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ABSTRACT 

Dosage compensation in Drosophila melanogaster is achieved by a twofold increase of 

transcription of X-linked genes in males. This involves the binding of four proteins, 

MSL-1, MSL-2, MSL-3 and MLE (collectively known as the MSLs) which are believed 

to act as a multi-protein complex, to hundreds of sites along the length of the X 

chromosome. MOF, a putative histone acetyl transferase, is thought to be also associated 

with MSLs and plays a role in hypertrascription of X-linked genes. Overexpression of 

either a C-terminal or N-terminal domain of MSL-1 leads to male-specific lethality which 

is probably due to association with other MSLs to form a non-functional complex. 

One aim of this study was to identify whether any known MSLs and/or unknown protein 

binds with the C-terminal domain of MSL-1. A second aim was to further define the 

domain of MSL-1 which interacts to MSL-2. Initial attempts to identify the protein which 

interacts the C-terminal domain of MSL-1 by either genetics analysis or co­

immunoprecipitation were inconclusive. Thus, an alternative approach of affinity 

chromatography of epitope-tagged MSL-1/MSL-complex was followed. Transgenic flies 

which express either a FLAG-tagged N-terminal region of MSL-1 or FLAG tagged C­

terminal domain following heat shock were generated. These lines were crossed with 

other transgenic lines to co-express the MSL-1 domain with Either MSL-2, MSL-3, MLE 

or MOF. FLAG affinity chromatography of protein extracts prepared from these flies 

showed that MSL-2 co-purifies with the N-terminal domain of MSL-1 (aa 85 - 263), 

whereas MOF and MSL-3 co-purify with the C-terminal domain of MSL-1 (aa 705 -

1039). MLE does not appear to associate with either region of MSL-1. Further, the C­

terminal domain of MSL-1 also bound specifically to a glutathione S-transferase-MOF 

fusion protein. Co-expression of MSL-2 rescued males from the lethal effect which was 

caused by overexpression of the N-terminal domain of MSL-1. However, co-expression 

of either or both MOF and MSL-3 with the C-terminal domain ofMSL-1 did not improve 

male viability. This suggests that additional factors may bind to the FC/MOF/MSL-3 

complex. Finally, MLE also bound to GST-MOF fusion protein, suggesting a direct 

interaction between MLE and MOF. These findings suggest that MSL-1 plays a central in 

assembly of the MSL multi-protein complex that is required to achieve dosage 

compensation. 
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1. INTRODUCTION 

1.1 SEX DIFFERENTIATION AND DOSAGE COMPENSATION 

Sex differentiation is often determined by differences in the number of copies of a single 

chromosome (Reviewed by Baker et al. , 1994). In such cases, a process of dosage 

compensation may evolve to allow the different number of copies of genes in the two 

sexes to produce the same amount of functional product. In Drosophila, the primary 

determinant of sex is the ratio of the number ofX-chromosomes (X) to sets of autosomes 

(A). When Drosophila has one X-chromosome to two sets of autosomes (1X:2A = 0.5), 

it evolves into a male (Reviewed by Belote, 1992). An X:A ratio of 1 leads flies to 

develop into females. This process of somatic sex determination is largely cell 

autonomous, and there appears to be no hormonal component involved. Although all male 

Drosophila possess a Y-chromosome, it does not play any role in sex determination. 

This leads to an interesting fact: there are many important X-linked genes on the X­

chromosome. With only one X-chromosome in males and two in females, cells will 

produce one dose of X-linked gene product and two doses respectively. This raises a 

question of possible different phenotypes of these X-linked genes in male and female, as 

the result of different dosage. However, X-linked genes do not show signs of producing 

unequal amounts of gene product between male and female. In fact, these gene products 

are manufactured equally in both male and female (Kuroda et al., 1993). This is achieved 

by a mechanism called dosage compensation. Different organisms have evolved what 

appear to be different mechanisms to equalise X-linked gene expression in the sexes. In 

mammals, one of the two X chromosomes in females is transcriptionally inactivated 

(Reviewed by Willard and Salz, 1997). In Caenorhabditis elegans, equalisation of X­

linked gene products is achieved by decreasing the activity of genes on both X 
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chromosomes in hermaphrodites (XX), to reach the level of gene products produced in 

males (X) (Gorman and Baker, 1994). In Drosophila melanogaster, which has a different 

mode of dosage compensation, the rate of transcription of the single male X chromosome 

is hyperactivated twofold relative to each female X chromosome (Lucchesi and Manning, 

1987). 

1.2 THE DISCOVERY OF DOSAGE COMPENSATION IN DROSOPHILA 

In 1931, Herman Huller published an observation that eye-pigment conferred by the 

hypomorphic X-linked allele wa was identified in hemizygous XY males and in 

homozygous XX females. However, females do not produce two doses of pigment, rather 

they are producing an equal amount of pigment as male Drosophila. Similar results have 

been obtained for other X-linked genes, suggesting that there must be a mechanism which 

is able to compensate the dosage difference ofX-linked genes between the two sexes. 

1.3 CYTOLOGICAL OBSERVATIONS 

In Drosophila salivary gland polytene nuclei, the male X-chromosome is distinct from 

autosomes and the female X-chromosome in both appearance and chromatin structure. It 

is puffier and paler in comparison with the female X-chromosome (Dobzhansky, 1957). 

This difference is not due to an increased DNA content in the male X-chromosome. 

Aronson et al. (1954) used UV microspectrophotometry to show that the paired female 

X-chromosome contains twice the amount of DNA material as a single male X­

chromosome. Therefore, the difference between the X-chromosomes of the two sexes 1s 

either a distinct chromatin configuration or an accumulation of gene products. 
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1.4 TRANSCRIPTION AUTORADIOGRAPHY EXPERIMENTS 

In 1965, Mukherjee and Beerman prepared polytene chromosome squashes from 

Drosophila melanogaster third instar larval salivary glands which were used as the 

subjects for short pulse labelling with [3H]uridine (Muller, 1950). By using 

autoradiography, one is able to determine the level of incorporation of labelled uridine 

along the chromosome arms (Henikoff and Meneely, 1993). The grain counts on the male 

X-chromosome are greater than both the left arm of autosome 3 and the regions of paired 

female X-chromosomes. However, unpaired female X-chromosome still seem to have a 

silver grain count, and it is significantly higher than half of the value for paired regions of 

the same chromosome. All the observations lead to the fact that a single male X­

chromosome is transcriptionally more active than a single female chromosome, and the 

dosage compensation is at the level of RNA synthesis. The characteristic bloated 

appearance could be the consequence of accumulation of nascent RNA. 

1.5 SEX-LETHAL (Sxl) 

The Sex-lethal gene plays a pivotal role in the processes of somatic sex determination as 

well as in the process of dosage compensation (Reviewed by Parkhurst and Meneely, 

1994). The structure of Sex-lethal comprises 10 exons and two promoter regions. The use 

of different promoters, different exons, and different polyadenylation sites leads to the 

production of at least 10 different RNA species (Palmer et al., 1994), with varying 

patterns of expression. SXL has a special feature of auto-regulation in that the protein 

turns on its own Sxl gene and produces more of its gene product (Bernstein et al., 1995; 
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MacDougall et al., 1995). When the ratio X:A is 1, as females are produced, the Sxl locus 

is making SXL protein which represses the pathway of dosage compensation and results 

in basal transcription of both X chromosomes (Lucchesi et al., 1982). Whereas if the ratio 

is 0.5, male development and hypertranscrption occurs as a consequence of lacking SXL 

protein (Reviewed by Kelly and Kuroda, 1995). Null mutations in Sxl are lethal in females 

- presumably both X chromosomes are hypertranscribed. Conversely, constitutive 

expression of Sxl causes male lethality (Cline, 1978). 

1.6 MALE-SPECIFIC LETHAL (ms/) 

There are four genes identified which are responsible for dosage compensation (Reviewed 

by Lucchesi, 1996). The identification of these four genes is significant for the 

understanding of the mechanism of dosage compensation. Genetic screens (using the 

chemical mutagen ethyl methane sulfanoic (EMS)) designed to isolate mutations affecting 

essential biochemical or physiological processes unique to males or females have 

uncovered several sex-specific lethal mutations that affect dosage compensation, maleless 

(mle) (Fukunaga et al., 1975), male-specific lethal-I (ms/-1) (Belote and Lucchesi, 1980), 

male-specific letha/-2 (msl-2) (Belote and Lucchesi, 1980), and male-specific /ethal-3 (msl-

3) (Lucchesi et al., 1982). These are collectively called msls. All mle, ms/-1 and msl-2 gene 

loci are located at chromosome 2, and msl-3 is located at chromosome 3. The products of 

the ms/ genes are necessary to maintain an equivalent level of most X-linked gene 

transcripts in males relative to females. A loss of function of any ms/ through mutation 

has lethal effects during late larval development in males but has no detectable effect in 

females. 

Genetic evidence suggests that the lethality produced by these male-specific lethal genes 

is directly related to the presence of only one X chromosome in males. Fukunana et al. 
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(1975) and Belote & Lucchesi (1980b) have shown that the male specific lethality is not 

related to the sexual differentiation. The absence of interaction between sex transforming 

genes (dsx and tra-2) and male-specific lethal genes (msl-1 and msl-2), and between dsx 

and tra-3 and mle, is proved by introducing sex-transforming genes into the genotype of 

individuals that are homozygous for ms! genes. Also, the presence of the Y chromosome 

has no effect. Individuals of two sexes with zero, one or two Y chromosomes showed no 

effect on the sex-specific lethality and are viable. Another indication for male-specific 

lethality is that the difference in the number of X chromosomes has no effect on 

individuals as the lethality could be due to a difference in dosage of a specific X-linked 

gene or the number of X chromosomes as a whole. Experiments showed that the 

duplication of small fragments of X chromosome one at a time does not reduce the 

lethality caused by male-specific gene mutations in males. 

It has been found that male homozygous mutations for any of the male-specific lethal 

genes exhibit a level ofX-linked gene activity that is 50-65% of that seen in the wild type, 

whereas no reduction is observed in the amount of autosomal enzymes tested. Breen and 

Lucchesi ( 1986) showed that at the restrictive temperature, the loss of function of mle 

significantly reduced the steady state RNA levels from the X-linked gene, Sgs-4, as 

compared to the transcript levels of the autosomal gene, Sgs-3. 

1.7 SEX-SPECIFIC LOCALISATION OF MSLs 

Since the cloning of mle (Kuroda et al., 1991), msl-1 (Palmer et al., 1993), msl-2 (Zhou et 

al., 1995) and msl-3 (Gorman et al., 1995), the antibodies to their encoded products reveal 

that all four MSL proteins bind hundreds of specific sites along the male X chromosome 

(Bashaw and Baker, 1995; Gorman et al., 1995; Kelly et al., 1995; Kuroda et al., 1991; 

Zhou et al., 1995). None of these four MSLs is associated with X chromosomes in 
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females, although MLE is associated with 30-40 autosomal sites (Kuroda et al., 1991 ). 

MSLs also associate with autosomes in males - mle is associated with 30-40 autosomal 

sites (Kuroda et al., 1991), ms/-1 and ms/-3 are associated with 10-20 autosomal sites 

(Kelly et al., 1995; Gorman et al., 1995), and ms/-2 is associated with 20-30 autosomal 

sites and it is co-localised with MSL-1 at these sites (Kelly et al., 1995; Zhou et al., 

1995). All of these four msls are not processed sex-specifically at the RNA level, and 

each of the ms/ proteins is produced in both sexes except msl-2 (Kelly et al., 1995; Zhou 

et al., 1995). Male-specific lethal binding sites on the male X chromosome are consistent 

with studies showing that genes transposed from an autosome onto the X chromosome 

frequently become hypertranscribed, while X-linked genes translocated to an autosome 

remain dosage compensated. As these post-translocated genes produce various amounts 

of dosage compensation, it is possible that X-linked cis-acting sequences are able to 

confer hypertranscription on different genes depending on their chromatin context where 

the genes are placed (Kuroda et al., 1993). The cis-acting sites on the male X chromosome 

could be bound by trans-acting MSL proteins and result in dosage compensation (Bone 

and Kuroda, 1996). 

Protein analysis of the association of MSLs with the male X chromosome has been 

investigated in various mutant backgrounds (Lucchesi and Manning, 1987). Each of the 

MSL proteins must be functional in order to observe the wild-type chromatin-pattern of 

the remaining three, suggesting that MSLs act in a heteromeric protein complex (Lucchesi, 

1996). Western blotting showed that the MLE is expressed in male homozygous for a 

mutant at each of the other ms/ loci, which means the other msls do not regulate mle at the 

level of protein expression (Gorman et al., 1993). The MSL-1 protein is present in both 

homozygous mutations for mle and msl-3 in larvae, but not in msl-2 homozygous 

mutation or female larvae. Experiments also showed the MSL-1 and MSL-2 proteins can 

be co-immunoprecipitated by either anti-MSL-1 or anti-MSL-2 from protein extracts of 
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male larvae (Kelly et al., 1995). Since the MSL-1 and MSL-2 proteins are at low levels or 

absent in females, neither was immunoprecipitated from female extracts as expected. 

Ectopic expression of MSL-2 protein m females decreases viability and delays 

development since MSL-2 protein is not normally present in females (Kelly et al., 1995). 

This experiment is conducted by constructing transgenic lines expressing the ms/-2 open 

reading frame under control of the heat shock 83 promoter (hsp83). The hsp83 allows 

constitutive activity of ms/-2 in both soma and germline, and can be heat shocked for 

further induction. Interestingly, MSL-1 protein levels are also significantly increased in 

H83M2 transgenic females, suggesting that the presence of MSL-2 may be required for 

translation or stability of MSL-1 protein. This result supports the fact that msl-1 

transcripts are present in homozygous mutation for ms/-2 at larval stages but no 

functional MSL-1 protein forms at late developmental stages. 

In flies which are mosaic for Sxl expression, MSL proteins are only associated with the X 

chromosome in cells which are not expressing SXL. Since there are several types of 

transcripts which are produced by each of the mle, ms/-1 and msl-3, and all of these 

appear to be equivalent in both males and females, the regulation of these transcripts by 

SXL protein is not direct. Therefore the only MSL protein, MSL-2, which is solely 

produced in males, can be the key linkage between SXL, MSL complex and dosage 

compensation (Bashaw and Baker, 1995) (details see Section 1.9) 

In polytene chromosome squashes the male X-chromosome is more open and diffuse than 

that of the females (Dobzhansky, 1957). It has been proposed that this altered chromatin 

configuration is important in allowing hypertranscription to occur. One of the 

components for hypertranscription is the recognition of the acetylated isoform of histone 

H4 (H4Ac16) (Turner et al. , 1995). It is a histone H4 acetylated at lysine 16 in the N­

terminal region. Using the technique of immunolabelling, a specific acetylated isoform is 
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not only detected predominantly on the male X chromosome, coincidently, it also has the 

same pattern of association with the X chromosome as that of the MSLs. H4Ac16 is not 

detected on the X chromosome in homozygous mutation for msls males, correlating with 

the lack of dosage compensation in these mutants. Conversely, in Sxl mutants, H4Ac16 is 

detected on the X chromosomes in females which have inappropriate hypertranscription 

as a consequence. All of the above suggest that synthesis or localisation of H4Ac16 is 

controlled by the dosage compensation regulatory hierarchy (Lee et al., 1993), and may 

potentially be involved in dosage compensation through interaction with the products of 

the ms/ genes. 

1.8 NON-CODING RNAS ARE INVOLVED IN DOSAGE COMPENSATION 

The mutants roXJ and roX2 were isolated in an enhancer detector screen for mushroom 

body expression of the reporter gene /acZ (Han et al., 1996). The expression of both roX 1 

and roX2 are restricted to the neuron cells of adult male flies (Amrein and Axel, 1997). 

The two genes are X-linked and lack significant open reading frames, suggesting they may 

encode non-coding RNAs (Amrein and Axel, 1997; Meller et al., 1997). Mutations in any 

one of the ms/ genes prevent the expression of roXJ and roX2, and ectopic expression in 

females of the normally male-specific ms/-2 gene induces expression of roXJ and roX2 

(Amrein and Axel, 1997; Meller et al., 1997). Expression of roXJ is dependent on Sxl but 

is independent of the Y chromosome and tra which is a downstream effector of Sx/ 

(Meller et al., 1997). In situ hybridisation of roXJ probes to the male third instar larval 

salivary gland reveals a subcellular localisation of roXJ RNA identical to that of MSL-2 

which binds to the X chromosome (Meller et al., 1997). RoXJ recognises, or paints, the X 

chromosome of males in a similar mechanism as the mammalian Xist non-coding RN A 

which coats the inactive X chromosome. In situ hybridisation of a chromosome containing 
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roXJ region was transposed to the Y or the 2nd chromosome and showed binding of roXJ 

to the transposed X-linked chromatin as well as to the X chromosome (Meller et al., 

1997). This result suggests that roXJ can act either in trans or in cis in contrast to Xist 

which can only spread in cis along chromatin from the X-inactivation centre. 

MLE consists of RNA binding domains (Kuroda et al., 1991). It would be tempting to 

speculate that roXJ is required for the binding of MLE to the male X. However, the 

localisation of MLE to the male X appeared undisrupted by mutations in roXJ (Meller et 

al., 1997). Meller et al. (1997) suggested that there is a family of non-homologous RNAs 

including roXJ and roX2, which are functionally redundant. They proposed that the 

binding of the MSL complex to the X activates the male-specific RNA which facilitates a 

change in chromatin structure leading to hypertranscription of the male X chromosome. 

1.9 A MODEL FOR THE REGULATION OF DOSAGE COMPENSATION 

Studies showed that the four histones comprise the nucleosome core and participate in 

the transcriptional regulation of numerous genes acting as suppressors of transcription 

(Turner, 1991 ). The core histones undergo several post-translational modifications, 

including acetylation at the N-termini, leading to the suggestion that the structure and 

function of chromatin could be altered through an enzymatic pathway. The finding that 

histone acetylation pre-exists transcription showed the modification is not a consequence 

of transcription but is most likely a prerequisite (Turner et al., 1992). This suggests that 

histone acetylation can stabilise the binding of transcriptional factors to mucleosomal 

DNA, and may play a role in initiating or in maintaining the accessibility of 

transcriptional regulatory elements in chromatin. Acetylation of lysine at the N-terminus 

neutralises the positive charge of histones. Experiments illustrate that removal or 

acetylation of the histone H4 N-terrninal tails facilitate the interaction of the 
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transcriptional factors USF and GAL4-AH where the highest DNA binding affinity is 

obtained (Turner et al., 1992). As is described above, the H4Ac16 may play an important 

role in loosening the chromatin structure and increasing the accessibility of transcriptional 

factors in association with the male X chromosome in Drosophila (Bone et al., 1994). 

MLE has short sequences that identify it as a member of one of two superfamilies of 

nucleic acid helicases (Richter et al., 1996). It is highly homologous to human RNA 

helicase A and bovine nuclear DNA helicase II, for which a DNA and RNA unwinding 

activity has been illustrated. This helicase-like MLE protein is possibly targeting a stable 

RNA which is the mediator for the association of MLE with the MSL complex, since 

RNase treatment excludes the possibilities of interaction with nascent transcripts, 

protein-protein interaction with the MSL complex, or direct DNA binding (Gorman et al., 

1993; Kuroda et al., 1991; Richter et al., 1996). 

Male-specific lethal-I encodes a 1039 aa protein with a highly acidic N terminus that 

includes two short stretches composed almost entirely of aspartate or aspartate and 

glutamate residues as well as numerous interspersed glutamate doublets (Figure 1 ). These 

characteristics are common to a large group of proteins such as nucleolin and 

nucleoplasmin which are thought to be involved in transcription regulation and chromatin 

modelling. Direct contacts may possibly be made between acidic regions of these 

proteins, including MSL-1, and basic chromosomal proteins such as histones. This may 

lead to alterations of nucleosome positioning or conformation. Also in the central region 

of the MSL-1, there are many serine (S), threonine (T) and proline (P), residues, which 

form S/f/P motifs that could be sites of phosphorylation by protein kinases, and 

therefore regulate the activity of the protein and perhaps the MSL complex. 

MSL-3 contains two chromo domains (Lucchesi, 1996). This feature is interesting as the 

secondary structure of a single domain appears to be unstable, and may require interaction 
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Figure 1. Diagrammatic Representation of The Open Reading Frame of msl-1 

Protein coding sequences are drawn as boxes and the putative domains are coloured. The 

amino acid sequence of the asp/glu-rich stretches within the acidic domain is given using 

the standard one letter code as is the sequence of the basic tail and a highly ser/thr/pro­

rich sequence within the STP domain. 
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with another chromo domain or with some globular domain in another part of the protein 

to yield a stable configuration. Stabilisation may also be achieved by the interaction 

between chromo domains of different proteins. Chromo domains share a characteristic 

with proteins that are responsible for repression, as several proteins are found to 

participate in transcriptional repression (Koonin et al., 1995). However, chromo domains 

are also found in proteins known to function as transcriptional activators, suggesting that 

the function of the chromo domain is to deliver regulatory proteins to their site of action, 

whether they exert a positive or a negative effect on gene activity. Therefore the presence 

of MSL-3 indicates the potential for this type of regulation may be involved in dosage 

compensation. 

As described above, MSL-2 is present only in males and is co-localised with the other 

three MSLs (Kelly et al., 1995; Bashaw and Baker, 1996). With a perfect inverse 

correlation between the presence of SXL and the presence of MSL-2, it makes MSL-2 a 

likely governor of the MSL complex for transcriptional enhancement (Bashaw and Baker, 

1995). Studies showed that the SXL protein, which is a RNA binding protein whose 

known function is to regulate pre-mRNA splicing, may target the msl-2 gene that 

produces non-functional MSL-2 in females (Bashaw and Baker, 1997). Experiments 

suggest that there is a difference in the splicing of msl-2 pre-mRNA between the two 

sexes. A 133 nucleotide intron in the 5' untranslated region (UTR) of msl-2 is retained in 

females but removed in males (Bashaw and Baker, 1995; Zhou et al., 1995). There are 

potential SXL-binding sites in the 3' UTR as well as the two potential SXL-binding sites 

present in the male-specific intron in the 5' UTR. That sequence in the 3' UTR plays a 

role in the regulation of MSL-2 expression (Bashaw and Baker 1997). It is demonstrated 

by removing the 3' UTR that leads to detectable binding ofMSL-2 to the X chromosome 

in females. In addition to detecting MSL-2 associated with 50-60 sites on the X 

chromosomes of these transgenic females, all three of the other MS Ls are also associated 

at these same sites. This suggests that the expression of MSL-2 due to deletion of the 3' 
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UTR results in the assembly of a male-type MSL complex, indicating SXL could act 

through these sites at some level other than splicing to control MSL-2 expression since 

male ms/-2 transcripts have possessed these regions. Therefore the presence of potential 

SXL-binding sites and the alternative splicing event make the 5' UTR a strong candidate 

for a region that may contain other sequences crucial to the regulation ofMSL-2. 

The encoded protein MSL-2 consists of 769 amino acid residues and it contains a RING 

finger (C3HC4 zinc finger) at the N-terminus of the protein, with a coiled coil at the 

central domain followed by positively and negatively charged segments that flank a 

metallothionein-like domain which has eight conserved and two non-conserved cysteines 

(Bashaw and Balcer, 1995; Zhou et al., 1995). The RING finger is related to the classical 

zinc finger and is found in a large group of proteins with potential for DNA or protein­

protein interactions. Interactions between the zinc fingers of transcription factors, SPI 

and TFIIIA, and thionein have been demonstrated in vitro (Zhou et al., 1995). These 

observations suggest a possible novel mechanism, based on the intramolecular exchange of 

metal ions, that may modulate the activity of MSL-2. Since MSL-2 is the only MSL 

protein containing sequence elements that can be implicated in DNA binding, it is 

possible that MSL-2 interacts directly with male X-chromosomal DNA and at the same 

time targets the putative MSL complex to male X. When a twofold transcriptional rate is 

reached, MSL-2 may undergo a conformational change that allows the lowering of RING 

finger affinity for the zinc atoms, which may be captured by the metallothionein-like 

portion of the protein, restricting the transcriptional rate so that it does not reach beyond 

twofold. When the male X-chromosome is hypotranscribed, the condition is reversed and 

a twofold transcription is re-established. 

Dosage compensation of the runt gene during embryogenesis is dependent on Sxl but 

independent of the ms/ genes (Gergen, 1987), suggesting that there is another possible 

kind of regulation for dosage compensation. This hypothesis is supported by the 
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experiment of female SXL mutants which can not be rescued by mutation of the MSLs 

(Kelly and Kuroda, 1995). With 20% of the genetic material located on the X­

chromosome, more screening is needed in order to find other dosage-compensation-related 

genes. 

1.10 DISCOVERY OF THE males-absent on the.first (mo/) GENE 

Hilfiker et al. (1997) have recently discovered a possible fifth male-specific lethal gene 

which may be involved in the regulatory process of dosage compensation. Males-absent 

on the first (mo/) has been identified by using the phenotype of male-specific lethality to 

screen the X chromosome of Drosophila melanogaster for EMS-induced mutations. 

Mutant mof males can develop to the third larval instar of the pre-pupal stage but fail to 

metamorphose and to hatch, whereas the viability of mutant female is unaffected. Staining 

of polytene chromosomes with anti-MSL antibodies suggests that the association of 

MSL-1 and MSL-2 with the male X-chromosome of mutant mof larvae is slightly 

reduced. However, the association of MLE is substantially reduced, and the H4 isoform, 

H4Ac 16, appears to be absent (Gu et al., 1998). Other evidence showed that the ectopic 

expression ofMSL-2 in females can be rescued by expressing the MOF protein from one 

wild-type copy of mof, indicating mof has a functional role in dosage compensation. 

MOF contains the signature motif for the acetyl coenzyme A binding site found in 

numerous and diverse acetyl transferases (Hilfiker et al., 1997). Therefore MOF could be 

one of the histone acetyl transferases which may be responsible for the particular histone 

acetylation (i.e. H4Acl6) associated with the male X chromosome, and consequently 

provides a functional link between nucleosomal modification and the transcriptional 

enhancement. 
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1.11 OVEREXPRESSION OF DOMAINS OF MSL-1 in D. melanogaster 

MSL-1 (Figure 1) consists of several domains (Lucchesi, 1998). The first third of the 

protein (amino acid I to 409) contains the acidic region which is discussed in Section 1.8. 

The next region is a P/K/R domain which is from amino acid 410 to 634aa, which contains 

a predominance of proline (P), lysine (K) and arginine (R). The final region is the STP 

domain which is located from amino acid 702 to 877 aa. It contains several stretches rich 

in serine, threonine and proline. There is a basic tail which possesses seven basic amino 

acids out of the final nine amino acids (Figure 1). 

Plasmid pAK12 contains the 1.17 kb region of ms/-1 3' end bounded by Sacl and Xbal 

restriction sites inserted into the expression vector pCaSpeR-hs (Table 1). In this 

construct, expression of the C terminal domain of MSL-1 is under the control of heat 

shock promoter 70 (hsp70) (A. Knox, unpublished results). The restriction fragment 

codes for the basic tail and approximately half of the STP domain. This construct was 

microinjected (Section 2.18) into recipientyw stocks (Table 3) and homozygous flies were 

obtained (A. Knox, unpublished results). In these transgenics (AK12 flies), 

overexpression of the C-terminal domain (amino acid 705 - 1039, Figure 2) was achieved 

when raised at 30°C and heat shocked daily for one hour at 37°C (Section 2.21). Under 

these conditions, males showed a significant decrease in viability compared to either the 

injection stocks or transgenic with full-length MSL-1 (Dr M. Scott, unpublished results). 

It is proposed that the lethality is caused by the competition with functional MSL-1 for 

binding to a protein required for dosage compensation. Overexpression of MLE, MSL-2 

or MSL-3 one at the time with the C-terminal domain shows no significant improvement 

in the viability of heterozygous AK12 males (M. Scott, unpublished results). This 

suggests that either the C-terminal domain is bound to more than one MSL protein or the 

domain binds to an unknown factor which is required to achieve twofold dosage 
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Figure 2. Dominant-Negative Versions of MSL-1. 

The numbers at the beginning and end of each construct indicate the region of MSL-1 

which is expressed in transgenic flies. The FLAG tag (DYKDDDDK - shaded black) is at 

the amino terminus of the protein encoded by the FC and FM constructs. Cross-hatched 

region is a predicted amphipathic a-helix ( aa 96-172). The shaded region is a highly acidic 

stretch (aa 708-801). The region between aa 712 to 988 shows similarity to amino acids 

863 to 1117 of mouse CBP. 
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compensation. The recent finding of the MOF protein suggests it could be a possible 

target for the C-terminal region of MSL-1. 

Similar experiments were carried out for transformants carrying the FMS construct 

(Figure 2) and results showed there is a significant reduction in male viability when heat 

shocked daily (Section 2.21) (Dr. M. Scott, unpublished results). The FMS protein lacks 

the first 84 amino acids of MSL-1, and contains a FLAG octapeptide which is tagged at 

the amino terminus. A FMS line was crossed with lines carrying null mutation for either 

msl-1, msl-2, msl-3 or mle. These crosses would produce progeny with reduced 

concentration of 50 % of normal msl-1, msl-2, msl-3 and mle, and overexpressed FMS 

when heat shocked daily (Section 2.21 ). Male viability was significantly reduced if the 

males of FMS were heterozygous for msl-2, however, there was no significant difference 

in the relative viability of heterozygous msl-1, msl-3 and mle males compared to their 

respective wild-type siblings (Dr. M. Scott, unpublished results). These results indicate 

that in FMS males the concentration of MSL-2 available for dosage compensation is 

limiting. Further, the viability of males which overexpressed both FMS and MSL-2 was 

significantly improved compared to males which expressed only the FMS (Dr. M. Scott, 

unpublished results), suggesting that FMS interacts with MSL-2. Similarly experiments 

were carried out with transformants lines carrying the ANT which express aa 85-759 of 

MSL-1 with a FLAG tag at N terminus (Figure 2). Overexpression of the ANT protein 

caused a decrease in male viability which however was significantly improved if MSL-2 

was co-expressed. This indicates that the domain which interacts with MSL-2 should be 

in the first two-thirds of MSL-1. 
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1.12 RESEARCH AIMS AND SPECIFIC OBJECTIVES 

This study has two aims. The main aim is to determine whether MOF, or other factor(s), 

associate with the C-terminal domain of MSL-1. The second aim is to define the MSL-2 

binding domain of MSL-1. 

1.12.1 Factor(s) Associated With The C-Terminal Domain of MSL-1 

The first aim ohhis project is to determine what factor, either one of the MSLs, MOF or 

an unidentified factor, associates with the C-terminal domain ofMSL-1. Both biochemical 

and genetic approaches were used to identify the interacting factor(s). 

The specific objectives are as follows: 

1. Screen for EMS induced mutation which enhance or suppress male lethality caused by 

overexpression of the C-terminal domain. 

2. 2. To generate transgenic flies which express a (FLAG) tagged C-terminal domain of 

MSL-1. 

3. To clone the mof gene and make transgenic Drosophila lines which express MOF. 

4. To make and transform E. coli with a plasmid designed to express a glutathione S­

transferase MOF fusion protein. 

5. To determine which protein(s) co-purify with the FLAG-tagged C-terminal domain of 

MSL-1 over a FLAG affinity column. 

6. To determine which protein (s) co-purify with the GST-MOF fusion protein over a 

glutathione affinity column. 

7. To determine if males can be rescued from the dominant-negative effects of 

overexpression of the C-terminal domain of MSL-1 by co-expression of any of the 

MSLs ( or combination). 



21 

1.12.2 Define MSL-2 Binding Domain of MSL-1 

The second aim is to further define the domain ofMSL-1 which interacts with MSL-2. 

The specific objectives are as follows: 

1. To generate transgenic flies which express amino-terminal region of MSL-1 (aa 85 -

263) with a FLAG - tag FM (Figure 2). 

2. To determine if overexpression of the FM protein causes male-specific lethality. If so, 

determine if FM can be rescued by co-expression of MSL-2. 

3. To determine if MSL-2 co-purifies with the FMS, ANT, and FM proteins over a 

FLAG affinity column. 




