Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE ROLE OF PYRUVATE KINASE IN THE REGULATION OF GLYCOLYSIS AND GLUCONEOGENESIS IN PROPIONIBACTERIUM SHERMANII

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, New Zealand.

> John Beresford SMART 1980

> > h.

ABSTRACT

Pyruvate kinase catalyses the main irreversible reaction of glycolysis in <u>Propionbacterium shermanii</u> since the ATP-dependent phosphofructokinase is largely replaced by a pyrophosphate-dependent phosphofructokinase catalysing a reversible reaction. Measurement of activity of several glycolytic enzymes in glucose-, glycerol- and lactate-grown cells showed that pyruvate kinase activity is much higher than that of pyruvate, orthophosphate dikinase which catalyses the reversible interconversion of PEP and pyruvate.

This poses problems in cells grown on lactate where gluconeogenesis must operate to supply hexoses and pentoses for biosynthesis. The regulatory properties of this enzyme were accordingly studied.

The partially purified (140-fold) pyruvate kinase displayed sigmoidal kinetics for both of its substrates, phosphoenolpyruvate (PEP) and ADP. At pH 7.5 the interaction coefficient $(n_{\rm H})$ for PEP saturation in the absence of effectors was in the range 1.9-2.5 while for ADP saturation it was 1.7-2.1. The pyruvate kinase was shown to be activated by glucose 6-phosphate (G6P) at non-saturating (0.5 mM) PEP concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G6P. The presence of G6P decreased both the PEP_{0.5V} and ADP_{0.5V} values and the Hill interaction coefficient for each substrate. The enzyme was strongly inhibited by ATP and inorganic phosphate (P_i) at all PEP concentrations. At non-saturating (0.5 mM) PEP half-maximal inhibition was obtained at 1.8 mM ATP and 1.4 mM P_i. The inhibition of both P_i and ATP could be largely overcome by G6P. The G6P activation and other regulatory properties of the enzyme were pH dependent.

ii.

On the basis of this <u>in vitro</u> study it was suggested that the activity of pyruvate kinase <u>in vivo</u> is determined by the balance between activators and inhibitors such that it is inhibited by ATP and P_i during gluconeogenesis while, during glycolysis, the inhibition is relieved by G6P. Such a mechanism requires that the G6P concentration should be sufficiently high when cultures are grown on glucose or glycerol but not on lactate.

To verify this proposed mechanism the <u>in vivo</u> concentrations of a number of selected glycolytic intermediates were measured in <u>P.shermanii</u> growing under a range of nutritional conditions using batch and continuous cultures. The pyruvate kinase activator, G6P, was maintained at levels of 1-2 mM in lactate-grown cells but, when growing in the presence of high levels of glucose or glycerol, G6P was present at levels between 5 and 16 mM in the cell.

F6P and FBP were always present at levels below 1.0 mM and 0.2 mM respectively in lactate- and glucose-grown cells but attained significantly higher levels on glycerol-grown cells. At high concentrations of glucose where high G6P levels were found, F6P was present at concentrations much lower than would be expected from the equilibrium constant of the phosphoglucoisomerase; this was not the case when high G6P levels were attained by growth on glycerol. The reason for this is not known.

Levels of the inhibitor of pyruvate kinase activity, ATP, were maintained in the range 1-2 mM under all the conditions studied. At the <u>in vivo</u> levels of the substrates PEP and ADP this level of ATP would not by itself maintain pyruvate kinase in an inactive state in the presence of the 1-2 mM G6P shown to be present in lactate-grown cells. The other inhibitor, P_i , must also be important but the <u>in vivo</u> levels of this effector were not determined. A reinvestigation of the pyruvate kinase at the <u>in vivo</u> levels of substrates (PEP and ADP) and effectors (G6P and ATP) found in the cell indicated that, at levels above 10 mM P_i, concentrations of 5-15 mM G6P (as found in cells growing on glucose and glycerol) were required to activate the enzyme while concentrations of 1-2 mM G6P (as found in lactate-grown cells) were not able to overcome the inhibition by ATP and P_i. A concentration of 10 mM P_i in the cell does not seem unreasonable and at this concentration the proposed mechanism for control of the pyruvate kinase <u>in vivo</u> would be able to operate.

During this investigation data were also collected on growth yields and carbon balances in both batch and continuous cultures during growth on the three substrates lactate, glucose and glycerol.

Succinate was found to account for up to 26% of the products in glucose cultures but was only present at negligible levels in lactate cultures. Accumulation of succinate in the glucose cultures was highest in the later stages of growth of batch cultures and in carbon-limited continuous cultures when the G6P level was low. This suggests that regulation of pyruvate kinase by G6P may also serve to determine the relative flux via the PEP:carboxytransphosphorylase and pyruvate kinase enzymes - the carboxytransphosphorylase functioning to provide PP; for the PP;-dependent phosphofructokinase in glycolysis.

It is also proposed that G6P may be involved in partitioning glucose metabolism via glycolysis and the hexose monophosphate pathway - high internal G6P concentrations favouring flow through the hexose monophosphate pathway and thus bypassing the PP_i-dependent phosphofructokinase - however, this is highly speculative.

iv.

ACKNOWLEDGEMENTS

I wish to thank my Supervisor, Dr G.G. Pritchard, for his invaluable advice, encouragement and assistance throughout the course of this study.

I would also like to thank Dr J.C. Hawke and Dr I.G. Andrew for their technical advice on the gas-liquid chromatographic analyses; Dr J. Thompson of the Dairy Research Institute, Palmerston North, for his advice concerning the fluorometric analyses of metabolites and the Applied Biochemistry Division of the D.S.I.R., Palmerston North, for the use of their SPF 500 Spectrofluorometer.

In addition, particular thanks are extended to Mrs Glenda Shaw for typing the manuscript and to Mrs Claire Smart for her unfailing support and assistance throughout the investigation and in the preparation of this thesis.

LIST OF CONTENTS

	Page Number
Abstract	ii
Acknowledgements	v
List of Contents	vi
List of Figures	xii
List of Tables	xiv
List of Abbreviations	xvi
CHAPTER 1 - GENERAL INTRODUCTION	
1.1 Regulation of carbohydrate metabolism in bacteri	a 1
1.1.1 Role of pyruvate kinase in regulating carbohydrate metabolism in bacteria	3
1.2 Carbohydrate metabolism in propionic acid bacter	ia 11
1.3 Aims of this investigation	21
CHAPTER 2 - MATERIALS AND METHODS	
2.1 Introduction	24
2.2 Materials	24
2.3 Organism and maintenance	25
2.4 Determination of the relationship between optical density and dry weight of cell suspensions	26
2.5 Estimation of substrates and products in the gro medium	wth 28
2.5.1 Glycerol	28
2.5.2 Lactate and succinate	28
2.5.3 Acetate and propionate	29
2.5.4 Glucose	29
2.6 Protein estimation	30
2.7 Measurement of enzyme activities	30

vii.

2.8	Determination of glycolytic intermediates by enzymic/fluorometric techniques	33	
2.9	Estimation of cell water volume	36	
CHAPTER 3	3 - GROWTH CHARACTERISTICS OF <u>PROPIONIBACTERIUM</u> <u>SHERMANII</u> ON THREE DIFFERENT CARBON SOURCES		
3.1	Introduction	39	
3.2	Composition of the defined medium 39		
3.3	Growth conditions	40	
3.4	Growth of P.shermanii on the defined medium	41	
3.5	Enzyme levels in batch cultures of P.shermanii	45	
3.6	Discussion	47	

CHAPTER 4 - PYRUVATE KINASE

4.1	Introduc	tion	49
	4.1.1	Mammalian pyruvate kinases	49
	4.1.2	Bacterial pyruvate kinases	50
	4.1.3	<u>P.shermanii</u> pyruvate kinase	54
4.2	Pyruvate	e kinase purification	54
	4.2.1	Growth and harvest of <u>Propionibacterium</u> shermanii	54
	4.2.2	Breakage of cells and preparation of cell-free extract	55
	4.2.3	Streptomycin sulphate treatment	57
	4.2.4	Ammonium sulphate precipitation	57
	4.2.5	DEAE - Sephadex ion exchange chromatography	58
	4.2.6	Gel filtration on Sephacryl S200	58
	4.2.7	Discussion of the purification scheme	61
4.3		ies of the partially purified pyruvate kinase Shermanii	65
	4.3.1	Pyruvate kinase assay	65

4.3.2	Treatment	of kinetic data	66	
4.3.3	Effect of enzyme concentration on activity			
4.3.4	Studies on	the stability of pyruvate kinase	70	
4.3.5	pH profile	of pyruvate kinase	7 0	
4.3.6	Monovalent kinase	cation requirement of pyruvate	72	
4.3.7	Effectors	of pyruvate kinase activity	74	
4.3.8	Relationsh	ip between pyruvate kinase activity	80	
	and varyin	g PEP concentration		
	4.3.8.1	Effect of ADP concentration on the PEP saturation curve	80	
	4.3.8.2	Effect of 2.0 mM G6P on the PEP saturation curve	83	
4.3.9		ip between pyruvate kinase activity g ADP concentration	84	
	4.3.9.1	Effect of PEP concentration on the ADP saturation curve	84	
	4.3.9.2	Effect of 2.0 mM G6P on the ADP saturation curve	87	
4.3.10	Effect of	GDP on pyruvate kinase activity	87	
4.3.11	Effect of	Mg ⁺⁺ on pyruvate kinase activity	88	
	4.3.11.1	Effect of Mg ⁺⁺ on pyruvate kinase activity of <u>P.shermanii</u>	90	
	4.3.11.2	Effect of G6P on Mg ⁺⁺ activation of pyruvate kinase	90	
	4.3.11.3	Interaction between Mg++ and ADP	92	
4.3.12	Effect of of pyruvat	Mn ⁺⁺ on the PEP saturation curve e kinase	94	
4.3.13		varying G6P concentration on inase activity	96	
4.3.14		varying ATP concentration on inase activity	96	

i,

	4.3.15		varying P _i concentration on inase activity	100
	4.3.16	in the rel	n between G6P and ATP or P _i ationship between pyruvate kinase nd PEP concentration	100
	4.3.17		pH on the kinetic and allosteric of pyruvate kinase	101
		4.3.17.1	Effect of pH on the PEP saturation curve	104
		4.3.17.2	Effect of G6P and ATP on the PEP saturation curve at pH 6.0	106
		4.3.17.3	Relationship between pyruvate kinase activity and ADP concentration at pH 6.0	108
		4.3.17.4	Effect of G6P on the pH profile of pyruvate kinase	108
	4.3.18		ic data on the pyruvate kinase in tract from <u>P.shermanii</u> cells	110
4.4	Discussio	n		112
CHAPTER			METABOLITES IN <u>P.SHERMANII</u> GROWING UTRITIONAL CONDITIONS	
5.1	Introduct	ion		118
5.2	•		lite levels in resting cell C-labelled carbon sources	118
	5.2.1	Preparatio	n of resting cell suspensions	120
	5.2.2	Labelling intermedia	and separation of glycolytic tes	121
5.3			ns of metabolites in batch and of <u>P.shermanii</u>	125
	5.3.1	·	of extraction procedures for f glycolytic intermediates	127
	5.3.2	Batch cult	ure studies	1 30
		5.3.2.1	Preliminary investigation of <u>in vivo</u> concentrations of metabolites	130

		5.3.2.2	Detailed study of metabolite levels on batch cultures of <u>P.shermanii</u>	131
	5.3.3	Continuous	cultures	137
		5.3.3.1	Carbon balances during continuous growth on lactate, glucose and glycerol defined media	137
		5.3.3.2	<u>In vivo</u> concentrations of meta- bolites in continuous cultures	141
		5.3.3.3	Specific activities of selected enzymes in continuous cultures	144
5.4	Discussio	n		147
CHAPTER		LE OF G6PI HERMANII	N THE REGULATION OF METABOLISM	
6.1	Introduct	ion		153
6.2			n external carbon source P or pyruvate levels	153
	6.2.1		ip between external glucose ion and internal G6P concentration	153
	6.2.2		ip between external glycerol ion and internal G6P concentration	154
	6.2.3		ip between external lactate ion and internal pyruvate ion	158
6.3		at <u>in vivo</u>	he regulation of pyruvate kinase concentrations of substrates and	160
	6.3.1	Partial pu	rification of pyruvate kinase	160
	6.3.2	Studies on kinase	the partially purified pyruvate	162
6.4	Discussio	n		165

х.

CHAPTER	7 - SOME ADDITIONAL ASPECTS OF METABOLIC REGULATION IN <u>P.SHERMANII</u>	
7.1	Introduction	167
7.2	The effect of G6P concentration on G6P dehydrogenase activity	167
7.3	The effect of carbon source on the uptake of phosphate	170
7.4	Growth and metabolism of <u>P.shermanii</u> on a mixed glucose/ lactate defined medium	174
CHAPTER	8 - GENERAL DISCUSSION	
8.1	Regulation of pyruvate kinase during glycolysis and gluconeogenesis	178
8.2	Further possible roles of G6P as a regulator of carbohydrate metabolism in <u>P.shermanii</u>	184
8.3	Areas for further study	191
Bibliogr	aphy	196

LIST OF FIGURES

Figure Number	Title	Page Number
1.2	Carbohydrate metabolism in <u>P.shermanii</u> .	13
2.4	Relationship between dry weight and optical density.	27
2.8	Fluorometric analysis of metabolites.	35
3.4	Growth of <u>P.shermanii</u> in the defined medium on lactate, glucose and glycerol.	42
4.2.1	Specific activity of pyruvate kinase during growth of <u>P.shermanii</u> .	56
4.2.5	DEAE - Sephadex ion exchange chromatography.	59
4.2.6	Sephacryl S200 gel filtration.	60
4.3.2	Treatment of kinetic data.	67
4.3.3	Effect of enzyme concentration on activity.	69
4.3.4	Stability of pyruvate kinase.	71
4.3.5	pH profile of pyruvate kinase.	73 ·
4.3.7	Effect of acetyl phosphate concentration on pyruvate kinase activity.	79
4.3.8	Effect of ADP on the relationship between activity and PEP concentration.	81
4.3.9	Effect of PEP on the relationship between activity and ADP concentration.	85
4.3.10	Effect of GDP concentration on pyruvate kinase activity.	89
4.3.11	Effect of Mg ⁺⁺ concentration on pyruvate kinase activity.	91
4.3.11.3	Effect of Mg ⁺⁺ concentration on the relationship between pyruvate kinase activity and ADP concentration.	93
4.3.12	Effect of MnCl ₂ concentration on the PEP satur- ation curve.	95

xiii.

4.3.13	Effect of G6P concentration on pyruvate kinase activity.	97
4.3.14	Effect of ATP concentration on pyruvate kinase activity.	98
4.3.15	Effect of P _i concentration on pyruvate kinase activity.	98
4.3.16	Interaction between G6P and ATP or P _i on the PEP saturation curve.	102
4.3.17.4	Effect of G6P on the pH profile of pyruvate kinase.	109
5.2.2	Autoradiograph of 14 C-labelled intermediates.	123
5.3.2.2	Growth of P.shermanii in batch cultures.	134
6.2	Relationship between internal G6P concentration and external glucose or glycerol concentration.	157
6.2.3	Relationship between internal pyruvate concentration and external lactate <- concentration.	157
6.3.2	Pyruvate kinase activity at <u>in vivo</u> concentrations of substrates and effectors.	163
7.2	Relationship between glucose 6-phosphate dehydrogenase activity and G6P concentration.	169
7.4	Growth of <u>P.shermanii</u> on mixed lactate/glucose medium.	176

.

+

LIST OF TABLES

Table Number	Title	Page Number
3.4	In text.	43
3.5	Enzyme levels in batch cultures of <u>P.shermanii</u> .	46
4.1.2	Summary of kinetic properties of some bacterial pyruvate kinases.	53
4.2	Purification of pyruvate kinase from 40 g wet packed weight of <u>P.shermanii</u> cells.	62
4.3.7	Effect of metabolites on pyruvate kinase activity.	75
4.3.8	Effect of ADP on the relationship between activity and PEP concentration.	82
4.3.9	Effect of PEP on the relationship between activity and ADP concentration.	86
4.3.14	Effect of ATP concentration on pyruvate kinase activity.	99
4.3.16	The effects of G6P, ATP and P _i on the relationship between pyruvate kinase activity PEP concentration.	103
4.3.17.1	The effect of pH on the relationship between pyruvate kinase activity and PEP concentration	105 n.
4.3.17.2	The effect of G6P and ATP on the relationship between pyruvate kinase activity and PEP concentration at pH 6.0.	107
4.3.18	Kinetic data on pyruvate kinase in a crude extract of <u>P.shermanii</u> .	111
5.3.1	Effect of extraction procedures on <u>in vivo</u> metabolite levels.	129
5.3.2.1	In <u>vivo</u> concentration of metabolites in batch cultures.	132

+

.

5.3.2.2	Batch cultures of <u>P.shermanii</u> on lactate, glucose and glycerol defined media.	135
5.3.3.1	Carbon balances in <u>P.shermanii</u> continuous cultures.	139
5.3.3.2	<u>In vivo</u> levels of metabolites in continuous cultures.	142
5.3.3.3	Enzyme levels in continuous cultures.	146
5.4	Summary of data on <u>in vivo</u> levels of metabolites in <u>P.shermanii</u> .	148
6.2.1	Relationship between external glucose concen- tration and internal G6P concentration.	155
6.2.2	Relationship between external glycerol concen- tration and internal G6P and F6P concentrations.	156
6.2.3	Relationship between external lactate concentr- ation and internal pyruvate concentration.	159
6.3.1	Partial purification of pyruvate kinase.	161
6.3.2	Effect of inorganic phosphate on the cooperativity of G6P activation of pyruvate kinase.	164
7.3	Effect of carbon source on phosphate uptake in <u>P.shermanii</u> .	173
7.4	Growth of <u>P.shermanii</u> on mixed glucose/lactate defined medium.	175

26.5

LIST OF ABBREVIATIONS

ADP	adenosine 5'-diphosphate
AMP	adenosine 5'-monophosphate
АТР	adenosine 5'-triphosphate
Bistrispropane	2 bis/_tris (hydroxymethyl) methylamino_7-propane
CDP	cytidine 5'-diphosphate
CM-	carboxymethyl-
СоА	coenzyme A
DE-, DEAE-	diethylaminoethyl-
DHAP	dihydroxyacetone phosphate
DNase	deoxyribonuclease
ED	Entner-Doudoroff
EDTA	ethylenediamine tetra-acetic acid
EMP	Embden-Meyerhof-Parnas
FBP	fructose 1,6-bisphosphate
F6P	fructose 6-phosphate
Ga 3-P,)]glyceraldehyde 3-phosphate
Glyceraldehyde 3-P)
GDP	guanosine 5'-diphosphate
glycerol 3-P	glycerol 3-phosphate, α -glycerophosphate
G6P	glucose 6-phosphate
GTP	guanosine 5'-triphosphate
HEPES	N-2-hydroxyethyl piperazine-N'-2-ethanesulphonic acid
HMP .	hexose monophosphate
IDP	inosine 5'-diphosphate
MES	2 <u>[N-morpholino_7</u> ethane sulphonic acid
NAD	nicotinamide adenine dinucleotide
NADH	nicotinamide adenine dinucleotide, reduced

NADP	nicotinamide adenine dinucleotide phosphate
NADPH	nicotinamide adenine dinucleotide phosphate, reduced
n _H	Hill interaction coefficient
00 ₅₄₀	optical density at 540 nm
OAA	oxaloacetic acid
PEP	phosphoenolpyruvate
6-PG	6-phosphogluconate
3-PGA '	3-phosphoglyceric acid
Pi	inorganic phosphate
PPi	inorganic pyrophosphate
ribose 5-P	ribose 5-phosphate
ribulose 5-P	ribulose 5-phosphate
Tricine	N-tris (hydroxymethyl) methylglycine
Tris	tris (hydroxymethyl) aminomethane
UDP	uridine 5'-diphosphate
V _{max}	maximum velocity
<u>E.coli</u>	<u>Escherichia coli</u>
N.crassa	Neurospora crassa
S.lactis	Streptococcus lactis