Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE PHYSIOLOGY OF STAPHYLOCOCCAL ENTEROTCXIN PRODUCTION

A thesis presented in partial fulfilment of the requirements for the degree of Ph.D in Microbiology at Massey University.

> Audrey Winifred Jarvis 1974

ABSTRACT

The aims of this investigation were to study the environmental factors which determine enterotoxin production by staphylococci. Effects of pH, oxygen, medium composition, and in particular of added carbohydrates in a defined medium were investigated under controlled conditions, using several strains of each enterotoxin type.

The production of staphylococcal enterotoxins A, B and C in shake-flasks was studied throughout the growth cycle for nine strains of staphylococci. Enterotoxins were first detected in the exponential phase, and except for strain S-6, no appreciable increase in enterotoxin occurred during the stationary phase of growth. Enterotoxins were however produced in relatively small quantities by non-replicating cells from late exponential or stationary phases of growth. Chloramphenicol inhibited enterotoxin production by nonreplicating cells. A small quantity of enterotoxin B was produced in the presence of actinomycin D, suggesting the accumulation of a small pool of mRNA for enterotoxin production.

The production of enterotoxins was investigated in a fermenter under controlled conditions of pH and aeration, using a casein hydrolysate medium and a defined amino acid medium. Enterotoxin production in the fermenter was considerably less than in shake-flasks for eight out of nine strains of staphylococci. The reasons for these differences between fermenter and shakeflask were investigated, particular attention being given to pH, aeration and antifoam.

Changes in the environment caused changes in the growth patterns of staphylococci as shown by alterations in the specific growth rate, the duration of the transition period from exponential to stationary phases of growth and the final cell yield. Attempts were made to determine how far the changes in the final yields of enterotoxin were due to effects on the specific rates of enterotoxin production, and which differences were consequences of altered growth patterns. The optimum pH for enterotoxin A, B and C production in casein hydrolysate and amino acid media was determined. Growth of staphylococci under conditions of controlled pH resulted in a higher final yield of enterotoxin than growth without pH control. The implications of the effect of pH on enterotoxin A production in food is discussed.

The repression of enterotoxins when glucose or glycerol were added to the growth medium was studied under controlled conditions of pH, and with constantly maintained glucose or glycerol. Since enterotoxins A, B and C were repressed by both compounds in growing cells when the pH was held constant, repression was not due to the fall in pH which occurred when the pH was not controlled. The repression of enterotoxin by glucose or glycerol was always accompanied by an increase in growth rate. It has been suggested by other workers that there is an inverse relationship between growth rate and extracellular protein production (Coleman, 1967, Stormonth and Coleman, 1973). However, when S.aureus S-6 was grown in continuous culture, it was found that an increase in growth rate caused an increase in enterotoxin production. Also the addition of glucose to the medium repressed enterotoxin production when the growth rate was held constant.

Although glucose and glycerol repressed enterotoxin production by growing cells, neither compound inhibited enterotoxin production by non-replicating cells which had been grown with-However, experiments with strain S-6 showed out glucose. that cells grown in the presence of glucose and resuspended without glucose lacked the ability to produce enterotoxin B. This suggested that glucose inhibited the production of an essential pre-requisite for the synthesis or release of enterotoxin, such as an enzyme for the final conversion of an enterotoxin precursor to enterotoxin. Experiments with chloramphenicol had shown that there was no appreciable buildup of protein precursor for enterotoxin in non-replicating cells. However, very small accumulations of a precursor could repress enterotoxin synthesis by a feedback mechanism.

There were often marked differences in the effect of environmental changes on enterotoxin production by different strains of the same enterotoxin type. One of the aims of this investigation was to examine differences which have been reported to exist between mechanisms of production of the various enterotoxins, particularly enterotoxins A and B. The differences between strains were often greater than supposed differences between enterotoxins, and throughout this investigation several strains were used for each experiment wherever possible.

Staphylococci produce a large number of extracellular proteins. Throughout this study the production of lipase, deoxyribonuclease, lysozyme and total extracellular protein was followed to determine the extent to which the effects of environmental changes were specific to enterotoxin as distinct from a general effect on extracellular protein production.

ACKNOWLEDGEMENTS

I am grateful to Dr W.A. McGillivray, Director of the Dairy Research Institute for the opportunity to undertake this research.

I am also grateful to my supervisors, Drs G.G. Pritchard and R.C. Lawrence for their advice and encouragement throughout this investigation.

I am greatly indebted to Dr M.S. Bergdoll, University of Wisconsin, for supplying strains 100, S-6 and 361, and for the gift of enterotoxins A, B and C, and their corresponding antisera, also to Dr R.W. Bennett, for supplying strain 743.

My thanks are due to Mrs B. Hodren for excellent technical assistance, and to Dr Lawrence and Mrs Hodren for lipase, deoxyribonuclease and lysozyme assays. I would like to thank Dr K. Pearce for Mg⁺⁺ determinations, and Dr K.R. Marshall for helpful discussion concerning the continuous culture experiments. I would also like to express my appreciation of the patience shown by my family during this study.

Part of the findings from Section 3 have been published in <u>Infection and Immunity</u>, 1973. <u>7</u>: 874-854, under the title 'Production of staphylococcal enterotoxins A, B and C under conditions of controlled pH and aeration', by Audrey W.Jarvis, R.C. Lawrence and G.G. Pritchard.

CONTENTS

1	INTRO	DUCTION		1
	1.1	Staphylo	ococcal enterotoxins	
	1.2	Incidend	ce of enterotoxins	2
	1.3	Differer	nces between enterotoxins	3
	1.4	Factors	affecting the production of staphy-	
		lococcal	l enterotoxins	4
		1.4.1	Medium composition	4
		1.4.2	pH	5
		1.4.3	Aeration	6
		1.4.4	Temperature	7
	1.5		of glucose on enterotoxin production	7
	1.6		trol of extracellular protein	4.0
		product		10
	1.7	Aims of	this investigation	11
2	GENER	AL CHARAC	TERISTICS OF ENTEROTOXIN A, B, C AND	
	D PRO	DUCTION 1	BY GROWING AND RESTING CELLS OF	
	STAPH	AFOCOCCI		13
	.2.1	Introduc	ction	13
	2.2	Materia	ls and methods	14
		2.2.1	Staphylococcal strains	14
		2.2.2	Media	14
		2.2.3	Measurement of growth	15
		2.2.4	Cultural conditions	16
		2.2.5	Non-replicating cells	16
		2.2.6	Assays of extracellular proteins	18
		2.2.7	Specific rate of product formation	
			in batch cultures	25
	2.3	Results		27
		2.3.1	Production of enterotoxins in	
		/.	shake-flasks	27
		2.3.2	Effect of temperature on growth and	
			production of extracellular proteins	30
			production of extracerrural proterns	

ŝ

: 1

•

vi

		2.3.3 2.3.4	Comparison of CH and AA medium Effect of arginine concentration in	33
		2.3.5	AA medium Effect of K^+ and NH_4^+ ions in AA	36
		2.).)	medium	36
		2.3.6	Production of enterotoxins by non-	2-
			replicating cells	38
	2.4	Discuss	ion	40
		2.4.1	0	
		2.4.2	toxin production Effect of environmental factors on	40
		L • T • L	enterotoxin production	43
3	FRODU	ICTION OF	ENTEROTCXINS A, B AND C UNDER CON-	
			TIONS OF PH AND AERATION IN SYNTHETIC	
	AND I)EFINED M	EDT A	. 45
	3.1	Introdu	ction	45
	3.2	Materia	ls and methods.	46
		3.2.1	Design and operation of fermenter	46
	3.3	Results		48
		3.3.1	Comparison of shaker-grown and	
			fermenter-grown cultures	48
	÷	3.3.2	Effect of antifoam	50
		3.3.3	Effect of increased aeration in	
			shake-flasks	53
		3.3.4	Effect of aeration on enterotoxin	50
		7 7 F	production in the fermenter	57
		3.3.5	Effect of additions of HCl to the fermenter	60
		3.3.6	Effect of pH on the production of	00
		J•J•U	enterotoxins and other extracellular	
			proteins in CH medium	60
		3.3.7	Effect of pH on the production of	
			enterotoxins and other extracellular	
			proteins in AA medium	65

4 ···

vii

		3.3.8	Effect of gas flow on staphylococcal	
			cells in AA medium	69
	3.4	Discussi	Lon	71
		3.4.1	Differences between strains in	
	*		response to conditions of growth	71
		3.4.2	±	
		3.4.3	in the fermenter and in shake-flasks Effect of aeration on enterotoxin	72
		J•+•J	production	73
		3.4.4	-	73
4	EFFEC	OF GLUC	COSE AND GLYCEROL CN THE PRODUCTION OF	
			AND OTHER EXTRACELLULAR PROTEINS	75
		Introduc		75
	4.2	Material	ls and methods	75
		4.2.1	Strains	75
		4.2.2	Media	76
		4.2.3	Cultural conditions	76
		4.2.4	Measurement of glucose concentration	76
		4.2.5	Control of glucose and glycerol	
			concentrations	77
		4.2.6	Measurement of growth	77
		4.2.7	Determination of extracellular	
			proteins	77
		4.2.8	Determination of β -galactosidase	78
		4.2.9	Non-replicating cells	78
	4.3	Results		78
		4.3.1	Effect of glucose on enterotoxin B	
			production in shake-flasks	78
		4.3.2	Effect of added carbohydrates and	
			related compounds on the production	
			of enterotoxins and other extra-	
			cellular proteins	80
		4.3.3	Effect of glucose on enterotoxin and	
			TEP production in the fermenter	86

\$--.

viii

	4.3.4	Effect of constantly maintained 0.1 M	
		glucose and 0.1 M glycerol on the	
		production of extracellular proteins	
		in the fermenter	86
	4.3.5	Effect of adding glucose during	
		exponential growth on the production	
		of enterotoxin	90
	4.3.6	Effect of omitting thiamine from	
		AA medium	92
	4.3.7	Effect of glucose on enterotoxin	
		production under conditions of	
		reduced Mg++	93
	4.3.8	Effect of glucose and glycerol on	
		β -galactosidase and extracellular	
		protein production by non-replicating	
		cells of staphylococci	98
	4.3.9	Effect of chloramphenicol and	
		actinomycin D on the production of	
		enterotoxin B and -galactosidase by	
		non-replicating cells	103
	4.3.10	Production of enterotoxin B by non-	
		replicating cells of S.aureus S-6	
		grown in the presence of glucose	103
	4.3.11	Effect of cyclic adenosine 3, '5-	
		monophosphate (cAMP) on enterotoxin	
		B production	105
4.4	Discuss	ion	108
	4.4.1	The production of enterotoxins at	
		constant pH in the presence of 0.1 M	
		glucose or 0.1 M glycerol	108
	4.4.2	Glucose repression of enterotoxin in	
		relation to the synthesis of other	
		extracellular proteins	109
	4.4.3	Relation of the change in the specific	
	2	growth rate in the presence of glucose	
		or glycerol to the repression of	
		enterotoxin production	110
	4.4.4	Effect of glucose on the production of	
		enterotoxins under conditions of	
		reduced Mg++	111
		<u> </u>	

4.

ix

		4.4.5	Production of enterotoxins and β -galactosidase by non-replicating cells of staphylococci	111
5	S.AUR	EUS S-6	N OF STAPHYLOCOCCAL ENTEROTOXIN BY BY IN CONTINUOUS CULTURE: THE EFFECT OF ND GLUCOSE ON ENTEROTOXIN PRODUCTION	114
	5.1	Introdu	ction	114
	5.2	Materia	ls and methods	115
		5.2.1	Strains	
		5.2.2	Medium and cultural conditions	115
		5.2.3	Control of glucose concentration	116
		5.2.4	Measurement of growth	117
		5.2.5	Determinations of extracellular	
			proteins	118
		5.2.6	Specific rate of product formation in	
			continuous culture	118
		5.2.7	Mg ⁺⁺ determinations	119
	5.3	Results	*	119
		5.3.1	production of enterotoxin B and other	119
		5 Z O	extracellular protein	119
		5.3.2	Effect of glucose on growth in con- tinuous culture	124
		5.3.3	Effect of glucose on the production	
			of enterotoxin B and other extra-	
			cellular proteins	128
	5•4	Discuss	ion	131
		5.4.1	Effect of glucose on the production of enterotoxin B and other extra- cellular proteins at constant growth rate	131
		5.4.2	Relation between growth rate and the production of enterotoxin B and other extracellular proteins	132
			protocitatat protocite	.,

4 ···

x

6	GENERA	AL DISCUSSION		•	133
	6.1	General conclusions			
	6.2	Strain variation			133
	6.3	Relation between enterotoxin production and	ł		
		growth			134
	6.4	Enterotoxin production relative to the			
		synthesis of other extracellular proteins i	n		
		staphylococci			136
	6.5	Glucose repression of enterotoxin productio	m		137
7	REFERI	ENCES			140

۰.

: 1

xi

FIGURES

1.	Relation between cell concentration and OD at	
	600 nm. 100 per cent concentration corresponds	X
0	to 0.25 mg/ml dry weight of cells	17
2.	Standard curve for enterotoxin A determination	20
3.	Standard curve for deoxyribonuclease determination	22
4.	Standard curve for lipase determination	23
5.	Standard curve for lysozyme determination	24
6.	Standard curve for TEP determination	26
7.	Growth and enterotoxin A production by strain 100	
	in a shake-flask in CH medium. OD, Δ ; entero-	
	toxin A,o; pH,D.	28
8.	Growth and enterotoxin B production by strain S-6	
	in a shake-flask in CH medium. OD,∆; enterotoxin	
_	B, O; pH, D .	29
9.	Growth and enterotoxin C production by strain 361	
	in a shake-flask in CH medium. OD, Δ ; enterotoxin	
	C, O; pH,	31
10.	Oxygen utilization by strain 10 during 24 h	
	incubation in a shake-flask	32
11.	Diagram of fermenter. A, alkali reservoir;	
	B, acid reservoir; C, oxygen sensor; D, acid	
	inlet; E, alkali inlet; F, water-cooled stirrer	
	gland; G, stirrer; H, KCl electrode; I, glass	
	electrode; J, sampling port; K, thermometer;	
	L, air inlet; M, 2 litre glass fermenter	47
12.	Growth and enterotoxin B production by strain	
	S-6 in a shake-flask (open symbols) and a	
	fermenter (closed symbols) in CH medium.	
	OD,₄; enterotoxin B, O; pH,□.	51
13.	Growth and enterotoxin C production by strain 361	
	in a shake-flask (open symbols) and a fermenter	
	(closed symbols) in CH medium. OD, Δ ; enterotoxin	
	C, O; pH,□.	52
14.	Growth and enterotoxin A production by strain 100	
	in a fermenter in CH medium at uncontrolled pH	
	(open symbols) and at pH 6.5 (closed symbols).	
	OD,∆; enterotoxin A, O; pH,□.	61

xii

- Growth and enterotoxin B production by strain S-6 in a fermenter in CH medium at uncontrolled pH (open symbols) and pH 6.5 (closed symbols). OD, Δ ; enterotoxin B, O; pH, \Box . 64 Growth and enterotoxin A production by strain 100 in a fermenter in CH medium (open symbols) and AA medium (closed symbols). OD, Δ ; enterotoxin A, O; pH, \Box . 67 Effect of air and N₂ on CD of cells of strain 100 in a fermenter in AA medium when antifoam added (0) and in the absence of antifoam (Δ). 70
- 18. Standard curve for determination of β -galactosidase

15.

16.

17.

- 19. Growth and enterotoxin B production by strain S-6 in the fermenter in AA medium (open symbols), and in AA medium containing an initial concentration of 2% glucose (closed symbols). OD,∆; enterotoxin B, O; glucose, ●
- 20. Growth and enterotoxin B production by strain S-6 in AA medium (open symbols) and in AA medium with glucose concentration maintained at 0.1 M (closed symbols). OD,Δ ; enterotoxin B, O
- 21. Specific growth rate (μ)Δ; increase in OD, O; and production of enterotoxin B,□; by strain S-6 during 12 h incubation in AA medium in shake-flasks with different initial Mg⁺⁺ concentrations
- 22. Growth and enterotoxin B production in AA medium containing a reduced concentration of Mg⁺⁺ (0.2 mM) without glucose (open symbols) and with glucose maintained at 0.1 M (closed symbols).
 OD,Δ; enterotoxin B, 0.
- 23. Effect of 0.1 M glucose on enterotoxin B and β-galactosidase production by non-replicating cells of strain S-6 without glucose (open symbols) and with 0.1 M glucose (closed symbols). β-galactosidase,Δ; enterotoxin B, 0.
- 24. Effect of 100 µg/ml chloramphenicol and 10 µg/ml actinomycin D on enterotoxin B production by non-replicating cells of strain S-6. control, Δ; control + 10 µg/ml actinomycin D, 0; control + 100 µg/ml chloramphenicol, □.

xiii

79

87

91

94

. 96

101

104

- 25. Effect of c-AMP on glucose repression of β -galactosidase production by <u>E.coli</u>. control Δ ; control + 0.1 M glucose, 0; control + 0.1 M glucose + 5 x 10⁻³ M cAMP, •.
- 26. Effect of dilution rate on the specific rate of formation of the following proteins by strain S-6; enterotoxin B,∆; TEP (x 10), 0; lipase,□; deoxyribonuclease, (▲); lysozyme (x 100), ●.
- 27. Effect of increasing Mg⁺⁺ in incoming medium from 0.2 mM (0) to 0.4 mM (△) on OD in continuous culture of strain S-6
- 28. OD, enterotoxin B and TEP production by strain S-6 in continuous culture, dilution rate 0.24 h⁻¹, residence time 4.2 h, Mg⁺⁺ in incoming medium 0.2 mM; without glucose (open symbols) and with 0.1 M glucose (closed symbols). OD,∆; enterotoxin B, 0; TEP,□.
- 29. OD, enterotoxin B and TEP production by strain S-6 in continuous culture, dilution rate 0.07 h⁻¹, residence time 14.3 h, Mg⁺⁺ in incoming medium 0.2 mM; without glucose (open symbols) with 0.1 M glucose (closed symbols), OD,∆; enterotoxin B, 0; TEP,□.
- 30. OD, enterotoxin B and TEP production by strain S-6 in continuous culture, dilution rate 0.24 h⁻¹, residence time 4.2 h, Mg⁺⁺ in incoming medium 0.4 mM; without glucose (open symbols), with 0.1 M glucose (closed symbols)OD,∆; enterotoxin B, 0; TEP,□.

126

127

xiv

107

122

123

12.5

TABLES

1. The effect of temperature on the production of enterotoxin and other extracellular proteins by strains 100, S-6, 361 and 485 in CH medium in shake-flasks during 24 h incubation 34 2. Production of enterotoxins A, B and C in CH and AA media in shake-flasks during 24 h 35 Effect of K⁺ ions on the production of entero-3. toxin B by strain S-6 during 12 h incubation with and without (NH4)2SC4, at initial pH values of 6.5 and 7.7 37 Enterotoxin B and TEP production by non-4. replicating cells of strain S-6 from stationary phase of growth during 4 h incubation 39 5. Froduction of enterotoxins in N-medium and N-free medium, with and without chloramphenicol (Cm) by non-replicating cells during 4 h incubation 41 6. Production of enterotoxins and TEP in shake-flask 49 and fermenter in CH medium initial pH 7.3 Effect of silicone antifoam on the production of 7. extracellular proteins by nine strains of staphylococci in CH medium in shake-flasks during 24 h incubation 54 8A. Effect of aeration on production of enterotoxins and TEP in CH medium in shake-flasks during 24 h incubation 56 8B. Effect of aeration on production of lipase, deoxyribonuclease and lysozyme in CH medium in shake-flasks during 24 h incubation 58 9. Effect of dissolved oxygen concentration on enterotoxin and TEP production in the fermenter 59 10. Effect of pH on the production of enterotoxins A, B and C and other extracellular proteins in CH medium 62 11. Effect of pH on the productions of enterotoxins A, B and C and other extracellular proteins in AA medium 68

xv

- 12. Effect of 2% glucose on enterotoxin B and TEP production by six strains of <u>S.aureus</u> in shakeflasks in AA medium, initial pH 6.5 during 24 h incubation
- 13A. Effect of 0.1 M glucose, glycerol and pyruvate on the specific rate of formation (q_p) of enterotoxins by five strains of staphylococci in shake-flasks in AA medium during 24 h incubation
- 13B. Effect of 0.1 M glucose, glycerol and pyruvate on the specific rate of formation (q_p) of extracellular proteins by five strains of staphylococci in shake-flasks in AA medium during 24 h incubation
- 14A. Effect of 0.1 M galactose and lactose on the production of enterotoxins and other extracellular proteins by five strains of staphylococci in AA medium in shake-flasks during 24 h
- 14B. Effect of 0.1 M galactose and lactose on the production of enterotoxins and other extracellular proteins by five strains of staphylococci in AA medium in shake-flasks during 24 h
- 15. Effect of an initial concentration of 2% glucose on the production of enterotoxins and TEP by strains 100, S-6, 30 and 361 in the fermenter at pH 6.5, during 12 h incubation
- 16. Effect of 0.1 M glucose and 0.1 M glycerol on the production of enterotoxins A, B and C and other extracellular proteins by four strains of staphy-lococci during 12 h incubation at pH 6.5 in the fermenter
- 17. Effect of 0.1 M glucose on the production of enterotoxins and other extracellular proteins under conditions of reduced Mg⁺⁺, during 12 h incubation
- 18. Effect of 0.2 M and 0.4 M phosphate buffer pH 7.0 on pH changes in AA medium produced by nonreplicating cells of <u>S.aureus</u> S-6 in the presence and absence of glucose

xvi

80

82

83

84

88

85

97

99

89

19.	Effect of phosphate buffer pH 7.0 and 1% galactose on the production of extracellular proteins by non-replicating cells of <u>S.aureus</u> S-6 during 4 h	·
	incubation	100
20.	Effect of 0.1 M glucose and glycerol on the	
	production of enterotoxins A, B and C and other	
	extracellular proteins, and of β -galactosidase,	
	by non-replicating cells of staphylococci during	
	2 h incubation	102
21A.	Effect of dilution rate on cell concentration and	
	production of enterotoxin B by S.aureus S-6	120
21B.	Effect of dilution rate on the production of TEP,	
	lipase, deoxyribonuclease and lysozyme by S.aureus	
	S-6	120
22A.	Effect of 0.1 M glucose on the production of enter-	
	toxin B and TEP by S.aureus S-6	129
22B.	Effect of 0.1 M glucose on the production of	
	lipase, deoxyribonuclease, lysozyme and	
	β -hemolysin by S.aureus S-6.	129

xvii