambient temperature UNder DIas.........cccccveveerieiesersrecensernessessmsssesnenenneenene — 40 10 1107 C
Storage temperature ... T — 6510 150 °C
Voltage on Vg pins wnth respect to ground (Vss) veere=05 V1065 V
Voltage on any pin with respect to ground (Vgg) -...... ..—0510Vgc+0.5V
Input current on any pin during overload condition <o = 10mMA to +10mA
Absolute sum of all anput currents during overload condmon 100mA

Power dissipation ... R RS e e e v T WV

Note Stresses above those listed under "Absolute Maximum Ratings® may cause permanent
damage of the device. This is a stress rating only and functional operation of the device
at these or any other conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for longer
periods may affect device reliability. During overioad conditions (Viyy > Vg or Vi <
Vgs) theVoltage on Vo pins with respect to ground (Vgg) must not exeed the values
definded by the absolute maximum ratings.

DC Characteristics

Vec=5 V +10%, —15%; Vgg=0 V

Ta=

01to 70 °C for the SAB 80C517A/83C517A-5
Ta=-401085 °C for the SAB 80C517A-T3/83C517A-5-T3
Ta=-40to 110 °Cforthe SAB 80C517A-T4/83C517A-5-T4

Parameter Symbol Limit Values Unit |Test condition
min. max.
Input Iouo!tage ViL -0.5 02Vge—- |V =
(except EA, RESET, HWPD) 0.1
Input low voltage (EA) Vit -05 02Vee—- |V -
0.3
Input low voltage (HWPD, Viie -05 [02Vee (V|-
RESET) +0.1
Input high voltage (except ViH 0.2V, Ve +05 |V -
RESET, XTAL2 and HWPD - O.QCC ce
Input high voltage to XTAL2 VH1 0.7 Vge |Vee +05 |V -
Input high voltage to RESET |V 0.6 Veg |Vgc + 0.5 -
and HWPD
DC Characteristics (cont'd)
Parameter Symbol Limit Values Unit |Test condition
min. max.
Output low voltage VoL - 0.45 v IoL=1.6 mA"
(ports 1,2, 3,4, 5, 6)
Output low voltage VoL - 0.45 V. |lg=32mA"
(ports ALE, PSEN, RO)
Output high voltage Vou 2.4 — v Io =—80 pA
(portis 1,2, 3,4, 5, 6) 09 Vge |— Vv Io =—10 pA
Output high voltage Vom1 24 - V. |lo=—800 uA?
(port 0 in external bus mode, 0.9 Vee |- V[l =—80 pA?
ALE, PSEN, RO)
Logic input low current Iy =10 -70 pA |Vy=045V
(ports 1, 2, 3, 4, 5, 6)
Logical 1-to-0 transition current | /1 - 65 - 650 pA Vin=2V
(ports 1, 2, 3,4, 5, 6)
Input leakage current ' - + 100 nA |0.45< Vi< Ve
(POt O EA; posts ¥ HIWFO) £150 |nA |0.45< Viy< Voc
Tﬁ > 100°C
Input low current to RESET Iz -10 -100 rA Vin=045V
for reset
Input low current (XTAL2) s - -15 pA |Vjy=045V
Input low current L4 - -20 pA (VIy=045V
(PE/SWD, OWE)
Pin capacitance Cio = 10 pF |fc=1MHz
Ta=25°C
Power supply current:
Active mode, 12 MHz" Icc - 28 mA (Vec=5V94
Active mode, 18 MHz" Icc - 37 mA |Vee=5V9
Idle mode, 12 MHz" Icc = 24 mA |Vec=5V9
Idle mode, 18 MHz" Icc - 31 mA |Veg=5V>?
Slow down mode, 12 MHz Icc = 12 mA |Vee=5V.®
Slow down mode, 18MHz Icc s 16 mA |Vee=5V}9
Power Down Mode Iep - 50 PA |Voc=2.55V,?

Appendix H - Microcontroller Specifications and Memory Space Organistion

A/D Converter Characteristics

Vee=5 V+10%,-15%; Vgg=0 V

VAHEF = VCC + 5%; VAGND = VSS +02V;
Ta= 0to 70 °C for the SAB B0C517A/83C517A-5
Tp=-40to 85 ° C forthe SAB 80C517A-T3/83C517A-5-T3
T o=-40to0 110 °C for the SAB B0C517A-T4/83C517A-5-T4

Parameter Symbol Limit values Unit |Test condition
min. typ. |max.

Analog input capacitance |C| 25 70 pF

Sample time Ts 41c" |us 2

(inc. load time)

Conversion time Tc 14 ey [ps 3

(inc. sample time) i

Total unadjusted error TUE 2 LSB |Vaper = Vo
VagnD = Vss

Vaggr Supply current IREF +20 .

1 Ly - ADCL) . = " - P . ADCL
roy=(82 losc: (rev = Wiape: fapc =fosc/(8°2)

' This parameter specifies the time during the input capacitance C| can be charged/discharged by the
external source. It must be guaranteed, that the input capacitance C 1, is fully loaded within this time.
4TCY is 2 ps at the fogc= 16 MHz. After the end of the sample time T g, changes of the analog input
voltage have no effect on the conversion result.

3 This parameter includes the sample time T 14TCY is 7 ps at fogc = 16 MHz.

‘' The ditterencial impedance rp of the analog reference source must be less than 1 KQ at reference supply
voltage.

H6

H.4 Memory space organisation

The memory space organisation of the 80C517 CPU is complicated. The 80C517 CPU
has separate address spaces for program and data memory, and manipulates operands in
the following four address spaces:

* Up to 64 kByte of program memory

» Up to 64 kByte of external data memory
* 256 bytes of internal data memory

» 128 byte special function register area

Program memory can be external (EPROM) or up to 32 kByte on the micro controller
chip determined by the state of the EA pin during powerup. The 80C517A also has 2
kByte on chip XRAM. The XRAM is accessed using identical instructions to accessing
external RAM but with bit 1 of SYSCON register set.

80C517A Memory Space Organisation
FFFF FFFF 4 RAM_— Exﬁmal Data
lemory
il Faoo | OMAP=D) | (XMAP=1) |
Memory
FFE
- i i & Special
8000 Mgr?lt:ry et Function
RAM Registers
. &0 | &0
i 7F
i Lower
| Intemal
. RAM
m \7
0000
Code Space External Data Space Internal Data Space

Figure H.l1 - Microcontroller memory space organisation.

All registers, (except the program counter and four general purpose register banks),
reside in the special function register (SFR) area. The SFR's include arithmetic
registers, pointers and registers to provide an interface between on chip peripherals
(eg.JO Ports). Registers which lie on 8 Byte boundaries are bit addressable.

There is an address overlap between the upper 128 bytes of internal RAM and the
SFR's. The addressing mode used determines whether the SFR's are addressed or

Appendix H - Microcontroller Specifications and Memory Space Organistion H7

whether internal RAM is addressed. The internal RAM contains four banks of registers

and 128 bit addressable bits overlapping internal RAM. The stack pointer is initialised
to O8h in internal RAM after reset.

The TreeScan scanner microcontroller uses the following sections of the 80C517A

memory space (see figure 4.7) :

32K byte EPROM to store the microcontroller code and A/D lookup tables
32K byte RAM of which 1K byte is used to buffer the SCSI transfer

SCSI controller registers repeatedly mapped into the top 32K bytes of

external data memory
the lower internal RAM (for working variables)

the special function registers

TreeScan Microcontroller Memory Map

FFFF

I'—'-* FF Upper ! i SFR i
Intemal e ——
e R SCS| RAM : SFR's
TFFF i F7FF il
AD | =) B —
S Tables s 7F [L RAM
(=] é |
a
A | = :
= - S | | Variables
% Micro 'SCSl line
0000 Code o000 | = buffering ©
Program memory External data memory Internal RAM SFR’s

Figure H.2 - TreeScan Microcontroller memory map

Appendix I

Additional SCSI Interface
Specifications

Appendix I provides SCSI interface specifications additional to the discussion in

sections 4.4.1 and 5.2.4. Note that this information relates to the implementation of a
SCSI 1 system.

I.1 SCSI Bus Phases

The SCSI contains eight distinct phases of the SCSI bus. The SCSI bus can only be in

one of these phases at any one time. Each of the eight possible phases has a specific

purpose:

BUS FREE phase
The BUS FREE phase is used to indicate that no SCSI device is actively using
the SCSI bus and that it is available to subsequent to devices.

Arbitration phase

The ARBITRATION phase allows one device to gain control of the SCSI bus
so that it can assume the role of an initiator or target. The device with the highest
ID number wins the arbitration.

Selection phase
The SELECTION phase allows an initiator to select a target for the purpose of
initiating some target function. eg. a data transfer command.

Reselection phase

In systems which implement reselection this allows the target to reconnect to the
initiator to continue some operation that was previously started by the initiator
and suspended by the target. The RESELECTION phase is not implemented on
the Macintosh computer.

¢ Command phase
The COMMAND phase allows the target to request command information from
the initiator. The command information instructs the target what function it is

expected to complete.

* DATA phase
The DATA phase allows the transfer of parameters or data from the target to the

initiator or from the initiator to the target.

* STATUS phase
The STATUS phase allows the target to request that transfer status information

be sent from the target to the initiator.

* Message phase
The MESSAGE phase allows message information to be sent from the target to
the initiator or from the initiator to the target. Multiple messages may be

transferred.

A completed SCSI operation will start with a BUS FREE phase and must proceed
through an ARBITRATION phase, SELECTION phase, COMMAND phase, STATUS
phase, and a MESSAGE phase. In addition to this the SCSI operation may include a
RESELECTION phase and a DATA phase. This sequence can only be broken through
a time-out or the undesirable assertion of the bus RESET signal at which time the bus
must be released to the BUS FREE phase.

The Macintosh does not support the RESELECTION phase.

1.2 SCSI Bus Signalling

The SCSI bus consists of 18 signal lines, nine of which are control signal lines and

nine of which are data signal lines.

During a sequence of bus phases the bus control signals are asserted in a complicated
control and handshaking sequence. The sequence the control signals may be asserted is
specified in the ANSI standard. A typical SCSI transfer is discussed in section 5.2.4.
Minimal and maximal duration between signal transitions is also specified in the
standard. The SCSI bus signals are described below (all signals are active low):

e« BSY (Busy) : An 'or-tied' signal that indicates the bus is being used.

Appendix I - Additional SCSI Interface Specifications 3

* SEL (Select) : A signal used by an initiator to select a target or by a target to
reselect an initiator.

* C/D (Command/Data) : A signal driven by the target that indicates control or
data information is on the bus. True (active low) indicates control data.

* I/O (Input/Output) : A signal driven by the target that controls the direction of
data movement on the data bus with respect to the initiator. True indicates input to
the initiator.

* MSG (Message) : A signal driven by the target during the message phase.

* REQ (Request) : A signal driven by a target to indicate the request for a
REQ/ACK data transfer handshake.

* ACK (Acknowledge) : A signal driven by an initiator to indicate an
acknowledgement for a REQ/ACK data transfer handshake.

* ATN (Attention) : A signal driven by an initiator to indicate the attention
condition.

* RST (Reset) : An 'or-tied' signal that indicates the reset condition.

* DB(7-0,P) : Eight data bit signals, plus a parity bit signal that form the data bus.

Certain SCSI bus signals are driven only by the initiator or only by the target. Others
are driven either by the initiator or by the target depending on the bus phase. The
following table lists all the SCSI bus signals (except RST) and their relationship to the
bus phases. RST can be driven by any device but is completely asynchronous and is
not constrained to any bus phases.

SIGNALS AND THEIR DRIVE SOURCES
SDO- /D,
BUS PHASE BSY SEL SD7, o M_LG’ ATN ACK
SDP REQ
Bus free None None None None None None None
Arbitration All Winner | 1D bit None None None None
Selection ".‘r:r'a;;" Initiator | Initiator | None | None | Initiator | None
Reselection "}:‘g:: Target | Target | Target | None | Nome | Nane
Data out Target | None | Initiator | Target | Target | Initiator | Initistor
Datain Target | None | Target | Target | Target | Initiator | Initiator
Commandout | Target | None | Initiator | Target | Target | Initiator | Initiator
Status in Target | None | Target | Target | Target | Initiator | Initiator
Message out Target | None | Initiator | Target | Target | Initiator | Initiator
Message in Target | None | Target | Target | Target | Initiator | Initiator

Fig I.1 - SCSI Signal Sources (SBC Data Manual, 1990)

14

1.3 General SCSI Commands

As discussed in section 4.4.1.2 the completion of a SCSI command involves the
transfer of a command descriptor block from the initiator to the target. In order for a
device to adhere to the SCSI specification a number of general commands must be
implemented. Out of 256 available commands four commands are classed as
mandatory, four commands are for devices that support independent self configuring
software, twenty two commands are optional, twenty three commands are vendor

specific, with the rest reserved for future use.

The classification of commands as mandatory or optional is dependant on the device
type. Device types include direct access devices, sequential access devices, printer
devices, processor devices and WORM devices. The list below summarises important

commands for processor devices, direct access device and commands common to all

device types:
Op Code Type Command name
Group 0 commands common to all device types :
00h Optional Test Unit Ready
03h Mandatory Request Sense
12h Self Conf. SW Inquiry
18h Optional Copy
1Ch Optional Receive Diagnostic Results
1Dh Optional Send Diagnostic
Group 1 commands common to all device types :
3%h Optional Compare
3Ah Optional Copy and Verify
Group 0 commands for Processor Devices :
08h .Optional Receive
0Ah Mandatory Send
Group 0 commands for Direct-Access Devices :
O1h Optional Rezero Unit
04h Mandatory Format Unit
07h Optional Reassign Blocks
08h Mandatory Read

OAh Mandatory Write

Appendix I - Additional SCSI Interface Specifications

0Bh Optional Seek

15h Optional Mode Select
16h Optional Reserve

17h Optional Release

18h Optional Copy

1Ah Optional Mode Sense
1Bh Optional Start/Stop Unit

1Eh Optional Prevent/Allow Medium Removal

Appendix J
SCSI Bus Controller Specifications

The SN75C091A SBC manufactured by Texas Instruments is a single ended flexible
SCSI implementation for microprocessors. It provides DMA or programmed I/O
capabilities and can be interrupt driven to minimise host polling. The SBC consists of a
single 68 pin PLCC package. The SN75C091A can execute multiphase commands to
minimise host interrupts. Chip access is provided through 32 directly addressable
registers (Texas Instruments, 1990).

J.1 SBC Features

SCSI Bus Interface
+ Complies with ANSI X3.131-1986 SCS! standard

- Performs INITIATOR and TARGET functions
« Supports arbitration, selection, and reselection
« Performs asynchronous data transfers of up to 5 Megabytes/second (MBps)

« Performs synchronous data transfers of up to 5 Megabytes/second (MBps) with
programmable offset up to 15

» Has on-chip 48-mA transceivers
« Provides optional parity generation, checking, and pass-through

- Reduces overhead associated with initiator multi-threading by automatically
handling save-data-pointer messages, disconnects, and reconnects

« Performs automatic message and command-length decoding

« Has two 32-byte FIFOs for command and message preloading
Microprocessor Interface

= Provides chip control via directly-addressable registers

- Has optional address latch line for multiplexed address/data buses

« Allows DMA- or programmed-1/O data transfers

« Isinterrupt-driven to minimize host polling

- Can execute multi-phase commands to minimize interrupts

. Has 24-bit transfer counter

« Provides byte-stacking control to accommodate 8-, 16-, and 32-bit systems

J2

J.2 Block Diagram

—< Byte Stack
—«{ Control
[$
c:) DMA Recelve
—={ Interface | FIFO
et
[|
Parity
Command Parity ()
SEN/CHK Sequencer GEN/CHK
Parity l
GEN/CHK
[| :: :r :: Transmit r_‘
IF
¢ Micro—
- Proc:fuor
Interface : ARBISEL
- Control [
<+>— Reglster B —
File
Interrupt
+—] "Handler [— scsi
T REQ/ACK [—
e ic Handshake |—
Controller =

Fig J.1 - SN75C091A Functional Block Architecture
(SBC Data Manual, 1990)

The SBC provides a microprocessor port for information transfer and chip control. A
separate DMA port is also provided for SCSI data transfers between memory and the
SCSI bus. The DMA port may be connected directly to an 8-bit system or through byte
stack registers to 16-, 24-, and 32-bit systems.

J.3 Registers
REGISTER ADDRESSES
A4 | A3 | A2 | A1 | A0 | READ/WRITE REGISTER
ojJ]ojo|O]|O R Receive FIFO
c|lojo}joOo}|oO w Transmit FIFO
oo |jOo]O|1 RW Command
010 |0 110 R Transfer status
[T o ., R Bus phase status
0 0 1 o]0 R Function interrupt status
0 0 1 0 1 R Error interrupt status
0|01 1 0 R/W Interrupt enable

Appendix J - SCSI Bus Controller Specifications

J3

REGISTER ADDRESSES
A4 | A3 | A2 | A1 | A0 | READ/WRITE REGISTER
0 0 1 1 1 (Reserved)
0 1 0 0 0 RW Control
0 1 0|0 1 R/W Byte stack control
0|1 . 200 [O : | R/W Parity control
0 1 0 1 1 RW Synchronous transfer
0 1 1 0 0 RW Selection or Reselection timeout
0 1 1 0 1 RW Self-ID
0 1 1 1 0 RW Destination 1D
0 1 1 1 1 R Source ID
1 0o|o|0]|O R/W Target LUN
1 0|0]| O 1 R/W Command state
1 0|0 |1 0 RW Transfer counter (least significant byte)
1 0|0 1 1 RW Transfer counter (middle byte)
1 0 1 0 0 R/W Transfer counter (most significant byte)
1 0 1 0 1 R Backup counter (least significant byte)
1 0 1 1 0 R Backup counter (middle byte)
1 0 1 1 1 R Backup counter (most significant byte)
1 1 0o|o0 0 R/W Offset counter
1 1 0 0 1 (Reserved)
1 1 0 1 0 R/W Test control
1 1 0 1 1 R Test points register 0
1 1 1 0 0 (Reserved)
1 1 1 0 1 (Reserved)
1 1 1 1 0 (Reserved)
1 1 1 1 1 (Reserved)

Transmit & Receive FIFOs

Two 32-byte transmit and receive registers are used to buffer the SCSI bus

information transfers. The Receive and Transmit FIFOs are accessed through

the microprocessor port at register file address 00000h. Writing loads a byte

into the transmit FIFO through the microprocessor port; reading enables the

information onto the microprocessor port and unloads the byte from the receive

FIFO.

Command Register

The command register stores the commands written by the microprocessor.

Each command is executed immediately upon being sent to the chip. Generally

the microprocessor should not issue a new command to the SBC while the

previous command is still active.

J4

* Transfer Status & Bus Phase Status Register

Registers that contain status bits which reflect the status of the SBC chip and of
the SCSI bus.

¢ Functional Interrupt Status & Error Interrupt Status Register

Registers that contain status bits which reflect the status of the SBC functional
interrupts and error condition interrupts.

* Variety of other registers

Variety of other registers that contain control information, status information,

SCSI ID information, and transfer counters.

J.4 SBC Chip Commands

The SBC is driven by chip commands written to the COMMAND register. These
commands are instructions from the microcontroller to the SBC to modify the current

bus phase or transfer data. These commands fall in three categories:
* Non interrupting commands
 Single phase interrupting commands

* Multiphase interrupting commands

Noninterrupting Commands

MMAND I D

 Cope COMMAND NAME stare_| 'state
00000 Chip Reset ANY D
00001 Disconnect T.TO D
00010 Pause LT LT
00011 Assert ATN I 1
00100 Negate ACK !]
00101 Clear Receive FIFO DI T D,ILT
00110 Clear Transmit FIFO DILT DL T

Single-Phase Interrupting Commands

COMMAND ISS
CODE COMMARD RAME i dll el
00111 SCSI Bus Reset ANY D
01000 Select with ATN D 1
01001 Select without ATN D [
01010 Reselect D b §
01011 (reserved) = =
01100 Receive Command T 79
01101 Receive Data T T
01110 Receive Message Out T i
o111 Receive Unspecified Information Out T i3
10000 Send Status T T

Appendix J - SCSI Bus Controller Specifications

J5

10001 Send Data 1§ i i
10010 Send Message In T T
10011 Send Unspecified Information In T : i
10100 Transfer Information] |
10101 Transfer Pad I I
10110 (reserved) s Ty
10111 (reserved) = il
Multiphase Interrupting Commands
COMMAND COMMAND NAME ISSUED RESULT
CODE STATE STATE
11000 Select with ATN and Transfer D, ! D
11001 Select without ATN and Transfer D D
11010 Reselect and Receive Data D T
11011 Reselect and Send Data D i
11100 Wait for Select with ATN and Receive D.T T
11101 Wait for Select without ATN and Receive D. T T
11110 Conclude F D
11111 Link to Next Command T T
STAIE
D = Disconnected
| = Initiator
T = Target
TO = Time-Out

A normal command sequence for the SBC used in a target role would involve waitin

for the chip selection using the an interrupting multiphase command or by directly

polling the transfer status register.

Once the chip has been selected a receive command command would be sent to

receive the SCSI command command descriptor block. Based on the information

in the command descriptor block additional data transfer command may be executed.

To complete the SCSI transfer a message byte and a status byte need to be sent. This

can be completed using the conclude command.

J6

J.5 SBC Electrical Characteristics

Absolute Maximum Ratings Over Free-Alr Temperature
Range (Unless Otherwise Noted)

Supply voltage range, Vcg (see Note 1) TR S -05Vto7V
Input voltage range, V|, atanyinput TR -05Vto7V
Output voltagerange, Vo e TP IS viees.. —05VEOTV
Storage temperature range S AT —-65°C to 150°C

260°C

Case temperature for 10seconds s R SR B
NOTE 1: All voltage values are with respect to GND.
Recommended Operating Conditions

MIN NOM MAX | UNIT
Supply voltage, Vcc 4.75 5§ 525| V
High-level input voltage, ViH 2 Veel| V
Low-level input voitage, Vi t -05 0.8 v
Clock frequency. felock 20 MHz
Operating free-air temperature, Ta] 70| °C

1 The algebraic convention, in which the least positive (most negative) value is designated

minimum, is used in this data manual for logic voltage levels only.

Electrical Caracteristics Over Recommended Ranges of
Supply Voltage and Operating Free-Air Temperature (Unless

Otherwise Noted)

PARAMETER TEST CONDITIONS MIN TYPT MAX | UNIT
7 . IoH=—4mA (seeNote 2) 37 v
OH High-level output voltage loH=— 2mA (seeNote 3) ;
loL =48 mA (see Note 4)
VoL Low-level output voltage loL = 4 mA (see Note 2) 05| V
loL = 2 mA (see Note 3)
Vec =525V,
Input t
Iy nput curren V=0105.25V 10| pA
High-impedance output Vec =525V,
10Z cyrrent V)=010525V =10] A
No load on outputs,
lCC 5upply current f = 20 MHz 30 mA
Input pins 5 pF
c e Bidirectional | Vg =5V, TA = 25°C
capacitance pins 13 pF
OQutput =
Co capacitance |Outputpins [VCC=5V.Ta=25°C A o

T Al typical vaules are at Vo = 5 V and Tp = 25°C.

NOTES: 2. Applies to MP, M(0:7) and DP, D(0:7) only.
3. Applies to all other outputs or bidirectional signals.
4. Applies to SCSI interface signals only.

Appendix K
Macintosh SCSI Manager

The Macintosh SCSI Manager must be used to program the SCSI interface on the

Macintosh computer.

K.1 Macintosh SCSI Manager SCSI Calls

The Macintosh SCSI manager provides the following SCSI calls:

SCSIGet()

Arbitrate for the SCSI bus.
SCSISelect(targetID)

Select a SCSI device with a specific ID (targetID).
SCSICmd (buffer, count)

Send a command to the selected target device. Where buffer is a pointer to a
command descriptor block and count is the size of the command descriptor
block pointed to by buffer.

SCSIComplete(stat, message, wait)

Gives the current command a given number of ticks to complete. The status and
message bytes returned by the target device are returned in staf and message.

The maximum number of ticks to wait (time-out) is specified in wait.

SCSIRead(tibPtr)

Transfer data from the target to the initiator, as specified in the transfer
instruction block pointed to by fibPtr.

SCSIWrite(tibPtr)

Transfer data from the initiator to the target, as specified in the transfer
instruction block pointed to by tibPtr.

* SCSIRBIlind(tibPtr)

Transfer data from the target to the initiator, as specified in the transfer
instruction block pointed to by #ibPtr, without byte handshaking by polling and
waiting for the /REQ line after each byte.

e SCSIWBIind(tibPtr)

Transfer data from the initiator to the target, as specified in the transfer
instruction block pointed to by fibPtr, without byte handshaking by polling
and waiting for the /REQ line after each byte.

 SCSISelAtn(targetID)

Select a SCSI device and signal the intention to send a message by asserting the
ATN line.

* SCSIStat()
Return a bitmap of the SBC control and status registers.
e SCSIMsgln(message)
Get a message from the SCSI device.
» SCSIMsgOut(message)
Send a message to the SCSI device.
« SCSIReset()
Reset the SCSI bus by asserting the RST line.

All SCSI Manager SCSI calls return an error code indicating the success or failure of
the function. Error codes are 0 = no error, while any other value indicates a command

specific error has occurred.

Appendix K - Macintosh SCSI Manager K3

K.1 Transfer Instruction Blocks (TIBs)

The transfer of data from the target to the initiator or vice versa requires a transfer

instruction block (TIB) for the data transfer calls on the Macintosh. A TIB is a sequence

of low level instructions that tell the SCSI Manager what to do with the data bytes

transferred during the data phase. A TIB contains a pseudo-program consisting of a

variable number of instructions which are interpreted by the SCSI Manager. TIB

instructions are similar to assembly code but with a very limited instruction set.

Eight instructions are available:

sclne buffer count

The scInc instruction moves count bytes to or from buffer, incrementing

buffer by count when done.
scNolnc buffer count

The scNolnc instruction moves count bytes to or from buffer, leaving buffer
unmodified.

scAdd addr value

The scAdd instruction adds value to the address in addr (performed as
MC68000 addition operation).

scMove addrl addr2

The scMove instruction moves the value of the location pointed to by addrl to
the location pointed to by addr2 (performed as MC68000 move operation).

scLoop relAddr count

The scLoop instruction decrements count by 1. If the result is greater than 0,
the pseudo-program execution resumes at the current address + relAddr. If
the result is 0, execution resumes at the next instruction. RelAddr should be a
signed multiple of the instruction size (10 bytes). For example, to loop to the
immediately preceding instruction , the relAddr field would contain -10.

scNop nil nil
The scNop instruction does nothing.
scStop nil nil

The scStop instruction terminates pseudo-program execution, returning to the
calling SCSI Manager routine.

K4

* scComp addr count

The scComp instruction may be used for data verification and can be used only
with a read command. Beginning at addr, it compares incoming data bytes with
memory, incrementing addr by count when done. If the bytes do not compare
equally, an error is returned to the SCSI Manager read command.

For example, a TIB to transfer six 512 byte blocks of data from or to address 0x67B50:

scOpcode scParaml scParam?2
sclnc 0x67B50 512
scLoop -10 6
scStop

TIBs can read in variable length data blocks by using self modifying code. For
example, if the first bytes in a data block sent from another SCSI device contains the
length of the data block, these bytes may be read into the second parameter of the next
scInc instruction to correctly read in the required number of bytes. This capability is

used in the SCSI transfer byte loss detection and resend scheme.

Appendix L

SCSI Byte Loss Detection and
Resend Scheme

L.1 Byte Loss Detection and Resend Scheme

The byte loss detection and resend scheme is an elaborate scheme to esure transferred
data is not corrupted by buffer overflow (see section 5.2.4.2). It will correct for
occasional buffer overflow of up to several hundred bytes.

The implementation of the byte loss detection scheme required some major algorithm
and software changes. The detection and resend scheme works on the basic principle
that the SBC expects to send a certain number of bytes. If at the end of the image line
the SBC expects to send more bytes, the SBC FIFO must have overflowed during the
A/D conversion loop. The line that was sent must be ignored and the line resent from

the scanner memory.
Two restrictions that must must be taken into account are that:

1. The TIB instruction set is very limited and can only execute seven types of
instructions (see APPENDIX K for more detail on TIBs).

2. The scanner SCSI bus controller provides limited status information. There are
flags that indicate whether the Transmit FIFO is full or half full, but not whether
the transmit FIFO is empty.

L2

The detection and correction scheme works on the following principle:

1.

Once all the image bytes for a line have been sent and the FIFO is less than half
full, send another 15 filler bytes. Wait until all bytes have been transmitted. If the
SBC transfer counter is not equal to zero more than 15 bytes have been lost and
the line needs to be resent. Send one more filler byte and wait until it could have
been sent. If the SBC FIFO half full flag has not been set, less than 15 bytes have
been lost and the line needs to be resent (see point 4).

If no bytes were lost the FIFO will now contain 16 filler bytes which must be
cleared before the next line is transferred.

Now if the transfer of the image line was successful the TIB needs to increment
the pointer to memory where the image is stored so the next line can be captured.
If however the bytes were lost, the memory will contain invalid information and
the next line must be captured to overwrite the invalid information. This is
achieved by using the feature that TIBs can contain self modifying code. The
microcontroller has determined whether the line is valid. Based on this an
increment number is transferred which the TIB uses as the amount by which to
increment the memory data pointer. A second number must be transferred which
the amount by which to decrement the TIB loop counter to ensure the correct

number of lines are captured (see TIB in figure L.2).

If however bytes were lost during the line, the line must be resent. This involves
sending filler bytes until the correct number of bytes been sent (transfer counter =
zero). The scanner SBC is then cleared of filler bytes and a memory increment
and TIB loop decrement for an invalid line are sent. This means the last line is
disregarded. The line is resent from memory, and the memory increment and TIB
loop decrement for a valid line are sent.

Now the microcontroller can loop back and capture the next line.

The implementation of this byte loss detection and resend scheme has little impact on

the acquisition plug-in code. Only the TIB required additions to allow for significant
self modification.

The implementation of this byte loss detection and resend scheme does have
implications on the structure of the microcontroller image block capture algorithm, and
timing of the A/D conversion loop discussed in section 5.2.3. The A/D conversion loop
must write the image data to RAM as well as to the SCSI. This increases the A/D

conversion loop to 12 us as shown in figure 5.9. Secondly the image block capture

Appendix L - SCSI Byte Loss Detection and Resend Scheme L3

Pre A/D Initialisation
Set up initial counts for line (Total = Line Bytes)

Next Line: Wait for line Synchronisation <—
A Do 1st motor step & enable auto step
1. ‘ Complete A/D -> (SCSI, RAM) conversion loop
(const interloop timing, exit after poking count bytes)
Disable auto stepper step
OK: Wait until FIFO < 1/2 full (ensure we don't overflow FIFO)
Poke 15 bytes into FIFO
Wait until FIFO <1/2 full
Tsf Counter #0 => Resend (Lost many bytes) ——,
Poke one byte to half fill FIFO I
v Wait until FC flag l
If FIFO < 1/2 full => Resend2 (Lost <16 bytes) — E

2. X: Clear FIFO v ¥

A — Exitif last line

3. | | Set up counts for next line (Total = Line Bytes + 8)
| Poke synch bytes "Good" into FIFO
Y Loop to Next Line

Exit: —>» Setup counts for last synch bytes (Total = 8)
Poke synch byvtes "Good"
Wait for FC flag
Return to main loop

Resend: Send filler bytes if FIFO < 1/2 full, until Tsf Ctr =0
Wait until FC flag
Clear FIFO

Resend2: Set up counts for resend line (Total = Line Bytes + 8)
Poke synch bytes "Bad"

v Send bytes to SCSI from RAM loop (wait if necessary)
5 Wait for FC flag
' Continue at X —

A
|
i
|
|
|

where Setup Tsf Counts =
Setup Transfer Counter
Setup iterations of A/D loop
Reset RAM DPTR

Figure L.1- Byte loss detection and resend scheme

algorithm (figure 5.6) must be modified to accommodate the additional write to RAM,
additional end of line checking, and a line resend if necessary. The principle of the
Image block capture algorithm does remain the same.

myTIB[0].scOpcode = scNolnc;
myTIB[0].scParam1 = bufferPtr;
myTIB[0].scParam2 = 1;

myTIB[1].scOpcode = scNolnc;)) ,
myTIB[1].scParam1 = bufferPtr; < Read in one image line
myTIB[1].scParam2 = Iwidth;

myTIB[2].scOpcode = scNolnc;
myTIB[2].scParam1 = &myTIB[3].scParam2+3;, -——-
myTIB[2].scParam?2 = 1;

r

‘ |

‘ | Fix for byte gain
myTIB[3].scOpcode = scNolnc; - | problem
myTIB[3].scParam1 = &Dummy; !
myTIB[3].scParam2 = 0; R '
myTIB[4].scOpcode = scNolnc; ’
myTIB[4].scParam1 = &myTIB[6].scParam2;- J-—-,; Read buffer memory
myTIB[4].scParam?2 = 4; £ | (pointer increment

/
myTIB[5].scOpcode = scNolnc; / !
myTIB[5].scParam1 =&myTIB[7].scParam2;/------; 1éad TIB loop
/ ; decrement

myTIB[5].scParam?2 = 4; ;
/ (o

myTIB[6].scOpcode = scAdd; / |

myTIB[6].scParam1 = &myTIB[1].scParam1; ; lnqrement memory

myTIB[6].scParam2 = Iwidth; - 1 pointer by 0 or 1024

Increment loop counter

myTIB[7].scParam1 = &myTIB[8].scParam2; by 1 or 0

myTIB[7].scParam2 = 0; \ Lo

\

myTIB[8].scOpcode = scLoop;)
<

myTIB[7].scOpcode = scAdd; i

Capture lines until

myTIB[8].scParam1 = -70; #Lines captured

myTIB[8].scParam2 = Lines;

myTIB[9].scOpcode = scStop;
myTIB[9].scParam1 = nil,
myTIB[9].scParam2 = nil,

Figure L.2 - TIB for byte loss detection and resend scheme

(for source see Appendix M - File Functions.c)

Appendix M

Scanner Control Software

This appendix presents relevant sections of the scanner control software. An overview
of the code is provided with a breakdown into files. Listings are also provided of
relevant sections of code. This includes the microcontroller assembly code as well as
the TreeScan acquire plug-in.

« Microcontroller code (version 2.0)

» TreeScan Acquire Plug-in (version 3.28)

M2

M.1 Microcontroller Code (Version 2.0)

The microcontroller source code is written in assembly language and is divided into
seven source files (2800 lines of code) with four extra files containing the 10 bit A/D
lookup tables. The main file TASM200.ASM contains important code documentation.
This includes microcontroller I/O port declarations, memory map, register usage,
variable naming convention, modification history, constant declarations, and variable
declarations.

Microcontroller code source files

TASM200.ASM Main file which #includes all other source files. Contains
important code documentation, variable and constant
declaration, and main SCSI background loop.

REDEF517.ASM Register redefinition to allow assembler to assemble for the
80C518A microcontroller.

INIT.ASM Bootup register and port initialisations.
MACLIB.ASM Inline macro libraries.

SUBRT1.ASM Subroutine library 1 : Implementation of most of the SCSI
command routines and other subroutines.

SUBRT2.ASM Subroutine library 2 : Image block capture routine (8-bit).
SUBRT3.ASM Subroutine library 3 : Image block capture routine (10-bit).
ADTABLES.ASM 10-bit A/D lookup table implementation.
ADTABLE1.ASM A/D lookup table 1.

ADTABLE2.ASM A/D lookup table 2.

ADTABLE3.ASM A/D lookup table 3.

A complete listing of the files implementing interesting and relevant code has been
included in this appendix (files highlighted in bold).

Appendix M - Scanner Control Software

M3

M.1.1 TASM200.ASM Source Listing

A EE T XA AT XN T X RN T AN N R A R AT T AR R AT TR R T A XN AT AR A A T RERA XA AR XA AN AR AN T ®HR*K

(1/ .2/83)

i TreeScan Microcontroller Software Version 2.0

=¥ Siemens B0C517a with 16 MHEz clock

i Port based I/O

5% Port O Multiplexed data and low order address bus
- Port 1 P1.0 ()
i Pl.1 Mirror Stepper clock {out)
:* P1.2 Line/Integration (out)
e Pl.3 ()
i Pl.4 ()
o P1.5 Data rate Control {out)
i Pl1.6 ()
E P1.7 T2 A/D count input (in)
ol Pogt 2 High order cata bus

ok Port 3 P3.0 RSZ32 Rx (in)
=% P3.1 RS232 Tx (out)
e P3.2 Stepper direction (ocut)
o P3.3 Stepper Mcde (fulifhalf) {out)
g P3.4 Focus stepper direction (out)
o P3.5 Focus stepper Clock (out)
S P3.6 Addressinc -WR signal (out}
¥ 23.7 Addressinc -RD signal (out)
il Port 4 PL.0 {)
i P4.1 Lens aperture signal (16 level) (out)
P B£.2 Pulised date rate (out)
i 4.3 LED Output (cebuc2) (out)
R 24.¢ Stepper Fulse signal (out)
;* 24.% «)
I 24.6 d 3
=% 24.7 ({)
yo Porz 5 ?3.0 Lens zoom cu:t (out})
S Ph.l: Lens ‘Fcom in (out)
il P5.2 Lens focus Far (out)
i P5.3 Lens focus Near (out)
e ?5.4 Home pos 1 (in)
s P5.5 Home pos 2 (in)
e & {)
;s 25.7 ()
i Pozt © P6.0 A/D start trigger

o Returned Zata Synch signal {in)
;= P6.1 Lipne Synch in {in)
i P6.2 ()
R P6.3 ()
7 P6.4 ()
2% P6.5 (}
i P6.6 ()
5 ?6.7 ()
- ol Poxt 7 P7.0 A/D videc signal in (in)
o P7.1 Lens focus feedback (in)
Fa P7.2 lens zoom feedback (in)
Hed P7.3 ()
% 27.4 ()
* 27.5 ()
¥ P7.6 ()
o P7.17 ()
:'

;* Port 8 P8.0 { 3
" PB.1 ()
i PB.2 ()
St P8.3 ()
:I‘

i Memory Mapped I/0

. FEQOh SCSI FIFC

¥ FEQOlh SCSI Command register

7 * FEO2R SCSI Transfer status reg

* to FEFFh SCSI Further registers

;* Memory Map

i Code Space

P * 0000 <to FFFF Program memory (RAM)

% ook b % b ok o ok ok b b b b o b ok % ok ok oF X % % % Bk K K o % % % % % A ok ok % % & % % % o E b ok % F o A % ok o 4 % o b % 4 % % K % % % N ok W N H ok % H A % ¥

M4

:' *
e Data Space X
i 0000 to FDFF External RAM *
¥ FEOO to FEFF SCSI chip memory mapped IO *
s FF00 to FFFF P2 Regen registers *
-’ *
’

s CPU Register bank usage e
i* Bank 0 *
i Bank 1 =
sl Bank 2 *
Pl Bank 3 *
;I‘ *
(S Register usage within banks »
'-l' RO *
i Rl *
* R2-R3 Counters for inside AD Loop (H & L) x
e Return values for maths rocutines (H & L) ;.
;x Flashing LED counters (H & L) ¥
L R4-R5 Delay Loop counters (H & L) x
ke REé-R7 Temporary Register (H & L) &l
- -
L

Y Data Pointer Useage *
i DPTR 0O Miscellaneous SCSI Registers *
il DPTR 1 SCSI FIFO *
s DPTR 2 SCSI Command Register 3
P DPTR 3 SCSI Transfer Status Register X
3 * DPTR 4 Temporary Data Buffer in Memory *
3% DPTR 5 DPTR to point to ADTables *
- -
g Variable and Constant Naming Convention i
- ™ *
i r XXX Subroutine name &
; m_XXX Macre name o
:" -
i Area of application *
e Baraane SCSI Related *
= et Mctor Relatec *
ik Caais Camera Related *
i T lens related %
i c. Tcp level variable i
- " *
i Variable / constant type *
e " Variable *
5 I, T Command to do *
el e Mes s Constant *
il T s Register *
] cMu=a 8 bit Mask *
T .ba.. Bit in the accumulator s
F i o PR Pincut Name *
i e e Status variable *
e = Parameter passed in parameter block »
- -
i Program Overview *
- *
e :
:k*tii*i*t**iitt*w!*"!!rtIrr':t*w*III\v*tI'x'lrtI\tvI\vI-twtt'ttzt!'!tt*t'w*tt**titi’k
- ® *
Hh Change History *
:' -
PR 2- 6-94 MW Initial Programming (V1.0 - Marijn Weehuizen) ¥
- -
r

T 25- 6-94 MW Start on V1.2 - Working SCSI locp *
- % *
i 6-10-94 MW Software fully operational for TreeScan Prototype 1 2
- -
> 7-11-94 MW Start on V1.3 - Code standardisation and documentation *
- % *
. 8-11-94 MW Code Mods - Flash LED if idle ®
= - Up Stepper rate to 330 Hz -> 500 Hz *
5% - Implement automatic return from command *
- % -
i 25- 1-95 MW Implemented Stepper focus routines (250 Hz) ¥
- = *
*

o 1- 2-95 MW Fix immeciate return, imlemen:t power off after home mechn *
- % *
i 23- 5-95 MW Reverse High/Low state of infinity posn on focus stepper *
- *
'th‘lw.ttxwtitﬂt*i*k*tttittxnwttxt*tttttttttwnﬁtrr*t'ttrwﬁtvr-ttttttxtttttt*tt‘li

=

SDEBUG

Definition of

EO T T T

Segment Usage
Constants
Variables

Appendix M - Scanner Control Software M5

H Registers
5 Commands
H Status Variables

; Code and data space segment names

EPROM SEGMENT CODE ;name of code space

SCRATCH SEGMENT DATA ;name of internal direct data space
BITS SEGMENT BIT ;name of bit addressable space
INDRCT SEGMENT IDATA ;name of internal indirect data space
: Cata Pointer Definitions

sxDPTRRegs EQU COh ;DPSEL to point to SCSI Reg's
sxDPTRFIFO EQU O0lh ;DPSEL to point DPTR to FIFO
sxDETRCMD EQU 02h ;DPSEL to point DPTR to Command Reg
sxDPTRTsfstat ZQU 03k ;DPSEL to point DPTR to Tsf Stat Reg
sxDPTRBuffer EQU 04h ;DPSEL te peint DPTR te Line Buffer
sxDPTRTables EQU 05h ;DBPSEL tc point DPTR to AD Tables

- Macintosh S5CSI command Definitions

scmResetDev EQU OCh
scmResetMech EQU GCEh
scmDoXSteps EQU OFhk

scmPower EGe 10
scmEng ECU 1i2h
scmGetXLines8b EQU 14h
scmSetCamln EQU 1&h
scmSecCamOff EQU 17h
scmZoom ECY 18h
scmFocls ECU 1%

scmiperture ZQu lah
scmGetXLineslOb ECU 1Bh

scmSezADTable EQU 1Ch
scmFocus? EQU 1iCh
scmFocusdl EQU 1Eh

; SCSI Bus Conireller Chip Cefiniticns

3 SCSI Recister Definitions

sI0Base EQU OFECOH ;msb 1sb
srFIFQ EQU sI03ase - COh ;32 9kit Reg

srCMD EQU sICBase =+ 0ln ;DMA vi/a DCIR CC4 CC3 cc2 cCl cCco
srTsfScaz ECU sIOBase + C2n ;INT RFE RFHF TFF TFHF TCC 0OCO CDACT
srBusStat EQU sICBase + 03h ;INIT TARG - ATN MSG C/2 ZI/O SRST
srIrtStat EQU sIO3ase + 04h ;8EL B8US ATN FC DIS = RSL ABEND
srIntErzStat EQU sIOBase + 05h BE UMS SRST T-O NVC CNTL NEWLN HALT
srIntEnab ECU sIOBase =+ 06h ‘= - - - - FCIE AIE MIE
srCTL EQU siOBase =+ 0Bh ;SE RE HA HPE AAPE HD HAAM ATNDS
srBSCTL ZQU slI0Base + 0%h :DMD - - - WLl WLO BOFl1 BOFO
srParCTL EQU sI0Base + 0Ah ;PMPE MPCE MPGE PPCE PPGE SPE SPC= SPGE
szSychTs?t EQU sI0OBase + 0Bh ;TP T2 TP1 TPC 0©OL3 oOLZ OL1 OLO
srTimCus EQU sIOBase + QCh 557 0 3 S TOO
srSelfil EQU sIOBase + 0Dh i = = = = ID2 ID1 Do
srDeszIC ECU sIOBase + JEh i- - - - - 102 1ID1 IDO
srSourcelD EQU sIOBase + 0OFh = - - - - IDZ 1ID1 IDO0
srTargliN EQU sICBase + 10h ;1 DSCERV LUNTAR- - TL2 TL1 TLO
srCMDState EQU sIOBase + 1llh ;5DP =~ - = Cs3 CsZ2 Csl Ccs0
srTsfCrrl EQU sIOBase + 12h =\

srTsfCurM EQU sIOBase + 13h ;1 1 Register

srTsfCrrH EQU sIOBase + 1l4h s

srBakCzirl EQU sIOBase + 15h EA Y

srBakCt M EQU sIOBase + 16h ;1 1 Register

srBakCirh EQU sIOBase + 17h :/

sroffsiCtr EQU sI0Base + 18h 20T caw oco
srTestCzl EQU sIOBase + lah ;= - - - - - - Loopback
srTes:tPc EQU sIOBase + 1Bh

> S5CSI Command Definitions

scChReset EQU 00000b

scClrTxFIFQ EQU 00110b

sScRxCMD EQU C1100b

scRxDATA EQU 01101k

scRxMSGOut EQU 0111icCk

scRxInfOut EQU 0111llb

scTxStat EQU 10000b

scTxDATA EQU 10001b

scTxXMSGIn EQU 10010b

scTxInfln ECU 1001l1b

scCenclude EQU 11110b

M6

H Additional SCSI definitions
sxSelfID EQU 4

sxIntEnab EQU 110b

sxCTL EQU 10000000b
sxParity EQU 00000000k
sxADCountH EQU 04h

sxADCountL EQU 26h + 8h

sxSynchBytes EQU

08h

sxTestEmptyBytes EQU OFh

sbalntPend EQU
sbaSellnt EQU
sbaFCInt EQU
sbaDDIR EQU

sbaTsfCtrZero EQU
sbaTxFIFOFull EQU
sbaTxFIFOHFull EQU

Acc.7
Acc.?
Bcc. 4
Acc.5
Acc.2
Acc.d
Acc.3

spSCSIReset EQU P1.0

sxBuffer EQU 0000h

= Motor definitions
mpMctorCLK EQU Pl.1
mpCWDir EQU P3.2
mpMode EQU P3.3
mbaPosSensl EQU Acc.d
mbaPosSens2 EQU Acc.5
mxResetForwH EQU 02h
mxResetForwL EQU 0OO0Oh

H Camera defintions
cxDRatePerSlow EQU 8Ah ;84h
cxDRateCmpSlow EQU 45h ;42h
cxDRatePerFast EQU 60h
cxDRateCmpFast EQU 30h
cxADCountH EQU 04h
cxADCcuntL EQU 26h
cxADCountZH EQU OFBh
cxADCountZL EQU 0ODaAh
cxADCONOInit EQU 00100CC0b
cxADCON1Init EQU 00000020b
exT2CntRld EQU 0001C010b
cxSteps0 EQU O
cxStepsl EQU 1
cxStepDelayH EQU 00h
cxStepDelayL EQU 0C8h
cxOptIntTimeH EQU O0Zh
cxOptIntTimel EQU OQAQh
cmoCMSELOSet EQU 00000100b
cmoCMENOSet EQU 00000100b
cmaDRateCTcon EQU 11111000b
cmaCClDisab EQU 11110011k
cmoCClEnab EQU 000010002
cmoCCZ2Enab EQU 00100000:
CMQCCI_ZEnab EQU 0010100Chk
cmaT2Stop EQU 11111100k
cmaCCl_2Disab EQU 11000011b
crCountH EQU R2
crCountL EQU R3
cplLinelnteg EQU: Pl.2
cpDataRate EQU P4.0
cpT2CountIP EQU P1l.7

H Lens definitions
lpLens EQU PS5
lmoZoomIn EQU 00000001b
ImoZoomOut EQU 00000010b
lmoFocusNear EQU 00000100b
lmoFocusFar EQU 00001000b
lmoCMSELl1Set EQU 00000010k

;5elfID = 4 on SCSI Bus
;All interrupt enables
:Selection enab, resel disab,
; no halt on ATN, cont on par err,
; no ATN on par err, no halt on discnct,
; no hold ATN, ATN not disab.
;Disable all parity checks
;Set up to make 10€2 AD conversions

; (1062+8) = 4*256 + (26+8)h
;Number of synch bytes at end of line
;Bytes to send to test whether FIFO
; is indeed empty.

;Polled int detection mask
;Target selection mask
;Function Complete mask
;Data Direction Bit

:SCS1I Transmit FIFO full bit
;SCSI Transmit FIFO half full bit

;SCSI reset line

;Sguare wave period

;20MC=26.6us = * 12 / 2 = T8k

; Sus = 28h X 1/ (f(osc)/2)

;Square wave period

; Sus = 28h X 1/(f(osc)/2)

;Set up to make 1062 AD conversions
; 1062 = 4%256 + 26h

; =1062 bytes

;External A/D init ->External trig, ip0
;External A/C init ->7uS conv time

;Set T2 to Counter, reload

;Steps to take between scan lines
;\Delay to allow stepper to settle

;/ approx 2 mS - 200 pulses

; Optimal integration time

; approx 6 mS

;0r Mask to set CMSELO

;Or Mask to set CMENC

;And mask to set CT input freg = f(osc)/2
;Ancd mask to disable CC1

;0r mask to enable CCl

; or mask to enable CC2

;Or mask to enable CCl & CC2

;And mask to stop T2

;And mask to disable CCl & CC2

;Registers to use as count in AD Leoop

;O0r masks to set appropriate lens
; focus and zoom control bits

e v

;0r Mask to set CMSELL

Appendix M - Scanner Control Software M7

1lmoCMENl1Set EQU 0000001Ckb ;0r Mask to set CMEN1

1lmaZoomIn EQU 11111110b ;And masks to clear approprate lens

1maZoomOut EQU 11111101b ; focus and zoom control bits

lmaFoccusNear EQU 11111011b H

1lmaFocusFar EQU 11110111b H

lmalensClear EQU 11110000b :And mask to clear all lens zcom / focus

1pCWDir EQU P3.4 ;Lens focus direction ceontrol

lpMotorCLK EQU P3.5 ;Lens focus clock control

lbaInfinity EQU Acc.6 ;Bit to test whether Infinity has been
; on manual lens focus

: Miscellaneous definitions

orDelayCount® EQU R4 ;Registers to use as count in Delay Locops

orDelayCountL EQU RS

opPowerSav EQU 21.3

crRetByteE EQU R3

orRetBytel QU R2Z

orLEDH EQU R2Z2 ;LED Count High order byte

orLEDL EQU R3 ;LED Count Low order byte

;opLED EQU 24.3 ;LED pin to be toggled

oxLEDE cu 2J7fh

oxXLEDL EQU 320k

oxReturn EQU QO0h

; AD Lookup table base address definitions

oTablel 1Base EQU 4000R
oTablel 2Base EQU 4100h
oTablel 3Base EQU 4200x
oTablel 4Base EQU 4300h

oTablel 5Base EQU 4400nh

oTable2 1Base =ZCU 4500k
oTable2 2Base EQU 4600h
oTable2 3Base ZQU 4700r
oTable2 4Base ZQU 4800h
oTable2 5Base EQU 4900k

oTable3 13ase EQU 5000h
oTable3 2Base EQU 5100h
oTable3 3Base EQU 5200h
oTable3 4Base EQU 530Ch
oTable? 5Base ECQU 3400k

Debug Definitions

(]
.
wn
0
w
-
r
m
v
m
et
fot
e
= 1
m

spDebug? EQU 21.0 ;3.

- Indirect Memory area
RSEG SCRATCH

- Location of the SCSI command block received

sCmdBleck0: Ds
sCmdBleckl: DS
sCmdBlock2: DS
sCmdBleck3: DS

el gk

sCmdBlcckd: Dbs 1
sCmdBleock5: DS 1
H Location of current status variaebles

ssCMDCount: Ds 1
ssErrCount: Ds 1

msPositionH: DS 1
msPositionL: DS 7

csCycleTime: DS
csintegTime: DS

[oryn

csIntegTimeH: DS 1
csIntegTimeL: DS i

lsPosition: Ds 1
lsAperture: DS 1

M8

csTableAddrH: DS 1 ;Tables must start on page boundaries
: Additional Variables

cvLineCountH: DS 1 ;Line count variable to be used in
cvLineCountL: DS 1 ;r_GetXLines routine

cvCountH: Ds 1 :Variables teo store adcounts for
cvCountL: Ds 1 ;current line

dvDebl: Ds 1

dvDeb2: Ds 1

ovReturn: Ds 1 ;Immediate return from command

H SCSI Command block parameters

H GetXLines Command

cgLineCountH EQU sCmdBlockl
cgLineCountlL EQU sCmdBlock2

cgIntTimeH EQU sCmdBlock3
cgIntTimel EQU sCmdBlockd

cqgStepperSteps EQU sCmdBlock5d

: ResetMechn Command

mgReturn EQU sCmdBlockl
RSEG EPROM
; 1limp ByPass
1jmp Init

; Hardware coded

H Version Number
7 Date Created
H Massey Reference

H Version number and date createc

Ver: DB 01 2N
DB oc ; i Version 1.00
DB 00 i

Date: DB 02 Pt
DB 0é ;1 2 June 1994
DB 94 ol

Include appropriate files

r

; Register Redefinitions

H Macroc Library

; Interrupt Service Routines
; Subroutine Library

3 Siemens B80C517A Register Redefinition
; Due to lack of 517 support all SFTR's neecd to be explicitly
H defined in the source code.

$include Redef517.asm
; Macro Definitions

S$include MacLib.asm

H Interrupt service routines

; $include ISR.asm

z Subroutine Definitions

Sinclude Subrtl.asm

Appendix M - Scanner Control Software

M9

Sinclude Subrt2.asm
Sinclude Subrt3.asm

; Lookup table implementation

LTab: DB 11000000k ;zero
DB 11100000k ;one
DB 111100000 ;six

FocusTab: DB 00000000k ;5tart of focus
DB 00000011b ;modification 1
DB 00001111k ;modification 2
DB 00111111b ;modification 3
DB 11111111b ;modification 4

MStr: DB ‘gedMarijn Jun 1994’

MStrlen EQU 12

MAStrLen EQU 100

nitialisation and configuration

ie. CPU initialisation
SCSI chip register setup

2
;
;
; Include Initialisation File
H
H
:

5C5I Bus phases handled

command routine based on

SCSI ccmmand

;
;
H Software waits tc be interrupted by macintosh
;
H
;

m_WaitSCSIINtLED
m_IsIntSel

lete SCSI transaction

;Wait for sSCSI in:t, flashing LED

;ensure it is a Select

5 Send 'Receive Command' command and wait till completed

mov DPTR, #srCMD
mov A, #scRxCMD
movx EDPTR,A

m_WaitSCSIInt
m_IsIntEC

i Move Command Block out of the FIFO

mov DPTR, #srFIFO
movx A, @DPTR
mov sCmdBlockC,A
movx A,EGDPTR
mov sCmdBlockl,A
movx A,EDPTR
mov sCmdBlock2,A
movx A,E@DPTR
mov sCmdBlock3,A
movx A,EDPTR
mov sCmdBlock4,A
movx A, EDPTR
mov sCmdBlock5,A

=

mov A,sCmdBlock0

cjne A,#scmEng,J3
leall r_Inquiry
l1jmp Conclude

05 1 cjne A,#scmGetXLinesBb,J5
lcall r_GetXLines8b
ljmp Conclude

;Send 'Receive command' command

;Wait fer interup: and

;ensure it is a Tuntion Complete

;Move command block from FIFO

Receive Command and select action based con command

;Is command enguiry?

;Is command 8 bit get X Lines?

M10

J5: cine A,#scmSetCamOn,Jé6
lcall r_SetCamOn
ljmp Conclude

J6: cjne A, #scmSetCamQff,J7
lcall r_SetCamOff
ljmp Conclude

J7: cjne A, #scmDoXSteps,JB
lcall r DoXSteps
1ljmp Conclude

J8: cjne A,#scmResetMech,J?
lcall r_ ResetMechn
mov A, ovReturn
- cjne A,#oxReturn,RetCtl
ljmp Conclude

J9: cjne A,#scmFocus,J10
lcall r Focus
ljmp Conclude

J10: cjne A, #scmZoom,J11
lcall r_Zoom
ljmp Conclude

J11: cjne A,#scmAperture,Jl2
lcall r_ Aperture
1jmp Conclude

J12: cjne A,#scmResetDev,J13
lcall r_ResetDev
limp Conclude

J13: cjne A, #scrPower,Jlé
lcall r Power
ljmp Conclude

J14: cine A,#scmGetXLineslOb,Jl5
lcall r3 GetXLineslOb
ljmp Conclude

J15: cjne A, #scmSetADTable,J1l6
lcall r_SetADTable
ljme Conclude

J16: cjne A, #scmFocus2,J17
lcall r_Focus2
lijmp Conelude

J17: cjne A, #scmFocus2l,JF
lcall r Focus2I
l4imp Conclude

JF: LJMP ErrorTrap

;Is command Set Camera On?

;Is command Set Camera Off?

:Is command Do X Steps?

;1s command Reset Mechanism?

;Is command Focus (motor lens)?

(motor lens)?

;1s command Zoom

;Is command Set Aperture

7 (motor lens)?

:1s command complete reset?

;Is command Power on / off?

:Is command 10 kit get X lines?

:Is command set A/D table?

;Is command Focus? (stepper motor)

;Is command Focus at infinity?
H {stepper motor)

i Return Status, wait for an interrupt and check it is a function

z complete interrupt.

Conclude:
m_Conclucde 0Ch
m WaitSCSIInt

m_IsIntFC
; Intercommand actions
RetCtl:
mov ovReturn, #00
ine ssCMDCount
lijmp Mainip
; Error trap and handling
T e e e . e o
ErrorTrap: inc ssErrCount

jmp Concluce
setb spDebug2

clr spDebug2
setb spDebug2

R o ——

;Clear immediate command return
i Increment the command counter

;Loop back to get another command

;Increment the error count

Appendix M - Scanner Control Software M11

; Main loop bypass - for code testing purposes

cpl P4.3 ;opLED

1jmp ByPass

Include three versions of the 10 kit A/D lookup table

Tablel - Linear range over 100 % of input (equiv tc 8 bit)
Table2 - Linear range over 25 % of input
Table3 - Non linear function over full range

$include ADTablel.asm
$include ADTableZ.asm
$include ADTable3.asm

Mi2

M.1.2 SUBRT2.ASM Source Listing

’-***‘I*******i'*l*I'**i‘*i*i******ti*k******l*ttt*t“*l‘*l'!‘l!*l‘l‘t‘l’I“I‘l‘*'l‘*“*!!"‘!***“

;* Subroutine Library 2 for TreeScan Microcontroller Scftware ®
- % *
r
i RTName Description of what the subroutine does o)
- % *
L
;* r_GetXLines8b 8 bit get block of x lines Command *
- W -
i *
:K!*‘*Kt**t**********ﬁt*l‘i“*I‘I‘**l***'ﬁl‘*‘l‘*l’l‘*i*ll‘l"l"!II‘I‘Kt'*“I‘tt'l‘t*t*l‘ti*itl‘tl*
; Act on 8 Bit SCSI Get X Lines command
;
3 The desired number of lines are captured from the camera and sent
; to the Mac via the SCSI port
; Command block calling parameters :
2 No of lines H,L
; { Int Pulses H,L)
2 Stepper steps (0, 1 or 2)
; SCSI Info sent to Mac :
’
; ——————— ——— ——————————————— -
r_GetXLinesBb:
7 React to parameters passed in command block

mov cvlLineCountlL,cglineCountl ;Set up the number of lines

mov cvlineCountH,cglineCountH ;to capture

inc cvlineCountk

lcall r_SetlIntec ;Set integraticn time
; Set data rate clock to fast

m_SetDataRateClkFast
H Set stepper motor direction

clr mpCWDir
. De any A/D initialisation

mov ADCONO, #cxADCONOInic ;Select channel 0 for anolog input,

mov ADCON]1, #cxADCONlInit ;external trigger
H Set up SCSI data phase
m_SCSICmdToDataPhase ;Send null data Tsf Command

Setup initial counters for next line

e

m_SetupTsfCtrlstline

mov crCountH, #cxADCountH Hi
inc crCounthH ;1Set up iterations of AD Loop
mov crCountL, #cxADCountL ot
mov DPSEL, #sxDPTRBuffer ;Initialise DPTR to point to
mov DPTR, #sxBuffer ;temporary buffer
; Wait for line synchronisatien
r_L8_ Synch:
clr TF2
m_WaitTF2 ;Wait fer start of line

Depending on the number of steps byte passec
Manually complete 1lst step of stepper motor :f necessary

e v

mov A,cqgStepperSteps
cjne A, #cxStepsO,r_L8 J1

jmp r_L8_J3
r L8 _Jl: m_ManualStepperStep
> Restart auto stepper step

mov A,cgStepperSteps
cjne A, #cxStepsl,r L8 J2
jmp r_L8_J4

Appendix M - Scanner Control Software

M13

r_18_J2:

r L8 J3:

r LB J4:

;_LS_ad:

¥ LB adZ:

s Wait

r L8 Li:

+ Jump

r L& :J53

r_L8_ Cont:

: Decrement

Get

ot
(5]

orl CCEN,#cmeCClEnab
jmp r_L8_ad

nop
nop
nop
nop
nop
nop
nop
nop

nop
nop
nop
nop

nop
ncp

nep
nop

nop
ib BSY,r L8 ad2

nov A,ACDATH

mev DPSEL, #sxDPTRFIFO
movx EDPTR,A

mov DPSEL, 4sxDPTRBuffer
movx EDPTR,A

ibe ZPTR

djnz crCountlL,r L8 ad
djnz crlountH,r L8 _ad2

autecmatic stepper step

anl CCEN,#cmaCCllDisab
clr mpMotorCLK

until FIFO empty

mov DPSEL.#sxDPTRFIZO
s

mov R6,isxTestEmpty3ytes
mov A, #02h

movx RBDP

dinz R6,t L8 L1

m WaitFIFOHFull

to Resend if we have lost

mov CPSEL, #sxDPTRTsfStac
movx A, RDPTR

jb sbaTsfCcrZero,r L8 J5

jmo r L8 Resend

mov DPSEL, #sxDPTRFIFO
mov A,#02h
movx EBDPTR,A

m WaitSCSIInc

m_IsIntFC

mov DPSEL, #sxDPTRTsfStat

movx A, ERDPTR

ib sbaTxFIFOHFull,r_LB_Cont

jmp r L8 Resend2

m_SCSICmdClearFIFQO

m_SCSICmdToDataPhase
m_SCSICmdToDataPhase

djnz cvlineCountL,r L8 J6
djnz cvLineCountH, r_L8_J6

jmp r LB _Exit

line counter and Exit

;Set up auto motor stepping again

A

|

;1 Wait for m_ManualStepper Step
;1 duration if not required

al

2l

H

ik

;\ mov A,cgStepperSteps
ad

:\ cjne A,cxZeroSteps,r L8 J4
2 = =
:\ orl CCEN, #cmoCClEnab

i/

;\ jmp r_LB_ad
Pl

AR R R R A R RS S R R E S R R R R S R RS R AR R R RS E RN RS SRRt R RS RERRR SR

inteo locop capturing data and

R X X H A AT AR KT A AT AR AT AT AN A X AN TR AT T A TAT AT AXNT XXX TRFEXR TR RH XX K

nep

sending it to SCSI

21
<1
;Wait until AD complete i
;read data out i1
=3
;move data to SCSI 52
o |
;move data to SCSI 2
3
2
;16 +4

sWait until FIFO < Half Full
N

;1 Send 15 bytes

i

;Wait until FIFO < Half Full

any bytes

N\
;1 If Tsf Ctr not zero, many

;/ bytes have been lost -> resend
;1 Should half fill FIFC if
./ everything OK

;Wait for interupt and
;ensure it is a Funtion Complete

2\
;)1 If FIFO not 1/2 full lost

;/ < 15 bytes, Resend line

;Clear additional 15+1 bytes
+in BIFO

;Send dummy byte
;Send dummy byte

Last line

Mi4

r_L8_J6:

; Setup counters for next line
m_SetupTsfCtr4Line
mov crCountH, #cxADCountH %
inc crCountH ;|Set up iterations of AD Locp
mov crCountL, #cxADCountlL s
mov DPSEL, #sxDPTRBuffer ;Initialise DPTR to point to
mov DPTR, #sxBuffer ;temporary buffer

’ Send Synchronisation bytes "Good"

C) m_SendSynchBytes cxADCountH, cxADCountL, 00, 00
m_SendSynchBytesN cxADCountZH, cxADCountZL, 00, 00

¥ Jump Back for another line

1jmp r_L8_Synch

AR R AT R AR AR T A A N N R AN AT A AT TR AT TR AT AR AT TR XTRT W

Resend line from RAM to SCSI and wait for end of line
AR AT AT AT A AT AR AR N RN R AR AR N AT AN T AN T AT AN AT NI AT AN AT TN

_L8_Resend:

L]

Send filler bytes if any required

m_WaitFIFOHFull ;%Wait until FIFO < Half Full
mov DPSEL, #sxDPTRFIFO i
mov A,#02h ;| Sencd single fill byte
movx @DPTR,A o/
mov DPSEL, #sxDPTRTsfStat Py
movx A,EDPTR ;1 If Tsf Ctr not zerc, send
jnb sbaTsfCtrZero,r L8 Resend ;/ filler byte and resend line
m_WaitsSCSIInt ;Wait for interupt and
m_IsIntrC ;ensure it is a Funtion Complete
r_LB Resend2:
m_SCSICmdClearFIFO ;Clear FIFO
m_SCSICmdTclataPhase ;Send dummy byte
m_SCSICmdToDataPhase ;Send dummy byte
5 Setup counters for resend line

m_SetupTsfCtrdLine

mov crCountk, #cxADCounth HA

inc crCountk ;1Set up iterations of Resencd Loop
mov crCountlL, #cxADCountlL 2l
mov DPSEL, #¢sxDPTRBuffer ;Initialise DPTR to poin: to
mov DPTR, #sxBuffer :temporary buffer
= Send Synchronisation bytes "Bag"

m_SendSynchBytes 00, 00, 00, 01

> Ge: into loop sending data to SCSI from RAM

r_L8_ ad3: mov DPSEL, #sxDPTRBuffer
movx A,EBDPTR ;move data from RAM
inc DPTR

mov DPSEL, $sxDPTRFIFO
movx @DPTR,A ;move data to SCSI

mov DPSEL, #sxDPTRTsfStat
r L8 L2: movx A, RDPTR
jb sbaTxFIFOHFull,r L8 12

djnz crCountl,r LB_ad3
djnz crCountH,r LB_ad3

Wait until finished

L1

m_WaitSCSIInt sWiait for interupt and
m_IsIntFC ;ensure it is a Funtion Complete
: Jump to security check whether line sent OK

jmp r_L8_Cont

Appendix M - Scanner Control Software M15

R R AN T X A N XA R Y N P N N T A A N T N R XA AT TR NN N

Conlude last line and finish command

AR A AR A AR TR A A A AR AN AR N AR T R AT R A RN AT TR A AT TN N AT AN RN NN W

e we wa

r 1.8 Exit:
; Setup counter for synch bytes of last line

mov DPSEL, #sxDPTRRegs

mov DPTR, #srTsfCtrl

mov A, #sxSynchBytes ;Set transfer counter to bytes
movx E@DPTR,A ;to send

mov DPSEL, #sxDPTRCMD
mev A, #scTxDATA ;Return x bytes command
movx EDPTR,A

Send Synchronisation bytes "“Good"

m_SendSynchBytes cxADCountE, cxADCountL, 00, 00
m_SendSynchBytesN cxADCountZH, cxADCountZL, 00, 00

-

Stop automatic stepper step
7 (Leave line rate gcing)

.

anl CCEN, scmaCClDisat
3 Return cata rate tc slow speed
o

m_SetDateRatellkSlew

H Rait until SCSI transfer is complete
m WaitSCSIilnt ;Wait for interupt &
m_IsInt®C ;check whether it is FC

ret

M16

M.1.3 SUBRT1.ASM Source Listing

:If'!I'!I‘*!****'*'!*I**!i**'***tf*tt*t,'*i**fit*t*****‘!Il'l!'llt!lt't"*it'ﬂ**

e Subroutine Library 1 for TreeScan Microcontroller Software *
- -
;

X RTName Description of what the subroutine does L
- *
’

;% r_Waitlms Routine to pause 1 mS ¥
;* r_Wait2ms Routine to pause 2 mS W
;* r_WaitlOms Routine to pause 10 mS l
;* r_Wait4Oms Routine to pause 40 mS ®
;* r_Wait80ms Routine to pause 80 mS ¥
;* r_Inquiry Enquiry command b
:;* r_Autofocus Complete autofocus at micro level ”
;* r_ResetMech Move mechanism to home positiecn »
i* r_SetCamOn Turn camera signals on o
;* r_SetCamOff Turn Camera signals off o
:* r_DoXSteps Move stepper motor X steps =
:* r_Focus Move lens focus controls -
;* r_2Zoom Move lens zoom controls ~
;* r_Aperture Set lens aperture signal ks
:* r Focus? Act on SCSI Focus using stepper motor =
:* 1t Focusl2l Focus at infinity using stepper motor *
;* r_ResetDev Complete reset cf device 2
:* r Power Turn power on / off il
i* r_Setlinteg Routine to set integration time based on Cmdblk3 & 4 *
;* r_SetADTable Set A/D lcokup table -
- w *
:***t*ttt*tttttiittt*tl*ilttl*tt*t!'l"!l!ttl'II!"tt'tltl'!l*w!*ttttrttt*'*"'!

v Routine to pause 1 mS
orDelayCountH EQU R4 ;Registers to use as count in Delay
Loops

orDelayCountlL EQU RS

r_Waitlms: mov orDelayCountH, #3h
mov orDelayCountlL, #9%h
r_Waitl Ll: djnz orDelayCountL,r Waitl L1
djnz orDelayCountH,r_Waitl Ll

ret
; Routine to pause 2 mS
r_Wait2msS: mov orDelayCountH, #6h

mov orDelayCountL, #33h
r_Wait2 Ll: djnz orDelayCountLl,r_ Wait2 L1
djnz orDelayCountH, r Wa1t2 _Ll

ret

r_WaitlOms: mov orDelayCountH, #1Ah
mov orDelayCountlL, #4Ah

r Waitl0 Ll: djnz orDelayCountL,r WaitlO L1
djnz orDelayCountH,r WaitlO_ _Ll

ret

r_Wait40mS: mov orDelayCountH, #6%h
mov orDelayCountL, #2%h
r_Wait40_Ll: djnz orDelayCountl,r_Wait40_Ll
djnz orDelayCounth,. Wa1t40 Ll

ret

Appendix M - Scanner Control Software M17

mov orDelayCountL, #52h
r_Wait80_Ll: djnz orDelayCountL,r_ Wait80_L1
djnz orDelayCountH, r Wait80 L1

ret
e e e
: Act on SCSI Inguiry command
; Information is sent back to the enguirer as to what this
7 device is.
H Command block calling parameters
; none
: SCSI Infc sent to Mac
= 5 bytes + MStrlen(l9) bytes
r_Inquiry: mov DPSEL, #sxDPTRRegs

mov DPTR, #srTsfCtrlL

mov A,H#5+MStrlen ;Return x bytes

movx EGDPTR,A

mov DPSEL, #sxDPTRCMD
mov A, #scTxDATA ;Return x bytes command
movx EGDPTR,A

mov D22SEL, #sxDPTRFIFO
mov A, #03 ;Processor device
movx ERDPTR,A

mov A, ssCMDCcunt X

movx EDPTR.,A ;IMisc bytes
mev A,ssErrCount : |
movx EDPTR,A |
mov A, #00 il

s

movx 2DPTR,A ’
mov A, #MStrlen ;3 Additional bytes

movx EDPTR,A

mov RO,#0

L Ing Lis: mov DPTR, #MStr
mov A,RO
move A, @A+DPIR

i
-

mov DPTR, #szFiF0

movx EDPTR,A

inc RO

cjne RO, #MStrlen,r_Ing_ LI

m_WaitSCSIInt ;Wait for interupt &
m_IsIntFC ;check whether it is FC
ret

An autocfocus porcedure is completed based on the parameters sent in
the command block.

Commané block calling parameters :
none

SCSI Infc sent to Mac

r_Autofocus:

3 Capture the current line into memory
5 Process the line

: Make focus modification

; Capture the next line into memory

Process the line

-

M18

e

.

If better, loop back to focus modification

Return to best focus position

ret

Act on SCSI Reset Mechanism command

The stepper motor is driven back to it's home position based on the
input from its position sensors.

Command block calling parameters :
Byte 1 (0 = Keep control, Else return immediately)
Byte 2 (0 = No effect, 1 = Turn power off)

SCSI Info sent to Mac :

r_ResetMechn:

e owa

:

Respond to command block parameters
Return SCSI ctl immediately if reguired

mov A, mgReturn
mov ovReturn,A
cjne A,#oxReturn,r_RstMch_ J2
jmp r_RstMch_J1

Return control immediately

r RstMch J2: clr P4.3

m_Conclude 00h
m_WaitSCSIInt
m_IsIntEC

Actually go home

_RstMch_Jl: m_MotorForwards

Drive mechanism forward x steps to get away from home position there

r_RstMch_Ll: mov R2, #mxResetForwH

inc R2
mov R3, imxResetForwl

r RstMch L2: m_MotorStep_3mS

djnz R3,r_RstMch_L2
djnz R2,r RstMch 12

mov A,P5
jnb mbaPosSensl,r RstMch LI ; If low still at home pos

Drive mechanism back until first sensor input is reached
m_Motcheuer s5e

m_MotorStep_3mS

r_RstMch_L3: m_MotorStep_2mS

ETE

mov A,P5
jb mbaPosSensl, r RstMch L3 ; If high, not home yet

continue for x steps past the sensor
Drive mechanism forwards until seconc position sensor is reached

and mechanism is home without hysteresis.

m_MotorForwards

r_RstMch_L4: m MotorStep 3mS

mov A,PS5
jnb mbaPosSens2,r RstMch 14 ; If high, not home yet

Appendix M - Scanner Control Software

M19

e we

Byte 2 (0 = No effect,
mov A, sCmdBlock2
cine A,#01,r RstMch_J3
setb opPowerSav

r_RstMch_J3:

3 Act on SCS5I Set Camera On command

Command block calling parameters
none

SCSI Infc sent tc Mac :

none

r_setCamOn:

H Set data rate clocking

m_SetDataRateClkSlow

mowv
mov

THZ, 4078h
TL2,40C7h

; Set

CRCH, #0rBr
CRCL, #0C7h

; Set
. S5et
;S5et
T2CON, $cxT2CntRlc

; set

e

CCEXN, #cmoCC2Enab ;cmolCl_2Enab

Check whether power needs to be turned off as well
1 = Turn power off)

H Do integration time / Stezper Pulse 2 Initialisation

initial T2 wvalue

T2 reload

Delay B4 2nd step € 200 pulses
Delay B4 int time @ 400 pulses

T2 as counter,autc_relocad, mode

:Set up CCl1 & CC2 on T2

= Command block calling parameters

. none

: SC3I info sent tec Mac

i none

;

e O e W See BSOSO B e e e D W EN T

r_SetCamOff:

: Stop automatic stepping ancé Line rate pulse

. an. T2CON, #cmaT2S5top ;set T2 as counter,auto_reload, mode
anl CCEN, #cmaCCl_2Disab ;Set up CCl & CC2 on T2

; Wait until SCSI transfer is complete
rec

e e S e e e T R BT T

- Act on SCSI do X Steps cemmand

,

: ?he stepper motor is driven back to it's home position based on the

H input from its position sensors.

: Command block calling parameters
: Byte 2 dir (bit 1 only)
: Byte 364 Number of steps H & L

; SCSI Info sent to Mac :
r_DoXSteps:
H Check direction

mov A,sCmdBlock2

jb Acc.0,r Xstep Jl

m_MotorReverse

jmp r_XStep_J2
r_XsStep Jl: m_MotorFeorwards
r_XStep_J2:
; Set up Steps in byte R2, R3

mov R2,sCmdBlock3
mov R3,sCmdBlockd

; Do appropriate number of stepper steps

r_XStep_Ll: cjne R3,#00,r XStep Llb
cjne R2,#00,r XStep Lla
ret

r_XStep Lla: dec R2
r_XStep_Llb: dec R3
jmp r_XStep Llc

r_XStep Llc: setb mpMotorCLK ;Do Fast stepping
lcall r waitlms ; 500 Hz
clr mpMotorCLK
lcall r_waitlms

jmp r_XStep L1
Act on S5CSI Fccus Command
The lens output is generated focussed near or far.

Command block calling parameters

Byte 1
Byte 2 dir (bit 1 only)

-
H Byte 3&4 Number of steps H & L
: SCSI Infc sent to Mac

r_Focus:
3 Set up number of steps

mov R2, sCmdBlock3
inc R2
mov R3, sCmdBlock4

: Check direction

mov A,sCmdBlock?2
jnb Acc.0,r_Focus_Near

; Complete Focus Far Step
r_Focus_Far:
orl P5,#lmeFocusFar
lcall r WaitlOms
anl P5,#lmaFocusFar

djnz R3,r Focus_Far
djnz R2,r_Focus_Far
jmp r_Focus_Jl

: Complete Focus Near Step
r_Focus_Near:
orl P5,#lmoFocusNear
lcall r_WaitlOms
anl P5, #lmarocusNear

djnz R3,r_Focus_Near
djnz R2,r Focus_ Near

jmp r_Focus_Jl

r_Focus_Jl:
ret

Appendix M - Scanner Control Software M21

H Act on S5CSI Zoom Command

The lens output is generated zoomed in or out.
= Command block calling parameters :

H Byte 1

H Byte 2 dir (bit 1 enly)

; Byte 3&4 Number of steps H & L

5CS5I Info sent to Mac :

; Set up number of steps

mov R2,sCmdBlock3
ine R2
mov R3, sCmdBlocké

H Check direction

mov A, sCméBlock?Z
job Acc.0,r_Zoom_In

; Complete Focus Far Step
r_Zoom_Out:
orl P35, #lmo2comOuz
lcall r Wait4Oms
lcall r Wait40Oms
lcall r Wait40ms
anl PS5, #lmaZoomQut

djnz R3,r_Zoom_Jut
dinz R2,r_Zoom_ OQu:
jmp r_Zoom_J1

Complete Focus Near Stegp

r_Zoom_In:
orl P5,%lmoZoomIn
lcall r Wait40ms
lcall ::Hait&ﬂms
lcall = Wait40ms
anl P5,#imaZoomin

éjnz R3,r_Zocm_In
dijnz R2,r_Zoom_In

jmp r_Zoom_ Jl

Act on SCSI Aperture Adjust Command

The lens ocutput is generated zocmed in or out.

H Command block calling parameters :
i Byte 1 No of pulses of duty cycle high
5 SCSI Info sent to Mac

r_Aperture:

mov cmhl, #0FFh ;Set compare value for aperture
ElE €
mov A, #0FFh ;signal

subb A, sCmdBlockl
mov cmll,A

orl CMSEL, £1lmoCMSELiSex ;Set CM1 to CT
orl CMEN, #1moCMEN1Set ;Set CMl operational
ret

Act on SCSI Focus using stepper motor Command

The lens output is generated focussed near or far.
; Command block calling parameters :
: Byte 1

Byte 2 dir (bit 1 only)

; Byte 3&4 Number of steps H & L
; SCSI Info sent to Mac :

r_Focus2:

z Set up number of steps

mov R2,sCmdBlock3
inc R2
mov R3, sCmdBlockd

2 Check direction

mov A,sCmdBlock2

jnb Acc.0,r Focus2 Jl
m_Focus2Forwards

jmp r_Focus2 J2

r_Focus2_ Jl: m_Focus2Reverse
r_Focus2_J2:

H Complete Focus Steps
r_Focus2 Ll: m FocusZStep_5m$S

djnz R3,r_Focus2 Ll
djnz R2,r Focus2 Ll
ret

Act on SCSI Focus at infinity using stepper motor Command

The lens is focussed far until limit switch.

Command block calling parameters

(Byte 1 (0 = Keep control, Else return immediately))
SCSI Info sent to Mac

r_Focus2I:
= Drive mechanism back until first sensor input is reached
m_FocusZReverse
r_Focus2I_L3:
m_Focus2Step_5msS
mov A,PS
jnb lbalInfinity,r Focus2I L3 ; If low, not home yet
ret
e e e e
- Act on SCSI Reset Device Command
,

Command block calling parameters

SCSI Infc sent to Mac

r_ResetDev:
H Return Status, wait for an interrupt and check it is a function
3 complete interrup:t.

m_Conclude 00h
m _WaitSCsIInt
m_IsIntFC

ljmp Init ;Reset device from scratch

> Act on SCSI Power on Unit
;

Command block calling parameters
Byte 1 I=on O=cff

v e

Appendix M - Scanner Control Software M23

H SCSI Info sent to Mac :

r_Power: mov A, sCmdBlockl
jb Acc.0,r_Power J1
setb opPowerSav

; lcall r_SetCTamOff
ret

r_Power Jl: lcall r_Se:iCamCn
clr opPowerSav

ret
; Routine to check and set up integration time based on CmdBlk3 & 4
r Setinteg:
; Check whether integ time has changed

mov A,csintegTimeH
cjne A,ccintTimeH,r SetInt_Set

mov A,csintegTimel
cjne A,cqglntTimel,r SetInt_Set

ret

Dc integration time / Stepper Pulse 2 Initialisation
Check whether integration time>1024 then a:=10;
SetInt_Set:
mev A, cglntTimeH

cjne A,#cxOptIntTimel, $+088

mov A,cglntTimel

cjne A, #cxOptintTimei, 54035

3¢ 5+5

ljmo r S

v

_Setlnt_Jl
Integration time < 10 mS (<468}
H - Calculate set time for integration time

e

m_Subtr #0FFh, #0FFh, cqglntTimeH, cqIntTimel
mov CCH2,orRetByteH ;Se: integration time
mov CCLZ2,orRetBytel

2 - Calculate Second step value from min constantintegration time
m_Subtr #0FFh, #0FFh, #cxOptIntTimeH, #cxOptIntTimel
m_Subtr orRetByteH, orRe:tBytel, #cxStepDelayH, #cxStepDelayL

mov CCEL,orRet3yteH ;Set Delay B4 2nd step € 200 pulses
mov CCLl,orRetBytel

7} - Calculate reload value from integration time
m _Subtr orRetByteH, orRetBytel, #cxStepDelayH, #cxStepDelaylL

mov TH2, orRetByteH ;Set initial T2 value
mov TL2, orRetBytel
mov CRCH,orRetByteH ;Set T2 reload
mov CRCL,orRetBytel
: Wait for line synchronisation tc settle camera output
cly TF2
m_WaitTF2 ;Wait for start of line
ret

r_SetInt_Jl:
H Integration time > 10 mS (>468)
; - Calculate set time for integration time

m_Subtr #0FFh, #0FFh, cqlntTimeH, cqlIntTimel
mov CCH2, orRetByteH ;Set integration time
mov CCLZ2,orRetBytel
- Calculate Second step value from integration time
m_Subtr orRetByteH, orRetBytel, #cxStepDelayH, #cxStepDelayl

~

mov CCHl,orRetByteH ;Set Delay B4 2nd step @ 200 pulses
mov CCL1,orRetBytel

M24

- Calculate reload value from integration time
m_Subtr orRetByteH, orRetBytel, #cxStepDelayH, #cxStepDelayl

e

mov THZ2,orRetByteH ;Set initial T2 value
mov TL2,orRetBytel =

mov CRCH, orRetByteH ;Set T2 reload
mov CRCL, orRetBytel

Wait for line synchronisation to settle camera output

s

elr TE2
m_WaitTF2 ;Wait for start of line

ret

Command block calling parameters
Byte 1 AD Table to change use (1, 2 or 3)

SCSI Info sent to Mac :

r_SetADTable:
mov A,sCmdBlockl
cjne A, #3,r_SetAD_Jl

mov csTableAddrH, #HIGH (cTable3_l3ase) ;Set up ADTable3
ret

r_SetAD_Jl:
cjne A,#2,r_SetAD _J2
mov csTableAddrH, #HIGH (cTable2 lBase) ;Set up ADTable2
ret

r_SetAD J2: mov csTableAddrH, #5IGH (oTablel 1Base) ;Set up ADTablel

ret

Appendix M - Scanner Control Software M25

M.2 TreeScan Plug-in Code (Version 3.28)

The TreeScan plug-in is written in C and is divided into seven source files with
associated header files and #include libraries.

TreeScan plug-in source files

Main.c Main TreeScan program file which contains the dispatching
routine calling routines in Operations.c dependant on the value

of the selector parameter passed from the calling application.
Modification History.c A comprehensive modification history within a comment.

Operations.c Contains the main routines for the plug-in. This includes the
implementation of the main TreeScan dialog window, as well as
code to initialise and complete a plug-in call.

Utilities.c Library of utility routines.

Debug.c Implementation of the debug / development dialog window
which allows individual commands to be sent to the scanner and

tested.

Functions.c Miscellaneous functions for the TreeScan plug-in. These include
all routines to send SCSI commands to the scanner and receive

image data.

Integ/Focus.c Implementation of integration time adjustment routines,
autofocus routines, and blind refocus routines.

This appendix contains a complete listing of Main.c, Modification History.c, and
Operations.c. Relevant sections have been included from Functions.c and
Integ/Focus.c.

M.2.1 Modification History.c Source Listing

/* Modification History

We need to keep a modification history so I'm putting it in a separate file.c so
I can make it part of the project. Contains one large comment and no code.

Vers. Author Date

991 MW

.0
MW

[AS S S

2.3 RH?
2.4 REP
2.8 o
29

30

3.1

b s

3.3

3.4

3.5 MW,
346 MW,
3.6b MW
37 MW
3.8 RHP
3.9 AD
3.10ml MW
3.10m2
3.10m3
3.10m4
3.10m5
3.10m7
3.10ml0

o B MW
3.11b MW

27/1/95

i |
al RHP 1/2/95

Comments

Software For Treescan 2 System. Scftware includes image image
capture plugin including image capture algorithm, sending of SCSI
commands, etc.

ie. Fully operational image capture software with modifications
for stepper motor control on autofocus & refocus

New naming convention

1/2/95 Autofocus algorithm redesigned and reprogrammed

Tidied up several return 0's to beep break so dialog box is still
active; check wviewname file doesnt already exist; BAsk user if
view 1 or view 2 and if view 2 is is cw or ccw from vl; Ask user
for dip and lean angles and save to file treename _vl.dat or
treename_v2.dat; send a go home with immediate return when we
exit; I have assumed that we have enclosing:something:image
folder:image app; and we will stocre alll data and image files in
a folder enclosing:Treescan Images; ©On full scan we check
filename does not already exist.; Move down about 70cm before
starting scan. So we focus at breast height but capture from 70cm
up.

vref number is set on fullscan so it gets passed back to image so
image will go in the correct folder

Refocus options no refocus, autorefocus, blind refocus; displays
fnum and fstepno at end of autofocus:; loads ftable from file

fixed plindrefocus
fixed saturation problem by halving in
int
Blind refocus every 2530 steps
AutoRefocus every 1000 steps
Select viewname on entry tc plugin dialeg
turn off refocus data files
print wn tec log file =0 unless doinc blindrefocus
wn still was not being printed in log file - fixed
partial shots were returning full image - fixed
setup image name and vrefnum for preview
eheight was > chunksize so we got oscillation as we
were looking at stuff before previous correction
fixed what int routine looks at p-lump to p-lumpteheight
Set int time again after we move down for start of shot
Modify required average light level toc be 100
Dont clear focussed at end of preview
try and speed up initial set int time by rough guess
Mocdified getline to allow comments in file !lkijlk
and dist,fstepnum con each line, dist is ignored
Try and unload the other segments of code resource on return from
finish call
Conservatism factor of B0% if change >20%, write aperture data
to log files; fixed double integtration adjustment bug.
NoRefocus changes to NoFocus, No adjust integration time button
added (each call to Refocus modified), Make preview move back
tepsBack lines
No aperture adjustment and no focus adjustment during lines back!
Fixed the return partial imace if capture is cancelled.
Combined Mkl / M2 software compatibility.
Write wvariety of focus numbers to file ie 2,4,8 pixel
seperations; fixed file name fcor focus data on use of focus
button. - not initialised; shcrtened delays in focus and preview
routines; preview is now centered vertically on focus line
New control for steps peri line in getlines
getchunk passes micro # steps to move for each line
calls different scsi cmé fcr getchunk - regquires eprom
version 3.9, board revision 3.¢
Redevelop plugin with new user friendly user interface.
Completed entering new dialog boxes
Aim to get compiling
Video debug dialog operational
Start on debug box
Debug box commands implemented, abcut te split functions file
Front window commands implemented, correct steps /angle in
preview, implemented the hiding of chunklines
View button operating correctly, can use up arrow & down arrow to
tab, use enter & return to operate buttons
Plugin with new interface / structure fully operational
In debug aper / focus commands don't turn power off if set on,
clarification of focus step buttons, switched display of focus

time if new int> 10X old

(ad

Appendix M - Scanner Control Software M27

numbers for autofocus, max distance 1800 steps, set aperture done
flag in preview & capture.

3.11d RHP Only store globals after start or finish call
Allocate storage for globals in heap when we store them not at
the begining; dont <call store globals after we have done
unloadsegad; reorder allocation of space in start routine so we
allocate the big bit first.
3.1le MW fixed 1lst char bug, slider getting updated on entry.
3.11f RHP To work with NIH Image TF 3.3a which tells us about all the free
mem on entry not only half of it.
Switch to tenbit automatically if inttime>5000
only allow the lines we have space for in terms of contiguous
free mem when we return tc NIH
312 RHP Autofocus and blind refocus should be at x/stepsperline to make
sizes stay same
3.12b MW fixed overflow in reading number of lines
3.12¢ MW Fixed blind focus crashing problem (increased size of temp
string s)
3.12e MW fixed bug in log files
3.12f RHEP print Dbetter error message on fail in getchunk.
hold off on adj exposure and refocus should depend on
stepsperline
3.16 RHP Reads bat voltage ok . checks before capture
< | RHP Make sure we move forward before going home for focus to insure
we dont try and drive past the infinity position
In autofocus dont search back past 0 fstep
Refocus routine hac never been tidied up and bugs fixed - done
but needs testing still
318 RHP autofocus goes to 10bit if first loop is taking it past 3000
refocus now prints distance estimate and then fstep
blind focus was icgnoring stepsperline - fixed
3.19 MW Fixed .dat file problem
3.20 RHP Was not reading last element of focus table - fixed
3.20a AD, MW loosing character in dialog box fixed
32X RHP switch back an forward pezween 8 and 10 bit as we go up tree
log max min av of pixels in focus log file
3.22 RHP focusnum - float and use av intensity in calculating it
325 RHEP add calls for changing video amp gain
3.2¢ RHP skip reset,powercn etc if control key is down on plugin entry
3.27 RHP Make it if opticn key is pressed
3.28 RHP Allo set video cair to ideal wvalue
TO DO
Debug code
{ Str255 =
sprintf ((char*)s, "%d, ¥d, %d Alpha = %f, Dist =
%¢",i, frable[i],fstepnunm,alpha,Dist);
CtoPstr ((char *)s);
ParamText (s, "\p", "\p ","\p"):

Alert (MsgAlertID, nil);

}
X

M.2.2 Main.c Source Listing

/*‘I*H*l‘l‘*I‘***I‘**’*l"**t*“‘*tl“‘l’*"t!I‘*'*t"**"l’*t’I’*I‘!’*1I‘t**tl***i*l’*l‘********t***‘tt*
R R S 2 s RSS2 RS RS A RS A R AR R AR R R R R R RS R R R R R R R R R R R RS R R RS R AR S RS R RS E T
*

* TreeScan Photoshop Plugin Module

* Copyright 1994 Massey University
*

*

Ralph Pugmire

A AT R A A A A T A N T N N N AN RN T AN A A AN AR AT T A A A AT A AT AR AT AT Ao
‘I’t*t*‘!t*"‘l‘*"t‘l*t**tl‘I‘I*!‘!‘I‘*I‘I‘\“!i‘*il‘*I‘I‘I‘*I‘I“I‘t*'t*t’t!l‘*l’tt'l*l*l‘******“*I““I‘*I“l‘l’l‘/

/*tt***ttt*tttkf**tl’****!tl‘ﬁt*lttttl'tttt*tt*'l‘i'lii"iI‘""I*!**I‘I"E"I"ttl‘**l‘*ttt***i“*

*
* File Main.c

*

% Contains the main dispatching routine.
*

*

Kt‘l11’“*"‘*'*"**1***"“‘l"KI‘*I“*Ii!l"I“‘III!*“l“"tI'I-tttttt'!t’l*ttlt"tl"tl‘*"**l“ll‘l/

#include <SetUpAd.h>
#include <SCSI.h>
¢include "AcquirelInterface.h"

¢include "TreeScan.h"

TGlobals myGlobals; //structure for globals that are kept in rsrc
Tpref pref; //structure for plugin preference variables
Ptr base; //pointer to plugin image memory area

Cursor WatchCrsrc; /* allocate a 68-byte struct */

CursHandle cursH;

int tabltem; // Current Tabbed item

int rfnum; /! nth refocus up tree

int fstepnum; // current number of fsteps back from infinity
int vgainstep; // Curent video gain step

double focusnun, focusnum2, focusnunmd, focusnum8B;

int bfsteps, lfsteps, min,max;

float av;

pascal void main (int selector, AcquireRecordPtr myRecPtr, long *dataPtr, int
*resultPtr) {
Rememberal () ;
SetUpad () ;

if (FirstTime (dataPtr))
InitGlobals (dataPtr);
else
RestoreGlobals (dataPtr);

switch (selector)

{

case acgquireSelectorAbout:
*resultPtr = DoAbout ();

break;

case acquireSelectorPrepare:
*resultPtr = DoPrepare (myRecPtr);
break;

case acquireSelecteorStart:
*resultPtr = DoStart (myRecPtr, dataPtr);
StoreGlobals (dataPtr);
break;

case acquireSelectorContinue:
*resultPtr = DoContinue (myRecPtr, cataPtr);
break;

case acquireSelectorFinish:
*resultPtr = DoFinish (dataPtr);
StoreGlobals (dataPtr);
UnloadA4Seg (0L);
break;

default:
*resultPtr = acquireBadParameters;
}

Restorehd () ;

Appendix M - Scanner Control Software M29

M.2.3 Operations.c Source Listing

X R R R R R T K R K R R K K N K X K K KK K X R X R R R RN N KK KK A KA A A AKX T A AR RX R AN A AKX AR KA AR T RART

*
*® File Operations.c

-

N Contains the main routines for the Treescan plugin
*

*

tt'tt’tt't*ttz't't'rtiwitknityttxt‘!v*t"'!tII!tr*"t"t'ilrtwtt*tlti*l***'i*'*'**"/

#include <Events.h>
finclude <Quickdraw.h>»
#include <Files.h>
#include <Script.h>
#include <ToolUtils.h>
#include <stdio.h>
#include <string.h>
#include <SCSI.nh>
¢include <Memory.h>
#include "Utilities.h"
#include "Acguirelnterface.h"

#include "TreeScan.h"
¢include "math.h"

extern TGlobals mvGlilcbals;

extern Tpref pref;

extern Ptr base;

extern Cursor WatchCrsr; /f allocate a 68-byte struct

extern CursHandle cuzsH;

extern int tabltem

extern int cfnum; // nth refocus LUp tree

extern int fstepnum; // current nc of fsteps back from infinity
extern float fecusnunm, fecusnumz, focusnumd, focusnumi;

// Operaticns file glcbals

int gotlines,
GotImage; // 1=> We have an image ready for transfer to NIH
int GNextRow; //NextRow to send to Image
char linebuf(1100); /{ space for one line from camera
int partialheight, capturedheight;

// Displays the about box for the module

B
int DoAbout (void){
shor: item;
DialogPrr myDiailegPtr;
DialogTHndl myDialogTHndl;

myDialogTHndl = (DialogTHndi) GetRescurce ('DLOG', AbcutDialogID);
HNcPurge ((Handle) myDialogTHndl);
CenterDialog (myDialogTHndl);

myDialegPtr = GetNewDialog (AboutlialogID, nil, (DialegPtr) -1):
ModalDialeg (nil, &itenm);
DisposDialog (myDialogPtr);

HPurge ((Handle) myDialogTHrdl):;

return noErr;
)

// Reduces the memory set aside for the module if possible
I s e e e e
int DoPrepare (AcquireRecordPtr myRecPtr){

long maxmem;

maxmem = myRecPtr->maxData;

maxmem = (maxmem/2);

if (maxmem>=(((long)lwidth * Init Lines)+50000)){
maxmem =(((long)lwidth * Init Lines)+50000);
pref.maxlines = Init Lines;

jelse =
pref.maxlines = ((maxmem - 50000)/ lwidth);

myRecPtr->maxData = maxmem;

return noErr;

}

// Determines image parameters and informs the host
o o S 0 e i e

M30

int DoStart

Tsstat
sstatPtr

DialogTHndl
DialogPtr
short

int
EventRecord

ControlHandle
short
Rect

int

char
SCSIInstr
cmdblk
OSErr
short

char
long

int

long

float
Str255
FS5pec
short

EvQEl
StatusBlock

if ((base = NewPtr((long)lwid:th * pref.maxlines))

if (MaxBlock()
SysBeep(l);
pref.maxlines =

)

(AcquireRecordPtr myRecPtr, -long *dataPtr)(

scannerstatus; // Scanner status structure
sstat;

myDialogTHndl; /7 \

myDialogPtr; 7 A | Control of dialog box
item; & |

done; /7 /

theEvent; // Cancel image capture event
StepAdjScroll,toggle3utton; // A\

toggleType, StepAcdiType:; /1 i

toggleBox, StepAdjBox; 1/ /

err; £ \

buffer[512]; // | Vars for SCSI commands
myTIB[12]; 1/ |

mycmd; /7 |

errors[6]; // |

stat, message; £/ /

s[256]; // Temporary string

templong;

i, wviewPoint,lastItem;

count;

dip,lean,tilt,bat_volts;

lfname;

infile, outfile;

inrefNum, outrefNum;

*myPtz;

sb;

C) return merFullErr;
n
o

({long) lwidth * pref.maxlines + 50000))/

(MaxBlock () -50000) /1lwidth;

cursd = GetCurscr(watchCurscr); /* constant ir ToolboxUtil.h */

HLock

HUnlock

((Handle)
WatchCrsr = **cursH;
((Handle) cursH);

cursH) ;

/* ccpy the data */

sstat = &scannerstatus;

partialheight

sstat->intsteps

0;
= myGlobals.intsteps;

if (myGlobals.height>pref.maxlines) {
myGlobals.height = pref.maxlines;

)

SetupStatus();

myDialogTHndl
HNoPurge

myDialogPtr = GetNewDialeg

CenterDialog

// Setup pilugin preferences

(DialogTHndl) GetRescurce ('DLOG', ViceoDialogID);

((Handle) myDialogTHndl);

(VideoDialogID, nil, (CialegPtr) =-1);

(myDialcgTHndl) ;
if (pref.Devt)

SizeWindow (myDialogPtr, 580,420, true):

else

SizeWindow {myDialogPtr, 580,373, true);
SetPort (myDialogPtr);

EstimatelLines (myDialogPtr);

SetDString(myDialogPtr, VersionlID,
SetDNum(myDialogPtr,
SetDNum(myDialogPtr,

GetDItem
SetCtlValue

SellIText

if (!isPressed(OptionKey)){
DoReset () ;
DoPowerOn () ;

(myDialogPtr,

(myDialogPtr, ViewNamelD, O,

SWVersion);
myGlecbals.TreeHeight);
myGlobals.StepAdj);

TreeHeightlID,
tepAdjtxtiD,

StepAdjID, &StepAdjType, (Handle*)&StepAdiScroll,
&StepAdjBox) ;

(StepAdjScroll, myGlobals.StepAdij);

32767) ;

// if control key is down skip startup calls
// Send reset to micro

Delay (30, &stemplong);

// Check supply level before we go
GetStatus(&sb);
bat_volts = sb.s.voltage / 1023.0 * wv_calib;
if (bat_volts<ll){

Str255 s;

Appendix M - Scanner Control Software M31
SysBeep (1):
DoPowerOff ();
sprintf((char*)s, "Battery Voltage is two low = %.1f",bat_volts);
CtoPstr((char *)s);
ParamText (s, "\p", "“\p "."\p"):
Alert (MsgAlertID, nil);
GotImage=0; done = (;
DisposPtr (base);
CisposDialog (myDialogPtr);
HPurge ((Handle) mylialogTHndl);
return 1;
sstat->AtHome = DoHomeReiPwr();
}
sstat->viewnum = 1; viewPoint = vi;
SetViewButton(myDialogPtr, viewPoint, sstat);
sstat->Focused = sstat->IntecCK = sstat->AtHome = sstat->CameraOn = tablItem = 0;
GotImage = done = false;
lastItem = ViewNamelD;
do{
InitCursor (),
ModalbDialog ((ModalFilterProcPtr) MyEventFilter, &item);
for(i=0; i<(max_tabitems-1); i++)
if ((item==tabItems{i]) && (itemi=lastItem))
tabItem=SetTab(myDialogTHndl, myDialogPtr, i, tabItem, false);
lastItem = item;
switch (item) {
case returnlD:
done = true;
break;
case DevtID:
pref.Devt = !pref.Devi;
if (pref.Dewvt)
SizeWindow (myCialogPtr, 580,420, true);
else
SizeWindow (myCialecgPtr, 580,375, true);
break;
case TabID:
tabltem=SetTac(myDialogTHndl, myDialogPtr, tablItem+l, tabItem,
false);
lastItem = tatltems|[tabItem];
break;
case backTablD:
tabltem=SetTab(myDialogTHndl, myDialogPtr, tabItem-1, tabltem,
false);
lastltem = tabItems{tablItem];
break;
case cmdTablID:
tabItem=SetTab(myDialogTHndl, myDialogPtr, tabItem+l, tabItem,
true):
lastItem = tabItems[tabltem]:
break;
case cmdbackTablID:
tabItem=SetTab(myDialogTHndl, myDialogP®tr, tabltem-1, tabItem,
True);
lastItem = tabltems{tabItem];
break;
case ViewNumID2:
case ViewIconlID:
case v1ID:
case vZcwID:
case v2ccwlID:
if (~+viewPoint > 3) viewPoint = 1i;
SetViewButton(myDialogPtr, viewPoint, sstat);
break;
case TreeHeightID:
{
int tEeight:
tHelght = GetDNum(myPialogPtr, TreeHeightID);
if (tHeight<0 |1t tHeicht>maxtHeight) {

if (tHeight>maxtHeight)
tHeight=maxtHeicht;
else

case

case

case

case

tHeight=0;
SetDNum(myDialogPtr, TreeHeightID, tHeight):
SelIText (myDialogPtr, TreeHeightID, 0, 32767);
SysBeep(l);

myGlobals.TreeHeight = tHeight;
Estimatelines (myDialogPtr);

break;

)

TreeHeightUpID:
{
int tHeight;
tHeight = myGlobals.TreeHeight + HeightStep;
SellText (myDialogPtr, TreeHeightlD, 0, 0);
if (tHeight>maxtHeight) {
tHeight=maxtHeight;
SellText (myDialogPtr, TreeHeightlD, 0, 32767);
SysBeep(l);

SetDNum(myDialogPtr, TreeHeightID, tHeight):
myGlobals.TreeHeight = tHeight;
Estimatelines(myDialogPtr);

}

break;

TreeHeightDwnID:
{
int tHeight;
tHeight = myGlcbals.TreeHeight - HeightStep;
SelIText (myDialogPtr, TreeHeightID, 0, 0);
if (tHeight<0){
tHeight=0;
SellIText (myDialogPzr, TreeHeightID, 0, 32767);
SysBeep(l);
}
SetDNum({myDialogPtr, TreeHeightID, tHeight);
myGlobals.TreeHeight = tHeight;
Estimatelines(mylialogPtr);
}
break;

StepAdjID:

SetDNum (myPialogPtr, StepAdjtxtID, myGlobals.StepAdj);
Estimatelines (myDialegPtr);

break;

PreviewID: {
int lump,p:

DoPowerOn();
SetCursor (&WatchCrsr);
GotImage = 0;

GetDString(myDialogPtr, ViewNameID, sstat->ViewName);
strncpy (6s[1), (char*)ésstat->ViewName[1l],sstat->ViewName[O]);
s[0] = sstat->ViewName[0]:;
PtoCstr((unsigned char *)s);
if (sstat->viewnum==1)
strcat(s," _vl");
else
strcacz(s,"_va");
strcpy { (char *)myRecPtr->filename,s);
CtoPstr((char *)myRecPtr->filename);
sprintf ((char*)lfname,":::Treescan Images:%s",s);
CtoPstr({char*)lfname);
if (!FSMakeFSSpec((,0,1lfname,&outfile))
// File exists so beep and ask do you want to overwrite
ParamText ("\pTree Image ",myRecPtr->filename, "\p already
exists.",
"\p\rPlease use another name");
Alert (MsgAlertlD, nil):;
tabItem = SetTab(myDialogTHndl, myDialogPtr, 0, tabltem, false);
SysBeep(l);
break;

)

myRecPtr->vRefNum = outfile.vRefNum;

// Move up to focus centre halve preview lines above home
DoSteps (previewlines/2);

if (!sstat->IntegCK && (pref.IntegAdj>=NoAdjInteg))|
SetDString(myDialogPtr, StatusID, s_integ);
sstat->intsteps = DoAdiInt(myDialogPtr,sstat->intsteps);
sstat->IntegDK = true;

Appendix M - Scanner Control Software M33

if (pref.IntegAdj==FixedInteg) {
sstat->intsteps = pref.FixedIntegTime:
sprintf{(char*)s, "% ", sstat->intsteps);
SetDString (myDialogPtr, StatIntNoID, CtoPstr(s));

1

if (!sstat->Focused && (pref.focus>=NoRefocus))/{
SetDString(myDialogPtr, StatusID, s_focus);
sstat->Focused = DcFocus(myDialogPtr, sstat);

}

// Move cdown a bit to centre focus point
Delay (3, stempleng);

DoSteps (- (previewlines/2+20));
Delay (3, &templong);

DcSteps (20);

SetDString(myDialogPtr, StatusID, s_capt);
for (p={previewlines/myGlobals.StepAdj); p>0; p -= chunklines)(
if (WaitNextEvent (mouseDown|keyDown, &theEvent, 1, nil))

break;

if (p<chunklines)
luemp = p:

else
lumz = chunklines;

if (GetChunk(lump, p-lums, sstat->intsteps, myGlobals.Stepadj)<4){
{/ scsi error
Sys3eep (1);
break;

Jisplay (p-lump, p, (previewlines/myGlobals.StepAdj),0,pref.detail,
mylDialogPtr):;
}
sstat->Az5ome = false;
Delay(3, szempleong);
SetDString(myDialogPrz, StatusID, s_home);
DcEcme () ;
DcPowerOIf();
SerDStri {myDialogPtz, StatuslID, s_idle);

GetiImace |
1/ dene=i; // Sei to capiure preview 1mage
FlushEverts (CxFTFF, 0);
bBreak:
!
case FullScanIl:{ ‘
ins af,ef,p,lump,wn;
Byte *po;
lerng startticks,ticks;
char s[256};
inz édfirst,dlast,.dinc,i,;c,Jistc; frable(500];
£flpat o,alpha;
inx reight;

// checx dip is valiZd in case we neecd it for blind refocus

dieg = GeiDReal(myDialogPrr,DiplD);
i€ (dip>90 || dip<-20)¢
ParamText ("\oDip ancgle invalid. ","\p", "\p ",

"\p\rPlease re enter");
Alert (MsgAlerzID, nil):
SysBeen(l);

oreak:
}
tilt = GetDReal (myDialogPtr,TiltlID);
if (£ile>9C ! tile<-90){
ParamText ("\pTilt angle invalid. ","\p". "\p ",
"\p\rPlease re enter");
Alert (MsgAlertID, nil);
SysBeep(l);
break:
}
SetCursor (&WatchCrsr);
rfrum = 0;
dene = 1 // Return at end of image unless reset in the loop
/1l mmmremmme—- Check image file exists & Setup log file —-————=——---

GetDString(myDialogPtr, ViewNamelD, sstat->ViewName);
strnepy (6s[1l], (char*) &sstat->ViewName[1l], sstat->ViewName[0]); s[0] =
sstat->ViewName[O0] ;
PtoCstr((unsigned char *)s):
if (sstaz->viewnum==1)
strcat(s,"_vi");
else
strcat(s,"_v2");
strepy ((char *)myRecPrr->filename, s);
CtoPstr((char *)myRecPtr->filename);
sprintf((char*)lfname,":::Treescan Images:%s",s);
CtoPstr((char~)lfname);

M34

if (!FSMakeFSSpec(0,0,lfname,soutfile)) {
// File exists so beep and ask do you want to overwrite
ParamText ("\pTree Image ",myRecPtr->filename, "\p already
exists.",
"\p\rPlease use another name");
Alert (MsgAlertID, nil);
tabItem = SetTab(myDialogTHndl, myDialogPtr, 0, tabItem, false);
SysBeep(2); done = 0; break;
}
myRecPtr->vRefNum = outfile.vRefNum;
if (pref.LogFiles)|{
sprintf ((char*)lfname,":::Treescan Images:%s.log",s);
CtoPstr((char*)lfname);

err = FSMakeFSSpec(0,0,1lfname, toutfile);
err = FSpDelete(foutfile);
err = FSpCreate(&ouvtfile,'Imag', 'TEXT', smSystemScript);

if (err) {SysBeep(2); done = 0; break;}
err = FSpOpenDF (&outfile, fsCurPerm, soutrefNum);
if (err) {SysBeep(2); done = 0; break;}

if (pref.focus == BlindRefocus)

af = bafchunks/myGlobals.StepAdj;
else

af = afchunks/myGlobals.StepAdi;
Dist = 0;

DoPowerOn();

Delay (120, &templong);

// Check supply level before we go
GetStatus (&sb);

bat_wvolts = sb.s.voltage / 1023.0 * v_calib;
if (bat volts<ll){
Str25% s;

SysBeep (1);
DoPowerOQff ();
sprintf((char*)s, "Battery Voltage is two low = %.1f", bat_volts};
CtoPstr(({char *)s);
ParamText (s, "\p", "\p "."\p"i:
Alert (MsgAlertlID, nil);
GotImage=0; done = 0; break;
}

// Move up to focus centre halve preview lines above home
DoSteps (previewlines/2);

----------- Set integraticn & perform autofocus --=----=-=----
if (!sstat->IntegOK && (pref.IntegAdj>=NoAdjInteg))|
SetDString(myDialogPtr, StatusID, s_integ);
sstat->intsteps = DoAdjInt (myDialogPtr,sstat->intsteps);
sstat->IntegDK = true;

}

if (pref.IntegAdj==FixedInteg) {
sstat->intsteps = pref.FixedIntegTime;
sprintf({ (char*)s,"%d ", sstat->intsteps);
SetDString(myDialogPtr, StatIntNelID, CtoPstris));

if (!sstat->Focused && (pref.focus>=NoRefocus) 1{
SetDString(myDialogPtr, StatusID, s_focus);
sstat->Focused = DoFocus(myDialogPtr, sstat):

----------- Start setup for blind refccus =--=-=-==—=—=-
if (true) {// Always read blindfocus table
// First load the ftable from file Treescan.ftable
err = FS5MakeFSSpec(0,0,"\pTreescan.ftable",sinfile);
err = FSpOpenDF (&infile, fsCurPerm,&inrefNum);
if (erxr) {
ParamText{"\FCant open blind refocus data file","\p", "\p ".
“\p");
Alert (MsgAlertID, nil);
SysBeep(l); done = 0; break;
}

//get next line from the file

if (getline(inrefNum,s,100) !=noErr){
ParamText (“\pError reading ftable file","\p", "\p ", "\p");
Alert (MsgAlertID, nil);
SysBeep(l); done = 0; breax;

b

sscanf(s, "%f,%d,%d,%d", &alpha, &dfirsz, &dlast, &dinc);
//Make space for the table

for (i=0; i<=((dlast-dfirst)/dinec); i++)1{

Appendix M - Scanner Control Software

//

L

}

// get next line from the file
if (getline(inrefNum,s,100)!=noErr) {

ParamText ("\pError reading ftable file®,"\p", "\p ", "\p"):

Alert (MsgAlertID, nil):;
SysBeep(l); cdone = 0; break;

sscanf(s, "%d,%d", &d, &frablel[il):
if ((dfirst+i*dinc) !=d){
sStr255 s;
sprintf((char*)s,"Error in focus table line %d
$d<>%d",i,d,dfirst+i*dinc);
CtoPstr((char *)s);
ParamText (s, "\p", “"\p ", "\p"):
Alert (MsgAlertID, nil};
break;
}

FSClose{inrefNum);

// find our distance

for (i=0; i<({(dlast-dfirst)/dinc); i++)
if (ftableli] <= fstepnum) break;

Dist = dfirst + (i = ding);

if (Pist>2500) Dist = 150C;
sprintf{(char™)s,"Bist: $%3.2f m", (fleat)Dist/100);
SetDString(myDialccPtr, StatFocusNo3ID, CtoPstr(s));

//ecale lines;

myGlobals.neight = Heighttolines{myGlobals.TreeHeight, dip,
sorintf((char*)s,"%d (calc)", myGlobals.height):
SetDString(myDialogPtr, StatLineNoID, CtoPstr(s));

if (myGlobals.heicht>pref.maxlines){
SLr255. &7
myGlobals.height = pref.maxlines;
myGlobals.TreeHeight =
LinestoHeight (myGlobals.height,dip,Dist) /100;

sorintf{(char*)s,"Car only capture to %4.1f metres high.",

LinestcHeicght {(myGlobals.height,dip,Dist)/100);
toPstr((char *)s);
aramText (s, "\p" s - R - iy T
Alert (MscAlertiD, nil);

SetDNum(myDialogPrr, TreeXeightID, myGlobals.TreeHeight);

-
<
k=4

}

height = myGlobals.height;

----------- End setup for blind refocus ==——=—r—~—=

Get3Item (myDialogPtir, FullScanIB, &toggleType,

SetCTitle (t
GetlItem (my

(Hancdle™) stoggleButton, &toggleBox);
cggleButzon, "\pReturn Image"):
DialecgPir, CancellID, &toggleType,

(Hencle~) stcggleButton, &toggleBox);

SetCTitle (toggleButton, “\pAbort");

ef

= echunks;

GotImage = 2;
startticks = TickCeocunz{):

// Move down a bit to start picture about 0.7 below focus point

Celay{30,stempleng);
DoSteps (- (StepsBack+20));
Delay (30, stemplong);
DoSteps (20);

LA E S S E R LB R T tart image cacture loop *Ewxxawwiwd

for (p=height; p>0; p -= chunklines){

SetDString(myDialegPtr, tatusID, s_capt);

sprintf((char*)s, "% of

%¢ ", (height-p), myGlobals.height);
SetDString(myDialogPtr, St

z2tLineNoID, CtoPstr(s)):

sprintf((char*)s, "Capturing image at %4.1f m
",LinestoHeight ((height-p) ,dip,Dist) /100);
SetDString{myDialogPtr, StatusID, CtoPstr(s));

*xxxkxwxxrx Check for user image capture break »®*x¥dwdkdx

if (WaitNextEvent (mouseDown|keyDown, &theEvent, 1, nil)) {

1/ Check if the event received is Stop or else cancel
Rect itemBox;
short itemType;
Point thePoint;

ControlHandle theControl, itemHandle;

Dist);

M36

GetDItem (myDialogPtr, FullScanlID, &itemType,
(Handle*) sitemHandle, &itemBox);
thePocint = theEvent.where;
GlobalTolocal (&thePoint);
FindControl (thePoint, myDialogPtr, &theControl);
if (theControl == itemHandle && p<height){ //Stop
gotlines = height-p;
GotImage = 3;
break;
}
else{
//Cancel
gotlines = height-p;
GotIlmage = 3;
done = 0;
break;

)

// ERER T H RN &K Capture one chunk EXEREXTR TN * W™
if (p<chunklines)
lump = p;
else
lump = chunklines;
if (GetChunk (lump, p-lump, sstat->intsteps,myGlobals.StepAdj)<4){
// scsi error
SysBeep (1);
sprintf((char*)s,"Error in Get Chunk");
ParamText (CtoPstris),"\p", "\p ","\p"):
GotImage=0; done = 0; break:
}
if (pref.ChunkMarks)
for (pp ={(Byte*)(({(long)p*lwidth)+base+250);
pp<(Byte*) (((long)p*lwidth)+base+300); pp++)
*pp = 255;
Display{p-lump, p,height,0,pref.detail, myDialogPtr};

/7 TRk xxxRxcx Store relevant information to log file FEEEtashdss
if (oref.LogFiles) |
ticks = TickCount|();
c = (theiggt-p+lump/2+chunkliaesl*alpha*myGlobals.Stepkdj) +
ip:

Wwn = Dist/cos(o/180%3.14159);

sprintf((char*)s,"\r%d %1d %cd %d %1d %.1f %d %4 %d ",
p,ticks-startticks,af,ef, sstat-
>intsteps, focusnum, rfnum, fstepnum, wn) ;

CtoPstri{s): count = s[0];
err = FSWrite (outrefNum, &count,&s[l]);
if (err) ({SysBeep(2); FSClose(outrefNum); done = 0; break;]}

if ((p-chunklines) <= 0) break;

/7 *xxkkxkxxxx Adjust integration and co refocus *EXEEEwwwxw
if [f{==af)¥{

rfnum++;

ef = echunks;

if ((pref.IntegAdj == AdjIntec) && ((height-
p) > (StepsBack/myGlobals.StepAdj)))

sstat->intsteps = DoAdjInt2(myDialogPtr, sstat->intsteps, p-

lump, outrefNum);

if (pref.focus == ButoRefocus){

af = afchunks/myGlobals.StepAdj;
if ((height-p)> (StepsBack/myGlobals.StepAdj)) {
SetDString(myDialogPtr, StatusID, s_adjfocus);
sstat->Focused = DoReFocus(myDialogPtr, p+lump,sstat);
}

if (pref.focus == BlindRefocus)/!
af = bafchunks/myGlobals.StepAdj;
if ((height-p)>(StepsBack/myGlobals.StepAdi)) {
SetDString(myDialogPtr, StatusID, s_adjfocus);
sstat->Focused = DoBlindRefocus (myDialogPtr, p+lump,
alpha, Dist, dip,
height-p+lump/2+chunklines, ftable, dfirst, dinc,
dlast, sstat):;

}

else if (! (--ef)){
ef = echunks;
if ((pref.IntegAdj == AdjInteg) && ((height-

p) > (StepsBack/myGlobals.Stephdj)))
sstat->intsteps = LoAdjInt2(myDialogPtr, sstat->intsteps, p-
lump, outrefNum);

L wekekkxkexs Bad of dmdge JCaptiife: Joop MewaswEaEas

Appendix M - Scanner Control Software

M37

}
if (pref.ChunkMarks)
for (pp =(Byte*)(((long) (height-
StepsBack/myGlcbals.StepAdj)*lwidth) +base+lmid
fwidth/2 + foffset);
pp< (Byte*) (((long) (height-
StepsBack/myGlecbals.StepAdj)*lwidth) +base+lmid
fwidth/2 + foffset); pp++)
*pp = 235;

if (pref.LogFiles) FSClose (outrefNum);

GetDItem (myDialogPtr, FullScanID, &toggleType,
(Handle~*) stoggleButton, &toggleBox);
SetCTitle (toggleButton, "\pCapture Image");
GetDItem (myDialogPtr, CancellID, &toggleType,
(Handle*) étoggleButton, &toggleBox);
SetCTitle (toggleButton, "\pCancel");

FlushEvents (OxFFFF, 0);

if (!'done) {
SetDString(myDialeogPtr, StatusID, s_hcme);
DoHome () ;
DoPowerOff();
sstat->AtHome = true;
sstat->Fccused = false;
sstat->IntegDK = false;
1]
else
DoHomeRetPwr () ;
SetDString(myDialeogPtr, StatusiD, s_idle);
break;

}

case CancellD:
done = 1i;
break;

case HomelD:
SetCursor (&WatchCrsr);
DoPowerOni);
sstat->AtHome = DcHome () ;
DoPowerQfEf () ;
creak;

case Debugll:
Debug (sstat);
Estimatelines (myDialsgPir);
SetDNum(myDialogPtr, TreedHeightiD, myGlobals.TreeHeight);
break;

}
}while (!done);

DisposDialog (myDialogPt=:);
HPurge ((Handle) myDialogTHndl);

capturedheight = myGlobals.heignzt;

myRecPtr->imageMode = 1;
myRecPtr->imageSize.h = myGlobals.width;
myRecPtr->rowBytes = lwid:ih;
myRecPtr->imageSize.v = capturecdheicht;
myRecPtr->depth = §;

myRecPtr->planes = 1;

myRecPtr->data = nil;

if (item != CancellD)({
myGlobals.intsteps = sstat->intsteps;
myGlobals.height = capturecheight;
SterePrefs ();
GNextRow = 0;
if (GotImage==1){
myRecPtr->imageSize.v = previewlines/myGlobals.StepAdj;
capturedheight = previewlines/myGlcbals.StepAdi;
t
if (GotImage==3){
myRecPtr->imageSize.v = gotlines;
partialheight = capturedheight - gotlines;
capturedheight = gotlines;
SysBeep(1);
}

if (GotImage) {
// create tne .dat file with dip,lean and v2rot in it.
if (tile>0)

}

lean = 90-tilct;
else
lean = =-(90+tilt);
strnepy (&s[l], (char*)&sstac->ViewName[l],sstat->ViewName[0]);
s[0] = sstat->ViewName([O0]:
PtoCstr((unsigned char *)s);
if (sstat->viewnum==1)
strecat(s,"_vi1");
else
strecat (s, "_v2");
sprintf{(char*}lfname,“:::Treescan Images:%s.dat",s);
CtoPstr((char*)lfname);
err = FSMakeFSSpec(0,0,lfname,&outfile);
err = FSpDelete (&outfile);
if (FSpCreate(&outfile, 'Imag', 'TEXT', smSystemScript))
SysBeep (2) ;
if (FSpOpenDF (&outfile, fsCurPerm, soutrefNum))
SysBeep (2) ;
if (sstat->viewnum==1)
. sprintf ((char*)s, "%d\r¥f\r%¥f\r", myGlobals.StepAdj,dip, lean);
else

sprintf({char*)s, "%d\r%f\r%f\r%d\r", myGlobals.Step
Adj,dip,lean,sstat->v2rot);
CtoPstr(s); count = s[0];
FSWrite (outrefNum, &count,&s[1]);
FSClose (outrefNum) ;

return noErr;

}

DisposPtr(base); //do it here as finish only called if return without errcr
return 1;

// Returns the data to the host
int DoContinue (AcguireReccrdPtr myRecPtr, long *cata?tr){

}

long count;

if (!myGlobals.width)
return 1;

if (!GotImage)
return 1;

if (CallPascal3 (myRecPtr->abortProc))
return 1;

CallPascal (GNextRow, capturecheight, myRecPtr->progressProc);

if (GNextRow >= capturedheight) {
myRecPtr->data = nil;
SetRect (&myRecPtr->theRect, G,0C,0,0);
return 0;

}
count = (myRecPtr->maxData - (pref.maxlines*lwidth))/ lwidth;
if (count < 1)

return memfFullErr;

if (count > capturedheight - GNextRow)
count = capturedheight - GNextRow;

SetRect (&myRecPtr->theRect, 0, GNextRow, myGlobals.width, GNextRow+count);

myRecPtr->loPlane = 0;
myRecPtr->hiPlane = 0

myRecPtr->colBytes = 1;
myRecPtr->rowBytes = lwidth;
if (GotImage ==)
myRecPtr->data = base + ((long)partialheight * lwidth) +

({long)GNextRow * lwidth) + imid - myGlobals.width/2;
else
myRecPtr->data = base + ((long)GNextRow * lwidth) + 1lmid - myGlobals.width/2;
GNextRow += count;

return noErr;

// Clears the permanent variables
int DoFinish (long *dataPtr)({

*dataPtr = 0;
DisposPtr (base);
return noErr;

Appendix M - Scanner Control Software M39

M.2.4 Extracts from Functions.c Source Listing

/ii*!!*'!*!ttt"ll!l*t'*!*rtt**ﬂi**tv!#t!lll'l‘I!IfI"I*t**tI'*ﬂf*"t**!t*ii*t***t*!**

File Functions.c

*
*
»*
% Contains miscellaneous functions for Treescan plugin
*
-

R R R A AR AN T R AN NP T IR XA T E AR ERA T AN A RN CANAKARAANRAANNN IR AR SRR RN NN RR

e it
// Do Home mirror mechanism
[= e e e e —m———————
int DoHome () {
int err:
cmdblk mycmd;
OSErr errors (6] ;
short stat, message;
txr285 s;
mycmd.OpCode = scmResetMech:
mycmd.rl = mycmcé.r2 = mycmd.r3 = mycmd.rdéd = mycmd.rS = 0O;
err = SCSISendCommand_s (émycmd, myGlcbals.SCSI_ID, errors, &stat, &message);

if (err<3){
NumTeString (err, s);

ParamText (*\pSCS1 Errxor count=",s, "\p in home command”, "\p"):
Aler: (MsgAlertID, nil):
return 0;

}

return I;

int DoHomeRetPwr () {

int errs;

cmdblk mycmd;

OSErr errors(6];

short stat, message;

Str255 57

mycmd.OpCcde = scmResetMech;

mycmd.rl = mycmd.r2 = 1;

mycmd.r3 = mycmd.rd4 = myemd.r5 = 0;

err = SC5ISendCommand_s (émycmd, myGlocbals.SCSI_ID, errors, &stat, &message);

if (err<3)({
NumTeString(err,s);
ParamText ("\pSCSI Error count=",s, "\p in home command", "\p");
Aler:z (MsgAlertID, nil):
retuzn 0;
}

return 1;

[e R e e e R s R e s e e e e e e e e
// Reset Micre
e et
void DoResexz () {

int err;

cmdblk mycmd;

OSErr errors|6];

short stat, message;

Str255 B3

mycmd.OpCode = scmResetDev;
mycmd.rl = mycmd.r2 = myemd.r3 = mycmd.rd = mycmd.r5 = O;
err = SCSISendCommand (émycmd, myGlobals.SCSI ID, errors, &stat, &message);
if (err<4)({ -
NumToString(erz,s);
ParamText ("\pSCSI Error Count=",s, "\p in reset command”, "\p");
Alert (MsgAlertID, nil);

M40

/] =mmmm e s m s n s e s s s s m e — e
// Move Focus

// Decide whether the Mkl or Mk2 focus routine should

// be used.

R R e S e o i o o o S 3 e B i s

void DoMoveFocus (steps)

if (pref.Mk2)
DoMoveFocusMk2 (steps) ;

mkl & mk2

&stal,

imessage);

else
DoMoveFocusMkl (steps*1l); // x Adjustment factor btwn
}
T o e i
// Move Focus Mkl
B e e e e e e e e e e e et e A
void DoMoveFocusMkl (steps) {
int err,dirn;
cmdblk mycmd;
OSErr errors[6];
short stat, message;
Str255 i
if (steps<0){
steps = -steps;
dirn = 0;
lelse
dirn = 1;
mycmd.OpCode = scmFocus;
mycmd.rl = 0;
mycemd.r2 = dirn;
mycmd.r3 = steps/256;
mycmd.r4 = steps%256;
mycmé.r5 = 0;
err = SCSISendCommand(émycmd, myGlobals.SCSI_ID, errors,
if (err<d){
NumToString(err, s):;
ParamText ("\pSCSI Error Count=",s, "“\p in Adjust focus command", "\p"):
Alert (MsgAlertID, nil):;
}
}
e e
// Move Focus Mk2 (Stepper controlled focus)
[/ = e e e m—— e ——————————
void DoMoveFccusMk2 (steps) {
int err,dirn;
cmdblk mycmd;
OSErr errors([6];
short stat, message;
Str255 5;
long *x;

if (steps>1800) {SysBeep(l); return;)
if (steps<-1800) {SysBeep(l); return;}
if (steps==0) return;
fstepnum += steps;
if (steps<0){
steps = =-steps;
dirn = 0;
jelse
dirn = 1;
mycmd.OpCode = scmFocus2;
mycmd.rl = 0;
mycmd.r2 = dirn;
mycmd.r3 = steps/256;
mycmd.rd = steps%256;
mycmd.r5 = 0;

err = SCSISendCommand(&émycmd, myGlobals.SCSI_ID, errors,
if (err<d){
NumToString(err,s);

&statg,

&message);

ParamText ("\pSCSI Error Count=",s, "\p in Adiust focus command", "\p");

Alert (MsgAlertID, nil);
}
// Delay(l,s&x); // let it settle

// Send a SCSI Command
// returns number of succesful steps
] i e ot e e S 5

Appendix M - Scanner Control Software

M41

int SCSISendCommand(cmdblk *mycmd, int SCSI_ID, OSErr *err, short *status, short
*message) {
int i, rerror;
for {{i=0; ix5; 14+4) errfi] = 0:
*status = *message = O0;
if ((err[0) = S5CSIGet()) != noErr) return 0;
if ((err[l] = 5CS5ISelect(SCSI_ID)) != noErr) return 1;
if ((err[2) = sSCSICmd((Ptr)mycmd,6)) == noErrx){ rerror = 3; lelse rerror = 2;
if ((err(4] = SCSIComplete (status,message,TimeOut)) == noErr)
if (rerror==3) return 4;
return rerror;
}
A e e e, ot s et e e e e e e b
// Send a SCSI Command with read command
// return error is number of sequential succesful steps 4=perfect
F e
int SCSIDataCommand(cmdblk *mycmd,SCSIInstr *myTIB, int SCSI_ID, OSErr *err, short

*status, shecrt *message) {
int i, Trertor;

for (i=0; 1<5; i++) erzli]l = 0;
*status = *message = 0;
if ((err[0] = SCSIGet()) '= noErr) return 0;
if (({err[l] = SCSISelect (SCSI ID)) £ AGEry) rerukn 1;
if ((err{2) = SCSICmd((Ptrimycmd,6)) == noErr){
rerror = 3;
if ({err[3) = SCSIRead({Ptr)myTIB)) == noErr) rerror = 4;
teise
rerror = 2;
if ({((err(4] = SCsiComplete(status,message,TimeCut)) == noZrr)
if (rerrcr==4) return 5;
TELUSn rerror:
}
e
// Get a chunk of x iines ancd store in puffer with an offset
L e S S e S
int GetChunk(int Lines, lonc offsetr, int int *ime, int stepsperline)
int err: -
SCSIIastr myTIB{15];
cmdblk myecmg;
OSErr errors[6];
short stat, message;
Ptr bufferPtr;
long Dummy ;

if (pref.AD10)

mycmd.OpCode = scmGetXLinesN3;
else
mycmd.CpCode = scmGetXLines8bm;
mycmd.rl = Lines/256;
mycmd.r2 = Lines%256;
mycmd.r3 = int time/256;
mycmd.r4 = int _time%256;
mycmd.r5 = stepsperline:;
bufferPtr = base + (offset*lwidth);

if (Lines) bufferPtr += (long) (Lines-1) * lwidth;

myTIB[0] .scOpcode = scNolnc;

myTIB[0] .scParaml = (unsigned long) buffer®tr;
myTIB[(0].scParam2 = 1;

myTIB[1l]).scOpcode = scNolnc:

myTIB[1l].scParaml = (unsigned long) bufferPtr;
myTIB[1l] .scParam2 = lwidth;

myTIB[2] . scOpcede scNolnc:

myTIB[2] .scParaml (unsigned long) &myTIB[3].scParam2+3;
myTIB[2].scParam2 b 7

myTIB[3] .scOpcode scNolnc;

myTIB[3].scParaml (unsigned long) &Dummy:
myTIB(3].scParam2 0;

myTIB[4] .scOpcode scNolnc;
myTIB[4] .scParaml (unsigned long) &myTIB[6].scParam2;
myTIB[4].scParam2 4;

L |

myTIB([5] .scOpcode
myTIB[5] .scParaml

scNolnc;
(unsigned long) &myTIB[7].scParam2;

M42

myTIB[5).scParam2

myTIB([6) . scOpcode
myTIB[6].scParaml
myTIB([6].scParam2

myTIB([7).scOpcode
myTIB([7).scParaml
myTIB([7].scParam2

myTIB[8].scOpcode
myTIB[8].scParaml
myTIB[8].scParam2

myTIB[9]).scOpcode
myTIB[9) .scParaml
myTIB[9].scParam2

nouon mnun oo

4;

scAdd;
{unsigned
lwidth;

scAdd;
{(unsigned

.

scLoop;
-70;
Lines;

scStop;
(unsigned
(unsigned

err = SCSIDataCommand (&mycmd,

long)

long)

long)
long)

EmyTIB[1].scParamli;

&myTIB[8].scParam2;

nil;
nil;

(SCSIInstr*)&myTIB, myGlocbals.SCSI_ID,

&stat, Emessage);
if (err<4){
char s[256];
sprintf (s,"Getlines SCSI Error count = %d",err);

ParamText (CtoPstri(s),

Alert (MsgAlertID, nil);

}

return err;

"\p", "\P"' n\pu};

errors,

Appendix M - Scanner Control Software

M43

M.2.5 Extracts from Integ/Focus.c Source Listing

/ttt!twrttwupwtw*-"*g XA X T AT AR F X F N TR T TN AT A TR AT AT XA AT AT AN AN AT AT TR XFAAAAAT T TR RN

File Integ/Focus.c

*
-
”
* Contains Aperture and Focus functicns for Treescan plugin
*
*

// Adjust integraticn tim
f/ get a line and adjust integration :ime tc make signal almost saturate...

// Passed: Current integration time
// Returns: Sugges:ted new integraticn time
// == e ———
long DoAdjInt (CialogPtr myDialogPtr, int intsteps)({
long x,1i,startsteps,isteps, tsteps;
long total,averace;
Byte max, *p;
char s[25¢];
int intIo;

if (CcuntDITL(myDialcgPtr)< (dbBoxitemCcunt=-12))
intIDb = StaiiIntNciID; /! Main dialog
else
intID = db intiD; // Debug dialog

//Try and speed it getting a rough estimate cof where to start

// times 4 as best we can do is div sy four
for (tsteps = min_int_steps * 4; :istecps<max _int steps: tsteps %= 10) |

if (GewChuak(l, 0. tsteps,0)xL)Y

***tl.tl*"tt'l"tt"Itlt!l"‘lttﬁr**tv"'iiIl"I"tI*t*tt'fI't"'l!"‘it*"l'lttttt/

Sys3eec(l); rezurn intsteps:}
if (pref.display) Display(0,1.myGlesals.neicht,i,pref.detail, myDialogZtr);
max = total = 3J;
for(p = (Byte*)base + lwidtn/2 - ewidth/Z2; p<({Byte~)base + lwidth/2 +
ewidih/Z2); p ++){
tota. == ¥p;
if (*z > max) max = *p;
}
average = to:al/ewidth;

:f pref AD1O)
sprinsf((chaz>)s, "%ida* %1ld", :isteps, average);
else

sprintf({char*)s,"%lda %ld", tsteps, average);

L ts
SetDString (myDialogPrr, intid, CtgPstris)):
if (average>3) break;
if ((lpref.aDiD) &8 (tsteps>20D))4

pref ADIC = zrue;
tstess /= 10; //ie try acain with 10bit

if (tsteps>max_int_steps) |
SysBeep(l); return max_int steps;

}
startsteps = ((float)eaverage/average * tsteps)/2.0;
for (isteps = startsteps; isteps < max_int_steps; isteps "= int_step mult){
if (GetChunk(l, 0, isteps,0)<4)!
SysBeep(l); return intsteps;}
if (pref.display) Display(C,1,myGlosals.height,l,pref.detail, myDialogPtr):
max = total = 0;
for(p = (By:te")base + lwidth/Z - ewidth/2; p<((Byte*)base + lwidth/2 +
ewidth/2); 2 ++){
total <= wp;
if (*p > max) max = *p;
average = total/ewidth;
if (pref.ADl0)
sprintf ((char*)s,"%1ldb> %ld", isteps, average);
else
sprintf ({char*)s,"%ldb %ld", isteps, average);
SetDString(myDialogPtr, intID, CtcPszr(s));:
if (average>eaverage) break:
}

if (!pref.ADlC && isteps>2000) {
pref.AD1C = true;

for (isteps = startsteps/4; isteps < max_int_steps; isteps *= int_step_mult) {

M44

if (GetChunk(l, 0, isteps,0)<4){
SysBeep(l); return intsteps;}
if (pref.display) Display(0,l1,myGlobals.height,1,pref.detail,
myDialogPtr);
max = total = 0;
for(p = (Byte*)base + lwidth/2 - ewidth/2; p<((Byte*)base + lwidth/2
ewidth/2); p ++){
total += *p;
if (*p > max) max = *p;
}
average = total/ewidth;
sprintf ((char*)s, "$ldc* %1d", isteps, average);
SetDString(myDialogPtr, intID, CtoPstris));
if (average>eaverage) break;

}
if (isteps>= max_int_steps) {
SysBeep(l);
return max_int_steps;
lelse
return isteps;

New Adjust integration time
Calculate average exposure for an area and gues new integration time
Passed: Current integration time, number of lines already captured

// Returns: Suggested new integration time
e e e e) e S e i e S ey e e
long DoAdjInt2 (DialogPtr myDialegPtr, long intsteps, int pp, short outrefNum)({
long X,i,j,isteps;
long maxh,total, count;
Byte max,av, *p;
char s[100];
int err;
av = 0;
isteps = intsteps;
maxh = eheight;
if (maxh){
max = total = 0;
for (j = (ppl:; Jj<pptmaxh; j++){
for { p = (Byte*)(base + (long)lwidth*j) + lwidth/2 - ewidth/2:
p<((Byte*) (base + (long)lwidth*j) + lwidth/2 + ewidth/2);
p ++){
total += =
if (*p > max) max = *p;

}
}
av = (Byte) (total / maxhk / ewidth):
isteps = (float)eaverage/av * intsteos;
if (true && (isteps>2000) && !pref.AD10){
isteps /= 4;
pref.AD10 = true;
}else if (true && (isteps<500) && pref.AD10){
isteps *= {;
pref.AD1D = false;

if (pref.LogTiles){
sprintf((char~)s,"%1ld %d %d %ld %id“,
total,max, av,intsteps,isteps);
CtoPstr(s); count = s[0];
err = FSWrite(outrefNum,&count,&s(l]):
if (err) {SysBeep(Z2);FSClose(outreflum);}

if ((isteps/intsteps<0.8} || (isteps/intsteps)>1.2)
isteps = (isteps - intsteps) * C.8C + intsteps;
if (isteps>(intsteps*10)) isteps = intsteps/2;//try to trap silly
saturation
if (isteps>max_int_steps)
isteps = max_int_steps;

else if (isteps<min_inti_steps)|{
isteps = min_int_steps;

}

if (pref.ADl0)

sprintf((char*)s, "¥ld->%1d* %d*, intsteps, isteps, av):
else

sprintf((char*)s, "$1d->%1d %d", intsteps, isteps, av);
SetDString(myDialogPtr, StatAdjIntNoID, CtoPstr(s));
return isteps;

Appendix M - Scanner Control Software

M45

//I"*I"‘I“"**Y*’1“!'1‘"'Jf'l*"II-'!‘!ITI‘I’II‘II’-'!I’f'I'!1‘t!""!l"'*tl’ttttt’**l*

// Do auto Focus

// Decide whether

the Mkl or Mk2 routine should be used.

f R A R A R N R N AN T A AN AR TR AN TR T TR E R T TRk ke whd

int DoFocus(DialogPtr myDialogPtr,

sstatPtr sstat)

{
if { pref.MkZ)
return DoFocusMk2(myDialogPtr, sstat);
else
return DoFocusMkl (myDialogPtr, sstat);
}
4 ettt
/7 *xx»x» Do AutoFocus MkZ2 (Using stepper)
o e e
// Return 1 if focused ok

int DeFocusMk2(DialeogPtr myDialogPtr,

sstatPtr sstat){

int as k. i jomisni mils;
Byte *ps

char s[256];

double mf, mfl;

EventRecord theEvent;

long count, x;

OSEr:r err;

FSSpec cutfile;

832255 dname="\oFocus Data";
short outrefNum;

int faumib;, focusnil:

if (CountDITL(myDialogPtri< (dbBoxitemlount-10)}{

focusnll = StatFocusNelID; £fnumID = StatFocusNo2ID;)

else!

b2 o

foumlD = do_fnumID;}
Debug dialog

focusniC = db_Zfocusnll;

(pref.lLegFiles) |
szrncoy(&és{l], (char)isstat->ViewName[l],sstat->Viewhkame[0]);
>ViewName[0]:

PLelsir({unsigned =) .8) s
:f (sstat->viewnunm
surcatis, " vi®
else
stircab (s; ™ v2")s
sprintf((char*)dname, ":::Treescan Images:%s Focus Data",s);
CtoPstr((char*)dname) ;
err = FSMakeFSSpec(0,C,dname, soucfile);
err = PSpDelete(iouzfile);
err = rSzlreate(soutfile,'Imag’', 'TEXT',smSystemScript);
if (err) (SysBeep(2);rezurn 0;}
err = rSpCpenDF (&cucfilie, fsCurPcrm, &outzeiNtm);
if (err) {SysBeegp(2):rezurn 0;!}

DoMoveFocusInfinityMk2(); f/focus at infinity
mi=0; mf =0; ni = 0;
for(i=0; i<f2gusteps; i+={2bstegs) {
SetDNum({ryDialogPtr, focusnlD, £stepnun);
if (GetChunk(l, C, sstat->intsteps,0)<4)
SysBeep(l); return 0:}
calcfnum(s, &min, &max, gav);
sprintf((char*)s,"> %£f*, focusnum);
SetDString({myDialogPtr, fnumiID, CtoPstr(s));
if (pref.displey) Display(0,i,myGlcbals.height,l,pref.detail,
if (pref.LogFiles)|{
sprintf ((char*)s,"%¢ %f £.0f %.0f %.0f %d %¢ %.lf\r"
,i, focusnum, focesnum2, focusnumd, fccusnumB, min, max, av);
CtePstr(s); count = s[0];
err = FSWrite(outrefNum, scounz,&s(lj);
if (err) {SysBeep{2);FSClose(outrefNum);return 0;}
}
if (focusnum>mf){
mi = i
mf = focusnum;
if (focusnum<(mf*D.6) BE focusnum>1.0) {
break;
}
DoMoveFocusMk2 (f2bsteps) ;
}
ni = i; //remember i steps reachec
mil = 0; mfl = O;

DoMcveFocusMk2 ((mi+f2bsteps)-ni);

// Move to almost max focus

FEERT WA

// Main dialeg
1/

s[0] = sstat-

myDialogPtx);

M46

for(i=(mi+f2bsteps); i>(mi-f2retsteps); i-=f2ssteps){

if (i<0) break:; // dont try and go back past infinity

SetDNum(myDialogPtr, focusnID, £stepnum);

if (GetChunk(l, 0, sstat->intsteps,0)<d){
SysBeep(l); return 0;}

calcfnum(s, &min, &émax, &av) ;

sprintf ((char*)s,"< %f", focusnum);

SetDString(myDialogPtr, fnumID, CtoPstr(s));

if (pref.display) Display(0,1,myGlobals.height,l,pref.detail, myDialogPtr);

if (pref.LogFiles)({

sprintf((char*)s,"%d %f %.0f %$.0f %.0f %d %d %.1f ssb\r"
1, focusnum, focusnum2, focusnumd, focusnum8, min, max, av) ;

CtoPstr(s); count = s[0];
err = FSWrite(outrefNum, &count,&s(l]);

if (err) {SysBeep(2);FSClose{outrefNum);return 0;}

}

if (focusnum>mfl){
mil i;
mfl focusnum;

}
DoMoveFocusMk2 (-f2ssteps) ;

}

if (mfl>mf) {
DoMoveFocusMk2 (mil-i); // move to mil max focus
sprintf ((char*)s,".%d", (int) (mf£1/100.0));
SetDString(myDialogPtr, fnumID, CtoPstr(s)};

sprintf ((char*)s, "%d %.0f fs-mil\z",mil, (float) (mfl));
}
else{

DoMoveFocusMk2 (mi-i) ; // move to mi max focus

sprintf((char*)s,".%d", {(int) (m£/100.0));
SetDString (myDialogPtr, fnumlD, toPstris)).;

sprintf ((char*)s,"%d %.0f fs-mi\c",mi, (floac) (mf));

}

SetDNum(myDialogPtr, focusnlD, fstepnum) ;

if (GetChunk(l, 0, sstat->intsteps,0)<d){
SysBeep(l); return 0;}

calcfnum(s, &émin, &max, &av) ;

sprintf ((char*)s,". %f", focusnum);

SetDString(myDialogPtr, fnumlD, CtoPstr(s));

if (pref.display) Display(0,1l,myGlobals.height,l,pref.detail,

if (pref.LogFiles){

myDialogPtr);

sprintf ((char*)s,"%d %.0f $.0f %.0f %d %3 %.1f final posn\:c"

+i, focusnum, focusnum2, focusnumd, focusnumB, min, max,av);
CtoPstr(s); count = s[0];
err = FSWrite(outrefNum, &count,&s{l]):;
if (err) {SysBeep(2);FSClose(outrefNum);retuzn 0;}
}
if (pref.LogFiles) FSClose(outrefNum);
return 1;

xx Do Blind Refocus (Using stepper)

WEEXT TN

// Use geometry to estimate actual distance and then use locokup table tec adjust focus

step position

// Return 1 as we assume we are still focussed
int DoBlindRefocus(DialogPtr myDialogPtr, int gotlines, float alpha, int Dist, float

dip, int ys

Lint *ftable, int dfirst, int dine, int dlast, sstatPtr sstat){

int a,b,i,j,mi;
Byte *p;

char s[2586];
double mf, last;
EventRecorc theEvent;
long count, X;
OSErr err;

int Wwn,wstep;
float o;

o = (ys*alpha*myGlobals.StepAdj) + dip;
wn = Dist/cos(o/180%3.14159);
if (wn <= dlast)
wstep = ftable[(wn-dfirst)/dinc];
else
wstep = ftable[(dlast-dfirscz)/dinc);
/*{ 5tr2s55 s;

sprintf((char*)s,"oc = %f, wn = %d\r, wstep = %d fstepnum = %d",o0, wn,

wstep, fstepnum);
CtoPstr ((char *)s);
ParamText (s, "\p", "\p ","\p");
Alert (MsgAlertID, nil);
y*/

_Appendix M - Scanner Control Software M47

// fstepnum contains curent number of steps from infinity so if wstep is stenum I

want
// then we should move wstep-fsteonurm
DoMoveFocusMk2 (wstep - fstepnum);

Delay (fdelay, &x);

if (pref.LogFiles){
SetDNum(myDialogPtr, StatRefocusNo2ID, fstepnum);
if (GetChunk(l, 0, sstat->intsteps,0)<4){
SysBeep(l); return 0;}
if (pref.display) Display(0,1,myGlobals.height,l,pref.detail, myDialogPtr);
calcfnum(s, &min, émax, &av) ;
SetDNum(myDialogPtr, StatRefocusNelID,wn):;

}

retucn 1;

Appendix N
Image Processing Software

This appendix presents relevant sections of the image processing software. An
overview of the code is provided with a breakdown into files. Listings are also
provided of relevant sections of code. This includes the parameter extraction macros as
well as the NIH Image additions.

« Parameter extraction macros (version 3.22)

+ NIH Image modifications (version TF 3.5f)

N2

N.1 Parameter Extraction Macros (Version 3.22)

The parameter extraction macros have been split into three files as a result of NIH
Image only being able to load 32 kByte macro files.

Parameter extraction source files:

Image Macros Main macro file which contains all the macros for normal
processing. This includes calibration, height and diameter
estimation, tree stem model generation, display of 3D stem

model, and sweep estimation.

UTIL Macros Utility macros which implement processing functions not part of
the normal processing sequence. This includes printing,
generation of thumbnail images, image feature removal, and

filtering operations.

Modif History TreeScan macros modification history.

This appendix contains a full listing of the Image Macros file.

Appendix N - Image Processing Software N3

N.1.1 Image Macros Source Listing

{ ** TreeScan ** image capture and image analysis macros
Production Technology, Massey Urniversity, 1995.

Version 2.23 (Note version number in 2 places in file please update both)

Requires modified version of Image (version TF3.3)
which includes modified user.p, image.rsrc & image.p

For modificaticn history see seperate file.
Computer specific : NIHPath,
Reguires : 'Background', 'TreeScan Help'
Associated with utilities file

)

{ttt'wwti:'-t‘-:w** global va:iables I'I‘I"I'“l"tl"‘*'*t}
Var {image macros}

b,d,ds,d2,d2s,a,as,dbds,d2sbds, xcffset:real;

becount, bzCount,grx5,crx50rig,gry5,decimation: integer;

alpha, realalpna,Crod: real;

theta, tanTheta,cosTheta, sinTheta: real;

cosasalpha, sinasalpha: real;

dname, version, calibratedImage, imaceédmodel, modellImage:string;

pl : real;

Dist, Ht, W , dip, lean: real;

Nkr, kr, mag : real;

usec, mo, gotdipl, optionKey: boolean;

progress : integer;

NIHPath:string;

{3D display global wvariablesj}
x11,%x12,x13,y1,1iy,ix,%x,y,pixstep,dmeas, scale:integer;
Slicesize, TreeHeight, Slices: real:;

HS, V5, rotation, thi, the:ia, thetastep: real;
becount, minTreeHgr, maxTreeHgt:integer;
ftheta: real;
clearbipaint : boolean;
minTreeHgt, maxTreelgt: integer;

{FrErxrErrk TR ew AN procedures ExEETTNYTYTTRTRE® S}

procedure CheckOptionKey;
begin;

SetCounter(7);

rX[7]) = 0;

Usercode(6,1,2,3);

if rX{7] = 1 then optionKey:=true else optiionKey:=false;
end;

procedure setPath;
begin;

NIHPath := 'Tasman HD:Apps:KiH Image:';
end;

procedure LoadCalibDat;

begin;
SetOptions('X-Y Center,Userl,uUser2');
SetCounter(7);

rUserl[4] := 0; {d}
Usercode(2,1,2,3); {Load calib date inic measurements arrays}
{ if (rUserl[4]=0) then
Beep
else
ShowResults; |}
end;
(= e e e e e e e e s e s m e s — e — e m o ———— e aaa }
Procedure LoadDipLean;
begin;

SetCounter(7):
X{?] := 0;
Usercode(3,1,2,3);{Load dip and lean from the two data files and combine}
if rX[7] = 1 then gotdipl:=true else gotdipl:=false;
if gotdipl = true then begin

decimation := r¥[7]:

dip := rUserl([5]/180%pi;

lean := rUserl[6]/180*pi;

ShowMessage ('dip = ',dip/pi*180, °* lean = ',lean/pi*180)
end else

beep;

procedure RemoveFPerspective;
var

otheta, xs, ys: real;

temp, txl,tyl,tx2,ty2,i, orCount,width,height, tempdec:integer;

tempStr : string;
begin;

if rCount=0 then begin
LoadCalibDat;
if (rUseri[4]=0) then begin {No .calib file]

PutMessage ('No saved calibration data. Mark the left, centre, and
right of the bottom calibration bar with the cross
hair tool and then re-run this macro.');

ResetCounter;
exit;
end;
d2 := rUserl[l];{ actually we will pretend d2 = d and then scale d2s
accordingly }
a rUserl([2];
b rUserl[3];
d := rUserl([4]:
decimation := rY[7);
dip := rUserl([5)*pi/180;
lean := rUserl([6]*pi/180;
checkOpzionKey;
if opticnKey then begin
tempdec := GetNumber ('Enter value for image decimation',l);
for i:=1 to rCount do
rY[i] == rY¥[i]/tempdec;
decimation:= decimation * tempdec;

end;
alpha := realalpha*decimation;

gry5 := rY[5];
grx50rig := rX[5];
GetPicSize (width,height);

grx5S := width/2;
ds rUser2(1};
as rdser2([2];

theta := rUser2(3]*pi/180;
d2s := rUser2{4];
Dist := rUser2(5]:
Ht := =User2(6);
if rUserl([7] = 1 then mo := true
else mo:= false;
if rUser2[7] = 1 then wuseo := true
else useo:= false;
dbds := d/ds:
d2sbds := d2s/ds;

cosasalpha := cos(as*alpha);

sinasalrha := sin({as*alpha);

tantheta := (cosasalpha - d2sbds)/sinasalpha;
mag := &/ds;

W := mag/kr;

if usec=true then
if mo=true then
if gotdipl=true then begin
tempStr:='Calibration data loaded from file.\ - using C -
dip / lean from data file\':
end else begin
tempStr:='Calibration data loaded from file.\ - using C =
dip / lean manual entry\';
end else begin
tempStr:='Calibration data loaded from file.\ - using O from
modified O\';
end else begin

tempStr:='Calibration data loaded from file.\ - using Al
method\"';
end;
ShowMessage (tempStr, 'O =', theta/pi*180:2:1, ' D =*, Dist:=4:1, °
Ht =', Ht:4:1,' Nkr =',Nkr:6:6,°' Mag =',Mag:6:4,"
W =',W:4:1, Pip = ',dip/pi*l8Q, Lean = ',
lean/pi*180, ' Cecimation =', decimation);

end

else if (rCount<>3) and (rCount<>6) then begin
PutMessage('Mark 3 points on the bottom bar or 6 points on both bars of
the calibration rod and then re-run this macro');
ResetCounter;
exit;
end

else begin
UserCode (1,1,2,3); {Enter real world calibration rod dimensions}

Appendix N - Image Processing Software

NS5

if rCount=3 then {must be entering O so just use bottom bar} begin
mo := true; useo := true
end else begin

mo := false;
useo := false
end;
d2 := rUserl{l]);{ actually we will pretend d2 = d and then scale d2Zs
accordingly }
a := rUserl[2];
b := rUserl([3];
d := rUserl([4];
I1f mo=true then begin
SetCounter(6);
rX[4] :=X[1];:
rX[5]) +=X[2}:
rX[€):=rX[3];
r¥[4):=xY(1l]):
Y [5):=e¥[2]);
r¥[B6]:=r¥[3]:
r¥[2]:=r¥[2])+10; {just to stop divide by 0}
a := 0; {so calculated y from these will all be b=140}
end;
grys ¥ [5]);
grxs rX[5]);
rX[i} X[1]-grx5; r¥[ll:=r¥[l}-gry5;
rXi2 X{2)-grx5; r¥[2):=r¥[2]-ory5;
rX[3 X[3)=-grx5; rc¥([3):=cY([3)-grv5;
rX[4 X[4]-grx5;
rX[€ X{€]-grx5s;
checkOptionKey;
LoacdlipLean;
if cptionKey cr cgotdipl=false then
decimation := GetNumber('Enter value for steps per line',1l);
alpha := realalpha*decimation;
ds:= sgrt(sqgrirX[6] - =X[4]) + scc(cY[€]-r¥[4]));
as := r¥[2];
d2s:= (sgrti{sgr(eX[3] - rX([1l]) =+ sgrizY([3]-z¥{1l))))*&/d2;
d2: = d;
dbds := d/ds;
d2sbds := d2s/ds;
cosasalpha := cos(as*alpha):
sinasalpha := sin(as*alpna);
tantheta := (cosasalpha - d2sbds)/sinasalpha;
theza := arctan(tantheta);
mag := d/fds;
Nkr := mag / 1500;
W := mag/k:;
if mec=true then begin
if gotdipl=false then becin
decimation := GetNumber ('Enter value for steps per line',0);
dip := GetNumber('Enter value for dip in degrees',0)/180*pi;
lean := GetNumber('Enter value for lean in degrees',0) /180*pi;
enda;
theta := dip - lean;
end else begin
otheta := theta;
theta := GetNumber('Calculated value of O is',6 theta/pi*180)/180%pi;
if (absltheta-otheta) /pi*180>C.1) then
useo := true;
end;
Dist := W * cos(theta);
Ht := W * sin(theta);
if useo=true then
if mo=true then
if gotdipl=true then begin
tempStr:='Calibration data calculated.\ - using 0 - dip / lean

from data file\';
end else becin

tempStr:='Calibration data calculated.\ - using 0 - dip / lean

manual entry\';
end else begin

tempStr:='Calibration data calculated.\ - using O from modified

oxt;
enc else begin

tempStr:='Calibration data calculated.\ - using Al method\';

end;

ShowMessage (tempStr, 'O =', theta/pi*180:2:1, ' p =%, Dist:&¥:1, °* Ht
=" Et:4:1." Nkr =',Nkr:6:6," Mag =',Mag:6:4,'
W=, W41, ! pip = ',dip/pi*180, ° Lean = ",
lean/pi*lg0C, ° Decimaticn =', decimation);

N6

{Save calibration stuff to a in measurements arrays and then store to a file}

setCounter(7);
setUserlLabel ('Calib Data');
setUser2Label ('Calc Data');

rUserl[5] := dip/pi*180;

rUserl[6] := lean/pi*180;

rUserl[2] := a;

rUser2[l] := ds;

rUsexr2[2] := as;

rUser2(3] := theta/pi*180;

rUser2[4] := d2s;

rUser2[5) := Dist;

rUser2[6] := Ht;

rY[7] := decimation;

if mo=true then rUserl[7] := 1 else rUserl[7] := 0;
if useo=true then rUser2[7) := 1 else rUser2[7] := 0;

SetOptions({'X-Y Center,Userl,User2');
SetExport ('Measurements');
Export (concat (WindowTitle, '.calib'));{try
end;

end;

rocedure CheckCalibration;
begin;
if progress<>3 then begin
PutMessage ('Imace has not been calibrated.
ot I
exit;
end;
if (calibratedImage <> WindowTitle) then
PutMessage('The calibration data
(',calibratedImage, ' 1is
image first using [F5].');

for this

procedure setupText;
begin;
SaveState;
SetFont ('Geneva');
SetFontSize (9);
SetText ('Left');

procedure PlotTreeGrid;
var
i:integer;
begin;
if clearB4Paint then begin
makeroi (x-50,y-3.5%pixstep,100,4*pixstep);
clear;
end;

MoveTo (x,y):
LineTo(x,y-3.5*pixstep);

for i:= 0 to 3 do begin
MoveTo (x-50,y-i*pixstep);
LineTo (x+50,y-i*pixstep);
end;
end;

procedure Plot3DTree;
begin;
rlength{l) :=x13;
rlength([2] :=yl;
Usercode (9, theta, HS, VS) ;
end;

procedure plotscaleline;
var
step:integer;

begin;

MoveTo (x,¥);

LineTo (x,y+5);

MoveTo (x-15,y+13);

writeln(scale:3:0,'em ');
end;

procedure plotscale;
var

step:real;
begin;

scale:=50;

loaded) .

:2 to indicate dont put up dlog box])

Run calibration macro:

not loaded

image is
Calibrate

N7

Appendix N - Image Processing Software

x:=xll+scale*HS; y:=yl;
plotscaleline;
x:=x12+scale*HS; y:=yl;
plotscaleline;
x:=x13+scale*ES; y:=yl;
plotscaleline;
scale:=-50;
x:=xll+scale*HS; y:=yl;
plotscaleline;
x:=x12+scale*HS; y:=yl;
plotscaleline;
x:=x13+scale*Hs; y:=yl;
plotscaleline;
end;

procedure cross;

begin;
MoveTo (xs,ys-size);
LineTo (xs,ys+size);
MoveTo (xs-size,ys);
LineTo (xs+size,ys):
end;

procedure ModeliInfo;

a

var
DiamBE, SED, maxS5wp, maxSwpHgt, maxSwpSED: real:
temp:real;
templ, tempZ : string;
begin;
maxTreeHgt:=rArea[l];
minTreeHgt:=rMean{l];
DiamBH:=rS5tdDev[1l];
SED:=rargle{l];
maxSwp:=rArea(2];
maxSwpHgt:=rMean[2Z]/10C;
maxSwpSED:=rStdDev([2];
slices := rUserl[l];
sliceSize := :User2[1l);
if [(maxSwpSED/maxSwp<l) then begin
templ := ''; temp2 := ' SED '; temp := maxSwp/maxSwpSED;
end else begin
templ := 'SEDR/'; temp2 := ''; zemp := maxSwpSED/maxSwp;
end ;
ShowMessage ('Stem model loadec.\\Max mocdel Hgt = ', (maxTreeHgt/100) :4:2,
m \Min model Hgt = *, (minTreeBgt/100):4:2,
\Diameter at breas: Hgt = ',DiamBH:2:1,' cm \Stem SED
',SED,' cm \Max sweep: ', templ,temp:2:0,temp2,
height = ', maxSwpHgt:4:1,' = \\ Model consists of
',slices:2:0,"' slices,\ spaced at
V,8liceSize:2:0, Y ‘ema)i
SelectWindow('Values'):;
end;
{"***‘K******"‘I. Mac:os 1'(1*"*'*"'*"}

macro 'TreeScan Help [Fl]°';
begin;

setPath;

Open (concat (NIHPath, 'TreeScan Help')):
end;

macro 'Image Capture(';
macro ' Aquire Image from Treescan[F2]°';

test: string;
begin;
test := WindowTitle;
Acquire('Treescan');
if test<>WindowTitle then
save; {save if new image returned}
end;

macreo ‘'Parameter Extracticn(';

macro ' Load an image([F3)‘*;
begin;
Open('");
progress :=1;
resetCounter;
end;

ot || H

procedure F4MacroProcedure;

var
tempH, tempW:integer;

begin;
version := 'TreeScan Utility Macros\ version TF 2.23';
setPath;

ShowMessage (version);

pi := 3.14159265;
kr := 0.000175; {given mag in cm/pix and dist in em}
realalpha := 0.0103021978 * pi / 180; {0.010332}
dname := WindowTitle;
setOptions('");
InvertY (1);
killRoi;
measure;
If (histogram([0])>0 then begin
AddConstant (1) ;
end;
SetForegroundColour (255);
SetScale (0, 'pixels');
ResetCounter;
bCount := 0;
bzCount := 0;

GetPicSize (tempW, tempH);
ShowMessage (version);
progress := 2;

end;
macro ! Remove white pixels[F4]';
{ Removes white pixels by adding 1 tec all grey levels if necessary
then sets forground tec black. Should then set correct tool for marking

6 points on the calibration rod.
}

begin
F4MacroProcedure;
end;
b e e e o e e e e e e e i s e M e e e }
macro ! Perspective Calibration([F3]';
{ Assumes calibration data saved on disk}
begin;

if progress<>2 then
if 1rCount=0 then begin
PutMessage ('Remove white pixels using F4¢ macro first.');
exit;
end else begin
ResetCounter;
F4MacroProcedure;
end;
ShowMessage (version);
RemovePerspective;
xoffset := (grx50rig- grx5)*dbds*cos(theta)/cos(theta*0*alpha);
setUserlLabel ('X in em');
setUser2Lakel ('Y in cm');
setPrecision(l):
setScale (0, 'pixels');
SetForegroundColour(0);
ResetCounter;
calibratedImage := WindowTitle;
grogress := 3; { Image Calibrated ‘for Perspectivel}
enc;

macro ' Tree edges tc data points [F6]';

Requires an image of a tree trunk with the edges of the trunk marked in white

var
w,h,xs,ys,yint,left,top,width,height,i,ii,n?ixels,mean,mode,min,
max:integer;
lasty, lastx,x,y:real;
pointsThisLine, spacing:integer;
begin
CheckCalibration;
RequiresVersion(1.45);
Measure;
GetResults (nPixels,mean, mode,min, max);
if (histogram(0])<100 then begin .)
PutMessage ('First mark the edges in white');
exit;
end;
SaveState;

Appendix N - Image Processing Software N9

GetRei (left, top,width, height);
GetPicSize(w,h);
if width=0 then begin

SelecthAll;

GetRei (left, top,width, height);
end;
Duplicate('Tree Edges');
Invert;

SetForegroundCelor (0);
SetLineWidth (1) ;
SetThreshold (255) ;
checkOptionKey;
spacing := 10;
if optionKey then
spacing:=getNumber ('Measurement spacing (pixels):',2);

frml; dis=l;
repeat
MoveTo(0,i); LineTo(width,i):
ir=i+1;

ii:=1i+1;
if ii=spacing then begin
ii:z=1;
1o=3+13
end;
until i>height;
setUserllLabel ('X in
setUser2Label ('Y in
setPrecision(l);
setOptions ('Area, Userl, User2');
LabelParticles(false);
SezParcticleSize(l,299229);
AnalyzeParticles;
ii:=1;
lasty:=0;
pointsThisLine:=0;
for i:=1 to rCount do begin

cx');
cm');

eX{i] 2= =Xii] + lefo;

=¥ [i] == c¥[i] +h- wop — height;
xs t= rX[i]~grxs;

ys 1 EViilegivd:

if yseo=true then
y :=sin(theta + ys ™ alphe)/cos{cheta + ¥s ™ algha)*Cist~ Ht+b
else

L4

:= a"cecs({theta+as*alpha)/sinaselzha”sin(ys~alpha)/cos(theta+ys*alpha)
+ b;
% := xs*"cdbds*cos(theta) /cos(trheta+ys*alpha)-xoffset;
£ (pointsThislire=0) and (y<>lastiy) then begin
rArealii]:=y; {accept first peint}
rUseri{ii]:=x;
pointsThisLine:=:;
end else if pointsThisline=1 then begin
if y=lasty then begin
if (x-lastx)>i0 cthen becin iprovided >10cm apart -> record
as ptr2:}
rUser2]

pointsThisLine:=0;
end;
end else begin
rAreafii]:=y; {y changed -> replace as
first point}
rUserllii]:=x;
pointsThisLine:=1;
end;
end;
lastx:=x;
lasty:=y;
end;
RestoreState;
SetCounter({ii-1l);
Dispose;
ShowResults;
SetExport ('Measurements');
Export (concat (dname, ' .stem'));
eng;

e e]

var
spacing : real;
begin;
{ progress:=5;1}
SetCounter (7);
rX[7) == 0;
Usercode (7,1,2,3); {Load 2 .stem files and comktine}
if (rX[7]1=0) then becgin

NIO

Beep;
PutMessage ('Edge files not found. Please ensure both views have been
processed and one of the views is selected.');

end else begin

PutMessage ('3D conversion completed. Model in memory and saved to disk.');
{ ShowResults; }

ModelInfo;

imagedmodel := calibratedImage;

progress:=6;

end;
end;

macro ' Display 3D model ([F8]';

lasti,i,ii: integer;
tempXAv, tempXD, tempZAv, tempZD:real;
firstpoint:boolean;
begin;
if progress<>6 then begin
PutMessage ('Load 3D model £first.');
exit;
end;

x11:=150; x12:=250; x13:=400; yl:=400; iy:=450; ix:=550; pixstep:=100;
pPi:=3.1416; thetastep:=45;

SliceSize:=rUser2[1]; Slices:=rUserl[l]; TreeHeight:=Slices*SliceSize;

HS := 0.5; {Pixels/cm horizontal}
VS:= (d*pixstep/4000) *SliceSize ; [Pixels/slice vertical (pix/cm*stepsize)}
Open(concat (NIHPath, 'Background'));

plotScale;

{Plot 1lst view of the tree}
i:=rCount;
firstpoint:=true;
for ii:=0 to (Slices-1}) do begin
if firstpoint then MoveTo(xll+(rUserl{i]+rMean{i]/2)*HS,yl-ii*VS);
if rAngle(i]=1 then begin
LineTo ({xll+({(rUserli]-rMean[i] /2) *H5),yl-1i*Vs);
firstPoint:=false;
lasti:=i;
end;
is=i-1;
end;
LineTo(xl1l+({(rUserl[Lasti]+rMean(lasti]/2)=H5),yl-{rCount-lasti)*VS);
i:=rCount;
firstpoint:=true;
for ii:=C to (Slices-1l) do begin
if firstpeoint then MoveTo(xll+ (rUserliil+rMean([i])/2)*HS,y:i-1i*VS);
if rAnglel[i]l=1 then begin
LineTo(x11l+ ((rUseri[i]+rMean(i]/2)*8S),yl-1ii*VsS);
firstPoint:=false;
end;
ir=i-1;
end;

{Plot 2ndview of the tree}
i:=rCount;
firstpoint:=true;
for ii:=0 to (Slices-1) do begin
if firstpeint then MoveTo(x12+((rUser2[i]+rStdDev[i]/2)*ES),yl-ii*Vs);
if rAngle[i]=1 then begin
LineTo(x12+((rUser2[i]-rStdlev(i]/2) *HS) ,yl-ii*Vs);
firstPoint:=false;

lastiz=i;
end;
i:=i-1;
end;

LineTo(x12+ ((rUser2[Lasti]+rStdDev(lasti]/2)*HS),yl-(rCount-lasti)*Vs);
i:=rCount;
firstpoint:=true;
for ii:=0 to (Slices-1) do begin
if firstpoint then MoveTo(xl2+((rUser2[i]+rStdDev(i]}/2)*HS),yl-1ii*Vs);
if rAngle[i]l=1 then begin
LineTo(x12+ ((rUser2[i]+rStdlev([i]/2)*HS) ,yl-1ii"Vs);
firstPoint:=false;
lasti:=i;
end;
iz=i-1;
end;

theta:=0;

Plot3DTree;

progress:=7;

saveas {concat (imagedmodel, ' .3D pic'));
modelImage := WindowTitle;

Appendix N - Image Processing Software N11

macro ' Display x.,y posn in em[F2]°
var

test, X,y,yn,xs,ys:real;
width,height:integer;

begin;

CheckCalibration;

GetPicSize (width,height);
GetMouse (xs,ys);
checkOptionKey;
if opticnKey then begin
MoveTo (xs-2,ys-2); LineTo(xs+2,ys+2):
McveTo (xs-2,ys+2); LineTc(xs+2,ys-2); MoveTo(xs=10,ys);
end;

ys :=height-ys-1;
xs := (xs- g©rxd);
¥s = ys-grys;

{PutMessage ('pix >/\:xs:', s GV oysat o welg}

{

x := xs*cdbds*cos(theta) /cos(theza~ys~ alzgha)-xoffsez;

Yy := avccs(theta+asvalpha)/sinesalpha~sin({ys=alcha)/cos(theta+ys*alpha) + b;

yn :=sin(theta + ys = alpha)/cos(theta + ys ™ alpha)*Dist- Ht+kb;

ShowMessage ('Heighz\ = ', (yn/f100):3:2,' m\Horizontal ocffset)\ =
vexspel Y iEem V¥

ShowMessage (' (X, Yal,¥Yo) N(',x:0:2,°', ‘*,y:3:1,', ‘',yn:3:1,"em");

{ theta := GetNumber(' O is',theta/pi=18C)/180=pi; }
if optionKey then begin
setupText;
if useo=true then begin
writeln((¥, xs0:1,%, Yoym:3:d:%
end else begin
riteln ("0 xeDa X, ", o Eel, V)
eng;
restoreState;
end;
end;
e e e e e e e e e e e e e e e e e }
maczo ' Display distance in cm[Fi101°
var
dia,nei,x2s,v2s,xls,yls,yint:real;
x1,x2,y1,y2,toz,left, height:intecer:;
width,height:integer;
begin;

CheckCalibraticn;

Getline(xls,yls,x2s,y2s,width);

if x1s<0 then begin
PutMessage ('This macro requires a line selecticrn.'):
exit;

end;

setFeragroundColour(l);
checkOotionKey;
if optionKey then begin
MoveTo (x1s,vls); LineTo(x2s,y2s):; MoveTo(x2s+10,y2s);
end;
GetPicSize (width,neight);

yls :=height-ylis-1;
x1ls i= xls- gex5
yls := yls-gry5;
x1 := xls*dbds*cos(theta)/cos(theta+yls~alpha)-xoffser;
if useo=true then
vl :=sin(theta + yls * alpha)/cos(theta + yls * alpha)*Dist- Ht+b
else
vl := a*cos(theta+as*alpha) /sinasalpha*sin(yls*alpha) /cos(theta+yls*alpha)
+ b;

y2s :=neight-y2s-1;
x2s := (x2s- grx5)
v2s := y2s-crys;
x2 := x2s*dbds*cos(theta)/cos{theta+y2s~alpha)-xcfiset;
if useo=true then
y2 :=sin(theta + y2s * alpha) /cos(theta + y2s * alpha)*Dist- Ht+b
else
vZ := a*cos(theta+as~alpha)/sinasalpha=sin(y2s~alpha) /cos(theta+y2s*alpha)
+ br

dia := sgrt{sgr(xl-x2) + sqri{yl-y2));
hei := (yl+y2)/2;

Ni12

ShowMessage ('Diameter) = ',dia:0:1,' cm',chr(13),'Av height\
', hei/l00:0:2," m');
if optionKey then begin

setupText;
writeln(dia:0:1,"' B ',hei:0:1);
restoreState;
end;
setForegroundColour (0);
end;
{ == e e e e e s)
macro ' Display sweep[Fll]'
var
height, sweeplow, sweephigh, sweepHgt , temp: integer;

templ, temp2:string;
xls, yls, x2s, y2s, width: integer;
begin;
if progress<>7 then begin
PutMessage ('Display 3D model first.');
exit;
end;
GetLline (x1ls,yls,x2s,y2s,width);
if (x1s>=0) then begin
if yls=y2s then yls:=y2s+l;
if (yls>y2s) then begin
sweeplow:=(yl-yls) /VS*SliceSize;
sweephigh:=(yl-y2s) /VS*SliceSize;
end else begin

sweeplow:=(yl-y2s) /VS5*SliceSize;
sweephigh:=(yl-yls) /V5*SliceSize;
end;
sweepHgt := sweephich - sweeplow;

end else begin
sweepHgt := 600;
GetMouse (xls,yls);
sweeplow:=(yl-yls)/VS*SliceSize - sweepHgt/2;
sweephigh:=(yl-yls) /V5S*SliceSize + sweepHgt/2;
MakelLineROI (xis,yls- (sweepHcot/2/sliceSize*Vs),xis,
yls+ (sweepHgt/Z/sliceSize*VSs));

end;
if (sweeplow<minTreeHgt) then begin
sweeplow := minTreeHgt;
if ((sweeplow+sweepHgt)<maxTreeHct) :then
sweephigh := minTreeHgt + sweepHg:;
end;
if {sweephigh>maxTreeHgt) :then begin
sweephigh := maxTreeHgt;
if ((sweephigh-sweepHgt)>minTreekg:t) znen
sweeplow := maxTreekgt - sweepHg:;
end;
Userccede (5, sweeplow , sweephigh, riUser2(ii); {Calculate sweep)
if (£X[2]/rX([3])<1l) then begin
templ := *''; temp2 := ' SED '; temp := rX[3]1/X[2];
end else begin
templ := 'SED/'; temp2 := ''; temc = rX[2]/rX[3]);
end ;
ShowMessage ('Sweep of ', templ,temp:2:_,temp2,‘' over ',rX[1]/10C:1:0,'
section.\\ Maximum sweep = *,rX[3],' cm\ at height =

m

.

rX[4]1/100:3:1,"' m\ and sed =',rX[2]:3:0,' ecm \\Section

max height = ', sweechigh/100:2:1,' m\Section min height
= ', sweeplow/100:2:2,' m');
SelectWindow('Values');
end;
ot o -t e e o et e e e e }
macro ' Mark Scale[F12]°*
var

yi,xi,xs,ys,ysi,xsi,,yz,yint, xscale, yscele:real;
OTH, OrgW, OrgH, NewW, NewH, xo0, yo,X,y:integer;
OrgPic, NewPic, Pix, RefH ,N, size: intece:;
begin;
CheckCalibration;
N:=1; size:=10;
GetPicSize (OrgW, OrgH);
for yo:=0 to 40 do

begin
for xo:==N to N do
begin
ysi := (arctan(((yo*100)+Ht-b)/Disc)~- theta)/alpha;
xsi := (xo0*100+xoffset)*cos(theta +ysi*alpha)/ (dbds*cos(theta));

xs := xsi+grxs;

Appendix N - Image Processing Software N13

ys:= OrgH-(ysi+l+gryS5);
if ((Round(yc/10)=yo/10) and (xo0=0}) then

begin
size:=20C;
MoveTo (xs+25,ys); writeln{yo,' m' Y
MoveTo (x5-50,ys); writeln{yoc,' m');
end
else if ((Round{ye/5)=yo/3) and (xo0=0)) then
begin
size:=10;
MoveTo (xs-50,ys); writeln(ye,' m' Y2
MoveTo (xs+25,ys); writeln(ye,"' m' Y
end

else size:=5;

cross;
ShowMessdge " &, ¥) N .x310:21, %, Yyis3s), vyl
end;
end;
end;
{'I"'Tl’""**'!" Additio:lal mac:os iﬂ‘i"ﬂ""'*“‘""}

real;

SezCounter(7);
X1 := 0;

Usercode(8,1,2,3); i{Lead .3D file}
if (=X[7]=0) then begin
3eep;

PutMessage ('30 mocel file no: found. Ensure 3D conversion has been

cempleted and crne of the views is selected.');

ernc else begin
iragedmodel := WindeowTitle;
ModelInfo;
Drogress:=6;

enc;
[== e e e }
macro Rotaze 3D model richt [i°;
var
L, ii: integer;
tempXAv, tempXD, tempZAv, TempZD:real;
begir;
if (modellmage <> WindowTitle) :then
begin
Usercode (4,4,2,3);
exit;

enc;

theza:=theta-thetastep*pi/180;

clearB4Paint:=true;
x:=x13; y:=yl;
PlosTreeGrid;
MoveTo (x,v);
LineTo(x-3C,y+30);

Plct3DTree;
plozScale;

end;
[rem = e e e e e e e ———————————— }
macro ' Rotate 3D model left [1*;
var
i,i1: integer;
tempXAv, tempXD, tempZAv, temp2l:real;
begin;
if (modelImage <> WindowTitle) then
begin
Usercode(4,3,2,3);
exit;
end;

theta:=theta+thetastep~pi /180;

clearB4Paint:=true;
x:=x13; y:=yl;
PlotTreeGrid;
MoveTo(x,vy);

LineTo (x-30,y+30);

Plot3DTree;
plotScale;

N14

end;
et o i e o e o P e S e e e i }
macro " ScrollUp(-]*;
begin;
Usercode(4,1,2,3);
end;
{rmr e e e e e e e e e e e e e e e e e e e i e s e e }
macro ' ScrellDown[]';
begin;
Usercecde (4,2,2,3);
end;
{2 e e i }
macro ' Deselect []! {esc)
begin;
killROI;

end;
(e e e e e e e e e e e e —— e e e e e e e e e }
macreo ' Load processing macreos/M';
begin;

setPath;

Open (concat (NIHPath, 'UTIL Macros'));

ShowMessage ('Loading:\ TreeScan Utility Macros');

Usercode (10,1,2,3);
end;

Appendix N - Image Processing Software N15

N.2 NIH Image Additions (Version TF 3.5f)

The NIH Image source files are set up in such a way that a programmer can add their
own routines to the User.p file. These code routines can then be called from the macro
language using the Usercode() call. Ten routines have been added to the User.p file for
the TreeScan system.

NIH Image Additions source files

User.p File to which pascal user routines may be added to NIH Image
to speed up or add additional capabilities to the NIH Image

macro language.

This appendix contains several relevant sections out of the User.p file.

N16

N.2.1 User.p Source Listing

unit User;

{Modification
{30/1/95 RHP
}

History}
V2.0 for Tasman}

Add a user routine to load calib data from a file }
Image.calib which is written by the calibration macro}

11/10/95 MW V3.2 Modified .3DO ocutput file format (LF->CR/LF, ! on pcode no's)}
12/10/85 RHP V3.2 We didnt put buffers back if there was an error - fixed}

V3.32 On call plugin tell them they can use all space including cut &
not/2}

{

}

{ 31/1/95 RHP V2.1 Allow for calibration rod with unequal bars)

{ load calib data file now doesnt show file chooser dlog}

{ 1/2/95 RHP V2.2 Load data file with lean and dip angles in them}

{ modified plugins.p to try and get image name set in}

{ plugin back into image}

{ v2.3 }

{ V2.4 }

{ V2.5 Copy the vref from acquire plugin so we save image to correct
folder}

{ V2.7 when loading .dat files with dip and lean use file name uip to

{ vl or _v2; }

{ user7 routine which returns 1 if the option key is down}

{ 9/3/95 MW V2.8 2D te 3D file conversion, load 3D infermation}

{ V2.9 Plot 3D tree routine)

{ V3.0 Modified calib reod default to 200.55em}

{ 20/9/95 MW V3.1 Added .3DC output file format}

{

{

{

endo buf

{ 16/10/95 MW V3.4 Sideways arrows, .30 additional info, calculate sweep &
maxsweep, several other updates)
24/10/95 MW V3.5 Minor 3D0O output format modifications}

8/11/95 MW
16/11/85 MW
17/11/95 MW
20/11/95 MW

V3.5b 3D display position line fix }

V3.5c User.p code to loacd macros from within a macro }
V3.5¢ Rermove buffer size checking in LineROI (Image.p) }
V3.5f Sorting the lcocaded branch data (Devt)}

o s g ey

procedure RHPCalibrod;
var
itemhit, mydialogid:
pmydialog: DialogPtr;

integer;

begin
mydialogid := 129;
pmydialog := GetNewDialog(mydialogid,
if (pmydialog <> nil) then begin
SetPort (pmydialog);
ShowWindow (pmydialog);
SellText (pmydialeg, 3, 0,
repeat
ModalDialog(nil, itemhit):;
if itemhit = 4 then
itemhit := 4&;
until (itemhit = ok) or (itemhit = cancel):
Userl”~[1l] := GetDReal (pmydialeg, 3);
Userl” (2] := GetDReal (pmydialog, 4);
Userl”[3]) := GetDReal (pmydialeg, 5);
Userl”[4] := GetDReal (pmydialog, 6);
if itemhit = cancei then begin
DisposDialcg (pmydialog);
exit (RHPCalibrod);
end;
DisposDialog(pmydialeg);
end;
end;

nil, POINTER(-1));

32767} ;

procedure RHPLoadCalibData;
var
fname: str255;
err: OSErr;
RefNum, nValues, i:
rLine: Realline;
FinderInfo: FInfo;
begin
fname := conca:t(Info™.title,
RefNum := Info".vref;
if not (GetFInfc(fname,
exit (RHPLoadCalibData);
ShowMessage (concat ('Lloading from ', fname));
InitTextInput (fname, RefNum);

integer;

‘.calib'):

Refdum, FinderInfo) = noerr) then

Appendix N - Image Processing Soltware N17

i Ee= s

while not TextEQOF do begin
GetLineFromText (rline, nValues);
xcenter*[i] := rline[l]:

ycenter”[i] := rline(2]:
Userl”{i] := rline(3]:
pser2“[i] := rline[4];

i r= 1+ 15
end;
end;

procedure MWScroll (Paraml: extended);
var
DeltaH, DeltaV, width, height, ScrollDirection: integer;
loe: point;
SaveSR: rect;
WasDigitizing: boolean:
begin
with info® do begin
if ScaleToFitWindow then begin
PutMessage('Scrolling does not work in "Scale to Fit Window" mode.'};
exit (MWScroll)
end;

ScrollDirection := round(paraml);:
with SrcRect do begin

width := right - left;
height := bottom - tcp
end;
S5aveSR := SrcRect;
Deltak := 0;
DCeltaV := 0:

case ScrollDirectien of

- {UP !
DeltaV := round{-height = C.B8):
2 { Down 1}
DeltaV := round(height = C.8};
3: { Left 7}
Delzal := round{-width * 0.5);
4: { Right }
DeltaH := round({widch = 0.5);
otherwise
ShowNoCcdeMessage;
end;
with SrcRec:t dc becin
lef: := SaveSR.left + Deltal;
top := S5aveS5R.top + DeltaV;
if CptionKeyDown and ((ScrollDirection = 1) or (ScrollDirection = 2)) then
begin
left := (PicRect.right - PicRect.left) div 2 - width div 2;
(Centre left / right]
right := (PicRect.right - PicRect.left) div 2 + width div 2;
end;
if OptionXeyDown then
case ScrollDirection of
e { Up 1}
top := PicRect.top;
25 { Down }
tep := PicRect.bottom - height;
3= { Left }
left := PicRect.lef:;
4: { Right }
left := PicRect.right - heigh:;

end;

if left < 0 then
left := 0;
if (left + width) > PicRect.right then
left := PicRect.right - wicth;
right := left + width;
if top < 0 then
top := 0;
if (top + height) > PicRect.bottom then
top := PicRect.bottom - height;
bottom := tep + height;

end;
UpdatePicWindow;
DrawMyGrowlIcon (wptr);

WhatTolUnde := NothingTsUndo;

N18

ShowRoi;
end; {with info")
end;

procedure MeasMaxSweep (Paraml, Param2: extended);
var
distance, slice, loop, heightl, height2: integer;
TDmaxSweep, TDmaxSweepHgt, TDmaxSweepSED: real;
templ, templd, temp3, tempd: str255;
begin
heightl := round(Paraml);
height2 := round(Param2);
distance := 600;
slice := round(User2”[1l]);
TDmaxSweep := 0;
if (height2 - heightl) > distance then begin
for loop := heightl to (height2 - distance) do begin
MWMeasSweep (lcop, loop + distance, slice);

if (xcenter”([3] > TDmaxSweep) then begin

TDmaxSweep := xcenter”[3]; { Max sweep in cm }
TDmaxSweepHgt := xcenter”[4]; { Height of max sweep }
TDmaxSweepSED := xcenter”[2]; { Height of max sweep }
end;
loop := loop + slice;
end;
xcenter~[1] = distance; {Distance cf swee:c measurement in cm}
xcenter~[2] TDmaxSweepSED; { SED }
xcenter~[3] = TDmaxSweep; { Max sweep ir cm }
xcenter”[4] := TDmaxSweephct:; { Heighr of max sweep }
end;
end;
crocedure MWPlot3DTree (Paraml, Param2, Param3: extended):
var
i, ii: integer;
tempXD, tempZD, tempXAv, tempZAv: extended;
theta, HS, VS: extended:;
left, top, width, height, x13, yi: intecer;
pl, p2: point;
begin
{?lot 3D view of the tree}
i := mCount;
theta := paraml;
HS := param2;
VS := param3;
%13 := round(plencth”[1]);
yl := round(plength~([2]);
CurrentX := xlI3 - 2; iMovelc ...}
CurrentY := yl - 2:
tempXAv := * ccs(theta) + (=70) = sin(theta):
tempZAv := -0 * sin(theta) + (=-70) * cos{theta);
LineWidth := 5;
MWLineTo(round(xl3 - 2 + (tempXAv + tempZAv * 0.7C7) * HS), round(yl - 2 +
temp2Av * 0.7C7) * HS)):
LineWidth := 1;
for ii := 1 to (mCount - 1) do begin
if orientation”[i] = 1 then {If silice has valid diameters)
begin
tempXD := mean”[i];
tempZD := sd~(i];
tempXAv := Userl”[i] * cos(theta) - User2”[i] * sin(theta);
tempZAv := -Userl~[i] * sin(theta) + User2~[i}] * cos(theta);
with Info™ do begin
{MakeCvalRoi command)
RoiType := CvalRoi;
left := round(xl3 + (tempXAv + tempZAv =~ C.707 - tempXD / 2) = HS):
top := round{yl - ii * V5 + (-temp2Av ™ C.707 - temp2D / 2 * 0.707)
HS);
width := round{tempXD * HS);
height := round{(tempZD * 0.707 * HS);
SetRect (RoiRect, left, top, left + width, ton + height);
MakeRegion;
end;

SetForegrouncdColor (0);
DoOperaticn(PaintCp);

*

Appendix N - Image Processing Software NI19

SetForegroundColor (255);
DoOperation(FrameOp) ;

with Info” do begin
UpdateScreen (RoiRect);

end;
if (mArea~[i] = 500} or (mArea~[i] = 1000) cr (mArea~(i] = 1500) or
(mArea*[i] = 2000) or (mArea~[i] = 2500) then >egin

CurrentX := xl13; {MoveTo ...}

CurrentY := round(yl - (ii - 2) =* Vs);

MWLineTo(round (x13 + tempXAv * HS), round(yl - (ii - 2) * Vs));
MWLineTo (round {x13 + (tempXAv + tempZAv * 0.7C7) * HS),

round(yl - (ii -

2) * Vs + (-tempZAv * 0.707) * HS));

MWLineTc (round (x13 + (tempZAv * 0.707) * HS), round(yl - (ii - 2) * Vs +
(-temp2Av * 0.707) =* HS)):

MWLineTo (round (x13), round(yl - (ii - 2) = VS});

end;

end;
i s=1i = 1z
end;

end;

procedure COldUserMacroCode (CodeNumber:

integer; ©2araml, Param2, Param3:
extended);

begin
case CodeNumber of
i -
RHPCalibrod;

RHPLoadCaliblata;

hHPLoadD:pLean:
4-MHScrollt?aramll;
SEWHeASSwee;!Pa:aml, Param2,
:EWCheckOp:ionKey;

Param3);

MWConvert3D;
B:
MWLlLocad3DData;

JMPlotBDTree{?araml, ParamZ, Param3);
10:
MWlLoadMacros;
otherwise
ShowNoCodeMessage;
end;
end;

