
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

I'

Development of an
In-field Tr~e Imaging

System .

A thesis
presented in partial fulfilment

of the requirements for the degree
of

Master of Technology
at

Massey University

By

Marijn Weehuizen

1996

MASSE Y UNI VERSITY

11111111111111111111111111111 ~
I 0E; I 8387:34

Ill

Abstract

Quality inventory information is essential for optimal resource utilisation in the forestry

industry. In-field tree imaging is a method which has been proposed to improve the

preharvest inventory assessment of standing trees . It involves the application of digital

imaging technology to this task. The method described generates a three dimensional

model of each tree through the capture of two orthogonal images from ground level.

The images are captured and analysed using the "TreeScan" in-field tree imaging

system. This thesis describes the design, development, and evaluation of the TreeScan

system. The thesi s can also be used as a technical reference for the system and as such

contains appropriate technical and design detail.

The TreeScan system consists of a portable computer, a custom designed high

resolution scanner with integral microcontroller, a calibration rod, and custom designed

processing software. Images of trees are captured using the scanner which contains a

CCD line scan camera and a precision scanning mechanism. Captured images are

analysed on the portable computer using customised image processing software to

estimate real world tree dimensions and shape.

The TreeScan system provides quantitative estimates of five tree parameters ; height,

sweep, stem diameter, branch diameter, and feature separation such as intemodal

distance. In addition to these estimates a three dimensional model is generated which

can be further processed to determine the optimal stem breakdown into logs.

v

Table of Contents

Abstract -- iii

Table of Contents -- v

List of Figures -- viii

List of Tables --- xi

Publications --- xi

Aclmowledgements -- xiii

Glossary --- xvii

CHAPTER 1 - INTRODUCTION AND BACKGROUND -------------------------------- 1
1 . 1 Scope of Research -- 2
1. 2 Thesis Overview -- 2
1.3 Forest Industry Background -- 4

1. 3. 1 Introduction -- 4
1. 3. 2 Forestry and Sawmilling --- 5
1. 3. 3 Forest Operations --- 5
1 . 3 .4 Inventory Assessment -- 6

1.4 Preharvest Inventory Assessment -- 7
1.4.1 MARYL Inventory Assessment ------------------------------------- 8
1.4.2 Weaknesses of the MARYL System -------------------------------- 9
1 .4. 3 Possible Improvements -- 11

CHAPTER 2 - IMPROVED FOREST ST AND ASSESSMENT

DESIGN PROPOSAL -------------------------------- 13
2.1 In-field Tree Imaging to Improve Stand Assessment -------------------------- 14

2.1 .1 Previous Research on Standing Tree Imaging --------------------- 15
2. 2 General Technology Options -- 16

2.2 .1 Massey University Feasibility Study ------------------------------- 16
2. 2. 2 Alternative Approach --- 18

2. 3 Design Constraints --- 21
2.3 . 1 Constraints Imposed by Forest Conditions ------------------------ 21
2.3 .2 Constraints Imposed by Technology Limitations ----------------- 22

2. 4 Proposed System -- 24
2.4 . l Improved Assessment Outline --------------------------------------- 24
2.4.2 Proposed Image Capture System overview ------------------------ 24

2. 5 Design specification -- 26

CHAPTER 3 - TREESCAN DESIGN CONSIDERATIONS

AND THEORETICAL FOUNDATIONS ---------- 27
3. 1 Design Overview --- 28

3 .1. 1 Systems Integration Project -- 29
3.2 TreeScan Operating Principle --- 31

3. 2. 1 TreeScan Estimates --- 3 3
3 . 3 Image Capture --- 3 5

3. 3. 1 Digital Image Capture -- 35
3.3 .2 Primary Imaging Considerations ------------------------------------ 37

VI

3.3.3 Area Sensor vs. Line Scan Build-up ------------------------------- 38
3. 3 . 4 Optical Considerations -- 41
3. 3. 5 Image Focus --- 45

3. 4 Image Transfer and Storage --- 46
3 .4. 1 Scanner Interface -- 46
3. 4. 2 Image Storage --- 4 7

3 .5 Parameter Extraction --- 48
3. 5. 1 Image Calibration -- 49
3.5.2 Planar Transformation Distortion Correction --------------------- 51
3.5 .3 Geometric Distortion Correction ----------------------------------- 53

3. 6 Three Dimensional Model Construction ------------------------------------- 57
3. 7 Implications of Image Capture Geometry ------------------------------------- 58

3. 7 .1 Tree Plane Variation -- 61
3. 7. 2 Calibration Alignment Variation ------------------------------------ 62
3.7 .3 Image Processing and Feature Marking Precision ---------------- 64

CHAPTER 4 - TREESCAN HARDWARE -- 67
4.1 TreeScan Hardware Overview -- 68
4. 2 Scanner Hardware Overview --- 70

4 .2. 1 Scanner Controller Board -- 74
4. 3 Microcontroller Subsystem -- 7 5

4 .3.1 Microcontroller Subsystem Memory Organisation --------------- 77
4.3.2 Microcontroller Subsystem Memory Timing ---------------------- 78

4 .4 SCSI Subsystem --- 80
4.4. l Implementing SCSI : Design Specifications ----------------------- 82
4.4.2 SCSI Bus Controller (SN75C091A) ----------------------------- 85
4.4.3 SCSI Subsystem Development Obstacles ------------------------- 86

4 . 5 Line Scan Camera Subsystem -- 87
4. 5. 1 Imaging Sensor Spectral Response --------------------------------- 90
4.5.2 Line Scan Camera Subsystem Signal Timing --------------------- 90

4. 6 Additional Hardware --- 92
4 . 6 . I Scanning Mirror Subsystem --- 92
4. 6. 2 Lens Subsystem -- 95
4.6.3 Power Supply Subsystem --- 98
4. 6. 4 User Feedback -- 101
4 . 6. 5 Scanner Chassis --- l 02
4. 6 . 6 Carrying Cases -- 103

4. 7 Hardware Development Environment -- 103

CHAPTER 5 - TREES CAN SOFIW ARE --- 105
5. 1 TreeScan Software Overview --- 106
5 .2 Image Capture Software --- 108

5 . 2. 1 Overview --- 108
5 .2.2 Image Build-up Algorithm --- 111
5.2.3 Image Block Capture Algorithm (Microcontroller) --------------- 114
5 . 2 .4 SCSI Transfer Algorithm -- 118
5. 2. 5 Focus Algorithms --- 126
5. 2 . 6 TreeScan Plug-in Software -- 129
5 . 2. 7 Microcontroller Software -- 131

5 . 3 Tree parameter Extraction Software -- 13 2
5. 3. 1 Overview -- 132
5. 3. 2 Image Calibration -- 13 3
5 .3.3 Feature Size Estimation in Two Dimensions ---------------------- 135
5. 3 .4 Three Dimensional Stem Shape Estimation ---------------------- 137

vii

5. 3. 5 Possible Improvements to Parameter Extraction ------------------ 139
5 .3. 6 TreeScan Macros -- 140
5. 3. 7 NIH Image Source Additions and Modifications ----------------- 141

5. 4 Software Development Environment --- 14 2

CHAPTER 6 - TREESCAN EVALUATION -- 143
6. 1 Overview of Evaluation -- 144

6. 2 Sequence of Evaluation Experiments --- 145
6 . 3 Hardware Calibration -- 147

6. 3. 1 Scanner Component Alignment ------------------------------------- 14 7
6. 3. 2 Measurement of Step Angle --- 149

6. 4 TreeScan Characterisation --- 151
6 .4. 1 Image Capture Timing -- 151
6 .4. 2 TreeScan Resolution -- 153
6.4.3 Integration Time Adjustment -- 155
6 .4 .4 Focus Tests -- 156

6.5 Initial Accuracy Tests in Two Dimensions ------------------------------------ 157

6. 6 Final Accuracy Tests in Two Dimensions ------------------------------------- 158
6. 7 Accuracy Tests in Three Dimensions --- 160

CHAPTER 7 - FORESTRY IMPLICATIONS AND RECOMMENDATIONS --------- 161
7. 1 TreeScan Strengths and Limitations -- 162
7. 2 Forestry Implications --- 166
7 .3 Alternative Technology Uses -- 168
7.4 Future Work --- 169

CHAPTER 8 - SUMMARY -- 171
8. 1 Summary -- 172

REFERENCES --- 1 7 5

Appendix A

Appendix B

Appendix C

AppendixD

AppendixE

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

Appendix K

AppendixL

AppendixM

Appendix N

Development Documentation for the TreeScan System

Sample Tree Analysis

Forestry Terms

Original TreeScan Project Proposal

System Error Calculations

TreeScan System Component List

TreeScan Schematics & Board Layout

Microcontroller Specifications and Memory Space Organisation

Additional SCSI Interface Specifications

SCSI Bus Controller Specifications

Macintosh SCSI Manager

SCSI Byte Loss Detection and Resend Scheme

Scanner Control Software

Image Processing Software

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

List of Figures

- Information loss inherent in the MARYL tree description ---------- 10

- Imaging technologies -- 17
- Effects of wind on captured images ----------------------------------- 19
- Alternative image capture approaches --------------------------------- 20
- Improved forest stand assessment overview ------------------------- 24
- Image capture system principle -- 25

Figure 3.1 - Possible areas of technical difficulty ----------------------------------- 28
Figure 3.2 - TreeScan image capture --- 31
Figure 3.3 - Projection on a two dimensional plane -------------------------------- 32
Figure 3.4 - TreeScan estimates --- 33
Figure 3.5 - Digital image capture __ _: _________ 35

Figure 3. 6 - CCD technology --- 36
Figure 3.7 - Photographic image capture distortion -------------------------------- 38
Figure 3.8 - TreeScan image capture distortion ------------------------------------- 39
Figure 3.9 - Depth of field --- 42
Figure 3 .10 - Modulation transfer function and relative illumination -------------- 44
Figure 3.11 - Definition of terms --- 49
Figure 3.12 - Simple perspective correction -- 51
Figure 3.13 - Two step perspective correction -- 52
Figure 3 .14 - Geometric correction using derived 0 -------------------------------- 53
Figure 3.15 - Correction based on calibration rod dimensions --------------------- 54
Figure 3.16 - Distortion correction imprecision -------------------------------------- 55
Figure 3.17 - Measurement of angle 0 -- 56
Figure 3 .18 - Three dimensional model generation ---------------------------------- 57
Figure 3.19 - Image capture geometry --- 59
Figure 3 .20 - Tree plane variation -- 61
Figure 3.21 - Calibration alignment variation --- 62

Figure 4.1 - TreeScan system ready for image capture --------------------------- 69
Figure 4.2 - TreeScan scanner functional block diagram -------------------------- 70
Figure 4.3 - The scanner internal layout -- 71
Figure 4.4 - System signal flow diagram -- 73
Figure 4.5 - Scanner controller board layout -- 74
Figure 4.6 - Microcontroller block diagram schematic ----------------------------- 76
Figure 4.7 - Microcontroller memory map --- 77
Figure 4.8 - EPROM read cycle timing -- 78
Figure 4.9 - SCSI block diagram schematic --- 81
Figure 4.10 - Typical command descriptor block ---------------------------------- 84
Figure 4.11 - Imaging sensor photosite layout -------------------------------------- 88
Figure 4.12 - LSC interface block diagram schematic ----------------------------- 89
Figure 4.13 - CCD sensor spectral response -- 90
Figure 4.14 - Line scan camera timing --- 91

ix

Figure 4.15 - Scanning mirror assembly --- 92
Figure 4.16 - Stepper motor controller block diagram schematic ------------------- 94
Figure 4.17 - Mkl and Mk2 lens systems --- 95
Figure 4.18 - Mk 1 and Mk2 lens driving interface --------------------------------- 97
Figure 4.19 - Power supply block diagram schematic ------------------------------- 99
Figure 4.20 - Scanner chassis -- 102
Figure 4.21 - Hardware development environment --------------------------------- 104

Figure 5 .1 - Levels of TreeScan software -- 107
Figure 5.2 - Algorithms implemented in image capture software ------- --------- 108
Figure 5.3 - Image build-up sequence --- 111
Figure 5 .4 - Image build-up algorithm --- 112
Figure 5 .5 - Image build-up algorithm (description) -------------------------------- 113
Figure 5.6 - Image block capture algorithm -- 114
Figure 5.7 - Image block capture algorithm (description) ------------------------- 115
Figure 5.8 - Line signal timing -- 116
Figure 5.9 - AID signal timing -- 117
Figure 5 .10 - AID conversion (8 bit) microcontroller code -------------------------- 118
Figure 5.11 - Normal SCSI transfer -- 120
Figure 5.12 - Normal SCSI transfer (description) ------------------------------------ 121
Figure 5 .13 - Image with byte loss problem --- 122
Figure 5.14 - Extended delays during SCSI transfer --------------------------------- 124
Figure 5.15 - Byte loss detection and resend scheme -------------------------------- 125
Figure 5.16 - Final autofocus algorithm --- 127
Figure 5.1 7 - TreeScan image capture user interface --------------------------------- 129
Figure 5.18 - Parameter extraction sequence -- 132
Figure 5.19 - Marking of calibration points -- 134
Figure 5.20 - Two dimensional feature size estimates -------------------------------- 135
Figure 5 .2 1 - Generation of three dimensional stem model -------------------------- 137
Figure 3.22 - Sweep estimation from displayed tree model -------------------------- 138
Figure 5.23 - TreeScan processing and utility macros ------------------------------- 123

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

- Distortion introduced by camera misalignment --------------------- 14 7
- Camera alignment procedure -- 148
- Distortion introduced by mirror misalignment ---------------------- 149
- Image capture timing --- 152
- Image resolution effects --- 154
- Integration time adjustment --- 155
- Focus results --- 156
- Height errors with high imprecision --------------------------------- 157
- Final accuracy tests in two dimensions ------------------------------- 159

x

XI

List of Tables
Table 2.1 - System design contraints -- 21
Table 3.1 - Standard f-numbers -- 41
Table 3.2 - Image acquisition time vs. data transfer rate -------------------------- 46
Table 3.3 - Scanner interface methods -- 47
Table 3.4 - Comparison of distortion correction methods ------------------------ 48
Table 3.5 - Sources of expected error in TreeScan -------------------------------- 60
Table 3 .6 - Height errors introduced by stem displacement ---------------------- 61
Table 3.7 - Width errors introduced by stem displacement ----------------------- 62
Table 3.8 - Errors introduced by variation in measured angle -------------------- 63
Table 3.9 - Errors introduced by distance error ------------------------------------ 64
Table 4.1 - Availability of SCSI bus controllers ----------------------------------- 80
Table 4.2 - Line scan cameras available --- 87
Table 4.3 - Scanner power requirements -- 100
Table 6.1 - Measured pixel resolution --- 153
Table 7.1 - TreeScan strengths and limitations ------------------------------------- 163

Publications
The following publications were prepared during the research for this thesis:

• Weehuizen, M., Pugmire, R.H. (1994): The use of in-field tree imaging in the

pre-harvest inventory assessment in the logging industry, Proceedings of New

Zealand Postgraduate Conference for Engineering and Technology Students,

Department of Production Technology, Massey University, 1994.

• Weehuizen, M., Pugmire, R.H. (1994): The use of in-field tree imaging in the

pre-harvest inventory assessment in the logging industry, Proceedings of the

Second New Zealand conference on Image Vision and Computing, Department of

Production Technology, Massey University, 1994.

Xlll

Acknowledgements

I would like to thank all the people who have been involved with the Tasman project

over the last two years for making this research and development possible.

In particular I would like to thank my two supervisors Prof. Bob Hodgson and

Dr. Ralph Pugmire for their valuable support and their vision in the project guidance.

Thanks to Ralph Pugmire for his help during the many hours spent of poring over the

'unexplainable' development obstacles.

The contribution of Thomas Look was invaluable in the design and engineering of the

mechanical components of the system.

Thanks also to the Gary Allen for the time spent constructing and testing the electronic

aspects of the TreeScan system, and to Farshad Nourozi for his input into the design of

the system.

I would also like to thank Tasman Forestry Ltd. for their backing of the development of

the TreeScan system and continued support for further research. In particular I would

like to thank Mike Colley (unfortunately moved on early in the project) for initiating the

commitment of Tasman Forestry to in-field tree imaging.

Lastly, but certainly not least, I would like to thank Diana Foster for her editing skills

on many chapter drafts and her unfaltering commitment whenever the project demanded

more than its fair share of my time.

I must go down to the seas again, to the lonely sea and the sky,

And all I ask is a tall ship and a star to steer her by,

And the wheel's kick and the wind's song and the white sail's shaking,

And a grey mist on the sea's face and a grey dawn breaking.

I must go down to the seas again, for the call of the running tide

Is a wild call and a clear call that may not be denied;

And all I ask is a windy day with the white clouds flying,

And the flung spray and the blown spume, and the sea-gulls crying.

I must go down to the seas again, to the vagrant gypsy life,

To the gull's way and the whale's way where the wind's like a whetted

knife;

And all I ask is a merry yarn from a laughing fellow-rover,

And quiet sleep and a sweet dream when the long trick's over.

11 Sea-Fever 11 by John Masefield

xv

xvii

Glossary

AID Analog to Digital, used as ND convertor.

CCD Charge Coupled Device

CMOS Complementary Metal Oxide Semiconductor

EPROM Erasable/Programmable Read Only Memory

Kink A short deflection of a log affecting less than 2 m of the log (see

appendix C).

Log A single section from a tree stem which has been cut into sections. A tree

stem is cut into a number of logs for transport to the mill (typically 6-12 m

in length) .

Log grade A measure of log quality and value. Each log grade has specifications

which a log must meet (see appendix C) .

LSC

MARVL

Plug-in

RAM

ROM

sec

SCSI

SED

Stem

Sweep

Wobble

Line Scan Camera

Method of Assessment based on Recoverable Volume by Log type. The

preharvest inventory system used by many forestry companies.

Macintosh code resource which complies with the Adobe interface

specification and may be used to extend applications.

Random Access Memory

Read Only Memory

Scanner Control Command

Small Computer Systems Interface, a high speed flexible computer

interface commonly used to connect peripheral devices to computers.

Small End Diameter, minimum diameter of a log.

A tree which has been felled but not yet cut into logs.

Deviation from straightness along a length of log (see appendix C).

Deviation from straightness of a log where the axis of a log deviates in two

or more directions (see appendix C).

Scs 1 J?Us Ccnit-ollev

Chapter 1

INTRODUCTION
AND

BACKGROUND

1. 1 Scope of Research -- 2

1.2 Thesis Overview --- 2

1.3 Forest Industry Background --- 4

1.4 Preharvest Inventory Assessment --- 7

2

1. 1 Scope of Research

The strategic objective of this research is to improve forest stand assessment by using

imaging techniques to make the preharvest inventory assessment more quantitative. If

successful this will have a far reaching impact on mensuration in the forestry industry.

In order to make the preharvest inventory assessment more quantitative two aspects are

important; the dimensions of the standing radiata pine trees must be measured, and the

method used to calculate recoverable volume from tree dimensions must be modified.

The research for this masters project focuses on the development of a suitable image

capture and processing system which can be used to accurately estimate tree

dimensions.

More specifically, the objective of this masters project was to develop a line scan based

image capture system that would allow the dimensions of standing pine trees to be

estimated. As a result of this clearly defined objective this masterate has been a

technology development project rather than a theoretical research project.

1.2 Thesis Overview

The research and development for this study takes the project from the design concept

stage through the design and development stage up to the final testing stage. The

structure of the thesis reflects this design path.

Chapter 1 provides an introduction and context for the research. The scope of the

research is defined and a background to the forestry industry is provided with an

emphasis on the preharvest inventory assessment. This chapter presents a statement of

problem, independent of the proposed solution.

In chapter 2 alternative methods for improving inventory assessment are reviewed. The

approaches identified in a Massey University feasibility study are outlined and analysed

for design constraints. Based on this analysis a design proposal is put forward which

provides the basis of the subsequent development work.

In chapter 3 the design considerations and theoretical foundations upon which the

development is based are explored. This chapter describes how the system works in

principle and proves that the solution is technologically feasible. Key areas of technical

difficulty are identified and individually analysed.

Chapter 1 - Introduction and Background 3

Chapter 4 describes the hardware of the TreeScan system, with an emphasis on the

custom designed scanner. Functional blocks of the scanner are described in detail and

the reasons for this particular implementation are presented. In addition to this the

obstacles encountered during hardware development are briefly discussed.

In chapter 5 the algorithms implemented in the TreeScan software are described. This

includes both the image capture software used to capture images with the scanner and

the parameter extraction software which is used to estimate actual tree dimensions.

Chapter 6 is an evaluation of the system accuracy and discusses the modifications made

to convert the scanner, as originally designed and built, to an accurate scientific

instrument.

In chapter 7 possible implications of this technology on the forestry industry are

presented. Strengths and limitations of the TreeScan system are discussed and

recommendations are made regarding the future directions for this research and

development work.

To conclude the thesis, the main points of this research are summarised in chapter 8.

Relevant detailed technical documentation and software listings are included in the

appendices.

Unless noted to the contrary in the text, all work is the authors own work. This

includes; analysis of design considerations, system sensitivity analysis, design and

testing of all digital hardware, design and testing of the majority of analog hardware, all

rnicrocontroller software development, and the majority of the system evaluation tasks.

The development of the image acquisition plug-in, the distortion correction methods,

and the image processing macros were a joint effort between the author and his

supervisor (Dr. Ralph Pugmire).

Notable tasks completed by other development team members were all mechanical

engineering, design and testing of stepper motor controller, design and testing of power

supply, and the final accuracy tests in two dimensions.

4

1. 3 Forest Industry Background

The aim of this section is to provide a forestry background to set the context for this

research. It is aimed at the reader with very little forestry experience, providing a brief

overview of key aspects of the industry. It is intended to be an introduction and does

not comprehensively cover all aspects of the forestry industry.

1.3.1 Introduction

Plantation forestry is the sector of forestry that deals with production forests.

Production forests are forests specifically planted with the aim of being harvested.

Plantation forestry does not include the felling of natural forests and is therefore a

sustainable and renewable industry.

Plantation forestry is a major export industry of New Zealand. In 1993 the export of

forestry products constituted New Zealand's third largest export earner, generating 2.5

billion dollars. This is almost on par with meat and dairy exports, 3.0 and 2.8 billion

dollars respectively (Forestry Facts & Figures, 1994).

New Zealand production forests are predominantly radiata pine (90%), with smaller

quantities of douglas fir, softwoods, and native hardwoods. The New Zealand radiata

pine estate constitutes 34% of the global radiata pine estate (Forestry Facts & Figures,

1994). New Zealand radiata pine plays an important role in the New Zealand economy

and constitutes a large proportion of the global radiata pine market.

The main plantation forestry area in New Zealand is the Rotorua district in the Central

North Island with smaller scale forestry blocks scattered throughout the country. The

ownership of these forests is divided between three large forestry companies and a

significant number of smaller owners. The three largest owners are Fletcher Challenge

Ltd., Carter Holt Harvey Ltd., and the Forestry Corporation of New Zealand. They

own 16%, 25% and 13% of plantation forestry resources respectively (Forestry Facts

& Figures, 1994).

The forestry industry has seen a phenomenal growth over the last three years. This is

largely a result of increased international demand driving world timber prices up. As the

value of sawn timber rises, the value of the raw product also rises and it becomes

important to maximise the use of business resources. Good tree breakdown is no longer

good enough, the tree breakdown must be optimal.

Chapter I - Introduction and Background 5

1.3.2 Forestry and Sawmilling

The timber industry traditionally contains a clear distinction of roles. The role of

forestry operations is very different from the role of sawmilling operations.

• The role of forestry operations is to produce logs. In practise, forestry

operations includes the planting, growing, and maintenance of the trees during the

time they are growing. Once the trees are ready to harvest they are felled and cut

into logs of one of a number of specified grades (see appendix C).

• The role of the sawmilling operations is to process logs. The sawmilling

operations commence with the raw product of logs of a certain grade and process

these into sawn timber and other wood products.

The result of this division in the industry is that a sub optimal resource optimisation

may be achieved. If this division is reduced and the tree optimisation can be based on

final timber usage rather than log breakdown, resource optimisation could be improved.

Many companies are currently restructuring to reduce this division.

1.3.3 Forest Operations

The basic unit of measurement in the forestry industry is the stand. A stand is a block of

trees of similar age, size and other characteristics. Each forest is subdivided into even

aged stands of typically 20 to 40 hectares. Stands are harvested as a whole at a tree age

of 25 to 30 years.

The life cycle or rotation of a stand of radiata pine begins when the trees are planted. It

is split into three phases, with an inventory assessment made during each phase:

• Early growth during which pruning and thinning operations may be completed

• Mid rotation during which the trees are left to grow largely unattended

• Harvest during which the trees are felled

The early growth phase, 0 - 10 years, determines the quality of the trees in a stand.

Trees are pruned in successive lifts up to a maximum of 6 or 8 m. The result of pruning

is trees which grow straight and have large sections of clearwood. Clearwood is wood

which does not contain any knots or defects outside a defect core.

Stands will undergo two thinnings to select the best trees and reduce the stocking to a

level that will produce a maximum tree growth rate. The first thinning is at a tree age of

4 to 6 years, the second at 7 to 9 years.

During the mid rotation phase, 10 - 25 years, very little tree maintenance is required.

Generally the only task completed is the mid rotation inventory assessment.

6

During the harvest phase, 25 - 30 years, the trees are felled to produce stems. These

stems are then cut into logs based on the current cutting strategy.

Once the trees in a stand are felled, the stems are taken to a skid site. A skid site is a

small area of the stand which has been cleared and where the stems are cut into logs.

Typically there will be several skid sites per stand. There are two primary methods of

stem removal; the skidder and the hauler. A skidder is a large wheeled vehicle which

drags the stems to the skid site. The hauler is a cable based pulling system which must

be used when the terrain is too steep for a skidder.

On the skid site the stems are cut into logs. This breakdown is intended to optimise the

use of a tree, but is a compromise between maximising value and meeting orders. The

log maker decides on the best breakdown for a particular stem based on the log maker's

assessment of stem shape and features, and the current log requirements. The total

value of the recovered logs depends on the performance of the Jog makers. Generally

the performance of a log maker is very good, typically 95% of optimal. If the

performance of a log maker drops below this level, this results in a very large Joss in

stem value.

Once the stem is cut into Jogs they are stacked until they can be trucked out of the

forest.

1.3.4 Inventory Assessment

Assessing the value and potential yield of a stand of trees is one of the basic concerns of

commercial forest growers. During each of the three phases in the stand life cycle an

inventory assessment is made. This involves gathering information on a representative

sample of trees from a particular stand.

The first inventory assessment is made during early growth phase, at a tree age of 4-10

years. This is the quality control inventory which allows the forest owner to check

that the pruning and thinning have been completed properly. Basic information is

collected regarding the condition of the stand as a whole such as total tree stocking, tree

diameter, tree height and the pruned height.

At a tree age of 15-16 years the mid rotation inventory assessment is made. This

enables the owner of the forest to gain information on the growth progress of the trees.

The preharvest inventory assessment is made 1-2 years prior to harvest, at a tree

age of 23-28 years. The main aim of this final inventory assessment is to aid in market

planning and harvest scheduling. Information is collected regarding the stocking of the

stand as well as detailed information regarding the characteristics of individual trees.

Section 1.4 will discuss the preharvest inventory assessment in greater detail.

Chapter I - Introduction and Background 7

1. 4 Preharvest Inventory Assessment

As stands mature growers require detailed inventory information to plan harvesting,

marketing and utilisation of the timber. Logs are cut on a 'to order' basis, with no

buffering of stock on hand. This implies that good inventory information is necessary

to determine what log grades can be expected from a particular stand. On a short term

basis if there are not enough logs to meet a particular order, higher quality logs may be

downgraded to fill the outstanding order. The result of this is a serious loss in

profitability.

The aim of the preharvest inventory is to provide information regarding the value and

quality of individual stands. This information is used in :

Harvest planning - The log grades which can be most profitably cut from a

stand are estimated. Harvesting operations are planned based on which stand can

provide the optimal Jog grades to meet particular orders.

Market planning - The volume of harvest, by log grade, is estimated up to

three years ahead of harvest. Export contracts are based on the estimated volume

of harvest.

Valuation - The absolute value of a particular forest block can be estimated from

the inventory information. The value of a forest may need to be established if the

forest is sold or if company assets are valued.

The assessment of total volume and quality should be based on the actual measured

condition of the trees. The effect of disease and damage, and management operations

such as pruning and thinning must be directly taken into account. However the data

collected should be flexible enough to allow harvest to be estimated even if log

specifications change after the inventory team has visited the stand.

There are two important aspects of any tree which must be measured in order to be able

to estimate the optimal log breakdown; the shape of the stem, and the quality of the

stem. The shape of the stem, or sinuosity, is defined by the amount of sweep and

wobble the tree has (see glossary or appendix C). The quality of the stem is defined by

the branch sizes, pruned height and defects such as rot, broken tops, forks and nodal

swelling.

Currently the 'MARYL' (Method of Assessment based on Recoverable Volume by Log

type) system is being used by most major forestry companies in New Zealand.

MARVL is an inventory assessment method designed specifically for the preharvest

inventory.

8

1.4.1 MARVL Inventory Assessment

MARVL was developed by the Forestry Research Institute of New Zealand in the

1970's in response to the need for a general purpose inventory tool and is now widely

used in Australia and the Pacific as well as New Zealand. It is based on the visual

assessment of a sample of trees. In addition to the visual assessment, a number of tree

parameters are measured. From this information log production estimates are calculated.

The MARVL system is a general purpose method which has been designed to allow

flexibility in its use (Deadman & Goulding, 1979). As result, each user of the MARVL

system has a slightly different implementation. The MARVL system involves three

steps: sampling, cruising, and estimating log production.

Sampling

A series of bounded plots are defined as a representative sample of the stand. Each plot

covers an area of 0.04 to 0.06 hectare, with a total of approximately 4% of the stand

area sampled. The number of plots per stand is based on stand area. A typical number

of plots per stand is 15, but can vary from 10 to 100.

Cruising

Once the plots have been established, a team of two people is sent out to assess each

plot. During the assessment the heights of two trees are measured using a clinometer,

stem diameter at breast height is measured for each tree and an visual assessment is

made for each tree.

The visual assessment estimates sinuosity (in three classes of sweep), and quality

features from the base of the tree. The sinuosity of the tree is recorded by describing the

stem as consisting of sections of estimated length with a given sweep class and branch

size class. For example:

• Sweep may be classified into three classes: <SED/4, SED/4-SED/2, >SED/2.

• Branch size may be classified into three classes: <7 cm, 7-14 cm, >14 cm.

There are a large number of quality features. Quality features include pruned height and

other defects such as rot, broken tops and forks (see appendix C). The height of each

feature of interest is estimated and recorded.

The measured and estimated parameters are entered into a portable computer used as a

data logger during the work out in the field.

Chapter I - Introduction and Background 9

Estimating log production

The recorded data is down-loaded from the data logger onto a computer running the

MARYL software to estimate log production. If necessary the trees are "grown on" to

harvest age, using growth models. The data from each tree is individually processed to

calculate the best log breakdown. Essential cuts such as those at the position of forks

and stumps are made first with simulated felling breakage if required. The resulting

yield for the plots is statistically extrapolated to provide an estimate of recoverable

volume by log type of the entire stand.

1.4 .2 Weaknesses of the MARVL System

The MARVL system provides essential information, however it has limitations. Several

aspects of the assessment are subjective, and the system has been developed to the point

where it is limited by this subjectivity. This has been the result of an increasing need for

more detailed and accurate inventory information and a greater variety of markets since

the system was developed.

The Jog volumes actually cut from a particular stand often do not match the log volumes

as predicted by MARVL. The total volume estimate is very good, typically within

± 5%, but the breakdown of this the volume by individual log types may vary between

± 10% to ±80%. This is not solely due to the limitations of MARVL as logs actually cut

depend on a large number of interrelated factors. For example, a sub optimal cutting

strategy may have been used intentionally to fill a particular order.

The results of MARVL depend on:

The ability of crews to accurately estimate tree parameters.

Information loss inherent in the method of calling particular trees.

The ability of the MARVL software to extract the desired information from

the recorded descriptions.

Size of the sample and how representative this is of the stand.

MARVL depends largely on the accuracy of human estimates. Branch class, tree

height and the height of quality features can be surprisingly accurately identified. The

greatest limitation of MARVL is that the estimation of sweep is subjective. Estimation

of sweep is difficult as it involves making an estimate of sinuosity in two dimensions

for sections of the tree. Two different people calling the same tree can give two different

classifications.

A second limitation of the MARVL system is that there is information loss when

describing a tree. Ambiguity can develop if all the relevant information is not retained.

30 information disregarded

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/
/

/
/

I I
I
I

30 shape

Two sections
with certain
sweep

Sweep definition inadequate

or

Overall wobble Overall sweep
[Assumed by

MARVL]

Figure 1.1 - Information loss inherent in the MARVL tree description

wo examples of this ambiguity are:

IO

1 . MARVL is a two dimensional system. Three dimensional information is

disregarded. If a tree is called as consisting of two sections of certain sweep, this

could indicate the sweep is in the same plane or at right angles . This information

which has an important impact on the optimisation of stem breakdown is

disregarded (see figure 1.1).

2. Secondly the definition of sweep for different log lengths is inadequate. If a tree

is called as consisting of two sections of certain sweep, this could indicate one of

two situations. The tree could have a large sweep over the combined length or the

tree could have wobble over the combined length (see figure 1.1).

! the above situation MARVL is not able to extract necessary information from the log

!Scription, so a simplifying assumption is made. MARVL assumes that a long log of

e same sweep class as the greatest sweep of its subsections can be cut. i.e. that the log

mtains wobble in a single plane.

istly the sample must be statistically representative of the stand. Often there is a large

triation of tree growth even within a stand. As a result the sampling procedure or

md area sampled may need to be modified.

Chapter I - Introduction and Background 11

1.4.3 Possible Improvements

In order to improve the forecasting system, one or more of the above weaknesses must

be targeted for improvement. If a more quantitative system can be provided which does

not suffer from loss of information, this would mean a great improvement for the

preharvest inventory assessment.

A key consideration to maintaining high quality while retaining MARYL, is feedback to

the staff involved regarding the results of subjective estimates. The more frequent and

precise this feedback is the more successful it will be in maintaining the accuracy of the

subjective assessment. However this is difficult in the assessment of sweep. The only

reference to compare an assessment of a single tree, is how a more experienced person

would call the tree. Even if the tree is felled, the extent to which the sweep was called

correctly is difficult to determine.

In chapter two, several methods are proposed that can be used to improve the inventory

accuracy using a partially automated system. This will produce more accurate and

repeatable results.

12

Chapter 2

IMPROVED

FOREST STAND ASSESSMENT

DESIGN PROPOSAL

2.1 In-field Tree Imaging to Improve Stand Assessment ------------------------ 14

2.2 General Technology Options -- 16

2. 3 Design Constraints -- 21

2.4 Proposed System -- 24

2. 5 Design specification --- 26

•

14

This chapter reviews alternative imaging methods which could be used to improve

inventory assessment. The approaches identified by the Massey University feasibility

study are discussed in detail and analysed for design constraints. A final design

proposal is put forward providing the basis for the rest of the development.

2.1 In-field Tree Imaging to Improve

Stand Assessment

Over recent years the increase in computing power and improved digital image

processing techniques have led to the exponential growth of electronic tools making use

of digital image processing in many commercial and industrial applications.

The sawmilling operations of the timber industry have seen much development of

scanning technology within the sawmill. This includes the scanning of log profile for

optimised cross cutting, plank profiling for optimisation during edging and trimming,

and internal scanning of logs to detect defect core structure. However this technology

has made very little impact in the forestry industry. With in-field tree imaging this is

changing.

In-field tree imaging is a method proposed to apply digital imaging technology to

improve and automate forest stand assessment. This method involves generating a three

dimensional model of a standing tree by capturing one or more images from ground

level. This three dimensional model will provide more quantitative inventory

information.

The three dimensional model fully defines the tree shape including sweep. This

addresses the two main weaknesses of the MARVL based system as discussed in

chapter one; the need to make a visual assessment of sweep in the field disappears and

so human subjectivity is eliminated and there is no information loss. By removing the

human subjectivity, the inventory system will be able to make more repeatable and

accurate estimates of tree dimensions and as a result more quantitative inventory

information will be available as basis for stand yield estimates.

Chapter 2 - Improved Forest Stand Assessment Design Proposal 15

Requirements of In-field Tree Imaging

If in-field tree imaging is to succeed the developers of a system will need to overcome a

number of obstacles. These include the substantial technical difficulties in producing a

working system that is robust enough to operate in a hostile forest environment.

The requirements of an in-field tree imaging system are that it must :

1 . Work under forest conditions.

2. Produce accurate and repeatable results.

3. Be usable and productive.

A system must be capable of working in conditions typically experienced in a forest.

This includes dense tree stocking, terrain and undergrowth variation, outdoor weather

conditions, tree movement in the wind, and low levels of ambient lighting.

The system must be technically capable of producing accurate results that are repeatable

regardless of expected variation in normal operating conditions.

The first two requirements are most important at this stage, but the system must also be

usable and productive. This involves ease of operation by non technical users,

acceptable portability (weight and ease of carrying) , and acceptable productivity

compared with existing methods of inventory.

2.1.1 Previous Research on Standing Tree Imaging

As the inventory of forests is a universal problem it was expected that there would have

been previous research on the use of imaging techniques to improve inventory methods.

This was not the case. After a comprehensive search no reference has been found to any

other development work in tree imaging, tree sizing, tree assessment, or forest

inventory assessment using imaging techniques.

The only reference found to other work specifically on standing tree imaging is a project

by the Forest Research Institute of New Zealand, which is researching technology to

solve the same problem as the development at Massey University. This was started

approximately 18 months after development at Massey University was started.

16

2.2 General Technology Options

There are a large number of technology options that could be employed to develop a

system to meet the above requirements. However, no technology can be said to provide

the best or the worst solution. The use of each technology has advantages and

disadvantages which must be considered. What is required is the lowest cost, easily

developed, sufficiently accurate technology. This involves judgements by the

developers based on past experience.

The most important consideration is a cost versus technology trade-off. Certain

technologies may be faster or more accurate, however the cost in development expense

and development time may be much higher. The requirements and benefits need to be

carefully weighed up against the funds available to determine the best technologically

feasible solution.

In the measurement of standing trees some form of remote sensing technique is required

as the tree cannot be directly physically measured without climbing the tree or felling it,

either of which would be unsatisfactory. The options available are some form of

imaging using electromagnetic imaging (visual, infrared, Xray, or radar) or ultrasonic

imaging. Each imaging method is briefly examined for technical feasibility in

figure 2.1.

The imaging method employed must capture three dimensional tree information. Some

imaging methods, such as laser and ultrasonic imaging, can directly incorporate three

dimensional information. Other imaging methods are inherently two dimensional and

the three dimensional information must be captured by some other means. Techniques

that could be used are stereo imaging, multiple views from different directions, or

structured lighting techniques.

The most promising solution is to use some form of imaging technique based on the

visible spectrum. Investigation should be made into both the use of photographic

systems and CCD based technology to capture images. The use of either infrared or

ultraviolet imaging might also prove useful and should be investigated.

2.2.1 Massey University Feasibility Study

In late 1993 the Department of Production Technology at Massey University was

commissioned to complete a study to determine the feasibility of using imaging

techniques for the automation of forest stand assessment. In particular, to identify one

or more approaches that could be developed to the prototype stage.

Chapter 2 - Improved Forest Stand Assessment Design Proposal

Photographic imaging - System to capture visual images photographically

Technically feasible and technology readily available, but working at the limit of
normal resolution. Photographic film is only a temporary medium as the images
require transfer to computer for later processing. Low technology cost but high
per use cost with processing time delay. Need to capture several images at right
angles to capture 3D information.

CCD imaging - System to directly capture visual images electronically

Technically feasible, but working past the limit of normal resolution, so may
need to employ resourceful techniques. Medium technology development cost.
Images captured directly into computer so low per image cost and no processing
delay. Need to capture several images at an angle to get 3D information. Large
quantities of data involved so a high powered computer or video tape required to
capture and store large quantities of data in the field.

Laser imaging - System to capture 3D locations of points on tree stem

Probably technically feasible but a slow and very fragile system. High
technology development cost. No images are required as 3D points are captured
directly. 3D points can be captured directly into computer. Low powered
computer required in the field with specialised imaging hardware.

Ultrasonic - System to build up images by the reflected high frequency sound

Can determine distance of objects in addition to direction. Technologically not
feasible to achieve desired resolution. Moderate hardware development cost and
low per image cost. High powered computer required to capture data in the
field.

Xray imaging - System to capture internal and external information

Technically not feasible as the detector needs to be directly on the other side of
the object being imaged. Very high development cost and image reconstruction
techniques required to recreate tree information. Xray danger to the operator.

Radar imaging - System to build up an image by reflected radar waves

Can determine distance and direction. Technically not feasible as non metallic
objects give poor radar echoes. Very difficult to get desired resolution.

Figure 2.1 - Imaging technologies

17

Investigation proved that no existing electronic imaging system existed that met the

requirements of this particular application. No existing system had an appropriate aspect

ratio or adequate resolution. After experimenting using a photographic method of

capturing images, two approaches for capturing images directly into a computer were

identified as favourable solutions that could be taken to the prototype stage (Pugmire,

1993).

18

1 . The most promising approach used a line scan camera that was stepped

through a series of fixed angles to build up an image of the tree. A single image

would be captured that contained significant perspective distortion. The image

would be recorded directly on to portable computer for immediate processing.

This would achieve an image resolution of 500 by 8000 pixels.

2 • The second approach used a video camera to capture a series of images while

recording camera tilt. This method would use a domestic video camera and store

the information on video tape for later processing. This system is likely to be less

development intensive but greater image processing is required. Individual video

frames must be spliced together to form a single image, and perspective

distortions within and between frames must be corrected for.

The first approach is based on the premise of immediate processing by a system in the

field, while the second approach is based on the premise of capturing lower quality

images in the field and more extensive processing later. Both approaches were

considered suitable to take into the prototype phase.

In addition, methods for extracting tree parameters from the images were investigated.

Using an operator assisted method of parameter extraction, suitable methods for image

calibration and perspective distortion correction were determined. Heights, widths,

branch size and position estimates could be relatively easily calculated. The possibility

of automated parameter extraction was deemed to require further research.

2.2.2 Alternative Approach

In addition to the approaches highlighted by the feasibility study a third image capture

approach, based on a high resolution CCD area camera, must be considered as a

likely solution.

The most important reason existing systems cannot be used for this application is that

they do not have an aspect ratio of 40: 1. The specifications require a degree of accuracy

in the horizontal direction and a somewhat lower resolution in the vertical direction. The

resolution requirement of 8000 by 1000 pixels is based on equal resolution in the

horizontal and vertical direction. If a compression lens or a curved mirror is used the

image can be compressed in the vertical direction without loss of resolution in the

horizontal direction.

A high resolution CCD area sensor (for example 2000 by 1000) could be used instead

of a line scan sensor and obtain similar results for sweep estimation as the system 8000

by 1000 line scan system. This system has the advantage that the image capture

involves one integration period only. As a result the integration period of the image

capture will be 8000 times faster (2000 x 4).

Chapter 2 - Improved Forest Stand Assessment Design Proposal

Worst case image with Worst case image
with area capture Tree oscillation in the wind line scan capture

Small (negligible?)
sweep introduced
over any 6 m section.

Significant wobble
introduced during
wind gusts.

Figure 2.2 - Effects of wind on captured images

19

A second advantage of this system is that the shape of the tree stem would be instantly

captured. If the tree was moving in the wind, given a worst case scenario, the image

could be captured at the point of maximum tree deflection introducing a small amount of

'apparent sweep' (see figure 2.2). With the line scan approach however the image is

built up over time, tree movement in the wind could introduce a large 'apparent wobble'

that may be difficult to distinguish from real stem deformation.

Another advantage of this approach would be that the captured image is smaller. This

would make it easier to process and store. One of the basic premises of image

processing is reducing processing requirements by minimising raw data.

This approach would be limited in the measurement of branch sizes and may not

provide adequate vertical resolution near the top of the tree. Use of an alternative system

for the measurement of branches could be considered.

Figure 2.3 summarises the three alternative image capture approaches. It was decided

that a prototype system based on the line scan approach should be built as this was the

highest resolution system and provided the greatest flexibility for control of the system

parameters during image capture.

The next section will investigate the constraints that are imposed on such a system and

that will need to be considered for the developed system to be successful.

Line scan approach Video scan approach High res. CCD approach

Property I ~:~ ~·~
I DJt~

Scan time at 10 mS per exposure 80 seconds 20 seconds 0.01 seconds + 1 second transfer

Image size - Pixels 8000 x 1000 8000 x 500 2000 x 1000

- Storage 8 megabytes 4 megabytes 2 megabytes

Storage media Computer hard disk Video tape Computer hard disk

Depth of field Small Average Large

Aperture Wide open Average Small

Development - Time Medium Low High

- Cost Medium Low High

Measure - Sweep Yes Yes Yes
- Branch size Yes (horizontal I vertical) Yes (horizontal I vertical) No (horizontal only)

- Height Yes Yes Yes

Advantages Can adjust aperture during scan Fast image capture Instantaneous capture

Can adjust focus during scan No computer req'd in field No mechanical moving parts

Disadvantages I Slow as 8000 images captured Image splicing I processing req'd Difficult to develop

Tree may move in wind Tree may move in wind Reduced vertical resolution
N
0

Figure 2.3 - Alternative image capture approaches

Chapter 2 - Improved Forest Stand Assessment Design Proposal 21

2.3 Design Constraints

Now that three specific solutions have been proposed, it is important to investigate the

constraints imposed on a system. These constraints fall in two broad categories;

constraints that result from the forest work environment, and constraints that are a

result of fundamental technology limitations (see table 2.1).

It is very important that all constraints are considered during the design of a system, as

any one of the constraints is able to reduce the usefulness of the final system. Each

constraint will be discussed in detail with examples drawn from the image capture

systems proposed in section 2.2.

2.3.1 Constraints Imposed by Forest Conditions

The system must be capable of operating in normal forest conditions. This imposes

seven constraints that need to be considered. Each constraint is discussed below:

System robustness - Any implemented system must be rugged and able to withstand

the knocks and vibration of work in the forestry industry. The intended users are

accustomed to handling heavy duty forestry equipment and may not be accustomed to

the sensitivity of electronic equipment. The system designer must take this into

consideration.

Tree stocking - Tree stocking varies from 200 to 800 stems per hectare. The stocking

of the stand limits the image capture positions that can be used. If the imaging system is

too close to the tree, visibility of tree trunk near the top will be obscured by the tree's

own branches. If the imaging system is too far away the top of the tree trunk will be

System Constraints

Forest conditions Technology limitations

System robustness Resolution

Tree stocking Aspect ratio

Terrain and undergrowth Perspective distortion

Outdoor weather conditions Image size

Tree wind movement Image storage requirements

Lighting and contrast levels Tree parameter extraction

Table 2.1 - System design constraints

22

obscured by the branches of other trees. A compromise needs to be made where the

most important section of the tree stem can be reliably imaged without getting obscured.

Terrain and undergrowth - Terrain that must be inventoried varies from steep

(slope of 40 degrees) to flat and there is normally some undergrowth present. Currently

any significant undergrowth is cleared within the plot before the inventory assessment

is made. A system should be capable of being used in situations where the terrain is

steep and the undergrowth is present.

Outdoor weather conditions - A system must be reasonably weatherproof for two

reasons. Current inventory crews work all year around, so a lot of the time it will be

raining or misty. Secondly the undergrowth in the forest floor will usually be wet for a

large part of the day. A system should be able to withstand a reasonable degree of

moisture.

Tree wind movement - Trees do not remain perfectly still to allow image capture

over a long time frame. For example with a wind of approximately ten knots the tops of

the trees in an exposed stand will move up to one metre with an oscillation period of

around five seconds. This is significant as the stem position is being imaged to within

± 1 cm.

Lighting and contrast levels - Overall lighting conditions in a forest vary greatly.

There are changes in ambient lighting from very dark to very light depending on

weather conditions and density of foliage. In bright daylight the conditions are good for

normal photography. In overcast conditions the lighting is barely adequate for normal

photography. There is also a large variation in contrast and lighting between the top and

bottom of a typical tree. Near the bottom the image will be of a low light, low contrast,

front lit object. Near the top of the tree the image will be of a high contrast, high

lighting, back lit situation. It is difficult to capture good images in these conditions with

any imaging system.

2.3.2 Constraints Imposed by Technology Limitations

Design constraints imposed by fundamental technology limitations must also be

considered. The system must be based on practical technology and physically capable

of delivering accurate results regardless of expected variation in operating conditions.

There are seven technology constraints :

Resolution - An accuracy requirement of ± 1 cm near the top of the tree requires a

minimal resolution of about 0.5 cm per pixel. This relates to an image resolution of

approximately 8000 pixels by 1000 pixels. At the bottom the pixel resolution will be

0.2 cm per pixel. This is not available in any existing imaging systems. Normal CCD

video cameras use an image resolution of approximately 500 by 400, with digital

Chapter 2 - Improved Forest Stand Assessment Design Proposal 23

camera technology typically using a resolution of 2000 by 1500 pixels. Line scan CCD

cameras are available from 128 pixels to 8000 pixels.

Aspect ratio - The aspect ratio of a standing tree is approximately 80: 1. As a result of

the perspective distortion a desirable image aspect ratio is approximately 8: 1. Images

can be captured at this aspect ratio or techniques could be used to capture images of a

more standard aspect ratio. This could be achieved through the use of a non circular

lens such as those used by the wide screen cinema industry or through the use of a

curved mirror as discussed in the high resolution CCD area camera approach.

Perspective distortion - The tree being imaged is viewed from below introducing a

perspective distortion that can be corrected ~using a calculation, if the geometry of the

imaging situation is accurately known. This may be achieved through the use of a

calibration object in the captured images. Distortion correction is more difficult for the

video approach than the line scan approach.

Image size - The sheer size of the tree images of these dimension make the images

very difficult to work with. If an image consists of 8000 by 1000 pixels at 8 bit

greyscale this corresponds to 8 megabytes of data. With images this size the computing

power required to load, save and process the images is large. This is important as

processing power of computers is limited. With the video scan system, overlapping

images must first be spliced together and then processed. This will make the processing

requirements even higher, but can be completed using batch processing out of the

forest.

Image storage requirements - The data storage requirements for images of this size

are very high. A typical high performance portable computer may contain 160

megabytes of hard disk space. This is the equivalent of 20 images or ten imaged trees .

In contrast MARYL information for the same tree consists of approximately 100 bytes

of text. This is one 80 OOOth the size of a single image. Video tape as used by the video

scan approach is a very cost effective method of storing large quantities of image data.

Tree parameter extraction - The captured image is only raw data. Tree stem size

information must be extracted from the image so a three dimensional model can be

generated. This involves some form of processing of the raw data (image) to get out the

desired tree size information. This is a task humans can complete readily but is difficult

to automate.

24

2.4 Proposed System

2.4.1 Improved Assessment Outline

The image capture system is the first part of a sequence of steps in the proposed method

for improved forest stand assessment. The images captured need to be processed to

extract the tree parameters which define the dimensions of the three dimensional model.

This model can then be processed by an optimisor to determine the optimal log

breakdown for a particular cutting strategy. The recoverable yield and value of the stand

for the optimal log breakdown can then be predicted (see figure 2.4).

Forest
Stand

r---- - -------------- - -----------1
I I
I I

: : Recoverable
1 Growth~ Log 1 Volume

Modelling Optimiser Y and
1

Stand Value
I
I
I t TreeScan system

Cutting :
Strategy 1

I I L _ __ _________ __ _________________ J

Improved Forest Stand Assessment

Figure 2.4 - Improved forest stand assessment overview

The proposed TreeScan imaging system works by capturing calibrated images of a tree.

Based on calibration data and the position of features in the image, the position of the

tree features and shape of the stem can be estimated. This is the tree parameter

extraction. By capturing two images at right angles a three dimensional model of each

tree is generated.

2.4.2 Proposed Image Capture System Overview

The proposed image capture system is a custom designed scanner capable of capturing

high resolution images with a high aspect ratio directly into a computer.

The scanner would use a line scan camera that is stepped through a series of fixed

angles to build up an image of the tree (as outlined in section 7.3 of the feasibility study

- Pugmire, 1993). The system would capture a single horizontal scan line for each

position of the rotating mechanism. The consequences of this are that the image is

slowly built up one line at a time as the mechanism rotates (see figure 2.5).

Chapter 2 - Improved Forest Stand Assessment Design Proposal 25

Either a rotating lens and camera unit, or a fixed camera with a rotating mirror or prism

could be used. A rotating mirror has the advantage that the sensor and cabling can be

fixed and that the mechanism has less mass to rotate.

The image would be recorded directly into a portable computer eliminating the need for

storage on photographic film or other temporary medium. A portable computer would

be taken into the field during image capture, so the image could be immediately

processed if required.

Light -
..... -Line ray _,,...

Lens ,,.......-
sensor ,,.......-

.._-r--~ (J +--~otating
Prism

Controller

One horizontal scan is collected
at each angle of elevation

Figure 2.5 - Image capture system principle

_,,..,

Tree
stem

26

2.5 Design specification

The aim of current work by Massey University has been to develop a prototype line

scan based image capture system for the improvement and automation of forest stand

assessment as specified in "Line Scan Camera Image Capture Project - Sub Project 1

Proposal" (see appendix D).

It was the intention of the project to rapidly produce a working proof of concept

prototype to allow the capture of images of trees and transfer these directly to a portable

computer. The captured images would be in a format that could initially be analysed

using the NIH Image package and the macros produced as part of the feasibility study.

The system needed to be capable of imaging ten trees per hour under normal forest

conditions. Normal forest conditions include low natural lighting, variation in tree

dimensions and in tree stocking, presence of undergrowth, and a large variation in

terrain.

The accuracy specifications state that the height estimates need to be accurate to within

± 0.5 metres and stem diameter estimates need to be accurate to within ± 1 cm. This

relates to an image resolution of approximately 8000 by 200 for a 40 metre tree.

Imaging the bottom two thirds of the stem may be sufficient as this is the most valuable

section. The top of the tree would normally be obscured by branches. In addition to the

stem sweep determination, estimation of branch size was classified as being desirable.

The initial aim was to develop a prototype system by July 1994. Due to several

development obstacles the prototype system was delayed until November 1994.

Chapter 3

TREES CAN

DESIGN CONSIDERATIONS

AND

THEORETICAL FOUNDATIONS

3. 1 Design Overview -- 28

3. 2 TreeScan Operating Principle -- 31

3. 3 Image Capture -- 3 5

3. 4 Scanner Interface and Image Storage ----------------:------------------------------ 46

3. 5 Parameter Extraction -- 48

3. 6 Three Dimensional Model Generation --- 57

3. 7 Implications of Image Capture Geometry -- 58

28

TreeScan is the name given to the prototype tree imaging system developed. The aim of

this chapter is to show that the TreeScan design is a technologically feasible solution.

This will be accomplished by discussing the design considerations and theoretical

foundations of likely areas of technical difficulty. Key areas of technical difficulty are

individually analysed. As a result each section in this chapter is an almost standalone

analysis and discussion.

To provide an introduction section 3.1 and section 3.2 will discuss the TreeScan design

at a systems level and show how individual design aspects interrelate, after which

sections 3.3 to 3.7 will analyse individual design aspects in greater detail.

3.1 Design Overview

Once the direction of this research and development had been established the design

phase was entered and research was started to determine the best method to realise the

design concept. This research involved determining the limiting factors of the

technology, calculating precise technology requirements, and scoping technologies

currently on the market.

The TreeScan system will fit into the improvement of forest stand assessment as shown

in figure 2.4 in the previous chapter. The system input boundary lies at the physical

geometry of the trees that need to be measured. The system output boundary lies at the

actual three dimensional tree model produced by the software. To get from input to the

system output involves a series of steps (see figure 3.1) each one of which could affect

the integrity of the information produced by the system and the feasibility of the whole

design. Each of these steps is a possible area of technical difficulty which may limit the

system and must be carefully analysed.

Second view

Key areas of technical difficulty
·- ,/V o_.s_.e

First view \

co -~-D-8-8-C§V
Physical Calibration Precision Optics CCD Interface Computer Acquisition

environment mechanics camera ttN Software

~ +--+
System Calibration
Geometry

Image capture

Principle of operation

Image transfer
& storage

Figure 3.1 - Possible areas of technical difficulty

Analysis 30
software Software

~ • ~ ~
Calibration 30 tree
& correction model

Chapter 3 - Theoretical Foundations and Design Considerations 29

The principle of operation of the TreeScan system is discussed in section 3.2. This

describes how the system works from a conceptual viewpoint. The discussion remains

at a systems level and covers the TreeScan system from input to output.

The largest part of the design involved the design of the actual image capture system. In

section 3.3 image capture technology is reviewed. This covers both the system optics

and CCD technology. The differences between conventional imaging techniques (such

as photographic and area CCD) and the TreeScan system are also discussed.

As the images that will be captured are very large, image transfer and storage

requirements are an important consideration. These are discussed is section 3.4. Image

transfer and storage requirements also have an impact on the computer that will be used.

Image calibration and the mathematical correction of various forms of image distortion

are discussed in section 3.5. This includes the placing of a calibration rod of known

dimensions in the image to determine the image capture geometry.

Section 3.6 discusses the generation of a three dimensional model from multiple views,

and lastly the expected effects of the geometry of the imaging situation are calculated.

This provides expected errors that the results of experiments with the TreeScan system

can be compared against.

Section 3.11 provides a brief note on the systems integration aspects of the project.

3.1.1 Systems Integration Project

The design and development of a custom instrument such as the TreeScan scanner is

primarily a systems integration task. Only by combining knowledge , theory, and

hardware from a large number of specialist engineering disciplines is it possible to

develop a successful system.

The main engineering disciplines that have been called on during design and

development of TreeScan are:

• Image processing - For the use of image capture technology (CCD cameras)

and image processing techniques.

• Optics - To determine lens and mirror requirements, and techniques for

calculation image depth of field and resolution.

• Mechanical engineering - To machine the precision mechanisms required to

rotate the mirror.

• Electronics and computer interfacing - To interface all individual

components and provide control over the scanner functions.

30

• Computer programming and software development - Techniques for the

custom computer software development and microcontroller programming.

• Mathematics and photogrammetry - To allow perspective distortions to be

corrected for in software.

• Product development - For the overall design and usability of the system to

meet the needs of the user.

In a project that draws from each of these engineering disciplines there is generally a

team of people involved, as has been the case with the development of TreeScan. In

such a team environment communication and project management tasks become as

important, if not more so, than the technical aspects. Work being completed in each

subsection must remain coordinated and team members must remain in constant

communication with the rest of the project team to prevent misinterpretation or

misunderstanding.

Chapter 3 - Theoretical Foundations and Design Considerations 31

3.2 TreeScan Operating Principle

The TreeScan system is a system for the estimation of tree shape and dimensions. The

TreeScan system is based on capturing calibrated images of a tree. A calibrated image is

an image captured in a situation of known geometry (or in which the geometry can be

derived from the image) that can be used to make estimates of real world object

dimensions.

It is important to distinguish between the use of the terms measurements and

estimates. The use of the term 'measurement' will imply the dimension has been

physically measured, while the use of the term 'estimate' will refer to a dimension

based on a calculation performed on other measurements. This implies that the image is

measured and the calibration rod is measured. Tree dimensions are estimates calculated

based on image measurements, some simplifying assumptions, and known calibration

rod dimensions.

The calibration rod is an object of known dimensions that is used to determine the

image capture geometry. Two calibration rods have been used; the first is a pole with

two crossbars, the second is a pole with one crossbar and a reference circle. The

discussion that follows holds for both calibration methods.

The plane through the calibration rod is the calibration plane. The calibration rod is

placed against the tree so that the calibration plane lies as close as possible to the plane

of the tree. The principal scanner axis must be perpendicular to the bottom crossbar of

the calibration rod. The scanner should be positioned at a distance so that the majority

I' ,
I ',..
I I

I I
I
I
I
I
I
I
I
I

.i..4----'--- Feature being estimated
l
I

~Calibration plane

: Vertical calibration reference
I

Pine tree

Calibration reference

Principal scanner axis

Scanner position

Figure 3.2 - TreeScan image capture

32

\,f the stem is visible. The range of 12 to 20 metres out from the tree provides a good

pl)Sition in typical tree stockings. The scanner position may be at any height with

respect to the calibration rod.

The image captured contains perspective distortion, which implies tree feature

dimensions cannot be directly measured from the image. A calculation, discussed in

detail in section 3.5, is used to correct for this distortion and follows the principle that:

1 . The scanner position is estimated by taking measurements from the image

of the calibration rod, and making use of known dimensions of the calibration

rod.

2. Tree feature dimension estimates are calculated using the estimated camera

position and measured tree image dimensions.

The procedures being used are inherently two dimensional. When estimating the size of

three dimensional objects, it is the size of the object's projection on to a two

dimensional plane that is being estimated. If the three dimensional object does not lie

exactly on the calibration plane an expected error will be introduced into the size

estimates (see figure 3.3). This is discussed in greater detail in section 3.7. The use of

[nclinometers for estimation tree heights suffers from the same limitation, which is

inherent in the geometry.

~ach image can provide information on the vertical axis (height) and one horizontal

1xis. By capturing multiple images at a known angle to each other, the system can be

!Xtended to deduce the three dimensional shape of objects. Two or more images from &­

iifferent direction;can be combined to build up a three dimensional model of the tree. A

ninimum of two views of the tree are required, with improvements in accuracy as more

Projection of 30 object on a 20 plane

' I ' ' I ' '
',

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I ·
I
I
I
I

' I
' I
', I

Figure 3.3 - Projection on a two dimensional plane

', I
'...J

Chapter 3 - Theoretical Foundations and Design Considerations 33

Position estimates Distance estimates

(x,y) i-
1 Branch diameter

(x,y) Heights Feature
separation

lntemodal distance

- Stem diameter

Figure 3.4 - TreeScan estimates

views are incorporated. If two images are used to build up the full model of the tree, the

optimal view points are at right angles to each other.

3.2.1 TreeScan Estimates

The TreeScan system inherently makes position estimates. A position estimate is a

point estimate that consists of a vertical offset and a horizontal offset from the

calibration reference. Thus for any point of the tree a height from the calibration rod and

a horizontal offset from the vertical calibration reference can be calculated. Distance

estimates between two points on the tree can be calculated by taking the difference

between two position estimates. All tree dimension estimates other than offsets from the

calibration reference are distance estimates. Distance estimates can be either horizontal,

vertical, or a combination of the two.

The TreeScan system is intended to estimate five tree parameters; height, sweep, stern

diameter, branch diameter, and feature separation such as intemodal distance.

• Height estimates are based on the vertical component of a position estimate

and are calculated from ground level using the calibration reference.

• Stem diameter, branch diameter, and feature separation are distance

estimates. Distance estimates can be made at any orientation.

• Sweep estimates are slightly more complicated. By definition (see appendix B)

sweep is the amount the tree stem is offset from a straight line over a given

length. This means that sweep is a combination between horizontal and vertical

distance estimates.

It is important to consider what kind of estimates are being made because each is

affected in a different way by the geometric inaccuracies as discussed in 3.7.

34

The model of the tree is defined by three dimensional stern midpoint position estimates

and stern diameter estimates at fixed height intervals along the stem. These stern

estimates are defined using the stem edges visible in each view. Stem diameter and stem

midpoint are calculated using the difference in edge position and the average of the two

edge positions respectively.

It should be noted that this method of describing the tree stem contrasts with the method

currently used by the MARVL system which describes the tree in sections of variable

length with predefined sweep classes. TreeScan does not define sweep classes,

but implicitly defines sweep by providing stem position information at fixed

height intervals. This reduces the loss of three dimensional information.

Chapter 3 - Theoretical Foundations and Design Considerations 35

3.3 Image Capture

This section serves two purposes. First a background to digital image capture and CCD

technology is provided for the forestry reader who may not be familiar with the

operation of a digital image capture system, and secondly important image capture

aspects of the TreeScan system are discussed. This includes important optical

considerations as well as the difference between images captured using an area camera

and images captured using a line scan approach such as the TreeScan system.

3.3.1 Digital Image Capture

Digital image capture is the conversion of light from a scene into an array of numbers

inside a computer (a digital image), which consists of individual pixels (square blocks

when zoomed right in). Each pixel has intensity value associated with it. By displaying

pixels of different intensities in a rectangular grid the digital image can be viewed.

The conversion from light to a digital image requires a sequence of steps (see figure

3.5). Light from the scene is focused on a sensor (taking the place of the camera film) ,

which converts the light into an analog voltage signal. The sensor contains many

individual sensing elements (up to 1 million per square cm), each capturing the light for

a single pixel. The sensor converts the continuous light signal into a voltage signal

consisting of individual pulses (spatial quantisation). The number of elements on the

sensor determines the resolution of the digital image.

The second step in digital image capture is the conversion of the analog voltage signals

into a digital representation using an analog to digital converter. The analog to digital

converter samples the intensity of the analog voltage of each pixel and converts it into a

Scene
N\fV>
/\f\J\f

Light
SENSOR

Digital Image Capture

AID
Convertor

Digital image
Xx.Y array in RAM

80 120 40 110 130 80 .

XxY analog voltage
pulses

Figure 3.5 - Digital image capture

XxY data bytes

36

number. There are only a certain number of intensity values each pixel in the digital

image can have (amplitude quantisation), which is typically an 8 bit number allowing

256 shades of grey to be discriminated. The numbers representing this digital image are

then transferred to the computer and stored in an array in RAM (computer memory).

There are several types of sensor technology available including: CCD (Charge Coupled

Device), CID (Charge Injection Device), and older vacuum tube sensors. The CCD

sensor is the most commonly used including every domestic video camera.

3.3.1.1 CCD Technolo~y

CCD sensors are electronic light integrating devices that generate a charge proportional

to the exposed light intensity. CCD sensors are available in both linear one dimensional

arrays and two dimensional area detector arrays.

CCD technology is based on the principle that photogenerated charge accumulated in a

'well' (defined by voltage potentials at the surface of a MOS structure) may be moved

about by moving the local potential minimum. Electrons are accumulated under the

transparent photogate, then transferred to a shift register so the data can be read out as a

serial data stream.

The sensor consists of a P-type substrate of polycrystaline silicon with areas of N-type

material at the surface (see figure 3.6). Over the semiconductor are a series of metal

electrodes insulated by a layer of silicon dioxide. If one of the electrodes is energised

this creates a depletion region or potential 'well'. Light passing through the transparent

photogate electrode generates electrons. While the photo gate is energised (during

integration) these electrons collect in the depletion region under the photogate. As soon

as the opaque transfer register electrode is energised collected electrons are transferred

into a shift register which presents the data to the on-chip amplifier as a serial data

stream.

Integration Transfer

EJ .. - I " \!:]
'-···· ···· ~---~ :

~ ... !IP ..)\ !
~ .. :
"············-····· : eeee-

Figure 3.6 - CCD technology

Chapter 3 - Theoretical Foundations and Design Considerations 37

3.3.2 Primary Imaging Considerations

When designing an image capture system there are a large number of considerations that

need to be taken into account, but there are two fundamental principles that should

govern the design of the system:

1. Capture 'good' images - The image capture conditions should be modified to

capture images that are of the best possible quality for their intended purpose. It is

relatively straight forward to ensure the captured image contains the desired

information. It is more difficult to extract this information through the extensive

processing of a poor quality image.

2. Keep the image data content low - Image processing is a computationally

intensive process, lessened if the desired information can be extracted while

keeping the raw image data content low.

With these general principles there are a number of factors that need to be considered

when capturing images. The most important factors are:

Object illumination and contrast - This has a critical impact on the image

captured. Changes in both illumination and contrast can improve image quality. In a

forestry situation the lighting conditions are difficult to cope with, and difficult to

modify. The use of a green filter is one possibility for enhancing the contrast near the

bottom of the tree.

Resolution and accuracy - The image capture system must have the provision for

sufficient resolution and accuracy to measure the desired image features. In a forestry

situation branch size estimation will require a different accuracy than feature height

estimation.

Avoidance of distortion - It is important to consider the possible distortion effects

that may affect the system. Distortion can be introduced in several ways including both

perspective distortion and any form of distortion introduced by the optical components.

Image calibration - Some method must be set up to enable measurements defined on

the image to be translated into real world measurements.

Speed of image capture - The speed of image capture must be suited to the

application. Ideally instantaneous image capture is desirable, but a trade off may need to

be made against other factors such as cost.

38

3.3.3 Area Sensor vs. Line Scan Build-up

A system with an area camera such as a conventional photographic camera or an area

CCD camera directly captures an entire image. The TreeScan scanner uses a tilting

mirror mechanism to build up an image. This introduces a fundamental difference in the

image generated. This difference is visually difficult to distinguish, but must be taken

into account when taking size estimates from the image. The difference between the

images captured with an area camera and the TreeScan scanner are discussed below.

3.3.3.1 Area camera

In an conventional photographic camera (also CCD area camera) the lens focuses an

image of the object on to the film. More precisely the object is said to lie in the object

plane, and the area in which the image is in sharp focus is called the image plane.

If the image plane is parallel to the object plane, the object is simply scaled down by the

magnification factor to produce the image (see figure 3.7). Equal steps in the image

plane relate to equal steps in the object plane and parallel lines on the object plane

remain parallel in the image plane. This has the implication that a one meter object will

cover the same number of pixels whether it lies near the top, or bottom, of the tree.

Specialised photographic equipment is required to photograph tall objects like pine trees

in this way.

Using normal photographic equipment, the image plane will not be parallel to the object

plane, this introduces a perspective distortion. The perspective distortion is a linear

distortion such that parallel lines in the object plane appear as straight lines, converging

to a point at infinity in the image plane. This distortion must be corrected for when

measuring objects from the image.

Area image capture system

Image plane parallel to object plane Image plane oblique to object plane

I ~ ~ ------~ ----
1

Image plane Object plane Image plane Object plane

D < D [j < D
Image Object Image Object

Figure 3.7 Photographic image capture distortion

Chapter 3 - Theoretical Foundations and Design Considerations 39

A photographic system has several limitations:

1 . In order to capture a whole pine tree using normal photographic equipment from a

distance of about 15 metres from the base of the tree a 28 mm wide angle lens is

required. This introduces nonlinear lens distortions (see section 3.3.3) which

must be compensated for when making size estimates from the image.

2. Any integration based system has the trade-off between depth of field and

exposure time (see section 3.3.3). If the entire tree is imaged, a large depth of

field (closed aperture) is required and a long exposure time must be used.

3. There is a large variation in lighting and contrast between the forest floor and

canopy. In an area camera the same exposure must be used for the entire image.

3.3.3.2 TreeScan scanner

The TreeScan scanner uses a different approach to capturing images. The image is

'built up' one line at a time as a mirror is incrementally rotated. This introduces an

additional distortion.

In the photographic system each image pixel is related to equal step sizes in the object

plane. In the TreeScan system each image pixel represents a constant angular step

size (see figure 3.8). The consequences of this are that pixels near the top of the tree

will represent larger distances on the object. What visually appears to happen is that the

top of the image tends to get squashed together. This is a nonlinear distortion which

must be corrected for in the distortion correction software (see section 3.5).

Area scan system

Changing step angle
for each pixel

\

Image plane

[J <
Image

.-·

Object plane

D
Object

TreeScan system

Pixels

Image plane Object plane

O< D
Image Object

Figure 3.8 - TreeScan image capture distortion

40

A line scan approach such as the TreeScan system has several advantages over an area

capture approach. These are that:

1 . A lens with longer focal length can be used as the field of view required is

smaller. In practise this means there will be no significant lens distortion.

2. The aperture and I or integration time can be adjusted during the scan to

compensate for changing light and contrast levels.

3. The lens can be refocused during the scan up the tree so a large depth of field is

not required. This allows for the use of larger apertures and hence shorter

integration times.

The disadvantages of the line scan approach are that:

1. The image is built up using multiple exposures over time. The image capture will

be slower than a single image capture and if the tree sways in the wind this may

be indistinguishable from local shape deformations in the tree.

2 . Distortions can be introduced owing to the misalignment of scanner components

such as camera, mirror, and axis of rotation, and imprecision in the driving of the

tilting mirror mechanism.

Chapter 3 - Theoretical Foundations and Design Considerations 41

3.3.4 Optical Considerations

Image capture systems require a lens to focus an optical image on the image capture

sensor. There are a number of factors that must be considered when deciding on a lens

to use for a particular image capture application. There is the trade-off between aperture

(hence depth of field) and exposure time as well as the considerations of lens quality.

Lens quality is determined by the lens aberrations, lens modulation transfer function,

and the lens' relative illumination.

A lens consists of one or more pieces of glass all of whose centres lie on a common

axis (Horder, 1971). A lens consisting of a single piece of glass is a simple lens, and

one consisting of multiple pieces of glass is a compound lens. Most practical camera

lenses are compound lenses with typically three to seven elements. Lens principles can

be visualised using a simple lens.

Light passing through a lens is limited by an aperture stop to control the exposure. The

diameter of the aperture stop can be adjusted. The light passing ability of the lens is

referred to as the relative aperture or f-number (Ray, 1979). Relative aperture is

commonly referred to as 'aperture' or 'f-stop'. For a thin lens the relative aperture is the

diameter of the aperture stop divided by the focal length of the lens. The aperture

controls the brightness of the image on the film plane. Doubling the area of the aperture

stop is referred to as one f-stop and doubles the amount of light coming into the camera.

There is a standard series off-numbers shown in table 3.1 for a 75 mm lens:

f-number 1

Aperture 76 diam. (mm)

A (N)
focal length(!)

perture = -----­
stop diameter(d)

1.4 2 2.8 4 5.6

54 38 27 19 13

Table 3.1 - Standard /-numbers

3.3.4.1 Lens focus

8 11 16 22

9 7 5 3

The depth of field, or area of sharp focus, is dependent on aperture. There is a trade-off

between aperture and exposure. A small aperture gives a large depth of field but

requires a long exposure time. To reduce the exposure time the aperture must be

increased or the sensor sensitivity increased. A large aperture reduces the depth of field.

The depth of field for a different lens aperture can be calculated as follows:

If a lens is defocused, a point in the object is rendered as a small circle in the image,

called the circle of confusion. The circle of confusion determines what is defined as

in focus or out of focus. In the following calculations the circle of confusion is taken to

42

Depth of field

f16 ·-::;:::;;~~~-----~~ f8 17m 65m
f4 Sm
f2 -3.7m
f1 •1.Bm

Required
focus range

0 10 20 30 40 50
Distance (m)

Figure 3.9 - Depth of field

be the size of a single element of the image sensor (13 µm in the case of the TreeScan

sensor). For 35 mm photography 30 µm is typically used.

Depth of field is defined by the following relationship, where Sc1ose and Sfar the near

and far point of sharp focus, and So is the object distance :

Depth of field = Sfar - Sc1ou

S = hXS0

c/ns~ h + (Sn - J)

h hyperfocal distance = L
Nxc

For a 75 mm lens focused at 20 m figure 3.9 shows the depth of field for standard

apertures two f-stops apart.

If an aperture off 1.4 is used with the TreeScan system this provides a depth of field of

2.5 m when focused at 20m. This is sufficient provided the lens is refocused eleven

times during the scan. At/ 4 the same conditions provide a depth of field of 7.6 m and

three refocuses during the scan are adequate.

3.3.4.2 Lens diffraction

Diffraction sets the maximum resolving power of a lens. When light from a point

source passes through a narrow aperture it spreads out into a circle, or airy disc. When

. the diameter of the airy disc equals the circle of confusion the lens is said to be

diffraction limited, and has reached the limit of its resolving power (Jacobson, 1993).

The diameter of the airy disc's first zero crossing can be shown to be:

diameter 1st airy disc = 2. 44 A~
d

Chapter 3 - Theoretical Foundations and Desim Considerations 43

where /.., is the wavelength of the light, v the distance of the image from the lens, and d

the effective aperture. Approximating d to the lens focal length f, and using the fact that

aperture has diameter f/N it follows that the diameter of the first airy disc is:

diameter 1st airy disc= 2. 44NA

Assuming a circle of confusion of 13 µm and typical wavelength of green light of

555 nm the lens diffraction limit can be calculated to be f9.6. No aperture smaller than

f9.6 should be used. Atf 9.6 the depth of field is 13.8 to 36 meters.

diffi . z· . N 0.013 f9 6 z ractzon zmzt = = = .
2.44J..,

3.3.4.3 Lens aberration

Lenses vary in quality due to lens aberrations. Lens aberrations are image defects that

result from the limitations in the way lenses can be designed. Aberrations can never be

eliminated, only reduced. A lens can have the following aberrations (Jacobson, 1993):

• Spherical aberration - Light passing through the edge of the lens is focused at

a different distance than light striking near the centre.

• Coma - Light passing through the edge of the lens focuses in a ring displaced

radially from the point where the light passing through the centre is focused.

• Astigmatism - Off axis points are focused at different distances in their radial or

tangential direction.

• Curvature of field - Points in a plane get sharply focused on a curved surface.

• Distortion (pincushion and barrel) - The image of a square object has sides that

curve in or out.

• Chromatic aberration - The position of sharp focus varies with wavelength.

• Lateral colour - The magnification varies with wavelength.

Blur caused by all aberrations except distortion and lateral colour can be reduced by

using a small aperture. Conversely with a large aperture a lot of aberrations will be

introduced into the image. Aspherical lenses minimise lens aberrations but are very

expensive. The effects of pincushion or barrel distortion is most significant to the

TreeScan system as it could affect the estimates made. Ideally the captured images

should have no distortion but if quantified the distortion may be corrected for.

44

3.3.4.4 Modulation transfer function and relative illumination

The modulation transfer function provides an overall measure of lens performance that

compares remaining modulation in the image plane with that of the original object as a

function of spatial frequency. The result is expressed in percent, as a function of spatial

frequency in line pairs per millimetre. As the spatial frequency increases the modulation

transfer function and contrast level at which the lines are resolved decreases.

All images from photographic lenses vary in intensity from their centre to the edge. This

is called relative illumination. There is a natural decrease from the centre to the outer

edge which varies to the fourth power of the cosine of the field angle. The second major

factor is light being blocked by mechanical vignetting. The effect of vignetting can be

reduced by using a smaller aperture.

The modulation transfer function and relative illumination of a typical lens are shown in

figure 3.10. Neither modulation transfer function or relative illumination is critical to the

TreeScan development as absolute image intensity values are not used to estimate tree

dimensions from captured images.

MTF as a function of spatial frequency

100

~60
c
840

20

"" \ \1

""' I I~ r--..
30 60 90 120 150

spatial frequency R in line pairs per mm

cos4 w-law of relative illumination

100
;g'
L 80
c:
.Q
(ii 60
c:

j 40

20

-.......... ~: !
I

~ I
~

'\
! !'-...

I

I I

1 ff 20" 30· 40" 50·

field angle w

Figure 3.10 - Modulation transfer function and relative illumination

The availability of lenses was investigated. Key features important to the choice of lens

were; motorised controls, C mount, and one inch format. Lenses were available from a

series of manufacturers. The lens implemented in the TreeScan scanner was a

12 - 75 mm, f 1.8 - 360 Cosmicar TV zoom lens with motorised focus and zoom

control and electromechanical aperture control. In the Mk2 model a manual fixed focal

length (75 mm) C mount lens was implemented with a maximum aperture off 1.4.

Chapter 3 - Theoretical Foundations and Design Considerations 45

3.3.5 Image Focus

If a small aperture system is used there is sufficient depth of field to capture a single

image without adjusting the focus. If however a large aperture system is used to obtain

more light, focus adjustments will need to be made during the image capture. This

should be implemented using some form of autofocus algorithm.

In order to set up an autofocus algorithm, a suitable measure of focus is required. The

assumption that well focused images contain more information than unfocused images

provides the basis for the criterion functions used by many autofocus systems. The

criterion functions can be classified as; frequency domain functions, gradient functions,

information content functions, and grey level variance (Groen et al, 1985).

Yeo et al (1993) evaluate four criteria functions for autofocusing in tissue microscopy

that were selected for their computational simplicity and literature recommendation. The

functions evaluated were the Tenengrad function, squared gradient function, Brenner

function, and variance function . The results indicated all functions provided a good

measure of focus.

The Brenner function , which was implemented in the TreeScan system, is a simple

criterion that is gradient related. The difference in grey level intensity is taken between

pixels two pixels apart, squared, and summed over the focus area.

f(l)= LL[l(x+2,y)-l(x,y)]2
x)'

During the image capture the distance from the lens to the object being imaged changes,

so the focus position must be adjusted. Three approaches can be adopted to retain focus

throughout a scan:

• A single focus compromise can be set halfway up the tree.

• An autofocus may be made at several places during a scan.

• Focus during the scan can be calculated from one autofocus at the bottom

and calculated geometry.

The relative advantages of these approaches is further discussed in section 5.2.5 of the

TreeScan software chapter.

46

3. 4 Scanner Interface and Image Storage

The images captured by the system under development are very large, up to eight

megabytes per image. As a result it becomes important to consider the scanner interface

that will be used to transfer images to computer and the image storage requirements

once the image has been transferred to computer.

3.4.1 Scanner Interface

There are a large number of interface methods that can be used to transfer data between

a computer and an external peripheral device. The interface method used must be able to

provide acceptable data transfer rates while retaining the flexibility to provide computer

control over the scanner.

The important difference between different interface methods is in transfer rates.

Acceptable data transfer rates are determined by the time it takes the scanner to capture

an image. For a fixed size image, as acquisition time decreases the data transfer rate

required increases proportionally. In practise for an 8 megabyte image and an

acquisition time of one minute the data rate required is 133 kByte Is. The table below

shows the data transfer rate required for a variety of acquisition times:

Image transfer time Data transfer rate

10 seconds 800 kByte/s

30 seconds 267 kByte Is

1 minute 133 kByte Is

5 minutes 26 kByte Is

Table 3.2 - Image acquisition time vs. data transfer rate

The interface between scanner and computer can be either analog or digital. Analog

methods such as framegrabber cards provide high speed methods to transfer image data

to the computer but are inflexible in the control they provide over the scanner. Digital

methods provide more flexibility but are more restrictive for the high speed transfer of

image data. Table 3.3 summarises the different interface methods available.

Frame grabber cards are able to capture information at video rates and transfer the

information to the computer at high speed using the computer bus. Frame grabber cards

are not available for portable computers and do not provide the required degree of

flexibility.

Chapter 3 - Theoretical Foundations and Design Considerations 47

Interface method Data transfer rate Flexibility

Analog

Frame grabber video rate Low

5 - 10 l\ffiyte Is

Digital

SCSI 41\ffiyte Is High

Audio input 44 kByte Is (16 bit) Low

Apple talk (serial RS422) 28.8 kByte I s High

Serial 19.2 kByte Is High

Table 3.3 - Scanner interface methods

A variety of digital interface methods are available on a standard portable computer. It

was decided to use the high speed digital SCSI communications interface to implement

the data transfer between the scanner and computer as this provided more than adequate

speed with very high flexibility in scanner control.

3.4.2 Image Storage

Image storage is an important consideration as the images captured are very large. Both

temporary storage during processing and long term storage for image archiving must be

considered.

The images are captured straight on to computer and stored on hard disk. At eight

megabytes per image a maximum of twenty images will fit on a typical 160 megabyte

hard drive. At two images per tree this relates to ten imaged trees. In the short term a

large (l-2 GByte) hard disk drive may need to be used for storage of images before

process mg.

Using the MARYL system a typical plot to be inventoried will contain about 15 trees to

inventory. At a rate of 7 or 8 plots per day, this relates to 100 trees per day or 2 Gbytes

of storage!

Possible solutions for reducing this storage requirement are to process the images

immediately, use image compression techniques, only keeping the section of the image

with the tree in it, or vertical decimation by discarding horizontal lines.

It is should be noted that video tape although a lossy storage medium is probably the

most cost effective medium to store large quantities of image data. It is in this area that

the video camera imaging method as discussed in section 2.2.1 would have significant

advantages over a computer storage based technique.

48

3. 5 Parameter Extraction

Once the images have been captured, the next task is to establish the relationship

between image dimensions and the real world tree dimensions. This is the parameter

extraction. Parameter extraction consists of image calibration and distortion

correction:

• Image calibration establishes what dimensions a single pixel represents on the

object being imaged at the calibration reference point.

• Distortion correction performs a mathematical correction, based on the

calibration information, to compensate for the perspective distortions introduced

for any point not at the calibration reference. Image calibration and distortion

correction are closely related and will be discussed together.

Planar transfonnation or geometric distortion correction?

There are two fundamentally different approaches that can be taken to correct for

perspective distortion:

1 . The distortion can be seen as a planar transformation. Four points on the

image and four points on the calibration rod uniquely identify the transformation.

If the real world dimensions of the calibration rod are known, the position of any

point on the tree can be calculated on the calibration plane.

2. The task can be seen as geometric. If the position of the scanner is known in

relation to the calibration rod, and the angle of the tree plane is known, the

position of any point on the tree can be calculated on the calibration plane.

Four distortion correction methods have been implemented, some based on planar

Correction method Accuracy Based on

Planar transformation correction

Simple perspective correction Accurate Width of 2 cross bars & spacing
(4 points in space)

TreeScan perspective correction Approximate Width of 2 cross bars & spacing
and imprecise in two correction steps

Geometric correction

TreeScan perspective correction Imprecise Width of 1 cross bar & calculated
angle (using cross bars & spacing)

TreeScan perspective correction Accurate Width of 1 cross bar &
2 measured angles

Table 3.4 - Comparison of distortion correction methods

Chapter 3 - Theoretical Foundations and Design Considerations 49

transformation and some based on geometric correction. Each of these methods relies

on different calibration information and has advantages and disadvantages. During the

development precision problems were encountered when relying solely on image

calibration rod dimensions as calibration information. As a result the calibration

procedure was modified and additional angular information measured. All distortion

correction methods are defined in this chapter with further discussion on the reasons for

the final implementation in section 6.1.

3.5.1 Image Calibration

Image calibration involves having an object of known size (calibration rod) in the

image. Using the dimensions of the calibration rod in the image, the dimensions of

other objects the same distance from the scanner can be calculated. This will allow the

size of features near the bottom of the tree to be estimated. The size of features near the

top of the tree cannot be estimated this way because a calibration rod as tall as the tree

would be required.

It should be noted that in image processing, image calibration can be based on either

linear measurement or area measurement. Image calibration based on linear

measurement will provide a scaling factor of 'size per pixel' in the direction of the

estimate. Calibration based on area measurement will provide a scaling factor in both x

and y direction. Calibration based on area measurement has the advantage that it can be

more precise and is resistant to image noise, but it is slightly more difficult to

implement.

Real World Dimensions

from calibration
reference

(x, y)
-------.

a

d

----+-"' ! ~Ground level

IH
k-~--::---

....

Figure 3.11 - Definition of terms

Image Dimensions

(x', y')I
:<-

a'

d'

50

Depending on the approach taken to correct for image distortion different calibration

information is required. Different types of calibration rod have been made to supply this

information.

The planar transformation distortion correction requires four fixed points and a

calibration reference. A calibration rod with a vertical pole and two cross bars was used

to generate this information.

The calibration information required by geometric distortion correction with measured

angle 0 is : a calibration reference, distance from this reference, and the combined dip I

lean angle. In this case a smaller calibration rod is adequate. A single cross bar can be

used to estimate distance with the centre as zero reference. A further improvement that

can be made is to use a circular object instead of the single cross bar to use image

calibration based on area measurement.

The calibration method used for the final TreeScan system is to:

• Have both a cross bar and calibration circle to provide two ways of estimating

distance, with the intention of using only the circle in the future.

• Measure the dip angle from the scanner to the calibration reference, and the angle

of tree lean while capturing the second image at right angles.

• Use centre of the circle I middle of the crossbar as the calibration reference.

Both tree lean and dip angle as a result of elevated or lowered scanner position are

combined into one angle 0 (see figure 3.17 for explanation).

Chapter 3 - Theoretical Foundations and Design Considerations 51

3.5.2 Planar Transformation Distortion Correction

The perspective distortion introduced during image capture can be interpreted as a

planar transformation. Four points on the image and four points on the calibration rod

uniquely identify the transformation. If the real world dimensions of the calibration rod

are known the position of any point on the calibration plane can be estimated.

3.5.2.1 Simple perspective correction

If an area camera is used for image capture, the distortion introduced is a linear

distortion from rectangular space to triangular space. This will be referred to as a simple

perspective distortion. A planar transformation can be used to convert back from the

triangular space to the rectangular space based on four points in the space. The four

points used are the ends of the calibration crossbars. This is the correction method

implemented for the macros developed for the experimental photographic system

(Pugmire, 1994).

Object

x

(x, y)

a

d

Real Object

Corrected
Image

x
(x', y')\

~·

a'

d'

Image

Figure 3.12 - Simple perspective correction

The positions of the calibration rod end points are established using the real dimensions

of the calibration rod (crossbar width d and d2, and distance apart a) and the image

dimensions of the calibration rod (crossbar widths d' and d2 ', and distance apart a') .

The real world x and y coordinates are calculated from the image coordinates using the

following equations:

y'a(l-P)
y= , p,

a- Y
P= J- d1'

d'

52

3.5.2.2 TreeScan perspective correction (approximation)

If the TreeScan camera is used for image capture, the distortion will become nonlinear.

This distortion (explained in section 3.3.3) will be referred to as the TreeScan

perspective distortion. Four points still uniquely define the transformation, however

image lines represent equal angular step sizes. The consequence of this is that pixels

near the top of the TreeScan image will represent larger distances on the equivalent area

scan image as shown in figure 3.13.

Object

y"

--,.- - --·.-----~

[_ ___ _ -- --- --- ---- -
x

Y __ ___ __ (~'.ciJ. ___ ------t-~

Corrected
Image

' ' ' '
- ---- -;- ----)(;~-- --

' .
! (x", y").
' ' ' ' ' .

---~----------- -.,- --
' ' ' .

----+--> ---.:--------------'--

General situation

y''

,/ y'

y'a\(

TreeScan image

-------- --- --- --------~/--- ------------ -- __ ! ___ '!_ __ _

Equivalent area /_______:
""- one

camera image O(-ve) a pixel

Figure 3.13 - Two step perspective correction

This distortion can be corrected for in a two step process. Coordinates on the TreeScan

image can be converted to equivalent coordinates within an area camera image using an

angular correction. These coordinates are then processed by the simple perspective

correction method described in the previous section.

,, tan(y'a-0)
y =

tan a

y"a(l- P)
y= , p,

a - y

a = Step angle

x'd(a) x---
d' a'-Py"

where P = 1 - d2 '

d'

If the principal scanner axis is not normal to the calibration plane (the angle 0 is zero),

this two step correction method becomes an approximation.

The second restriction of this method is that it suffers from the precision problems

discussed in the section on geometric correction. Given these restrictions the usefulness

of this correction method is limited.

Chapter 3 - Theoretical Foundations and Design Considerations 53

3.5.3 Geometric Distortion Correction

The distortion correction task can also be interpreted as a geometric correction. This

involves two steps; the scanner position relative to the calibration rod is determined to

establish the image capture geometry, which is then used to estimate the position of any

point on the calibration plane.

3.5.3.1 TreeScan perspective correction - derived 0 (imprecise)

Once the scanner position in relation to the calibration rod is known the coordinates of

any position on the tree can be easily estimated using H, D and 0. They coordinate

can be estimated using elementary trigonometry, and x is calculated using the fact that

scaling in the x direction (or magnification) is inversely proportional to distance. To get

the x coordinate, x' is scaled by the calibration factor did' and then by the ratio of

distances Wi/W.

,.. (x,y)

d

Figure 3.14 - Geometric correction using derived 0

y=tan(y'a+O)xD - H x'd(cos(O) J
x = 7 cos(y' a+ 0)

The scanner position relative to the calibration rod can be calculated from

the calibration rod dimensions in the image. This involves estimating distance W from

the calibration reference using the image width of the lower calibration bar, and the

calculation of the angle 0 from other image dimensions of the calibration rod.

The situation is slightly redundant and different methods may be used to calculate 0

from the calibration rod dimensions. Three methods implemented were the sine rule

method, cosine rule method, and the Al method I as described in figure 3.15.

However each of these methods suffers from a precision problem as a result of using a

parameter to a degree of accuracy an order of magnitude greater than it can be measured

from the image.

I Thanks to Alistair Hall for help with the derivation of the mathematics for this method.

Sine rule Cosine rule Al rule

Sine rule method - This method to calculate 0 is based on the sine rule.

The distance from the calibration reference can be estimated using the image

width of the bottom cross bar, the angle A can be measured directly from the

image using the image calibration rod height, and a (crossbar height) is

physically measured. Using the sine rule 0 can be calculated.

0=90-A-B A=a'a B . _1(W sinA) =szn
a

Cosine rule method - This method to calculate 0 is based on the cosine rule.

The distance from the calibration reference can be estimated using the image

width of the bottom calibration rod cross bar, the distance from the top of the

calibration rod can be estimated using the image width of the top calibration rod

crossbar, and a is measured. Using the cosine rule 0 can be calculated.

0=90-A-B A=a'a B = cos-1(a2 + W/ + w2 J
2aW

Al rule method - This method is based on solved simultaneous equations

describing the situation. Corrected x and y coordinates are directly calculated

without the intermediate step of calculating 0 .

The image widths of both the top and bottom cross bars are used, and the angle

A is measured directly from the image using the image calibration rod height.

[

cos(a' a)- d
2:J

O=tan·1 d
sin(a' a)

cos(a'a+O) sin(y'a)
y=a

sin(a' a) cos(y' a+ 0)

x'd(cos(O) J
x=-;r cos(y'a+O)

Figure 3.15 - Correction based on calibration rod dimensions

54

Chapter 3 - Theoretical Foundations and Design Considerations

3.5 rn

Height = 35 ± 3.5 m

1. The relative ratio of the calibration rod crossbars is being used to estimate

the calibration plane alignment.

2 . A typical value of d' is 700 pixels. If the position of each end of the

calibration rod crossbars can be determined to the nearest pixel, the image

width of a crossbar is known to± 0.3%.

3 . The ratio of the two crossbars is d2 '/ d' and used to estimate WIW2. This

ratio is used to determine the alignment of the calibration rod 15 m away.

WIW2 is known to ± 0.6% so the position of the top crossbar with respect

to the bottom crossbar is known to ± 9 cm.

5. At the top of a 35 m tree this represents an offset of 1.3 metres, which in

return represents an error in height of 3.5 m.

An optimal accuracy of 35 ± 3.5 m !

Figure 3.16 - Distortion correction imprecision

55

When estimating the scanner position what is effectively being done is the estimation of

the alignment of the calibration plane (or rod) with respect to the scanner. It is the

projection on this calibration plane of objects that is being measured, so in order to

estimate the tree dimensions accurately, the positioning of the calibration plane must be

known to a much higher degree of accuracy that the dimensions being estimated.

If calibration rod points can be located on the image to 1 pixel accuracy this represents

an optimal height accuracy of± 3.5 m at a height of 35 m (as shown in figure 3.16). In

order to identify heights to a± 10 cm accuracy the calibration rod points need to be

identified to a subpixel accuracy of 0.03 pixel. An alternative is to find a different

method to determine the angle 0.

56

3.5.3.2 TreeScan perspective correction - measured 0

This final distortion correction method is again based on the geometric correction that

position coordinates can be calculated using known H, D and 0. The same equations

used in the previous section are used to estimate these coordinates.

y = tan(y' a + 0) x D - H x'd(cos(O))
x=-;r cos(y'a+O)

where 0 = Dip + Tree lean

The angle 0 is however physically measured rather that derived from image calibration

rod dimensions. By measuring 0 the imprecision experienced by the previous methods

that derive 0 can be eliminated.

The angle 0 is the combined angle of tree lean and dip as a result of a scanner position

not level with the calibration rod. As a result the angle 0 is the sum of the tree lean

measured from the vertical and the measured dip between the horizontal and the

principal axis. 0 can be measured directly to the required degree of accuracy.

The height deviation of± 3.5 m discussed in the previous section is equivalent to an

accuracy in angle measurement of 2.2 degrees. Using a digital builders' level each of

dip and lean can be measured to ± 0.1 degrees. This translates to an accuracy in height

measurements of ± 30 cm. This is the method implemented in the Mk2 version of the

TreeScan system.

90-Tree lean

Equivalent
to tree lean

(/ tp

0 =Dip+ Lean

Figure 3.17 - Measurement of angle 0

,
I
I

Tree lean I j
~

I I
' I
I I

0 =Dip+ Lean

Note: A final comment that should be made is that the centre of the image should be

used as the reference for x coordinates in this distortion correction as this is the only

part of the image that remains horizontally undistorted.

Chapter 3 - Theoretical Foundations and Design Considerations 57

3.6 Three Dimensional Model Generation

Three dimensional model construction must combine stem shape information from

multiple views to form a three dimensional model of the tree stem.

To obtain a three dimensional model of a tree a minimum of two views at right angles is

required. To ensure all branches have been observed a minimum of two views at

180 degree spacing is required. Both a view of all branches and a three dimensional

model for the assessment of sweep can be obtained from three views at 120 degree

spacing. If only a sample of branches is required then two views at right angles is

sufficient.

The TreeScan software has been designed to estimate tree shape, and the size of visible

branches from two views at right angles.

The three dimensional model consists a series of stem diameter and stem position

estimates along the length of the tree stem. The model should consist of sufficient

'slices' to accurately determine any shape changes in the stem.

Stem diameter and stem position estimates are obtained for the two edges of the stem.

By combining edge information of two views at right angles a rectangle is defined

within which the stem lies . It must be assumed that the centre of the rectangle represents

the centre of the tree stem and that the stem diameter is the magnitude of an inscribed

~~~ri:e- h . f . 3 18 as s own m igure . . 

Generation of 3D model from two 20 views 

"· 
' ' 

30 stem ---;-----1-+--~ 
model 

i 
I 

l... 
' ' 

view1 

~-4:-~ d~~.,2 

view2 

I 
I 
I 
I 
I 
I 
I 

) 

Figure 3.18 - Three dimensional model generation 



58 

Some trees will have a stern that is slightly oval in shape rather than circular. The two 

estimated diameters may or may not reflect this. If the major axis of the oval lies in the 

axis of one of the views the two diameter estimates will be diameter estimates along the 

major and minor axis of the tree stern. If the major axis does not lie in the axis of one 

of the views, both estimated diameters may be the same even though the tree stem is 

oval. 

It is important to note that height information is duplicated as it is available in both 

views. If a calibration error is introduced and the calibration plane does not lie exactly 

within the tree an expected height error is introduced in estimates (see section 3.7). This 

means that there will be a discrepancy between height information from the two views. 

By combining height information from the second image with that of the first image a 

more accurate height estimate could be made. This may be done in two ways: 

1. The height estimates of a feature common to both images could be compared and 

an indication could be gained of the accuracy of calibration. By adjusting other 

height estimates so that this particular height estimate matched in both views the 

average error could be reduced. This would require points to be marked in both 

images. 

2. Height estimate may be corrected slightly by modifying the calibration with the 

feature distance in front of or behind the calibration reference from the second 

view. This would provide a unique adjustment for each point on the stem and 

account to a certain extent for tree shape variation. Feature size estimation would 

become an iterative process which requires the marking of the full stem shape 

first. 

At this stage these modifications have not been made as the system is still undergoing 

testing. The improvement these two methods would make to the accuracy of the system 

is expected to be minimal. 



Chapter 3 - Theoretical Foundations and Design Considerations 59 

3. 7 Implications of Image Capture Geometry 

The TreeScan system must be able to make accurate estimates from images captured 

under poor geometric image capture conditions, which may introduce a series of errors 

in the tree size estimates. These errors will be referred to as expected errors as their 

magnitude can be calculated. This section discusses the various sources of expected 

error and calculates their significance to the accuracy of the TreeScan system. 

The image capture geometry is poor because calibration information must be 

extrapolated. Images can only be captured and calibrated at ground level and must 

typically be captured in the range of ten to twenty metres from the base of the tree, this 

is drawn to scale in figure 3.19. The images are calibrated at the base of the tree 

providing good precision there. 

To estimate dimensions near the top of the tree the calibration information must be 

extrapolated using the distortion correction methods. As a result errors will be 

introduced. In addition to this, for estimates made at an oblique angle to the calibration 

plane (height estimates towards the top of the tree) the expected error will be 

accentuated. 

This image capture geometry is inherent in in-field tree imaging and cannot be improved 

upon without a conceptually different approach to the estimation of tree parameters. 

The image is captured fromG), 

the image is calibrated at®. 

estimates are made as high as@ ! 

20m 15m 10m 

40m 
tree 

Calibration 
rod 

Figure 3.19 - Image capture geometry (to scale) 



60 

The effect of the image capture geometry is different on the various size estimates: 

• Branch diameters, stem diameters, and feature sizes are estimated 

perpendicular to the calibration plane and the introduced error will be small. 

• Height estimates are made at an oblique angle to the calibration plane and 

introduced errors will be larger. 

The expected errors in the TreeScan estimates can be divided into three sources: 

1 . Tree plane variation 

2 . Variation in calibration data 

3. Image processing and feature marking precision 

Table 3 .5 summarises the effects from each of these sources under typical operating 

conditions, which are taken to be: the estimation of parameters at a height of 30 m, and 

image capture distance of 15 m from the base of the tree. The magnitude of the expected 

error classified as: major (>0.5 x required specifications), minor (0.2 - 0.5 x 

specifications), and insignificant ( <0.2 x specification). 

Brief discussion of each relevant source of uncertainty is provided in sections 3. 7 .1 to 

3.7.3, with further calculations provided in appendix E. 

Cause of uncertainty Significance of expected error 

Height Stem diam. Branch diam. 

Tree plane variation 

Tree displacement Major Insignificant Insignificant 

Calibration alignment variation 

Variation in measured angle Major Minor Insignificant 

Calibration rod alignment Minor Minor Minor 

Calibration rod vertical placement Minor Insignificant Insignificant 

Calibration rod in front of tree Insignificant Minor Minor 

Image processing precision 

Calibration end pixel placement Minor Minor Minor 

Calibration centre point placement Minor Insignificant Insignificant 

Pixel placement on feature Insignificant Minor Major 

Table 3.5 - Sources of expected error in TreeScan 



Chapter 3 - Theoretical Foundations and Design Considerations 61 

3.7.1 Tree Plane Variation 

If a section of tree is not straight (as a result of lean, sweep, or kink) so that the feature 

of interest is offset from the calibration plane there will be a tree displacement, 

introducing expected errors. For tree lean the error can be eliminated by aligning the 

scanner correctly, however for a tree with sweep or a kink this may not be possible and 

a compromise will need to be made in aligning the scanner. 

Lean Sweep Kink 

Tree axis 

Figure 3.20 - Tree plane variation 

Apparent height 

I error (+ve) 

r---..--.--- Actual height 

) 

I 
I 
I 
I 
I 

~ Displacement 
\ 

Calibration plane 

The software can be extended to use calibration information from the second view to 

modify the calibration information of the first view. This would reduce the magnitude 

of introduced errors, but implies any height must be iteratively refined by processing 

both views (see section 3.6). 

3. 7.1.1 Errors Introduced bv Tree Displacement 

Tree displacement can cause a major error in height estimates, as any error is 

accentuated by the geometry. As shown in table 3.6, a stem displacement of only 50 cm 

will cause a height to be overestimated by 1.03 m for a height estimate at 30 m from an 

imaging position 15 m away from the tree (see appendix E for more detail). 

Heiqht error (m) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiqht error (m) introduced by 0.5 degree error in 0 
1 0 0.00 0.53 1.05 1 .58 2 .11 
1 5 0 .00 0.34 0.69 1. 0 3 1.38 
20 0.00 0.26 0.51 0.77 1.03 

Table 3.6 - Height errors introduced by stem displacement 



62 

Width errors are not as badly affected by stern displacement as width estimates are 

based solely on distance from the feature. For the same situation described above the 

error in diameter estimates will be 3 mm for a 10 cm branch (see table 3.7). 

Width error (cm) 
Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Width error (cm) from 50 cm stem displacement (1 O cm branch) 
1 0 -0.5 -0.5 -0.5 -0.5 -0.5 
1 5 -0.3 -0.3 -0.3 -0.3 -0.3 
20 -0.2 -0.2 -0.2 -0.2 -0.2 

Table 3.7 - Width errors introduced by stem displacement 

The introduction of these expected errors can be minimised by ensuring the scanner and 

the calibration rod are closely aligned with the tree during image capture. 

Note that in all error tables (3.6 to 3.9) the error values for typical conditions, estimates 

at a height of 30 m imaged 15 rn away from the tree, are highlighted in bold. 

In short: 

• The variation in tree plane can introduce a major error in height estimates. Any 

errors in height estimates will be accentuated near the top of the tree. 

• The variation in tree plane can introduce a minor error in diameter estimates. 

Diameter estimate errors remain constant up the tree. 

3.7.2 Calibration Alignment Variation 

The image can only be calibrated to the degree of accuracy that the calibration 

information can be measured or estimated . This section discusses the effects of 

imprecise calibration information and calculates the degree of accuracy to which the 

Error in angl~ 7 
measuremenf / 

y 

Error in distance 
estimate .J.:::'"T 

Scanner? 
Position • 

I 
\ 

I 
I 
I 

--i 
I 
I 
I 
I 

Error in vertical 
placement 

Figure 3.21 - Calibration alignment variation 



Chapter 3 - Theoretical Foundations and Design Considerations 63 

calibration information needs to be measured. Any imprecision in calibration alignment 

of the Mk2 system can be divided into three sources; variation in measured angular 

position, variation in distance estimate, and calibration rod placement. 

Analysis of the variation in the calibration alignment of the Mkl system was more 

complicated (see Weehuizen 1994c for a discussion). 

3.7.2.1 Errors Introduced by Variation in Measured an2le 

If the angular position of the scanner w.r.t. the tree (angle 0) is inaccurately measured 

or not entered to calibrate the image, errors are introduced into the size estimates. 

Inaccurate measurement of 0 affects the 'alignment' of the calibration plane to which 

dimensions are being estimated (see table 3.8). 

• Inaccurate measurement of 0 can introduce a major error in height estimates. Any 

errors in height estimates will be accentuated near the top of the tree. 

• Inaccurate measurement of 0 does not introduce significant errors in width 

estimates. 

The angle 0 should be measured to an accuracy of ± 0.2 degrees. This provides a 

precision in the height estimates of± 20 cm for estimates taken at a tree height of 30 m 

from images captured at a position 15 m from the base of the tree. 

Height error (m) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiqht error (m) introduced by 0.5 deqree error in 0 
1 0 0.00 0 .09 0.36 0.81 1.45 
1 5 0.00 0.06 0.24 0.5 3 0.95 
20 0.00 0.04 0.18 0.40 0 .71 

Width error (cm) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Width error (cm) introduced bv 0.5 deqree error in 0 
1 0 0 .0 -0.2 -0. 1 -0. 1 - 0. 1 
1 5 0.0 -0.2 -0.2 - 0 . 1 - 0 . 1 
20 0.0 -0. 1 -0.2 -0.2 -0. 1 

Table 3.8 - Errors introduced by variation in measured angle 



64 

3.7.2.2 Errors Introduced by Calibration Rod Alienment 

The calibration distance is the distance from the point the image was captured to the 

calibration reference. The width of the calibration rod cross bars is used to estimate this 

calibration distance. If the calibration rod is not at right angles to the direction of image 

capture an error is introduced into the estimated calibration distance. 

A distance error of 25 cm (see table 3.9) implies the calibration rod has rotated by 10 

degrees (or each end of the calibration rod has moved by 18 cm). 

• Inaccurate measurement of calibration distance can introduce a minor error in 

height estimates. Errors in height estimates are accentuated near the top of the tree. 

• Inaccurate measurement of calibration distance does not introduce significant 

errors in width estimates. 

The calibration rod should be perpendicular to the principal axis to within ± 6 degrees 

(crossbar ends can move up to ± 11 cm). This estimates the calibration distance to 

± 10 cm and provides a height estimate precision of± 20 cm for estimates taken at a tree 

height of 30 m from images captured at a position 15 m away from the base of the tree. 

Hei<1ht error (m) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Heiqht error (m) introduced by 25 cm error in Dist. 
1 0 0.00 0.25 0.50 0.75 1.00 
1 5 0.00 0 . 17 0.33 0.50 0.67 
20 0.00 0.13 0 .25 0.38 0.50 

Width error (cm) 

Dist from Height of tree estimates (m) 
tree (m) 0 1 0 20 30 40 

Width error (cm) introduced by 25 cm error in Dist. 
1 0 -0 . 2 -0.2 -0.2 -0.2 -0.2 
1 5 -0.2 -0.2 -0.2 - 0 . 2 -0.2 
20 -0. 1 -0. 1 -0. 1 -0. 1 -0. 1 

Table 3.9 - Errors introduced by distance error 

3.7.2.3 Errors Introduced by Calibration Rod Vertical Placement 

The calibration rod is used as the calibration reference. The calibration rod must be 

placed at the same height in both images to retain the same height as a calibration 

reference. If the rod is not placed at the same height this introduces: 

• Height estimate error of the size of the calibration rod displacement. 

• No width estimate errors. 

The calibration rod should be placed at the same height in both views to an accuracy of 

± 5 cm. This provides a precision of± 5 cm for height estimates 



Chapter 3 - Theoretical Foundations and Design Considerations 65 

3.7.2.4 Errors Introduced by Calibration Rod Placement 

in Front of Tree 

Trees are three dimensional and the stem has depth. The calibration rod cannot be 

placed directly in line with the centre of the tree, instead it must be placed in front of the 

tree. The result of this is that there is a small stem offset error (half stem diameter) 

introduced near the base of the tree. The effect of stem offset error is described in 

section 3. 7 .1. 

• Calibration rod placement can introduce a minor error in height estimates. 

• Calibration rod placement does not introduce significant errors in width estimates. 

The calibration software can take this into account and correct both height and diameter 

estimates for this. 

3.7.3 Image Processing and Feature Marking Precision 

In order to calibrate the image and estimate feature sizes, points must be marked on the 

image. The placement of these points introduces imprecision as the marking relies on 

human judgement and the ability to see the feature of interest in the image. This section 

discusses the effects of imprecise image marking and calculates the degree of accuracy 

to which the points need to be marked. 

3.7.3.1 Errors Introduced by Calibration Rod End Pixel Placement 

The marking of the calibration rod end points provides information on their location in 

the image. Using these marked points and the known calibration rod width the 

calibration distance is calculated. 

• Minor error introduced in height estimates 

• No error introduced in diameter estimates 

The end points should be marked to within ± 1 pixel. This estimates the calibration 

distance to a precision of± 4 cm, which provides a precision in the height estimates as a 

result of calibration rod end pixel placement of ± 8 cm for estimates taken at a tree 

height of 30 m from images captured at a position 15 m from the base of the tree. 



66 

3.7.3.2 Errors Introduced by Calibration Rod 

Centre Pixel Placement 

The centre of the calibration rod is used as the calibration reference and taken to be at 

breast height. All estimates are made with reference to this. If the placement of this 

point is imprecise all height estimates will be out by several cm. 

• Minor error introduced in height estimates 

• No error introduced in diameter estimates 

The centre of the calibration rod must be marked to within ± I pixel. This provides a 

precision in the height estimates as a result of calibration rod centre pixel placement of 

± I cm for estimates taken at a tree height of 30 m from images captured at a position 

15 m from the base of the tree. 

3.7.3.3 Errors Introduced by Pixel Placement on Feature 

The pixel placement on features whose size is being estimated provides their location 

information. Imprecise placement has the following effect: 

• No significant error introduced in height estimates 

• Major error introduced in diameter estimates 

As diameter estimates are calculated using the differences in absolute position, and the 

two sides of a branch typically will be separated only by a diameter of several pixels 

estimates are very sensitive to precise feature marking. 

The end points of the line selection for branch sizes should be marked to sub pixel 

accuracy if possible. This provides a precision in branch size estimates of a pixel 

resolution of± 0.7 cm near the top of the tree. 



Chapter 4 

TREES CAN HARDWARE 

4.1 TreeScan Hardware Overview ----------------------------------------------------- 68 

4.2 Scanner Hardware Overview ---------------------------------------------------- 70 

4. 3 Microcontroller Subsystem --------------------------------------------------------- 75 

4 .4 SCSI Subsystem -------------------------------------------------------------------- 80 

4.5 Line Scan Camera Subsystem ----------------------------------------------------- 87 

4. 6 Additional Hardware -------------------------------------------------------------- 92 

4. 7 Hardware Development Environment --~--------------------------------------- 103 



68 

This chapter describes the hardware of the TreeScan system. The main focus is on a 

description of the custom designed scanner. 

The scanner hardware is described by dividing the scanner into functional blocks. The 

interaction between these functional blocks is explained, then a number of aspects of 

each functional block are described in greater detail, including; operating theory, 

building blocks, schematics, reasons for the chosen implementation, and problems 

encountered during development. 

4.1 TreeScan Hardware Overview 

The TreeScan system is a complete system that consists of a portable computer, a 

custom designed scanner and a calibration rod. In addition to this there is a tripod on 

which to mount the scanner, a scope sight and digital level to align the scanner, a set of 

batteries to power the scanner, cables to connect the scanner to the computer and power 

supply, and a set of cases to house the entire system. 

Normal operation of the TreeScan system involves two separate operations: 

1. Image Capture: Images must be captured using the scanner under control of the 

portable computer. All system components must be taken into the forest to capture 

images. 

2 . Parameter Extraction: Tree dimensions must be estimated using routines 

implemented in software. The parameter extraction requires only the portable 

computer. This may be carried out at any time after the images have been 

captured, either in the forest or back in the office. 

The system configured for image capture consists of the scanner set up on the tripod 

and connected to the portable computer, as shown in figure 4.1. The scanner is pointed 

at the tree to be imaged with the calibration rod fully extended and placed against the 

tree. The scanner is then aligned with the tree using the scope sight and its angular 

position with respect to the tree recorded. The image can then be captured. 

The scanner captures the image data under control of the computer and passes the image 

data to the computer for storage. The computer sends high level scanner control 

commands ( SCCs) to the scanner. The microcontroller inside the scanner carries out 

tasks based on these. Scanner control commands are high level instructions such as; 

move the scanning mirror home, capture a block of lines, or move the lens focus to 

infinity. 



Chapter 4 - TreeScan Hardware 69 

Scanner 

rod 

Tripod 

cases 

Figure 4.1 - TreeScan system ready for image capture 

The portable computer and scanner batteries are permanently housed in the smaller of 

the two protective carrying cases (see figure 4.1 ). All other components including 

scanner, tripod, cabling, scope sight and digital level fit into the second protective case. 

The portable computer is an Apple Macintosh Powerbook 520c with 20 megabytes of 

RAM. The Powerbook 520c is based on the Motorola 68040 processor runnin,.g at 
L:Se~~ 1cn) 

25 MHz. Combined with the flexible NIH Image image processing software"the 

Powerbook provides a powerful image processing environment. The Powerbook also 

has inbuilt support to connect high speed external SCSI devices. 

The hardware and software are closely interrelated in any complex microprocessor 

based system such as the TreeScan system. The choice of hardware determines how the 

software is implemented and influences the flexibility of the system. The hardware 

implemented was chosen for its flexibility , relatively low cost, and to provide a short 

development time. Where the hardware has limitations, in some cases these can be 

circumvented by a resourceful software implementation. 



70 

4. 2 Scanner Hardware Overview 

The scanner is the "camera" in the system and is a custom designed scientific 

instrument. During an image capture there are a large number of time critical tasks to be 

coordinated. A dedicated microcontroller based instrument provides the ability to 

coordinate these tasks while retaining maximum control and flexibility. 

A microprocessor based instrument can be designed so that essential data processing is 

handled by the microcontroller itself or by dedicated hardware (such as specialised AID 

converters), which will be faster than the general purpose microcontroller hardware. 

However, the greatest flexibility will be maintained if the microcontroller hardware is 

used. For the TreeScan prototype it was decided that it was essential to maintain 

flexibility. 

~------------------------ --- --- ---- - -- ] 

1 6. Power supply 
I 
1 subsystem 
I 

~~~~ su;s~~~m 
I

1· Microcontroller 4· Scanning mirror
subsystem subsystem

"---~ Lens
subsystem Portable

Computer

I
-----~

1 Scanner
I I

L-- -------- - -- ----- - --------- ----- - - --1

Figure 4 .2 - TreeScan scanner functional block diagram

The TreeScan scanner can be divided into six functional blocks (see figure 4.2), the

physical layout of which is shown figure 4.3. These functional blocks are:

I. Microcontroller subsystem 4. Scanning mirror subsystem

2. SCSI subsystem 5. Lens subsystem

3. Line scan camera subsystem 6. Power supply subsystem

Microcontroller subsystem - Central to the scanner is the microcontroller

subsystem. The microcontroller coordinates all functions of the TreeScan scanner and

carries out tasks based on the SCC's passed from the portable computer. The

microcontroller handles the actual image acquisition and image transfer to the computer,

as well as the generation of signals to control the other five functional blocks.

SCSI subsystem - Scanner control commands are passed from the computer to the

scanner via a SCSI interface (Small Computer Systems Interface - see section 4.4). The

Chapter 4 - TreeScan Hardware

Scanning
mechanism

Scope
mount

Status LED's

Mirror Lens

Controller
board

Focus
mechanism

Figure 4.3 - The scanner internal layout

Line scan
camera

Scanner
chassis

71

Cabling to
computer

SCSI interface is a high speed communications interface often used to communicate

between a computer and peripheral devices. The SCSI specification incorporates a

communications protocol that consists of a sequence of bus phases with a complex

sequence of control signalling. A SCSI bus controller deals with the bus phases and

bus signalling, providing a straight-forward interface to the SCSI bus for the

microcontroller.

Line scan camera subsystem - The third important block is the line scan camera

subsystem. The image data is captured by the line scan camera and presented to the

microcontroller as a series of analog video signals. The microcontroller converts these

analog signals to a digital representation which is then sent to the computer using the

SCSI controller. The line scan camera captures grey scale image information at a

resolution of 1024 pixels per line. The line scan camera is controlled by two timing

signals generated by the microcontroller; a line/integration clock and a pixel clock.

Scanning mirror subsystem - The scanning mirror subsystem consists of a mirror

mounted on a precision rotation mechanism. As the mechanism is slowly rotated the

image is built up one line at a time. The mechanism is rotated using a worm wheel drive

shaft attached to a stepper motor. The microcontroller software determines when the

stepper motor is rotated. The rotation mechanism is precision machined and mounted on

miniature roller bearings. Two optical position sensors are used to detect an exact home

position for the mechanism.

72

Lens subsystem - The fifth functional block is the lens subsystem. The purpose of

the lens is to focus an image of a real world object on to the sensor of the line scan

camera. The lens has motorised focus control, motorised zoom control and

electromechanical aperture control. This allows maximum flexibility during image

capture. The infinity position of the focus stepper motor is detected by a limit switch.

Power supply subsystem - The power supply subsystem provides power at the

required voltage to all of the above modules from two external batteries. The power

supply has two states controlled by the microcontroller:

• Power save - during which power is turned off to all of the high consumption

components. Only the CMOS microcontroller and SCSI controller are left

powered so the computer can still communicate with the scanner.

• Power on - during which power is turned on to all components. The scanner is

in this state only during image capture.

Figure 4.4 is a signal flow diagram that provides logical details of the signals that pass

between individual functional blocks, each of which is discussed in detail in sections

4.3 to 4.6.

The TreeScan system is still undergoing continual improvement. During field trials with

the Mkl prototype several problems were successfully identified (see section 6.2 for a

discussion on these). As a result two aspects of the system were redesigned for the

Mk2 prototype. The system is currently in the Mk2 prototype stage. Unless specifically

stated otherwise, discussions on hardware will apply to both the Mkl and Mk2

versions of the TreeScan system.

fEJ1
~

Macintosh
Portable Computer

r --- - - ------ TreeScan Scanner _____ - - - - - - - - - - - - - - - - ·, Imai• dato
___ __________ - - - - I (light)

Image data

SCSI commands
I
I
I
I
I
I
I

SCSI
subsystem

Image data Image data (video)

Control signals Timing signals

Synch signals

Line scan
camera

subsystem ••

I :

: ... ~ l :
I - . . '

• ••••••••• lrol ,,

1

[;ower J ·· Sl•PP" motrn ' 0" Scanning ·······• 1
1 ••• · ··;.• Pow" . . ,

1 supply ••••• :,, Hom• po.,t1on mirror ,

Stepper motor control

Home position
Lens

subsystem
Microcontroller

subsystem

1

subsystem • subsystem '
: - - - - ! . .:.:.:::_ :
I I
I J

i ---- - ----- -- ------ -- --- -- --1 - - -- -
1 - --- - -- - --
L _ _ _ _ _ _ __ _

Figure 4.4 • System signal flow diagram

n
:r
"'
~
-""'
I

~
(/J
(")

§
:r:
a.
~

~

-l
\.;.)

74

4.2.1 Scanner Controller Board

A printed circuit board (PCB) has been designed and manufactured to accommodate all

the scanner electronics. This consists of the microcontroller subsystem self-contained

on the PCB, and the driving and interfacing electronics for the other functional blocks.

The PCB is separated into three physical sections with separated power supply sections

to reduce possible noise problems:

• Digital - Microcontroller and SCSI controller

These are operating at a clock speed of 16 MHz and could cause high frequency

noise in the analog sections.

• Analog - Line scan camera drivers, stepper motor drivers, and lens drivers

Components in this section draw large currents which could cause supply voltage

fluctuations.

• Analog reference - ND reference voltages and video shield

These are isolated from the digital and analog sections to reduce noise on the

video signal.

A small plugin daughter board contains the additional lens driving circuitry required for

the Mk2 version of the scanner.

SCSI bus controller
and terminator

Video signal
input

Microcontroller
subsystem

Line scan camera
driver

Mirror stepper
driver

Figure 4.5 - Scanner controller board layout

Lens driving
electronics

Daughter
board

Chapter 4 - TreeScan Hardware 75

4.3 Microcontroller Subsystem

General description

At the core of the scanner lies the microcontroller coordinating the operations inside the

scanner, many of which are time critical so a dedicated microcontroller is necessary.

The microcontroller carries out tasks based on scanner control commands sent from the

portable computer. The main task of the microcontroller is to perform the AID

conversion of the analog video data and transfer this image data to the computer. In

addition to this the microcontroller must generate signals to control the line scan camera,

the lens, the SCSI bus controller, the power supply, and operate to the stepper motors.

The microcontroller used in the scanner is the Siemens 80C517 A. The 80C5 I 7 A is an

8-bit CMOS single chip microcontroller designed for control in hostile environments

such as general instrumentation, and industrial and automotive control systems. The

80C5 I 7 A is a high end member of the 8052 microcontroller family, chosen for its 100

kHz on board A/D converter, the fastest available in this class of microcontroller. The

80C517 A has numerous other advanced features including serial communications

support, five 8-bit input I output communications ports, four clocks, and a four priority

level interrupt handling system.

The microcontroller performs a 10 bit AID conversion of the video signal, however

normally only the top 8 bits are used in the TreeScan system to increase image capture

speed. The reason for this is that the result of this A/D conversion is stored in two

bytes. The top 8 bits in one byte and bottom 2 bits in another byte. This has the

implication that the top 8 bits can be rapidly read out as an 8 bit conversion over the full

AID dynamic range. If however an 8 bit conversion over the lower portion of the AID

dynamic range or a I 0 bit conversion with 8 bit lookup table is required the relevant bits

of the two bytes need to be combined. This requires extra processing time so increases

the time required per pixel conversion. This matter is further discussed in the section on

timing in the software chapter (see section 5.2.3.3).

Both memory mapped 1/0 and port based 110 are used to communicate with other

components in the scanner. The interface to the SCSI bus controller is through memory

mapped 1/0 (see memory map - figure 4.7). Communications to all other functional

blocks is port based.

AH7

Hi h order address bus AHO-AH6

Mux address I data bus

Additional
1/0 lines

Microcontroller

16 MHz

Figure 4.6 - Microcontroller block diagram schematic

Technical description

76

Associated with the microcontroller is 32 k.Bytes of EPROM, 32 k.Bytes of external

RAM, an address latch, and an oscillator. The microcontroller code is stored in EPROM

and currently talces approximately 10 KBytes. The AID lookup tables are also stored in

EPROM and take up 5 KBytes (5 x 1 KByte). This provides adequate space for further

program expansion if required. The external RAM was provided as a precaution in case

temporary data storage was required to buffer the image data. This is currently being

used to allow lines to be resent if errors occur in the transfer of data over the SCSI

interface.

The microcontroller has two ports which are used as buses. A high order address bus

and a multiplexed low order address and data bus. A 74HC573 address latch is used to

decode the low order address bus from the multiplexed address data bus. The address

latch is triggered by the ALE signal. Using the top address line (AH7) either the

external RAM or the SCSI controller can be selected and n~'fck~ss decoding circuitry

is required. The PSEN', RD', WR', and AH7 signals are used to select ROM, RAM,

and the SCSI bus controller

The 80C517 A will operate on a clock frequency anywhere from 3.5 MHz to 18 MHz.

An operating frequency of 16 MHz was chosen because this provides the fastest AID

conversion time of 7 µs (at 18 MHz AID conversion time is 12.4 µs). This clock signal

is generated using a 16 MHz crystal oscillator which also provides a clock signal for the

SCSI controller.

Chapter 4 - TreeScan Hardware 77

4.3.1 Microcontroller Subsystem Memory Organisation

The organisation of the memory space of the 80C517 CPU is complicated; detailed

information is provided in appendix H. The 80C517 CPU has separate address spaces

for program and data memory, and manipulates operands in the four address spaces:

• Up to 64 kBytes of program memory

• Up to 64 kBytes of external data memory

• 256 bytes of internal data memory

• 128 bytes of special function registers

Program memory can either be an external EPROM or up to 32 kBytes of factory

programmed ROM on the micro controller chip. The active program memory is

determined by the state of the EA pin during powerup.

There are two forms of external data memory; up to 64 kByte external RAM and

2 kBytes of on chip XRAM. The XRAM is accessed using identical instructions to

those used for accessing external RAM but with bit 1 of the SYSCON register set.

All registers, except the program counter and four general purpose register banks,

reside in the special function register (SFR) area. The SFR's include arithmetic

registers, pointers and registers to provide an interface between on chip peripherals .

Registers which lie on 8 byte boundaries are bit addressable.

The internal RAM contains four banks of registers and a 128 bit bit-addressable

section overlapping a part of the internal RAM. The stack pointer is initialised to 08h in

internal RAM on reset. There is an address overlap between the upper 128 bytes of

TreeScan Microcontroller Memory Map

FF I Upper
I FF I SFR

F81F i Internal

I FBOO SCSI

00 I

RAM SFR's
7FFF F7FF

ND ED

::!!' Tables ::!!' 7F I L RAM I 0
a: <
n. a:
w ::.:

LJ ::.: "' Variables
"' Micro "' "' SCSI line

0000
Code 0000 buffering CXl '

Program memory External data memory Internal RAM SFR's

Figure 4. 7 - Microcontroller memory map

78

internal RAM and the SFR's. The addressing mode used determines whether the SFRs

are addressed or whether internal RAM is addressed.

The TreeScan scanner rnicrocontroller uses the following sections of the 80C517 A

memory space (see figure 4.7):

•

•

•

32 kByte EPROM to store the microcontroller code and ND lookup tables .

32 kByte RAM of which I kByte is used to buffer the SCSI transfer .

SCSI controller registers repeatedly mapped into the top 32 kBytes of

external data memory.

• The lower internal RAM for working variables.

• The special function registers.

4.3.2 Microcontroller Subsystem Memory Timing

In microprocessor design any external device must be fast enough to match the

microprocessor read and write cycle timing. Problems are often encountered with

EPROM read cycles. In this case:

• Upon the falling edge of ALE the address latch is triggered. Assuming a

maximum delay of 25 nS within the latch the low order address bus data becomes

valid no later than 25 nS after falling edge of ALE. The data bus is expected to be

valid no later than 233 nS after the falling edge of ALE. This allows the EPROM

208 nS address access time from valid addressing to valid data (see figure 4.8).

• PSEN' is used as EPROM output enable. PSEN' is asserted a minimum of

150 nS before valid data, this allows for an OE' to output delay of 150 nS .

ALE

A8-A15

AO-A?

PSEN

Mux.
AID bus

\k_-_-_-_-_-_~_2=33_ ~_":s=====~__,~---~/

jJSn~J~----~-----,

l f ' :)
-------;--~--.-r~_1s_o_n.S __ >~~ --~;~----

!<'---;;:;;o:~--;::?.>;....: ----,

-<'-_A_dd_re_s_s -ri-)>----2
-
08

-
0

-

8
-?-+-(+-<(1 Valid Data)r------

Figure 4.8 - EPROM read cycle timing

Chapter 4 - TreeScan Hardware 79

EPROMs must be selected which fit the above criteria. 200 nS EPROMs (75 nS OE' to

output delay) would be usable but barely under the 208 nS address access time. To be

safe 170 nS EPROMs were used (70 nS OE' to output delay).

80

4.4 SCSI Subsystem

General description

The SCSI subsystem provides a two way communications interlace between the

microcontroller and the Macintosh computer over a SCSI communications bus using a

SCSI bus controller. This interface is used to send scanner control commands to the

scanner and transfer the image data back to the computer.

SCSI stands for Small Computer Systems Inteiface and is a high speed, flexible

communications interface commonly used to connect peripheral devices to computers

(most hard disks are SCSI). The SCSI interface allows for multiple (up to seven)

devices to be attached to a single SCSI bus using logical addressing, and allows for

data rates up to 4 Mbytes per second. The SCSI communications protocol consists of a

sequence of bus phases mediated by a complex sequence of control signals (see section

4.4.1 for a discussion on implementing SCSI).

A SCSI bus controller (SBC) chip provides a simple interface to the SCSI bus for a

microcontroller. At the time of development, SCSI bus controllers were available from

Texas Instruments, Western Digital, and AMD. The SN75C091A SCSI controller from

Texas Instruments was incorporated into the design based on a short chip delivery time

and the availability of reference information.

Several problems were encountered while implementing the SCSI subsystem. The main

obstacle was a result of unexpected timing fluctuations . Noise problems were also

experienced on the development circuit implemented on veroboard. These are further

discussed in section 4.4.3.

Manufacturer SCSI Chip Availability

Texas Instruments SN75C091A Available

Western Digital WD33C93B Available - Delayed reference data

AMO AM53C80APC Available - Delayed reference data

Hitachi 64951 Not Available

Table 4.1 - Availability of SCSI bus controllers

Chapter 4 - TreeScan Hardware

TennPwr

~~~SCSlbus 
terminator 

Low order address bus 

Microcontroller 

D0-07 I 
._,......~~~~~~~-tt----+-jl 01 

Data Bus 16 MHz 

Figure 4.9 - SCSI block diagram schematic 

Technical description 

81 

The SCSI subsystem consists of a SCSI bus controller and a SCSI bus terminator 

inside the scanner. Both the terminator and bus controller are attached to the SCSI bus 

which is connected to the computer. 

The SN75C091A SCSI bus controller consists of a 68 pin square PLCC package. The 

microcontroller communicates with the SCSI controller using 32 bytes of memory 

mapped registers. The SCSI controller is selected by the inverted top address line. By 

using the top address line no address decoding circuitry is required. This maps the 

SCSI registers repeatedly into the top 32K of the microcontroller address space. 

The SCSI bus must be correctly terminated. The scanner is internally terminated so it 

can only be the final device on a SCSI chain. The terminator used in the scanner is a 

UC5601 chip and powered from the TERMPOWER line on the SCSI bus. 



82 

4.4.1 Implementing SCSI : Design Specifications 

The SCSI interface is defined by the ANSI X3. l 31 - 1986 standard (ANSI, 1986). The 

standard defines the mechanical, electrical, and functional requirements for the SCSI 

bus, and the protocol command sets. The SCSI bus consists of 18 signal lines, nine of 

which are control signal lines and nine of which are data signal lines. The SCSI 

communications protocol consists of a sequence of bus phases mediated by a complex 

sequence of control signals. 

The SCSI interface allows for multiple devices attached to a single SCSI bus using 

logical addressing. The SCSI bus consists of a series of daisy-chained devices 

terminated at each end. The speCification allows for data rates up to 4M bytes per 

second and cable lengths up to 25 m dependent on the circuit implementation. Transfers 

may be implemented using either a synchronous or an asynchronous protocol. 

The standard specifies a maximum cable length of 6 m for an implementation with 

single ended drivers and receivers. A single ended implementation should use a cable 

with a 132 ohm characteristic impedance to match the terminators, and minimal media 

discontinuities to reduce signal reflections. Ideal conditions are not usually attainable 

and an implementation may require the trade-offs in shielding effectiveness, cable 

length, the number of loads, transfer rates, and cost to achieve satisfactory system 

operation (ANSI, 1986). Practically, this implies that a maximum cable length of l .8m 

(6 ft) is used to prevent data corruption during transfer. A cable length of 1.8 mis just 

adequate for the TreeScan system. 

A brief description of the SCSI bus protocols and general SCSI commands is provided 

here. Further details are presented in appendix I, or can be found in the reference 

material (ANSI, 1986) . 

4.4.1.1 SCSI Bus Protocols 

The SCSI protocol contains eight distinct phases (see next page). The SCSI bus can 

only be in one of these eight phases at any one time. A SCSI operation is a completed 

SCSI command or data transfer. A single SCSI operation consists of the execution of a 

carefully controlled sequence of these bus phases. 

The device that requests a SCSI operation is called the initiator. The device that 

performs the operation requested by the initiator is the target. During a SCSI operation 

control of the bus is handed back and forth between the initiator and the target until the 

operation is complete. Only a device that is in control of the SCSI bus may change the 

bus phase. 



Chapter 4 - TreeScan Hardware 83 

The eight bus phases consist of the following (see appendix n: 
• BUS FREE Phase 

• ARBITRATION Phase 

• SELECTION Phase 

• RESELECTION Phase 

• COMMAND Phase \ 

• DATA Phase I Collectively called the 

• ST ATVS Phase INFORMATION Phase 

• MESSAGE Phase I 

A completed SCSI operation will start with a BUS FREE phase and must proceed 

through an ARBITRATION phase, SELECTION phase, COMMAND phase, ST A TUS 

phase, and a MESSAGE phase. In addition to this the SCSI operation may include a 

RESELECTION phase and a DATA phase. This sequence can only be broken through 

a timeout or the undesirable assertion of the bus RESET signal at which time the bus 

must be released to the BUS FREE phase. 

During these bus phases the bus control signals are asserted in a complicated control 

and handshaking sequence. The sequence the control signals may be asserted is 

specified in the ANSI standard. A typical SCSI transfer is discussed in section 5.2.4. 

Minimal and maximal duration between signal transitions is also specified in the 

standard. The SCSI bus signals are listed below (all signals are active low): 

• Control signals: BSY, MSG, SEL, REQ, CID, ACK, 1/0, ATN, RST 

• Data signals: SDO - SD7, SDP 

4.4.1.2 General SCSI Commands 

At a higher level, SCSI commands are sent from the computer to the microcontroller. 

This consists of the tr an sf er of a command descriptor block. A command descriptor 

block is a data structure containing a command opcode and parameters associated with 

this opcode. The command descriptor block may be six, ten, or twelve bytes long. 

The first byte of the command descriptor block contains the operation code. The 

operation code is the SCSI command number. The top three bits of an operation code 

specify the group code. SCSI commands fall in several categories based on this group 

code: 

Group 0 : six byte commands Group S : 12 byte commands 

Group 1 : ten byte commands Group 6 - 7 : Vendor unique 

Group 2 - 4 : Reserved 



84 

bit 7 6 5 4 3 2 1 0 

Operation code 

Logical unit number I Reserved 

Command specific eg. Transfer length (MSB) 

Command specific eg. Transfer length (LSB) 

Control byte 

Figure 4.10 - Typical command descriptor block (ANSI, 1986) 

A typical command transfer block would contain the information shown in figure 4.10. 

In order for a device to adhere to the SCSI specification a number of general commands 

must be implemented. Out of 256 available commands four commands are classed as 

mandatory, four commands are for devices that support independant self configuring 

software, twenty two commands are optional, twenty three commands are vendor 

specific, with the rest reserved for future use. 

The classification of commands as mandatory or optional is dependent on the device 

type. Device types include direct access devices, sequential access devices, printer 

devices, processor devices and WORM devices (see appendix n. 
The TreeScan system implements 20 commands, all within the six byte command 

range. 



Chapter 4 - TreeScan Hardware 85 

4.4.2 SCSI Bus Controller ( SN75C091 A ) 

The SN75C091A SBC manufactured by Texas Instruments is a single ended flexible 

SCSI implementation for microprocessors. It provides DMA or programmed 1/0 

capabilities and can be interrupt driven to minimise host polling. The SN75C091A can 

execute multiphase commands to minimise host interrupts. Chip access is provided 

through 32 directly addressable registers (Texas Instruments, 1990). 

The SBC is driven by chip commands written to the COMMAND register. These 

commands are instructions from the microcontroller to the SBC to modify the current 

bus phase or transfer data. These commands fall in three categories: 

• Non interrupting commands 

• Single phase interrupting commands 

• Multi phase interrupting commands 

The SBC is controlled by the background loop of the microcontroller software. The 

TreeScan system uses mainly single phase interrupting commands in a processor polled 

loop (see section 5.2.4). Appendix J provides more detailed SBC specifications. 



86 

4.4.3 SCSI Subsystem Development Obstacles 

Several problems were encountered during the development of the SCSI interface: 

Problems were experienced with the TreeScan development boards; 

1. Noise problems were experienced during data transfer over the SCSI bus 

connection to the development board. This was probably due to lack of shielding 

of the SCSI bus connection to the SCSI bus controller (developed on the 

veroboard). This intermittent problem was solved by using the custom designed 

printed circuit board. 

2 . For testing the SBC was piggybacked in place of another memory mapped 1/0 

device on the microcontroller development board. The trigger pulse of the 

replaced 1/0 device was insufficient in duration to latch the SCSI registers. 

The second major problem involved unexpected timing fluctuations of the SCSI 

interface and was discovered during the development of the SCSI transfer algorithm 

(see section 5.2.4). 

1 . Although SCSI is a handshake system, with a 'wait if not ready' flag, there is 

insufficient time in the main capture loop to check this flag . It is assumed the 

SCSI interface (4 MBytes/s) is able to keep up with AID conversion (100 kHz). 

At times the SCSI controller of the Macintosh was unable to receive data for 

intervals of approx 15 mS in duration. This was probably due to background 

operating system tasks and caused image bytes to be lost as the reading out of the 

line scan camera data could not be delayed. An error detection and line resend 

scheme has been implemented (see section 5.2.4 for further detail). 

2 . The SCSI interface was slow to react to SCSI phase changes introducing a 

minimum SCSI transfer duration of approximately 170 mS (see section 5.2.4 for 

further detail). This transfer duration should be in the order of nanoseconds, and 

its cause should be further investigated. 

3. During the tracking of the above problems the SCSI clock frequency was 

increased to 20 MHz. The microcontroller still operated at 16 MHz. This 

introduced a timing mismatch which caused occasional (approx. 1 byte in 50 000) 

bytes to be gained during the transfer. This was rectified as soon as it was 

discovered, but the consequence of this was that the error detection and resend 

scheme was complicated unnecessarily. 



Chapter 4 - TreeScan Hardware 87 

4.5 Line Scan Camera Subsystem 

General description 

The line scan camera subsystem captures image data and converts it to an analog video 

signal which is used to generate the captured image. The line scan camera subsystem 

consists of a CCD line scan camera (LSC), interfacing buffers, and the analog reference 

section of the controller board. 

The line scan camera subsystem is a very important section of the TreeScan scanner. 

The video signal determines the image quality so it is important to ensure the video 

signal is well shielded and that the microcontroller analog reference voltages are stable. 

The image is captured at 256 level greyscale (8 bit digitisation) which is well within the 

2000: I RMS dynamic range of the line scan camera. 

The line scan camera being used is a Loral Fairchild CAM 1301R camera designed for 

incorporation into non-contact electro-optical measurement and process control 

systems. The CAM 1301R has a resolution of 1024 x 1 pixels and incorporates anti­

blooming and electronic exposure control. The camera accepts standard C mount 

lenses, with the option of using bayonet Nikon and Olympus mounts also available. 

A number of sources of line scan cameras or line scan camera systems were considered 

which are summarised in table 4.2. The Leaf and Chinon cameras are complete area 

scanning systems which make use of a line scan approach similar to the TreeScan 

system. Modification of these systems was investigated but not pursued. 

Line scan cameras are available with analog or digital output; digital output is preferred 

but the cost of these cameras is very high. Cameras with analog output are less 

specialised devices and are considerably less expensive. Analog cameras require signal 

ND conversion by some external device. This is completed by the microcontroller in 

the TreeScan system. It was decided to use the Loral Fairchild CAM 1301 R line scan 

camera based on cost and delivery time. 

Supplier Camera type Interface Resolution Price 

Loral Fairchild CAM/CCD 1000 series Analog 512 to 6000 Medium 

DALSAinc CL-CX series Analog, digital 128 to 4096 High 

i2S iDC I IVC 100 series Analog, digital 256 to 3456 High 

Pulnix J series miniature LSC Analog 1024 to 5000 Medium 

Leaf - System Leaf digital camera SCSI 2000 x 1500 Very high 

Chinon - System DS-3000 scanner Digital, SCSI 3328 x 2300 Low 

Table 4.2 - Line scan cameras available 



PHOTOELEMENT DIMENSIONS 

PHOTOGATE 

All dimensions are tyo1cal values. 

I 
ALUMINUM 
LIGHT SHIELD 

Figure 4.11 - Imaging sensor photosite layout 

88 

The CAM 1301R is controlled by two timing signals. One signal that controls the line 

rate and integration time, and another signal that clocks the video data out. The camera 

derives two synchronisation signals from these timing signals which are returned and 

used to synchronise the microcontroller ND conversion (see section 4.5.2). 

The CAM 1301R contains a Loral Fairchild CCD134 imaging sensor. The CCD134 

sensor contains 1062 array elements of which 1024 are photosensitive. Each photosite 

is 13 µm x 13 µm on a centre spacing of 13 µm (see figure 4.11). Between photosites 

there is a 5 µm serpentine stop channel providing an active area per pixel of 13 x 8 µm. 

The sensor has a length of 13.8 mm. This relates to a one inch format for lens 

requirements. 

The main obstacle encountered during the development of the line scan camera 

subsystem was the timing constraints the line scan camera imposes on the rest of the 

TreeScan system. Image data is being clocked out of the camera at approximately 100 

kHz, during which time the subsequent line is being exposed. This implies the data 

being clocked out cannot be slowed or temporarily halted as this invalidates the data of 

the subsequent image line. The implications of this are further discussed in the software 

chapter, see section 5.2.1. 



Chapter 4 - TreeScan Hardware 

±15V, ±5V, 
GND 

Data clock R 
I Line/ Integrate ~--

~-~[ ~I -~~r-----i _1 _ 

. --<:J Data rate Ii Line scan I 
M1crocontroller L__ /'i Line synch camera 

~~~~~..--~' o'-J !--,-~~~-

Ill I T 1 - - - - ~i'!El_? _s~g~~ - - - - - - _ :, 1,
! > "' Analog reference~ ·> '"' l 'f ~ Shield !

Analog GND

Figure 4.12 - LSC interface block diagram schematic

Technical description

89

The line scan camera subsystem consists of a line scan camera, interfacing buffers, and

analog reference section of the controller board.

The CAM 1301R can be operated at a wide range of frequencies (up to 20 MHz) and is

controlled by two timing signals generated as pulse width modulated signals by the

microcontroller software, the DATA CLOCK and a LINE/il'rrEGRATE clock - see section

4.5.2. These camera timing inputs are differential with signal levels converted to TTL

levels by internal differential line receivers. At low data rates (<1 MHz) and short cable

lengths (<6 ft) single ended TTL input clock signals may be used provided the negative

differential input is biased at + 1 V. This is the camera connection scheme used in the

TreeScan scanner. All the clock signals sent to and from the camera are buffered by

74HC04 inverters to act as line drivers and receivers.

The video output is available as a 75 Q source impedance signal on either of two coaxial

connectors on the rear of the camera. The video signal has a peak of +I volt at sensor

saturation.

The video signal is terminated by a 75Q resistor and passed to the microcontroller for

AID conversion. The rnicrocontroller has an analog GND and+ 1 volt reference for the

AID convertor which are isolated from the rest of the circuit using ferrite beads for noise

suppression.

The camera requires power supply inputs of +5, +15 and -15 volts DC. Internal

regulators and filters provide noise immunity for the CCD sensor bias voltages.

90

4.5.1 Imaging Sensor Spectral Response

The spectral response of the CCD134 imaging sensor covers light over the wavelengths

of 35 nm to 1000 nm with a peak responsivity of 5.8 VµJ-lcm-2 at 800 nm.

A Schott KG-1 infra-red cut off filter is made part of the standard camera. The filter

transmission convolved with the spectral response of the imaging sensor gives the

camera a response from about 350 nm to 800 nm, with a peak response at 600 nm

(Loral Fairchild, 1991). This spectral response covers most of the visible spectrum with

the greatest response in the red colour band.

_6
<11
6 5

.,....

-3. 4
G.
.~3
>
"iii
l5 2
a.
(/)

£ 1

Typical spectral response

Camera response

0
400 500 600 700 800 900 1000 1100

Wavelength (nm)

Figure 4.13 - CCD sensor spectral response

4.5.2 Line Scan Camera Subsystem Signal Timing

The line scan camera is controlled by two timing signals; a DATA CLOCK and a

LINE/INTEGRATE clock. The microcontroller generates both these timing signals in

software using on board timers.

• The DATA CLOCK rate determines the rate at which video data is clocked out of

the camera. The DATA CLOCK rate is set at approximately 100 kHz, well under

the maximum camera clock rate of 20MHz.

• The LINEIINTEGRA TE clock determines both the line scan rate and the optical

integration time (or exposure time). Integration time is controlled by the duty

cycle of LINE/INTEGRATE clock, while the line scan rate is controlled by its

frequency (see figure 4.14).

Note: Terms in capital letters refer to actual signal lines.

Chapter 4 - TreeScan Hardware 91

The TreeScan system must operate under low light forestry conditions. It has been

empirically determined that the integration time will typically be somewhere between 2

and 50 mS using a large aperture lens. The frequency of the LINE/INTEGRATE clock

varies with integration time, with a maximum frequency of 50 Hz (scan rate of 50 lines

per second) determined by the AID speed of the microcontroller .

The above timing signals are returned from the line scan camera as synchronisation

signals:

• The DATA RATE signal is the DATA CLOCK delayed by approximately 10 nS.

• The LINE SYNCH signal indicates the start of line time and is derived from the

LINF1IN1EGRATE clock with a delay of 1 - 2 DATA CLOCK cycles.

The DATA RATE signal is used to trigger the AID conversion of each pixel. The LINE

SYNCH signal is used for line synchronisation and precedes active video by 24 DAT A

CLOCK cycles.

The video signal contains 1024 individual pixel levels which corresponds to 1024

DATA CLOCK cycles. Preceding and following the active video there is a 3 clock cycle

dark reference. Following the final dark reference there is a two clock cycle white

reference. As a result, a minimum of 1062 DATA CLOCK cycles are required to fully

clock out the CCD 134 sensor.

TIMING DIAGRAM

LINE /INTEGRATE
IN

' 19 . 20 ' 21 . 22 ' ?l .24 .

t---- INTEGRATION PERIOD----~

LINE RATE -jm:-----
LINE SYNC ____:___t-, ______ __,_ ___ ----------------'

OUT

DARK
REFERENCE

VIDEO ..,.._~..;_,_.._-..r+-+-~-+-,__.J

NOTE ~ DELAY IS 1·2 DATA RATE CLOCK CYCLES.

1on

DARK
REFERENCE

WHITE
REFERENCE

ISOLATION
CELLS

ISOLATION
CELLS

TIMING RELATION DEPENDS UPON INTERNAL SYNCHRONIZATION CIRCUITRY

CONSEOUENTL Y LINE SYNC SHOULD BE USED FOR EXTERNAL PROCESSING.

Figure 4.14 - Line scan camera timing

(LSC pamphlet - Loral Fairchild, 1992)

92

4. 6 Additional Hardware

This section describes additional TreeScan hardware. This includes a discussion on the

final three functional blocks (scanning mirror subsystem, lens subsystem, and power

supply subsystem) and a description of the scanner chassis, the protective carrying

cases, and the hardware used to monitor scanner status.

4.6.1 Scanning Mirror Subsystem

General description

Images are built up one line at a time by incrementally rotating the scanning mirror. The

scanning mirror subsystem, which provides control over the positioning of this mirror,

consists of a mirror mounted on a precision rotation mechanism that is driven by a

stepper motor.

The custom made precision rotation mechanism consists of a shaft upon which the

mirror is mounted and a wormwheel drive. The wormwheel drive has a direct 728 to 1

reduction ratio and has been engineered to ensure minimal backlash in the gears. The

shaft is mounted on ball bearings for smooth rotation. The reduction and precision of

the rotation mechanism along with the step size of the stepper motor determines the

vertical pixel spacing. The design and construction of the precision mechanism was

completed by Mr Thomas Look.

P~sition sensors

Stepper motor

Wormwheel
drives haft

Rotating
mechanism

Rotating shaft

Figure 4.15 - Scanning mirror assembly

Chapter 4 - TreeScan Hardware 93

Two optical position sensors are used to determine the exact home position of the

mechanism. The first sensor determines the position of the large wheel, with the second

sensor detecting the position of the stepper motor within a single revolution. These are

directly interfaced to the microcontroller.

A four phase, bipolar stepper motor is used to drive the precision rotation mechanism.

The stepper motor has a step angle of 1.8 degrees per step which relates to 200 steps

per revolution of the stepper motor. This provides the flexibility of double the required

resolution with 16000 stepper steps over the full tree height.

Stepper motor detent torque of 70 mNm is more than adequate. The main shaft rotates

freely and with a geared reduction of 728 : 1 results in negligible stepper motor torque

requirements to rotate the mechanism. This allows the stepper motor to operate near its

maximum rate of approximately 400 steps per second for this supply voltage.

Technical description

This section describes both the mechanics of the rotation mechanism as well as the

stepper motor control circuitry.

Mechanical design

The mirror used to reflect the image to be captured is a float glass mirror with a metallic

enhanced front surface coating suitable for wavelengths of 400 to 750 nm (>90%

reflectance of all wavelengths). The glass thickness is 3.05 mm.

The wormwheel drive consists of a 5.7 cm brass wheel with an M3 thread machined on

the outer edge. A shaft was machined to mesh with this edge and is attached to the

stepper motor shaft. The arrangement can be seen in figure 4.15.

The precision rotation mechanism must produce accurate and repeatable mirror

positioning with minimal gear backlash. Vertical image pixel spacing of 8000 pixels for

a 40 metre tree required pixel angular spacing to be 11100 of a degree. Thus the mirror

rotation per line must be 0.005 degrees. These are fine requirements given the

machining facilities available. The shaft alignment had a similar requirement of bearing

movement of less than 1 pixel. This means the shaft alignment must be repeatable to

within 0.01 degrees (or shaft end position repeatable to± 0.017 mm).

After machining the repeatability of the mechanism was tested by measuring the

repeatability of a reflected laser point on a distant wall. There was no backlash or

alignment movement to the limits of measurability ± 0.01 degrees (or ±2 pixels).

+SV/12V

Pulse

Microcontroller Direction Stepper
Mode controller µ;;.LJL~

+5 +S

'--------+-~2'2 J 160
1

~-~ I
- ~ I

Home position
sensors x2

Figure 4.16 - Stepper motor controller block diagram schematic

Stepper motor control

94

The four phase stepper motor is driven using a two phase bipolar stepper motor control

circuit. The circuit consists of a stepper controller IC (L297 manufactured by SGS­

Thompson) used in conjunction with a darlington stepper motor driver chip (L298N).

Two modifications were made to the stepper motor of the Mk2 TreeScan unit.

• The Mk 1 unit had a 1.8 degree per step stepper motor, with two motor steps for

each mirror step (providing double the required resolution). In the Mk2 unit this

motor was replaced by a 3.75 degree per step stepper motor. This allowed for a

speed increase of 2 ms per line during image capture, and a speed increase by a

factor of 2 when homing the mechanism.

• The stepper motor supply voltage was increased from 5 V to + l 2V. This also

allowed for a further speed increase.

Time for 8000 mirror steps (Mk 1)

Time for 8000 mirror steps (Mk2)

= 16000 stepper steps @ 330 steps Is

= 48 seconds

= 8000 stepper steps @ 500 steps Is

= 16 seconds

The Mk2 stepper motor may be driven in full step or half step mode to provide smaller

step sizes if required.

Chapter 4 - TreeScan Hardware 95

4.6.2 Lens Subsystem

General description

The lens focuses an optical image of a real world object on the line scan camera imaging

sensor. Variations in object distance and lighting conditions require the focus and

aperture to be electronically adjustable by the scanner. Focal length is the third lens

parameter which can be modified on demand, provided a zoom lens is used.

The Mk 1 system was designed with a Cosmicar TV zoom lens with motorised control

of focus and zoom, and electronic aperture control. This provides the microcontroller

with full control of the lens. Very good images were captured with this lens.

Unfortunately some problems were highlighted with the use of the Cosmicar lens

during the calibration and characterisation of the scanner:

1. The Mkl lens did not have accurate focus positioning as it used DC servo motors.

2. Lighting in forest conditions was very low so a lens was required that provided

more light.

3. The lens was unsuitable for the relatively long CCD imaging sensor. Light falling

on the outer edges of the sensor was being attenuated through vignetting.

A different lens was incorporated into the Mk2 system; a manual Jens of fixed focal

length. A manual lens was used as this provides a larger aperture. A stepper motor was

mounted on the focus ring to provide the microcontroller with motorised focus control

(see figure 4.17).

Mk 1 Lens system Mk 2 Lens system

Figure 4.17 - Mkl and Mk2 lens assembly

96

Technical description

Mkl Cosmicar lens

The Mk 1 version of the TreeScan scanner contains a Cosmicar C6Z 1218M2ESP

motorised zoom lens with auto iris. The 2/3 inch format lens has a C mount and a focal

length range of 12.5 to 75 mm. The lens has a maximum aperture off 1.8 with a range

off 1.8 to f 360.

Both zoom and focus are controlled using 12 V DC servo motors. It takes

approximately five seconds to drive the servos from one end of their operating range to

the other. The direction of the servo motors may be reversed by reversing the polarity

on the driving signal. The lens also has an auto iris which adjusts the aperture

automatically based on an input video signal.

The Cosrnicar lens was purchased because it provided flexibility in the implementation

of the TreeScan . scanner. The zoom provides flexibility in horizontal image resolution

and the auto iris allows automatic aperture adjustment without microcontroller

intervention.

The driving circuit for the Mkl lens provides a variable voltage to modify .the operation

of the automatic aperture adjustment, and ± 10 V to drive the DC servo motors.

Mk2 lens

The Mk2 version of the TreeScan scanner contains a 75 mm fixed focal length manual

lens. This lens, a one inch format TV lens with C mount, has a maximum aperture of

f 1.4 with a range off I .4 to f 22. It was decided to purchase a manual lens and add

motorised controls as this was the only one inch format, large aperture lens readily

available.

A stepper motor identical to the mirror drive stepper motor was attached to the focus

ring to provide the rnicrocontroller with motorised focus control. An additional stepper

driving circuit was built as an extention module and attached using the expansion area

on the PCB. As a result a considerable amount of the Mkl driving electronics became

redundant. These driving circuits are still available on the board for backward

compatibility.

By using the stepper motor in conjunction with an infinity position sensor absolute

focus position information is available for the lens. This provides the capability of

making a 'blind focus' during an image capture by estimating where the scanner should

be focused, and moving the lens focus to this position.

The problems with the Cosmicar lens have been successfully solved. However images

captured with the Mk2 system appear to be somewhat blurred compared to the best

Chapter 4 - TreeScan Hardware

Mk1 servo based lens interface

Microcontrolfer
+2V

x2 (focus and zoom)

Aperture

1Zoom

I
I

Mk1 lens

Mk2 stepper motor lens interface
+12 v

Pulse

Microcontrolfer Direction

Mode

"!:.§ +5
Infinity position J

~-s_e_ns_o_r~~~-+--/'1~~ , 150 ;
~y

~ '-i - -

Figure 4.18 - Mkl and Mk2 lens driving interface

Focus
stepper
motor

97

results obtained with the Mkl system. This could be due to focus problems or lens

aberration at large apertures. Information regarding lens spectral response and lens

modulation transfer function is not available. This problem is under investigation by Mr

Aaron Drysdale as part of his masterate.

98

4.6.3 Power Supply Subsystem

General description

The scanner is a portable unit that must operate on battery power while in operation. It

is important to make the power supply as small and lightweight as possible while

retaining the ability to store adequate charge. The power supply of the computer and

scanner are separate; the computer runs off its own internal two batteries, and the

scanner operates off two sealed 6 volt lead acid batteries.

A variety of voltages are required to power the TreeScan scanner. The power supply

takes a nominal 6 V DC and 12 V DC battery input and produces +5V, +lOV, -lOV,

+ 1 SV and -1 SV DC regulated DC supplies.

The power supply has two states :

• Power save during which a relay turns off power to all of the high consumption

components. Only the CMOS microcontroller and SCSI controller are left
I

powered so the computer can still communicate with the scanner.

• Power on during which power is turned on to all high consumption

components. The scanner is in this state only during image capture.

To conserve battery power the scanner is in the standby power save state at all times

unless actually capturing an image.

Two common types of battery used to power portable instruments are Nicad cells and

lead acid batteries. The use of each of these has advantages and disadvantages:

1 . Nicad batteries could be connected in series and tapped at various points

to generate the variety of supply voltages required. This has the

disadvantage that the batteries discharge at different rates due to varied

current consumption from each tap, and would require a complex charger.

2. A single lead acid battery could be used to generate the required supply

voltages with the use of small invertors and regulators. This solution is

cheaper and more straight forward than using Nicad batteries, but heavier.

3. An invertor could be used to step up to 230V which could be stepped

down to suitable voltages in the scanner. This approach would have the

advantage that the system could be run from the mains power supply when

used in a laboratory situation but would likely be too bulky for a portable

system and involves considerable power loss.

Chapter 4 - TreeScan Hardware

Battery + 12V (switched, unregulated)

~+~1=2V,__~~~~~~~~~~~-? ' .­

+6V

GND

SV
regulator

I

I
1

+5V '
c.---+~5~V (switched)

~
Pwr~

Figure 4.19 - Power supply block diagram schematic

99

A compromise was made by using two 6 volt lead acid batteries to supply 6 and 12

volts. A small inverter is used to generate the low current± 15 V supplies. The capacity

of the batteries can be calculated so that both batteries drain at the same rate, and can be

charged at the required rate. The design of the power supply subsystem was mainly the

work of Mr Gary Allen.

Technical description

The 6V and 12V battery supplies are used to produce the required voltages. The 6V

battery voltage is regulated down to 5V using a low dropout regulator to supply the

CMOS components and power the mirror stepper motor.

The 12 V battery voltage is converted to± 15V using a PowerBox DC to DC converter.

This± 15V is used to power the line scan camera. Low current± lOV supplies are also

produced by regulating the ± 15 V signals.

The power saving relay switches the +12 V battery voltage and the regulated +5V

powering the mirror stepper motor.

The power supply has been designed to supply:

• +15Vand-15Vat0.35A

• + 5 Vat 1 A

• +10 V and-10 Vat 100 mA

100

4.6.4.1 Power Consumption

Power consumption calculations in this section are based on the Mkl scanner power

requirements. The scanner components have the following maximum power

requirements:

• Line scan camera : + l 5V @ 250 mA, -15V @ 250 mA, + 5V @ 500 mA

• Mirror stepper motor : + 5V @ 500 mA

• Lens driving : +lOV@ 10 mA, -lOV@ 10 mA

• IC 's (9 IC's) : + 5V @ -100 mA

These power requirements are absolute maximum requirements . Actual current

consumption has been measured to be considerably lower. For a typical day of system

operation the following power requirements have been calculated. These are based on

measured current consumption and the assumptions that:

- The system is operated for 10 hours per day

- 100 trees per day are imaged

- Time per image is 100 seconds

- Voltage conversion efficiency of 65%

- Voltage regulation efficiency of 85%

These calculations indicate that for one day of operation powered from two 6V

batteries, a battery capacity of 8.8 AHr and 2.0 AHr is required. Batteries of 10 AHr

and 6 AHr were used in the power supply.

Voltage Power required Conversion Battery 0-6V Battery 6-12V

(mWHr) efficiency (%) (mAHr@ 6V) (mAHr@6V)

+5V 23250 85 4560

+15V 15420 65 990 990

-15 v 4170 65 270 270

+lOV 330 55 25 25

-lOV 330 55 25 25

5870 1310

Safety factor x 1.5 x 1.5

Total 8805 1965

Table 4.3 - Scanner power requirements

Chapter 4 - TreeScan Hardware 101

4.6.4 User Feedback

General description

If a microcontroller based instrument such as the TreeScan scanner is not operating

correctly it can be very difficult to get instrument status information . During the design

of the system methods should be implemented which will allow the microcontroller

code to be debugged and provide status information.

Two features have been implemented to provide feedback to the user on scanner status;

Three status LED's, and a serial interface for debugging.

Three status LEDs indicate the scanner power status and microcontroller status;

• A green LED indicates the scanner's 5V power is operational.

• A red LED indicates the power on state has been entered and high consumption

devices are switched on.

• A yellow LED indicates microcontroller status. If the LED is flashing the

microcontroller is ready to receive a SCSI command. If the yellow LED is

switched on, this indicates the microprocessor is busy and will not accept any

commands from the computer.

A serial RS232 interface has been implemented to provide a secondary interface

between the microcontroller and a computer for the debugging the SCSI interface

during development. The microcontroller has an onboard serial interface which

generates the required signals. The TIL level serial signal is converted to RS232 serial

by the MAX232 line driver.

The serial interface was tested and is operational but it never became necessary to use it

to debug the development of the SCSI interface.

102

4.6.5 Scanner Chassis

General description

The chassis of the TreeScan scanner consists of a 60 cm section of 150 x 100

aluminium channel. This provides a robust chassis inside which other components are

mounted. By using this heavy duty channel, component alignment error due to chassis

flex is eliminated.

The rotation mechanism is permanently mounted within the scanner chassis. The line

scan camera is bolted on to the chassis to prevent possible movement in alignment. The

controller board is housed in an insulating plastic casing and bolted to the inside wall of

the channel.

The channel chassis is protected by a light sheet metal cover that contains a perspex

window, allowing a scan angle of at least 90 degrees (70 degrees used). The scanner is

mounted on a tripod during use to provide a steady base for the scanner.

In order to align the scanner with the tree to be measured, a rifle scope has been

mounted on the outside of the scanner. This rifle scope is free to rotate in the vertical

plane. The scanner is aligned by aligning the scope on the centre of the calibration rod

to establish a reference, then tilting the scanner using the tripod head until the scanner is

closely aligned with the tree.

All the mechanical development work was completed by Mr Thomas Look.

Figure 4.20 - Scanner chassis

Chapter 4 - TreeScan Hardware 103

4.6.6 Carrying Cases

General description

Carrying cases for the TreeScan system serve two purposes; to enable the system to be

carried around, and secondly to protect the system. Two carrying case possibilities have

been considered:

• A flexible backpack mounted system

• Sturdy aluminium carrying cases

A backpack carrying case will need to be constructed once the TreeScan system is in

operation to aid the ease with which the system can be carried long distances through

the forest. However, during the early stages of the development sturdy aluminium

protective cases were more important. They were designed to accommodate all scanner

components.

4. 7 Hardware Development Environment

The hardware development of the TreeScan system involved the development and

integration of mechanical components of the system and electronic components of the

system. Most of the scanner functionality is under software control so the use of testing

software was integral to the hardware development.

The microcontroller development board used during the development was the Mandino

Granville 80C5 l 7 A microcontroller development board. Associated with this

development board is the System 51 microcontroller development environment. This

provides an integrated development environment that includes a compiler, assembler,

microcontroller emulator, and a monitor program.

The scanner electronic hardware was developed and tested in subsections built on

veroboard. These subsections could be individually tested without the influence of other

scanner components by connecting each section to the microcontroller development

board. Once the subsections of the TreeScan controller board had been tested (see

figure 4.21), a printed circuit board was designed to accommodate all subsystems.

The development of circuit components on veroboard was very successful, but some

noise problems were experienced. The main noise problem was with the use of

veroboard for the connection of the SCSI bus from the SCSI controller to the computer

over a 1.8 metre SCSI cable.

104

Protel Technology's Protel Shematic 3 was used to draw up the schematic during circuit

design, and Protel Autotrax was used for the printed circuit board layout design (Protel

Technology, 1989). The PCB routing was largely manual to facilitate later testing and

debugging of the controller board.

A Philips PM3055 60 MHz oscilloscope and a Philips PM3655 logic analyser were

used to test signal levels during both the hardware and software development.

Figure 4.21 - Hardware development environment

Chapter 5

TREESCAN SOFTWARE

5 .1 TreeScan Software Overview -- 106

5. 2 Image Capture Software -- 108

5.3 Tree Parameter Extraction Software --- 132

5 .4 Software Development Environment -- 142

106

The TreeScan software chapter describes the algorithms implemented as part of the

TreeScan system. This includes both the image capture software which is used to

capture images with the scanner, and the parameter extraction software which

provides facilities to estimate real world tree dimensions from captured images.

The implementation of the algorithms was complicated by the fact that in order to create

a system with the functionality of the TreeScan system, software needed to be

implemented at four different levels; macros, Pascal, C and assembler. In addition to the

functional breakdown there is a physical breakdown with different sections of the same

algorithm operating in two different physical locations (see section 5.2.1).

5. 1 TreeScan Software Overview

The software developed for the TreeScan system falls into two basic functional

categories reflecting the operation of the system; the image capture software and the

parameter extraction software.

Image Capture
Software

Deals mainly with critical
timing of image capture and
data transfer hardware.

Parameter Extraction
Software

Deals mainly with the image
calibration and distortion correction
methods discussed in chapter 3.

The image capture software interfaces the computer to the scanner and allows the

capture of images using the scanner. This software implements the tasks that need to be

done to capture images and deals mainly with critical timing of the image capture and

data transfer hardware. The image capture software is distributed across the computer

and the scanner, and consists of an acquisition plug-in for the computer and assembly

code for the microcontroller.

The parameter extraction software provides the facilities to process the captured

images and estimate real world tree dimensions. It automates a series of image

processing tasks and deals mainly with implementing the image calibration and

distortion correction methods described in chapter 3. This software consists of NIH

Image macros and NIH Image source additions in Pascal.

Chapter 5 - TreeScan Software

2

3

4

extraction
macros

Image
acquisition

plug in

Macintosh Computer

SW Language

Parameter extraction Macro code interpreter

Macros (Pascal - like)

NIH Image source Pascal

code additions

Acquisition plug-in c

Microcontroller code Assembly

Microcontroller code

TreeScan Scanner

Use Lines of code

Parameter extraction 1100

(high level) (code)

Parameter extraction 900

(low level) (code additions)

Image capture 2700 + 3500

(high level) (code + header files)

Image capture 2800 + 5300

(low level) (code+ lookup tables)

Figure 5.1 - Levels of TreeScan software

107

The NIH Image application has been used as the image processing environment. NIH

Image is a public domain image processing package developed by Wayne Rasband at

the National Institutes of Health in the USA (Rasband, 1993). NIH Image provides a

flexible, easily extendible, and user friendly environment. In addition to this the

software is public domain so the full pascal source code is available, and can be

modified where necessary. NIH Image has been developed for use with Apple

Macintosh computers.

There are four levels of software in the TreeScan system, see figure 5.1. A philosophy

of implementing all algorithms at the highest possible software level has been adopted to

reduce development time. Image build-up algorithms have been implemented in

the C acquisition plug-in, with low level tasks and time critical tasks implemented in the

microcontroller assembly code. Parameter extraction algorithms have been

implemented in the NIH Image macro language with NIH Image source modifications

where additional speed or functionality was required.

108

5. 2 Image Capture Software

5.2.1 Overview

The image capture software controls the build-up of images using the TreeScan

scanner. This software deals mainly with critical timing of the image capture hardware

and critical timing of the image transfer to the computer. The image capture software

also provides a straight-forward user interface and the capability to store images for later

processing.

The main section of the image capture software is the image build-up algorithm. The

image build-up algorithm implements the sequence of high level tasks required to

capture an image; sub-tasks include : performing an autofocus, capturing a section of

image, overseeing the SCSI interface, and controlling the scanner hardware (see

figure 5.2).

In addition to the functional breakdown, there is a second breakdown that can be made

for the image capture software. The image capture software is physically distributed

across two locations; the portable computer and the scanner. As a consequence of this,

the image capture software consists of two separate programs running on two

processors interconnected using a SCSI bus interface.

The image capture software implemented on the portable computer consists of an

acquisition plug-in. This is a Macintosh code resource which complies with the Adobe

Image buildup algorithm

Autofocus
algorithm

commands

Macintosh Portable Computer

SCSI

Microcontroller code

I - -Image block
capture algorithm

I
>('i(

Scanner control
commands

TreeScan Scanner

Figure 5.2 - Algorithms implemented in image capture software

Chapter 5 - TreeScan Software 109

interface specifications for plug-in code modules and can be used to extend an

application without modifying the base application. Acquisition plug-ins may be

executed from any application (typically image processing packages) that supports

Adobe format plug-in modules, and are linked to the supporting application at run time.

The acquisition plug-in implements the image build-up algorithm, provides a user

interface, controls the computer SCSI communications hardware, controls the scanner

by sending scanner control commands, and passes a data structure containing the

captured image back to the calling application.

The image capture software implemented on the microcontroller consists of an

assembly language program stored in EPROM. The microcontroller code implements

the time critical image block capture algorithm and implements the scanner hardware

control in response to high level scanner control commands. Assembly language

executes fast but it takes considerably longer to implement and debug a complicated

algorithm than it does in a higher level language. The microcontroller code provides the

simple building blocks that can be put together to perform the required action by using a

series of commands.

After a brief discussion of software constraints, key algorithms are outlined in sections

5.2.2 to 5.2.5. Finally, the TreeScan image capture software is further discussed in

sections 5.2.6 and 5.2.7.

5.2.1.1 Imaee capture software desien constraints

It was decided to maintain system flexibility and use the microcontroller to perform the

ND conversion of the image data (see section 4.2). This led to timing constraints on the

design of the software in the areas of:

• AID conversion of image data (line scan camera timing)

• SCSI transfer timing

The AID conversion is a synchronous process; the SCSI transfer is an asynchronous

process. In a normal situation involving synchronous data processing in operations such

as this, at least one of the operations would be interrupt driven with buffering of data in

RAM, however this approach would reduce overall speed.

There is not sufficient time to implement an interrupt based approach at maximum AID

conversion rates. Instead a dedicated hardware loop has been implemented (see section

5.2.3 .1). The AID conversion must operate at a fixed rate while image data is clocked

out of the camera. The SCSI interface can transfer data at a rate 40 times that of the ND

conversion. To speed up the image capture the image block capture algorithm was

designed to perform the AID conversion and to send the bytes directly to the SCSI bus

Image Build-up Algorithm
Setup Scanner

I

Call plugin

§nter image detail~
I

Preview image I
I

1
1

Power on
I

1
2
Adjust integration I

I

1

3
. Autofocus

1

4
. Move mirror

5
Capture an image

block I
i

i

~

Return image
to NIH Image

Save Image

N

Above
7 calibration

rod?

a . . . I
Adjust integration

time

Refocus
9 required?

I Y
1

10
Refocus

1

11
. Power save

SCSI
Commands

sent

Power on

Capture line >.

Capture line ,,.
Mavelens
focus

Move mjrror ::........

Capture X lines

Move lens >

focus

Power save ...,.

Figure 5.4 - Image build-up algorithm

Image data
transferred

8ne of image data }

}

sox }

112

Microcontroller
routines

Execute power on

Micro image capture
algorithm

Micro image capture
algorithm
Execute move focus

Execute move mirror

Micro image capture
algorithm

Execute move focus

Execute power save

The integration time for the current block and the number of lines to be captured is sent

to the microcontroller as part of the command descriptor block. This allows the

microcontroller image block capture algorithm to capture the required number of lines

and to modify the integration time without the need for additional SCSI instructions.

It was decided that an integration time adjustment should be made often. Integration time

adjustments during the scan are calculated on the previous image data block and do not

require additional lines to be captured.

Chapter 5 - TreeScan Software

1 . Power is turned on to the high current components by sending a PowerOn
command to the scanner.

2. The integration time is adjusted for the current light level by repeatedly
capturing one line and adjusting the integration time until correct exposure
is achieved. Up to 20 iterations of the loop are performed depending on
lighting.

3 . An autofocus is completed to focus the base of the tree at the start of image
capture. This consists of finding the focus position by repeatedly capturing
a line, calculating a measure of focus, and adjusting the lens focus position
until the optimal focus position is found. This would typically involve 20 to
50 iterations of the loop.

4 . The mirror is stepped down by 500 steps so the image capture begins at the
base of the tree.

5. A loop is entered which captures blocks of 50 lines until the number of
lines to be captured has been reached. A single image capture command is
sent to the scanner and 50 lines of image data are received back. The timing
involved for the capturing of each line is carried out by the microcontroller
image block capture algorithm. The computer simply receives bytes until
the correct number of image bytes have been received to fill the block.

6. If the correct number of blocks have been received, exit the image capture
loop.

7. If still within the calibration rod area of the image, a refocus or integration
time adjustment is not required.

8. Adjust integration time for the next block based on the pixel values of the
previously received block. No commands need to be sent to the scanner as
the integration time is sent to the scanner as parameters in the image block
capture command.

9. & 10. If a focus adjustment is required, call the blind refocus routine to
estimate correct focus position and send a command to the microcontroller
to move the lens focus to the desired position.

10. Perform the above loop until the desired number of lines have been
captured.

11 . Turn the power off to the high current components by sending a
PowerSave command to the scanner.

Figure 5.5 - Image build-up algorithm (description)

113

It has been decided to make 32 focus adjustments per complete image as this allows the

tree to remain within the scanner depth of field without an undue increase in image

capture time.

Once the image is captured it is passed from the plug-in to NIH Image to be saved. The

image can now be further processed by the parameter extraction software.

114

5.2.3 Image Block Capture Algorithm (Microcontroller)

In the image build-up algorithm the capture of an image line or block of lines consisted

of a single scanner control command sent to the microcontroller. This task of capturing

one or more lines is the image block capture algorithm, consisting of a complicated

sequence of events with critical timing aspects.

The image block capture algorithm performs the AID conversion of the image data and

transfer to the computer using the SCSI interface. In addition, the camera timing signals

are produced, the mirror stepper motor is stepped between lines and a SCSI transfer

error detection and correction method is implemented. These are time critical elements so

they have been implemented in the microcontroller.

When the microcontroller receives the command from the computer to capture a block of

lines, the sequence of steps shown in figures 5.6 and 5.7 is executed.

Image Block Capture Algorithm

SCSI image
capture command

0..
0
.2
Q) 0.. ::; 0

a. .2
<1l c:
0 0
<l> -~
c: Q)

:::i > c:
0
0

0
~

Conclude SCSI
command

I 1 Set clock rate

12 Initialise ND
converter

I
3 Wait for start of

line

4 Move mirror
step

1

15 Do ND
conversion

6 Send byte to
SCSI controller

1 End of line ?

y

e Last line?
N

8 000 x

y

Figure 5.6 - Image block capture algorithm

Chapter 5 - TreeScan Software 115

It is critical that the timing within the AID loop is optimised as this loop is executed

8 million times for an 8000 line image. The line timing must also be optimised but this

depends on a number of factors and is less critical.

The time required to capture a block of lines depends on two main factors, either of

which can be the limiting factor: the data conversion and transfer rate, and the

integration time (exposure time). Data conversion and transfer and image integration

take place in parallel. Data conversion and transfer takes a fixed period of time.

Integration time depends on the lighting conditions.

In normal daylight conditions the integration time is an order of magnitude shorter than

the data conversion and transfer time, so the image capture time is limited by the data

conversion and transfer time. If however the scene illumination is low, the situation may

be reversed and the image capture time may be limited by the integration time.

5.2.3.1 Dedicated Conversion and Transfer Loop

The minimum time to perform an AID conversion is 7 µs for the microcontroller used.

The guaranteed interrupt service time of the microcontroller is 7 µs. If interrupt based

routines were used this would slow down the system.

In a normal situation with synchronous data processing operations such as the AID

conversion of image data, at least one of the operations would be set up to interrupt the

processor with the buffering of data in RAM.

Instead a dedicated hardware loop was implemented as there was not sufficient time to

implement an interrupt based approach.

1 . The number of lines to be captured is initialised from the command
descriptor block, and the frequency of the camera clock signals is set based
on the integration time information in the command descriptor block.

2. The AID converter is initialised to run continuously triggered on the DATA
RA TE signal returned from the camera.

3. Wait for the LINE SYNCH signal indicating the start of a line. Image data
will be valid after 24 DATA CLOCK cycles.

4. Move the mirror position so the next line can be exposed.

5. & 6. Enter the AID loop. Digitise the analog voltage signal and send each
byte to the computer over the SCSI interface.

7 . Loop for 1024 pixels in each image line.

8 . Loop for the number of lines in this block.

Figure 5.7 - Image block capture algorithm (description)

116

5.2.3.2 Imai:e Capture Line Timin2

The data conversion and transfer time talces a fixed 12 ms per line (assuming 8 bit AID

conversion and that a write to RAM is used). In parallel with this is the 2 mS delay to

allow the stepper motor to settle and the variable length integration time as shown in

figure 5.8 . The camera sensor integration starts on the falling edge of the

LINEIINTEGRA1E signal, and the rising edge indicates the start of a new line.

If the integration time is shorter than the 10 mS (daylight conditions) the data conversion

and transfer time becomes critical and it talces 0.6 seconds to capture a 50 line block.

The start of integration is delayed so that the end of integration is synchronised with the

end of the line instructions.

If however the integration time is longer than 10 mS (low light conditions) the situation

is reversed and the integration time becomes critical. The integration starts at the end of

the stepper settling time and the start of the next line is delayed to accommodate the

integration time. The time to capture a 50 line block will be variable and dependent on

lighting. The integration time maximum has been set to 120 ms (10000 DATA CLOCK

cycles) which means it talces 6 seconds to capture a 50 line block (15 minutes I image)!

A)
Line signal timing

For timing within one
AID cycle see figure 5.9

/~
Start ofUoe /' Start of ""'Hn• . I .

j I ~ I
LINE/INTEGRATE
signal

DATA RATE UTIIUllllllJlllllffillll\lffllil\llllJ!lllli1Wl1111 ~\llllll'.illlJJlllfll@lW!1\ll'll
signal : :

: :

Video signal ~
:

Day light conditions
I- 2ms

Move mirror
<E :;:. max 10 ms

Integration time c::::=:=-
12ms

Conversion & transfer

Line end processing
0.2 ms• !

B) Low light conditions
Move mirror : -

Integration time
~

Conversion & transfer ..
• •:

Line end processing
I I I I

0 2 4 6 8 10 12 14 16
Time(mS)

Figure 5.8 - Line signal timing

Chapter 5 - TreeScan Software 117

5.2.3.3 Image Capture AID Conversion Timing

In the section on image capture line timing it was stated the data conversion and transfer

time are fixed. This is not strictly true as these parameters depend on the implementation

of the AID loop. The data conversion and transfer time consists of 1062 cycles of ND

loop time. This section describes the timing within a single DATA CLOCK cycle.

The AID converter is triggered by the falling edge of the DATA CLOCK after which the

result of the ND conversion is ready after 7 µs . The result of the 10 bit conversion is

stored in two registers. The top 8 bits are stored in the ADDA TH register and the bottom

2 bits are stored in the ADDA TL register. The data must be read from these registers

before the next AID conversion can start. After the pixel data has been read, the

microcontroller must process it before the next ND conversion is completed.

The minimum time that the ND loop can take is indicated in figure 5.9a. After the result

of the AID conversion (top 8 bits of the converted value) has been read, it is transferred

to the SCSI controller, a check is made to determine if the end of line has been reached,

A)

Start of 8 bit AID conversion
conversion ;9.3µs

DATA RATE
signal --; I I

-· - -

/>JD conversion
_,,.

:
Microcontroller busy

:

iMove I Loop I I Sync~ I Move I Loop I .. .
:to SCSI back loop ND "to SCSI back
:

read
• I I I I I

:a 2 4 6 8 10 12 14 16 18
Time (µS)

:

B) :

8 bit AID conversion with write to RAM (currently used)
: 12µs

/>JD conversion

Microcontroller busy -:

: Movetol Loop I I Sync~ IMove to I l Move tol
back

...
RAM loop ND SCSI RAM

: read

C)

10 bit AID conversion with 8 bit lookup table and write to RAM
: 18.7 µs

/>JD conversion

Microcontroller busy

! Move tol [oop I I I I I Move I
RAM back Synch Setup ND read & lookup Move to . ..

loop A/D lookup to SCSI RAM

Figure 5.9 - AID signal timing

r LB -

r L8 -

-

-

Get into loop capturing data and sending it to SCSI

ad:

ad2:

nop
nop
jb
mov
mov
movx

mov
movx
inc

djnz
djnz

BSY,r_ L8 - ad2 ;Wait until AD complete
A,ADDATH ;read data out
DPSEL,#sxDPTRFIFO
@DPTR,A ;copy data to SCSI

DPSEL,#sxDPTRBuffer
@DPTR,A ;buffer data to RAM
DPTR

crCountL,r_L8_ad
crCountH,r_L8_ad2

;l
;l
;2
; 1
; 1
;2

; 1
;2
; 1

;2
; 1
I

;16 +4

Figure 5.10 - AID conversion (8 bit) microcontroller code

118

if not the microcontroller loops back and waits for the next value. See figure 5.10 for

the main AID loop and its timing in machine instruction cycles (0.75 µs).

Two other AID conversion routines have been implemented to cater for low lighting

conditions and SCSI related transfer problems (see sections 6.4.1 and 5.2.4.3). In both

situations the minimum time for each AID conversion is lengthened, increasing the

minimum time required to capture a block of lines.

Several small timing reductions could be made to the ND conversion process, however

in most forest conditions the data conversion and transfer time is not the critical time so

it was deemed more important to deal with low light levels. One improvement that could

be made is to have the end of line count interrupt driven instead of counter driven. This

would reduce AID loop time by 1.5 µs (or approximately 10% speed increase).

Chapter 5 - TreeScan Software 119

5.2.4 SCSI Transfer Algorithm

The SCSI transfer algorithm implements the interface between scanner and computer. It

allows the computer to send control information to the scanner and allows the scanner to

return the captured image data.

Previously it has been stated that the microcontroller executes tasks based on scanner

control commands passed to the scanner from the computer. Each scanner control

command consists of a SCSI command sent by the acquisition plug-in to the

microcontroller using the SCSI bus controllers in the Macintosh and the scanner.

• At a logical level a SCSI command consists of the transfer of a command

descriptor block. A command descriptor block is a data structure containing a

command operation code and parameters associated with the opcode. Depending on

the command opcode the SCSI command may involve further data transfer in either

direction.

• At a software level a SCSI command involves of a series of chip commands

being sent to the SCSI bus controllers which perform the correct sequence of bus

phase changes to facilitate the transfer of the command descriptor block and the

image data.

In the computer this requires a sequence of Macintosh Toolbox calls to the

SCSI Manager. These calls operate directly on the computer SCSI bus

controller.

In the scanner this is completed by reading and writing to registers in the

scanner SCSI bus controller. This involves both sending the correct chip

commands and transferring any data in and out of the SCSI data buffer.

• At the electrical level a SCSI command consists of a complex sequence of control

signals on the nine SCSI bus control lines. The signal lines indicate bus phase

status, and perform byte handshaking as data is transferred in either direction over

the nine data lines.

The detailed requirements of the SCSI protocol can be found in appendix I and a

description of the scanner SCSI bus controller hardware in section 4.4.

In this section implementation of the SCSI transfer algorithm is discussed. A normal

SCSI transfer will be described after which the problems encountered during the SCSI

software implementation and their solution are discussed.

A)

Computer

SCSIGet()

SCSI Select
(TargetlDNo)

Software Level

Critical timing Microcontroller

1 · Initialise SCSI during
powerup

Wait for select interrupt
Write receive chip command

Bus phases

I Arbitration phase ! Selection pha"

SCSICMD 4· -
(PlrCMD, sizeCMD) :..:_:------------------ -

--
Wait for function complete int I
Read CMD descriptor block from
FIFO
Determine command and

5
. =~:::~~e d:~o;hip command I

Command phase

SCSIRead(TIBPtr)

SCSI Complete

- --------

- --- --
6. - --- ­--

Send image data

(Stat,Msg,timeout) --
Wait for function complete int
Send status byte

7. - --- ------
- -------Command completed

AST

Send message byte

Command completed

Electrical Level
4 . 5. '

· --J..: · -------•:
I i

I I

ATN , : :() i(
~-): Command phase Optional

Data phase

)~
,/. : : '

Arbitration Selection
phase phase

Figure 5.11 - Normal SCSI transfer

5.2.4.1 Normal SCSI Transfer

!

Optional
Data phase

Status phase and
message phase

7. !

....
Status phase and '
message phase

120

A normal SCSI transfer involves the sequence of operations shown in figures 5.11 and

5.12. The operations completed by both the plug-in and the rnicrocontroller software are

listed with the critical path highlighted. The SCSI bus phases throughout the transfer are

also shown.

The computer must select a target device (the scanner) and wait for it to respond. Once

the device responds the computers sends the command descriptor block to the scanner.

Chapter 5 - TreeScan Software

1 . When the scanner is powered up, the scanner SCSI bus controller is
initialised. This includes the setting of SCSI ID number and enabling the
selection of this device as a target. Now the scanner waits until it is selected.

2. When a SCSI command transfer is started, the computer must first arbitrate
for the SCSI bus. This is performed through a SCSIGet() toolbox call and
allows the computer to become an initiator and gain control of the SCSI bus.

3. Next the target device must be selected using a SCSISelect() call, with the
target device SCSI ID number as a parameter. When the scanner's SCSI ID
number is selected the microcontroller is interrupted with a select interrupt
and the RECEIVE COMMAND chip command must be written to the scanner
SBC. This acknowledges to the computer the scanner has been selected and
is ready and waiting to receive a command descriptor block.

4. The command descriptor block is transferred from the computer to the
scanner using the SCSICMD() call with a pointer to the command descriptor
block as a parameter. The information is transferred and arrives at the
scanner with a function complete interrupt. The command descriptor block
data is read out of the SCSI bus controller FIFO. The appropriate action is
performed based on the information in the command descriptor block.

5. If required the data phase is entered. The data phase involves the
microcontroller sending data and the computer receiving it. Data is sent from
the microcontroller by writing a SEND DAT A chip command to the SBC,
writing the number of bytes to be transferred to a counter, and writing the
bytes to be transferred to the SBC FIFO. At the computer the data transfer is
performed using a SCSIRead() call with a TIB (Transfer Instruction Block)
as a parameter. A TIB is a sequence of low level instructions for the
computer SCSI bus controller (see appendix K). The TIB must contain the
number of bytes to be read.

6. If the number of bytes in the TIB, in the scanner SBC counter, and the
actual bytes transferred do not match, synchronisation is lost and both the
scanner and the computer can lock up waiting for each other to transmit data
or change the bus phase. A timeout can be set that limits the maximum time
the computer will wait while locked up.

7. When the data transfer is completed the computer makes a single
SCSIComplete() call. The microcontroller sends a status byte and a message
byte. This involves both the status phase and the message phase. Once the
status byte and message byte have been transferred the SCSI transfer is
completed. The SCSI bus returns to the bus free phase and the scanner
waits for the next SCSI command.

Figure 5.12 - Normal SCSI transfer (description)

121

The scanner completes tasks based on the command descriptor block with the optional

transfer of data (see figure 5.12, item 5). The command must then be completed by the

transfer of two bytes to indicate whether the transfer was completed successfully.

At the electrical level this involves the bus signalling indicated in figure 5.11 b. The BSY

signal is activated at the start of the transfer, is briefly switched low during the selection

phase and remains active throughout the duration of the transfer. The state of the CID

(Command/Data) and 1/0 (Input/Output) lines determine the bus phase. During the

122

region marked 4 the command data is transferred and during the region marked 5 the

image data is transferred. The transfer of each byte of data has an REQ/ACK handshake

associated with it.

If the SCSI command does not involve image transfer the data phase is simply omitted

from the sequence.

5.2.4.2 Obstacles Encountered implementine SCSI

Two significant problems encountered during the development of the SCSI transfer

algorithm were caused by unexpected timing fluctuations in the operation of the SCSI

interface:

1 . A byte loss problem as a result of transfer buffer overflow

2 • Long delay times between the changing of SCSI bus phases

A byte loss detection and correction algorithm was implemented to deal with both the

byte loss problems. Images were captured in blocks of 50 lines per SCSI command to

reduce the impact of long delays during bus phase changes.

Byte loss

As discussed in previous sections (4.4.3, 5.2.1.1 and 5.2.3.1), although SCSI is a

handshake system with a 'wait if not ready' flag, there is insufficient time to check this

flag so a dedicated loop converts image data and sends it to the SBC. This assumes the

SCSI interface (4 MBytes/s) is able to keep up with AfD conversion (100 kHz). Small

variations in transfer rates would be handled by the built in 32 byte buffer and hardware

handshake.

Sometimes however, the computer SCSI bus controller was unable to receive data for

intervals up to 1.5 mS in duration. This delay, probably due to operating system

background tasks, allowed image bytes to be lost as image data can only be buffered for

Figure 5.13 - Image with byte loss problem

Chapter 5 - TreeScan Software 123

a maximum 0.5 mS by the 32 byte FIFO. As the image conversion continued, this

allowed the FIFO to overflow and image bytes were lost. Figure 5 .13 shows a section

of image captured with bytes lost in three places, as can be seen on the white alignment

reference on the right of the image (see figure 5.13).

There are several possible solutions to this problem:

1 . Ideally the SCSI bus controller FIFO should be checked before any bytes are sent.

If however the FIFO is full the ND conversions need to be delayed. This is not

possible without losing camera timing synchronisation.

2 . The capture and transfer of image data as two separate interrupt driven processes

(as discussed in section 5.2.1.1). This increases the conversion and transfer time

resulting in considerably longer image captures.

3. A byte loss and detection scheme can be set up, as delays are rare, to resend the

line from memory (checking whether FIFO is not full) if the some of the image

bytes were lost during transfer. This requires the image bytes to be stored to

memory during capture, but this results in minimal ND time increase.

The final method has been implemented and is discussed in greater detail in the next

section.

An interesting aspect of the byte loss problem was that the delay in receiving bytes was

more common on the portable Macintosh PowerBook 520c data acquisition computer

than on the Macintosh Quadra, on which the plug-in was initially developed. On both

computers all extensions were switched off to remove as many background tasks as

possible without hacking into the operating system. This did not make a significant

difference in the frequency of the problem.

Minimum SCSI command time

The second obstacle encountered was that the Macintosh SCSI bus controller appeared

to be slow to react to SCSI phase changes (see figure 5.14). There was a delay of

approximately 26 ms from the time the microcontroller wrote the RECEIVE COMMAND

chip command to the time the command descriptor block data was received back from

the computer. The same delay was present before the computer acknowledged the first

byte of the data transfer, and a longer delay of 55 ms was present between the end of the

data phase and the transfer of the status byte.

These delays were expected to be three orders of magnitude smaller, similar to the

arbitration and selection delays of approximately 20 µs. The cause of these delays

should be further investigated and is still not fully explained.

124

Command phase Data phase Status phase and
message phase

BSY

CID

VO ~

DATA I:
i(

26mS >:(26mS
)~

55mS
~

Figure 5.14 - Extended delays during SCSI transfer

These delays in the changing of bus phases introduced a minimum duration for a SCSI

transfer of approximately 120 ms. If lines were captured one line per SCSI transfer this

would allow the maximum transfer rate to be 8 lines per second. By capturing the image

in blocks of 50 lines this minimum transfer delay becomes less significant and lines can

be transferred at an average rate of 70 lines per second which is close to the maximum

data rate of 83 lines per second.

5.2.4.3 ·Byte Loss Detection and Resend Scheme

The byte loss detection and resend scheme is an elaborate scheme to ensure transferred

data is not corrupted by buffer overflow. It will correct for occasional buffer overflow

of up to several hundred bytes. An overview of the byte loss detection and resend

scheme is presented here, with details presented in appendix L.

There are two restrictions that must be taken into account:

1 . The TIB instruction set is very limited and can only execute seven types of

instructions (see APPENDIX K for more detail on TIBs).

2 • The scanner SCSI bus controller provides limited status information. There are

flags that indicate whether the Transmit FIFO is full or half full, but not whether

the transmit FIFO is empty.

The detection and resend scheme works on the basic principle that the SBC expects to

send a certain number of bytes. If at the end of the image line the SBC expects to send

more bytes, the SBC FIFO must have overflowed during the AID conversion loop. The

line that was sent must be ignored and the line resent from memory.

A block of image lines is captured using a single Macintosh SCSI call. This means that

the detection and resend scheme must be implemented within a single TIB. The TIB

uses self modifying code to conditionally execute instructions. The microcontroller

Chapter 5 - TreeScan Software

Start image capture

l Send one image line I
!I and save in RAM !

1
(1024 + 38 bytes)

Any bytes left > __ No _______ ~

to send? ~ I
Yes

(Byte loss) I •
I Send rest of 1062 bytes !

Send 'good' line bytes

, as filler bytes
!

Send 'bad' line bytes

I Resend line from RAM
(check for overflow)

I

Stop image capt~

Last line?
No

Yes .

Figure 5.15 - Byte loss detection and resend scheme

125

instructs the computer to overwrite the last line by modifying the TIB and transferring

an increment to the pointer in memory where the image is stored.

The implementation of this byte loss detection and resend scheme has little impact on the

acquisition plug-in code. Only the TIB must be redeveloped to allow for significant self

modification.

The implementation of this byte loss detection and resend scheme does have an effect on

the image capture timing. The AID conversion loop must write the image data to RAM

as well as to the SCSI. This increases the AID conversion loop to 12 µs as shown in

figure 5.9b. The capture image block algorithm (figure 5.6) has also been modified to

accommodate the additional write to RAM, additional end of line checking, and a line

resend if necessary.

126

5.2.5 Focus Algorithms

There are two aspects to focusing the scanner; the scanner must initially focus on the

base of the tree before the image capture starts, and correct focus must be retained

throughout a scan.

5.2.5.1 Focus Adjustment

During an image capture scan the distance to the object changes, so the focus position

must be adjusted. Three focus approaches can be adopted:

• The focus can be set halfway up the tree so the whole of the tree remains

within the depth of field and no focus adjustment is required. This requires a very

small aperture and thus a large exposure time.

• An autofocus may be made every time a change in focus is required.

A smaller depth of field, and hence shorter integration time, could be used as a

series of focus adjustments may be made up the tree. This method requires that

the autofocus algorithm has been implemented and could focus in the wrong place

if branches obscure the tree.

• A method of 'blind focus' may be implemented. This method completes

an autofocus at the bottom of the tree which is used to approximately determine

the distance away from the tree. Based on this distance away from the tree, the

estimated focus position is calculated for subsequent focus points. Throughout the

scan the Jens is moved to the estimated point of focus. Branches will not affect

this method of refocus up the tree. This method relies on absolute positioning of

the focus and the assumption that the tree is approximately vertical.

It was decided to adopt the third approach to retain focus throughout the image capture.

This involved the development of an autofocus algorithm, a 'blind refocus' algorithm

and a repeatable lens control mechanism.

5.2.5.2 Autofocus Al2orithm

The basis of an autofocus algorithm is that it must find the point of optimal focus, which

is taken to be the lens position at which the measure of focus defined in chapter 3 is at

its maximum.

Two autofocus algorithms were implemented which operated on a slightly different

principle. The Mkl lens system provided servo control only for the focus position of the

lens, with the result of this was that absolute position information could not be used to

Chapter 5 - TreeScan Software

...
QI
.0
E
::I
c:

"' ::I
0
0 u..

~
I

Move lens to focus
at oo

Focus maximum = 0
Focus measure = O

I~ I
/ Capture Line ! r-M-ov_e_fo~c_u_s_l_a-rg-e-st_e_p_.

!Calculate focus measure
1

! closer J

Loop until I
measure < 0.5 x Max >---- ­

or focus at 7 m

Move to best focus
+ 1 large step

i Capture Line ·
Jcalculate focus measure!

1

Move focus small step I
towards oo :

I

Loop until
position = best focus

- 1 large step

Move to best focus

Stop image capture

Position of focus mechanism from oo

I Best focus
v

~~\J

Figure 5.16 - Final autofocus algorithm

127

128

position the lens focus. Stepper motor control of the lens focus position was provided

on the Mk2 system. This allowed the focus algorithm to make use of absolute

positioning information, and allowed the blind refocus algorithm to be implemented.

The final focus algorithm implemented on the Mk2 system is shown in figure 5.16. The

microcontroller drives the lens to its infinity position. Next the lens is driven towards

near focus in large steps. At each point a line is captured and focus number calculated.

Once this number has reached a maximum and is getting smaller the optimal focus point

has been passed. Next the algorithm searches around the best focus point it found, in

smaller steps to find the optimal focus point to a high precision. Finally absolute

positioning is used to move to the optimal focus point.

The Mk 1 autofocus algorithm was based on a similar principle in that it drove forwards

until over the focus peak, then reversed direction and drove back in smaller steps until

the focus number started going down again. This is based on the assumption the curve

is a monotonic rising and falling curve. If there is any noise or variation in calculated

focus numbers this algorithm may not find the optimal focus point.

In developing the autofocus algorithm it is very important to ensure the focus calculation

is based on a region of the image where all the imaged objects are the same distance

from the scanner. If this is not the case the focus graph will be a bimodal curve and it

will become difficult to find the point of best focus. All focus algorithms are based on a

single line in the image because it would be time consuming and introduce unnecessary

wear on the mirror tilting mechanism to capture several lines and rapidly drive back and

forth between them.

An evaluation of the autofocus algorithm is presented in section 6.4.4.

Chapter 5 - TreeScan Software 129

5.2.6 TreeScan Plug-in Software

The scanner control software implemented on the portable computer consists of an

acquisition plug-in. This is a Macintosh code resource which complies with the Adobe

interface specifications for version 3 plug-in code modules and may be used to extend

applications.

The TreeScan acquisition plug-in implements the image build-up algorithm, and

provides a user interface so the operator can control image capture. The plug-in controls

the scanner by sending scanner control commands. Each command is sent by interacting

directly with the computer SCSI bus controller. The TreeScan image capture plug-in

passes a data structure containing the captured image back to the calling application

(NIH Image in this case).

The TreeScan plug-in is programmed in C. It captures the image into memory during the

start selector call. This allows the image to be displayed in a preview window as it is

being captured. To be able to capture an 8000 line image, the plug-in requires 8

megabytes of memory. After the image is captured in memory it is passed to NIH Image

in small blocks during the continue selector call.

The portable computer has 20 megabytes of RAM. To capture an 8000 line image

& File Edit Options Enhance Analyze Special Stac.-1:~ Windouis User

LUT Tools

Status : Scanner idle

Tree I Tree name:!~-----~

Uiew:

Angles:
GJ

Dip:@=] 0

Tilt:~0

(Preuiew Image)

(Capture Image)

Cancel '"

Height of tree: ~ m liJ
Speed: Slow 1¢1":'''1;.ifrlMi:JI Fast
Resolution: High "'''' W!'ia Low

4

Figure 5.17 - TreeScan image capture user interface

130

requires two 8 megabyte image buffers; one for the plug-in and one for NIH Image to

store the returned image. After these two buffers are allocated this leaves 4 megabytes.

This is just enough for the operating system, NIH Image application, and memory

required for the plug-in code.

NIH Image also allocates a clipboard and undo buffer. In order to call a plug-in each

needs to be the size of the image. This would require a further 16 megabytes. To avoid

this the NIH Image source code was modified to deallocate the clipboard and undo

buffers directly before an acquire plug-in call and reallocate the buffers directly after the

acquire plug-in call. This frees 8 megabytes of memory which NIH Image can use

during the image capture.

The TreeScan plug-in source code consists of six source files (2700 lines of code) with

associated header files and library files. A total of 6200 lines of code. Relevant source

listing are provided in appendix M.

The user interface consists of a dialog box which is presented when the plug-in is called

(see figure 5.17). The dialog box has a number of button controls and an image window

in which a small scale version of the captured image is displayed during capture. The

buttons allow the user to set up the tree information, preview a small section of the

image and capture a full image. A debug dialog is also implemented which can be used

to execute individual scanner control commands to aid development and testing of the

hardware.

The image build-up algorithm (see section 5.2.2) is executed when the Capture Image

button in the dialog box is pressed (see figure 5.17).

5.2.6.1 Adobe Plui:-in modules

As explained a plug-in module is a compiled Macintosh code resource which may be

used to extend applications. Plug-ins are designed to complete specific image processing

tasks and must comply with the Adobe interface specifications. Plug-ins are linked to a

supporting application at run time and may be executed from any application (typically

image processing applications) that supports Adobe format plug-in code extensions.

Adobe Photoshop version 2.0 supports three types of plug-in modules; acquisition

plug-ins, export plug-ins, and filter plug-ins. NIH Image also supports all of these.

The requirement for an acquisition plug-in module is that it conforms to the Adobe

interface specification as described by the documentation on writing plug-in modules

(Knoll, 1991). Certain resource types must be correctly set and the plug-in should be

called using the following Pascal calling conventions:

Chapter 5 - TreeScan Software 131

PROCEDURE Plugin (selector: INTEGER; acqRec: Ptr;

VAR data: LONGINT; VAR result: INTEGER);

The plug-in must respond to the following sequence of selector values:

1 . Prepare : allows the plug-in to adjust its memory allocation

2 . Start : returns the parameters of the image being captured to the calling

application and allows the plug-in to display it's dialog box

3 . Continue : returns a section of an image to the calling application

4. Finish : allows the plug-in to free any required memory

The acqRec parameter is a pointer to an AcquireRecord structure which contains image

information such as: the maximum memory available, image x and y dimensions, and a

pointer to the image data area in memory. The data parameter is used by the plug-in as a

pointer to its global data, and the result parameter allows the plug-in to return its status.

5.2.7 Microcontroller Software

The microcontroller code controls the scanner hardware and implements the time critical

tasks. Hardware control is provided by responding to a series of scanner control

commands (SCCs) passed from the acquisition plug-in. The image block capture

algorithm is time critical and implemented in the microcontroller code. The

microcontroller code was written entirely in assembly language.

The structure of the code reflects its function . The microcontroller code consists of a

background loop waiting for SCSI commands from the computer. When a SCSI

command is received, the appropriate routine is called to perform the required function.

The microcontroller then returns to the background loop waiting for the next SCSI

command.

The microcontroller source code consists of seven source files (2800 lines of code) with

four extra files containing the 10 bit ND lookup tables. A well structured set of naming

conventions was set up to keep the use of variable names and constant names consistent

within the assembly code.

The main file TASM120.ASM contains important code documentation. This includes

microcontroller 1/0 port declarations, memory map, register usage, variable haming

convention, modification history, constant declarations, and variable declarations.

Relevant sections of the source listings can be found in appendix M.

132

5.3 Tree Parameter Extraction Software

5.3.1 Overview

The parameter extraction software provides the facilities to process captured

images and to estimate real world tree dimensions. This software automates a series of

image processing tasks and deals mainly with implementing the image calibration and

distortion correction methods described in chapter 3.

The parameter extraction software can be used in a variety of ways dependent on

whether the images are just being browsed to determine the size of various features of

interest or a systematic analysis of each image is being undertaken. Immediate feedback

is provided for interactive processing. In addition key information such as the three

dimensional stem model can be stored in a form suitable for later processing and stem

breakdown optimisation.

The processing of captured images is divided into three broad tasks:

1 . Image calibration

2 . 2D processing

3 . 3D processing

View1 View2

Capture Image Capture Image

------ -- ------------~------------------------------ -------------------L-- ----- -- ------ -- --T T

Calibrate image j I Calibrate image I

/
Interactive 20
size estimates

Mark stem
edges

Mark ste
edge \

Create & display
30 model

/
Stored 3 Dstem

model

Interactive 20
size estimates

Interactive 30
swee estimates

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I

L------------------------------------ ---J

Optimisation
software

Parameter extraction software

Figure 5.18 - Parameter extraction sequence

Chapter 5 - TreeScan Software 133

The image must first be calibrated to establish a relationship between the image

dimensions and real world dimensions. Once the image has been calibrated, size

estimates in two dimensions can be interactively made from a single image, or

information from two calibrated images can be combined to estimate three dimensional

shape.

The two dimensional tree size estimates allow any dimensions on the 2D calibration

plane (see section 3.2) to be estimated, these include: heights, stem diameters, branch

diameters, intemodal distance and other distances between features.

The three dimensional processing generates a three dimensional model of the tree

stem shape. Interactive sweep estimates can be made on this stem shape model, and this

model can be further processed by optimisation software to determine the optimal stem

breakdown.

The parameter extraction software consists of a number of macros written in a Pascal

like macro programming language which is a feature of NIH Image. The macro

language is used for the majority of the processing tasks. In some cases however where

the macro language is too slow or lacks functionality, additional user routines have been

added to the NIH Image application. This involves modifying the NIH Image source

code and recompiling the application.

In sections 5.3.6 and 5.3.7 the structure of the TreeScan parameter extraction software

is described in greater detail.

5.3.2 Image Calibration

As discussed in section 3.5.l, image calibration is required to establish the geometry of

the image capture situation before real world dimensions can be estimated from the

image. Once the image capture geometry is established, the distortion correction

methods can be used to estimate the size of features up the full length of the tree.

During image calibration points on the calibration rod in the image are marked

establishing the image capture geometry.

Two different methods of image calibration have been implemented dependent on the

distortion correction method used:

• The first distortion correction method used was based on estimating the camera

position based on the calibration rod with two crossbars. This involved marking

six points on the image. From these six points the distance and angle 0 was

determined. This method was found to be imprecise (see section 3.5.2.2) and not

further developed.

..

134

The second distortion correction method used was based on estimating distance

from the scanner to the tree using a calibration rod with only one crossbar and

measuring dip and tree lean angles. These angles are measured using a digital level

and entered into the plug-in dialog box which saves the data to file. Three points

on the bottom crossbar are marked.

Once the image is calibrated the information is available to estimate the real world

position of any point on the image. The calibration data is also saved to file. This allows

the image to be re-calibrated later without having to mark the points on the calibration

rod again.

The distortion correction method implemented is the 'TreeScan perspective correction -

measured O' as described in section 3.5.3.2.

It should be noted that the software does not modify the entire image to correct for

perspective distortion as this would involve considerable processing. Instead, only the

coordinates of each point of interest are converted to real world coordinates. These may

then be used to estimate tree parameters.

Figure 5.19 - Marking of three calibration points

5.3.3 Feature Size Estimation in Two Dimensions

The two dimensional feature size estimation involves the estimation of feature sizes from

a single calibrated image. This allows any dimensions on the 2D calibration plane to be

estimated, these include: heights, stem diameters, branch diameters, internodal distance

and other distances between features.

Two dimensional feature size estimation involves three steps; identifying the feature of

interest on the image, marking the feature of interest, and estimating the size of the

feature of interest.

1. Features of interest must first be visually iden~ified on the image. This may be

more difficult than visually identifying features in the forest because two fixed

views of each tree are captured. Some features or branches may be hidden in both

views. Zoom and pan are available to change the displayed resolution. Features

may be marked at any resolution.

2 • Once identified, the feature must be marked by making a line selection for distance

estimates, or placement of the cursor for height estimates. The selection must be

manually made using judgement to correctly place the end points of the line or

crosshair pointer (see figure 5.20).

Hei9ht
= 14.0:3 m

Horiz:•jnt.:i l offset
= -29.1 i::m

Di.:imeti?r
= 39.9 e:m

Av hi?i9hi:
= 14.29 m

Diami?tet-
= 6.3 e:rn

Av hei9ht
= i4.12 m

Figure 5.20 - Two dimensional feature size estimates

136

3 • When the feature of interest is marked, the software processes the coordinates of

the selection, correcting for image capture distortion and calculating a size

estimate of the feature. Cursor placement provides height and offset from the

calibration reference, while line selections provide a distance between end points

of the selection.

This sequence allows the dimensions of any tree feature to be estimated provided that it

is visible in the image. The main disadvantage of this method of identifying features is

that estimates depend on the manual placement of the cursor. In the estimation of branch

diameters for example, the branch may only cover a few pixels. Research is currently

underway by Dr Ralph Pugmire and Mr Ian Overington to automate some or all of the

parameter extraction processing and to allow estimates to subpixel accuracy.

Chapter 5 - TreeScan Software 137

5.3.4 Three Dimensional Stem Shape Estimation

To estimate sweep, the position of the tree stem in three dimensional space must be

measured. This is completed by generating a model that is defined by the three

dimensional tree shape.

The generation of this three dimensional model consists of a process different from two

dimensional feature estimation. Information from two views of the same tree must be

combined, and rather than individual feature heights and offsets, shape information is

required for the full length of the stem. Position estimates are made for sufficient points

up the edge of the stem to fully define a three dimensional stem model.

The processing required to generate the three dimensional model consists of a sequence

of tasks shown in figure 5.21. The marking of the stem edges must be performed

manually. This task is tedious but must be performed carefully as the dimensions of the

tree stem model are based on the placement of these lines. The automatic detection of

these tree edges is another task currently being investigated as part of the automatic

parameter extraction research being undertaken by Dr Ralph Pugmire.

1 2,3 4-6 ·~

1. Mark tree edges using white lines.

2. Convert edges to points equally spaced in the image.

. .
~
"------""·
. . ,_-----...._.
~

. .
;,----......:
~-

~
. .
~
~

3. Correct each point and store edges as data file of real world tree stem
coordinates.

4. Generate model. Combine stem edge data file from two views to
generate model of equally spaced slices

5. Store model as data file and convert to a format suitable for log
optimisor.

6. Display model and make optional sweep estimates (see figure 5.22).

Figure 5.21 - Generation of three dimensional stem model

138

Once the edges of the stem have been marked these are processed into a series of points,

which are corrected to produce a file of stem shape coordinates. At this stage the model

consists of points that are at equal pixel spacing in the image, or increasing spacing up

the tree.

The stem shape files from both views are processed to generate the three dimensional

stem model. The stem data is interpolated to generate a model which consists of 'slices'

spaced at fixed distances up the tree stem. This stem model is saved and converted to a

format readable by the log optimisation software developed by Tasman Forestry in

conjunction with Auckland University (Tasman, 1995). This software has been

developed for the optimisation of felled tree stems on the skid site.

The stem model can be displayed and rotated. Using the displayed model representation

interactive sweep estimates can be made for variable or fixed length sections of the tree

stem.

View 1

20 m

10 m

Om

Ualues
Sweep of SED/1 .7 over 12 m section .

Maximum sweep= 21 cm
at height = 8 .2 m
and sed = 36 cm

Section max height = 12.0 m
Section min height= 0 .6 m

View2 30 stem model

-50cm 50cm

Ualues
Sweep of 1.7 SED over 24 m section.

Maximum sweep = 33 cm
at height = 8 .8 m
and sed = 20 cm

Section max height = 25 .0 m
Section min height = O .5 m

Figure 5.22 - Sweep estimation from displayed tree model

Chapter 5 - TreeScan Software 139

5.3.5 Possible Improvements to Parameter Extraction

The methods currently implemented are capable of generating all the required tree size

estimates. However this processing is a tedious semi manual task during which the

operator must mark all dimensions to be estimated. Research is currently underway by

Dr Ralph Pugmire and Mr Ian Overington to automate some or all of the parameter

extraction processing and allow estimates to be made to subpixel accuracy.

There are two other ways in which the accuracy of parameter estimates could be

improved:

• The optimisation software determines the optimal stem breakdown based primarily

on stem shape and branch sizes. The stem model currently passed to the log

optimisor only contains stem shape information. Branch information should be

added to the 3D tree stem description. This would provide a more useful system to

determine optimal stem breakdown. This is currently being implemented.

• In the two dimensional size estimation only information from one view is used to

calibrate the image. If the tree is in front of or behind the calibration plane an

expected error is introduced as described in section 3.7. The software could be

modified to combine the stem position information from the second view to reduce

this introduced error. If implemented the estimation of tree dimensions becomes

an iterative task with a small improvement in estimates.

140

5.3.6 TreeScan Macros

The TreeScan macros are a series of routines that perform the tasks discussed in the

sections on image calibration (section 5.3.2), two dimensional feature size estimation

(section 5.3.3) and three dimensional tree shape estimation (section 5.3.4).

The TreeScan macros are written in a Pascal-like macro programming language that is a

feature of NIH Image and can be used for automating complex or repetitive tasks.

Loaded macros are accessible through the normal Macintosh menu interface or may be

assigned to special key strokes. NIH Image macros consist of a text file that can be

edited using the NIH Image in-built text editor. The macros can be easily modified and

can be loaded by NIH Image at any time the application is active. The macros are

interpreted at run time eliminating the need for software to be recompiled.

The maximum size of the macro file is 32 kByte in size. The implemented macros are

larger than 32 kByte, so TreeScan macros have been split up into two files . The main

file contains the normal processing macros. The second file contains a large number of

utility macros.

Main TreeScan macros TreeScan Utility Macros

Fl - Display help screen p - Print 50% image in A4 pages

F2 - Capture image CMD P - Print full image in A4 pages

F3 -Load image F - Filter to remove banding

F4 - Remove white pixels D - Vertically decimate image

(initialisation)

FS - Calibrate image T - Extract tree region

F6 - Save edges to file B - Extract base region

F7 - Perform 3D conversion and M - Extract target region

save model to file

FS - Display 3D model Q - Setup image thumbnail

A - Paste left side thumbnail

F9 - Display height s - Paste right side thumbnail

F 10 - Display diameter

F 11 - Display sweep ...
F 12 - Draw scale on image

CMD M - Load utility macros CMD M - Load TreeScan macros

Figure 5.23 - TreeScan processing and utility macros

Chapter 5 - TreeScan Software 141

5.3.7 NIH Image Source Additions and Modifications

In situations where the macro language was too slow or required additional

functionality, additions have been made to the NIH Image source code to extend the

application.

NIH Image is written in Pascal and consists of 34 source files. It has . been designed to

allow additional routines to be added in the user.p source file. This file has the calling

structures in place so that a call to extra procedures can be made using the USERCODE()

call with the correct parameters. The complete application needs to be recompiled if

changes are made.

The main routines added were routines for the processing of data files and the

processing and display of the 3D model. This includes the saving and loading of the

calibration file, combining of two stem data files into the 3D tree model, and displaying

the tree model.

Several modifications have also been made to the NIH Image application. The main

modification is the de-allocation of the undo and clipboard buffers before an acquisition

plug-in is called and the reallocation afterwards. This allows large images to be captured

by freeing up as much memory as possible for the image capture (see section 5.2.6) .

142

5.4 Software Development Environment

Each software level required development in a different programming language and a

different development environment.

ThinkC version 6.0 was used to develop the TreeScan plug-in, ThinkPascal version 4.0

was used to modify the NIH Image source code, and ThinkReference version 2.0 was

used as the main source of reference information for the Macintosh managers and the

toolbox calls. Inside Macintosh volume I - VI were used. as important references, as

well as reference information specifically for plug-in development and SCSI

development (Knoll, 1991).

The majority of the SCSI development was performed on a Macintosh Quadra with 8

megabytes of RAM. The Quadra has a separate SCSI bus controller for external devices

which provided greater safety during development as SCSI errors on the TreeScan

system could not affect the internal hard disk. Once operational development was

performed using a Macintosh Powerbook 520c. This portable computer is the computer

that is used for the in forest image capture and contains 20 megabytes of RAM and a

160 MByte hard disk.

All microcontroller software development was completed using the Mandino Granville

monitor software version 4.43 and assembler version 3.08 which purchased with the

80C517 A microcontroller development board.

Chapter 6

TREESCAN EVALUATION

6.1 Overview of Evaluation --- 144

6.2 Sequence of Evaluation Experiments -- 145

6. 3 Hardware Calibration --- 14 7

6 .4 TreeScan Characterisation -- 151

6.5 Initial Accuracy Tests in Two Dimensions --------------------------------------- 157

6.6 Final Accuracy Tests in Two Dimensions -- 158

6. 7 Accuracy Tests in Three Dimensions -- 160

144

This chapter is an evaluation of the TreeScan system. It reports on the system

capabilities and discusses the modifications necessary to convert the scanner as

originally designed and built to an accurate scientific instrument.

The evaluation of a prototype such as the TreeScan system is a cyclical testing process.

Each time around the cycle more knowledge is gained as problems are solved and

modifications are made to the system. Once modifications are made many of the

previous tests need to be repeated to ensure the results are still valid. The material in this

chapter has been collated into a logical sequence of experiments to establish the system

capabilities.

6.1 Overview of Evaluation

_.\n evaluation of a system such as the TreeScan system should go through several

stages. The system hardware must first be calibrated and characterised. Only once this

has been completed can the actual accuracy of the instrument be evaluated.

The initial scanner prototype is the Mkl system. A series of tests were completed to

check the calibration and characterisation. Next experiments were completed to check

lhe accuracy of TreeScan object size estimates. This successfully identified several

~rious weaknesses of the Mkl system:

• Calibration procedure was inherently imprecise

• Insufficient light under forest conditions

• Lens modification required

A. second prototype (Mk2 version) was developed to overcome these weaknesses. The

calibration procedure for the second prototype was modified, and a different lens with

12Iger aperture was purchased to provide more light and solve several lens problems.

A. second series of experiments was performed. These experiments showed the

c.ccuracy of the Mk2 system to be good and within the required specifications.

Experiments completed include hardware calibration, characterisation experiments, two

dimensional accuracy tests, and three dimensional accuracy tests.

Once accurate and repeatable results were attainable in both two and three dimensions

kss critical functions such as the final user interface received attention.

Chapter 6 - TreeScan Evaluation 145

6.2 Sequence of Evaluation Experiments

An overview of the evaluation experiments performed is presented here in chronological

order. This overview is provided to set the context for the results of important

evaluation experiments presented in subsequent sections. The conclusions of each

experiment are presented with the sequence of modifications and further experiments

necessary to quantitatively establish the accuracy of the TreeScan system.

Once the TreeScan system was developed to the stage that images could be reliably

captured, an evaluation of the system was started. At this stage an autofocus algorithm

had been implemented for the Mkl TreeScan system with good focus results. The

internal scanner components were aligned to ensure no distortion during image capture.

Next a test was made to see whether real world dimensions could be estimated. This

involved capturing images of a tall building used as a calibration object. The results of

this test proved that the system was imprecise (see section 6.5).

Although imprecise, the system was operational so a field trial was undertaken to test

the system under forest conditions. This was the first time the system was operated in

conditions typical of a radiata pine forest. This field trial highlighted two points:

• The lighting conditions were unexpectedly low resulting in very long image

capture times (timeout maximum of 20 minutes).

• It is very difficult to physically measure standing pine trees to the accuracy

required to calibrate the TreeScan size estimates.

In response to the difficulty in measuring a tree as a calibration object, a 'metal tree'

was built for system calibration. The 30 metre calibration tree lies horizontally and has

been used to evaluate the system accuracy in two and three dimensions.

In an attempt to determine where the system imprecision lay, the perspective correction

algorithm was redesigned. It was found that the two step correction method being used
~tf

was an approximation, howevey._did not explain the imprecision of the estimates. A

different image correction method based on geometric calculations rather than planar

transformation was implemented. By implementing three slightly different versions

(see section 3.5.3) the cause of the imprecision was identified.

The calibration method being used was mathematically correct, but calibration rod

dimensions were being used in calculations to a precision much greater than the

measured precision. This resulted in random fluctuations in height estimates of

approximately 6 meters at a height of 40 meters.

146

At this stage the Mk2 system was developed. The calibration procedure was modified

so the angle of the camera with respect to the tree is physically measured, rather than

derived from the calibration rod image dimensions.

A different lens was purchased to address the other two problems. The new lens had a

larger aperture providing four times the light of the first lens. As no motorised wide

aperture one inch format lenses were available a manual lens was purchased and a

stepper motor fitted to drive the focus ring.

A third modification that could be made is to increase the system sensitivity by

implementing a video preamplifier. This would amplify the video signal before the AID

converter. This is being developed as part of Mr Aaron Drysdale's masterate.

The Mk2 system was a new unit so all evaluation tests, including calibration and

characterisation tests needed to be repeated. The Mk2 system was tested under forest

conditions by imaging an entire MARYL plot. This provided information on image

capture timing and image quality, as well as providing sample images for the automated

parameter extraction research being undertaken by Dr Ralph Pugmire. The trees were

not physically measured so calibration tests could not be completed. Two image

features were identified: the images contained considerable banding due to problems in

the integration time adjustment routine, and the images were not as sharp as expected.

The banding problem was easily corrected, but the source of the focus problem required

further research undertaken as part of Mr Aaron Drysdale's masterate. The results

showed the poor focus was primarily due to lens aberration at the wide aperture

positions of the new lens.

Accuracy tests were completed in both two dimensions and three dimensions with very

good results. Both height and width estimates were within the required specifications.

During this development cycle, software changes were continually made to; implement

the modified algorithms, improve the functionality of the software, and allow images to

be captured for specific experiments. Further testing on the use of the TreeScan system

under forestry conditions is presently underway.

Chapter 6 - TreeScan Evaluation 147

6.3 Hardware Calibration

The scanner hardware must be calibrated to ensure the scanner is mechanically capable

of producing estimates to the required degree of accuracy.

The hardware calibration process consists of two tasks; the alignment of the scanner's

internal components to avoid distortion, and the accurate measurement of the mirror

step angle which is used in the parameter extraction software.

6.3.1 Scanner Component Alignment

Inside the scanner, the scanning mirror, the lens, and the CCD imaging sensor of the

line scan camera must all be in alignment. If this is not the case several distortion effects

will be introduced. Any of these distortions will have a significant effect on the

dimension estimates taken from the images. There are four individual distortions that

could be introduced or a combination of the four if more than one misalignment is

present (see figure 6.1).

The CCD imaging sensor is permanently mounted inside the line scan camera and it is

assumed this has been correctly factory aligned. The lens is mounted directly on to the

line scan camera using a screw-on C lens mount and is also assumed to be correctly

~ -------r- ------

:_* :-
' ___ __ _ _ J ______ _ __ * ____ I - - ----

-- ----- ------

------- ------

Object Object

r ------------------1 r --------------- - -- ,
I I I : : =t= : I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

I t I I

' - --- ----- ------ - - -~ l----- -------- ---- -~
Image Image

' -~----- --:-- - -

-
--

- -·

Object

r -- - - ------------ --1
I I
I I
I I
I I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ______ ______ __ ___ _ J

Image

Figure 6.1 - Distortion introduced by camera misalignment

148

aligned. For the rest of this section the line scan camera and lens will be discussed as

one unit and referred to as the 'camera'.

The scanning mirror is mounted on the precision rotation mechanism. This is

permanently fixed to the scanner chassis and cannot be adjusted. The camera can be

misaligned with the axis of the rotation mechanism in three ways and the mirror could

be misaligned with the axis of the rotation mechanism. Each of these is discussed.

6.3.1.1 Camera Misalienment

The camera can be misaligned with the axis of the rotation mechanism in three ways as

shown in figure 6.1:

1 . The principal ray of the camera may not be perpendicular to the rotation axis. The

principal ray scans sideways up the object and introduces a horizontal shear into

the captured image.

2 • The principal ray of the camera may be offset from the rotation axis. This offsets

the position on the imaged object by the change in camera to mirror distance. This

offset is very small and the effect of this misalignment is negligible.

3 • The view angle of the camera may be at an angle to the rotation axis. This

introduces a vertical shear into the captured image.

These misalignments must be corrected for. This can be completed by imaging a

calibration grid and adjusting the position of the camera so that the camera and rotation

axis are correctly aligned. By placing the scanner at 7.5 metres from a grid with lines

1.3 mm wide, it is ensured the grid lines are exactly one pixel wide.

If a captured image is distorted (see figure 6.2), this must be corrected for by aligning

the camera in the horizontal plane to remove horizontal shear. If the image still contains

a vertical shear the camera must be rotated until the image of the calibration grid is not

distorted. Shims were used for fine adjustment of the camera position.

r---------------------, r---------------------, ;---------------------,
t I I t
I I I I

• • •• • • I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

---------------------J l---------------------J L------ ---------------~
Object Image~ Image ~Image

Horizontal Camera
alignment rotation

Figure 6.2 - Camera alignment procedure

Chapter 6 - TreeScan Evaluation 149

6.3.1.2 Mirror Misalienment

The scanning mirror is mounted on the rotation mechanism. If there is a misalignment

between the mirror and the axis of rotation of the mechanism, a nonlinear distortion will

be introduced.

The nature of this nonlinear distortion depends on the angular position of the rotation

mechanism over which the image is captured. The distortion introduces an 'apparent

sweep' into the captured images so must be corrected for. The physical system was

modelled in Matlab to determine the nature of this distortion, see appendix E for further

detail.

The mirror was aligned to the axis of rotation of the mechanism to a within

± 0 .01 degree.

l
I
I
I
I
I

---- -- - - -4---- - -
1

I
I \. __ ___ _
I

' ' -~---- ---

' ' '

Object

r------------------1
I I

: ~ : I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I l __ ____ ______ _ __ __ _ J

Image

Figure 6.3 - Distortion introduced by mirror misalignment

6.3.2 Measurement of Step Angle

The precision rotation mechanism has been designed so that the step angle is

approximately 0.01 degrees. The actual value of this angle, denoted alpha, is important

as this is determines the vertical pixel spacing. By using the number of pixels (steps) to

a particular feature and the step angle, the real world feature dimensions are estimated

using the perspective distortion correction discussed in chapter 3.

The step angle for the Mkl system was measured to be (1.030±0.002)x10-2 degrees,

by measuring the number of steps required to complete a full 360 degree rotation of the

rotation mechanism.

150

If the measured value of alpha is incorrect this will introduce a consistently high or

consistently low error into estimated heights. The value of alpha was later empirically

modified to l.033x1Q-2 degrees, in order to correct for a consistently high error in

height estimates during the two dimensional accuracy tests.

Chapter 6 - TreeScan Evaluation 151

6.4 TreeScan Characterisation

The TreeScan characterisation is completed to determine scanner characteristics and

establish the conditions associated with normal TreeScan operation. This provides

important information on the aspects of the system that are satisfactory and those that

may require further development work.

The TreeScan characterisation consists of a series of experiments to determine: the

timing for a complete image capture cycle, the resolution to which features can be

resolved, information on the integration time adjustment during image capture, and

information on the performance of the autofocus algorithm.

6.4.1 Image Capture Timing

In this section the overall image capture timing is discussed. This section builds on the

low level hardware timing discussed in section 5.2.3, and in section 6.1 where it was

noted that the lighting under forest conditions was unexpectedly low.

The system typically takes 4 minutes to capture an image. This is the fastest possible

image capture and may be longer in low light conditions. The time it takes to capture an

image depends on two main factors:

1 . Data conversion and transfer time

2. Integration time

Other factors that affect the image capture time are initial integration time adjustment,

initial autofocus time, refocus time, integration time adjustment, and time required for

additional processing tasks (see figure 6.4).

• In normal day light conditions the integration time is an order of magnitude

smaller than the data conversion and transfer time. The scan time is limited by the

data conversion and transfer time and the microcontroller is continually

processing data.

• In low light conditions, such as those experienced in forests, however the

situation is reversed. The integration time needs to be longer and limits the scan

time. In this situation the microcontroller remains idle for extended periods.

The system must operate in a forest, and should operate as fast as possible. To speed

up image capture in low light conditions modifications were made to the system to

increase the light received by the imaging sensor and increase system sensitivity:

•

152

An AID conversion routine has been implemented that performs a 10 bit AID

conversion with an 8 bit lookup table. This increases the sensitivity by a factor of

four by using the bottom quarter of the AID dynamic range. However this is only

a temporary measure as it requires more processing and extends the minimum

scan time by 50% (see figures 5.9 and 6.4 for timing).

• A new lens provides approximately four times the light by having a larger

aperture.

• A video amplifier is being built that will increase system sensitivity by amplifying

the video signal before the AID conversion.

The current timing of the Mk2 system is such that using the 10 bit AID conversion the

scan time is normally limited by the hardware limitation of data conversion and transfer

time (4 minutes). With the video amplifier this is expected to be such that the image

capture under forest conditions will not be limited by integration time.

Initial focus

lnteg. time

Integration time
Capture & transfer •••••

Daylight image capture Total time= 3 min 6 sec

Refocus time

Exposure control

Processing (5%)
~;..._~~~-+-~~~~+-~~~~~~~~---l>--~~~~

0 50 100 150 200 Time (S)

Initial focus
Low light image capture Total time= up to 17 min

lnteg. time

Integration time
Capture & transfer -----·/ll' --,

Refocus time

Exposure control

Processing (5%)

0 50 100 150 200 Time(S)

Initial focus 10 bit AID image capture Total time= 4 min 50 sec

lnteg. time

Integration time
Capture & transfer

Refocus time

Exposure control

Processing (5%)

0 50 100 150 200 Time (S)

Figure 6.4 - Image capture timing

Chapter 6 - TreeScan Evaluation 153

6.4.2 TreeScan Resolution

The resolution of the TreeScan system refers to the size of the smallest identifiable

features on the TreeScan images. It is however important to distinguish between pixel

resolution and discernible resolution; pixel resolution is the size a single image pixel

represents on the real world object, discernible resolution is the resolution at which

features of interest may be distinguished.

Pixel resolution and discernible resolution may be the same or different. In a situation

where the image is sharp and the feature of interest spans several pixels the discernible

resolution will be subpixel resolution. If however the image is out of focus or contains

blooming the discernible resolution will be several pixels.

6.4.2.1 Pixel resolution

The pixel resolution is the size a single pixel represents on a real world object. The pixel

resolution of the TreeScan system varies with position in the image; the pixel resolution

at the base of the tree will be higher than the resolution near the top of the tree. The

pixel resolution measured from the image matches the pixel resolution calculated in

chapter three. The TreeScan pixels resolution for an image captured at 15 m from the

calibration reference with zero dip and lean is shown in table 6.1.

Resolution Height up tree

Om 20m 40m

Horizontal resolution 0 .27 0.42 0.72 (cm I pixel)

Vertical resolution 0.27 0.68 2.2 (cm I pixel)

Table 6.1 - Measured pixel resolution

154

6.4.2.2 Discernible resolution

The discernible resolution is the resolution at which features of interest can be

distinguished. The discernible resolution depends on the quality of the image and the

size and shape of the feature of interest. If an image is correctly focused and a feature

spans several pixels it may be possible to determine the feature position to a sub pixel

resolution. In a many situations however the image will not be perfectly focused or may

suffer from defects such as blooming as a result of sensor saturation. In such a situation

the image resolution will be less than the pixel resolution.

Examples of reduced discernible resolution are shown in figure 6.4. Around the stem in

strongly backlit situations such as the top of the tree there may be considerable

blooming, the stem may be obscured, or poor focus can result in blurred tree edges (see

figure 6.1).

Blooming Stem obscured Poor focus

Figure 6.5 - Image resolution effects

Chapter 6 - TreeScan Evaluation 155

6.4.3 Integration Time Adjustment

The integration time must be adjusted to prevent sensor saturation but provide enough

light to allow adequate charge accumulation. If required, the integration time is adjusted

throughout the scan.

During a typical image capture the lighting will be low with high contrast near the base

of the tree. Near the top of the tree the lighting will be high contrast and backlit. Figure

6.5 shows the integration time adjustments for the capture of a 6000 line image.

The integration time is reduced by a factor of four near the top of the tree compared to

the bottom. Also note that the integration time is not adjusted while scanning the

calibration rod as the calibration circle would influence the integration time adjustments.

20

(j) 15 .s
Q)

E
:;; 10
c:
0

ca 5 ..
Cl
Q)

c:
0

0

Image capture integration time adjustment

Image cature time maximum
hardware speed limit

---~~-- -(~-~+----~- - ----
..-'

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Position in image (lines)

Figure 6.6 - Integration time adjustment

156

6.4.4 Focus Tests

The first verification that was completed was to characterise the focus measure under

different operating conditions. It was found that the Brenner function worked well on

both high and low contrast images. There was however variation in the focus measure

as a result of variations in contrast, lighting, and the surface focused on.

The autofocus algorithm was developed based on a high contrast inside image capture

situation. The results of the Mkl system indicated that the focus algorithm worked very

well on high and low contrast images both inside and out in the forest. The curve of the

focus graph exhibited a sharp peak at the point of maximum focus. The curve was

generally rising monotonically up to point of best focus then falling monotonically.

With the new lens of the Mk2 system however the results of the tests were not as

conclusive. The focus curves sometimes contained significant noise and no clear peak at

the point of optimal focus. In addition to this the images captured at the point of optimal

focus were not as 'visually sharp' as the images captured with the Mkl system. This

required further characterisation and is currently under investigation as part of Mr Aaron

Drysdale's masterate.

Figure 6.7 shows the focus trial under typical operating conditions. Variation within

repeats of each measurement taken 0.1 seconds apart at the same mirror position are

shown by the boxes and dashed markers on the graph. Also note that the searching

around the best focus number in small steps has been vertically offset to improve

clarity. See section 5.2.5 for a discussion on the autofocus algorithm.

A)
Autofocus results

40
I 0 35

0 30 0 -.... 25 Cl>
.c
E 20
::I
c 15
U)

::I 10 (.)

0
5 I u.
0

0

Position of focus mechanism (steps from oo)

Figure 6.7 - Focus results

Chapter 6 - TreeScan Evaluation 157

6.5 Initial Accuracy Tests in Two Dimensions

The aim of the accuracy tests is to validate that the TreeScan system is capable of

providing sufficiently accurate and precise real world estimates. Initial testing restricted

the dimensions to be estimated to the two dimensional calibration plane, reducing the

possible sources of error by one degree of freedom. This section presents the results of

the initial two dimensional accuracy tests which highlights the imprecision of the system

when first developed.

The first parameters to be evaluated were height estimates on the calibration plane.

These are the most prone to discrepancies and will highlight any accuracy or precision

problems.

It is difficult to find a sufficiently tall (40 m) object that can be measured to within

± 1 cm required to calibrate the TreeScan system. A building with a regularly repeating

pattern up its side was used. The building was measured using an accurate surveyors

measuring tape.

The overall height estimates showed a very large error increasing with height. Height

estimates produced systematically increasing or decreasing errors within single images,

with magnitude and sign varying randomly within a group of images.

These two dimensional calibration tests proved that the Mk 1 system did not have the

required degree of precision and is further discussed in section 6.2. A detailed report

can be found in Weehuizen and Pugmire (1994c).

6 Error in estimated height from ground

4

2 -.s
0

0
Q)

1: -2
C)
·c;
I

-4

-6
0 5 10 15 20 25 30

Height (m)

Figure 6.8 - Height errors with high imprecision

35 40

'

Max
Av+SD

Av-SD

Min

158

6.6 Final Accuracy Tests in Two Dimensions

Once the system had been modified and a more accurate calibration procedure

established, further tests were complete to evaluate accuracy in two dimensions. These

experiments validated that the TreeScan system is capable of providing sufficiently

accurate and precise real world estimates.

Again the front face of a building with regular features was used as the calibration

surf ace. Both height and diameter estimates were made; height estimates were made

using the heights of the regular features up the building, and diameter estimates were

made on 10 cm and 1 m horizontal features up the building.

A series of images was captured and estimates made from these. The resulting height

estimates had a much greater precision, but contained a consistent offset of about

0.5 m at a height of 30 m. This was the result of imprecision in the measured value of

alpha (see section 6.3.2). The angle alpha was empirically changed by 0.3% to correct

the offset.

The final tests of the TreeScan system showed that:

• Height estimates in two dimensions can be estimated to a worst case precision

of± 20 cm at a height of 40 m (see figure 6.9a). There is an expected trend that

errors in height estimates are larger near the top of the tree, with the result that the

TreeScan precision is greater near the base of the tree.

• Width estimates in two dimensions can be estimated to a precision of at least

± 1 cm throughout the height of the tree (see figures 6.9b and 6.9c). The

imprecision in width estimates is probably due to the manual placement of

marking line endpoints to whole pixel accuracy.

These accuracy tests on TreeScan height and width estimates are based on twelve

images captured from different positions and were completed by Mr Gary Allen. A

more detailed analysis of the data can be found in Allan and Drysdale (1995a).

Chapter 6 - TreeScan Evaluation

A)

E
~
.....
0
Q) -..c
0)
"(j)
I

B)

E'

25
20
15

10

5
0

-5

-10
-15

-20
-25

1.5

1.0

~ 0.5
.....
0

~ 0.0
.....
Q)

Q)-0.5
E
<ll
i5 -1.0

-1.5

C)

1.5

E' 1.0
~
.....
0 0.5
Q)

.....
2 0.0
Q)

E
.~ -0.5
0

-1.0

-1.5

j
0

0

0

Error in estimated height from ground

5 10 15 20 25 30 35
Height (m)

Errors in width estimates of a 100 cm feature

5 10 15 20

Height (m)

25 30

Errors in width estimates of a 14 cm feature

5 10 15 20 25 30

Height (m)

35

35

Figure 6.9 - Final accuracy tests in two dimensions

40

40

40

159

'

Max

Av+SD

Av-SD

Min

'

Max
Av+SD

Av-SD

Min

'

Max

Av+SD

Av-SD

Min

160

6. 7 Accuracy Tests in Three Dimensions

The three dimensional accuracy test involve whether the 3D position of the tree stem

and hence the tree shape can be accurately determined. Tests were completed on tree

sweep estimates of the generated three dimensional model.

For these accuracy experiments it must be possible capture two orthogonal images of

the calibration object. It must also be possible to modify the shape of the object in three

dimensions to within± 1 cm. To facilitate this a horizontal 'metal tree' built out of sheet

metal was used with one image captured horizontally at ground level, and one image

captured from above looking directly downwards.

It was found that although height and width estimates were good, an apparent sweep of

approximately 6 cm was being introduced into sweep estimates. This was the result of

slight mirror misalignment with the axis of rotation of the shaft introducing a slight

curvature to the captured image (see section 6.3.1.2).

The final tests of the TreeScan system showed that:

• Sweep estimates in two dimensions can be estimated to a precision of ± 2 cm

or typically one tenth stem diameter.

Further trials should be undertaken to fully characterise the three dimensional stem

position estimates generated by the TreeScan system.

Chapter 7

FORESTRY IMPLICATIONS

AND

RECOMMEND A TIO NS

7 .1 TreeScan Strengths and Limitations -- 162

7. 2 Forestry Implications --- 166

7 .3 Alternative Technology Uses -- 168

7 .4 Future Work --- 169

162

The objective of this masterate research has been to develop a prototype line scan based

computer imaging system to allow the dimensions of standing pinus radiata trees to be

estimated. This has been successfully developed. However, the overall objective of this

research has been to improve forest stand assessment by using imaging techniques to

make the preharvest forest inventory information less subjective and more quantitative.

This chapter draws conclusions from the findings of the TreeScan evaluation trials and

discusses the contribution the TreeScan system can make to in-field tree imaging. The

role of the system in the forestry industry is discussed by highlighting strengths and

limitations of the system. Lastly recommendations are made for alternative uses of this

technology and future research on tree imaging.

7.1 TreeScan Strengths and Limitations

A prototype in-field tree imaging system has been built to estimate the dimensions of

standing pine trees. The TreeScan system has been described at a logical and technical

level, but if it is to succeed the TreeScan system will need to be used operationally in

the forestry industry. At this level it is the usability and productivity that is achievable in

a forestry environment that will determine the final role of such a system. In this section

the TreeScan system is evaluated from a forestry viewpoint.

It should be remembered that the TreeScan system was developed as a "proof of

concept" prototype and is the first generation of this technology. The main aim during

the development was to develop a system that was physically capable of capturing

images and providing accurate parameter estimates.

The TreeScan system has a number of strengths and limitations that will govern the

eventual role of the system. The main strength of TreeScan is that it is the first system

to provide an objective tool to characterise the three dimensional shape of a standing tree

stem. However, the image capture takes four minutes and the two people are required to

operate the system.

At this stage the use of the TreeScan system requires a trade-off between desired

convenience and required accuracy of tree size information. For day to day operations it

will remain more convenient to send a MARYL crew into the forest to visually estimate

important tree parameters. The TreeScan system provides a research tool to gain more

precise estimates of tree parameters, and provide calibration feedback on the accuracy of

existing inventory methods.

Chapter 7 - Forestry Implications and Recommendations 163

TreeScan strengths TreeScan limitations

• Generates a 3D stem model (for sweep). • Relatively slow image capture (-4 min)

• Provides repeatable, accurate estimates ->Possible tree movement.

of diameters and heights. • Semi manual processing of images.

• Images can be processed in the forest. • System requires two operators and

careful setting up.

Other strengths : Other limitations :

- Little experience necessary. - System is sensitive so could get

- Can keep a visual record of the trees. damaged or broken.

- Relatively high hardware costs.

- Large image data storage requirements.

Table 7.1 - TreeScan strengths and limitations

TreeScan strengths

The TreeScan system has three main strengths:

• The TreeScan system generates a model that characterises the shape of the entire

tree stem in three dimensions. From this ·model objective estimates of sweep can

be made. We believe this is the first device in the world to provide these facilities.

• In addition to sweep, the TreeScan system also allows other feature sizes to be

estimated including; feature height, feature size, branch sizes, and stem diameter.

Provided sufficient care is taken in image capture these estimates of tree size are

very precise and accurate.

• The images captured can be processed in the field providing immediate feedback.

This is very useful if the system were to be used to calibrate current MARYL

crews.

Other strengths include;

Estimation of tree parameters by the MARYL system requires considerable

experience. This experience is not needed to operate the TreeScan system. A

small amount of technical training is required to operate the TreeScan system.

The system captures images of the trees which can provide a visual record of the

trees that have been processed to be stored for future reference. This could be

used to generate a forest des~ription database with detailed tree information.

164

TreeScan limitations

The TreeScan system also has three main limitations:

•

•

The image capture is relatively slow, typically 4 minutes per image, and in low

light conditions could be longer. In addition to this the equipment needs to be set

up for each scan, the computer started and the image saved. This could limit the

productivity.

During this long scan time, the tops of trees may move in the wind, introducing a

tree stem wobble in the image that is difficult to distinguish from wobble in the

actual stem shape (see section 2.2.2). This is a direct result from the line scan

approach adopted by the system.

The processing of the images to get tree size estimates requires considerable

processing. This is a tedious semi manual task with the operator marking all

dimensions to be estimated. Research is underway to further automate this task.

• The system requires two · operators and is rather bulky . The system has a

combined weight of approximately 24 kg (Computer 5kg, scanner 8kg, tripod

4kg, scanner batteries 3kg, calibration rod 2kg) and is currently contained in two

aluminium cases. The calibration rod needs to be carried separately. Backpack

carrying cases should be investigated to make it easier to carry the system around

the forest.

Other limitations of the system include;

The system is sensitive and could get damaged or broken as a result of being

carelessly operated in a forestry environment, for example the system could get

dirt into the plugs or water into the electronics.

The cost per TreeScan system is relatively high, each system costing

approximately $20000. This is considerably more than the equipment cost for a

current MARYL crew, but this must be traded off against the unknown value of

the extra information and precision it provides.

The image data storage requirements are very high. If many images are going to

be captured, some form of permanent large scale image archival system should be

set up.

A system such as the TreeScan system will always involve some degree of uncertainty

in the estimates of real world dimensions because extrapolation of the calibration

geometry is used to determine the estimates of tree parameter dimensions. It is

Chapter 7 - Forestry Implications and Recommendations 165

important though to keep in mind the limitations of alternative systems, and the reasons

this research was undertaken in the first place. Tree shape information is required to a

greater accuracy than human estimates can provide using the MARYL system.

It is also important to distinguish between fundamental limitations and limitations of the

implemented features. Fundamental limitations tend to be limitations of the

hardware used or the geometry of the forestry situation. Fundamental limitations cannot

be easily resolved or modified, for example, the distance from the tree at which images

can be captured will typically need be in the range of 12 to 20 metres. This cannot be

easily changed as other branches would obscure the tree stem being imaged.

Limitations of implemented features however, tend to be implemented software

algorithms, which can easily be modified. For example the type of user interface or the

sequence of steps in the image capture algorithm.

166

7.2 Forestry Implications

The TreeScan system was developed as a proof of concept prototype to evaluate the

feasibility of using in-field tree imaging to improve the preharvest forest stand

assessment. A system has been built and has been proven to be sufficiently accurate. It

must now be evaluated in a holistic sense as a forestry tool. Possible roles of this

technology in the forestry industry are discussed. Also discussed is the final role of the

TreeScan system determined by its strengths and limitations. When evaluating the

usefulness and potential of the TreeScan system it must be recognised that it is the first

device of its kind in the world and that this is the first generation of this technology.

The next stage of the evaluation cycle is to compare the information generated by the

TreeScan system with the results of other systems. TreeScan results should be

compared to those produced by a skid site log optimisation system currently under

development by Tasman Forestry. The results should also be compared with existing

systems such as MARYL and AVIS. The final role of the system will depend on the

outcomes of these tests and the direction chose by both the management at Tasman

forestry and the research and development team at Massey University.

At this stage in-field tree imaging, and the TreeScan system in particular, could be

envisaged in a variety of roles. The TreeScan system could be used as a tool for:

1 . Research work only

2. Measuring individual trees used for MARYL training

3. Accurately measuring trees in research plots

4 . An inventory replacement for MARYL

5 . Measuring trees at skid sites prior to harvest

6 • Making an inventory of every tree in the forest

The final three roles are very ambitious and given the current state of the technology,

considerable improvement and development would need to be completed before the

system is anywhere near capable of these tasks. However the system would be very

useful to; (i) serve as an accurate measurement device in the assessment of sweep

during MARYL crew training exercises, and (ii) to make accurate measurements of the

trees in research plots.

During MARVL training exercises performed by the MARYL crews, trees are

called by several crews then cut down and the actual dimensions compared. The

Chapter 7 - Forestry Implications and Recommendations 167

TreeScan system would provide an alternative method of measuring the tree while it is

still standing.

A number of research plots are maintained under a variety of management regimes.

These are called permanent sample plots. Trees within permanent sample plots are

measured every year. This information is used for research into tree growth under

different conditions, and the development of growth models such as taper functions for

individual areas. The trees in these plots need to be accurately measured. This would be

a very good application of the TreeScan system.

The TreeScan system could also provide advantages during valuation by providing

quantitative evidence of the timber in a stand. This would also provide quantitative

information for forest buyers.

Lastly it must be remembered that the TreeScan system is only one implementation of

in-field tree imaging technology. Many other implementations are possible. The video

system (VideoScan) discussed in chapter two (see section 2.2.1) currently is under

development as a separate project by Mr Farshad Nourozi as a masterate project under

the supervision of Prof. RM. Hodgson and Dr. R.H. Pugmire. The Forestry Research

Institute of New Zealand Ltd. are also working on an imaging system to capture tree

sweep information.

168

7.3 Alternative Technology Uses

The system developed here consists of a specialist high resolution scanner and a series

of programs that customise the system to measure pine trees. Alt~mative uses of this

technology fall in two categories;

• The entire system could be used to measure large objects

• The scanner could be used to capture high resolution images for any application

The system developed here is a system designed for measuring tall or long two and

three dimensional objects. In addition to the forestry industry the system could be used

in a large number of other applications such as in the rapid measurement of buildings in

the event of an earthquake. By rotating the scanner by 90 degrees a whole new

dimension opens up and the system could be used to estimate parameters on any two

dimensional horizontal surface, for example, position of boats over water or cars on a

car park.

The second possibility for alternative applications is the use of just the scanner to

capture images. The scanner developed is a specialised high resolution scanner with a

very high aspect ratio. This could be useful for other applications where a high

resolution image with a high aspect ratio is required. Situations where this might be

applied is in panoramic imaging without wide angle lens distortion, or the use of

imaging in orchards.

Applications will typically involve the imaging of objects that do not move around. If

modifications are made to the system to allow faster image capture the system could

even be used in applications that do require fast image capture.

Another unique feature of the scanner is that it provides imaging technology with a

constant angular step size between pixels in the vertical direction. The angular step size

of pixels changes with the position in the image for normal area cameras. This could be

very useful for certain applications.

Chapter 7 - Forestry Implications and Recommendations 169

7.4 Future V\fork

In a complex system such as the TreeScan system, the system will never be finished

and there will always be modifications and improvements that can be made. However at

this stage the most important task still to be completed is to fit the TreeScan system as it

stands into the inventory improvement framework.

Possible uses for the system within Tasman Forestry should be explored. It is

important that highlighted uses for the system are realistic and provide genuinely useful

information.

A series of trials should also be completed to compare the information generated by the

TreeScan system with the information generated by other systems. The outcomes of

these tests will determine the future direction of the system. This includes the

deployment of the TreeScan system within Tasman Forestry Ltd. and possible

commercialisation of the system.

Other areas where future work could be completed can be divided into three areas:

1 . Ongoing research on TreeScan system improvements

Ongoing research on TreeScan system improvements includes research on a

number of aspects of the system that have already been implemented but that

could re improved. This includes research on automatic parameter extraction to

replace the current semi manual method, hardware developments to reduce the

image capture time, and other developments to make the system easier to operate

and more manageable.

Image capture speed can be improved by the implementation of a video amplifier

to increase the scanner sensitivity and the implementation of faster AID

technology such as dedicated AID hardware or use of digital signal processing

(DSP) technology.

The inclusion of in-built angle measurement sensors would make the system

easier to operate, and backpack carrying cases would make the system more

manageable.

2 . Research on the use of alternative technologies

There will always be alternative technologies which can be implemented to

develop an in-field tree imaging system.

170

The use of alternative technologies that may have advantages over the TreeScan

system must remain an option. The VideoScan approach under development at

Massey University as a separate project falls into this category.

Other methods to directly capture tree shape and dimensions that do not store

images are also under consideration. A possible approach is the use of laser

scanning techniques.

3 . Alternative applications for TreeScan technology

Lastly, alternative applications for the TreeScan technology have been discussed

in the previous section. Entire projects could be set up on any one of these

alternative applications.

Chapter 8

SUMMARY

8. 1 Summary -- 172

172

8.1 Summary

Quality inventory information is essential for optimal resource utilisation in the forestry

industry. The present MARVL system used for the preharvest inventory assessment in

the forestry industry has a number of weaknesses. The MARVL system uses

predominantly subjective assessment of tree parameters and has been developed to the

point where it is limited by this subjectivity. This is particularly true in the assessment

of sweep.

In-field tree imaging is a method which has been proposed to improve the

preharvest inventory assessment of standing trees. It involves the application of digital

imaging technology to this task. The method described generates a three dimensional

model of each tree through the capture of two orthogonal images from ground level.

Three ways of implementing in-field tree imaging were identified as promising in an

earlier feasibility study. The first of these has been developed to a proof of concept

prototype. This fully operational prototype has been named the "TreeScan" system.

This thesis describes the design, development, and evaluation of the TreeScan system.

The TreeScan system consists of a portable computer, a custom designed high

resolution scanner with integral rnicrocontroller, a calibration rod, and custom designed

processing software. Images of the tree are captured directly into the portable computer

using the scanner which contains a CCD line scan camera and a precision scanning

mechanism. Captured images are analysed on the portable computer using customised

image processing software to yield estimated real world tree dimensions and shape

parameters. This involves a semi manual task where the operator identifies the

dimensions to be estimated.

The TreeScan system provides quantitative estimates of five tree parameters; height,

sweep, stem diameter, branch diameter, and feature separation such as intemodal

distance. In addition to these estimates, a three dimensional model is generated which

can be further processed to determine the optimal stem breakdown into logs.

Design considerations

In the development of a "high tech" instrument such as the TreeScan system, it is very

important to consider the design constraints and key technical aspects of the system

before development as any one of a large number of considerations could limit the

usefulness of the final system. These are discussed in chapters two and three.

Any system developed must be robust and capable of operating under normal forest

conditions. These conditions include; difficult image capture geometry (see

Chapter 8 - Summary 173

section 3.7), poor lighting conditions, variable tree stocking, rugged and possibly steep

terrain with undergrowth, tree movement in the wind, and outdoor weather conditions.

The system must be based on practical technology and capable of producing accurate

results. Key technical aspects that need to be considered include; required resolution,

correction of image capture distortion, choice of imaging sensor, computer to scanner

interface design, image storage requirements, optical design, and tree parameter

extraction methods.

TreeScan technical implementation

A technical description of the implementation of the TreeScan system is presented in the

hardware and software chapters (chapters 4 and 5). Key aspects of the implementation

are discussed in detail, these include:

• The image capture system

A CCD line scan camera based image capture system has been developed to

capture the image data. The line scan camera places critical timing constraints on

the rest of the TreeScan system, introducing a complicated timing interrelation

between: image integration, analog to digital conversion of image data, and

transfer of data to the computer.

• The SCSI communications interface

A SCSI interface was developed for the scanner to provide a high speed

communications interface between the scanner and computer. This interface is

used to send control commands to the scanner and transfer image data back to the

computer.

• Distortion correction and tree parameter extraction algorithms

Distortion correction and parameter extraction algorithms have been developed to

correct for perspective distortion introduced during image capture and to process

the captured images to provide tree parameter estimates.

• Software development

To develop a system with the functionality of the TreeScan system, software

needed to be implemented at four different levels; Macros, Pascal, C and

assembler. To minimise development time, a strategy was adopted to implement

all algorithms at the highest level possible.

174

System evaluation

The evaluation of a prototype such as the TreeScan system is a cyclical process of

characterisation, calibration, and modification where necessary. During each cycle

system knowledge is gained and modifications or improvements are made. Several

limitations were identified in the Mkl version the TreeScan system. A second prototype

was built (Mk2 version) which largely overcame those limitations.

The Mk2 version of the TreeScan system has been fully characterised, calibrated and

the accuracy of tree parameter estimation tested. The experiments performed confirmed

that the TreeScan system is capable of providing sufficiently accurate and precise real

world estimates. Height in two dimensions can generally be estimated to an accuracy of

± 20 cm. Stem and branch diameters are estimated to an accuracy of± 1 cm, and tree

sweep can normally be determined to an accuracy of± 2 cm (or typically one tenth stem

diameter).

The system developed has a number of strengths and limitations. The main strength is

that it is the first imaging system in the world (we believe) to generate three dimensional

models of standing trees and provide objective estimation of sweep. The main limitation

of the system is that the image capture is slow (typically taking 4 minutes). This limits

the productivity achievable with the system. There is also a danger that if the tree is

moving in the wind an apparent stem wobble is introduced which is difficult to

distinguish from tree shape deformation.

Future directions

The TreeScan system could be used in a variety of roles in the forestry industry,

ranging from solely a research tool to a direct replacement for the current MARVL

system. In the short term the most likely role for the TreeScan system is as a calibration

device in the training of MARVL crews and as a method to measure trees within

experimental research plots.

Further work is required to evaluate how the TreeScan system can be part of the

inventory improvement framework and what the final role of the system should be.

This includes an evaluation of the performance of the TreeScan system in comparison to

existing inventory assessment methods, and investigation into the value of accurate

inventory information on standing trees.

Other future work which should be undertaken is: improvement of the TreeScan

system, research into the use of alternative technologies to implement in-field tree

imaging, and research into alternative applications for the TreeScan technology.

REFERENCES

Allen, G . and Drysdale, D. (1995a) : TreeScan Two Dimensional Accuracy Report,

Department of Production Technology, Massey University, 1995.

Allen, G. (1995b) : Operator Manual for the TreeScan System (version 1.0),

Department of Production Technology, Massey University, 1995.

ANSI (1986): American National Standard for Information Systems - Small Computer

Systems Interface (SCSI), American National Standards Institute, 1986.

Deadman, M. Wand Goulding, C. J. (1979) : A Method of Assessment of Recoverable

Volume by Log Type, New Zealand Journal of Forestry Science 9(2):225-239, 1979.

Forestry Facts & Figures (1994) : Forestry Facts & Figures, New Zealand Forest

Owners Association Inc. in co-operation with The Ministry of Forestry, 1994.

Groen, F.C.A., Young, I.T. and Ligthart, G. (1985) : A Comparison of Different

Focus Functions for use in Autofocus Algorithms, Cytometry, Vol 6, 1985.

Heavers, O.S . and Dichburn, R.W. (1991) : Insight into Optics, John Wiley and Sons

Ltd. , 1991.

Horder, A. (1972) : The Manual of Photography, Focal Press Ltd. , 1972.

Jacobson, D. (1993) : Frequently Asked Questions Regarding Lenses, Electronic

Internet Document : Lens FAQ, 1993.

Jain, A. K. (1989): Fundamentals of Digital Image Processing, Prentice Hall, 1989.

Knoll, T. (1991): Writing Plug-in Modules for Adobe Photoshop, Plug-in Developers

Kit, Apple Software Developers CD.

Loral Fairchild (1991) : Loral Fairchild 1991 CCD Imaging Databook, Loral Fairchild

Imaging Sensors, 1991.

176

Protel Technology (1989) : Reference manual to Protel Schematic 3 and Protel

Autotrax, Protel Technology Pty Ltd, 1989.

Pugmire, R. (1993) : Automation of Forest Stand Assessment Feasibility Study,

Department of Production Technology, Massey University, 1993.

Pugmire, R. (1994) : An Experimental System for Forest Stand Assessment,

Department of Production Technology, Massey University, 1994.

Rasband, W. (1993): NIH Image User Manual, Wayne Rasband, 1993.

Ray, S. (1979): The Photographic Lens, Focal Press Ltd., 1979.

Russ, J.C. (1992): The Image Processing Handbook, CRC Press, 1992.

Schreiber, W. F. (1986) : Fundamentals of Electronic Imaging Systems, Massachusetts

Institute of Technology, 1986.

Tasman (1995) : Technical Documentation for LOGOPT Log Optimiser, M. Ronnqvist

and D. Ryan, Tasman Forestry Ltd., 1995.

Texas Instruments (1990) : SN75C091A SCSI Bus Controller Data Manual, Texas

Instruments Inc, 1990.

Vivino, M. (1993): Inside NIH Image Manual, Mark Vivino, 1993.

Weehuizen, M., Pugmire, R.H. (1994a): The use of In-field Tree Imaging in the Pre­

harvest Inventory Assessment in the Logging Industry, Proceedings of New Zealand

Postgraduate Conference for Engineering and Technology Students, Department of

Production Technology, Massey University, 1994.

Weehuizen, M., Pugmire, R.H. (1994b): The use of In-field Tree Imaging in the Pre­

harvest Inventory Assessment in the Logging Industry, Proceedings of the Second

New Zealand conference on Image Vision and Computing, Department of Production

Technology, Massey University, 1994.

Weehuizen, M. and Pugmire, R.H. (1994c) : TreeScan Characterisation and Calibration

Report, Department of Production Technology, Massey University, 1994.

References 177

Weehuizen, M. (1995) : Technical Reference Manual for the TreeScan System

(Volume 1 - Main Manual, Volume 2 - Software Manual), Department of Production

Technology, Massey University, 1995.

Wolf, P.R. (1974): Elements of Photogrammetry (With Air Photo Interpretation and

Remote Sensing), McGraw Hill, 1974.

Yeo, T.T.E., Ong, S.H., Jayasooriah and Sinniah, R. (1993) : Autofocussing for

Tissue Microscopy, Image and Vision Computing, Volume 11Number10, 1993.

Appendix A

Development DocuITientation
for the TreeScan System

Reports Produced by Production Technology

Automation of Forest Stand Assessment Feasibility Study, R.H. Pugmire,

December 1993. (24 Pages + Appendices)

• An Experimental System for Forest Stand Assessment, R.H. Pugmire,

January 1994. (7 Pages + Appendices)

• Brief outline of the Measurement Deviation of the Experimental Image Capture

System from Actual Measured Parameters, M. Weehuizen, May 1994.

(2 Pages + Appendices)

TreeScan Characterisation and Calibration Report, M. Weehuizen & R.H.

Pugmire, December 1994. (34 Pages)

• TreeScan Two Dimensional Accuracy, G. Allen & A. Drysdale, August 1995.

(8 Pages+ Appendices)

Operator Manual for the TreeScan System (version 1.0), G. Allen, January 1995.

(33 Pages)

• Technical Reference Manual for the TreeScan System, M. Weehuizen,

September 1995.

- Volume 1 - Main Manual. (50 Pages+ Appendices)

- Volume 2 - Software Listings. (140 Pages)

Reports Produced by Tasman Forestry

Tree Imaging Project : Background Notes and Specifications, M. Colley,

December 1993. (4 Pages)

A2

Project Proposals Produced by Production Technology

• Sub-Project 1 Proposal : Line Scan Camera Image Capture Prototype,

R.H. Pugmire, December 1993. (4 Pages)

Appendix B

Sample Tree Analysis

This appendix presents a sample set of images of one tree and follows these images

through the processing stages to extract the tree parameters. The tree has a fork near the

top of the tree .

Parameter Extraction Sequence

Source images Image calibration Height and width
estimates

c ~ 0
0
0

I '="' ' I Model File < ~- ~·'' " - -

• r - ~... . . --

Model fiie for Tree stern Stem edge
optimistaion model processing

~
ca
0 en --:::s

'lo-

-;!?_
0

LO
N
~ ca
en
Q)
0)
ca
E
Q)
0
J..
:::s
0 en

-CJ)

Q)
x ·c..

'<:f"
C\J
0 ...-
x

LO
LO
l'­
<.O _..

...-...
CJ)

Q)
x ·c..

'<:f"
C\J
0 ...-
x
l'­
C\J
(j)
<.O _..

\

-

/ ..
' := .~~: - ._,-:._.;_- ~-~

- ~

en
s:: ·-0
a.
s::
0
+:
~
.c ·-ca
0

0
C>
s::
:2
:....
m
:E

B4

Appendix B - Sample Tree Analysis B3

--- - - -----

Source images vertically decimated by 4 and lines marked
for 30 model generation at 30 °/o full scale

~ (line width increased to visually improve the image)

to
°'

) 'I Height
) = 9.69m

Horizontal offset
" - 29 .1 cm

Position (height)

I .
~;.1
~- ii-'h .,

f~ Dla~eter

~
1 • - 44 .6 cm
J Av height
... = 6 .84 m

I

~,·
{'
j l ,

·\ '

·~ Stem diameter

Tree parameter estimation in two dimensions

Dlam•ttr
"40.0 cm

Av htight
• I0.40m

Stem diameter

Diameter
• 8 .3 cm

Av htl9ht
= 7 .88 m

Branch diameter

>-
0
:::s
0..
)< '

tti

Cl'.l

"' 3
0

~
0

>-:::s

"' < (/)

iii '

tti
Vi

-0
Q)
u
:::::i
-0
Q)

"- ->- Q)
u 0)
c <"Cl
a.> E
:::::i ·­
CJ Q)
Q) £.
"- ---0
c
<"Cl
-0
Q)
(/)

Q)

> e
a.
E

<"Cl >-
~<"Cl
u :::::i
c (/)
Q) ·;;

N 0
(/) --c
0
0.

en ...
c: ·-0 c.
Q)
O>
"C
Q)

E
Q)

U5

Appendix B - Sample Tree Analysis

... . . .
I I•• I

...
I I I I

'Io

. . . I I I I I

I•• I

. ..

...

. . . .

B7

.

...

.
. '

.

'

.

X:42
Y: 1475
Ualue : o

Uolues

Stem mode 1 loaded.

Max modtl Hgt,. 32 .00 m
Hin model Hgt= 0.75 m
Diameter at breast Hgt ,. 49 .0 em
St.m SED z 19.0 em
Max sweep : SED/ 2 at height = 20.5 m

Hodtl consists of : 142 sltets,
spaced at : 25 em .

30m

20m

10 m

Om

Display of stem model allowing sweep estimates
to be made

-1 m 1m -1 m 1 m - 1 m
/

ip
I
I v
I
I
I
I
I
I

1m

X:410
Y:66
Ualue:255

Uolues

Swtep of SED / 4 .0 over 18 m section .

Maximum s eep • I I em
at height• 3.5 m
and sed a 44 cm

Section max height • I 8 .8 m
Section min height= 0 .8 m

to
00

Appendix C

Forestry Terms

C.1 Definitions

These are definitions of forestry terms as defined for development of the log

optimisation software developed by Tasman Forestry Ltd.

Sweep
The maximum deviation fro;n straightness along the length of the log

• Sweep shall be specitied as Dh: over the log length .
\\.here D !s the average diameter at the point of n~aximum deflection and
xis the magnjrude of deflection .
\faximum def1ectio:i shall be measured where the tap~ is stretchec.! from
th~ middle of one end of the log to the middle of the other end of the log.

At P~nl of Stniighc

M1'A i _n'~"' I Line - -- --·- -----O~vi:.~ ---· _______ --e-- ~-/-

S fj maximum deflection Th d fi .. Note : weep has previously been de med as . e e mlt1on
log small end diameter

of sweep based on log SED is still used in most other forestry applications.

\VolJble (cm)

A ddect where the axis of the log deviates in 2 or more different directions
along its length. (To a maximum of 6 ml?ters .) The bends in the log may be
in ch~ same pbne, at righc angles to each other or from a log \vhich spirals.

Wobble is the larger of the two deflections shown, not their sum.
• \Vobble is expressed either as an absolute amount or as a ratio of the

maximum deflection to the average log diameter at point of maximum
deflection

Kink (cm)

Diameters

A . .sJ-.ort deflection in the log affecting less than 2m of the log.

• Kink is measured as the maximum deviation of the
axis

C2

Small End Diameter (SED):

• ~\tlinimum Diameter
-~Of t\VO diameter measurements at right angles through pith .)

• Measured under bark.

Large End Diameter {LED):

• Maximum diameter anywhere on the log.
(Usually, but not necessarily, located at the large end .)

• Measured under bark.

Diameter Breast Height (DBH):

Interuode

• The average diameter of the tree measured at a point l.4m above
ground.

• DBH is expressed as an 'over bark' measurement

• For Log Optimisation purposes breast height is l .4m minus the stump
height from the butt. The average over bark diameter may be
extrapolated from measurements taken above and below this point.

Internode Minimum
The minimum clear distance (in mm) between \".'horls on a log.

Internode Maximum
The maximum clear distance (in mm) between whorls on a log.

Appendix C - Forestry Terms C3

C.2 Log Grades

On the skid site tree stems are cut into logs of a certain grade. The log grade is a

measure of quality and value of each log. Each log grade has specifications which a log

must meet. Tasman Forestry harvests over 50 different log grades.

Log grade specifications are based on:

Length - Minimum length, maximum length, and average length with a standard

error are specified for each log grade.

Diameter - Minimum, maximum and average values are specified for SED,

LED, and average diameter are specified for each log grade.

• Shape - Log shape restrictions specified by maximum sweep, wobble and kink

allowances are specified for each log grade.

Knots - Maximum knot size and knot frequency are important specifications for

each log grade.

Features and defects - Other features and defects such as rot, nodal swelling,

and fluting are important specifications for each log grade.

For example, a summarised specification of Japanese A Grade logs consists of:

Minimum Lengths : 4.10 m

8.10 m

12.10 m

Diameters:

Knots:

Wobble:

Kink:

Roundness:

Pith:

Fluting:

Minimum SED

Minimim average SED

MaximumSED

20 cm, or as directed.

33 cm.

70cm.

Maximum 15 cm or 1/3 SED, including collar.

Maximum spike knot 8 cm or 1/4 SED.

Up to 5 cm wobble is permitted.

Not permitted.

No restriction.

No restriction.

No restriction.

Bark Damage :

General:

Marking:

Bark damage resulting in discolouration, decay,

trimming flush with barrel of tree or cutface is not

permitted

No draw-wood. No rot, stain, or drywood. No splits.

No saw cuts. No machine damage. Ends cut square.

Every log to have a Green "A", Tasman logo, and

crew no. in green on large end.

C4

For inventory management purposes five standard log grades are defined by Tasman

Forestry:

• pruned

• Japan A

• Korea K

• domestic sawlog

• pulp

These are used when using the MARYL data to predict possible harvests for individual

stands.

Appendix D

Original TreeScan
Project Proposal

The original TreeScan project proposal produced by the Department of Production

Technology and the original background notes and specifications produced by Tasman

Foresny are presented in this appendix :

• Line Scan Camera Image Capture Prototype : Sub-Project 1 Proposal

Tree Imaging Project : Background Notes and Specifications

02

Line Scan Camera Ima2'e Capture Prototype

Sub-Project 1 Proposal

Proiect Outline

Development of a prototype line scan based image capture system for
automation of forest stand assessment.
The proposed image capture system is outlined in section 7.3 of the feasibility
study prepared for Tasman Forestry by the Department of Production
Technology. The system is intended to capture images which can then be
used to determine important tree parameters including sweep, diameter of
stem and branch size. The main components of the system are shown in the
diagram below.
This project is intended to produce a working prototype which will allow
capture of images of trees and transfer to a portable computer. The captured
images would be in a form that could initially be analysed using the NIH
Image package and macro 's produced as part of the feasibility study. The
intention is to produce a system with a resolution of approximately 8000 x 200
which for a 40 metre tree will translate into a resolution of O.Scm at breast
height.
The intention is to produce a basic working system quickly, to which later
refinements can be added. One such refinement could be the use of
synchronised or structured lighting to improve contrast and aid in automatic
extraction of tree parameters.

One horizontal scan is
collected at each angle
of elevation

I ~
Line
sensor

c..._---1 -... -

~~ Portable data collection
computer wtth low
resloution image display

Format of nroiect

Prism or lens control system

Proposed System

The project is to be handled as a funded masterate project supervised by
Ralph Pugmire and Professor Bob Hodgson. In order to speed development of
the prototype technical support of approximately 1/3 of a man year will be

Appendix D - Original TreeScan Project Proposal D3

made available to the project from within the Department of Production
Technology. The masterate student and technical support personnel will be
chosen by the department.

Timing:

The intention is to provide a prototype system by the 1st of July 1993. The
masterate is expected to be completed within 12 months.

Personnel

The present project team is listed below although this may change during the
course of the project. In particular technical support may be provided by a
number of people within the Department and other academic staff with
particular areas of expertise will be involved in parts of the project.

Ralph Pugmire

Marijn W eehuizen

Prof Bob Hodgson

Farshad N ourozi

Project monitoring

Project Leader, supervisor for masterate

Masterate student

First supervisor for masterate,

Technical support

Brief one page reports will be provided on the status of the project monthly. A
meeting with Tasman personnel should be held at least once each three
months. We would also recommend that a Vis-A-Vis system be purchased by
Tasman to enable the project team to liaise with Tasman during the course of
the project.

Publication

• Any publication of aspects of this work must be cleared by Tasman
prior to publication. Tasman may require a delay in publication of
up to twelve months if the publication contains commercially
sensitive material.

Naturally where possible we would like to publish the novel aspects of the
work sooner than this and Tasman will endeavour not be overly restrictive in
this area.

D4

TASMAN FORESTRY LIMITED

TREE IMAGING PROJECT

BACKGROUND NOTES AND SPECIFICATIONS

Jackground

rasman Forestry routinely assesses stands of mature radiata pine one to two years prior to
tarvest. This pre-harvest inventory typically involves the establishment of circular 0.04ha to
>.06ha plots on a systematic grid throughout each stand. The ·current objective is to obtain an
:stirnate of stand recoverable volume per hectare with a PLE (Probable Limit of Error) not
:xceeding +/- 10% of the mean. In practice this requires a 2% to 4% sample by area of a
ypical stand of20-40 hectares.

rhe pre-harvest assessment involves measuring diameters at breast height of all trees on a plot,
neasuring heights of a subset of trees, and an ocular assessment of features along the length of
:ach tree in the plot. Features include branch size class, sweep (i.e. sinuosity) class, forks and
Jroken tops. Information thus gathered is input to a computer which then proceeds to
:stimate the volume of each tree and the breakdown of that volume into various specified log
µ-ades, using an optimisation procedure that ensures the mix of log grades that will maximise
1alue per tree is cut from each tree.

rasman Forestry currently defines five standard log grades:

• pruned
• Japan A
• KoreaK
• domestic sawlog
• pulp

f'roin time to time other log grades will be specified and the pre-harvest assessment data will
'Je used to estimate volumes and characteristics of these log grades.

fhe pre-harvest inventory has the acronym "MARVL" standing for "Method of Assessment of
Recoverable volume by Log Type". MARVL field procedure and computer analysis and
>oftware was developed by NZ Forest Research Institute in 1979. Tasman Forestry has been
·Jsing it since 1981 and has a large fund of experience in its use.

[nfonnation from MARVL is a significant and critical part of Tasman Forestry's management
information data base. It is used to:

• estimate the volume of harvest, by log grade, up to three years ahead of harvest
• draw up marketing plans
• set targets and prices for contract logging crews
• derive functions that allow log grade forecasts to be made for stands that are younger

than those in the two to three year harvest plan ·
• estimate various parameters for each log grade at the time of harvest, e.g. average

small end diameter7 average length.

6Dcccmbcr1993 Documcnl3

· Appendix D - Original TreeScan Project Proposal D5

It should be noted that usually the MARVL infonnation is "grown on" to the anticipated year
of harvest before analysis is undertaken. Growing-on uses growth models developed by FRI
and basically expands the diameter and height of each tree, assuming all features remain
constant.

The major drawback to MAR VL is the definition of a method to assess sweep, and then the
ocular implementation of the chosen method. By comparison, branch class can be ocularly
assessed quite accurately as can the heights to features such as forks.

Tree Imaging

Tasman Forestry has developed MARVL toward the limit of human ability. As noted, its
major weakness is the subjective assessment of sweep. In order to make a quantum
improvement it is necessary to capture a 3-dimensional image of standing trees. If this can be
done, the need to define a method of assessing sweep in the field disappears - the image
automatically embodies all the sweep in a tree. The need to ocularly assess sweep also
disappears.

The diagram below illustrates the concepts involved m analysis of the image within the
computer.

View of Image in Computer (One plane only)

-.:-

Log Grades
Lengths
Minimum Small End Diameters (sed)
Maximum Sweep
Values

- - T -
stu?er

I
12 ·I me.f.as ~I

Computer tests first 12. lm section for log grade A.

A;B
12.1 metres; 8.1 metres
200mm ; 1 OOmrn
sed/2 ; sed/1
A $100/m3; B $25/m3

• estimates sweep is it \Yithin specification?
• estimates sed is it within specification?
• if YES, goes to next section
• if NO, tries the next lower value grade (i.e. gradeB)of different specification
• etc.

6 December 1993 2

D6

at Must Tree Imaging Achieve?

achievements as currently foreseen, and the working environment, are:

11ding Trees
Standing trees, within nonnal forest stands in all their variety, are the subject.' By
imaging standing trees, assessment can be done one or more years ahead of harvest,
there is no cutting down, and therefore likely wastage of trees, and sweep is captured
without being altered by gravity acting on a felled tree.

ipling .
Identical to current procedure. All trees on a 0.04. to 0.06ha plot will be imaged.
Plots will sample 2% to 4% of a stand.

ameters
New Zealand plantations are now quickly moving toward a fairly uniform age of
felling within the range 27-32 years. From now on mature trees will generally be
around 40-45 metres in height, average 45-60 cm in diameter breast height (range 15-
100), and at stockings of 200-600 stems/hectare (occasionally up to I 000 sph and
reducing to a range of200-300 sph after the tum of the century).

m Two Directions
Images should be captured from two positions at approximately 900 to one another.
This will provide an outline of the shape of the stem in three dimensions .

. uracy
The following limits of accuracy are desirable
• diameter± 1 cm
• height± 0.5m

'.Debes
Branches on each tree are currently classified into three size classes

0-7cm
7- 14 cm
>14cm

Class 1
Class 2
Class 3

For example a stem may be described as follows

5.5m
I.Om

12.0m
0.5m
8.0m

27.0m

Class I branching
Class 2
Class I
Class 3
Class 1
Total Height of Stem

It would be desirable if imaging could also estimate branch size to within ±lcm ..

eccmba- 1993 MCTREEIM.NTS 3

· Appendix D - Original TreeScan Project Proposal D7

Ground Vegetation
Stands can vary widely in the density of understorey, e.g. shrubs and tree fems up to
several metres in height. As is often current practice, the understorey shrubs can
conveniently be cut down before assessment talces place.

Downloading
Image data collected in the field could readily be downloaded at the end of each day
to a computer based at forest HQ, as is current practice for the existing MAR VL
assessment. Alternatively, downloading could be done through a radio data network
to HQ at any time during the day.

Number of Trees
Current pre-harvest inventory crews comprising a team of two people assess around
150-200 trees per day.

Because the capability of an imaging system is unknown at this stage, a desirable level
of productivity (trees captured per person-day) can not be stated. There is a trade­
off. For example, if two people can capture accurate images that provide the
quantum jump in tree description, then 50 trees per two-person day may be
acceptable.

At this early stage of the project, the area of prime interest is the technical ability to
capture accurate images of trees.

13 December 1993 MCTREEIMNTS 4

Appendix E

Systetn Error Calculations

This appendix provides additional information related to the discussion on the

implications of image capture geometry (see section 3.7), and presents the modelling of

the geometry of the mirror system to quantify the distortion introduced by a

misalignment of the scanning mirror with the axis of rotation of the scanning

mechanism (see section 6.3.1.2).

• Geometric sensitivity calculation

• Modelling of mirror misalignment

E2

E.1 Tree Plane Variation

E.1.1 Errors introduced by tree displacement

Height errors caused by tree displacement for a tree displacement of± lm, ± 50 cm and

+ 10 cm. See section 3. 7 .1.1 for discussion.

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Heioht error (m) from 100 cm disQlacement towards scanner
1 0 0.00 1 . 1 1 2.22 3.33 4.44
1 5 0.00 0. 71 1 .43 2. 1 4 2 .86
20 0.00 0.53 1.05 1 .58 2 . 11

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Heioht error (m) from 50 cm disol9_g~!)Jent towards scanner
1 0 0 .00 0.53 1.05 1 .58 2 .11
1 5 0.00 0 .3 4 0.69 1. 0 3 1 .38
20 0.00 0.26 0.51 0. 77 1 .03

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Heioht error {m) from 10 cm displacement towards scanner
1 0 0 .00 0 . 1 0 0 .20 0.30 0.40
1 5 0 .0 0 0 .0 7 0.13 0 . 2 0 0.27
20 0.00 0 .05 0.1 0 0.15 0.20

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Heiqht error (m) from 50 cm displacement away from scanner
1 0 0.00 . 0 .48 -0. 95 - 1. 4 3 -1 . 9 0
1 5 0.00 -0.32 - 0 .65 - 0. 9 7 - 1 . 2 9
20 0.00 -0.2 4 -0 .49 -0 . 73 -0 . 98

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Heioht error (m) from 100 cm displacement away from scanner
1 0 0 . 00 - 0 . 91 - 1 . 8 2 -2. 73 -3 .64
1 5 0.00 -0 .63 - 1 . 2 5 - 1 . 8 7 - 2 .50
20 0.00 - 0.4 8 -0. 95 -1. 4 3 - 1 . 9 0

Appendix E - System Error Calculations E3

E.1.2 Errors introduced by measured angle variation

Height errors caused by error in measured angle under standard operating conditions

for errors in angle of +3 degrees, ±1 degree, +0.5 degree, and +0.1 degree. See section

3.7 .2.1 for discussion.

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Height error {m) introduced bi'. 3 degree error in 0
1 0 0.00 0 .57 2.37 5.65 10.68
1 5 0.00 0.38 1 .53 3. 5 6 6.56
20 0.00 0.28 1 . 1 4 2.60 4.74

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Height error (m) introduced by 1 deqree error in 0
1 0 0.00 0 .18 0.73 1 .66 3.01
1 5 0 .00 0 .12 0.48 1. 0 9 1.96
20 0 .00 0.09 0.36 0.81 1 .45

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Height error (m) introduced by 0.5 degree error in 0
1 0 0.00 0 . 1 8 0.73 1.66 3.01
1 5 0.00 0. 1 2 0.48 1. 0 9 1 .96
20 0.00 0.09 0.36 0.81 1 .45

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Height error {m) introduced by 0.1 dearee error in 0
1 0 0.00 0 .02 0 .07 0. 16 0.28
1 5 0 .00 0 .01 0.05 0. 11 0 .19
20 0.00 0 .01 0.03 0 .08 0 .14

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Height error {m} introduced by -1 degree error in 0
1 0 0 .00 -0 . 1 7 - 0. 6 7 -1 . 4 9 -2 .60
1 s 0.00 - 0 . 1 1 -0 .45 - 1 . 0 1 -1 . 77
20 0 .00 -0. 09 -0 .34 -0. 76 -1 . 34

E4

E.1.3 Errors introduced by estimated distance variation

Height errors caused by error in estimated distance from scanner to tree for standard

operating conditions for an error of +0.5 m, +0.25 m, +0.1 m, and 0.02 m. See section

3.7.2.2 for discussion.

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Heiaht error (m) introduced by 50 cm error in Dist.
1 0 0.00 0.50 1.00 1.50 2.00
1 5 0.00 0.33 0.67 1.0 0 1 .33
20 0.00 0.25 0.50 0.75 1.00

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Height error (m) introduced bv 25 cm error in Dist.
1 0 0.00 0.25 0.50 0.75 1.00
1 5 0 .00 0.17 0.33 0 .50 0 .67
20 0.00 0.13 0.25 0.38 0.50

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Heiaht error (m) introduced by 1 O cm error in Dist.
1 0 0.00 0.1 0 0.20 0.30 0.40
1 5 0.00 0.07 0.13 0 .20 0.27
20 0.00 0.05 0.10 0.15 0.20

Dist from Height of tree estimates (m)
tree (m) 0 1 0 20 30 40

Height error {m} introduced by 2 cm er~~r in Dist.
1 0 0.00 0.02 0.04 0.06 0.08
1 5 0.00 0.01 0.03 0 .0 4 0.05
20 0.00 0.01 0.02 0.03 0.04

Appendix E - System Error Calculations ES

E.2 Modelling of Mirror Misalignment

If there is a misalignment between the plane of the mirror and the axis of rotation of the

mechanism, a nonlinear distortion will be introduced into captured images (see figure

E.1 and section 6.3.1.2). The nature of this nonlinear distortion depends on the angular

position of the rotation mechanism over which the image is captured. This nonlinear

distortion was measured as approximately 6.8 cm of sweep over the calibration building

and was measured as significant using a laser in a laboritory situation.

This appendix presents the Matlab modelling completed to determine the nature of this

distortion.

Path on calibra1ion
plane traced by mirror

Mirror

Figure E.1 - Mirror geometry

E.2.1 Analysis Approach

Offset angle

Camera

~osition

In a normal image capture situation, the scanner is placed at approximately 45° to the

horizontal, and the image is captured over a 70° angle (see figure E.2). The bottom of

the image capture may be slightly above or below the horizontal.

Offset problems between
mirror and axis of rotation

Introduced offset

Figure E.2 - Scanner alignment during image capture

E6

The following sequence is followed:

1 . From mirror angles determine three arbitrary points on the mirror plane.

2. Using cross products of two vector differences, calculate normal to the plane.

3. Using the normal to the plane and one point calculate the equation of the plane.

4 . Calculate the equation of the camera 'light ray'.

5. Calculate intercept between camera ray and mirror plane.

6 . Calculate the equation of the reflected ray using the angle between the camera ray

and the normal to the plane.

7. Calculate the difference in angle between reflected ray and the ideal reflected ray if

there was no mirror deviation; or calculate the wall intercept in a similar fashion as

steps 1 to 5.

8. Repeat steps 1-7 for a series of rotation steps representing a normal scan.

E.2.2 Mathematical Analysis

1. Three points on the mirror plane are:

Three arbitrary points on the mirror plane are defined:

To rotate the points on the mirror plane abount the origin in three dimensions multiply

by:

[

cos(8) 0 -sin(B)l
ofsmirr = 0 1 0

sin(8) 0 cos(8)

Rotation about y axis

(mi rror misalignment)

[

1 0 0]
rotmirr = 0 cos(¢) -sin(¢)

0 sin(¢) cos(¢)

Rotation about x axis (scanning)

The new loactions of P1 to P3 in 3D space are be found by:

P = rotmirr x (ofsmirr x P)

2. Find the normal to the plane

A vector normal to the plane is the cross product between any two vectors on the plane.

Appendix E - System Error Calculations

2

1.5
Out ray

z
0.5

0

·0.5
2

-2 -0.5

Figure E.3 - Math ematical geom etry

3. Find the equa tion of the pla ne

The equation of any plane is Ax+By+Cz+D = 0.

from its normal N = [~] and any point P 0 = [~:]
~Equation of the mirror plane: A(x - x0) + B(y - y0) + C(z- z0) = 0

4. F ind the equa tio n of the came ra ra v a nd inte rcept point

The paramerric equation of any line in three dimensional space is given by:

x = x0 + t (x1 - x0) , y = y0 + t(y1 - y0) , z = z0 + t(z1 - z0) given

any two points P0 and P1•

5. Find the inte rce pt

Using: rx·] [X0

] [A] [XP]
In ray = ~: and In ray0 = ~·: to find PI> with N = ~ and P0 = ~: ,and

substituting in the equation of the plane:

A(x0 +ex. - xP) + B(y0 + l)'. - yP) + C(z0 + tz. - zP) = 0

Rearrange to find the value oft at the intercept :

. . c(A.x. +By.+ Cz.) = A(xP - X0) + B(yP - y0) + C(zP - z0)

A(xP - x0) + B(yP - y0) + C(zP - z0)
. . I = ---'-------------'----

Ax. +By. + Cz.

E7

E8

The intercept point between the camera ray and the mirror plane can be found by

substituting the value oft back into the line equations.

6. calculate reflected rav

The equation of the reflected ray is calculated using the normal to the mirror plane and

the camera ray.

If r = In ray, and q = Out ray, then

r = 2cos(8)N -q

For any two vectors a and b with angle 28 between them

a.b = Jajjbjcos(8) e a.b
=> cos() = -

1 1
-

1 ajh

· Vector representing reflected ray = r = 2(1~~~1 }v -.j
7. Calculate error angle

Calculate the difference in spatial angle between the refelcted ray and theoretical

reflected ray if there was no mirror deviation. In this case:

out angle = atan(;)

v h= .;
cos(out angle)

error angle = tan ·1
(~)

To calculate the path traced by the reflected ray on the calibration plane the same

sequence of steps (steps 1 to 5) can be used to find the intercept point between the

reflected ray and the calibration plane (see program listing in section E.2.4).

Appendix E - System Error Calculations E9

E.2.3 Results

The magnitude and shape of the deviation introduced varies with the position of rotation

of the mirror. If the plane of the mirror is parallel to the camera ray the ray is not

reflected, and thus not deviated. If the plane of the mirror is perpendicular the camera

ray the deviation is at a maximum of twice the offset angle.

Two scenareos were modelled. The first a typical image capture situation where the

object (at the calibration plane) being imaged was 15 m away from the scanner, the

second was the controlled lab situation under which the deviation was measured.

The results showed that a misalignment of 0.8° (1 mm at one end of the mirror)

introduced an apparent sweep with maximum deflection of 7 cm (see figure E.4). To

reduce this to an acceptable 1 cm the mirror must be aligned to 0.1° (0.14 mm at one

end of the mirror).

4000

3500

:[3000
Q)

~ 2500
.(!I
<ll

~ 2000
1:
en
a; 1500
I

1000

500

Ci..rved path on flat surface

O'--~-'-~~..._~__.~~....._~~~~~~~

-70 -65 -60 -55 -50 -45 -40 -35
Offset (cm)

4500

4000

3500

:[3000
(J)

~ 2500
.(!I
I/)

~ 2000
:c
en
·a; 1500
I

1000

500

Ci..rved path on flat surface

wall : 15 m at45°

mirr: 0.82°(1 .00 mm)

Max dev: 6 .82 cm

5 10 15 20 25 30 35 40 45
Deviation (cm) (magnif 100: 1)

Figure E.4 - Typical image capture with 0.82 ° mirror deviation

E.2.4 Matlab Model

%:==============================
% Marijn Weehuizen 12 September 1995
%>--~~~~~~~~~

% Model of the mirror mechanism to
% investigate a curved deviation in the
% captured images.
%>--~~~~~~~~~

% Output:
% Store(loop errangle outangle wally wallx)
%i=============================
clear

%>--~~~~~~~~~

% Define constants
%>--~~~~~~~~~

% Angle of wall (0 = lab stetup, 45 = vet tower setup)
% Distance to wall (cm)

% wallangle =45; walldist = 1500;
% wallangle =0; walldist = 210;
wallangle =O; walldist = 1500;

%ofsangle = atan(O. ln)* 180/pi;
ofsangle = O;

loopstop = 90-wallangle/2; loopangle = 35;

% Vet tower
% Lab setup
% Tests

% Mirror ofset angle
% Mirror ofset angle

step = 5; % Rotation of mirror steps
x=l; y=2; z=3;
count=l;
ofsangle = ofsangle I 180 *pi;
wallangle= wallangle I l 80*pi * (-1) ;

%i============================
% Set up wall
%:i--~~~~--~~~~

di = cos(-wallangle)*walldist;
d2 = cos(90/180*pi - (-wallangle))*(tan(-wallangle)*walldist);
wdist = d 1 +d2;

%:i--~~~~~~~~~

for loop=loopstop-loopangle:step: loops top
%for loop=67.5:step:67.5
rotangle =loop I 180 * pi;

%'>--~~~~~~~~~

%Setup light ray
%'>--~~~~~~~~~

hold off

%rofs=tan(O/I 80*pi)*2;
%ray=[rofs; 2; OJ;
%ray0=[-rofs; -2; OJ;

rofs=tan(1/180*pi)*2;
ray=[rofs; 2; OJ;
rayO=[O; -2; OJ;

EIO

Appendix E - System Error Calculations

plot3([rayO(l) rayO(l)+ray(l)] , [ray0(2) ray0(2)+ray(2)], [ray0(3) ray0(3)+ray(3)])
hold on

plot3(1,l,l);

%1---------
% Set up mirror plane
%1---------

p=[O 0 1;
I -1 0;
0 0 O];

po= 3.5;
pofs=[po po po;

0 0 O;
0 0 O];

ofsmirr = [

rotmirr = [

p=ofsmirr*p;
p=rotmirr*p;
p=p-pofs;

cos(ofsangle)
0
sin(ofsangle)

1
0
0

0
l
0

0
cos(rotangle)
sin(rotangle)

plot3([p(I ,:) p(l, 1)],[p(2,:) p(2, I)],[p(3,:) p(3, l)])
%
% find normal
%---------
vl = p(:,2)-p(:, 1);
v2=p(:,3)-p(:,1);
N=cross(v l ,v2);

%---------------
% find equation of plane
%-----------

(-sin(ofsangle));
0;
cos(ofsangle)];

O;
(-sin(rotangle));
cos(rotangle)];

%t=(A(xp - xO) + B(yp - yO) + C(zp - zO))/(A *xv + A *xv +A *xv)

t=(N(l)*(p(l,1) - rayO(l)) + N(2)*(p(2, l) - ray0(2)) + N(3)*(p(3,1) - ray0(3))) /(N(l)*ray(l) +
N(2)*ray(2) + N(3)*ray(3));

intpnt=[rayO(l) + t * ray(l);
ray0(2) + t * ray(2);
ray0(3) + t * ray(3)];

plot3(intpnt(1), intpnt(2), intpnt(3),'cx');

plot3([intpnt(l) intpnt(l)+N(l)], [intpnt(2) intpnt(2)+N(2)], [intpnt(3) intpnt(3)+N(3)], 'c')

%pause
%·---------
% Calculate reflected ray of light

~o----------

outray = -(2*(dot(ray,N)/(sqrt(sum(ray:''2))*sqrt(sum(N."2)))) * N - ray);

Ell

plot3([intpnt(x) intpnt(x)+outray(x)], [intpnt(y) intpnt(y)+outray(y)], [intpnt(z) intpnt(z)+outray(z)])

% Calculate offset angle
%'---·~------
mirran gl e = loop

outangle = atan(outray(z)/outray(y))* 180/pi;
if outangle<O outangle = 180 + outangle; end
outangle = 180-outangle;

h = outray(2)/cos(outangle/l 80*pi);
errangle = atan(outray(x)/h)*l80/pi;

store(count,1:3)=[loop errangle outangle];

%~===========================
% Set up wall
%'>-----------

w=[0
-wdist
0

wO=[O; -wdist; O];

rotwall = [I
0
0

-wdist
0

0

o· ,
-wdist;
2];

cos(wallangle)
sin(wallangle)

O;
(-sin(wallangle));
cos(wallangle)] ;

w(:,l)=w(:,1)-wO; w(: ,2)=w(:,2)-w0; w(:,3)=w(:,3)-w0;
w=rotwall*w;
w(:, I)=w(:, l)+wO; w(:,2)=w(:,2)+w0; w(:,3)=w(:,3)+w0;

plot3([w(I,:) w(l,l)],[w(2,:) w(2, l)] ,[w(3,:) w(3,l)])
%'>-----------
% find normal
%'}--------
w v l = w(:,2)-w(:,l);
wv2 = w(:,3)-w(:,l);
wN=cross(wvl ,wv2);

%>~----------
% find equation of plane
%-·---------
%t=(A(xp - xO) + B(yp - yO) + C(zp - zO))/(A *xv +A *yv + A *zv)

t=(wN(x)*(w(x,1) - intpnt(x)) + wN(y)*(w(y,l) - intpnt(y)) + wN(z)*(w(z,1) - intpnt(z)))
/(wN(x)*outray(x) + wN(y)*outray(y) + wN(z)*outray(z));

wallpnt=[intpnt(x) + t * outray(x);
intpnt(y) + t * outray(y);
intpnt(z) + t * outray(z)];

plot3(wallpnt(x), wallpnt(y), wallpnt(z),'cx') ;

E12

plot3([wallpnt(x) wallpnt(x)+wN(x)], [wallpnt(y) wallpnt(y)+wN(y)), [wallpnt(z) wallpnt(z)+wN(z)], 'c')

%-

wp=wallpnt-wO;
wp=rotwall'*wp;
wallx=wp(x); wally=wp(z)-walldist*tan(-wallangle);
store(count,4:5)=[wally wallx];

Appendix E - System Error Calculations

%pause
count=count+ I;
end

%, __________ _

% Calculate deviation
o/c>------- ·----

% not required

%1-------
% Correct curve
o/co--------
loop = I;
maxloop = size(store, 1)

corrangle = atan ((store(l,5) - store(maxloop,5)) I (store(l,4)- store(maxloop,4)));
corrangle* 180/pi
rotcorr = (cos(corrangle)

sin(corrangle)

for loop= 1 :max loop

(-sin(corrangle));
cos(corrangle)];

temp(x, I)=store(loop,5)-store(maxloop,5); temp(y, I)=store(loop,4)-store(maxloop,4);
temp=rotcorr*temp;
%temp(x)=temp(x)+store(maxloop,5);
temp(y)=temp(y)+store(maxloop, 4);

store(loop,6:7)=[temp(y, I) temp(x, I)];
end

maxdev = sign(store(5,7))*max(abs(store(:,7)))

o/c:;:::::==============================
% Plot graphs
%-----

hold off

%plot(store(:,3),store(:,2))
%title('Deviation of ray from view plane for mirror deviation of 5deg')
%xlabel('Angle between mirror incident light and reflected light (degrees)')
%ylabel('degrees')

plot(store(: ,5),store(: ,4), 'w')
title('Curved path on flat surface')
xlabel('Offset (cm)')
ylabel('Height I distance (cm)')

pause

plot(store(:, 7) ,store(: ,6), 'w')
title('Curved path on flat surface')
xlabel('Deviation (cm) (magnif 100:1)')
ylabel('Height I distance (cm)')

yrnin=store(maxloop,6);
ymax= max(store(:,6))*1.1;

ifmaxdev>O
% AXIS([ymin ymax/100 yrnin ymax]);

AXIS([O 30 ymin ymax]);

El3

text(0.5*ymax/100, 0.9*ymax, sprintf('wall: %dm at %.Ofoo',walldist, wallangle*180/pi*(-1)));
text(0.5*ymax/100, 0.8 *ymax,sprintf('mirr: %.2foo(%.2f mm)',ofsangle* 180/pi,tan(ofsangle)*70));

E14

text(O.S*ymax/100, 0.7*ymax, sprintf('Max dev: %.2f cm', maxdev));
else

AXIS([-ymax/100 -ymin ymin ymax]);
text(-0.9*ymax/100, 0.9*ymax, sprintf('wall: %dm at %.Ofoo',walldist, wallangle*180/pi*(-l)));
text(-0.9*ymax/100, 0.8*ymax, sprintf('mirr: %.2foo(%.2f mm)',ofsangle* 180/pi,tan(ofsangle)*70));
text(-0.9*ymax/100, 0.7*ymax, sprintf('Max dev: %.2f cm', maxdev));

eOO

store

Appendix F

TreeScan Component List

F.1 TreeScan System Component List

The TreeScan system has been designed as a complete working system and consists of

the following components:

1. Portable computer (Macintosh PowerBook 520c, 160 MByte hard disk,

20 MByte RAM)

2. TreeScan scanner

3. Calibration rod

4. Tripod

5 . SCSI cable (computer to scanner)

6. Power cable (batteries to scanner)

7. Set of two batteries (for scanner)

8. Set of two carrying cases

9. Scope sight for scanner

10. Digital level to measure alignment

The above items are required during image capture. In addition to this, system comes

complete with:

• Charger for scanner batteries

• Charger for the computer's internal batteries

• Documentation

A. TreeScan Operator Manual

B . TreeScan Technical Reference Manual

The computer and batteries are contained in the computer carry case. All other

components from 1 to 10 are carried in the scanner carrying case.

F2

F.2 TreeScan Scanner Component List

The TreeScan scanner has been custom built and contains the following components:

• Chassey (made from 45 cm of 150 x 75 mm Al channel)

• Rotating mirror mechanism

Brass shaft

Brass wormwheel with steel rotation shaft

2 x pivots mounted on ball bearing

Stepper motor (3.75 degree I step)

2 x opto interrupter position sensors

• Line scan camera (Loral Fairchild CAM 1301R)

• Lens (Fixed 75 mm focal length, manual aperture, motorised focus)

• Focus Mechanism

Stepper motor (3.75 degree I step)

Teflon wormwheel drive mechanism

• Controller board

Siemens 80C517 A microcontroller

27256 EPROM (32 kByte, 170 nS)

16 MHz oscillator

SN75C091A SCSI bus controller

2 x L297 stepper motor controller

74HC573 address latch

62256 RAM (32 kByte)

UC5601 SCSI bus terminator

2 x 74HC04 inverter

2 x L298N stepper motor driver 74HC08 And gate

PowerBox 12V to 15V DC-DC converter

LM2938-5 low dropout 5V regulator

Relay

Various resistors

Decoupling capacitors

LM 317L + 15V regulator

LM 337L-15V regulator

Various capacitors

Appendix G

TreeScan Schetnatics
and

Controller Board Layout

This appendix provides full TreeScan schematics and controller board PCB layout.

The schematics are of the controller ooard in the Mk2 TreeScan system.

To develop the Mk2 controller board, modifications were wired on to the back of

the PCB used for the Mk 1 system. Hence the controller board PCB layouts

provided are as the Mkl system was manufactured.

,.

B

c

D

ll

F

1

"'

z 3 4 5 (,

l>CPll"SIOH

I "' U QI 27251
flit u Ol -

A2 > 02~E~~l ;~-j~~ ... ll=t-==iiu~~i H ~
r .r~"-..LU =~I
r ,--f!!+..J.l.!.J • II

•••• 22 ~~ J
-b -=~ 1 I "Cr ~ D •

.,...___.., un.. " a ttlCllO

1 ~~l~~is~2~,.l . I ~ ~ llCl\11111
Pl. l , > Pl. 1 2l ---.au

_ :u ;u ... ' ..

~
••· • n. J • -

'--J =::: :~:=~~~~J·~or~~C:==-
PI. 7 Vlf?J.6

111111 .;·PULH _JO Pl , O TirPJ , 7 n

J.--H--'le!IU_A_l...Ju1--o-. '1~256 • • • Pl. I P4,. l-""-'"'4---' '•I u 01 Pl.2 '4 , 1 o

l~m~~~A2 :> 02 _ =:· l ... 2 . . Al OJ • 4 P4, l r

=: g: -. ~u ~:::
A• o• , Pl.7 P4 , I ._ 1;:~i:::n:J:: 07 41 Pl . . • •• 7 >-''-

l§·~ ~~§:r. :u ;:,: " ,. ,. All " PZ , l P .. 2 ~
• •12 \. ~~· 4 PS ,] • M,.... =:~ .. :: ~u . -

rr====~·t·:::i·~· ·~ p 2. 1 , s. • - ra I " , tt " - '" -

1----..11 •'.11"L. '-'-,!..!"'D ~ ! ,. . 1 11 r... • .
v .. rr '-·I · • <• u

! - 11 uurr ~t ~ '-""'u~o '"·" :: •• • •. s ~ •·••••
""!'" '" " out ,., '; '"

I

iitla a l'T!SUC P ... 1 --: _ - ··- == ,,_, .. --·---..... - ..L C1b VCL •• ~ P7. I •• •

-----~~--------======================·~'li"==-~----?=~4~. :7~u-t===~~~~ P?.2 -·~~itr---.-- P7 , J -

T ••• ~~ rr ~u..., ;...
l(h 7'~ ~~:~::::::

'41 P'•.t ~o
"'' .. --;;.... Ml l\L \ Pl. I

I

CU NTAL2 Pl 2

RS2l2 llu ~ ., Pa : J

"""2]2 .. ~ ~ ~ .. - • ...1.. ,,

21'---Lc., ::! v+ • =;=c 26 ;;;~"
....:::I: Ct - :> llu

22 ;:::! c 2' v- 1-.i...'---" ... l 'l' -
-:::tt ~m gm~· I~~~ ~ ~1 LATCH ~
-::i llOUT lllH . •L~ 4 1Jt" HHC57l

R20UT UIH ~ C :! ~ 2 >

1~ l:~!~!n~~~~t:;'I '"• II ji," ?1.'·-, .. ~ ~~" - .. n , ... "'J__,_ "
7D ~ 70 L_ 'T'

um:u BO • BO' ~ 1 .
b

""!'"

1 z 3 4 5 ,,

7

~

~

~

·p

~
124
I 2k

_.\I.

12'
]k)

·CIA

0

SENBOll
Ol"IK

a(j""
POW RA

m:w ifl"
Ll"S
12PI"

~ums ii
.0

(Re4•n4ant In ttk2)1

l"C-'5Ht[LD

CAlll!All
011.S

1 "-

-1
cc-De Tn!iyncH -~

cw tr1 "'
< •ll ,.k

UIDIO

Micro

,.

B

c

D

ll
I

I I

Ir'

f

I

::I e:
><
C)
I

~ en
()

§
en
()
::r
0
3
Pol g.
en
Pol
::I
0.

n
0
::I a
~
to
0 a
[;;'
'<
0
t::

C)
1t-..:l

"'

9

c

D

I

'

1

R33
Ilk

2

2

R32
Uk

3 1

SCSI
~~~~~~~~~~~SH?SCt,lA 

11: mt.. 
.-Nn .. 
uuuu 
~~~~ '51JT 

>UT j •UITII m ff,-ITI2

'ITT >at"
)2

"' m "' •2

"' •• irnr s

~
•• ..,....
"' m "' •• imr

~

±!: 00 :nr
rr"J

" rr
rnr

~ ITc 01 •
0'
02 i .. Ol •• 04

•t OS '. •2 O•
Al 07

.. 1ff"
OP !..!....

~ tHT•O
Cl.It -Nn•ia41,..

0000000
«CC.IE C ICll:
tJllD IOCI ..

~.
A/D Bus

SCS ITERl1
UCS&lll

..---f •u• - c•t1o• f9 TIO
fO Tl I

" Tl 2 <

" T 1l :
" Tl. .. Tl I .

r Tl T 16 ;..- 4: .. ~ -
f2 Tl.
Tl 1 tt <•""

r- ONO + llul +I . tut
Cl C2

,~

'

3 1

5

SCSI lu•

,scst Bus

•r - ,.a

RCE I g,

5

,,

·····

-~

,,

cs
SllPIH
,~

~

\ \ \•

7 e

II

)>
"O

'8
::l
0.
><
0
I

~ ...
Bl I~

fJ
::l
en
(")

::r
~

3
~ r;·
V>

"' Cl I g_
()
0 g .,
e.
~ ...
tp
0 a.

DI 1r
"' '<
0
c: ,..

I

Int.erf ace SCSI
0 w

p

•• Tll8"1, 2

1 I a I 3 I 1 I s I r. I 1 I e

Carnera l/O I Stepper Control
Al >-

Ul: A II 't:l
74HCl4 1i

C-LIMCllHJ 1[_>2 PC - LIHC/JNJ ::l
e:

Ul :c Ll LZ ><
74HCl4 . L2'7 L2'8" .. 0

c .. 1.1ncs~r:u::tt •<JS rc-1. uu:s::t1:u:tt
~ "'

I

H • IN\ "' ~ • IM2 > u2:c Ul: I Uk HIT'llL c IMl

HHCH HHCl4
D IM4

n'nT
cs [Hlitil LC Til1lr • CMO CJ) • ,

IJRtr Tll1f7 CMI ()

Bl J tin a I>)
CDHT• SCMSCl SC HS/A ::l
SYNC S[N5C2 SENS/I

74HC14 HO"C CJ)

o<J' i IS

.. (")
c-ap1111 rc-pere5ynCH DSC " ::r Cl>

~
.. 3

117 RB I>) .. ' .. ' et .
(")

Rl r· -8 ..L "' lk
Ilk == ...,.. I>)

::l
•l!J:IU:[i llrd

0.

IC3 i :.~ l~g:&~~~'~;~-1 RZl n Cl
7 ""

c 0
Jlnf ::l

~ ~
c:;
g
~

Lens Zoom / Foes Ctl Mirror Posn Sensors

~
t::P
0
I>)

C Redundant in Mk21
..,
0.

Tl r RlJ

. l'

~
U4: IC

I>)

A9 RlS '< DI •1 LK324
'" 2. 2k 74HCl4 0

2k7 t=
I

M-S tA M- SU

I ~~-[g~u~ I
Rlll
2k?
'VV'------]_T2 I I + ...1...

U3!1
...,..

Ull24

sl . . I£
Tl Rl4 Rlr. U4:D ... 2 . 2k ?4HCl4

U3:C
Rll
2k? "-S2A M-S21

U3:D
L"324 RU I, I I~ 2k?

~4
,,.

'F'I ~-_,,/' I h' i• Periphery l
eY\ •\Oft

u2.11

I ~m! lMHIZPn 1m:~
0

1w1 11

1 I 2 I 3 I 4 I s I r. I 1 I 8

1

II

•

c

0

I

'

2 3

Power Supplies

Al LAV
Ill

• o-~~·'-'-'"'-~~~~~~--'Ll

REGS . ,,_____.!.i!L
Lt129Jl~S

ia1••v • VIH I v,n

0

C14 I ~ I
• 47u

• C15
) 22uf

122
Ilk

12)
•••

2

cs• < ' Oh .. PU

Lens aperture ctl
(Redundant in Mk2l

3

TS
8Cl21

5

5

f, I 7 I

lllG3
L"l \ lL

v'"
Al8
271

_L C12
I \ul

lkO

-
•19
lkO

lc13
-,- lul

Decoupling Capacitors

irrrr1
TTTTTT --- -- ----- ------- ~

C\lt Ctl\ C\11 C\ll C\14 CtlS ,...
tu \u lu lu lu \u

0

Powar Suppl~
TllBKl. 4

6

8

I.

le

I
c

0

I

F

i ::s
e:
:><
0
'

~
(/l
(')

~
(/l
(')
:r

3
i:»

R·
C/)

"' ::s
0.
(J
0 ::s

~
~
tn
0

a.
t-<
"' '<
0
i::

f2

II

I

c

D

I

rl

1 I

2 J

External LED Module
01112 Oft\\j)

11351 { UL

LCDl ~ LID2

2 I J

1

1137

~
LIDJ

I

I
I 1

5 '
External Focus

C Mk2 on 1 y)

L1
L2'1

7

Control
UY

c .,.,,..,. ._.,.,,..,,

LZ
L2HN .. I

~~u •=u1:: > I IN2 >
H C 10
TCTIT o 1•4
CMAILC TJnn"" 6 [llU
v •er Tl!1IT t"'
CONT• S:CNS:C• SCMS/A
S:¥NC SCMS:C2 SCNS/I

"!"

I s

HO"(

osc

I

.. .
0 n RB .. ' .. '

~
110TOA 2

• .
.

" I

.. . ..

...

H

'"

lfm! llsHl1zPH
1 I

R2
1. 2~

a

1
evt'i"'i"i"'ft
Ul.8

I l~m
1

1w~· 1
8

II

•

c

D

I

r
I

~ g
e:
0

I

"'"'l

[
(')
!» ::s
(/)
(')

::r
0
3
!» c:.
(')

"'
~
Q.

()
0 ::s

~
~
to
0

a.
!;;'
'<
0
~

I
~

POWER Dt'I ,..., :G1 I I 03 Rl7 18

iJ ocr 0c.. oo C2l

J T:5 CUD MD
Cl4 C1:5 0 w - R24 R2:5

DD D ~4Rl9 R20 .---I II t Fa
R32 -c=:J- I 12 I A1

v
MICRO

It CIOI

C10:5

R1
-c=:J-

R2

i:!b

O
ut ~ ou:s I c20 I

[§!] ~ffi
C19 R29 ~

~ 9

U3o ~8 g~o
:8: R23
-c=:J- -c:::J-

CIO~

~ ~ ~ L: ... ol· ~~9~ I~
~QQ o o ss~s ~Q

CIOO SCSITERM

I l
~c

C1 C2 LATCH II
'----· --DD I ~ ~

CZ

T ASMllO Top Dverl0Lj

~
'8
::I
p..
)<'

0
I

~
(/}

g
::I
(/}
(")
:r

3
C>)
C'.
(")
(I)

C>)
::I p..
()
0
::I

~
&"
to
0

a.
l'
C>)

'<
0
c::
~

0
....]

Appendix G - TreeScan Schematics and Controller Board Layout G8

••••• • • J •
• •• •

• ~
• • •
• • •
• •• • -- •

•

• •• • •• •• • •• • •• •• • •• •

•
• • • • • • • • • • •

L • • • ClJ ~
u y .. • ...,31 • Oa (7\
Lg !!: c5 11.0
31C ::JI _J L.C~

~ ~ Ulft
lft Ill L -...... •"'>
Lc~c.,

{!_ .2:§.,g 0. Q_ ... cl 31
cu~.,,..

0 cl~ •N 0
c"' • ...
lft 0 lft > 0
cl L cl• L I-1-11.::ICZ:ll. •• • • •

t.f •• •• • 0 •• •• ~ • •• •• • •• •••• • • ~

• • • L: • '- • • (/)

• • • • <I
I-

Appendix G - TreeScan Schematics and Controller Board Layout

• • • •

•

~
ClJ
y
d

_J

£
0

-P
-P
0
~

G9

Appendix H

Microcontroller Specifications
and

Memory Space Organisation

H.1 80C517 A Microcontroller Features

High-Performance SAB 80C517A / 83C517A-5
8-Bit CMOS Single-Chip Microcontroller

Preliminary

SAB 83C517 A-5
SAB 80C517A

Microcontroller with factory mask-programmable ROM
Micro controller for external ROM

e SAB 80C517A / 83C517A-5,
up to 18 MHz operation

e 32 K x 8 ROM (SAB 83C517A-5 only,
ROM-Protection available)

e 256 x 8 on-chip RAM
e 2 K x 8 on-chip RAM (XRAM)
• Superset of SAB 80C51 architecture:

- 1 µS instruction cycle time at 12 MHz
- 666 ns instruction cycle time at 18 MHz
- 256 directly addressable bits
- Boolean processor
- 64 Kbyte external data and

program memory addressing
• Four 16-bit timer/counters
• Powerful 16-bit compare/capture unit

(CCU) with up to 21 high-speed or PWM
output channels and 5 capture inputs

• Versatile "fail-safe" provisions
• Fast 32-bit division, 16-bit multiplication,

32-bit normalize and shift by peripheral
MUUDIV unit (MDU)

• Eight data pointers for external memory
addressing

• Seventeen interrupt vectors, four priority
levels selectable

• Genuine 10-bit A.JD converter with
12 multiplexed inputs

• Two full duplex serial interfaces with
programmable Baudrate-Generators

• Fully upward compatible with SAB 80C515,
SAB 80C517, SAB 80C515A

• Extended power saving mode
• Fast Power-On Reset
• Nine ports: 56 110 lines, 12 input lines
• Three temperature ranges available:

o to 70 °C (T1)
- 40 to 85°C (T3)
- 40 to 110°C (T4)

e Plastic packages: P-LCC-84, P-MRFP-100

The SAS 80C517A.J83C517A-5 is a high-end member of the Siemens SAS 8051 family of
microcontrollers. It is designed in Siemens ACMOS technology and based on SAS 8051
architecture. ACMOS is a technology which combines high-speed and density characteristics
with low-power consumption or dissipation.package (P-LCC-84) and in a 100-pin plastic quad
flat package (P-MRFP-100).

While maintaining all the SAB 80C517 features and operating characteristics the
SAS 80C517A is expanded in its "fail-safe" characteristics and timer capabilities.The
SAB 80C517A is identical with the SAB 83C517A-5 except that it lacks the on-chip program
memory. The SAB 80C517A / 83C517A-5 is supplied in a 84-pin plastic leaded chip carrier
package (P-LCC-84) and in a 100-pin plastic quad flat package (P-MRFP-100).

H.2 Microcontroller Block Diagram

r---------------------------1
I I

OWE ___ 1 Osci:lo:or 1
I ~~ I
I ! I

i ~~;,: ~~·. ., ,:. ' 1 l2~ 8 i
I 5o110011M I
I ~
I
I ' CPU

RESET ---1
- I Ro--1
AL[---, '----------

PSEN -__J
- I
EA---1

I
I
I
I
I

Pr/swo---'
I
I

Pr1xyomrnoble
Wo'chdog rimtr

Oiv./llu!.-Unit

Timer 0

Port 0

Port 1

Port 2
I

HWP0---1
I
I
I
I
I
I
I
I
I

Tirr.er 1

litoo- 2

Port 3 ~

I
I
I
I
I

. I
I

Caplure
Comp:ire Uni!

Compa•e iimer

Interrupt Una

Serial Channel 0

Progr. iloud Role
Generator

Serial Channel 1

Progr. Boud Role
Genero1or

V Alllf ----< A/D Converter
VAGIC> --....-..__ ___ 1 _0-_b_i~---

Port 4

Port 5

Port 6

Port 7

Port 8

H2

Port 0
8-bit dig;1. I /0

Port 1
8-bil digl I /0

Port 2
8-bil dig!. I /0

Port 3
8-bil dig:t. I /0

Port 4
8-bit digit. 1/0

Port 5
8-ba digit. I /0

Port 6
8-bit digit. I /0

Port 7
8-bil dig:!./
analog rput

Port 8
Ha digit./
analog lnpui

Appendix H - Microcontroller Specifications and Memory Space Organistion

H.3 Microcontroller Pin Configuration

V.c•O
P7 .7
P7 .6
P7 .5
P7.4
P7.3
P7.2
P7 .1
P7.D
P3.0
P3.1
P3 .2
P3 .3
P3.4
P3 .5
P3.6
P3. 7
Pl.7
P1.6
P1.5
P1.4

<....>

~-~~·~~N-0 ~N-0-~~
'~~·•~••w•••,~,~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

SAS

80C517 A/83C517 A-5

33

74

54

P6 .4
P6 .3
P6.2
P6 .1
P6 .0
OW[
P5.0
P5.1
PS.2
P5.3
PS.4
PS .5
P5 .6
P5.7
HWPO
P0.7
P0 .6
P0 .5
P0 .4
P0 .3
P0 .2

WCP0 1479

H.3 Microcontroller Electrical Characteristics

Absolute Maximum Ratings

Ambient temperature under bias - 40 to 110· C
Storage temperature - 65 to 150 °C
Voltage on Vee pins with respect to ground (V55) - 0.5 V to 6.5 V
Voltage on any pin with respect to ground (Vss) - 0.5 to Vee +0.5 V
Input current on any pin during overload condition - 1 OmA to + 1 OmA
Absolute sum of all input currents during overload condition 1 OOmA
Power dissipation 1 W

Note Stresses above those listed under "Absolute Maximum Ratings • may cause permanent
damage of the device. This is a stress rating only and functional operation of the device
at these or any other conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for longer
periods may affect device reliability. During overload conditions (VIN > Vee or VIN <
Vss) theVoltage on Vee pins with respect to ground fVssJ must not exeed the values
definded by the absolute maximum ratings.

H3

DC Characteristics

Vee= s v + 10 %, - 1 s %; Vss = o v

Parameter

Input lo~ol~ ___
(except EA, RESET, HWPO)

Input low voltage (EA)

Input low voltage (HWPD,
RESET)

Input high voltage (e~
RESET, XTAL2 and HWPD

Input high voltage to XT AL2

Input high voltage to RESET
and HWPO

DC Characteristics (cont'd)

Parameter

Output low voltage
(ports 1, 2, 3 , 4. 5, 6)

Output low voltage _
(ports ALE, PSEN, RO)

Output high voltage
(ports 1, 2. 3 , 4, 5, 6)

Output high voltage
(port 0 in external bus mode,
ALE, PSEN, RO)

Logic input low current
(ports 1, 2, 3 , 4, 5, 6)

Logical 1-to-O transition current
(ports 1, 2, 3 . 4, 5, 6)

Input leakage current __
(port 0, EA, ports 7, 8, HWPD)

Input low current to RESET
for reset

Input low current (XTAL2)

~t low current
(PE/SWD, OWE)

Pin capacitance

Power supply current:
Active mode, 12 MHz7l

Active mode, 18 MHz7l

Idle mode, 12 MHz7>
Idle mode, 18 MHz7l

Slow down mode, 12 MHz
Slow down mode, 18MHz
Power Down Mode

TA= 0 to 70 °C for the SAB 80C517A/83C517A-5
TA=- 40 to 85 °C for the SAB 80C517A-T3/83C517A-5-T3
TA=-40to 110 °CfortheSAB80C517A-T4/83C517A-5-T4

Symbol Limit Values Unit Test condition

min. max.

VIL -0.5 0.2 Vee- v -
0.1

V1u -0.5 0.2 Vee- v -
0.3

v,L2 -0.5 0.2 Vee v -
+ 0.1

V 1H 0.2 Vee Vee+ o.s v -
+ 0.9

V1H1 0.7 Vee Vee+ o.5 v -

V IH2 0.6 Vee Vee+ o.s v -

Symbol Limit Values Unit Test condition

min. max.

Vol - 0.45 v loL =1.6 mA 11

Vou - 0.45 v 'oL =3.2mA 11

VoH 2.4 - v /oL=-80 µA
0.9 Vee - v /oL=- 10 µA

VOH1 2.4 - v fol =-800 µA2)
0.9 Vee - v /oL =-80 µA2)

/ 1L -10 -70 µA VIN= 0.45 V

/TL -65 - 650 µA VIN= 2 V

'u - ± 100 nA 0.45 < v1N < Vee

± 150 nA 0.45 < v1N < Vee
TA>100°C

l1L2 -10 -100 µA V1N = 0.45 V

,,L3 - -15 µA V1N = 0.45 V

/IL4 - -20 µA V1N = 0.45 V

C10 - 10 pF Jc= 1 MHz
TA= 25°C

'cc - 28 mA Vee= 5 v,•i
Ice - 37 mA Vee =5 v:i
'cc - 24 mA Vee= 5 V,si
'cc - 31 mA Vee = 5 V,si
Ice - 12 mA Vee= 5 v,si
'cc - 16 mA Vee= s v.si
/PO - so µA Vee= 2 ... s.s v, 3l

H4

Appendix H - Microcontroller Specifications and Memory Space Organistion

AID Converter Characteristics

V CC= 5 V + 10 %, - 15 %; V SS= 0 V

v AREF = Vee ± 5%; v AGND = Vss ± 0.2 V;
TA= 0 to 70 °C for the SAS 80C517A/83C517A-5
TA=-40to85 ° C fortheSAB80C517A-T3/83C517A-5-T3
TA= -40 to 110 °C for the SAS 80C517A-T4/83C517A-5-T4

Parameter Symbol Limit values Unit

min. typ. max.

Analog input capacitance C1 25 70 pF

Sample time Ts 4rCr'' ' µS

(inc . load time)

Conversion time ! Tc 14rCr'' ' µS
(inc. sample time) I
Total unadjusted error TUE ±2 LSB

V AREF supply current IREF ±20 µA

AOCL AOCL
'' / CY= (8"2 1 !Jose: (icy= 1//A.oc: fAoc = /oscl<B"2))

Test condition

2)

3)

VAREF =Vee

VAGND = Vss

4)

21 This parameter specifies the time during the input capacitance C1 can be charged/discharged by the
e>Cternal source. It must be guaranteed. that the input capacitance C1 , is fully loaded within this time.
4TCY is 2 µs at the Jose= 16 MHz. Aller the end of the sample time 'Ts changes of the analog input
voltage have no ettect on the conversion result.

31 This parameter includes the sample time Ts. 14TCY is 7 µsat Jose= 16 MHz.
41 The ditterencial impedance r 0 of the analog reference source must be less than 1 Kn at reference supply

voltage.

H5

H6

H.4 Memory space organisation

The memory space organisation of the 80C5 l 7 CPU is complicated. The 80C517 CPU

has separate address spaces for program and data memory, and manipulates operands in

the following four address spaces:

• Up to 64 kByte of program memory

• Up to 64 kByte of external data memory

• 256 bytes of internal data memory

• 128 byte special function register area

Program memory can be external (EPROM) or up to 32 kByte on the micro controller

chip determined by the state of the EA pin during powerup. The 80C5 l 7 A also has 2

kByte on chip XRAM. The XRAM is accessed using identical instructions to accessing

external RAM but with bit I of SYSCON register set.

80C517 A Memory Space Organisation

FFFF

8000

7FFF

External
Program
Memory

1 External
Program
Memory

(EA=O)
0000 ..,,.__ __ ..,_, ~--~

FFFF~I
Ftro (XMAP=O

External Data
Memory

(XMAP=1)
'----- --'

F7FF

External
Data

Memory

FF .
i

ro
7F

00

FF
Upper Special
Internal Function
RAM Registers

8J

Lower
Internal

RAM

Code Space External Data Space Internal Data Space

Figure H.I - Microcontroller memory space organisation.

All registers, (except the program counter and four general purpose register banks),

reside in the special function register (SFR) area. The SFR's include arithmetic

registers, pointers and registers to provide an interface between on chip peripherals

(eg.10 Ports). Registers which lie on 8 Byte boundaries are bit addressable.

There is an address overlap between the upper 128 bytes of internal RAM and the

SFR's. The addressing mode used determines whether the SFR's are addressed or

Appendix H - Microcontroller Specifications and Memory Space Organistion H7

whether internal RAM is addressed. The internal RAM contains four banks of registers

and 128 bit addressable bits overlapping internal RAM. The stack pointer is initialised

to 08h in internal RAM after reset.

The TreeScan scanner microcontroller uses the following sections of the 80C517 A

memory space (see figure 4.7) :

7FFF

::::;:
0
a:
(l_
w
::.::
N
(")

0000

• 32K byte EPROM to store the microcontroller code and ND lookup tables

• 32K byte RAM of which IK byte is used to buffer the SCSI transfer

• SCSI controller registers repeatedly mapped into the top 32K bytes of

external data memory

• the lower internal RAM (for working variables)

• the special function registers

TreeScan Microcontroller Memory Map
FFFF ,.--------...,

FF I
Upper I FF I SFR

ND
Tables

I Internal
F81F-SCSI

8J I
RAM SFR's

;;~,! I i 8J

7F I L RAM
(2 :

Micro

::.::

I SCSI line
Variables N

(")

Code 0000 buffering CXl

Program memory External data memory Internal RAM SFR's

Figure H.2 - TreeScan Microcontroller memory map

Appendix I

Additional SCSI Interface
Specifications

Appendix I provides SCSI interface specifications additional to the discussion in

sections 4.4.1 and 5.2.4. Note that this information relates to the implementation of a

SCSI I system.

1.1 SCSI Bus Phases

The SCSI contains eight distinct phases of the SCSI bus. The SCSI bus can only be in

one of these phases at any one time. Each of the eight possible phases has a specific

purpose:

• BUS FREE phase

The BUS FREE phase is used to indicate that no SCSI device is actively using

the SCSI bus and that it is available to subsequent to devices.

• Arbitration phase

The ARBITRATION phase allows one device to gain control of the SCSI bus

so that it can assume the role of an initiator or target. The device with the highest

ID number wins the arbitration.

• Selection phase

The SELECTION phase allows an initiator to select a target for the purpose of

initiating some target function. eg. a data transfer command.

• Reselection phase

In systems which implement reselection this allows the target to reconnect to the

initiator to continue some operation that was previously started by the initiator

and suspended by the target. The RESELECTION phase is not implemented on

the Macintosh computer.

12

• Command phase

The COMMAND phase allows the target to request command information from

the initiator. The command information instructs the target what function it is

expected to complete.

• DATA phase

The DATA phase allows the transfer of parameters or data from the target to the

initiator or from the initiator to the target.

• ST A TUS phase

The ST A TUS phase allows the target to request that transfer status information

be sent from the target to the initiator.

• Message phase

The MESSAGE phase allows message information to be sent from the target to

the initiator or from the initiator to the target. Multiple messages may be

transferred.

A completed SCSI operation will start with a BUS FREE phase and must proceed

through an ARBITRATION phase, SELECTION phase, COMMAND phase, STATUS

phase, and a MESSAGE phase. In addition to this the SCSI operation may include a

RESELECTION phase and a DATA phase. This sequence can only be broken through

a time-out or the undesirable assertion of the bus RESET signal at which time the bus

must be released to the BUS FREE phase.

The Macintosh does not support the RESELECTION phase.

1.2 SCSI Bus Signalling

The SCSI bus consists of 18 signal lines, nine of which are control signal lines and

nine of which are data signal lines.

During a sequence of bus phases the bus control signals are asserted in a complicated

control and handshaking sequence. The sequence the control signals may be asserted is

specified in the ANSI standard. A typical SCSI transfer is discussed in section 5.2.4.

Minimal and maximal duration between signal transitions is also specified in the

standard. The SCSI bus signals are described below (all signals are active low):

• BSY (Busy) : An 'or-tied' signal that indicates the bus is being used.

Appendix I - Additional SCSI Interface Specifications 13

• SEL (Select) : A signal used by an initiator to select a target or by a target to

reselect an initiator.

• CID (Command/Data) : A signal driven by the target that indicates control or

data information is on the bus. True (active low) indicates control data.

• 110 (Input/Output) : A signal driven by the target that controls the direction of

data movement on the data bus with respect to the initiator. True indicates input to

the initiator.

• MSG (Message) : A signal driven by the target during the message phase.

• REQ (Request) : A signal driven by a target to indicate the request for a

REQ/ ACK data transfer handshake.

• ACK (Acknowledge) : A signal driven by an initiator to indicate an

acknowledgement for a REQ/ACK data transfer handshake.

• A TN (Attention) : A signal driven by an initiator to indicate the attention

condition.

• RST (Reset) : An 'or-tied' signal that indicates the reset condition.

• DB(7-0,P) : Eight data bit signals , plus a parity bit signal that form the data bus.

Certain SCSI bus signals are driven only by the initiator or only by the target. Others

are driven either by the initiator or by the target depending on the bus phase. The

following table lists all the SCSI bus signals (except RST) and their relationship to the

bus phases. RST can be driven by any device but is completely asynchronous and is

not constrained to any bus phases.

SIGNALS AND THEIR DRIVE SOURCES

SDO- CID,
BUS PHASE BSY SEL SD7, 1/0 MSG, ATN ACK

SOP REQ

Bus free None None None None None None None

Arbitration All Winner ID bit None None None None

Selection
Initiator,

Initiator Initiator None None Initiator None
Target

Reselection
Initiator,

Target Target Target None None None Target

Data out Target None Initiator Target Target Initiator Initiator

Data in Target None Target Target Target Initiator Initiator

Command out Target None Initiator Target Target Initiator Initiator

Status in Target None Target Target Target Initiator Initiator

Message out Target None Initiator Target Target Initiator Initiator

Message in Target None Target Target Target Initiator Initiator

Fig 1.1 - SCSI Signal Sources (SBC Data Manual, 1990)

14

1.3 General SCSI Commands

As discussed in section 4.4.1.2 the completion of a SCSI command involves the

transfer of a command descriptor block from the initiator to the target. In order for a

device to adhere to the SCSI specification a number of general commands must be

implemented. Out of 256 available commands four commands are classed as

mandatory, four commands are for devices that support independent self configuring

software, twenty two commands are optional, twenty three commands are vendor

specific, with the rest reserved for future use.

The classification of commands as mandatory or optional is dependant on the device

type. Device types include direct access devices, sequential access devices, printer

devices, processor devices and WORM devices. The list below summarises important

commands for processor devices, direct access device and commands common to all

device types:

Op Code Type Command name

Group 0 commands common to all device types :

OOh Optional Test Unit Ready

03h Mandatory Request Sense

12h Self Conf. SW Inquiry

18h Optional Copy

1 Ch Optional Receive Diagnostic Results

lDh Optional Send Diagnostic

Group 1 commands common to all device types :

39h Optional Compare

3Ah Optional Copy and Verify

Group 0 commands for Processor Devices :

08h . Optional Receive

OAh Mandatory Send

Group 0 commands for Direct-Access Devices

01 h Optional Rezero Unit

04h Mandatory Format Unit

07h Optional Reassign Blocks

08h Mandatory Read

OAh Mandatory Write

Appendix I - Additional SCSI Interface Specifications

OBh Optional

15h Optional

16h Optional

17h Optional

18h Optional

!Ah Optional

lBh Optional

!Eh Optional

Seek

Mode Select

Reserve

Release

Copy

Mode Sense

Start/Stop Unit

Prevent/ Allow Medium Removal

15

Appendix J

SCSI Bus Controller Specifications

The SN75C091A SBC manufactured by Texas Instruments is a single ended flexible

SCSI implementation for microprocessors . It provides DMA or programmed I/O

capabilities and can be interrupt driven to minimise host polling. The SBC consists of a

single 68 pin PLCC package. The SN75C091A can execute multiphase commands to

minimise host interrupts. Chip access is provided through 32 directly addressable

registers (Texas Instruments, 1990).

J.1 SBC Features

SCSI Bus Interface

Complies with ANSI X3.131-1986 SCSI standard

Performs INITIATOR and TARGET functions

Supports arbitration, selection, and reselection

Performs asynchronous data transfers of up to 5 Megabytes/second (MBps)

Performs synchronous data transfers of up to 5 Megabytes/second (MBps) with
programmable offset up to 15

Has on-chip 48-mA transceivers

Provides optional parity generation, checking, and pass-through

Reduces overhead associated with initiator multi-threading by automatically
handling save-data-pointer messages. disconnects. and reconnects

Performs automatic message and command-length decoding

Has two 32-byte FIFOs for command and message preloading

Microprocessor Interface

Provides chip control via directly-addressable registers

Has optional address latch line for multiplexed address/data buses

Allows OMA- or programmed-1/0 data transfers

Is interrupt-driven to minimize host polling

Can execute multi-phase commands to minimize interrupts

Has 24-bit transfer counter

Provides byte-stacking control to accommodate 8-, 16-, and 32-bit systems

J2

J.2 Block Diagram

Byte St.ck
Control

~
I '

h -OMA Receive ..-- Interface r-- FIFO
--+ ,.._ r-+-

I I I I Parity
GEN/CHK Command Parity ~ Sequencer GEN/CHK

I I Parity
GEN/CHK

I I ' Transmit ,.---

s FIFO ..---
4~

Micro--- Proceuor
- Interface

ARB/SEL ~ rr-Control .
~ r-

Register r-

Fiie

Interrupt I
SCSI Handler .

~

REO/ACK ~
. Handshake ~

Controller
~

Fig J.1 - SN75C091A Functional Block Architecture

(SBC Data Manual, 1990)

The SBC provides a microprocessor port for information transfer and chip control. A

separate DMA port is also provided for SCSI data transfers between memory and the

SCSI bus. The DMA port may be connected directly to an 8-bit system or through byte

stack registers to 16-, 24-, and 32-bit systems.

J.3 Registers

REGISTER ADDRESSES

A4 A3 A2 A1 AO READ/WRITE REGISTER

0 0 0 0 0 R Receive FIFO

0 0 0 0 0 w Transmit FIFO

0 0 0 0 1 R/W Command

0 0 0 1 0 R Transfer status

0 0 0 1 1 R Bus phase status

0 0 1 0 0 R Function interrupt status

0 0 1 0 1 R Error interrupt status

0 0 1 1 0 R/W Interrupt enable

Appendix J - SCSI Bus Controller Specifications J3

REGISTER ADDRESSES

A4 A3 A2 A1 AO READ/WRITE REGISTER

0 0 1 1 1 (Reserved)

0 1 0 0 0 R/W Control

0 1 0 0 1 R/W Byte stack control

0 1 0 1 0 R/W Parity control

0 1 0 1 1 R/W Synchronous transfer

0 1 1 0 0 R/W Selection or Reselection timeout

0 1 1 0 1 R/W Self-ID

0 1 1 1 0 R/W Destination ID

0 1 1 1 1 R Source ID

1 0 0 0 0 R/W Target LUN

1 0 0 0 1 RN/ Command state

1 0 0 1 0 R/W Transfer counter Oeast significant byte)

1 0 0 1 1 RN/ Transfer counter (middle byte)

1 0 1 0 0 RN/ Transfer counter (most significant byte)

1 0 1 0 1 R Backup counter (least significant byte)

1 0 1 1 0 R Backup counter (middle byte)

1 0 1 1 1 R Backup counter (most significant byte)

1 1 0 0 0 RN/ Offset counter

1 1 0 0 1 (Reserved)

1 1 0 1 0 RN/ Test control

1 1 0 1 1 R Test points register O

1 1 1 0 0 (Reserved)

1 1 1 0 1 (Reserved)

1 1 1 1 0 (Reserved)

1 1 1 1 1 (Reserved)

• Transmit & Receive FIFOs

Two 32-byte transmit and receive registers are used to buffer the SCSI bus

information transfers . The Receive and Transmit FIFOs are accessed through

the microprocessor port at register file address OOOOOh. Writing loads a byte

into the transmit FIFO through the microprocessor port; reading enables the

information onto the microprocessor port and unloads the byte from the receive

FIFO.

• Command Register

The command register stores the commands written by the microprocessor.

Each command is executed immediately upon being sent to the chip. Generally

the microprocessor should not issue a new command to the SBC while the

previous command is still active.

J4

• Transfer Status & Bus Phase Status Register

Registers that contain status bits which reflect the status of the SBC chip and of

the SCSI bus.

• Functional Interrupt Status & Error Interrupt Status Register

Registers that contain status bits which reflect the status of the SBC functional

interrupts and error condition interrupts.

• Variety of other registers

Variety of other registers that contain control information, status information,

SCSI ID information, and transfer counters.

J.4 SBC Chip Commands

The SBC is driven by chip commands written to the COMMAND register. These

commands are instructions from the microcontroller to the SBC to modify the current

bus phase or transfer data. These commands fall in three categories:

• Non interrupting commands

• Single phase interrupting commands

• Multiphase interrupting commands

. Noninterrupting Commands

COMMAND
COMMAND NAME

ISSUED RESULT
CODE STATE STATE

00000 Chip Reset ANY 0

00001 Disconnect T, TO 0

00010 Pause I, T I. T

00011 Assert ATN I I

00100 Negate ACK I I

00101 Clear Receive FIFO 0,1,T D, I, T

00110 Clear Transmit FIFO 0, I. T 0 , 1, T

Single-Phase Interrupting Commands

COMMAND
COMMAND NAME

ISSUED RESULT
CODE STATE STATE

00111 SCSI Bus Reset ANY 0

01000 Select with ATN 0 I

01001 Select without ATN 0 I

01010 Reselect 0 T
01011 (reserved) - -
01100 Receive Command T T
01101 Receive Data T T
01110 Receive Message Out T T
01111 Receive Unspecified Information Out T T
10000 Send Status T T

Appendix J - SCSI Bus Controller Specifications

10001 Send Data

10010 Send Message In

10011 Send Unspecified Information In

10100 Transfer Information

10101 Transfer Pad

10110 (reserved)

10111 (reserved)

· Multiphase Interrupting Commands

COMMAND COMMAND NAME
CODE

11000 Select wilh ATN and Transfer

11001 Select withoul ATN and Transfer

11010 Reselect and Receive Data

11011 Reselect and Send Data

11100 Wait for Select with A TN and Receive

11101 Wait for Select without ATN and Receive

11110 Conclude

11111 Link to Next Command

D = Disconnected
I = Initiator
T =Target
TO = Time-Out

JS

T T

T T

T T

I I

I I

- -
- -

ISSUED RESULT
STATE STATE

0,1 D

D D

D T

D T

D,T T

D, T T

T D

T T

A normal command sequence for the SBC used in a target role would involve waiting

for the chip selection using the an interrupting multiphase command or by directly

polling the transfer status register.

Once the chip has been selected a receive command command would be sent to

receive the SCSI command command descriptor block. Based on the information

in the command descriptor block additional data transfer command may be executed.

To complete the SCSI transfer a message byte and a status byte need to be sent. This

can be completed using the conclude command.

J.5 SBC Electrical Characteristics

Absolute Maximum Ratings Over Free-Air Temperature
Range (Unless Otherwise Noted)

Supply voltage range, V cc (see Note 1) • • . . • • - 0.5V to 7 V
Input voltage range, V1, at any input . . • • • • - 0.5V to 7 V
Output voltage range, v0 . - 0.5V to 7 V
Storage temperature range . . . • • • - ss·c to 1 so·c
Case temperature for 1 o seconds • • • 2so·c
NOTE 1: All vohage values are with respect to GNO.

Recommended Operating Conditions
MIN NOM MAX UNIT

Supply voltage. Vee 4.75 5 5.25 v
High-level input voltage. V1H 2 Vee v
Low-level input voltage. Vrl t -0.5 0.8 v
Clock frequency. fclock 20 MHz

Operating free·air temperature. TA 0 70 ·e

t The algebraic convention, in which the least positive (most negative) value is designated
minimum, is used in this data manual for logic voltage levels only.

Electrical Caracteristics Over Recommended Ranges of
Supply Voltage and Operating Free-Air Temperature (Unless
Otherwise Noted)

PARAMETER TEST CONDITIONS

VoH
loH=-4mA(seeNote2)

High-level output voltage loH=- 2mA(seeNote3)

lol = 48 mA (see Note 4)

Vol low-level output voltage lol = 4 mA (see Note 2)

IOl = 2 mA (see Note 3)

11 Input current Vee =5.2s v.
V1 = 0 to 5.25 V

'oz
High-impedance output vce = 5.25 v.
current V1 = 0 to 5.25 V

'cc Supply current
No load on outputs,
f = 20 MHz

Input pins

Ci
Input Bidirectional Vee = 5 v. TA= 25•c
capacitance pins

Co
Output

Vee = 5 v. TA= 25·c
capacitance Output pins

t All typical vaules are at Vee = 5 v and TA= 25°C.
NOTES: 2. Applies to MP, M(0:7) and DP, 0(0:7) only.

3.Applies to all other outputs or bidirectional signals.
4.Applies to SCSI interface signals only.

MIN TYPt MAX UNIT

3.7 v

0.5 v

:I: 10 µA

:I: 10 µA

30 mA

5 pF

13 pF

8 pF

16

Appendix K

Macintosh SCSI Manager

The Macintosh SCSI Manager must be used to program the SCSI interlace on the

Macintosh computer.

K 1 Macintosh SCSI Manager SCSI Calls

The Macintosh SCSI manager provides the following SCSI calls:

• SCSIGet()

Arbitrate for the SCSI bus.

• SCSISelect(targetID)

Select a SCSI device with a specific ID (targetlD).

• SCSICmd(buffer, count)

Send a command to the selected target device. Where buffer is a pointer to a

command descriptor block and count is the size of the command descriptor

block pointed to by buffer.

• SCSIComplete(stat, message, wait)

Gives the current command a given number of ticks to complete. The status and

message bytes returned by the target device are returned in stat and message.

The maximum number of ticks to wait (time-out) is specified in wait.

• SCSIRead(tibPtr)

Transfer data from the target to the initiator, as specified in the transfer

instruction block pointed to by tibPtr.

• SCSIWrite(tibPtr)

Transfer data from the initiator to the target, as specified in the transfer

instruction block pointed to by tibPtr.

K2

• SCSIRBlind(tibPtr)

Transfer data from the target to the initiator, as specified in the transfer

instruction block pointed to by tibPtr, without byte handshaking by polling and

waiting for the /REQ line after each byte.

• SCSIWBlind(tibPtr)

Transfer data from the initiator to the target, as specified in the transfer

instruction block pointed to by tibPtr, without byte handshaking by polling

and waiting for the /REQ line after each byte.

• SCSISelAtn(targetlD)

Select a SCSI device and signal the intention to send a message by asserting the

ATN line.

• SCSIStat()

Return a bitmap of the SBC control and status registers.

• SCSIMsgln(message)

Get a message from the SCSI device.

• SCSIMsgOut(message)

Send a message to the SCSI device.

• SCSIReset()

Reset the SCSI bus by asserting the RST line.

All SCSI Manager SCSI calls return an error code indicating the success or failure of

the function. Error codes are 0 = no error, while any other value indicates a command

specific error has occurred.

Appendix K - Macintosh SCSI Manager K3

K 1 Transfer Instruction Blocks (TIBs)

The transfer of data from the target to the initiator or vice versa requires a transfer

instruction block (TIB) for the data transfer calls on the Macintosh. A TIB is a sequence

of low level instructions that tell the SCSI Manager what to do with the data bytes

transferred during the data phase. A TIB contains a pseudo-program consisting of a

variable number of instructions which are interpreted by the SCSI Manager. TIB

instructions are similar to assembly code but with a very limited instruction set.

Eight instructions are available:

• seine buff er count

The seine instruction moves count bytes to or from buffer, incrementing

buffer by count when done.

• scNolnc buffer count

The scNoinc instruction moves count bytes to or from buffer, leaving buffer

unmodified.

• scAdd addr value

The scAdd instruction adds value to the address in addr (performed as

MC68000 addition operation).

• scMove addrl addr2

The scMove instruction moves the value of the location pointed to by addr 1 to

the location pointed to by addr2 (performed as MC68000 move operation).

• scLoop relAddr count

The scLoop instruction decrements count by 1. If the result is greater than 0,

the pseudo-program execution resumes at the current address + relAddr. If

the result is 0, execution resumes at the next instruction. RelAddr should be a

signed multiple of the instruction size (10 bytes). For example, to loop to the

immediately preceding instruction , the relAddr field would contain -10.

• scNop nil nil

The scNop instruction does nothing.

• scStop nil nil

The scStop instruction terminates pseudo-program execution, returning to the

calling SCSI Manager routine.

K4

• scComp addr count

The scComp instruction may be used for data verification and can be used only

with a read command. Beginning at addr, it compares incoming data bytes with

memory, incrementing addr by count when done. If the bytes do not compare

equally, an error is returned to the SCSI Manager read command.

For example, a TIB to transfer six 512 byte blocks of data from or to address Ox67B50:

scOpcode

sclnc

scLoop

scStop

scParaml

Ox67B50

-10

scParam2

512

6

Tills can read in variable length data blocks by using self modifying code. For

example, if the first bytes in a data block sent from another SCSI device contains the

length of the data block, these bytes may be read into the second parameter of the next

sclnc instruction to correctly read in the required number of bytes. This capability is

used in the SCSI transfer byte loss detection and resend scheme.

Appendix L

SCSI Byte Loss Detection and
Resend Scheme

L 1 Byte Loss Detection and Resend Scheme

The byte loss detection and resend scheme is an elaborate scheme to esure transferred

data is not corrupted by buffer overflow (see section 5.2.4.2). It will correct for

occasional buffer overflow of up to several hundred bytes.

The implementation of the byte loss detection scheme required some major algorithm

and software changes. The detection and resend scheme works on the basic principle

that the SBC expects to send a certain number of bytes. If at the end of the image line

the SBC expects to send more bytes, the SBC FIFO must have overflowed during the

AID conversion loop. The line that was sent must be ignored and the line resent from

the scanner memory.

Two restrictions that must must be taken into account are that:

1. The TIB instruction set is very limited and can only execute seven types of

instructions (see APPENDIX K for more detail on TIBs).

2. The scanner SCSI bus controller provides limited status information. There are

flags that indicate whether the Transmit FIFO is full or half full, but not whether

the transmit FIFO is empty.

L2

The detection and correction scheme works on the following principle:

1. Once all the image bytes for a line have been sent and the FIFO is less than half

full, send another 15 filler bytes. Wait until all bytes have been transmitted. If the

SBC transfer counter is not equal to zero more than 15 bytes have been lost and

the line needs to be resent. Send one more filler byte and wait until it could have

been sent. If the SBC FIFO half full flag has not been set, less than 15 bytes have

been lost and the line needs to be resent (see point 4).

2. If no bytes were lost the FIFO will now contain 16 filler bytes which must be

cleared before the next line is transferred.

3. Now if the transfer of the image line was successful the TIB needs to increment

the pointer to memory where the image is stored so the next line can be captured.

If however the bytes were lost, the memory will contain invalid information and

the next line must be captured to overwrite the invalid information. This is

achieved by using the feature that TIBs can contain self modifying code. The

microcontroller has determined whether the line is valid. Based on this an

increment number is transferred which the TIB uses as the amount by which to

increment the memory data pointer. A second number must be transferred which

the amount by which to decrement the TIB loop counter to ensure the correct

number of lines are captured (see TIB in figure L.2).

4. If however bytes were lost during the line, the line must be resent. This involves

sending filler bytes until the correct number of bytes been sent (transfer counter=

zero). The scanner SBC is then cleared of filler bytes and a memory increment

and TIB loop decrement for an invalid line are sent. This means the last line is

disregarded. The line is resent from memory, and the memory increment and TIB

loop decrement for a valid line are sent.

5. Now the microcontroller can loop back and capture the next line.

The implementation of this byte loss detection and resend scheme has little impact on

the acquisition plug-in code. Only the TIB required additions to allow for significant

self modification.

The implementation of this byte loss detection and resend scheme does have

implications on the structure of the microcontroller image block capture algorithm, and

timing of the AID conversion loop discussed in section 5.2.3. The AID conversion loop

must write the image data to RAM as well as to the SCSI. This increases the AID

conversion loop to 12 µs as shown in figure 5.9. Secondly the image block capture

Appendix L - SCSI Byte Loss Detection and Resend Scheme L3

Pre A!D Initialisation
Set up initial counts for line (Total= Line Bytes)

Next Line: Wait for line Synchronisation <-----

'I
Do 1st motor step & enable auto step
Complete A!D ->(SCSI, RAM) conversion loop

(const interloop timing, exit after poking count bytes)
I Disable auto stepper step I
I OK: Wait until FIFO< 1/2 full (ensure we don't overflow FIFO)
I Poke 15 bytes into FIFO I
I Wait until FIFO <1/2 full
i Tsf Counter :;e 0 =>Resend (Lost many bytes) --1

l Poke one byte to half fill FIFO I
I

Wait until FC flag I
I

If FIFO < 1/2 full => Resend2 (Lost <16 bytes) -: I
I

2. X: Clear FIFO v I

v
A - - Exit if last line

3 . Set up counts for next line (Total =Line Bytes + 8)
Poke synch bytes "Good" into FIFO

y I Loop to Next Line

Exit: ~ Set up counts for last synch bytes (Total = 8)
Poke synch bytes "Good"
Wait for FC flag
Return to main loop

A

4. Resend: Send filler bytes if FIFO < 1/2 full, until Tsf Ctr = 0
Wait until FC flag
Clear FIFO

~ Resend2: Set up counts for resend line (Total= Line Bytes+ 8) I

Poke synch bytes "Bad" I
I

" Send bytes to SCSI from RAM loop (wait if necessary) I
I

Wait for FC flag I

5 . I

Continue at X
__ I

where Setup Tsf Counts =
Setup Transfer Counter
Setup iterations of AID loop
Reset RAM DPTR

Figure L.1- Byte loss detection and resend scheme

algorithm (figure 5.6) must be modified to accommodate the additional write to RAM,

additional end of line checking, and a line resend if necessary. The principle of the

Image block capture algorithm does remain the same.

myTIB[O].scOpcode = scNolnc;
myTIB[O].scParam1 = bufferPtr;
myTIB[O].scParam2 = 1;

myTIB[1].scOpcode = scNolnc;
myTIB[1].scParam1 = bufferPtr; <
myTIB[1].scParam2 = lwidth;

Read in one image line

myTIB[2].scOpcode = scNolnc;
myTIB[2].scParam1 = &myTIB[3].scParam2+3;

::::::::::::::::: :~Nolnc; I
myTIB[3].scParam1 =&Dummy;
myTIB[3].scParam2 = O; ~--

----r
I
I

: Fix for byte gain
: problem
I
I
I
I
I

IA

myTIB[4].sc0pcode = scNolnc;
myTIB[4].scParam1 = &myTIB[6].scParam2;- - - ·, R~ad b~ffer memory
myTIB[4].scParam2 = 4; / ! pointer increment

myTIB[5].scParam1 =&myTIB[7].scParam2 --- ~- - 1 Read TIB loop
myTIB[S].scOpcode = scNolnc; I i

myTIB[5].scParam2 = 4; ; l decrement
I I I I I

myTIB[6] .sc0pcode = scAdd; / : :
myTIB[6].scParam1 = &myTIB[1] .scParam1; : : Increment memory
myTIB[6].scParam2 =!width; -<-- --- 1 i pointer by O or 1024

I
I

myTIB[7] .scOpcode = scAdd; :
myTIB[7].scParam1 = &myTIB[8].scParam2; i Increment loop counter
myTIB[7).scParam2 = o; -<-- --- ----' by 1 or O

myTIB[8].sc0pcode = scloop;
myTIB[8].scParam1 = -70 ;
myTIB[8).scParam2 = Lines; <

myTIB[9).scOpcode = scStop;
myTIB[9].scParam1 =nil;
myTIB[9).scParam2 =nil;

Capture lines until
#Lines captured

Figure L.2 - TIB for byte loss detection and resend scheme

(for source see Appendix M - File Functions.c)

Appendix M

Scanner Control Software

This appendix presents relevant sections of the scanner control software. An overview

of the code is provided with a breakdown into files. Listings are also provided of

relevant sections of code. This includes the microcontroller assembly code as well as

the TreeScan acquire plug-in.

Microcontroller code (version 2.0)

TreeScan Acquire Plug-in (version 3.28)

M2

M.1 Microcontroller Code (Version 2.0)

The microcontroller source code is written in assembly language and is divided into

seven source files (2800 lines of code) with four extra files containing the 10 bit AID

lookup tables. The main file T ASM200.ASM contains important code documentation.

This includes microcontroller 1/0 port declarations, memory map, register usage,

variable naming convention, modification history, constant declarations, and variable

declarations.

Microcontroller code source files

T ASM200.ASM

REDEF517.ASM

INIT.ASM

MACLIB.ASM

SUBRTl.ASM

SUBRT2.ASM

SUBRT3.ASM

ADTABLES.ASM

ADTABLEl.ASM

ADTABLE2.ASM

ADTABLE3.ASM

Main file which #includes all other source files . Contains

important code documentation, variable and constant

declaration, and main SCSI background loop.

Register redefinition to allow assembler to assemble for the

80C5 l 8A microcontroller.

Bootup register and port initialisations.

Inline macro libraries.

Subroutine library 1 : Implementation of most of the SCSI

command routines and other subroutines.

Subroutine library 2 : Image block capture routine (8-bit).

Subroutine library 3 : Image block capture routine (10-bit).

10-bit AID lookup table implementation.

ND lookup table 1.

ND lookup table 2.

ND lookup table 3.

A complete listing of the files implementing interesting and relevant code has been

included in this appendix (files highlighted in bold).

Appendix M - Scanner Control Software

M.1.1

;*
. *
. *

; *
-*

; *
;*
. *
; * ..

; * ..

; *
; *
. *
; *
; *
. *
; *
; *
; *
; *
; *
;*
;*
. *
; *
; *
; *
; *
; *
; *
. *
; *
; *
; *
;*
. *
; *
; *

TASM200.ASM Source Listing

TreeScan Microcontroller Software Version 2.0 (1/ 2/95)

Siemens 80C517A with 16 MHz clock

?ort based I/O
Port 0 Multiplexed data and low order address bus

Port 1

?ort 2

Port 3

Port 5

Po:::t 7

Port 8

Memory Mapped
FEOOh
FEOlh
FE02h
to FEFFh

Pi. 0
Pl.l
Pl. 2
Pl. 3
Pl. 4
Pl. 5
Pl.6
?1. 7

P3.0
P3 . l
F3.2
?3. 3
?3.4
P3. 5
P3 . 6
?3.7

P4.0
P4.l
P4.2
?4.3
?4.4
?4.5
?4.6
?4. 7

?5.G
PS.l
PS.2
PS.3
?5.4
?5.5
?5.6
?5.7

P6.0

P6 . l
P6. 2
P6 . 3
P6.4
?6. 5
?6.6
?6.7

P7.0
P7. ~
P7.2
P7.3
?7.4
P7.5
P7.6
P7.7

PB . 0
PB.l
PB.2
P8.3

I/O

Mi rror Stepper clock
Line/Integration

Data rate Control

T2 A/D co~nt input

Higr. orde~ Cata b~s

RS232 Rx
RS232 Tx
Steooer d:rection
Ste.p'?er iv.ode (full/hal:)
Focus stepper direction
Focus steooe::: Clock
Addressing- -WR signal
Addressing -RD signal

;.,ens aperture signal (16 level)
?c~seC da~a =ate
L~D Output (cebug2)
Steppe= ?~lse signal

Le:'!s zoo!TI cu:.
Lens zoo::-. i co
Lens focus Far:
Lens foc""Js ~ear
Ho:ne pos
Ho:ne !JCS 2

A/D start t=igger
Returned 0ata Synch signal
Line Synch in

A/J video s ignal in
Lens focus feedback
l ens zoom feedback

SCS I FIFO
SCSI Command register
SCSI Transfer status rec
SCSI Further :::egisters ,

Memory Map
Code Space

0000 to FFFF Program memory (RAM)

(out)
(out)
()
()

(out)
()

(in)

(in)
(out)
(out)
(out)
(out)
(out)
(out)
(out)

(out)
(out)
(out)
(out)
()
()
()

(out)
(out)
(out)
(out)
(in)
(in)
()
()

(in)
(in
(
(

(
(
(

(

(in)
(in)
(in)
(
(

(
(
(

M3

*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*

*
*
*
*

*

*
*
*
*
*
*
*
*

*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

;*
;*
;*
;*
;*
; *
;*
;*
;*
; *
; *
' ; *
; ..
;*
; ..
;*
; ..
;*
;*

; ..
;*
; *
; *
;*
; *
;* ...
'
;*
; *
;* ...
;*

; *
; * ..

Data Space
0000 to FDFF
FEOO to FEFF
FFOO to FFFF

External RAM
SCSI chip memory mapped IO
P2 Regen registers

CPU Register bank usage
Bank 0
Bank 1
Bank 2
Bank 3

Register usage within banks
RO
Rl
R2-R3

R4-R5
R6-R7

Data Pointer
DPTR 0
DPTR 1
DPTR 2
DPTR 3
DPTR 4
DPTR 5

Counters for inside AD Loop (H &
Return values for maths routines
Flashing LED counters (H & L)
Delay Loop counters (H & L)
Temporary Register (H & L)

Useage
Miscellaneous SCSI Registers
SCSI FIFO
SCSI Command Reg i ster
SCSI Transfer Status Register
Temporary Data B~ffer in Memory
DPTR to point to ADTables

Variable and Constant Naming Convention

Subroutine name
Macro name

Area of application
s.... SCSI Related
!'.\ ••••

c
l..
o

Mota= Rela.:.ed
Ca:7le:-a Relat.ed
lens related
Top level variable

L)
(H & L)

;* Variable I constant type
·• .v... Variable
; * . c. . . Corn:nand to do
; ..
. *
;*
; *
. *
;*
. *

.x .. .

. r .. .

.m .•.

. ba ..

.p .. .

. s .. .
.q.

Constant
Register
8 bit Mask
Bit in the accumulator
Pinout Name
Status variable
Parameter passed in parameter block

;* Program Overview
;*
; ..
; ..
;*
; ..
; ..
; *
; *
; *
. *
; ..
;* ...
;*
; *
; *
;*
; ..

Change History

2- 6-94 MW Initi a l Programming (Vl.0 - Marijn Weehuizen)

25- 6-94 MW Start on Vl.2 - Working SCSI loop

6-10-94 MW Software fully operational for TreeScan Prototype 1

7-11-94 MW Start on Vl.3 - Code standardisation and documentation

8-11-94 MW Code Mods - Flash LED if idle
- Up Stepper rate to 330 Hz -> 500 Hz
- Impl ement automatic return from command

25- 1-95 MW Implemented Stepper focus routines (@250 Hz)

M4

; ..
;*
; *
;*

1- 2-95 MW Fix immeciate return, imlement power off after home mechn

23- 5-95 MW Reverse High/Low state of infinity posn on focus stepper

SDEBUG

..
*
*
*
*
*
*
* ..

.. ..
*
..
..

*
*
*

*
*
*

*

*
*
*

*

*

*
*

*

*
*
*
*

;---
Definition of

Segment Usage
Constants
Variables

Appendix M - Scanner Control Software

Registers
Commands
Status Vari ables

MS

;---
Code and data space segment names

EPROM
SCRATCH
BITS
INDRCT

SEGMENT CODE
SEGMENT DATA
SEGMENT BIT
SEGMENT IDATA

Data Pointer Definitions

sxDPTRRegs
sxDPTRFIFO
sxDPTRCMD
s xDPTRT s fStat
sxDPTRBuf fer
sxDPTRTables

EQU
EQU
EQU

:S QU
EQU
EQU

OOh
Olh
02h
03h
04h
OSh

;name of code space
;name of internal direct data space
;name of bit a ddressable space
;name of internal indi rect data space

; DPS EL to point to SCSI Reg's
; DP SEL to point DPTR to FIFO
; DP SSL to point DPTR to Command Reg
; DPS EL to point DPTR to Tsf Stat Reg
; DPS EL to point DPTR to Line Buffer
; DP SEL to point. DPTR to AD Tables

Macintosh SCSI command Definitions

scmResetDev :::QU OCh
scmRe set Mech :::QU GSh
scmDoXSteps :::Qu OFh
scmPowe= EQ i..i ~Oh

scmEnq EQ U 12h
scmGetXLinesB b 2QJ 14h
scmSe::.CamOn :::QU : 6h
scmSetCamof: EQU 17h
scmZoo~ EQ J :eh
scmFocus EQ J !9h
scr.\Ape r ture :SQU :Ah
scmGe tXL ineslOb EQC lBh
scmSe ::. ADTable SQU lCh
scmFocus2 EQ U :ch
scmFocus2I EQ i..i : Eh

SCSI Reg:ster Definitions

sIOBase EQU O:'EOOH

sr:'IFO EQ :J sI03ase - OOh
srCMD EQU sI03ase - Olh
sr T sfS~a~ EQC sIOBase + C2h
sr3us5:.a:. EQU sICBase + 03h
srir.::.S::.at EQU sI03ase + 04h
srintErrStat EQU s:OBase + OSh
srint.C:;iao EQU sIOBase + C6h
srCTL SQU sIOBase ~ 0 8'1
srBSCTi. SQU sIOBase + 09h
srPa=C7L EQU sI03ase OAh
srsychrs: EQU sIOBase + OBh
srTimOu::. EQU sIOBase + Och
srSelfID EQ U s~OBase + ODh
srDe s::.I ::: EQ U s:OBase + OEh
srSourceID .C:Q U sIOBase + CFh
srTargLi.iN EQU sIOBase + lCh
srCl".DState EQU s IOBa se + llh
srTsfCtrL EQU sIOBase + 12h
srTsfCt.rM EQU sIOBase + 13h
srTsfC::.rfi EQU sIOBase + 14h
srBak.C:rL EQU sIOBase + 15h
srBak.C::.rM EQU sIOBase + l 6h
srBak.Ctr fi EQU sIOBase ~ 17h
srOffstCtr EQU sIOBase + 18h
srTestCt:!. EQU sIOBase + l Ah
srTest.Pt. EQU s:::OBase + lBh

SCSI Command Defini::.ions

scC hRe se t EQ U OOOOOb
scClrTx:' I FO EQU OOllOb
scRxCMD EQU CllCOb
scRxDATA EQU CllClb
scRxMSGOut EQU OlllOb
scRxinf Out EQU Cllllb
scTxStat EQU lCOOCb
scTxDATA EQU lCCOlb
scTxMSGi n EQU 10010b
scTxinfin EQU l COllb
scConclude EQU l lllOb

;ms b

; 32 g::~t Reg
; DMA 'Y./a DDIR cc~

;INT R:'2 RFfiF TFF
; INIT 7ARG - ATN
;SSL BUS ATN FC
;PE :J:V.S SRST T- 0

;SE RE HA MPS
; DM D
;P MPE M?CE MPGE ??C::

; TP3 TP2 TPl TPO
;T07

;l DSCPRV LUNTAR ­
;SDP
; \
; I 1 Register
; I
; \
; I 1 !<.egis t.er
; I

; OC7

CC 3 CC2
TFHF TCO
MSG C/D
DIS
NVC CNTL

FCIE
AAPS HD
WLl WLO
?PGE SPE
OL3 OL2

ID2
ID2
ID2
TL2

CS3 CS2

CCl
oco
:10
RSL
NEWLN
AIE
HAAM
BOFl
SPC:::
OLl

IDl
IDl
IDl
TLl
CSl

lsb

CCC
CDACT
SRST
ABEND
HALT
MIE
ATNDS
BOFC
SPGE
OLO
TOO
IDO
IDC
IDC
TLC
csc

occ
Loopback.

Additional SCSI definitions

sxSelfID
sxintEnab
sxCTL

EQU
EQU
EQU

4
llOb
lOOOOOOOb

sxPar i ty EQU OOOOOOOOb
sxADCountH EQU 04h
sxADCountL EQU 26h + Sh
sxSynchBytes EQU 08h
sxTestEmptyBytes EQU OF h

sbaintPend EQU
sbaSelint EQU
sbaFCint EQU
sbaDDIR EQU
sbaTsfCtrZero EQU
sbaTxFIFOFull EQU
sbaTxFIFOHFull EQU

Acc.7
Acc .7
Acc. 4
Acc. S

Acc.2
Acc.4
Acc .3

spSCSIReset EQU Pl.O

sxBuffer EQU OOOOh

Motor definitions

mpMotorCLK
mpCWDir
mpMode

mbaPosSensl
mbaPosSens2
mxResetForwH
mxResetForwL

EQU
EQU
EQU

EQU
EQU
EQU
EQU

Pl. l
P3.2
P3.3

Acc. 4
Acc.S
02h
OOh

Camera defintions

cxDRatePerSlow EQU

cxDRateCmpSlow EQU
cxDRatePerFast EQU
cxDRateCmpFast EQU
cxADCount H EQU
cxADCcuntL EQU
cxADCountZ H EQU
cxADCcuntZL EQU
cxADCONOinit EQU
cxADCONl init EQU
cxT2CntRld EQU
cxStepsO EQU
cxStepsl EQU
cxStepDelayH EQU
cxStepDelayL EQU
cxOptintTimeH EQU
cxOptintTimeL EQU

c moCMSELOSet EQU
cmoCMENOSet EQU
cmaDRateCTcon EQU
c maCClDisab EQU
cmoCClEnab EQU
cmoCC2Enab EQU
cmoCCl 2Enab EQU
cmaT2Stop EQU
cmaCCl 2Disab EQU -
crCountH EQU
crCountL EQU

cpLineinteg EQU
cpDataRate EQU

cpT2CountIP EQU

8Ah ; 84h

4Sh ;~2h
60h
30h

04h
26h
OFBh
ODAh
OOlOOOOOb
OOOOOOCOb
00010010b
0
1
OOh
OC8h
02h
OAOh

OOOOOlOOb
OOOOO lOOb
11111000b
111100llb
OOOOlOOOb
OOlOOOOOb
00101000b
llllllOOb
llOOOOllb

R2
R3

Pl. 2
P4. 0

Pl. 7

Lens definitions

lpLens EQU PS
lmoZoomin EQU OOOOOOOlb
lmoZoomOut EQU OOOOOOlOb
lmoFocusNear EQU OOOOOlOOb
lmoFocusFar EQU 00001000b
lmoCMSELlSet EQU OOOOOOlOb

;SelfID = 4 on SCSI Bus
;All interrupt enables
;Selection enab, resel disab,
; no halt on ATN , cont on par err,

M6

; no ATN on par err, no halt on discnct,
; no hold ATN, ATN not disab.
;Disable all parity c hecks
;Set up to make 1062 AD con versions

; (1062+8) = 4*2S6 + (26+8)h
;Number of synch bytes at end of line
;Bytes to send to test whether FIFO
; is indeed empty.

;Polled int detection mask
;Target selection mask
;Function Complete mask
;Data Direction Bit

;SCSI Transmit FIFO full bit
;SCSI Transmit FIFO half full bit

;SCSI reset line

;Square wave period
;20MC=26.6us = * 12 I 2 = 78h
; Sus= 28h X l/(f(osc)/2)
; Square wave period
; Sus= 28h X l/(f (osc)/2)
; Set up to make 1062 AD conversions
; 1062 = 4•2S6 + 26h
; -1062 bytes

;External A/D init ->Ex ternal trig,
; External A/C init - >7uS conv time
; Set T2 to Counter, reload
; Steps to take between scan lines

; \Delay to allow steppe r to sett le
; / approx 2 ms - 200 pulses
; Optimal integration time

approx 6 ms

;Or Mask to set CMSELO
;Or Mask to set CMENO

ipO

;And mask to set CT input freq
;And mask to disable CCl

f(osc)/2

;Or mask to enable CCl
; or mask to enable CC2
;Or mask to enable CCl & CC2
;And mask to stop T2
;And mask to disable eel & CC2

; Registers to use as c ou nt in AD Loop

;Or masks to set appropr iate lens
; focus and zoom control bits

;Or Mask to set CMSE~l

Appendix M - Scanner Control Software

lmoCMENlSet EQU OOOOOOlOb

lmaZoomin EQU lllllllOb
lmaZoomOut EQU llllllOlb
lmaFocusNear EQU lllllOllb
lmaFocusFar EQU 111101 llb

lmaLensClear EQU llllOOOOb

lpCWDir EQU P3.4
lpMotorCLK EQU P3.5

lba!nfinity EQU Acc . 6

Miscellaneous ciefini tions

orDelayCountE EQU R4
orDelayCountL EQU RS
opPowe:-Sav EQU ?l.3
orRetByteE EQU R3
orRetByteL :SQU R2

orLEDH :SQU R2
o:-LEDL SQU R3

;opLED SQU ?~.3

ox LE DE EQU :l7fh
oxi...ED:.. EQ:J :ior.

oxRetu!'.n EQU OOh

.l>.D Look".Jp table ::,ase

oTablel -
oTablel -oTablel -
oTablel -oTablel -

oTable2 -oTable2 -oTable2
oTable2 -oTable2

oTable3 -oTable3 -oTable3
oTable3 -oTable3

spDeb:.ig2

lBase EQU 4000'1
2Base EQ C 4100h
3:aase EQl 4200h
4Base EQl: 4300h
SBase :SQ l 44001:

l:aase :::cc 4SO:Jl-.
2Base EQ U 4600t
3Base :::cc 4700h
4Base :SQ U 4800h
SBase :SQU 4900t

13ase EQ U 5000h
2Base EQU SlOOh
3Base EQU 52001;
4Base :SQU 53001:
SBase :::cu 5400t

Deb~g DefinitiOC\S

EQU ?:.c ;4.3

Incii:-ect Memory area
RSEG SCRATC:C

address

;Or Mask to set CMENl

;And masks to clea r approprate lens
focus and zoom control bits

M7

;And mask to clear all lens zoom I focus

; Lens focus directi on control
; Lens focus clock control

; Bit to test whether Infinity has been
; on manual lens focus

;Registers to use as count in Delay Loops

;LED Count High order byte
; LED Count Low orde:- byte

;~ED pin to be toggled

defini tioCls

;SCSI reset line

LocatioC\ of the SCSI command block received

sCmdBlcckO:
sCmdBlcckl:
sCmdBlcck2:
sCmdBlcck3:
sCmdBlcck4:
sCmdBlcckS:

DS
DS
OS
DS
DS
DS

:
l

l
l

Locat ion of current status variables

ssCMDCc~nt: DS l
ssErrCount: DS l

msPositionH : DS 1
msPositionL : DS l

csCycleTime: DS l
csintegTime: DS l

csintegTimeH: DS l
csintegTimeL: DS 1

ls?osition: DS ~
lsAperture: DS 1

csTableAddrH: OS

Additional

cvLineCountH: OS
cvLineCountL: OS

cvCountH: OS
cvCountL: OS

dvDebl: OS
dvDeb2: OS

ovReturn: OS

1

Variables

1
1

1
1

1
1

1

;Tables must start on page boundaries

;Line count variable to be used in
;r_GetXLines routine

;Variables to store adcounts for
;current line

; Immediate return from command

M8

;---
SCSI Command block parameters

;---
GetXLines Command

cqLineCountH
cqLineCountL

cqintTimeH
cqintTimeL

EQU
EQU

EQU
EQU

sCmdBlockl
sCmdBlock2

sCmdBlock3
sCmdBlock4

cqStepperSteps EQU sCmdBlockS

ResetMechn Command

mqReturn EQU sCmdBlockl

RSEG EPROM

1 jmp
ljmp

ByPass
Ir.it

;---
Harciware coded

Version Number
Date Created
Massey Reference

;---

Version nt.:mbe !:" and date createc

Ver: DB 01 ; \
DB 00 Version 1. 00
DB 00 ; I

Date: DB 02 ; \
DB 06 I 2 June 1994
DB 94 ; I

;---
Include appropriate files

Register Redefinitions
Macro Library
Interrupt Service Routines
Subroutine Library

;---
Siemens 80C517A Register Redefi~ition
Due to lack of 517 support all S?R's need to be explicitly
defined in the source code.

Sinclude RedefSl 7. asm

Macro Definitions

Sinclude MacLib. asm

Interrupt service routines

$include ISR.asm

Subroutine Definitions

Sinclude Subrtl.asm

Appendix M - Scanner Control Software

Sinclude Subrt2.asm
$include Subrt3.asm

LT ab:

FocusTab:

MStr:
MSt::-Len
MAStrLen

Ir.it:

Lookup table implementation

DB llOOOOOOb
DB lllOOOOOb
DB llllOOOOb

DB 0000000 Ob
DB OOOOOOllb
DB OOOOllllb
DB OOllllllb
DB llllllllb

DB 'qedMarijn Jun 1994'
i':QU 19
SQU 100

Ir.itialisation and configuration

Include Initialisation File

ie . CP U initialisation
SCSI chip reg i ster setup

zero
one
six

; Start of focus
;modification 1
;modificat ion 2
;modification 3
;modification 4

Sinclude ir.it . asm

J3:

Mair. p::-ogram loop

Software waits tc be inte=rupted by macintosh
SCSI Bus phases ~ar.dlec
Call comma~C routi~e ~ased on SCSI ccmmand
~o~~iete SCSI trar.sacticr.

~ WaitSCSIIntLED
m -IsintSe l

; Wait for SCSI int, flashing LED
;ensure it iS a Select

Ser. d 'Rece ive Command' com~and and wait til l completed

Move

mov DPTR , ~srCMD
mov A, # scRxCMD
movx @DPT~ ,A

m WaitSCSIInt
rr. I sintFC

Command Block out

:nov DPTR, ~ srFIFO
movx A,@DPTR
mov sCmdBlockO,A
movx A,@DPTR
mov sCmdBlockl, P..
movx A, @DPTR
mov sCmdBlock2,A
movx A, @DPTR
mov sCmdBlock3,A
movx A,@DPTR
mov sCmdBlock4,A
movx A,@DPTR
mov sCmdBlockS,A

;Send ' Receive co~~and' command

;Wait for i~terup~ and
;ensure it is a ?untion Complete

of the FIFO

; Move command block fro~ FIFO

Receive Command and select action based on command

mov A, sCmdBlockO

cjne A.-#scmEnq , J3
lcall r_Inquiry
1 jmp Canel ude

c jne A,#scmGetXLinesBb,JS
lcall r GetXLines Bb
1 jmp Canel ude

;Is command enquiry?

;Is command 8 bit get X Lines?

M9

JS:

J6:

J7:

JS:

J9:

JlO :

Jll:

Jl2:

Jl3:

Jl4:

JlS:

Jl6:

Jl7:

JF:

cjne A,#scmSetCamOn,J6
lcall r SetCamOn
1 jmp Conclude

cjne A, #scmSetCamOff,J7
lcall r SetCamOff
ljmp Conclude

cjne A, #scmDoXSteps,J8
lcall r DoXSteps
ljmp Conc lude

cjne A,#scmResetMech,J9
lcall r ResetMechn
mov A, ovReturn
cjne A, #oxReturn,RetCtl
ljmp Conclt:de

cjne A,#scr.Focus,JlO
lcall r Focus
ljmp Conclude

cjne A,#scmZoom,Jll
lcall r Zoom
ljmp Conclude

cjne A,#sc~~perture,Jl2
lcall r Aperture
l jmp conc-1 ude

cjne A,#scmResetDev,Jl3
lcall r ResetDev
l jmp Conclude

cjne A, #scr.Power ,Jl4
lcall r Power
ljmp Conc~ude

cjne A,#scmGetXLineslOb,JlS
lcall r3 GetXLineslOb
1 jm;:i Conclude

cjne A,#scmSetADTable,J l6
lcall r SetADTable
l jm;:: conclude

cjne A,#scmFocus2 , Jl7
lcall r Focus2
ljmp Conc lude

cj ne A, #scmFocus2I,JF
lcall r Focus2I
l jmp Conclude

LJMP ErrorTrap

MIO

; Is command Set Camera On?

;Is command Set Camera Off?

;Is command Do X Steps?

;Is command Reset Mechanism?

; Is command Focus (motor lens)?

;Is command Zoo m (motor lens)?

;Is command Set Apertu re
(motor lens)?

;Is command complete reset?

;Is command ?ower on I off?

;Is command 10 bit get X lines?

; Is ccmmand set A/D table?

;Is command Focus? (stepper motor)

; Is ccmma~d ?ocus at infinity?
(stepper motor)

Return Status, wait for an interrupt and chec~ it is a function
complete interrupt.

Conclude:
m Conclude OOh
m-Wai tSCSIInt
m-IsintFC

Intercommand actions
RetCtl :

mov ovReturn,#00
inc ssCMDCount

ljmp MainLp

;Clear immediate command return
;Increment the command counter

;Loop back to get another command

;---
Error trap and handl ing

ErrorTrap: inc ssErrCount

jmp Conclude

setb spDebi..:g2
clr spDebug2
setb spDebug2

;Increment the error count

Appendix M - Scanner Control Software Mil

Main loop bypass - for code testing purposes

;---
ByPass:

cpl !?4. 3 ; opLED

ljmp ByPass

;---
Include three versions of the 10 bit A/D lookup table

Tablel - Linear range over 100 % of input (equ iv to 8 bit)
Table2 Linear range over 25 % of input
Table) - Non linear function over full range

·---
S nclude ADTablel . asm
S nclude ADTable2.asm
S nclude ADTable3.asm

Ml2

M.1.2 SUBRT2.ASM Source Listing

;*** ************************** **
;*
;*
; *
; *
; *
;*

Subroutine Library 2 for TreeScan Microcontroller Software

RTName Description of what the subroutine does

r GetXLinesSb S bit get block of x lines Command

*
*
*
*

; * *
;*********** **

Act on S Bit SCSI Get X Lines command

The desired number of lines are captured from the camera and sent
to the Mac via the SCSI port

;---
Command block calling parameters

No of lines H,L
(Int Pulses H, L)
Stepper steps (0 , 1 or 2)

SCSI Info sent to Mac :

;---------------------------------- -------------------- ---------------- ---------
r GetXLinesSb:

React to parameters passed in command block

mov cvLineCountL,cqLineCountL
mov cvLineCountH , cqLineCountH
inc cvLineCountE
lcall r Setinteg

Set data rate clock to fast

m SetDataRateClkFast

Set stepper motor direction

clr mpCWDir

Do any A/D initialisation

mov ADCONO,#cxADCONO i nit
mov ADCONl,#cxADCONlinit

Set up SCSI data phase

m SCSICmdToDataPhase

Setup initial counters for next line

m_SetupTsfCtr l stLine

mov crCountH,#cxADCountH
inc crCountH
mov crCountL,#cxADCountL

mov OPSEL, #sxDPTRBuffer
mov DPTR,#sxBuffer

Wait for line synchronisation
r LS_Synch :

clr TF2
m WaitTF2

;Set up the nu~ber of lines
; to capt.-..::-e

;Set ir.teg ra t icn ~ime

;Select cha~nel 0 for analog inp~t,
;exte=~a~ ~rigger

; Send n~li data Tsf Command

; \
; I Set up iterations of AD Loop

; I

; Initialise DPTR to point to
; temporary buffer

;Wait for start of line

Depending on the number of steps byte passeci

r LS Jl:

Manually complete 1st step of stepper ~otor :f necessary

mov A,cqStepperSteps
cjne A,#cxStepsO,r LS J l
jmp r LS J3 -
m_ManualstepperStep

Restart auto stepper step

mov A,cqStepperSteps
cjne A,#cx Stepsl,r LS J2
jmp r_LS_J4 - -

Appendix M - Scanner Control Software

r_LS_J2:

r LS J3:

r LS J4:

orl CCEN,icmoCClEnab
jrr.? :: LS ad

nop
nop
nop
nop
nop
nop
nop
no;:>

nop
nop
nop
nop

:10p
nop

MI3

;Set up auto motor stepping again

; \
; I
; I Wait for m_ManualStepper Step
; I duration if not required

; I
; I
; I
; I

; \ mov A,cqStepperSteps
; I

; \ cjne A,cxZeroSteps,r_LS J4
; I

; \ o ::l CCEN,#cmoCClEnab
; I

; \ jmp r_LS_ad
; I

Get :nto loop capturing data a:1d sending it to SCSI
•* • ••••ww ww ww•W•• • ••• • •••••••••••••, • ••• • •••••••••••****** * * * * *

r LS ad:

:: LS ad2 :

r.op
:10p
jb 3SY ,:: LS ad2
r:1ov A, ADDATH-
mov DPS~L ,#sx DPTRFIFO
:novx ~DPT!<,A

mov D?SEL,;sxD?TR3u:fe::
movx @DPTR,A
ir.c L:?TR

cijr.z crCou:itL,r LS ad
cijr.z crCOU:1t~, ::_LS_ad2

an: ::EN ,~c~aCClDisab
clr ::ipMoto::CLK

wa :t ur.til FIFO er:1pty

:: LS Ll:

r LS JS:

i.\ :.\ai:.::I?O~?ul.:.

mov CPS~L,#sxD?T!<FIFO

mov :<6,#sxTest~~pty3y:es
mov A,#02::
movx @D?T:< , A
cijr.z :<6, :: !..S :..1

m Wai:.?::i:FOHE"ull

Jump to Resend if we have lost

mov S?SEL,# sxD?TRTsfSta:
movx A,@DPTR
j b sbaTsfC:::Zero,r LS J5
jmp :: LS :<esend -

mov D?SEL, !sxDPTRFIFO
mov A, #C2h
movx @DPTR,A

m WaitSCS!ln:
m=:rs:r.tFC

mov DPSEL.~sxDPTRTsfStat
movx A, E!DPTR
jb sbaTxFIFOHFull,r LS Co:it
jmp r_LS_Resend2 - -

r_LS_Cont: m_SCSICmdClea r FIFO

m SCSICmdToDataPhase
m=:scsr cmdToDataPhase

Decrement line counter and Ex it

d jnz cvLineCoun tL,r LS J6
d jnz cvLineCoun tH,r- LS-J6
jmp r_LS_Exi t

;Wai: U:1til AD complete
;read data out

; move data to SCSI

; 1
;l
; 2
; 1
;l
;2

; 1
;2
;l

;2

;16 +4

;wait ur. :i ~ FIFO < Half Full

; \
: i Send 15 =:ytes
; I

; I

;~ait until FIFO < Hal: Full

; \
;I ~f Tsf Ctr not zero, many

;/ =:ytes have been l ost -> resend

; \
; I Should half fill FIFO if
; / everything OK

;Wait for inte r upt and
;er.sure it is a Funtion Complete

; \
; I i : FIFO not l / 2 full lost

; I < 15 bytes, Resend line

;Clear additional 15+1 bytes
;in FIFO

; Send dummy byte
; Send dummy byte

Las: line

r LB J6:
Setup counters for next line

m_SetupTsfCtr4Line

mov crCountH,#cxADCountH
inc crCountH
mov crCountL,#cxADCountL

mov DPSEL,#sxDPTRBuffer
mov DPTR,#sxBuffer

Send Synchronisation bytes "Good"

; \
; !Set up iterations of AD Loop

; I

;Initialise DPTR to point to
;temporary buffer

m SendSynchBytes cxADCountH, cxADCountL, 00, 00
m=SendSynchBytesN cxADCountZH, cxADCountZL, 00, 00

Jump Back for another line

ljmp r_LB_synch

Resend line from RAM to SCSI and wait for end of line

r LB Resend:

Send filler bytes if any requ~red

r LB Resenci2:

m Wai::.FIFOHFull

mov DPSEL,#sxDPTRFIFO
mov A,#02h
:novx @DPTR,A

mov DPSEL,#sxDPTRTsfStat
movx A,@DPTR
Jnb sbaTsfCtrZero,r LB Resend

m WaitSCSIInt
m-IsintFC

m SCSICmdClearFIFO

m SCSICmdToDataPhase
m-SCSICmdToDataPhase

Setup counters for resend line

m_SetupTsfCtr4Line

; Wait until FIFO < Half Full

; \
; I Send single fill byte

; I

; \
; ! If Tsf Ctr not zero , send
; / filler byte and resend line

; Wait for interupt and
;ensure i t is a Funtion Complete

;C l ear FIFO

;Send du~my byte
;Se nd du~my byte

; \

Ml4

mov crCountE,#cxADCount E
inc crCount E
mov crCountL,#cxADCount L

; I Set up iterations of Resend Loop
; I

mov DPSEL,#sxDPTRBuffer
mov DPTR,#sxBuffer

Send Synchroni sat i on bytes "Bad"

m_SendSynchBytes 00, 00, 00 , 01

;Initialise D?TR to pain::. to
;~emporary buffer

Get into loop sending data to SCSI from RAM

r LB ad3:

r LS L2:

mov DPSEL,#sxDPTRBuffer
movx A,@DPTR
inc DPTR

mov DPSEL,#sxDPTRFIFO
movx @DPTR,A

mov D?SEL,#sxD?TRTsfStat
movx A, @DPTR
jb sbaTxFIFOHFull,r_LB_L2

djnz crCountL,r LB ad3
djnz crCountH,r-LB-ad3

Wait until finished

m WaitSCSIInt
m-IsintFC

; mo ve data from RAM

;move data to SCS I

;Wait for interupt and
;ensure it is a Funtion Complete

Jump to security check whether line sent OK

jmp r LB Cont

Appendix M - Scanner Control Software

Conlude las: line and finish command

r :,a Exit:
Setup counter for synch bytes of last line

r:lOV D?SEL.~sxDPTRRegs

mov DPTl'(,#srTsfCtrL
mov A,:sxSynchBytes

movx @DPB,A

mov DPSEL,#sxDPTRCMD
mov A,l!scTxDATA
movx @DPT?-, A

Send Synchronisation bytes "Good"

;Set transfe r counter to bytes
;to s end

;Retu r n x bytes command

m SendSynchBytes cxA~CountE, cxAJCountL, 00, 00
m=SendSynch3ytesN cx/l.DCo:.mtZ'!, cxADCountZL, 00, 00

Sto? automatic ste?pe= steo
(Leave line ra:e gc:ngl

anl CCEN,=cr.aCClDisa~

Re:urn cata =ate :c slo~ S?eed

m SetDa~aRateC!kS!c~

Wait ~n:i: scs: :=ans:e= :s complete

m Wai:SCSII:-it
rr.-:sint::c

;~ait for inter upt '
;check ~hether it is FC

MIS

Ml6

M.1.3 SUBRT1 .ASM Source Listing

;•***····~································

;* Subroutine Library 1 for TreeScan Microcontroller Software *
; ..
;* RTName Description of what the subroutine does
; .. *
; .. r _WaitlmS Routine to pause 1 ms ..
. * r Wait2mS Routine to pause 2 ms * -; * r WaitlOmS Routine to pause 10 ms
; * r-Wait40mS Routine to pause 40 ms *
; * r-Wait80mS Routine to pause 80 ms *
;• r-Inquiry Enquiry command
; * r-Autofocus Complete autofocus at micro level
; * r ResetMech Move mechanism to home position -;* r Set Camon Turn camera signals on
;* -SetCamOf f Turn Camera signals off * r
; * r=DoXSteps Move stepper mo:: or x steps
;* r Focus Move lens focus con::.rols -;• r Zoom Move lens zoom cont::ols
; . r=Aperture Set lens apertu::e signal .. r Focus2 Act on SCSI Focus using ste?pe = rr.otor -. * r Focus2I Focus at infinity using stepper motor
;* r -Reset Dev Complete reset of device -. * r Power Turn power on I off .. (~Setlnteg Routine to set integ::ation tirr.e based on Cmdblk3 ' 4 * .. r SetADTable Set A/D lookup table -. *
;********************************TWTTTT•T•TYTT~••~TTTTTT*********************•**

;---
Routine to pause 1 mS

;---
orDelaycountH
Loops
orDelayCountL

EQU R4

EQU RS

; Reg i sters to use as co1.:nt in Delay

r_WaitlmS:

r_Waitl_Ll:

mov orDelayCountH,#3h
mov orDelayCountL,:99h
djnz orDelayCountL,r Waitl Ll
djnz o::DelayCoun::.H,r=Wait l =Ll

ret

;---
Routine to pause 2 mS

;---
r_wait2mS:

r wait2 Ll:

mov orDelayCountH , #6h
mov orDelayCountL,#33h
djnz orDelayCountL,r Wait2 Ll
djnz orDelayCountH,r=Wa i t2=Ll

ret

Routine to pause 10 mS
;---
r WaitlOmS:

r WaitlO Ll:

mov orDelayCountH,~lAh
mov orDelayCountL,#4Ah

djnz o rDelayCountL,r WaitlO Ll
djnz orDelayCountH,r=WaitlO=Ll

ret

Routine to pause 40 mS

r_Wait40mS:

r Wait40 Ll: - -

mov orDelayCountH,#69h
mov orDelayCountL,#29h

djnz orDelayCountL,r Wait40 Ll
djnz orDelayCount H,::=Wait40=Ll

ret

Routine to pause 80 ms

r Wait80mS: mov orDelayCountH,#OD2h

Appendix M - Scanner Control Software

r Wait80 Ll: - -
mov orDelayCountL,#52h

djnz orDelayCountL,r Wait80 Ll
djnz orDelayCountH,r: waitSO=Ll

ret

M17

;---
Ac: on SCSI Inquiry command

Info=mation is sent back to the enquirer as to what this
device is .

;---
Command block calling parameters :

none

SCSI In!c sent to Mac :
5 bytes + MStrLen(l9) bytes

;---
r Inquiry:

=_Inq_L::

mov ~PSEL,#sxOPTRRegs

mov OPTR,#s:TsfCt : L
mov A,#S+~StrLen

movx @DPTR,A

:nov D?SEL,;sxD?TRCMD
mov A,#scTxDATA
r::ovx @DPTR,A

mov J?SEL ,!sxD?TRF I?O
mov .4,#03
movx @DPTR,A

:nov n,ssCMDCount.
movx @DPTR,A
mcv A, ssE:- =C: ot.:r.t.
mov x @DPTR , f:..
i:'lOV A.~oo
~ovx ~DPTR, A
:7.:::V fl .• #1-'.StrLer.
l'i.OVX @DPTR,A

:ncv RC, 110
:nov JPTR, #MS:r
:nov .;,RO
move .;, @A+O?TR

~ov DPTR,#s :?IFO
:novx @DPTR, A
:nc RO
cjne RO, llMSt::Len, r - Inq_

~-~a::~~~II~:
1 sin ... c

::e::

;Return x bytes

;Returr. x bytes cor.'\11\and

;P rocessor device

; \
; I Misc bytes
; I
; I
; I

;3 Additional bytes

; \

;~ai: for interupt &
; check ~hether it is FC

;---
Act or. s:s! Au~of ocus co~ma~c

An auto!ocus oo=cecure is comoleteci based on the parameters sent in
the co~~a:ici oiock . .

;---
Co~~anc ~lock ca:ling parameters :

:ione

s~s: Inf c ser.t to Xac :

;---
r_Autofocus:

Capture the current line i:ito memory

Process the line

Make foc~s modification

Capture the next line into memory

Process the line

M18

If better, loop back to focus modification

Return to best focus position

ret

·---' Act on SCSI Reset Mechanism command

The stepper motor is driven back to i:'s home position based on the
input from its position sensors.

Command block calling parameters :
Byte 1 (0 Keep control, Else return immediately)
Byte 2 (0 = No effect, 1 = T~rn power off)

SCSI Info sent to Mac :

r ResetMechn:
Respond to command block parameters
Return SCSI ctl immediately if required

mov
mov
cjne
jmp

A,mqReturn
ovReturn ,A
A,~oxReturn,r Rst Mch J2
::- RstMch Jl

Return control immediately

r RstMch J2: clr P4.3

m Conclude OOh
rc-WaitSCSIInt
m-IsintFC

Actual l y go home

r RstMch Jl: m Motorforwards

Drive mecha nis m forward x steps to ge~ away from home posit io n there

r RstMch Ll: mov R2,#rc~ResetForwH
inc R2
mov R3,#mxResetForwL

r RstMch L2: m MotorStep 3mS

djnz
djnz

R3,r RstMch L2
R2, r::::Rs tMch L2

mov A,PS
jnb mbaPosSensl,r_RstMch L: ~f low still at home pos

Drive mechanism back unti l first senso::- input is reached

m MotorReverse

m_MotorStep_3mS

r RstMch L3: m MotorStep 2mS

mov A,PS
jb mbaPosSensl,::-_ RstMch L3 If high, not home yet

continue for x steps past the sensor

Drive mechanism forwards until second nosition sensor is reached
and mechanism is home without hysteresis.

m MotorForwards

r RstMch L4: m_MotorStep_ 3mS

mov A,PS
jnb mbaPosSens2,r RstMch L4 If high, not home yet

Appendix M - Scanner Control Software Ml9

Check whe:her power needs to be turned off as well
Byte 2 (0 = No effect, 1 = Turn power off)

mov A,sCmdBlock2
cjne A,#01,r RstMch J3
setb opPowerSav

r RstMch J3:
re:

Act on SCSI Set Camera On command

Conmand block calling parameters :
nor1e

SCSI In:o sent to Mac :
none

r setCamOn:

0

Se: cia:a ra:e clock:ng

m SetDa:aRateClkSlcw

Do ir1tegraticr1 time Ste??e= Pulse 2 Ini:ialisation

mov Ti-!2, #O:?Bh
mcv TL2,#0C7!1

mcv cRc;; , #O:rsr.
mcv CRCL, #OC7h

mov con, # OFCh
mov CCL,:; 08Fh

mov CC:12,~0FDh

mov CCL2,=857h

mov T2CON,#cxT2CntRic

;Set initial T2 value

; Set T2 reload

;Set Delay 84 2nd ste? @ 200 pulses

;Set Delay B~ int time @ 400 pulses

;set T2 as counter,auto_reload, mode

o=l CCE~,#cmoCC2Enab ;cmoCCl 2Enab ;Set up CCl & CC2 on T2

Act on SCSI Set Camera Off command

Command block calling parameters :
nc:-1e

SCS I :~:o sen~ tc Mac
no::e

;---
r SetCamOff:

0

Stop automatic stepping and Line =ate pulse

an~ T2CON,#cmaT2Stop ;set T2 as ccunter,auto_relcad, mode

anl CCEN,#cmaCC1_2Disab ;Set up CCl & CC2 on T2

Wait until SCSI transfer is complete

re:

Act en SCSI do X Steps command

The steppe= meter is driven back to it's home position based on the
input from its position sensors.

;---
Command block calling parameters

Byte 2 dir (bit 1 only)
Byte 3&4 Number of s teps H & L

SCSI Info sent to Mac :

r DoXSteps:

Check direction

mov A,sCmdBlock2
jb Acc.O,r XStep Jl
m MotorReverse -
jmp r xstep J2

r XStep Jl: m MotorForwards
r -XStep- J2:
- - Set up Steps in byte R2, R3

mov R2,sCmdBlock3
mov R3,sCmdBlock4

Do appropriate number of stepper steps

r_XStep_Ll: cjne R3,#00,r XStep Llb
cjne R2,#00,r=XStep=Lla
ret

r XStep Lla: dee R2
r=XStep=Llb: dee R3

r_XStep_Llc:

jmp r XStep_Llc

setb mpMotorC LK
lcall r waitlmS
clr mpMotorCLK
lcall r waitlmS

jmp r_XStep_Ll

Act on SCSI =ccus Command

; Do Fast stepping
; SOD Hz

The lens output is generated fc c~ssed near or far.

M20

· --------------------------- ---------- ----------------- -------------------------'

r Focus:

Command block calling parameters
Byte 1
3yte 2 dir (bit l only)
Byte 3&4 Number of steps ~ & L

SCSI Info sent to Mac :

Set up nurrber of steps

mov R2 ,sCmdBlock3
inc R2
mov R3 ,sCmdBlock4

Check direction

mov A,sCmdBlock2
jnb Acc.0,r_Focus Near

Complete Focus Far Step
r Focus Far:

orl PS,#lmoFocusFar
lcall r WaitlOmS
anl PS,#lmaFocusFar

djnz R3,r Focus Far
djnz R2,r-Focus-Far
jmp r Focus Jl -

Complete Focus Near Step
r Focus Near:

r_Focus Jl:

orl PS,#lmoFocusNear
lcall r WaitlOmS
anl ?5,#lmaFocusNear

djnz R3,r Focus Near
djnz R2,r=Focus=Near

jmp r Focus Jl

ret

Appendix M - Scanner Control Software M21

;---
Act on SCSI Zoom Command

The lens output is generated zoomed in or out.
;---

Command block calling parameters
Byte 1
Byte 2 dir (bit 1 only)
Byte 3&4 Number of steps H & L

SCSI Info sent to Mac :

;--- --------------------
r Zoom:

Set up number of steps

mov R2,sCmdBlock3
inc R2
mov R3,sCmdBlock~

Check di re ct ion

mov A,sCmdBlock2
jnb Acc . 0, r Zoom_, ..

Complete Focus Far Step
r Zoor., Out:

orl ?5,#lmoZoomOu:
lcall :: wa:.t40r::S
lcall r - wa:.t40mS
lcall ::-Wa it40r::S
anl PS,#lmaZoomOut

djnz R3,r Zoor. Out
djnz R2,r-Zoo~-ou:
jm;:> r Zoom Jl -

Complete Focus Near S:e?
r Zoom I:-i:

r Zoom Jl :

orl PS , #l~oZoonin

lcall :: wa:.t~O;:-:S
lcall ::-Wa i t40r::S
lcall ::-Wait~Or:is
an l ?5 ,#lmaZoor:iin

djnz R3,:: Zoom In
djnz R2,r-Zoom=I:-i

jmp r Zoom Jl

ret

Act on SCSI Aperture Adjust Command

The lens output is generated zoomed in o:: out.

Command block calling parame ters
Byte 1 No of pulses of duty cycle high

SCSI Info sent to Mac :

;-- -------------------------
r_Aperture:

mov cmhl,#OF!!i
clr c
mov A,#OFFh
subb A,sCmdBlockl
mov cmll,A

orl CMSEL,#lmoCMSELlSe :
orl C~£N,#lmoCY.~~1 Se:

ret

;Set compare value for aperture

;signal

;Set CMl to CT
;Se t CMl operational

;---
Act on SCSI Focus using stepper motor Command

The lens output is ge:-ierateci focussed near or far.

Command block calli:-ig parameters
Byte l

Byte 2 dir (bit 1 only)
Byte 3&4 Number of steps H & L

SCSI Info sent to Mac :

r Focus2:
Set up number of steps

mov R2,sCmdBlock3
inc R2
mov R3,sCmdBlock4

Check direction

mov A,sCmdBlock2
jnb Acc.O,r Focus2 Jl
m Focus2Forwards
jmp r Focus2 J2

r Focus2 Jl: m Focus2Reverse
r-Focus2-J2: - -

Complete Focus Steps

r Focus2 Ll: m_Focus2Step_Sms

djnz R3,r Focus2 Ll
djnz R2,r=Focus2 Ll

ret

Act on SCSI Focus at infinity using stepper motor Command

The lens is focussed far until limit switch.

Comma nd block calling parameters :
(Byte l (0 = Keep co~trol, Else return immediately))

SCSI Info sent to Mac :

r Focus2I:

Drive mechanism back until firsc sensor i~p~t is =eached

m Focus2Reverse

r Focus2I L3:
m_Focus2Step_SmS

mov A,PS
jnb lbainfinity,r Focus2I L3 If low, r.ot home yet

ret

M22

·---,
Act on SCSI Reset Device Command

·---,
Command block ca lling parameters

SCSI Info sent to Mac

r ResetDev:
Return Status, wait for an inte rrupt and c~eck it is a function
complete interrupt.

m Conclude OOh
m-WaitSCSIInt
m-IsintFC

ljmp Init

Act on SCSI Power on Unit

;Reset device from scratch

·---,
Command block calling parameters

Byte 1 l =on O=off

Appendix M - Scanner Control Software M23

SCSI Info sent to Mac :

;---
r Power: mov A,sCmdBlockl

jb Acc.O,r_Power_J l

setb ooPowerSav
lcall ~ SetCamOff
ret

r_Po.:er_Jl: lcal l r SetCamOn
clr opPowerSav
ret

;---
Routine to check an= set up integration time based on CmdBlk3 & 4

;---
r_Setinteg:

Check whether integ time has changed

wov A,cs:n:.egTime~
cjne A, c~:r1:. ':'imei-:, r_Set:nt Se~

mov A,cs:r.tegTimeL
c j ne A,cq!ntTimeL,r_Setlnt_Set

ret

Do integratior. time I Stepper ?ulse 2 Initialisation
Check whether integration time>l02~ then a:=lO;

r Se:!r:: Set:
mov A,cc!nt:i~eH

cjne A,fcxop:Ir.tTimeH,s~oa~
mov A,cqint7imeL
cjne A,~cx0?~~nt7imeL,S+03~
jc S- 5
lJmp r 5etlnt :;

:r.tegration time < 10 mS (<~E!! l
- Calcu~ate set time fer :n:egraticr. time

m Subtr •O?"Fh, • O:'Fh,
mov CC~2,or~etByten
mov CCL2,or~etByteL

cqintTimeH, cq!ntTime L
;Set integration time

Calculate Second steo value :rem m::.n constantintegration time
m S:i!:>tr ~O!"!"h, #OF!"h·, ¥cx0ptl:1t 7 imeH, #cxOptintTimeL
m=:sub::.r o.:-Re::.Byt eH, orRe::Byte!.., :cxS::.epDelayH, #cxStep::::elayL

mov CCH:,or~et3yteH
mov CCLl,orRetByteL

;Set Delay B4 2nd step @ 200 pulses

Calculate reloaci value :ro~ i:1tegratior. time
m_ Subtr orRetByteH, orRet3ytei.., #cxStepDelayH, ~cxStepJelayL

mov T~2,orRetByten
mov TL2,orRetByteL

mov CRCH,orRetByteH
mov CRCL,orRetByteL

;Set ini tial T2 value

;Set T2 reload

Wait for line synchronisation t o settle camera output

clr TF2
m WaitTF 2 ;Wait for start of line

ret

r Setint Jl:
Integration time > 10 ms (>468)

- Ca lcul ate set time for integratior. time

m Subtr #OFFh, ~OFFh, CGlntTi:neH, cqintTimeL
mov CCH2,orRetByteH ;Set integration time
mov CCL2,orRetByteL

- Calculate Second steo value from :n::.egration time
m_ Subtr orRetByteH, "orRet3yteL, #cxSte?Del ayH, #cxStepDelayL

mov CCHl,orRet3yteH
mov CCLl,orRet8yteL

;Set Delay B4 2nd ste p @ 200 pulses

Calculate reload value from intecration time
m_Subtr orRetByteH, orRetByteL, #cxStepDelayH, #cxStepDelayL

mov TH2,orRetByteH
mov TL2,orRetByteL

mov CRCH,orRetByteH
mov CRCL,orRetByteL

;Set initial , T2 value

; Set T2 reload

Wait for line synchronisation to settle camera output

clr TF2
m WaitTF2 ;Wait for start of line

ret

M24

;---
Act on SCSI Set A/D Table Command

;---
Command block calling parameters :

Byte l AD Table to change use (1, 2 or 3)

SCSI Info sent to Mac :

;---
r SetADTable:

mov A,sCmdBlockl
cjne A, #3, r SetAD Jl - -
mov csTableAddrH,#HIGH(oTable3 i3ase) ;Se t up ADTable3

ret

r SetAD Jl:
cjne A,#2,r - SetAD J2

mov csTableAddrH,#HIGH(oTable2 l Base) ;Set up ADTable2
ret

r SetAD J2: mov csTableAddrH,#HIGH(oTablel 13ase) ;Set up ADTablel
ret

Appendix M - Scanner Control Software M25

M.2 TreeScan Plug-in Code (Version 3.28)

The TreeScan plug-in is written in C and is divided into seven source files with

associated header files and #include Ii braries.

TreeScan plug-in source files

Main.c Main TreeScan program file which contains the dispatching

routine calling routines in Operations.c dependant on the value

of the selector parameter passed from the calling application.

Modification History .c A comprehensive modification history within a comment

Operations.c

Utilities.c

Debug.c

Functions.c

Integ/Focus.c

Contains the main routines for the plug-in. This includes the

implementation of the main TreeScan dialog window, as well as

code to initialise and complete a plug-in call.

Library of utility routines.

Implementation of the debug I development dialog window

which allows individual commands to be sent to the scanner and

tested.

Miscellaneous functions for the TreeScan plug-in. These include

all routines to send SCSI commands to the scanner and receive

image data.

Implementation of integration time adjustment routines,

autofocus routines, and blind refocus routines.

This appendix contains a complete listing of Main.c, Modification History.c, and

Operations.c. Relevant sections have been included from Functions.c and

Integ!Focus.c.

M26

M.2.1 Modification History .c Source Listing

/* Modifi c ation History

We need to keep a modification history so I'm putting it in a separate file . c so
I can make it part of the project . Contains one large comment and no code .

Vers. Author Date
9 91 MW 27I1I95

2 .0
2 . 1 MW
2 . 2 RHP 1/2/95

2.3

2.4

2.8
2.9

3 .0

3.1

3.2
3.3

3.4

3 .5

3. 6

3.6b

3.7
3.8

3 . 9

3 . lOml

3.10m2
3.10m3
3.10m4
3 . 10m5
3.10m7

3 . lOmlO

3 .11
3.llb

RH?

REP

Y.W' AD

MW, AD

MW

MW
RHP

AD

MW

MW
MW

Comments
Software For Treescan 2 System . Software includes ima ge image
capture plugin including image capture algorithm, sending of SCSI
commands, etc.
ie. Fully operational image capture software with modifications
for stepper motor control on autofocus & refocus
New naming convention
1/2/95 Autofocus algorithm redesigned and reprogrammed
Tidied up several return O's to beep break so dialog box is still
active; check viewname file doesnt already exist; Ask user if
view l or view 2 and if view 2 is is cw or ccw from vl; Ask user
for dip and lean angles and save to file treename vl.dat or
treename v2.dat; send a go home with immediate return when we
exit; I -have assumed that we have enclosing:something:image
folder : image app; and we will store al ll data and image files in
a folder enclosing : Treescan Images ; On full scan we check
filename does not already exist.; Move down about 70cm befo re
starting scan. So we focus at breast height but capture from 70cm
up.
vref number is set on fullscan so it gets passed back to image so
image will go in the correct folder
Refocus options no refocus , auto.refocus, blind refocus; displays
fnum and fstepno at end of autofoci:s; loads ftable from file

fixed blindrefocus
fixed saturation proble:r: by halving int time if new int> lOX old
int
Blind refocus eve~y 250 steps
AutoRefocus every 1000 steps
Select viewname on entry te plugin dialog
turn off refocus data files
print wn te log file ;Q unless doing blindrefocus
wn sti ll was not being printed i n l og file - fixed
partial shots were returning full image - fixed
setup image name and vrefnum for preview
eheight was > chunksize so we got oscillation as we
were looking at stuff before previous correction
fixed what int routine looks at p-lump to p-lump+eheight
Set int time again after we move down for start of shot
Modify required average light leve l to be 100
Dent clear focussed at end of oreview
try and speed up initial set i~t time by rough g uess
Modified getline to al lo., comments in file ! lkjlk
and dist,fstepnum en each line , dis::. is ignored
Try and unload the other segments of code resource on return from
finish call
Conservatism factor of 80% if change >20%, write aperture data
to log files; fixed double integtra::.ion adjustment bug.

NoRefocus changes to Nofocus, No adjust integrat i on time button
added (each call to Refocus modified), Make preview move back
StepsBack lines
No aperture adjustment and no focus adjustment during lines bac k!
Fixed the return partial image if capture is cancelled.
Combined Mk l I M2 software corr.pati:Oility .
Write variety of focus numbers to file
seperations; fixed file name for focus data
button. - not initialised ; she.rter.ed delays in
routines; preview is now centered vertically on

ie 2,4 , 8 pixel
on use of focus
focus and preview
focus line

New control for steps perl line in getlines
getchunk passes micro ~ steps to ~eve for each line
calls different scsi cmd fer getchi: r.k - requires eprom
version 3 . 9, board revision 3.9
Redevelop plugin with new user frie ndly u ser interface.
Completed entering new dialog boxes
Aim to get compiling
Video debug dialog operational
Start on debug box
Debug box commands implemented, about. to split functions file
Front window commands imolemented, correct steps /angle in
preview, implemented the hiding of chunklines
View button operating correctly, ca:i use up arrow & down arrow to
t a b, use enter & return to operate but tons
Plugin with new interface I structure fully operational
In debug aper I focus commands do:i' t turn power off if set o n,
clarification of focus step buttons, s wit ched display of f ocus

Appendix M - Scanner Control Soflware M27

3 .lld RHP

3.lle MW
3.llf RHP

3.12 RHP

3.12b MW
3.12c MW

3.12e MW
3.12f RHP

3. 16 RHP
3.17 RHP

3.18 RHP

3.19 MW
3.20 RHP
3.20a AD, MW
3.21 RHP

3.22 RHP

3.25
3 .2 6
3.27
3.28

Ri-iP
RHP
RHP
RHP

TO DO

Debug code

(Str255 s;

numbers for autofocus, max distance 1800 steps, set aperture done
flag in preview & capture.
Only store globals after start or finish call
Allocate storage for globals in heap when we store them not at
the begining; dont cal l store globals after we have done
unloadsega4; reorder allocation of space in start routine so we
allocate the big bit first.
fixed 1st char bug, slider getting updated on entry.
To work with NIH Image TF 3.3a which tells us about all the free
mem on entry not only half of it.
Switch to tenbit aut omati cally if inttime>SOOO
only allow the lines we have space for in terms of contiguous
free mem when we return to NIH
Autofocus and blind refocus should be at x/stepsperline to make
s izes stay same
fixed overflow in reading number of lines
Fixed blind focus crashing problem increased size of temp
string s)
fixed bug in log files
print better error message on fail in getchunk.
hold off on adj exposure and refocus should depend on
s:epsperline
Reads bat voltage ok . checks before capture
Make sure we move forward before going home for focus to insure
we dont try and drive pas: the infinity position
In autofocus dont s earch back past 0 fstep
Refocus routine h ad never been tidied up and bugs fixed - done
but needs testing still
au:ofocus goes co lObit if first loop is taking it past 3000
refocus now prir.ts distance estimate and then fstep
blind focus. was igno r ing stepsperline - fixed
Fixed .dat file ;::iroblem
Was not reading la st ele~ent of focus table - fixed
loosing character in dialog box fixed
s~itch back an fo rw ard be:ween 8 and 10 bit as we go up tree
log max min av of pixels in focus log file
focusnum - float and use av inten sity in ca lculating it

add calls for changing video amp gain
s~:p reset,poweror. etc i: control key is
~ake it if op~~on key is pressed
A~:o set video gain to ideal value

down on plugin entry

sprintf((char•)s, "%d,%d,%d Alpha= %f, Dist =

*/

%d",i,ftable[i),fstepnu~.al;::iha,Dist);
CtoPstr((char •)s);
ParamText (s "\o" " \o " " \o ") ·
Alert (!".sgAl~rti:o'. nii l;' · '
}

M28

M.2.2 Main.c Source Listing
/***
**
*
*
*
*
*
*
*

TreeSca n Photoshop Plugin Module

Copyright 1994 Massey University

Ralph Pugmire

**
***/

/**~****************

*
File Main.c *

*
*
*

Contains the main dispatching routine.

#include
#include
#include

#include

TGlobals
Tpref
Ptr

<SetUpA4.h>
<SCSI.h>
"Acquireinterface . h"

"TreeScan.h"

myGlobals;
pref;
base;

//structure for globals that are kept in rsrc
//structure for plugin preference variables
//pointer to plugin image memory area

Cursor
CursHandle

WatchCrsr;
cursH;

1 ~ allocate a 68-byte str~ct */

int.
int
int
int
double
int
float

tabitem; // Current Tabbed item
rfnum; // nth :-efocus up tree
fstepnum; // cu:-rent number of fsteps back from infinity
vgainstep; // Curent video gain step
focusnurn,focusnum2,focu snum4,focusn~m8;
bfst:eps, 1 fsteps, min, max;
av;

pas cal void main (int selector, AcquireReco:-dPtr myRecPtr, long *dataPtr, int
•resultPtr) {

Remember AO () ;
Set UpA4 () ;

if (FirstTime (dataPtr))
InitGlobals (dataPtr);

else
RestoreGiobals (dataPtr)

switch (selector)
{
case acquireSelectorAbout:

*resultP:r = DoAbout ();
break;

case acquireSelectorPrepare:
*resultPtr = DoPrepare (myRecPtr);
break;

case acquireSelectorStart::
*resultPtr = DoStart (myRecPtr , dataPtr);
StoreGlobals (dataPt:-);
break;

case acquireSelectorContinue:
*resultPtr = DoContinue (myRe~Ptr, cataPt:rl;
break;

case acquireSelectorFinish:
*resultPtr = DoFinish (dataPtr);
StoreGlobals (dataPtr);
UnloadA4Seg(OL);
break;

defa ult:
*resultPtr

RestoreA4 ();

acquireBadParameter:s;

Appendix M - Scanner Control Software M29

M.2.3 Operations.c Source Listing

/***

*
File Operations.c

Contains the main routines for the Treescan plugin

#include <Events.h>
#include <Quickdraw.h>
#include <Files. h>
#include <Script:. h>
#include <ToolUtils.h>
#include <std~o.h>

#include <string . h>
#include <SCSI . h>
#include
#include
#include

<Memo=y. h>
"Utilities . h 11

' 1 Acqu ire!~terface . h 11

#include
#include

extern
extern
extern

exte=n
extern

extern

"TreeScan . h "
"ma tr. . h "

TGlobals
'!'pref
i't r

Cursor
CursHand le

int

myG lcba:s;
pref; ·
base;

Wat=hCrsr ;
C:J.:.-s:-1;

:abitem;

II allocate a 68-byte struct

extern int r:n ~.m ; I I nth refoc;.is t.:p t=ee
exte=n int fscep num ; II current no of fs :eps back from infinity
extern float fccusr.U:":":, fccusr.u :n2 , focusn~m4, foci.:snt:mB ;

11 Operations file glcbals
int gotlines,

Gotimage; II 1=> We have an image ready for transfer to NIH
int
char

GNextRow; ll~excRow to send to Image
~inebuf[llOO]; II soace for one line from camera

int partialheight,capcu=ecihelght;

II Displays the about box for the module
II --------------------------------------
int DoAbout (void) {

sho=:
DialocP"r
DialogT8nd l

i terr.;
myDia:cgPt= ;
myDialogTHndl;

myDialogTHndl (Dia logTHncil) GetRescurce (' DLOG' , AooutDialogID);
HNoPurge ((Eandle) myDialogTHndl);
CenterDialog (myDialogTHndl);

myDialogPtr = GetNewDia l og (AooutDialogID , nil, (DialogPtr) -1);
ModalDialog (nil, &iten);
DisposDia~og (myDialogPtr);

HPurge ((Handle) myDialogTHndl);

return noErr;

II Reduces the memory set aside :or :he module if possible
II --
int DoPrepare (AcquireRecordPt= myReci'tr) {

long maxmem;

maxmem = myRecPtr->maxData;
maxmem = (maxmeml2J;
if (maxmem>= (((long) lwidth * Init Lines) +50000)) {

maxmem =(((long)lwidth * Init Lines)+50000);
pref .maxlines Init Lines;

}else -
pref.maxlines ((maxmem - 50000)I lwidth);

myRecPtr->maxData maxmem;
return noErr;

II Determines image paramete=s and informs the host
II --

int DoStart (AcquireRecordPtr myRecPtr, ·long *dataPtr) (

Tsstat
sstatPtr

scannerstatus;
sstat;

11 Scanner status structure

DialogTHndl
DialogPtr
short

myDialogTHndl;
myDialogPtr;
item;
done;

II
II
II
II

\
I Control of dialog box
I
I int

EventRecord theEvent; II Cancel image capture event

ControlHandle
short
Re ct

StepAdjScroll,toggle3utton;
toggleType, StepAdj Type;
toggleBox, StepAdjBox;

II
II
II

\

\
i
I

int
char
SCSI Instr
cmdblk
OSErr
short

err;
buffer[512];
myTIB[l2];
mycmd;
errors[6];
stat, message;

II
II
II
II
II
II

I Vars for SCSI commands
I
I
I
I

char
long

s [256];
templong;

11 Temporary string

int
long

i, vie;..JPoint, last!t.ern;
count.;

float dip,lean,tilt,bat volts;
Str255
FSSpec
short
EvQEl
StatusBlock

lfname; -
infile , outfile;
inrefNum, outrefNt:m;
*myPt:::;
sb;

if ((base = NewPtr ((long) lwidth * p:::ef.maxlines)) == 0) return mer..Full=:rr;
if (MaxBlock() < ((long)lwi dth * pref.maxl i nes + 50 0 00) l !

SysBeep(l);
pref .maxlines = (MaxBlock () -50 00 0) /lwidth;

cursH = GetCu:::so:::(watchCurscr);
HLock ((Handle) curs:J);

I* conscant ~ .. :'oolboxUtil.h * I

WatchCrsr = **cursH;
HUnlock ((Handle) cursH);

I * copy the data * /

sstat = &scannerstatus;
partialheight = 0;
sstat->intsteps = myGlobals.intsteps;
if (myGlobals.height>pref.maxli nes) i

myGlobals.height pref .maxlines;

SetupStatus(); II Setup piugin prefe:::ences

myDialogTHndl = (DialogTHndl) GetResource ('DLOG', VicieoDialogID);
HNoPurge ((Handle) my Di al ogTHndl) ;
myDialogPtr = GetNewDialog (VideoDi.alogID, nil, (CialogPtr) -1);

CenterDialog (myDialcgTHndll;
if (pref. Devt)

SizeWindow(myDialogPtr,580,420,true);
else

SizeWindow(myDialogPtr,580,375,true);
SetPort(myDialogPtr);

EstimateLines(myDialogPtr);

SetDString (myDialogPtr, VersionID, Sir/Version);
SetDNum (my Di alogPtr, T reeHeight ID, myGl ob al s. T reef-iei g'"it);
SetDNum(myDialogPtr, StepAdjtxtID, myGlobals.StepAdjl;

GetDitem (my Di alogPt r, StepAdjID, & StepAd jType, (!-la ndle * l & StepAd jScroll,
&StepAdjBox);

SetCtlValue (StepAdjScroll, myGloba2.s.StepAdj);

SelIText (myDialogPtr, ViewNameID, 0 , 32767);

if (! isPressed (OptionKey)) { 11 if control key is dowr. skip startup calls
DoReset (); 11 Send reset to micro
DoPowerOn () ;
Delay{30,&templong);

II Check supply level before we go
GetStatus (&sb);
bat volts = sb.s.voltage I 1023.0 * v calib;
if (bat volts<lll {

Str255 s;

M30

Appendix M - Scanner Control Software

SysBeep (l);
DoPowerOff() ;
sprintf{{char*)s, "Battery Voltage is two low
CtoPstr((char *)s);
ParamText(s,"\p", 11 \p "," \p ") ;
Alert (MsgAlertID, nil);
Gotimage=O; done = C;
Di sposPt r(base) ;
Cispo s Dialog (myDia:!.og?tr);
HPurge ((Handle) myi:::i alogTH ndl) ;
return 1;

sstat->AtHome = DoHomeRe:?wr ();

%.lf " ,bat_volts);

sstat->viewnum = l; viewPoir.: = vl;
SetViewButton (myDialogPtr , vie1.·Point, sstat);

sstat->Focused = sstat->In:ecO~ = sstat - >AtHome sstat - >CameraOn tabitem
Got Image done = fa 1 se ;
lastitem = Vi ewNameID;

do{
InitCursor();
ModalDialog ((ModaiFilter?roc?tr) MyEvent=-ilter, &item);

for(i= O; i<(max tabiter:is - l); i++I
if ((item=;;;-tabitems [i]) && (item:=lastitem))

t.abitem=SetTab(myDialogTH:-:dl, myDialogPt r, i, tabitem, false) ;
lastitem = item;

switch (i tern) (
case returnID:

done = true;
break;

case DevtID:
pref.Devt :p ref.Devt;
if (p.::-ef. Devt.)

SizeWindow(myCialog?tr,580 , 420,true);
else

SizeWindow(myDialcgPtr,580,375,:rue);
break;

case TabID :
tabitem=SetTab (r:iyDia:!.ogTHndl , myDialcgPt r, tabitem+l, tabitem ,

false);
lastitem = tabitems [tabitem] ;
brea k ;

case backTabID:
tab I tem=Set Tab (r::yDi a:!. ogTr.ndl, my Di alogPt r, tabitern - 1, t abitem,

:alse);
last.Item= tab!tems [tab!tem];
break;

case cmciTabID:
tabitem=Set Tab (my Di al ogTHndl, my Di alogPt r , tabitem+ 1, tabitem,

;:.rue);
last.Item= tab:tems [tabitem] ;
break;

case cmdbackTabID :
tabitem=Set Tab (myDial ogTHndl, rnyDialog?tr, tabitem-1, tabitem,

t.rue);
last.Item= tabitems[tabitem] ;
break;

case ViewNumI D2:
case Vie,.·IconID:
case vl:i:D:
case v 2c,.·I D:
case v2ccwID:

if (•+viewPcint > 3) viewPoint = :!.;
SetViewButton (myDialogPtr, viewPoint , sstat);
break;

case TreeHeightID:
{

int t.Eeight;
tneig t": t . = GetDNum (:;-.yDialogPt.r, TreeHei ght I D);
if (':.He1ght<O 11 :P.eight>maxtHeight) {

i ~ (tHeight>maxt.Height)
tHeight=max~ncicht·

else - '

M31

0;

)

tHeight=O;
SetDNum(myDialogPtr, TreeHeightID, tHeight);
SelIText (myDialogPtr, TreeHeightI D, 0, 32767);
SysBeep (1);

myGlobals.TreeHeight = tHeight;
EstimateLines(myDialogPtr);

break;
)

case TreeHeightUpID:
{
int tHeight;
tHeight = myGlobals.TreeHeight + HeightStep;
SelIText (myDialogPtr, TreeHeightID , 0, 0);
if (tHeight>maxtHeigh t) {

tHeight=maxtHeight;
SelIText (myDialogP tr , TreeHeightID, 0 , 32767);
Sy sBeep (1) ;

SetDNum(myDialogPtr, TreeHei ghtI D, tHeight);
myGlobals.TreeHeight = tHeight;
EstimateL ine s(myDialogPtr);
)
break;

case TreeHeightDwnI D:
{

int tHeight;
tHeight = myGlobals.TreeHeight - HeightStep;
SelIText (myDialogPtr, '!'reeHeightID , 0 , 0);
if (tHeight<O) {

)

tHeight=O;
SelIText (myDialogP::r, TreeHe ightID, 0, 32767);
SysBeep{l);

SetDNum(myDialogPtr, TreeHeightID , ::.Heigh::);
myGlobals .TreeHeight = tHeight;
EstimateLines(myDialog?tr);
)

break;

case StepAdjID:
SetDNum (myDialogP::r, StepAdjtxtID , myGlobals. StepAdj) ;
EstimateLines(myDialog?tr);
break;

case PreviewID: (
int lump, p;

DoPowerOn();
Se tCu rsor(&Wa tchCrsr);
Gotimage = 0;

GetDString (myDialogPtr, ViewNameID , sstat - >ViewName);
strncpy (&s [1 I, (char*) & ssta t ->ViewName [1) , sstat->ViewName [0]) ;
s[O] = sstat->ViewName [O];
Pt oCstr((uns igned char *)s) ;
if (sstat->viewnum==l)

strcat.(s," vl");
else -

strca:.{s," v2");
strcpy({char *JmyRecPtr->filename,s);
CtoPstr((char *)myRec?tr->filename);
sprintf{(char*)lfname , ":::Treescan Images:%s",s);

CtoPstr((ch ar*)lfname);
if (!FSMakeFSSpec{O,O,lfname,&outfile)) {

II File exists so beep and ask do you want to overwrite
ParamText("\pTree Image ",myRecPtr->filename , "\p already

exists.",
" \p\rPlease use another name");

Alert (MsgAlertID, nil) ;

M32

tabiterr. = Set Tab (myDialogTHndl, myDialogPtr, 0 , tabitem, false);
Sy sBeep (1) ;
break;

myRecPtr- >vRe fNum = outfile.vRefNum;

II Move up to focus centre halve preview lines above home
DoSteps(previewlinesl2);

if (!sstat->IntegOK && (pref.IntegAd j>=NoAdjinteg)) {
SetDString (rnyDialogPtr, StatusID, s integ);
sstat->intsteps = DoAd j int(myDialogPtr,sstat->intsteps);
sstat->IntegOK = true;

Appendix M - Scanner Control Software M33

II

if (pref. Integ.Z\.cj==Fixedinteg) {

i

sstat->intsteps = pref .FixedintegTime;
sprintf ((char*) s, " %d ", sstat->intsteps);
SetDSt:-ing (myDialogPtr, StatintNoID, Ct oPstr (s));

if (! ssta: - >Focused && (pref. focus>=NoRefocus)) {
SetDString (myDialogPtr , StatusID , s focus);
sstat->Focused = DoFocus(myDialogPtr, sstat);

II Move down a bit to centre focus point
De ay(3,&templcng);
Do teos(- (previewlinesl2+20)) ;
De ay~3 , &t~mplong);
De :eps(20);

Se:DString (myDialoaPtr, Sta:usID, s capt);
for (p= (previewlin~slmyGlobals . StepA-dj); p>O; p - = chunklines) {

if (Wa:tNextEvent (::iouseDownlkeyDown, &theEvent, l, nil)
break;

if (p<chunkL.nes)
lt.:::ip - ,.,,

e:se
lump = chunklines;

if (GetChu:"'.k (lump, p - lump, ssta:->intsteps, myGlobals. StepAdj) <4) {
/ / scsi erro:-

Sys3eep (1);
break;

Disp:ay(p-lump ,p, (preview"ines l myGlobals . S:epAdj),0 ,pref.detail,
myDiaiogPtr) ;

ssta:->A::-'.ome = false ;
Delay(3,&:emplcng);
SetDStr in::; (myc:alog?tr, Sta:usID, s home);
Dc!-:c:ne () ;
Do?owero:!'();
SetDStrins (myCialog?:r, Sta:i.:sIC, s idle);
Gctlmage = l;

Co~e=: ; JI Se: t o cap~~=e preview i mage
F::..:sh=:ve:--.:s (Cx??=r, 8);
.b:-eak;

case F~:lsca~:J: {

in: a:,ef,? , lu~p,wr.;
Bvte
l::r.g
c!:a:-

•p;:>;
startti~~s,ticks;

S:256j ;
i '.'. t c: i rs t., cl as t, c: n c, i, c, Ji s c, f::. able [50 0 j ;

o ,a ipha ; ::oat
1:-.: '.:eight;

I I c'.:eck dip is valid in case we need it for blind refocus
d:p = Ge:DKea~(myCialogPtr,D i pID);
i!' Cdip>90 11 c:p<-90);

}

?ara"':ext(" \:,:>Di? an::; l e i nvalid. ","\:,:>" , "\p"
" \c\r?lease re enter ");

Alert IMsgAle,:tID, nil);
Sy sBee:,:> Cl) ;
break;

t: ~ : = GetDReall:nyDia~og?tr,:iltID);
i!' Ctilt>9C I! tilt< - 90) {

?aram~ext("\;:>Tilt angle :nvalid. 11
,

11 \p", 11 \p "
"\p\:-? lease re enter");

Alert (MsgAlertID, nil);
Sy sBeep Cl) ;
b:-eak;

Se:Cursor(&WatchCrsr);
rfr.um = 0 ;
done = :; II Return at end of image unless reset in the loop

II ----------- Check :~age file exists & Setup log file -----------
GetJString (myDialog?tr , ViewNameID , sstat - >ViewName);
strncpy (& s [l] , (char•) &ss~at->ViewName [l] , sstat->ViewName [0)); s [0)

sstat->ViewName[O];
PtoCstr ((:.:nsic;nec char •) s);
i: (ssta:. - >viewnurr.==1.)

strcat (s, "_v:C ");
e2.se

strca~(s," v2");
strcpy((char *l~yRec?:r- >filename , s);
CtoPstr ((c:iar •)myRec?t r ->f:lename);
sprintf((char*) lfname, ":: :T:-eescan Images:%s",s);

CtoPstr((char•)lfname);

II

if (!FSMakeFSSpec(0,0,lfname,&outfile)) {
II File exists so beep and ask do you want to
ParamText (" \pTree Image ", myRecPtr-> file name,

exists.",
"\p\rPlease use a nother name");

Alert (MsgAlertID, nil);
tabitem = SetTab(myDialogTHndl, myDialogPtr,
SysBeep(2); done= O; break;

myRecPtr->vRefNum = outfile.vRefNum;
if (pref.LogFiles) {

overwrite
"\p a lready

0, tabitem,

sprintf((char*)lfname,":::Treescan Images:%s.log",s);
CtoPstr((char*)lfname);

err = FSMakeFSSpec(0,0,lfname,&outfile);
err = FSpDelete(&outfile);
err = FSpCreate(&outfile, 'Imag', 'TEXT',smSystemScript);
if (err) { SysBeep (2); done = O; break;}
err = FSpOpenDF(&outfile,fsCurPerm,&outrefNum);
if (err) {SysBeep (2); done = O; break;}

if (pref. focus == BlindRefocus)
af = bafchunks/myGlobals.StepAdj;

else
af = afchunks /myGlobal s.StepAdj ;

Dist = O;

DoPowerOn();
Delay(l20,&templong);
II Check supply level before we go
GetStatus (&sb);
bat volts = sb.s.voltage I 1023.0 • v _calib;
if {bat volts<ll) {

Str25-5 s;

SysBeep (1);
DoPowerOff ();

M34

false);

sprintf((char*) s, " Baccery Voltage is two low
CtoPstr((char •)s);

%. lf" , bat_ volts);

ParamText (s," \p", "\p ","\p");
Alert (MsgAlertID, nil);
Gotimage=O; done = 0; break;

II Move up to focus centre halve preview lines above home
DoSteps(previewlines/2);

II ----------- Set integration & perform autofocus -----------
if (! sstat->IntegOK && (pref. IncegAdj>=NoAdjinteg)) {

SetDString (myDialogPtr, StatusID, s_integ);
ssta t - >intsteps = DoAdjint(myDialogPtr,sstat - >intsteps);
sstat->IntegOK = true ;

if (pref. IntegAdj ==F ixedinteg) {
sstat->intsteps = pref.FixedintegTime;
sprintf((char*)s,"%d ", sstat->intsteps);
SetDString (myDialogPtr , StatintNoID, CtoPstr (s));

if (!sstat->Focused && (pref.focu s>=NoRefocus)){
SetDString (myDialogPtr, StatusID, s focus);
sstat-> Focused = DoFocus (myDialog?tr, sstat);

II ----------- Start setup for blind refocus -----------
if (true) {I I Always read bl ind focus table

II First load the ftable from file Treescan . ftable
err = FSMakeFSSpec(0,0,"\pTreescan.ftable",&infile) ;
err = FSpOpenDF (&infile, fsCurPerm, &inrefNum);
if (er::) {

ParamText(" \pCant open blind refocus data file","\p ", " \p "
"\p");

Alert (MsgAlertI D, nil);
SysBeep(l); done= 0; break;

// get next line from the file
if (get line (inrefNum, s, 100) ! =noErr) {

)

ParamText ("\pError reading ft able file", " \p" , "\p "
Ale::-t (MsgAlertID, nil);
SysBeep(l); done= 0; brea~;

" \p");

sscanf(s, "%f,%d,%d,%d", &alpha, &dfirsc, &dlast, &dine);

//Make space for the table

for (i=O; i<= ((dlast -df i ::-st) /dine); i++) !

Appendix M - Scanner Control Software M35

II

II get next line from the file
if (getline (inrefNum, s , 100) 1 =noErr) {

ParamText("\pError reading ftable file " ,"\p", "\p"
Alert (MsgAlertID, nil);
SysBeep(l); done = O; break;

sscanf(s, "%d,%d", &d, &ftable[i));
if ((dfirst+i •dine)! =d) (

Str255 s;
sprintf((ch ar")s ,"Error in focus table line %d

%d<>%d",i,d,dfirst+i*dinc) ;
CtoPstr((cha:: *)s);
ParamText(s , " \p ", " \p ", " \p") ;
Alert (MsgAlertID , nil);
break;

FSClose(inrefNum);

II find our distance
for (i=O; i< ((dlast -dfirst) / dine) ; i++)

if (ftable'.il <= fste;:::-i:.:m) break ;
Dist = dfirst + (i • dine);

if (Dist>2500) Dis;: = 15CJC;
s;nintf((cha r •)s, " D'..st: %3.2f m", (float) Dist/100) ;
SetDString (myJ'..alcgPtr , StatFocusNo3ID , CtoPst:r (s));

//c a lc :ines;

" \p");

myGlo:Oals . height = '1eighttoLines (myGlobals.TreeHeight, dip, Dist);
sorintf((c'iar*)s, " %d (calcl", myGl o:Oals . height);
S~tDS:.ring (myDialogPtr, S tat LineNoID, CtoPstr (s));

(myGl obal s . height>pre: .maxlines) {
Str255 s;
i71.yGlobals . :-ieic:;l":t = ?=e: . ::-:c.xlines;
myGlobals.TreeHeight. =

Li:-iest.oHeigh;:(myGlobals . heig'it,dip ,D ist) / 100;
sprintf((c!car*)s, "Car. only capture to %4 . lf metres high.",

LinestoMeight(myGlobals.height , dip , Dist) / 100);
CtoPstr ((chac •) s l;
?ara::iText(s ," \?", " \p " , " \ p") ;
Ale r t ("isgAlertID , :-iil);
SetJNum (my o: a 1 ;:,g?:: r, T ree:.;e ight ID , myGl ob al s . T reeHeight);

'">eight = myGlobals.!"lciglct;

End setup fer blind refocus

GetJ:te'71 (myDialogP::r , FullScanID, &toggleType,
(Ha:-:cle*) &togg l ei3utton, &t oggleBox);

SetC ~i ::le (tc:;gleBut::cn, " \p!<eturn Image");
Ge::J:te'71 (myDialogP:.r, Ca:1cel:D, &toggleType ,

(Hancle•) &tcgg~eButtcn, &toggleBox);
SetC!:.tle (toggleButton , " \pAbo r t ");

ef = echunks;
Gotimage = 2;
star::ticks = TickCcun:. ();

II Move down a bit to start picture about 0 .7 b elow focus po int
Delay(30 ,& templcr.g);
DoSteps (- (StepsBack+20));
Delay(30,&templong);
DoSteps(20);

// •w•w** ... w"'** Start image ca?ture loo? ""**********
for (p=height; p>O; p -= chunidines) (

SetDString (my Dial og ? t.r, S::atusID, s capt);

sprintf ((char*) s, "%ci cf %c ",(he ight-pl, myGlobals.height) ;
SetDStr i ng (myDialogPtr, StatLineNoID, CtoPstr (s));

sprintf((char*)s,"C:aptur ir.g image at %4.lf m
", LinestoHeight ((he i ght-p),dip,Dist)/100);

SetDStr ir.g (myDialogP tr, StatusID, CtoPstr (s));

II *••w* * w** * w Check f or user image capture break ***********
i: (WaitNextEvent(mcuseDown lkeyDown, &theEvent, 1, nil))

II Chec k if the event received is Stop or else cancel
Re ct
shor t
Point
Control Handle

itemBox;
i:.emType;
the?oint;
theCont rol, i t e mHandle ;

GetDitem (myD i alogPtr, Ful 1 ScanID, & i temType,
(Handle*) &itemHandle, &itemBox);

thePoint = theEvent.where;
GlobalToLocal (&thePoint);
FindControl (thePoint , myDialogPtr , &theControl);
if (theControl == itemHandle && p<height){ //Stop

got lines height-p;
Gotirnage = 3;
break;

}
else{

got lines
Got I mage
done = O;
break;

//Cancel
height-p;
3;

M36

II *********** Capture one chunk ***********
if (p<chunklines)

lump = p;
else

lump = chunklines ;
i f (GetChun k (lump, p-lump, sst.at->intsteps, myGlobals .StepAdj) <4) {

}

II scsi error
SysBeep (1);
sprintf((char*)s,"Error in Get Chunk");
ParamText (CtoP str (s), "\p", " \p ", " \p");
Gotimage=O; done = 0; break;

if (pref. ChunkMarks)
fo= (pp =(Byte*) (((long)p*lwidth)+base+250);

pp<(Byte*) (((long)p*lwidth)+base+300); pp++)
*pp = 255;

Display(p-lump,p,height,O,pref . detail , myDialogPtr);

II *********** Store relevant information to log file ***lf*******
if (?ref.LogFiles) {

II

ticks = TickCount();
o = ((height-p+lump/2+chunklines) *alpha*myGlobals. StepAdj) +

dip ;
wn = Dist/cos(o/180*3.14159);

sprint.f((char*)s,"\r%d %ld %d %d %ld %.lf %d %d %d "
p,ticks-startticks,af,ef,sstat-

>intsteps,focusnum,rfnum,fstepnum,wn);
CtoPst!:"(s); count= s[O];
e=r = FSW=it e(outrefNum ,&cou n: , &s[l]);
if (err) {SysBeep(2); FSClose(outrefNum); done= 0; break;}

if ((p-chunklines) <= 0) break;

**********• Adjust integration and do refocus 'lt1'f****•**lf*
if (1 (--af)) {

rfnum++;

}

ef = echunks;
if ((pref. IntegAdj == Adjinteg) && ((height­

p} > (StepsBack/myGlobals. StepAdj))
sstat->intsteps = DoAdjint2(myDialogPtr, sstat->intsteps, p­

lump, outrefNum);
if (oref. focus == AutoRefocus) {

af = afchunks /myGlobals.StepAdj ;
if ((he ight -p) >(StepsBack/ myGloba ls.StepAdj)) {

SetDString (myDialogPtr, StatusID, s adj focus);
sstat->Focused = DoReFocus(myDialogPtr,p+lump,sstat);

if (pref. focus == BlindRefocus) {
af = bafchunks/myGlobals.StepAdj;
if ((height-p) > (StepsBack /myG loba ls. StepAdj)) {

SetDString (myDialogPtr, StatusID, s adj focus);
sstat->Focused = DoBlindRefocus (myD[alogPtr, p+lump,

alpha, Dist, dip,
height-p+lump/2+chunklines, ftable, dfirst, dine,
dlast, sstat);

else if (! (--ef)) {
ef = echunks;
if ((pref. IntegAdj == Adjinteg) && ((height­

p) > (StepsBack/myGlobals. StepAdj))
sstat->intsteps = DoAdjint2(myDialogPtr, sstat->intsteps, p­

lump, o utrefNu m);

II *********** End of image capture loop •*lf********

Appendix M - Scanner Control Software M37

}
if (pref. ChunkMarks)

for (pp =(Byte*) (((long) (he ight-
StepsBacklmyGlobals. StepAdj) *lwidth) +base+l mid -
fwidthl2 + foffset);

)

pp<(Byte*) (((long) (height­
StepsBa ck lmyGloba ls.StepAdj)*lwidth)+base+lmid +
fwidthl2 + foffset); pp++)

*pp = 255;

if (pref. Log!:iles) FSClose (outrefNum);

GetDitem (myDialogPtr, FullScanID, &toggleType,
(Handle•) &toggleButton, &toggleBox);

SetCTitle (toggleButton , "\pCapture Image");
GetDitem (myDialogPtr, CancelID , &toggleType,

(Handle•) &toggleButton, &toggleBox);
SetCTitle (toggleButton, " \pCancel ");

FlushEvents (OxFFFF, 0) ;

if (:done)
SetDString (myDialogPtr , StatusID, s home);
DoHome() ;
DoPo werOf f();
sstat - >AtHome = true;
sstat - >Focused false ;
sstat - >IntegOK = false;

else
DoHomeRe:?wr ();
SetDString (myDialogPc.r, Sc.atus:::D, s id~e);

break;
)

case CancelID:
done = l;
break;

case HomeI;:J :
SetCursor(&WatchCrsr);
DoPowerOn();
sstac.->AtHome = DoHome();
DoPowerOff ();
break;

case Debug ID :
Debug (sstat);
~s timateLines(myD:alog?:rl;
SetDNum(myDialogPtr, TreeHeight~ D , myGlobals. TreeHeight);
::neak;

)while (!done);

DisposDialog (myDialog?tr);
HPurge ((Handle) myDialogTHndl);

capturedheight = myGlobals.height;

myRecPtr->imageMode = l;
myRecPtr->imageSize.h = myGlobals.width ;
myRec?tr->rowBytes = lwid:h;
myRecPtr->imageSize. v = capturedheight;
myRecPtr->depth = 8;
myRecPtr->planes = l;
myRec?t r->data = nil;

if (item != CancelID) (
myGlobals . intsteps = sstat - >intsteps;
myGlobals.height = capturedheight;
StorePrefs ();
GNextRow = 0;
if (Got image==l) (

)

myRecPtr->imageSize .v = previewlines/myGlobals.StepAdj;
capturedheight = previewlines/myGlobals .S tepAdj;

if (Gotimage==3) {
myRe c Ptr->imageSize . v = gotlines;
partialheight = capturedheight - gotlines ;
capturedheight = gotlines;
Sy sBeep (1) ;

if (Gotimage) {
II create the .dat file with dip ,lean and v2rot in i t .
if (tilt>O)

lean 90-tilt;
else

lean -(90+ti lt) ;
strncpy(&s[l], (char*)&sstat->ViewName[l],sstat->ViewName[O]);
s[O] = sstat->ViewName[O];
PtoCstr((unsigned char *)s);
if (sstat->viewnum==l)

strcat(s,"_vl");
else

strcat(s," v2");
sprintf((char*)lfname, ":: :Treescan Images:%s.dat", s);

CtoPstr ((char*)l fname) ;
err = FSMakeFSSpec(O,O,lfname,&outfile);
err = FSpDelete(&outfile);
if (FSpCreate (& ou t file, •I mag' , 'TEXT• , smSy stemScr ipt))

SysBeep (2);
if (FSpOpenDF (&out file, fsCurPerm, &outrefNum))

SysBeep(2);
if (sstat->viewnum==l)

sprintf((char*)s,"%d\r%f\r%f\r",myGloba ls.StepAd j,dip,lean);
e lse

M38

sprintf((char•)s,"%d\r%f\r%f\r%d\r",myGlobals.Step
Adj,dip,lean,sstat->v2rot);

CtoPstr(s); count= s[O];
FSWrite(outrefNum,&count,&s[l]);
FSClose(outrefNum);

return noErr;

DisposPtr(base);
return l;

!!do it he r e as finish only called if return without error

II Returns the data to the host
int DoContinue (Acqui ::-eRecordPtr my!'(ecPtr , lo ng •cata?tr) {

long count;

if (!myGlobals . width)
return 1;

if (!Gotimage)
return 1;

if (CallPascalB (myRecPt::-->abortProc))
return 1;

CallPascal (GNextRow, capturedheight, myRecPtr - >;o::-ogressProc);

if (GNextRow >= ca;oturedheight) {
myRecPtr->data = nil;
SetRect (&myRecPtr->theRect, 0 , 0 , 0 , 0);
return O;

count (myRecPtr->maxData (pref.maxlines*lwidth))/ lwidth ;
if (count < i)

return memFullErr;

if (count > capturedheight - GNextRow)
count capturedheight - GNextRow;

SetRect (&myRecPt r ->theRect, 0, GNextRow, myGl obal s. width, GNextRow+count) ;

myRecPtr->loPlane = 0;
myRecPtr->hiPlane = 0;
myRecPtr->colBytes l;
myRecPtr->rowBytes lwidth;
if (Gotimage == 3

myRecPtr->data base + ((long)partialheight • lwidth) +
((long)GNextRow • lwidth) + lmid - myGlobals.width/2;

else
myRecPtr->data

GNextRow += count;

return noErr;

base + ((long)GNextRow • lwidth) + lmid - myGlobals.widthl2 ;

II Clears the permanent variables
int DoFinish (iong *dataPtr) {

*dataPtr = O;
DisposPtr (base);
return no Err;

Appendix M - Scanner Control Soflware M39

M.2.4 Extracts from Functions.c Source Listing

/*******•*•···················•**••··*********** .
File Functions.c

* Contains miscellaneous functions for Treescan plugin

//--
/! Do Home mirror mechanism
/1--
int DoHome () !

int
cmdblk
OSErr
short
Str255

er"::';
mycmd;
errors(6];
stat., message;
s;

mycmd.O?Code = scmResetMecn;
mycmci.r: • mycmc . r2 = mycmci.r3 = myc:::c.r4 = mycmd.r5 = 0;
err = SCSISen::!Cor:-.rnanc! s(&mycmc!, :::yGlcba:s.SCSI ID, errors, &sta::., &r:-,essage);
if (err<3) { - -

Nu::iTcStr:ng(err,s);
Parar.:Tex::.("\pSCSI Erro:- coun::.= " ,s, " \pin home command", " \p");
Aler:. (MsgAlert.ID, ni.l);
ret.urn O;

::et.urn :;

/!------------------ ------------------------------------
// Do Home ~:::.h oo~er off a:id immedia::.e :-e::.urn // --------------: _________________ _______ ______________ _
ir.t DoHomeRet?wr()i

int
cmdblk
OSErr
short.
s::.r255

err;
rnycmd;
er::ors (6 j ;
st.at~ message;
s;

mycmd . O?Ccde = scmResetMec~;
mycmd.r: = mycmc.r2 = l;
mycmd.r3 = ~ycmc.:::4 • mycm<:i.r5 c O;
err = SCS:.'.Senc!Comrnand s (&mycmd, myGlooals. SCSI_ID, errors, &st.a::., &message);
if <err<3l { -

NumToStr:ng(err,s);
ParamText.("\pSCSI Error count.=",s, " \pin home command", " \p");
Ale:::. (MsgAlertID , :iil);
retu:::i O;

return :;

!!--
// Reset Mic::c
/1--
void DoRese::. () {

int
cmdblk
OS Err
s hort
Str255

err;
mycmd;
errors (6j;
stat, message;
s.

mycmd. OpCode • scmReset.Dev;
mycmd.r l • mycmd .r2 • mycmd.r3 • mycmd.r4 • mycmd .rS = O;
err • SCSISendCommand(&mycmd, myGlobals.SCSI ID, errors, &stat, &message);
if (e rr<~) { -

Nurr.ToSt.ring(err,s);
ParamText("\pSCSI Error Count= " ,s, " \pin reset command", "\p");
Alert (MsgAlertID, nil);

II ---
1 I Move Focus
II Decide whether the Mkl or Mk2 focus routine should
II be used.
II ---
void OoMoveFocus (steps)
{

if (pref.Mk2)
OoMoveFocusMk2(steps);

else
OoMoveFocusMkl (steps•l); 11 x Adjustment factor- btwn mkl & mk2

II ---
11 Move Focus Mkl
II ---
void OoMoveFocusMkl(stepsl {

int err,dirn;
cmdblk mycmd;
OSErr errors[6 J ;
short stat, message;
Str255 s;

if (steps<O) {
steps = -steps;
dirn = O;

)else
dirn = l;

mycmd.OpCode = scmFocus;
mycmd.rl O;
mycmd. r2 dirn;
mycmd.r3 stepsl256;
mycmd.r4 steps%256;
mycmci.r5 0;

err s SCSISendCommand(&mycmd, myGlobals. SCSI_ID, e::::o::s, &st.a::, &messag e);
if (err<4) {

NumToString(err,sl;
ParamText (" \pSCSI Error Count• 11 , s, 11 \p in AC jcsr. :oc:Js co~rr1anci " , 0 \p");
Alert (MsgAlertIO, nil);

II ------------------- ---- ------------------------------
11 Move Focus Mk2 (Stepper controlled foc~s)

II ---
void OoMoveFocusMk2(steps) (

int err,dirn;
cmdblk mycmd;
OSErr errors[6] ;
short stat, message;
Str255 s;
long x;

if (steps>l800) {SysBeep(l); return;}
if (steps<-1800) {SysBeep(l); return;!
if (steps••O) return;
fstepnum +• steps;
if (steps<O) {

steps = -steps;
di rn = O;

}else
dirn = l;

mycmd.OpCode = scmFocus2;
mycmd.rl = O;
mycmd. r2 dirn;
mycmd. r3 stepsl25 6;
mycmd.r4 steps%256;
mycmd . r5 = O;

err = SCSISendCommand(&mycmd, myGlobals.SCSI ID, e=rors, &stat, &message);
if (err<41 {

I

NumToString(err,s);
ParamText ("\pSCSI Error Count= " , s, " \p in Acij:;s:: :ocu s cor.mand " , " \p ");
Alert (MsgAlertIO, nil);

II Oelay(l,&x); II let it settle
I

11--
11 Send a SCSI Command
II returns nurr~er of s uccesful steps
11--

M40

Appendix M - Scanner Control Software M4 l

int SCSISendCommand(cmdblk •mycmd, int SCSI ID, OSC:rr •err, short •status, short
"message) (-

int i, rerror;

for (i=O; i<S; i++) err(i] = 0;
"status = •message = O;

if {(err[O] SCSIGet:()) '= no2rr) return O;
if ((err{l] = SCSISelect:(SCSI ID)) != noErr) ret:urn l;
if ((err{2] = SCSICmd((Pt:r)mycmd,6)) == noErr){ rerror = 3;)else rerror 2;
if ((e!"r[4] = SCS IComplet:e(st:atus,message,TimeOut)) noErr)

if (!"error==3) ret:urn 4;
return rerror;

1/--
11 Send a SCSI Command with read command
II return error i s number of sequentia: succesful steps 4=perfect:
1/--
int SCSIDataCommand (cmdbli< "mycmd, SCSII:->str •myTIB, int SCSI_ID, OSErr *err, short

•status, shcrt •message) (
int i, rerrcr;

for (i=O; i<5; i+ +) er!"[i] = 0;
•status = *message = 0;

if ((err [OJ = SCSIGet ()) ! = noErrl ::etur:-1 0;
if ((e rr {l] = SCSISe lec: (SCSI ID)) ! = noEr=> ::et:urn l;
if <(err [2 J = SCSICmd ((Pt:::) mycmd, 6)) == nor:::::) (

rerror = 3;
if ((e!"r[3 } = SCSIRead(_(?tr)my1I3)) == no:Srr) rer::or 4 ;

)eise
rerro= = 2;

if ((err [~ J = scs:Complete (status, message, Timeout)) no:Srr)
if (rerrc r== 4) ret urn 5;

rett:!"n rerror;

II ----- ---- ----------------------- ---------------------------------
11 Get a chunk of x ~:nes anc sto:e :~ b~:fer w:th an of:set
II - - ---
int GetChunk (int Li:-:es, long o!"fset, !nt i:-1t_:i::-.e, ir.t stepsperline) {

int
SCSIInst:r
cmd'::>lk
OSErr
sh ort
Ptr
lor.g

my:I3 [15};
mycmd;
errors(6};
stat, message;
bu:fer?tr;
Duu.;ny;

if ("ref .ADlOJ
~ycmd.OpCode = scmGetX:..inesN3;

else
mycmd.Opcode = scmGetXLinesBbm;

mycmd. rl Lines/ 25 6;
mycmd.r2 Lines\256;
mycmd . r3 int time/256;
mycmd. r4 int -time %2 5 6;
mycmci.rS stepspe!"line;

buf fe r Pt= = base + {o!"fset • lwidth);
if {Lines) buffer?tr += {long) (Lines-1) • lwid.th;

myTIB[O] . scOpcode
myTIB[O] .scParaml
myTIB[O] .scParam2

myTIB[l] .scOpcode
myTIB[l) . scParaml
myTIB[l) .scParam2

scNoinc;
{unsigned long) b-.iffer?tr;
l;

scNoinc;
(unsigned long) '::>-.iffer?tr ;
!width;

myTIB[2] .scOpcode scNoinc;
myTIB[2] . scParaml = {unsigned long) &myTIB{ 3). scParam2+3;
myTIB[2) .scParam2 = l;

myTIB[3) .scOpcode
myTIB[3). scParaml
myTIB[3) .scParam2

myTIB[4) .scOpcode
myTIB[4) . scParaml =
myTIB[4] .scParam2

myTIB[S) . scOpcode
myTIB[S) .scParaml

scNoinc;
{unsigned long)
O;

scNoinc;
{unsigned long)
4;

scNoinc;
(unsigned lor.g)

•Dummy;

&myTIB[6] . scParam2;

&myT!B[7].scParam2;

M42

myTIB[S] .scParam2 4;

myTIB[6].scOpcode scAdd;
myTIB[6).scParaml (uns igned long) &myTIB[l) .scPa=aml;
myTIB[6].scParam2 lwidth;

myTIB[7].scOpcode scAdd;
myTIB[7].scParaml (unsigned long) &myTIB[B] .scPa=am2;
myTIB[7] .scParam2 O;

myTIB[B) .scOpcode scLoop;
myTIB(B] .scParaml -70;
myTIB[8).scParam2 Lines;

myTIB[9] .scOpcode scStop;
myTIB[9] .scParaml (unsigned long) nil;
myTIB[9] .scParam2 (unsigned long) nil;

err= SCSIDataCommand{&mycmd, {SCS IIn str*)&myT IB , :'"1yGlobals.SCSI ID, errors,
&stat, &message);

if (err<4) {
c har s[256];
sprintf(s,"Getlines SCSI Error count = %d",errJ;
ParamText(CtoPstr(s), " \p","\p" ," \p");
Alert (MsgAlertID, nil);

return err;

Appendix M - Scanner Control Software

M.2.5 Extracts from lnteg/Focus.c Source Listing

File InteglFoc1.:s . c

Contains Apert1.:re ar.d Focus functicr.s :or Treescan plugin

II ------ - - ------------------------- --------------------
11 Ad just integrati on ti~e
II get a line and ad just i::tegratio:: :1r.e :c nake signal almost sa:;;ra:e ...
11 Passed: Curren: :.r.tegration tl~e
II Returns: Suggested new integratic:: ::~e

II -------------- - ---------------- - ---------------------
long DoAdjint <::::alogP<:r myD:alog? :!", in: ir.tstepsl {

long x,1,s: a ~ts ~eps,~steps , tsteps;
l o ng total .average;
Byte max, • p;
char s[2S6:;
int intIC ;

if {Cc1.:ntD!TL (myc:.alog?tr l < {do3cxite~Ccun:-::ii
in: : o Sta::::.:Nc:D; II ~a in dialog

else
int ID d~_1n:ID; I I)eb'1g d1a:og

//T ry ar.d speed :t ge:::ng a rc'1gn es::~ate c f ~ne re : o start

II ti:nes ~ as oes: we car. do is d:v ov :ou!"
for (ts:eps = r..: r. i:it steps • ~; :s:c?s<:nax :n::. ste;::s; -.steps · = :::)) {

·" (Ge:C:-:;;:-i:«:. c-; tsteos, ::;) <l):

M43

Sys3ee;:: (1 l; =e:.;::n ints:eos;'
:f (pre:.c:sp:ayl D:s;::lay(O,:.":ryG!coals.::e:gn:, :.;::re~ . oe:a::, r.-.yDialog?tr);

l

m.?.x ::.c:.?.: = ::J;
:o::(p = (3y-.e · Joase - l w1dtn l2 - e •.-:cthi2 ; p<(<Syte•Joase - l w1dt:i12 +

ew:c:n/2); ? --l (
to:a: -= · p;
i: < ::: > max) nax • • p;

average = :o:al/e~id:::;
(pre: . A::: oi

S?=:r.:: < (c:ia:-) s , " ~~Ca ... %id ", :ste?S, average};
else

spr:r.:f((c:iar • Js, " \:d<!. %le ", :s:eps, .?.verage);
SetDSt:::ng (r.yD:.alogP:r, int,J, C:c?s:r Isl!;
· ' (ave=aae>5l !:)::ea1c;

((!pre~ . . l\)10) U (tsteps>20'.J)J •
?:e:.P.~::; = :rue;
tste;::s /= :o; //ie try ag.?.1n w:th : ::01-.

if (ts::.eps>max :.::t steps) i
Sys3ee?(:); ~et~r~ ~ax in: ste ?s;

startsteps = (c::oat)eav erage/average • :steps) /2. 0;

for (isteps = s;;artsteps; isteps < r:iax :nt s<:eps; isteps • • in<: s::ep_mult)
if (GetC~un:.C(l, 0, isteps,0)<4>:

Sys3eep (1) ; ret'1rn ints:eps; j
• & (pre:. di sp:..ay) Di splay (0. i, ;r.yG: coals . i":eight , :, pre f. ciet a : l. myDia log?tr);
max tot.a: = 0 ;
:or(p = (i3y:ew>base + b>idth/2 - ewidth/2; p<((9yte•)base.,. lwidt h/2 +

ew i ct h I 2) ; ? +-'-) (
total - = •p;
if (•p > max) max = • p;

average = tota:/ewid:n;
i: (pref.ADlO)

sprin:f({char•)s ,"%ldb • lld",
else

:s::.eps, a verage) ;

sprintf ((char•) s, " \ldb \ld", :s:eps, average);
SetDString Cr:iyDialogPtr, intlD, C:c? s:r (s));
if (average>eaverage) b reak;

if (!pref .ADlC && isteps>2000) {
pref.ADlC = true;
for (is t eps • startsteps/4; isteps < max int steps; isteps • • int_step_mul t) {

if (GetChunk (1, 0, isteos, 0) <4) i
SysBeep (1); returr. · intsteps;)

if (pref. display) Di splay (0, l , myGlobal s. height , l, pref. detai l,
myDialogPtr);

max total = O;

M44

for(p (Byte*)base + lwidth/2 - ewidth/2; p<((Byte*)base + lwidth/2 +
ewidth/2); p ++) (

total += *p;
if (*p > max) max = *p;

}

)
average = total/ewidth;
sprintf ((char*) s, "%ldc* %ld", isteps, average);
SetDString (myDialogPtr, intID, CtoPstr (s));
if (average>eave rage) break;

if (J. steps>= max int steps) {
SysBeep(l);
return max int steps;

}else
return is teps;

II ---
!/ New Adjust integration time
II Calculate average expos~re for an area and gues new integration time
// Passed: Current integration time, number of lines already captured
II Returns: Suggested new integration time
II ---
long DoAdjint2 (DialogPtr myDiaiogPtl'., long int steps, int pp, shol'.t outrefNum) {

long x,i, j ,isteps;
long maxh,total,count;
Byte max ,av, *p;
char s[lOO);
int err;

av = O;
isteps = intsteps;
maxh = eheight;
if (maxh) {

max = total = 0;
for (j = (pp}; j<pp+maxt; j+~) {

for (p = (Byte*) (base • (long)lwidth*j) + lwidth/2 - ewidth/2;
p<((Byte*)(base + <long)lwidth*j) • lwid::h/2 + ewidth/2);
p ++) {

total +== *p;
if (*p > max) max *p;

av (Byte) (total I maxh I e1.· idth);
isteps = (float)eaverage / av * intsteps;

if (true && (isteos>2000) && ! Pl'.ef .AD10) (
isteps /= 4; · ·
pref.ADlO = true;

)else if {true && (isteos<500) && pref.AD10) {
isteps *= 4; ·
pref .ADlO = false;

if (pref.Log?il es) {
sprintf((char*)s,"%ld %d %d %ld %ld ",

· total, max, av, intsteps, isteps);
CtoPstr (s); count = s [OJ;
err = FSWrite(outrefNum,&count,&s[l));
if (err) {SysBeep (2) ;FSClose (outrefNu;:i); J

if ((isteps/intsteps<O. 8) 11 (isteps/intsteps) >1.2)
isteps = (isteps - intsteps) * C.BC + in::steps;

if (isteps> (intsteps*lO)) isteps = ir.tsteps/2; //try to trap silly
saturatior.

if (isteos>max int steos)
iste-ps = max :lnt ~teps;

else if (iste;:is<m"'ln int steps) {
isteps =-min int st-epsi

if (pref.AD10)
sprint f ((char*)s,"%ld->%:d* ints::e;::s, i.steps , av);

else
sprintf ((char*) s, "%ld->%ld %d", int steps, isteps , av);

SetDString(myDialogPtr, StatAdjlntNoID, Cto?str (s));
return isteps;

Appendix M - Scanner Control Software

//***
II Do auto Focu s
II Decide whethe= the Mkl or Mk2 routine should be used.
//***
int DoFocus (DialogPtr myDialogPtr, sstatPtr sstat)
{

II
II
II

if (pref .Mk2)
return DoFocusMk2 (myDialogPtr, sstat);

else
return DoFocusMkl (myD:.alogPtr, sstat);

II Return ~ if focused ok

(Using

int DoFocusMk2 (DialogPt r myDialog?tr, sstat?tr sstat) {
int a, b,i,j,mi , ni,m i l;
Byte •p;
char s~256];
double mf,mfl;
Even:Reco rd theEvent ;
long
OSEr=
FSSoec
s;:.r2ss
s:,o=t
irit

count,x;
err;
out file;
dname= " \ ;:>Focus Data " ;
ou:re f Kum ;
friu:T'.:!:C , :ocusr.I::; ;

if (C ount.D:LT!., (myuialog?t::) < (d baox:i:temCount - 10)) i

stepper)

M45

focusnIC Stat.FocusNc' E l; :m:::1ID = Stat?oc-..is0\o2 : D;} II Main dialog
el se {

:ocusnIC db_:oc usnID;

:f (:;o :: ef.LcgFi~es)(

fnumID = db fnu~ID ; i
Debug dialog

s ::. r n c? y (& s [l] , (ch a r •) & s st a t - >View Na "'e [1 l , s s;:. a::. - > V:. e w Na me [0]) ; s [0]
>Vie;.;Nar:-,e[:J] ;

?:cCs;:.r ((-.:nsigned er.a:: •) s) ;
:.. f (sst2: - >vie1 .. :nt;:-;;==:)

s:::ca: (s, " vl ") ;
else

strcat(s ," v2");
s:;orin:f((char•)aname,":::Treescan Images:%s Focus Data ", s} ;

CtoPstr((cha=•Jdname) ;
err FSMakeFSSpec(O,C,dname,&out:i l e);
err ?S;:>Delete (&cu::: ~el;
e ::r FS pC::eate (&ou:. f: l e, ' I mag ' . 'TSXT ' , srr.Sys:eClSc r ipt);
:.f (e:: ::) ·:Sysaee;:i(2) ; re:-..: :: n 0 ; }

e=r = FS:;oCpenDF (&cu;:.fi~e, fsC-..i::?crm, &ou::.::ef:-<:.:m) ;
if !e=rl '.Sy saeep(2J ;re:u :: n O; :

DoMoveFocusinfinityMk2(); //focus at infi n ity
mi = O; mf = O; ni = O;
:or (i =O; i<f2gcs:eps; i+=:2b st eps) {

SetDNum(~yDialog?tr, focusnID, fstepnu~);
if (Ge:Chunk(l , C, sst at - >ints:eps , O)<qi

SysBeep(l); ret.ur:. 0; }
calcfnum(s,&min,&max,&av};
spri nt.f((c har*)s ," > %f" ,focus num) ;
SetDString (myDialogPt::, fnumI D, CtoPstr (s)) ;

II

sstat-

if <p=ef. di splay) Di s:;o l ay (0, ~, myGl obals. he i ght, 1 , :;ore f. detai 1 , myDialogPt.r) ;
if (pref .Loc;F ile s) (

sprintf((char•)s,"%d %f %. Of %.Of %.Of %d %d %.lf\r"
,i,focusnum,fccus~um2 , fo c ~s~um4 , focu s ~um8 ,m in , max ,av);
CtoPst::(s) ; ccun;:. = s[O];
e=r = ?SWri:e(ou:::efNum,&coun:,&s(l]J;
:f !e=rl {SysBeep (2J;FSC l ose(outrefNum);return 0;}

if (focusnum>mf} {
mi i;
mf = focu s num;

i: (focusnum< (mf*O . 6)
bre a k ;

&& f ccus!lum>l .0)

DoMoveFocusMk2(f2bste;:isl;

ni = i; //remember i steps reache d

mil = 0 ; mfl = 0;
DoMoveFo cusMk2((mi+f2bstepsl - ni); II Move to almost ma x focus

II
II
II

for {i= {mi+f2bsteps); i> {mi-f2retsteps); i-=f2sst.eps) {
if (i<O) break; // dent try and go !:ia:::k j'.>aSt infinity
SetDNum{myDialogPtr,focusnID, f st epnum);
if {GetChunk (1, 0, sstat->intsteps, 0) <4) {

SysBeep{l); return 0;)
calcfnum{s,&min,&max,&av);
sprintf {{char*) s, "< %f", focusnum);
SetDString{myDialogPtr, fnumID, CtoPstr{s));

M46

if {pref. di splay) Di splay { 0, l, myGl obal s. height, l, pref. det ai 1, my Di alogPt r) ;
if {pref.LogFiles) {

sprintf{{char*)s,"%d %f %.Of %.Of %.Of %d %d %.lf ssb\r"
,l,focusnum,focusnum2,focusnum4 ,focusnu m8 , min ,max,av);
CtoPstr{s); count= s(O];
err = FSWrite (outrefNum, &count , &s (1 j);
if (err) {SysBeep{2);FSClose(outrefNum);return 0;}

}
if {focusnum>mfl) {

mil = i;
mfl = focusn um ;

}
DoMoveFocusMk2{-f2ssteps);

if {mfl>mf) {
DoMoveFocusMk2(mil-i); //move to mil max focus
sprintf({char*)s,".%d", {int) (mfl/100 . 0)) ;
SetDString{myDialogPtr, fnumID, CtoPstr{s));
sprintf{(char*)s,"%d %.Of fs - mil\r" , mil , (float) (mfl));

}
else{

}

DoMoveFocusMk2{mi-~); //move to mi max focus
sprintf{(char*)s, " .%d", (int) (mf/100.0));
SetDString {myDialogPtr, fnumID, CtoPst.r (s));
sprintf((char*)s," %d %.Of fs-mi\r",mi, (float.) (mf));

SetDNum(myDia logPtr ,focusnID,fst.e pnum) ;
if (GetChunk(l, 0, sstat.->int.steps,0)<4) {

SysBeep{l); return O;}
calcfnum(s,&min,&max,&av);
sprintf((char*) s, ". %f", focusnum);
SetDString(myDialogPtr, fnumID, CtoPstr(s));
if (pref. display) Di splay (0, 1 , myGlobal s. height, 1 , pref. detail, myDia logPtr);
if {pref.LogFiles) {

}

sprintf{{char*)s,"%d %.Of %.Of %. Of %d %d %. lf !inal posn\r"
,i,focusnum,focusnum2,focusnum4,focusnum8,min,max,av);
CtoPstr{s); count = s [O];
err = FSWrite{out.refNum,&count ,&s (l]);
if {err) {SysBeep(2);FSClose(outrefNum);return 0 ; }

if (pref. LogFiles) E"SClose (out.refNum);
return l;

x***** Do Blind Refocus {us i ng stepper) •**X**"'*

II Use geometry to estimate ac tual distance and then use lookup table to adjust focus
step position

II Return 1 as we assume we are still focussed
int DoBlindRefocus (DialogPtr myDialogPtr, int got lines, float alpha, int

dip, int ys
Dist, float.

, int *ft.able, int dfirst, int dine, int dlast,
a , b I i I j I mi ;

sstatPtr sstat) {
int
Byte
char
double

*p;

EventRecord
long

s (256];
mf,last;
theEvent;
count.,x ;

OSErr
int
float

err;
wn,wstep;
o;

o = (ys*alpha*myGlobals . StepAdj) + dip;
wn = Dist/cos(o/180*3.14159);
if { wn <= dlast)

wstep = ftable[(wn-dfi.::st) /dine];
else

wstep = ftable [(dlast-dfirst.) /dine] ;
/* { Str255 s;
sprintf({char*)s,"o = %f, wn = %d\r, wstep

wstep, fstepnum);
CtoPstr{(char *)s);
ParamText(s,"\p", "\p ","\p");
Alert (MsgAlertID, nil);
}*/

%d fstepnum %d 11
, o, wn,

Appendix M - Scanner Control Software M47

II fstepnum contains curent number of steps from infinity so if wstep is stenum I
want

II then we should move wstep-fste?nu~
DoMoveFocusMk2(wstep - fstepnu~);
Delay(fdelay,&x);

if (pre f.LogFiles) {
SetDNum(my DialogPtr , StatRefocusNo2ID,fstepnum) ;
if (GetChu nk (1, 0, sstat - >in;:steps, 0) <4) {

SysBeep(l); return 0 ;)
i: (pref . display) Di splay (0, 1, myGlobals . height, 1 , pref. detail, myDialogPtr) ;
calcfnum(s , &min,&max,&av);
SetDNum(myDialog?tr , St.atRefocusNo:ID,wn) ;

return l;

Appendix N

Image Processing Software

This appendix presents relevant sections of the image processing software. An

overview of the code is provided with a breakdown into files. Listings are also

provided of relevant sections of code. This includes the parameter extraction macros as

well as the NIH Image additions.

• Parameter extraction macros (version 3.22)

• NIH Image modifications (version TF 3.5f)

N2

N.1 Parameter Extraction Macros (Version 3.22)

The parameter extraction macros have been split into three files as a result of NIH

Image only being able to load 32 kByte macro files.

Parameter extraction source files:

Image Macros

UTILMacros

Modif History

Main macro file which contains all the macros for normal

processing. This includes calibration, height and diameter

estimation, tree stem model generation, display of 3D stem

model, and sweep estimation.

Utility macros which implement processing functions not part of

the normal processing sequence. This includes printing,

generation of thumbnail images, image feature removal, and

filtering operations.

TreeScan macros modification history.

This appendix contains a full listing of the Image Macros file.

Appendix N - Image Processing Software

N.1.1 Image Macros Source Listing

** TreeScan *• image ca?ture and image analysis macros
Production Technology, Massey Ur.:!. ver si ty , 1995.

N3

Version 2. 23 (Note version number in 2 places in file please update both)

Requires modified version of Image (version TF3 . 3)
which inc lude s modified user.p, image.rsrc & image.p

For modi:ication ~i story see se?era:e file.
Computer spec :!. fie : NIH?ath,
Requires 'Background', 'TreeScan Help'

Assoc:ated with utilities file

global variables
Var {image macros}

b,d,ds,d2,d2s,a,as,dbds,d2sbds,xoffset:real;
bcounc,bzCount,grxS,grxSOrig,gryS,dec:mation::!.nteger ;

alpha, reala ~?'.Ja ,C::- oC: real ;
t heta , tariTheta., cosT:ieta, s:..:1Theta: :-ea:;
cosasa lpha, s i nasal;:fr:a: rea~;
dname, version, calibra:edirr,age, :!.mage4model, modellmage:string;
pi : real;
Dist, Ht , W , d:p, lean: real;
Nkr, kr, mag : real;
useo, mo, gotd ipl, optionKey : boo i ea:i ;
progress : integer ;
NIHPath:string;

(30 display global variables}
xll,xl2,x l3 , yl,iy,ix,x,y,pixstep,dmeas,scale:integer;
SliceSize , c:'reeHeight, Slices: rea l;
HS, VS , ro tation, thi , thet.a, thetastep: rea l;

bcoun t, :ni:iT=-eeHgt., ~axTreengt : ir:~ege:- ;
fthe:.a: real;
clearb4paint : boolean ;
minTreeHgt:., maxTreeHg~ : i~ :.ege:-;

{••*•••***•*•*•*• proceciures ••••w••T•••••••* i

(--}
procedure CheckO?:ionKey;
begin;

SetCounter(7);
rX [7] : = 0;
Usercode(6,l,2 , 3);
if rX [7] = 1 then O!"tion!<ey:=t::ue else op:ion!<ey:=false;

end;
{- ---------- --------------- ------------ ------------- ----------------------- }
procedure set.Path;
begin;

NIHPath :='Tasman H8:Ap?s:NIP. !rr,as;e: ';
end;

{- -------------------------------------- --- --------------------------------}
procedure LoadCalibDat;
begin;

SetOptions('X-Y Center,Userl,0ser2');
SetCounter (7);
rUserl[4) := O; {d}
Usercode(2,l,2,3); {Load calib data into measurements arrays}

{ if (rUserl[4)=0) then
Beep

else
ShowResults;}

end;

{--}
Procedure LoadDipLean;
begin;

SetCounter (7);
rX [7) : = 0;
Usercode(3,l,2,3);{Load c1p and lea:i :rom the two data files and combine)
if rX[7] = l then gotdipl:=true else gotdipl:=false;
if gotdipl = true then begin

decimation := rY[7);
dip : = rUserl[S]/lBO*pi;
lean := rUserl[6]/180*pi;
ShowMessage('dip = ',dip /pi*180, lean ',lean/pi*l80)

end else
beep;

N4

end;

{--}
procedure RemovePerspecti ve;
var

otheta, xs, ys: real;
temp, txl, tyl, tx2, ty2, i, orCount, width, height, tempdec:integer;
tempStr : string;

begin;
if rCount=O then begin

LoadCalibDat;

end

if {rUserl[4]=0) then begin {No .calib file}
PutMessage {'No saved calibration data. Mark the left, centre, and

right of the bottom calibration bar with the cross
hair tool and then re-run this macro.');

ResetCounter;
exit;

end;
d2 : = rUserl [1]; { actually

accordingly
a := rUserl [2];
b .- rUserl [3];
d .- rUserl[4];
decimation := rY[7];
dip : = rUserl[S]*pi/180;
lean := r Userl[G]*pi /180;
checkOptionKey;
if optionKey then begin

we will pretend d2 d and then scale d2s

tempdec := Get Number {'Enter value
fo r i :=l to

rY[i] := rY(i]/tempdec;
decimation:= decima~ion * tempdec;

for image decirr.ation',l);
rCoun: do

end;
alpha := realalpha*decimation;

gryS : = rY [5] ;
grxSOrig := rX[S];
GetPicSize{width,height);
grxS : = width/2;
ds := rUser2(1];
as := r 0ser2[2];
theta := rUser2[3]*pi/ 180;
d2s := rUser2[4];
Dist := rUser2(5];
Ht:= rJser2[6];
if rUserl[7] = 1 then mo :=true
else mo:= false;
if rUser2[7] = 1 then useo := true
else useo:= false;

dbds := d/ds;
d2sbds := d2s/ds;
cosasalpha := cos(as*alpha);
sinasalpha := sin{as*alpha);
tantheta : = {cosasalpha - d2sbds) /sinasalpha;

mag : = d/ds;
W := mag/kr;

if usec=true then
if mo=true then

if gotdipl=true then begin
tempStr:='Ca libration data loaded from file. \ - using 0 -
dip I lean from data f ile\ ';

end else begin
tempStr:='Calibration data loaded from file.\ - using 0 -
dip I lean manual entry\';

end else begin
tempStr: ='Calibration data loaded from file.\ - using 0 from

modified 0\';
end else begin

end;

tempStr:='Calibration data loaded from file. \ - using Al
method \ ';

ShowMessage{tempStr,'O -', theta/pi*l80:2:1, D -' Dist:4:1,
Mag =',Mag: 6: 4, ' Ht =',Ht:4:1 , ' Nk r =',N kr :6:6,'

W =',W:4:1, Dip ',d ip/pi*l80 , Lean '
lean/pi*l80, Decimation =', decimation);

else if {rCount<>3) and {rCount<>6) then begin
PutMessage('Mark 3 points on the bottom bar or 6 points on both bars of

the calibration rod and then re-run this macro');

end

ResetCounter;
exit;

else begin
UserCode(l,1,2,3); {Enter real world calibration rod dimensions}

Appendix N - Image Processing Software

if rCount=3 then {must be enter ing 0 so
mo := true; useo := true

just use bottom bar} begin

end else begin
mo := false;
useo := false

end;
d2 .- rUserl[l];{ actually we will

accordingly)
a .- rUserl[2];
b .- rUserl[3];
d .- rUserl(4];

If mo=true then begin
SetCounter(6);
rX [4] : =rX [1 J ;
rX[S] :=rX[2];
rX [6] : =rX [3];
rY [4] : =rY [1] ;
rY[S] :=rY[2];
rY[6) :=rY (3);

pretend d2

rY[2]:=rY[2]+10; {just to stop divide by 0)

d and the n

a .- O; {so calculated y from these will all be b=l40)
end;

g ry 5 : = rY [5] ;
grxS := rX[S];
rX[l] :=rX[l]-grxS;
rX[2 } :=rX(2]-grx5;
rX [3) :=rX[3)-grx5;
rX(4 ; :=rX [4)-grx5;
rX(6: :=rX[6] -g rx5 ;

checi<.O;>tior.Key;
Load.JipLean;

r':'[l) := rY [l) -g ryS;
rY[2] :=rY(2) -gry5 ;
r':'(3] :=rY(3]-gry5;

if cpt.icnKey er gotdipl=false t~en
decimation := Get.Number('Snter value for steps per line ',l);

alpha := realalph a*cieci:r.a t.ior.;

ds:= sqrt.(sqr(rX[6] - rX[4]) + sc;r(r':' [6] -rY [4]));
as := rY[2);
ci2s:= (sqrt{sqr(rX (3] - rX[l]) - sqr(!::Y[3]-rY[l])))*c/d2 ;
d2 : = d;
dbds := d / ds;
d2sbds := d2s / ds;
cosasalpha := cos{as•alpha);
s i nasalpha := sir.(as*alpha);
tant.heta := (cosasalpha - d2sbds)/sinasalpha ;
the:. a : = arctan (tant.het.a);
mac := d/ds;
Nk~ := mag I 1500;
W := :nag/kr;

if ~==true then begin
if gotdipl=false then begin

er.d;

deci:nation := GetNu:nber(':Snt.er value for ste:::>s per line',0);
dip:= GetNumber('Enter value for dip in deg.ree.s',0)/180*pi;
lean . - GetNumber('Enter value for l ean in degrees',0)/180*pi;

theta . - dip ~ lean;
end else begin

otheta := theta;

scale

theta := GetNumber{'Calculat.ed val u e of 0 is ' ,theta/pi*l80)/180*pi;
if {abs{theta-otheta)/pi*lBD>C.l} then

useo := true;
enci;
Dist .- W * cos (theta);
Ht:= W * sin{theta);

if u seo=true then
if mo=t rue then

if gotdipl=true then begin

NS

d2s

tempStr:='Calibration data calculated.\ - using 0 - dip I lean
fr-o~ data file\';

end else begin
tempStr:='Calibration data calculated.\ - using 0 - dip I lean

manual entry\';
end else begin

tempStr:='Calibration data calculated.\ - using 0 from modified
0\';

e:--:C. else begin
tempSt.r:='Calibration data calculated.\ - using Al method\';

end;
s=:owMessage{tempStr, '0 =', theta / p i '"l80:2:1, D =' Dist:4:1, Ht

=',Et.:4:1,' Nk r =',Nkr:6:6,' Mag =',Mag:6:4,'
W =',W:4:1, Dip ',dip/pi*l80, ' Lean '
lean/pi *180, Decimation =' decimation);

N6

{Save calibration stuff to a in measurements arrays and then store to a file}
setCounter(7);
setUserlLabel('Calib Data');
setUser2Label('Calc Data');
rUserl[SJ .- dip/pi*l80;
rUserl[6) .- lean/pi*l80;

rUserl [2) . - a;
rUser2[1) .- ds;
rUser2[2) .- as;
rUser2[3) .- theta/pi*l80;
rUser2[4] .- d2s;
rUser2 [5] : = Dist;
rUser2(6] .- Ht;
rY[7) := decimation;
if mo=true then rUserl[7) : = 1 else rUser1[7) := O;
if useo=true then rUser2[7] := 1 e lse rUser2[7] := 0;
SetOptions('X-Y Center,Userl,User2');
SetExport('Measurement s');
Export(concat(WindowTitle, '.calib ')); {try :2 to indicate dont put up dlog box}
end;

end;
{--}
procedure CheckCa libration;
begin;

if progress <>3 then begin

end;

PutMessage('Image has not been calibrated.
<FS> ');

exit;

if (calibratedi rr.age <> WindowTitle) then

Run calibration macro:

PutMessage('The calibration data for this image is not loaded
(', calibratedimage,' is loaded) . Calibrate
image first using [FS) .');

end;
{------------------------------------- ------ ------------------------------- }
procedure setupText;
begin;

Savestate;
SetFont('Geneva');
SetFontSize(9);
SetText('Left');

end;
{--}
procedure PlotTreeGrid;
var

i:integer;
begin;

if clearB4Paint then begin
makeroi(x-50,y-3.S*pixstep,100,4*pixs tep) ;

clear;
end;

MoveTo(x,y);
LineTo(x,y-3.S*pixstep);

for i:= 0 to 3 do begin
MoveTo(x-50,y-i*pixstep);
LineTo(x+SO,y-i*pixstep);

end;
end;

{--}
procedure Plot3DTree;
begin;

rLength[l] :=xl3;
rLength [2]: =yl;
Usercode(9,theta,HS,VS); {Plot a 3D tree}

end;

{-- }
procedure plotscaleline;
var

step: integer;
begin;

MoveTo(x,y);
LineTo(x,y+S);
MoveTo(x-15,y+l3);
writeln(scale:3:0, ' c m ');

end;
{--}
procedure plot scale;
var

step: real;
begin;

scale:=SO;

Appendix N - Image Processing Software

x:=xll+scale"HS; y:=yl;
plotscaleline;
x:=xl2+scale"HS; y:=yl;
plotscaleline;
x:=xl3+scale*ES; y: =yl;
plotscaleline;
scale:=-50;
x: =xll+scale*H S; y:=yl;
plotscaleline;
x :=xl2+scale*HS; y:=yl;
plotscaleline;
x:=xl3+scale"HS; y:=yl;
plotscaleline;

end;

{--)
procedure cross;
begin;

end;

MoveTo(xs , ys -s i ze);
LineTo(xs,ys+size);

MoveTo(xs-size,ys);
LineTo(xs+size,ys);

{-------------- - ---)
procedure Modeli:ifo;
var

DiamBE, SEiJ, maxSw? , maxS;;pHgt, r:iaxSwpSEJ: real;
temp : real;
temp l , temp2 : str!ng ;

begin;
maxTreeHgt:=rA=ea[i];
minTreeHgt:=rMean[i] ;
DiamBH:=rStdDev [l];
Si::D: ==a r.g le [2.] ;
maxSwp:=rArea[2];
maxSwpHgt:=rMean[2]/10C ;
rr.axSwoSED:=rS:dDev [2];
slice; := r Userl[l] ;
sl i ceSize := r User2[1] ;
if (:-:iaxS;;pSE CJ/maxSwp<l) t hen oeg in

temp l .- ''· :emp2 .- ' SED '; tern? := maxSwp/maxSwpSED;
end else begir.

temp:. 'SED/'; te:-:ip2 :emp . - maxSwpSED/maxSwp;
end

N7

ShowMessage('S-cem mode~ i oacieci. \\Max ::icdei Hgt
m \ Min mode: Hg:
\Dia me:er at breas: Hg:
', SEO,' cm \Max sweep:

(maxTreeHg: /10 0) : 4 :2,

enci;

height maxSwpHgt:4:1,
',slices:2: 0 ,' s li ces,\
1 ,s l iceSize:2:0,' c:-n. ');

SelectWindow(' Values');

Macros

(minTreeHgt/!00) : 4: 2, m
',D:.amBP.:2:1,' cm \Stem SED

templ,temp:2 : 0,temp2,' at
re \ \ Model consists of

spaced at

{--)
macro 'TreeScan
begin;

set? a th;

Help [~l] ' ·

Open(concat(NIH?ath, 'TreeScan Help'));
end;
{--)
macro 'Image Capture(';
{--)
macro '
var

Aguire Image from Treescan[F2] ' ·

test: string;
begin;

test := WindowTitle ;
Acquire('Treescan');
if test<>WindowTitle then

save;
end;

{save if new image returned }

{--}
macro 'Pa rameter Extraction(';
{--}
macro ' Load an image [F3] ';
begin;

Open (' ');
progress : =l;
resetCounter;

end;

{--}
procedure F4MacroProcedure;
var

tempH, tempW:integer;
begin;

version := 'TreeScan Utility Macros\
setPath;

ShowMessage(version);

pi := 3.14159265;

version TF 2.23';

kr := 0.000175; {given mag in cm/pix and dist in cmj
realalpha := 0.0103021978 * pi I 180; {0.010332}
dname := WindowTitle;
setOptions('');
InvertY(l);
killRoi;
measure;
If (histogram[O)) >0 then begin

AddConstant (1);
end;

SetForegroundColour(255);
SetScale(O, 'pixels');
ResetCounter;

bCount : = 0 ;
bzCount . - O;

GetPicSize(tempW,tempH);
ShowMessage(version);
progress .- 2;

end;

macro Remove white pixels[F4] ';
{ Removes white pixels by adding 1 to all grey levels if necessary

then sets forground to black. Should then set correct tool for marking
6 points on the calibration rod.

begin
F4MacroProcedure;

end;

{--}
macro ' Perspective Calibration[F5j ';
(Assumes calibration data saved on d~sk)
begin;

if progress<>2 then
if rCount=O then begin

PutMessage('Remove white pixels using ?4 macro first.');
exit;

end else begin
ResetCounter;
F4MacroProcedure;

end;
ShowMessage(version);
RemovePerspective;
xoffset .- (grx50rig- grx5) *dbds*ccs (thet.a) /cos (theta+O*alpha);
setUserlLabel('X in cm');
setUser2Label('Y in cm');
setPrecision(l);
setScale(O, 'pixels');
SetForegroundColour(O);
ResetCounter;
calibratedimage := WindowTitle;
progress : = 3; { Image Calibrated ·for Perspective)

end;

{-- }
macro ' Tree edges to data points [F6] ';
{

NS

Requires an image of a tree trunk with the edges of the trunk marked in white
}
var

w,h,xs,ys,yint,left,top,width,height,i,ii,nPixels,mean,mode,min,
max:integer;

lasty, lastx, x, y: real;
pointsThisLine,spacing:integer;

begin
CheckCalibration;
RequiresVersion(l.45);
Measure;
GetResults(nPixels,mean,mode,min,max);
if (histogram(O]) <100 then begin , .

PutMessage('First mark the eages ir. whi te');
exit;

end;
SaveState;

Appendix N - Image Processing Software

GetRoi(left,top , width , height) ;
GetPicSize(w,h);
if width=O then begin

Se lectAll;
GetRoi (left,top,width,height);

end;
Duplicate ('Tree Edges');
Invert;
SetForegroundColor(O) ;
SetLineWidth(l);
SetThreshold(255) ;
checkOptionKey;
spacing := 10;
if optionKey then

spacing : =get Number (' Mea su::-eme:-:t. spacing (pixels) : ' , 2);
i:=l ; ii := l ;

::-epeat
MoveTo(O , i); LineTo(width,il ;
i:=i+l;
ii :=i i+l ;
if ii=spacing t h en beg i n

ii:=l;
i :=i +l;

end;
until i>height;
set UseriLabel('X in err.');
setUser2Label('Y in er.. ');
setP recision (1 l;
set0pt.ions(' Area, U ser~, U ser2 ' l;
LabelParticles(false) ;
Se:?ar:icleSize(l,999999);
AnalyzeParticles;
ii:=l;
lasty:=O;
poir.tsThisLine: =O ;
for i: =l to rCou nt d o begin

xs := rX[i;- grx5;

~x r i ;
::Y [i ;

.- ::- x : iJ T : eft. ;

.- r':'.[i) +h - t.cp - :"leight;

ys :;:: ~': ~ :..: - c;ry5;
useo =t::ue :he:-,

y :=sin(theta + ys • alphal/cos(:he:a • ys • alpha)•Cist - ~:+b
else

N9

y := a•ccs(theta•as•alphal / sinasa_pha"sin(ys•a:pha)/cos(theta+ys*alpha)
- b ;

x .- xs•dbds•cos(theta) / cos(t.he:a+ys•aipha)-xo::set.;

(pointsThisLir.e= O) a:-:d (y<>:as:y) t.he:1 '::iegin
rA::ea [ii) :=y; {acce::i t L::s: pci:1t.)
rUserl [ii ; :=x ;
pointsThisL ir.e :=:;

e nd else if poir.tsThisLine=l : r.en begi:-:
if y=lasty the:-: begin

if (x-:as:.x) >10 ::"len begi:1 '.provi ded >lOcm apart -> record

e~ci;

as ::i:2)
~User2 t i.i j : =x;
ii: =ih:;
pointsThis~i:1e:= O ;

end else begin
rArea [L] :=y;

end;
e:1d;
lastx:=x;
lasty:=y;

end;
RestoreState;

first ?Oir.t }
rUserl [ii]: =x ;
pointsThisLine:= l ;

SetCounter(ii-1);
Dispose;
ShowResults;
SetExport('Measurements');
Export (concat(dname,' .stem '));

enci;

{y changed -> replace as

{------ -- ------------ ------ ---------- -- ------------------- - ---------------- }
macro ' Do 3D f ile conversion[;:-7] '·
var
spacing
begir.;

real;

{

SetCounter(7);
rX [7] := O;
Usercode (7, l,2 , 3);
if (rX(7]=0) then begin

~rogress:=S;}

{Loa d 2 .stem files and comi::ine}

NIO

Beep;
PutMessage ('Edge files not found. Please ensure both views have been

processed and one of the views is selected.');
end else begin

PutMessage('3D conversion completed. Model in memory and saved to disk.');
ShowResults;)

Model Info;

progress: =6;
end;

end;

image4model := calibratedimage;

{--)
macro ' Display 3D model [FB] ';
var

lasti, i, ii: integer;
tempXAv, tempXD, tempZAv, tempZD:real;
firstpoint:boolean;

begin;
if progress<>6 then begin

PutMessage('Load 3D model f irst .');
exit;

end;

xll:=l50; xl2:=250; xl3:=400; yl := 400 ; iy:=450; ix:=550; pixstep:=lOO;
pi:=3.1416; thetastep:=45;
Slice Size: =rUser2 [1] ; Slices: =rUse::-1 [1] ; T reeHeight: =S lices• Sl i ceSi ze;

HS := 0.5; {?ixels/cm horizontal)
VS:= (4*pixstep /4000)*SliceSize ; !?ixels/slice vertical (pix/cm*stepsize))
Open(concat(NIHPath, 'Background'));

plotScale;

{Plot 1st view of the tree)
i:=rCount;
firstpoint:=t::-ue;
for ii:=O to (Sl ices - 1) do begin

if firstpoint then MoveTo(xll+(rUserl [i}+rMean[i] /2)*HS ,y l - ii*VS);
if rAngle[i]=l then begin

LineTo(xll+((rUserl[i]-rMean [i]/2)*HS),yl -ii*VS);
firstPoint:=false;
lasti:=i;

end;
i:=i-1;

end;
LineTo(xll+((rUserl[Lasti]+rMean[:asti]/2l*HS) ,y l -(rCount-lasti)*VS);
i: =rCount;
firstpoint:=true;
for ii:=C to (Sl ices - 1) do bec in

if firstpoint then MoveTo(xll+(::- Userl[i]+rMean[i]/2)*HS,y:-ii*VS);
if rAngle[i]=l then begin

LineTo(xll+((rUserl[i]+rMean [i]/2)*HS),y l - ii*VS);
firstPoint:=false;

end;
i:=i-1;

end;

{Plot 2ndview of the tree)
i: =rCount;
firstpoint:=true;
for ii : =0 to (Slices-1) do begin

if firstpoin t then MoveTo(xl2+((rUser2(ij+rStdDev [i]/2)*ES),yl - ii*VS);
if rAngle[i]= l then begin

LineTo(xl2+((rUser2[i]-rStd~ev[i]/2)*HS),yl-ii*VS);
firstPoir.t:=false;
lasti:=i;

end;
i:=i-1;

end;
LineTo(xl2+((rUser2[Lasti]+rStdDev[lasti]/2)*HS),yl-(rCount-lasti)•VS);
i:=rCount;
firstpoint:=true;
for ii:=O to (Sl ices -1) do begin

if firstpoint then MoveTo(xl2+((::-User2[i]+rStdDev[i)/2)*HS),yl-ii*VS);
if rAngle[i]=l then begin

LineTo(xl2+((rUser2[i]+rStd~ev[i]/2)*HS),yl-ii*VS);
firstPoint:=false;
lasti:=i;

end;
i:=i-1;

end;

theta:=O;
Plot3DTree;
progress:=?;
saveas(concat(image4model, • .3D pie'));
model!mage := WindowTitle;

Appendix N - Image Processing Software

end;
{--)
macro ' (';
{--)
macro ' Di sp l ay x,y posn in cm[F9]'
va ::

test, x, y, yn , xs , ys: real ;
width,height: i ntege::;

begin;
CheckCa librat icn;

GetPicSize(width,hei ght);
Get Mou se(xs ,ys);
checkOptionKey ;
if op:ionKey then beg~n

l':oveTo (xs - 2 , ys-2); Line To (xs .,-2 , y s+2);
MoveTo(xs-2,ys +2); LineTc(xs+2,ys-2); MoveTo(xs+lO,ys);

end;

ys : =he i ght-ys-1 ;
xs .- (xs- c;::xS);
ys := ys - gryS;

{PutMessage('?ix >/\:xs :', XS 1
I ys: I ys);)

x := xs*dbds •c os (t heta)/cos(tr.e :a ~ ys•a l ?~a)-xoffse:;

Nll

y := a•ccs (:'.:e:a+as ·a ~?ha) / sir:asa ~pha ·s ~n (ys•al?!°:a) /cos(theta•ys*alpha) + b;
yn :=~i'."l(theta ~ ys • a~pha) / cos(:het a • ys • al?ha)*Dis:- Ht+b;
S howt>'.essage(' Eeigh:\ ', Cyr. /100):3 :2,' m\ '1orizon:al offset\

I 1 X: 0: l, I Ci7: I);

Show~essage ('(X,Ya l,':'o) \(',x: O:l,', ' ,y :3:1,',
theta : = GetNumber(' 0 is',theta/pi•l8C)/180•pi;

if op:ionKey then begin

e:-id;
end;

se:-.:oText;
if u~eo=tr~e then begin

>;rite l n(' (', x:O:l , ', ' , yn:J:l, ') ');
e nd else bec;in

;.·riteln(' C'.x:O: l ,' ', y:3::, ') ');
er.d;
:-esto:-eState ;

' , yn: 3: l, ') cm') ;
)

{------------- --- --------------)
Di s play distance in cm [::O~O] '

va ::
d ia ,he i , x2s,y2s,xls , yls , yint:reai;
xl,x2,y:,y2,to?,lef~,~eig~t:intese:;
width,he ight :in tec;e::;

beg ii!;
Chec kCalibraticn;
GetLine(xls,yls,x2s,y2s,~idth);
if xls<O then begin

Put~essage('This macro requi::es a line selection .');
exit;

end;

setFc::zgroundColo~ :: (l);
checkO?tionKey;
if op:icnKey :hen begin

MoveTo (xls, yls); Line To (x2s, y2s); MoveTo (x2s+l0, y2s);
enci;
GetPicSize(w idth , height) ;

yls :=height-yls-1;
xls xls- g::x5 ;

yl s := yls-g::yS;
xl .- xls*dbds•cos(theta)/cos(theta+yls•alpha)-xoffset;

if useo=t::ue then
vl

else
:=sin(theta + yls * alpha)/cos(theta + yls * alpha)*Dist- Ht+b

yl := a*cos(theta+as*alpha)/sinasal?ha*sin(yls*alpha)/cos(theta+yls*alpha)
+ b;

y2s :=height-y2s-l;
x2s .- (x2s- grx5) ;

x2
y2s := y2s-gry5;

:= x2s*dbcis*cos(theta)/cos(thcta•y2s•alpha)-xoffset;
if useo=true then

:=s in(:heta + y2 s * alpha) / cos(theta + y2s * al?ha)*Dist- Ht+b v2
e:!.se­

y2 := a•cos(theta+as*alphaJ /sinasa l pha•sin(y2s•alpha) /cos(theta+y2s*alpha)
+ b;

dia . - sqrt (sqr (xl-x2) + sqr (yl-y2));
hei .- (yl+y2) /2;

ShowMessage('Diameter\ ',dia:O:l,' cm',chr(l3), 'Av height\
',hei/100:0:2,' m');

if optionKey then begin
setupText;
writeln(dia:O:l,'@ ',hei:O:l);
restoreState;

end;
setForegroundColour(O);

end;

{--)
macro ' Display sweep[Fll)'
var

height, sweeplow, sweephigh, sweepHgt , :e::ip: integer;
templ, temp2:string;
xls, yls, x2s, y2s, width: integer ;

begin;
if progress<>7 then begin

PutMessage('Display 3D model first.');
exit;

end;
GetLine(xls,yls,x2s,y2s,width);
if (xls>=O) then begin

if yls=y2s then yls:=y2s+l;
if (yls>y2s) then begin

sweepl ow:=(yl-yls)/VS *SliceSize ;
sweephigh:=(yl-y2s) /VS*Sli ceSize ;

end else begin
sweeplow:=(y l -y2s) /VS*Slice5ize ;
sweephigh:=(yl -yls) / VS*SliceSize;

end;

sweepHgt . - sweephic;:-0 - s weep low;
end else begin

end;

end;

end;

sweepHgt := 600;
GetMouse(xl s,yls);
sweeplow:=(yl-yls)/VS*SliceSize - s~eepHgc/2;
sweephigh:=(yl-yls)/VS*SliceSize + s~eepHgc/2;
MakeLineROI(xls,y l s-(sweepHgt/2/sliceSize *VS) ,xls,

yls+(sweepHgt / 2 / sliceSize•VS)) ;

if (s;.·eeplow<minTreeHgt) then begin
sweeplow := minTreeHgt;
if ({sweeplow+sweepHgt) <maxT=eeHgt) ::.en

sweephigh .- mi nTreeHgt + sweeph<;t;

if (s·,·eephi gh> maxTreeHgt) -:hen begin
sweephigh := maxTreeHgt;
if ((sweephigh-sweepHgt) >r:linTreeEgc) :~er.

sweeplow := maxTreeHgt - sweepHg:;

Usercode(S,sweeplow sweephigh , ruser2 [~] 1 ; {Cal c ul ate sweep)
if (rX[2)/rX[3)<1) then begin

templ := ''; temp2 := ' SED '; ce::ip :; rX[3 j/rX[2) ;
end else begin

templ :='SEO/'; temp2 :=";tern,:::= rX (2]/ rX (3] ;
end

N12

ShowMessage('Sweep of ',templ,temp:2::,temp2,' over ',rX(l)/100 :1:0,' m
section. \\ Maximum s weep = ',rX(3],' cm\ at height = ,
rX[4)/100:3:1,' m\ a:-:d sed =',rX(2] :3:0,' cm \\ Section
max height = , swee;friigh/100:2:1,' m\Section min height
= ' sweeplow/100:2::,' m');

SelectWindow('Values');
end;

{---------------- -- -- ----)
macro ' Mark Scale(Fl2) '
var

yi,xi,xs,ys,ysi,xsi,,yz,yint, xscale, yscc.2.e:rea l ;
OTH, OrgW, OrgH, NewW, NewH, xo, yo ,x, y:in:eger;

OrgPic, NewPic, Pix, RefH , N, size: intege=;
begin;

CheckCalibration;
N:=l; size:=lO;
GetPicSize(OrgW,OrgH);
for yo:=O to 40 do
begin

for xo:=-N to N do
begin

ysi .- (arctan (((yo*lOOJ +Ht-bl /D:.s:) - theta) /alpha;
xsi .- (xo*lOO+xoffset)*cos(theca +ysi*alpha)/(dbds*cos(theta));

xs := xsi+g:-x5;

Appendix N - Image Processing Software

end;
end;

end;

ys:= OrgH-(ysi+l+gryS);

if ((Round (yo/10) =yo/10) and (xo=O)) then
begin

end

size:=20;
MoveTo(xs+25,ys);
MoveTo(xs-50,ys);

writeln(yo, ' m'
writeln(yo,' m'

) ;
) ;

else if ((Round(yo /S) =yo /5) and (xo=O)) then
begin

end

size:=lO;
MoveTo(xs-50,ys);
MoveTo(xs+25,ys);

else size:=S;

w:::iteln(yo,' m'
w:::iteln(yo,' m'

cross;

) ;
) ;

ShowMessage(' (x,y) \(',xi:O:l , ' , ',yi:3: 1 , ') ');

{•••*•******•**** Additional macros •***************}
{------------------------------- ---)
macro ' Utilities(';

N13

{--)
mac:-o 1

va:::
:..oaC. 3D file ir::or:r:atic~[BJ 1

;

s?aci:-:g :::eal;
begi:-;

set?ath;
Se:Counter(7);
rX [7] : = O;
Use:::code(B,l,2,3);
i: (:::X [7] =0) then begin

3eep;

i Lcad .30 file)

?utMessage ('3::J moC:el file no: found. Sr.sure 3D conversion
cc:-:ipleteC anC cr.e of t.ile views is selected.');

e n ci e 1 se ::::eg in
i~age4model .- Windc~Ti:!e;

~ode l Info;
?=ogress:=6;

er.d;
e:-:ci;

has

{--)
mac:.-o ' Rota:.e 3D mociel right [; 1

;

va:::
ii : integer;

tem?XAv, tempXD , tempz.rw, te!n;:>ZD:::eal;
begi:-.;

i : (modellmage <> Wir.do.,::tle :hen
begin

Use:::code(~ , 4,2 , 3);

ex it ;
e:iC.;
:he:a:=theta-thetastep*pi/180;

clearB4Paint:=true;
x:=x:3; y:=yl;
Plo:T:::eeG:::id;
MoveTo{x,y);
LineTo(x-30 , y+30);

?lot30Tree;
plo:Scale;

end;
{--)
macro ' Rotate 30 model left [) ';
va:::

i, ii : integer;
tempXAv, tempXO, tempZAv, tempZD:real;

begin;
if (modellmage <> WindowTitle then
begin

Usercode(4,3 ,2,3);
exit.;

enci;

theta:=theta+thetastep•pi/180;

clearB4Paint:=true;
x: =xl3; y :=yl;
Plo;:TreeGrid;
MoveTo(x,y);
LineTo(x-30,y+30);

Plo;:3DTree;
plotScale;

been

end;
{--}
macro ' ScrollUp[-) '·
begin;
Usercode(4,l,2,3);
end;

{--)
macro ' Scroll Down [] ';
begin;

Usercode(4,2,2,3);
end;
{--}
macro ' Deselect [] ' {esc}
begin;

killROI;
end;
{--}
macro ' Load processing macros/M';
begin;

setPath;
Open(concat(NIHPath,'UTIL Macros'));
ShowMessage('Loading:\ TreeScan Utility Macros');
Usercode(l0,1,2,3);

end;

Nl4

Appendix N - Image Processing Software N15

N.2 NIH Image Additions (Version TF 3.5f)

The NIH Image source files are set up in such a way that a programmer can add their

own routines to the User.p file. These code routines can then be called from the macro

language using the Usercode() call. Ten routines have been added to the User.p file for

the TreeScan system.

NIH Image Additions source files

User.p File to which pascal user routines may be added to NIH Image

to speed up or add additional capabilities to the NIH Image

macro language.

This appendix contains several relevant sections out of the User.p file.

N.2.1 User.p Source Listing

unit User;

{Modification
{30/1/95 RHP
{ }
{
{
{ 31/1/95 RHP
{
{ 1/2/95 RHP
{
{
{
{

History)
V2.0 for Tasman)

V2.l

V2.2

Add a user routine to load calib data from a file)
Image.calib which is written by the calibrat ion macro}
Allow for calibration rod with unequal bars}
load calib data file now doesnt show file chooser dlog)
Load data file with lean and dip angles in them}
modified plugins.p to try and get image name set in}
plugin back into image}
:

Nl6

{

V2.3
V2.4
V2.5 Copy the vref from acquire plugin so we save image to correct

folder)
V2.7 when loading .dat files with dip and lean use file name uip to

vl or v2;)

9/3/95 MW
user7 routine which returns l if the option key is down)

V2.8 20 to 30 file conversion, load 30 information}
V2.9 Plot 30 tree routine)
V3.0 Modified calib rod default to 200 .5 5cm)

20/9/95 MW
11/10/95 MW
12/10 /95 RHP

V3.l Added .300 cutout fil e for~at)
V3.2 Modified .300 output file format(LF->CR/LF , ! on pcode no 's))
V3.3 We didnt put buffers back if there was an error - fixed)
V3.3a On call plugin tell them they can use all space including cut &

undo :Ouf not/2}
16/10/95 MW V3.~ Sideways arrows, .30 additional info, calculate sweep &

maxsweep, several other updates}
24/10/95 MW

8/11/95 MW
V3 .5
V3. Sb
V3 .5:::

Mino r 300 output fo rmat modifi cations)
30 display position line fix)

16/11/95
17/11/95
20/11/95

MW
MW
MW

User .a code to load macros from within a macro)
V3.5ci Rer..ove buffer size checkir.g in LineROI (Image.pl
V3.5f Sorting the loaded branch data (Oevt))

procedure RHPCalibrod;
var

itemhit, mydialogid : integer;
pmydialog: OialogPtr;

begin
mydialogid : = 129 ;
pmydialog := GetNewD~alog(myciialogid, r:il, ?OINTER(-1));
if (pmydialog <> nil) then begin

SetPort(pmycii a l og);
ShowWindow(pmydialog);
SelIText (pmyciialog, 3, 0, 32767);
repeat

ModalOialog(nil, itemhit);
if itemhit = 4 t~en
itemhit := 4 ;

until (itemhit = ok) or (itemhit = cancel);
UserlA(l] := GetOReal(pmydialog, 3)
Userl A (2] := GetOReal (pmydialog, 4)
Userl A [3] : = GetOReal (pmydialog, 5)
Userl A (4] : = GetOReal(pmydialog, 6)
if itemhit = cancel then begin

OisposOialog(pmydialog);
exit(RHPCalibrod);

end;
DisposDialog(pmydialog);

end;
end;

procedure RHPLoadCalibData;
var

fname: str255;
err: OSErr;
RefNum, nValues, i: integer ;
rLine: RealLine;
Finderinfo: Finfo;

begin
fname := concat(InfoA.title, '.ca lib');
RefNum := InfoA.vref;
if not (GetFinfc(fname, RefNum, Finderinfo)

exit(RHPLoadCalibData);
ShowMessage(con:::at(' Loading from' fname)) ;
InitTextinput(fname, RefNum);

noerr) then

Appendix N - Image Processing Soflware

i : = 1;
while not TextEOF do begin

GetL:.neFromText (rLine, nValues) ;
xcenterA[i) := rLine[l];
ycenterA[i) := rLine [2] ;
UserlA[i] .- =Line[3];
Userr[i) . - =Line[4] ;
i := i + l;

end;
end;

procedure MWScroll (Paraml: extended);
var

DeltaH, DeltaV, width, he ight, ScrollDi::-ection: integer;
lee: point;
Sa veSR: re ct;
WasDigi ti zing: boolean;

begin
with infoA do oegin

if ScaleToFitWinciow ther. begin
PutMessage('Scrolling does not work in "Scale to Fit Window" mode .');
exit(MWScroll)

end;

ScrollDirection := rou nd(para~l);
witr. S::-cRect do begin

width := righ: - left;
height := bot:on - tcp

end;
SaveSR . - SrcRect;

DeltaE .- O;
Del taV . - O;

case ScrollDi::-ection of
1:

DeltaV . - round (-heigr.: • C. Bl ;
2:
De~taV .- round(height • C.8);

3:
Del:aH .- rounci(-width • 0.5) ;

4:
Del :a H .- roc:nd(widtr. • 0 . 5);

ot'1e::-wise
ShowNoCodeMessage;

end;

with S=cRec: de becin
left : = SaveSR. l~ft + Delta'C;
top : = SaveSR.top - DeltaV;

Le:t

Right

N17

if OptionKeyDown and ((Scroll Direction = l) or (ScrollDirection
begin

2)) then

left := (PicRect.right - PicRec:.left) div 2 - width div 2;
{Centre left I righti

right.- (?icRect.right - PicRect.~eft) div 2.,. width div 2;
end;

i: OptionKeyDown then
case ScrollDi::-ection of

top . - ?icRect. to?;
2:

top . - ?icRect.bottom
3:

left . - PicRect.left;
4:

left . - PicRect. right
end;

if left < 0 then
left : = O;

- height;

- height;

if (left + width) > PicRect . right then
left .- PicRect.right - width;

right := left + width;

i: top < 0 :hen
top := O;

if (top + height) > ?icRect.octton then
top := PicRect.oottom - height;

bottom := top + height;

end;
UpdatePicWindow;
DrawMyG rowlcon(wptr);

WhatToUndo := NothingToUndo;

Up }

Down

Left

Kight

ShowRoi;
end; (with infoA)

end;

procedure MeasMaxSweep (Paraml, Param2: extended);
var

distance, slice, loop, heightl, height2: integer;
TDmaxSweep, TDmaxSweepHgt, TDmaxSweepSED: real;
templ, temp2, temp3, temp4: str255;

begin
heightl : = round (!'araml);
height2 : = round (?aram2);
distance : = 600;
slice := round(User2A[l]);
TDmaxSweep := O;

if (he ight2 - heightl)
for loop := heightl

MWMeasSweep(loop,
if (xcenterA[3] >

> distance then begin
to (height2 - distance) do
loop + distance, slice);
7DmaxSweep) then begin

begi:i

TDmaxSweep := xcenterA[3];
TDmaxSweepHgt .- xcenterA[4];
TDmaxSweepSED := xcenterA [2];

end;

Max sweep in cm)
Height of max sweep
Heigh~ o~ rnax s~eep

loop := loop + slice;
end;

N18

xcenterA[l] . - C. ist ance;
xcenterA [2] . - TDmaxSweepSED;
xcenterA [3] . - 'i:DmaxSweep;
xcenterA [4] . - TDmaxSweepf-:gt;

{Di sta~ce cf sweep rneas~=ement in cm}
{ SED)

Max sweeo ir. cm }
~eigh~ o~ max s~eep

end;
e:id;

?rocedure MWPlot3DTree (!'araml, ?aram2 , Param3 : exter.deC:);
var
i, ii: int.ec;e.::- ;
tempXD, tempZD, tempXAv, tempZAv: extenced;
theta , HS, VS : extended;
left, top, width, height , xl3, yl: int.eger;
pl, p2: point.;

begin
{?lot 3D view of the tree)

i : = mCount;
theta := paraml;
HS : = param2;
VS := param3;
xl3 := round(plengthA[l]);
yl := round(plengthA[2]) ;

CurrentX := xi3 - 2; \Moveio . .. }
CurrentY := yl - 2;
tempXAv := 0 * cos(theta) + (-70) "sin(theta);
tempZAv := - 0 " s:. n (theta) + (-7 0) " cos (theta);

LineWidth : = 5;
MWLineTo(round(xl3 - 2 + (tempXAv + tempZll.v • 0 . 7C7) • HS) , rour.d(y: - 2 + (­

tempZAv * 0 .7 07) "HS));
LineWidth := l;

for ii := 1 to (mCount
if orientationA [i] =
begin

tempXD .- meanA[i);
tempZD .- sdA[i] ;

- ~) do begin
then · -c

\ l. s::.ce has valid diameters)

tempXAv := UserlA[i] • cos(theta) - User2A[i] • si,.,(theta);
tempZAv : = -UserlA [i] • sin(theta) + User2A[i] • cos(theta);

with InfoA do begin
{MakeCvalRoi command)

RoiType := OvalRoi ;
left .- round(xl3 + (tempXAv + te;;ioZAv • C. /'J? - tempXD I 2) " HS) ;
top := round(yl - ii *vs + (-tempZAv • :.707 - tempZD / 2 * 0.707)
HS);

width := round(tempXD • HS);
height := round(tempZD * 0.707 • HS);
SetRec t (RoiRect, left , to;>, l eft + width, top + height) ;
MakeRegion;
end;

SetForegrou ndColor(O);
DoOperation(PaintOp);

Appendix N - Image Processing Software

SetForegroundColor(255);
DoOperation(FrameOp) ;
with InfoA do begin

UpdateScreen(RoiRect);
end;

Nl9

if (mAreaA[i) 500)
(mAreaA[i) = 2000) or

o:: (rr.AreaA[i] 1000) c:: (mAreaA[i) 1 500) or
(mAreaA [i) = 2500) then begin

CurrentX := xl3; {Move To ... }
CurrentY := round(yl - (ii - 2) * VS);
MWLineTo(round(xl3 + tempXAv *HS), round (yl - (ii - 2) *VS));
MWLineTo(round(xl3 + (tempX1\v + tempZAv * 0 . 707) * HS) , round(yl -
2) * VS + (-tempZAv * 0. 707) * HS));

MWLineTc (round(xl3 + (tempZAv * 0 . 707) *HS) , ::ound(yl - (ii - 2)
(-tempZAv * 0 . 707) *HS));

MWLineTo(round(xl3) , round(yl - (ii - 2) w VS));
end;

end ;
i := i - l;

end;
end;

(ii -

* VS +

p::ocedure OldUserMac roC ode (CodeNumbe::: integer; ?a::aml, Pa::am2 , Param3:
extended) ;

begin
case CodeNu~be:: of
1:

RHPCalibrod;
2:

RHPLoadCalibuata;
3:

RHPLoadDipLean ;
4:

MWSc ::oli(?ararr.l) ;
5:

MWMeasSweeo (Pa::am l , ?a::arr.2, Param3) ;
6: .

MWCheckOptionKey;
7:

MWCorive::t3D;
8:

MWLoa::!3DData;
9:

MWPlot3DTree (Param: , Pa::am2, ?a ::am3);
10:

MWLoadMac::os;
otherwise

ShowNoCodeMessage;
end;

end;

