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Abstract

In the field of solid state physics there are many open questions surrounding
the best configuration of packing spheres to calculating binding energies to
J/mol accuracy. Many of these problems have attracted attention from
individuals in many faculties from mathematics, physics and chemistry over
the course of the last four centuries. A significant amount of work has been
done modernizing interaction potentials from the early twentieth century by
the use of modern computers and quantum chemical software programs
extending versions of the most common two-body potential. The historical
survey of the methods leading up until the late nineteen eighties serves as the
basis for where we step off for much of the analytic techniques for evaluating
lattice sums and their use in answering these open questions. Investigations in
to the stability of certain packing configurations compared to others in the
solid state can be made with the use of fast techniques to evaluate the
properties of such systems, many of which are developed here and used
throughout the work in the various projects seen below.

The aim of this work is to show that the evaluation of lattice constants and the
formulae to calculate them can be given in a concise and efficient form with
the use of mathematical and numerical methods. Analytical expressions can
be found that are given in terms of real exponents and these expressions can
be evaluated to arbitrary precision within a satisfactory amount of computer
time. In contrast to the infinite structure that forms the lattice in the physical
world, the techniques to calculate its sum have evolved from an infinite direct
summation to methods that treat the sum associated with the quadratic form
of the lattice re-expressing it as a sum of simple functions using number
theoretic techniques and treating sums in terms of fast converging series or
sums of hyperbolic functions.

The results of this investigation are multiple new formulae for the cubic
lattice systems, including expressions for the simple cubic lattice and famous
Madelung constant in N–dimensions. A new expression was found for the
hexagonal close packed structure that is computationally elegant and allowed
the examination of the behaviour of the two-body Lennard–Jones potential in
terms of the lattice parameters. A single parameter sum was found for the
simple cubic system that was used to investigate the effect of pressure on
body centered cubic system compared to the face centered cubic system.
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1 Introduction

1.1 Historical Review of Lattice Sums

Lattice sums have a long history in solid-state physics and discrete
mathematics [1]. They connect lattices to observables such as the equation of
state for a bulk system using interacting potentials between the lattice points
in bulk atomic or molecular solids in three-dimensional space [2–5]. The
central idea here is to account for all dispersive, ionic or covalent interactions
in a bulk system using analytically expressed two-body potentials between
the atoms in a lattice, which leads to convergent infinite series expressions by
summing over all two-body interactions. If one is lucky, such series lead to
analytical expressions in terms of standard functions such as the Riemann or
Hurwitz zeta function.

Work on interaction potentials from the early twentieth century was carried
out by researchers such as Lennard-Jones (LJ), Fürth, Born, Grüneisen etc.,
and most notable cases for such interactions are the Lennard-Jones [6] for
dispersive type of interactions and the Coulomb potential for ionic
interactions, leading in the latter case, for example, to the famous Madelung
constant derived as early as in 1918 [7]. For such potentials the corresponding
lattice sums become functions of quadratic forms associated with the lattice
L [8]. Over the past century much work has contributed to the mathematical
analysis of lattice sums, and the evaluation of conditionally convergent series
required new thinking and more elaborate mathematical techniques [1].

The first occurrence of what is generally considered a lattice sum was by
Appell in 1884, where he produced an analytical expression derived for a
single one-dimensional set of point charges [9]. At the turn of the twentieth
century Epstein introduced what is now called the Epstein-zeta function, a
more general version of the Riemann and Hurwitz zeta functions that belongs
to the class of Dirichlet functions, given in terms of a real positive-definite
(N × N) matrix. The equation by Epstein sums over any positive definite
N-dimensional integer lattice and served as a basis for future work on lattice
sums to come. X-ray studies carried out particularly by Bragg contributed the
knowledge that salt crystals consisted of interpenetrating lattices of the
corresponding ions and the numerical evaluation of lattices became an
important topic for Born and his students (particularly Emersleben) who

1



2 1 Introduction

studied lattice vibrations and crystal binding energies [10–12] Just before the
end of the 1910’s saw the first accurate numerical result for sodium chloride
(rock salt) produced by Madelung in 1919 [13]. The summation method used
by Madelung was similar to that of Appell, however the method for
calculating the potential due to a line of alternating charges was complicated
by geometric considerations needed to decompose more complex lattice
structures. Thus the need for a more flexible summation formula was met by
Ewald which was based on the Appell–Epstein approach and was formulated
for cubic systems in terms of ordinary theta functions [14].

At this point in the chronology of the historical perspective on lattice sums
story, we shall pause to mention the simultaneous development on interac-
tion potentials. Leading up to the early 1920’s, before the mathematics of
lattice sums were combined with interaction potentials in solid-state studies,
the discussion on interaction potentials started as early as in 1903 with Mie
suggesting an equation of state containing a volume dependent term of the
form (AV−1 −BV−ν/3) with ν > 3 [15]. Following this, in 1912 Grüneisen[3]
published the exact formula for what became later the well known (n,m) LJ
potential,

φ
(n,m)
LJ (r) =

nm
n−m

ε

[
1
n

(re

r

)n
− 1

m

(re

r

)m
]
, (1.1.1)

with n > m (n,m ∈ R and n,m > 3). Here ε is the dissociation energy and re

the equilibrium bond distance. The LJ potential is the most widely used
interaction potential in quantum chemistry and physics and is of central
importance for this thesis. A few selected LJ curves are shown in Figure 1.1.

In 1920 Kratzer also introduced a less general (2,1) potential which went
unnoticed [16]. The Grüneisen (n,m) potential was modified by Born and
Landé[17] in 1918 for ionic crystal and the same year Madelung introduced
the lattice sum for ionic crystals today known as the Madelung constant as
mentioned above [7]. It was not until 1924 after Lennard-Jones solved the
equation of state analytically to derive the parameters based on experimental
results, that the LJ (n,m) potential gained notoriety [18]. However the
physical relevance of the r−6 long-rang dispersive interaction term came
much later in 1930 by London [19]. What is curious about the time line is that
Simon and Simpson used the Grüneisen potential in 1924 giving it a proper
citation, and Lennard-Jones in his second paper also cited Simon and
Simpson’s paper in 1924 within a series of papers, but Grüneisen’s paper was
ignored.

Emersleben summarized the results of his work on the Grundpotential in two
papers in 1923, which subsequently was the topic of his thesis. In the first
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Figure 1.1 Lennard-Jones potentials for a selection of parameters (n,m).

paper Emersleben extended the Grundpotential idea to an arbitrary Bravais
lattice and to the case of a general inverse power law [20, 21]. Only one year
later in 1924 Lennard-Jones produced his work on lattices sums for cubic
crystal systems which serves as the first attempt to calculate the
corresponding lattice sums to sufficient accuracy for these types of solid-state
crystal systems [22, 23]. Much of the work performed throughout Project 1 of
this thesis starts from Lennard-Jones’s work on the calculation of crystal
potentials or lattice sums for the cubic crystal systems. The three methods
from Ewald, Emersleben and Jones all had their advantages and
disadvantages, however throughout the 1930’s to 1940’s the field of lattice
sums did not see much progress. The lattice summation for the
hexagonal-closed packed (hcp) structure was explored early by Kane and
Goeppert-Mayer in 1940, but has never been evaluated to high precision
except for some special cases such as noble gas solids [24–26]. In the 1950’s
work by Mackenzie, Schreiber, Hoff, Benson et al. was produced dealing
with the practical evaluation of electrostatic sums, which were reduced to fast
converging series of modified Bessel or exponential functions [27–30].

In the late 1960’s Emersleben elaborated on number theoretical techniques
suggested by Jones and Ingham [31]. Theta functions were used by Appell
and Ewald in the numerical evaluation of lattice sums earlier, however the
Mellin transform of theta function was not used until 1972 when Glasser
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produced a series of papers using analytic techniques including the theta
function transform and number theoretical methods to evaluate lattice sums
[32–35]. The mid 1970’s saw a large amount of work published using number
theoretical techniques and function theory of such sums, e.g., Pathria and
Chaba developed a method, based on the application of Poisson’s summation
formula, for the analytic evaluation of a specific class of two-dimensional
lattice sums involving modified Bessel functions [36–38]. Around the same
time Zucker and Robertson evaluated binary quadratic forms from a number
theoretical perspective using Dirichlet L-functions and following this into the
1980’s [39]. Terras published work using a Bessel function expansion and
subsequent reduction of positive definite quadratic forms, but went relatively
unnoticed. Terras’ method is used in the work contained in Project 1 [40].
Hautot used Schlomilch series with a Hankel transform to obtain results that
were similar to that of Van der Hoff–Benson in the evaluation of slowly
convergent series.[41] Comprehensive reviews on lattice sums can be found
by Borwein and co-workers in [1] and work on the Madelung constant by
Crandall in [42].

1.2 Crystal Lattices and Systems

The term "lattice" used in its strict mathematical sense means a regular peri-
odic array of points. The term is now generally accepted in the literature on
the properties of crystalline solids as referring to the arrangement of the atoms,
molecules or ions making up the crystal. When we therefore refer to a "crys-
tal lattice" we mean the lattice which would determine the mean position of
the atoms, molecules or ions making up the crystal. In a general sense when
we discuss a set of points to which a basis is attached, we call this a lattice.
Consequently, the position vector r⃗ of the lattice points in a three dimensional
lattice is given in terms of three translation vectors b⃗1 ,⃗b2 ,⃗b3 by

r⃗i jk = a⃗+ i⃗b1 + j⃗b2 + k⃗b3 , (1.2.1)

where i, j,k are integers and a⃗ is a constant. If the origin is a lattice point then
we may take

r⃗i jk = i⃗b1 + j⃗b2 + k⃗b3 . (1.2.2)

The parallelepiped formed by the use of three basic vectors is called the unit
cell. Other vectors of the lattice may be used as basic vectors but unless they
satisfy certain conditions they will not define the lattice without the use of
additional bases. If no additional basis is required then the basic vectors are
called primitive vectors. Here we must distinguish between a true lattice with
a basis which cannot be reduced to a simple lattice, and a lattice represented
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by using basic "coordinate" vectors b⃗1 ,⃗b2 ,⃗b3 and an additional basis vector a⃗.
In the case of a simple lattice we would always be able to find three new
vectors b⃗

′
1 ,⃗b

′
2 ,⃗b

′
3 by means in which the lattice can be represented without an

additional basis vector a⃗, i.e., by primitive vectors.

In a similar fashion the distinction between a primitive cell applies only to a
lattice defined by primitive vectors, while a unit cell is a parallelepiped in
three dimensions derived from any three ’coordinate’ vectorsa. The primitive
cell corresponds to the volume of space associated with a single lattice point.
On the other hand, the unit cell will have volume associated with s lattice
points if there are (s−1) additional basis vectors.

In crystallography the state of appearing unchanged in orientation following
displacement is called self-coincidence, and it is evident that a crystal lattice
can only be brought into self-coincidence in a finite number of ways and there-
fore the symmetry operations of a crystal form a finite group. Such a group
can only possess symmetry operations about a fixed point O, which leave the
the point O unmoved. Finite groups whose operations all leave one point un-
moved are called point groups. A space group is a group of transformations
and may be considered to be made up of two parts, a pattern unit and a repeat
mechanism. The analogy here is like the repeating pattern of victorian style
wallpaper. A lattice system is a group of lattices with the same set of lattice
point groups which are subgroups of the space group. Within the set of lattice
systems there are 14 different types of lattices named after the French physi-
cist Auguste Bravais. Bravais lattices are categorized by their relationships to
lengths a,b,c of the sides of the unit cell, and angles between each side given
by α,β ,γ . As an example the Bravais lattices with orthorhombic systems obey
the following equations:

a ̸= b ̸= c and α = β = γ = 90 .

In Figure 1.2 four Bravais lattices are shown, the primitive cell also known as
simple cubic (sc), body-centered cubic (bcc) and face-centered cubic (fcc)
from the Cubic system and additionally base centered cubic from the
Orthorhombic system.

In the work that follows, crystal systems from the Orthorhombic, Tetragonal
and Hexagonal systems are focused on, those being simple, body centered,
mean centered, axial centred, face centered cubic and hexagonal close packed
structures.

aCoxeter calls the generalization of a parallelepiped in higher dimensions a parallelotope [43].
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Figure 1.2 simple cubic, base centered cubic, body-centered cubic and face-
centered cubic lattices.

1.3 Rare Gas Solids

Kepler studied the densities of sphere packing almost four centuries ago
resulting in his famous conjecture that no arrangement of equally sized
spheres has a greater packing density than fcc and hcp arrangements. The
field of packing convex bodies in N-dimensional space is still an intensively
researched and debated topic in mathematics. Concerning the coordination
number of an atom in a solid, Gregory and Newton discussed the kissing
numbers of spheres and proposed what is known as the Gregory-Newton (GN)
problem of 12 kissing spheres. Following this, these problems and related
ones have attracted the attention of many prominent mathematicians. As the
work on sphere packing problems has progressed many new results have been
published on this topic. This has led to many interesting connections with
other fields of mathematics, such as graph theory, and solid-state physics.

Elemental rare-gas clusters are known to be typical examples of
Lennard-Jones (LJ) systems.[44, 45] When considered in the solid state the
periodic crystal is predicted to have a hexagonal close-packed structure [46],
while the experimentally determined structures for the Ne, Ar and Kr crystals
are all face centered cubic. This discrepancy, known as the rare gas
solid (RGS) problem has led to an intense debate about the growth process of
such clusters, as well as on the effects accounting for the difference in the
predicted energies of the fcc and hcp lattices.[47] This difference is actually
much smaller than originally anticipated, being only a few J/mol. This leads
to the interesting question as to why only fcc structures are found under
normal pressure. This puzzle has stimulated much theoretical research on the
interactions between rare-gas atoms themselves and the computation of the
cohesive energies.

With the development of many interaction potentials coming out of the early to
mid twentieth century, much work has been done on calculating accurate bind-
ing energies for solid-state systems. More recently, the LJ potential was ex-
tended to a more general form of an inverse power series, namely the extended
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Lennard-Jones (ELJ) potential,

φELJ(r) = ∑
n>3

cnr−n (1.3.1)

with the right boundary condition for the coefficients cn such that
φELJ(re) = −ε at the equilibrium distance re of the potential energy curve. In
the ELJ form, the 2-body potential curve is constructed from accurate point
wise data obtained from highly accurate quantum-chemical 2-body
calculations.[48] For a range of internuclear distances this data is fitted to the
inverse power series (7.1.2) with up to any number of ELJ coefficients cn

instead of just two. An advantage of the ELJ form is that for certain crystal
types an analytical form for the cohesive energy per atom can be obtained by
making use of lattice sums Ln (Lennard-Jones-Ingham coefficients). The
importance of the cohesive energy curve is that it is the ground state energy of
a solid, and whether it is stable or not depends on the critical points along
some coordinate. Lattice sums can be applied to calculate basic solid-state
properties like the pressure or the bulk modulus as volume derivatives of the
cohesive energy, and for lattice energy minimization including zero-point
vibrational and temperature effects.[48–54]

To illustrate this the total cohesive energy per atom, Ecoh(V ) is divided into
static Estat

coh(V ) and dynamic Edyn
coh (V ) contributions, the latter resulting from

zero-point vibrational motion:

Ecoh(V ) = Estat
coh(V )+Edyn

coh (V ) .

The total static contribution can be approximated within the many-body ansatz
including two and higher body contributions in the solid if the many-body
expansion is converging fast.[55] Translational symmetry is used to evaluate
the most important two-body contribution through an ELJ potential and cor-
responding lattice sums, Estat

coh(V ) ∼= EELJ(V ), and the dynamic part is given
by

Edyn
coh (V )∼= EZPVE

ELJ (V )+EAZPVE
ELJ (V ) ,

where EZPV E
ELJ (V ) is the volume dependent zero-point vibrational energy

(ZPVE) contribution within the harmonic oscillator approximation, and
EAZPV E

ELJ (V ) is the corresponding anharmonicity correction (AZPVE), further
details are given in Section 7.2. Throughout the work on lattice sums the
stability of cubic lattices are studied along transition paths where a single
parameter lattice sum is derived and where pressure is applied to the lattice.
The evaluation of these physical properties is achieved by the use of fast
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converging lattice sums. The methods in which these sums are constructed
are a large topic of the work seen below.

1.4 Outline

In this thesis, seven projects are presented which will be briefly outlined in the
following.

• In the Project 1, lattice sums are evaluated in three dimensions to
computer precision for the simple, body centered and face-centered
cubic lattices and, for the first time the hexagonal close-packed
structure. The work reports on re-expressing the slow converging lattice
sums as rapidly converging series by using a number of different
mathematical tools such as Terras and Van der Hoff-Benson expansions
in terms of Bessel functions enabling results to high computer
precision. The work discusses the slow converging nature of lattice
sums especially at lower exponential values. The project explores and
explains what can be done with direct summation techniques and
makes use of number theoretical tools to reduce double sums into
combinations of well known standard functions. The Terras method is
used to treat lattice sums in terms of a decomposition of the Epstein
zeta function and reduction of dimension of the pure quadratic form.
This results in a decrease in the computer time required to evaluate
lattice sums for lower exponential values. The project looks at the Van
der Hoff-Benson expansion, which is just another technique to convert
lattice sums into fast converging series of Bessel functions. Some work
on analytical formulae in terms of hyperbolic functions are shown for
even values of exponents in the four lattice types discussed, which are
derived for the special case of exponent s = 4. Numerical results for
lattice sums to computer precision are presented, and also an interesting
comparison between fcc and hcp lattice sums for non integer values. In
the last section of this project suggestions for future avenues of
research and applications of high precision, fast converging lattice sums
are given. These avenues are later explored and reported on in the
following projects. The Mellin transformation and theta function
methods are discussed in the appendix as well as the use of Kronecker
symbols which connect two dimensional sums back to number
theoretical techniques.

• In the Project 2, analytical formulae are derived for the zero-point
vibrational energy and anharmonicity corrections of the cohesive
energy and the mode Grüneisen parameter within the Einstein model
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for the cubic lattices (sc, bcc and fcc) and for the hexagonal
close-packed structure. This extends the work done by Lennard-Jones
and Ingham in 1924, Corner in 1939 and Wallace in 1965. The
formulae are based on the description of two-body energy contributions
by an inverse power expansion (the extended Lennard-Jones potential).
These make use of fast converging three-dimensional lattice sums
which are applied to the rare gas solids and discuss associated critical
points. The derived formulae give qualitative but nevertheless deep
insight into vibrational effects in solids from the lightest (helium) to the
heaviest rare gas element (oganesson), both presenting special cases
because of strong quantum effects for the former and strong relativistic
effects for the latter.

• Project 3 explores lattice sums of cuboidal lattices, which connect the
face-centered with the mean-centered and the body-centered cubic
lattices through parameter dependent lattice vectors. The work presents
the characteristics of cuboidal lattices L (A) dependent on a single
parameter A. The method which is employed is to decompose the sum
into two separate lattice sums related to a scaled cubic lattice and a
scaled Madelung constant. Using the theta transformation method, fast
converging series in terms of Bessel functions are derived and the
packing density for four specific cuboidal lattices along the A parameter
pathway 1/3 ≤ A ≤ 1 are discussed. The lattice sum smoothly connects
the fcc, mean centred-cuboidal (mcc), bcc and axial centred
cuboidal (acc) lattices. Analytical continuations of these lattice sums
are discussed in detail.

• In Project 4, the single parameter lattice sum from the previous project
is used to explore the rearrangement from body-centered cubic to the
face-centered lattice. Analytical expressions for the cohesive energy in
terms of lattice sums are obtained and the transformation between the
bcc and fcc phases and their relative stabilities, which have been the
subject of many discussions, are explored. The common belief is that
strong repulsive forces favor close-packed arrangements such as fcc or
hcp, whereas soft repulsion favors less dense packed structures such as
bcc. By making use of a single parameter lattice sum, that transitions
the acc lattice through to fcc, cohesive energy differences for each
structure are obtained. This leads to an interesting result which shows
that the bcc lattice is not a stable lattice compared to fcc for a (a,b)
Lennard-Jones potential. The results show that bcc only has a small
range of exponents (a,b) along the potential energy curve where it is
metastable before the structure moves toward a more stable fcc phase.
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• Project 5, investigates the effects of pressure on the body centered
cuboidal lattice. The stability of the body-centered cubic (bcc)
compared to the face-centered cubic (fcc) phase at finite pressures is
investigated through exact lattice summations using a general (a,b)
Lennard-Jones potential (a > b > 3). The work exposes the
metastability of the bcc lattice at lower values of a and b, where use of
such low values in the Lennard-Jones two-body potential lead to a
potential curve of unphysical nature. The bcc phase decreases in
stability with increasing pressure. The high pressure limit is found at
exponent a = 7.6603891 for the repulsive wall. The work shows that
the acc and mcc lattices are not stable in terms of a (12,6)
Lennard-Jones potential and that, in order to stabilze crystal structures
of this type one requires other bonding conditions that can not be
simply described by a two-body potential such as the Lennard-Jones
potential.

• Project 6 looks at a convergent series expansion for the N-dimensional
Madelung constant MN(s), where s is the exponent of the Madelung
series (usually chosen as s = 1/2). The series expansion incorporated
the number of representations of N-squares rN(m) which are produced
by a recursive formula. Values for MN(s) for s = 1

2 ,
3
2 ,3 and 6 for

dimension up to N = 20 are presented as well as values for MN(1/2) up
to N = 100. This work extends Zucker’s original analysis on
N-dimensional Madelung constants for even dimensions up to
N = 8.[56] In this work the analytic continuation of the sum is explored
and the behaviour at even values of N is shown.

• In Project 7, the work by Lennard-Jones and Ingham, and later by Kane
and Goeppert-Mayer is continued by presenting a general lattice sum
formula for the hexagonal close packed structure with different c/a
ratios for the two parameters a and c of the hexagonal unit cell. The
lattice sum is expressed in terms of fast converging series of Bessel
functions. Having a function that is analytic, allows the examination of
the behaviour of a Lennard-Jones potential as a function of the c/a
ratio with lower kissing number, in contrast to the hard-sphere model,
where the ideal ratio is c/a =

√
8/3 with 12 kissing spheres around a

central atom. An occurrence of a slight symmetry breaking effect and
the appearance of a second metastable minimum for the (12,6)
Lennard-Jones potential is observed. It is also shown that analytical
continuation of the (n,m) Lennard-Jones potential to the domain
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n,m < 3 such as the Kratzer potential (n= 2,m= 1) gives unphysical
results.





Part I

Theoretical Background





2 Lattice Sums

2.1 Lattices

For any basis of Rn, the subgroup of all linear combinations with integer coef-
ficients of the basis vectors defines a lattice L . That is, a lattice in Rn is a set
of points pm at positions

r⃗m = m1b⃗1 + · · ·+mnb⃗n (2.1.1)

from a chosen origin (the subscript m in r⃗m stands for all the mi used), where
m1, . . . ,mn run over all integers and b⃗1, . . . , b⃗n is a fixed set of n lattice vectors
which span Rn, commonly referred to as basis vectors. In the below equa-
tion, a lattice L is defined to be a discrete subgroup of Rn as a set of linear
combinations of basis vectors

L =

{⃗
rm

∣∣∣ r⃗m =
n

∑
i=1

mib⃗i , mi ∈ Z for i = 1,2,3, . . . ,n

}
. (2.1.2)

Where d ≤ n refers to the dimension of the lattice L , and each b⃗i is a (1×n)
vector with entries in R for all i. The set

{
b⃗i
}d

i=1, where d = dim(L ) is linearly
independent over R and called a basis for L , and we can say that the lattice is
generated by the vectors b⃗1, . . . , b⃗d . Let B be a n×m matrix where m ≥ n, and{

b⃗i
}n

i=1 form a basis for the lattice L for all i.

B =
[
b⃗1 b⃗2 b⃗3 . . . b⃗n

]⊤
Then B is called a generator matrix for the lattice. The lattice consists of all
linear combination of the basis vectors b⃗i for all i. Rewriting equation (2.1.2),
the definition of L can be written as

L =

{
m⃗B
∣∣∣m⃗⊤ = (m1,m2,m3, . . . ,md), m⃗ ∈ Z

}
. (2.1.3)

2.1.1 Quadratic Form of the lattice

Any (n× n) real symmetric matrix A determines the quadratic form qA in n
variables by the equation

15
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qA(x1, . . . ,xn) =
n

∑
i=1

n

∑
j=1

ai jxix j = x⃗⊤A⃗x . (2.1.4)

The matrix A for q is given as

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

...
...

an1 an2 an3 . . . ann

 . (2.1.5)

Except for the so-called Madelung constant we restrict ourselves to three di-
mensions where the relationship to qA with the symmetric (3×3) matrix A and
integer entries for x⃗ is

qA(i, j,k) =
(
i j k

)
A

 i
j
k

 (2.1.6)

or equivalently

qA(i, j,k) = x⃗⊤A⃗x where x⃗ =

 i
j
k

 . (2.1.7)

2.1.2 The Gram Matrix

As basis vectors b⃗1, b⃗2, . . . , b⃗n generate the lattice L , then let G be a n× n
symmetric matrix, whose (i, j) entry is the scalar product b⃗i · b⃗ j. G is called
the Gram matrix, and is defined by its basis vectors {b⃗i} with i = 1,2, . . . ,n,
through

G = BB⊤ =


b⃗1 · b⃗1 b⃗1 · b⃗2 b⃗1 · b⃗3 . . . b⃗1 · b⃗n

b⃗2 · b⃗1 b⃗2 · b⃗2 b⃗2 · b⃗3 . . . b⃗2 · b⃗n

b⃗3 · b⃗1 b⃗3 · b⃗2 b⃗3 · b⃗3 . . . b⃗3 · b⃗n
...

...
...

...
...

b⃗n · b⃗1 b⃗n · b⃗2 b⃗n · b⃗3 . . . b⃗n · b⃗n

 . (2.1.8)

In three dimensions, the distance to any point in the lattice is given by
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|⃗r|2 =
(
i, j,k

)
G
(
i, j,k

)⊤
=
(
i, j,k

)b⃗1 · b⃗1 b⃗1 · b⃗2 b⃗1 · b⃗3

b⃗2 · b⃗1 b⃗2 · b⃗2 b⃗2 · b⃗3

b⃗3 · b⃗1 b⃗3 · b⃗2 b⃗3 · b⃗3


 i

j
k


= i2⃗b1 · b⃗1 + i j⃗b1 · b⃗2 + ik⃗b1 · b⃗3

+ i j⃗b2 · b⃗1 + j2⃗b2 · b⃗2 + jk⃗b2 · b⃗3

+ ik⃗b3 · b⃗1 + jk⃗b3 · b⃗2 + k2⃗b3 · b⃗3 .

Which is the quadratic form needed for work dealing with a lattice L .

There are a few important definitions used within Chapter 8 that should be
highlighted when dealing with the Gram matrix [57]. Two generator matri-
ces B1 and B2 are equivalent if B2 = cUB1O , where c a non-zero real number
describing scaling, O a real orthogonal matrix (OO⊤ = 1) with det(O) = ±1
describing rotation and reflection of the lattice, and U a matrix containing in-
tegers with det(U) = 1 describing a change of basis matrix. An example of the
above is given by the vectors

v⃗1 =

(
2
1

)
, v⃗2 =

(
1
1

)
and u⃗1 =

(
1
−3

)
, u⃗2 =

(
−2
7

)
, (2.1.9)

which are different descriptions of the same lattice. The generator matrices
B1,B2 respectively are

B1 =

(
2 1
1 1

)
, B2 =

(
1 −3
−2 7

)
. (2.1.10)

If c = 1 and there is no rotation or reflection by O, then U = B2 B−1
1 . By

(2.1.10)

U =

(
4 −7
−9 16

)
(2.1.11)

with det(U) = 1. Using the generator matrices from (2.1.10) and U from
(2.1.11), G2 = B2B⊤

2 =UG1U⊤ is shown by

G1 = B1B⊤
1 =

(
5 3
3 2

)
and G2 = B2B⊤

2 =

(
10 −23
−23 53

)
. (2.1.12)

Which results in
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UG1U⊤ =

(
4 −7
−9 16

)(
5 3
3 2

)(
4 −9
−7 16

)
=

(
−1 −2
3 5

)(
4 −9
−7 16

)
=

(
10 −23
−23 53

)
(2.1.13)

= G2 .

Therefore given two equivalent generator matrices B1 and B2, the correspond-
ing Gram matrices are related by

G2 = B2B⊤
2 = cUB1O (cUB1O)⊤ = c2UB1OO⊤B⊤

1 U⊤ = c2UG1U⊤.

The minimum distance dmin in a lattice L can be obtained from the Gram matrix

dmin = min
{
+
√

m⃗Gm⃗⊤ | m⃗ ∈ Z3\(0,0,0)⊤
}
. (2.1.14)

The volume of the parallelotope spanned by the lattice vectors b⃗i can similarly
be expressed in terms of the Gram matrix,

V = det(B) =
√

det(G) . (2.1.15)

2.2 Lattice Sums

In this section a general definition of the term lattice sum is given. From a
historical perspective, and in much of the current literature, a strict definition
for a lattice sum has somehow been avoided. However, lattice sums (at least
the ones we are mostly concerned here) generally are functions of quadratic
forms x⃗⊤G⃗x with x⃗ ∈ Zn, i.e., the expression x⃗⊤G⃗x is the quadratic form
including the Gram matrix which is associated with the lattice L (or simply,
the associated quadratic form) [58, 59]. For so-called multi-lattices, like the
hexagonal close packed structure, one needs to extend the definition here,
which will be discussed further below.

As mentioned earlier in Section 2.1 from equation (2.1.1), a lattice is generated
by a linear combination of basis vectors with integer coefficients. In three-
dimensional space (n = 3), a specific lattice is spanned by the basis vectors
b⃗1 ,⃗b2 ,⃗b3,

r⃗m = m1b⃗1 +m2b⃗2 +m3b⃗3 . (2.2.1)

A method for evaluating lattice sums involves accumulating the functional con-
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tributions f (⃗ri) at each lattice point r⃗i in some sequential order with respect to
one arbitrary point located at p⃗0 (placed at the origin). For this the set of
distances ri = |p⃗i − p⃗0| from the origin to all lattice points are used, and the
corresponding values f (ri) (ri = |⃗ri| if not dependent on the direction), which
defines the lattice sum. For example, a function representing an inverse power
potential φ(r) = λ r−s of strength λ , we accumulate the reciprocal of these
values raised to an exponent s. We will be interested in lattice sums of the
form,

Ld(G,s) =
′

∑
m⃗∈Zd

[m⃗⊤Gm⃗+ c]−s (2.2.2)

where m⃗⊤Gm⃗ refer to a positive definite quadratic form q(m⃗) of dimension
d, similar to (2.1.4), G is the corresponding (symmetric) Gram matrix and
c is a real number called the inhomogeneity. As Lennard-Jones and others
pointed out in their original work on lattice sums, the Epstein zeta function
uses positive definite real quadratic forms,

Zd(A,s) =
1
2 ∑

m⃗∈Zd

′

(m⃗⊤Am⃗)−s (2.2.3)

with s being in general a complex variable Re(s)> d/2 [60]. The sum is over
all column vectors with integer coefficients and excluding the origin denoted
by the prime. It is evident from comparing the two formulae, that for c = 0
(which is the case for Bravais lattices) with real positive definite quadratic
forms the lattice sum Ld(G,s) belongs to the class of Epstein zeta functions.
Epstein zeta functions therefore often serve as the starting point for treating
lattice sums. A mention here is that the inhomogeneity c arises for multi-
lattices such as hcp and often creates problems in dealing with lattice sums.
The Epstein zeta function is a generalization of the Riemann zeta function,

ζ (s) =
∞

∑
n=1

n−s , (2.2.4)

which converges for Re(s) > 1. We can find another expression for the Rie-
mann zeta function by using the gamma function defined by

Γ(s) =
∫

∞

0
ts−1e−t dt . (2.2.5)

Under the change of variable t = bx this becomes

b−s =
1

Γ(s)

∫
∞

0
xs−1e−bx dx . (2.2.6)

Rewriting (2.2.4) using (2.2.6) gives
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ζ (s) =
∞

∑
n=1

n−s =
1

Γ(s)

∞

∑
n=1

∫
∞

0
ts−1e−nt dt . (2.2.7)

As the summation index is over n, then ∑
∞
n=1 e−nt in (2.2.7) can be resolved as

a geometric series giving

ζ (s) =
1

Γ(s)

∫
∞

0
ts−1 e−t

1− e−t dt . (2.2.8)

Multiplying the numerator and denominator by et gives the integral represen-
tation of the Riemann zeta function

ζ (s) =
1

Γ(s)

∫
∞

0

ts−1

et −1
dt . (2.2.9)

The Mellin transformation M { f}(s) of a function f (t) is defined by

M { f}(s) =
∫

∞

0
ts−1 f (t)dt . (2.2.10)

Therefore by (2.2.5) the Mellin transformation of the negative exponential e−t

is just the gamma function,

M
{

e−t}(s) = ∫ ∞

0
ts−1e−t dt = Γ(s) , (2.2.11)

and

M
{

1
et −1

}
(s) = Γ(s)ζ (s) . (2.2.12)

The Mellin transformation along with the integral representation of the gamma
function are used extensively throughout the treatment of lattice sums as shown
by the prototype,

∑
x⃗∈Zd

[qA(x1, . . . ,xd)]
−s =

1
Γ(s) ∑

x⃗∈Zd

∫
∞

0
ts−1e−[qA(x1,...,xd)]t dt (2.2.13)

which is then re-expressed in terms of fast converging Bessel functions.[26,
61] In Section 4.3.1 the methodology used in the treatment of lattice sums
using the Mellin transformation is shown in detail, and it will become clear
that in many cases this integral transformation serves as the starting point for
lattice sums. In Chapter 4 other mathematical methods for the fast evaluation
of lattice sums are given. These methods ultimately have been used in the
publication that resulted from the project in Chapters 6–8.
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2.3 Cubic Lattice Sums

In simple cubic, body centered cubic and face centered cubic lattices the
derivation of the lattice sum follows the ideas of Reference [48]. The lattice
vectors b⃗i (for i, j,k ∈ Z ) for the sc, bc and fcc lattices in three dimensions
are introduced, such that the position r⃗m of any atom in the lattice can be
written as (m = (i jk)):

r⃗i jk = i⃗b1 + j⃗b2 + k⃗b3 with i, j,k ∈ Z (2.3.1)

The lattice vectors for the different lattices are:

b⃗ sc
1 = a(1,0,0)⊤ , b⃗ sc

2 = a(0,1,0)⊤ , b⃗ sc
3 = a(0,0,1)⊤ (2.3.2)

b⃗ bcc
1 =

a
2
(1,1,−1)⊤ , b⃗ bcc

2 =
a
2
(−1,1,1)⊤ , b⃗ bcc

3 =
a
2
(1,−1,1)⊤

(2.3.3)
b⃗ fcc

1 =
a
2
(1,1,0)⊤ , b⃗ fcc

2 =
a
2
(0,1,1)⊤ , b⃗ fcc

3 =
a
2
(1,0,1)⊤ (2.3.4)

Figure 2.1 From the left to right: The simple cubic (sc), body-centred cubic
(bcc), face-centred cubic (fcc) lattices.

For the simple cubic case, the corresponding vector to any point in the lattice
with i, j,k ∈ Z

r⃗i jk/a = i⃗b sc
1 + j⃗b sc

2 + k⃗b sc
3

= i(1,0,0)⊤+ j (0,1,0)⊤+ k (0,0,1)⊤ = (i, j,k)⊤

|ri jk|/a =
√

(i2 + j2 + k2) (2.3.5)

Here we set conveniently the lattice parameter to one, a = 1, that is the
distances are given in units of a. This implies that the nearest neighbor
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Figure 2.2 The cubic lattices (sc, bcc, fcc) shown in their relative packing
configuration, note the difference in size of the unit cell.

distance rs in the simple cubic lattice r sc
s = a becomes rs = 1, and for the

body centered cubic lattice we have r bcc
s =

√
3

2 whereas for face centered
cubic lattice we have r fcc

s = 1√
2

.

In the case of an inverse power potential, the lattice sum for the simple cu-
bic lattice, (L sc

s ), then becomes the summation of all distances from a chosen
lattice point at the origin to every point in the lattice,

L sc
s = ∑

i, j,k∈Z

′ 1
|ri jk|s

= ∑
i, j,k∈Z

′ 1

(i2 + j2 + k2)
s
2
.

(2.3.6)

For the distances rm = |⃗rm| from an arbitrarily chosen atom at the origin to all
other atoms in the lattice the following equations apply

r sc
i jk/a = r sc

s
(
i2 + j2 + k2) 1

2 =
(
i2 + j2 + k2) 1

2

r bcc
i jk /a = r bcc

s
[
i2 + j2 + k2 − 2

3 (i j+ ik+ jk)
] 1

2

=
1
2
(
3i2 +3 j2 +3k2 −2i j−2ik−2 jk

) 1
2

r fcc
i jk /a = r fcc

s
(
i2 + j2 + k2 + i j+ ik+ jk

) 1
2

=
1√
2

(
i2 + j2 + k2 + i j+ ik+ jk

) 1
2 .

The corresponding quadratic forms for sc, bcc and fcc depend only on the
underlying crystal structure
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S sc
i jk = i2 + j2 + k2 (2.3.9a)

S bcc
i jk = i2 + j2 + k2 − 2

3 (i j+ ik+ jk) (2.3.9b)

S fcc
i jk = i2 + j2 + k2 + i j+ ik+ jk (2.3.9c)

=
1
2

[
(i+ j)2 +(i+ k)2 +( j+ k)2

]
.

With the corresponding crystal potential of φ(r) = r−s the lattice sum Ls for
each lattice are obtained:

L sc
s = ∑

i, j,k∈Z\(0,0,0)

(
i2 + j2 + k2)−s

(2.3.10)

L bcc
s =

(√
3

2

)s(
L sc

s + ∑
i, j,k∈Z

((
i+ 1

2

)2
+
(

j+ 1
2

)2
+
(
k+ 1

2

)2
)−s
)

(2.3.11)

L fcc
n = 3 ∑

i, j,k∈Z\(0,0,0)

(
2i2 + j2 + k2)−s

+21−s L sc
n . (2.3.12)

Equations (2.3.10)-(2.3.12) were first derived by Lennard-Jones for the cubic
cases [6]. Alternative decompositions are obtained by combinations of
sub-lattices or by direct manipulation of the lattice sums as shown in Section
4.

2.3.1 Alternating Cubic Lattices

In a simple ionic solid, the Madelung constant depends of the crystal type
through its Coulomb interactions between the charged atoms taken as partial
point charges. To calculate the Madelung constant for a crystal lattice in three
dimensions the summations starts from a central atom and moves radially in
successively alternating shells until all nearest neighbours of the same electric
charge are summed for any particular shell. For a simple cubic lattice with
alternating charges in the crystal structure (as in NaCl) the Madelung constant
(or function) M(s)≡ Msc(s) is given by the 3D alternating lattice sum

M(s) = ∑
i, j,k∈Z

′ (−1)i+ j+k

(i2 + j2 + k2)s , (2.3.13)

where the summation is over all integer values, the prime behind the sum indi-



24 2 Lattice Sums

cates that i = j = k = 0 is omitted, s ∈ R, and s = 1
2 is chosen (as mentioned

below) for a Coulomb-type of interaction. The sum M(s) is absolutely conver-
gent for s > 3

2 , but only conditionally convergent for smaller s-values [62, 63].
The most common equation for the Madelung Constant is often expressed in
the literature with s = 1/2, and is given by

∑
i, j,k∈Z

′ (−1)i+ j+k√
i2 + j2 + k2

. (2.3.14)

The resulting sum for M(1
2) = −1.747 564 594 633 182 . . . where the

summation is performed over expanding 3-dimensional cubes and not spheres
[64].The Riemann Series Theorem states that one can converge to any desired
value or even diverge by a suitable rearrangement of the terms in such a
series, this then poses a problem for conditionally convergent series. This
problem is well known for the Madelung constant (s = 1

2 ) and has been
documented and analyzed in great detail by Borwein et al [26, 63, 65] and
Crandall et al [42, 64]. The more popular method of summing over expanding
spheres is often found in much of the literature on solid state physics
concerning the Madelung constant, however this method produces a divergent
series as shown by Emersleben [66]. The sum over expanding cubes agrees
with the value (for s = 1/2 and was shown by Borwein et al [67]. The valve of
M(s) for other s values is defined as being the value of the function obtained
by the process of analytic continuation.

There are many expansions available leading to an accurate determination of
the Madelung constant [64]. Perhaps the most prominent formulas are the ones
by Benson-Mackenzie [27, 68]

M
(1

2

)
=−12π ∑

i, j∈N
sech2

[
π

2

√
(2i−1)2 +(2 j−1)2

]
(2.3.15)

and by Hautot [64, 69]

M
(1

2

)
=−π

2
+3 ∑

i, j∈Z

′ (−1)icosech
(

π
√

i2 + j2
)

√
i2 + j2

. (2.3.16)

The Madelung sum can also be extended to a N dimensional series where
N ≥ 1, again the prime on the sum indicates that the term corresponding to
i1 = · · ·= iN = 0 is not included,

MN(s) = ∑
i1,...,iN∈Z

′ (−1)i1+···+iN

(i21 + i22 + · · ·+ i2N)s = ∑
i⃗∈ZN\{⃗0}

(−1)i⃗·⃗1

|⃗i|2s
. (2.3.17)
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As with the 3D lattice, the N-dimensional lattice can be constructed from its N
linearly independent basis lattice vectors. In Section 5.2 the general formula
for the N-dimensional Madelung sum is introduced, as shown in (2.3.17). We
derive a formula for MN(s) in terms of fast converging Bessel function expan-
sions.

2.4 The Hexagonal Close Packed Multi-Lattice

The hexagonal close-packed structure (hcp) contains two atoms in its primitive
unit cell and is therefore is not a lattice in the sense of (2.1.1), rather the hcp
structure is the union of two sets: one of which is a lattice, the other is a
translation of a lattice. The hcp structure is sometimes termed a multi-lattice
and constructed from two shifted hexagonal Bravais lattices. This complicates
the treatment of the corresponding lattice sum as an inhomogeneity parameter
c is introduced into the quadratic form. However, the distance to any point in
the hcp lattice can be still be reached resulting in two different lattice sums.
In order to show this we introduce the hexagonal lattice first spanned by the
following lattice vectors,

b⃗ hex
1 = a(1,0,0)⊤ , b⃗ hex

2 = a

(
1
2
,

√
3

2
,0

)⊤

, b⃗ hex
3 = c(0,0,1)⊤ ,

(2.4.1)
with the corresponding lattice constants a and c. The distance to any point in
the hexagonal structure can be found by

rhex
i jk = |i⃗b hex

1 + j⃗b hex
2 + k⃗b hex

3 | (2.4.2)

= a
(

i2 + i j+ j2 +
c2

a2 k2
) 1

2

(2.4.3)

with the minimum distance of rs = min{a,c}. The corresponding quadratic
form for the hexagonal lattice is,

S hex
i jk = i2 + i j+ j2 +

c2

a2 k2 (2.4.4)

Now we need to introduce the middle hexagonal B layer into the hexagonal
lattice to obtain the hcp structure with the ABAB... sequence. This can be
done by shifting the lattice points by v⃗⊤s =

(
a
2 ,

a
2
√

3
, c

2

)
above the centroid of

the triangle of three neighboring lattice points in the A layer, which defines
the distances between a lattice point in the A layer to all lattice points in the B
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Figure 2.3 Hexagonal lattice (hex) and hexagonal closed packed (hcp) struc-
ture. Note for the hexagonal lattice (left) the middle layer is missing.

Figure 2.4 The hexagonal closed packed structure (right) in the packed con-
figuration and hexagonal lattice (left) missing centre layer compared to hcp for
illustration.

layer,

r⃗B
i jk = i⃗b hex

1 + j⃗b hex
2 + k⃗b hex

3 + v⃗s . (2.4.5)

When treated in this way one obtains a lattice sum containing the part from the
original hexagonal lattice and the one containing an inhomogeneous quadratic
form

Lhcp
s = ∑

i, j,k∈Z

′ (
Shex

i jk
)−s

+ ∑
i, j,k∈Z

(
SB

i jk
)−s

(2.4.6)

with

Shex
i jk = i2 + j2 + i j+

c2

a2 k2 (2.4.7)
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and

SB
i jk =

(
i+ 1

3

)2
+
(

j+ 1
3

)2
+
(
i+ 1

3

)(
j+ 1

3

)
+

c2

a2

(
k+ 1

2

)2 (2.4.8)

= i(i+1)+ j( j+1)+ i j+
c2

a2 k(k+1)+1. (2.4.9)

The equation in (2.4.8) was first used by Kane and Goeppert-Mayer [24] but
not explicitly stated (see Bell and Zucker for details [70].) This inhomoge-
neous form can complicate the evaluation of the triple sum and also makes the
direct summation expensive for small values of the exponents s. Fortunately,
one can derive a formula in terms of pure quadratic forms, for example, Stein
decomposed the hcp structure into four interpenetrating orthorhombic lattices

for the special case of c
a =

√
8
3 , which represents the ideal hcp lattice. With

reference to Project 1, it is easy to show that [71]

Lhcp
n =

4

∑
m=1

∑
i, j,k∈Z

′
am

(
Shcp

i jk (αi)
)−s

, (2.4.10)

with a1 = 3
2 ,a2 = 3

n
2 /2,a3 = −3

n
2 /2,a4 = −1

2 and
α1 = 8

3 ,α2 = 2,α3 = 8,α4 = 2
3 . In this case, the ideal hcp structure has the

same number of nearest neighbors and thus the same limit as the fcc lattice,
i.e., Lhcp

∞ = 12.

Methods for evaluating the lattice sums for the hcp structure through direct
summation techniques and via more elaborate methods are shown in Sections
4.2.4 and 4.5. In Project 7 we show that both sums in (2.4.6) can be evaluated
by a very similar technique using only two sums compared to four in (2.4.10),
nevertheless providing a useful computational check.

2.5 Kronecker & Legendre notation

For this thesis a few important mathematical functions and definitions need to
be introduced. The Kronecker symbol, written as (a

n) or (a|n), is a general-
ization of the Jacobi symbol to all integers n, and is used extensively in this
thesis. Two integers a, b whose difference is divisible by n are said to be con-
gruent modulo n and is written a≡ b(mod n). An integer q is called a quadratic
residue modulo n if it is congruent to a perfect square modulo n; i.e., if there
exists an integer x such that:

x2 ≡ q (mod n), (2.5.1)
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and noting that 1 ≤ q ≤ n−1. The Legendre symbol defined as

(
a
p

)
=


1 if a is a quadratic residue modulo p and a ̸≡ 0(mod p),
0 if a ≡ 0(mod p),
−1 otherwise .

(2.5.2)
For an integer a and any positive integer n, the Kronecker symbol is defined
by (a

n

)
=

(
a
p1

)e1
(

a
p2

)e2

. . .

(
a
pk

)ek

, (2.5.3)

with n = p1
e1 p2

e2 . . . pk
ek being the prime factorization for n. The terms of the

right of (2.5.3) are Legendere symbols. If k > 1 is an integer, then a function
χ(n) is called a Dirichlet character (mod k) if it is completely multiplicative,
periodic with period k, and vanishes when (n,k)> 1. In terms of the Kronecker
symbol, let χk = ( d

m) be the Kronecker symbol. Then its elementary Dirichlet
L-series (modulo k) associated with the character χ is a function of the form

Lk (s,χ) =
∞

∑
n=1

χk (n)
ns , (2.5.4)

where χk is a Dirichlet character and k will be referred to as the period or order
of the L-series. As an example the Riemann zeta function is represented by

L1(s,1) =
∞

∑
n=1

χ1 (n)
ns = 1−s +2−s +3−s + · · ·= ζ (s) . (2.5.5)

Dirichlet series involving Kronecker symbols of the form
∞

∑
n=1

(a
n

)
n−s for var-

ious values of a are used in Sections 4.2, 6 and Project 1, Appendix B to
evaluate single and double sums.

2.6 Dirichlet Series

Dirichlet has shown that the number of times an integer n is represented by a
quadratic form with discriminant d is

rN(n) =
∞

∑
e|n

(
d
e

)
. (2.6.1)

The above equation is valid when n has no divisor in common with d and the
sum is over all the divisors of n. With rN(n) being the number of solutions to
the sum of squares m2

1 +m2
2 + · · ·+m2

N = n then the corresponding Dirichlet
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L-series corresponding to rN(n) is shown by

LN(s) =
∞

∑
n=1

rN(n)n−s . (2.6.2)

Closed forms are available via the Mellin transform for LN(s) for certain values
of N namely N = 2,4,6 and 8 from the explicit formula known for rN(n), the
corresponding q-series were known to Jacobi. Dirichlet series are related to
two-dimensional sums of the form,

∞

∑
x1,x2=−∞

′

[q(x1,x2)]
−s (2.6.3)

where q(x1,x2) = ax1
2 + bx1x2 + cx2

2 is an integer quadratic form with the
discriminant of d = b2 − 4ac. For example for the binary quadratic form q =
a2 +b2 with corresponding sum

Sq = ∑
+∞

−∞

′ (
a2 +b2)−s

and determinant d =−4, (2.6.4)

when n is odd it can have no factor in common with d =−4 then, by Dirichlet’s
formula,

rq(n) = 4∑
a|n

(
−4
a

)
.

Taking n = ax and summing over the odd values of a and x, then

Sq = 4
(
1−2−s)−1

∞

∑
a=1,odd

χ−4(a)
as

∞

∑
x=1,odd

1
xs

= 4
(
1−2−s)−1 L−4(s)L1(s)

(
1−2−s)

= 4L−4(s)L1(s)

= 4β (s)ζ (s) . (2.6.5)

The above result is referenced extensively throughout the work on lattice
sums. In fact an alternate route to evaluating lattice sums is by reducing
N-dimensional sums to an ordinary Dirichlet series. For this the sums over
the SN are rearranged as,

Ls = ∑
x⃗∈Zd

[q(x1, . . . ,xd)]
−s = ls

∑
n∈N

rL
d (n)
ns (2.6.6)

with rL
d (n) being the number of different representations fulfilling the equation

lSnd = n,[72, 73] with l being the smallest integer such that n ∈ N for all com-
binations of nd ∈ Z in the SN expressions (lsc = 1, lbcc = 3, lfcc = 1, lhcp = 3).
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The number rL
d (n) represents the number of points in the lattice L at distance

rn from a selected central lattice point. It should be noted that the lattice sum
for hcp can be written as as a single Dirichlet sum even though two atoms are
in the unit cell. The work presented in Section 6 primarily focuses on lattice
sums in three-dimensions, and therefore the representations rL

3 (n) are listed
in Table A.1. Larger sequences of rL

3 (n) numbers can be found in the Sloane
tables but often is is convenient to populate local tables when (computationally
efficient) for sums of squares when doing a lattice sum evaluation [74, 75]. For
this, the representations of the sum of squares is obtained from the recursive
formula,

rN+1(m) = rN(m)+2 ∑
i∈N

m−i2≥0

rN(m− i2) (2.6.7)

keeping in mind that rN(0) = 1. The above formula is used in Section 11 to
produce large in memory or tabulated rN(n) tables in the evaluation of the
Madelung constant in N-dimensions.

The problem for the slow converging Dirichlet series with small exponents s
is that, in contrast to the even dimensional quadratic forms, there is not much
known for the rd(n) values for the odd dimensional sum of squares
(D = 2m+ 1,m ∈ N). One of the exceptions is the simple cubic case in three
dimensions where a (rather cumbersome) formula for r3(n) has been provided
by Bateman [76]. The values of the coefficients r3(n) are unbounded, e.g.,
r3(n2) = 6(n + 1 − (−1)(n−1)/2) for any odd prime n [77]. The series
converges slowly due to the fact that n−s does not decay fast enough,
Therefore the use of the Dirichlet series in the evaluation of lattice sums is
most convenient for larger values of the exponent s. Nevertheless, the series
expansion is particularly useful when incorporating the Bessel function
method as computer precision can be reached only after a few terms in the
expansion. This is shown in Section 4.3.

2.7 Theta Functions

Euler introduced the following theta function as a tool in the study of the num-
ber of representation of integers as sums of squares The classical theta function
is given by

θ(τ) =
∞

∑
n=−∞

eπin2τ = 1+2
∞

∑
n=1

eπin2τ . (2.7.1)

Observe that
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θ
2(τ) =

∞

∑
n=−∞

eπin2τ
∞

∑
m=−∞

eπim2τ

=
∞

∑
k=0

r2(k)eπikτ , (2.7.2)

where r2(k) is the integer number of ways in which k can be written as a sum
of two squares k = n2 +m2. Or shown by the following q-series [78]

(
∞

∑
m=−∞

qm2

)2

=
∞

∑
m=−∞

∞

∑
n=−∞

qm2+n2
=

∞

∑
N=0

r2(k)qk . (2.7.3)

A Jacobi theta function is a function defined for a complex variable z and a
parameter τ given by the equation

θ(z,τ) =
∞

∑
n=−∞

e2πinz+πn2τ , (2.7.4)

for Im(τ) > 0. Theta functions may be expressed in terms q, denoted θn(z,q)
or the half period theta function as θn(z,qτ) where |q| < 1 and τ (the half-
period ratio) are related by q ≡ eiπτ . The Jacobi theta functions for a complex
argument z are

θ1(z,q) =
∞

∑
n=−∞

(−1)n−1/2q(n+1/2)2
e(2n+1)iz (2.7.5)

θ2(z,q) =
∞

∑
n=−∞

q(n+1/2)2
e(2n+1)iz (2.7.6)

θ3(z,q) =
∞

∑
n=−∞

qn2
e2niz (2.7.7)

θ4(z,q) =
∞

∑
n=−∞

(−1)nqn2
e2niz . (2.7.8)

In lattice sums our interest lies in the case where z = 0, therefore



32 2 Lattice Sums

θ1(q) =
∞

∑
n=−∞

(−1)n−1/2q(n+1/2)2
= 2q1/4(1−3q2 +5q6 − . . .) (2.7.9)

θ2(q) =
∞

∑
n=−∞

q(n+1/2)2
= 2q1/4(1+q2 +q6 + . . .) (2.7.10)

θ3(q) =
∞

∑
n=−∞

qn2
= 1+2q+2q4 + . . . (2.7.11)

θ4(q) =
∞

∑
n=−∞

(−1)nqn2
= 1−2q+2q4 −2q9 + . . . . (2.7.12)

Theta functions have been used in the numerical evaluation of lattice sums
since Appell and Ewald [9, 14], however Mellin transformations of theta func-
tions were not used until the work of Glasser [32–35] in the mid nineteen
seventies. Throughout the work on lattice sums in this thesis and the projects
accompanying it, we make use of theta functions and the transformation for-
mula seen in the next section. For more information some properties are shown
in Appendix B.

2.7.1 Theta function transformation

The transformation formula for theta functions displays one of their most use-
ful properties in application, and throughout the application to lattice sums this
property is leveraged. The transformation formula for theta functions is [79,
80]:

∞

∑
n=−∞

e−πn2t+2πina =
1√
t

∞

∑
n=−∞

e−π(n+a)2/t , assuming Re(t)> 0. (2.7.13)

2.7.2 The cubic theta function

The analogue of the sum of two squares result is

∞

∑
m=−∞

∞

∑
n=−∞

qm2+mn+n2
=

∞

∑
k=0

u2(k)qk (2.7.14)

where

u2(k) = #
{

m2 +mn+n2 = k
}
=


1 if k = 0,

6∑
d|k

χ−3(d) if k ≥ 1,
(2.7.15)
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where the sum is again over the positive divisors d of k.[78]

2.8 Lennard-Jones Potential

The (n,m) Lennard-Jones (LJ) potential beside the Morse potential is the most
widely used interaction potential for diatomic systems in the physical and bio-
logical sciences [18, 81–90]. The LJ potential introduced in 1924 by Lennard-
Jones is dependent on the variable r, which is the distance between two atoms
and has the following form

φLJ(r) =
λn

rn − λm

rm , m < n , (2.8.1)

(2.8.2)

where λm and λn are parameters derived from experimental results, however
at the time when Lennard-Jones introduced this potential, m and n were not
fixed. The function in equation (2.8.1) produces a potential curve such that
there is a minimum at some equilibrium distance r. During the early 20th
century as discussed in the previous chapter, the LJ potential (not commonly
known at the time by that name) combines attractive and repulsive terms to
describe the overall interaction. The shape of the curve is manipulated by
different values of m and n, and as such, for distances smaller than the
equilibrium distance the potential curve goes to positive infinity, whereas for
larger values of r the potential approaches zero.

The viral equations of state are functions that describe the
pressure–volume–temperature behavior of pure substances or mixtures in the
gas state. Lennard-Jones used this potential to solve the integral expression in
the second viral coefficient B in the equation of state analytically to derive the
parameters λm and λn based on experimental results. Therefore, the more
common definition of the LJ potential is given below in terms of a parameter
for the potential well depth ε and the equilibrium distance re that can be
determined by the size and interaction strength of the atoms

φLJ(r) =
nm

n−m
ε

[
1
n

(re

r

)n
− 1

m

(re

r

)m
]
. (2.8.3)

The two parameters m and n attribute to the long range behaviour and short
range behaviours respectively. Lennard-Jones used lattice parameters and
heats of sublimation from experimental data to fit the potential to produce a
suitable value for the short-range parameter as it cannot be derived from the
equation of state [23, 91, 92]. Despite attempts at deriving the long range
behaviour, it was not until the 1930 that the correct physical description of the
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long-rang dispersive term came by London [19]. Lennard-Jones eventually
settled for the values of m = 6 and n = 12, the latter to fit experimental data,
giving rise to what is now days most commonly referred to as the (12,6)
Lennard-Jones potential [93]. Figure 2.5 shows the potential in equation
(2.8.3) with varying values of the well depth ε and the equilibrium distance re.

Figure 2.5 Lennard-Jones potential curves for the (6,12)-LJ potential with var-
ious values of ε and re.

2.8.1 Extended Lennard-Jones Potential

The problem with the LJ potential is that is lacks flexibility, any change in
the exponents m and n restricts the accuracy of the two body potential. Thus
extending the potential to a more general extended Lennard-Jones (ELJ) po-
tential, originally introduced for integer exponents by Born in 1940 is shown
below [94],

φELJ(r) =
nmax

∑
n=1

cnr−sn . (2.8.4)

Here the sn are fixed real numbers. The coefficients cn have to be chosen such
that φELJ(r) has a minimum at r = re and φ ELJ(re) = −ε . re is the equilib-
rium distance on the potential energy curve [48]. The number of exponents
n = 1 to nmax has to be determined based on the system being studied. The
coefficients cn are determined by a fitting procedure based on accurate disso-
ciation curves for the two-body system calculated for example by relativistic
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coupled-cluster theory. It was shown that (7.1.2) only converges for sn > 3
in the infinite three-dimensional solid, although this is directly related to the
convergence of lattice sums studied much earlier [26, 48]. The ELJ potential
is more accurate than the simple LJ potential, and has the advantage of being
computationally very efficient when compared to other more elaborate analyt-
ical forms treating the short- and long-range behaviour separately.[95–97]

2.9 Cohesive Energy

An important advantage of the ELJ form is that for certain crystals analytical
forms for solid-state properties can be found in terms of lattice sums, for ex-
ample to describe the cohesive energy per atom Ecoh

ELJ. The required distances
for these sums, rm = |⃗rm|, from an arbitrarily chosen atom at the origin to all
other atoms in the lattice are summarized below (m denotes (i jk))

r sc
m = rs

(
i2 + j2 + k2) 1

2

= a
(
i2 + j2 + k2) 1

2 (2.9.1a)

r bcc
m = r bcc

s
[
i2 + j2 + k2 − 2

3 (i j+ ik+ jk)
] 1

2

=
a
2
(
3i2 +3 j2 +3k2 −2i j−2ik−2 jk

) 1
2 (2.9.1b)

r fcc
m = r fcc

s
(
i2 + j2 + k2 + i j+ ik+ jk

) 1
2

=
a√
2

(
i2 + j2 + k2 + i j+ ik+ jk

) 1
2 (2.9.1c)

rhex
m = a

(
i2 − i j+ j2 + c2

a2 k2
) 1

2
(2.9.1d)

rB
m =

(
i+ 1

3

)2
+
(

j+ 1
3

)2
+
(
i+ 1

3

)(
j+ 1

3

)
+

c2

a2

(
k+ 1

2

)2

(2.9.1e)

Note that for the general hcp lattice a union of a hexagonal (hex) lattice and
shifted hexagonal lattice (B) are taken. The minimum distance for the hcp
lattice depends on the choice of c/a, i.e.

rs = min

{
a,c,

√
a2

3
+

c2

4

}
= a min

{
1,γ,

√
1
3
+

1
4

γ2

}
, (2.9.2)

for which rs = a and γ = c
a =

√
8
3 which leads to the ideal hcp lattice with 12

kissing spheres around the central atom. Using the these distances, the two-
body contribution to the cohesive energy per atom can be evaluated for each
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crystal system by summing over all atoms in the lattice. Integrating this into
the ELJ potential from equation (6.1.3) the following equation for the cohesive
energy of the solid (E coh

ELJ) can be derived

E coh
ELJ(a) =

1
2 ∑

m∈ lattice
φ ELJ(rm)

=
1
2 ∑

m∈ lattice
∑
n>3

cnr−n
m

=
1
2 ∑

n>3
cn

(
∑

i, j,k∈Z\(0,0,0)
S−

n
2

i jk

)
r−n

s

=
1
2 ∑

n>3
cnLnr−n

s . (2.9.3)

In the above, φ ELJ(rm) is the potential at distance rm, which is re-expressed in
ELJ form [6, 22, 48]. The sum ∑m∈ lattice is replaced by a lattice coefficient
(lattice sum at the exponent s, Lsn) for the particular lattice type and the final
cohesive energy for an entire solid can be expressed as

Ecoh
ELJ(r0) =

1
2

nmax

∑
n=1

cnLsnr−sn
s , (2.9.4)

where rs is the nearest neighbour distance of the solid.[48, 98, 99] A note here
is that the lattice sums Ln only depend on the lattice structure, while system-
specific information is exclusively contained in the nearest neighbour distance
rs and the potential coefficients cn. The overall advantage of the form in (6.1.3)
is that, as the lattice coefficients and the coefficients cn only need to be calcu-
lated once, leads to fast cohesive energy calculations.
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3.1 Computational

In Section I the lattice sum is described as a sum of an inverse power law (see
equation 2.2.2). When dealing with lattice sums whether by direct summa-
tion or in terms of standard functions or fast converging Bessel functions also,
such small floating point values present a problem for traditional methods of
representing and carrying out floating point arithmetic while preserving preci-
sion. Since the first electronic computers were developed the speed at which
rounding errors can potentially accumulate in a disastrous way is a challenge
for the programmer to overcome or to deal with the limitation of floating point
arithmetic-logic unit. Most often, instability is caused not by the accumula-
tion of millions of rounding errors, but by the insidious growth of just a few
rounding errors. In the case of direct summation over i, j,k ∈ N the accumula-
tion of rounding errors needs to be confined to a region of floating point value
where there is no impact on the requested accuracy of the result or eliminated
entirely. Consistency of numerical precision throughout the algorithm is also
a precondition that must be satisfied.

3.1.1 Floating Point Format

The Institute of IEEE (IEEE) Standard for Floating-Point Arithmetic
(IEEE-754) is a technical standard for floating-point computation established
in 1985 [100]. The standard addressed many problems found in the diverse
floating point implementations that made them difficult to use reliably and
portability. Many hardware floating point units now use the IEEE 754
standard.

Figure (3.1) shows IEEE 754 floating point single 32-bit (top) and double 64-
bit (bottom) precision representations. With reference to the single precision
format; the most significant bit (bit 31) represents the sign denoting a positive
or negative value being stored and also is the sign of the mantissa (or signifi-
cand). The exponent (bits 30-23) is either an 8-bit signed integer from −128 to
127 (2’s complement) or an 8-bit unsigned integer from 0 to 255. An exponent
in the range −126 .. +127 is biased by adding 127 to get a value in the range
1 .. 254. Exponents range from −126 to +127 because exponents of −127
(all 0’s) and +128 (all 1’s) are reserved for special numbers. The true signif-
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icand includes 23 fraction bits to the right of the binary point and an implicit
leading bit (bits 22-0) (to the left of the binary point) with value 1, unless the
exponent is stored with all zeros. Thus only 23 fraction bits of the significand
appear in the memory format, but the total precision is 24 bits (equivalent to
log10 224 ≈ 7.225 decimal digits). For double precision the equivalent preci-
sion is log10 253 ≈ 15.955 decimal digits and quadruple precision (not shown
below) the equivalent precision is log10 2113 ≈ 34.016 decimal digits.

Figure 3.1 IEEE 754 single & double precision floating point format; in mem-
ory the bits are laid out most significant bit (b31 for single, b63 for double) to
the left).

Thus the real value assumed by a given 32-bit binary32 data with a given biased
sign, exponent e (the 8-bit unsigned integer), and a 23-bit fraction is

(−1)b31 × (1.b22b21...b0)2 ×2(b30b29...b23)2−127 (3.1.1)

which in decimal yields

value = (−1)sign ×

(
23

∑
i=1

b23−i2−i ×2e−127

)
. (3.1.2)

In the C programming language the header file "float.h" describes the
characteristics of floating types for the specific system and compiler
implementation used. These constants (described in "float.h") are proposed
by ANSI C allowing programs to be made more portable. There are three
floating types. designated as float, double and long double. The set
of values of the type float is a subset of the set of values of the type
double. The set of values of the type double is a subset of the set of
values of the type long double.

The long double type was present in the original 1989 C standard, [101]
support was improved by the 1999 revision of the C standard, or C99, which
extended the standard library to include functions operating on long doubles.
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<cfloat>(float.h)
name value stands for expresses

FLT_EPSILON 1E-5 or smaller Difference between 1 and
DBL_EPSILON 1E-9 or smaller EPSILON the least value greater than 1

LDBL_EPSILON 1E-9 or smaller that is representable.
FLT_DIG 6 or greater Number of decimal digits that
DBL_DIG 10 or greater DIGits can be rounded into a

LDBL_DIG 10 or greater floating-point and back without
change in the number of decimal digits.

Table 3.1 Machine epsilon defined in float.h

Unlike types float and double, Most C compilers implement long
double as an 80-bit extended precision type supported by x86 hardware, the
non-IEEE "double-double" ( to maintain data structure alignment) or in IEEE
754 quadruple-precision floating-point format if a higher precision format is
provided. Table (3.1) shows the C programming floating point specification
(defined in float.h) the long double floating-point types’ properties are no
different from double thus making the default precision the same as long
double. Machine epsilon (ε) is defined to be the smallest positive number
which, when added to 1, gives a number different from 1. To achieve greater
precision in calculations for lattice constants moving outside the realm of the
standard C floating point data types is necessary.

3.1.2 Floating Point Precision & Rounding

To illustrate the difference in precision of floating point data types a single
point sample calculation with reference to equation (2.3.10) for the lattice
constant (Ln) in the simple cubic lattice located at i = 12, j = 13,k = 14 for
s = 5 is shown below. The reference value was calculated using Wolfram
Alpha to 500 decimal places:

(
122 +132 +142)−5

= 2.9269215909769055084826137113182793

3110999955424478684855297823531479

4840097420138039648657242892271508

8111237240867270959344135283537519

1625498143561699730043902252641337

03406407102470...×10−14 .

(3.1.3)
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Results are shown below for the sample calculation in (3.1.3) using various C
floating point data types; "float" (32-bit), "double" (64-bit) and "long
double" (80 to 128-bit), "mpfr_t" precision = 128-bit (equivalent
IEEE754 quadruple ), "mpfr_t" 256-bit and "mpfr_t" 512-bit, with
comparison to the real value (3.1.3).

Digits in pink show where precision deviates from the real value (3.1.3).

C 32-bit = 2.9269216 · · ·×10−14

C 64-bit = 2.9269215909769054 · · ·×10−14

C 128-bit = 2.9269215909769054 · · ·×10−14

MPFR 256-bit = 2.9269215909769055084826137113182793

3110999955424478684855297823531479

4840095 · · ·×10−14

MPFR 512-bit = 2.9269215909769055084826137113182793

3110999955424478684855297823531479

4840097420138039648657242892271508

8111237240867270959344135283537519

1625498143561698 · · ·×10−14

It can be seen that the C-single precision result deviates from the real value
(3.1.3) at the 7th digit after the decimal point. C-double precision loses
accuracy 16 digits after the decimal point, C-(psudo)quadruple precision
shows the same accuracy as C-double. "mpfr_t" 512-bit has the greatest (as
expected) however it was determined that "mpfr_t" 256-bit would be used
as the minimum precision used throughout the programs, an equivalent
precision is log10 2257 ≈ 77.365 decimal digits.

An Infinite Sum

The evaluation of lattice sums by direct summation and/or with use of some
series expansions results in an infinite sum. From a computational perspective
the problem can be understood by the simple example below. It is well known
that

∞

∑
k=1

1
k2 =

π2

6
= 1.644934066848 . . .
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Suppose one was not aware of this identity and wished to approximate the sum
numerically. The most obvious strategy is to evaluate the sum for increasing
k until the computed sum does not change. In single precision this yields the
value 1.64472532, which is first attained at k = 4096. This agrees with the
exact infinite sum to just four significant digits out of a possible nine. The
explanation for the poor accuracy is due to summing the numbers from largest
to smallest, and the small numbers are unable to contribute to the sum. For
k = 4096 constructs s + 4096−2 = s + 2−24 , where s ≈ 1.6. Single preci-
sion corresponds to a 24-bit significand, so the term that is being adding to s
"drops off the end" of the computer word, as do all successive terms. The sim-
plest cure for this inaccuracy is to sum in the opposite order: from smallest to
largest. Unfortunately, this requires knowledge of how many terms to take be-
fore the summation begins. Taking the first 100 terms, the difference between
the computed sum and the exact sum can be estimated by an integral

|exact - approximation|=

[
∞

∑
k=1

1
k2

]
−

[
101

∑
k=1

1
k2

]
=

∞

∑
k=102

1
k2

≃
∫

∞

102

1
x2 dx =

[
−1

x

]∞

102
=

1
102

≃ 0.01 .

Summing over the first 100 values produces an error in the 2nd decimal place.
To achieve high accuracy using direct summation proves to be hopeless as
one would require an order of 1010 terms for an error of 10−10 which is
impractical. When dealing with lattice sums that can be expressed as simple
functions, in most cases there are tried and tested algorithms that can evaluate
special functions to desirable precision with the use of arbitrary precision
floating point libraries. In the case of sums that involve sums of Bessel
function expansions, one can acheive the desired accuracy after less than 500
terms. The contribution of the terms containing Bessel functions to the total
lattice sum is very low however. When using simple direct summation
arbitrary floating point arithmetic is desirable but ultimately futile unless an
extremely large value of bit precision is used and only suitable for sums
involving large values of s.

3.2 Program Package Lattice Sums

To achieve an accuracy of greater than double precision floating point
(≈ 15.955 decimal digits) in the calculation of the lattice sums for each
crystal system, a suitable arbitrary-precision arithmetic software library had
to be chosen based on its compatibility with the C-programming language,
which was the language of choice for programs to be written in, and to be
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compatible with the compiler/design suite used to create and debug the
program. A program "lattice sums" was written in the programming language
C++ for the evaluation of lattice constants to arbitrary precision using the
numerical libraries MPFR and Arb which is a C library for rigorous real and
complex arithmetic with arbitrary precision [102]. Arb tracks numerical
errors automatically using ball arithmetic, a form of interval arithmetic based
on a midpoint-radius representation. The functionality that Arb provides is
extensive and makes it a great bolt on candidate for a software library, it
includes polynomials, power series, matrices, integration, root-finding, and
many transcendental functions.



Part II

Methods





4 Mathematical Methods

4.1 Methods for the Evaluation of Lattice Sums

In this chapter methods for the fast evaluation of lattice sums are briefly
discussed based on some of the theory described in Part I. The easiest method
to be applied is using symmetry within the lattice to reduce the summation to
a smaller section of the lattice and to achieve faster convergence.
Lennard-Jones in his 1925 paper used direct summation for the cubic lattices
except for small exponents s ∈ N where convergence becomes problematic
[6]. However, using symmetry still results in a sum that may converge rather
slowly, and it is evident that this method is futile if one requires high precision
for low values of the exponent s. Direct summation is explored in Section 4.2.

Throughout the treatment of lattice sums a procedure to express lattice sums
in terms of fast converging functions or expressed as a product of simple sums
is advantageous. Number theoretical techniques are employed in an effort to
express lattice sums as sums of simple functions, e.g., as sums of simple zeta
and Bessel functions. One then looks to express a lattice sum as sums over
modified Bessel functions of the second kind or in terms of theta functions of
argument q = e−t that can be re-expressed by other simple functions [26, 61].
The method in both cases follows a similar route, firstly the sum is written as
a Mellin transform, then the modular transformation for theta functions is
applied to the transformed sum, or it is written as a q-series. The sum then is
re-written taking into account particular cases of the summation index and
expressed in the form of Hobson’s integral to obtain a series of fast
converging Bessel functions or simple functions. In the sections below,
various methods are shown for the treatment of lattice sums. Many of which
are used throughout this work and given in the results section of this thesis.

4.2 Direct Lattice Summation using Symmetry

Lennard-Jones used direct summation of the lattice sums Ls of cubic lattices
except for small exponents s ∈ N [6]. However, restricting the sums to
i, j,k ≤ Nmax the computational effort scales O(N3

max) and yield accuracy
proportional to 1

Ns−3 with N3 terms. In this section symmetry from the origin
in Z3 space within the lattice is utilized to save computational effort and time.
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While this ultimately does not change the overall scaling law, it reduces the
prefactor substantially, and makes the sums computationally more attractive
for larger exponents of s ≥ 8. For example, Stein introduced a parallel
algorithm and exploited the symmetry by partitioning the crystal into octants
of Z3 [99].

The importance of the simple cubic lattice sum lies in the fact it is the most
efficient to evaluate. It is therefore advantageous to evaluate the simple cubic
sub-lattice first for the later treatment of other lattices. A partitioning of the
bcc and fcc lattice points in the summations was already explored by
Lennard-Jones, and it is one of the techniques we used to reduce the
complexity of the bcc and fcc lattice sums as shown below.[22] For direct
summations, it is convenient to choose expressions for the lattice sum with
the symmetric matrix S of the quadratic form i⃗ ⊤A⃗i (⃗i ∈ Z3) being diagonal,
as the resulting double sums can all be expressed in terms of well-known
Hurwitz zeta functions. For the following lattice sums, a table of results for
the exponent s ∈ R,s > 3/2, is show in Table A.4 in the Appendix. Some
related notation to the decompositons seen in sections below is introduced.

The Hurwitz zeta function is defined for s > 1 by

ζ (s,x) =
∞

∑
i=0

(i+ x)−s . (4.2.1)

The Hurwitz zeta function is a generalization of the Riemann ζ -function with
ζ (s,1) = ζ (s) and used extensively in this work. For the following it is con-
venient to define the linear combination of Hurwitz zeta functions by

ζ (s;c1, . . . ,cn;d1, . . . ,dm) =
n

∑
i=1

ζ (s,ci)−
m

∑
i=1

ζ (s,di) . (4.2.2)

In this notation ζ (s) = ζ (s;1;−) and ζ (s,x) = ζ (s;x;−), where a dash indi-
cates an empty parameter list and the last semicolon may be removed if no
values are provided. A simple example is the Dirichlet beta function given by

β (s) =
∞

∑
i=0

(−1)i(2i+1)−s , (4.2.3)

with lims→∞ β (s) = 1. Which can be expressed in terms of the Hurwitz zeta
functions by
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β (s) =
1
1s −

1
3s +

1
5s − . . .

=

(
1
1s +

1
5s +

1
9s + . . .

)
−
(

1
3s +

1
7s +

1
11s + . . .

)
=

1
4s

(
1

(1
4)

s +
1

(5
4)

s +
1

(9
4)

s + . . .

)
−

(
1

(3
4)

s +
1

(7
4)

s +
1

(11
4 )

s + . . .

)

=
1
4s

(
ζ (s, 1

4)−ζ (s, 3
4)
)

= 4−s
ζ
(
s; 1

4 ; 3
4

)
. (4.2.4)

4.2.1 Simple cubic lattice

The most straight forward way to use symmetry within the simple cubic lattice
is to separate the three-dimensional space into octants (factor of 8) and each
octant into 6 sectors giving equal contributions due to the symmetry within
each octant, this equates to a factor of 48 in the triple sum. One can then
take the two-dimensional planes in the lattice when i = 0 or j = 0 or k = 0
and separate these into double sums. The cases where i = j, j = k or i = k,
these become single sums for which the Riemann zeta function ζ (s) defined
by (2.2.4) with lims→∞ ζ (s) = 1 is used. The resulting equation for the simple
cublic lattice sum is given by

Lsc
s = ∑

i, j,k∈Z

′ (
i2 + j2 + k2)−s

=−
(
9+6×2−s +8×3−s)

∑
i∈Z

′
i−s

+3 ∑
i, j∈Z

′ (
i2 + j2)−s

+6 ∑
i, j∈Z

′ (
2i2 + j2)−s

+48 ∑
1≤i< j<k

(
i2 + j2 + k2)−s

.

(4.2.5)

The first double sum in (4.2.5) can be expressed as a product of the Dirichlet
beta and Riemann zeta functions known as the Lorenz–Hardy-sum,[103, 104]

∑
i, j∈Z

′ (
i2 + j2)−s

= 4β (s)ζ (s) , (4.2.6)

with the Dirichlet beta function given by (4.2.3). Finally, the second double
sum has been evaluated by Zucker,[105]

Z1(s) = ∑
i, j∈Z

′ (
2i2 + j2)−s

= 2−3s+1
ζ (s)ζ

(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
, (4.2.7)
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with

ζ
(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
= ζ

(
s, 1

8

)
+ζ

(
s, 3

8

)
−ζ

(
s, 5

8

)
−ζ

(
s, 7

8

)
. (4.2.8)

We obtain the lattice sum for simple cubic as

Lsc
s = 12ζ (s)β (s)−2

(
9+6×2−s +8×3−s)

ζ (s)

+6Z1 (s)+48 ∑
1≤i< j<k

(
i2 + j2 + k2)−s

, (4.2.9)

reducing the summation to the octant of positive values. The standard
Riemann zeta, Hurwitz zeta and Dirichlet beta functions can easily be
evaluated to computer precision by using the Euler-Maclaurin summation
formula.[106] Even though there is a saving by a factor of 48 in computer
time for the remaining triple sum, the sum remains slowly converging for
small values of s. Restricting the summation to (i2 + j2 + k2) ≤ N2

max and
choosing Nmax sufficiently large, this direct summation technique is accurate
and fast enough for evaluation of lattice sums for exponents s ≥ 8. For
s = 8 (s = 7) with Nmax = 1500 (3000), the sum is accurate to within 10−14.
Here the triple sum contributes only to 0.028% (0.115%) to the total value.

4.2.2 Body centered cubic lattice

The bcc lattice is described by the formula below, similar to (2.3.11), which
separates the sum into sublattices [22]

Lbcc
s =

(
3
4

)s

Lsc
s +3s

∑
i, j,k∈Z

[
(2i+1)2 +(2 j+1)2 +(2k+1)2

]−s
. (4.2.10)

Using symmetry between positive and negative integers we obtain,

Lbcc
s =

(
3
4

)s

Lsc
s +8×3s

∑
i, j,k∈N

{
(2i−1)2 +(2 j−1)2 +(2k−1)2

}−s
.

(4.2.11)

Separating out the cases for i = j, i = k and j = k we arrive at
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Lbcc
s =

(
3
4

)s

Lsc
s −2−s+4

ζ
(
s, 1

2

)
+24×3s

∑
i, j∈N

{
2(2i−1)2 +(2 j−1)2

}−s

+16×3s+1
∑

1≤i< j<k

{
(2i−1)2 +(2 j−1)2 +(2k−1)2

}−s
. (4.2.12)

Using the Hurwitz zeta function with argument 1
2 we have the relation to the

Riemann zeta function,

ζ
(
s, 1

2

)
= (2s −1)ζ (s) . (4.2.13)

The double sum appearing in (4.2.12) can be reformulated (as shown in 4.2),

∑
i, j∈N

{
2(2i−1)2 +(2 j−1)2

}−s
= 1

4

(
1−2−s +2−s)Z1(s)− 1

4 Z3(s) ,

(4.2.14)

with the factor of 1
4 coming from the fact that we only sum over natural num-

bers on the left hand side. Zucker’s sum Z1 has been defined in (4.2.7) and Z3
is defined by

Z3(s) = 2−3s [(1−2−s +21−2s)
ζ (s)ζ

(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
+β (s)ζ

(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)]
,

(4.2.15)
using decompositions methods outlined in Section 6 Appendix B and the com-
pact notation for sums of Hurwitz zeta functions given by (4.2.2). Taking all
terms together including (4.2.9), we obtain

Lbcc
s = 3s+1 2−s+2

β (s)ζ (s)−
(
16+3s+2 21−s +3s+1 2−3s+2)

ζ (s)

+3s+1 2−3s+1 [(1−2−s +21−s)
ζ (s)ζ

(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
−β (s)ζ

(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)]
+3s+1 2−s+4

∑
1≤i< j<k
m∈{0,1}

{(
i− m

2

)2
+
(

j− m
2

)2
+
(
k− m

2

)2
}−s

.

(4.2.16)

4.2.3 Face centered cubic lattice

For the face centered cubic lattice a decomposition is started from splitting the
lattice sum in in sub-lattices (as described above). A note here is that (2.3.12)
is not taken as it leads to difficulties. Instead we take the most symmetric
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formula with respect to the three summation indices alternating sum given by
Zucker, [61]

Lfcc
s = 2s−1

∑
i, j,k∈Z

′ [
1+(−1)i+ j+k

](
i2 + j2 + k2)−s

= 2s−1Lsc
s +2s−1

∑
i, j,k∈Z

′
(−1)i+ j+k (i2 + j2 + k2)−s

. (4.2.17)

In analogy to the sc case, we start with the case i = 0, j = 0 or k = 0 and get

Lfcc
s = 2s−1Lsc

s −3×2s−1
∑
i∈Z

′
(−1)i i−s +3×2s−1

∑
i, j∈Z

′
(−1)i+ j (i2 + j2)−s

+2s+2
∑

i, j,k∈N
(−1)i+ j+k (i2 + j2 + k2)−s

.

(4.2.18)
The single sum represents the Dirichlet eta function η(s) which can be rewrit-
ten in terms of the Riemann zeta function,

η(s) =
∞

∑
i=1

(−1)i−1 i−s =
(
1−21−s)

ζ (s) . (4.2.19)

The double sum in (4.2.18) has been evaluated by Zucker in 1974,[107]

Z2(s) = ∑
i, j∈Z

′
(−1)i+ j (i2 + j2)−s

=−4β (s)η(s) , (4.2.20)

Therefore obtaining

Lfcc
s = 2s−1Lsc

s −3×2s+1 (1−21−s)
β (s)ζ (s)+3×2s (1−21−s)

ζ (s)

+2s+2
∑

i, j,k∈N
(−1)i+ j+k (i2 + j2 + k2)−s

.

(4.2.21)
The triple sum is decomposed further as we did for the simple cubic case by
taking the diagonal sums with i = j or j = k or i = k out,

Lfcc
s = 2s−1Lsc

s −3×2s+1 (1−21−s)
β (s)ζ (s)

+
(
3×2s +3−s2s+3)(1−21−s)

ζ (s)

+3×2s+2
∑

i, j∈N
(−1) j (2i2 + j2)−s

+3×2s+3
∑

1≤i< j<k
(−1)i+ j+k (i2 + j2 + k2)−s

.

(4.2.22)

The double sum in (4.2.22) has been decomposed in terms of Dirichlet L-series
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and shown in Section 6 Appendix B, [105]

∑
i, j∈Z

′
(−1) j (2i2 + j2)−s

= ∑
i, j∈Z
j even

′ (
2i2 + j2)−s − ∑

i, j∈Z
j odd

(
2i2 + j2)−s

= 2 ∑
i, j∈Z
j even

′ (
2i2 + j2)−s − ∑

i, j∈Z

′ (
2i2 + j2)−s

= 2 ∑
i, j∈Z

′ (
2i2 +(2 j)2)−s −Z1(s)

=
(
21−s −1

)
Z1(s) .

(4.2.23)
Taking all terms together we obtain a formula similar in nature to the simple
cubic case,

Lfcc
s = 12β (s)ζ (s)−2

(
6+9×2−s +3−s2−s+3)

ζ (n)+6Z1(s)

+3×2s+3
∑

1≤i< j<k

[
1+(−1)i+ j+k

](
i2 + j2 + k2)−s

.
(4.2.24)

4.2.4 The Hexagonal Close-Packed Structure

The hexagonal close-packed structure contains two atoms in its primitive unit
cell. The first lattice sum used for the hcp structure by Kane and Goeppert-
Meyer treated the sub-lattices corresponding to these two atoms separately,
unfortunately the lattice sum was never given in their publication. However a
lattice sum for hcp with an inhomogeneous quadratic form is shown by [24]

Lhcp
s = ∑

i, j,k∈Z

′ (
Shex

i jk
)−s

+ ∑
i, j,k∈Z

(
SB

i jk
)−s

(4.2.25)

with

Shex
i jk = i2 + j2 + i j+ c2

a2 k2 (4.2.26)

and

SB
i jk =

(
i+ 1

3

)2
+
(

j+ 1
3

)2
+
(
i+ 1

3

)(
j+ 1

3

)
+ c2

a2

(
k+ 1

2

)2

= i(i+1)+ j( j+1)+ i j+ c2

a2 k(k+1)+1.
(4.2.27)

With the hcp lattice parameters c and a being set to c
a =

√
8
3 =α . For the direct

summation we consider the general quadratic form in the sum appearing in
(4.2.26), reduce the summation again to the positive integers by consideration
of i = 0, j = 0 or k = 0, and have a change in variable for the lattice parameter
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γ to α , the sum for the hexagonal lattice then becomes

∑
i, j,k∈Z

′ [
Shex

i jk (α)
]−s

= ∑
i, j,k∈Z

′
(i2 + j2 + i j+αk2)−s

= 4 ∑
i, j,k∈N

m∈{−1,1}

(i2 + j2 +mi j+αk2)−s + ∑
i, j∈Z

′
(i2 + j2 + i j)−s

+2 ∑
i,k∈Z

′
(i2 +αk2)−s −2

(
2+α

−s)
ζ (s) .

(4.2.28)
The first double sum has been treated by Fletcher et al.[108] and later by
Zucker [105]

∑
i, j∈Z

′
(i2 + j2 + i j)−s = 31−s2ζ (s)ζ (s; 1

3 ; 2
3) . (4.2.29)

If we use permutation symmetry between the two indices i and j we finally get

∑
i, j,k∈Z

′ [
Shex

i jk (α)
]−s

= 8 ∑
i, j,k∈N,i< j
m∈{−1,1}

(i2 + j2 +mi j+αk2)−s +2×31−s
ζ (s)ζ (s; 1

3 ; 2
3)

+2S2(s,α)+4 ∑
i,k∈N

(
i2 +αk2)−s

+4 ∑
i,k∈N

(
3i2 +αk2)−s −2

(
2+α

−s)
ζ (s)

= 8 ∑
1≤i< j,k∈N
m∈{−1,1}

(i2 + j2 +mi j+αk2)−s +2×31−s
ζ (s)ζ (s; 1

3 ; 2
3)

+3S2(s,α)+3−sS2(s, α

3 )−6
(
1+3−s−1 +α

−s)
ζ (s) .

(4.2.30)
The remaining double sum of the form

S2(s,α) = ∑
i, j∈Z

′ (
i2 +α j2)−s

(4.2.31)

is left to be evaluated, for which there are six different values of
α =

{
2,8, 8/3,

2/3,
8/9,

2/9
}

. S2(s,2) = Z1(s) is defined by (4.2.7). The sum
with α = 2

3 has been evaluated by Zucker as,[105]

S2(s, 2
3) = 3s

∑
i, j∈Z

′
(3i2 +2 j2)−s

= 2−3s [
ζ (s)ζ (s; 1

24 ,
5

24 ,
7

24 ,
11
24 ; 13

24 ,
17
24 ,

19
24 ,

23
24)

− ζ (s; 1
8 ,

7
8 ; 3

8 ,
5
8)ζ (s; 1

3 ; 2
3)
]
. (4.2.32)

This leaves three double sums S2(s, 2
9),S2(s, 8

9) and S2(s, 8
3) in (4.2.30) that

needed to be analyzed in this thesis. For this a decomposition in terms of
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Hurwitz zeta functions and a method outlined in Sections 4.3.1 and 4.3.2 is
used along with the results of Chan and Toh.[109] As the results for these
double sums are rather lengthy, Section 6.11 should be seen for the expression
in terms of Hurwitz zeta functions. The complete expression for the hcp lattice
sum with the coefficients ai and αi defined in (2.4.10) is then given by,

Lhex
s = ∑

n∈{1,2,3,4}
an

{
8 ∑

i, j,k∈N,i< j
m∈{−1,1}

(i2 + j2 +mi j+αnk2)−s +3S2(s,αn)

+3−sS2(s, αn
3 )

}
+2×31−s

ζ (s)[ζ (s; 1
3 ; 2

3)

−6
[

1+3−s−1 +

(
3
8

)s]
ζ (s) .

(4.2.33)
The evaluation of LB

s is complicated by the homogeneity parameter for which
we turn to the Terras or van der Hoff–Benson method, as can be seen in Project
1. Overall the hcp formula above requires more time to evaluate and alternative
methods are explored in the following sections of this chapter, these are shown
in detail in Section 6. A alternate method of evaluating the hcp lattice without
using direct summation is the subject to Project 7.

4.3 Theta Function and Bessel Function Method

In this section two worked examples are shown. In the first example, a simple
sum is written as a q-series which then is rewritten in terms of as simple
functions that can be evaluated exactly. Secondly, the three dimensional
simple cubic lattice sum is expressed as a combination of simple functions
and a sum of Bessel sums in Section 4.3.2. The general procedure makes use
of an integral transformation such as the Mellin transformation defined in
(2.2.10) and the integral representation of the gamma function. The resulting
expression for the overall lattice sum is broken up into sums which are able to
be evaluated by Hobson’s integral and thus written in terms of fast converging
Bessel functions. Where possible the factor in each sum is written using
Dirichlet’s sum of squares theorem to reduce the computational effort.

4.3.1 Theta function method via Mellin transformation

As a basic example, let us now consider the double sum

S(s) = ∑
m,n∈Z

′ (
am2 +bn2)−s

, (4.3.1)
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where the sum is over all integer values of m and n with the term (m,n) =
(0,0) omitted. Using the definition of the Mellin transform in (2.2.10) and the
prototype from (2.2.11) with the function f (t) = e−(am2+bn2)t we obtain

S(s) = ∑
m,n∈Z

′ 1
Γ(s)

∫
∞

0
ts−1e−(am2+bn2)t dt

=
1

Γ(s)

∫
∞

0
ts−1

∑
m,n∈Z

′
e−(am2+bn2)t dt . (4.3.2)

Consider the sum in (4.3.2), and set q = e−u. For many values of a and b the
theta series can be written in the form

∑
m,n∈Z

′
qam2+bn2

= ∑
k,n∈N

f1(k) f2(n)qkn (4.3.3)

for some functions f1(k) and f2(n). Using (4.3.3) in (4.3.2) we deduce

S(s) =
1

Γ(s)

∫
∞

0
ts−1

∑
k,n∈N

f1(k) f2(n)e−knt dt

= ∑
m,n∈N

f1(k) f2(n)
(kn)s =

(
∞

∑
k=1

f1(k)
ks

)(
∞

∑
n=1

f2(n)
ns

)
. (4.3.4)

For example when a= b= 1 for (4.3.3) we have by Jacobi’s sum of two squares
theorem [Ref.[78], p.177]

∑
m,n∈Z

′
qm2+n2

= 4 ∑
k,n∈N

sin
πn
2

qkn , (4.3.5)

and so f1(k) = 1 and f2(n) = 4sin πn
2 . It follows that

∑
m,n∈Z

′ (
m2 +n2)−s

= 4

(
∑
k∈N

1
ks

)(
∑
n∈N

sin πn
2

ns

)
= 4ζ (s)β (s) , (4.3.6)

which was mentioned in (4.2.6). For other values of a and b, formulas of the
type (4.3.3) can be found in the literature.[107]

4.3.2 Application of the integral transformation to Bessel
function

In this section a the three dimensional lattice sum for the simple cubic lattice
LSC

3 (s) is expressed as sums of fast converging Bessel functions. This method
is used extensively throughout the published work in the following sections and
particularly in Section 5 where N-dimensional lattice sums are investigated.
We start from the lattice sum for a simple cubic is defined by
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LSC
3 (s) = ∑

i, j,k

′ 1
(i2 + j2 + k2)s (4.3.7)

where the summation is over all integer values of i, j, k, and the prime on
the summation sign denotes that the term corresponding to i = j = k = 0 is
omitted. The series converges for s > 3/2.

Following the method outlined in Section 5.1, the expression in (4.3.7) is sep-
arated into the sum over i and j and a sum over k

LSC
3 (s) =

(
∞

∑
k=1

1
(k2)s

)(
∞

∑
i, j

1
(i2 + j2)s

)
. (4.3.8)

By way of (2.2.6) in a similar fashion, the Mellin transformation of (4.3.8)
results in

LSC
3 (s) =

πs

Γ(s)

∫
∞

0
ts−1

(
∞

∑
k=1

e−πk2t

)(
∞

∑
i, j=−∞

e−π(i2+ j2)t

)
dt . (4.3.9)

By using the modular transformation of theta functions, the sum can be rewrit-
ten as

LSC
3 (s) =

√
π

Γ(s)

∫
∞

0
ts−1

(
∞

∑
k=1

e−πk2t

)(
1√
t

∞

∑
i, j=−∞

e−π(i2+ j2)/t

)
dt . (4.3.10)

Using the gamma function relation in (2.2.6) and a special case of Jacobi’s
imaginary transformation for theta function defined by

∞

∑
p=−∞

e−pt =
(

π

t

)1/2 ∞

∑
q=−∞

e−q2π/t . (4.3.11)

The first sum in (4.3.10) is the Riemann zeta function and the integral can be
evaluated by the integral representation of the gamma function and expressed
in terms of the modified Bessel function Kν(x) by using the formula, e.g., [79]
or [110],

∫
∞

0
tν−1e−at−b/tdt = 2

(
b
a

)ν/2

Kν(2
√

ab) , (4.3.12)

which is valid for Re (p) and Re (q)> 0. Thus (4.3.10) can be rewritten as,
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LSC
3 (s) = ζ (2s)+

√
π

Γ(s− 1
2)

Γ(s)

∞

∑
i, j=−∞

′ (
i2 + j2)−s

(4.3.13)

+
4πs

Γ(s)

∞

∑
k=1

∞

∑
i, j=−∞

′(
k√

i2 + j2

)s− 1
2

Ks− 1
2

(
2πk

√
i2 + j2

)
.

The first double sum can be evaluated by (4.3.6). The factor in front of the
Bessel function can be be re-expressed as the number of representations of
the sum of two squares. That is, the terms are being sorted according to the
value of i2 + j2, with the number of such terms being equal to the number of
solutions in integers to

m = i2 + j2 ,

which is given as r2(m), see Section 2.6 for more details. Therefore the lattice
sum for a simple cubic lattice in three dimensions is

LSC
3 (s) = ζ (2s)+

√
π

Γ(s− 1
2)

Γ(s)
4ζ (s)β (s) (4.3.14)

+
4πs

Γ(s)

∞

∑
k=1

∞

∑
m=1

r2(m)

(
k√
m

)s− 1
2

Ks− 1
2

(
2πk

√
m
)
.

4.4 van der Hoff–Benson Expansion

Van der Hoff and Benson derived a number of interesting expansions for lattice
sums that are very useful for the lattices considered here.[111] Here a more
general expansion than that presented in the original paper is presented

∑
i∈Z

[
(i+a)2 + x2]−s

= π
1
2

Γ
(
s− 1

2

)
Γ(s)

|x|1−2s

+4π
s
Γ(s)−1

∑
m∈N

(
m
|x|

)s−1
2

cos(2πma) K
s−1

2
(2πm|x|) ,

(4.4.1)
with a ∈ [0,1). The expansion does not reduce the number of summations
for the triple sums we are seeking, but the expression on the right hand side
contains a series of fast converging Bessel sums. What is useful about this
expansion, is that it can be used not only for the cubic lattices but also for
the hcp structure. The Van der Hoff–Benson expansion is computationally
as efficient as the one used for the Terras decomposition of the Epstein zeta
function.[112]
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4.5 Terras Decomposition

Emersleben [20, 113–116] and later Lennard-Jones and Ingham[6] pointed out
that the sums over the inverse powers of the Si jk terms are special cases of Ep-
stein’s generalized zeta functions defined in (2.2.3) [117]. The N-dimensional
generalized Epstein zeta function Z(AN ,c) containing an inhomogeneity is de-
fined by

ZAN (c; u⃗, v⃗) = ∑
z⃗∈ZN

′
e2π i⃗u·(AN z⃗) |AN⃗z− v⃗|−c , (4.5.1)

with c ∈ C, u⃗, v⃗ ∈ RN , N is the dimension, and AN is a N ×N real positive
definite matrix. If v⃗ = 0 or v⃗ = a lattice point in (4.5.1) then the prime means
the term z⃗= 0⃗ is ommited from the sums, otherwise sum over all z⃗. The relation
between the generalized Epstein zeta function and our lattice sums is,

∑
i, j,k∈Z

′
S−s

i jk = ZA3(s;⃗ 03 ,⃗03) , (4.5.2)

where 0⃗3 is the zero vector in 3D-space and the inhomogeneity parameter v⃗ in
(4.5.1) is zero. For the smallest integer exponent s = 2, Lennard-Jones used
an expansion of the Epstein function in terms of Bessel functions for the cubic
lattices. In fact, for quadratic forms where v⃗ = 0⃗ the Epstein zeta function can
be reduced successively in dimension down to the remaining Riemann zeta
function ζ (x) of dimension N=1. A detailed description with all the required
proofs can be found in Terras’ seminal paper or in Project 1 [112]. In order to
achieve the reduction in dimension for the cubic lattices the expression for a
quadratic form is used,

|AN⃗z|2 = z⃗⊤
(

A⊤
N AN

)
z⃗ = z⃗⊤SN⃗z with SN = A⊤

N AN , (4.5.3)

where SN is an N × N positive definite and symmetric matrix according to
(4.5.3). In fact, for lattice sums SN is the Gram matrix and A the generator
matrix consisting of the lattice vectors in N-dimensional space.

The expansion method introduced by Terras is briefly outlined using the fol-
lowing relation for dimension N=3,[112]

ZS3 (s) =
1
2

ZA3(2s;⃗ 03 ,⃗03) =
1
2 ∑

k⃗∈Z3

′ (⃗
k⊤S3⃗k

)−s
, (4.5.4)

with s > 3
2 . The reduction to dimension N=2 and then to N=1 by an expansion

in terms of Bessel functions, which is similar to the procedure followed in
(4.3.13) proceeds as follows,
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ZS3 (s) = ZS2 (s)+π
Γ(s−1)

Γ(s)
det(S2)

−1
2 Zt (s−1)+

πs

Γ(s)
H1,2 (S3,s) , (4.5.5)

with

Zx (s) = x−s
ζ (2s) . (4.5.6)

Here we start the block decomposition, we are looking to find q⃗2 and t with
the 2×2 sub-matrix S2 being defined by

S2 =

(
σ11 σ12
σ12 σ22

)
. (4.5.7)

The block-diagonalization of the 3× 3 matrix S3 to obtain S2 sub matrix is
given by

S3 =

(
a b⃗⊤2
b⃗2 S2

)
=

(
1 q⃗⊤2
0⃗2 I2

)(
t 0⃗⊤2

0⃗2 S2

)(
1 0⃗⊤2
q⃗2 I2

)
. (4.5.8)

The subscript for the matrix elements denotes the dimension of the correspond-
ing matrix/vector, e.g. b⃗2, q⃗2 are vectors in R2. This gives the relations,

b⃗2 = S2⃗q2 =⇒ q⃗2 = S−1
2 b⃗2 (4.5.9)

and

a = t + q⃗⊤2 S2⃗q2 =⇒ t = a− b⃗⊤2 S−1
2 b⃗2 (4.5.10)

with t ̸= 0.
The expansion in terms of Bessel functions is as follows[118, 119]

ZS2 (s) = σ
−1

2
22 p

1
2−s

π
1
2 Γ
(
s− 1

2

)
Γ(s)−1

ζ (2s−1)+σ
−s
22 ζ (2s) (4.5.11)

+4π
s
Γ(s)−1

σ
−1

2
22 ∑

i, j∈N

[(
i2 j−2 pσ22

)1
4−s

cos(2πσ12σ
−1
22 i j)

K1
2−s

(
2π p

1
2 σ

−1
2

22 i j
)]

,

with S2 and the different parameters and functions being defined by,

p = σ11 −
σ2

12
σ22

, (4.5.12)
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H1,2 (S3,s) = det(S2)
−1

2 ∑
j∈Z\{0};⃗k∈Z2\{⃗02}

(
j2t
)1

2 (1−s)
(⃗

k⊤S−1
2 k⃗
)1

2 (s−1)

× cos
(

2π j⃗k⊤q⃗2

)
K1−s

(
2π

[
j2t⃗k⊤S−1

2 k⃗
]1

2

)
.

(4.5.13)
Combining all the equations the lattice sum in terms of this expansion is

ZS3 (s) = πΓ(s−1)Γ(s)−1 det(S2)
−1

2 t1−s
ζ (s−2)

+σ
−1

2
22 p

1
2 (1−s)

π
1
2 Γ
(1

2 (s−1)
)

Γ(s)−1
ζ (s−1)+σ

−s
22 ζ (s)

+4π
s
Γ(s)−1

σ
−1

4 (1+s)
22 p

1
4 (1−s)

∑
i, j∈N

[(
i−1 j

)1
2 (s−1)

cos(2πσ12σ
−1
22 i j)

K1
2 (1−s)

(
2π p

1
2 σ

−1
2

22 i j
)]

+
2t

1
2 (1−s)

πs

Γ(s)
det(S2)

−1
2 ∑

j∈N;⃗k∈Z2\{⃗02}

[
cos
(

2π j⃗k⊤q⃗2

)

j(1−s)
(⃗

k⊤S−1
2 k⃗
)1

2 (s−1)
K1−s

(
2π j

[
t⃗k⊤S−1

2 k⃗
]1

2

)]
.

(4.5.14)
For the case that k⃗⊤q⃗2 ∈ Z the last cosine term becomes unity (which will be
used for the sc and fcc case discussed below) and we can substitute the last
sum over k⃗ ∈ Z2 \ {⃗02} by its Dirichlet series,

ZS3 (s) =
2πt1−s

s−2
det(S2)

−1
2 ζ (s−2)+σ

−1
2

22 p
1
2 (1−s)

π
1
2 Γ
(1

2 (s−1)
)

Γ(s)−1
ζ (s−1)+σ

−s
22 ζ (s)

+4π
s
Γ(s)−1

σ
−1

4 (1+s)
22 p

1
4 (1−s)

∑
i, j∈N

[(
i−1 j

)1
2 (s−1)

cos(2πσ12σ
−1
22 i j)K1

2 (s−1)

(
2π p

1
2 σ

−1
2

22 i j
)]

+
2(αt)

1
2 (1−s)

πs

Γ(s)
det(S2)

−1
2 ∑

j,k∈N

[
j(1−s)k

1
2 (s−1)

rαS−1
2

2 (k) Ks−1

(
2π j

(
tα−1k

)1
2

)]
.

(4.5.15)
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In the above, rαS−1
2

2 (k) is the integer number of different representations fulfill-
ing the equation

j⃗⊤αS−1
2 j⃗ = k with j⃗ ∈ Z2 \ {⃗02} , (4.5.16)

where α is the prefactor in front of the S−1
2 matrix such that only integers in

the resulting 2D quadratic form remain, i.e., a j2
1 +b j2

2 +c j1 j2 with a,b,c ∈ Z.
The relationship between Bessel functions Kν(x) = K−ν(x) is used,[120] and
the gamma function relation

Γ(x+1) = xΓ(x) . (4.5.17)

Higher order Bessel functions can be successively reduced to lower order
Bessel functions by

Kν(x) =
2(ν −1)

x
Kν−1(x)+Kν−2(x) . (4.5.18)

What remains to be evaluated in (6.6.16) are the Bessel functions K1, K0 and
K1

2
. For which half-integer orders of the Bessel function can be expressed by

the equation

K1
2
(x) = K

−1
2
(x) =

√
π

2x
e−x . (4.5.19)

The r2(k) values have been discussed in Chapter 2.6 and can be calculated by
the method shown in Section (11.5) equation (11.A.10). Most of the value for
ZS3 (s) for small exponents s is contained in the first three terms in (6.6.16),
while at large exponents s the Bessel sums dominate. Derivations of the
Epstein expansion for the three cubic and the hexagonal close-packed
structures using the Terras method are shown in Section 6.6.

We note that Crandall introduced an algorithm for the general numerical treat-
ment of Epstein zeta functions [121], which should be considered in future
work.

4.6 Single Parameter Cuboidal Lattice Formula

Throughout the study of the cubic lattice sums, we primarily focus on sc, bcc
and fcc lattices. However, an expression in terms of single parameter would
be useful in the study of packing densities, and the overall physical stability
of the lattice under varying lattice parameters. In Project 3 from chapter 4.6.1
we search for formulas that are both simple and computationally efficient.
The formulas shown in this section and subsequently from Project 3 and were
used to show that the single parameter A lattice sum L(A;s) can be
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analytically continued to complex values of s, with a simple pole at s = 3/2
and no other singularities.

Here we introduce the axial centered-cuboidal lattice, and along with Conway
and Sloane, introduce the mean centered-cuboidal lattice (mcc), which are just
other, but perhaps not so well known, cubic lattices characterised on the path
between fcc and acc through bcc. We then consider the lattice generated by
the vectors (±u,±v,0)⊤ and (0,±v,±v)⊤, where u and v are non-zero real
numbers.[122] To make it specific, take the basis vectors

b⃗1 = (u,v,0)⊤, b⃗2 = (u,0,v)⊤, b⃗3 = (0,v,v)⊤. (4.6.1)

Then the generator matrix B is given by

B =

u v 0
u 0 v
0 v v


which has determinant −2uv2. The Gram matrix is

G = BB⊤ =

u2 + v2 u2 v2

u2 u2 + v2 v2

v2 v2 2v2

= v2

1+A A 1
A 1+A 1
1 1 2

 (4.6.2)

where A = u2/v2 and G is positive definite for A > 0. Conway and Sloane use
σ = u/v, so A = σ2.[123] The most important cases, in decreasing numerical
order, are:

1. A = 1: the face-centred cubic (fcc) lattice;

2. A = 1/
√

2: the mean centred-cuboidal (mcc) lattice;

3. A = 1/2: the body-centred cubic (bcc) lattice;

4. A = 1/3: the axial centred-cuboidal (acc) lattice.

The fcc and bcc lattices are well known. The corresponding Gram matrices for
the fcc and bcc lattices are identical to the ones shown in our previous paper on
lattice sums, see Project 1. The mcc and acc lattices occur in [122] and [123].
The mcc lattice is the densest isodual lattice in three-dimensional space.
The quadratic form associated with the A-lattice is

g(i, j,k) = (i, j,k)G(i, j,k)⊤

= (u2 + v2)i2 +(u2 + v2) j2 +2v2k2 +2u2i j+2v2ik+2v2 jk

= u2(i2 + j2)+ v2( j+ k)2 + v2(i+ k)2

= v2 (A(i+ j)2 +( j+ k)2 +(i+ k)2) . (4.6.3)
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In Project 3 the minimum distance of the quadratic form with parameter A is
discussed and re-scaled to make the minimum distance 1 (see Section (8.2).
Specifically in Project 5 this expression of the quadratic form is used to dis-
cuss the stability of the body-centered and face-centered cubic lattices. The
following quadratic form in terms of a single parameter A is therefore defined
as

g(A; i, j,k) =
1

A+1
(
A(i+ j)2 +( j+ k)2 +(i+ k)2) , (4.6.4)

corresponding to the rescaled Gram matrix

G(A) :=
1

(dmin)
2 G =

1
A+1

1+A A 1
A 1+A 1
1 1 2

 . (4.6.5)

The following lattice sum is introduced and is important in solid state the-
ory,[1]

L(A;s) = ∑
i, j,k

′
(

1
g(A; i, j,k)

)s

= ∑
i, j,k

′
(

A+1
A(i+ j)2 +( j+ k)2 +(i+ k)2

)s

(4.6.6)
where 1/3 ≤ A ≤ 1. The prime on the summation symbol will denote that
the sum ranges over all integer values except for the zero vector as discussed
before. This lattice sum smoothly connects the four different cuboidal lattices,
i.e., when A = 1, 1/

√
2, 1/2 or 1/3 we obtain the expressions for the lattices

fcc, mcc, bcc and acc respectively (face-centred cubic, mean centred-cuboidal,
body-centred cubic, and axial centred cuboidal). In these cases, we also write

Lfcc
3 (s) = L(1;s),

Lmcc
3 (s) = L(1/

√
2;s),

Lbcc
3 (s) = L(1/2;s),

and Lacc
3 (s) = L(1/3;s).

4.6.1 Evaluation of the sum L(A;s)

One method of evaluating the sum L(A;s) is to use the Terras decomposition
(discussed in Section 4.5). This was done for fcc and bcc in Section Project
1 and can in principle also be used for L(A;s) [8]. What follows in this sub-
section is a condensed description of an easier method that also works with
the whole parameter range 1/3 ≤ A ≤ 1 and hence gives the lattice sum for
all four lattices fcc, mcc, bcc and acc. In fact, the advantage here is that we
obtain two formulas which not only can be used as numerical checks, but also
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contain different information about their analytic continuation. We begin by
writing the lattice sum in the form

L(A;s) = ∑
i, j,k

′
(

A+1
A(i+ j)2 +( j+ k)2 +(i+ k)2

)s

= ∑
I,J,K

I+J+K even

′
(

A+1
AI2 + J2 +K2

)s

=
(A+1)s

2 ∑
i, j,k

′ 1+(−1)i+ j+k

(Ai2 + j2 + k2)s . (4.6.7)

Therefore, we evaluate the sums

T1(A;A;s) := ∑
i, j,k

′ 1
(Ai2 + j2 + k2)s (4.6.8)

and

T2(A;s) := ∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s . (4.6.9)

By (4.6.7), (4.6.8) and (4.6.9), the required lattice sum is given by

L(A;s) =
(A+1)s

2
(T1(A;s)+T2(A;s)) . (4.6.10)

4.6.2 The sum T1(A;s)

A first relation for T1(A;s)

We shall consider two ways for handling the sum in (4.6.8). The first is to
separate the terms according to whether i = 0 or i ̸= 0, which gives rise to

T1(A;s) = f (s)+2F(s) (4.6.11)

where

f (s) = ∑
j,k

′ 1
( j2 + k2)s

and

F(s) =
∞

∑
i=1

∞

∑
j=−∞

∞

∑
k=−∞

1
(Ai2 + j2 + k2)s .

This is the starting point of the approach taken by Selberg and Chowla [124,
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Section 7]. Another way is to separate the terms according to whether ( j,k) =
(0,0) or ( j,k) ̸= (0,0) and write

T1(A;s) = 2g(s)+G(s) (4.6.12)

where

g(s) =
∞

∑
i=1

1
(Ai2)s

and

G(s) = ∑
j,k

′ ∞

∑
i=−∞

1
(Ai2 + j2 + k2)s .

The series F(s), g(s) and G(s) also depend on A. For simplicity we omit the
parameter A from the notation and just write F(s), g(s) and G(s) in place of
F(A;s), g(A;s) and G(A;s), respectively. We will now analyse (4.6.11); for

f (s) = ∑
j,k

′ 1
( j2 + k2)s = 4ζ (s)β (s)

the expression is well known and is the result of (4.3.6). For the evaluation of
F(s), by the integral formula for the gamma function (2.2.5) the procedure pro-
ceeds in a similar fashion to what is outlined in Section 4.3.2, the full process
for F(s) can be see in the published work in Project 3. The result is

π
−s

Γ(s)F(s) =
∞

∑
i=1

∫
∞

0
xs−2e−πAxi2 dx+

∞

∑
i=1

∞

∑
N=1

r2(N)
∫

∞

0
xs−2e−πAxi2−πN/x dx

(4.6.13)

=
Γ(s−1)ζ (2s−2)

As−1πs−1 +2
∞

∑
i=1

∞

∑
N=1

[
r2(N)

(
N

Ai2

)(s−1)/2

(4.6.14)

Ks−1

(
2πi

√
AN
)]

.

On using all of the above back in (4.6.11) we obtain

∑
i, j,k

′ 1
(Ai2 + j2 + k2)s = 4ζ (s)L−4(s)+

2π

(s−1)
ζ (2s−2)

As−1

+
4πs

Γ(s)
A(1−s)/2

∞

∑
i=1

∞

∑
N=1

r2(N)

(
N
i2

)(s−1)/2

Ks−1

(
2πi

√
AN
)
. (4.6.15)
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This is essentially Selberg and Chowla’s formula [124, p. 45]. They write it
in a slightly different form in terms of a sum over the divisors of N to min-
imise the number of Bessel function evaluations. We will leave it as it is for
simplicity.

A second formula for the sum T1(A;s)

This time the sum is split into terms according to (4.6.12). The procedure re-
sulting from the integral formula for the gamma function, then modular trans-
formation for the theta function results in

∑
i, j,k

′ 1
(Ai2 + j2 + k2)s

= 2A−s
ζ (2s)+4

√
π

A
Γ
(
s− 1

2

)
Γ(s)

ζ

(
s− 1

2

)
L−4

(
s− 1

2

)
+

4

As+ 1
4

πs

Γ(s)

∞

∑
N=1

∞

∑
i=1

r2(N)

(
i√
N

)s− 1
2

Ks− 1
2

(
2πi

√
N
A

)
. (4.6.16)

The terms in (4.6.15) involve Ks−1 Bessel functions whereas Ks−1/2 Bessel
functions occur in (4.6.16). That is because each application of the theta func-
tion transformation formula lowers the subscript in the resulting Bessel func-
tion by 1/2, due to the creation of a x−1/2 factor in the integral. The theta
function transformation formula is used twice (i.e., the formula is squared) in
the derivation of (4.6.15) and only once in the derivation of (4.6.16). For full
details see Section 8. Each of (4.6.15) and (4.6.16) turns out to have its own
advantages, as will be seen in Project 3, Sections VI C and VI D.

4.6.3 The alternating sum T2(A;s)

The analysis in the previous sections can be modified to handle the alternat-
ing series (4.6.9) which has the term (−1)i+ j+k in the numerator, as follows.
Separating the terms according to whether i = 0 or i ̸= 0 gives

T2(A;s) = h(s)+2H(S) (4.6.17)

where

h(s) = ∑
j,k

′ (−1) j+k

( j2 + k2)s
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and

H(s) =
∞

∑
i=1

∞

∑
j=−∞

∞

∑
k=−∞

(−1)i+ j+k

(Ai2 + j2 + k2)s .

By a known result shown in Appendix B equation (B.0.2), we have

h(s) =−4(1−21−s)ζ (s)L−4(s).

By the integral formula for the gamma function and the modular transfor-
mation for theta functions using the formula from Section 8, Appendix 8.A,
(8.8.A.14), H(s) can be expressed as

π
−s

Γ(s)H(s) =
∫

∞

0
xs−2

∞

∑
i=1

(−1)ie−πAxi2
∞

∑
N=0

r2(4N +1)e−π(4N+1)/2x dx

=
∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)
∫

∞

0
xs−2e−πAxi2−π(4N+1)/2x dx.

The integral can be expressed in terms of Bessel functions to give

π
−s

Γ(s)H(s) = 2
∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

(
2N + 1

2
Ai2

)(s−1)/2

Ks−1

(
2πi

√
A(2N +

1
2
)

)
.

On using all of the above back in (8.C.10) we obtain

∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s

=−4(1−21−s)ζ (s)L−4(s)

+
4πs

Γ(s)
A(1−s)/2

∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

(
2N + 1

2
i2

)(s−1)/2

Ks−1

(
2πi

√
A(2N +

1
2
)

)
.

(4.6.18)

4.6.4 A second formula for the alternating sum T2(A;s)

This time we separate the terms according to whether ( j,k) = (0,0) or ( j,k) ̸=
(0,0) and write

T2(A;s) = 2
∞

∑
i=1

(−1)i

(Ai2)s + J(s) (4.6.19)

where

J(s) = ∑
j,k

′ ∞

∑
i=−∞

(−1)i+ j+k

(Ai2 + j2 + k2)s .
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Again in a similar way, an alternate expression for T2(A;s) is obtained as

∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s (4.6.20)

=−2A−s(1−21−2s)ζ (2s)

+
4

As+ 1
4

πs

Γ(s)

∞

∑
N=1

∞

∑
i=1

(−1)N r2(N)

(
i− 1

2√
N

)s− 1
2

Ks− 1
2

(
2π(i− 1

2
)

√
N
A

)
.

4.6.5 Two formulas for L(A;s)

As discussed at the start of this section, formulas (4.6.21) and (4.6.22) can
be used as numerical checks against each other. Further, each formula of-
fers different information about special values of the lattice sum, as will be
seen in when the sums are analytically continued. On substituting the results
of (4.6.15) and (4.6.18) back into (4.6.10) we obtain a formula for L(A;s) in
terms of Ks−1 Bessel functions:

L(A;s) = 4
(

A+1
2

)s

ζ (s)L−4(s)+
πA

s−1

(
1+

1
A

)s

ζ (2s−2)

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=1

[
r2(N)

(
N
i2

)(s−1)/2

Ks−1

(
2πi

√
AN
)]

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

×

(
2N + 1

2
i2

)(s−1)/2

Ks−1

(
2πi

√
A(2N +

1
2
)

)
.

(4.6.21)

An alternative formula uses the results of (4.6.16) and 4.6.20 in (4.6.10), to
obtain the formula involving Ks−1/2 Bessel functions:
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L(A;s) = 2
(

A+1
4A

)s

ζ (2s)+2
√

π

A
(A+1)s Γ

(
s− 1

2

)
Γ(s)

ζ

(
s− 1

2

)
L−4

(
s− 1

2

)
+

2
A1/4

(√
A+

1√
A

)s
πs

Γ(s)

∞

∑
N=1

∞

∑
i=1

N(1−2s)/4 r2(N)

×

{
is−

1
2 Ks− 1

2

(
2πi

√
N
A

)
+(−1)N

(
i− 1

2

)s− 1
2

Ks− 1
2

(
2π(i− 1

2
)

√
N
A

)}
. (4.6.22)

4.6.6 Analytic continuation of the lattice sum L(A;s)

The lattice sums L(A;s) can be continued analytically to the whole s-plane,
and what is shown in Section 8.6 and briefly below is the resulting functions
have a single simple pole at s = 3/2 and no other singularities.

Behaviour of the lattice sums at s = 3/2

We start by showing that L(A;s) has a simple pole at s = 3/2 and determine
the residue. In the formula (4.6.21), all of the terms are analytic at s = 3/2
except for the term involving ζ (2s−2). It follows that

lim
s→3/2

(s−3/2)L(A;s) = lim
s→3/2

(s−3/2)
πA

s−1

(
1+

1
A

)s

ζ (2s−2)

= 2πA
(

1+
1
A

)3/2

lim
s→3/2

(s−3/2)ζ (2s−2)

=
2π√

A
(A+1)3/2 × 1

2
lim
u→1

(u−1)ζ (u)

=
π√
A
(A+1)3/2

where (12.A.19) was used in the last step of the calculation. It follows further
that L(A;s) has a simple pole at s = 3/2 and the residue is given by

Res(L(A;s),3/2) =
π√
A
(A+1)3/2 .

By (8..8) this is just 12 times the packing density, i.e.,

Res(L(A;s),3/2) = 12∆L .



4.6 Single Parameter Cuboidal Lattice Formula 69

For example, taking A = 1 gives

Res(LFCC
3 (s),3/2) = 2

√
2π (4.6.23)

while taking A = 1/2 gives

Res(LBCC
3 (s),3/2) = 3

√
3π/2.

Laurent’s theorem implies there is an expansion of the form

L(A;s) =
c−1

s−3/2
+ c0 +

∞

∑
n=1

cn(s−3/2)n (4.6.24)

where
c−1 = Res(L(A;s),3/2) =

π√
A
(A+1)3/2

and the coefficients c0, c1, c2, . . . depend on A but not on s. To calculate c0,
start with the fact that

lim
s→3/2

(
πA

s−1

(
1+

1
A

)s

ζ (2s−2)− c−1

s−3/2

)

=
π√
A
(A+1)3/2

(
2γ −2+ log

(
1+

1
A

))

where γ = 0.57721566490153286060 · · · is Euler’s constant. Then
use (4.6.21) and (4.5.11) to deduce

c0 = lim
s→3/2

(
L(A;s)− c−1

s−3/2

)
=
√

2(A+1)3/2
ζ

(
3
2

)
L−4

(
3
2

)
+

π√
A
(A+1)3/2

(
2γ −2+ log

(
1+

1
A

))
+

2π√
A
(A+1)3/2

∞

∑
k=1

∞

∑
N=1

1
k

r2(N)exp
(
−2πk

√
AN
)

+
2π√

A
(A+1)3/2

∞

∑
k=1

∞

∑
N=0

(−1)k

k
r2(4N +1) exp

(
−2πk

√
A
(

2N +
1
2

))
.
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Interchanging the order of summation and evaluating the sum over k gives

c0 =
√

2(A+1)3/2
ζ

(
3
2

)
L−4

(
3
2

)
+

π√
A
(A+1)3/2

(
2γ −2+ log

(
1+

1
A

))
− 2π√

A
(A+1)3/2

∞

∑
N=1

r2(N) log
(

1− e−2π
√

AN
)

− 2π√
A
(A+1)3/2

∞

∑
N=0

r2(4N +1) log
(

1+ e−π

√
2A(4N+1)

)
.

Numerical evaluation in the case A = 1 gives

c0|A=1 = 6.98405255032224793406 · · · . (4.6.25)

The formulas (4.6.21), (4.6.22) have been used to produce the graphs of y =
LFCC

3 (s) on the intervals −10 < s < 10 in Figure 8.3 shown in Project 3.
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In this section lattice sums in N dimensions are introduced. The general pro-
cedure is to extend the quadratic form for lattices to the Nth dimension through
N lattice vectors resulting in a positive definite N ×N Gram matrix. Only two
simple examples of cubic lattices are given below, other important lattices in
N-dimensions can be found in the data base at Ref[125]. The procedure to
treat such high dimensional lattice sums is to either reduce the dimension from
N to (N−1) obtaining a recursive formula, or to derive directly a fast converg-
ing series that generally holds for all dimensions. This can be done by various
techniques such as the Terras decomposition [40] or by applying the Mellin
transformation for theta functions as described in Section 4.3. These methods
result in fast converging series involving modified Bessel Kν(x) as shown in
(4.3.12). The procedure described below is also presented in Project 7 for the
specific case of the Madelung constant.

5.1 N-dimensional Simple Cubic

The simple cubic lattice in three dimensions is given by

LSC
3 (s) = ∑

i1,i3,i3

′ 1(
i21 + i22 + i23

)s ,

where the subscript 3 of LSC
3 (s) denotes the dimension N = 3. To extend the

lattice sum to any positive integer dimension N, we consider the lattice sum
defined by

LSC
N (s) = ∑

i1,...,iN

′ 1
(i21 + i22 + · · ·+ i2N)s

where the summation is over all integer values of i1, i2, . . ., iN , and the prime
on the summation sign denotes that the term corresponding to i1 = i2 = · · · =
iN = 0 is omitted. The series converges for s > N/2.

5.1.1 first recurrence relation

To find a recurrence relation in terms of the dimension N, consider

LSC
N+1(s) = ∑

i1,...,iN ,iN+1

′ 1
(i21 + i22 + · · ·+ i2N + i2N+1)

s .

71
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Replace the last summation index iN+1 with k and separate the sum into the
two cases k = 0 and k ̸= 0 to get

LSC
N+1(s) = LSC

N (s)+2F(s) (5.1.1)

where

F(s) =
∞

∑
k=1

(
∑

i1,...,iN

1
(i21 + i22 + · · ·+ i2N + k2)s

)
. (5.1.2)

The sum in is over positive integer values of k, and over all integer values of
i1, i2, . . ., iN .
By the gamma function integral in the form shown in (2.2.5) and the method
outlined in Section 4.3.2 we have

π
−s

Γ(s)F(s) =
∫

∞

0
ts−1

(
∞

∑
k=1

e−πk2t

)(
∑

i1,...,iN

e−π(i21+···+i2N)t

)
dt

=
∫

∞

0
ts−1

(
∞

∑
k=1

e−πk2t

)(
∞

∑
j=−∞

e−π j2t

)N

dt.

By using the modular transformation for the theta function, this can be written
as

π
−s

Γ(s)F(s) =
∫

∞

0
ts−1

(
∞

∑
k=1

e−πk2t

)(
1√
t

∞

∑
j=−∞

e−π j2/t

)N

dt.

This can be rearranged further to give

π
−s

Γ(s)F(s) =
∫

∞

0
ts−1−N

2

(
∞

∑
k=1

e−πk2t

)(
∞

∑
m=0

rN(m)e−πm/t

)
dt

where rN(m) is the number of representations of m as a sum of N squares,
shown earlier in Section 2.6. Separating out the m = 0 term using rN(0) = 1
gives

π
−s

Γ(s)F(s) =
∞

∑
k=1

(∫
∞

0
ts−1−N

2 e−πk2t dt
)

+
∫

∞

0
ts−1−N

2

(
∞

∑
k=1

e−πk2t

)(
∞

∑
m=1

rN(m)e−πm/t

)
dt.

The first integral can be evaluated using (2.2.5). Therefore we obtain



5.1 N-dimensional Simple Cubic 73

π
−s

Γ(s)F(s)

= Γ

(
s− N

2

) ∞

∑
k=1

1

(πk2)s−N
2
+

∞

∑
k=1

∞

∑
m=1

rN(m)
∫

∞

0
ts−1−N

2 e−πk2t−πm/t dt

=
Γ(s− N

2 )

πs−N
2

ζ (2s−N)+2
∞

∑
k=1

∞

∑
m=1

rN(m)

(√
m

k

)s−N
2

Ks−N
2

(
2πk

√
m
)

where Kν(x) is the modified Bessel function which we have arrived at by us-
ing the formula in (4.3.12) above. To reduce the number of Bessel function
evaluations we put r = k2m so that

π
−s

Γ(s)F(s) =
Γ(s− N

2 )

πs−N
2

ζ (2s−N)

+2
∞

∑
r=1

∑
k2|r

(√
r

k2

)s−N
2

rN

( r
k2

)
Ks−N

2

(
2π

√
r
)
.

Multiply by 2πs/Γ(s) to get 2F(s), and use this in (5.1.1) and (5.1.2) to get the
reduction formula

LSC
N+1(s) = LSC

N (s)+2π
N/2 Γ(s− N

2 )

Γ(s)
ζ (2s−N)+

4πs

Γ(s)

∞

∑
r=1

c(N,r)Ks−N
2

(
2π

√
r
)

(5.1.3)

where

c(N,r) = ∑
k2|r

(√
r

k2

)s−N
2

rN

( r
k2

)
. (5.1.4)

When N = 2, this agrees with Selberg and Chowla’s formula [124, (45)].

5.1.2 Second recurrence relation

We again separate the sum for LSC
N+1(s) into two cases, this time according to

whether i1 = i2 = · · ·= iN = 0 or i1, i2, . . ., iN are not all zero, to get

LSC
N+1(s) = 2ζ (2s)+G(s) (5.1.5)
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where ζ (s) is the Riemann zeta function, and

G(s) =
∞

∑
k=−∞

(
∑

i1,...,iN

′ 1
(i21 + i22 + · · ·+ i2N + k2)s

)
.

Now proceed as in the previous section and apply the integral formula for the
gamma function and then the modular transformation for the theta function to
obtain

π
−s

Γ(s)G(s) =
∫

∞

0
ts−1

∑
i1,...,iN

′e−π(i21+···+i2N)t
∞

∑
k=−∞

e−πk2t dt

=
∫

∞

0
ts−3/2

∑
i1,...,iN

′e−π(i21+···+i2N)t
∞

∑
k=−∞

e−πk2/t dt.

Separate the k = 0 term, to get

π
−s

Γ(s)G(s) =
∫

∞

0
ts−3/2

∑
i1,...,iN

′e−π(i21+···+i2N)t dt

+2
∫

∞

0
ts−3/2

∑
i1,...,iN

′e−π(i21+···+i2N)t
∞

∑
k=1

e−πk2/t dt.

The first integral can be evaluated by the gamma function integral, while the
second integral can be expressed in terms of the modified Bessel function
by (4.3.12). The result is

π
−s

Γ(s)G(s) = π
−(s− 1

2 )Γ

(
s− 1

2

)
∑
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√
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s− 1
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)
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N

(
s− 1

2

)
+4

∞
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∞
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k=1

rN(m)

(
k√
m

)s− 1
2

Ks− 1
2

(
2πk

√
m
)
.

On using this formula for G(s) back in (5.1.5) we obtain
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LSC
N+1(s) = 2ζ (2s)+

√
π

Γ(s− 1
2)

Γ(s)
LSC

N

(
s− 1

2

)
+

4πs

Γ(s)

∞

∑
m=1

∞

∑
k=1

rN(m)

(
k√
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)s− 1
2

Ks− 1
2

(
2πk

√
m
)
. (5.1.6)

On putting r = k2m this may be written in a form more efficient for computa-
tion, as

LSC
N+1(s)= 2ζ (2s)+

√
π

Γ(s− 1
2)

Γ(s)
LSC

N

(
s− 1

2

)
+

4πs

Γ(s)

∞

∑
r=1

d(N,r)Ks− 1
2

(
2π

√
r
)

(5.1.7)
where

d(N,r) = ∑
k2|r

(
k2
√

r

)s− 1
2

rN

( r
k2

)
. (5.1.8)

If we take N = 2 in (5.1.6) and use the result

LSC
2 (s) = 4ζ (s)β (s)

where

ζ (s) =
∞

∑
j=1

1
js

is the Riemann zeta function, and

β (s) =
∞

∑
j=0

(−1) j

(2 j+1)s ,

then we obtain

LSC
3 (s) = 2ζ (2s)+4

√
π

Γ(s− 1
2)

Γ(s)
ζ (s− 1

2
)β (s− 1

2
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+
4πs

Γ(s)

∞

∑
m=1

∞

∑
k=1

r2(m)

(
k√
m

)s− 1
2

Ks− 1
2

(
2πk

√
m
)
. (5.1.9)

This is consistent with [1, (6.4.3)].

Figure 5.1 shows the evaluation of 5.1.6 for dimension N = 3,4, and 3 and
Figure 5.2 the evaluation of 5.1.6 for dimension N = 10,11, . . . ,16
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Figure 5.1 Simple cubic N-dimensional lattice sums for N = 3,4, and 9.

5.1.3 Convergence

The formulas (5.1.3) and (5.1.6) provide two different ways to compute
LSC

N+1(s), and therefore provide a check. It is not necessary to iterate all the
way down to the value N = 1. That’s because exact values of LSC

N (s) in terms
of L-functions exist in the cases N = 2, 4 and 8:

LSC
2 (s) = 4ζ (s)β (s),

LSC
4 (s) = 8(1−22−2s

ζ (s)ζ (s−1),

LSC
8 (s) = 16(1−21−s +24−2s)ζ (s)ζ (s−3).

These formulas are equivalent to Jacobi’s sum of two, four and eight squares
theorems, e.g., see [78, Section 3.8] and Glasser and Zucker’s 1980 paper.
The infinite series of modified Bessel functions in (5.1.3) converges fast be-
cause of the asymptotic formula

Kν(z)∼
√

π

2z
e−z as z → ∞.

The coefficients c(N,r) and d(N,r) in (5.1.4) and (5.1.7) can be efficiently cal-
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Figure 5.2 Simple cubic N-dimensional lattice sums for N = 10, . . . ,16.

culated from a table of values of rN(m). Thus, the formulas (5.1.3) and (5.1.6)
allow one to compute the (N+1)-dimensional lattice sum LSC

N+1(s) from the N-
dimensional sum LSC

N (s) together with some other terms that can be calculated
efficiently.
In the three dimensional case, one way of calculating LSC

3 (s) is to use (5.1.3)
with N = 2 together with the value of LSC

2 (s) given above. Another way, that
could be used as a computational check, is to use (5.1.3) with N = 3 together
with the value of LSC

4 (s).

5.2 N-dimensional Madelung Constant

In section 2.3.1 the three dimensional alternating sum is discussed and the
formula (2.3.14) is used to calculate the Madelung constant. In this section we
derive two useful expansions for the N-dimensional Madelung constant using
a similar method to the simple cubic in the previous section. Consider MN+1(s)
and change the last summation index to k, and write

MN+1(s) = ∑
i1,...,iN∈Z

k∈Z

′ (−1)i1+···+iN+k

(i21 + i22 + · · ·+ i2N + k2)s . (5.2.1)
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Now separate the sum into the two cases k = 0 and k ̸= 0 to get

MN+1(s) = MN(s)+2F(s) (5.2.2)

where

F(s) = ∑
k∈N

(
∑

i1,...,iN∈Z

(−1)i1+···+iN+k

(i21 + i22 + · · ·+ i2N + k2)s

)
. (5.2.3)

By the gamma function integral in the form (R+ = {x ∈ R | x ≥ 0})

1
zs =

1
Γ(s)

∫
R+

ts−1e−zt dt (5.2.4)

we have

π
−s

Γ(s)F(s) =∫
R+

ts−1

(
∑
k∈N

(−1)ke−πk2t

)(
∑

i1,...,iN∈Z
(−1)i1+···+iN e−π(i21+···+i2N)t

)
dt

=
∫
R+

ts−1

(
∑
k∈N

(−1)ke−πk2t

)(
∑
j∈Z

(−1) je−π j2t

)N

dt. (5.2.5)

By using the modular transformation for the theta function [79],

∑
n∈Z

e−πn2t+2πina =
1√
t ∑

n∈Z
e−π(n+a)2/t (5.2.6)

we get

π
−s

Γ(s)F(s) =
∫
R+

ts−1

(
∑
k∈N

(−1)ke−πk2t

)(
1√
t ∑

j∈Z
e−π( j+ 1

2 )
2/t

)N

dt.

(5.2.7)

This can be rearranged further to give

π
−s

Γ(s)F(s) =
∫
R+

{
ts−1−N

2

(
∑
k∈N

(−1)ke−πk2t

)
(

∑
m∈N0

rodd
N (8m+N)e−π(8m+N)/4t

)
dt

}
(5.2.8)

where N0 denotes the natural numbers including zero, and rodd
N (m) is the num-
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ber of representations of m as a sum of N odd squares. That is, rodd
N (m) is the

number of solutions of

(2 j1 +1)2 +(2 j2 +1)2 + · · ·+(2 jN +1)2 = m (5.2.9)

in integers. The integral in (5.2.8) can be evaluated in terms of Bessel functions
by means of the formula (4.3.12) to give

π
−s

Γ(s)F(s) = 2 ∑
k∈N

∑
m∈N0

{
(−1)krodd

N (8m+N)

(
8m+N

4k2

)(2s−N)/4

(5.2.10)

×Ks−N/2

(
πk

√
8m+N

)}
.

On using this result back in (5.2.1) we obtain the recursion relation for the
Madelung constant in terms of the dimension N,

MN+1(s) = MN(s)+
4πs

Γ(s) ∑
k∈N

∑
m∈N0

{
(−1)krodd

N (8m+N)

×
(

8m+N
4k2

)(2s−N)/4

Ks−N/2

(
πk

√
8m+N

)}
(5.2.11)

= MN(s)+ ∑
m∈N0

rodd
N (8m+N)cs,N(m)

with

cs,N(m) =
4πs

Γ(s) ∑
k∈N

(−1)k
(

8m+N
4k2

)(2s−N)/4

Ks−N/2

(
πk

√
8m+N

)
.

(5.2.12)

For fixed N, the term rodd
N (8m+N) can become very large for larger m and N

values, but is more than compensated by the exponentially decreasing Bessel
function. The rodd

N (m) values can be determined recursively which is
described in Project 6, Appendix (Section 11.5).

While the recursion relation (5.2.11) is useful if the Madelung constant of
lower dimension is known, we seek for a second formula where the recur-
sion relation has been resolved. Here, we proceed as above and separate the
sum for MN+1(s) into two cases according to whether i1 = i2 = · · ·= iN = 0 or
i1, i2, . . ., iN are not all zero. This gives
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MN+1(s) = 2 ∑
k∈N

(−1)k

k2s +g(s) (5.2.13)

where

g(s) = ∑
k∈Z

(
∑

i1,...,iN∈Z

′ (−1)i1+···+iN+k

(i21 + i22 + · · ·+ i2N + k2)s

)
.

Applying the integral formula for the gamma function and then the modular
transformation for the theta function we obtain
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where the last step follows by noting

∑
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e−π(k+ 1
2 )

2/t = 2 ∑
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e−π(k+ 1
2 )

2/t = 2 ∑
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e−π(k− 1
2 )
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In terms of the modified Bessel function this becomes, by (4.3.12),

π
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Γ(s)g(s) = 4 ∑
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′
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= 4 ∑
m∈N

∑
k∈N

(−1)mrN(m)

(
k− 1

2√
m

)s− 1
2

Ks− 1
2

(
2π(k− 1

2
)
√

m
)
.

On using this back in (5.2.13) we obtain

MN+1(s) =−2η(2s)+
4πs

Γ(s) ∑
m∈N

(−1)mrN(m) ∑
k∈N

(
k− 1

2√
m

)s− 1
2

Ks− 1
2

(
π(2k−1)

√
m
)
. (5.2.17)
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The method above is also presented in Section 12 where the N-dimensional
lattice sum for the Madelung constant is given. Figure 5.3 shows the eval-
uation of 5.2.17 for M1(s),M2(s),M3(s),M4(s),M6(s) and M8(s). With ref-
erence to Figure 5.3, the famous value of the Madelung constant M(1

2) =
−1.747 564 594 633 182 . . . can be seen on the line for M3(s). Other values
of the Madelung constant, for which the original formula does not converge
absolutely are achieved by analytic continuation shown by Figure 5.3.

Figure 5.3 The Madelung constant M1(s),M2(s),M3(s),M4(s),M6(s) and
M8(s) for s ∈ [−9,9].
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Results





6 Project 1 - Analytical methods for
fast converging lattice sums for
cubic and hexagonal close-packed
latticesa

6.1 Introduction

Introduced in 1924, the (n,m) Lennard-Jones (LJ) potential[18, 81, 83] has
become (besides the Morse potential) the most widely used two-body potential
in the simulation of weakly interacting systems in the solid, liquid or the gas
phase.[45] Its enormous success in treating inter-atomic and inter-molecular
interactions has been attributed to the rather simple analytical form,

VLJ(r) =
nm

n−m
ε

[
1
n

(re

r

)n
− 1

m

(re

r

)m
]

n=12
=

m=6
ε

[(re

r

)12
−2
(re

r

)6
]
.

(6.1.1)
The LJ potential has only two parameters: re, the interatomic distance; and ε

the binding energy between two atoms (taken as a positive value). Observe,
VLJ(r) is symmetric in m and n, also VLJ(r) has a minimum at r = re. Without
loss of generality these two parameters may be set to unity, however this re-
stricts the accuracy of the diatomic potential. Therefore we consider the more
general extended Lennard-Jones (ELJ) potential originally introduced for inte-
ger exponents by Born in 1940,[94]

VELJ(r) =
nmax

∑
n=1

cnr−sn . (6.1.2)

Here the sn are fixed real numbers. The coefficients cn have to be chosen such
that VELJ(r) has a minimum at r = re and VELJ(re) = −ε . re is the equilib-
rium distance on the potential energy curve.[48] It was shown that the above
expression converges only for sn > 3 for the infinite 3D solid[48] (the Kratzer
potential,[16] φ(r) = c1r−1 + c2r−2, can therefore not be used for solids), al-
though this is directly related to the convergence of lattice sums studied much

aThis chapter is composed of sections previously published in the article “Analytical methods
for fast converging lattice sums for cubic and hexagonal close-packed structures”[58] and
is reprinted by permission from the publisher ©2022 American Institute of Physics. Some
sections may have been modified to fit the style of this thesis.
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and hexagonal close-packed lattices

Figure 6.1 From the left to right: The simple cubic (sc), body-centered cubic
(bcc) and face-centered cubic (fcc) lattices and the hexagonal close-packed
(hcp) structure with corresponding lattice constants. We have the follow-
ing relationships between the the nearest neighbor distance r0 and the lat-
tice constants a,c: sc r0 = a, bcc r0 =

√
3a/2, fcc r0 =

√
2a/2, and hcp

c/a = c/r0 =
√

8/3.

earlier.[26] The ELJ potential is more accurate than the simple LJ potential,
and has the advantage of being computationally very efficient when compared
to other more elaborate analytical forms treating the short- and long-range be-
haviour separately.[95–97]

Another important advantage of the ELJ form is that for certain crystals one
can find an analytical form for the cohesive energy per atom Ecoh

ELJ because of
the homogeneity of r 7→ r−s,[6, 22, 48]

Ecoh
ELJ(r0) =

1
2

nmax

∑
n=1

cnLsnr−sn
0 . (6.1.3)

Here the Lsn are called lattice sums or Lennard-Jones–Ingham (LJI) coeffi-
cients,[6] and r0 is the nearest neighbour distance of the solid. LJI coefficients
for the simple cubic (sc), body-centered cubic (bcc), face-centered cubic (fcc)
and hexagonal close-packed (hcp) structures as shown in Figure 6.1 have been
obtained for integer values of sn to reasonable accuracy.[48, 98, 99]

Let us define a N-dimensional lattice L of rank n ≤ N as the set of all (lattice)
points {pi} generated by all integer combinations of n linearly independent
(lattice) vectors b⃗1, ...,⃗bn ∈ RN , which form a basis of L ,[126] i.e. a Bra-
vais lattice in three dimensions. We also regard a union of lattices L = ∪Li

as a lattice in RN as long as it contains a unit cell that, by definition, gives
rise to translational symmetry. In this sense, the hexagonal close-packed struc-
ture is a lattice, but not a Bravais lattice. However, we note that Conway and
Sloane[127] refer to hcp as a non-lattice packing, and we will therefore use the
term hcp structure for the following.

If we assign certain values (real or complex) to these lattice points through
a given function φ and sum over all values generated by φ we obtain what is
called a lattice sum, i.e., SL =∑p∈L φ(p). For the special case of a φ(r) = r−s

type of potential and a lattice of rank N used in this work, lattice sums take the
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form:

Ls(N;S,a, f ) = ∑
i⃗∈ZN

′
f (⃗i)

∣∣∣⃗i ⊤S⃗i+a
∣∣∣−s/2

. (6.1.4)

Here we introduce an inhomogeneity parameter a ∈ R, S is a positive definite
symmetric N ×N matrix defining the quadratic form (QF), and the summation
runs over all N-tuples i⃗ with integer components. The prime at the sum in-
dicates that terms leading to singularities are avoided in the summation. The
function f (⃗i) takes care of possible prefactors, e.g. for alternating series. For
example, the famous Madelung constant MN for an ionic crystal of alternating
charges (Coulomb lattice with φ(r) = r−1) is defined by the series

MN = L1(N;I,0, f ) = ∑
i⃗∈ZN

′
(−1)i1+i2+...+iN |⃗i|−1 , (6.1.5)

where S is the identity matrix I in this special case. Note that the Madelung
series is conditionally convergent and care has to be taken in the order of the
summation.[65]
The matrix S and the inhomogeneity parameter a differ for different lattices in
N-dimensional space. Hund’s extension of Born’s Grundpotential[128–130] is
contained in such inhomogeneous quadratic forms. Equation (6.1.4) has been
further generalized to the complex plane by Epstein.[117] The evaluation of
these lattice sums (analytic continuation, convergence behavior, integral forms,
reduction in dimension, lattice isomorphisms, etc.) has a long history in math-
ematics.[26, 131, 132]
Exact expressions of lattice sums in terms of standard functions such as the
Dirichlet L-functions are known for many lattices in two or higher even dimen-
sions,[61, 105, 107, 133, 134] but are rare for the odd dimensional case.[26]
For example, the lattice sum for the Madelung constant in three dimensions
can be reduced to a two-dimensional sum (Benson’s formula),[135] and for
the simple cubic case in three dimensions Bateman provided an expression in
terms of a Dirichlet series with a number-theoretical solution for the number
of representations of a sum of three squares, r3(n).[76] However, for small ex-
ponents s in (6.1.4) these series are very slowly converging and one requires
different techniques to obtain accurate numbers for lattice sums.
A detailed historical survey on lattice sums has been given recently by Bor-
wein et al.[26] For the 3D crystal lattices considered here, i.e., the sc, bcc,
and fcc lattices, the first attempt to calculate the corresponding lattice sums
to sufficient accuracy was by Lennard-Jones and Ingham, who used expan-
sions in terms of Bessel functions.[6, 22] In order to efficiently calculate such
lattice sums they used for the first time number-theoretical tools. In 1953
Van der Hoff and Benson introduced an expansion in terms of Bessel func-
tions for lattice sums,[111] (see also the work by Hautot[69, 136]) which we
will use extensively in this work. In 1973, Terras introduced an expansion
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of quadratic forms in terms of Bessel functions to successively reduce the di-
mension N in the Epstein zeta function by block-diagonalizing the matrix S
of the quadratic form.[112] This work has however gone relatively unnoticed.
Further improvement came from the work by Zucker in 1975 who evaluated
lattice sums and Madelung constants for cubic and tetragonal lattices to 10 sig-
nificant digits by using a Mellin transformation in conjunction with Jacobian
θ -functions.[61] Interestingly, the lattice sum for the hexagonal close-packed
structure was given early by Kane and Goeppert-Mayer in 1940,[24] but has
never been evaluated to high precision except for some special cases.[25, 26]
For ionic lattices we refer to a review article in 1964 by Tosi.[137]

In this article we evaluate lattice sums in three dimensions to computer (dou-
ble) precision for the sc, bcc, fcc and, for the first time, for the hexagonal
close-packed structure. Re-expressing the slow converging lattice sums as
rapidly converging series by using a number of different mathematical tools
such as Terras and Van der Hoff-Benson expansions in terms of Bessel func-
tions allows us to achieve the high computer precision needed. The present
paper can be seen as a continuation of Zucker’s seminal work in this field. [61,
105, 107] Once the lattice sums are known they can be applied to calculate
basic solid state properties like the pressure or the bulk modulus as volume
derivatives of the cohesive energy, and for lattice energy minimization includ-
ing zero-point vibrational and temperature effects.[48–52, 54, 138] We notice
that the crystallization conjecture which states that under certain conditions
particles always place themselves into periodic configurations still remains un-
solved, even for well known interaction potentials.[139] We note however that
for Lennard-Jones potentials progress on the local optimality of cubic lattices
has been made recently by Bétermin.[140]

In the next section (12.2) we introduce lattice sums for the above-mentioned
lattice types and give formulae that connect back to the ELJ potential. Section
6.3 briefly discusses the slow converging nature of such sums, especially at
lower values of sn. Section 6.4 explains what can be done with direct summa-
tion techniques. This is particularly useful for large exponents where a simple
direct summation can be done in a relatively short amount of time to computer
precision. Section 6.5 reformulates the lattice sums as Dirichlet series and
highlights some number-theoretical problems, this method again is preferred
for higher values of sn. We then show in Section 6.6 an effective treatment of
lattice sums in terms of the Terras decomposition of the Epstein zeta function
using pure quadratic forms.[112, 141] By reducing the problem in dimension
this speeds up the convergence of the sum by a significant factor. Section 6.7
shows another technique to convert lattice sums into fast convergent series, the
Van der Hoff-Benson expansion. This technique offers yet another pathway
in which to speed up the calculation of three dimensional lattice sums using
fast converging Bessel functions. Finally, in Section 6.8 analytic formulae in
terms of hyperbolic functions are shown for even values of exponents in the
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four lattice types discussed, which we derive for the special case of exponent
s= 4. Numerical results for lattice sums to computer precision are discussed in
Section 6.9, as well as an interesting comparison between fcc and hcp lattice
sums for non integer values. Section 6.10 sums up the body of work in this
paper and suggests avenues for further research and applications of high pre-
cision, fast converging lattice sums. The appendices help the reader with short
discussions and examples of some of the methodology used in formulas from
previous sections. The Mellin transformation and theta function method are
discussed in Appendix 6.A. Appendix 6.B discusses methods used in the eval-
uation of doubles sums. Appendix 6.C gives definitions of some Kronecker
symbols and Appendix D shows expressions for half integer Bessel functions.

6.2 Lattice Sums for Cubic and Hexagonal Lattices
in Three Dimensions

Choosing one arbitrary lattice point located at p⃗0, we obtain the set of
distances rm = |p⃗i − p⃗0| to all other lattice points with
r⃗m = i⃗ b1 + j b⃗2 + k b⃗3 with i, j,k ∈ Z, where b⃗i are the basis vectors for a
specific lattice. By summing over all lattice points in the lattice L using the
underlying lattice symmetry and the corresponding lattice vectors, we can
write the cohesive energy (6.1.3) as:

Ecoh
ELJ(r0) =

1
2 ∑
{rm}

nmax

∑
n=1

cnr−sn
m

=
1
2

nmax

∑
n=1

cn

(
∑

i, j,k∈Z\(0,0,0)
S−

sn
2

i jk

)
r−sn

0

=
1
2

nmax

∑
n=1

cnLsnr−sn
0 . (6.2.1)

The last formula only depends on the ELJ potential coefficients cn, the next-
neighbour distance in the lattice r0 = min{rm}, and the LJI coefficients Lsn .
The latter only depend on the crystal symmetry and the strength of the poten-
tial term sn. In the following we only consider sn > 3 for the 3D case and
disregard analytical continuations. We further generalize our considerations
here by lifting the restriction for sn to integer values, i.e., sn ∈ R. We can now
discuss the lattice sums for the cubic lattices and the hexagonal close-packed
structure as shown in Fig. 6.1.

6.2.1 Cubic Lattices

The primitive unit cell of each cubic lattice only contains one atom (lattice
point), therefore spanning the entire lattice from any arbitrary point is rather



90
6 Project 1 - Analytical methods for fast converging lattice sums for cubic

and hexagonal close-packed lattices

trivial using the corresponding lattice vectors for the unit cell. If we introduce
the basis vectors for the three cubic lattices with the lattice constants shown in
Figure 6.1,

b⃗sc⊤
1 = a(1,0,0) , b⃗sc⊤

2 = a(0,1,0) , b⃗sc⊤
3 = a(0,0,1)

b⃗bcc⊤
1 =

a
2
(1,1,−1) , b⃗bcc⊤

2 =
a
2
(−1,1,1) , b⃗bcc⊤

3 =
a
2
(1,−1,1)

(6.2.2)
b⃗fcc⊤

1 =
a
2
(1,1,0) , b⃗fcc⊤

2 =
a
2
(0,1,1) , b⃗fcc⊤

3 =
a
2
(1,0,1)

one finds for the LJI coefficients for the simple cubic (sc), body-centered cubic
(bcc) and face-centered cubic (fcc) lattice sums using the lattice vectors the
following quadratic forms:

Ssc
i jk = i2 + j2 + k2 , (6.2.3a)

Sbcc
i jk = i2 + j2 + k2 − 2

3 (i j+ ik+ jk) , (6.2.3b)

Sfcc
i jk = i2 + j2 + k2 + i j+ ik+ jk

=
1
2

[
(i+ j)2 +(i+ k)2 +( j+ k)2

]
. (6.2.3c)

The formula for the sc lattice (sum of three squares), (6.2.3a) is exactly the
equation Lennard-Jones obtained in 1924.[22] The importance of the simple
cubic LJI coefficients lies in the fact that they are the most efficient to evaluate
and it is thus always computationally advantageous to re-discover simple cubic
sub-lattices for the evaluation of the other cubic lattices. This partitioning of
the bcc and fcc lattice points in the summations was already introduced by
Lennard-Jones, i.e., for the fcc lattice, we get[22]

Lfcc
sn

= 3 ∑
i, j,k∈Z

′ (
2i2 + j2 + k2)− sn

2 −21− sn
2 Lsc

sn
. (6.2.4)

Here and for the following, the notation ∑
′
implies that singularities in the sum

are avoided, i.e., the index triple (i, j,k) = (0,0,0) is excluded. Alternative
decompositions are easily obtained by combinations of sub-lattices or by direct
manipulation of the lattice sums:

Lfcc
sn

=3×2
sn
2 ∑

i, j,k∈Z

[
(2i+1)2 +(2 j+1)2 +4k2]− sn

2 +2−
sn
2 Lsc

sn
, (6.2.5)
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or the decomposition given by Zucker,[61]:

Lfcc
sn

= 2
sn
2 −1

∑
i, j,k∈Z

′ [
1+(−1)i+ j+k

](
i2 + j2 + k2)− sn

2

= 2
sn
2 −1Lsc

sn
+2

sn
2 −1

∑
i, j,k∈Z

′
(−1)i+ j+k (i2 + j2 + k2)− sn

2 . (6.2.6)

For the bcc lattice the following formulae can easily be found in that way [22]:

Lbcc
sn

=

(
3
4

) sn
2

Lsc
sn
+3

sn
2 ∑

i, j,k∈Z

[
(2i+1)2 +(2 j+1)2 +(2k+1)2

]− sn
2
.

(6.2.7)

and

Lbcc
sn

=
1
2

3
sn
2 ∑

i, j,k∈Z

′ [
1+(−1)i+ j+k

](
2i2 +2 j2 + k2)− sn

2 . (6.2.8)

For all formulae, we find that the lattice sums converge to the number of nearest
neighbors in the limit as sn → ∞, so Lsc

∞ = 6, Lfcc
∞ = 12, and Lbcc

∞ = 8 as one
expects for strongly decaying interactions.

6.2.2 Hexagonal Close-Packed Structure

The hexagonal close-packed structure contains two atoms in its primitive unit
cell. The first lattice sum derived for the hcp structure by Kane and Goeppert-
Meyer [24] treated the sub-lattices corresponding to these two atoms separately
and therefore arrived at a lattice sum with an inhomogeneous quadratic form

Lhcp
sn

= ∑
i, j,k∈Z

′ (
Shcp1

i jk

)− sn
2
+ ∑

i, j,k∈Z

(
Shcp2

i jk

)− sn
2

(6.2.9)

with
Shcp1

i jk = i2 + j2 + i j+ 8
3 k2 (6.2.10)

and

Shcp2
i jk =

(
i+ 1

3

)2
+
(

j+ 1
3

)2
+
(
i+ 1

3

)(
j+ 1

3

)
+ 8

3

(
k+ 1

2

)2

= i(i+1)+ j( j+1)+ i j+
8
3

k(k+1)+1.
(6.2.11)

This can complicate the evaluation of the triple sum and makes the direct sum-
mation very expensive, in particular for low values of sn. Fortunately, one can
derive a simpler formula, for example, Stein decomposed the hcp structure into
four interpenetrating orthorhombic lattices. It is easy to show that from a linear
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combination of sub-lattices we get[142]

Lhcp
sn

= ∑
i, j,k∈Z

′ (
Shcp

i jk (
8
3)
)− sn

2
+

3
sn
2

2 ∑
i, j,k∈Z

k≡1 (mod2)

(
Shcp

i jk (2)
)− sn

2

− 1
2 ∑

i, j,k∈Z
k≡1 (mod2)

(
Shcp

i jk (
2
3)
)− sn

2
(6.2.12)

with
Shcp

i jk (c) = i2 + j2 + i j+ ck2. (6.2.13)

By adding terms with even k to the last two sums and subtracting them again
we obtain lattice sums which are sums of pure quadratic forms without any
restrictions on the indices i, j and k. Nevertheless, it is possible to partition
the summation over the lattice points in such a way that all quadratic forms
involved are homogeneous

Lhcp
sn

=
4

∑
m=1

∑
i, j,k∈Z

′
am

(
Shcp

i jk (ci)
)− sn

2
, (6.2.14)

with a1 =
3
2 ,a2 = 3

s
2 /2,a3 =−3

s
2 /2,a4 =−1

2 and c1 =
8
3 ,c2 = 2,c3 = 8,c4 =

2
3 . The hcp structure has the same number of nearest neighbors and thus the
same limit as the fcc lattice, i.e., Lhcp

∞ = 12.

6.3 Lattice Sum Convergence

The lattice sums considered here are slowly convergent series for small expo-
nents of sn, and the question naturally arises how far we have to sum to achieve
a given accuracy, i.e., we search for Nmax such that the remainder of the triple
sum is smaller than a given ε ,

|∆Lsn(Nmax)|= |Lsn −Lsn(Nmax)|= |Lsn − ∑
i, j,k∈Z

|i|,| j|,|k|≤Nmax

(Si jk)
− sn

2 | ≤ ε ,

(6.3.1)
where Lsn is the exact LJI coefficient. Using Epstein’s zeta functions, which
will be described further below, Lennard-Jones and Ingham were able to calcu-
late these coefficients for the sc, bcc and fcc lattices to an accuracy of ε ∼ 10−4

for small exponents of sn.[6] For the cubic lattices, Zucker improved these
summations by using the Mellin transform to about ε = 10−8. It is, however,
desirable to achieve at least computer precision for these lattice sums, i.e.,
ε = 10−14 for double precision. As one can see from Figure 11.5, convergence
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Figure 6.2 Convergence behaviour of the Lennard-Jones–Ingham coefficients
∆Ln(Nmax) = Ln(exact)−Ln(Nmax) with increasing expansion value Nmax for
the sc (green line), bcc (red line) and fcc (purple line) lattices and for different
exponents of n ∈ N on a double logarithmic scale, calculated from the lattice
sums and extrapolated to large Nmax values. The values Ln for the sc, bcc, fcc
and hcp structures are found in Section 6.9.

can be very slow, especially for the smallest exponents sn = 4 and sn = 5 where
Nmax has to be about 108 and 1016 (extrapolated), respectively. This is compu-
tationally not feasible. Even for sn = 6 we need Nmax = 105 which for a triple
sum becomes computationally demanding. It was already recognized[48, 99]
that direct summations lead to rather inaccurate LJI coefficients for small ex-
ponents s.

One can get lower and upper limits for ∆Lsn(Nmax) by using the Cauchy inte-
gral test if the function Si, j,k is monotonically decreasing in the variables i, j
and k. To show the slow convergence behavior, we take the simple cubic lattice
as an example for the Cauchy estimate of the remaining sum and restrict the
triple sum to i2 + j2 + k2 ≤ N2

max. We conveniently transform this lattice sum
into spherical coordinates and integrate over the angular part to obtain an error
estimate,

∆Lsn(Nmax)≈ 4π

∫
∞

Nmax

dr r−sn+2 =
4π

sn −3
N−sn+3

max . (6.3.2)

We immediately see the problem with the convergence behaviour for small
exponents sn, e.g., for an accuracy of < 10−14 in the lattice sum one requires
Nmax ≈ 1016 for sn = 4. Testing just for the next summation values beyond



94
6 Project 1 - Analytical methods for fast converging lattice sums for cubic

and hexagonal close-packed lattices

Nmax in the sum,

∆Lsn(Nmax)−∆Lsn(Nmax +1) = 4πN−sn+2
max , (6.3.3)

is not sufficient as we go down by one order of magnitude in Nmax, i.e., small
contributions at large integer values i, j,k sum up to sizeable amounts for small
exponents sn. We therefore require other summation techniques to achieve
faster convergence, which is the subject of the following sections.

6.4 Direct Summation through Symmetry
Considerations

Lennard-Jones used direct summation of the lattice sums Lsn for the cubic lat-
tices except for small exponents sn ∈ N,[6] however, restricting the sums to
i, j,k ≤ Nmax the computational effort scales O(N3

max). We can save computer
time by utilising both permutation and inversion symmetry at the origin in
Z3 space. This does not change the overall scaling law but reduces the pref-
actor substantially, and makes the sums computationally more attractive for
larger exponents of sn ≥ 8. For example, most recently Stein introduced a
parallel algorithm and exploited the symmetry by partitioning the crystal into
octants.[99]
For direct summations, it is convenient to choose expressions for the lattice
sums with the symmetric matrix S of the quadratic form i⃗ ⊤S⃗i (⃗i ∈ Z3) be-
ing diagonal, as the resulting double sums can all be expressed in terms of
well-known Hurwitz zeta functions. For simplicity, we drop the index for the
exponent and use s ≡ sn ∈ R,s > 3, for the following.

6.4.1 The Simple Cubic Case

Separating the sums into parts containing either i = 0, j = 0 or k = 0, as well
as i = j, j = k or i = k using inversion symmetry in i, j and k for the remainder
we get

Lsc
s = ∑

i, j,k∈Z

′ (
i2 + j2 + k2)− s

2 =−
(

9+6×2−
s
2 +8×3−

s
2
)

∑
i∈Z

′
i−s

+3 ∑
i, j∈Z

′ (
i2 + j2)− s

2 +6 ∑
i, j∈Z

′ (
2i2 + j2)− s

2 +48 ∑
1≤i< j<k

(
i2 + j2 + k2)− s

2 .

(6.4.1)

The factor of 48 in the last term comes from subdividing the three dimensional
space first into octants (factor of 8) and each octant into 6 sectors giving equal
contributions due to permutation symmetry.
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In the single sum we have the Riemann zeta function ζ (s) defined as,

ζ (s) =
∞

∑
i=1

i−s , (6.4.2)

with lims→∞ ζ (s) = 1. Further, the first double sum in (6.4.1) can be expressed
as a product of the Dirichlet beta and Riemann zeta functions known as the
Lorenz–Hardy-sum,[103, 104]

∑
i, j∈Z

′ (
i2 + j2)−s

= 4β (s)ζ (s) . (6.4.3)

The Dirichlet beta function is given by

β (s) =
∞

∑
i=0

(−1)i(2i+1)−s , (6.4.4)

with lims→∞ β (s) = 1. Finally, the second double sum has been evaluated by
Zucker,[105]

Z1(s) = ∑
i, j∈Z

′ (
2i2 + j2)−s

= 2−3s+1
ζ (s)ζ

(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
, (6.4.5)

with

ζ
(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
= ζ

(
s, 1

8

)
+ζ

(
s, 3

8

)
−ζ

(
s, 5

8

)
−ζ

(
s, 7

8

)
, (6.4.6)

and the Hurwitz zeta function defined as

ζ (s,x) =
∞

∑
i=0

(i+ x)−s . (6.4.7)

The Hurwitz zeta function is a generalization of the Riemann ζ -function with
ζ (s,1) = ζ (s). For the following it is convenient to define the sum of Hurwitz
zeta functions as

ζ (s;c1, . . . ,cn;d1, . . . ,dm) =
n

∑
i=1

ζ (s,ci)−
m

∑
i=1

ζ (s,di) . (6.4.8)

In this notation ζ (s) = ζ (s;1;−) and ζ (s,x) = ζ (s;x;−), where a dash indi-
cates an empty parameter list and the last semicolon may be removed if no
values are provided. The Dirichlet beta function can be expressed in terms of
the Hurwitz zeta function by,

β (s) = 4−s
ζ
(
s; 1

4 ; 3
4

)
. (6.4.9)

We finally obtain
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Lsc
s = 12ζ ( s

2)β (
s
2)−2

(
9+6×2−

s
2 +8×3−

s
2
)

ζ (s)+6Z1
( s

2

)
+48 ∑

1≤i< j<k

(
i2 + j2 + k2)− s

2 , (6.4.10)

reducing the summation to the octant of positive values. The standard Rie-
mann zeta, Hurwitz zeta and Dirichlet beta functions can easily be evaluated
to computer precision by using the Euler-Maclaurin summation formula.[106]
We save a factor 48 in computer time for the remaining triple sum, however,
the sum remains slowly converging for small values of s. Restricting the sum-
mation to (i2 + j2 + k2) ≤ N2

max and choosing Nmax sufficiently large, this di-
rect summation technique is accurate and fast enough for evaluation of lattice
sums for exponents s ≥ 8. For s = 8 (s = 7) with Nmax = 1500 (3000), the sum
is accurate to within 10−14. Here the triple sum contributes only to 0.028%
(0.115%) to the total value.

6.4.2 The Body-Centered Cubic Case

Here we conveniently use the quadratic form (6.2.7). Using again symmetry
between positive and negative integers we get,

Lbcc
s =

(
3
4

) s
2

Lsc
s +8×3

s
2 ∑

i, j,k∈N

{
(2i−1)2 +(2 j−1)2 +(2k−1)2

}− s
2
,

(6.4.11)

and with permutation symmetry (separating out the cases for i = j, i = k and
j = k) we arrive at

Lbcc
s =

(
3
4

) s
2

Lsc
s −2−s+4

ζ
(
s, 1

2

)
+24×3

s
2 ∑

i, j∈N

{
2(2i−1)2 +(2 j−1)2

}− s
2

+16×3
s
2+1

∑
1≤i< j<k

{
(2i−1)2 +(2 j−1)2 +(2k−1)2

}− s
2
. (6.4.12)

For the Hurwitz zeta function with argument 1
2 we have the relation to the

Riemann zeta function,

ζ
(
s, 1

2

)
= (2s −1)ζ (s) . (6.4.13)

The double sum appearing in (6.4.12) can be reformulated (for details see Ap-
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pendix 6.B),

∑
i, j∈N

{
2(2i−1)2 +(2 j−1)2

}− s
2
= 1

4

(
1−2−

s
2 +2−s

)
Z1(

s
2)−

1
4 Z3(

s
2) ,

(6.4.14)

with the factor of 1
4 coming from the fact that we only sum over natural num-

bers on the left hand side. Zucker’s sum Z1 has been defined in (6.4.5) and Z3
is defined by

Z3(s) = 2−1 (1−2−s +21−2s)Z1(s)+2−3s
β (s)ζ

(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)
. (6.4.15)

Taking all terms together including (6.4.10), we finally get

Lbcc
s = 3

s
2+1 2−s+2

β ( s
2)ζ (

s
2)−

(
16+3

s
2+2 21−s +3

s
2+1 2−

3s
2 +2
)

ζ (s)

+3
s
2+1 2−

3s
2 +1

[(
1−2−

s
2 +21−s

)
ζ ( s

2)ζ
( s

2 ; 1
8 ,

3
8 ; 5

8 ,
7
8

)
−β ( s

2)ζ
( s

2 ; 1
8 ,

7
8 ; 3

8 ,
5
8

)]
+3

s
2+1 2−s+4

∑
1≤i< j<k
m∈{0,1}

{(
i− m

2

)2
+
(

j− m
2

)2
+
(
k− m

2

)2
}− s

2
. (6.4.16)

Restricting the summation to (i2 + j2 + k2) ≤ N2
max with Nmax = 1500 (3000)

as in the simple cubic case, for s = 8 (s = 7) the sum is accurate to 10−14.
Here the triple sums contribute only to 0.038% (0.14%) to the total value.
Note that for large exponents s, (6.4.16) needs to be rearranged because of
large compensating sums in the expression containing the sum of Hurwitz zeta
functions defined in (6.4.8).

6.4.3 The Face-Centered Cubic Case

We could take (6.2.4) for decomposing the sums, but this leads to difficulties in
treating the resulting triple sum efficiently. Instead, we take the most symmet-
ric formula with respect to the three summation indices, the alternating sum in
(6.2.6). In analogy to the sc case, we start with the case i = 0, j = 0 or k = 0
and get

Lfcc
s = 2

s
2−1Lsc

s −3×2
s
2−1

∑
i∈Z

′
(−1)i i−s +3×2

s
2−1

∑
i, j∈Z

′
(−1)i+ j (i2 + j2)− s

2

+2
s
2+2

∑
i, j,k∈N

(−1)i+ j+k (i2 + j2 + k2)− s
2 .

(6.4.17)
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The single sum represents the Dirichlet eta function η(s) which can be rewrit-
ten in terms of the Riemann zeta function,

η(s) =
∞

∑
i=1

(−1)i−1 i−s =
(
1−21−s)

ζ (s) . (6.4.18)

The double sum has been evaluated by Zucker in 1974,[107]

Z2(s) = ∑
i, j∈Z

′
(−1)i+ j (i2 + j2)−s

=−4β (s)η(s) , (6.4.19)

and we get

Lfcc
s = 2

s
2−1Lsc

s −3×2
s
2+1
(

1−21− s
2

)
β ( s

2)ζ (
s
2)+3×2

s
2
(
1−21−s)

ζ (s)

+2
s
2+2

∑
i, j,k∈N

(−1)i+ j+k (i2 + j2 + k2)− s
2 .

(6.4.20)
We decompose the triple sum further as we did for the simple cubic case by
taking the diagonal sums with i = j or j = k or i = k out,

Lfcc
s = 2

s
2−1Lsc

s −3×2
s
2+1
(

1−21− s
2

)
β ( s

2)ζ (
s
2)

+
(

3×2
s
2 +3−

s
2 2

s
2+3
)(

1−21−s)
ζ (s)

+3×2
s
2+2

∑
i, j∈N

(−1) j (2i2 + j2)− s
2

+3×2
s
2+3

∑
1≤i< j<k

(−1)i+ j+k (i2 + j2 + k2)− s
2 .

(6.4.21)

The double sum in (6.4.21) has been evaluated by Zucker in terms of Dirichlet
L-functions,[105] and is related to the simpler double sum (6.4.5) (for details
see Appendix 6.B),

∑
i, j∈N

(−1) j (2i2 + j2)−s
= 1

2

(
21−s −1

)[1
2 Z1 (s)−

(
1+2−s)

ζ (s)
]
. (6.4.22)

Taking all terms together we obtain a formula similar in nature to the simple
cubic case,

Lfcc
s = 12β ( s

2)ζ (
s
2)−2

(
6+9×2−

s
2 +3−

s
2 2−

s
2+3
)

ζ (n)+6Z1(
s
2)

+3×2
s
2+3

∑
1≤i< j<k

[
1+(−1)i+ j+k

](
i2 + j2 + k2)− s

2 .
(6.4.23)

Restricting the summation again to (i2 + j2 + k2) ≤ N2
max with

Nmax = 1500 (3000), for s = 8 (s = 7) the sum is accurate to 10−14. Here the
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triple sum contributes only to 0.19% (0.53%) of the total value.

6.4.4 The Hexagonal Close-Packed Case

We consider the general form of the sum appearing in (6.2.9) reduce the sum-
mation again to the positive integers by consideration of i = 0, j = 0 or k = 0,

∑
i, j,k∈Z

′ [
Shcp

i jk (c)
]− s

2
= ∑

i, j,k∈Z

′
(i2 + j2 + i j+ ck2)−

s
2

= 4 ∑
i, j,k∈N

m∈{−1,1}

(i2 + j2 +mi j+ ck2)−
s
2

+ ∑
i, j∈Z

′
(i2 + j2 + i j)−

s
2 +2 ∑

i,k∈Z

′
(i2 + ck2)−

s
2 −2

(
2+ c−

s
2

)
ζ (s) . (6.4.24)

The first double sum has been treated by Fletcher et al.[108] and later by
Zucker[105]

∑
i, j∈Z

′
(i2 + j2 + i j)−s = 31−s2ζ (s)ζ (s; 1

3 ; 2
3) . (6.4.25)

If we use permutation symmetry between the two indices i and j we finally get

∑
i, j,k∈Z

′ [
Shcp

i jk (c)
]− s

2
= 8 ∑

i, j,k∈N,i< j
m∈{−1,1}

(i2 + j2 +mi j+ ck2)−
s
2

+2×31− s
2 ζ ( s

2)ζ (
s
2 ; 1

3 ; 2
3)

+2S2(
s
2 ,c)+4 ∑

i,k∈N

(
i2 + ck2)− s

2

+4 ∑
i,k∈N

(
3i2 + ck2)− s

2 −2
(

2+ c−
s
2

)
ζ (s)

= 8 ∑
1≤i< j,k∈N
m∈{−1,1}

(i2 + j2 +mi j+ ck2)−
s
2 +2×31− s

2 ζ ( s
2)ζ (

s
2 ; 1

3 ; 2
3)

+3S2(
s
2 ,c)+3−

s
2 S2(

s
2 ,

c
3)−6

(
1+3−

s
2−1 + c−

s
2

)
ζ (s) . (6.4.26)

The remaining double sums

S2(s,c) = ∑
i, j∈Z

′ (
i2 + c j2)−s

(6.4.27)

dependent on the rational constant c ∈ Q need to be treated separately.
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Observe that S2(s,2) = Z1(s) is defined in (6.4.5), and S2(s,8) = Z3(s) is
given in (6.B.20) in Appendix 6.B. For c = 2

3 the sum has been evaluated by
Zucker[105]

S2(s, 2
3) = 3s

∑
i, j∈Z

′
(3i2 +2 j2)−s

= 2−3s [
ζ (s)ζ (s; 1

24 ,
5

24 ,
7

24 ,
11
24 ; 13

24 ,
17
24 ,

19
24 ,

23
24)

−ζ (s; 1
8 ,

7
8 ; 3

8 ,
5
8)ζ (s; 1

3 ; 2
3)
]
. (6.4.28)

There are in total three double sums S2(s, 2
9),S2(s, 8

9) and S2(s, 8
3) in (6.4.26)

to be further analyzed. Fortunately, these can be be decomposed into (rather
lengthy) expressions in terms of Hurwitz zeta functions given in Appendix 6.B.
We can now give the complete expression for the hcp lattice sum with the
coefficients ai and ci defined in (6.2.14),

Lhcp
s = ∑

n∈{1,2,3,4}
an

{
8 ∑

i, j,k∈N,i< j
m∈{−1,1}

(i2 + j2 +mi j+ cnk2)−
s
2 +3S2(

s
2 ,cn)

+3−
s
2 S2(

s
2 ,

cn
3 )

}
+2×31− s

2 ζ ( s
2)[ζ (

s
2 ; 1

3 ; 2
3)−6

[
1+3−

s
2−1 +

(
3
8

) s
2
]

ζ (s) . (6.4.29)

This formula requires more computer time compared to the other three lattices.
Hence for the hcp structure it is perhaps more convenient to take the Dirichlet
series for large exponents s, and the Terras decomposition for small exponents
s, which will be discussed further below. Nevertheless, restricting the summa-
tion to i < j ≤ Nmax and k ≤ Nmax with Nmax = 3000, for s = 8 (s = 7) the sum
is accurate to within 10−14. Here the triple sum contributes to 5.46% (7.69%)
of the total value.

6.5 Dirichlet Series

A second route to evaluate lattice sums is by reducing the triple sums to an or-
dinary Dirichlet series. For this we rearrange the sums over the Si jk as follows,

Ls = ∑
i, j,k∈Z

′
S−

s
2

i jk = l
s
2 ∑

n∈N
rL

3 (n)n−
s
2 , (6.5.1)

with rL
3 (n) being the number of different representations fulfilling the equation

lSi jk = n,[72, 73] with l being the smallest integer such that n∈N for all combi-
nations of i, j,k ∈ Z in the Si jk expressions (lsc = 1, lbcc = 3, lfcc = 1, lhcp = 3).
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The representations rL
3 (n) are listed in Table A.1. Larger sequences of rL

3 (n)
numbers can be found in the Sloane tables (some sequences are known to up
to n=10,000).[74, 75] The number rL

3 (n) represents the number of points in
the lattice L at distance rn from a selected central lattice point. Note that the
lattice sum for hcp can be written as as a single Dirichlet sum even though
two atoms are in the unit cell. The use of the Dirichlet series to obtain the LJI
coefficients Ls is most convenient for larger values of s.
The problem for the slow converging Dirichlet series with small exponents
s is that, in contrast to the even dimensional quadratic forms, there is not
much known for the rD(n) values for the odd dimensional sum of squares
(D = 2m+ 1,m ∈ N). One of the exceptions is the simple cubic case in three
dimensions where a (rather cumbersome) formula for r3(n) has been provided
by Bateman.[76]
For the sc case (Ssc

i jk = i2 + j2 + k2) we have zeros appearing in Table A.1
because of Legendre’s three-square theorem (n ∈ N can be represented as
a sum of three squares if and only if n ̸= 22k(8l + 7),k, l ∈ N0). It is also
known that rsc

3 (4kn) = rsc
3 (n) for all k ∈ N. Further, r f cc

3 (n) = rsc
3 (2n) and

therefore Legendre’s three-square theorem also applies for the fcc lattice sum
(n ̸= 22k+1(8l+7),k, l ∈N0), and we have rfcc

3 (4k(2n)) = rfcc
3 (2n).[133] More-

over, we observe from Table A.1 that rbcc
3 (n) = rsc

3 (n) iff rbcc
3 (n) ̸= 0. This can

easily be proven by regarding the bcc lattice as a sub-lattice of the sc lattice
with half the lattice constant a and the required lattice points removed. Fur-
thermore, the same procedure can be used for the relation between the sc and
fcc lattices. Again we regard the fcc lattice as a sub-lattice of sc with half the
lattice constant and remove every point from an sc lattice with 1/2a where the
sum of the indices (i+ j+ k) is odd. Therefore, we get r f cc

3 (n) = rsc
3 (2n).

The values of the coefficients r3(n) are unbounded, e.g., r3(n2) = 6(n+ 1−
(−1)(n−1)/2) for any odd prime n[77]. The series converges slowly due to n−s

not decaying fast enough.
Nevertheless, this series expansion is particularly useful for the fast converging
LJI coefficients at larger exponents s as all LJI coefficients can be computed
fast from a database of r3(n) values. However, for example, to reach computer
accuracy for a lattice sum with exponent s = 8 one has to sum to values of
Nmax > 107.
This is perhaps not surprising as we can view the Dirichlet series for such lat-
tice sums as a space filling curve in ZD compressed for the cases where differ-
ent combinations of (i, j,k, . . .) have the same value of rD(n). For small values
of s the sum still requires approximately nmax ∼ ND

max terms in the Dirichlet
series (N3

max in our case), therefore making it also slow converging.
Efficient algorithms can be developed to obtain the r3(n) values, however large
storage arrays are required. Nevertheless, this is the method of choice for the
LJI coefficients Ls with s ≥ 8. For this we produced 5× 107 r3(n) integer
values for the sc, bcc, fcc and hcp structures, which are available online on our
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Table 6.1 Number of presentations rL
3 (n) for the sc, bcc, fcc and hcp struc-

tures (sequences A005875, A004013, A004015 and A004012 in Sloane’s
database[75]).

n rsc
3 (n) rbcc

3 (n) rfcc
3 (n) rhcp

3 (n)
0 1 1 1 1
1 6 0 12 0
2 12 0 6 0
3 8 8 24 12
4 6 6 12 0
5 24 0 24 0
6 24 0 8 6
7 0 0 48 0
8 12 12 6 2
9 30 0 36 18

10 24 0 24 0
11 24 24 24 12
12 8 8 24 6
13 24 0 72 0
14 48 0 0 0
15 0 0 48 12
16 6 6 12 0
17 48 0 48 12
18 36 0 30 6
19 24 24 72 6
20 24 24 24 12
21 48 0 48 24
22 24 0 24 6
23 0 0 48 0
24 24 24 8 0
25 30 0 84 12
26 72 0 24 0
27 32 32 96 12
28 0 0 48 0
29 72 0 24 24
30 48 0 0 12
31 0 0 96 12
32 12 12 6 2
33 48 0 96 12
34 48 0 48 6
35 48 48 48 24
36 30 30 36 6
37 24 0 120 12
38 72 0 24 0
39 0 0 48 24
40 24 24 24 0
41 96 0 48 12
42 48 0 48 0
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CTCP webpage for download.[143]

6.6 Terras’ Decomposition of the Epstein Zeta
Function

Emersleben[20, 113–116] and later Lennard-Jones and Ingham[6] pointed out
that the sums over the inverse powers of the Si jk terms are special cases of
Epstein’s generalized zeta functions.[117] The N-dimensional generalized Ep-
stein zeta function (Z -function for short) is defined as,

ZAN (c; u⃗, v⃗) = ∑
z⃗∈ZN

′
e2π i⃗u·(AN z⃗) |AN⃗z− v⃗|−c , (6.6.1)

with c ∈ C, u⃗, v⃗ ∈ RN , N is the dimension, and AN is a N ×N real positive
definite matrix. Some well-known functions like the Riemann or Hurwitz zeta
functions are included in this class of Z -functions. The relation between the
Z -function and our sums in the LJI coefficients is obvious,

∑
i, j,k∈Z

′
S
− s

2
i jk = ZA3(s;⃗ 03 ,⃗03) , (6.6.2)

where 0⃗3 is the zero vector in 3D-space and the inhomogeneity parameter a in
(6.1.4) is zero.
For the smallest integer exponent s = 4, Lennard-Jones used an expansion of
the Epstein function in terms of Bessel functions for the cubic lattices. In fact,
for quadratic forms where v⃗ = 0⃗ the Z -function can be reduced successively
in dimension (in our case from dimension N=3) down to the remaining Rie-
mann zeta function ζ (x) of dimension N=1. A detailed description with all
the required proofs can be found in Terras’ seminal paper from 1973.[112] In
order to achieve this for the cubic lattices we use the expression for a quadratic
form,

|AN⃗z|2 = z⃗⊤
(

A⊤
N AN

)
z⃗ = z⃗⊤SN⃗z with SN = A⊤

N AN , (6.6.3)

and SN is an N×N positive definite and symmetric matrix according to (6.6.3).
We briefly outline the expansion method introduced by Terras[112] using the
following relation for dimension N=3 (we introduce the factor of 1/2 to be in
line with Terras’ definition),

ZS3 (s) =
1
2
ZA3(2s;⃗ 03 ,⃗03) =

1
2 ∑

k⃗∈Z3

′ (⃗
k⊤S3⃗k

)−s
, (6.6.4)

with s > 3
2 . The reduction to dimension N=2 and then to N=1 by an expansion
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in terms of Bessel functions proceeds as follows,

ZS3 (s) = ZS2 (s)+π
Γ(s−1)

Γ(s)
det (S2)

−1
2 Zt (s−1)+

πs

Γ(s)
H1,2 (S3,s) , (6.6.5)

with
Zx (s) = x−s

ζ (2s) , (6.6.6)

Here we block-diagonalized the 3×3 matrix S3 to obtain the 2×2 symmetric
sub-matrix S2,

S3 =

(
a b⃗⊤2
b⃗2 S2

)
=

(
1 q⃗⊤2
0⃗2 I2

)(
t 0⃗⊤2

0⃗2 S2

)(
1 0⃗⊤2
q⃗2 I2

)
. (6.6.7)

The subscript for the matrix elements denotes the dimension of the correspond-
ing matrix/vector, e.g. b⃗2, q⃗2 are vectors in R2. This gives the relations,

b⃗2 = S2⃗q2 =⇒ q⃗2 = S−1
2 b⃗2 (6.6.8)

and
a = t + q⃗⊤2 S2⃗q2 =⇒ t = a− b⃗⊤2 S−1

2 b⃗2 (6.6.9)

with t ̸= 0 and

S−1
2 = det(S2)

−1
(

σ22 −σ12
−σ12 σ11

)
. (6.6.10)

The expansion in terms of Bessel functions is as follows for a real valued
function,[118, 119]

ZS2 (s) = σ
−1

2
22 p

1
2−s

π
1
2 Γ
(
s− 1

2

)
Γ(s)−1

ζ (2s−1)+σ
−s
22 ζ (2s)

+4π
s
Γ(s)−1

σ
−1

2
22 ∑

i, j∈N

(
i2 j−2 pσ22

)1
4−

s
2 cos(2πσ12σ

−1
22 i j)

×K1
2−s

(
2π p

1
2 σ

−1
2

22 i j
)
, (6.6.11)

with S2 = (σi j) and the different parameters and functions are defined as fol-
lows,

p = σ11 −
σ2

12
σ22

, (6.6.12)
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H1,2 (S3,s) = det(S2)
−1

2 ∑
j∈Z\{0};⃗k∈Z2\{⃗02}

(
j2t
)1

2 (1−s)
(⃗

k⊤S−1
2 k⃗
)1

2 (s−1)

× cos
(

2π j⃗k⊤q⃗2

)
K1−s

(
2π

[
j2t⃗k⊤S−1

2 k⃗
]1

2

)
(6.6.13)

and Kν is the modified Bessel function of the second kind defined by

Kν(x) =
1
2

∫
∞

0
uν−1exp

{
−x
(
u+u−1)/2

}
du for |arg(x)|< 1

2 π ,

(6.6.14)
where we consider only the real part of the function. We combine all equations
and use the usual power of s

2 for our lattice sums,

ZS3

( s
2

)
= πΓ

( s
2 −1

)
Γ
( s

2

)−1 det (S2)
−1

2 t1− s
2 ζ (s−2)

+σ
−1

2
22 p

1
2 (1−s)

π
1
2 Γ
(1

2 (s−1)
)

Γ
( s

2

)−1
ζ (s−1)+σ

− s
2

22 ζ (s)

+4π
s
2 Γ
( s

2

)−1
σ
−1

4 (1+s)
22 p

1
4 (1−s)

∑
i, j∈N

(
i−1 j

)1
2 (s−1)

cos(2πσ12σ
−1
22 i j)

×K1
2 (1−s)

(
2π p

1
2 σ

−1
2

22 i j
)

+
2t

1
2 (1−

s
2 )π

s
2

Γ
( s

2

) det(S2)
−1

2 ∑
j∈N;⃗k∈Z2\{⃗02}

cos
(

2π j⃗k⊤q⃗2

)
j(1−

s
2 )

×
(⃗

k⊤S−1
2 k⃗
)1

2 (
s
2−1)

K1− s
2

(
2π j

[
t⃗k⊤S−1

2 k⃗
]1

2

)
. (6.6.15)

For the case that k⃗⊤q⃗2 ∈ Z the last cosine term becomes unity (which will be
used for the sc and fcc case discussed below) and we can substitute the last
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sum over k⃗ ∈ Z2 \ {⃗02} by its Dirichlet series,

ZS3

( s
2

)
=

2πt1− s
2

s−2
det (S2)

−1
2 ζ (s−2)

+σ
−1

2
22 p

1
2 (1−s)

π
1
2 Γ
(1

2 (s−1)
)

Γ
( s

2

)−1
ζ (s−1)+σ

− s
2

22 ζ (s)

+4π
s
2 Γ
( s

2

)−1
σ
−1

4 (1+s)
22 p

1
4 (1−s)

∑
i, j∈N

(
i−1 j

)1
2 (s−1)

cos(2πσ12σ
−1
22 i j)

×K1
2 (s−1)

(
2π p

1
2 σ

−1
2

22 i j
)

+
2(αt)

1
2 (1−

s
2 ) π

s
2

Γ
( s

2

) det(S2)
−1

2 ∑
j,k∈N

j(1−
s
2 )k

1
2 (

s
2−1) rαS−1

2
2 (k)

×K s
2−1

(
2π j

(
tα−1k

)1
2

)
, (6.6.16)

with rαS−1
2

2 (k) the number of different representations fulfilling the equation

j⃗⊤αS−1
2 j⃗ = k with j⃗ ∈ Z2 \ {⃗02} , (6.6.17)

where α is the prefactor in front of the S−1
2 matrix such that we only have

integers in the resulting 2D quadratic form, i.e., a j2
1 +b j2

2 +c j1 j2 with a,b,c ∈
Z. Here we used the fact that Kν(x) = K−ν(x),[120] and the relation for the
gamma function

Γ(x+1) = xΓ(x) . (6.6.18)

The higher order Bessel functions can be successively reduced to lower order
Bessel functions by

Kν(x) =
2(ν −1)

x
Kν−1(x)+Kν−2(x) , (6.6.19)

and all what remains to be evaluated in (6.6.16) are the Bessel functions K1,
K0 and K1

2
. Further, for half-integer orders of the Bessel function we can use

the equation

K1
2
(x) = K

−1
2
(x) =

√
π

2x
e−x . (6.6.20)

The r2(k) values are known to sufficient order and can be tabulated. Most
of the value for ZS3

( s
2

)
for small exponents s is contained in the first three

terms in (6.6.16), while at large exponents s the Bessel sums dominate. We
now derive the Epstein expansion for the three cubic and the hexagonal close-
packed structures.
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6.6.1 The Simple Cubic Case

Here we have
∑

i, j,k∈Z

′
(Ssc

i jk)
− s

2 = ZI3(s;03,03) , (6.6.21)

where I3 is the 3×3 identity matrix. This case is particularly easy as we have
b⃗2 = 0⃗2 (and the cosine term in the second Bessel sum vanishes), S3 = I3 and
S2 = S−1

2 = I2 being identity matrices. From this we get α = 1, σ12=0, σ22=1,
p=1, t=1, and det(S2) = 1. Equation (6.6.16) therefore simplifies to

Zsc
S3

( s
2

)
=

2π

s−2
ζ (s−2)+π

1
2 Γ
( s

2 −
1
2

)
Γ
( s

2

)−1
ζ (s−1)+ζ (s)

+4π
s
2 Γ
( s

2

)−1
∑

i, j∈N

(
i−1 j

)1
2 (s−1)

K s
2−

1
2
(2πi j)

+2π
s
2 Γ
( s

2

)−1
∑

j,k∈N
j(1−

s
2 )k

1
2 (

s
2−1) rI2

2 (k) K s
2−1

(
2π jk

1
2

)
.

(6.6.22)

For the special case s = 4 we obtain by using (11.A.9) and (6.6.20), as well as
ζ (4) = π4/90 and ζ (2) = π2/6

Zsc
S3
(2) =

π3

6
+

π4

90
+

π

2
ζ (3)+π ∑

i, j∈N

(
2πi−2 j+ i−3)e−2πi j

+2π
2

∑
j,k∈N

j−1k
1
2 rI2

2 (k) K1

(
2π jk

1
2

)
,

(6.6.23)

identical to the original formula of Lennard-Jones[22] (except for a factor of 2
because of equation (6.6.4)).b

6.6.2 The Body-Centered Cubic Case

In this case we have the symmetric matrix for the quadratic form

∑
i, j,k∈Z

′
(Sbcc

i jk )
− s

2 = ZAbcc
3
(s;03,03) , Abcc

3 =
1√
3

 1 −1 −1
−1 1 −1
−1 −1 1

 (6.6.24)

(
Abcc

3
⊤

Abcc
3

)
=

1
3

 3 −1 −1
−1 3 −1
−1 −1 3

 , Sbcc
2 =

1
3

(
3 −1
−1 3

)
(6.6.25)

,
(
Sbcc

2
)−1

=
3
8

(
3 1
1 3

)
,

bIn the paper by Lennard-Jones[22] the exponential expression in the 4th term in eq. (6.6.23)
appears as a power rather than a multiplicative factor which is a misprint.
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and we have α = 8
3 , σ22=1, σ12 =−1

3 , p = 8
9 , t = 2

3 , a=1, b⃗⊤2 = 1
3(−1,−1) and

det(S2) =
8
9 . Unfortunately we have k⃗⊤q⃗2 =−1

2 (k1 + k2) and the cosine term
in (6.6.15) does not vanish. This was, probably, realized early on by Lennard-
Jones as in his original 1924 paper he only evaluated the sc and the fcc lattices
using the Epstein zeta function, but not bcc.[22] We can, however, simplify
(6.6.15). Using the k⃗⊤q⃗2 expression we get for (6.6.15),

ZS3
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(6.6.26)
The quadratic form here is 8

3 k⃗⊤S−1
2 k⃗ = 3k2

1 + 3k2
2 + 2k1k2 = m and has the

following property: m is even iff (k1 + k2) is even and odd iff (k1 + k2) is odd.
We can therefore use (6.6.16) with a slight modification in the second Bessel
sum,
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(6.6.27)
This formula is ideal for low values of the exponent s. For large values of s,
the second sum containing Bessel functions and the first term containing the
Riemann ζ (s− 2) function become infinitely large but opposite in sign with
s → ∞. This can in principle be rectified by taking the problematic terms out
of the summation, but is not required here as we can use the Dirichlet series
for large s values.
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6.6.3 The Face-Centered Cubic Case

For this case we get for the symmetric matrix of our quadratic form,

∑
i, j,k∈Z

′
(Sfcc

i jk)
− s

2 = ZAfcc
3
(s;03,03) , Afcc

3 =
1√
2

1 1 0
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 (6.6.28)

(
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3
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)
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, (6.6.29)

(
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2
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=
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(
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−1 2

)
,

which leads to b⃗⊤2 = 1
2(1,1) and k⃗⊤q⃗2 =

1
2 (k1 + k2) like in the bcc case. Unlike

the bcc case however we can use (6.2.4) with the matrix,
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 , (6.6.30)

with S2 = S−1
2 = I2, b⃗2 = 0⃗2, α = 1, σ12=0, σ22=1, p=1, t=2, and det(S2) = 1.

This is similar to the simple cubic case except for the t-factor appearing for
example in the second Bessel sum, i.e., using (6.6.16) we get
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(6.6.31)
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6.6.4 The hexagonal close-packed case

If we take the original lattice sum for hcp introduced by Kane and Goeppert-
Mayer in 1940,[24] we get
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(6.6.32)

∑
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3
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6
(1,1,2)⊤ . (6.6.33)

However, the Terras decomposition is available for pure quadratic forms only
and it is not clear if it can be extended for the more general Epstein zeta func-
tion (6.6.1). We therefore consider instead the matrices derived from (6.2.14),

(
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(6.6.34)

,
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with c ∈ {2
3 ,2,

8
3 ,8}, σ22=1, σ12 =

1
2 , p = 3

4 , a = t = c, b⃗⊤2 = q⃗⊤2 = (0,0) and
det(S2) =
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4 . From this we obtain
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(6.6.35)

Adding the individual terms together in (6.2.14) with the different prefactors
and c-values, and using our number-theoretical tool as before, we get
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(6.6.36)

with α = 3
4 .

We finally note that the sums containing the Bessel functions are fast converg-

ing because of their asymptotic behavior, e.g. K1/2(x)∼ (π/2x)
1
2 e−x. The ex-

pansion in terms of Bessel functions is particularly useful for the Ls coefficients
with low exponent s. For large s values the Dirichlet series is numerically far
more stable as already mentioned, the Epstein Bessel function expansion can
contain large compensating terms with increasing exponent s.
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6.7 The Van der Hoff–Benson Expansion

Van der Hoff and Benson derived a number of interesting expansions for lattice
sums that are very useful for the lattices considered here.[111] We start with a
more general expansion than that presented in the original paper,

∑
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(6.7.1)

with a ∈ [0,1). The proof can be found in the Appendix 6.A. The expansion
does not reduce the number of summations for the triple sums we are seeking,
but the expression on the right hand side contains a series of fast converging
Bessel sums as discussed in the previous section. More important here is that
these expansions can be used not only for the cubic lattices but also for the hcp
structure as we shall see. The Van der Hoff–Benson expansion is computation-
ally as efficient as the one used for the Epstein zeta function introduced in the
previous section.[112] The resulting equations are perhaps related to the one
from the Epstein decomposition, which we do not explore further here.

6.7.1 The simple cubic case

We use a = 0 for (6.7.1) and get
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with x ̸= 0. To proceed we replace s with s

2 and put x = ( j2 + k2)1/2 for our
lattice sum, and remember that the case x ̸= 0 was excluded. In order to correct
for this we introduce an extra sum from the original summation over the index
i in (6.2.1). Finally we sum over the remaining two indices i, j of the lattice
sum,
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(6.7.3)

Using the definitions (11.A.1) and (6.4.3) and taking special cases k = 0 or
j = 0 out of the sum to use symmetry in both summation indices we get
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We could use again the Dirichlet L-series in the last sum as we did for the
Epstein zeta function. However, we can also take care of the special case
( j = k) and simplify further by using permutation symmetry of j,k,
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(6.7.5)

6.7.2 The body-centered cubic case

We choose a = 1
2 for (6.7.1),
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(6.7.6)

and consider the second term in (6.2.7) together with (6.7.6) and x ≡ x2
jk =
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(2 j+1)2 +(2k+1)2,
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We came across the double sum on the left hand side of this equation before in
(6.4.12). Now we further expand this sum by using (6.7.6) again and obtain,

Lbcc
s =

πΓ
( s

2 −1
)

4Γ
( s

2

) ∑
k odd, k∈Z

|k|2−s

+
21− s

2 π
s
2

Γ
( s

2

) ∑
k odd, k∈Z

|k|1−
s
2 ∑

m∈N
(−1)mm

s
2−1K s

2−1 (πm|k|)

+
2

3−s
2 π

s
2

Γ
( s

2

) ∑
j,k∈Z

|x jk|
1−s

2 ∑
m∈N

(−1)mm
s−1

2 Ks−1
2

(
πm|x jk|

)
. (6.7.8)

Using (6.6.18) and (6.4.13) and considering again symmetry and the special
case j = k we get
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We note that as in the case of the Epstein zeta function we have large
compensating terms here which requires further attention for large exponents
s, e.g. one has to use quadruple precision for the accurate calculation
of the lattice sums or take care of these large terms. Neverthe-
less, adding the sc and bcc terms from (6.2.7), (6.7.5) and (6.7.8) we finally get,
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(6.7.10)

We can, for example, make further simplifications by combining the
Bessel function sums containing the

√
2 in the argument,
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(6.7.11)
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6.7.3 The face-centered cubic case

For the fcc case we proceed in a similar fashion using x2 =
(

j2 + k2
)
/2 for

(6.2.4) in the Van der Hoff-Benson Expansion expansion (6.7.2),
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We treated the sc lattice before and only consider the first part in this equation.
This sum, however, is similar to the sc case, i.e., we only have to substitute
j → j/

√
2 and k → k/

√
2 and get

Lfcc
s = ∑

i, j,k∈Z

′
(

i2 +
j2 + k2

2

)− s
2

= 2ζ (s)+
2

s+3
2 π1/2Γ

( s−1
2

)
Γ
( s

2

) ζ ( s−1
2 )β ( s−1

2 )

+
16π

s
2

Γ
( s

2

) ∑
k,m∈N

(m
k

) s−1
2
{

2
s−1

4 Ks−1
2

(√
2πmk

)
+Ks−1

2
(2πmk)

}

+32
2

s−1
4 π

s
2

Γ
( s

2

) ∑
m, j<k∈N

 m

( j2 + k2)
1
2


s−1

2

Ks−1
2

(√
2πm

(
j2 + k2)1

2

)
.

(6.7.13)

6.7.4 The hexagonal close-packed case

As already mentioned the hcp structure is the most difficult case to be treated
for lower exponents s. For the Terras decomposition of the Epstein zeta func-
tion one has an additional v⃗-vector in (6.6.33), and the method only applies for
pure quadratic forms which requires a minimum of four terms. However, for
both sums in (6.2.9) and (6.2.12) we can apply the Van der Hoff-Benson ex-
pansion and, in addition, may apply Terras’ decomposition for the remaining
double sum. We consider the two different decompositions here.

Case 1

We rewrite (6.2.9) as

Lhcp
s =

(
3
8

) s
2

∑
i, j,k∈Z

′ [
i2 + 3

8

(
j2 + k2 + jk

)]− s
2

+

(
3
2

) s
2

∑
i, j,k∈Z

[
(2i+1)2 + 3

2

{(
j+ 1

3

)2
+
(
k+ 1

3

)2
+
(

j+ 1
3

)(
k+ 1

3

)}]− s
2
.

(6.7.14)
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Now we can use both expansions (6.7.2) and (6.7.6) and remember that the
case x ̸= 0 was excluded in (6.7.2),

Lhcp
s = 2

(3
8

) s
2 ζ (s)+

(3
8

) 1
2 π1/2Γ

( s−1
2

)
Γ
( s

2

) ∑
j,k∈Z

{
|x jk|1−s + |y jk|1−s}

+
4
(3

8

) 1+s
4 π

s
2

Γ
( s

2

) ∑
j,k∈Z

|x jk|
1−s

2 ∑
m∈N

m
s−1

2 Ks−1
2

(√
3
2 πm|x jk|

)

+
4
(3

8

) 1+s
4 π

s
2

Γ
( s

2

) ∑
j,k∈Z

|y jk|
1−s

2 ∑
m∈N

(−1)mm
s−1

2 Ks−1
2

(√
3
2 πm|y jk|

)
,

(6.7.15)
with the definitions

x2
jk =

(
j2 + k2 + jk

)
,

y2
jk =

(
j+ 1

3

)2
+
(
k+ 1

3

)2
+
(

j+ 1
3

)(
k+ 1

3

)
.

(6.7.16)

The sums containing Bessel functions are converging fast. The remaining
problem lies in the slow converging double sums in this expression. For the
first sum over x jk we can apply Terras’ expansion of the Epstein zeta function
using the matrix

Sfcc
2 =

1
2

(
2 1
1 2

)
,

(
Sfcc

2

)−1
=

2
3

(
2 −1
−1 2

)
. (6.7.17)

This gives according to the definitions in (6.6.11) using σ22 = 1, σ12 =
1
2 and

p = 3
4 ,

ZS2

( s−1
2

)
= (3

4)
1− s

2 π
1
2 Γ
( s

2 −1
)

Γ
( s−1

2

)−1
ζ (s−2)+ζ (s−1)

+2
√

3
(4

3

) s
4 π

s−1
2 Γ

( s−1
2

)−1
∑

j,k∈N
(−1) jk ( jk−1) s

2−1
K s

2−1

(√
3π jk

)
.

(6.7.18)
We note that this double sum has been decomposed into a product of simple
Dirichlet L-functions by Zucker and Robertson,[105] which we apply for sec-
ond case. However, as Bessel functions are already used here, for numerical
accuracy it does not matter which technique is applied.

The other double sum containing the y jk terms requires some special attention.
It is a summation on a two-dimensional hexagonal lattice and can therefore be
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related to another summation given by Van der Hoff and Benson,[111]

∑
j,k∈Z

|y jk|−s = ∑
j,k∈Z

[(
j+ 1

3

)2
+
(
k+ 1

3

)2
+
(

j+ 1
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)(
k+ 1
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)]− s
2

=
3

s
2 −1
2

{
∑

j,k∈Z

′ (
j2 +3k2)− s

2 + ∑
j,k∈Z

[(
j+ 1

2

)2
+3
(
k+ 1

2

)2
]− s

2

}
.

(6.7.19)
We use both Van der Hoff-Benson expansions (6.7.2) and (6.7.6) for these
sums and obtain,[111]

∑
j,k∈Z
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3
s
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)
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+
4
(

3
s
2 −1

)
π

s
2

3
s−1

4 Γ
( s

2

) ∑
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(√
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(6.7.20)
Taking the case j = k out of the double sums containing the Bessel functions,
using permutation symmetry, and finally adding, sorting and combining some
of the terms gives,
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Lhcp
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+
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(6.7.21)

This is a rather more complicated expression compared to the cubic cases.

Case 2

The first triple sum in (6.2.12) can be treated by Terras’ decomposition of the
Epstein zeta function. However, we treat all three sums in (6.2.12) here using
the Van der Hoff–Benson expansion (6.7.1). We first rewrite (6.2.12) valid for
either sign definitions,

Lhcp
s =

(
3
8

) s
2

∑
i, j,k∈Z

′ [
i2 + 3

8

(
j2 + k2 ± jk

)]− s
2

+
1
2

(
3
8
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[
(i+ 1

2)
2 + 1

8

(
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2

− 1
2

(
3
8

) s
2

∑
i, j,k∈Z

[
(i+ 1

2)
2 + 3

8

(
j2 + k2 ± jk

)]− s
2 ,

(6.7.22)

and expand accordingly and reorder the terms,



120
6 Project 1 - Analytical methods for fast converging lattice sums for cubic

and hexagonal close-packed lattices

Lhcp
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(6.7.23)
with x2

jk =
(

j2 + k2 − jk
)

(we conveniently choose the negative sign in front of
jk). The double sum containing x jk has been introduced already in (6.4.28).
We finally get by taking care of the terms with j = k in the last two sums
containing Bessel functions,
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(6.7.24)
This form is rather short and therefore perhaps more appealing to use than
(6.7.21). We could use our number-theoretical tool we introduced in the pre-
vious chapter as applied before by Lennard-Jones, but the sums when pro-
grammed converge rather fast and can be evaluated to computer precision
within seconds.

6.8 Analytical formulae for the special case s = 4

Here we only consider the special case of s = 4. More general formulae are
given in the Appendix 6.D. For s = 4 we can use the following expansion (see
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Appendices A and D),

∑
i∈Z

[
(i+ap)

2 + x2]−2
=

π

2x3 +
πbpe−πx

2x3 hp(πx)

+
πbpe−πx

2x2

{
πhp(πx)−h(1)p (πx)

}
,

(6.8.1)

with b1 = 1 for a1 = 0 and b2 = −1 for a2 = 1
2 , and h1(πx) = csch(πx),

h2(πx) = sech(πx), h(1)1 (πx) = −πcosh(πx)csch2(πx), and
h(1)2 (πx) = −πtanh(πx)sech(πx). The relation between the ap and bp

parameters are explained in Appendix 6.D.

6.8.1 The simple cubic case

We apply (6.8.1) for the simple cubic case, and choose a1 = 0, b1 = 1 and
x jk =

(
j2 + k2

)1/2. We remember again as in the previous section that the case
x ̸= 0 was excluded by introducing an extra sum, and sum over the remaining
two indices in (6.D.48) of the lattice sum. For n=4 we obtain after using some
well-known relations between hyperbolic functions,

Lsc
4 = ∑

k∈Z

′
k−4 +

π

2 ∑
j,k∈Z

′
x−3

jk +π ∑
j,k∈Z

′
x−3

jk

(
e2πx jk −1

)−1

+
π2

2 ∑
j,k∈Z

′
x−2

jk csch2(πx jk) .

(6.8.2)

This formula can also be found in Borwein et al.[26] For the other two sums
we separate out the terms where either j = 0 or k = 0,

Lsc
4 = 2ζ (4)+2πβ

(3
2

)
ζ
(3

2

)
+4π ∑

k∈N
k−3
(

e2πk −1
)−1

+2π
2
∑
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+4π ∑
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(
e2πx jk −1

)−1
+2π

2
∑
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′
x−2

jk csch2(πx jk) .

(6.8.3)
We use one of Ramanujan’s identities,[144]

∑
k∈N

k−3
(

e2πk −1
)−1

=
7ζ (4)

4π
− ζ (3)

2
=

7π3

360
− ζ (3)

2
, (6.8.4)

and the cosecant sum which we resolve from a comparison of our result here
with that of Borwein et al.,[26]

∑
k∈N

k−2csch2(πk) =
4

π2 ζ (2)β (2)− 11ζ (4)
2π2 =

2β (2)
3

− 11π2

180
, (6.8.5)
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and finally obtain

Lsc
4 = ∑

i, j,k∈Z

′ (
Ssc

i jk
)−2

= 8ζ (2)β (2)+2π
[
ζ
(3

2

)
β
(3

2

)
−ζ (3)

]
− π4

45

+4π ∑
j,k∈N

[
x3

jk
(
e2πx jk −1

)]−1
+2π

2
∑

j,k∈N

csch2 (
πx jk

)
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(6.8.6)

with β (2) being Catalan’s constant. We note that the first three terms contain-
ing the Riemann zeta and Dirichlet beta functions already give 99.963% of the
exact value. Further, the double sums are very fast converging and one has to
sum only up to Nmax = 5 to reach 10−15 accuracy in Lsc

4 .

6.8.2 The body-centered cubic case

For the bcc case we take (6.2.7). We already treated the simple cubic system
for s = 4. We now treat the second sum in (6.2.7) using b2 =−1 and a = 1

2 in
our expansion (6.8.1),
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9
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(6.8.7)

with x jk = +
√

( j2 + k2) and y jk = +
√
( j+ 1

2)
2 +(k+ 1

2)
2. The expression

contains fast converging sums except for the simple sum over y−3
jk , which how-

ever has already been evaluated by Zucker,

∑
j,k∈Z

(
( j+ 1

2)
2 +(k+ 1

2)
2)−s

= 4(2s −1)ζ (s)β (s) . (6.8.8)
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We finally get
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(6.8.9)

This could possibly be simplified further. However, all double sums are con-
verging fast like in the simple cubic case.

6.8.3 The face-centered cubic case

For the face-centered cubic case we take (6.2.4) and expand in a similar fashion
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(6.8.10)
with the same definition for x jk as in the simple cubic case. We simplify as in
the simple cubic case and use for the exponential expression the fact that k = j
leads again to (6.4.5) and to (6.8.5) for the hyperbolic function,
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(6.8.11)
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6.8.4 The hexagonal close-packed case

For the hexagonal close-packed case we use (6.2.12) and consider the more
general sum (6.2.13),
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j,k∈Z

′
x−3

jk +
π√

c ∑
j,k∈Z

′
x−3

jk

(
e

2π√
c x jk −1

)−1

+
π2

2c ∑
j,k∈Z

′
x−2

jk csch2
(

πx jk√
c

)
,

(6.8.12)
with x jk =

√
( j2 + k2 − jk). We now use (6.4.28) and get
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(6.8.13)

We now add the three terms in (6.2.12) and get,
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√
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√
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(6.8.14)
with a1 =

3
2 , a2 =

9
2 , a3 = −9

2 , a4 = −1
2 , c1 =

8
3 , c2 = 2, c3 = 8, and c4 =

2
3 .

Again, this expressions could perhaps be further simplified, but the remaining
sums are converging fast. In fact, we only have to sum over Nmax=17 values to
reach double precision accuracy.

6.9 Results: Lattice Sums for Integer Exponents

To compute the lattice sums for the sc, bcc, fcc and hcp structures and to test
the many formulae introduced in this work, the computer program Jones.f was
written (in FORTRAN) which is freely available from our website.[143] For
the Hurwitz zeta function we use the Euler-Maclaurin summation formula to
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obtain the expression[106]:

ζ (s,x)=
n

∑
k=1

(k+ x)−s+
(n+ x)1−s

s−1
− 1

2 (n+ x)−s+
∞

∑
j=1

B2 j
s(s+1) · · ·(s+2 j)

(2 j)!(n+ x)s+2 j+1 ,

(6.9.1)
where B2k are the Bernoulli numbers, x ∈ (0,1), and we chose n < 9 in our
computer code. This routine was used for all other functions which can be
expressed in terms of Hurwitz zeta functions. For the Bessel functions we
used the algorithm published in Numerical Recipes.[145]

The computed lattice sums Ls −L∞ are listed in Table 7.1 to 15 digit accuracy
for integer exponents s ≤ 30. For this we used 128-bit arithmetic (quadruple
precision) in the floating point arithmetic.

In Figure 6.3 the behavior of the sums for the cubic and hexagonal structures is
shown on a logarithmic scale, this includes results for non-integer exponents in
the range close to s = 3. It can be seen that the fcc and hcp graphs are so close
as to be indistinguishable, the difference between the two at most is 10−3 which
we show in Figure 6.3b. This is perhaps expected as both are close-packed
structures with the same packing density for unit hard spheres. Further it is
clear that (Lfcc

s −Lhcp
s )→ 0 for s → ∞. Further we observe that while both the

fcc and hcp curves have a singularity at s= 3, they seem to approach a constant
value at that point, i.e., lims→3+(Lfcc

n − Lhcp
n ) ≃ −5.74× 10−4. For this case

the analytical continuation to exponents s < 3 would be interesting. Further,
the formulae given here may lead to interesting functional relationships which
needs to be explored.

5 10 15 20 25 30
s

0.0001

0.01

1

100

10000

1e+06

lo
g

1
0

( 
L

s
- 

L
∞
)

SC
BCC
FCC
HCP

5 10 15 20 25 30
s

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0

L
sfc

c
- 

L
sh

cp

Figure 6.3 Lattice sums for the four lattices sc, bcc, fcc and hcp. a) log10(Ls−
L∞); b) (Lfcc

s −Lhcp
s ).
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n
L

scn
−

L
sc∞

L
bcc
n

−
L

bcc
∞

L
fcc
n

−
L

fcc
∞

L
hcp
n

−
L

hcp
∞

L
hcp
n

−
L

fcc
n

4
1.05323159597617E

+1
1.46387216437935E

+1
1.33383043051302E

+1
1.33390823380551E

+1
7.78032924974526E

-4
5

4.37752483084708E
+0

6.75850937014712E
+0

4.96751845837841E
+0

4.96843634796979E
+0

9.17889591383232E
-4

6
2.40192397482754E

+0
4.25366786729232E

+0
2.45392104374447E

+0
2.45489727784162E

+0
9.76234097145690E

-4
7

1.46705778091881E
+0

3.05424347924446E
+0

1.35938770074208E
+0

1.36034677619555E
+0

9.59075453468315E
-4

8
9.45807927226370E

-1
2.35519790840251E

+0
8.01937231378133E

-1
8.02821852809896E

-1
8.84621431763331E

-4
9

6.28859198886779E
-1

1.89458965632112E
+0

4.92546702137558E
-1

4.93321725001782E
-1

7.75022864223436E
-4

10
4.26119102533089E

-1
1.56440061535995E

+0
3.11245665477406E

-1
3.11896233818981E

-1
6.50568341575253E

-4
11

2.92294499234567E
-1

1.31326253739910E
+0

2.00920351277113E
-1

2.01447099831955E
-1

5.26748554841471E
-4

12
2.02149045047519E

-1
1.11418326807536E

+0
1.31880196544580E

-1
1.32293769098918E

-1
4.13572554337918E

-4
13

1.40599580021692E
-1

9.51807318574715E
-1

8.77263213520527E
-2

8.80425502984390E
-2

3.16228946386338E
-4

14
9.81841257121521E

-2
8.16770228485920E

-1
5.89919443508593E

-2
5.92282550682414E

-2
2.36310717382134E

-4
15

6.87642950388921E
-2

7.02984559980926E
-1

4.00240550990886E
-2

4.01971443472233E
-2

1.73089248134625E
-4

16
4.82634695858417E

-2
6.06254047544529E

-1
2.73548440185703E

-2
2.74794193038561E

-2
1.24575285285802E

-4
17

3.39293163672074E
-2

5.23531250439298E
-1

1.88094367104578E
-2

1.88977196228595E
-2

8.82829124017101E
-5

18
2.38817078667148E

-2
4.52503168608382E

-1
1.29983096659596E

-2
1.30600231774083E

-2
6.17135114487303E

-5
19

1.68254563317377E
-2

3.91350791413118E
-1

9.01960443932357E
-3

9.06222411120950E
-3

4.26196718859239E
-5

20
1.18628308899457E

-2
3.38604005679563E

-1
6.28004132634266E

-3
6.30915811465870E

-3
2.91167883160407E

-5
21

8.36875754668317E
-3

2.93050370415294E
-1

4.38480936230330E
-3

4.40451008477321E
-3

1.97007224699113E
-5

22
5.90652613429112E

-3
2.53675218084780E

-1
3.06856932292989E

-3
3.08178423329668E

-3
1.32149103667949E

-5
23

4.17024007074802E
-3

2.19620534883649E
-1

2.15149097471211E
-3

2.16028673932262E
-3

8.79576461050519E
-6

24
2.94520818412950E

-3
1.90155475483163E

-1
1.51082493970707E

-3
1.51663857704596E

-3
5.81363733888953E

-6
25

2.08052037491334E
-3

1.64654351927331E
-1

1.06227870924614E
-3

1.06609714202720E
-3

3.81843278106124E
-6

26
1.46997249608606E

-3
1.42579615920799E

-1
7.47674897726916E

-4
7.50168624485191E

-4
2.49372675827520E

-6
27

1.03875223830484E
-3

1.23468315872789E
-1

5.26690212160028E
-4

5.28310428505144E
-4

1.62021634511562E
-6

28
7.34121070789493E

-4
1.06921071038717E

-1
3.71277553079702E

-4
3.72325322411022E

-4
1.04776933131979E

-6
29

5.18879212211412E
-4

9.25929383761218E
-2

2.61871447419640E
-4

2.62546150133902E
-4

6.74702714262418E
-7

30
3.66774897184039E

-4
8.01857499061731E

-2
1.84790059821197E

-4
1.85222851788274E

-4
4.32791967077113E

-7

Table
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6.10 Conclusions

For the four lattices sc, bcc, fcc and hcp we developed fast converging expan-
sions to evaluate the corresponding lattice sums to computer precision. Espe-
cially the Terras and the Van der Hoff–Benson expansions are ideal methods
for small exponents, while for larger exponents one can use direct summation
techniques including symmetry, or the corresponding Dirichlet series. The
methods outlined here can be used for lattices in higher dimensions which we
currently explore. Analytical extensions are also possible through these expan-
sions, which we did not touch in this paper. These lattice sums can be used to
calculate solid-state structural properties like the cohesive energy, pressure and
bulk modulus analytically if the ELJ form is taken for the 2-body interaction
potential, which is the subject of a subsequent paper.

6.11 Appendix

A The Mellin transformation and theta function method in
the evaluation of lattice sums

Here we introduce some of the methodology used in the next section for the
evaluation of double sums like the ones which appear in (6.4.26). The Mellin
transformation M is defined as,[61, 146]

[M f ] (s) = φ(s) =
∫

∞

0
ts−1 f (t) dt , (6.A.1)

and is particularly useful for treating lattice sums.[26, 61] In order to see this
we choose the function f (t) = e−pt and get

[M f ] (s) =
∫

∞

0
ts−1e−pt dt = p−s

Γ(s) . (6.A.2)

For p = 1 we get the integral representation of the gamma function. As an
example, we apply this to the more general lattice sum as given in (6.7.1),

∑
i∈Z

[
(i+a)2 + x2]−s

with a ∈ [0,1) , (6.A.3)

(we attend the case a → 0 further below) and get

∑
i∈Z

[
(i+a)2 + x2]−s

= Γ(s)−1
∑
i∈Z

∫
∞

0
ts−1e−[(i+a)2+x2]t dt . (6.A.4)
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We now use the Poisson summation formula applied to Gaussian
functions,[111, 147]

∑
i∈Z

e−(i+a)2t =

√
π

t ∑
k∈Z

e−k2π2t−1
cos(2πka) , (6.A.5)

and the expansion in terms of Bessel functions (Hobson’s integral),[148]∫
∞

0
ts−1e−x2t−k2π2t−1

dt = 2
(
|k|π
|x|

)s

Ks (2|kx|π) . (6.A.6)

For treating the sum (6.A.5) and the Bessel function (6.A.6) we need to sepa-
rate out the special case where k = 0,

∑
i∈Z

[
(i+a)2 + x2]−s

= 2π
1
2 Γ(s)−1

∑
k∈N

∫
∞

0
ts−3

2 e−x2t−k2π2t−1
cos(2πka) dt

+π
1
2 Γ(s)−1

∫
∞

0
ts−3

2 e−x2t dt .

(6.A.7)
We use the Bessel expansion (6.A.6) for the first integral while the second
integral has a well-known expression,

∑
i∈Z

[
(i+a)2 + x2]−s

= 4π
s
Γ(s)−1

∑
k∈N

(
k
|x|

)s−1
2

cos(2πka) K
s−1

2
(2πk|x|)

+π
1
2

Γ
(
s− 1

2

)
Γ(s)

|x|1−2s .

(6.A.8)
For the special cases of a = 0 and a = 1

2 we get (6.7.2) and (6.7.6) respectively.
This is all we need to treat inverse powers of quadratic forms of the more
general form

∑
i1,i2,...∈Z

[
(i1 +a1)

2 +(i2 +a2)
2 + ...

]−s
, (6.A.9)

as the parameter x can be defined in terms of the other summation parameters
in the lattice sums. This method is particularly useful, easy to use and can be
applied to higher dimensions as well. Zucker and co-workers used the Mellin
transformation intensively together with Jacobi’s theta functions and relations
between them to evaluate lattice sums.[26] We use this technique here to eval-
uate several double sums in Appendix 6.B.

Let us now consider the double sum

S(s) = ∑
m,n∈Z

′ (
am2 +bn2)−s

, (6.A.10)

where the sum is over all integer values of m and n with the term (m,n) = (0,0)
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omitted. Using (6.A.2) we get

S(s) = ∑
m,n∈Z

′ 1
Γ(s)

∫
∞

0
us−1e−(am2+bn2)u du =

1
Γ(s)

∫
∞

0
us−1

∑
m,n∈Z

′
e−(am2+bn2)u du .

(6.A.11)
Consider the sum in (6.A.11), and set q = e−u. For many values of a and b the
theta series can be written in the form

∑
m,n∈Z

′
qam2+bn2

= ∑
k,n∈N

f1(k) f2(n)qkn (6.A.12)

for some functions f1(k) and f2(n). Using (6.A.12) in (6.A.11) we deduce

S(s) =
1

Γ(s)

∫
∞

0
us−1

∑
k,n∈N

f1(k) f2(n)e−knu du

= ∑
m,n∈N

′ f1(k) f2(n)
(kn)s =

(
∞

∑
k=1

f1(k)
ks

)(
∞

∑
n=1

f2(n)
ns

)
. (6.A.13)

For example when a = b = 1 for (6.A.12) we have by Jacobi’s sum of two
squares theorem [Ref.[132], p.177]

∑
m,n∈Z

′
qm2+n2

= 4 ∑
k,n∈N

sin
πn
2

qkn , (6.A.14)

and so f1(k) = 1 and f2(n) = 4sin πn
2 . It follows that

∑
m,n∈Z

′ (
m2 +n2)−s

= 4

(
∑
k∈N

1
ks

)(
∑
n∈N

sin πn
2

ns

)
= 4ζ (s)β (s) . (6.A.15)

For other values of a and b, formulas of the type (C.4) can be found in the
literature.[107] To evaluate the double sums S2(s, 2

9),S2(s, 8
9) and S2(s, 8

3) in
(6.4.26) we use the results of Chan and Toh[109] to express the resulting se-
ries as linear combinations of Hurwitz zeta functions shown in the following
section.

B Double sum relations

Here we present solutions for several double sums required in our lattice sum
treatment. The first double sum shown in (6.4.21) is related to Zucker’s Z1-
function defined in (6.4.5), and has already been decomposed in terms of
Dirichlet L-series.[105] The relation between the two sums can be easily ob-
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tained,

∑
i, j∈Z

′
(−1) j (2i2 + j2)−s

= ∑
i, j∈Z
j even

′ (
2i2 + j2)−s − ∑

i, j∈Z
j odd

(
2i2 + j2)−s

= 2 ∑
i, j∈Z
j even

′ (
2i2 + j2)−s − ∑

i, j∈Z

′ (
2i2 + j2)−s

= 2 ∑
i, j∈Z

′ (
2i2 +(2 j)2)−s −Z1(s)

=
(
21−s −1

)
Z1(s) .

(6.B.16)
The second double sum appearing in the bcc case, (6.4.12), can be decomposed
in a similar way,

∑
i, j∈Z

i odd, j odd

(
2i2 + j2)−s

= ∑
i, j∈Z

′ (
2i2 + j2)−s − ∑

i, j∈Z
i even, j odd

(
2i2 + j2)−s

− ∑
i, j∈Z

i odd, j even

(
2i2 + j2)−s − ∑

i, j∈Z
i, j even

′ (
2i2 + j2)−s

.
(6.B.17)

The last sum which is easily derived is

∑
i, j∈Z

i, j even

′ (
2i2 + j2)−s

= ∑
i, j∈Z

′ (
2(2i)2 +(2 j)2)−s

= 2−2s
∑

i, j∈Z

′ (
2i2 + j2)−s

= 2−2sZ1(s) .

(6.B.18)

The second sum in (6.B.17) becomes

∑
i, j∈Z

i even, j odd

(
2i2 + j2)−s

= ∑
i, j∈Z
i even

′ (
2i2 + j2)−s− ∑

i, j∈Z
i, j even

′ (
2i2 + j2)−s

= ∑
i, j∈Z

′ (
8i2 + j2)−s −2−2sZ1(s) .

(6.B.19)

Now, the unknown sum in (6.B.19) has been evaluated by Zucker and is related
to the Z1-function (6.4.5) and (6.4.15),[105]

Z3(s) = ∑
i, j∈Z

′ (
8i2 + j2)−s

= 2−3s [(1−2−s +21−2s)
ζ (s)ζ

(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
+β (s)ζ

(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)
,

where we are using the compact notation for sums of Hurwitz zeta functions
given by (6.4.8).
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The last sum to treat is

∑
i, j∈Z

i odd, j even

(
2i2 + j2)−s

= ∑
i, j∈Z
j even

′ (
2i2 + j2)−s − ∑

i, j∈Z
i even, j even

′ (
2i2 + j2)−s

= 2−sZ1(s)−2−2sZ1(s) .
(6.B.20)

We now take all terms together and get

∑
i, j∈Z

i odd, j odd

(
2i2 + j2)−s

=
(
1−2−s +2−2s)Z1(s)−Z3(s)

= 1
2

(
1−2−s)Z1(s)−2−3s

β (s)ζ
(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)
.

(6.B.21)

The three double sums S2(s, 8
3), S2(s, 2

9) and S2(s, 8
9) in (6.4.26) can be decom-

posed using the results of Chan and Toh[109] and the method outlined in the
previous section. For S2(s, 8

3) we obtain the following[109], where
(a

n

)
denotes

the Kronecker symbol listed in Appendix 6.C,

∑
m,n∈Z

′(
8m2 +3n2)−s

=
1
2 ∑

n∈N

(
4
n

)
n−s

∑
n∈N

(
−24

n

)
n−s +

ζ (s)
4s ∑

n∈N

(
−24

n

)
n−s

− 1
2 ∑

n∈N

(
−12

n

)
n−s

∑
n∈N

(
8
n

)
n−s − 1

4s ∑
n∈N

(
−3
n

)
n−s

∑
n∈N

(
8
n

)
n−s

− 1
2 ∑

n∈N

(
−4
n

)
n−s

∑
n∈N

(
24
n

)
n−s +

1
2 ∑

n∈N

(
12
n

)
n−s

∑
n∈N

(
−8
n

)
n−s .

(6.B.22)

Where possible terms in (6.B.22) can be decomposed into combinations of
Hurwitz zeta functions by the notation outlined in (6.4.8),
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∑
m,n∈Z

′(
8m2 +3n2)−s

=
1
2
(
1−2−s)

ζ (s)24−s
ζ
(
s; 1

24 ,
5
24 ,

7
24 ,

11
24 ; 13

24 ,
17
24 ,

19
24 ,

23
24

)
+96−s

ζ (s)ζ
(
s; 1

24 ,
5
24 ,

7
24 ,

11
24 ; 13

24 ,
17
24 ,

19
24 ,

23
24

)
− 1

2
48−s

ζ
(
s; 1

6 ; 5
6

)
ζ
(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)
−96−s

ζ
(
s; 1

3 ; 2
3

)
ζ
(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)
− 1

2
96−s

ζ
(
s; 1

4 ; 3
4

)
ζ
(
s; 1

24 ,
5

24 ,
19
24 ,

23
24 ; 7

24 ,
11
24 ,

13
24 ,

17
24

)
+

1
2

96−s
ζ
(
s; 1

12 ,
11
12 ; 5

12 ,
7
12)ζ (s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
.

(6.B.23)

For the sum S2(s, 2
9) we obtain[109],

∑
m,n∈Z

′(
2m2 +9n2)−s

= ∑
n∈N

(
9
n

)
n−s

∑
n∈N

(
−72

n

)
n−s +

2ζ (s)
9s ∑

n∈N

(
−8
n

)
n−s

− ∑
n∈N

(
−3
n

)
n−s

∑
n∈N

(
24
n

)
n−s

(6.B.24)
and

∑
m,n∈Z

′(
2m2 +9n2)−s

= ζ (s)21−3s3−2s
ζ
(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
−72s

ζ
(
s; 1

3 ; 2
3

)
ζ
(
s; 1

24 ,
5

24 ,
19
24 ,

23
24 ; 7

24 ,
11
24 ,

13
24 ,

17
24

)
+72−s

ζ (s; 1
3 ,

2
3 ;)ζ

(
s; 1

24 ,
11
24 ,

17
24 ,

19
24 ; 5

24 ,
7

24 ,
13
24 ,

23
24

)
.

(6.B.25)

For the sum S2(s, 8
9) we obtain [109],
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∑
m,n∈Z

′(
8m2 +9n2)−s

=
1
2 ∑

n∈N

(
−72

n

)
n−s

∑
n∈N

(
36
n

)
n−s +

1
9s ∑

n∈N

(
−8
n

)
n−s

∑
n∈N

(
4
n

)
n−s

+
1
4s ∑

n∈N

(
−72

n

)
n−s

∑
n∈N

(
9
n

)
n−s +

2ζ (s)
36s ∑

n∈N

(
−8
n

)
n−s

− 1
2 ∑

n∈N

(
24
n

)
n−s

∑
n∈N

(
−12

n

)
n−s − 1

4s ∑
n∈N

(
24
n

)
n−s

∑
n∈N

(
−3
n

)
n−s

+
1
2 ∑

n∈N

(
72
n

)
n−s

∑
n∈N

(
−36

n

)
n−s +

1
9s ∑

n∈N

(
8
n

)
n−s

∑
n∈N

(
−4
n

)
n−s

− 1
2 ∑

n∈N

(
−24

n

)
n−s

∑
n∈N

(
12
n

)
n−s

(6.B.26)

and

∑
m,n∈Z

′(
8m2 +9n2)−s

= 2−4s−13−2s
ζ
(
s; 1

24 ,
11
24 ,

17
24 ,

19
24 ; 5

24 ,
7

24 ,
13
24 ,

23
24

)
ζ
(
s; 1

6 ,
5
6

)
+72−s(1−2−s)

ζ (s)ζ
(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
+3−2s2−5s

ζ
(
s; 1

24 ,
11
24 ,

17
24 ,

19
24 ; 5

24 ,
7

24 ,
13
24 ,

23
24

)
ζ
(
s; 1

3 ,
2
3

)
+21−5s3−2s

ζ (s)ζ
(
s; 1

8 ,
3
8 ; 5

8 ,
7
8

)
−2−4s−13−2s

ζ
(
s; 1

24 ,
5

24 ,
19
24 ,

23
24 ; 7

24 ,
11
24 ,

13
24 ,

17
24

)
ζ
(
s; 1

6 ; 5
6

)
−2−5s3−2s

ζ
(
s; 1

24 ,
5

24 ,
19
24 ,

23
24 ; 7

24 ,
11
24 ,

13
24 ,

17
24

)
ζ
(
s; 1

3 ; 2
3

)
+2−5s−13−2s

ζ
(
s; 1

24 ,
7

24 ,
17
24 ,

23
24 ; 5

24 ,
11
24 ,

13
24 ,

19
24

)
ζ
(
s; 1

12 ,
5
12 ; 7

12 ,
11
12

)
+3−2s2−5s

ζ
(
s; 1

8 ,
7
8 ; 3

8 ,
5
8

)
ζ
(
s; 1

4 ; 3
4

)
−2−5s−13−2s

ζ
(
s; 1

24 ,
5

24 ,
7

24 ,
11
24 ; 13

24 ,
17
24 ,

19
24 ,

23
24

)
ζ
(
s; 1

12 ,
11
12 ; 5

12 ,
7

12

)
.

(6.B.27)

C Kronecker symbols

The definitions for Kronecker symbols used in (6.B.22, 6.B.24, 6.B.26) are
shown in Table 6.3, where we omit the case

(a
n

)
= 0 if n ≡ 0(mod a). We
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provide the following full example for a =−3 below.

(
−3
n

)
=


1 if n ≡ 1(mod 3)
−1 if n ≡ 2(mod 3)
0 if n ≡ 0(mod 3)

(6.C.28)

The data in the first row of Table A.3 corresponds to 6.C.29. The results in

Appendix 6.B involve series of the form
∞

∑
n=1

(a
n

)
n−s for various values of

a. These series can be expressed in terms of Hurwitz zeta functions (12.3.5),
(6.4.8). For example,

∞

∑
n=1

(
−12

n

)
n−s =

1
6s

[
ζ (s, 1

6)−ζ (s, 5
6)
]
= 6−s

ζ (s; 1
6 ; 5

6) . (6.C.29)

a ( a
n )

-3
1 if n ≡ 1(mod 3)
-1 if n ≡ 2(mod 3)

4 1 if n is odd

-4
1 if n ≡ 1(mod 4)
-1 if n ≡ 3(mod 4)

8
1 if n ≡ 1,7(mod 8)
-1 if n ≡ 3,5(mod 8)

-8
1 if n ≡ 1,3(mod 8)
-1 if n ≡ 5,7(mod 8)

9 1 if n ≡ 1,2(mod 3)

12
1 if n ≡ 1,11(mod 12)
-1 if n ≡ 5,7(mod 12)

-12
1 if n ≡ 1(mod 6)
-1 if n ≡ 5(mod 6)

24
1 if n ≡ 1,5,19,23(mod 24)

-1 if n ≡ 7,11,13,17(mod 24)

-24
1 if n ≡ 1,5,7,11(mod 24)

-1 if n ≡ 13,17,19,23(mod 24)
36 1 if n ≡ 1,5(mod 6)

-36
1 if n ≡ 1,5(mod 12)

-1 if n ≡ 7,11(mod 12)

72
1 if n ≡ 1,7,17,23(mod 24)

-1 if n ≡ 5,11,13,19(mod 24)

-72
1 if n ≡ 1,11,17,19(mod 24)
-1 if n ≡ 5,7,13,23(mod 24)

Table 6.3 Values of n for Kronecker symbols
(a

n

)
. The value of

(a
n

)
is defined

to be 0 for positive values of n not covered in this table.

D Expansion for half-integer Bessel functions

For even exponents in s = 2n,n ∈ N one can obtain simplified expressions
for Ls terms of hyperbolic functions, which we outline here. For half-integer
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a b x
-3 3 1

3 ; 2
3

4 2 1
2

-4 4 1
4 ; 3

4
8 8 1

8 ,
7
8 ; 3

8 ,
5
8

-8 8 1
8 ,

3
8 ; 5

8 ,
7
8

9 3 1
3 ,

2
3

12 12 1
12 ,

11
12 ; 5

12 ,
7
12

-12 6 1
6 ; 5

6
24 24 1

24 ,
5
24 ,

19
24 ,

23
24 ; 7

24 ,
11
24 ,

13
24 ,

17
24

-24 24 1
24 ,

5
24 ,

7
24 ,

11
24 ; 13

24 ,
17
24 ,

19
24 ,

23
24

36 6 1
6 ,

5
6

-36 12 1
12 ,

5
12 ; 7

12 ,
11
12

72 24 1
24 ,

7
24 ,

17
24 ,

23
24 ; 5

24 ,
11
24 ,

13
24 ,

19
24

-72 24 1
24 ,

11
24 ,

17
24 ,

19
24 ; 5

24 ,
7

24 ,
13
24 ,

23
24

Table 6.4 Values of a,b and x for
∞

∑
n=1

(a
n

)
n−s = b−s

ζ (s;x), see (6.4.8) .

Bessel functions we can use the well-known expression (n ∈ N),

Kn− 1
2
(x) =

√
π

2x
e−x

n−1

∑
k=0

(n−1+ k)!
k!(n−1− k)!(2x)k . (6.D.30)

We note that integer Bessel functions Kn(x) reduce to K0(x) and K1(x), that is
we only have integral representations for the Bessel functions and the proce-
dure which follows cannot be applied. Substituting this equation for the Bessel
function in (6.7.1) gives

sn(a) = ∑
i∈Z

[
(i+a)2 + x2]−n

= π
1
2

Γ
(
n− 1

2

)
Γ(n)

x1−2n

+
2πn

xnΓ(n)

n−1

∑
k=0

(n−1+ k)!

(4π)k k!(n−1− k)!
x−k

∑
m∈N

cos(2πma) mn−k−1 e−2πmx ,

(6.D.31)
with a ∈ [0,1) and we only consider the case x > 0. We now turn our atten-
tion to the last sum, consider only the cases where a = a1 = 0 or a = a2 =

1
2

(although if a is a rational number we can split the sum in terms containing
prefactors from the cosine term, e.g., we could treat the case a = 1

3 as well and
rewrite the second sum as a derivative,

sn(a) =
π

1
2 Γ
(
n− 1

2

)
Γ(n)

x1−2n

+
2πn

xnΓ(n)

n−1

∑
k=0

(−2π)1+k−n(n−1+ k)!

(4π)k k!(n−1− k)!
x−k dn−k−1

dxn−k−1 ∑
m∈N

bm
p e−2πmx ,

(6.D.32)
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with b1 = 1 for a1 = 0 and b2 = −1 for a2 = 1
2 . Now the last sum can be

evaluated by using,[149]

∑
k∈N

e−kx =
1

ex −1
and ∑

k∈N
(−1)k−1e−kx =

1
ex +1

, x > 0 , (6.D.33)

which follows by geometric series. We finally get

sp,n = ∑
i∈Z

[
(i+ap)

2 + x2]−n
= π

1
2

Γ
(
n− 1

2

)
Γ(n)

x1−2n

+
22−nπbp

xnΓ(n)

n−1

∑
k=0

(−1)n+k−1(n+ k−1)!
2kk!(n− k−1)!

x−k dn−k−1

dxn−k−1

(
e2πx −bp

)−1
.

(6.D.34)

We invert the summation and use the known expressions for the gamma func-
tions to get

sp,n = ∑
i∈Z

[
(i+ap)

2 + x2]−n
=

π(2n−3)!!
2n−1(n−1)!x2n−1

+
23−2nπbp

x2n−1(n−1)!

n−1

∑
k=0

(−1)k2k(2n− k−2)!
k!(n− k−1)!

xk dk

dxk

(
e2πx −bp

)−1
.

(6.D.35)

We finally have to address differentiating the last term in the equation above.
Differentiating an inverse function n-times leads to rather complicated expres-
sions (Faà di Bruno’s equation). A far easier approach to this derivative is to
re-express the exponential in terms of a hyperbolic function,(

e2πx −bp
)−1

=
1
2

e−πxhp(πx) with h1(x) = csch(x)

and h2(x) = sech(x) ,
(6.D.36)

and to use the Leibniz’ product rule,

dk

dxk

(
1
2

e−πxhp(πx)
)
=

1
2

e−πx
k

∑
m=0

(−1)k−m
π

k−m
(

k
m

)
h(m)

p (πx) . (6.D.37)

We now combine (6.D.38) and (6.D.37) and finally get,

sp,n =
π(2n−3)!!

2n−1(n−1)!x2n−1

+
22(1−n)πbpe−πx

x2n−1(n−1)!

n−1

∑
k=0

(2π)k(2n− k−2)!
(n− k−1)!

xk
k

∑
m=0

(−1)mπ−m

m!(k−m)!
h(m)

p (πx) .

(6.D.38)
In fact we can rewrite this expression by introducing the Bessel numbers of the
first kind[150] Bnk = (−1)n−k ank (0 ≤ k ≤ n) with a00 = 1, an0 = 0 ∀n ∈ N
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and

ank =
(2n− k−1)!

2n−k(k−1)!(n− k)!
for 1 ≤ k ≤ n , (6.D.39)

which gives

sp,n =
π(2n−3)!!

2n−1(n−1)!x2n−1

+
21−nπbpe−πx

x2n−1(n−1)!

n

∑
k=1

(−1)n−k(πx)k−1Bn,k

k−1

∑
m=0

(
k−1

m

)
(−1)m

πm h(m)
p (πx) .

(6.D.40)
We may also consider the alternating series to equation (6.D.31),

salt
n (a) = ∑

i∈Z
(−1)i [(i+a)2 + x2]−n

= ∑
i∈Z

[
(2i+a)2 + x2]−n −∑

i∈Z

[
(2i+1+a)2 + x2]−n

= 2−2n
∑
i∈Z

[(
i+

a
2

)2
+
( x

2

)2
]−n

−2−2n
∑
i∈Z

[(
i+

a+1
2

)2

+
( x

2

)2
]−n

=
2−n+1πn

xnΓ(n)

n−1

∑
k=0

(n−1+ k)!

(4π)k k!(n−1− k)!

( x
2

)−k
∑

m∈N
cos(πma) mn−k−1 e−πmx

− 2−n+1πn

xnΓ(n)

n−1

∑
k=0

(n−1+ k)!

(4π)k k!(n−1− k)!

( x
2

)−k

∑
m∈N

cos(πm(a+1)) mn−k−1 e−πmx

=
2−n+1πn

xnΓ(n)

n−1

∑
k=0

(n−1+ k)!

(2π)k k!(n−1− k)!
x−k

∑
m∈N

{1− (−1)m}cos(πma) mn−k−1 e−πmx

=
2−n+2πn

xnΓ(n)

n−1

∑
k=0

(n−1+ k)!

(2π)k k!(n−1− k)!
x−k

∑
m∈N

cos((2m−1)πa) (2m−1)n−k−1 e−π(2m−1)x ,

(6.D.41)
with a ∈ [0,1) and x > 0. For the special case a = 0 we have the identity,

salt
1 (0) = ∑

i∈Z
(−1)i [i2 + x2]−1

=
π

x
csch(πx) , (6.D.42)

with x > 0. From this one can derive a more general formula for exponents
n > 0 which we do not detail here.

What is left are the derivatives of the two hyperbolic functions
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h( j)
p (x) =

d j

dx j hp(x). Here we adopt the approach by Wintucky and distinguish
between even and odd orders in our derivative,[151]

d2m+q

dx2m+q csch(x)= (−1)qcothq(x)
m

∑
k=0

[2(m− k)+q]! W2(m−k)+1,k [csch(x)]2(m−k)+1

(6.D.43)
and

d2m+q

dx2m+q sech(x)= (−1)qtanhq(x)
m

∑
k=0

[2(m− k)+q]! W2(m−k)+1,k [sech(x)]2(m−k)+1 ,

(6.D.44)
with m ∈ N and q ∈ {0,1}.c The secant coefficients Wn,k can be calculated ac-
cording to the following formulae and recursive relations (only the odd integer
ones are required here),

W2n+1,0 = 1 ,

W2n+1,1 =
n

∑
k=0

(2k+1)2 =
4
3

n3 +4n2 +
11
3

n+1 ,

W2n+1,k = (2n+1)2W2n+1,k−1 +W2n−1,k .

(6.D.45)

We now consider the special cases n = 2,3 and 4 for the non-alternating series
and sort with respect to powers of x,

sp,2(x) =
π

2x3 +
πbpe−πx

2x3 hp(πx)+
πbpe−πx

2x2

{
πhp(πx)−h(1)p (πx)

}
,

(6.D.46)

sp,3(x) =
3π

8x5 +
3πbpe−πx

8x5 hp(πx)+
3πbpe−πx

8x4

{
πhp(πx)−h(1)p (πx)

}
+

πbpe−πx

8x3

{
π

2hp(πx)−2πh(1)p (πx)+h(2)p (πx)
}
,

(6.D.47)

sp,4(x) = B1
5π

16x7 +
5πbpe−πx

16x7 hp(πx)+
5πbpe−πx

16x6

{
πhp(πx)−h(1)p (πx)

}
+

πbpe−πx

8x5

{
π

2hp(πx)−2πh(1)p (πx)+h(2)p (πx)
}

+
πbpe−πx

48x4

{
π

3hp(πx)−3π
2h(1)p (πx)+3πh(2)p (πx)−h(3)p (πx)

}
,

(6.D.48)
with the derivatives h(n)p as defined in (6.D.43) and (6.D.44). The first few

cThere is a typographical error in Wintucky’s equation (6.D.44), a tan function is printed
instead of a tanh function.
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h(n)1 (πx) and h(n)2 (πx) functions are defined as follows,

h(0)1 (πx) = csch(πx),h(1)1 (πx) =−πcoth(πx)csch(πx) =−πcosh(πx)csch2(πx) ,

h(2)1 (πx) = π
2csch3(πx)+π

2coth2(πx)csch(πx) = 2π
2csch3(πx)+π

2csch(πx) ,

h(3)1 (πx) =−π
3coth(πx)csch(πx)

(
6csch2(πx)+1

)
,

h(0)2 (πx) = sech(πx),h(1)2 (πx) =−πtanh(πx)sech(πx) ,

h(2)2 (πx) = 2π
2sech3(πx)+π

2sech(πx) ,

h(3)2 (πx) =−π
3tanh(πx)sech(πx)

(
6sech2(πx)+1

)
.

(6.D.49)
Higher derivatives can easily be derived.
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7 Project 2 - Analytical Expressions
for Vibrational Effects in Cubic
and HCP Latticesa

7.1 Introduction

The (n,m) Lennard-Jones (LJ) potential[18, 81–84] is, beside the Morse po-
tential [85], the most widely used interaction potential in the physical and bio-
logical sciences,[86–90]

VLJ(r) =
nm

n−m
ε

[
1
n

(re

r

)n
− 1

m

(re

r

)m
]

(7.1.1)

with an equilibrium distance re and binding energy ε (taken as a positive value)
between two interacting systems.
The story of how this interaction potential came to be commonly known today
as the LJ potential started with Mie’s 1903 discussion suggesting an equation
of state containing a volume dependent term of the form (AV−1 − BV−ν/3)
with ν > 3.[15] Following this, in 1912 Grüneisen[3] published the exact for-
mula for what became the well known (n,m) LJ potential, and in 1920 Krater
also introduced a less general (2,1) potential which went unnoticed.[16] The
Grüneisen (n,m) potential was modified by Born and Landé[17] in 1918 for
ionic crystal and the same year Madelung introduced the lattice sum for ionic
crystals today known as the Madelung constant.[7] It wasn’t until 1924 after
Lennard-Jones solved the equation of state analytically to derive the param-
eters based on experimental results, that the LJ (n,m) potential gained no-
toriety.[18] However the physical relevance of the long-rang dispersive term
came much later in 1930 by London.[19] What is curious about the chronol-
ogy is that Simon and Simpson used the Grüneisen potential in 1924 giving it
a proper citation, and Lennard-Jones in his second paper also cited Simon and
Simpsons paper in 1924 within a series of papers, but Grüneisen’s paper was
ignored.

aThis chapter is composed of sections previously published in the article “The Lennard-Jones
Potential Revisited: Analytical Expressions for Vibrational Effects in Cubic and Hexago-
nal Close-Packed Lattices”[152] and is reprinted by permission from the publisher ©2022
American Chemical Society. Some sections may have been modified to fit the style of this
thesis.
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To allow for a more accurate description of the interacting potential, the LJ
potential has been generalized into an inverse power series of the form[48, 94]

VELJ(r) =
nmax

∑
n=1

cnr−sn , (7.1.2)

with cn ∈ R and sn ∈ R+ (s1=6 and s2=12 for the (12,6) LJ potential). A
boundary condition such that the minimum is positioned at a distance re with
a potential depth ε ∑

nmax
n=1 cnr−sn

e = −ε with ε > 0. The coefficients cn can be
obtained from either experimental data or accurate quantum-theoretical cal-
culations.[48, 153]. The advantage of the inverse power series compared to
more complicated expressions like the Morse potential,[85] or accurate poten-
tial forms separating the long-range from the short-range region,[95–97] is that
one can express analytically the volume dependent two-body (static) cohesive
energy of certain lattices in terms of infinite lattice sums,

EELJ(V ) = lim
N→∞

1
N

N

∑
i< j

VELJ(ri j) =
1
2

∞

∑
i=1

VELJ(r0i)

=
1
2

nmax

∑
n=1

cnLsnr−sn
0 =

1
2

nmax

∑
n=1

f sn/3
L cnLsnV

−sn/3.

(7.1.3)

Here, n > m guarantees the existence of a minimum and sn > 3 to guarantee
convergence for the 3D bulk system.[48] In Eq.(7.1.3) r0 is the nearest neigh-
bor distance of the lattice r0 = min{r0i}, with r0i being the distance from one
selected atom in the lattice to all other atoms i), and fL is a lattice-specific pa-
rameter converting r0 into the volume V = fLr3

0, i.e. fsc = 1, fbcc = 4/(3
√

3),
ffcc = fhcp = 1/

√
2. We use the fact that for a cubic lattice the summation over

all atoms i and j with distance ri j simplifies to summing over all interactions
from one selected atom placed at the origin to all other atoms i in the solid
because of translational symmetry. Once basic lattice vectors are introduced
to express the distances r0i from the chosen atom to all other atoms in the lat-
tice, the cohesive energy can be expressed in terms of three-dimensional lattice
sums Ls ∈R+ multiplied by inverse powers of the nearest neighbor distance r0
as originally described by Lennard-Jones in 1924[6, 22] and analyzed in detail
by Borwein et al.[26]

For example, the (n,m) LJ potential, and more specifically, the (12,6) LJ po-
tential with coefficients c1 = εr12

e (s1 = 12) and c2 =−2εr6
e (s2 = 6), becomes

(in atomic units),

ELJ(r0) =
nmε

2(n−m)

[
1
n

Ln

(
re

r0

)n

− 1
m

Lm

(
re

r0

)m]
n=12
=

m=6
ε

(
re

r0

)6
[

L12

2

(
re

r0

)6

−L6

]
.

(7.1.4)
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From Eq.(7.1.3) one easily obtains the corresponding analytical expressions
for the volume dependent pressure P and the bulk modulus B of a lattice ex-
pressed in terms of lattice sums as,[48]

PELJ(V ) =−∂EELJ(V )

∂V
=

1
6V

nmax

∑
n=1

sncnLsnr−sn
0 =

1
6

nmax

∑
n=1

sn f sn/3
L cnLsnV

− sn
3 −1,

(7.1.5)

BELJ(V ) =V
∂ 2EELJ(V )

∂V 2 =
1

18V

nmax

∑
n=1

sn (sn +3)cnLsnr−sn
0

=
1

18

nmax

∑
n=1

sn (sn +3) f sn/3
L cnLsnV

− sn
3 −1.

(7.1.6)

These formulae clearly demonstrate the usefulness of an extended LJ potential
as important solid-state properties can be calculated analytically to computer
precision for any volume V or pressure P if the lattice sums are accurately
known.

Working on the melting of argon, Herzfeld and Goeppert-Mayer pointed out as
early as in 1934 that lattice vibrations increase the equilibrium lattice distance
and must therefore be considered.[154] Corner[155] and Wallace[98] analyzed
such lattice vibrational effects in more detail for the (n,6) LJ potential, and
through approximations derived an analytical formula for the zero-point vibra-
tional energy of the fcc lattice. Later, Nijboer and deWette analyzed lattice
vibrations in k-space for the dynamic matrix for a face-centered cubic crystal
with a varying lattice constant.[156, 157] However, the corresponding lattice
sums become rather complicated, and fast converging forms for the dynamic
matrix for phonon dispersion are not available.

In this paper we derive exact analytical expressions for the zero-point vibra-
tional energy and corresponding anharmonicity correction to the cohesive en-
ergy and the lattice (mode) Grüneisen parameter within the Einstein approxi-
mation.[158] That is, moving a single atom in the field of an ELJ potential, for
the simple cubic (sc), body-centered cubic (bcc) or face centered cubic (fcc)
lattices, including thermodynamic properties, and applying these formulae to
various model systems for the rare gases from helium to the heaviest element in
this group, oganesson. We also include in our discussion the more complicated
hexagonal close-packed structure (hcp). As specific applications we focus on
the high-pressure range of helium, and the fcc and hcp phase for argon which
are energetically very close, and discuss the limitations of the Einstein model.
For the Grüneisen parameter we investigate solid neon as an example where
anharmonicity effects are large.
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7.2 Methods

The total cohesive energy per atom, Ecoh(V ), can be divided into static Estat
coh (V )

and dynamic Edyn
coh (V ) contributions, the latter resulting from zero-point vibra-

tional motion:

Ecoh(V ) = Estat
coh (V )+Edyn

coh (V ) . (7.2.1)

The total static contribution can be approximated within the many-body ansatz
including two- and higher body contributions in the solid if the many-body
expansion is converging fast.[55] We use translational symmetry to evaluate
the most important two-body contribution through an ELJ potential, Estat

coh (V )∼=
EELJ(V ), and for the dynamic part,

Edyn
coh (V )∼= EZPV E

ELJ (V )+EAZPV E
ELJ (V ) . (7.2.2)

We apply the Einstein approximation for a vibrating atom in the interacting
ELJ field of all other atoms. Here EZPV E

ELJ (V ) is the volume dependent zero-
point vibrational energy (ZPVE) contribution within the harmonic oscillator
approximation, and EAZPV E

ELJ (V ) is the corresponding anharmonicity correc-
tion (AZPVE). Although this treatment neglects important higher-body con-
tributions and phonon dispersion, and for helium important quantum effects
originating from the nuclear motion, analytical formulae derived in terms of
Eq.(7.2.1) will provide us with some useful qualitative insight into solid-state
properties. For a more accurate treatment which goes beyond this approxima-
tion see Ref.[51] for example, where J/mol accuracy has been achieved for the
cohesive energy of solid argon.

7.3 Lattice sums

Lattice sums are of key importance in the work presented in this article, a field
pioneered early on by Lennard-Jones.[6, 22] Any expression in inverse powers
of distances for interacting atoms in a lattice can be uniquely described by
a three-dimensional lattice sum Ls (if convergent). For the case of the cubic
lattices sc, bcc and fcc we have,[26]

∞

∑
i=1

r−s
i = Lsr−s

0 , (7.3.1)

where the sum runs over all lattice points i in three dimensions located at dis-
tances ri from a selected atom is reduced to Ls multiplied by the nearest neigh-
bor distance, r0 to the power of s (s > 3 to ensure convergence of the lattice
sum, otherwise appropriate expressions for the analytical continuation of con-
ditionally convergent series have to be found as in the case for the Madelung



7.4 Lattice vibrations for the cubic lattices 145

constant[63]).
Analytical expressions for lattice sums Ls (also called Lennard-Jones-Ingham
parameters) have a long history[26, 159] and have been tabulated for a number
of lattices with integer exponents (s ∈ N) by several authors.[48, 65, 98, 99,
131, 160] Even for more complicated lattices such as hcp, expressions of the
cohesive energy in terms of lattice sums have been formulated[160] based on
the 1940 paper by Kane and Goeppert-Mayer.[24] For the lattices considered
in this work we have the following lattice sums

Lsc
s = ∑

i, j,k∈Z

′ [
i2 + j2 + k2]− s

2 , (7.3.2)

Lbcc
s = ∑

i, j,k∈Z

′ [
i2 + j2 + k2 − 2

3 (i j+ ik+ jk)
]− s

2 , (7.3.3)

Lfcc
s = ∑

i, j,k∈Z

′ [
i2 + j2 + k2 + i j+ ik+ jk

]− s
2 , (7.3.4)

Lhcp
s = ∑

i, j,k∈Z

′ [
i2 + j2 + i j+ 8

3 k2]− s
2

+ ∑
i, j,k∈Z

[(
i+ 1

3

)2
+
(

j+ 1
3

)2
+
(
i+ 1

3

)(
j+ 1

3

)
+ 8

3

(
k+ 1

2

)2
]− s

2
.

(7.3.5)

The notation ∑
′

implies that singularities in the sum at zero are avoided.
Alternative decompositions to these expressions can also be found.[160] In
fact, these lattice sums are functions of quadratic forms generated by its Gram
matrix Gi j = b⃗i

⊤
b⃗ j, where b⃗i are the generating basis vectors of the

lattice.[161] A program to calculate these usually slow convergent lattice
sums through various algorithms leading to fast converging series for real
exponents s ∈ R+,s > 3 is freely available from our website,[143] and the
lattice sums required for the formulae presented here for the LJ potential are
given in Table 7.1. Lbcc

12 = 9.11418, Lfcc
6 = 14.45392, Lfcc

12 =12.13188, and
Lhcp

6 =14.45490, Lhcp
12 =12.13229.[160]

We have for the limit lims→∞Ls = Nc, where Nc is the number of nearest neigh-
bors in the crystal (Nc=6 for sc, 8 for bcc, and 12 for fcc and hcp), also called
the kissing number. The lattice sums (minus the kissing number for better
comparison) are depicted in Figure 7.1.

7.4 Lattice vibrations for the cubic lattices

As we move an atom in the crystal field of all other atoms, we break trans-
lational symmetry. Hence we need to apply a 3D Taylor expansion first to
find appropriate formulae for the harmonic and anharmonic contributions to
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n Lsc
n −Lsc

∞ Lbcc
n −Lbcc

∞ Lfcc
n −Lfcc

∞ Lhcp
n −Lhcp

∞

6 2.40192397482754 4.25366786729232 2.45392104374447 2.45489727784162
8 0.94580792722637 2.35519790840251 0.80193723137813 0.80282185280990

10 0.42611910253309 1.56440061535995 0.31124566547741 0.31189623381898
12 0.20214904504752 1.11418326807536 0.13188019654458 0.13229376909892
14 0.09818412571215 0.81677022848592 0.05899194435086 0.05922825506824
16 0.04826346958584 0.60625404754453 0.02735484401857 0.02747941930386

Table 7.1 Lennard-Jones lattice sums Ln with respect to the infinite limit
(Lsc

∞ =6, Lbcc
∞ =8, Lfcc

∞ =12, Lhcp
∞ =12) for n ∈ N for the sc, bcc, fcc and hcp lat-

tices. For a more detailed Table see Ref.[160].
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Figure 7.1 Lattice sums, Ls, minus the kissing number, L∞ = Nc, of sc, bcc,
fcc and hcp for a range of real exponents s. For details see Ref.[160]

the total energy, and introduce the lattice sums, Eq.(7.3.1), in a subsequent
step. Within the Einstein (E) model each atom of mass M in the lattice is an
independent 3D quantum harmonic oscillator,[158] i.e. all atoms oscillate with
the same frequency ωE , whereas in the Debye model the atoms are assumed
to be oscillating with their own frequencies and modes. For the zero-point
vibrational energy contribution within the Einstein model, which neglects the
vibrational coupling with neighboring atoms, we obtain a simple analytical
formula for the three cubic lattices sc, bcc and fcc analogous to the simple
harmonic oscillator formula (atomic units are used throughout),

EZPVE
ELJ =

1
2
√

M

(
F

1
2

xx +F
1
2

yy +F
1
2

zz

)
=

1
2r0

√
3
M

[
∑
n

sn (sn −1)cnLsn+2r−sn
0

] 1
2

(7.4.1)
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where the second derivative matrix (Fxy) denotes the harmonic force field.
To obtain this expression, a selected atom is moved in an external ELJ field
created by all the other atoms. The derivatives of the total energy with re-
spect to the cartesian coordinates of a moving atom in a crystal lattice up to
fourth order, e.g. Fxyz... = ∂ nE/∂x∂y∂ z..., are detailed in the appendix. For
the cubic lattices the Euclidean coordinate system (x,y,z) is chosen parallel
to the crystal axes such that (Fxy) is diagonal, and symmetry demands that
Fxx = Fyy = Fzz = tr(F)/3. We mention that Corner also used a Taylor ex-
pression, but in his classical treatment for the vibrational movement, had to
average over the angular part.[155]

The ZPVE for the (n,m) LJ potential, and more specifically, for the (12,6)
LJ potential with coefficients c1 = εr12

e (s1 = 12) and c2 = −2εr6
e (s2 = 6)

becomes (in atomic units),

EZPVE
LJ (r0) =

1
2re

√
3ε

M

√
nm

n−m

(
re

r0

)n+1

×

[
(n−1)Ln+2 − (m−1)Lm+2

(
r0

re

)n−m
] 1

2

n=12
=

m=6

3
re

√
ε

M

(
re

r0

)7
[

11L14 −5L8

(
r0

re

)6
] 1

2

,

(7.4.2)

This expression is identical to that of Corner for a (n,6)-LJ potential.[155] The
(harmonic) Einstein frequency, ωE = 2EZPVE

ELJ /3, therefore becomes

ωE =
1

3
√

M
[3Tr(F)]

1
2 =

1
r0
√

3M

[
∑
n

sn (sn −1)cnLsn+2r−sn
0

] 1
2

. (7.4.3)

The anharmonicity correction is usually small and can be obtained from first-
order perturbation theory. Since the 3rd order term in the Taylor expansion
around the origin is parity odd and the corresponding matrix elements thus
equals zero, the anharmonicity correction is given by the corresponding ex-
pectation value (in Dirac notation) of the 4th order term (see eq.(7.A.2) in the
Appendix)

EAZPVE =
1
24

∞

∑
i=1

∑
n>3

cn
〈
φ

E
0 (⃗r)

∣∣ (⃗r · ∇⃗
)4

|⃗r− r⃗i|−n |⃗0
∣∣φ E

0 (⃗r)
〉
, (7.4.4)

where the corresponding ground state harmonic oscillator (HO) solutions for a
vibrating atom in 3D space is given by the Hartree product

φ
E
0 (⃗r) = φ

HO
0 (x,ωE)φ

HO
0 (y,ωE)φ

HO
0 (z,ωE) . (7.4.5)
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This is very much in the spirit of the perturbative treatment for anharmonicity
effects of a vibrating diatomic molecule. In first-order perturbation theory we
only have to consider two matrix elements in the Taylor expansion for the
ground vibrational state (apart from permutations in x, y and z),〈
φ HO

0 (x,ωE) |x2|φ HO
0 (x,ωE)

〉
and

〈
φ HO

0 (x,ωE) |x4|φ HO
0 (x,ωE)

〉
, as all other

quartic force constants with an odd number in one of the cartesian coordinates
of the moving atom are zero due to crystal symmetry (and conveniently the
cubic force field as well). The resulting anharmonic correction therefore
becomes,

EAZPVE =
3

32M2ω2
E
(Fxxxx +2Fxxyy) . (7.4.6)

By using the results from the appendix we obtain for an ELJ potential,

EAZPVE
ELJ (r0) =

1
32M2ω2

E
∑
n
(sn +2)(sn +1)sn (sn −1)cnLsn+4r−sn−4

0 (7.4.7)

and using Eq.(7.4.3),

EAZPVE
ELJ (r0) =

3
32Mr2

0

∑n (sn +2)(sn +1)sn (sn −1)cnLsn+4r−sn
0

∑n sn (sn −1)cnLsn+2r−sn
0

. (7.4.8)

The AZPVE for the (n,m) LJ potential, and more specifically, the (12,6) LJ po-
tential with coefficients c1 and c2 as defined above becomes (in atomic units),

EAZPVE
LJ (r0)

=
3

32Mr2
0

(n+2)(n+1)(n−1)Ln+4rn−m
e − (m+2)(m+1)(m−1)Lm+4rn−m

0

(n−1)Ln+2rn−m
e − (m−1)Lm+2rn−m

0

n=12
=

m=6

21
16M

20L10r6
0 −143L16r6

e

5L8r8
0 −11L14r2

0r6
e
.

(7.4.9)

This shows that by using the Einstein model, compact analytical expressions
can be obtained for the vibrational contributions for the ELJ potential. Since
the quartic force-constants are all positive, the anharmonicity correction in-
creases the zero-point vibrational energy in contrast to a diatomic molecule,
where a non-zero (negative) cubic force constant becomes important in second-
order perturbation, leading to a decrease in the vibrational levels and transi-
tions.
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By defining the following sums,

AL(r0) = r−2
0 ∑

n
sn (sn −1)cnLsn+2r−sn

0 ,

BL(r0) = r−2
0 ∑

n
(sn +2)sn (sn −1)cnLsn+2r−sn

0 ,

CL(r0) = r−2
0 ∑

n
(sn +5)(sn +2)sn (sn −1)cnLsn+2r−sn

0 ,

DL(r0) = r−4
0 ∑

n
(sn +2)(sn +1)sn (sn −1)cnLsn+4r−sn

0 ,

EL(r0) = r−4
0 ∑

n
(sn +4)(sn +2)(sn +1)sn (sn −1)cnLsn+4r−sn

0 ,

FL(r0) = r−4
0 ∑

n
(sn +7)(sn +4)(sn +2)(sn +1)sn (sn −1)cnLsn+4r−sn

0 ,

(7.4.10)
the volume/nearest neighbour distance expression for the ZPVE and anhar-
monicity corrections become,

EZPVE
ELJ (r0) =

1
2

√
3
M

AL(r0)
1
2 (7.4.11)

and
EAZPVE

ELJ (r0) =
3

32M
AL(r0)

−1DL(r0) . (7.4.12)

Analytical expressions for the vibrational pressure and bulk modulus contribu-
tions for these cubic lattice can now be obtained. We get for the vibrational
pressure,

PZPVE
ELJ (r0) =

1
4V

√
3M

AL(r0)
− 1

2 BL(r0) , (7.4.13)

PAZPVE
ELJ (r0) =

1
32V M

[
AL(r0)

−1EL(r0)−AL(r0)
−2BL(r0)DL(r0)

]
,

(7.4.14)
and the bulk modulus,

BZPVE
ELJ (r0) =

1
24V

√
3M

AL(r0)
− 1

2
[
2CL(r0)−AL(r0)

−1BL(r0)
2] , (7.4.15)

BAZPVE
ELJ (r0) =

1
96V M

AL(r0)
−1{FL(r0)−AL(r0)

−1 [2BL(r0)EL(r0)+CL(r0)DL(r0)]

+2AL(r0)
−2DL(r0)BL(r0)

2} .
(7.4.16)
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7.5 Grüneisen parameter

An important parameter in the theory of the equation of state and thermal
expansion of solids is the volume (or pressure) and temperature dependent
Grüneisen parameter γ(V,T ), which describes the effect of changing the vol-
ume of a lattice on its vibrational properties.[162–165] At the microscopic
level this parameter depends on the volume derivative of the phonon frequen-
cies, and at T =0 K with wave vector k⃗ and band index j the dimensionless
mode Grüneisen parameter becomes,

γ⃗k, j(V ) =−
∂ lnω⃗k, j(V )

∂ lnV
. (7.5.1)

For the Einstein approximation Eq.(7.5.1) simplifies to

γE(V ) =−∂ lnωE(V )

∂ lnV
, (7.5.2)

where we simply replaced the commonly used Debye frequency by the Ein-
stein frequency. Using Eqs. (7.4.10), (7.4.11) and (7.4.13) we obtain the ELJ
potential

γ
ELJ
E,h (r0) =− V

EZPVE
ELJ (r0)

∂EZPVE
ELJ (r0)

∂V
=V

PZPVE
ELJ (r0)

EZPVE
ELJ (r0)

=
BL(r0)

6AL(r0)
. (7.5.3)

There is no mass dependence in γELJ
E (r0). The Grüneisen parameter for the

(n,m) LJ potential, and more specifically, the (12,6) LJ potential with our co-
efficients c1 and c2 as defined above becomes (in atomic units),

γ
LJ
E,h(r0) =

1
6

(n+2)(n−1)Ln+2

(
re

r0

)n−m

− (m+2)(m−1)Lm+2

(n−1)Ln+2

(
re

r0

)n−m

− (m−1)Lm+2

n=12
=

m=6

77L14r6
e −20L8r6

0

33L14r6
e −15L8r6

0
=

77L14V 2
e −20L8V 2

33L14V 2
e −15L8V 2

(7.5.4)

where Ve is the volume at nearest neighbor distance r0 = re. The
simplicity of this analytical formula demonstrates the beauty of the
Einstein model. In a similar way one can derive the anharmonicity
contribution to the mode Grüneisen parameter by the substitution
EZPVE

ELJ (r0)→ EZPVE
ELJ (r0)+EAZPVE

ELJ (r0),

γ
ELJ
E,h+ah(r0) =V

PZPVE
ELJ (r0)+PAZPVE

ELJ (r0)

EZPVE
ELJ (r0)+EZPVE

ELJ (r0)
, (7.5.5)
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leading to a more complicated mass-dependent expression.

A The hexagonal close-packed structure

Like fcc, the hcp lattice is a close-packed structure and often lies energetically
very close to fcc. For the hard-sphere model the fcc and hcp packing densities
are identical, as are any mixed fcc/hcp Barlow packings[166]. We remember
that a cubic lattice is a lattice whose points lie at positions (n1,n2,n3) in the
Cartesian three-space, where ni are integers. Unlike fcc however, the hcp lat-
tice is not cubic and not a Bravais lattice, but instead belongs to the D6h point
group. Although it has inversion symmetry, symmetry breaking occurs in the
force field resulting in a lifting of the degeneracy of the Einstein frequencies.
Hence, we lose the high symmetry compared to the three cubic lattices. This
results in a far more complicated expression for the hcp compared to the fcc
lattice sum, i.e. compare Eqs.(7.3.2)-(7.3.4) with (7.3.5), which has been re-
solved in terms of fast converging series only very recently by our group[160].
The hcp lattice can be seen as a hexagonal Bravais lattice with lattice vectors
a⃗1 =

a
2 x̂−

√
3a
2 ŷ, a⃗2 =

a
2 x̂+

√
3a
2 ŷ, a⃗3 = cẑ, but with two atoms located at posi-

tions r⃗⊤1 = (0,0,0) and r⃗⊤2 = (2/3,1/3,1/2). Since each atom is experiencing
exactly the same field from all other surrounding atoms in the bulk system, we
only need to consider the summation over the many-body contributions from
the atom placed at the origin for the cohesive energy. This implies that both
atoms give the same diagonal 3D force field and the same set of Einstein fre-
quencies. However, from the lattice vectors and the atom located at the origin
it is clear that the vibration parallel to the hexagonal plane (h) axis will dif-
fer from the vibrations perpendicular to it (c). Thus we get for the diagonal
force constants Fxx = Fyy ̸= Fzz and the corresponding three Einstein frequen-
cies ωh

1 = ωh
2 ̸= ωc

3 . Even so we have relations between the different force
constant for the hcp lattice as detailed by Wallace,[98] unfortunately for the
Einstein frequency we have a sum of square-root terms for the force constants.
Therefore the relations found for the cubic lattices cannot be applied anymore
for the hcp structure. Fortunately, it turns out that the difference ∆ω =ωh

2 −ωc
3

is very small (of the order of 0.01 cm−1 for argon) such that we can safely set
Fxx ≈ Fzz and obtain to a very good approximation for hcp the same expres-
sion as in (7.4.1) with the corresponding hcp lattice sums. This holds for very
small volumes (high pressures) as confirmed by numerical calculations carried
out with our program SAMBA.[167] The fact that Eq.(7.4.1) works is not sur-
prising as we can use Corner’s approximate treatment of vibrational motions
applied to the hcp lattice.[155]
Analyzing the higher derivatives for the hcp force field we obtain the symmetry
relations for the quartic force constants Fxxxx = Fyyyy ̸= Fzzzz and Fxxzz = Fyyzz ̸=
Fxxyy as discussed in detail by Wallace.[98] Again we see to a good approxima-
tion that Fxxxx ≈ Fzzzz, but see larger differences for the mixed contributions in
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our numerical calculations. Fortunately, Fzzzz ≫Fxxzz and therefore the AZPVE
expression in Eq.(7.4.6) is applicable to a good approximation for the hcp lat-
tice as well. For example, comparing both equations with numerical simula-
tions for hcp argon at a volume set at 24 cm3/mol (nearest neighbor distance of
3.8341 Å close to the equilibrium distance), we obtain from numerical force
field calculations the Einstein frequencies ωh=33.152 and ωc=33.141 cm−1

and the ZPVE and AZPVE corrections of 49.7230 and 1.7758 cm−1 respec-
tively. This compares well with the ZPVE and AZPVE contributions from Eqs.
(7.4.1) and (7.4.6) of 49.7230 and 1.7732 cm−1 respectively, where the latter
small difference could come from numerical inaccuracies.

B Thermodynamics

The thermodynamics of the solid state using the LJ potential has been reviewed
by Anderson containing many useful formulae.[168] The finite temperature
contributions to the entropy and free energy may now also be expressed in
terms of the lattice sums, using the expression for the Einstein frequency and
the Boltzmann distribution. We start from the partition function for a single
harmonic oscillator with frequency ωi,

Zi =
e−βωi/2

1− e−βωi
, (7.5.6)

with β = 1/kBT , T being the temperature and kB the Boltzmann constant con-
verting the units of Kelvin to the desired energy unit. From this we get the
phonon free energy for N vibrating atoms, Fvib =−kBT lnZ,

Fvib =
1
2

3N

∑
i

ωi +β
−1

3N

∑
i

ln
(

1− e−βωi
)

(7.5.7)

which contains the zero-point vibrational contribution and the phonon entropy
S = kBT ∂ lnZ/∂T + kB lnZ,

Svib = kB

3N

∑
i

[
-ln
(

1− e−βωi
)
− βωi

1− e−βωi

]
. (7.5.8)

This expression trivially shows that for T → 0 there is, aside the residual en-
tropy, no entropy difference due to zero-point vibration between the lattices.
For the Einstein approximation we obtain from Eq.(7.5.7) the relation,

Fvib =
3
2

ωE +3β
−1ln

(
1− e−βωE

)
(7.5.9)

and

Svib = 3kB

[
-ln
(

1− e−βωE
)
− βωE

1− e−βωE

]
. (7.5.10)
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We obtain the following equation for the specific heat at constant volume (F =
E −T S)

CV =

(
∂E
∂T

)
V
=

3
4

kB (βωE)
2

[
eβωE(

eβωE −1
)2

]
. (7.5.11)

7.6 Results and Discussion

In this section we apply our derived formulae for the LJ and ELJ potentials to
the rare gas bulk phases of which the LJ potential already has a long history in
the treatment of bulk systems.[47, 48, 169, 170] Beside the simplicity of this
model, for which we shall highlight the limitations, especially for a quantum
system such as bulk helium, it offers qualitative yet valuable insight into bulk
properties. Furthermore, these analytical formulae serve as a first good initial
estimate of how important vibrational effects are for bulk quantities such as
the equation of state. They also point towards further improvements like
inclusion of higher body forces, phonon dispersion and, in the case of helium,
dynamic effects to achieve better agreement with experimental observations.
It should be borne in mind, however, that the rare gas solids represent a
special case as the many-body expansion of the interaction energy converges
reasonably fast with increasing n-body force, even at higher pressures.[50, 51,
55, 171, 172] The results are collected in Table 7.2 and the potential curves
used are shown and analyzed in Figures 7.2a-c.

A The equilibrium nearest neighbor distance and cohesive
energy of the rare gas solids

From the condition ∂EELJ(r0)/∂ r0 = 0 we derive the minimum nearest neigh-
bor distance rmin

0 of the atoms in the solid described by an ELJ potential. In the
case of a general (n,m) LJ potential we obtain a simple relationship between
the equilibrium distance re of the diatomic and the lattice rmin

0 value,[48]

rmin
0 =

(
Ln

Lm

) 1
n−m

re . (7.6.1)

As for n > m we have Ln < Lm for a specific lattice,[160] we have rmin
0 < re.

The same inequality holds for the ELJ potentials for the rare gases as the
values in Table 7.2 show and is due to the fact that the lattice summation
introduces attractive forces originating from non-nearest neighbors causing a
bond contraction compared to the diatomic.
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Isotope
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PV
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0

r Z
PV

E
0

r infl
0

r crit
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LJ3H
e

-34.8
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3.2901

2.8822
(3.3508)
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3.3508

4H
e

-34.8
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115.4

2.9676
3.2901

2.8822
(3.3508)
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3.3508

20N
e

-133.5
-1149.4
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21.3

3.0895
3.4252

3.0006
3.1250

3.3267
3.4884

40A
r

-453.2
-3902.5

361.4
7.2

3.7618
4.1706

3.6536
3.6975

4.0507
4.2476

84K
r

-636.1
-5477.3

276.8
3.0

4.0158
4.4523

3.9003
3.9255

4.3242
4.5344

132X
e

-894.0
-7697.1

240.9
1.6

4.3630
4.8372

4.2375
4.2543

4.6980
4.9264

222R
n

-1282.2
-11040

219.2
0.9

4.4270
4.9081

4.2997
4.3104

4.7670
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0.7
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4.6614
4.8880

E
LJ

3H
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-34.9
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266.6
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4.2941

4.7309
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n
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4.8235
5.0004

294O
g

-2853.6
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0.4
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4.7122
4.9256
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Figure 7.2 (a) ELJ potentials of the noble gases, including potentials of Rn and
Og at different levels of relativistic theory (NR: non-relativistic, SR: scalar rel-
ativistic, FR: fully relativistic (X2C). (b) All potentials rescaled to a potential
with re = 1,ε = 1. In grey the (12,6) LJ potential. (c) Difference between the
LJ and ELJ potentials with re = 1,ε = 1, ∆V (r) =VLJ(r)−VELJ(r)

Using our analytical expressions we can determine the nearest neighbor dis-
tance for an ELJ potential including zero-point vibration. Table 7.2 shows
that vibrational effects increase the nearest neighbor distance in the solid,
rZPVE

0 > rmin
0 , as pointed out earlier by accurate ab-initio calculations.[51, 53,

54, 176, 177] For example, the total cohesive energy for a (12,6) LJ potential
including harmonic vibrational contributions within the Einstein approxima-
tion from Eqs. (7.1.3) and (7.4.1) becomes,

ET
LJ(r0) = Ecoh

LJ (r0)+EZPVE
LJ (r0)

=
1
2
(
c6L6r−6

0 + c12L12r−12
0

)
+

3√
2M

r−7
0

(
5c6L8r6

0 +22c12L14
) 1

2 .

(7.6.2)

For the minimum ∂ET
LJ(r0)/∂ r0 = 0 we get, after some algebraic manipula-

tions, an 11th order polynomial in x = r2
0,

a0 +a3x3 +a5x5 +a6x6 +a8x8 +a9x9 +a11x11 = 0 (7.6.3)

with coefficients
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a0 = 44εL2
12L14,

a3 =−4εr−6
e L12 (22L6L14 +5L8L12) ,

a5 =−5929M−1r−12
e L2

14,

a6 = 4εr−12
e L6 (11L6L14 +10L8L12) ,

a8 = 3080M−1r−18
e L8L14,

a9 =−20εr−18
e L2

6L8,

a11 =−400M−1r−24
e L2

8,

the problem is then reduced to finding the zeros of the polynomial (7.6.3).
There is no trivial solution except for M → ∞, which yields just rmin

0 for the
minimum structure of the lattice and the polynomial has exactly one real solu-
tion. For a finite mass, the polynomial needs to be evaluated case by case. For
all the rare gas solids, the polynomial has three real solutions and we find the
second root to be the physical one. A similar expression can be obtained if the
anharmonicity correction is added.
Using Eq. (7.6.1) for (7.1.4) we obtain a relationship for the cohesive energy at
rmin

0 in terms of the binding energy of the diatomic molecule and lattice sums,

ELJ(rmin
0 ) = ε

nm
2(n−m)

[
Ln

n

(
Lm

Ln

) n
n−m

− Lm

m

(
Lm

Ln

) m
n−m
]

n=12
=

m=6
−ε

L2
6

2L12
.

(7.6.4)
Figures 7.3a and b show trends in cohesive energy contributions and a
comparison between the LJ and ELJ potentials along the row of the rare gas
solids. For the fcc lattice we have L2

6/2L12=8.6102.[48] The ratios
−E ELJ(rmin

0 )/ε for the ELJ potential as well as with respect to the
experimental or best theoretical values for the rare gas lattices are shown in
Figure 7.3b. There are two important messages we can deduce from this
figure. First, the ELJ potential gives lower cohesive energies compared to the
(12,6) LJ potential and the ratio EELJ/ε varies slightly between 7.36 (Kr) and
7.90 (Og) compared to the LJ ideal value of 8.6102. Second, if we take the
best available cohesive energy values for the rare gases to obtain the ratio
Ecoh/ε ,[54, 177–180] we see that zero-point vibrational effects lead to larger
deviations for the lighter rare gas elements and the three-body effects to larger
deviations for the heavier ones.

Table 7.2 shows properties for the fcc phase of the rare gas solids obtained by
using both a (12,6) LJ as well as an ELJ potential with the values for the
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Figure 7.3 (a) Trends in cohesive energy contributions for Estat, EZPVE,
EAZPVE and E(3) (in µHa) shown at a logarithmic scale for all the rare gases.
The values in Table 7.2 were chosen, and for helium the 4He isotope was se-
lected. The three-body contribution E(3) was taken from Ref.[180] for Ne
to Xe, and Ref.[54] for Rn and Og. For He the program Samba was used
and the three-body potential of Cencek, Patkowski and Szalewicz was taken
(Ref.[181]) at the equilibrium distance re for the dimer listed in Table 7.2. (b)
Ratio between the two-body ELJ cohesive energy EELJ and the binding energy
−ε of the diatomic molecule (values taken from Table 7.2), and ratio for the
best available cohesive energies [54, 177–180] Ecoh and ε . The ideal LJ ratio
is shown as a straight line.

lattice sums Ln published recently.[160] The corresponding potential curves
are drawn in Figure 7.2a which show the very weak bonding for the lightest
element, helium and the relatively strong bonding for the heaviest element in
this group, oganesson. As can be seen from Figure 7.2a, the unusually large
cohesive energy of the heaviest known element in the periodic table is due to
relativistic effects,[54, 182, 183] which, despite the very large three-body
contribution, results in a melting point above room temperature for oganesson
[184].

Concerning vibrational effects, we obtain a slow decrease in the ZPVE with
increasing mass, gradually becoming less important compared to the static
part of the cohesive energy. Oganesson is exceptional, since the increase in
the cohesive energy and decrease in the bond distance, both due to relativistic
effects, lead to a larger vibrational contribution compared to radon despite the
larger mass. [54] In contrast, anharmonicity effects diminish rather fast with
increasing Z, see Figure 7.3. This can be understood from Eqs. (7.4.1) and
(7.4.8): For the ZPVE we have EZPVE

LJ/ELJ ∝ r−1
0

√
ε/M. As ε , M and r0 increase

down the group in the periodic table we have a compensating effect and a
small net decrease in the Einstein frequency. For the anharmonic contribution,
however, we have EAZPVE

LJ/ELJ ∝ r−2
0 M−1 leading to a much faster decrease in

EZPVE
LJ/ELJ with increasing mass and distance rmin

0 .
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To compare to experimental values we take solid argon as an example. The
experimental nearest neighbor distance is 3.7560 Å[185] and the cohesive
energy -2941(4) µHa[179], in good agreement with the ELJ values of
EELJ + EZPVE

ELJ + EAZPVE
ELJ = -3118 µHa. If we take the optimized rAZPVE

0
distance instead, we obtain a similar value of 3134 µHa), but the (12,6) LJ
potential with -3534 µHa clearly overestimates the cohesive energy. The
remaining error for the ELJ potential lies mainly in the missing three-body
effect. For a detailed analysis of the rare gas solids see Refs.[51, 53, 54, 176,
177]. For comparison, we include three-body contributions from the literature
in Figure 7.3, which shows that these effects become increasingly important
with increasing nuclear charge and polarizability of the rare gas atom [186].

Figure 7.2b compares the ELJ potentials by scaling both the equilibrium
distance and the binding energy to unity. They all show a very similar
functional form, the differences being barely visible on this graph. This
suggests that, to a reasonable approximation, we can use the same analytical
form for ε−1EELJ(r/re), which needs to be further investigated for the solid
state properties of the rare gases. Figure 7.2c shows the difference between
these curves and the standard (12,6) LJ potential. We see that the LJ potential
over-binds in the long-range, but becomes too repulsive in the short-range,
which will have consequences for the pressure-volume and bulk
modulus-volume equations of states as we shall see below. However, before
we proceed with the discussion of three of the rare gas solids, helium, neon
and argon, we shall briefly discuss the analytical expressions for the critical
points for the LJ and the ELJ potentials, and their relevance for the solid state.

B Critical points for the extended Lennard-Jones potential
energy curves

Multiple critical points, which in a strict mathematical sense are points on the
function where the first or higher-order derivatives are equal to zero or where
the function or derivative is discontinuous, for the ELJ potential can be
identified. The first critical point is at the nearest neighbor distance rmin

0
where the pressure is zero, P = ∂Ecoh(r0)/∂ r0 = 0. Expansion beyond the
nearest neighbor distance into the region of negative pressure, r > rmin

0 , is
achieved by adding thermal pressure through the Boltzmann term, which
keeps the pressure positive. The negative pressure range has however been
used, for example, to theoretically analyze the metal-to-nonmetal transition in
expanded fluid mercury. [187]

A second critical point lies at the distance where ∂ 2Ecoh(r0)/∂ r2
0 = 0, referred
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to as the cohesive energy inflection point

rinfl
0 =

[
(n+1)Ln

(m+1)Lm

] 1
n−m

re =

[
(n+1)
(m+1)

] 1
n−m

rmin
0 =

[
Ln

Lm

] 1
n−m

rinfl , (7.6.5)

where rinfl is the inflection point of the (12,6) LJ potential
defined in Eq.(10.2.4). For the (12,6) LJ potential we have
rinfl

0 = 1.07679 re = 1.10868 rmin
0 . The restoring forces decrease with

increasing deviations from equilibrium and at the inflection point the bulk
modulus becomes zero, indicating that the compressibility becomes infinitely
high, alike a gas at very low pressure. Even though the lattice symmetry is
maintained when moving along the cohesive energy curve, this hints that the
inflection point can be used as a qualitative measure for symmetry breaking in
the solid, resulting in a phase transition into the liquid or gas phase.[188, 189]

Symmetry breaking occurs when one or more atoms in the lattice or unit cell
move to positions where the lattice symmetry is not conserved, in contrast to
expansion or compression of all atoms simultaneously of which the energy
is given by the cohesive energy curve for the specific lattice symmetry. A
good example for symmetry breaking is the so-called Peierls distortion (Jahn-
Teller effect).[190, 191] A local form of symmetry breaking happens when the
Einstein frequency becomes zero and the square root in Eq. (7.4.1) or (7.4.2)
vanishes. This form of symmetry breaking was already discussed qualitatively
for helium in 1955 by Houton [169, 192] and occurs at a distance of

rcrit
0 =

[
(n−1)
(m−1)

Ln+2

Lm+2

] 1
n−m

re =

[
(n−1)
(m−1)

Ln+2Lm

Lm+2Ln

] 1
n−m

rmin
0 . (7.6.6)

For the (12,6) LJ potential, rcrit
0 = 1.12912 re = 1.16257 rmin

0 . Note that both
Eq. (7.6.5) and (7.6.6) are not mass dependent. At expansion beyond rcrit

0 a
double minimum for the internal energy of the atom is formed, causing the
atom to move away from the equilibrium distance and consequently the
lattice locally distorts, breaking the symmetry of the bulk system. Yet, this
simplified Einstein picture involves only the movement of one atom in the
field of all other atoms which are kept at lattice symmetry points. If we allow
all atoms in the solid to move, the point where symmetry breaks, rsb

0 , lies
below this Einstein estimate, rsb

0 < rcrit
0 , and perhaps also below the inflection

point for which we have rinfl
0 < rcrit

0 .

We briefly consider the inflection point and critical distance for close-packed
structures in one and two dimensions for a LJ potential as they serve as a
good models for symmetry breaking effects in solids. The expressions for the
cohesive energy in Eq.(7.1.4), the inflection point, Eq.(7.6.5), and critical
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Figure 7.4 LJ potential experienced by an atom confined by two other atoms
to the left and right and separated by a distance of 2a resulting in a total inter-
action energy of ELJ(r) = (r+ a)−12 − 2(r+ a)−6 +(r− a)−12 − 2(r− a)−6.
The parameter used is (a) a = r infl +0.05, (b) a = rinfl, (c) a = rinfl −0.05 (the
inflection distance which is equal to the critical distance for a 1 dimensional
chain). (b) Corresponding effective on-site forces.

distance, Eq (7.6.6), remain unchanged except that we have to substitute the
3D lattice sums L3D

n for the corresponding 1D or 2D ones. For a
one-dimensional chain, these are related to the well-known Riemann zeta
function, i.e. L1D

n = 2ζ (n) with the number of nearest neighbors L1D
∞ = 2, thus

for the (12,6) LJ potential we have ζ (6) = π6/945, ζ (8) = π8/9450,
ζ (12) = 691π12/638512875 and ζ (14) = 2π14/18243225. We obtain
r1D,infl

0 = 1.10556re and r1D,crit
0 = 1.13967re. However, moving an atom

in-between only two other atoms in one dimension, as shown in Figure 7.4a
and b, results in the equality rcrit

0 = rinfl.

For the two-dimensional case the close-packed arrangement is the hexagonal
lattice (one layer of the 3D fcc lattice) for which we can derive the correspond-
ing lattice sums in terms of Riemann ζ (x) and Hurwitz h(x,y) functions[193]
according to Zucker and Robertson[105],

L2D
n = 31−n

2 2ζ (n
2)
[
h(n

2 ,
1
3)−h(n

2 ,
2
3)
]
. (7.6.7)

There are six nearest neighbors and therefore L2D
∞ = 6.[65, 160] We get L2D

6 =
6.37705, L2D

12 = 6.01079, L2D
8 = 6.10578 and L2D

14 = 6.00382. This leads to
r2D,infl

0 = 1.09781re and r2D,crit
0 = 1.13724re.

For the fourth, and final, critical point let us discuss the minimal mass needed
to stabilize the solid. Let us start with the minimal mass needed to form a
bond between two atoms. Within the Born-Oppenheimer approximation two
atoms can form a chemical bond if the ZPVE is smaller than the binding en-
ergy, EZPVE < ε . This implies that, within the harmonic approximation for the
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ground state vibrational energy level, we need

EZPVE =
6
re

√
ε

M
< ε , (7.6.8)

from which we deduct the critical mass,

Mdimer
crit =

36
εr2

e
. (7.6.9)

In this simple picture, M > Mdimer
crit is thus required to stabilize a diatomic

molecule E2. This is intuitive as a small binding energy requires a larger
critical mass to stabilize a diatomic molecule within the Born-Oppenheimer
approximation. Using the values for helium in Table 7.2 we obtain a critical
mass of Mdimer

crit = 17.9 amu, which is far too high for any stable helium
isotope. The harmonic ground state vibrational level lies above the diatomic
He2 potential curve,[194, 195] and only anharmonicity corrections, which are
very large for this system due to the low mass and binding energy, together
with an accurate treatment of the diatomic potential energy curve, can
stabilize He2 to such an extend that it can be observed at ultra-low
temperatures.[196–199] Yet, the remaining dissociation energy is very small
for He2, [199] measured to be 5.58±0.49 nHa compared to the (uncorrected)
binding energy shown in Table 7.2. In contrast, for Ne we obtain 4.3 amu
well far below the mass of the most stable isotope of 20Ne.

The same analysis may now be performed for the solid state, that is, we stabi-
lize the solid described by a LJ potential if EZPVE

LJ < −ELJ (remembering that
ELJ(r0) was chosen to be negative in the attractive region). Within the Einstein
approximation we obtain the following relation from the combination of Eqs.
(7.1.4), (7.4.2) and (7.6.1),

Mcrit =
36
εr2

e
fsolid with fsolid =

1
L3

6

(
L6

L12

)1
3
(11L14L6 −5L8L12) . (7.6.10)

This is identical to the result for the diatomic molecule except for the factor
fsolid. Using the lattice sums from Ref.[160], we get for the different
structures fbcc=0.4298, ffcc=0.4005 and fhcp=0.4004. This reduces the helium
critical mass to 7.17 amu for the fcc lattice compared to 17.9 amu for the
diatomic. However, the atomic critical mass is still too large for solid helium,
i.e., the 8-He isotope has a half-life of 119 ms. Additionally, anharmonicity
effects destabilize the rare gas solid. Phonon dispersion[200] most likely
reduces the destabilizing harmonic ZPVE compared to the Einstein
approximation,[51] and quantum effects beyond the Born-Oppenheimer
approximation also become important for the treatment of solid helium.[201]
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Figures 7.5a and b show the cohesive energy of the (12,6) LJ potential with M
below and with mass M above the critical mass respectively. If the mass M is
small, as it is for 3He or 4He, the vibrating periodic lattice does not have a
minimum, see Figure 7.5(a) where the potential curve for ELJ(r)+EZPVE

LJ (r)
abruptly ends when ωE becomes imaginary. Hence, the rZPVE

0 values for
helium are set in parentheses as this is the point when the lattice optimization
stops because of ωE = 0. Here the perturbative treatment for anharmonicity
effects completely breaks down. At larger masses the minimum is retained,
see Figure 7.5(b).
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Figure 7.5 (Color online) Static and dynamic contributions (only the real part
of the ZPVE is shown, the expression for the ZPVE becomes complex beyond
the critical distance) to the total cohesive energy for the (12,6) LJ potential (ε
and re set to unity), for the three different masses (a) M = 10 (b) M = 100 (c)
M = 1000 according to Eq.(7.6.8).

Experimentally, it is known that under pressures of approximately 2.5 MPa
helium is quite unusual as it solidifies to the hcp phase,[202, 203] and a
hcp→fcc phase transition occurs at 1.1 GPa and 15K.[204] Helium at extreme
conditions plays an important role within the science of planets and stars.
[203, 205–207] We therefore discuss the validity of the (12,6) LJ model for
the less critical helium high-pressure range in the following section.
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C The equation of state for solid helium

Figures 7.6a-d show LJ P(V )- and B(V ) curves for solid helium for the three
different observed phases fcc, hcp and bcc of 4He in the pressure/volume range
where this simple LJ Einstein model should work reasonably well.[208–211]
To give a feeling for the volume range to be considered for bulk helium, the
liquid state of 4He at normal pressure has a density of 0.125 g/cm3 correspond-
ing to a very large volume of 32 cm3/mol.[212] In contrast, solid helium has a
density of 0.214 g/cm3 at 6.7 GPa corresponding to a volume of 18.7 cm3/mol
and nearest neighbor distance of r0=3.528 Å, which is larger then both the in-
flection point, rinfl

0 , and critical distance, rcrit
0 , see Table 7.2. This shows the

limitation of the simple Einstein model for bulk helium.[213] Indeed, in this
very low density range, zero-point vibrational energy effects dominate for both
the pressure and the bulk modulus as can be seen from Figures 7.6a and 7.6b.

Solid helium shows giant plasticity and superfluid-like mass transport at large
volumes and low temperatures[214, 215] (for a recent review see Beamish and
Balibar[216]), and our ’static’ model used here cannot accurately describe such
phenomena. Moreover, at these large volumes perturbation theory used for the
anharmonicity effects breaks down and one requires a full dynamic treatment,
for example by using quantum Monte-Carlo simulations.[201, 203, 217] This
can already be seen for the bulk moduli at volumes V > 12 cm3/mol, where
the LJ results start to deviate substantially from the experimental results, see
Figure 7.6d. We therefore focus on the high pressure regime instead.

Grüneisen already pointed out in 1912 that the vibrational frequency increases
with pressure[3] because the potential energy becomes increasingly repulsive.
Our Einstein model shows that harmonic vibrational contributions to the pres-
sure dominate down to volumes of 8 cm3/mol. Below 8 cm3/mol, the pressure
contribution coming directly from the static cohesive energy (7.1.5) starts to
dominate over vibrational effects. A similar behavior is observed for the bulk
modulus. Here, anharmonicity effects become even more important in the low
density range. As helium represents a special case within the rare gas elements,
[169] for the heavier rare gases this picture changes significantly because of the
increasing mass.[50, 177, 180]

We can determine the point at which the vibrational pressure becomes less
important than the pressure created by the repulsive wall of the potential energy
curve for a LJ potential, that is PZPVE

LJ (V ) = PLJ(V ) at a specific volume, which
we denote as VH. For a (12,6) LJ potential we get a simple relation from Eqs.
(7.1.5) and (7.4.13),

f (VH/Ve) = εr2
e M , (7.6.11)

where f (x) is an algebraic function containing only the lattice sums for a spe-
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Figure 7.6 (Color online) Pressure P(V ) and bulk modulus B(V ) curves for
the fcc, hcp and bcc phases of solid helium derived from the analytical formu-
lae presented in this paper (logarithmic scale is used for P and B). (a) (12-6)
LJ P(V )-diagram for the different pressure contributions to the static cohesive
energies PLJ, harmonic zero-point vibrational PZPVE

LJ and anharmonic contri-
butions PAZPVE

LJ within the Einstein approximation. (b) Same as (a) but for
the bulk modulus B(V ). (c) Total pressure P = Pstat

ELJ + PZPVE
ELJ + PAZPVE

ELJ for
the LJ and ELJ potentials in comparison to experimental data from Refs.[218–
220]. Exp1: T =15K, pressure gauge (PG): SrB4O7:Sm2+; Exp2: T =297K,
PG: W; Exp3: T =297K, PG: ruby; Exp4: T =300K, PG: ruby. (d) Exp1-
Exp3 as (c) for the bulk modulus B(V ). Exp5: extrapolated to T =0K , isochor
cell, from Ref.[221]. For the conversion of pressure units we used 1 a.u. =
2.94210157×104 GPa. For hcp we took the ideal c/a =

√
8/3 ratio as lattice

distortions are small even at higher pressures.[222]

cific lattice,

f (x) =
(

L6

L12

) 1
3 x4

(
77L14 −20L8x2

)2

4(L12 −L6x2)2 (11L14 −5L8x2)
. (7.6.12)

The left- and right-hand side of Eq. (7.6.11) are dimensionless (either use
atomic units for calculating εr2

e M or divide this expression by h̄2). As the
pressure from the cohesive energy is zero at the minimum distance, the valid-
ity range is x = VH/Ve ≪ 1. In any case, from the data in Table 7.2 we get
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εr2
e M = 8.048 for 4He and εr2

e M = 6.065 for 3He corresponding to a volume
ratio of VH/Ve = 0.647 and VH/Ve = 0.624 for the fcc lattice respectively (for
comparison for 20Ne we have VH/Ve = 0.829 and for 40Ar 0.886, much closer
to the minimum value V =V min/Ve = (rmin

0 /re)
3 = 0.916). This demonstrates

the importance of vibrational effects for 4He and 3He in the low to medium
pressure range because of their low mass.

The question now arises how well this (12,6) LJ model works. As already
mentioned, in the low density range one requires a more complete quantum
picture not considered here.[200, 201, 203, 223] In the high density range we
can compare to experimental data from Dewaele [218] as shown in Figure 7.6c
and d (when bulk experimental moduli were not available, a polynomial fit to
the observed P(V ) data was used to obtain B(V )). The data show that the LJ
P(V ) curve (containing all terms within the Einstein approximation) deviates
substantially from the experimentally obtained values,[218] and increasingly
so with decreasing volume. These large deviations in the high pressure range
are mostly due to the incorrect repulsive form of the (12,6) LJ potential as
has been pointed out before.[224, 225] Of course, one can always modify the
repulsive term in the LJ potential.[226, 227]

More accurate two-body potentials V (2)(r) are known for all the rare gases up
to oganesson,[96, 170, 173–175, 228–230] and there are already a number of
theoretical studies for the P(V ) curves of solid helium.[231, 232] To further
investigate the failure of the LJ potential in the high pressure range we fit-
ted a recently published potential energy curve V (2)

PCJS by Przybytek, Cencek,
Jeziorski, and Szalewicz (PCJS) for the helium dimer,[230] who included adi-
abatic, relativistic as well as QED effects in their coupled-cluster treatment, to
an ELJ potential. We used a least-squares fit procedure introducing distance
dependent weights ω(r) to take care of the very small and large energy values
in the long- and short-range of the potential energy curve respectively,

∂

∂cm

∫
∞

rc

dr ω(r)

[
N

∑
n=1

cnr−sn −V (2)
CS (r)

]2

= 0 , (7.6.13)

which leads to a set of N linear equations for the coefficients cn (m = 1, ...,N),

N

∑
n=1

cn

∫
∞

rc

dr ω(r)r−(sn+sm) =
∫

∞

rc

dr ω(r)r−smV (2)
PCJS(r) . (7.6.14)

We applied a numerical integration scheme, a weighting function of ω(r) =
1−e−ar with a = 0.89, and set rc to the lowest possible value of 2.1 a.u. to ob-
tain a good fit over the whole distance range. The resulting ELJ potential yields
an equilibrium distance of re = 5.6080 a.u., an inflection point rinfl at 6.2183
a.u. and a binding energy of ε =-348.746 µHa compared to the PCJS poten-
tial of 5.6080 a.u, 6.2089 a.u. and -348.236 µHa respectively. This should
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give accurate two-body pressures up to about 1 TPa. We fixed the parameter
c1 =−C6 and c2 =−C8 to the Van der Waals coefficients given in Ref.[230] to
correctly describe the long-range, and chose cN > 0 to correctly describe the
repulsive short-range. The obtained parameters cn are listed in Table 7.3.

Table 7.3 Potential parameters for the He dimer obtained from a least-squares
fit to the analytical form of Szalewicz and co-workers[230]. All potential pa-
rameters are given in atomic units.

n sn cn n sn cn

1 6 -1.4618550565137 2 8 -14.1208183897247
3 9 13997.975339736 4 10 -304327.625470953
5 11 2441586.03190761 6 12 -8163337.07262287
7 13 3390456.21241699 7 14 51324186.4628455
9 15 -118039510.368528 10 16 -31496186.3299036

11 17 456234485.18761 12 18 -639488529.764361
13 19 296722948.860609

Figure 7.7 shows the deviations [V (2)
ELJ(r)−V (2)

PCJS(r)]
(n) up to the second deriva-

tives (n= 2). As can be seen, the error in the energy is of the order of a few µHa
which is acceptable and the error in the first and second derivatives increase by
an order of magnitude each. A test calculation with our program SAMBA[167]
ensured that in the distance range r > 2.1 a.u. (V > 0.6 cm3/mol for the fcc
structure) the energy, pressure and bulk moduli are in very good agreement
with the results from the PCJS potential. For example, the two-body cohe-
sive energy, pressure and bulk modulus at a small volume of V = 1 cm3/mol
for the ELJ and PCJS potential (the latter obtained numerically and given in
parentheses) are P =1.2187 (1.2183) TPa and B =3.221 (3.227) TPa.

To compare with experimental P(V,T ) and B(V,T ) data, one has to include the
increase in pressure and bulk modulus due to finite temperature effects. For
this we use the Einstein approximation (7.5.9) to obtain the thermal phonon
pressure (β = 1/kBT ),

Pth (V,T ) =−3
∂ωE(V )

∂V

[
eβωE (V )−1

]−1
= 2PZPVE

[
eβωE (V )−1

]−1
(7.6.15)

and similar for the bulk modulus,
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Figure 7.7 (Color online) Deviations between the ELJ and the PCJS potential,
[V (2)

ELJ(r)−V (2)
PCJS(r)]

(n), up to second order in the derivatives (n ≤ 2).

Bth (V,T ) = Bth1 (V,T )+Bth2 (V,T ) (7.6.16)

= 2BZPVE (V )
[
eβωE (V )−1

]−1

− 4
3

P2
ZPVE (V )βVeβωE (V )

[
eβωE (V )−1

]−2
.

(7.6.17)

For an LJ or ELJ potential we have analytical expressions for both terms
through Eqs. (7.4.3), (7.4.13) and (7.4.15). These equations show that Pth ∝

PZPVE,T,ω−1
E and Bth ∝ BZPVE,P2

ZPVE,T,ω
−1
E . Different formulae for thermal

contributions are available from the Debye model which requires the Debye
frequency and the Grüneisen parameter.[233] Using our two formulae we ob-
tain for the ELJ potential at T =297 K and V = 2cm3/mol a thermal pressure
component of Pth= 0.21 GPa and bulk modulus of Bth= -0.69 GPa (Bth1= 0.36
GPa, and Bth2= -1.05 GPa). These are relatively small compared to the mea-
sured values of about P =110 GPa and B =290 GPa at that volume.[218] We
find that the Bth2 term in Eq.(7.6.16) dominates leading to a negative thermal
contribution to the bulk modulus, in agreement with the values provided by
Zha, Mao and Hemley.[233] These authors also noted relatively small values
for the thermal pressure. The reason for this lies in the small 4He mass re-
sulting in a large Einstein frequency ωE and small thermal contribution. It
explains why the experimental temperature differences for the pressure and
bulk modulus between 15 and 297 K are barely visible in Figures 7.6c and
d. As shown for neon, the thermal contributions become far more important
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in the low-pressure regime.[50] We therefore neglect temperature effects for
4He in our discussion because the neglect of higher-body terms contains much
larger errors compared to the thermal contributions.
While the qualitative LJ picture shown in Figures 7.6a and b remains the same
for the ELJ potential, the pressure and bulk moduli are a fraction smaller and
much closer to the experimental values, that is because the ELJ potential de-
scribes the repulsive wall correctly in contrast to the (12,6) LJ potential. Fur-
ther improvement requires the inclusion of phonon dispersion and, more im-
portantly, higher N-body terms in the interaction potential[207, 225] which
become attractive in the short-range.[201, 203, 223, 228, 234–237] For higher
n-body forces analytical formulae in terms of lattice sums are unfortunately not
available. Moreover, the most accurate three-body potential obtained from ab-
initio data by Cencek, Patkowski, and Szalewicz (CPS)[238] is only valid for
internuclear distances of r > 3.5 a.u. (V > 2.8 cm3/mol for the fcc structure),
and to add to this, the different three-body potentials available[234, 238–240]
lead to quite different results in the short range. Nevertheless, in the valid vol-
ume range we calculate a total pressure including three-body effects with the
ELJ two-body and CPS three-body potential of 27.3 GPa at V =2.954 cm3/mol
compared to the experimental value of 35.5 GPa.[218] This underestimation of
the pressure at small volumes was also noted by Chang and Boninsegni.[241]
Bulk moduli calculations by Barnes and Hinde show that three-body interac-
tions become very important in the short-range.[236] How important the three-
body, and higher order, contributions are to the vibrational pressure are topics
to be further investigated.

7.7 The difference in Lennard-Jones cohesive
energies between the bcc, fcc and hcp phases

The almost energetically degenerate fcc and hcp phases for the rare gases have
been a matter of long standing debate.[98, 242–246] We therefore discuss the
difference in cohesive energies between the different phases for a (n,m) LJ
potential in more detail.
Using Eqs. (7.1.4) and (7.6.1) we obtain for the cohesive energy at the mini-
mum nearest neighbor distance,

ELJ(rmin
0 ) =

ε

2(n−m)

[
mLn

(
Lm

Ln

) n
n−m

−nLm

(
Lm

Ln

) m
n−m

]
, m < n .

(7.7.1)
Similar to the minimum neighbor distance which is directly related to the equi-
librium distance of the dimer, (see Eq.(7.6.1)), the cohesive energy is only de-
pendent on the binding energy ε of the diatomic and the ratios between LJI
coefficients. From this we derive the relative difference in cohesive energies
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∆P1,P2 between the two phases P1 and P2,

∆P1,P2(n,m) = 1−
EP2

LJ
(
rP2

0
)

EP1
LJ

(
rP1

0

) = 1−
mLP2

n

(
LP2

m
LP2

n

) n
n−m −nLP2

m

(
LP2

m
LP2

n

) m
n−m

mLP1
n

(
LP1

m
LP1

n

) n
n−m −nLP1

m

(
LP1

m
LP1

n

) m
n−m

.

(7.7.2)

For the (12,6) LJ potential this simplifies to,

∆P1,P2(12,6) = 1−
LP1

12
(
LP2

6

)2

LP2
12

(
LP1

6

)2 (7.7.3)

and we obtain ∆fcc/hcp(12,6) = −1.00994 × 10−4 and
∆bcc/hcp(12,6) =−4.53763×10−2 using the lattice sums from Ref.[160]. We
see that such a potential prefers the hcp structure as correctly analyzed by
Kihara and Koba,[242] although fcc is very close in energy.[51, 225, 247] For
a general (n,m) LJ potential allowing for real exponents, one has to introduce
unphysical soft potentials of low (n,m) values with n < 5.7 to stabilize the fcc
structure through two-body forces alone as the Figures 7.8a-d show. The
figures also show that hcp is preferred over bcc through a range of (n,m)
values.

The preference for hcp over fcc can easily be explained. Looking at shells of
atoms around one arbitrarily-chosen central atom, we find the same numbers
of atoms in the first and second shell for the fcc and hcp lattice. Differences
only start from the third shell onwards, hcp has two extra atoms at a distance
of
√

8/3r0 that are not present in the fcc structure. Therefore, at a distance
of
√

8/3r0, the fcc cluster contains 18 atoms while the hcp has already 20
atoms. The third fcc shell is found at a much larger distance of

√
3r0 with

an additional 24 atoms.[127, 245]. This is reflected in the lattice sums, as we
obtain the inequality

∆Lfcc/hcp
s = Lfcc

s −Lhcp
s < 0 , (7.7.4)

over whole range of real values of n ∈ R+,n ≥ 3 (also allowing for the sin-
gularity at n = 3).[160] In fact, ∆Lfcc/hcp

n has a minimum at n=6.2448 with
∆Lfcc/hcp

s =-0.00097845 with maximum preference for the hcp structure, which
is close to the dispersive n = 6 term. As the r−6 term is the dominant interac-
tion for the first few nearest neighboring shells, this situation does not change
if we adopt a more accurate two-body potential.[51] This explains that for a
simple LJ potential, without inclusion of zero-point vibrational effects, hcp is
preferred over the fcc lattice contrary to what is known from experiment.[48]
The only exception we find for ultra-soft LJ potentials with small (n,m) values
close to the singularity of the lattice sum at n = 3. Here counting shells further
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Figure 7.8 (Color online) (a) The interaction potential and (b) the cohesive
energy for a range of n and m values of the (n,m) LJ potentials. Relative
difference in cohesive energies (c) ∆fcc

hcp(n,m) between the fcc and hcp phase
and (d) ∆bcc

hcp(n,m) between the bcc and hcp phase, for different choices of
(n,m) ∈ R2

+,n > m > 3 of the LJ potential.

away becomes important.

A special case of the (n,m) LJ potential is the Sticky Hard Sphere (SHS) po-
tential

VSHS(r) =


∞, r < re

−ε, r = re

0, r > re

(7.7.5)

which is reached in the limit n → ∞,m → ∞,n > m, depicted with the blue
dashed line in Figure (7.8)a. The SHS potential does not distinguish between
the fcc or hcp phases, i.e. they are energetically degenerate, since both phases
have, within this limit, the same packing density, representing the densest pos-
sible packings of spheres. In fact, combinations of fcc and hcp layers, so-called
Barlow packings also belong to the most dense sphere packings.[166] How-
ever, such packings have not been observed experimentally, which remains an
unresolved problem in the theory of lattice packings.[248] A SHS potential
with long-range dispersion can be constructed by using the (n,6) LJ potential
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with a very large n value, depicted with the orange line in Figures (7.8)a and
b.[249, 250] In this case the cohesive energy is given by,[250]

limn→∞ELJ(r0) =−ε
Lm

2

(
re

r0

)m

. (7.7.6)

A The difference between the fcc and hcp phase for solid
argon under pressure

In the previous section the difference in cohesive energy between the fcc, hcp
and bcc at zero Kelvin was discussed. To compare these phases under pressure,
the enthalpy has to be considered instead. The difference in enthalpies between
hcp and fcc at constant pressure P at zero Kelvin is,

∆Hhcp/fcc(P) = ∆Ehcp/fcc(P)+P∆Vhcp/fcc(P)

= Ehcp[Vhcp(P)]−Efcc[Vfcc(P)]+P{Vhcp(P)−Vfcc(P)}
(7.7.7)

which will be used to determine if the hcp phase persists into the high pressure
region for a LJ potential. Here E = Ecoh +EZPVE +EAZPVE. For a (12,6) LJ
potential relation between pressure and volume is given by Eq.(7.1.5),

P(V ) = 2εr6
e
(
r6

eV−5 −2L6V−3)+PZPVE(V )+PAZPVE(V ) . (7.7.8)

Even if we neglect vibrational effects, for converting the pressure into volume
one has to solve a fifth-order polynomial equation ax5 + bx3 + c = 0, which
according to the Abel-Ruffini theorem has no general analytical solution. If
we add vibrational effects both equations become more demanding and we
have to get the volume from the pressure through more complicated algebraic
equations, which can only be solved by numerical methods. We therefore
calculate the volume V from a given pressure P by a two-point interpolation
between (P1,V1) and (P2,V2) using an exponential ansatz,

P(V ) = Ae−aV with A = P1eln
(

P2
P1

)
V1

V 1−V 2 and a =
ln
(

P2
P2

)
V1 −V2

. (7.7.9)

This results in an iterative process for the volume determination,

V (n+1)
1 =V (n)

1 +
ln
[
P/P(n)

1

]
ln
[
P(n)

2 /P(n)
1

] [V (n)
2 −V (n)

1

]
, (7.7.10)

with V (n)
2 = fnV (n)

1 with fn = 1± ε and ε → 0 for n → ∞ (P(n)
2 follows from

V (n)
2 ). In general, choosing fn+1 = fn/a (a = 5.0 for example) only five iter-

ations are required to reach computer precision for the volume V (n)
1 → V at
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Figure 7.9 Enthalpy difference ∆Hfcc/hcp(P) between fcc and hcp against the
pressure P for the LJ and the ELJ potential. Negative values implies that the
hcp phase is more stable. (a) lower two curves are ∆Ehcp/fcc(P) plots, upper two
curves P∆Vhcp/fcc plots. (b) ∆Ehcp/fcc(P)+∆Ehcp/fcc(P). The individual contri-
butions are cohesive energy expression used only (E), Eqs.(7.1.3) and (7.1.5),
harmonic ZPVE added to the cohesive energy expression (H), Eqs.(7.1.3),
(7.1.5), (7.4.1) and (7.4.13), and finally anharmonicity corrections added (A),
Eqs.(7.1.3), (7.1.5), (7.4.1), (7.4.8), (7.4.13) and (7.4.14).

a given pressure P. This procedure works well as long as the curve behaves
exponential, i.e., in the region where the pressure becomes negative a second-
order polynomial fit for P(V ) is preferred. We now apply this to the fcc and
hcp phase of solid argon at high pressures. The individual contributions for
∆Hfcc/hcp(P) up to pressures of 100 GPa are shown in Figures 7.9a and b.
The differences in enthalpies between the fcc and hcp phase are very small
(see Figure 7.9a) (in the J/mol range), and this small difference persists up to
very high pressures. We also see that at high pressures the P∆Vhcp/fcc(P) starts
to dominate over the ∆Ehcp/fcc(P) term. The almost linear behavior of the
P∆Vhcp/fcc(P) comes from an almost constant value of the volume difference,
e.g. ∆Vhcp/fcc(P)≈1.85-1.95×10−5 cm3/mol in the high pressure range for the
LJ potential. Within this model, the hcp phase is preferred at low pressures,
while the fcc phase becomes more stable at pressures between 40-50 GPa,
Figure 7.9b. This is in agreement with Stillinger’s analysis[5] who predicts an
hcp→fcc transition for the LJ potential for Ar at a volume ratio of
V/V min = 0.537. This is also the case for the more accurate ELJ potential
which we used from Ref.[171]. However, this is contrary to experimental
findings where a fcc phase is observed at standard conditions,[185, 251] and a
subsequent fcc-to-hcp phase transition occurs at high pressures. In fact,
Errandonea et al. observed a broad fcc-to-hcp transition in room temperature
X-ray studies extending from 49.6 GPa to an estimated 300 GPa. At the
highest pressure of 114 GPa, they determined a ratio of 0.3 for the amount of
hcp to fcc.[252]
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We showed recently that the fcc phase is stabilized by phonon dispersion at 0
K.[51] As phonon contributions play a lesser role at increased pressures, one
can speculate that three- and higher body contributions must be responsible
for the phase change to hcp at higher pressures.[253] From a theoretical point
of view, to simulate a phase transition with such small enthalpy differences
remains a major challenge. If experimental data fitted to many-body
potentials, based for example on the embedded atom model, one can obtain
more accurate results.[254]

B The Mode Grüneisen Parameter for the Rare Gas Solids

Grüneisen stated in 1912 that the parameter γ(V,T ) is almost independent of
volume and temperature and expected to have the same value for elements of
similar structure and interaction potential.[3] An estimate was given by consid-
ering nearest neigbor interactions only, (see Ref.[255]) which gives the value
of γ =3.17 for a (12,6) LJ potential,

γ =
n+m+1

6
. (7.7.11)

Indeed, the value varies very little for the rare gases from about 2.5 to
2.7,[256, 257] but deviates substantially from Grüneisen’s original estimate.
In the following we only consider the volume dependent mode Grüneisen
parameter, for a discussion on the temperature dependence for the solid and
liquid rare gas phases we refer the reader to Refs.[258–261].

The Einstein approximation within the LJ model provides a more rigorous
insight into the constant value of the mode Grüneisen’s parameter for the noble
gasses. If we substitute Eq.(7.6.1) into (7.5.4) we get for the mode Grüneisen
parameter at distance r0 = rmin

0 ,

γ
LJ
E (rmin

0 ) =
1
6
(n+2)(n−1)Ln+2Lm − (m+2)(m−1)Lm+2Ln

(n−1)Ln+2Lm − (m−1)Lm+2Ln

n=12
=

m=6

77L14L6 −20L8L12

33L14L6 −15L8L12

(7.7.12)

This displays that the mode Grüneisen parameter only depends on the type of
lattice through their lattice sums. The corresponding values are shown in Table
7.4.
The LJ γE value for the fcc lattice is considerably below the value estimated
by Grüneisen which demonstrates that the summation over the whole lattice is
important. Moreover, the γE values vary only slightly between the different
lattices, and the difference between fcc and hcp is miniscule. Table 7.4 also
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Table 7.4 Dimensionless mode Grüneisen parameter γ for the four different
lattices sc, bcc, fcc and hcp. The LJ values listed are from Eq.(7.7.12) (the
LJ value for the simple cubic structure is 2.951916). For the harmonic (h)
and anharmonic part (ah) we used Eqs.(7.5.3) and (7.5.5). For He we used the
optimized lattice distance rmin

0 without vibrational effects included as inclusion
of ZPVE contributions causes symmetry breaking of the lattice.

Atom r0(bcc) γE(bcc) r0(fcc ) γE(fcc) r0(hcp) γE(hcp)
LJ (L12

L6
)

1
6 re 2.991928 (L12

L6
)

1
6 re 3.014083 (L12

L6
)

1
6 re 3.014102

ELJ(h)
He 2.84847 3.035488 2.91126 2.767544 2.91123 2.767651
Ne 3.09254 4.076591 3.15380 3.457913 3.15376 3.457846
Ar 3.66546 3.312865 3.74303 2.971256 3.74298 2.971366
Kr 3.87459 3.171161 3.95843 2.857477 3.95839 2.857453
Xe 4.20349 3.170670 4.29406 2.851391 4.29401 2.851350
Rn 4.25436 2.921074 4.35199 2.632502 4.35193 2.632446
Og 4.09982 2.557463 4.20118 2.332987 4.20112 2.333014
ELJ(h+ah)
4He 2.84847 1.889964 2.91126 2.030678 2.91123 2.030698
20Ne 3.08478 3.068178 3.14609 2.962300 3.14605 2.962298
40Ar 3.66501 3.163060 3.74258 2.886474 3.74254 2.886454
84Kr 3.87447 3.102133 3.95831 2.817675 3.95827 2.817654
132Xe 4.20344 3.127559 4.29400 2.826453 4.29396 2.826419
222Rn 4.25434 2.901018 4.35198 2.621050 4.35192 2.621010
294Og 4.09982 2.549471 4.20118 2.328094 4.20112 2.328116

contains ELJ results for the rare gases for both the harmonic and anharmonic
approximation at the optimized nearest neighbor distances. These values
show that anharmonicity effects play a major role especially for He and Ne.

Table 7.5 shows the mode Grüneisen parameter for the fcc lattice at the
experimentally determined nearest neighbor distance in comparison with
experimental γ-values. Considering that phonon dispersion and higher body
effects are neglected, our results are in reasonable agreement with
experiment. Previous calculations using the Debye model are also in good
agreement with experiment.[259, 262]

Figure 7.10 demonstrates the behavior of γE for neon over a range of
volumes. It shows that, around V/Ve the ELJ and LJ curves are close, but
major deviations are observed in the high-pressure regime. Equation (7.5.4)
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Atom rexp.
0 γE(h) γE(h+ah) γE(exp.)

20Ne 3.15681±0.00006 3.4757 2.9866 2.51±0.03
40Ar 3.74779±0.00006 2.9869 2.9011 2.7±0.1
84Kr 3.99223±0.00007 2.9592 2.9126 2.67±0.07
132Xe 4.3358±0.0004 2.9754 2.9453 2.5±0.1

Table 7.5 Dimensionless mode Grüneisen parameter γE for the fcc lattice at
the experimental nearest neighbor distances[251, 263–265] for Ne, Ar, Kr and
Xe. Experimental γ-values are from Refs.[256, 257].

gives for the high-pressure limit at γE(V/Ve = 0) = (n+2)/6 and the point of
singularity γE(V/Ve) = ∞ happens at rcrit

0 , Eq.(7.6.6), when the denominator
in Eq.(7.5.4) becomes zero. While this behavior has been addressed
before,[266, 267] the Einstein approximation provides an analytical
explanation.

We observe that in the high-pressure region anharmonicity effects are small,
but become important around the equilibrium distance. At distances close to
rcrit

0 the perturbative treatment for anharmonicity effects fails. In this region
the mode Grüneisen parameter becomes very sensitive to volume changes,
which will be especially important for the liquid phase (for a discussion on
liquid helium see for example de Souza et al.[268]).

7.8 Conclusion

We derived analytical formulae for the vibrational contributions to the pres-
sure and bulk modulus within the Einstein model, which give us qualitative,
yet deep insight into many bulk properties such as the mode Grüneisen param-
eter. The rare gases served as a good starting point to estimate harmonic and
anharmonic vibrational contributions to solids. While the LJ potential may be
inadequate to model interactions in solids over a large P(V ) range, the ELJ po-
tential provides analytical formulae for vibrational effects within the Einstein
approximation that are capable for accurately describing two-body interactions
over a large volume range.
There are many open questions in this field. It would be desirable to find
approximate analytical formula for the dynamic matrix for an ELJ potential
to include phonon dispersion, as well as for the three-body potential such as
the Axilrod-Teller-Muto expression[186, 270] or similar expressions which
work in the high pressure range. One could, for example, extend the work by
Nijboer and deWette[156, 157] and use the Terras expansion of quadratic forms
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Figure 7.10 Grüneisen parameter γ(V/Ve) as a function of volume for the LJ
potential and for the ELJ of Ne (harmonic and anharmonic). For re we used
the experimentally derived equilibrium distance of 3.094± 0.001 Å[269] for
Ne2 resulting in a volume for solid neon of Ve = 12.612 cm3/mol.

in terms of Bessel functions.[112] Our group is currently trying to resolve
these long-standing issues. Specifically, the fcc/hcp phases are very close in
energy for the rare gases and the correct treatment of phase diagrams requires
phonon dispersion and inclusion of at least three-body forces or even beyond.
Especially for helium at high pressures such effects become crucial to correctly
predict the P(V,T ) and B(V,T ) surfaces and phases. Moreover, for helium at
low pressures one requires a more accurate quantum treatment.[201, 271]

7.9 Appendix

A Derivatives of the Extended Lennard-Jones potential in the
crystal field

In order to describe the vibrational motion in a lattice within the Einstein
approximation (E), we express the two-body energy of the vibrating atom
at position r⃗A in the ELJ field of all other (fixed) atoms i ∈ N positioned at
r⃗i = (xi,yi,zi)

⊤ as

E (⃗rA) =
∞

∑
i=1

∑
n>3

cn|r⃗A − r⃗i|−n . (7.A.1)

with, |r⃗A − r⃗i| = [(xA − xi)
2 + (yA − yi)

2 + (zA − zi)
2]

1
2 the distance between

the central vibrating atom and the other atoms i. This extends the work of
Corner[155] and Wallace[98, 272, 273] to the terms in the ELJ potential.
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A Taylor expansion in three dimensions around the minimum r⃗A = r⃗0 of the
moving atom is defined by,

E (⃗r0 + r⃗) =
∞

∑
m=0

1
m!

(⃗
r · ∇⃗

)m
E (⃗r0) . (7.A.2)

and the expression is understood that the derivative of E (⃗r) has to be taken first

and then evaluated at point r⃗0 and
(⃗

r · ∇⃗
)m

is defined through the multinomial

theorem. We conveniently put the vibrating atom at the origin, r⃗0 = 0⃗. The
zero-order term just gives the cohesive energy of the crystal, and the second-
order term is the expression for a harmonic oscillator in three dimensions. All
derivatives in cartesian coordinates up to 4th order with respect to the atom
moving around the origin may now be derived

Fx =
∂E
∂x

∣∣∣∣⃗
0
= ∑

i,n
ncnxir−n−2

i (7.A.3)

Fxy =
∂ 2E
∂x∂y

∣∣∣∣⃗
0
= ∑

i,n
n(n+2)cnxiyir−n−4

i , (7.A.4)

Fxx =
∂ 2E
∂x2

∣∣∣∣⃗
0
= ∑

i,n
ncnr−n−4

i

[
(n+2)x2

i − r2
i
]
, (7.A.5)

Fxxx =
∂ 3E
∂x3

∣∣∣∣⃗
0
= ∑

i,n
n(n+2)cnxir−n−6

i

[
(n+4)x2

i −3r2
i
]
, (7.A.6)

Fxxy =
∂ 3E

∂x2∂y

∣∣∣∣⃗
0
= ∑

i,n
n(n+2)cnyir−n−6

i

[
(n+4)x2

i − r2
i
]
, (7.A.7)

Fxyz =
∂ 3E

∂x∂y∂ z

∣∣∣∣⃗
0
= ∑

i,n
n(n+2)(n+4)cnxiyizir−n−6

i , (7.A.8)

Fxxxx =
∂ 4E
∂x4

∣∣∣∣⃗
0
=∑

i,n
n(n+2)cnr−n−8

i

[
3r4

i −6(n+4)x2
i r2

i +(n+4)(n+6)x4
i
]
,

(7.A.9)

Fxxxy =
∂ 4E

∂x3∂y

∣∣∣∣⃗
0
= ∑

i,n
n(n+2)(n+4)cnxiyir−n−8

i

[
(n+6)x2

i −3r2
i
]
,

(7.A.10)
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Fxxyy =
∂ 4E

∂x2∂y2

∣∣∣∣⃗
0

= ∑
i,n

n(n+2)cnr−n−8
i

[
r4

i − (n+4)
(
x2

i + y2
i
)

r2
i +(n+4)(n+6)x2

i y2
i
]
,

(7.A.11)

(7.A.12)

Fxxyz =
∂ 4E

∂x2∂y∂ z

∣∣∣∣⃗
0
= ∑

i,n
n(n+2)(n+4)cnyizir−n−8

i

[
(n+6)x2

i − r2
i
]
.

(7.A.13)
From Eq.(7.A.5), we derive the Laplacian ∆E with respect to our vibrating
atom,

∆E |⃗0 = (Fxx +Fyy +Fzz) |⃗0 = Tr{F}|⃗0 = ∑
i,n

n(n−1)cnr−n−2
i (7.A.14)

The cubic lattices sc, bcc and fcc belong to the local Oh point group. If we
rotate the orthogonal coordinate system such that F is diagonalb we have Fxx =
Fyy =Fzz because of Oh symmetry (not for hcp as already mentioned).[98] Thus
we obtain

Fc
xx |⃗0 =

1
3

∆E |⃗0 =
1
3 ∑

i,n
n(n−1)cnr−n−2

i , (7.A.15)

where (c) stands for one of the cubic lattices. In this case we obtain also
simple relationships for the quartic force constants; Fc

xxyy = Fc
yyzz = Fc

xxzz and
F c

xxxx = Fc
yyyy = Fc

zzzz.[98] Further we have Fc
xxxy = Fc

xxyz = 0. Because Oh con-
tains inversion symmetry we also have Fc

xiy jzk = 0 for any odd combination
(i+ j+ k), for example Fc

x = 0, Fc
xxx = 0, Fc

xyy = 0, and Fc
xyz = 0. Thus, all odd

derivatives vanish and for these lattices we only have to consider the quartic
force constants for the anharmonicity correction (see below). Using these sym-
metry relations we can further simplify the two important (non-zero) quartic
force constants for the cubic lattices,

Fc
xxxx |⃗0 =

1
3
(Fxxxx +Fyyyy +Fxxxx) |⃗0 (7.A.16)

and
Fc

xxyy |⃗0 =
1
3
(Fxxyy +Fxxzz +Fyyzz) |⃗0 . (7.A.17)

bThis normal coordinate system is identical to the orthogonal coordinate system commonly
used for the cubic Bravais lattices.
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which gives

Fc
xxxx |⃗0 =

1
3 ∑

i,n
n(n+2)cnr−n−8

i

[
(n+4)(n+6)

(
x4

i + y4
i + z4

i
)
−3(2n+5)r4

i
]

(7.A.18)
and

Fc
xxyy |⃗0 =

1
3 ∑

i,n
n(n+2)cnr−n−8

i [(n+4)(n+6)
(
x2

i y2
i + y2

i z2
i + x2

i z2
i
)

−(2n+5)r4
i
]
.

No further simplification is possible. However, we can combine Eqs.(7.A.18)
and (A) and we obtain

Fc
xxxx |⃗0 +2Fc

xxyy |⃗0 =
1
3 ∑

i,n
(n+2)(n+1)n(n−1)cnr−n−4

i . (7.A.19)





8 Project 3 - The Cuboidal Lattices
and their Lattice Sums a

8.1 Introduction

Lattice sums have a long history in solid-state physics and discrete mathemat-
ics.[275] They connect lattices to observables such as the equation of state for
a bulk system using interacting potentials between the lattice points (atoms or
molecules) in three-dimensional space.[2, 3, 5, 276] Most notable cases for
such interactions are the Lennard-Jones [6] and the Coulomb potential, lead-
ing in the latter case, for example, to the famous Madelung constant derived
as early as in 1918.[7] For such potentials the corresponding lattice sums be-
come functions of quadratic forms i⃗⊤G⃗i with i⃗ ∈ Z3, i.e. the expression i⃗⊤G⃗i
is the quadratic form associated with the lattice L (or simply, the associated
quadratic form).[8]
In the general case of a n-dimensional lattice (⃗i ∈ Zn), G is a positive definite,
real and symmetric (n× n) matrix called the Gram matrix of the lattice L ,
defined by its basis (or lattice) vectors {⃗bi} through G=BB⊤. B= (⃗b1, ...,⃗bn)

⊤

is called the generator matrix (B not necessarily positive definite). Lattice
sums represent often conditionally convergent series [277], and the theory of
converting them into fast converging series has become an intense research
field over the past 50 years.[275]
Concerning the Gram matrix G or generator matrix we introduce a few im-
portant definitions required in this work.[123] Two generator matrices B1 and
B2 are equivalent if B2 = cUB1O , c a non-zero real number, O a real orthog-
onal matrix (OO⊤ = 1) with det(O) = ±1 describing rotation, reflection or
rotoreflection of the lattice, and U a matrix containing integers with detU = 1
describing for example permutations of the basis vectors. Given two equivalent
generator matrices B1 and B2, the corresponding Gram matrices are related by

G2 = B2B⊤
2 = cUB1O (cUB1O)⊤ = c2UB1OO⊤B⊤

1 U⊤ = c2UG1U⊤.

The minimum distance dmin in a lattice L is defined by

dmin(L ) = min{d(⃗v1; v⃗2)|⃗v1, v⃗2 ∈ L ; v⃗1 ̸= v⃗2}
aThis chapter is composed of sections previously published in the article The Cuboidal Lat-

tices and their Lattice Sums[274] and is reprinted by permission from the publisher ©2022
arXiv.org open-access. Some sections may have been modified to fit the style of this thesis.
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where d(⃗v1; v⃗2) = |⃗v1 − v⃗2| is the Euclidean distance. In terms of the Gram
matrix this is equivalent to

dmin = min{+
√⃗

i⊤G⃗i | i⃗ ∈ Z3\(0,0,0)⊤}.

The minimal norm is related to the minimum distance by µ = d2
min. Dividing G

by µ assures that dmin = 1 used in most lattice sum applications.[8] For dense
sphere packings the radius of a sphere ρ is simply ρ = dmin/2. The packing
density ∆L and the center density δL of a three-dimensional lattice are given by

∆L =
4π

3
δL =

4π

3
ρ3

vol(L )
=

4π

3
ρ3

|det(B)|
=

4π

3
ρ3√

det(G)
.

The kissing number for dense sphere packings is defined by

kiss(L ) = #{v ∈ L | |v|= dmin(L )}.

In this work we discuss cuboidal lattices and their lattice sums. We first present
the characteristics of cuboidal lattices L (A) dependent on a single parameter
A. In what follows we decompose the corresponding lattice sum into two lat-
tice sums, where one is related to a scaled cubic lattice and the other to a
scaled Madelung constant. We evaluate these lattice sums in two ways using
theta functions. We discuss these lattice sums including their analytical con-
tinuations and provide a more complete analysis for the lattice sum difference
between f.c.c. (face centred cubic) and h.c.p. (hexagonal close packing).

8.2 The cuboidal lattices

Following Conway and Sloane ( cite: Sec.3 duals ) we consider the lattice
generated by the vectors: (±u,±v,0)⊤ and (0,±v,±v)⊤,
where u and v are non-zero real numbers. To make it specific, take the basis
vectors

b⃗1 = (u,v,0)⊤, b⃗2 = (u,0,v)⊤, b⃗3 = (0,v,v)⊤. (8..1)

Then the generator matrix B is given by

B =

u v 0
u 0 v
0 v v


which has determinant −2uv2.

The Gram matrix is
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G = BB⊤ =

u2 + v2 u2 v2

u2 u2 + v2 v2

v2 v2 2v2

= v2

1+A A 1
A 1+A 1
1 1 2

 (8..2)

where A = u2/v2 and G is positive definite for A > 0. Conway and Sloane use
σ = u/v, so A = σ2.[278] The most important cases, in decreasing numerical
order, are:

1. A = 1: the face-centred cubic (f.c.c.) lattice;

2. A = 1/
√

2: the mean centred-cuboidal (m.c.c.) lattice;

3. A = 1/2: the body-centred cubic (b.c.c.) lattice;

4. A = 1/3: the axial centred-cuboidal (a.c.c.) lattice.

The f.c.c. and b.c.c. lattices are well known. The corresponding Gram matrices
for the f.c.c. and b.c.c lattices are identical to the ones shown in our previous
paper on lattice sums.[8] The m.c.c. and a.c.c. lattices occur in [278] and
[279]. The m.c.c. lattice is the densest isodual lattice in three-dimensional
space.
The quadratic form associated with the lattice is

g(i, j,k) = (i, j,k)G(i, j,k)⊤

= (u2 + v2)i2 +(u2 + v2) j2 +2v2k2 +2u2i j+2v2ik+2v2 jk

= u2(i2 + j2)+ v2( j+ k)2 + v2(i+ k)2

= v2 (A(i+ j)2 +( j+ k)2 +(i+ k)2) . (8..3)

It is easy to check that

min
i, j,k∈Z

(i, j,k)̸=(0,0,0)

{A(i+ j)2+( j+k)2+(i+k)2}=


4A if 0 < A < 1/3,
A+1 if 1/3 ≤ A ≤ 1,
2 if A > 1.

(8..4)

It follows from (8..3) and (8..4) that the minimum distance is given by

dmin = min
i, j,k∈Z

(i, j,k)̸=(0,0,0)

√
g(i, j,k) =


2v
√

A if 0 < A < 1/3,
v
√

A+1 if 1/3 ≤ A ≤ 1,
v
√

2 if A > 1.

(8..5)



184 8 Project 3 - The Cuboidal Lattices and their Lattice Sums

We rescale to make the minimum distance 1 by defining

g(A; i, j,k) =
g(i, j,k)

(dmin)
2

=



1
4A

(
A(i+ j)2 +( j+ k)2 +(i+ k)2) if 0 < A < 1/3,

1
A+1

(
A(i+ j)2 +( j+ k)2 +(i+ k)2) if 1/3 ≤ A ≤ 1,

1
2
(
A(i+ j)2 +( j+ k)2 +(i+ k)2) if A > 1.

The examples we are interested are in (f.c.c., m.c.c., b.c.c., a.c.c.) all satisfy
1/3 ≤ A ≤ 1. Because of its practical interest, this is the only case we will
study, and from here on (unless otherwise mentioned) we will always assume
1/3 ≤ A ≤ 1 in which case we have

g(A; i, j,k) =
1

A+1
(
A(i+ j)2 +( j+ k)2 +(i+ k)2) , (8..6)

corresponding to the rescaled Gram matrix

G(A) :=
1

(dmin)
2 G =

1
A+1

1+A A 1
A 1+A 1
1 1 2

 . (8..7)

The packing density is calculated as

∆L =
4π

3
ρ3√

det(G)

where ρ = dmin/2 and

det(G) = (det(B))2 = 4u2v4 = 4Av6.

It follows that

∆L =
π

12
√

A

(
dmin

v

)3

.

On using the formula for dmin in (8..5) we obtain the formula for the packing
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density, given by

∆L =



2πA
3

if 0 < A < 1/3,

π

12

√
(A+1)3

A
if 1/3 ≤ A ≤ 1,

π

6

√
2
A

if A > 1.

Figure 1 shows a graph of the packing density as a function of the parameter
A. Further information is recorded in Table 8.1. In the main region of interest
1/3 ≤ A ≤ 1, we have

∆L =
π

12

√
(A+1)3

A
(8..8)

and so
d∆L

dA
=

π

12

(
A− 1

2

)√
A+1

A3 . (8..9)

It follows that on the interval 1/3 ≤ A ≤ 1, the packing density has a maxi-
mum of π

√
2/6 ≈ 0.74048 at A = 1 corresponding to f.c.c., and a minimum of

π
√

3/8 ≈ 0.68017 at A = 1/2 corresponding to b.c.c.
It is also interesting to note that as A → ∞ the limiting case of the lattice is
the two-dimensional square close packing with minimal distance 1 and kissing
number 4; while in the other extreme case the limit as A → 0 gives the one-
dimensional lattice with minimal distance 1 and kissing number 2. These cases
are briefly analysed in Appendix B.

Table 8.1 Kissing number, packing density ∆L and integer combinations i⃗n
for the lattice associated with the Gram matrix G defined in (8..2). The values
in the table depend only on A and are independent of v.

Region A kiss(L ) ∆L integer combinationsa

I (0, 1
3) 2 2πA

3 i⃗1 ,⃗ i2
a.c.c. 1

3 10 2π

9 i⃗1, ...,⃗ i10

II (1
3 ,1) 8 π

12

√
(A+1)3

A i⃗3, ...,⃗ i10

f.c.c. 1 12 π
√

2
6 i⃗3, ...,⃗ i14

III (1,∞) 4 π

6

√
2
A i⃗11, ...,⃗ i14

a The integer combinations i⃗ which determine dmin in (8..5) for the different regions are as follows: i⃗I1 =

(−1,−1,1), i⃗I2 = (1,1,−1), i⃗II3 = (−1,0,0), i⃗II4 = (−1,0,1), i⃗II5 = (0,−1,0), i⃗II6 = (0,−1,1), i⃗II7 = (0,1,−1),
i⃗II8 =(0,1,0), i⃗II9 =(1,0,−1), i⃗II10 =(1,0,0), i⃗III11 =(−1,1,0), i⃗III12 =(0,0,−1), i⃗III13 =(0,0,1), i⃗III14 =(1,−1,0).
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Figure 8.1 Graph of the packing density ∆L versus A. The regions I, II and
III are ordering to the different kissing numbers. Explicit formulas are given
in Table 8.1. The location of the f.c.c., m.c.c., b.c.c. and a.c.c. lattices are
indicated on the graph.

Given a positive definite quadratic form g(i, j,k), the corresponding theta se-
ries is defined for |q|< 1 by

θg(q) =
∞

∑
i=−∞

∞

∑
j=−∞

∞

∑
k=−∞

qg(i, j,k).

For the quadratic form in (8..6) the theta series is

θ(A;q) =
∞

∑
i=−∞

∞

∑
j=−∞

∞

∑
k=−∞

q(A(i+ j)2+( j+k)2+(i+k)2)/(A+1) where 1/3 ≤ A ≤ 1.

The first few terms in the theta series for f.c.c., m.c.c., b.c.c. and a.c.c. as far
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as q9 are given respectively by

θ(1;q) = 1+12q+6q2 +24q3 +12q4 +24q5

+8q6 +48q7 +6q8 +36q9 + · · · ,

θ(
1√
2

;q) = 1+8q+4q4−2
√

2 +2q4
√

2−4 +4q8−4
√

2 +8q2
√

2 +16q−4
√

2+9

+8q4 +8q8
√

2−7 +4q16−8
√

2 +8q−8
√

2+17 +8q20−10
√

2

+8q−4
√

2+12 +2q16
√

2−16 +16q4
√

2+1

+16q−6
√

2+16 +8q14
√

2−12 +16q−12
√

2+25

+8q−8+12
√

2 +8q9 + · · · ,

θ(
1
2

;q) = 1+8q+6q4/3 +12q8/3 +8q4 +24q11/3 +6q16/3

+24q19/3 +24q20/3 +24q8 +32q9 + · · · ,

θ(
1
3

;q) = 1+10q+4q3/2 +8q5/2 +12q3 +26q4 +8q11/2 +20q6 +32q7

+8q15/2 +16q17/2 +10q9 + · · · .

Since the quadratic form g(A; i, j,k) has been normalised to make the minimum
distance 1, the kissing number occurs in each theta series as the coefficient
of q. That is, we have kiss(f.c.c.) = 12, kiss(m.c.c.) = 8, kiss(b.c.c.) = 8 and
kiss(a.c.c.) = 10.
We introduce the following lattice sum important in solid state theory,[275]

L(A;s) = ∑
i, j,k

′
(

1
g(A; i, j,k)

)s

= ∑
i, j,k

′
(

A+1
A(i+ j)2 +( j+ k)2 +(i+ k)2

)s

(8..10)
where 1/3 ≤ A ≤ 1. Here and throughout this work, a prime on the summation
symbol will denote that the sum ranges over all integer values except for the
term when all of the summation indices are simultaneously zero. Thus, the
sums in (8..10) are over all integer values of i, j and k except for the term
(i, j,k) = (0,0,0) which is omitted. This lattice sum smoothly connects four
different well known lattices, i.e., when A = 1, 1/

√
2, 1/2 or 1/3 we obtain

the expressions for the lattices f.c.c, m.c.c., b.c.c. and a.c.c. respectively (face-
centred cubic, mean centred-cuboidal, body-centred cubic, and axial centred
cuboidal). In these cases, we also write

LFCC
3 (s) = L(1;s),

LMCC
3 (s) = L(1/

√
2;s),

LBCC
3 (s) = L(1/2;s),

and L3(s) = L(1/3;s).
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We conclude this section by reconciling the Gram matrix G in (8..2) with two
matrices given by Conway and Sloane.[278] Let

U1 =

 1 0 0
−1 0 1
0 −1 0

 and U2 =

1 1 −1
1 0 0
0 1 0


and consider the equivalent matrices G1 and G2 defined by

G1 =U1 GU⊤
1 =

u2 + v2 −u2 −u2

−u2 u2 + v2 u2 − v2

−u2 u2 − v2 u2 + v2

 (8..11)

and

G2 =U2 GU⊤
2 =

4u2 2u2 2u2

2u2 u2 + v2 u2

2u2 u2 u2 + v2

 . (8..12)

When u = 1/
√

2 and v = 1/ 4
√

2, the matrix G1 in (8..11) is the Gram matrix
for the m.c.c lattice given by Conway and Sloane [122]. Moreover, when u =√

1/3 and v =
√

2/3, the matrix G1 leads to another well-known quadratic
form for the b.c.c. lattice, e.g., see [[58]]. When u = 1, v =

√
3, the matrix G2

in (8..12) is the Gram matrix for the a.c.c. lattice given in [p. 378][122]. Since
detU1 = detU2 = 1 it follows that

detG1 = detG2 = detG = (detB)2 = 4u2v4 = 4v6A.

The corresponding quadratic forms g1 and g2 are defined by

g1(i, j,k) = (i, j,k)G1(i, j,k)⊤

= (u2 + v2)i2 +(u2 + v2) j2 +(u2 + v2)k2 −2u2i j−2u2ik+2(u2 − v2) jk

and

g2(i, j,k) = (i, j,k)G2(i, j,k)⊤

= 4u2i2 +(u2 + v2) j2 +(u2 + v2)k2 +4u2i j+4u2ik+2u2 jk.

They are related to the quadratic form g in (8..3) by

g1(i, j,k) = g((i, j,k)U1) = g(i− j,−k, j) (8..13)

and
g2(i, j,k) = g((i, j,k)U2) = g(i+ j, i+ k,−i).
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8.3 A minimum property of the lattice sum L(A;s)

In the previous section — see (8..8) and (8..9) — it was noted that on the
interval 1/3 ≤ A ≤ 1, the packing density function ∆L has a minimum value
when A = 1/2. The next result shows that provided s > 3/2, the corresponding
lattice sum L(A;s) also attains a minimum at the same value A = 1/2.

A Theorem

Let L(A;s) be the lattice defined by (8..10), that is,

L(A;s) = ∑
i, j,k

′
(

1
g(A; i, j,k)

)s

= ∑
i, j,k

′
(

A+1
A(i+ j)2 +( j+ k)2 +(i+ k)2

)s

where s > 3/2 and 1/3 ≤ A ≤ 1. Then

∂

∂A
L(A;s)

∣∣∣∣
A=1/2

= 0 and
∂ 2

∂A2 L(A;s)
∣∣∣∣
A=1/2

> 0.

B proof

By definition we have

L(A;s) = ∑
I,J,K

′
(

1
g(A; I,J,K)

)s

where
g(A; I,J,K) =

1
A+1

(
A(I + J)2 +(J+K)2 +(I +K)2) .

Now make the change of variables given by (8..13), namely

(I,J,K) = (i− j,−k, j).

This is a bijection since

(i, j,k) = (I +K,K,−J),

and it follows that

L(A;s) = ∑
i, j,k

′
(

1
g(A; i− j,−k, j)

)s

= ∑
i, j,k

′ 1(
i2 + j2 + k2 −2(i j+ ik)

( A
A+1

)
+2 jk

(A−1
A+1

))s .
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By direct calculation, the derivative is given by

∂

∂A
L(A;s) =

2s
(A+1)2 ∑

i, j,k

′ i j+ ik−2 jk(
i2 + j2 + k2 −2(i j+ ik)

( A
A+1

)
+2 jk

(A−1
A+1

))s+1 .

(8.B.1)
Setting A = 1/2 gives

∂

∂A
L(A;s)

∣∣∣∣
A=1/2

=
8s
9 ∑

i, j,k

′ i j+ ik−2 jk(
i2 + j2 + k2 − 2

3(i j+ ik+ jk)
)s+1 . (8.B.2)

Switching i and j gives

∂

∂A
L(A;s)

∣∣∣∣
A=1/2

=
8s
9 ∑

i, j,k

′ i j+ jk−2ik(
i2 + j2 + k2 − 2

3(i j+ ik+ jk)
)s+1 , (8.B.3)

while switching i and k in (8.B.2) gives

∂

∂A
L(A;s)

∣∣∣∣
A=1/2

=
8s
9 ∑

i, j,k

′ jk+ ik−2i j(
i2 + j2 + k2 − 2

3(i j+ ik+ jk)
)s+1 . (8.B.4)

On adding (8.B.2), (8.B.3) and (8.B.4) and noting that

(i j+ ik−2 jk)+(i j+ jk−2ik)+( jk+ ik−2i j) = 0

it follows that
∂

∂A
L(A;s)

∣∣∣∣
A=1/2

= 0.

Next, taking the derivative of (8.B.1) gives

∂ 2

∂A2 L(A;s) =
−4s

(A+1)3 ∑
i, j,k

′ i j+ ik−2 jk(
i2 + j2 + k2 −2(i j+ ik)

( A
A+1

)
+2 jk

(A−1
A+1

))s+1

+
4s(s+1)
(A+1)4 ∑

i, j,k

′ (i j+ ik−2 jk)2(
i2 + j2 + k2 −2(i j+ ik)

( A
A+1

)
+2 jk

(A−1
A+1

))s+2 .

When A = 1/2 the first sum is zero by the calculations in the first part of the
proof. Therefore,

∂ 2

∂A2 L(A;s)
∣∣∣∣
A=1/2

=
64s(s+1)

81 ∑
i, j,k

′ ( jk+ ik−2i j)2(
i2 + j2 + k2 − 2

3(i j+ ik+ jk)
)s+2 .

The term ( jk + ik − 2i j)2 in the numerator is non-negative and not always
zero. The denominator is always positive because the quadratic form is positive
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definite. It follows that

∂ 2

∂A2 L(A;s)
∣∣∣∣
A=1/2

> 0

as required.
The calculations above are valid provided term-by-term differentiation of the
series is allowed. All of the series encountered above converge absolutely and
uniformly on compact subsets of the region Re(s) > 3/2. On restricting s to
real values, the conclusion about positivity is valid for s > 3/2.
A consequence of Theorem A is that for any fixed value s> 3/2, the lattice sum
L(A;s) attains a minimum when A = 1/2. Graphs of y = L(A;s) to illustrate
this minimum property are shown in Fig. 2. In the limiting case s → ∞ we
have

L(A;∞) = lim
s→∞

L(A;s) = kiss(L ) =


10 if A = 1/3,
8 if 1/3 < A < 1,
12 if A = 1.

This graph is also shown in Fig.8.2.

Figure 8.2 Graph of L(A;s) versus A for various values of s
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8.4 Evaluation of the sum L(A;s)

We now turn to the evaluation of L(A;s). Our objectives are to find formulas
that are both simple and computationally efficient. The formulas we obtain can
be used to show that L(A;s) can be analytically continued to complex values
of s, with a simple pole at s = 3/2 and no other singularities.

One method of evaluating the sum L(A;s) is to use the Terras decomposition.
This was done for f.c.c. and b.c.c.[8] and can in principle also be used for
L(A;s). Here we use an easier method that also works the whole parameter
range 1/3 ≤ A ≤ 1 and hence gives the lattice sum for all four lattices f.c.c.,
m.c.c., b.c.c. and a.c.c. In fact, the advantage here is that we obtain two formu-
las which not only can be used as checks, but also contain different information
about their analytic continuation.

We begin by writing the lattice sum in the form

L(A;s) = ∑
i, j,k

′
(

A+1
A(i+ j)2 +( j+ k)2 +(i+ k)2

)s

= ∑
I,J,K

I+J+K even

′
(

A+1
AI2 + J2 +K2

)s

=
(A+1)s

2 ∑
i, j,k

′ 1+(−1)i+ j+k

(Ai2 + j2 + k2)s . (8..1)

Therefore, we evaluate the sums

T1(A;A;s) := ∑
i, j,k

′ 1
(Ai2 + j2 + k2)s (8..2)

and

T2(A;s) := ∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s . (8..3)

By (8..1), (8..2) and (8..3), the required lattice sum is given by

L(A;s) =
(A+1)s

2
(T1(A;s)+T2(A;s)) . (8..4)

A The sum T1(A;s)

We shall consider two ways for handling the sum in (8..2). The first is to
separate the terms ording to whether i = 0 or i ̸= 0, which gives rise to

T1(A;s) = f (s)+2F(s) (8.A.5)
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where

f (s) = ∑
j,k

′ 1
( j2 + k2)s

and

F(s) =
∞

∑
i=1

∞

∑
j=−∞

∞

∑
k=−∞

1
(Ai2 + j2 + k2)s .

This is the starting point of the approach taken by Selberg and Chowla
[[124][Section 7]]. Another way is to separate the terms ording to whether
( j,k) = (0,0) or ( j,k) ̸= (0,0) and write

T1(A;s) = 2g(s)+G(s) (8.A.6)

where

g(s) =
∞

∑
i=1

1
(Ai2)s

and

G(s) = ∑
j,k

′ ∞

∑
i=−∞

1
(Ai2 + j2 + k2)s .

The series F(s), g(s) and G(s) also depend on A. For simplicity we omit the
parameter A from the notation and just write F(s), g(s) and G(s) in place of
F(A;s), g(A;s) and G(A;s), respectively.

We will now analyse (8.A.5); the corresponding analysis for (8.A.6) will be
given in Section B. By the well-known result (12.A.17) we have

f (s) = ∑
j,k

′ 1
( j2 + k2)s = 4ζ (s)L−4(s)

where

ζ (s) =
∞

∑
n=1

1
ns

is the Riemann zeta function, and

L−4(s) =
∞

∑
n=1

sin nπ

2
ns =

1
1s −

1
3s +

1
5s −

1
7s + · · · .

is the Dirichlet beta series. It remains to analyse F(s). By the integral formula
for the gamma function (12.A.2) we have
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π
−s

Γ(s)F(s) =
∫

∞

0
xs−1

∞

∑
i=1

e−πAxi2
∞

∑
j=−∞

∞

∑
k=−∞

e−πx( j2+k2) dx

=
∫

∞

0
xs−1

∞

∑
i=1

e−πAxi2
(

∞

∑
j=−∞

e−πx j2

)2

dx.

Now apply the modular transformation for theta functions (12.A.10) to obtain

π
−s

Γ(s)F(s) =
∫

∞

0
xs−1

∞

∑
i=1

e−πAxi2
(

1√
x

∞

∑
j=−∞

e−π j2/x

)2

dx

=
∫

∞

0
xs−2

∞

∑
i=1

e−πAxi2
∞

∑
N=0

r2(N)e−πN/x dx

where r2(N) is the number of representations of N as a sum of two squares,
e.g., see (12.A.11). Now separate out the N = 0 term and evaluate the resulting
integrals. We find that

π
−s

Γ(s)F(s) =
∞

∑
i=1

∫
∞

0
xs−2e−πAxi2 dx+

∞

∑
i=1

∞

∑
N=1

r2(N)
∫

∞

0
xs−2e−πAxi2−πN/x dx

=
Γ(s−1)ζ (2s−2)

As−1πs−1 +2
∞

∑
i=1

∞

∑
N=1

r2(N)

(
N

Ai2

)(s−1)/2

×Ks−1

(
2πi

√
AN
)

where we have used the formula (12.A.3) for the K-Bessel function. On using
all of the above back in (8.A.5) we obtain

∑
i, j,k

′ 1
(Ai2 + j2 + k2)s = 4ζ (s)L−4(s)+

2π

(s−1)
ζ (2s−2)

As−1

+
4πs

Γ(s)
A(1−s)/2

∞

∑
i=1

∞

∑
N=1

r2(N)

(
N
i2

)(s−1)/2

Ks−1

(
2πi

√
AN
)
. (8.A.7)

This is essentially Selberg and Chowla’s formula (45) [124]. They write it in a
slightly different form in terms of a sum over the divisors of N to minimise the
number of Bessel function evaluations. We will leave it as it is for simplicity.

B A second formula for the sum T1(A;s)

This time we split the terms ording as in (8.A.6) and start with

T1(A;s) = 2g(s)+G(s) (8.B.8)
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where

g(s) =
∞

∑
i=1

1
(Ai2)s = A−s

ζ (2s)

and

G(s) = ∑
j,k

′ ∞

∑
i=−∞

1
(Ai2 + j2 + k2)s .

Now apply the integral formula for the gamma function (12.A.2) and then the
modular transformation for the theta function (12.A.7) to obtain

π
−s

Γ(s)G(s) =
∫

∞

0
xs−1

∑
j,k

′e−π( j2+k2)x
∞

∑
i=−∞

e−πi2Ax dx

=
1√
A

∫
∞

0
xs−3/2

∑
j,k

′e−π( j2+k2)x
∞

∑
i=−∞

e−πi2/Ax dx.

Separate the i = 0 term, to get

π
−s

Γ(s)G(s) =
1√
A

∫
∞

0
xs−3/2

∑
j,k

′e−π( j2+k2)x dx

+
2√
A

∫
∞

0
xs−3/2

∑
j,k

′e−π( j2+k2)x
∞

∑
i=1

e−πi2/Ax dx.

The first integral can be evaluated in terms of the gamma function by (12.A.2),
while the second integral can be expressed in terms of the modified Bessel
function by (12.A.3). The result is

π
−s

Γ(s)G(s) =
Γ
(
s− 1

2

)
√

Aπs− 1
2

∑
j,k

′ 1

( j2 + k2)s− 1
2

+
4

A
s
2+

1
4
∑
j,k

′ ∞

∑
i=1

(
i√

j2 + k2

)s− 1
2

Ks− 1
2

(
2πi

√
j2 + k2

A

)

=
4√
A

π
−(s− 1

2 ) Γ

(
s− 1

2

)
ζ

(
s− 1

2

)
L−4

(
s− 1

2

)
+

4

A
s
2+

1
4

∞

∑
N=1

∞

∑
i=1

r2(N)

(
i√
N

)s− 1
2

Ks− 1
2

(
2πi

√
N
A

)
.
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On using all of the above back in (8.B.8) we obtain

∑
i, j,k

′ 1
(Ai2 + j2 + k2)s

= 2A−s
ζ (2s)+4

√
π

A
Γ
(
s− 1

2

)
Γ(s)

ζ

(
s− 1

2

)
L−4

(
s− 1

2

)
+

4

A
s
2+

1
4

πs

Γ(s)

∞

∑
N=1

∞

∑
i=1

r2(N)

(
i√
N

)s− 1
2

Ks− 1
2

(
2πi

√
N
A

)
. (8.B.9)

The terms in (9.A.4) involve Ks−1 Bessel functions whereas Ks−1/2 Bessel
functions occur in (8.B.9). That is because each application of the theta func-
tion transformation formula lowers the subscript in the resulting Bessel func-
tion by 1/2, due to the creation of a x−1/2 factor in the integral. The theta
function transformation formula is used twice (i.e., the formula is squared) in
the derivation of (9.A.4) and only once in the derivation of (8.B.9).

Each of (9.A.4) and (8.B.9) turns out to have its own advantages, as will be
seen in Sections D and C.

C The alternating sum T2(A;s)

The analysis in the previous sections can be modified to handle the alternat-
ing series (8..3) which has the term (−1)i+ j+k in the numerator, as follows.
Separating the terms ording to whether i = 0 or i ̸= 0 gives

T2(A;s) = h(s)+2H(S) (8.C.10)

where

h(s) = ∑
j,k

′ (−1) j+k

( j2 + k2)s

and

H(s) =
∞

∑
i=1

∞

∑
j=−∞

∞

∑
k=−∞

(−1)i+ j+k

(Ai2 + j2 + k2)s .

By a known result (8.B.21), we have

h(s) =−4(1−21−s)ζ (s)L−4(s).
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Next, by the integral formula for the gamma function (12.A.2) we have

π
−s

Γ(s)H(s) =
∫

∞

0
xs−1

∞

∑
i=1

(−1)ie−πAxi2
∞

∑
j=−∞

∞

∑
k=−∞

(−1) j+ke−πx( j2+k2) dx

=
∫

∞

0
xs−1

∞

∑
i=1

(−1)ie−πAxi2
(

∞

∑
j=−∞

(−1) je−πx j2

)2

dx.

Now apply the modular transformation for theta functions to obtain

π
−s

Γ(s)H(s) =
∫

∞

0
xs−1

∞

∑
i=1

(−1)ie−πAxi2
(

1√
x

∞

∑
j=−∞

e−π( j+ 1
2 )

2/x

)2

dx.

By formula (8.A.14) this can be expressed as

π
−s

Γ(s)H(s) =
∫

∞

0
xs−2

∞

∑
i=1

(−1)ie−πAxi2
∞

∑
N=0

r2(4N +1)e−π(4N+1)/2x dx

=
∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)
∫

∞

0
xs−2e−πAxi2−π(4N+1)/2x dx.

The integral can be expressed in terms of Bessel functions by (12.A.3) to give

π
−s

Γ(s)H(s) = 2
∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

(
2N + 1

2
Ai2

)(s−1)/2

×Ks−1

(
2πi

√
A(2N +

1
2
)

)
.

On using all of the above back in (8.C.10) we obtain

∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s

=−4(1−21−s)ζ (s)L−4(s)

+
4πs

Γ(s)
A(1−s)/2

∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

(
2N + 1

2
i2

)(s−1)/2

×Ks−1

(
2πi

√
A(2N +

1
2
)

)
. (8.C.11)
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D A second formula for the alternating sum T2(A;s)

This time we separate the terms ording to whether ( j,k) = (0,0) or ( j,k) ̸=
(0,0) and write

T2(A;s) = 2
∞

∑
i=1

(−1)i

(Ai2)s + J(s) (8.D.12)

where

J(s) = ∑
j,k

′ ∞

∑
i=−∞

(−1)i+ j+k

(Ai2 + j2 + k2)s .

By (8.B.30) we have

2
∞

∑
i=1

(−1)i

(Ai2)s =−2A−s(1−21−2s)ζ (2s).

It remains to analyse the sum for J(s). By the integral formula for the gamma
function (12.A.2) we have

π
−s

Γ(s)J(s) =
∫

∞

0
xs−1

∑
j,k

′
(−1) j+ je−π( j2+k2)x

∞

∑
i=−∞

(−1)ie−πi2Ax dx.

Now apply the modular transformation (12.A.9) to obtain

π
−s

Γ(s)J(s) =
1√
A

∫
∞

0
xs−3/2

∑
j,k

′
(−1) j+ke−π( j2+k2)x

∞

∑
i=−∞

e−π(i+ 1
2 )

2/Ax dx.

Now put N = j2 + k2 and use

∞

∑
i=−∞

e−π(i+ 1
2 )

2/Ax = 2
∞

∑
i=0

e−π(i+ 1
2 )

2/Ax = 2
∞

∑
i=1

e−π(i− 1
2 )

2/Ax

to deduce

π
−s

Γ(s)J(s) =
2√
A

∞

∑
N=1

∞

∑
i=1

(−1)Nr2(N)
∫

∞

0
xs−3/2 e−πNx−π(i− 1

2 )
2/Ax dx.

The integral can be evaluated in terms of the modified Bessel function
by (12.A.3) to give

π
−s

Γ(s)J(s) =
4

A
s
2+

1
4

∞

∑
N=1

∞

∑
i=1

(−1)N r2(N)

(
i− 1

2√
N

)s− 1
2

Ks− 1
2

(
2π(i− 1

2
)

√
N
A

)
.
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It follows that

∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s

=−2A−s(1−21−2s)ζ (2s)

+
4

A
s
2+

1
4

πs

Γ(s)

∞

∑
N=1

∞

∑
i=1

(−1)N r2(N)

(
i− 1

2√
N

)s− 1
2

Ks− 1
2

(
2π(i− 1

2
)

√
N
A

)
.

(8.D.13)

E Two formulas for L(A;s)

On substituting the results of (9.A.4) and (8.C.11) back into (8..4) we obtain a
formula for L(A;s) in terms of Ks−1 Bessel functions:

L(A;s) = 4
(

A+1
2

)s

ζ (s)L−4(s)+
πA

s−1

(
1+

1
A

)s

ζ (2s−2)

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=1

r2(N)

(
N
i2

)(s−1)/2

Ks−1

(
2πi

√
AN
)

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

×

(
2N + 1

2
i2

)(s−1)/2

Ks−1

(
2πi

√
A(2N +

1
2
)

)
.

(8.E.14)

On the other hand, if the results of (8.B.9) and (8.D.13) are used in (8..4), the
resulting formula for L(A;s) involves Ks−1/2 Bessel functions:

L(A;s) = 2
(

A+1
4A

)s

ζ (2s)

+2
√

π

A
(A+1)s Γ

(
s− 1

2

)
Γ(s)

ζ

(
s− 1

2

)
L−4

(
s− 1

2

)
+

2
A1/4

(√
A+

1√
A

)s
πs

Γ(s)

∞

∑
N=1

∞

∑
i=1

N(1−2s)/4 r2(N)

×

{
is−

1
2 Ks− 1

2

(
2πi

√
N
A

)
+(−1)N

(
i− 1

2

)s− 1
2

×Ks− 1
2

(
2π(i− 1

2
)

√
N
A

)}
. (8.E.15)
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The formulas (8.E.14) and (8.E.15) can be used as checks against each other.
Moreover, the formulas offer different information about special values of the
lattice sum, as will be seen in Section 8.6.

8.5 Hexagonal close packing

Because of its importance in solid state chemistry and physics, we give a sim-
ilar analysis of the lattice sum for the hexagonal close packed structure given
by[280]

LHCP
3 (s) = S1(s)+S2(s)

where
S1(s) = ∑

i, j,k

′ 1
(i2 + i j+ j2 + 8

3 k2)s

and

S2(s) = ∑
i, j,k

1
((i+ 1

3)
2 +(i+ 1

3)( j+ 1
3)+( j+ 1

3)
2 + 8

3(k+
1
2)

2)s
.

As before, the prime on the sum for S1(s) indicates that the summation is over
all integers except for the term corresponding to i= j = k = 0 which is omitted.
The sum for S2(s) is over all integer values of i, j and k. We shall analyse S1(s)
and S2(s) one at a time.

A The sum S1(s)

Break the sum for S1(s) into two, ording to whether k = 0 or k ̸= 0. This gives

S1(s) = f (s)+2F(s) (8.A.1)

where
f (s) = ∑

i, j

′ 1
(i2 + i j+ j2)s

and

F(s) =
∞

∑
k=1

∑
i, j

1
(i2 + i j+ j2 + 8

3 k2)s
.

By (12.A.24) we have
f (s) = 6ζ (s)L−3(s)

where

L−3(s) =
∞

∑
k=1

(
sin(2kπ/3)
sin(2π/3)

)
1
ks =

1
1s −

1
2s +

1
4s −

1
5s + · · · .
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It remains to calculate F(s). Applying the gamma function integral (8.12.A.2)
followed by the theta function transformation formula (8.12.A.12), we obtain

(2π)−s
Γ(s)F(s) =

∫
∞

0
xs−1

∞

∑
k=1

e−16πk2x/3
∑
i, j

e−2π(i2+i j+ j2)x dx

=
1√
3

∫
∞

0
xs−2

∞

∑
k=1

e−16πk2x/3
∑
i, j

e−2π(i2+i j+ j2)/3x dx.

Now separate out the i = j = 0 term and evaluate the resulting integrals. The
result is

(2π)−s
Γ(s)F(s) =

1√
3

∞

∑
k=−∞

∫
∞

0
xs−2e−16πk2x/3 dx

+
1√
3

∞

∑
k=−∞

∑
i, j

′
∫

∞

0
xs−2e−16πk2x/3−2π(i2+i j+ j2)/3x dx

=
1√
3

(
3

16π

)s−1

Γ(s−1)ζ (2s−2)

+
2√
3

∞

∑
k=1

∑
i, j

′
(

i2 + i j+ j2

8k2

)(s−1)/2

×Ks−1

(
8πk

3

√
2(i2 + i j+ j2)

)
.

It follows that

S1(s) = 6ζ (s)L−3(s)+
4π√

3

(
3
8

)s−1( 1
s−1

)
ζ (2s−2)

+
8√
3

πs

Γ(s)

∞

∑
k=1

∑
i, j

′
(

i2 + i j+ j2

2k2

)(s−1)/2

Ks−1

(
8πk

3

√
2(i2 + i j+ j2)

)

= 6ζ (s)L−3(s)+
4π√

3

(
3
8

)s−1( 1
s−1

)
ζ (2s−2)

+
8√
3

πs

Γ(s)

∞

∑
k=1

∞

∑
N=1

u2(N)

(
N

2k2

)(s−1)/2

Ks−1

(
8πk

3

√
2N
)

(8.A.2)

where u2(N) is the number of representations of N by the form i2 + i j+ j2.
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B A second formula for the sum S1(s)

A different formula for S1(s) can be obtained by separating the terms in the
series ording to whether i = j = 0 or i and j are not both zero. This gives

S1(s) = 2
(

3
8

)s ∞

∑
k=1

1
k2s +G(s)

where

G(s) = ∑
i, j

′ ∞

∑
k=−∞

1
(i2 + i j+ j2 + 8

3 k2)s
.

Applying the gamma function integral (8.12.A.2) followed by the theta func-
tion transformation formula (8.12.A.7), we obtain

π
−s

Γ(s)G(s) =
∫

∞

0
xs−1

∑
i, j

′e−π(i2+i j+ j2)x
∞

∑
k=−∞

e−8πk2x/3 dx

=

√
3
8

∫
∞

0
xs− 3

2 ∑
i, j

′e−π(i2+i j+ j2)x
∞

∑
k=−∞

e−3πk2/8x dx.

Now separate out the k = 0 term and evaluate the resulting integrals. The result
is

π
−s

Γ(s)G(s)

=

√
3
8

∫
∞

0
xs− 3

2 ∑
i, j

′e−π(i2+i j+ j2)x dx

+2

√
3
8

∫
∞

0
xs− 3

2 ∑
i, j

′e−π(i2+i j+ j2)x
∞

∑
k=1

e−3πk2/8x dx

=

√
3
8

π
−(s− 1

2 ) Γ(s− 1
2
)∑

i, j

′ 1
(i2 + i j+ j2)s−1/2

+4
(

3
8

)(2s+1)/4

∑
i, j

′ ∞

∑
k=1

(
k2

i2 + i j+ j2

)(2s−1)/4

Ks− 1
2

(√
3
2

πk
√

i2 + i j+ j2

)
.

The first sum can be evaluated in terms of the Riemann zeta function and the
L−3 function by (8.12.A.24). In the second sum, we again use the notation
u2(N) for the number of representations of N by the form i2 + i j + j2. The
result is

π
−s

Γ(s)G(s) =

√
27
2

π
−(s− 1

2 ) Γ

(
s− 1

2

)
ζ

(
s− 1

2

)
L−3

(
s− 1

2

)
+4
(

3
8

)(2s+1)/4 ∞

∑
N=1

∞

∑
k=1

u2(N)

(
k2

N

)(2s−1)/4

Ks− 1
2

(
πk

√
3N
2

)
.
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It follows that

S1(s) = 2
(

3
8

)s

ζ (2s)+

√
27π

2
Γ(s− 1

2)

Γ(s)
ζ

(
s− 1

2

)
L−3

(
s− 1

2

)
+

4πs

Γ(s)

(
3
8

)(2s+1)/4 ∞

∑
N=1

∞

∑
k=1

u2(N)

(
k2

N

)(2s−1)/4

Ks− 1
2

(
πk

√
3N
2

)
.

(8.B.3)

C The sum S2(s)

The analysis in this case is a little simpler because the summation is over all
integers i, j and k. We apply the gamma function integral (8.12.A.2) to write

S2(s) = ∑
i, j,k

1
((i+ 1

3)
2 +(i+ 1

3)( j+ 1
3)+( j+ 1

3)
2 + 8

3(k+
1
2)

2)s

=
(2π)s

Γ(s)

∫
∞

0
xs−1

∞

∑
k=−∞

e−16π(k+ 1
2 )

2x/3

×
∞

∑
i, j=−∞

e−2π((i+ 1
3 )

2+(i+ 1
3 )( j+ 1

3 )+( j+ 1
3 )

2)x dx. (8.C.4)

Now make use of the transformation formula (8.12.A.13) to deduce

S2(s) =
(2π)s

Γ(s)

∫
∞

0
xs−1

(
2

∞

∑
k=0

e−16π(k+ 1
2 )

2x/3

)

×

(
1

x
√

3

∞

∑
i, j=−∞

ω
i− je−2π(i2+i j+ j2)/3x

)
dx

where ω = e2πi/3 is a primitive cube root of 1. Now separate the term i = j = 0
to deduce

S2(s) =
(2π)s

Γ(s)
2√
3

∫
∞

0
xs−2

∞

∑
k=0

e−16π(k+ 1
2 )

2x/3 dx

+
(2π)s

Γ(s)
2√
3

∫
∞

0
xs−2

∞

∑
k=0

e−16π(k+ 1
2 )

2x/3
∞

∑
N=1

ω
N u2(N)e−2πN/3x dx

where u2(N) is the number of representations of N by the form i2 + i j+ j2, as
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before. On evaluating the integrals using (8.12.A.2) and (8.12.A.3) we obtain

S2(s) =
4π√

3

(
3
8

)s−1( 1
s−1

)
∞

∑
k=0

1
(k+ 1

2)
2s−2

+
8√
3

πs

Γ(s)

∞

∑
k=0

∞

∑
N=1

ω
N u2(N)

(
N

2(k+ 1
2)

2

)(s−1)/2

×Ks−1

(
8π
(
k+ 1

2

)
3

√
2N

)
.

The first sum can be evaluated in terms of the Riemann zeta function by using
(8.12.A.23). The ωN term can be handled by using

ω
N = cos

2πN
3

+ isin
2πN

3

along with the fact that S2(s) is real valued when s is real. It follows that

S2(s) =
4π√

3

(
3
8

)s−1

(22s−2 −1)
(

1
s−1

)
ζ (2s−2)

+
8√
3

πs

Γ(s)

∞

∑
k=0

∞

∑
N=1

cos
2πN

3
u2(N)

(
N

2(k+ 1
2)

2

)(s−1)/2

×Ks−1

(
8π
(
k+ 1

2

)
3

√
2N

)
. (8.C.5)

D A second formula for the sum S2(s)

We introduce the abbreviation

Yi, j =

(
i+

1
3

)2

+

(
i+

1
3

)(
j+

1
3

)
+

(
j+

1
3

)2

to write (12.3.18) in the form

S2(s) =
(2π)s

Γ(s)

∫
∞

0
xs−1

∞

∑
i, j=−∞

e−2πYi, jx
∞

∑
k=−∞

e−16π(k+ 1
2 )

2x/3 dx.

This time we apply the transformation formula (12.A.9) to the sum over k to
obtain

S2(s) =

√
3

4
(2π)s

Γ(s)

∫
∞

0
xs−3/2

∞

∑
i, j=−∞

e−2πYi, jx
∞

∑
k=−∞

(−1)k e−3πk2/16x dx.
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Now separate the terms ordering to whether k = 0 or k ̸= 0 and evaluate the
resulting integrals by (8.12.A.2) and (8.12.A.3). The result is

S2(s) =

√
3π

8
Γ(s− 1

2)

Γ(s)

∞

∑
i, j=−∞

1

Y s−1/2
i j

+
4πs

Γ(s)

(
3
8

)(2s+1)/4 ∞

∑
k=1

(−1)k
∞

∑
i, j=−∞

(
k√
Yi j

)s− 1
2

Ks− 1
2

(
πk
√

3Yi, j/2
)
.

The first sum can be handled by (8.12.A.25) to give

∞

∑
i, j=−∞

1

Y s−1/2
i j

= 3(3s−1/2 −1)ζ
(

s− 1
2

)
L−3

(
s− 1

2

)
.

For the other sum, observe that

3Yi, j = 3i2 +3i j+3 j2 +3i+3 j+1,

that is to say 3Yi, j is a positive integer and 3Yi, j ≡ 1 (mod 3). Therefore we set
3Yi, j = 3N +1 and use (8.12.A.16) to deduce that the number of solutions of

3i2 +3i j+3 j2 +3i+3 j+1 = 3N +1

is equal to 1
2 u2(3N+1). Taking all of the above into account, we finally obtain

S2(s) =

√
27π

8
Γ(s− 1

2)

Γ(s)
(3s−1/2 −1) ζ

(
s− 1

2

)
L−3

(
s− 1

2

)
+

2πs

Γ(s)

(
3
8

)(2s+1)/4 ∞

∑
k=1

∞

∑
N=0

(−1)k u2(3N +1)

×

 k√
N + 1

3

s− 1
2

Ks− 1
2

(
πk

√
3N +1

2

)
. (8.D.6)
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E The lattice sum for hexagonal close packing

On adding the results for S1(s) and S2(s) in (8.A.2) and (8.C.5) we obtain

LHCP
3 (s) = 6ζ (s)L−3(s)+

4π√
3

(
3
2

)s−1( 1
s−1

)
ζ (2s−2)

+
8√
3

πs

Γ(s)

∞

∑
k=1

∞

∑
N=1

u2(N)

(
N

2k2

)(s−1)/2

Ks−1

(
8πk

3

√
2N
)

+
8√
3

πs

Γ(s)

∞

∑
k=0

∞

∑
N=1

cos
2πN

3
u2(N)

×

(
N

2(k+ 1
2)

2

)(s−1)/2

Ks−1

(
8π
(
k+ 1

2

)
3

√
2N

)
.

(8.E.7)

On the other hand, if we add the results of (8.B.3) and (8.D.6) we obtain

LHCP
3 (s) = 2

(
3
8

)s

ζ (2s)+

√
27π

8
Γ(s− 1

2)

Γ(s)
(3s−1/2 +1) ζ

(
s− 1

2

)
L−3

(
s− 1

2

)
+

4πs

Γ(s)

(
3
8

)(2s+1)/4 ∞

∑
N=1

∞

∑
k=1

u2(N)

(
k√
N

)s−1/2

Ks− 1
2

(
πk

√
3N
2

)

+
2πs

Γ(s)

(
3
8

)(2s+1)/4 ∞

∑
k=1

∞

∑
N=0

(−1)k u2(3N +1)

×

 k√
N + 1

3

s− 1
2

Ks− 1
2

(
πk

√
3N +1

2

)
(8.E.8)

8.6 Analytic continuations of the lattice sums L(A;s)
and LHCP

3 (s)

We will now show that the lattice sums L(A;s) and LHCP
3 (s) can be continued

analytically to the whole s-plane, and that the resulting functions have a single
simple pole at s = 3/2 and no other singularities. We do this in steps. First, in
Section 8.6.A we show that the lattice sums each have a simple pole at s = 3/2
and determine the residue. Then, in Section 8.6.B we show that the analytic
continuations obtained are valid for the whole s-plane and there are no other
singularities. Finally, in Sections 8.6.C–E, values of the analytic continuations
at the points s = 1/2 and s = 1, 0,−1,−2, . . . are computed. In particular, the
evaluation of T2(A;s) at s= 1/2 in the case A= 1 gives the Madelung constant,
e.g., see [277], [1, pp. xiii, 39–51], [281].
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A Behaviour of the lattice sums at s = 3/2

We start by showing that L(A;s) has a simple pole at s = 3/2 and determine
the residue. In the formula (8.E.14), all of the terms are analytic at s = 3/2
except for the term involving ζ (2s−2). It follows that

lim
s→3/2

(s−3/2)L(A;s) = lim
s→3/2

(s−3/2)
πA

s−1

(
1+

1
A

)s

ζ (2s−2)

= 2πA
(

1+
1
A

)3/2

lim
s→3/2

(s−3/2)ζ (2s−2)

=
2π√

A
(A+1)3/2 × 1

2
lim
u→1

(u−1)ζ (u)

=
π√
A
(A+1)3/2

where (8.12.A.19) was used in the last step of the calculation. It follows further
that L(A;s) has a simple pole at s = 3/2 and the residue is given by

Res(L(A;s),3/2) =
π√
A
(A+1)3/2 .

By (8..8) this is just 12 times the packing density, i.e.,

Res(L(A;s),3/2) = 12∆L .

For example, taking A = 1 gives

Res(LFCC
3 (s),3/2) = 2

√
2π (8.A.1)

while taking A = 1/2 gives

Res(LBCC
3 (s),3/2) = 3

√
3π/2.

Laurent’s theorem implies there is an expansion of the form

L(A;s) =
c−1

s−3/2
+ c0 +

∞

∑
n=1

cn(s−3/2)n (8.A.2)

where
c−1 = Res(L(A;s),3/2) =

π√
A
(A+1)3/2

and the coefficients c0, c1, c2, . . . depend on A but not on s. To calculate c0,
start with the fact that

lim
s→3/2

(
πA

s−1

(
1+

1
A

)s

ζ (2s−2)− c−1

s−3/2

)
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=
π√
A
(A+1)3/2

(
2γ −2+ log

(
1+

1
A

))
where γ = 0.57721566490153286060 · · · is Euler’s constant. Then
use (8.E.14) and (8.12.A.5) to deduce

c0 = lim
s→3/2

(
L(A;s)− c−1

s−3/2

)
=
√

2(A+1)3/2
ζ

(
3
2

)
L−4

(
3
2

)
+

π√
A
(A+1)3/2

(
2γ −2+ log

(
1+

1
A

))
+

2π√
A
(A+1)3/2

∞

∑
k=1

∞

∑
N=1

1
k

r2(N)exp
(
−2πk

√
AN
)

+
2π√

A
(A+1)3/2

∞

∑
k=1

∞

∑
N=0

(−1)k

k
r2(4N +1) exp

(
−2πk

√
A
(

2N +
1
2

))
.

Interchanging the order of summation and evaluating the sum over k gives

c0 =
√

2(A+1)3/2
ζ

(
3
2

)
L−4

(
3
2

)
+

π√
A
(A+1)3/2

(
2γ −2+ log

(
1+

1
A

))
− 2π√

A
(A+1)3/2

∞

∑
N=1

r2(N) log
(

1− e−2π
√

AN
)

− 2π√
A
(A+1)3/2

∞

∑
N=0

r2(4N +1) log
(

1+ e−π

√
2A(4N+1)

)
.

Numerical evaluation in the case A = 1 gives

c0|A=1 = 6.98405255032224793406 · · · . (8.A.3)

A similar analysis can be given for LHCP
3 (s) using (8.E.7). We omit the details

of the calculations as they are similar to the above. The end result is a Laurent
expansion of the form

LHCP
3 (s) =

d−1

s−3/2
+d0 +

∞

∑
n=1

dn(s−3/2)n (8.A.4)

where
d−1 = Res(LHCP

3 (s),3/2) = 2
√

2π (8.A.5)
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and

d0 = 6ζ

(
3
2

)
L−3

(
3
2

)
+ 2

√
2π

(
2γ −2+ log

3
2

)
+2

√
2π

∞

∑
k=1

∞

∑
N=1

1
k

u2(N)exp
(
−8

3
πk

√
2N
)

+2
√

2π

∞

∑
k=0

∞

∑
N=1

cos
(2πN

3

)
(k+ 1

2)
u2(N) exp

(
−8

3
π

(
k+

1
2

)√
2N
)

= 6ζ

(
3
2

)
L−3

(
3
2

)
+ 2

√
2π

(
2γ −2+ log

3
2

)
−2

√
2π

∞

∑
N=1

u2(N) log
(

1− e−
8
3 π

√
2N
)

+2
√

2π

∞

∑
N=1

cos
(

2πN
3

)
u2(N) log

(
1+ e−

4
3 π

√
2N

1− e−
4
3 π

√
2N

)
= 6.98462 37414 38416 61307 · · · . (8.A.6)

In particular, the pole of LHCP
3 (s) at s = 3/2 is simple. By (8.A.1) and (8.A.5)

we have
Res(LHCP

3 (s),3/2) = Res(LFCC
3 (s),3/2).

It follows that the difference LFCC
3 (s)−LHCP

3 (s) has a removable singularity at
s = 3/2 and from the Laurent expansions we deduce that

lim
s→ 3

2

(
LFCC

3 (s)−LHCP
3 (s)

)
= c0|A=1 −d0.

Using the numerical values from (8.A.3) and (8.A.6) we obtain

lim
s→ 3

2

(
LFCC

3 (s)−LHCP
3 (s)

)
=−0.00057 11911 16168 67901 · · · .

This gives the value at the left hand end of the graph in [8, Fig. 3]. The value
s = 3/2 used here corresponds to taking s = 3 in [8] because of the different
way the exponents are used in the definitions.

B Analyticity of the lattice sums at other values of s

By (8.12.A.6), the double series of Bessel functions in (8.E.14) converges ab-
solutely and uniformly on compact subsets of the s-plane and therefore repre-
sents an entire function of s. It follows that L(A;s) has an analytic continuation
to a meromorphic function which is analytic except possibly at the singularities
of the terms

4
(

A+1
2

)s

ζ (s)L−4(s) (8.B.7)
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and
πA

s−1

(
1+

1
A

)s

ζ (2s−2). (8.B.8)

The function in (8.B.7) is analytic except at s = 1 due to the pole of ζ (s), as
the function L−4(s) and the exponential function are both entire. The function
in (8.B.8) is analytic except at s = 1 and s = 3/2. We studied the singularity
at s = 3/2 in the previous section, so this leaves only the point s = 1. Using
(8.12.A.19) and the values of ζ (0) and L−4(1) in (8.12.A.21) and 8.B.27 we
find that

4
(

A+1
2

)s

ζ (s)L−4(s) =
(A+1)π
2(s−1)

+O(1) as s → 1

and
πA

s−1

(
1+

1
A

)s

ζ (2s−2) =−(A+1)π
2(s−1)

+O(1) as s → 1.

It follows that the sum of the functions in (8.B.7) and (8.B.8) has a removable
singularity at s= 1 and so L(A;s) is also analytic at s= 1. The analyticity at s=
1 can also be seen directly from the alternative formula for L(A;s) in (8.E.15).
In conclusion, it has been shown that L(A;s) has an analytic continuation to a
meromorphic function of s which has a simple pole at s = 3/2 and no other
singularities. Because L(A;s) has only one singularity, namely s = 3/2, the
Laurent expansion (8.A.2) is valid in the annulus 0 < |s−3/2|< ∞, i.e., for all
s ̸= 3/2.
In a similar way, (8.E.7) and (8.E.8) can be used to show that LHCP

3 (s) also has
an analytic continuation to a meromorphic function of s which has a simple
pole at s = 3/2 and no other singularities. The Laurent expansion (8.A.4)
converges for all s ̸= 3/2.
By the theory of complex variables, the analytic continuation, if one exists, is
unique, e.g., see [282, p. 147, Th. 1]. Therefore analytic continuation formulas
can be used to assign values to divergent series. For example, the Madelung
constant is defined by

M = ∑
i, j,k

′ (−1)i+ j+k

(i2 + j2 + k2)s

∣∣∣∣
s=1/2

. (8.B.9)

This is interpreted as being the value of the analytic continuation of the series
at s = 1/2, because

∑
i, j,k

′ (−1)i+ j+k

(i2 + j2 + k2)s

obviously diverges if s = 1/2. From now on, we shall use the expression “the
value of a series at a point s” to mean “the value of the analytic continuation
of the series at the point s”.
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C Values at s = 1/2 and the Madelung constant

On putting s = 1/2 in (8.C.11) we obtain an analytic expression for the value
of

M(A) = ∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s

∣∣∣∣
s=1/2

which specialises to the Madelung constant in the case A = 1. We have

M(A) =−4(1−21−s)ζ (s)L−4(s)

∣∣∣∣∣
s=1/2

+
4πs

Γ(s)
A(1−s)/2

∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

(
2N + 1

2
i2

)(s−1)/2

×Ks−1

(
2πi

√
A(2N +

1
2
)

)∣∣∣∣∣
s=1/2

.

Now use (8.12.A.4) and (8.12.A.5) to express the Bessel functions in terms of
exponential functions. The result simplifies to

M(A) = 4(
√

2−1)ζ
(

1
2

)
L−4

(
1
2

)
+2

∞

∑
i=1

∞

∑
N=0

(−1)i r2(4N +1)√
2N + 1

2

e−2πi
√

A(2N+1/2).

On interchanging the order of summation and summing the geometric series,
we obtain

M(A) = 4(
√

2−1)ζ
(

1
2

)
L−4

(
1
2

)
−2

√
2

∞

∑
N=0

r2(4N +1)√
4N +1

(
1

eπ

√
2A(4N+1)+1

)
.

When A = 1 this gives the Madelung constant defined by (8.B.9). Numerical
evaluation gives

M = M(1) =−1.74756 45946 33182 19063 · · · (8.C.10)

which is in agreement with [275, p. xiii] (apart from the minus sign which we
have corrected here) and matches the value of d(1) in [275, pp 39–51].

In a similar way, starting from (8.9.A.4) and using (8.12.A.5) and (8.12.A.21)
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we obtain

∑
i, j,k

′ 1
(Ai2 + j2 + k2)s

∣∣∣∣
s=1/2

= 4ζ

(
1
2

)
L−4

(
1
2

)
+

π
√

A
3

+2
∞

∑
i=1

∞

∑
N=1

r2(N)√
N

e−2πi
√

AN

= 4ζ

(
1
2

)
L−4

(
1
2

)
+

π
√

A
3

+2
∞

∑
N=1

r2(N)√
N

(
1

e2π
√

AN −1

)
. (8.C.11)

Numerical evaluation in the case A = 1 gives

∑
i, j,k

′ 1
(i2 + j2 + k2)s

∣∣∣∣
s=1/2

=−2.83729 74794 80619 47666 · · · . (8.C.12)

Now, from (8..4) we have

LFCC
3 (1/2) =

1√
2 ∑

i, j,k

′ 1
(i2 + j2 + k2)s

∣∣∣∣
s=1/2

+
1√
2 ∑

i, j,k

′ (−1)i+ j+k

(i2 + j2 + k2)s

∣∣∣∣
s=1/2

.

Hence, using the values from (8.C.10) and (8.C.12) we obtain

LFCC
3 (1/2) =−3.24198 70634 10888 39428 · · · .

We also record the result

LHCP
3 (1/2) = 6ζ

(
1
2

)
L−3

(
1
2

)
+

2
√

2π

9
+2

∞

∑
N=1

u2(N)√
N

(
1

e8π
√

2N/3 −1

)
+2

∞

∑
N=1

cos
(

2πN
3

)
u2(N)√

N

(
1

e4π
√

2N/3 − e−4π
√

2N/3

)
=−3.24185 86150 75732 86473 · · ·

which is obtained in the same way, starting from (8.E.7).

D The value at s = 1

It was noted above that (8.E.14), which involves Ks−1 Bessel functions, con-
tains terms with singularities at s = 1 and therefore is not suitable for calcu-
lations at that value of s. Instead we can use (8.E.15), which involves Ks−1/2
Bessel functions. As in the previous section, two steps are involved. First,
the the K1/2 Bessel functions can be expressed in terms of the exponential
function by (8.12.A.5). Then, the double sum can be reduced to a single sum
by geometric series. We omit the details and just record the final results and
corresponding numerical values.
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From (8.B.9) we have

∑
i, j,k

′ 1
(Ai2 + j2 + k2)s

∣∣∣∣
s=1

=
π2

3A
+

4π√
A

ζ

(
1
2

)
L−4

(
1
2

)
+

2π√
A

∞

∑
N=1

r2(N)√
N

(
1

e2π

√
N/A −1

)
(8.D.13)

while (8.D.13) gives

∑
i, j,k

′ (−1)i+ j+k

(Ai2 + j2 + k2)s

∣∣∣∣
s=1

=
−π2

6A
+

2π√
A

∞

∑
N=1

(−1)N r2(N)√
N

(
1

eπ

√
N/A − e−π

√
N/A

)
.

Then (8..4) can be used to write down the value of L(A;s).

For example, when A = 1 the above formulas give

∑
i, j,k

′ 1
(i2 + j2 + k2)s

∣∣∣∣
s=1

=−8.91363 29175 85151 27268 · · · (8.D.14)

and

∑
i, j,k

′ (−1)i+ j+k

(i2 + j2 + k2)s

∣∣∣∣
s=1

=−2.51935 61520 89445 31334 · · · .

Then taking A = 1 and s = 1 in (8..4) gives

LFCC
3 (1) = ∑

i, j,k

′ 1
(i2 + j2 + k2)s

∣∣∣∣
s=1

+ ∑
i, j,k

′ (−1)i+ j+k

(i2 + j2 + k2)s

∣∣∣∣
s=1

=−11.43298 90696 74596 58602 · · · .

For h.c.p., the formula (8.E.7) cannot be used to evaluate LHCP
3 (1) because two

of the terms have cancelling singularities at s = 1. Therefore we take s = 1
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in (8.E.8) instead to obtain

LHCP
3 (1) =

π2

8
+π

√
27
8

(
√

3+1) ζ

(
1
2

)
L−3

(
1
2

)
+π

√
3
2

∞

∑
N=1

u2(N)√
N

(
1

eπ

√
3N/2 −1

)

− 3π√
8

∞

∑
N=0

u2(3N +1)√
3N +1

(
1

eπ

√
(3N+1)/2 +1

)
=−11.43265 30014 95285 63572 · · · .

We end this section by noting a connection between two of the values in the
above analysis. By setting A = 1 in each of (8.C.11) and (8.D.13) we obtain
the remarkable result

∑
i, j,k

′ 1
(i2 + j2 + k2)s

∣∣∣∣
s=1

= π ∑
i, j,k

′ 1
(i2 + j2 + k2)s

∣∣∣∣
s=1/2

. (8.D.15)

This is consistent with [275, p. 46 (1.3.44)] and is the special case s = 1 of the
functional equation

π
−s

Γ(s)T1(1;s) = π
−( 3

2−s)
Γ

(
3
2
− s
)

T1

(
1;

3
2
− s
)
. (8.D.16)

This functional equation can be deduced from the two formulas for T1(A;s)
in (8.9.A.4) and (8.B.9), as follows. Replace s with 3

2 − s in (8.9.A.4), then
multiply by πs− 3

2 Γ(3
2 − s) and set A = 1 to get

π
s− 3

2 Γ

(
3
2
− s
)

T1

(
1;

3
2
− s
)

= 4π
s− 3

2 Γ

(
3
2
− s
)

ζ

(
3
2
− s
)

L−4

(
3
2
− s
)
+2π

s− 1
2 Γ

(
1
2
− s
)

ζ (1−2s)

+4
∞

∑
i=1

∞

∑
N=1

r2(N)

(
N
i2

)( 1
2−s)/2

K 1
2−s

(
2πi

√
N
)
,

where we have used the functional equation for the gamma function in the
form

Γ(3/2− s) = (1/2− s)Γ(1/2− s)

to obtain the second term on the right hand side. Now apply the functional
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equations (8.12.A.4),(8.12.A.20) and (8.B.25) to deduce

π
−( 3

2−s)
Γ

(
3
2
− s
)

T1

(
1;

3
2
− s
)

= 4π
1
2−s

Γ

(
s− 1

2

)
ζ

(
s− 1

2

)
L−4

(
s− 1

2

)
+2π

−s
Γ(s)ζ (2s)

+4
∞

∑
i=1

∞

∑
N=1

r2(N)

(
i√
N

)s− 1
2

Ks− 1
2

(
2πi

√
N
)
.

The functional equation (8.D.16) follows from this by using (8.B.9). In ad-
dition to providing another proof of the functional equation, the calculation
above also demonstrates the interconnection between the formulas (8.9.A.4)
and (8.B.9). Further functional equations of this type are considered in [275,
p. 46].

E Values at s = 0,−1,−2,−3, . . .

Recall from (8.E.14) that

L(A;s) = 4
(

A+1
2

)s

ζ (s)L−4(s)+
πA

s−1

(
1+

1
A

)s

ζ (2s−2)

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=1

r2(N)

(
N
i2

)(s−1)/2

Ks−1

(
2πi

√
AN
)

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

×

(
2N + 1

2
i2

)(s−1)/2

Ks−1

(
2πi

√
A(2N +

1
2
)

)
.

On using the values ζ (0) =−1
2 , ζ (−2) = 0, L−4(0) = 1

2 and the limiting value

lim
s→0

1
Γ(s)

= 0

we readily obtain the result

L(A;0) =−1.

Moreover, since

ζ (−2) = ζ (−4) = ζ (−6) = · · ·= 0,

L−4(−1) = L−4(−3) = ζ (−5) = · · ·= 0,
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and
lim
s→N

1
Γ(s)

= 0 if N = 0,−1,−2, · · ·

it follows that

L(A;−1) = L(A;−2) = L(A;−3) = · · ·= 0.

In a similar way, it can be shown using (8.E.7) that

LHCP
3 (0) =−1

and
LHCP

3 (−1) = LHCP
3 (−2) = LHCP

3 (−3) = · · ·= 0.
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8.7 Graphs

The formulas (8.E.14), (8.E.15), (8.E.7) and (8.E.8) have been used to produce
the following graphs of y = LFCC

3 (s) on the intervals −10 < s < 10 and −7 <
s < 0 in Figure 8.4. The graph of y = LHCP

3 (s) has a similar appearance, and so
to allow a comparison the difference

y = LHCP
3 (s)−LFCC

3 (s)

is plotted using a finer vertical scale in Figure 8.5.

Figure 8.3 Graph of y = LFCC
3 (s) for −10 < s < 10.

The graphs appear to suggest the following:

Conjecture:

LHCP
3 (s)>LFCC

3 (s)> 0 for

s ∈ ·· ·∪ (−6,−5)∪ (−4,−3)∪ (−2,−1)∪ (3/2,∞)

LHCP
3 (s)<LFCC

3 (s)< 0 for

s ∈ ·· ·∪ (−5,−4)∪ (−3,−2)∪ (−1,0)

and
−1 > LHCP

3 (s)> LFCC
3 (s) for s ∈ (0,3/2).
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Figure 8.4 Graph of y = LFCC
3 (s) for −7 < s < 0.

8.8 Appendix

A Formulas for special functions

Many results for special functions and analytic number theory have been used
in this work. For clarity and ease of use, they are stated here along with refer-
ences.

The gamma function

The gamma function may be defined for s > 0 by

Γ(s) =
∫

∞

0
ts−1 e−t dt. (8.A.1)

By the change of variable t = wx this can be rewritten in the useful form

1
ws =

1
Γ(s)

∫
∞

0
xs−1 e−wx dx. (8.A.2)

See [283, (1.1.18)].
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Figure 8.5 Graph of y = LHCP
3 (s)−LFCC

3 (s).

The modified Bessel function

The following integral may be evaluated in terms of the modified Bessel func-
tion: ∫

∞

0
xs−1e−ax−b/xdx = 2

(
b
a

)s/2

Ks(2
√

ab). (8.A.3)

By the change of variable x = u−1 it can be shown that

Ks(z) = K−s(z). (8.A.4)

When s = 1/2 the modified Bessel function reduces to an elementary function:

K1/2(z) =
√

π

2z
e−z. (8.A.5)

The asymptotic formula holds:

Ks(z)∼
√

π

2z
e−z as z → ∞, ( |argz|< 3π/2). (8.A.6)

For all of these properties, see [283, pp. 223, 237] or [110, pp. 233–248].
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Characters

For an integer n, let χ−4(n) and χ−3(n) be defined by

χ−4(n) = sin(πn/2) =


1 if n ≡ 1 (mod 4),
−1 if n ≡ 3 (mod 4),
0 otherwise

(8.A.7)

and

χ−3(n) =
sin(2πn/3)
sin(2π/3)

=


1 if n ≡ 1 (mod 3),
−1 if n ≡ 2 (mod 3),
0 otherwise.

(8.A.8)

Theta functions

The transformation formula for theta functions is [283, p. 119], [275, (2.2.5)]:

∞

∑
n=−∞

e−πn2t+2πina =
1√
t

∞

∑
n=−∞

e−π(n+a)2/t , assuming Re(t)> 0. (8.A.9)

We will need the special cases a = 0 and a = 1/2, which are

∞

∑
n=−∞

e−πn2t =
1√
t

∞

∑
n=−∞

e−πn2/t (8.A.10)

and
∞

∑
n=−∞

(−1)ne−πn2t =
1√
t

∞

∑
n=−∞

e−π(n+ 1
2 )

2/t (8.A.11)

respectively. The sum of two squares formula is [78, (3.111)]

(
∞

∑
j=−∞

q j2

)2

=
∞

∑
j=−∞

∞

∑
k=−∞

q j2+k2
=

∞

∑
N=0

r2(N)qN (8.A.12)

where

r2(N) = #
{

j2 + k2 = N
}
=


1 if N = 0,

4 ∑
d|N

χ−4(d) if N ≥ 1,
(8.A.13)
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the sum being is over the positive divisors d of N. For example,

r2(18) = 4(χ−4(1)+χ−4(2)+χ−4(3)+χ−4(6)+χ−4(9)+χ−4(18))

= 4(1+0−1+0+1+0) = 4.

By [78, (3.15) and (3.111)] we also have(
∞

∑
j=−∞

q( j+ 1
2 )

2

)2

=
∞

∑
N=0

r2(4N +1)q(4N+1)/2. (8.A.14)

B The cubic theta function

The cubic analogues of the transformation formula are [275, (2.2)], [284, Cor.
5.19]

∞

∑
j=−∞

∞

∑
k=−∞

e−2π( j2+ jk+k2)t =
1√
3

∞

∑
j=−∞

∞

∑
k=−∞

e−2π( j2+ jk+k2)/3t (8.B.15)

and
∞

∑
j=−∞

∞

∑
k=−∞

e−2π(( j+ 1
3 )

2+( j+ 1
3 )(k+

1
3 )+(k+ 1

3 )
2)t

=
1√
3

∞

∑
j=−∞

∞

∑
k=−∞

ω
j−ke−2π( j2+ jk+k2)/3t (8.B.16)

where ω = exp(2πi/3) is a primitive cube root of unity. The analogue of the
sum of two squares result is [78, (3.124)]

∞

∑
j=−∞

∞

∑
k=−∞

q j2+ jk+k2
=

∞

∑
N=0

u2(N)qN (8.B.17)

where

u2(N) = #
{

j2 + jk+ k2 = N
}
=


1 if N = 0,

6 ∑
d|N

χ−3(d) if N ≥ 1,
(8.B.18)

where the sum is again over the positive divisors d of N. By [78, (3.18) and
(3.124)] we also have

∞

∑
j=−∞

∞

∑
k=−∞

q( j+ 1
3 )

2+( j+ 1
3 )(k+

1
3 )+(k+ 1

3 )
2
=

1
2

∞

∑
N=0

u2(3N +1)qN+ 1
3 (8.B.19)
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which is the analogue of (8.A.14).

The Riemann zeta function and L functions

The definitions are:

ζ (s) =
∞

∑
j=1

1
js (8.B.20)

L−4(s) =
∞

∑
j=1

χ−4( j)
js = 1− 1

3s +
1
5s −

1
7s + · · · . (8.B.21)

L−3(s) =
∞

∑
j=1

χ−3( j)
js = 1− 1

2s +
1
4s −

1
5s +

1
7s −

1
8s + · · · . (8.B.22)

The function ζ (s) is the Riemann zeta function. It has a pole of order 1 at
s = 1, and in fact

lim
s→1

(s−1)ζ (s) = 1. (8.B.23)

This is a consequence of [283, (1.3.2)]. See also [110, p. 58].
We will require the functional equations

π
−s/2

Γ(s/2)ζ (s) = π
−(1−s)/2

Γ((1− s)/2)ζ (1− s) (8.B.24)

and

π
−s

Γ(s)ζ (s)L−4(s) = π
−(1−s)

Γ(1− s)ζ (1− s)L−4(1− s) (8.B.25)

and the special values

ζ (2) =
π2

6
, ζ (0) =−1

2
, ζ (−1) =− 1

12
,

ζ (−2) = ζ (−4) = ζ (−6) = · · ·= 0, (8.B.26)

L−4(1) =
π

4
, L−4(0) =

1
2
, L−4(−1) = L−4(−3) = L−4(−5) = · · ·= 0,

(8.B.27)
and

L−3(1) =
π
√

3
9

, L−3(0) =
1
3
, L−3(−1) = L−3(−3) = L−3(−5) = · · ·= 0.

(8.B.28)
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See [285, Ch. 12] or [286]. Other results used are

∞

∑
j=0

1
( j+ 1

2)
s
= (2s −1)ζ (s) (8.B.29)

∞

∑
j=1

(−1) j

js =−(1−21−s)ζ (s) (8.B.30)

∑
j,k

′ 1
( j2 + k2)s = 4ζ (s)L−4(s) (8.B.31)

∑
j,k

′ (−1) j+k

( j2 + k2)s =−4(1−21−s)ζ (s)L−4(s). (8.B.32)

∑
i, j

′ 1
(i2 + i j+ j2)s = 6ζ (s)L−3(s) (8.B.33)

∑
i, j

1
((i+ 1

3)
2 +(i+ 1

3)( j+ 1
3)+( j+ 1

3)
2)s

= 3(3s −1)ζ (s)L−3(s). (8.B.34)

The identities (12.A.23) and (8.B.30) follow from the definition of ζ (s) by se-
ries rearrangements. For (8.B.31), (8.B.32) and (12.A.24), see (1.4.14), (1.7.5)
and (1.4.16), respectively, of [1]. The identity (B.0.15) can be obtained by the
method of Mellin transforms, e.g., see [58, Appendix A], starting with [78,
(3.36)].

C Behaviour as A → 0+ and A →+∞

We briefly consider the behaviour of the lattices in the limiting cases A → 0+

and A → +∞. Some of the basis vectors become infinite in the limit, leaving
a sublattice of lower dimension. We discuss each case A → 0+ and A → +∞

both in terms of theta functions and then in terms of the basis vectors.
First, consider the limit A → 0+. In the interval 0 < A < 1/3 the theta function
is

θ(A;q) =
∞

∑
i=−∞

∞

∑
j=−∞

∞

∑
k=−∞

qg(A;i, j,k)

=
∞

∑
i=−∞

∞

∑
j=−∞

∞

∑
k=−∞

q(A(i+ j)2+( j+k)2+(i+k)2)/4A.

As A → 0+ we have

q( j+k)2/4A → 0 and q(i+k)2/4A → 0
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unless j =−k and i =−k, respectively. Hence,

lim
A→0+

θ(A;q) = lim
A→0+

∞

∑
k=−∞

(
∑

i=−k
∑

j=−k
q(A(i+ j)2+( j+k)2+(i+k)2)/4A

)

= lim
A→0+

∞

∑
k=−∞

qA(−k−k)2/4A

=
∞

∑
k=−∞

qk2
.

This corresponds to the one-dimensional lattice with minimal distance 1. The
kissing number is 2, which is in agreement with the other lattices in the range
0 < A < 1/3, as indicated in Table 8.1. In terms of the basis vectors,
from (8..1) we have

b1 =

(
1
2
,

1
2
√

A
,0
)⊤

,b2 =

(
1
2
,0,

1
2
√

A

)⊤
,b3 =

(
0,

1
2
√

A
,

1
2
√

A

)⊤
.

The only linear combinations v = ib1 + jb2 + kb3 (for i, j,k ∈ Z) that remain
finite in the limit A → 0+ occur when i =−k, j =−k in which case we obtain

v =−kb1 − kb2 + kb3 =−k(1,0,0)⊤.

That is, the limiting lattice is just the one-dimensional lattice consisting of
integer multiples of (1,0,0)⊤.
Now consider the limit A →+∞. For A > 1 the theta function is

θ(A;q) =
∞

∑
i=−∞

∞

∑
j=−∞

∞

∑
k=−∞

qg(A;i, j,k)

=
∞

∑
i=−∞

∞

∑
j=−∞

∞

∑
k=−∞

q(A(i+ j)2+( j+k)2+(i+k)2)/2.

Since qA(i+ j)2/2 → 0 as A →+∞ unless i =− j, it follows that

lim
A→+∞

θ(A;q) =
∞

∑
j=−∞

∞

∑
k=−∞

(
∑

i=− j
q(A(i+ j)2+( j+k)2+(i+k)2)/2

)

=
∞

∑
j=−∞

∞

∑
k=−∞

q(( j+k)2+(− j+k)2)/2

=
∞

∑
j=−∞

∞

∑
k=−∞

q j2+k2
.

This is the theta series for the two-dimensional square close packing lattice
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with minimal distance 1. The kissing number is 4, in agreement with other
values in the range A > 1 given by Table 8.1. In terms of the basis vectors,
from (8..1) we have

b1 =
1√
2
(
√

A,1,0)⊤, b2 =
1√
2
(
√

A,0,1)⊤, b3 =
1√
2
(0,1,1)⊤.

The only linear combinations v = ib1 + jb2 + kb3 (for i, j,k ∈ Z) that remain
finite in the limit A →+∞ occur when i =− j, in which case we obtain

v =− jb1 + jb2 + kb3 =
1√
2

[
j(0,−1,1)⊤+ k(0,1,1)⊤

]
.

This is isomorphic to the two-dimensional square close packing lattice with
minimal distance 1, rotated from the coordinate axes by 45 degrees.





9 Project 4 results - Instability of
the Body-Centered Cubic Lattice
within the Sticky Hard Sphere
and Lennard-Jones Model
obtained from Exact Lattice
Summationsa

9.1 Introduction

The stability of different bulk phases and their possible connections through
distortions and rearrangements in phase transitions remain an open and chal-
lenging field in solid-state physics [288]. Solid-to-solid phase transitions are
commonly modeled by computer intensive molecular dynamic or Monte-Carlo
simulations at finite temperatures and pressures [289, 290], or by various al-
gorithms to find phase transition paths on a Born-Oppenheimer hypersurface
[291]. For example, the relative stability of the fcc versus the hexagonal close
packing (hcp) and possible transition mechanisms between these two phases
for the rare gas elements has been a matter of a long-standing controversy [5,
51, 246, 292–296]. While fcc has a higher excess entropy compared to hcp
by a rather small difference (for the hard sphere model it is 0.00115±0.00004
kB per sphere [292]), the energetic stability of the fcc over the hcp phase for
the rare gas solid argon (at low temperatures and pressures) is due to quantum
effects (phonon dispersion) [51, 295]. Similarly, the transformation between
the bcc↔fcc phases and their relative stabilities have been the subject of many
discussions [297, 298] as the exact martensitic type of transformation path for
a solid, such as in iron-based materials, or in clusters, is still being debated
[299–302].
It is commonly believed that strong repulsive forces favor close-packed ar-
rangements such as fcc or hcp, whereas soft repulsion favors less dense packed

aThis chapter is composed of sections previously published in the article “Instability of the
body-centered cubic lattice within the sticky hard sphere and Lennard-Jones model ob-
tained from exact lattice summations”[287] and is reprinted by permission from the publisher
©2022 American Physical Society. Some sections may have been modified to fit the style
of this thesis.
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structures such as bcc [303–306]. Laird showed that the bcc phase is unstable
within the hard-sphere model [307], while Hoover et al. and later Agrawi
and Kofke showed that soft repulsive potentials of the form ar−n with small n
values are required to stabilize the bcc phase [303, 308]. Very recently Ono
and Ito used phonon dispersion curves to show that soft Lennard-Jones (LJ)
forces are required to turn the bcc phase into a minimum [309]. However, as
minima can be very shallow on an energy hypersurface, one requires accu-
rate numerical or analytical methods to determine if the bcc phase represents
a (metastable) minimum for a two-body potential or not. Moreover, the bcc
phase was absent in recent LJ lattice dynamic simulations of Travesset [293].
Inverse power law potentials such as the LJ potential have the advantage that
properties such as the cohesive energy can be evaluated analytically through
lattice sums [26, 160]. If a single path through a lattice parameter can be found
[291] describing smoothly the bcc↔fcc transition (not necessarily a minimum
energy path), one gains valuable insight into the stability of the bcc phase.
Conway and Sloane introduced the isodual mean-centered cuboidal lattice
(mcc) which can be seen as an average between the bcc and the fcc lattice
[310]. They introduced lattice vectors depending on two parameters
connecting the bcc, mcc and fcc lattices. Recently we were able to find fast
converging lattice sums for these cuboidal lattices derived from their
corresponding Gram matrices and quadratic forms using a single parameter
[311]. These lattice sums, which can be evaluated to computer precision, will
be introduced in the next section and applied to analyse the energy profile of
the bcc lattice distortion into the fcc densest packing using LJ and SHS
interaction potentials. For more realistic two-body forces we apply extended
LJ potentials (ELJ) [48, 296] for Ar2 and Cr2, and briefly discuss Li2.

9.2 Method

Lattice vectors for the unit cell of a cuboidal lattice depending on a single
parameter A are defined by

b⃗⊤1 (A) = (1,0,0) , b⃗⊤2 (A) =
(

A
A+1

,

√
2A+1
A+1

,0
)
, (9.2.1)

b⃗⊤3 (A) =

(
1

A+1
,

1
(A+1)

√
2A+1

,

√
4A

(A+1)(2A+1)

)
.

The corresponding Gram matrix for the quadratic form is given by the scalar
product between these lattice vectors,

Gi j(A) = ⟨⃗bi(A),⃗b j(A)⟩=
1

A+1

A+1 A 1
A A+1 1
1 1 2

 . (9.2.2)
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The cuboidal lattices are defined in the range A ∈ [1
3 ,1] [311], and for the

special values of A = 1
3 , A = 1

2 , A = 1√
2
, and A = 1 lattice vectors for the

acc (axial centered cuboidal [310]), bcc, mcc and fcc lattices are obtained,
with number of nearest neighbors of 10, 8, 8 and 12 respectively. This sets the
minimal distance between two lattice points to 1 for the range A ∈ [1

3 ,1], which
ensures that the lattice deformation is compatible with the hard sphere model.
The volume spanned by these three vectors is

V (A) =
√

detG(A) = 2A1/2(A+1)−3/2 (9.2.3)

with a maximum volume at the bcc structure (A = 1
2 ). The lattices with the

corresponding lattice vectors (12.7.1) are shown in Figure 9.1.

Figure 9.1 The four lattices acc, bcc, mcc and fcc along the cuboidal transition
path. The corresponding primitive cell basis vectors according to Eq.(12.7.1)
are shown for the bcc lattice. For the fcc lattice the lighter colored atoms
moving towards the central atom (0,0,0) become nearest neighbors, with the
overall cuboidal fcc structure displayed.

The choice of the basis vectors (12.7.1) has the advantage that only b⃗2 and b⃗3
move in this 3D lattice transformation. The length of b⃗1 and b⃗2 is 1 for all
A values considered, and the angle between b⃗1 and b⃗3 is the same as between
b⃗2 and b⃗3. From the Gram matrix one obtains the atomic packing fraction or
packing density [161] for the cuboidal lattices, [311]

ρ(A) =
π

12

√
(A+1)3

A
. (9.2.4)
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This yields the well known values for fcc (ρ(1) = π
√

2
6 ) and bcc (ρ(1

2) =
π
√

3
8 ).

In fact, from this formula we deduce that bcc is the least packed arrangement
of all the cuboidal lattices considered here.

Using an (a,b) LJ potential in its most general form [3, 6]

VLJ(r,a,b) =
ab

a−b
ε

[
1
a

(re

r

)a
− 1

b

(re

r

)b
]
, (9.2.5)

where re is the minimum (equilibrium) distance, ε > 0 is the dissociation en-
ergy and a > b > 3 are real numbers, we obtain an analytical expression for
the cohesive energy in terms of lattice sums L(a,A) and the nearest neighbor
distance R in the lattice [160],

ELJ(R,a,b,A) =
abε

2(a−b)

[
1
a

L(a,A)
(re

R

)a
− 1

b
L(b,A)

(re

R

)b
]
. (9.2.6)

Here, b > 3 is required to avoid the singularity in L(b,A) at b = 3 [48] (al-
though these lattice sums can be analytically continued [26, 63, 311]). The
lattice sums L(a,A) are defined through their corresponding quadratic forms
i⃗⊤G⃗i , i⃗ ∈ Z3 by [161]

L(a,A) = ∑
i⃗∈Z3

′
(

1
i⃗⊤G⃗i

)a/2

= ∑
i, j,k

′
(

A+1
A(i+ j)2 +( j+ k)2 +(i+ k)2

)a/2

,

(9.2.7)
where the prime symbol indicates that the term corresponding to i⃗⊤ = (0,0,0)
is omitted in the summation. For small values of a, these triple sums are slowly
convergent and one needs to find expansions in terms of fast converging series
to obtain computer precision [26]. A number of methods to achieve this have
recently been introduced by our group [160, 311]. A program to evaluate these
lattice sums including the cuboidal lattices considered here is freely available
from our website [143]. For this work we use either the Terras decomposition
of the Epstein zeta function [112, 160] or the decomposition in terms of Jacobi
θ functions and integral transforms to produce series expansions in terms of
Bessel functions [160, 311]. More details are given in Appendix 9.A.

The SHS model can easily be obtained in the limit of a → ∞ of the LJ potential
[250], and the cohesive energy given by the expression

ESHS(R,b,A) = lim
a→∞

ELJ(R,a,b,A) =−ε

2
L(b,A)

(re

R

)b
, (9.2.8)

with R ≥ re. This gives a direct relation between the SHS energy of the solid
and the corresponding lattice sum.

It is convenient to introduce dimensionless units, i.e., R∗ =R/re and E∗ =E/ε .
The minimum nearest neighbor distance for a cuboidal lattice can be found
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from (10.2.5),

R∗
min(a,b,A) =

[
L(a,A)
L(b,A)

] 1
a−b

. (9.2.9)

For the SHS model this reduces to R∗
min = 1. The cohesive energy at minimum

becomes

E∗(R∗
min,a,b,A) =−1

2

[
L(b,A)a

L(a,A)b

] 1
a−b

, (9.2.10)

and for the SHS model we attain E∗(R∗
min = 1;b,A) = −L(b,A)/2. Finally,

a more realistic two-body potential is used, where lattice sum techniques can
still be applied. This requirement is fulfilled by the ELJ potential, which is an
inverse power series expansion in terms of the distance R,

EELJ(R,cn,A) =
1
2

nmax

∑
n=1

cnL(an,A)R−an , (9.2.11)

with ∑n cn =−ε and an > 3 [48, 296].

9.3 Results and Discussion

Starting with the discussion of the SHS model, the difference in cohesive en-
ergies between the A-dependent cuboidal lattices and the fcc lattice (A = 1) as
a function of the two parameters b and A,

∆E∗(b,A) =
1
2
[L(b,A = 1)−L(b,A)] (9.3.1)

at R∗
min = 1.0, is shown in Figure 9.2. It is evident that the SHS model predicts

a maximum in energy at the bcc structure. In fact, it was proved recently that
∂L(b,A)/∂A= 0 and ∂ 2L(b,A)/∂A2 > 0 at A= 1

2 (bcc) for all b∈ (3,∞) [311].
The path chosen along the A parameter may not represent the true minimum
energy path for the bcc→fcc phase transition, but what matters here is that it
is clearly downhill energetically towards the fcc structure. As a result, the bcc
lattice is unstable with respect to distortion to fcc within the SHS model.
There is also the opposite path towards the acc crystal (A = 1

3 ), which has to
our knowledge not been observed in nature. Figure 9.2 shows that for low b
values, ∆E∗(b,A) starts to increase again (at lower exponents
∆E∗(b,A) → ∞ for b → 3). The most stable bcc lattice is observed at
∆E∗(b = 5.49363406 . . . , 1

2) = 1.090510595 . . . , with a b value close to the
exponent b = 6 used for dispersive type of forces [19].

As the SHS model clearly has its limitations, we turn to the more accurate
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Figure 9.2 Difference in cohesive energies ∆E∗(b,A) =
1
2(L(b,A = 1)−L(b,A)) between the cuboidal lattices and fcc for vari-
ous exponents b and lattice parameter A of the SHS model. Contour interval
chosen is 0.1. The vertical black line at b = 5.493634 shows the point of least
instability for the bcc lattice.

(a,b) LJ potential, i.e., we introduce softer repulsive walls into the SHS
model. This will also remove the discontinuity in the ∆E∗(a,b,A) curve at the
fcc point (A = 1). Due to the attractive long-range lattice forces, the minimum
distance between two neighboring lattice points in Eq.(9.2.9) is
R∗

min(a,b,A) < 1, provided that a > b > 3 for a finite (a,b) combination.
Figure 9.3 shows that R∗

min(a,b,A) does not vary much with changing A for a
fixed (a,b) combination. The minimum distance for the (12,6) LJ potential
is R∗

min(12,6, 1
2)=0.951864819 for the bcc lattice compared to

R∗
min(12,6,1.0)=0.9712336910 for fcc. For large a values the minimum bcc

nearest neighbor distance R∗
min turns into a very shallow maximum and finally

approaches the SHS limit of R∗
min =1.0. From Eq.(9.2.9) and ∂L(b,A)/∂A=0

at A = 1
2 [311] it follows that ∂R∗

min(a,b,A)/∂A = 0 at A = 1
2 , and the bcc

point remains a critical point for all (a,b) values in the allowed range.

Shorter distances are usually associated with greater stability of the lattice.
This is however not the case for the bcc compared to the fcc lattice as Figure
9.4 shows. In fact, the bcc lattice is not a stable lattice compared to fcc, i.e.



9.3 Results and Discussion 233

Figure 9.3 Minimum distance R∗
min(a,b,A) for various (a,b) LJ potentials and

for the ELJ potential for argon (taken from Ref.[51]) dependent on the lattice
parameter A.

∆E∗
bcc,fcc(a,b) = E∗(R∗

min,bcc,a,b,
1
2) − E∗(R∗

min,fcc,a,b,1) > 0 for all
a > b > 3. The bcc lattice will continuously distort by lowering the energy
toward the most densely packed fcc lattice, except for a very small (a,b)
range where the bcc phase becomes metastable. In this case, the minimum at
A < 1

2 shifts toward the bcc structure, see Figure 9.5.

The (a,b) phase transition line from the unstable to the metastable bcc lattice
is approximately described by the polynomial aPT = −6.3829845 ×
10−4b3

PT + 3.8186745 × 10−2b2
PT − 1.3466248bPT + 1.1373783 × 101 with

aPT > bPT ∈ (3,5.25673] (see Appendix 9.B), and we see an almost linear
behavior as shown as a yellow line in the left lower corner of Figure 9.5. This
also explains why Ono and Ito obtained imaginary phonon frequencies for
some low (a,b) combinations [309] (their results have to be taken with some
care as the r−3 potential used leads to a singularity in the cohesive
energy). In fact, the bcc structure becomes metastable if and only if
L(a,A)∂ 2L(a,A)/∂A2 < L(b,A)∂ 2L(b,A)/∂A2 for A = 1

2 and a > b > 3
(see Appendix 9..B). However, these minima appear at energies
∆E∗

bcc,fcc(a,b) >0.2 (a < 7.660388) for rather unphysical potentials, with low
∆E∗ values only if a ≈ b. As an example, for a (4,3.1) LJ potential the bcc
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Figure 9.4 Cohesive energy differences ∆E∗(R∗
min,a,b,A) =

E∗(R∗
min,a,b,A) − E∗(R∗

min,a,b;A = 1) for the (a,b) LJ potential depen-
dent on the lattice parameter A, and for the two ELJ potentials of argon and
chromium (see appendix 9.C).

structure is a minimum at ∆E∗
bcc,fcc = 170.2 with an activation barrier of

∆E∗# = 12.2 situated at A = 0.6 on the path toward the distortion to
the fcc structure. As ∂L(b,A)/∂A = 0 at A = 1

2 [311] we obtain
∂E∗(R∗

min,a,b,A)/∂A = 0 at A = 1
2 (see appendix 9.B), and the bcc structure

remains a critical point for all (a,b) combinations. Moreover, if the exponent
a responsible for the repulsive wall increases, we approach the limit of the
SHS potential with much higher energies compared to the LJ potential.

By applying an inverse power law potential for the repulsive wall (opposed to
the long-range part in the SHS model) in Monte Carlo simulations, Agrawal
and Kofke also showed that the bcc phase is unstable [303]. An interesting
point of this bcc→fcc phase transition is that the Einstein frequency ωE ,
obtained analytically in terms of lattice sums from a single atom moving in
the field of all other atoms [296], remains positive, ωE(a,b,A) > 0, for all
A ∈ [1

3 ,1] and a > b > 3 (see Appendix 9.C). As a consequence, a single atom
is locked and more than one atom has to move simultaneously along the
bcc→fcc path similar to a Zener or Bain martensitic transformation [301,
312]. As Figure 9.4 shows, the distortion along the A parameter away from
bcc can also occur towards a metastable lattice with A < 1

2 and higher packing
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Figure 9.5 Energy difference ∆E∗
bcc,fcc(a,b) = E∗(R∗

min,bcc,a,b,
1
2) −

E∗(R∗
min,fcc,a,b,1) between the bcc and fcc lattice for the (a,b) LJ po-

tential. Contour interval chosen is 0.0625. The almost linear (yellow) curve
in the lower left corner of the plot describes the phase transition line to a
metastable bcc state.

density. Using a (12,6) LJ potential the metastable minimum sits at a lattice
with A = 0.3962483 . . . and packing density ρ = 0.6861655 . . . , a cuboidal
lattice in-between bcc and acc. Finally, the mcc lattice is just a lattice along
the energetic downward path towards fcc as it is for the SHS model.

The question remains as to why low temperature bcc lattices are observed in
nature given their instability, large volume and small bulk modulus within the
cuboidal structures. It is clear that two-body forces favor dense packings with
the largest kissing number for an atom, that is fcc or hcp. The answer
therefore lies in the failure of the two-body potential to correctly describe the
interactions in the crystal, i.e., neglecting important higher than two-body
interactions (and perhaps quantum effects for quantum solids such as helium).
It is well known that the many-body expansion is only slowly convergent for
metallic systems [55, 313]. due to higher than two-body forces.
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To see if the form of the LJ potential limits our conclusion, a more accurate
ELJ two-body potential is taken, derived from relativistic coupled cluster
theory for argon [51, 314]. As in the case for the (12,6) LJ potential, the ELJ
potential has a minimum R∗

min(A) value at the bcc structure (see Appendix
9.D). More importantly, the E∗

ELJ(A) curve does not change substantially in
shape and is only slightly shifted compared to the (12,6) LJ potential, as
shown in Figure 9.4. This is perhaps expected from the comparison
between the two potentials, and from the fact that for the fcc structure
E∗(R∗

min,1.0) = 7.8532 [296] for the ELJ potential and close to
E∗(R∗

min,12,6,1.0) = −L2
6/(2L12) = 8.6102 for the (12,6) LJ potential (exp.

E∗ = 6.4951 using the data from Ref.[179]).

Figure 9.6 Potential energy curves V ∗(r∗) (in dimensionless units) for a (12-6)
LJ potential, and for Ar2, Li2 and Cr2 (see Appendix 9.C).

To underscore our argument even further the unusual potential energy curve
for Cr2 is considered. Here we use experimental potential values of Casey and
Leopold [315], but attenuated for the long range dispersion using the C6
coefficient of Roos and co-workers [316], and finally fitted to an extended
Lennard Jones potential potential (see Appendix 9.D). This potential curve,
shown in Figure 9.6, is extremely broad and has a large dip in the medium
distance range r ∈ [1.3,1.7]re, and therefore deviates substantially from a
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typical potential energy curve such as LJ or Morse [317]. As it turns out, this
potential leads to far too small distances and far too large cohesive energies
for the solid state. However, the chromium ∆E∗(R∗

min,a,b,A) curve in Figure
9.4 shows that bcc remains a transition state along the distortion parameter A
in line with all the other two-body potentials.

We also looked at lithium, which adopts a bcc structure at normal conditions.
Lithium has an extremely broad potential energy curve (see Figure 9.6) even
in the repulsive region [318], which leads surprisingly to a collapse of the
crystal to a very small nearest neighbor distance (see Appendix 9.D). It is
clear that N-body forces describing correctly the confinement of the atoms in
the solid state become very important here, i.e., the N-body expansion is not
converging smoothly with increasing N for metals such as lithium or
chromium [55]. One may argue that a broad potential energy curve such as
for Li2 gives lower exponents for a LJ potential energy curves typical for
metallic systems. It should be pointed out however, that the long range has to
be correctly described and potential curves containing terms of r−n,n ≤ 3 in
the interaction between atoms in the solid lead to divergent series (if not
analytically continued). Moreover, the correct description for the cuboidal
transformation for lithium,[302] for example by ab-initio or density
functional theory, requires the inclusion of vibrational and thermal effects,
which is currently a subject of our investigating.

9.4 Conclusion

From exact lattice summations we were able to derive cohesive energies
within the SHS and LJ models analytically, and compute them as Bessel
function expansions to computer precision. Both potentials result in an
unstable bcc phase distorting toward the fcc phase or toward a phase
in-between acc and bcc. The metastable bcc phase for an (a,b) LJ potential
occurs for unphysical potentials with very low (a,b) values. The situation
does not change if accurate two-body potentials are used such as for argon or
chromium, the latter known to crystallize in the bcc phase. As a result, the
bcc phase (at low temperatures and pressures) is stabilized only by higher
than two-body forces, which have to be large enough to compete with the fcc
(or hcp) structure. High pressures will most likely destabilize the bcc phase in
this simple model, which we are currently exploring. The mcc lattice
unknown in nature and introduced by Conway and Sloane [310] is merely a
point on an energetic bcc→fcc downhill path. How well effective two-body
potentials [319, 320], which incorporate many-body terms, will work for the
bcc problem remains to be seen.
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9.5 Appendix

A Lattice Sums and Their Derivatives

The Gram matrix G in Eq.(9.2.2) leads to the following lattice sum,

L(a,A) = L(2s,A) = L (s,A) = ∑
i⃗∈Z3

′
(⃗

i⊤G⃗i
)−s

(9.A.1)

= ∑
i, j,k∈Z

′
(

A+1
A(i+ j)2 +( j+ k)2 +(i+ k)2

)s

,

with the prime indicating that the term with i⃗⊤ = (0,0,0) is not included, and
A ∈ [1

3 ,1] for the cuboidal lattices considered here. These sums are important
for inverse power law potentials such as the LJ potential [311]. Here the ex-
ponent s is set to s = a

2 for simplicity compared to the main paper. The lattice
sums for the acc, bcc, mcc, and fcc lattices are obtained for the values A = 1

3 ,
A = 1

2 , A = 1√
2
, and A = 1, respectively. We split the lattice sum into two sums

according to Ref.[311],

L (s,A) =
(A+1)s

2
[S1(s,A)+S2(s,A)] (9.A.2)

with S1(s,A) = ∑
i, j,k∈Z

′
(Ai2 + j2 + k2)−s

and S2(s,A) = ∑
i, j,k∈Z

′
(−1)i+ j+k(Ai2 + j2 + k2)−s.

For the special case of A = 1, the sum S1(1,s) represents the lattice sum for
the simple cubic (sc) lattice, and the alternating sum S2(1,s) is known as the
Madelung constant when s = 1

2 [7]. In the following, we only consider s > 3
2 ,

keeping in mind that the lattice sums are valid for all s ∈ R through analytical
continuation and that S1(s,A) (and therefore L (s,A)) has a singularity at s= 3

2 .

The two lattice sums can be expanded in terms of modified Bessel functions of
the second kind Ks(x) [311],

S1(s,A) = a1(s)+a2(s)A1−s

+a3(s)A(1−s)/2
∞

∑
i=1

∞

∑
N=1

ciN(s)Ks−1

(
diN(s)

√
A
)

(9.A.3)

S2(s,A) = b1(s)+a3(s)A(1−s)/2
∞

∑
i=1

∞

∑
N=0

piN(s)Ks−1

(
qiN(s)

√
A
)
, (9.A.4)
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with the following coefficients

a1(s) = 4ζ (s)β (s) , a2(s) =
2π

(s−1)
ζ (2s−2)

a3(s) =
4πs

Γ(s)
, b1(s) =−4(1−21−s)ζ (s)β (s)

ciN(s) = r2(N)
(
i−2N

)(s−1)/2
, diN(s) = 2πi

√
N (9.A.5)

piN(s) = (−1)ir2(4N +1)
(

4N +1
2i2

)(s−1)/2

qiN(s) = πi
√

8N +2 .

ζ (s) is the Riemann zeta function, β (s) the Dirichlet beta function, and r2(N)
the number of representations of number N as a sum of two squares.

We are interested in the first and second derivatives,
∂AL (s,A) := ∂L (s,A)/∂A and ∂ 2

AL (s,A) := ∂ 2L (s,A)/∂A2, of the lattice
sums. It was already proven directly from (9.A.2) that ∂AL (s,A)|A=1/2 = 0
and ∂ 2

AL (s,A)|A=1/2 > 0 if s > 3
2 [311]. We therefore derive from Eq.(9.A.2)

the following expressions,

∂AL (s,A) =
s

A+1
L (s,A)+

(A+1)s

2
[∂AS1(s,A)+∂AS2(s,A)] (9.A.6)

and

∂
2
AL (s,A) =− s(s+1)

(A+1)2 L (s,A)+
2s

A+1
∂AL (s,A)

+
(A+1)s

2
[
∂

2
AS1(s,A)+∂

2
AS2(s,A)

]
. (9.A.7)

The derivatives ∂AS1(s,A), ∂AS2(s,A), ∂ 2
AS1(s,A) and ∂ 2

AS2(s,A) are evaluated
from the Bessel function expansions (9.A.3) and (9.A.4). For this, the follow-
ing relations are required,

Ks(x) = Ks+2(x)−
2(s+1)

x
Ks+1(x) (9.A.8)

∂xKs(x) =
s
x

Ks(x)−Ks+1 =− s
x

Ks(x)−Ks−1

=−1
2
[Ks−1(x)+Ks+1(x)] . (9.A.9)
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After some algebraic manipulations the following expressions are obtained

∂AS1(s,A) =−(s−1)a2(s)A−s

− a3(s)
2

A− s
2

∞

∑
i=1

∞

∑
N=1

ciN(s)diN(s)Ks

(
diN(s)

√
A
)

(9.A.10)

∂AS2(s,A) =

− a3(s)
2

A− s
2

∞

∑
i=1

∞

∑
N=0

piN(s)qiN(s)Ks

(
qiN(s)

√
A
)

(9.A.11)

∂
2
AS1(s,A) = s(s−1)a2(s)A−s−1

+
a3(s)

4
A− s+1

2

∞

∑
i=1

∞

∑
N=1

ciN(s)d2
iN(s)Ks+1

(
diN(s)

√
A
)

(9.A.12)

∂
2
AS2(s,A) =

a3(s)
4

A− s+1
2

∞

∑
i=1

∞

∑
N=0

piN(s)q2
iN(s)Ks+1

(
qiN(s)

√
A
)
. (9.A.13)

The Bessel function sums are fast converging, therefore making the evaluation
of lattice sums and their derivatives to computer precision attainable within
less than a second on a modern laptop computer [143].

B Critical Points for the bcc structure

For the following, we set a to 2s, making the lattice sum L(a,A) = L(2s,A),
which is more convenient for the LJ potential. Figure 9.7 shows the lattice
sums and their second derivative for A = 1

2 (bcc lattice) as a function of the
exponent a. It is clear that ∂ 2

AL(A,a)|A= 1
2

has a peculiar form with a minimum
at a = 5.52534 and a maximum at a = 12.57676, this becomes important in
the discussion of the bcc stability for Lennard-Jones systems detailed below.
However, it is illustrative to evaluate the minimum distance derivatives
∂ n

AR∗
min(a,b,A) for A = 1

2 and n = 1,2 (using dimensionless quantities as
discussed in the main paper).

The first derivative of R∗
min(a,b,A) defined in Eq.9.A.6 for a > b > 3 is given

by

∂AR∗
min(a,b,A) =

R∗
min(a,b,A)

a−b

(
∂AL(a,A)
L(a,A)

− ∂AL(b,A)
L(b,A)

)
, (9.B.14)
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Figure 9.7 Lattice sums L(a, 1
2) and ∂ 2

AL(a,A)|A= 1
2

(bcc lattice) as a function
of the exponent a. Note that ∂AL(a,A)|A= 1

2
= 0 for all a values.

which for the bcc lattice (A = 1
2 ) is zero because ∂ AL(a,A)|A= 1

2
= 0 identically

for all values of a > 3 [311]. The second derivative evaluated at A = 1
2 is given

by

∂
2
AR∗

min(a,b,A)|A= 1
2
= (9.B.15)[

R∗
min(a,b,A)

a−b

(
∂ 2

AL(a,A)
L(a,A)

− ∂ 2
AL(b,A)
L(b,A)

)]
A=1/2

.

Evaluating the expression in parentheses in (9.B.15) shows that R∗
min(a,b,A)

has a minimum at A = 1
2 if a < 14.17598. For values a > 14.17598 we have a

certain range of b values where R∗
min(a,b,A) becomes a shallow maximum as

is the case for the (30,6) LJ potential shown in Figure 9.3.

In a similar way we evaluate the cohesive energy for an (a,b) LJ potential at
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R∗
min(a,b,A),

E∗(R∗
min,a,b,A) =

1
2(a−b)

bL(a,A)
(

L(b,A)
L(a,A)

) a
a−b

−aL(b,A)
(

L(b,A)
L(a,A)

) b
a−b


=−1

2

[
L(b,A)1/b

L(a,A)1/a

] ab
a−b

. (9.B.16)

The first and second derivatives are evaluated as,

∂AE∗(R∗
min,a,b,A) = (9.B.17)

E∗(R∗
min,a,b,A)

ab
(a−b)

[
1
b

∂AL(b,A)
L(b,A)

− 1
a

∂AL(a,A)
L(a,A)

]
and

∂
2
AE∗(R∗

min,a,b,A) =
{∂AE∗(R∗

min,a,b,A)}
2

E∗(R∗
min,a,b,A)

(9.B.18)

+
ab

a−b
E∗(R∗

min,a,b,A)
[

1
b

∂ 2
AL(b,A)
L(b,A)

− 1
a

∂ 2
AL(a,A)
L(a,A)

− 1
b
{∂AL(b,A)}2

L(b,A)2 +
1
a
{∂AL(a,A)}2

L(a,A)2

]
.

The first derivative is zero for the bcc lattice (A = 1
2 ) because ∂ AL(a,A)|A= 1

2
=

0 as mentioned above. This makes the bcc point strictly an extremum along
the A coordinate for any (a,b) combination of the LJ potential. The second
derivative evaluated at A = 1

2 gives

∂
2
AE∗(R∗

min,a,b,A)|A= 1
2
= (9.B.19)

ab
a−b

E∗(R∗
min,a,b,

1
2)

[
1
b

∂ 2
AL(b,A)|A= 1

2

L(b, 1
2)

− 1
a

∂ 2
AL(a,A)|A= 1

2

L(a, 1
2)

]
.

Hence, the bcc instability can be a maximum or a (metastable) minimum de-
pending on the sign of the expression in the square brackets. The transition to
a metastable phase occurs at

∂ 2
AL(b,A)|A= 1

2

bL(b, 1
2)

=
∂ 2

AL(a,A)|A= 1
2

aL(a, 1
2)

, (9.B.20)
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with b < a. For the singularity at a = 3 we get from computation,

lim
a→ 3

∂ 2
AL(a,A)|A= 1

2

aL(a, 1
2)

=
4
9
, (9.B.21)

which is shown on Figure 9.8. This can be proven using a Laurent expansion
around the simple pole at a = 3 [311],

L(A;s) =
2c−1(A)

a−3
+ c0(A)+

∞

∑
n=1

2−ncn(A)(a−3)n (9.B.22)

with

c−1(A) = π

√
(A+1)3

A
and ∂

2
Ac−1(A) =

3π

4A2
√

A(A+1)
. (9.B.23)

This gives

∂ 2
AL(a,A)
L(a,A)

=
∂ 2

Ac−1(A)
c−1(A)

+O(a−3) =
3

4A2(A+1)2 +O(a−3) (9.B.24)

which results in (11.3.1) for a = 3 and A = 1
2 .

From this limit it is clear that a metastable minimum can only exist if
a < aMS = 7.66039, but with a limited range of small b values evident from
(9.B.20) and Figure 9.8. The maximum of the curve shown in Figure 9.8 is at
amax=5.25673, for which all b < a < amax values result in a metastable state.
We note that the curve in Figure 9.8 is almost (but not quite) symmetric
around the maximum. This makes the phase transition line from the unstable
to the metastable bcc phase almost linear in the (a,b) plane.

C Einstein Frequency

We consider the Einstein frequency of a single atom of mass M moving in the
field of other atoms (in atomic units) for an (a,b) LJ potential [296],

ωE(R,a,b,A) =
1

3re

√
3ε

M

√
ab

a−b

(re

R

) a
2+1

×

[
(a−1)L(a+2,A)− (b−1)L(b+2,A)

(
R
re

)a−b
] 1

2

. (9.C.25)

It is clear that ωE(R) describes the instability of lattice by moving a single atom
as opposed to a collective movement of several atoms in the lattice. However,
at Rmin we always arrive at ωE(Rmin) > 0 for a finite mass M. To prove this
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Figure 9.8

we have to show that the term in the square brackets stays positive at Rmin for
a fixed A value, that is

L(a+2,A)
L(b+2,A)

>
(b−1)L(a,A)
(a−1)L(b,A)

. (9.C.26)

As a > b it suffices to show that

L(a+2,A)
L(b+2,A)

≥ L(a,A)
L(b,A)

,

or more generally
L(b,A)

L(b+h,A)
≥ L(a,A)

L(a+h,A)
(9.C.27)

for any h > 0 and a > b > 3. The proof goes a follows.
A function g(x) is said to be logarithmically convex on an interval if g(x)> 0
and logg(x) is convex on the interval. It can be shown that the sum of
logarithmically convex functions is logarithmically convex, e.g., see [321, p.
19]. It follows that the lattice sum L(x,A) is a logarithmically convex function
of x because it is a sum of terms of the form n−x, each of which is
logarithmically convex.
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Now suppose that f (x) is a convex function, and x1, x2 > 0. By applying the
definition of convexity to the interval [0,x1 + x2] we have

f (x1)≤
x2

x1 + x2
f (0)+

x1

x1 + x2
f (x1 + x2),

while interchanging x1 and x2 gives

f (x2)≤
x1

x1 + x2
f (0)+

x2

x1 + x2
f (x1 + x2).

Adding the inequalities gives

f (x1)+ f (x2)≤ f (0)+ f (x1 + x2). (9.C.28)

Incidentally, it can be shown from this using mathematical induction that

f (x1)+ f (x2)+ · · ·+ f (xn)≤ (n−1) f (0)+ f (x1 + x2 + · · ·+ xn),

a result known as Petrović’s inequality, e.g., see [322, p. 22], [323]. We shall
only require the case n = 2 as given by (9.C.28).

Suppose a > b, h > 0, and g(x) is a convex function for x ≥ b. Let f (x) =
g(x+ b) and take x1 = h and x2 = a− b. Then Petrović’s inequality (9.C.28)
gives

f (h)+ f (a−b)≤ f (0)+ f (a−b+h).

This implies
g(b+h)+g(a)≤ g(a+h)+g(b)

which is equivalent to

g(b+h)−g(b)≤ g(a+h)−g(a).

It follows that if G(x) is logarithmically convex, then

logG(b+h)− logG(b)≤ logG(a+h)− logG(a).

This can be rearranged to give

G(b+h)
G(b)

≤ G(a+h)
G(a)

,

which is exactly the inequality we seek for the lattice sums.
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D Extended Lennard-Jones Potentials for Li2, Ar2 and Cr2

The extended Lennard-Jones potential is defined by

VELJ(r,cn) =
nmax

∑
n=1

cnr−an with
nmax

∑
n=1

cnr−an
e =−De . (9.D.29)

It then follows that the cohesive energy for an extended Lennard-Jones poten-
tial becomes,

EELJ(R,cn,A) =
1
2

nmax

∑
n=1

cnL(an,A)R−an (9.D.30)

with R being the nearest neighbor distance in the solid. The corresponding
parameters for the potential energy curves in reduced units, V ∗(r∗), for Ar2,
Li2 and Cr2 are listed in Table 1. For Ar2 the extended LJ potential from
Ref.[51] has been converted to dimensionless units for this work (r∗ = r/re,
V ∗(r) =V ∗(r)/De, from which follows that r∗min = 1 and V ∗

min =−1).

For Cr2 we took the potential curve from experimental data of Casey and
Leopold, who obtained the potential energy curve V (r) from vibrational data
through the RKR method [315]. This potential curve only describes the
medium range of the potential energy curve. We therefore attenuated the long
range by matching the last point Rmax =3.35 Å to a −C6/r−6 dispersion
curve. Finally, the points are used to fit an inverse power potential (extended
Lennard-Jones) to the potential energy curve fixing the Van der Waals
coefficient to C6 =800 a.u. according to Roos and co-workers [316]. Because
of the peculiar shape of the Cr2 potential energy curve the fit was rather
difficult to achieve, but is accurate enough (R2=0.9984) for the discussion of
the bcc instability. The potential energy curve for Cr2 was then converted to
dimensionless units. For the ELJ form we obtain E∗ =24.0 and 23.3 for the
fcc and bcc structures respectively. These values are unusually large, but
perhaps not surprising given the broad potential energy curve of Cr2. In fact,
using the original potential energy curve we obtain a nearest neighbor
distance for bcc chromium of Rmin = 1.479 Å, just above the hard sphere
radius of the diatomic potential energy curve with σ = 1.467 Å, and a
cohesive energy Ecoh = 33.6 eV. This is in stark disagreement with the
experimental values of Rmin = 2.52 Å and Ecoh = 4.1 eV [324]. It clearly
demonstrates that the direct use of potential curves from the free unconfined
diatomic is not useful to describe the solid state of metals as the many-body
expansion is not converging fast and smoothly.

We briefly discuss lithium. For Li2 we used the Rydberg-Klein-Rees (RKR)
potential curve of Barakat et al. [318] and fixed the Van der Waals coefficient
C6 =1408 a.u. [325]. For the fit to an extended LJ potential we obtained with
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Table 9.1 Potential parameters for the Ar, Li and Cr dimers obtained from a
least-squares fit to the (a) analytical form of Cybulski and Toczyłowski for Ar2
[51, 314], (b) exp. determined potential of Barakat et al. [318], and (c) exp.
determined potential of Casey and Leopold [315] as described in detail in the
text. Dimensionless units are used. For Li2 and Cr2 the potential parameters
are only valid for the region V ∗(r∗)< 0.

n an cn n an cn

Ar
1 6 -2.112319339 2 8 7.126409258
3 10 -21.30053312 3 12 24.42390886
5 14 -10.89025935 6 16 1.752793693

Li
1 6 -2.185099402 2 8 1588.743093
3 9 -13096.66094 4 10 44937.24250
5 11 -85547.67477 6 12 100055.5130
7 13 -74450.14624 8 14 35150.12854
9 15 -10264.39581 10 16 1744.182010

11 17 25.87885791 12 18 -237.6273332
13 19 114.6392978 14 20 -18.63705649
Cr

1 6 -15.20122639 2 8 13471.86476
3 9 -124591.4050 4 10 464698.3696
5 11 -888076.6787 6 12 854878.9650
7 13 -190568.3900 8 14 -441981.1016
9 15 487340.5171 10 16 -209652.8384

11 17 34494.89857 12 18 0.000016589

an R2 value of 0.99997, but only by including terms up to 1/r20. However, the
situation here is even worse compared to chromium as the Li2 potential
energy curve is so broad in both the repulsive and attractive region that crystal
optimizations entered the repulsive wall well below the hard-sphere radius of
σ = 1.822 Å, where our extended LJ potential is not accurate anymore. In
general, a fit to an extended LJ form works reasonably well for the whole
distance region if it deviates not too much from an ideal (a,b)-LJ potential,
which is certainly not the case for Li2. In fact, if we optimize the exponents
a,b for the LJ potential we get a ≈ b < 3 left of the singularity at b = 3 and
therefore an unphysical result. Using the far more accurate extended Morse
potential by LeRoy and co-workers [326], which correctly describes the
repulsive region, we obtain from crystal optimizations [167] a nearest
neighbor distance of Rmin = 0.21 Å and a cohesive energy of Ecoh = 9.2×103

eV for bcc lithium. This can be best described as a collapse of the crystal to
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small internuclear distances with large overbinding, and clearly demonstrates
that many-body forces in a confined bulk system cannot be neglected.



10 Project 5 - Cuboidal bcc to fcc
Transformation of
Lennard-Jones Phases under
High Pressure derived from
Exact Lattice Summationsa

10.1 Introduction

Within the periodic table of elements, only oxygen, fluorine and polonium
exhibit simple cubic (sc) structure, similarily the body-centered cubic (bcc)
phase is adapted by only a few elements, namely the group 1 elements, barium
and radium, group 5 and 6 transition metals, as well as by manganese, iron
and europium [328–330]. Intuitively this can be explained from the fact that
two-body interactions between atoms tend to maximize the number of nearest
neighbors (the so-called coordination or kissing number N) in a crystal, favor-
ing the closed packed fcc (N = 12) or hcp crystal structures (N = 12) over the
bcc (N = 8) or simple cubic (sc) (N = 6) lattice. From this simplified picture
we expect that closed packed structures with maximum packing density are
preferred at higher pressures. This is indeed observed in most cases [331–333],
although many counterexamples are known [334, 335]. On the other hand, it
is well known that Landau theory favors the bcc phase near the melting line
at finite pressures [297]. Here, high-temperature phases also depend on the
phonon dispersion and resulting thermal/entropic effects especially for atoms
with low masses, which makes crystal structure predictions rather more com-
plicated and challenging [302, 336]. Therefore, John Maddox famous quote in
1988 comes at no surprise: One of the continuing scandals in the physical sci-
ences is that it remains impossible to predict the structure of even the simplest
crystalline solids from a knowledge of their composition.[337] In other words,
chemical intuition is often insufficient to correctly predict the crystal structure
for an atomic or molecular system at specific pressures and temperatures.
Simulations of phase transitions for the solid state are known to be notoriously

aThis chapter is composed of sections previously published in the article “Cuboidal bcc to
fcc Transformation of Lennard-Jones Phases under High Pressure Derived from Exact Lat-
tice Summations”[327] and is reprinted by permission from the publisher ©2022 American
Chemical Society. Some sections may have been modified to fit the style of this thesis.

249
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difficult to perform[291, 330], as often large supercells are required in molec-
ular dynamic simulations and defects or dislocations may be involved as well.
Reliable predictions for the stability of certain phases also critically depend
on the chosen interaction potential or the accuracy of the quantum chemical
method applied [338]. The (a,b) Lennard-Jones (LJ) potential [3, 6, 82]

φ=LJ(r) = ε
ab

a−b

[
1
a

(re

r

)a
− 1

b

(re

r

)b
]
, (10.1.1)

(a > b > 3 with a,b real numbers) is perhaps the most widely used and sim-
plest interaction potential in the simulation of phase transitions [293, 295, 309,
339–341]. Here, ε is the binding energy, r the internuclear distance and re the
equilibrium distance for a diatomic interaction. A selection of LJ potentials for
different (a,b) parameters are shown in Figure 10.1. For the (12,6) LJ poten-
tial the phase diagram is well known, with fcc and hcp (and associated Barlow
structures between these two phases) being energetically quasi-degenerate, re-
sulting in many controversies (see for example Refs. [171, 296]), and bcc
appearing as a phase near the melting point.[5, 244, 293, 296, 340]

0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

r/r
e

φ
LJ

/ε

(12,6) LJ
(6,4) LJ
(8,6) LJ
(30,6) LJ
(30,12) LJ

Figure 10.1 Lennard-Jones potentials for a selection of parameters (a,b).

On the mathematical side, the crystallization problem and stability of certain
periodic lattices has been the subject of intense discussion for quite some time.
The crystallization conjecture states that most of the ground states of physical
interacting systems are periodic lattices [342]. This is not a particularly strong



10.2 Method 251

conjecture, however, the occurrence of periodic lattices in nature is still an
unresolved problem even for simple pairwise interactions [140].
In 1924, Lennard-Jones introduced so-called lattice sums for the sc, bcc and
fcc lattices [6, 22] which was extended later by Herzfeld and Goeppert-Mayer
[154] to the hcp lattice. These lattice sums arise from quadratic forms and
Gram matrices constructed from lattice vectors of a Bravais lattice (note that
hcp is a multi-lattice consisting of a superposition of two shifted Bravais lat-
tices), and for inverse power law potentials such as Lennard-Jones they belong
to the class of Epstein zeta functions [342]. When these lattice sums are ex-
panded in terms of Bessel functions, one derives fast converging series from
the originally slow converging (or conditionally converging) sums[26, 131,
160, 311]. Lattice sums have the advantage that bulk properties such as the
cohesive energy, pressure and bulk modulus can be determined analytically to
computer precision,[296] and useful relations can therefore be obtained, for
example for the stability of the bcc phase. Here we demonstrated very recently
that (in the low temperature, pressure, and high mass limit) the LJ potential
leads to an unstable bcc phase. Or at rather low (unphysical) combinations
of values for the exponents (a,b) in eq.(10.1.1), leads to a metastable phase
with the fcc phase always being lower in energy compared to the bcc phase
[343]. The bcc→fcc transition path for a (12,6) LJ potential is smooth and
downhill and can be described by a single lattice parameter only. Moreover,
the phase line to metastability was determined to high precision for the valid
(a,b) parameter range of a LJ potential [343].
Most mathematical studies are concerned with the stability of crystals at con-
stant density [140, 344, 345]. In this work we want to shed light on the
bcc stability at finite pressures P by using exact lattice summations for pair-
wise Lennard-Jones interactions based on lattice vectors describing a primitive
cuboidal cell, which gives rise to lattice sums and to a free energy expression
for a general (a,b) LJ potential. We are particularly interested in the phase
transition from the unstable to the metastable bcc phase in order to predict the
high-pressure limit in terms of the LJ exponents (a,b). The transition path
chosen is identical to a Bain distortion for a cuboidal cell [301, 312, 346].
In the next section we derive and describe in detail the equations used in the
determination of the LJ Helmholtz free energy dependent on the pressure P
and cuboidal distortion parameter A. This is followed by a general discussion
where we show that the instability of the bcc phase propagates into the high-
pressure regime. Finally we predict the high-pressure limit (P → ∞) for the
onset of the metastable bcc phase with respect to the (a,b) parameter range.

10.2 Method

For the exact evaluation of the pressure dependent free energy and transforma-
tion path for the bcc↔fcc transition we introduce the following lattice vectors



252
10 Project 5 - Cuboidal bcc to fcc Transformation of Lennard-Jones Phases

under High Pressure derived from Exact Lattice Summations

describing the primitive cell of a body-centered tetragonal (bct) lattice [311],

b⊤1 (A) = R(1,0,0) , b⊤2 (A) = R
(

A
A+1

,

√
2A+1
A+1

,0
)
, (10.2.1)

b⊤3 (A) = R

(
1

A+1
,

1
(A+1)

√
2A+1

,

√
4A

(A+1)(2A+1)

)
.

Beside the usually slow varying nearest neighbor distance R in the solid, these
lattice vectors are dependent on a single parameter A smoothly connecting
the bcc (A = 1

2 ) with the fcc (A = 1) lattice along a (martensitic) Bain-type
transformation path [343].

These lattice vectors can be derived from an earlier paper of Conway and
Sloane who introduced the mean centered cubic (A = 1/

√
2) lattice as an aver-

age between the bcc (A= 1/2) and the fcc lattice (A= 1) [310, 311], or directly
from the conventional bct cell (space group I4/mmm) with lattice constants
a1 = a2 and a3 (α1 = α2 = α3 = 90o) through the relations

a1 = R

√
2

A+1
, a3 = 2R

√
A

A+1
(10.2.2)

The cuboidal lattice is shown in Figure 10.2 for the special case of a bcc cell.

bcc
A=0.5
a /a  =13 1

a

a3

1

Figure 10.2 The bct lattice (a1 = a2,a3,α1 = α2 = α3 = 90o) shown for the
special case of A= 1/2,a3/a1 = 1. The 8 yellow atoms define the conventional
bct cell with lattice parameter (a1 = a2,a3). The 8 blue, 4 lower yellow and 2
green atoms define the conventional fcc cell.
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The lattice vectors defined in (12.7.1) lead to the following Gram matrix G(A)
[310, 311],

G(A) = B⊤(A)B(A) =
1

A+1

A+1 A 1
A A+1 1
1 1 2

 . (10.2.3)

where B(A) is the (3×3) matrix containing the lattice basis vectors bi for the
unit distance (R = 1).

If we introduce dimensionless units, i.e. φ ∗
LJ(r

∗,a,b) = φLJ(r/re,a,b)/ε , the
(a,b)-LJ potential in its most general form becomes

φ
∗
LJ(r

∗,a,b) =
ab

a−b

[
1
a

r∗−a − 1
b

r∗−b
]
, (10.2.4)

This sets the equilibrium distance to r∗=1 and the potential energy to φ ∗
LJ(r

∗ =
1,a,b) = −1. Here, a,b ∈ R+ are real numbers and we require a > b > 3 to
avoid divergencies for the lattice summations [311]. The analytical expression
for the cohesive energy in terms of lattice sums L(a,A) and nearest neighbor
distance R∗ = R/re for a lattice defined by the lattice vectors (12.7.1) then
becomes [160],

E∗
LJ(R

∗,a,b,A) =
ab

2(a−b)

[
1
a

L(a,A)R∗−a − 1
b

L(b,A)R∗−b
]
. (10.2.5)

Vibrational effects are neglected in this work (high mass limit, M → ∞). The
lattice sums L(a,A) introduced by Lennard-Jones and co-workers can be eval-
uated to computer precision by various expansion techniques leading to fast
converging series [160, 311]. The volume can be defined through the Gram
matrix (10.2.3) [311],

V ∗(A,R∗) = R∗3detB(A) = R∗3√detG(A) = 2R∗3A1/2(A+1)−3/2 (10.2.6)

In a similar way we define the pressure P∗ and bulk modulus B∗ in dimension-
less units,

P∗(R∗,a,b,A) =−
∂E∗

LJ(R
∗,a,b,A)

∂V ∗(R∗,A)

=
ab

6(a−b)V (R∗,A)∗

[
L(a,A)R∗−a −L(b,A)R∗−b

]
, (10.2.7)
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B∗(R∗,a,b,A) =V ∗(R∗,A)
∂ 2E∗

LJ(R
∗,a,b,A)

∂V ∗(R∗,A)2

=
ab

18(a−b)V (R∗,A)∗

[
L(a,A)(a+3)R∗−a −L(b,A)(b+3)R∗−b

]
.

(10.2.8)

For the Helmholtz free energy for fixed values of a,b,A we have

F∗(P∗,V ∗) = E∗
LJ(V

∗)+P∗V ∗

=
ab

2(a−b)

[
3+a

3a
L(a,A)R∗−a − 3+b

3b
L(b,A)R∗−b

]
, (10.2.9)

and we need to obtain the volume V ∗ for a fixed pressure P∗. This requires to
obtain the zero of the function,

f (P∗,R∗,a,b,A) =
6(a−b)

√
detG(A)

abL(a,A)
P∗R∗(a+3)+

L(b,A)
L(a,A)

R∗(a−b)−1

(10.2.10)

derived from eq.(10.2.7). The Newton-Raphson procedure is used to obtain R∗

iteratively for fixed values of P∗,A,a,b,

R∗
n+1(P

∗) = R∗
n(P

∗)− f (P∗,R∗)

∂ f (P∗,R∗)/∂R∗(P∗)
(10.2.11)

and we reach convergence if |R∗
n+1 −R∗

n| < 10−14. The lattice sums L(a,A)
are obtained from fast converging Bessel function expansions introduced pre-
viously [160, 311].

For the critical point analysis of the bcc structure (A = 1/2) we require
the derivatives at A = 1/2. In our previous work we showed that
∂L(a,A)/∂A|A=1/2 = 0 and ∂ 2L(a,A)/∂A2|A=1/2 > 0 [160]. From this one
follows ∂E∗(A)/∂A|A=1/2 = 0 and ∂F∗(A)/∂A|A=1/2 = 0 for any a,b
combination at zero pressure. To answer the question if when A = 1/2
(corresponding to bcc) on the A-dependent stability line remains an extremum
for any pressure P∗ and a,b combination we evaluate the first and second
derivatives at constant pressure P∗. For this the function at a specific pressure
P∗ and fixed a,b is defined,

g(P∗,R∗,A) =
ab

2(a−b)

[
c1L(a,A)R∗(P∗,A)−a − c2L(b,A)R∗(P∗,A)−b

]
.

(10.2.12)

With coefficients cE
1 = 1/a and cE

2 = 1/b if g describes the internal energy E∗,
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and cF
1 = (3+ a)/(3a) and cF

2 = (3+ b)/(3b) if g describes the Helmholtz
free energy F∗. Here R∗(P∗,A) at constant pressure becomes dependent on
the lattice parameter A. The following derivatives are obtained (using
∂L(a,A)/∂A|A=1/2 = 0),

∂g(P∗,R∗,A)
∂A

∣∣∣∣
A=1/2

=− ab
2(a−b)

∂R∗(P∗,A)
∂A

∣∣∣∣
A=1/2

(10.2.13)

×
[
ac1L(a,A)R∗(P∗,A)−a−1 −bc2L(b,A)R∗(P∗,A)−b−1

]
,

and

∂ 2g(P∗,R∗,A)
∂A2

∣∣∣∣
A=1/2

=− ab
2(a−b)

{
g1(R∗,A = 1

2)+g2(R∗,A = 1
2)

+g3(R∗,A = 1
2)
}

(10.2.14)

with

g1(R∗,A = 1
2) =

ab
2(a−b)

{
∂ 2L(a,A)

∂A2

∣∣∣∣
A=1/2

ac1R∗(P∗,A)−a

− ∂ 2L(b,A)
∂A2

∣∣∣∣
A=1/2

bc2R∗(P∗,A)−b
}

(10.2.15)

g2(R∗,A = 1
2) =− ab

2(a−b)
∂ 2R∗(P∗,A)

∂A2

∣∣∣∣
A=1/2

(10.2.16)

×
{

ac1L(a,A)R∗(P∗,A)−a−1 −bc2L(b,A)R∗(P∗,A)−b−1
}

g3(R∗,A = 1
2) =

ab
2(a−b)

(
∂R∗(P∗,A)

∂A

)2 ∣∣∣∣
A=1/2

(10.2.17)

×
{

a(a+1)c1L(a,A)R∗(P∗,A)−a−2 −b(b+1)c2L(b,A)R∗(P∗,A)−b−2
}
.

The lattices sums and their derivatives are obtained analytically while the
∂R∗(P∗,A,a,b)/∂A and ∂ 2R∗(P∗,A,a,b)/∂A2 are treated numerically
through a five-point central numerical differentiation. We find that at any
pressure P∗ ≥ 0, ∂R∗(P∗,A)/∂A = 0 at A = 1/2, which implies that for
eq.(12.C.2) ∂g(P∗,R∗,A)/∂A = 0|A=1/2, and the corresponding term in
eq.(10.2.17) can therefore be deleted. We point out that these formulae
contain no approximations beside the neglect of vibrational and temperature
effects. As the lattice summations used here give exact expressions for the
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energy, and the lattice sums and neighbor distances at given pressure P∗ can
be obtained to computer precision.
To assess the pressure range required for this work we mention that for high
pressures in the TPa range one obtains volume compressions down to V/V0 =
1/3 where V0 is the crystal volume at zero pressure [347]. This relates to a
smallest nearest neighbor distance of about R∗ = 0.7. We therefore decided to
choose a pressure range of P∗ ∈ [0,106] for our calculations. To relate this to
real systems we may consider, for example, the bond distance and dissociation
energy of argon (re = 3.757 Å, ε = 1.191 J/mol)[348] and use the pressure
relationship P = εP∗/r3

e . For P∗ = 106 we get ca. 34 TPa for a LJ potential.
The range for the lattice parameter A was chosen to be A ∈ [1

3 ,1] (see Ref.[311]
for details), describing a Bain transformation from the axially centered cubic
lattice acc (A = 1

3 , a3/a1 =
2
3 ) to the fcc lattice (A = 1, a3/a1 =

√
2) through

the bcc (A = 1/2, a3/a1 = 1) and mcc (A = 1/
√

2, a3/a1 = 21/4) lattices. The
Bain transformation is a diffusionless movement of atoms in a lattice starting
from bcc by compression parallel to the a3-axis and simultaneous expansion
of the (a1,a2) plane.[301, 349]

10.3 Results and Discussion

The following graphs in Figures 10.3-10.5 show 2D and 3D plots of the form,

∆ f ∗(log10P∗,A) = f ∗(log10P∗,A)− f ∗(log10P∗,A = 1.0) (10.3.1)

relative to the most stable fcc structure, that is ∆ f ∗(log10P∗,A = 1.0) = 0, for
every pressure P∗ for the properties f ∗ = V ∗,P∗V ∗,E∗,andF∗ for a number
of selected (a,b) combinations of the LJ potential. For the large range of
pressures we chose a logarithmic scale, as we also did for some of the ∆ f
plots for better clarity because of the underlying exponential behavior. The
corresponding LJ potentials are shown in Figure 10.1.

The A-dependent volume for the different cuboidal structures is defined in
eq.(10.2.6). For the same R∗ values we can easily derive from this equation that
the bcc (A = 1/2) structure has a larger volume compared to the fcc (A = 1)
structure. In fact it is a maximum along the A dependent line at zero pressure
[343]. For the standard (12,6) LJ potential shown in Figure 10.3(a) or 10.5(a),
there is a small minimum for ∆V ∗(A) visible towards the acc structure (A = 1

3 ).
The volume difference between the bcc and fcc structures diminishes at higher
pressures as one expects. If multiplied by the corresponding pressure (Figure
10.3b) we see that the ∆PV ∗(P∗,A) looks rather smooth and increasing from
fcc (which is zero by definition) to bcc. This increase is substantial at higher
pressures and will add to the instability of the bcc phase. The rather small vol-
ume change with respect to the lattice parameter A shows that the choice of the
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(a) (b) (c)

(d)

Figure 10.3 (a) ∆V ∗(log10P∗,A), (b) log10∆PV ∗(log10P∗,A), (c)
log10∆E∗(log10P∗,A), and (d) log10∆F∗(log10P∗,A) hypersurfaces for
the (12,6) LJ potential. For (a) we reversed the log10P∗ axis for better
visibility.

parameter space (A,R) or (A,V ) is rather better suited compared to the usually
chosen lattice parameters (a1,a3) for the Bain transformation.
Figure 10.3(c) shows the internal energy - pressure plot for the different
cuboidal lattices. Again we observe a successive destabilization of the bcc
structure with increasing pressure. Adding both the internal energy and
pressure-volume term, which are both energetically destabilizing for the bcc
phase compared to the fcc phase, we clearly see that the bcc phase is unstable
at all pressures, see Figure 10.3d. The instability increases substantially with
increasing pressures. The plots also indicate that the acc and mcc lattices as
discussed by Conway and Sloane [310] are not stable in terms of a (12,6) LJ
potential [311] (beside a smaller metastable minimum at A < 1/2).. In order
to stabilize such exotic crystal structures one requires other bonding
conditions than simply described by a two-body potential such as
Lennard-Jones.
Changing the parameter space for the LJ potential, in Figure 10.4 we show
∆F∗(log10P∗,A) for different combinations of (a,b) values. Topologically
they look very similar, but for the (6,4)-LJ potential a metastable minimum
is observed occurring at the bcc structure (A = 1/2) persisting into the high
pressure regime, see Figure 10.5(b). Although the differences in the free en-
ergy ∆F∗ between the bcc and the fcc structures become quite large at higher
pressures, it is clear that harder potentials lead to larger differences in ∆F∗ as
one expects.
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Figure 10.4 log10∆F∗(log10P∗,A) 3D plots for the (6,4), (8,6), (30,6) and
(30,12) LJ potential.

The second derivative of the internal energy ∂ 2E∗(A)/∂A2|A=1/2 and the
Helmholtz free energy ∂ 2F∗(A)/∂A2|A=1/2 can change sign for the bcc
structure from the metastable to the unstable phase depending on the
combination of the a,b values. The boundary between the two phases at
∂ 2E∗(A)/∂A2|A=1/2 = 0 is shown in Figure 10.6 for different pressures P∗.
This first-order phase transition boundary line shifts at higher pressures to a
larger set of possible (a,b) values. At P∗ = 0 the phase transition line is
almost linear, and at the P∗→ ∞ we predict a constant boundary for the phase
transition with a value of a = 7.6603891 (notice that b < a). The boundary
line can be approximated by a polynomial and for few selected values of P∗

the polynomial coefficients are collected in Table 10.1.
Finally a brief discussion in regard to the differences in bulk moduli between
the cuboidal and the fcc structures is accompanied by Figure 10.7. We show
that ∆B∗ is at a minimum for the bcc structure (see also Figure 10.8), this
difference gets smaller with increasing pressure. At values of (a,b) = (30,6)
for the LJ potential when the repulsive wall becomes harder, we see a change
in the topology with the structures towards acc having smaller ∆B values.
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(a) (b)

Figure 10.5 ∆F∗(P∗,A) plots for the (a) (12,6) and (b) (6,4) LJ potentials for
a selection of P∗ values. The bcc phase at A = 1

2 is shown as a vertical dashed
line.

10.4 Conclusions

We demonstrated that the bcc phase becomes energetically increasingly
unstable at higher pressures for a (12,6) LJ potential. For low values of the
Lennard-Jones exponents (a,b) the bcc phase becomes metastable along the
Bain phase transition path. The (a,b) phase transition line to metastability
shifts with increasing pressure with the high pressure limit P → ∞ predicted
at exponent a = 7.6603891 for the repulsive wall.

One cannot exclude other transformation paths which are energetically
downhill toward fcc. However, our findings are in line with Ono and Ito who
also showed from phonon dispersion curves at zero pressure that soft
Lennard-Jones (LJ) forces are required to turn the bcc phase into a
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Figure 10.6 bcc first-order phase transition lines at different pressures P∗ be-
tween the unstable (red) and the metastable (green) bcc phase for different
combinations of (a,b) LJ exponents (a > b). The black linear horizontal line
at a = 7.6603891 represents the predicted high-pressure limit (P∗ → ∞). The
light green area of metastability is accessible only at finite pressures P∗ > 0.

minimum.[309] It would also be desirable to perform a more careful analysis
along the Bain path in terms of the Born-Huang criterium [159] for
mechanical stability (for a recent discussion see refs.[350, 351]). Here, one
needs to investigate if lattice sums can be efficiently used for obtaining elastic
constants, similar to the bulk modulus derived through lattice sums [296].
Nevertheless, above the (a,b) stability line, the instability of the bcc LJ phase
at pressures P∗ > 0 has been demonstrated in our work.

Naturally, one also wants to include temperature effects from vibrations. This,
however, will introduce two more parameters to the (P,A) parameter space,
that is the mass M and temperature T , which we intend to explore in our
future work. Moreover, as the importance of zero-point vibrational effects
diminish with increasing pressure, two-body effects in general may not be
sufficient to stabilize the bcc phase at low temperatures [296]. For example,
in lithium one observes a bcc→fcc transition at higher pressures [352].
However, the interaction between atoms is rarely well described by two-body
interactions alone (lithium being a prime example here), and it would be
interesting to see the interplay between two- and higher body effects [345].
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(a) (b) (c)

(d)

Figure 10.7 ∆B∗(log10P∗,A) 3D plots for the (6,4), (8,6), (12,6) and (30,6)
LJ potential.

(a) (b)

Figure 10.8 ∆B∗(P∗,A) plots for the (12,6) and (6,4) LJ potentials for a selec-
tion of P∗ values. The bcc phase at A = 1

2 is shown as a vertical dashed line.

10.5 Cover Page

The cover page for ACS Journal - Journal of Physical Chemistry C - May 26,
2022, Volume 126, Number 20, in which this paper is published can be seen in
Appendix C.



11 Project 6 results - The Madelung
Constant in N Dimensions

11.1 Introduction

The classical lattice energy Elat of an ionic crystal M+X−can be obtained from
lattice summations of Coulomb interacting point charges and is usually pre-
sented by the Born-Lande form [353, 354]

Elat =−NAZ2e2

4πε0R0
Mlat

(
1−n−1) , (11.1.1)

where Mlat is the Madelung constant for a specific lattice [7], NA is Avogadro’s
constant, and n is the Born exponent which corrects for the repulsion energy
V = aR−n,a > 0 at nearest neighbor distance R0, Z is the ionic charge (+1 in
the ideal case), e and ε0 are the elementary charge and vacuum permittivity
respectively. Values for Z2M and n have been tabulated for different crystals
in the past [355]. For a simple cubic lattice with alternating charges in the
crystal the Madelung constant (or function) M(s)≡ Msc(s) is given by the 3D
alternating lattice sum

M(s) = ∑
i, j,k∈Z

′ (−1)i+ j+k

(i2 + j2 + k2)s , (11.1.2)

where the summation is over all integer values, the prime behind the sum indi-
cates that i = j = k = 0 is omitted, s ∈ R, and s = 1

2 is chosen for a Coulomb-
type of interaction. This sum is absolutely convergent for s > 3

2 , but only
conditionally convergent for smaller s-values [62, 63]. The problem with con-
ditionally convergent series is that the Riemann Series Theorem states that one
can converge to any desired value or even diverge by a suitable rearrange-
ment of the terms in the series. This problem is well known for the Madelung
constant (s = 1

2 ) and has been documented and analyzed in great detail by Bor-
wein et al [26, 63, 65] and Crandall et al [42, 64]. For example, one has to
sum over expanding cubes and not spheres to arrive at the correct result of
M(1

2) =−1.747 564 594 633 182 . . . [64].

It is currently not known if the Madelung constant can be expressed in terms
of standard functions. The closest formula one can get is the one for s = 1

2

263
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recently derived by Tyagi [356] following an approach by Crandall [64],

M
(1

2

)
=−1

8
− ln2

4π
− 4π

3
+

1
2
√

2
+

Γ
(1

8

)
Γ
(3

8

)
π3/2

√
2

−2 ∑
k∈N

(−1)kr3(k)
√

k
[
e8π

√
k −1

]
(11.1.3)

which is correct to 10 significant figures if the sum is neglected (for more
recent work and improvement of Tyagi’s formula see Zucker [357]). Moreover,
the sum converges relatively fast. Here r3(k) is the number of representations
of k as a sum of three squares.

There are many expansions available leading to an accurate determination of
the Madelung constant [64]. Perhaps the most prominent formulas are the ones
by Benson-Mackenzie [27, 68]

M
(1

2

)
=−12π ∑

i, j∈N
sech2

[
π

2

√
(2i−1)2 +(2 j−1)2

]
(11.1.4)

and by Hautot [69] (in modified form by Crandall [64])

M
(1

2

)
=−π

2
+3 ∑

i, j∈Z

′ (−1)icosech
(

π
√

i2 + j2
)

√
i2 + j2

(11.1.5)

The Madelung constant can easily be extended to a N dimensional series
(N >0),

MN(s) = ∑
i1,...,iN∈Z

′ (−1)i1+···+iN

(i21 + i22 + · · ·+ i2N)s = ∑
i⃗∈ZN\{⃗0}

(−1)i⃗·⃗1

|⃗i|2s
, (11.1.6)

and the prime after the sum denotes that the term corresponding to i1 = i2 =
· · ·= iN = 0 is omitted (in the shorter notation on the right 1⃗ = (1,1, . . . ,1)⊤ ).
The sum is absolutely convergent for exponents s > N

2 . The Madelung series
is as a special case of the more general Epstein zeta function [117].

Zucker has found analytical expressions in terms of standard functions for even
dimensions up to N = 8 [107],

M1(s) =−2η(2s) (11.1.7)

M2(s) =−4β (s)η(s) (11.1.8)

M4(s) =−8η(s−1)η(s) (11.1.9)

M6(s) =−16η(s−2)β (s)+4η(s)β (s−2) (11.1.10)

M8(s) =−16η(s−3)ζ (s) (11.1.11)

Here η(s) is the Dirichlet eta function, β (s) the Dirichlet beta function, and
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ζ (s) the Riemann zeta function [107]. These standard functions are defined in
the Appendix A together with their analytical continuations to the whole range
of real (or complex) numbers, s ∈ R(C).
By analogy with the three-dimensional case, an N-dimensional lattice can eas-
ily be constructed from its N linearly independent basis lattice vectors (or
transformations of it). Higher dimensional lattices and their properties have
been catalogued (up to certain dimensions) by Nebe and Sloane [358]. The
simple cubic N-dimensional lattice can be drawn as an infinite graph with
atoms (vertices) and edges connecting the nearest neighbor atoms (adjacent
vertices). If we walk around the edges we alternate the charges (+/- sign or
red/blue color of the vertices in the graph) in the ionic lattice corresponding to
the alternating series for the Madelung constant. We can also derive the lattice
from tiling the N-dimensional space with N-cubes by implying translational
symmetry. Figure 11.1 shows the graphs for such N-cubes up to N = 5 to-
gether with the alternating color scheme. We notice that for dimensions N > 3
the graphs are not planar anymore. The number of nearest neighbor vertices
for an N-dimensional cubic lattice is 2N and corresponds to the limit,

lim
s→∞

MN(s) =−2N . (11.1.12)

For example, Crandall reports M3(50) =−5.999 999 999 999 989 341 . . . [64].

A general and relatively fast converging series expansion for the
N-dimensional Madelung constant has been elusive for a very long time. For
example, a recent suggestion was made by Mamode to use the Hadamard
finite part of the integral representation of the underlying potential (e.g. a
Coulomb potential) within the N-dimensional crystal [359], but computations
are quite involved and results presented were only up to three dimensions. For
the N-dimensional case one can explore expansions known for example for
the Epstein zeta function [42, 112, 121] or similar techniques [160]. In this
work, we introduce a general formula for the N-dimensional Madelung
constant for a simple cubic crystal in terms of a fast convergent Bessel
function expansion allowing for analytical continuation, which gives deep
insight into the functional behavior of the N-dimensional Madelung constant.
The derivation is given in the next section. The convergence of MN(s) with
increasing dimension N is discussed in detail in the results section.

11.2 Theory

In this section we derive two useful expansions for the N-dimensional
Madelung constant. Consider MN+1(s) and change the last summation index
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Figure 11.1 Graphs derived from orthogonal 2D projections of N-cubes (1 ≤
N ≤ 5) showing the alternating colors for the vertices (±1 charges for the
atoms). Starting with the 4-cube (tesseract) the orthogonal projection shows
vertices overlapping and we use lighter colors to highlight the two overlapping
vertices (orange for two red vertices and light blue for the two blue vertices).

to k, and write

MN+1(s) = ∑
i1,...,iN∈Z

k∈Z

′ (−1)i1+···+iN+k

(i21 + i22 + · · ·+ i2N + k2)s . (11.2.1)

Now separate the sum into the two cases k = 0 and k ̸= 0 to get

MN+1(s) = MN(s)+2F(s) (11.2.2)
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where

F(s) = ∑
k∈N

(
∑

i1,...,iN∈Z

(−1)i1+···+iN+k

(i21 + i22 + · · ·+ i2N + k2)s

)
. (11.2.3)

By the gamma function integral in the form (R+ = {x ∈ R | x ≥ 0})

1
zs =

1
Γ(s)

∫
R+

ts−1e−zt dt (11.2.4)

we have

π
−s

Γ(s)F(s) =
∫
R+

ts−1

(
∑
k∈N

(−1)ke−πk2t

)

×

(
∑

i1,...,iN∈Z
(−1)i1+···+iN e−π(i21+···+i2N)t

)
dt

=
∫
R+

ts−1

(
∑
k∈N

(−1)ke−πk2t

)(
∑
j∈Z

(−1) je−π j2t

)N

dt. (11.2.5)

By using the modular transformation for the theta function [79],

∑
n∈Z

e−πn2t+2πina =
1√
t ∑

n∈Z
e−π(n+a)2/t (11.2.6)

we get

π
−s

Γ(s)F(s) =
∫
R+

ts−1

(
∑
k∈N

(−1)ke−πk2t

)(
1√
t ∑

j∈Z
e−π( j+ 1

2 )
2/t

)N

dt.

(11.2.7)

This can be rearranged further to give

π
−s

Γ(s)F(s) =
∫
R+

ts−1−N
2

(
∑
k∈N

(−1)ke−πk2t

)

×

(
∑

m∈N0

rodd
N (8m+N)e−π(8m+N)/4t

)
dt (11.2.8)

where N0 denotes the natural numbers including zero, and rodd
N (m) is the num-

ber of representations of m as a sum of N odd squares. That is, rodd
N (m) is the
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number of solutions of

(2 j1 +1)2 +(2 j2 +1)2 + · · ·+(2 jN +1)2 = m (11.2.9)

in integers. The integral in (11.2.8) can be evaluated in terms of Bessel func-
tions by means of the formula

∫
R+

tν−1e−at−b/tdt = 2
(

b
a

)ν/2

Kν(2
√

ab). (11.2.10)

to give

π
−s

Γ(s)F(s) = 2 ∑
k∈N

∑
m∈N0

(−1)krodd
N (8m+N)

(
8m+N

4k2

)(2s−N)/4

×Ks−N/2

(
πk

√
8m+N

)
. (11.2.11)

On using this result back in (11.2.1) we obtain the recursion relation for the
Madelung constant in terms of the dimension N,

MN+1(s) = MN(s)+
4πs

Γ(s) ∑
k∈N

∑
m∈N0

(−1)krodd
N (8m+N)

(
8m+N

4k2

)(2s−N)/4

×Ks−N/2

(
πk

√
8m+N

)
(11.2.12)

= MN(s)+ ∑
m∈N0

rodd
N (8m+N)cs,N(m)

with

cs,N(m) =
4πs

Γ(s) ∑
k∈N

(−1)k
(

8m+N
4k2

)(2s−N)/4

Ks−N/2

(
πk

√
8m+N

)
.

(11.2.13)

For fixed N, the term rodd
N (8m+N) can become very large for larger m and N

values, but is more than compensated by the exponentially decreasing Bessel
function, which we discuss in detail in the next section. The rodd

N (m) values
can be determined recursively which is described in the Appendix.

While the recursion relation (11.2.12) is useful if the Madelung constant of
lower dimension is known, we seek for a second formula where the recursion
relation has been resolved. Here, we proceed as above and separate the sum
for MN+1(s) into two cases according to whether i1 = i2 = · · · = iN = 0 or i1,
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i2, . . ., iN are not all zero. This gives

MN+1(s) = 2 ∑
k∈N

(−1)k

k2s +g(s) (11.2.14)

where

g(s) = ∑
k∈Z

(
∑

i1,...,iN∈Z

′ (−1)i1+···+iN+k

(i21 + i22 + · · ·+ i2N + k2)s

)
.

Applying the integral formula for the gamma function and then the modular
transformation for the theta function we obtain

π
−s

Γ(s)g(s) =
∫
R+

ts−1
∑

i1,...,iN∈Z

′
(−1)i1+···+iN e−π(i21+···+i2N)t ∑

k∈Z
(−1)ke−πk2t dt

(11.2.15)

=
∫
R+

ts−3/2
∑

i1,...,iN∈Z

′
(−1)i1+···+iN e−π(i21+···+i2N)t ∑

k∈Z
e−π(k+ 1

2 )
2/t dt

= 2
∫
R+

ts−3/2
∑

i1,...,iN∈Z

′
(−1)i1+···+iN e−π(i21+···+i2N)t ∑

k∈N
e−π(k− 1

2 )
2/t dt,

where the last step follows by noting

∑
k∈Z

e−π(k+ 1
2 )

2/t = 2 ∑
k∈N0

e−π(k+ 1
2 )

2/t = 2 ∑
k∈N

e−π(k− 1
2 )

2/t . (11.2.16)

In terms of the modified Bessel function this becomes, by (11.2.10),

π
−s

Γ(s)g(s) = 4 ∑
i1,...,iN∈Z

′
∑
k∈N

(−1)i1+···+iN

 k− 1
2√

i21 + · · ·+ i2N

s− 1
2

×Ks− 1
2

(
2π(k− 1

2
)
√

i21 + · · ·+ i2N

)
(11.2.17)

= 4 ∑
m∈N

∑
k∈N

(−1)mrN(m)

(
k− 1

2√
m

)s− 1
2

Ks− 1
2

(
2π(k− 1

2
)
√

m
)
.

On using this back in (11.2.14) we obtain

MN+1(s) =−2η(2s)+
4πs

Γ(s) ∑
m∈N

(−1)mrN(m) ∑
k∈N

(
k− 1

2√
m

)s− 1
2

×Ks− 1
2

(
π(2k−1)

√
m
)
. (11.2.18)

For the case of N = 0 the sum of the right-hand side is zero (r0(m) = 0) and
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we have M1(s) = −2η(2s) in agreement with Zucker’s formula (11.1.7). We
can conveniently write the sum in the form,

MN+1(s) =−2η(2s)+ ∑
m∈N

(−1)mrN(m)cs(m) (11.2.19)

with

cs(m) =
4πs

Γ(s)
m

1−2s
4 ∑

k∈N

(
k− 1

2

)s− 1
2

Ks− 1
2

(
π(2k−1)

√
m
)

(11.2.20)

Note that the coefficients cs(m) are independent of the dimension N. The sum
in (11.2.20) converges fast because of the exponential asymptotic decay of the
Bessel function. The more problematic part is the convergence with respect to
the first sum (see Eq.11.2.19) over m as we shall see.

As a special case we evaluate MN(1/2). Letting s → 1/2 in (11.2.18) gives a
formula for the N +1 dimensional Madelung constant

MN+1(1/2) =−2ln2+4 ∑
m∈N

∑
k∈N

(−1)mrN(m)K0
(
π(2k−1)

√
m
)

(11.2.21)

where rN(m) is the number of representations of m as a sum of N squares. The
coefficient c1/2(m) becomes

c1/2(m) = 4 ∑
k∈N

K0
(
π(2k−1)

√
m
)
= 2

∫
R+

1
sinh(π

√
mcosh t)

dt. (11.2.22)

where the integral is obtained using the formula [110]

K0(z) =
∫
R+

e−z cosh(t) dt. (11.2.23)

and summing the resulting geometric series. For example, taking N = 2 gives

M3(1/2) =−2ln2+4 ∑
m∈N

∑
k∈N

(−1)mr2(m)K0
(
π(2k−1)

√
m
)

(11.2.24)

On the other hand, using (11.2.12) and Zucker’s equation (11.1.7) we get

M3(1/2) =−4β (1/2)η(1/2)+4 ∑
k∈N

∑
m∈N0

(−1)krodd
2 (8m+2)

×
(

2k2

4m+1

)1/4

K1/2

(
πk

√
8m+2

)
(11.2.25)
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m c1/2(m) r2(m) r3(m) r4(m) r6(m) r8(m) r10(m)

1 1.18165052269629×10−1 4 6 8 12 16 20
2 2.72719460116136×10−2 4 12 24 60 112 180
3 9.11805054978030×10−3 0 8 32 160 448 960
4 3.66634491506766×10−3 4 6 24 252 1136 3380
5 1.65469973003050×10−3 8 24 48 312 2016 8424
6 8.09716792986126×10−4 0 24 96 544 3136 16320
7 4.21007519555378×10−4 0 0 64 960 5504 28800
8 2.29579583843101×10−4 4 12 24 1020 9328 52020
9 1.30128289377942×10−4 4 30 104 876 12112 88660

10 7.61717027007281×10−5 8 24 144 1560 14112 129064
11 4.58237287636094×10−5 0 24 96 2400 21312 175680
12 2.82249344482993×10−5 0 8 96 2080 31808 262080
13 1.77472886511553×10−5 8 24 112 2040 35168 386920
14 1.13644088647490×10−5 0 48 192 3264 38528 489600
15 7.39644406563549×10−6 0 0 192 4160 56448 600960
16 4.88482197748104×10−6 4 6 24 4092 74864 840500
17 3.26906868046647×10−6 8 48 144 3480 78624 1137960
18 2.21430457563634×10−6 4 36 312 4380 84784 1330420
19 1.51652113308388×10−6 0 24 160 7200 109760 1563840
20 1.04924116314272×10−6 8 24 144 6552 143136 2050344
40 2.62596820286192×10−9 8 24 144 26520 1175328 32826664
60 2.73153353546195×10−11 0 0 576 54080 4007808 164062080
80 5.89549945570033×10−13 8 24 144 106392 9432864 525104424

100 2.02339226243198×10−14 12 30 744 164052 17893136 1282320348
120 9.64273816463316×10−16 0 48 576 213824 32909184 2625594240
140 5.88915444967014×10−17 0 48 1152 324480 49238784 4921862400
160 4.37540432127918×10−18 8 24 144 425880 75493152 8402122024
180 3.81438178722105×10−19 8 72 1872 478296 108353952 13297454504
200 3.80087523208009×10−20 12 84 744 664020 146925328 20513309148

Table 11.1 Coefficients c1/2(m) for exponent s = 1/2 and representations
rN(m) for a number of m and N values.

11.3 Results

The coefficients c1/2(m) are listed in Table 11.1 together with few selected
rN(m) values. The Madelung constants MN(s) for selected s values up to
dimension N = 20 are listed in Table 11.2 and are depicted in Figures 11.2
and 11.3. The coefficients cs(M) are all positive for s > 0, which implies
through (11.2.12) that MN(s)> MN+1(s) for s > 0. For N = 3 and s = 1/2 the
Madelung constant is readily evaluated to computer precision (summing 1 ≤
m ≤ 117 to reach 14 significant digits (we chose 1 ≤ k ≤ 200) as M3(1/2) =
−1.74756459463318 in agreement with the known value of Madelung’s con-
stant [64]. For larger exponents the series converges much faster, i.e. for M3(6)
(Table 11.2) we need to sum only over 1 ≤ m ≤ 51 to reach convergence to 14
significant digits behind the decimal point. Note that we used backwards sum-
mation as small numbers add up. We also checked our values for the even
dimensions up to N = 8 with the values obtained from the analytical function
in (11.1.7) by Zucker [107], and they are in perfect agreement.
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N
m

m
ax

M
N
(1/2)

M
N
(3/2)

M
N
(3
)

M
N
(6)

1
0

-1.38629436111989
-1.80308535473939

-1.97110218259487
-1.99951537028771

2
101

-1.61554262671282
-2.64588653230643

-3.49418521170288
-3.93702124248001

3
117

-1.74756459463318
-3.23862476605177

-4.78844371389142
-5.82302778890550

4
135

-1.83939908404504
-3.70269117771204

-5.93191305089188
-7.66458960508610

5
158

-1.90933781561876
-4.08665230978501

-6.96536812867633
-9.46689838517490

6
184

-1.96555703900907
-4.41541406455743

-7.91367677818339
-11.2339815395894

7
212

-2.01240598979798
-4.70360905429867

-8.79344454973204
-12.9690759046272

8
240

-2.05246682726927
-4.96062369646463

-9.61645522527675
-14.6748510064791

9
268

-2.08739431267374
-5.19286448579961

-10.3914475289766
-16.3535526240382

10
302

-2.11831050138482
-5.40491155391300

-11.1251231380028
-18.0071001619883

11
338

-2.14601010324383
-5.60015959755479

-11.8227595210275
-19.6371554488071

12
375

-2.17107583567180
-5.78119850773166

-12.4886029215377
-21.2451729486919

13
415

-2.19394722663803
-5.95005160868701

-13.1261312983588
-22.8324373927323

14
458

-2.21496368855843
-6.10833126513306

-13.7382364790321
-24.4000926119446

15
504

-2.23439258374969
-6.25734417113144

-14.3273540620924
-25.9491640475311

16
552

-2.25244813503955
-6.39816474499813

-14.8955583649474
-27.4805766108785

17
603

-2.26930453765447
-6.53168761111553

-15.4446333073194
-28.9951690545215

18
657

-2.28510527781503
-6.65866596401893

-15.9761263123420
-30.4937056794534

19
714

-2.29996989965861
-6.77974015828765

-16.4913899618245
-31.9768859775816

20
773

-2.31399901326838
-6.89545937988985

-16.9916146519184
-33.4453526516541

Table
11.2
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Figure 11.2 Madelung constants, MN(s), as a function of the dimension N.

To discuss the convergence behavior of the series (11.2.19) we observe that
the coefficients c1/2(m) are rapidly decreasing with increasing m. However, at
the same time the rN(m) values increase also rapidly with increasing m (and
increasing N) shown in Figure 11.4. The asymptotic behavior of the Bessel
functions is well known, i.e.they decrease exponentially with increasing m,

Ks(x) ∼ (π/2x)
1
2 e−x. On the other hand, the sum of squares representation

increases polynomially for fixed N [360–362], e.g. we know from
Ramanujan’s work that r2N(m) = O(mN) (derived from Eq.(14) in Ref.[363]).
This is also seen in the logarithmic behavior of log10rN(m) in Figure 11.4.
This implies that the Madelung series expansion in terms of Bessel functions
is converging, but very slowly for higher dimensions because of a very large
dimensional prefactor. This can clearly seen from the mmax values for
MN(1/2) in Table 11.2. For MN(s),s ≥ 1/2 we approximately have
mmax ≤ nint(1.16N2 + 11.5N + 73), where nint represents the nearest integer
function.

Perhaps more problematic is the appearance of large numbers due to the
rN(m) values in the sum over m in Eq.(11.2.19) where one reaches soon the
limit with double precision arithmetic at large N values. This is clearly seen
in Figure 11.5 for the case of dimension 16 and s = 1/2 which shows for the
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Figure 11.3 Madelung constants, MN(1/2), as a function of the dimension N
up to N = 100.

individual terms a strong oscillating behavior and polynomial increase up to
rather large values around m = 14 followed by an exponential decay. For
higher dimensions this maximum shifts to higher m values before the
exponential decay sets in. However, if we add pairs of positive and
negative terms in the oscillating series to obtain new coefficients
b(2m) = a(2m) + a(2m − 1), we experience a far smoother and better
convergence behavior.

By using the recursive formula (11.2.12) instead we obtain much fast
convergence as we reach the exponential decay far earlier because of the
argument 8m+N in the Bessel function, see Figure 11.6. Here we avoid such
large values and the strong oscillating behavior as the sign change appears in
the summation over k in .(11.2.19) rather than in (11.2.12). Hence, for
accuracy reasons Eq.(11.2.12) is preferred, and we used this equation instead
for the values in Table 11.2.

Concerning the analytical continuation all standard functions used including
the Bessel function, gamma function and the Dirichlet eta function can be
analytically continued (see Appendix) as shown in Figure 11.7. Moreover, the
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Figure 11.4 Representations for number of squares, rN(m), for dimensions
N = 4−10.

Madelung constants MN(s) are all smooth functions without any
singularities for all s ∈ R. For example, from Zucker’s formula of
M8(s) = −16η(s − 3)ζ (s) we see that for s = 1 we have ζ (1) = ∞ and
η(−2) = 0. However, it can easily be shown that the product of the two
functions gives a finite value for s = 1.

Equations (11.2.12) and (11.2.18) allow for some interesting analysis. The
gamma function Γ(x) has poles at x = 0,−1,−2, . . . for which the Bessel sum
in (11.2.12) and (11.2.18) vanishes. In this case we get

MN(s) =−2η(2s) i f s = 0,−1,−2, . . . (11.3.1)

which is independent of the dimension N. This implies that all Madelung
curves cross at these critical points. Moreover, from the Dirichlet eta function
we know that η(2s) = 0 for s = −1,−2, . . .. This behavior is nicely seen
in Figure 11.7. Comparing with Zucker’s formulas we see that this is easily
fulfilled for the specific dimensions given. Concerning the usual Madelung
constant at s = 1/2 we see that they lie close to the crossing point at s = 0
which explains their rather slow decrease with increasing dimension N.
Zucker was able to evaluate the Madelung series analytically for even dimen-
sions up to N = 8 [107] based on previous work of Glasser [364, 365]. He



276 11 Project 6 - The Madelung Constant in N Dimensions

Figure 11.5 Convergence behaviour for for the Madelung constant with s =
1/2 and N = 16. Shown are the coefficients a(m) = (−1)mr15(m)cs(m) of
Eq.(11.2.19) (in blue) and the corresponding coefficients by adding the odd
and even terms, b(2m) = a(2m)+a(2m−1) (in red). The sum of these values
converge against the Bessel sum value of −0.866153773918593.

further conjectured that M3(s) may be expressed in terms of a yet unknown
Dirichlet series (for a recent analysis of lattice sums arising from the Poisson
equation see Ref.[366]). Of considerable help for future investigations will be
the condition that MN(0) =−1 and MN(−n) = 0 for all n ∈N. At these critical
points we have the following properties

ζ (0) =−1
2

, ζ (−2n) = 0 , ζ (−n) = (−1)n Bn+1

n+1

η(0) =
1
2

, η(−2n) = 0 , η(−n) =

(
2n+1 −1

)
n+1

Bn+1 (11.3.2)

β (0) =
1
2

, β (−2n+1) = 0 , β (−n) =
En

2

where Bn and En are the Bernoulli and Euler numbers respectively [79]. For
example, from Zucker’s formulas (11.1.10) and (11.1.11) we follow immedi-
ately that M6(0) = E2 =−1 and M8(0) = 2(24 −1)B4 =−1. Further, because
of lims→∞ η(s) = 1, lims→∞ β (s) = 1, lims→∞ ζ (s) = 1 we see that the coeffi-



11.4 Conclusions 277

Figure 11.6 Convergence behaviour for the Madelung constants with s = 1/2.
Shown are the numbers log10[−d(m)] with the coefficients d(m) = rodd

N (8m+
N)cs,N(m) from Eq.(11.2.12). For N = 2 the missing points have zero value
for rodd

N (8m+N).

cients in front of the functions in eqs.(11.1.7)-(11.1.11) add up to exactly −2N.
It is, however, incorrect to assume that analytical formulas in terms of these
standard functions can be obtained for higher even dimensions. For a detailed
discussion we refer to Appendix B. In this sense, our expansions in terms of
Bessel functions is perhaps the closest general form for a fast convergent series
we can get for the N-dimensional Madelung constant.

11.4 Conclusions

We presented fast convergent expressions for the Madelung constant in terms
of Bessel function expansions which allow for an asymptotic exponential de-
cay of the series. Even for higher dimensions the Madelung constants can be
evaluated efficiently and accurately through the recursive expression or by us-
ing computer algebra to work with the generating functions. The number of
representations of the N sum of squares can also be efficiently handled through
recursive relations. The Madelung constants and their analytical continuations
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Figure 11.7 The Madelung constant M1(s),M2(s),M3(s),M4(s),M6(s) and
M8(s) for s ∈ [−9,9].

can be calculated easily by standard mathematical software packages to any
precision. These numbers may be useful for future explorations of analytical
formulas in higher dimensions. For s ≥ 1/2 a Fortran program with double
precision accuracy is available from our CTCP website [143].

11.5 Appendix

A Special Functions

We give a brief overview over the special functions used in this work. More
details can be found in the book by Andrews [79]. The Dirichlet (or L-) series
(Riemann zeta, Dirichlet eta, and Dirichlet beta functions) are defined as

ζ (s) = ∑
i∈N

i−s , (11.A.1)

η(s) = ∑
i∈N

(−1)i−1 i−s =
(
1−21−s)

ζ (s) . (11.A.2)

β (s) = ∑
i∈N

(−1)i+1(2i−1)−s . (11.A.3)
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Their analytic continuations to L-functions into the negative real part (or the
whole complex plane) are given by [364]

η(−s) = s(2−2−s)π−s−1sin(π

2 s)Γ(s)ζ (s+1) . (11.A.4)

β (1− s) =
(

π

2

)−s
sin(π

2 s)Γ(s)β (s) . (11.A.5)

ζ (−s) =−2−s
π
−s−1

(
π

2

)−s
sin(π

2 s)Γ(s+1)ζ (s+1) . (11.A.6)

Here, the gamma function is usually defined for real positive numbers as

Γ(s) =
∫
R+

xs−1e−xdx . (11.A.7)

and when s = n ∈ N we have Γ(n) = (n− 1)!. The gamma function on the
whole real axis is then defined as the analytic continuation of this integral
function to a meromorphic function by the simple recursion relation Γ(x) =
Γ(x+1)/x with 1/Γ(−n) = 0 for n ∈ N0 [367].
The modified Bessel function of the second kind is defined as

Kν(x) =
1
2

∫
R+

uν−1exp
{
−x
(
u+u−1)/2

}
du , (11.A.8)

The higher-order Bessel functions can be successively reduced to lower order
Bessel functions by

Kν(x) =
2(ν −1)

x
Kν−1(x)+Kν−2(x) , (11.A.9)

and we use the symmetry K−ν(x) = Kν(x) for its analytical continuation.
The representations of the sum of squares is obtained from the recursive for-
mula

rN+1(m) = rN(m)+2 ∑
i∈N

m−i2≥0

rN(m− i2) (11.A.10)

keeping in mind that rN(0) = 1. Eq.(11.A.10) can easily be derived from its
generating function,

∑
m∈N0

rN(m) =

(
∑
k∈Z

qk2

)N

. (11.A.11)

In a similar fashion one obtains a recursive formula for the sum of odd squares,

rodd
N+1(m) = 2 ∑

i∈N
m−(2i−1)2>0

rodd
N (m− (2i−1)2) (11.A.12)

keeping in mind that rodd
N (0) = 0 and we do not include this term in our sum-
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mation. For completeness we mention that the sum of even squares is trivially
related to the sum of squares by reven

N (4m) = rN(m) and reven
N (m) = 0 if m is

not divisible by 4.

B Why Zucker’s analytical formulas do not continue into
higher dimensions

Zucker’s formulas (11.1.7)-(11.1.11) are equivalent to Jacobi’s formulas for
sums of 2, 4, 6 and 8 squares (e.g., see [132] pp. 177, 202, 238):(

∑
j∈Z

(−1) jq j2

)2

= 1−4 ∑
n∈N

χ4(n)
qn

1+qn , (11.B.13)

(
∑
j∈Z

(−1) jq j2

)4

= 1+8 ∑
j∈N

j(−q) j

1+q j , (11.B.14)

(
∑
j∈Z

(−1) jq j2

)6

= 1+4 ∑
j∈N

χ4( j)
j2q j

1+q j +16 ∑
j∈N

j2(−q) j

1+q2 j , (11.B.15)

(
∑
j∈Z

(−1) jq j2

)8

= 1+16 ∑
j∈N

j3(−q) j

1−q j , (11.B.16)

respectively, where

χ4(n) = sin
nπ

2
=


1 if n ≡ 1 (mod 4),
−1 if n ≡ 3 (mod 4),
0 otherwise.

(11.B.17)

For example, the formula (11.B.16) can be written in the form

∑
i1,i2,...,i8∈Z

′
(−1)i1+i2+···+i8 qi21+i22+···+i28

= 16 ∑
j∈N

∑
k∈N

j3(−1) jq jk. (11.B.18)

Put q = e−u, multiply both sides by us−1 and integrate, to obtain

∑
i1,i2,...,i8∈Z

′
(−1)i1+i2+···+i8

∫
R+

us−1e−u(i21+i22+···+i28)du

= 16 ∑
j∈N

∑
k∈N

j3(−1) j
∫
R+

us−1e−u jkdu. (11.B.19)
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The integrals can be evaluated using Eq.(11.A.7) to give

∑
i1,i2,...,i8∈Z

′ (−1)i1+i2+···+i8

(i21 + i22 + · · ·+ i28)s = 16 ∑
j∈N

∑
k∈N

j3(−1) j

( jk)s , (11.B.20)

where the common factor Γ(s) has been cancelled from each side. In other
words, we have obtained

M8(s) = 16

(
∑
j∈N

j3(−1) j

js

)(
∑
k∈N

1
ks

)

=−16

(
∑
j∈N

(−1) j−1

js−3

)(
∑
k∈N

1
ks

)
=−16η(s−3)ζ (s). (11.B.21)

Thus we have obtained Zucker’s formula (11.1.11) from the sum of squares
formula (11.B.16).

The process is reversible, so (11.1.11) is equivalent to (11.B.16).

By similar calculations, each of Zucker’s formulas (11.1.8)–(11.1.11) is equiv-
alent to the respective formula in (11.B.13)–(11.B.16).

By analogy with M8(s) in Eq.(11.1.11), it is tempting to speculate that there
might be expressions for M10(s) and M12(s) as finite sums of the forms

M10(s) = ∑
i

fi(s−4)gi(s) and M12(s) = ∑
i

Fi(s−5)Gi(s) (11.B.22)

for certain L-functions fi(s), gi(s), Fi(s) and Gi(s). However this is unlikely
to be true for reasons that we shall now explain.

There are formulas for sums of 10, 12, 14, . . . squares that are similar to Ja-
cobi’s (11.B.13)–(11.B.16), but they involve other more complicated terms
called cusp forms [368]. Glaisher found the formulas for 10, 12, 14, 16 and 18
squares, and a general formula for any even number of squares was obtained
by Ramanujan. The formulas for sums of 10 and 12 squares are(

∑
j∈Z

(−1) jq j2

)10

= 1− 4
5 ∑

j∈N

χ4( j) j4q j

1+q j +
64
5 ∑

j∈N

j4(−q) j

1+q2 j − 32
5

E10(q)

(11.B.23)
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and(
∑
j∈Z

(−1) jq j2

)12

= 1+8 ∑
j∈N

j5(−q) j

1+q j −16E12(q) (11.B.24)

where

E10(q) = q ∏
j∈N

(1−q2 j)14

(1−q j)4 and E12(q) = q ∏
j∈N

(1−q2 j)12. (11.B.25)

For a statement of the general formula, see [132] (p. 214). A proof of the
general formula and references to other proofs can be found in Ref.[369].

There is no simple formula for the coefficients in the expansions of E10(q)
or E12(q), but they satisfy some remarkable properties. For example, if we
write

E12(q) = ∑
n∈N

e12(n)qn (11.B.26)

then it is known that
e12(mn) = e12(m)e12(n) (11.B.27)

if m and n are relatively prime. For prime powers, there is the three-term
recurrence

e12(pλ+1) = e12(p)e12(pλ )− p5e12(pλ−1). (11.B.28)

Furthermore, Ramanujan proved that

|e12(n)|= O(n3+ε) as n → ∞ (11.B.29)

and conjectured that
|e12(n)| ≤ n5/2d(n) (11.B.30)

where d(n) is the number of divisors of n. In fact Ramanujan had a conjecture
for a sum of 2k squares (k ≥ 5), and that conjecture was proved by Deligne
about 50 years later (as part of work for which he subsequently received the
Fields medal).

To complete the example for the 12-dimensional lattice, if we put q = e−u in
(11.B.24), multiply by us−1 and integrate, the result is

M12(s) =−8η(s−5)η(s)−16 ∑
n∈N

e12(n)
ns , (11.B.31)

where the coefficients e12(n) are as above. It was known to Ramanujan that
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the Dirichlet series can be factored, and hence we obtain the formula

M12(s) =−8η(s−5)η(s)−16∏
p

1(
1− e12(p)

ps + 1
p2s−5

) (11.B.32)

where the product is over the odd prime values of p. The first few values are as
follows: e12(3) = −12,e12(5) = 54,e12(7) = −88,e12(11) = 540,e12(13) =
−418,e12(17) = 594,e12(19) = 836,e12(23) =−4104,e12(29) =−594.
The formula (11.B.32) is the analogue of Zucker’s formulas for the
12-dimensional lattice. Similar formulas can be given for sums of 2k squares
for any positive integer k. The number of cusp forms is ⌊(k−1)/4⌋. In
particular, there are no cusp forms for 1 ≤ k ≤ 4 corresponding to Zucker’s
formulas for the lattice sums in 2, 4, 6 or 8 dimensions; there is one cusp form
for 5 ≤ k ≤ 8 corresponding to the lattice sums in 10, 12, 14 or 16
dimensions; and there are two cusp forms for 9 ≤ k ≤ 12 corresponding to the
lattice sums in 18, 20, 22 or 24 dimensions.
As a consequence of Ramanujan’s conjectures and Deligne’s proofs, we now
know that the number of representations of N as a sum of an even number
2k squares is given by a dominant term that involves a sum of the (k − 1)th
powers of the divisors of N, plus a correction term (the coefficient in a cusp
form) that is roughly the square root in magnitude of the dominant term. When
the number of squares is 2, 4, 6 or 8 there is no cusp form, and the divisor sum
formula is exact, and that is the reason the formulas of Zucker exist. When
the number of squares is 10, 12, 14, . . ., there is an increasing number of cusp
forms, and there is no easy formula for the coefficients in their power series
expansions. That is the reason why Zucker’s formulas stop at 8 dimensions,
and why there are no similar formulas for dimensions 10, 12, 14, . . ..





12 Project 7 - The Lattice Sum for a
Hexagonal Close Packed
Structure and its Dependence on
the c/a Ratio of the Hexagonal
Cell Parametersa

12.1 Introduction

The hexagonal close packed structure (hcp) shown in Figure 12.1 with a pack-
ing sequence of (AB)∞ is made up of hexagonal layers in three dimensions
and has the same packing density (ρ = π/3

√
2) as the face-centered cubic

structure (fcc) with a stacking sequence of (ABC)∞. It has only recently been
proven by Hales that the fcc packing density cannot be surpassed (Kepler’s
original conjecture [370]) and therefore is optimal.[371] Of course, any Bar-
low packing, which are mixtures of hcp and fcc stacking sequences, such as
ABABCABAB..., is also optimal, and there are infinitely many.[166, 372–374]

A

A

B

a a

c

Figure 12.1 The hcp structure with ABABAB... sequence (layers A in red and
B in blue) of hexagonal close-packed layers, and corresponding cell parame-
ters a and c. The ratio c/a =

√
8/3 leads to the optimal hcp lattice with 12

kissing spheres around a central atom.

In 1924, Lennard-Jones and Ingham used an inverse power law potential of the

aThis chapter is composed of sections from unpublished results. Some sections may have been
modified to fit the style of this thesis.
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form

VLJ(r) =
εnm

n−m

[
1
n

(re

r

)n
− 1

m

(re

r

)m
]
, (12.1.1)

for n > m (n,m ∈ R and n,m > 3) and lattice sums Ln in order to obtain esti-
mates for the cohesive energies for the simple cubic (sc), body-centered cubic
(bcc) and face-centered cubic (fcc) lattices, given by [6, 22],

Ecoh
LJ (R) =

εnm
2(n−m)

[
Ln

n

(re

R

)n
− Lm

m

(re

R

)m
]
. (12.1.2)

In the above equation, re is the minimum distance for the LJ potential, R rep-
resents the nearest neighbor distance rNN or a lattice constant for the solid, and
ε is the dissociation energy between two atoms. The potential form in (12.1.1)
would later come to be commonly known as the Lennard-Jones potential and
become one of the most widely used two body potentials. The lattice sums for
the cubic lattices are infinite sums in terms of quadratic forms involving the
(3×3) Gram matrix G,

Ln = ∑
i⃗∈Z3\⃗0

(⃗
i⊤G⃗i

)−n/2
. (12.1.3)

The components of G are defined by the scalar products of three lattice
vectors b⃗i defining the Bravais lattice in question (setting the nearest
neighbour distance to one), i.e. (Gi j) = (⃗b⊤i b⃗ j). For example, in the simple
cubic lattice, G becomes the identity matrix. Such lattice sum expressions can
easily be extended to higher dimensions (N > 3), and in principle to other
type of potentials, although expressions for Ln can become rather more
complicated functions of the underlying lattice.[26, 375] A nice example here
is the Madelung constant for dimensions up to N = 4 and even dimensions
N = 6 and 8.[26, 107] The series (12.1.3) converges for n > 3 and diverges
otherwise.

There are many different methods to convert the usually slow convergent
lattice sums for inverse power potentials into fast converging series for which
a detailed account is given by Borwein et al.[26] This allows analytical
continuation into the region (n < 3 or the cubic lattices) where such series
shown in (12.1.3) diverges. Some of these methods have recently be used to
produce fast converging series [311] in analogy to Lennard-Jones’ early
attempts.[6, 22]

In 1940, Kane and Goeppert-Mayer evaluated the lattice sum for the ideal hcp
structure [24]. Although they did not provide an explicit formula for the
lattice sum in their paper (which was given later by Bell and Zucker [70]),
their values obtained from direct summation plus estimate of the remainder
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for Ln where n = 6, 8, 10 and 12 were accurate to four decimal places. They
stated that “for the hexagonal crystal, the method used by Lennard-Jones
could not easily be adopted, so we have used a more tedious and less elegant
method " [24], which was by direct summation [48]. Borwein et al.
decomposed the hcp lattice in terms of four different lattice sums containing
quadratic functions, but did not provide an efficient method for evaluating
them.[26]

In a recent paper[160] we introduced lattice sums for cubic lattices and the
hcp structure followed by various expansion methods using Bessel functions.
The derived expansions for the hcp lattice were all restricted to the ideal ratio
of c/a =

√
8/3 and were in some cases rather cumbersome. Here we

introduce new and more efficient fast converging expressions for the lattices
sums of the hcp structure with an arbitrary c/a ratio. We analyze the lattice in
detail for the Lennard-Jones potential defined in (12.1.1), and look for
possible symmetry breaking effects where the kissing number (number of
touching spheres around a central atom in a lattice) of the 12 equidistant
atoms from the central atom is lowered. Here we mention that recently a
second metastable minimum was found in solid-state calculations using an
extended Lennard-Jones potential and direct lattice summations [376], and we
will show that an analytical treatment using exact lattice summations, leads
not only to the same metastable minimum but gives insight in why such a
minimum exists. Moreover, we discuss the relationship with the fcc lattice in
terms of lattice sums.

12.2 The Lattice Sum for the hcp structure

If only a simple hexagonal lattice is considered, the basis vectors for the hexag-
onal Bravais lattice are given by the following lattice vectors,

b⃗⊤1 = a(1,0,0) , b⃗⊤2 = a

(
1
2
,

√
3

2
,0

)
, b⃗⊤3 = c(0,0,1) . (12.2.1)

This leads to the following positive definite symmetric Gram matrix

(Gi j) =
(⃗

b⊤i b⃗ j

)
= a2

1 1
2 0

1
2 1 0
0 0 c2

a2

 , (12.2.2)

with det(G) = 3
4 a4c2 > 0. From an arbitrarily chosen atom at the origin, all

points in the hexagonal lattice are described by
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r⃗i jk = i⃗b1 + j⃗b2 + k⃗b3 . (12.2.3)

Their distances to the origin are given by the quadratic form

ri jk =
(⃗

v⊤G⃗v
) 1

2
= a

(
i2 + i j+ j2 +

c2

a2 k2
) 1

2

, (12.2.4)

with v⃗⊤ = (i, j,k) ∈ Z3 and i, j,k ∈ Z (i = j = k = 0 excluded). The volume of
the unit cell is determined through the Gram matrix

V (a,c) =
√

detG =

√
3

2
a2c (12.2.5)

The nearest neighbor distance is given by

rNN = min{ri jk}= min{a,c} . (12.2.6)

For the following we define the parameter γ = c/a > 0 and set arbitrarily a =
1. This leads to the following lattice sum for potentials ∼ r−n such as the
Lennard-Jones potential,

LA(s,γ) = ∑
i, j,k∈Z

′ (
i2 + i j+ j2 + γ

2k2)−s
(12.2.7)

with s = n/2. The prime on the sum indicates that the summation is over all
integers except for the term corresponding to i = j = k = 0. We note here
that these lattice sums can be seen as special cases of the Epstein zeta func-
tion.[117] A peculiarity of this lattice sum is that lims→∞ LA(s,γ)=∞ for γ < 1,
and one has to take special care of large s values in this small γ region.

The hcp structure is a multi-lattice characterised by two nested hexagonal Bra-
vais lattices with one layer shifted by a vector of v⃗⊤s = a

(
1
2 ,

1
2
√

3
, c

2a

)
with

respect to the lattice vectors given in (12.2.1), so that the position of any atom
in the B layers is given by

r⃗AB
i jk = i⃗b1 + j⃗b2 + k⃗b3 + v⃗s , (12.2.8)

with b⃗1 ,⃗b2 and b⃗3 as in (12.2.1). The shift vector can easily be derived from
the fact that an atom in the B layer sits above the centroid of a triangle of
neigboring lattice points in the A layer. The corresponding lattice sum for the
distances from the origin in the A-layer to all points in the B-layers can now
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easily be obtained and is given by [160]

LB(s,γ) = ∑
i, j,k∈Z

[(
i+ 1

3

)2
+
(

j+ 1
3

)2
+
(
i+ 1

3

)(
j+ 1

3

)
+ γ

2 (k+ 1
2

)2
]−s

,

(12.2.9)

where we have set a = 1. The lattice sum LB(s,γ) is not a quadratic form but
instead a quadratic function, which is therefore more difficult to evaluate
through techniques such as the Terras decomposition. [112, 160] One way is
to decompose LB(s,γ) into a sum of four lattice sums that involve quadratic
forms; see Appendix D. Another way is to work with (12.2.9) directly and
employ the theory of cubic theta functions, as we will see in section 12.3,
where two different formulas are obtained. Again, one has to take care of
large s values for small values of γ as we have lims→∞ LB(s,γ) = ∞ for

γ <
√

8
3 .

Taking both AB layers into account the lattice sum for the hexagonal close
packed structure is given by

Lhcp(s,γ) = LA(s,γ)+LB(s,γ) . (12.2.10)

For the minimum distance rNN in an hcp lattice we have to consider an addi-
tional case of i = j = k = 0 in the lattice sum in (12.2.9),

rNN = min

{
a,c,

√
a2

3
+

c2

4

}
= amin

{
1,γ,

√
1
3
+

1
4

γ2

}
. (12.2.11)

For the hcp structure with ideal value of γhcp =
√

8
3 the kissing number defined

by the number of minimum distances is κ = 12.

Given the above properties, it is shown by Figure 12.2, that rNN = c for γ ∈
(0, 2

3 ] corresponding to region I, rNN =
√

a2

3 + c2

4 for γ ∈ (2
3 ,
√

8
3) to region II

and rNN = a for γ ∈ [
√

8
3 ,∞) to region III. For hard unit spheres there is a

requirement that rNN ≥ 1. Setting a=1 for the densest packing of unit spheres
in a hexagonal sheet, we obtain the condition that γ ≥

√
8/3, otherwise one

requires a > 1. Hence, the densest packing of unit spheres is achieved at γhcp =√
8/3. This results in a hcp unit cell volume of V =

√
2 for a=1. As there are

two atoms in the unit cell the volume per atom (or sphere) according to (12.2.5)
of Vhcp(1,

√
8/3)/2 = 1/

√
2. Taking the sphere radius of 1

2 , this results in a
packing density of

ρ =
Vsphere

Vhcp
=

4π

3

(
1
2

)3√
2 =

π

3
√

2
= 0.74048048969... (12.2.12)
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identical to that of the fcc lattice.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

γ

r N
N

hard sphere

 I                         II                           III
κ=6κ=6κ=2

κ =12κ =8

Figure 12.2 Minimum distance rNN according to Eq. (12.2.11) for a = 1. The
kissing number κ for the three regions and at the two boundaries are shown.

The vertical dashed lines are at γ = 2
3 and

√
8
3 where we have an increased

kissing number.

12.3 Bessel Function Expansions of the hcp Lattice
Sum

In the following we analyse LA(s) and LB(s) one at a time (we omit the argu-
ment γ for better clarity). We obtain two different Bessel function expansions
which have poles at different s values (except for s= 3/2) and thus can be used
to check against each other. In the proofs we will frequently refer to formulas
for special functions given by (12.A.1)–(12.A.25) in Appendix A.

A The lattice sum LA(s)

We break the sum for LA(s) into two, according to whether k = 0 or k ̸= 0.
This gives

LA(s) = f (s)+2F(s) (12.3.1)
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where
f (s) = ∑

i, j∈Z

′
(i2 + i j+ j2)−s (12.3.2)

and
F(s) = ∑

k∈N
∑

i, j∈Z
(i2 + i j+ j2 + γ

2k2)−s , (12.3.3)

with N defined as the set of positive integers, and N0 includes the zero. The
function f (s) has been evaluated before [26, 105],

f (s) = 6ζ (s)L−3(s) = 31−s2ζ (s)
[
ζ (s, 1

3)−ζ (s, 2
3)
]

(12.3.4)

where ζ (s,x) is the Hurwitz zeta function

ζ (s,x) = ∑
i∈N0

(i+ x)−s , (12.3.5)

where ζ (s) = ζ (s,1) is the Riemann zeta function, and L−3 is the L-function
defined by

L−3(s) = ∑
k∈N

sin(2kπ/3)
sin(2π/3)

1
ks =

1
1s −

1
2s +

1
4s −

1
5s + · · · . (12.3.6)

It remains to calculate F(s). Applying the gamma function integral shown in
(12.A.2),

1
ws =

1
Γ(s)

∫
∞

0
xs−1 e−wx dx (12.3.7)

followed by the cubic analogue of the theta function transformation formula,
(12.A.12), we obtain

(2π)−s
Γ(s)F(s) =

∫
∞

0
xs−1

∑
k∈N

e−2πγ2k2x
∑

i, j∈Z
e−2π(i2+i j+ j2)x dx (12.3.8)

=
1√
3

∫
∞

0
xs−2

∑
k∈N

e−2πγ2k2x
∑

i, j∈Z
e−2π(i2+i j+ j2)/3x dx.

Now separating out the i= j = 0 term and evaluate the resulting integrals using
the following expression for the modified Bessel functions of the second kind
shown in (12.A.3)

∫
∞

0
xs−1e−ax−b/xdx = 2

(
b
a

)s/2

Ks(2
√

ab) , (12.3.9)
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we get

(2π)−s
Γ(s)F(s) =

1√
3 ∑

k∈N

∫
∞

0
xs−2e−2πγ2k2x dx

+
1√
3 ∑

k∈N
∑

i, j∈Z

′
∫

∞

0
xs−2e−2πγ2k2x−2π(i2+i j+ j2)/3x dx

=

(
2πγ2

)1−s

√
3

Γ(s−1)ζ (2s−2)

+
2√
3 ∑

k∈N
∑
i, j

′
(

i2 + i j+ j2

3γ2k2

)(s−1)/2

×Ks−1

(
4π√

3
γk
√

i2 + i j+ j2

)
. (12.3.10)

It follows that

LA(s) = 6ζ (s)L−3(s)+
4π√

3(s−1)
γ

2−2s
ζ (2s−2)

+
4√
3
(2π)s

Γ(s) ∑
k∈N

∑
i, jk∈Z

′
(

i2 + i j+ j2

3γ2k2

)(s−1)/2

×Ks−1

(
4π√

3
γk
√
(i2 + i j+ j2)

)
= 6ζ (s)L−3(s)+

4π√
3(s−1)

γ
2−2s

ζ (2s−2)

+
4√
3
(2π)s

Γ(s) ∑
k∈N

∑
N∈N

u2(N)

(
N

3γ2k2

)(s−1)/2

Ks−1

(
4π√

3
γk
√

N
)

(12.3.11)

where u2(N) is the number of representations of N by the form i2 + i j+ j2.

B A second formula for the lattice sum LA(s)

A different formula for LA(s) can be obtained by separating the terms in the
series (12.2.7) according to whether i = j = 0 or i and j are not both zero. This
gives

LA(s) = 2γ
−2s

ζ (2s)+G(s) (12.3.12)

where
G(s) = ∑

i, j∈Z

′
∑
k∈Z

(i2 + i j+ j2 + γ
2k2)−s . (12.3.13)
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Applying the gamma function integral (12.A.2) followed by the theta function
transformation formula (12.A.8) for the k summation, we obtain

π
−s

Γ(s)G(s) =
∫

∞

0
xs−1

∑
i, j∈Z

′e−π(i2+i j+ j2)x
∑
k∈Z

e−πγ2k2x dx (12.3.14)

= γ
−1
∫

∞

0
xs− 3

2 ∑
i, j∈Z

′e−π(i2+i j+ j2)x
∑
k∈Z

e−πk2/(γ2x) dx .

Now separate out the k = 0 term and evaluate the resulting integrals. The result
is

π
−s

Γ(s)G(s) = γ
−1
∫

∞

0
xs− 3

2 ∑
i, j∈Z

′e−π(i2+i j+ j2)x dx

+2γ
−1
∫

∞

0
xs− 3

2 ∑
i, j∈Z

′e−π(i2+i j+ j2)x
∑
k∈N

e−πk2/(γ2x) dx

= γ
−1

π
−(s− 1

2 ) Γ
(
s− 1

2

)
∑

i, j∈Z

′
(i2 + i j+ j2)−s+1

2

+4γ
−(2s+1)/2

∑
i, j∈Z

′
∑
k∈N

(
k2

i2 + i j+ j2

)(2s−1)/4

×Ks− 1
2

(
2πk

γ

√
i2 + i j+ j2

)
. (12.3.15)

The first sum can be evaluated in terms of the Riemann zeta function and the
L−3 function by (12.A.24). In the second sum, we again use the notation u2(N)
for the number of representations of N by the form i2 + i j+ j2. The result is

π
−s

Γ(s)G(s) = 6π
−(s− 1

2 ) γ
−1

Γ(s− 1
2)ζ (s−

1
2)L−3(s− 1

2) (12.3.16)

+4γ
−(2s+1)/2

∑
N∈N

∑
k∈N

u2(N)

(
k2

N

)(2s−1)/4

Ks− 1
2

(
2πk

γ

√
N
)
.

It follows that

LA(s) = 2γ
−2s

ζ (2s)+6
√

πγ
−1 Γ(s− 1

2)

Γ(s)
ζ (s− 1

2)L−3(s− 1
2)

+
4πs

Γ(s)
γ
−(2s+1)/2

∑
N∈N

∑
k∈N

u2(N)

(
k2

N

)(2s−1)/4

Ks− 1
2

(
2πk

γ

√
N
)
.

(12.3.17)
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C The lattice sum LB(s)

We apply the gamma function integral (12.A.2) for (12.2.9) to write

LB(s) =
(2π)s

Γ(s)

∫
∞

0
xs−1

∑
k∈Z

e−2πγ2(k+ 1
2 )

2x

× ∑
i, j∈Z

e−2π{(i+ 1
3 )

2+(i+ 1
3 )( j+ 1

3 )+( j+ 1
3 )

2}x dx . (12.3.18)

Now make use of the transformation formula (12.A.13) to deduce

LB(s) =
(2π)s

Γ(s)

∫
∞

0
xs−1

(
2 ∑

k∈N0

e−2πγ2(k+ 1
2 )

2x

)

×

(
1

x
√

3 ∑
i, j∈Z

ω
i− je−2π(i2+i j+ j2)/3x

)
dx (12.3.19)

where ω = exp(2πi/3) is a primitive cube root of 1. Now separate the term
i = j = 0 to deduce

LB(s) =
(2π)s

Γ(s)
2√
3

∫
∞

0
xs−2

∑
k∈N0

e−2πγ2(k+ 1
2 )

2x dx (12.3.20)

+
(2π)s

Γ(s)
2√
3

∫
∞

0
xs−2

∑
k∈N0

e−2πγ2(k+ 1
2 )

2x

× ∑
N∈N0

cos
(

2πN
3

)
u2(N)e−2πN/3x dx (12.3.21)

where u2(N) is the number of representations of N by the form i2 + i j + j2,
as before. Here we used Euler’s formula, eiθ = cos θ + isin θ and retain
only the real part as LB(s) is real. On evaluating the integrals using (12.A.2)
and (12.A.3) we obtain

LB(s) =
4π√

3(s−1)
γ
−2s+2

∑
k∈N0

1
(k+ 1

2)
2s−2

+
4√
3
(2π)s

Γ(s) ∑
k∈N0

∑
N∈N

cos
(

2πN
3

)
u2(N)

(
N

3γ2(k+ 1
2)

2

)(s−1)/2

×Ks−1

(
4π√

3
γ
(
k+ 1

2

)√
N
)
. (12.3.22)
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The first sum can be evaluated in terms of the Riemann zeta function by us-
ing (12.A.23) to give

LB(s) =
4π√

3(s−1)
γ
−2s+2(22s−2 −1)ζ (2s−2)

+
4√
3
(2π)s

Γ(s) ∑
k∈N0

∑
N∈N

cos
(

2πN
3

)
u2(N)

(
N

3γ2(k+ 1
2)

2

)(s−1)/2

×Ks−1

(
4π√

3
γ
(
k+ 1

2

)√
N
)
. (12.3.23)

D A second formula for the sum LB(s)

We introduce the abbreviation

Yi j =
(
i+ 1

3

)2
+
(
i+ 1

3

)(
j+ 1

3

)
+
(

j+ 1
3

)2 (12.3.24)

to write (12.3.18) in the form

LB(s) =
(2π)s

Γ(s)

∫
∞

0
xs−1

∑
i, j∈Z

e−2πYi jx ∑
k∈Z

e−2πγ2(k+ 1
2 )

2x dx . (12.3.25)

This time we apply the transformation formula (12.A.9) to the sum over k to
obtain

LB(s) =
(2π)s
√

2Γ(s)
γ
−1
∫

∞

0
xs−3/2

∑
i, j∈Z

e−2πYi jx ∑
k∈Z

(−1)k e−πk2/(2γ2x) dx .

(12.3.26)

Now separate the terms according to whether k = 0 or k ̸= 0 and evaluate the
resulting integrals by (12.A.2) and (12.A.3). The result is

LB(s) =
√

π Γ(s− 1
2)

γ Γ(s) ∑
i, j∈Z

Y 1/2−s
i j (12.3.27)

+
4πs

Γ(s)
γ
−(2s+1)/2

∑
k∈N

(−1)k
∑

i, j∈Z

(
k√
Yi j

)s− 1
2

Ks− 1
2

(
2π

k
γ

√
Yi j

)
.

The first sum can be handled by (12.A.25) to give

∑
i, j∈Z

Y 1/2−s
i j = 3(3s−1/2 −1)ζ

(
s− 1

2

)
L−3

(
s− 1

2

)
. (12.3.28)

For the other sum, observe that 3Yi j = 3i2+3i j+3 j2+3i+3 j+1, that is to say
3Yi j is a positive integer and 3Yi j ≡ 1 (mod 3). Therefore we set 3Yi j = 3N+1
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and use (12.A.16) to deduce that the number of solutions of 3i2 +3i j+3 j2 +
3i+3 j+1 = 3N +1 is equal to 1

2 u2(3N +1), and we get

LB(s) =
3
√

π Γ(s− 1
2)

γ Γ(s)
(3s−1/2 −1)ζ

(
s− 1

2

)
L−3

(
s− 1

2

)
+

2πs

Γ(s)
γ
−(2s+1)/2

∑
k∈N

(−1)k
∑

N∈N0

u2(3N +1)

 k√
N + 1

3

s− 1
2

×Ks− 1
2

(
2π

k
γ

√
N + 1

3

)
. (12.3.29)

E Adding LA(s) and LB(s)

On adding the results for LA(s) and LB(s) in (12.3.11) and (12.3.23) we obtain

Lhcp(s,γ) = 6ζ (s)L−3(s)+
4π√

3(s−1)

(
γ

2

)2−2s
ζ (2s−2)

+
4√
3
(2π)s

Γ(s) ∑
k∈N

∑
N∈N

u2(N)

(
N

3γ2k2

)(s−1)/2

Ks−1

(
4π√

3
γk
√

N
)

+
4√
3
(2π)s

Γ(s) ∑
k∈N0

∑
N∈N

cos
(

2πN
3

)
u2(N)

(
N

3γ2(k+ 1
2)

2

)(s−1)/2

×Ks−1

(
4π√

3
γ
(
k+ 1

2

)√
N
)
. (12.3.30)

On the other hand, if we add the results of (12.3.17) and (12.3.29) we obtain

Lhcp(s,γ) = 2γ
−2s

ζ (2s)+
3
√

π Γ(s− 1
2)

γ Γ(s)
(3s−1/2 +1)ζ

(
s− 1

2

)
L−3

(
s− 1

2

)
+

4πs

Γ(s)
γ
−(2s+1)/2

∑
N∈N

∑
k∈N

u2(N)

(
k√
N

)(2s−1)/2

Ks− 1
2

(
2πk

γ

√
N
)

+
2πs

Γ(s)
γ
−(2s+1)/2

∑
k∈N

(−1)k
∑

N∈N0

u2(3N +1)

 k√
N + 1

3

s− 1
2

×Ks− 1
2

(
2π

k
γ

√
N + 1

3

)
. (12.3.31)

Equation (12.3.31) is numerically more stable for small values of γ as the ar-
gument in the Bessel function Ks− 1

2
(x) becomes larger and therefore further

away from the singularity at x = 0, while (12.3.30) is better suited for larger
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values of γ . The lattice sums as a function of γ for different s values are shown
in Figure 12.3, and the corresponding values of Lhcp(s,γ) (including the first

and second derivatives) for the ideal ratio of γhcp =
√

8
3 and selected s-values

are collected in Table 12.1.

Figure 12.3 Lattice sums Lhcp(s,γ) as a function of γ for various s values. The

vertical dashed lines are at γ = 2
3 and

√
8
3 as in Figure 12.2, and the horizontal

dashed line represents limγ,s→∞ Lhcp(s,γ) = 6. The curve for s=50 is close to
the hard-sphere limit of s = ∞.

We obtain the following limits for all values of s > 3
2 ,

lim
γ→∞

Lhcp(s,γ)→ 6ζ (s)L−3(s) and lim
γ→0

Lhcp(s,γ)→ ∞ . (12.3.32)

The first limit reflects the fact that the limiting case γ →∞ corresponds to a sin-
gle 2D hexagonal lattice with Lhcp

2 (s) = 6ζ (s)L−3(s) being the corresponding
lattice sum (see Eq.(47) in Ref.[296]). Moreover, as mentioned before we have

lims→∞ Lhcp(s,γ) = ∞ for γ <
√

8
3 , and for larger values of s direct summation

using the original lattice sum (12.2.10) is to be preferred, e.g., for s = 50 and

γ = γhcp =
√

8
3 we obtain Lhcp(s,γ) = Lhcp(50,

√
8
3) = 12.000000000000, cor-

responding to the kissing number for an ideal hcp lattice.
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s Lhcp(s,γ) ∂Lhcp(s,γ)/∂γ ∂ 2Lhcp(s,γ)/∂γ2

2 25.339082338055 -20.695008216087 34.645562350540
3 14.454897277842 -17.711026910386 45.197828381987
4 12.802821852810 -20.913971214589 71.283006314719
5 12.311896233819 -25.136976828849 106.83160316772
6 12.132293769099 -29.721546123728 151.03829753868
7 12.059228255068 -34.464287703815 203.59375072251
8 12.027479419304 -39.282788797012 264.34146680290
9 12.013060023177 -44.139430042060 333.19696813736

10 12.006309158115 -49.015864608041 410.11367485711

Table 12.1 Values for Lhcp(s,γ) at the ideal ratio of c/a = γhcp =
√

8
3 for se-

lected s = n/2. The first and second derivatives with respect to γ are reported
as well (see appendix 12.D for details).

12.4 The Lennard-Jones cohesive energy for the hcp
structure with varying c/a ratio

The cohesive energy for the hcp structure for a general (n,m) LJ potential
expressed in terms of lattice sums is given by

Ecoh
LJ (n,m,a,γ) =

εnm
2(n−m)

[
Lhcp(n

2 ,γ)

n

(re

a

)n
−

Lhcp(m
2 ,γ)

m

(re

a

)m
]
.

(12.4.1)
The definitions for the lattice sums Lhcp(s,γ) are taken from eqs. (12.3.30) and
(12.3.31) with γ = c/a. In order to discuss the behavior for the LJ potential
with varying c/a ratio we calculate the minimum cohesive energy with respect
to the lattice parameter a for fixed γ . For this we follow the procedure in
Ref.[343] and get,

R∗
min(γ) =

amin(γ)

re
=

(
Lhcp(n

2 ,γ)

Lhcp(m
2 ,γ)

) 1
n−m

, (12.4.2)

and the * indicates reduced (or dimensionless) units are used. The cohesive
energy can now be evaluated at R∗

min,

E∗
nm(γ) = Ecoh

LJ (n,m,R∗
min(γ),γ)/ε =−1

2

[
Lhcp(m

2 ,γ)
n

Lhcp(n
2 ,γ)

m

] 1
n−m

. (12.4.3)

The function E∗
nm(γ) is shown in Figure 12.4 for various (n,m) combinations

of the LJ potential. For the (12,6) LJ potential we see a metastable minimum
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Figure 12.4 E∗
nm(γ) as a function of γ =

√ c
a for a number of (n,m) combina-

tions for the LJ potential. The vertical dashed lines are at γ = 2
3 and

√
8
3 as in

Figure 12.2. Note that the exponents n,m are multiplied by 2 compared to the
s exponent used in the previous sections.
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around γ = 2/3, γ=0.710188 for the (12,6) LJ potential with an energy
difference to the global minimum of ∆E∗ = 2.691401. The metastable
minimum becomes more pronounced for harder potentials and disappears for
very soft potentials. Concerning the maximum, for the (12,6) LJ potential it
sits at γ=0.848360 with an activation barrier of ∆E∗= 0.084494 from the

metastable minimum to the more stable minimum around γhcp =
√

8
3 . Data

for the metastable minimum for some other (n,m) combinations of the LJ
potential are collected in Table 12.2.

The question why a second minimum appears around γ = 2
3 needs to be

addressed. This is at the boundary between regions I and II shown in Figure
12.2 where the kissing number is increased to κ = 8 due to the fact that beside
the six surrounding atoms from the A-layer of an atom in the B-layer, we
have two more touching spheres above and below from other C-layers with an
underlying elongated triangular bipyramid (or dipyramid). In region I, the
minimum distance is determined by the lattice constant c. In this case the
atoms in the two A-layers shown in Figure 12.1 come in direct neighborhood
and start to interact more strongly. In order to avoid strong repulsive forces
we have to make space for the C-layer in the middle position by increasing
the lattice constant a. As an atom in layer C sits exactly in the centroid of a
triangle spanned by neighboring atoms in the A-layer, we consider a trigonal
pyramid of unit spheres with edge length e = 1 and height h = c = 1

2 . This
gives for the nearest neighbor distances in the A-layer a = 3

2 , and therefore a
ration of γ = c/a = 2

3 . Such a lattice is best described by linear chains along
the c axis with atoms from the A-layers and shifted by c/a atoms from the
C-layers (notice that in the region γ < 2

3 we have κ = 2). As the kissing
number is κ = 8 at the boundary (see Figure 12.2), we expect that the

minimum occurs at higher energies compared to the one around γhcp =
√

8
3 .

n m γmeta
min γmax ∆E∗

nm ∆E∗
nm

#

12 6 0.710188 0.848360 2.691402 0.08449406
20 6 0.683350 0.883096 2.519636 0.29600569
20 12 0.668678 0.935797 2.073051 0.70435894

Table 12.2 γmeta
min for the metastable minimum and corresponding energy dif-

ference ∆E∗
nm to the global minimum around γhcp =

√
8
3 , and γmax between

the two minima and corresponding energy difference ∆E∗
nm

# to the metastable
minimum for three selected (n,m) combinations of the LJ potential. Note that
the exponents n,m are multiplied by 2 compared to the s exponent used in the
previous sections.



12.5 Analytic continuation of the lattice sum Lhcp(s) 301

In regard to the global minimum, there is no reason for the LJ potential to

have the minimum exactly at γhcp =
√

8
3 as the first derivatives ∂γE∗

nm(γhcp) in
Table 12.1 show for various (n,m) combinations. Indeed, it was already
shown by Howard [377] by direct lattice summations over 450 shells around a
central atom that the minimum occurs at 99.986% of the ideal hcp value for
the (12,6) LJ potential. To obtain more detailed information if γmin is greater
or lower than γhcp we used a Newton-Raphson procedure as described in

Appendix 12.D. The dividing line between the two regions of γ <
√

8
3 and

γ >
√

8
3 is shown in Figure 12.5. Only for very soft potentials (low n and m

values) the minimum comes at values γmin > γhcp. For the common (12,6) LJ
potential, γmin = 1.6327633 < γhcp. However, the deviations δnm defined by

γmin =
√

8
3 + δnm are very small, and so are the energy differences between

the minimum and the ideal hcp structure, see Table ??. To give a real example
we take argon with a dissociation energy of ε = 1191 J/mol for the
dimer.[348] The change due to the deviation from the ideal c/a ratio is
therefore ∆Enm = ∆E∗

nmε = −8.661× 10−4 J/mol. This value is far smaller
than the accuracy which can be achieved in any solid-state calculation.[51]
Accordingly, for the deviation δnm = 7.701 × 10−4 we use the equilibrium
distance of 3.3502 Å of Azis [348] and obtain a slight difference in the
atomic distance between the pair of 6 neighboring atoms. Such a small
deviation is perhaps within experimental reach.

When considering the hard sphere limit with an attractive a−n potential in
(12.4.1), we present the (100,6) LJ potential (s=50 and 3 respectively in our
earlier definition) in Figure 12.5 as best candidate, as it is still numerically
manageable despite the large exponent of m=100. Here the deviation δnm listed
in Table 12.3 is indeed very small. The curve shows a rather peculiar behavior

around γ =
√

8
3 going steeply towards infinity for γhcp ≤

√
8
3 . For an infinite

repulsive wall the minimum sits at exactly γhcp =
√

8
3 as one expects. For val-

ues of γ <
√

8
3 and m < ∞ we enter a steep repulsive wall where the atoms in

the hexagonal closed packed sheets need to give space for the next layer.

12.5 Analytic continuation of the lattice sum Lhcp(s)

We show that the lattice sum Lhcp(s) can be continued analytically to the whole
s-plane, and that the resulting functions have a single simple pole at s = 3/2
and no other singularities. We start by determining the residue of Lhcp(s) at
s= 3/2. In the formula (12.3.30), all of the terms are analytic at s= 3/2 except
for the term involving ζ (2s−2), which has a simple pole there. Therefore, the
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Figure 12.5 Dividing (n,m) areas (n > m) of regions where γmin > γhcp and
γmin < γhcp. Note that the dividing line intersects with the n = m line at
n =5.84361 and approaches m = 3 for n → ∞.
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Laurent series for Lhcp(γ,s) around the pole at s = 3/2 is of the form,

Lhcp(s,γ) =
d−1

s−3/2
+d0 + ∑

n∈N
dn(s−3/2)n (12.5.1)

where
d−1 = Res(Lhcp(s),3/2) =

8π

γ
√

3
(12.5.2)

and

d0(γ) = 6ζ (3/2)L−3(3/2) +
16π

γ
√

3
(γ0 + ln(2/γ)−1)

+
4√
3
(2π)3/2

Γ(3/2) ∑
k∈N

∑
N∈N

u2(N)

(
N

3γ2k2

)1/4

K1/2

(
4π√

3
γk
√

N
)

+
4√
3
(2π)3/2

Γ(3/2) ∑
k∈N0

∑
N∈N

cos
(

2πN
3

)
u2(N)

(
N

3γ2(k+ 1
2)

2

)1/4

×K1/2

(
4π√

3
γ
(
k+ 1

2

)√
N
)
. (12.5.3)

γ0 = 0.57721566490153286... is the Euler-Mascheroni constant. The
derivation of the residue and the second term in equation (12.5.3) is given in
Appendix B. Using well known relations for the Bessel function
K1/2(x) =

√
π/2x e−x we obtain

d0(γ) = 6ζ (3/2)L−3(3/2) +
16π

γ
√

3
(γ0 + ln(2/γ)−1)

+
8π

γ
√

3 ∑
k∈N

∑
N∈N

1
k

u2(N)exp
(
− 4π√

3
γk
√

N
)

(12.5.4)

+
8π

γ
√

3 ∑
k∈N0

∑
N∈N

cos
(2πN

3

)
(k+ 1

2)
u2(N) exp
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− 4π√

3
γ
(
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2

)√
N
)

= 6ζ (3/2)L−3(3/2) +
16π

γ
√

3
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√
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∞
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)
.
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Here we use the series expansion for the logarithm

ln(1+ x) = ∑
k∈N

(−1)k+1

k
xk or ln(1− x) =− ∑

k∈N

1
k

xk , (12.5.5)

substituting x → e−x. For the special value of γhcp =
√

8/3 we have

d0(
√

8/3) = 6.98462 37414 38416 61307 · · · . (12.5.6)

Concerning the analytical continuation to the left of the simple pole, s < 3/2,
by (12.A.6) the double series of Bessel functions in (12.3.30) converges abso-
lutely and uniformly on compact subsets of the s-plane and therefore represents
an entire function of s. It follows that Lhcp has an analytic continuation to a
meromorphic function. Moreover, the Laurent expansion (12.5.1) converges
for all s ̸= 3/2. Further inspection reveals that the only problematic case in
(12.3.30) is for s = 1 because of the two terms having cancelling singularities.
Therefore we take s = 1 in the second formula (12.3.31) instead to obtain

Lhcp(1) =
π2

3γ2 +
3π

γ
(
√

3+1) ζ (1/2) L−3 (1/2)

+
2π

γ
∑

N∈N

u2(N)√
N

(
exp
{(

2π
√

N
γ

)}
−1
)−1

− π

γ

∞

∑
N∈N0

u2(3N +1)√
N + 1

3

(
exp
{(

2π

√
N+ 1

3
γ

)}
−1
)−1

, (12.5.7)

where we have used (12.A.5) for the modified Bessel function of the second
kind, and used a geometric series to evaluated the sum over k. For the special
value of γhcp =

√
8/3 we have

Lhcp(1,γ =
√

8/3) =−11.43265 30014 95285 63572 · · · . (12.5.8)

We also record the result

Lhcp(1/2) = 6ζ (1/2)L−3(1/2)+
πγ

3
√

3

+2
∞

∑
N=1

u2(N)√
N

(
exp
(

4π√
3

γ
√

N
)
−1
)−1

+2
∞

∑
N=1

cos
(

2πN
3

)
u2(N)√

N

×
(

exp
(

2π√
3

γ
√

N
)
− exp

(
− 2π√

3
γ
√

N
))−1

,
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which is obtained in the same way, starting from (12.3.30) and using the sym-
metry for the Bessel function, K−s(x) = Ks(x). We obtain using γ =

√
8/3,

Lhcp(1/2,γ =
√

8/3) =−3.24185 86150 75732 86473 · · · (12.5.9)

Finally, using (12.3.31) we observe that Lhcp(0) = 2ζ (0) =−1 for all γ > 0.
A graph of the function y = Lhcp(s) is shown in Figure 12.6 for the case
γhcp =

√
8/3 . We see that the curve has zeros at s = −1,−2,−3, ... as we

have Γ(s) → ∞ for s ∈ −N0, and the Bessel terms vanish in both equations
(12.3.30) and (12.3.31). Taking (12.3.31), the only remaining term for n ∈ N
is 2γ−2sζ (2s), and ζ (s) has zeros exactly at s =−2,−4,−6, ...

Figure 12.6 Graphs of Lhcp(s) for −10 < s < 10 (inlet shows the region −7 <
s < 0).

12.6 Can analytical continuation be used for the
Kratzer potential?

It is well known that for the Madelung constant analytical continuation can be
used where the underlying series is only conditionally convergent [64]. The
(2,1) LJ potential is known as the Kratzer potential. Introduced in 1920 it
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has the form [16] and in analagous to the Lennard-Jones potential shown in
(12.1.1) with n = 2 and m = 1,

VKratzer(r)/ε =

[(re

r

)2
−2
(re

r

)]
. (12.6.1)

The Kratzer potential has a Coulomb like behavior in the long range and a har-
monic repulsive behavior in the short range. It is a very soft potential compared
to the usual (12,6) LJ potential and could in principle be useful for example for
metallic interaction. The question arises if we can use Eq.(12.1.2) which re-
quires lattice sums to the left of the singularity at s= 3

2 where Lhcp
3 (s=1)< 0 for

s ∈ (0, 3
2). It is sufficient to consider the ideal hcp lattice only (γhcp =

√
8/3).

By taking n = 2 and m = 1 in (12.4.1), the Kratzer potential dependent on the
lattice constant a then becomes,

Ecoh
Kratzer(a,γ)/ε =

r2
e

2a2 Lhcp(1,γ)− re

a
Lhcp(1

2 ,γ) , (12.6.2)

for which the required lattice sums are given in eqs.(12.3.30) and (12.3.31).

The Kratzer potential together with the cohesive energy is shown in Figure
12.7. The cohesive energy has a maximum and not a minimum as it should be.
The distance and energy can be obtained from (12.4.2) and (12.4.3),

R∗
min =

L
(

1,
√

8
3

)
L
(

1
2 ,
√

8
3

) =
−11.432653001495
−3.241858615076

= 3.526573598346 (12.6.3)

E∗(R∗
min) = Ecoh

Kratzer(R
∗
min)/ε =−

L(s= 1
2)

2

2L(s=1)
= +0.45963... . (12.6.4)

Even if only positive lattice sums are taken to obtain a proper cohesive energy
curve with a minimum instead of a maximum, the nearest neighbor distance
increases from the dimer to the solid state contrary to the (6,12) LJ potential.
This clearly demonstrates that the Kratzer potential gives non-physical results
for the solid state as the exponents lie left to the pole at s= 3

2 producing negative
lattice sums in the required region. Even if absolute values of Lhcp(s) are used
instead to invert the shape and produce a minimum, it would lack physical
justification. The situation does not change if we choose n < 3 and m > 3 for
a (n,m) LJ potential. As there is no alternative to an analytic continuation, the
Kratzer potential cannot be used for the solid state in contrast, for example, to
the Madelung constant. The main difference here is that the Madelung constant
is a smooth function over the whole range of real exponents containing no



308
12 Project 7 - The Lattice Sum for a Hexagonal Close Packed Structure and

its Dependence on the c/a Ratio of the Hexagonal Cell Parameters

singularities.[378]

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

R*

E
/ε

V/ε

Ecoh/ε

Figure 12.7 Kratzer potential for VKratzer(R∗)/ε with R∗ = r/re and for the co-
hesive energy Ecoh

Kratzer(R
∗)/ε with R∗ = a/re where a is the hcp lattice constant

and c/a = γ =
√

8/3.

12.7 Relation between the hcp structure and the
cuboidal lattices

We recently introduced lattice sums for cubic lattices by introducing the fol-
lowing basis vectors [311]

b⊤1 (A) = (1,0,0) , b⊤2 (A) =
(

A
A+1

,

√
2A+1
A+1

,0
)
, (12.7.1)

b⊤3 (A) =

(
1

A+1
,

1
(A+1)

√
2A+1

,

√
4A

(A+1)(2A+1)

)
.
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Where A = 1/2 defines the body-centred cubic (bcc) lattice and A = 1 the face-
centred cubic (fcc) lattice. The packing density has been obtained as [311]

ρ(A) =
π

12

√
(A+1)3

A
. (12.7.2)

We can compare this to the hcp lattice with γ ≥
√

8/3 derived from the volume
(12.2.5),

ρ(γ) =
2π

3γ
√

3
. (12.7.3)

As the validity range for hard-sphere packing is γ ∈
[√

8/3,∞
)

we see that the

largest packing density is achieved by the ideal value of γ =
√

8/3. Comparing
both densities, hcp has the same packing density as the cuboidal lattices for

γ =

√
8
3

f (A) with f (A) =

√
8(A+1)3

A
. (12.7.4)

Again, for A = 1 (fcc) we see that the packing density is identical to the ideal
hcp structure. For A = 1/2 (bcc) f (A) = 1.08866..., that is the hcp structure
has the same packing density compared to bcc if we increase the c/a ratio by
approximately 8.9%.

The corresponding lattice sum for the cuboidal lattice was already given in
Ref.[379]

Lcub(s,A) = 4
(

A+1
2

)s

ζ (s)L−4(s)+
πA

s−1

(
1+

1
A

)s

ζ (2s−2)

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=1

r2(N)

(
N
i2

)(s−1)/2

×Ks−1

(
2πi

√
AN
)

+
2πs

√
A

Γ(s)

(√
A+

1√
A

)s ∞

∑
i=1

∞

∑
N=0

(−1)ir2(4N +1)

×

(
2N + 1

2
i2

)(s−1)/2

Ks−1

(
2πi

√
A(2N +

1
2
)

)
,

(12.7.5)

where the L−4 function is defined in the appendix. Lcub(A;s) has a simple pole
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at s = 3/2 and the residue is given by

Res(Lcub(A;s),3/2) =
π√
A
(A+1)3/2 . (12.7.6)

It follows that the difference between the two lattice sums, cuboidal and hcp,
the singularity is removed if

Res(Lcub(s,A),3/2)−Res(Lhcp(s,γ),3/2) = dcub
−1 −dhcp

−1 (12.7.7)

=
π√
A
(A+1)3/2 − 8π

γ
√

3
= 0 .

This gives the condition in (12.7.4). Hence we follow that the singularity at
s = 3/2 is removed for the difference between the cuboidal lattices and the
hcp structure if they have the same packing density. Notice, that in removing
the singularity we do not just have to consider hard spheres and only need the
condition in (12.7.4) that γ > 0.
Evaluating the coefficient for dcub

0 given in Ref.[379] and using (12.5.6) we
obtain

lim
s→ 3

2

{
Lcub(s,A = 1)−Lhcp(s,γ =

√
8/3)

}
=−0.00057 11911 16168 67901 · · · .

(12.7.8)
The difference between the two function Lcub(s,A = 1)−Lhcp(s,γ =

√
8/3)

is shown in Figure 12.8. What is evident is that the difference in lattice sums
between fcc and hcp is very small which is reflected in the fact that both phases
often coexist for real compounds. The graph also appears to suggest the fol-
lowing for the relation between the ideal hcp and fcc structures:

Lhcp(s)> Lfcc(s)> 0

for s ∈ ·· ·∪ (−6,−5)∪ (−4,−3)∪ (−2,−1)∪ (3/2,∞)

Lhcp(s)< Lfcc(s)< 0

for s ∈ ·· ·∪ (−5,−4)∪ (−3,−2)∪ (−1,0)

−1 > Lhcp(s)> Lfcc(s) for s ∈ (0,3/2)

12.8 Conclusions

We presented an efficient and fast convergent expansion for the multi-lattice
hcp with variable c/a ratio. We demonstrated that the series can be analytically
continued, albeit while mathematically sound the physical relevance has to be
questioned at least for LJ type of potentials. We also showed that a metastable
minimum appears for the (12,6) LJ potential at γ = 0.71, close to γ = 2

3 where
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Figure 12.8 Graph of Lhcp(s)−Lfcc(s).

the kissing number is κ = 8, and showed its dependence on the choice of ex-

ponents (n.m). For the minimum close to the ideal c/a ratio of γhcp =
√

8
3

we discussed the slight symmetry breaking for (n.m) Lennard-Jones potentials

where the sign of δnm = γmin −
√

8
3 depends on the parameter range (n,m).

This symmetry breaking will be dependent upon changing the pressure and
temperature,[222, 380] which is currently under investigation. As a final re-
mark, we mention that many-body forces in real bulk systems can stabilize the

minimum around γ =
√

8
3 as this is well known, for example, for metallic sys-

tems [381]. The program for calculating lattice sums is freely available from
our website [143].

12.9 Appendix

A Formulas for special functions

Many results for special functions and analytic number theory have been used
in this work. For clarity and ease of use, they are stated here along with refer-
ences if not given in the books by Andrews, Askey and R. Roy [382] or Temme
[110].
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The gamma function

The gamma function may be defined for s > 0 by

Γ(s) =
∫

∞

0
ts−1 e−t dt . (12.A.1)

By the change of variable t = wx this can be rewritten in the useful form

1
ws =

1
Γ(s)

∫
∞

0
xs−1 e−wx dx . (12.A.2)

The modified Bessel function

The following integral may be evaluated in terms of the modified Bessel func-
tion: ∫

∞

0
xs−1e−ax−b/xdx = 2

(
b
a

)s/2

Ks(2
√

ab) . (12.A.3)

By the change of variable x = u−1 it can be shown that

Ks(z) = K−s(z) . (12.A.4)

When s = 1/2 the modified Bessel function reduces to an elementary function:

K1/2(z) =
√

π

2z
e−z . (12.A.5)

The asymptotic formula holds:

Ks(z)∼
√

π

2z
e−z as z → ∞, ( |argz|< 3π/2) . (12.A.6)

Theta functions

The transformation formula for theta functions is [382, 383]:

∑
n∈Z

e−πn2t+2πina =
1√
t ∑

n∈Z
e−π(n+a)2/t , assuming Re(t)> 0 . (12.A.7)

We will need the special cases a = 0 and a = 1/2, which are

∑
n∈Z

e−πn2t =
1√
t ∑

n∈Z
e−πn2/t (12.A.8)

and

∑
n∈Z

(−1)ne−πn2t =
1√
t ∑

n∈Z
e−π(n+ 1

2 )
2/t (12.A.9)
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respectively. The sum of two squares formula is [132](
∑
j∈Z

q j2

)2

= ∑
j,k∈Z

q j2+k2
= ∑

N∈N0

r2(N)qN (12.A.10)

where

r2(N) = #
{

j2 + k2 = N
}
=


1 if N = 0 ,

4 ∑
d|N

χ−4(d) if N ≥ 1 ,
(12.A.11)

the sum being is over the positive divisors d of N. For example,

r2(18) = 4(χ−4(1)+χ−4(2)+χ−4(3)+χ−4(6)+χ−4(9)+χ−4(18))

= 4(1+0−1+0+1+0) = 4.

The cubic analogues of the transformation formula are[383, 384]

∑
j,k∈Z

e−2π( j2+ jk+k2)t =
1

t
√

3 ∑
j,k∈Z

e−2π( j2+ jk+k2)/3t (12.A.12)

and

∑
j,k∈Z

e−2π(( j+ 1
3 )

2+( j+ 1
3 )(k+

1
3 )+(k+ 1

3 )
2)t =

1
t
√

3 ∑
j,k∈Z

ω
j−ke−2π( j2+ jk+k2)/3t

(12.A.13)
where ω = exp

(
2π

√
−1/3

)
is a primitive cube root of unity. The analogue of

the sum of two squares result is [132]

∑
j,k∈Z

q j2+ jk+k2
= ∑

N∈N0

u2(N)qN (12.A.14)

where

u2(N) = #
{

j2 + jk+ k2 = N
}
=


1 if N = 0,

6 ∑
d|N

χ−3(d) if N ≥ 1,
(12.A.15)

where the sum is again over the positive divisors d of N. By Ref.[78] we also
have

∑
j,k∈Z

q( j+ 1
3 )

2+( j+ 1
3 )(k+

1
3 )+(k+ 1

3 )
2
=

1
2 ∑

N∈N0

u2(3N +1)qN+ 1
3 . (12.A.16)
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The Riemann zeta function and L functions

The definitions are:

ζ (s) = ∑
j∈N

1
js (12.A.17)

L−3(s) = ∑
j∈N

χ−3( j)
js = 1− 1

2s +
1
4s −

1
5s +

1
7s −

1
8s + · · · . (12.A.18)

The function ζ (s) is the Riemann zeta function. It has a pole of order 1 at
s = 1, and in fact[110, 382]

lim
s→1

(s−1)ζ (s) = 1 . (12.A.19)

We will require the functional equations

π
−s/2

Γ(s/2)ζ (s) = π
−(1−s)/2

Γ((1− s)/2)ζ (1− s) (12.A.20)

and the special values

ζ (2) =
π2

6
, ζ (0) =−1

2
, ζ (−1) =− 1

12
, ζ (−2n) = 0 for n ∈ N ,

(12.A.21)
and

L−3(1) =
π
√

3
9

, L−3(0) =
1
3
, L−3(−2n+1) = 0 for n ∈ N .

(12.A.22)

For details see Refs.[105, 285].

Other results used are
∞

∑
j∈N0

1
( j+ 1

2)
s
= (2s −1)ζ (s) (12.A.23)

∑
i, j∈Z

′ 1
(i2 + i j+ j2)s = 6ζ (s)L−3(s) (12.A.24)

∑
i, j∈Z

1
((i+ 1

3)
2 +(i+ 1

3)( j+ 1
3)+( j+ 1

3)
2)s

= 3(3s −1)ζ (s)L−3(s) .

(12.A.25)
The identity (12.A.23) follows from the definition of ζ (s) by series rearrange-
ments. For (12.A.24), see (1.4.16) of Ref.[275]. The identity (12.A.25) can be
obtained by the method of Mellin transforms [26, 78, 382].
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B Laurent expansion

Laurent’s theorem implies there is an expansion of the form,

Lhcp(s,γ) =
d−1

s−3/2
+d0 +

∞

∑
n=1

dn(s−3/2)n , (12.B.1)

where we get for (12.3.30) the residue (12.5.2). This follows from

lim
s→3/2

(s−3/2)Lhcp(s) = lim
s→3/2

(s−3/2)
4π√

3(s−1)

(
γ

2

)2−2s
ζ (2s−2)

(12.B.2)

=
16π

γ
√

3
lim

s→3/2
(s−3/2)ζ (2s−2) =

8π

γ
√

3
lim
u→1

(u−1)ζ (u) =
8π

γ
√

3
,

where (12.A.19) was used in the last step of the calculation. To get the coeffi-
cient d0 in (12.3.30) we need to consider the following limit

w = lim
s→3/2

{
4π√

3(s−1)

(
γ

2

)2−2s
ζ (2s−1)− 8π

γ
√

3(s− 3
2)

}
. (12.B.3)

Substituting s = (t + 3)/2 and using the Laurent expansion for the Riemann
zeta function,

w = lim
t→0

{
8π√

3(t +1)

(
2
γ

)t+1 [
t−1 + γ0 − γ1t + ...

]
− 16π

γt
√

3

}
(12.B.4)

= lim
t→0

f (t)− f (0)
t

+
16π

γ
√

3
γ0 = f ′(t)|0 +

16π

γ
√

3
γ0

where

f (t) =
8π√

3
1

(t +1)

(
2
γ

)t+1

(12.B.5)

and γ0 = 0.57721566490153286060 · · · is Euler’s constant. It is easy to verify
that

f ′(t) =− 8π√
3(t +1)2

(
2
γ

)t+1

+
8π√

3(t +1)

(
2
γ

)t+1

ln
(

2
γ

)
. (12.B.6)

We finally obtain

w =
16π

γ
√

3

{
γ0 + ln

(
2
γ

)
−1
}
. (12.B.7)
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C Minimum of Lennard-Jones potentials near γ =
√

8
3

The iterative Newton–Raphson algorithm [385] can be used to determine γmin
to the required accuracy

γi+1 = γi −
∂γE∗

nm(γi)

∂ 2
γ E∗

nm(γi)
, (12.C.1)

starting with γ1 =
√

8
3 . Only few iterations are required to achieve conver-

gence to computer accuracy. The required derivatives for E∗
nm(γ) can be easily

derived

∂γE∗
nm(γ) =

1
2(n−m)

{
m
(

L(m
2 ,γ)

L(n
2 ,γ)

) n
n−m

∂γL(n
2 ,γ)

−n
(

L(m
2 ,γ)

L(n
2 ,γ)

) m
n−m

∂γL(m
2 ,γ)

}
∂

2
γ E∗

nm(γ) =
nm

2(n−m)2

[
L(n

2 ,γ)∂γL(m
2 ,γ)+L(m

2 ,γ)∂γL(n
2 ,γ)

]
×

[
∂γL(n

2 ,γ)

L2(n
2 ,γ)

(
L(m

2 ,γ)

L(n
2 ,γ)

) m
n−m

−
∂γL(m

2 ,γ)

L2(m
2 ,γ)

(
L(m

2 ,γ)

L(n
2 ,γ)

) n
n−m
]

(12.C.2)

+
m

2(n−m)

(
L(m

2 ,γ)

L(n
2 ,γ)

) m
n−m

∂
2
γ L(n

2 ,γ)

− n
2(n−m)

(
L(m

2 ,γ)

L(n
2 ,γ)

) m
n−m

∂
2
γ L(m

2 ,γ) ,

leading to the simple condition for the minimum through the first derivative

nL(n
2 ,γ)∂γL(m

2 ,γ)−mL(m
2 ,γ)∂γL(n

2 ,γ) = 0 . (12.C.3)

For (12.C.2) we require the derivatives ∂γL(s,γ) and ∂ 2
γ L(s,γ), which involves

derivatives of the Bessel function Ks(aγ). We only need the first derivative as
we can use the two formulae,

∂xKs−1(x) =−Ks(x)+
(s−1)

x
Ks−1(x) (12.C.4)

∂xKs(x) =−Ks−1(x)−
s
x

Ks(x) .
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We rewrite Eq.(12.3.30) in the following short-hand notation,

L(s,γ) = As +Bsγ
2−2s +Csγ

1−s
∑

k,N∈N
{dskNKs−1(wkNγ)+ fskNKs−1(vkNγ)}

(12.C.5)
with the coefficients

As = 6ζ (s)L−3(s) , Bs =
4sπ√

3(s−1)
ζ (2s−2) , Cs =

4√
3
(2π)s

Γ(s)

dskN = u2(N)

(
N

3k2

)(s−1)/2

,

fskN = cos
(

2πN
3

)
u2(N)

(
N

3(k− 1
2)

2

)(s−1)/2

wkN =
4π√

3
k
√

N , vkN =
4π√

3

(
k− 1

2

)√
N . (12.C.6)

The lattice sum derivatives are derived as,

∂γL(s,γ) = 2(1− s)Bsγ
1−2s −Csγ

1−s

× ∑
k,N∈N

{dskNwkNKs(wkNγ)+ fskNvkNKs(vkNγ)} (12.C.7)

and

∂
2
γ L(s,γ) = (2s−1)(2s−2)Bsγ

−2s (12.C.8)

+Csγ
1−s

∑
k,N∈N

{
dskNw2

kNKs−1(wkNγ)+ fskNv2
kNKs−1(vkNγ)

}
+Cs(2s−1)γ−s

∑
k,N∈N

{dskNwkNKs(wkNγ)+ fskNvkNKs(vkNγ)} .

We note that Eq.(12.C.9) is converging very fast in our case and only few

iterations are required. For example, starting with γ1 =
√

8
3 we get after the

first iteration γ2 = 1.6327632935 very close to the converged result of γ2 =
1.6327633049.

Finally, calculating the (m,n) combination (n,m ∈R) reaching the ideal γhcp =√
8
3 value (see Figure 12.5), we use again the Newton-Raphson method in the

following form

mi+1 = mi −
∂γE∗

nm(γhcp)

∂m∂γE∗
nm(γhcp)

, (12.C.9)

for a fixed n value where ∂γE∗
nm(γhcp) is obtained from (12.C.8) and the deriva-

tive with respect to m in the denominator is obtained numerically through a
two-point formula.
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D The hcp lattice sum expressed in quadratic forms

In order to show that the lattice sum (12.2.9) can be decomposed into four
sums containing pure quadratic forms, we start with the double sum g1(s,a)
defined by

g1(s,a) = ∑
i, j∈Z

((3i+1)2 +(3i+1)(3 j+1)+(3 j+1)2 +a2)−s (12.D.1)

where a and s are real numbers and s > 1. We will need the following alterna-
tive expression for g1(s,a).

Lemma D.1 The following identity holds:

g1(s,a) =
1
2

(
∑

i, j∈Z

′
(3i2 +9i j+9 j2 +a2)−s − ∑

i, j∈Z

′
(9i2 +9i j+9 j2 +a2)−s

)
(12.D.2)

where the primes indicate that the terms corresponding to (i, j) = (0,0) are
omitted from the summations if a = 0.

Proof. First, let us consider the case a ̸= 0. For r ∈ {0,1,2} let gr(s,a) be
defined by

gr(s,a) = ∑
i, j∈Z

((3i+ r)2 +(3i+ r)(3 j+ r)+(3 j+ r)2 +a2)−s (12.D.3)

and observe that this definition is consistent with (12.D.1) when r = 1. Then

g0(s,a)+g1(s,a)+g2(s,a) = ∑
i, j∈Z

i− j≡0 (mod3)

(i2 + i j+ j2 +a2)−s

where the sum is over all integers i and j satisfying the given congruence.
Since i− j is a multiple of 3, put i = j+3k to get

g0(s,a)+g1(s,a)+g2(s,a) = ∑
j,k∈Z

(( j+3k)2 +( j+3k) j+ j2 +a2)−s

= ∑
j,k∈Z

(3 j2 +9 jk+9k2 +a2)−s. (12.D.4)

Next, by replacing the summation indices i and j in the definition (12.D.1)
with −i− 1 and − j− 1, respectively, we readily find that g1(s;a) = g2(s;a).
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Hence, (12.D.4) may be written as

g1(s,a) =
1
2

(
∑

i, j∈Z
(3i2 +9i j+9 j2 +a2)−s −g0(s;a)

)

=
1
2

(
∑

i, j∈Z
(3i2 +9i j+9 j2 +a2)−s − ∑

i, j∈Z
(9i2 +9i j+9 j2 +a2)−s

)
.

(12.D.5)

This proves the result in the case a ̸= 0.
On separating out the terms corresponding to (i, j) = (0,0) from each of the
series in (12.D.5), we obtain

g1(s,a) =
1
2

(
1

a2s + ∑
i, j∈Z

′
(3i2 +9i j+9 j2 +a2)−s

)

− 1
2

(
1

a2s + ∑
i, j∈Z

′
(9i2 +9i j+9 j2 +a2)−s

)

=
1
2 ∑

i, j∈Z

′
(3i2 +9i j+9 j2 +a2)−s − 1

2 ∑
i, j∈Z

′
(9i2 +9i j+9 j2 +a2)−s.

This has been obtained under the assumption a ̸= 0. Now take the limit as
a → 0 on each side to complete the proof. This completes the proof of Lemma
(D.1)
We will now show that the triple sum LB(s,γ) in (12.2.9) can be evaluated in
terms of the sums L(s,γ) and M(s,γ) defined by

L(s,γ) = ∑
i, j,k∈Z

′
(i2 + i j+ j2 + γ

2k2)−s, (12.D.6)

and

M(s,γ) = ∑
i, j,k∈Z

′
(

i2

3
+ i j+ j2 + γ

2k2
)−s

, (12.D.7)

where the primes indicate that the terms corresponding to (i, j,k) = (0,0,0)
are omitted from the summations.

Theorem D.2 The following evaluation holds:

LB(s,γ) =
1
2

[
M
(

s,
γ

2

)
−L

(
s,

γ

2

)
−M (s,γ)+L(s,γ)

]
. (12.D.8)

Proof. Let

LC(s,γ) = ∑
i, j,k∈Z

(
(i+ 1

3)
2 +(i+ 1

3)( j+ 1
3)+( j+ 1

3)
2 + γ

2k2)−s
. (12.D.9)
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Clearly,

LB(s,γ)+LC(s,γ) = ∑
i, j,k∈Z

((i+
1
3
)2 +(i+ 1

3)( j+ 1
3)+( j+ 1

3)
2 + γ

2( k
2)

2)−s

= LC
(

s;
γ

2

)
and therefore

LB(s,γ) = LC
(

s,
γ

2

)
−LC(s,γ). (12.D.10)

We now turn to the evaluation of LC(s,γ). By the definition (12.D.9) we have

LC(s,γ) = ∑
k∈Z

(
∑

i, j∈Z
((i+ 1

3)
2 +(i+ 1

3)( j+
1
3
)+( j+ 1

3)
2 + γ

2k2)−s

)

= 32s
∑
k∈Z

(
∑

i, j∈Z
((3i+1)2 +(3i+1)(3 j+1)+(3 j+1)2 +9γ

2k2)−s

)
= 32s

∑
k∈Z

g1(s;3γk)

where in the last step we used the definition of g1 from (12.D.1). Now apply
Lemma D.1 to get

LC(s,γ) = 32s
∑
k∈Z

(
1
2 ∑

k∈Z
(3i2 +9i j+9 j2 +9γ

2k2)−s

−1
2 ∑

k∈Z
(9i2 +9i j+9 j2 +9γ

2k2)−s

)

=
1
2
(M(s,γ)−L(s;γ)) . (12.D.11)

On using (12.D.11) in (12.D.10) we complete the proof of Theorem (D.2).
Adding both lattice sums (12.2.7) and (12.2.9) and using (12.D.8) we get

Lhcp(s,γ) = LA(s,γ)+LB(s,γ)

=
1
2

[
M
(

s,
γ

2

)
−L

(
s,

γ

2

)
−M (s,γ)+3L(s,γ)

]
. (12.D.12)

One can easily check that the associated Gram matrices to these two lattice
sums M and L are positive definite and one can use, for example, the Van der
Hoff-Benson-Houtot [111, 136, 160] or the Terras expansion [112] to express
them in terms of standard functions and Bessel function expansion terms. Ta-
ble 12.4 contains the lattice sums for a few selected values of s and γ . We note
that the decomposition into quadratic forms is numerically less stable at higher
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s and smaller γ values as large terms cancel out in the sum (12.D.12).

term s = 2 s = 3 s = 6

γ =
√

8
3

LA(s,γ) 12.187035832908817 6.9286599267897087 6.0208613527770725
LB(s,γ) 13.152046505146327 7.5262373510519094 6.1114324163218541
LA(s,γ)+LB(s,γ) 25.339082338055150 14.454897277841617 12.132293769098926
+1

2 M
(
s, γ

2

)
61.566637885614639 99.388534652974585 2208.3785419040942

−1
2 L
(
s, γ

2

)
-13.094897505088104 -8.4240358782104963 -14.684205942268090

−1
2 M (s,γ) -41.413211791834620 -86.902591387107066 -2190.5933342218777

+3
2 L(s,γ) 18.280553749363229 10.392989890184563 9.0312920291656038

Sum(M,L) 25.339082338055142 14.454897277841578 12.132293769114119
γ = 2

3
LA(s,γ) 227.33369931200846 1507.1847446374013 1063157.5188371434
LB(s,γ) 109.06159263354647 174.00606910065562 8036.0292167961597
LA(s,γ)+LB(s,γ) 336.39529194555502 1681.1908137380569 1071193.5480539501
+1

2 M
(
s, γ

2

)
1672.8769558418203 47837.699032123222 2177323887.1934562

−1
2 L
(
s, γ

2

)
-1454.6882390304756 -47489.056422016118 -2177318026.8192515

−1
2 M (s,γ) -222.79399165372277 -928.23250403133125 -534574.05138774007

+3
2 L(s,γ) 341.00054896801259 2260.7771169561056 1594736.2782562445

Sum(M,L) 336.39527412563450 1681.1872230318791 1066022.6010731400
γ = 2
LA(s,γ) 10.694752688165460 6.6212978506634972 6.0112376723424239
LB(s,γ) 8.8968902346685326 3.5631812795615505 1.1145428205070376
LA(s,γ)+LB(s,γ) 19.591642922833991 10.184479130225048 7.1257804928494615
+1

2 M
(
s, γ

2

)
52.602679315049684 91.967422008460545 2192.7895136662119

−1
2 L
(
s, γ

2

)
-9.8776390781413106 -5.2724042151945429 -4.1012852765432157

−1
2 M (s,γ) -39.175526346322584 -86.442485439036091 -2190.5793044050806

+3
2 L(s,γ) 16.042129032248191 9.9319467759952484 9.0168565085136336

Sum(M,L) 19.591642922833977 10.184479130225162 7.1257804931014519

Table 12.4 Values for LA(s,γ) and LB(s,γ) using eqs. (12.3.11) and (12.3.23),
and for the four different lattice sums using eqs. (12.D.6) and (12.D.7) for three
different c/a ratios and for some selected s = n/2. For the entry Sum(M,L)
Eq. (12.D.12) is used. For the lattices sums M(s,x) and L(s,x) the Terras
decomposition was used. The last digit is not rounded.
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Throughout this thesis various projects on lattice sums were worked on that
produced seven papers starting from re-exploring direct summation methods
for lattice sums to applications of lattice sums in solid-state physics. As a
point of first call, building upon the work of the early 20th century on lattice
sums, direct summation was investigated with the added tools from arbitrary
precision floating point software techniques from modern computers and
some number theoretical techniques not used by the original pioneers on that
topic. This motivated the investigation into alternative methods that expressed
lattice sums as fast converging series or reduced the problem in dimension
allowing various mathematical techniques to be employed. At a minimum,
this allowed evaluations for up to a desired numerical precision e.g., at least to
double precision floating point, to be used further down the line in
applications in solid-state physics such as for properties on elemental rare gas
solids. More importantly, finding lattice sums for common cubic lattices and
hexagonal structures in terms of fast converging functions or in terms of
simple functions using number theoretical techniques provided also deep
insight into the behaviour of these sums including their analytical
continuations.

Along the total energy curve corresponding to a Bain phase transition
pathway from acc to fcc using a single lattice parameter A and the lattice
sums from Project 4, we were able to show that the bcc phase remains
energetically unstable at higher pressures. Fast converging lattice sums were
used in the calculation of ground state cohesive energy curves that gave
insight into the stability of lattices under varying conditions, and were
additionally applied to calculate basic solid-state properties like the pressure
or the bulk modulus as volume derivatives of the cohesive energy in Project 5.
These calculations exposed the meta-stability of the bcc lattice at low values
of a and b in the (a,b) LJ potential and found that the bcc lattice decreases in
stability with increasing pressure, which suggests that to stabilize these types
of crystal structures one requires other bonding conditions in addition to a
simple two-body potential such as the Lennard-Jones.

Following the work done on cubic lattice sums in Projects 1,3 and 4, and the
application of the results of their fast converging expressions we moved to the
lattice sum for the hexagonal close packed structure. Continuing the work
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done by Lennard-Jones and Ingham as well as Kane and Goeppert-Mayer, in
Project 7 an efficient and fast converging expansion was presented for the
hexagonal close packed multi-lattice with a variable c/a ratio for the first
time. This was a significantly new sum to that of the hcp lattice sum that was
worked on in Project 1 and evaluated using the Van der Hoff–Benson and
Terras methods. This allowed us to analytically examine the behaviour of a
Lennard-Jones potential as a function of the c/a ratio, however the use (if
any) in terms of its physical relevance for a simple LJ potential is yet to be
investigated. We observed the occurrence of a slight symmetry breaking
effect and the appearance of a second metastable minimum using the (12,6)
Lennard-Jones potential in contrast to the hard-sphere model with an ideal
ratio of c/a =

√
8/3 exhibiting 12 kissing spheres around a central atom.

Similarly to the stability of the cubic system, we remark that with respect to
the hcp structure, many-body forces in real bulk systems can stabilize the

minimum around γ =
√

8
3 . In this respect, a continuation of this thesis would

be to find efficient fast converging series for many-body potentials such as the
3-body Axilrod-Teller-Muto potential
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Table A.1 Number of representations rL
3 (n) for the sc, bcc, fcc and hcp

structures (sequences A005875, A004013, A004015 and A004012 in Sloane’s
database[75]), see (2.6.1).

n rsc
3 (n) rbcc

3 (n) rfcc
3 (n) rhcp

3 (n)
0 1 1 1 1
1 6 0 12 0
2 12 0 6 0
3 8 8 24 12
4 6 6 12 0
5 24 0 24 0
6 24 0 8 6
7 0 0 48 0
8 12 12 6 2
9 30 0 36 18

10 24 0 24 0
11 24 24 24 12
12 8 8 24 6
13 24 0 72 0
14 48 0 0 0
15 0 0 48 12
16 6 6 12 0
17 48 0 48 12
18 36 0 30 6
19 24 24 72 6
20 24 24 24 12
21 48 0 48 24
22 24 0 24 6
23 0 0 48 0
24 24 24 8 0
25 30 0 84 12
26 72 0 24 0
27 32 32 96 12
28 0 0 48 0
29 72 0 24 24
30 48 0 0 12
31 0 0 96 12
32 12 12 6 2
33 48 0 96 12
34 48 0 48 6
35 48 48 48 24
36 30 30 36 6
37 24 0 120 12
38 72 0 24 0
39 0 0 48 24
40 24 24 24 0
41 96 0 48 12
42 48 0 48 0
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a ( a
n )

-3
1 if n ≡ 1(mod 3)
-1 if n ≡ 2(mod 3)

4 1 if n is odd

-4
1 if n ≡ 1(mod 4)
-1 if n ≡ 3(mod 4)

8
1 if n ≡ 1,7(mod 8)
-1 if n ≡ 3,5(mod 8)

-8
1 if n ≡ 1,3(mod 8)
-1 if n ≡ 5,7(mod 8)

9 1 if n ≡ 1,2(mod 3)

12
1 if n ≡ 1,11(mod 12)
-1 if n ≡ 5,7(mod 12)

-12
1 if n ≡ 1(mod 6)
-1 if n ≡ 5(mod 6)

24
1 if n ≡ 1,5,19,23(mod 24)

-1 if n ≡ 7,11,13,17(mod 24)

-24
1 if n ≡ 1,5,7,11(mod 24)

-1 if n ≡ 13,17,19,23(mod 24)
36 1 if n ≡ 1,5(mod 6)

-36
1 if n ≡ 1,5(mod 12)

-1 if n ≡ 7,11(mod 12)

72
1 if n ≡ 1,7,17,23(mod 24)

-1 if n ≡ 5,11,13,19(mod 24)

-72
1 if n ≡ 1,11,17,19(mod 24)
-1 if n ≡ 5,7,13,23(mod 24)

Table A.2 Values of n for Kronecker symbols
(a

n

)
. The value of

(a
n

)
is defined

to be 0 for other residue classes modulo n not covered in this table.

a b x
-3 3 1

3 ; 2
3

4 2 1
2

-4 4 1
4 ; 3

4
8 8 1

8 ,
7
8 ; 3

8 ,
5
8

-8 8 1
8 ,

3
8 ; 5

8 ,
7
8

9 3 1
3 ,

2
3

12 12 1
12 ,

11
12 ; 5

12 ,
7
12

-12 6 1
6 ; 5

6
24 24 1

24 ,
5
24 ,

19
24 ,

23
24 ; 7

24 ,
11
24 ,

13
24 ,

17
24

-24 24 1
24 ,

5
24 ,

7
24 ,

11
24 ; 13

24 ,
17
24 ,

19
24 ,

23
24

36 6 1
6 ,

5
6

-36 12 1
12 ,

5
12 ; 7

12 ,
11
12

72 24 1
24 ,

7
24 ,

17
24 ,

23
24 ; 5

24 ,
11
24 ,

13
24 ,

19
24

-72 24 1
24 ,

11
24 ,

17
24 ,

19
24 ; 5

24 ,
7

24 ,
13
24 ,

23
24

Table A.3 Values of a,b and x for
∞

∑
n=1

(a
n

)
n−s = b−s

ζ (s;x), see (6.4.8) .
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n
L

scn
−

L
sc∞

L
bcc
n

−
L

bcc
∞

L
fcc
n

−
L

fcc
∞

L
hcp
n

−
L

hcp
∞

L
hcp
n

−
L

fcc
n

4
1.05323159597617E

+1
1.46387216437935E

+1
1.33383043051302E

+1
1.33390823380551E

+1
7.78032924974526E

-4
5

4.37752483084708E
+0

6.75850937014712E
+0

4.96751845837841E
+0

4.96843634796979E
+0

9.17889591383232E
-4

6
2.40192397482754E

+0
4.25366786729232E

+0
2.45392104374447E

+0
2.45489727784162E

+0
9.76234097145690E

-4
7

1.46705778091881E
+0

3.05424347924446E
+0

1.35938770074208E
+0

1.36034677619555E
+0

9.59075453468315E
-4

8
9.45807927226370E

-1
2.35519790840251E

+0
8.01937231378133E

-1
8.02821852809896E

-1
8.84621431763331E

-4
9

6.28859198886779E
-1

1.89458965632112E
+0

4.92546702137558E
-1

4.93321725001782E
-1

7.75022864223436E
-4

10
4.26119102533089E

-1
1.56440061535995E

+0
3.11245665477406E

-1
3.11896233818981E

-1
6.50568341575253E

-4
11

2.92294499234567E
-1

1.31326253739910E
+0

2.00920351277113E
-1

2.01447099831955E
-1

5.26748554841471E
-4

12
2.02149045047519E

-1
1.11418326807536E

+0
1.31880196544580E

-1
1.32293769098918E

-1
4.13572554337918E

-4
13

1.40599580021692E
-1

9.51807318574715E
-1

8.77263213520527E
-2

8.80425502984390E
-2

3.16228946386338E
-4

14
9.81841257121521E

-2
8.16770228485920E

-1
5.89919443508593E

-2
5.92282550682414E

-2
2.36310717382134E

-4
15

6.87642950388921E
-2

7.02984559980926E
-1

4.00240550990886E
-2

4.01971443472233E
-2

1.73089248134625E
-4

16
4.82634695858417E

-2
6.06254047544529E

-1
2.73548440185703E

-2
2.74794193038561E

-2
1.24575285285802E

-4
17

3.39293163672074E
-2

5.23531250439298E
-1

1.88094367104578E
-2

1.88977196228595E
-2

8.82829124017101E
-5

18
2.38817078667148E

-2
4.52503168608382E

-1
1.29983096659596E

-2
1.30600231774083E

-2
6.17135114487303E

-5
19

1.68254563317377E
-2

3.91350791413118E
-1

9.01960443932357E
-3

9.06222411120950E
-3

4.26196718859239E
-5

20
1.18628308899457E

-2
3.38604005679563E

-1
6.28004132634266E

-3
6.30915811465870E

-3
2.91167883160407E

-5
21

8.36875754668317E
-3

2.93050370415294E
-1

4.38480936230330E
-3

4.40451008477321E
-3

1.97007224699113E
-5

22
5.90652613429112E

-3
2.53675218084780E

-1
3.06856932292989E

-3
3.08178423329668E

-3
1.32149103667949E

-5
23

4.17024007074802E
-3

2.19620534883649E
-1

2.15149097471211E
-3

2.16028673932262E
-3

8.79576461050519E
-6

24
2.94520818412950E

-3
1.90155475483163E

-1
1.51082493970707E

-3
1.51663857704596E

-3
5.81363733888953E

-6
25

2.08052037491334E
-3

1.64654351927331E
-1

1.06227870924614E
-3

1.06609714202720E
-3

3.81843278106124E
-6

26
1.46997249608606E

-3
1.42579615920799E

-1
7.47674897726916E

-4
7.50168624485191E

-4
2.49372675827520E

-6
27

1.03875223830484E
-3

1.23468315872789E
-1

5.26690212160028E
-4

5.28310428505144E
-4

1.62021634511562E
-6

28
7.34121070789493E

-4
1.06921071038717E

-1
3.71277553079702E

-4
3.72325322411022E

-4
1.04776933131979E

-6
29

5.18879212211412E
-4

9.25929383761218E
-2

2.61871447419640E
-4

2.62546150133902E
-4

6.74702714262418E
-7

30
3.66774897184039E

-4
8.01857499061731E

-2
1.84790059821197E

-4
1.85222851788274E

-4
4.32791967077113E

-7

Table
A

.4
L

attice
sum

s
(L

ennard-Jones–Ingham
coefficients)L

n
w

ith
respectto

the
infinite

lim
it(L

sc∞
=6,L

bcc
∞

=8,L
fcc
∞

=12,L
hcp
∞

=12)for
n
∈
N

obtained
from

various
expansion

m
ethods

described
in

this
paper.



B Special functions

A The Riemann zeta function and L functions

The definitions are:

ζ (s) =
∞

∑
j=1

1
js (B.0.1)

L−4(s) =
∞

∑
j=1

χ−4( j)
js = 1− 1

3s +
1
5s −

1
7s + · · · . (B.0.2)

L−3(s) =
∞

∑
j=1

χ−3( j)
js = 1− 1

2s +
1
4s −

1
5s +

1
7s −

1
8s + · · · . (B.0.3)

The function ζ (s) is the Riemann zeta function. It has a pole of order 1 at
s = 1, and in fact

lim
s→1

(s−1)ζ (s) = 1. (B.0.4)

This is a consequence of [283, (1.3.2)]. See also [110, p. 58].

We will require the functional equations

π
−s/2

Γ(s/2)ζ (s) = π
−(1−s)/2

Γ((1− s)/2)ζ (1− s) (B.0.5)

and

π
−s

Γ(s)ζ (s)L−4(s) = π
−(1−s)

Γ(1− s)ζ (1− s)L−4(1− s) (B.0.6)

and the special values

ζ (2) =
π2

6
, ζ (0) =−1

2
, ζ (−1) =− 1

12
,

ζ (−2) = ζ (−4) = ζ (−6) = · · ·= 0, (B.0.7)

L−4(1) =
π

4
, L−4(0) =

1
2
, L−4(−1) = L−4(−3) = L−4(−5) = · · ·= 0,

(B.0.8)
and

333
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L−3(1) =
π
√

3
9

, L−3(0) =
1
3
, L−3(−1) = L−3(−3) = L−3(−5) = · · ·= 0.

(B.0.9)
See [285, Ch. 12] or [286]. Other results used are

∞

∑
j=0

1
( j+ 1

2)
s
= (2s −1)ζ (s) (B.0.10)

∞

∑
j=1

(−1) j

js =−(1−21−s)ζ (s) (B.0.11)

∑
j,k

′ 1
( j2 + k2)s = 4ζ (s)L−4(s) (B.0.12)

∑
j,k

′ (−1) j+k

( j2 + k2)s =−4(1−21−s)ζ (s)L−4(s). (B.0.13)

∑
i, j

′ 1
(i2 + i j+ j2)s = 6ζ (s)L−3(s) (B.0.14)

∑
i, j

1
((i+ 1

3)
2 +(i+ 1

3)( j+ 1
3)+( j+ 1

3)
2)s

= 3(3s −1)ζ (s)L−3(s). (B.0.15)

The identities (B.0.10) and (B.0.11) follow from the definition of ζ (s) by series
rearrangements. For (B.0.12), (B.0.13) and (B.0.14), see (1.4.14), (1.7.5) and
(1.4.16), respectively, of [1]. The identity (B.0.15) can be obtained by the
method of Mellin transforms, e.g., see [58, Appendix A], starting with [78,
(3.36)].
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EĂŵĞ�ŽĨ�ĐĂŶĚŝĚĂƚĞ͗�

EĂŵĞͬƚŝƚůĞ�ŽĨ�WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͗�

EĂŵĞ�ŽĨ�ZĞƐĞĂƌĐŚ�KƵƚƉƵƚ�ĂŶĚ�ĨƵůů�ƌĞĨĞƌĞŶĐĞ͗�

/Ŷ�ǁŚŝĐŚ��ŚĂƉƚĞƌ�ŝƐ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚ�ͬWƵďůŝƐŚĞĚ�ǁŽƌŬ͗�

WůĞĂƐĞ�ŝŶĚŝĐĂƚĞ͗�

x dŚĞ�ƉĞƌĐĞŶƚĂŐĞ�ŽĨ�ƚŚĞ�ŵĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ�tŽƌŬ�ƚŚĂƚ�ǁĂƐ
ĐŽŶƚƌŝďƵƚĞĚ�ďǇ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ͗

ĂŶĚ��

x �ĞƐĐƌŝďĞ�ƚŚĞ�ĐŽŶƚƌŝďƵƚŝŽŶ�ƚŚĂƚ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ�ŚĂƐ�ŵĂĚĞ�ƚŽ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ
tŽƌŬ͗

&Žƌ�ŵĂŶƵƐĐƌŝƉƚƐ�ŝŶƚĞŶĚĞĚ�ĨŽƌ�ƉƵďůŝĐĂƚŝŽŶ�ƉůĞĂƐĞ�ŝŶĚŝĐĂƚĞ�ƚĂƌŐĞƚ�ũŽƵƌŶĂů͗�

�ĂŶĚŝĚĂƚĞ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

;dŚŝƐ�ĨŽƌŵ�ƐŚŽƵůĚ��ĂƉƉĞĂƌ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ĞĂĐŚ�ƚŚĞƐŝƐ�ĐŚĂƉƚĞƌͬƐĞĐƚŝŽŶͬĂƉƉĞŶĚŝǆ�ƐƵďŵŝƚƚĞĚ�ĂƐ�Ă��
ŵĂŶƵƐĐƌŝƉƚͬ�ƉƵďůŝĐĂƚŝŽŶ�Žƌ�ĐŽůůĞĐƚĞĚ�ĂƐ�ĂŶ�ĂƉƉĞŶĚŝǆ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ƚŚĞ�ƚŚĞƐŝƐͿ�

P Schwerdtfeger, A Burrows, and O R. Smits, 

"The Lennard-Jones Potential Revisited: Analytical Expressions for Vibrational Effects in Cubic 
and Hexagonal Close-Packed Lattices", J. Phys. Chem. A 2021, 125, 14, 3037–3057

Antony Burrows

Prof. Dr. Peter Schwerdtfeger

7

40%

Derived formulas under supervision of both supervisors, did the programming and 
analysis, helped in writing the paper, contributed to all figures.

31/05/2022

31/05/2022

Antony Burrows Digitally signed by Antony Burrows 
Date: 2022.05.27 17:19:00 +12'00'

PeterSchwerdtfeger Digitally signed by PeterSchwerdtfeger 
Date: 2022.06.01 09:50:41 +12'00'
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�Z��ϭϲ�

'Z^�sĞƌƐŝŽŶ�ϰʹ�:ĂŶƵĂƌǇ�ϮϬϭϵ�

^d�d�D�Ed�K&��KEdZ/�hd/KE�
��K�dKZ�d��t/d,�Wh�>/��d/KE^ͬD�Eh^�Z/Wd^

tĞ͕� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ� ĂŶĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ� WƌŝŵĂƌǇ� ^ƵƉĞƌǀŝƐŽƌ͕� ĐĞƌƚŝĨǇ� ƚŚĂƚ� Ăůů� ĐŽͲĂƵƚŚŽƌƐ� ŚĂǀĞ�
ĐŽŶƐĞŶƚĞĚ� ƚŽ� ƚŚĞŝƌ� ǁŽƌŬ� ďĞŝŶŐ� ŝŶĐůƵĚĞĚ� ŝŶ� ƚŚĞ� ƚŚĞƐŝƐ� ĂŶĚ� ƚŚĞǇ� ŚĂǀĞ� ĂĐĐĞƉƚĞĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ�
ĐŽŶƚƌŝďƵƚŝŽŶ�ĂƐ�ŝŶĚŝĐĂƚĞĚ�ďĞůŽǁ�ŝŶ�ƚŚĞ�^ƚĂƚĞŵĞŶƚ�ŽĨ�KƌŝŐŝŶĂůŝƚǇ͘�

EĂŵĞ�ŽĨ�ĐĂŶĚŝĚĂƚĞ͗�

EĂŵĞͬƚŝƚůĞ�ŽĨ�WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͗�

EĂŵĞ�ŽĨ�ZĞƐĞĂƌĐŚ�KƵƚƉƵƚ�ĂŶĚ�ĨƵůů�ƌĞĨĞƌĞŶĐĞ͗�

/Ŷ�ǁŚŝĐŚ��ŚĂƉƚĞƌ�ŝƐ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚ�ͬWƵďůŝƐŚĞĚ�ǁŽƌŬ͗�

WůĞĂƐĞ�ŝŶĚŝĐĂƚĞ͗�

x dŚĞ�ƉĞƌĐĞŶƚĂŐĞ�ŽĨ�ƚŚĞ�ŵĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ�tŽƌŬ�ƚŚĂƚ�ǁĂƐ
ĐŽŶƚƌŝďƵƚĞĚ�ďǇ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ͗

ĂŶĚ��

x �ĞƐĐƌŝďĞ�ƚŚĞ�ĐŽŶƚƌŝďƵƚŝŽŶ�ƚŚĂƚ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ�ŚĂƐ�ŵĂĚĞ�ƚŽ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ
tŽƌŬ͗

&Žƌ�ŵĂŶƵƐĐƌŝƉƚƐ�ŝŶƚĞŶĚĞĚ�ĨŽƌ�ƉƵďůŝĐĂƚŝŽŶ�ƉůĞĂƐĞ�ŝŶĚŝĐĂƚĞ�ƚĂƌŐĞƚ�ũŽƵƌŶĂů͗�

�ĂŶĚŝĚĂƚĞ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

;dŚŝƐ�ĨŽƌŵ�ƐŚŽƵůĚ��ĂƉƉĞĂƌ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ĞĂĐŚ�ƚŚĞƐŝƐ�ĐŚĂƉƚĞƌͬƐĞĐƚŝŽŶͬĂƉƉĞŶĚŝǆ�ƐƵďŵŝƚƚĞĚ�ĂƐ�Ă��
ŵĂŶƵƐĐƌŝƉƚͬ�ƉƵďůŝĐĂƚŝŽŶ�Žƌ�ĐŽůůĞĐƚĞĚ�ĂƐ�ĂŶ�ĂƉƉĞŶĚŝǆ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ƚŚĞ�ƚŚĞƐŝƐͿ�

Antony Burrows

Prof. Dr. Peter Schwerdtfeger

A Burrows, S Cooper, P Schwerdtfeger, "The Cuboidal Lattices and their Lattice Sums",  arXiv:2105.08922v1

8

50%

Derived formulas under supervision of both supervisors, did the programming and 
analysis, helped in writing the paper, contributed to all figures.

Journal of Chemical Physics

31/05/2022

31/05/2022

Antony Burrows Digitally signed by Antony Burrows 
Date: 2022.05.28 13:11:05 +12'00'

PeterSchwerdtfeger Digitally signed by PeterSchwerdtfeger 
Date: 2022.06.01 09:49:15 +12'00'
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�Z��ϭϲ�

'Z^�sĞƌƐŝŽŶ�ϰʹ�:ĂŶƵĂƌǇ�ϮϬϭϵ�

^d�d�D�Ed�K&��KEdZ/�hd/KE�
��K�dKZ�d��t/d,�Wh�>/��d/KE^ͬD�Eh^�Z/Wd^

tĞ͕� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ� ĂŶĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ� WƌŝŵĂƌǇ� ^ƵƉĞƌǀŝƐŽƌ͕� ĐĞƌƚŝĨǇ� ƚŚĂƚ� Ăůů� ĐŽͲĂƵƚŚŽƌƐ� ŚĂǀĞ�
ĐŽŶƐĞŶƚĞĚ� ƚŽ� ƚŚĞŝƌ� ǁŽƌŬ� ďĞŝŶŐ� ŝŶĐůƵĚĞĚ� ŝŶ� ƚŚĞ� ƚŚĞƐŝƐ� ĂŶĚ� ƚŚĞǇ� ŚĂǀĞ� ĂĐĐĞƉƚĞĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ�
ĐŽŶƚƌŝďƵƚŝŽŶ�ĂƐ�ŝŶĚŝĐĂƚĞĚ�ďĞůŽǁ�ŝŶ�ƚŚĞ�^ƚĂƚĞŵĞŶƚ�ŽĨ�KƌŝŐŝŶĂůŝƚǇ͘�

EĂŵĞ�ŽĨ�ĐĂŶĚŝĚĂƚĞ͗�

EĂŵĞͬƚŝƚůĞ�ŽĨ�WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͗�

EĂŵĞ�ŽĨ�ZĞƐĞĂƌĐŚ�KƵƚƉƵƚ�ĂŶĚ�ĨƵůů�ƌĞĨĞƌĞŶĐĞ͗�

/Ŷ�ǁŚŝĐŚ��ŚĂƉƚĞƌ�ŝƐ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚ�ͬWƵďůŝƐŚĞĚ�ǁŽƌŬ͗�

WůĞĂƐĞ�ŝŶĚŝĐĂƚĞ͗�

x dŚĞ�ƉĞƌĐĞŶƚĂŐĞ�ŽĨ�ƚŚĞ�ŵĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ�tŽƌŬ�ƚŚĂƚ�ǁĂƐ
ĐŽŶƚƌŝďƵƚĞĚ�ďǇ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ͗

ĂŶĚ��

x �ĞƐĐƌŝďĞ�ƚŚĞ�ĐŽŶƚƌŝďƵƚŝŽŶ�ƚŚĂƚ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ�ŚĂƐ�ŵĂĚĞ�ƚŽ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ
tŽƌŬ͗

&Žƌ�ŵĂŶƵƐĐƌŝƉƚƐ�ŝŶƚĞŶĚĞĚ�ĨŽƌ�ƉƵďůŝĐĂƚŝŽŶ�ƉůĞĂƐĞ�ŝŶĚŝĐĂƚĞ�ƚĂƌŐĞƚ�ũŽƵƌŶĂů͗�

�ĂŶĚŝĚĂƚĞ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

;dŚŝƐ�ĨŽƌŵ�ƐŚŽƵůĚ��ĂƉƉĞĂƌ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ĞĂĐŚ�ƚŚĞƐŝƐ�ĐŚĂƉƚĞƌͬƐĞĐƚŝŽŶͬĂƉƉĞŶĚŝǆ�ƐƵďŵŝƚƚĞĚ�ĂƐ�Ă��
ŵĂŶƵƐĐƌŝƉƚͬ�ƉƵďůŝĐĂƚŝŽŶ�Žƌ�ĐŽůůĞĐƚĞĚ�ĂƐ�ĂŶ�ĂƉƉĞŶĚŝǆ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ƚŚĞ�ƚŚĞƐŝƐͿ�

A Burrows, S Cooper, and P Schwerdtfeger ,
"Instability of the body-centered cubic lattice within the sticky hard sphere and Lennard-Jones model 
obtained from exact lattice summations", Phys. Rev. E 104, 035306 - Published 22 September 2021

Antony Burrows

Prof. Dr. Peter Schwerdtfeger

9

50%

Derived formulas under supervision of both supervisors, did the programming and 
analysis, helped in writing the paper, contributed to all figures.

31/05/2022

31/05/2022

Antony Burrows Digitally signed by Antony Burrows 
Date: 2022.05.28 14:02:10 +12'00'

PeterSchwerdtfeger Digitally signed by PeterSchwerdtfeger 
Date: 2022.06.01 09:47:38 +12'00'
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�Z��ϭϲ�

'Z^�sĞƌƐŝŽŶ�ϰʹ�:ĂŶƵĂƌǇ�ϮϬϭϵ�

^d�d�D�Ed�K&��KEdZ/�hd/KE�
��K�dKZ�d��t/d,�Wh�>/��d/KE^ͬD�Eh^�Z/Wd^

tĞ͕� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ� ĂŶĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ� WƌŝŵĂƌǇ� ^ƵƉĞƌǀŝƐŽƌ͕� ĐĞƌƚŝĨǇ� ƚŚĂƚ� Ăůů� ĐŽͲĂƵƚŚŽƌƐ� ŚĂǀĞ�
ĐŽŶƐĞŶƚĞĚ� ƚŽ� ƚŚĞŝƌ� ǁŽƌŬ� ďĞŝŶŐ� ŝŶĐůƵĚĞĚ� ŝŶ� ƚŚĞ� ƚŚĞƐŝƐ� ĂŶĚ� ƚŚĞǇ� ŚĂǀĞ� ĂĐĐĞƉƚĞĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ�
ĐŽŶƚƌŝďƵƚŝŽŶ�ĂƐ�ŝŶĚŝĐĂƚĞĚ�ďĞůŽǁ�ŝŶ�ƚŚĞ�^ƚĂƚĞŵĞŶƚ�ŽĨ�KƌŝŐŝŶĂůŝƚǇ͘�

EĂŵĞ�ŽĨ�ĐĂŶĚŝĚĂƚĞ͗�

EĂŵĞͬƚŝƚůĞ�ŽĨ�WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͗�

EĂŵĞ�ŽĨ�ZĞƐĞĂƌĐŚ�KƵƚƉƵƚ�ĂŶĚ�ĨƵůů�ƌĞĨĞƌĞŶĐĞ͗�

/Ŷ�ǁŚŝĐŚ��ŚĂƉƚĞƌ�ŝƐ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚ�ͬWƵďůŝƐŚĞĚ�ǁŽƌŬ͗�

WůĞĂƐĞ�ŝŶĚŝĐĂƚĞ͗�

x dŚĞ�ƉĞƌĐĞŶƚĂŐĞ�ŽĨ�ƚŚĞ�ŵĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ�tŽƌŬ�ƚŚĂƚ�ǁĂƐ
ĐŽŶƚƌŝďƵƚĞĚ�ďǇ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ͗

ĂŶĚ��

x �ĞƐĐƌŝďĞ�ƚŚĞ�ĐŽŶƚƌŝďƵƚŝŽŶ�ƚŚĂƚ�ƚŚĞ�ĐĂŶĚŝĚĂƚĞ�ŚĂƐ�ŵĂĚĞ�ƚŽ�ƚŚĞ�DĂŶƵƐĐƌŝƉƚͬWƵďůŝƐŚĞĚ
tŽƌŬ͗

&Žƌ�ŵĂŶƵƐĐƌŝƉƚƐ�ŝŶƚĞŶĚĞĚ�ĨŽƌ�ƉƵďůŝĐĂƚŝŽŶ�ƉůĞĂƐĞ�ŝŶĚŝĐĂƚĞ�ƚĂƌŐĞƚ�ũŽƵƌŶĂů͗�

�ĂŶĚŝĚĂƚĞ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

WƌŝŵĂƌǇ�^ƵƉĞƌǀŝƐŽƌ͛Ɛ�^ŝŐŶĂƚƵƌĞ͗�

�ĂƚĞ͗�

;dŚŝƐ�ĨŽƌŵ�ƐŚŽƵůĚ��ĂƉƉĞĂƌ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ĞĂĐŚ�ƚŚĞƐŝƐ�ĐŚĂƉƚĞƌͬƐĞĐƚŝŽŶͬĂƉƉĞŶĚŝǆ�ƐƵďŵŝƚƚĞĚ�ĂƐ�Ă��
ŵĂŶƵƐĐƌŝƉƚͬ�ƉƵďůŝĐĂƚŝŽŶ�Žƌ�ĐŽůůĞĐƚĞĚ�ĂƐ�ĂŶ�ĂƉƉĞŶĚŝǆ�Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ƚŚĞ�ƚŚĞƐŝƐͿ�

P Schwerdtfeger and A Burrows, "Cuboidal bcc to  

 fcc Transformation of Lennard-Jones Phases under High Pressure Derived from Exact Lattice 
Summations", J. Phys. Chem. C 2022, 126, 20, 8874–8882

Antony Burrows

Prof. Dr. Peter Schwerdtfeger

10

50%

Derived formulas under supervision of both supervisors, did the programming and 
analysis, helped in writing the paper, designed and made all figures.

31/05/2022

31/05/2022

Antony Burrows Digitally signed by Antony Burrows 
Date: 2022.05.28 14:07:45 +12'00'

PeterSchwerdtfeger Digitally signed by PeterSchwerdtfeger 
Date: 2022.06.01 09:45:41 +12'00'
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�Z��ϭϲ�

'Z^�sĞƌƐŝŽŶ�ϰʹ�:ĂŶƵĂƌǇ�ϮϬϭϵ�

^d�d�D�Ed�K&��KEdZ/�hd/KE�
��K�dKZ�d��t/d,�Wh�>/��d/KE^ͬD�Eh^�Z/Wd^

tĞ͕� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ� ĂŶĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ� WƌŝŵĂƌǇ� ^ƵƉĞƌǀŝƐŽƌ͕� ĐĞƌƚŝĨǇ� ƚŚĂƚ� Ăůů� ĐŽͲĂƵƚŚŽƌƐ� ŚĂǀĞ�
ĐŽŶƐĞŶƚĞĚ� ƚŽ� ƚŚĞŝƌ� ǁŽƌŬ� ďĞŝŶŐ� ŝŶĐůƵĚĞĚ� ŝŶ� ƚŚĞ� ƚŚĞƐŝƐ� ĂŶĚ� ƚŚĞǇ� ŚĂǀĞ� ĂĐĐĞƉƚĞĚ� ƚŚĞ� ĐĂŶĚŝĚĂƚĞ͛Ɛ�
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