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Abstract

This thesis consists of seven chapters.

Chapter 1 is an introduction to the infinite products. Here we provide a proof for
representing sine function as an infinite product. This chapter also describes the
notation used throughout the thesis as well as the method used to prove the identities.
Each of the other chapters may be read independently, however some chapters assume
familiarity with the Jacobi triple product identity.

Chapter 2 is about the Jacobi triple product identity as well as several implications of
this identity.

In Chapter 3 the quintuple product identity and some of its special cases are derived.
Even though there are many known proofs of this identity since 1916 when it was first
discovered, the proof presented in this chapter is new. Some beautiful formulas in
number theory are derived at the end of this chapter.

The simplest two dimensional example of the Macdonald identity, A2, is investigated in
full detail in Chapter 4. lan Macdonald first outlined the proof for this identity in 1972
but omitted many of the details hence making his work hard to follow.

In Chapters 5 and 6 we somewhat deviate from the method which uses the two
specializations to evaluate the constant term and prove Winquist's identity and
Macdonald's identity for G2. Some of the work involved in proving G2 identity is new.
Finally in Chapter 7 we discuss the work presented with some concluding remarks as
well as underlining the possibilities for the future research.

Throughout the thesis we point to the relevant papers in this area which might provide
different strategies for proving above identities.
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1 Introduction

This thesis is about infinite products. We will state and prove some mathematical
identities involving infinite products. The multivariate infinite products in this thesis
were first studied by L. Winquist in 1969 [19]. In 1972, I. G. Macdonald [14] associated
the infinite product identities with irreducible root systems and gave a very general
method for proving such identities. He also classified such identities into infinite families
and exceptional cases. Further, D. Stanton in 1989, explicitly [16], detailed the proofs for

infinite families. In 1997, S. Cooper [8] provided a detailed proof for G, and G,
identities, which belong to the exceptional cases. For other exceptional cases, namely
F,, F,’, Es, E;, Eg, only Macdonald's proofs exist.

1.1 Infinite product representation of the sine function

The simplest function which vanishes on a bilateral arithmetic progression is the
sine function. This is illustrated by the following theorem.

2
. X . .
Theorem 1.1 sin 7x = zX;_,(1——;) has simple zeros at the integers.
n

Proof. Let,

_sin(n+1)@

- sing

Using the trigonometric identity, sin(A+ B) =sin Acos B +cos Asin B, we get that,
sin(n+1)6 N sin(n—-1)6

U

n

u+U ,= - -
siné@ sin@
_sinn@cosé +cosndsinf+sinndcosd —cosndsin b
sind
=2cosAdJ .

Similarly, using the same trigonometric identity we derive,

_sin(2n+1)@cos 26 + cos(2n+1)Asin 26
U2n+2 +U2n—2 -

sing
N sin(2n+1)&cos 20 —cos(2n +1)dsin 20
sin@
_ 2sin(2n+1)6@cos 26
- sind
=2cos268U,,

=(2-4sin*0)U,,.1.1.2
Also, it can be easily checked, using (1.1.1) that,

(1.1.1)
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U, =1 (1.1.3)
and
U,=-1 (1.1.4)
Next, we let neN’, where N" ={0,1,2,3...} and show that U, is a polynomial of
degree n in sin?6. When n=0, (1.1.2) becomes,
U,+U_, =(2-4sin*0)U,,. (1.1.5)
Then by (1.1.3), (1.1.4) and (1.1.5),
U, = 3—4sin%0
and hence U, is a polynomial of degree 1 in sin?6. Next, assume that U, isa
polynomial of degree Kk in sin?é@ for 0 <k <n. Consider U,y By (1.1.2),
Uy, = (2-4sin®0)U,, -U,, ,.
It follows that U,, ., is a polynomial of degree n+1 in sin®é.
We can write U, as
U,, =¢,+¢ s,in2¢9+C2 s,in419+...+Cn sin?"é,
with the factorization
U,, =¢,(1-1sin?8)(1-r,sin%8)...(1—r, sin’O).

Now, we seek the roots of this equation. From (1.1.1) we see that U,, =0 when
0 =+jrd(2n+1), jeZ,which enables us to further write above factorization as

s 2 .2 .2
U, =c|1-—Sin¢ |, sin0 [, sin?
sin®(#2n +1) sin’(272n+1) sin?(n2n +1)

In order to determine c,, we take the limitas & - 0.

sin@n+1)0 _ ., sin%@

&% sing hm COJ':1(1_sin2(j7z/(2n +1)J’

Therefore,
C, =2n+1.
Putting above results together,
sin(2n+1)8 = (2n+1)sin 6?]”:1(1— — _s|n249 ] (1.1.6)
sin®(j#/(2n +1))
Further, we let 8 = zx/(2n+1) in (1.1.6) and let n go to .
Sin(x) = Jim (20 +1)sin % {1—“”2(”_"/(2”*1))]
N 2n+1j= sin?(jAa(2n+1)

2,2 2
R TX | w X
= ﬂszl(l_ﬂ_Z—jZJ - ﬂXj:l(]‘_?}

This completes the proof of Theorem 1.1. There are other proofs of this theorem that
have appeared in the literature. Refer to [2] for the proof involving the Gamma function
and also [15] where the product for the sine function is derived by integrating a partial



fraction for the cotangent.

1.2 Infinite product representation for other functions

We continue our investigation by trying to find a function that vanishes along the
geometric progression. Let g be a complex parameter such that ¢ <|]4 Then we can

define the theta product analytic on C\{0} to be

f(xa) = (1-xq")(1-x"q").
It has simple zeros at x=q", n=0,+1,%2,... and an essential singularity at X =0. Since
the theta product converges absolutely and uniformly on the compact subsets of a
complex plane which do not contain the origin, it has a Laurent expansion in the powers
of X, valid in the annulus 0 < |X| < o0,

In Chapter 2, we will show that the explicit form of the Laurent expansion is
given by,

L A-x")(A-x"9") = o(a);. g " (x)",
where
c(q) =7 (1-a)™.
This identity is more commonly written as,
L A-x™)(A- X" -a") =), g X))
and is called the Jacobi triple product identity.

The Macdonald identities, due to lan Macdonald, are multivariate
generalizations of the Jacobi triple product identity. When =0, the Macdonald

identities reduce to the Weyl denominator formulas for the root systems. Macdonald
[14] showed how to associate and convert each of the affine root systems to
multivariate infinite products and also gave a general formula for the multivariate
Laurent series expansion. We use Macdonald's classification to list the irreducible root
systems below.

e Infinite families: A, ,,n>2; B,,n2>3; B/,n>3; C ,n>2;
C/,nx>2; BC,,n=1; D,,n>4.

e Exceptional cases: G,, G, , F,, F,’,E;, E;, E;.

See Macdonald [14] for the definitions of an affine root system and also how to
associate infinite products to affine root system. We will provide several explicit
examples of the Macdonald identities in Section 1.4.

1.3 Notation

Before listing some of the examples let us introduce standard notation used to

(1.2.1)



represent products. From now on, we will assume |q| <l.
Definition 1.2 Let N =1,2,3... then,
L (a09),=1;
2. (&0), =% (1-aq’);
3. (&), =7, (1-aq’);
4. (a8, 8,:0), = (a;0)..(8,;9)..--(@,;9)...

Throughout the thesis these will be refered to as the products to the base of (.
Also note when writing f(X;q) we will drop the dependence on ¢ and just write f(X).

1.4 Examples
Below we list several Macdonald identities and prove them in chapters to follow.

1. A : This corresponds to the Jacobi triple product identity (1.2.1). Written as
a product to the base of q,
(x,ax0),, =r-_, (=1)"q""2x". (1.4.1)

=—0

2. BC,: Quintuple product identity
(qx, qX_l, q’ q)oo()(Z’qZX—Z;qZ)Oc :::700 qn(3n—1)/2 (X3n _ Xl—3n)l (142)

3. A:
0% X 0% X, OX :
(XZ, Xl )XS) Xl 5X3! X2 1q,qu)w

3, 2,2 2 m;
_ f(ml +m5+mg )-¢-ml-¢-2m2-¢-3m3 3m, 3m 3m3 X. q i
= g2 X, 1X, 2Xg 1SiSJ.33(1— ). (1.4.3)

i
m; +m.+My =0 qu

4. B, : Winquist's identity
(X, gx7, Y, qy Xy, ax Ty L xy T ax 7y, 4, 0;0).,



1 2 2
E(Sm +3n“-3m-n) 3m. 3n

= q

m-+n=0 (mod 2)

x(1-xq™)(1-yq")(1-xyg™")(1-xy ‘q""),1.4.4

y

5 G,:
2,1yl -2 121 -2 2 u-ly-1y2 .
(Xl Xy Xs T OXy X0 Xg, Xy X Xg ™ OX Xo Xg, X X X7, OXy X, Xs’qﬂ)w
30-3 ~nu=3u3 u=3u3 mu3u-3 u3yu=3 ~u-3y3 ~.
X (X X357, OX, X5, XX, 0% X, X5 X7, 0%, X5, 05 ).,

2(m12+m§+m§ )—2m;-3m, X12m:L X12 my X12 mg
1

LA P P
3!

m1+m2+m3=0

2 2
X2 X3 X1X3 X3

1.4.5

3
: |
X3

1.5 Method of proofs
Our proofs are based on four steps:

1. Define function f to be an infinite product. We seek a Laurent series
expansion for the product.

2. Consider several functional equations involving f in order to derive the
recurrence relations between the coefficients. Also, look at the symmetries of f and
express all non-zero coefficients in terms of a single one, c,.

3. Employ the specializationson f .

4. Last step involves comparison of the above specializations in order to
evaluate c,.

Using our method we are able to provide an ouline on how to go about proving
Macdonald's identities. However, note that many other proofs exist and we will point to
the papers containing them wherever known.

(2)

(3)



2 Jacobi triple product identity

2.1 Introduction

As the name suggests, this identity is due to Jacobi who discovered it in 1829. It
is fundamental in the theory of theta functions, elliptic functions and analytic number
theory. The substitution used to evaluate constant terms in our proof is due to
Macdonald [14]. It was made explicit by Cooper [7] and rediscovered by S. Kongsiriwong
and Z.-G. Liu [13].

2.2 Proof of the Jacobi triple product identity

We state the identity as a following theorem,

Theorem 2.1 Let x#0 and |q| <1. Then,

* L (1-xq")(A-x"g")(A-q") =2, g7 R (=x)".

Next we present the proof. Let,
f6q) = (1-xq")(1-x"q").
The infinite product in the definition of f(X) converges on any compact subset of the
complex plane that does not contain the origin. Therefore, f has a Laurent series

expansion in the powers of X, valid in the annulus 0 < |X| <oo. Now we determine the

coefficients in four steps.
2.2.1 Deriving recurrence relations

Let us consider,
f() _. (1-xq"")(1-x"q")
f(xg) " (1-xq")(1-x"g"")
_1-x
S 1-x*t

==X

Therefore,

f (x) = —xf (xq).
If we substitute the Laurent series into this functional equation we get,

®© - ® 1
n=—o Cnxn - _n:—c»ocnqnanr :
Now we equate coefficients of X" on both sides to get
—_ n-1
Cn =-q Cn—l'



We can iterate this recurrence relation to show that any coefficient c,, for n>0, can be
expressed in terms of C, i.e,

¢, = (=9")(=q"?)...(-q)(-1)c,

- (_:I_)nqn(n—l)lzcO
Further, if N <0 we can rewrite the above recurrence relation to get,

Cn = _q_ncn+1

Iterating this equation gives,

¢, = (=a")(=q"")..(-a)c,

= (_l)nqn(n—l)IZCO
We see that the same formula applies to the coefficients when n <0. Therefore,

f(x) =1 Q=xq")(1-x79") = ¢, (-1)"q"" X" (2.2.1)

and all that is left is to determine c,.

2.2.2 First specialization

Let X=w, where »=exp(27/3), a primitive third root of unity. From the
infinite product defining f we have,

f(0) = (1- @), (1-09")(1-»"q")

2n(q)
= (- o) o)1= o) (= o

3n
= (1-0)7, ((11 a )) 2.2.2 (4)
From the infinite series for f we have,
(@) = o, (-)'q" "0
= ( ( 1)3n 3n(3n—1)l2+a) (- 1)3n+1 3n(3n+1)/2

+ 0) e (_l)3n+2 q(3n-¢-2)(3n-¢-l)/2 )223 (5)

By expanding the series associated with @* we show that it equals zero. Split series into
two,

© O(_l)n q(3n+2)(3n+1)/2 +® . (_1)nq(3n+2)(3n+l)/2
n= n=-— '
Now replace n with —n—1 in the second series to get
:0:0 (_1)n q(3n+2)(3n+1)/2 +;o:0 (_1)—n—1q(—3n—1)(—3n—2)/2 =0.
Further replacing n with —n in the series associated with @, we get
f(w)=c,(1-w)~_ (-1)"g*e V2, (2.2.4)
Combining (2.2.2) and (2.2.4),

1_ 3n
( 1)n 3n(3n-1)/2 :1( qn)
(1-a")

On -0



2.2.3 Second specialization

We will now replace g with g° and then let x = g°. The infinite product gives,
f(9°) = (1-9°9°"°)(2-a7g™")

In-6 9n3(1 )
1- 1-
=1 (-0 1= o

3n
= 1207 555
(1-9™)
On the other hand the infinite series gives,
f(qB) — Co(qg) ( 1)n In(n 1)/2 3n
=¢,(9°)7._ (-1)"g*"M? 22,6 (7)
Consequently, equating (2.2.5) and (2.2.6),

(6)

1_q3n)

C 9 1n 3n(3n-1)/12 —x© ( ] 2.2.7
O(q ) ( ) “n=1 (1_q9n) ( )
Note that in the equations (2.2.6) and (2.2.7), as well as in next chapter, we have
emphasized the dependance on g by writing ¢,(q) and c,(q°) since q has been

replaced with ¢°. This will also be done in any of the future chapters where necessary.
2.2.4 Evaluating constant term

Since the first and second specialization yield the results with equal series sides
we can divide the two, getting

(@ _. (1-9™)
(@) " (1-q")’

and so,

Co(@)r=(1-9") = ¢, (a°) 7y (1—0°").

Now, this expression can be iterated to get
Co (A)r (1~ q) Co(A")ra (1-0"") = ¢ (q™)pe (1-9™")

= =6 (q%)m (1% ).
By taking a limitas k — oo,

Co(@)r=(1-9") = ¢, (0) =1.
Combining (2.2.1) and this result for ¢, completes the proof of Theorem 2.1.

2.3 Implications of the Jacobi triple product identity
In this chapter we will show several interesting results that can be derived by

manipulating the Jacobi triple product identity. Corollary 2.2 is due to L. Euler and
Corollary 2.3 is due to C. F. Gauss.

10



Corollary 2.2
m(1-a") =1, (D)

Proof. We replace q with g° in Theorem 2.1 and then set x = q to get

= (1-0-9"7)(1-q"-q)(1-g") =, (-1)"g" " q".
With further simplification we get,

= (1-0") =, ((1)"q"

Corollary 2.3
% (1-q")° =2, (-1)"(2n +1)g" "2,

Proof. We will prove this by observing what happens if we divide both sides of
the identity by 1— X and let X goto 1. We get,

00 o0

lim——  (1-xq" )1 xq")(1-q )-nmi g (x)",

x—1 1— Xn=1 X—1 1— =
From the first factor on the product side we can pull out 1—X term and take the limit,

whereas on the series side we need to do some manipulation before taking the limit
using L'Hopital's rule. It follows,

1
-0y = lim ( L1y (1)t e
In the second series on the right hand 5|de we replace n with 1—n to get,
1 o0
c:zl(l_ qn)s = ||m (_1)nq(n2—n)/2(xn _ Xl—n)
x—1 l—Xn=1
Next, we apply L'Hépital's rule and take the limit to get,

 (1-9")* =2, (-1)"q" M2 (~1)@n -1).
Therefore,

* L (1-9") =2, (<1)"(2n+1)g" M2,

11



3 Quintuple product identity

3.1 Introduction

The quintuple product identity has received much attention and various proofs
of it have appeared. It can be traced back to 1916, when it appeared in R. Fricke's book
[11]. Around the same time S. Ramanujan stated the identity, but this was not
discovered until about 70 years later. The identity was first studied, applied and written
about by G. N. Watson [18] in 1929, while proving Ramanujan's theorems on continued
fractions. He stated the identity in the following form,

:10:1 (1_ q5n)(1+ q5nflel)(l+ q5n74x)(1_ q1On77 X72)(1_ q10n73x2)
I ) S e DA A < B

For the complete summary of known proofs for the quintuple product identity
refer to Cooper [9]. The proof we are about to give is new. It is based on a proof by H. C.
Chan [4].

3.2 Proof of the quintuple product identity

In this chapter a complete proof of the quintuple product identity is given.

Theorem 3.1 For Xx#0 and |q| <1,

e (1-a")(A-xq" ) (A-x"g")(1-x*g*" ) (A-xg*")
— qn(3n—1)/2(x3n _Xl—Sn).3.2.1

n=-—o

Proof. Let
(0 = (1A )(L-x 9" (A= Xg" ) (A-x g™ ).

Then f has a Laurent series expansion
f (%) = Ca(a)xX",

valid in the annulus 0 < |X| <00,

3.2.1 Deriving recurrence relations

We begin by considering the first functional equation for f. Observe that

12
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f(x) _. (-xq")(A-x"g")(1-x"q""")(1-x*q""")
f(xa) " (1-xq")(L-x " )(L-Xg")(L-x Pg*" )
_ (1-x)(1-x*q)
C(-xhH(-xtet)
= X3q
This functional equation implies a relationship between the coefficients c,. We write,

¢, x" =x%q7_c,q"x".

n=-oo =N

Equating the coefficients of x" on both sides gives the following recurrence relation,
c,=c¢,.q""
Therefore, any coefficient C, can be expressed in terms of one of the three coefficients
C,, C, or C,. More precisely,
an = (@77)(@™)-. (@), = 9",
Conin = (qanil)( 3n74) (qz)c = n(3n+1)/201’

Caner = (A@°)(@*)...(0°%)c, = ¢*" "%, 3.2.2

for n>0. Now, when n<0 we replace n with 3—n and write the above recurrence
relation as
-n-1

c,=q"c

Further,
o = (@)@ ). (a0, = 4"V,
Cans = (@7"2)(Q*®)...(gN)e, = q"" e,

Carp = (47°"°)(@"°)...(0°)c, = g,
Then we see that all of the negative coefficients can be written in terms of one of the
three coefficients c,, ¢, or C,. Thus (3.2.2) holds for all N and we obtain the series
expansion for f,

(3n2—n)/2X3n (3n2+n)/2X3n+1 (3n2+3n)x3n+2.

f (X) = CO::—ooq + Cln ooq + CZ::—ooq

This completes the first part of the calculation.
Next, we derive the second recurrence relation between the coefficients of f,

that will enable us to reduce the above sum of the three infinite series to just one
infinite series. Observe that,

f0) L. (-xq™)-x 791~ Xg" )(L-x ")
FOC) ™ @ x )AL K
@9 _

Then,
n= ooCnX __Xn ooCnX

From the above functional equation we get the second recurrence relation. Equating the
coefficients of X" on both sides,

13
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C, =—Cp.,

When n=0, ¢, =—c,. Also when n=2, ¢, =—C,. However, from (3.2.2) we see
that by letting n =—-1 we get C, =C,. Further, this implies that ¢, =—C, and therefore
c, =0. Now (3.2.3) reduces to,

(0= (@) "7 (" - x). (3.24)
Next, we symmetrize f by writing it as a difference of the two series.
f (X) - Co (q)[::7qu(3n—1)/2X3n _::,oo qn(3n—l)/2Xl—3n1

By replacing n with n+1 in the second sum and only rearranging the terms in the first
sum we get,

f (X) :[010:1 (1_ Xq n—l)(l_ X—lqn)(l_ X2q2n—1)(1_ X—2q2n—1)
=Gy (q)[::_qu(3n+2)/2 (\/a)*sn X3n _;o:_oo qn(3n+2)/2 (\/a)in+2 X7(3"+2)]

3n 3n+2
= o (q)r_, "2 (%] —(@] (3.2.5)

This symmetric form of f(x) will be needed later. We will now employ two
specializations in order to determine c,.

3.2.2 First specialization

Let X = —w, where w = exp(27i/3) is a primitive third root of unity. Now,
f(~0) = (1+ w);, 1+ o0")(1+ 0°q");- (1~ 0°q"" ) (1~ g
= (1 ), 9N+ 001+ ")

n=1 n
(1+9")
o (=g (A-0’g" ) (1-eg™)
a-g"")
= (1 ), LHAA=0")

n=1 (1+ qn)(l_an—l)
=1+ ®,3.2.6 (11)

2n—1)

because,
:10:1(1"' qn)(l_ qznil) :?10:1 (1+ qn)(l_ q

_o (1-9"")(1-9")
19"

_. (1-9") _
" (1-q")

2n71) (1_qn)
(1-9"
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and similarly,
M@ g)(A-g" ) =1,

Also using (3.2.4),
f(~o) = (1+ w)cy(9);-..q" " (-1)". (3.2.7)

Replacing q with g* and combining (3.2.6) and (3.2.7),
1=cy(q")p. g (-1)" (3.2.8)

3.2.3 Second specialization

Now we let X =i,/q in (3.2.5). The product side is,

F(iya) = (1-iaa")(@+iyag") @+ ™) (1+9™2)

=27, (1+9”" ) (A+g™)?

(1-q")

(1-q")

g 120" 554 (12)
(1-9")

The series side becomes,

f (|\/a) =c, (q);o;qu(smz)/z (i3n _ ifsnfz)

. e i—4ni3n+i4ni—3n
2o (¢) I R > )
iz/2 —ian/2
0 nisn+ € +€
= 2¢,(9)r-.9"" 2)'Z(f)

= 2¢,(q)7_, g2 cos(nTE)B.Z.lO (13)

=27, (1+9")(1+9*")

. Nz . . . .
Since cos(—) =0 for n odd, we replace n with —2m in the above series expression

and equate it to (3.2.9),

. (-9 _ o 2m(3m-1) m
n= n - C (q)m:—ooq (_1) ) (3'2'11)
f(-qn) "

3.2.4 Evaluating constant term

Observe that the series sides in (3.2.8) and (3.2.11) are identical. Therefore,
dividing (3.2.11) by (3.2.8) gives,
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» (1=0") _ 6(a)
" (1-9") @)

Then we rearrange the terms and iterate,

co(q>=:zl%co(q4)
= %co(qm)

Lo (=¥
“n=1 (l_qn) 0( )

Taking the limit as k — oo and using the fact that ¢,(0) =1,
Co(a) =7 (1-0") .

This completes the proof.

3.3 Implications of the quintuple product identity

Since the motivation for the above proof came from Chan's [4] proof in this
chapter we first show that the form used here and in Chan's paper are equivalent. Then
we state two corollaries which are proved using the quintuple product identity.

Observe that if we replace X with x™'q and g with q° in Theorem 3.1 we get,
20:1(1_q2n)(1 X 1 2n-. 1)(1 Xq2n 1)(1 X—2 4n)(1 X2 4n— 4)

n=-—o0

— n(3n l)(X 3n 3n _X3n 1q1 3n).

Next we shift n on the product side so that it ranges between 0 and oo, and also

replace n with —n on the sum side. Now,
o (L= 07" ) (L= xq ™ )(L-x ") (1= x"q ") (1~ x g ")

= q3n2+n (x3"q " - x 3" 1g1).3.3.1

n=—o0
Thus we get the quintuple product identity form stated by Chan [4]

Corollary 3.2
(1-9") _

:O:l (1_q2n)2 Tn=-w qn(3n+l)/2 (6n +1)

Proof. We will start with the equation (3.2.1) and replace X with x* and then
replace n with —n on the series side to get,

= (1-0M(A-x"g")(A-xq") (- X" ) (L-x*q"")

16
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n=-ow

—® qn(3n+l)/2 (X3n _ X—3n—l)

First, we will rewrite the product side as,

1— 2 2n
(1D ) X)L 1) (0 2“*)21 e ;
. B o 1 X—2 2n
X (1-x7°0° 1)ﬁ
= qn(3n+1)/2(x3n_ —3n—1).3.3.2 (15)

Next, we divide both sides of (3.3.2) by (x—1) and take the limit as x —>1 to
get,

- 1 (1 q ) - || 1 N qn(3n+1)/2 (XSn _X—Bn—l).
(1 ) x—1 (X 1)
On the series side we apply L'HoOpital's rule once to get,

- l((]:-l- C?zn)) i qn(3n+1)/2(6n+1)

This completes the proof of the first corollary.

Corollary 3.3

[*) (1 q2n)5 n 3n +2n
=g = (1) (3n+1).

Proof. We will start by replacing X by x™ in (3.3.1) and shifting the infinite
product so that it starts at n =1. This gives,

c;]o:l(l_an)(l_Xan—l)(l X—l 2n—l)(1 X—2 4n— 4)(1 X2 4n)

2
— 3n“+n -3n 3N 3n+143n+1
“n=—w (X q —X q )

2 2
—© 3n“-2n,,-3n  ® 3n“+4n+l,,3n+1
“n=—w q X _n:—oo q X *

We have now split the series into two and will replace n with n—1 in the second series,
and then combine them back together to get
:]o:l(l_an)(l_ Xq2nfl)(1 Xfl 2n 1)(1 X72 4n— 4)(1 X2 4n)

2 2
—o0 3n“-2n,,-3n 3n“-2n,,3n-2
“n=—x q X _n:—oc q X

= q3n2—2n (X" - x¥2),

Replacing n with —n in the series,
;o:l(l_an)(l_Xan—l)(l X—l 2n l)(l X2 4n)(1 X 2 4n— 4)

= q3n2+2n (" — x72),

Next we rearrange the product,
(1 X—Z (1 q2n)(1 Xq2n 1)(1 X—l 2n 1)(1 XZ 4n)(1 X—Z 4n)
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= (1-x?)ma(1-9"")(1-xg*" )L -x"g*" )1 - xq*")(1+ xq*")
x (1-=x79"")(1+x'g*")

Further,
= (1-x?)ra(1-9")(1-xq")(1-x"q")(1+xq*")(1+x"q*")

— -2 2n (1+ Xq )
1- 1- 1-
= (1-x7)a(@=a7)( )(1 xq")

X( —l H)SL_llq:;(l'quzn)(l-i‘X_l 2n)
= (1-x ), A aA-Xa")A-x7q")(L+ xq7)(L+x ™)
(1+xg*")(1+ x'g*")

= q3n2+2n (3" — x 32y,

This is the final form in which we divide both sides by 1—x and let X — —1. Applying
L'H6pital's rule once on the series side we get,

0 (1 an) — n ~3n2+2n
n=1" (1 q) ( 1) q (3n+1)

For further discussion on the two corollaries refer to [9].
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4 Macdonald identity for A,

4.1 Introduction

As it can be seen from the list in Chapter 1, A, is the identity associated with
one of the irreducible root systems. It is the simplest two dimensional example of
Macdonald's identity. It is also important in the sense that the result of this identity has
been used to prove other identities. For example, Cooper [8] used A, identity to prove
the Macdonald identity for G,. For a proof different to the one presented in the next
section refer to Cooper [5].

4.2 Proof of A, identity

In this chapter we will provide a complete proof of the Macdonald identity for
A,. The identity is stated in the following theorem.

Theorem 4.1 For X,,X,, %, #0 and |q| <1,

0 n-—. X n X n- X n X n-—. X n X n
(=g D) (A-g" ) (A-g" ) (1-9" 2)(1-g" ) (1-q" ) (1-q")?
X, X, X, X, X, X,

3, 2,2 2 m

_ f(ml +m5+mg )+m1+2m2 +3m3 3m, 3m. 3m X. q 1
- ’ X ! 2 2X3 31§i§j§3(l_ I mj)'

m1+m2+m3:O qu
Proof. Let,
© 4 X X 4 X X 4 X X
f(Xll Xzixs) =n=1 (l_qn 1_1)(1_qn _2)(1_qn 1—1)(1—q" —3)(1—q“ 1—2)(1—q“ —3) (4.2.2)

X, X, Xs X, X3 X,

Since f(X;,X,,X;) is analytic in each of X, X,, X; in the region O<|Xl|,|X2|,|X3| <oo and
hence it has a Laurent expansion of the form,
m. m m.
f (%%, %) = c(my, m,, my)X X, 2 X, °.
my+m,+my =0
Note, the condition m, + m, +m, =0 arises because f is homogeneous of order 0, i.e.,

f (A%, A%,,A%;) = T (X, Xy, %), for all 1eCU{0}, where C is the set of complex
numbers.

4.2.1 Deriving recurrence relations
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Observe that in the following calculation all the terms which do not involve X,
cancel out and hence we get,

n X n1 X n X n1 X
(1-9"H)A-g"" 2)(1-q" L)(1-g" =2)
X, X X3 X,

(0% %0 %) o 1
n=1
X X) (o B a-g" 22 a-a ) a-a" )
X2 Xl X3 Xl

(1-22)(1-%)
X X X2X3_

a2y ©
XZ X3
Similarly it can be derived that,
F(%, 0%, X3) _ XiX
f (Xl’ XZ’ XS) qx22

and
f (%, %, 0%;) - %X _
F(X % %) 0P

By equating the coefficients of xflx;“2xg“3 in the above three equations we get the

following three recurrence relations respectively,

c(m,m,,m,)=q™ “c(m,—2,m, +1,m, +1)4.2.2 (16)
c(m,m,,m,)=q" 2 c(m, +1,m, —2,m, +1)4.2.3 (17)
c(m,,m,,m)) =q"%c(m, +1,m, +1,m, —2)4.2.4 (18)

Next we combine (4.2.2) and (4.2.3) to get,
q™ e(m —2,m, +1,m, +1) = g™ c(m, +1,m, —2,m, +1).
We use substitutions i, =m, —2,i, =m, +1 and i, =m,+1. Then the above equation

becomes,

C(i iy, i5) = 92 T c(i, +3,0, —3,iy). (4.2.5)
Similarly if we combine (4.2.2) and (4.2.4) and use the same subtitutions we derive,

c(iy, iy, i3) = 9%V e (i, +3,iy,i; - 3). (4.2.6)

When combining (4.2.3) and (4.2.4) we use a different substituions,
L=m+11i,=m,—-2 and i, = m, +1, to get,
c(iy, iy, i) = q° 2 (i, i, + 3,1, - 3). (4.2.7)

We have now converted a set of the three recurrence relations into a new set where

each relation manipulates only two of the variables and fixes the third one. Then let

i, =3k, +e, i, =3k, +e, and i, = —i, —i, ==3(k, +k,)— (e, +e,), where
0<eg<2,-1<e,<land -2<e,<0.

(4.2.5) becomes,
c(3k, +¢,3K, +6,,i,) = g1 @ e 3k —1) +e,,3(k, +1) +&,,i,).
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Iterating this equation k; times we get,
(3K, +e,,3k, +e,,i,) = q U2 e (e 3k, +k,)+e,,iy). (4.2.8)
Next we let k' =k, +k, and use equation (4.2.7). Then,
c(e, 3k +e,-3k —e, —e,) = q" "2 (e, 3(k —1)+e,-3(k —1)—e, —&,).

Iterate this equation k™ times to get,
3K (K +1)+K & +2K ey —4K

c(e,, 3k +e,,—3k —e, —e,)=q c(e,,e,,—€, —¢&,). (4.2.9)
Combining (4.2.8) and (4.2.9) we get,
c(3k, +e,,3k, +e,,—3(k, +k,)—e, —e,)
3kZ+3K3 +3Kyky ~2k) ko +2k;ey ki, ko +2Koy cle, e, —€,).

If we define e, and k, by e +e,+e,=0 and k, +k, +k; =0, then the above equation
simplifies to
c(3k, +e,,3k, +e,,3k, +€,)

%(klz+k22+k§)+k1+2k2+3k3+klel+k292+k3e3
c(e,e,,e;).

Now, we have reduced our task of determining infinitely many coefficients to
determining only 9, namely c(e,e,,e;), with 0<e <2, -1<e,<1 and e +e,+¢e, =0.
We now consider two new functional equations and show that 6 out of 9 listed
coefficient can all be written as +¢(0,0,0) and that other 3 are equal to zero. Observe
that,

FO0 X0 %) - (-X%GY) _ %

f(XZ’X17X3) (1_X51X2) X,

and

f(Xl’ X2 X3) — (1_X2X3_1) — _ﬁ

f (Xl’ X3 Xz) (1_ X;1X3) Xq
These two functional equations respectively imply the following relations between the
coefficients,

c(ky, k,,ky) =—c(k, +1,k, -1,k;) (4.2.10)
and
c(ky, k,, ky) = —c(k,, k; +1,k, —1). (4.2.11)
Next, starting with ¢(0,0,0) we apply (4.2.10) and (4.2.11) alternatively to get,
¢(0,0,0) =-c(1,-1,0) =c(1,1,-2) = —(2,0,-2) =¢(2,-1,-1) = ¢(0,1,-1).
On the other hand using (4.2.10),
c(0,-1,1) =—-c(0,-1,1) =0,
c(1,0,-1) =-c(1,0,-1) =0
and
c(2,1,-3)=-c(2,1-3)=0.
Using these results about the coefficients we write,
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3,0,2,,2,,.2
7(kl +k2 +k3 )+k1+2k2+3k3
— 2
f (X, X,,X%3) =€, (q)
kl+k2+k3:0
3k, 3k, 3k 3k +1 3ko-1 3k ki—k
1y3%2y3K3 _ 3 2 3 1752
X (X X5 2 Xg X0 X0 X3 °q
3k, +1_ 3ko+1 3ka—2 ki +k,—2k 3k, +2 3k, 3ka—2 2k, -2k
1 2 3 1t =2Kg (3K 253 172K3
XX X7 ( X0 X% 7

3k,-1_ 3k,-1 2k, —k,—k 3k,  3ky,+1 3ka-1 k,—k
2 3 172 "3 _ 1 2 3 2 "3
2 X3 q X3 q )

3kl+2
Xl X2

+X X

32, 12.,2
(K[ +k5+k3)+ky+2Ko+3kg 3k, 3k, 3k
- 2 1 2 3
=¢,(a) q Xp "Xy Xy
ky+ko+kg=0
-1,k ks -2 Ky +ky—2kg 2,,-2 2k —2kg
X(1=X%X, 9 2 4+ X X,Xg — X X,

2. -1..-1..2k —kz—kg -1 k2—k3
+ XX, Xy ' —X; X3 ( )

30 2.12,,2
(ki +k5+k3)+ky+2ky+3kg 3k 3k, 3k
- 2 1 2 3
- CO (q) q Xl X2 X3
ky+ko+kg=0
Xq
i
><1§i<j§3 (1_ Kj )
qu

Using the Weyl denominator formula and writing k.s as m:s (to coincide with

Theorem 4.1),
3,02, .2 2
S(my+my+m3)+m +2m,+3mg  3m 3m,  3m
= 2 1 2 3
F (%1 %5, %5) = €y (0) g XX P Xy

m1+m2+m3=0

Xyes, SING(x0™) " (,0™) 7 7 (x,0™) 7" 42,12 (19)

4.2.2 First specialization

Next we employ the first of the two specializations on (4.2.12).
Replace X, X, and X, with it, i’t and i’t respectively, where i = exp(#i/2), the

3
fourth root of unity. Also, let Q(m) = E(ml2 +mZ +m’)+m, +2m, +3m, then,

Q(m)i3m1+6m2+9m3

f(it,i%,i%) = ¢,(q) q
my+my +my=0

m o1 +Myoy +m3cr3—(m1+2m2 +3m3)i o'l+202 +30'3—14

XO‘ES3 Sgnoq
The group S; has 6 members, which represent the 6 permutations of the 3 elements.
These permutations are: (o,,0,,0,)=(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and
(3,2,1). Below we substitute these permutations into f and write,

f (it, i’t, i3t) = f(1,2,3) - f(1,3,2) - f(2,1,3)
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+ f(2,3,1) + f(3,l,2) o f(3,2,1)’

where
f(lyzvg) — CO (q) qQ(ml,mz,m3)i3m1+6m2+9m3,
my +m, +my =0
f(1132) — —CO (q) qQ(ml,mz,m3)i3m1+9m2+6m3—1’
my+m,+mg=0
f(211'3) — —CO (q) qQ(ml,mz,m3)i6m1+3m2+9m3—1’

ml+m2+m3=0

Q(ml,mz,m3).9m1+3m2+6m3—3

f(2,3,1) =C,(q) q I :

ml+m2+m3=0

Q(ml,mz,mg). 6ml+9m2+3m3—3

f(3,1,2) =¢,(q) q I :

ml+m2+m3=0

f(3,2,1) = —C,(a) q

m1+m2+m3=0

Q(ml,mz,m3)i9ml+6m2+3m3

Further simplifying f (it,i%,i%) we get,
f(it,i%,i%) = ¢, (q) q°™™2™H (m,, m,, m,)
m1+m2+m3:0
where,
H (m11 m21 mg) — (i3m1+6m2+9m3 _ i3ml+9m2+6m3—1 _ i6m1+3m2+9m3—1

n i9m1+3m2+6m3—3 n i6m1+9m2+3m3—3 _ i9m1+6m2+3m3)

Since, my; =-m, —m,, we need to consider 16 different cases for m, and m,. The 16
cases correspond to m;,m, =0,1,2,3(mod 4) and are presented in the table below
|c|c|c|c|c|012304i0—4i01004i—4i200003 — 4i004i

These results can be verified by sustituting appropriate values for m, and m, into
H(m,m,,m,), where m, =-m, —m,. It can  be  observed  that
m =1(mod 4),m,=2(mod4) and m,=3(mod4) all separately imply that
H(m;, m,,m;) =0. Also when m; =3 and m, =0 and m, =1(mod 4), H(m,,m,,m,;) = 0.
Substituting other values for m, and m, gives H(m;, m,,m,) = +4i. We therefore use
this to write,

Q(4ml,4m2 ,4m3) _ q Q(4ml+2,4m2 ,4m3—2)

f (it, i%,i%) = 4ic, (q) [q

ml+m2+m3=0

Q(4ml+2,4m2+1,4m3—3) Q(4m1+3,4m2+1,4m3—4)
+q -q

_ qQ(4ml,4m2+3,4m3—3) n qQ(4m1+3,4m2+3,4m3—6)]

(4.2.13)

Body Math We return to the product representation of f(x;,X,,X,;) and use the
same substitution as for the series. Note that when writing out the product we use the
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compact notation described in Section 1.3.
f (it,i’t,i%) = (-i,qi,-1,—9,-i,qi;q).,
= (1+1)*(1+1)(-qi,qi; 0)2 (-g;9)2

=4i(-9%;9°)2.(-0;0)54.2.14 (20)
Equating the series and product shown in (4.2.13) and (4.2.14) respectively,
(-9%0%)2 (-9;9)% = ¢, (q) [ TAna ) g R A

my+m, +m3:0

n qQ(Aml+2,4m2+1,4m3—3) _ qQ(4m1+3‘,4m2+1,4m3—4)
_ qQ(4m1,4m2+3,4m3—3) n qQ(4m1+3,4m2+3,4m3—6)]’ (4215)
where,
Q(m, m,,m,) = ;(ml2 +m2 +m)+m, +2m, +3m,.
4.2.3 Second specialization
In the second specialization we replace g, X, X, and X, with q*°,tq% tq* and t
respectively. Same as in the first substitution we let
Q(m) = g(ml2 +mJ +mZ)+m, +2m, +3m,. Then the product side becomes,
f(ta®tq*,t) = (a*,9"*,0% 9°,9%,9";0"°).,
4 8 12, (16\2 16. 16\2 4, 4\2
:(q 7q ’q ’q )oo(q ’q )oo —_ (q ’q )oo .4'2.16 (21)

(q16.q16)2 - (qlﬁ.qlﬁ)z
With the above substitution the series side is,

f(ta®,tq*,t) = c,(q*°) q

my+m,+my=0
xq s, s (g g gy

We let P(m) = sgna (g™ ") (q

we substitute 6 elements of S, separately.
(0,,0,,05)=(1,2,3)= P(m) = g
(0,,0,,05) = (1,3,2) = P(m) = —q " "2 s
(0-1,0-2163) = (2,1’3) — P(m) — _q40m1—4m2+4
(61,0,,03) = (2,3,1) = P(m) = g """ et
(0y,0,,05)=(3,1,2)=P(m)=q

(0-1,0'2,0'3) = (3,211) — P(m) — _q56m1+12m2—32m3+16.

24(m12+m§+m§ )+16m; +32m, +48m,

16rT‘2+4)"2_2(qmmf”)”?’*?’ and observe what happens when

56 ml—4m2 -16 mg +12
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Combining the 6 expressions for P(m) together and multiplying through by q24ml+12rT12

gives,
24(m12+m§+m32,) [q 40m1+44m2 4—48m3

f(t9’,t9*,t) = co(q™) q
ml+m2+m3:0

40ml+60m2+32m3+4 56ml+28m2+48m3+4 n q56m1+60m2+16m3+12

q 72m; +28m, +32ms+12 _ q 72m; +44m, +16m4+16 ]

(4.2.17)
Combining the equations (4.2.16) and (4.2.17),
(a%a%):
(q16.q16)2

40ml+60m2+32m3+4 56ml+28m2+48m3+4 n q56m1+60m2+16m3+12

2,2, 2
_ 16 24(m1 +m2+m3) 40m1+44m2+48m3
- C0 (q )ml+m2+m3:0q [q

72ml+28m2+32m3+12 _ 72m1+44m2+l6m3+16]

(4.2.18)
Interestingly, we can write (4.2.18) as,

4, (4\2
% =% (qm)ml*mz*mfo[q

B qQ(4kl+3,4k2+1,4k3—4) N qQ(4k1+2,4k2+1,4k3—3)

Q(4k; 4k, 4k Q(4k, +3,4k,,+3,4k,—6
(4k; 4ky 3)+q (4k; +34k, +3,4k3-6)

4k, +2,4K, 4k, -2 4k, 4k, +3,4ko—3
— e ST _ e figmafieT) (4.2.19)

4.2.4 Evaluating constant term

Observe that the series in (4.2.15) and (4.2.19) are equal. Therefore, we can
divide the equation (4.2.15) by the equation (4.2.19) to get,

(-%a)2 (90 _ G(@)
(@%a)2(a*;0).”  c,(a*)

Then
. 2
@i o) ot
CO(q) = (q4_q4)2 : = Co(qle)
16. 162
- (q(q13)2)oo Co(q16)-
Iterating this equation,
256. 2562 24k a8k
Co(q) = (q !q . )oo Co(q256) - (q lq - )oo CO(qZ4k )fork = 0’1’2
(0;0). (q;09);

Now, we take the limit as kK — oo and take into account that ¢,(0) =1 to get,

Co(a) = (a;).7.
Combining (4.2.1) with the above equation for c,,
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3,2, 2 2
E(m1 +m5+m3 )-¢—m1-¢—2m2+3m3 X3m1

xq'
1<i<j<3 (1_ Iqm)

3 3m
X2m2X3 3« j
qu

m1+m2+m3:0 1

which completes the proof of theorem 4.1.
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5 Winquist's identity

5.1 Introduction

This identity is due to Winquist [19], who discovered it in 1969. He used it to
prove Ramanujan's partition congruence p(1ln+6)=0(mod1ll), where p(n) is the
partition function which gives a number of ways of writing the integer as a sum of
positive integers, where the order of addends is not considered significant.

Example 5.1 Since 4 can be written as
4=4
=3+1=2+2
=2+1+1=1+1+1+1
it follows that p(4) =5.

Example 5.2 In this example we look at the above mentioned Ramanujan's
partition congruence when n =0, i.e. we seek p(6). 6 can be written as

6=6
=5+1=4+2
=4+1+1=3+3

=3+2+1=3+1+1

=2+2+2=2+2+1+1
=2+1+1+1+1=1+1+1+1+1+1.
Therefore it follow that p(6) =11=0 (mod 11).

5.2 Proof of Winquist's identity

We state Winquist's identity in the following theorem.

Theorem 5.3 For x,y #0 and |q| <1,
" (1-gM)*(1-xq" M (A-x"g")(A-yg")(L-y'q")
x(1-xyq" H)(1-x"y ") (A-xy g" ) (1-x"yq")

1o 2 22
E(3m +3n“-3m-n) 3m y3n

“mn 4 X
x(1-xq")(1-yq")(1-xyq"")(1-xy "q""),5.2.1 (22)
where m and n on the series side range over all integers satisfying m+n=0 (mod 2).

27



Proof. Let
f(xy) = (1-x9")(A-x"a")(1-yq"")(1-yq")
x(1-xyg" ") (1-x"ya")(I-xy 9" ) (L-x"yq").
5.2.2 (23)
Then f has a Laurent series expansion

FO4Y) Frene e G (@XTY
valid in the annulus 0 < |x || y| <o0.

5.2.1 Deriving recurrence relations

As it can be seen f has been defined as a function of two variables. Similar to

the proof of the Jacobi triple product identity we look at functional equations involving
f but here we consider symmetry in both variable X and y. Below is the first set of

functional equations.
fxy) _. (1-xg"H)(1-x"9")(1-yg" (1~ y_lqn)
f(xqy) " (1-xq")(A-x"q"H(A-yg")(1-y'q")
(A=xyg (- ’1q )A-xy"'q")(1-x""yq")
g A Xy A xy ) (A- x g™
_ (1-x)(1-xy)(1-xy™)
(1-xH)(A-xTy ) (A-xTy)
=-x°5.2.3 (24)

Similarly,
ey
f(xyq)
These functional equations respectively imply the following two relations between the
coefficients ¢, . We write,

-y’a. (5.2.4)

o0
0

m=—0n=—wn mnX y __X m=-owon= *wcmnx y q

and

o @ * © my,NN

m=—oon=—oo mnX y __y qm =—oon=—oo mnX y q
Equating the coefficients of X" on both sides gives,
— -3
c:m,n - _Cm—s,nqm
and
— -2
Cm,n - _Cm,n—sqn
Consequently, by combining these two relations we reduce the number of unknown

coefficient to 9.

— m+n ~3m(m-1)/2+3n(n-1)/2+n+mA+nB
C3m+A,3n+B - (_1) q Cag» (525)

where 0< A,B<2.
Let us consider the second set of functional equations that will further reduce
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our task of finding the 9 coefficient to just determining ¢ .

Foy) . (=xq")(E-x"q")(1-yq")(1-y'q")
fly,x) " (1-yg"")(-y'g")(1-xq" ) (1-x"q")
A=xyg™)(A-xTy ") (A= xy ") (- xya")
1-xyq"")(A-x"y ") (1-x"yq")(1-xy™q")
_ (-
(1-x7y)

-1

=Xy,

Also,
fxy) _. (1-xq")(-x"q")(1-yq")(1-y'q")
fxy™") " (1-xg")A-x"g) -y 'a" (- yq")
A=xyg™)(A-xTy ") (- xy g ) (- xya")
(1-xy™q"")(A-x"yq")(A-xyq" " )(1-x"y™q")
_ (1-y)
(1-y™)
= —y_
The two functional equations give,

0 n+l,,m-1

o0 m n _— 0 o0
oo Cnn X Y = = e CanX Y and

o ® m,,1-n

my,Nn — o0
mzfoon:_occm,nx y __mzfoon:_occm,nx y

Further we get,
C

mn — —C (526)

n+l,m-1
and
C =—C

m,n

- (5.2.7)
Next we obtain the orbit of the constant term c,, by applying (5.2.6) and (5.2.7)
alternatively. l.e.,

Co,o = _Cl,—l = C1,2 = _Cs,o = C3,1 = _Cz,z = C2,—l = _CO,l = Co,o-
This shows that 4 of the 9 coefficients sought by (5.2.5) are equal to +c,,. We also

show the remaining 5 coefficient are equal to zero. Observe that by applying (5.2.7) and
(5.2.6) alternatively on ¢, ,,C,, and c,, we get,

Cy =—Cp =6, =0,
C,o = —C,; =C,, =0and
Coz = —Co1 =Co 4 =0.

Using the Laurent expansion we summarize,

—®© © 3m,,3n 3m,,3n+1
f(X,y) T m=—con=—wn (C3m,3nx y +C3m,3n+lx y

3m+1,,3n+2 3m+2,,3n+2
+ C3m+l,3n+2X y + C3m+2,3n+2X y )

Since each of the 4 non-zero coefficients belongs to two orbits of constant terms we
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reduce the double sum to range over all integers satisfying m+n=0(mod 2). We write

this as,

— 3m,,3n 3m,,3n+1 3m+1,,3n+2
f(X! y) “mn (C3m,3nx y +C3m,3n+lx y +C3m+l,3n+2x y

3m+2,,3n+2 3m+3,,3n+1 3m+3,,3n
+ C3m+2,3n+2x y + C3m+3,3n+lx y + C3m+3,3nx y

3m+2,,3n-1
+ C3m+2,3n—1x y + c:3m+l,3n—1x

q3m(m—1)/2+3n(n—1)/2+nx3m y3n (1_ yqn + Xqum+2n

3m+1y3n—l)

=Coopp
2,,2 y2m+2n

~x*y*q"™ " + x*yq
where m+n=0(mod 2). Factorizing,
3m(m-1)/2+3n(n-1)/2+n,3m,3n

f(xy)= Co0,,d Xy

x(1-xq™)(1-yq")(1-xyg™")(1-xy'q""),5.2.8 (25)
where m+n=0(mod 2).

3m+n -1~2m-n -1 m—n)
1

—x°g*" +x*yg*" " —xy g

5.2.2 Specialization

Let x=-w' and y = -0, where w = exp(27i/3), a primitive third root of unity
and sum f(x,y) over 0<jk<2. Note that, f(-o'-0")=0, for
(1,k)€{(0,0),(1,1),(1,2),(2,1),(2,2)}. Therefore,

22~ —0") = f(-1-0) + f (-1-0°) + f (~w,~1) + f (-0’ ,~1).

i=0k=0

Using (5.2.2),
2 2 j ky —oo ny2 n 2.n ny2 2.n\2
f(-o'-0") = (1+9")" (1+00") 1+ 0°q")(1-oq")" (1-»"q")

i=0k=0

x2(1+ 0)(1- 0)(1- 0*) + 2(1+ 0*)(1- 0*)(1- o)

+2(1+ 0)(1- 0)(1- ) + 2(1+ 0*)(1- »*)(1- »°)]

=187, (1+9")(1+9™)(1-9™)*(1-q") *5.2.9 (26)
Now, we will use the same substitution and summation on (5.2.8). This gives,

2 2 i Ky — 3m(m-1)/2+3n(n-1)/2+n m+n
i=0k=0 f(-o' -0")= Co,omnq (-1)

2 2 K j+2k ym+2n 2j+2k y2m+2n
Xicgpy A+ @°Q" -0 " —0™™ g

+a)3j+kq3m+n +q3m _a)zj—kq2m—n +a)j—kqm—n)

— 3m(m-1)/2+3n(n-1)/2+n 3m

_9C0,omnq (1+9™"),
where m+n=0(mod 2). The above double sum can be split into two sums by
multiplying it out by (1+9°™),

2 2 i Ky — 3m(m-1)/2+3n(n-1)/2+n

i=0ko f(-o0'—-0") = gco,omnq
3m(m-1)/2+3n(n-1)/2+n+3m

+9c0’0mnq

where m+n=0(mod 2) still holds. In the second sum we let m— m-1 and make it
equal to the first one, but with the condition that m+n=1(mod 2). Now we combine
the two sums again and now m and n are ranging over all integers.
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2

2 i ky — o ® 3m(m-1)/2+3n(n-1)/2+n
i=0k=0 f (_a) @ ) - 9C0!Om=—30n:—ooq

— o0 3m(m-1)/12 _ « n(3n-1)/2

- 9C0,0m:_00q ><n=—oo q .

Using the Jacobi triple product identity (Theorem 2.1) twice, with (g, x) replaced with
(9%,-1) and (9°,—q), we get

2 2
j=0k=0

f(-0' —0*) =9, 1+ °)(1+")A-0*")*(1+ 9> *)(1+q*"")
=18cy,, (1+9")(A+g")(1-g™")*.

5.2.10

5.2.3 Evaluating constant term

Next, we can combine (5.2.9) and (5.2.10) to determine ¢, .

(19" (A+9)(1-9")*(1-9") " = ¢y, (1+a")(1+9™)(1-g™)%
Therefore,
Co,o(q) =1 (1_qn)_2-

This completes the proof of Theorem 5.3.

5.3 Implications of Winquist's identity

Corollary 5.4

1 l(3m2-¢-3n2—3m—n)
['e] ny10 _
nzl(l_q ) -5 2

m-+n=0 (mod 2)

x(2m-1)(6n-1)(3n+3m-2)(3n—-3m+1).

Proof. We divide both sides of  Winquist's identity by
(1-x)(1-y)(1-xy)(1-xy™) and take the limit as X,y —1 to get,
1 0
lim +  (=-xq")(1-x"g")(1-yq"")
xy-1 (LX) (1= )L xy)(1-xy ) ooy
x(1-y7g")(A-xyq" H(A-xTy ") (A-xy ") (- x"yq")(1-q")*
1 é(3m2+3n2
lim = q?
o (=X)L YA X)EXY ) oo
x(1-xq™)(1-yg")(L-xyg™")(1-xy~q"™").
Taking the limit on the left hand side reduces the product to the desired form. On the
right hand side we expand the double sum to get,

-3m-n)
3m,,3n
X
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1
oo_l l— ny10 - 1; 1
= m )

%(3m2+3n2—3m—n)

X q
m+n=0 (mod 2)
3m,,3n 3m+1,,3n-1,m-n 3m,,3n+l N
X (XY™ =Ty T =Xy T g
3m+1,,3n+2 o, m+2n 3m+2,,3n-12m-n 3m+3,,3n ~3m
FXTYTQT XYy g =Xy

3m+2,,3n+2 o 2m+2n 3m+3,,3n+1 3m+n)

-Xyq +XTUYyTq
In the 8 expanded sums, replace (m,n) with (m,n), (n,m), (m,—n), (n,—m), (-=n,m),
(-m,n), (-n,—m), and (—m,—n), respectively to get,

1
oo_l l— ny\10 - 1; 1
= i - -y D

%(3m2+3n2—3m—n)
Hon (X, Y),

X
m-+n=0 (mod 2)

where
3n _ ,,3m+l 3n—lqm—n 3m,,3n+ln 3m+1 3n+2qm+2n

H., . (X, y) = x*"y>" —x*my =Xy 4 X3y

3m+2,,3n-142m-n 3m+3,,3n 3m 3m+2,,3n+2 4 2m+2n
XY qQ =Xy g =Xy g

3n+13m+n

+ X3m+3y q

L'Hopital's rule was applied 4 times and using computer algebra package to calculate the
4

0
limit, ——H,, (X, y), we get,
ooy (X, y), weg

%(3m2+3n2 -3m-n) 1 64

oo_ 1_ ny\10 - -
n—l( q ) 6 8X3ay

m-+n=0 (mod 2)

Hn (XY)

1 %(3m2+3n2

-3m-n)

m-+n=0 (mod 2)
x(2m-1)(6n-1)(3n+3m-2)(3n—-3m+1).
This completes the proof of the corollary.
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6 Macdonald identity for G,

6.1 Introduction

The Macdonald identities for the G, family of root systems can be generalized
with the function,
f (X y:q) = (057 xy, oy L XY, 0Py ),
% (XSy, thf3y71’ y’ qt yfl, X3y2,thf3y72;qt)w,
where s and t are positive integers. We denote the Laurent expansion of f , by
fo (X Y3 0) =, Cor (M, N Q)X Y™,
Note that we have switched to using a notation described in Section 1.3, as the product
involved in the calculation is too long to write out in full.

We will assume s=1 and t=1 and reduce the above function f,, to the two
variable equivalent of the equation (1.4.5). A proof of the two variable case has been
presented previously. Cooper [8] showed that coefficients of x"y" in the expansion of
f
Macdonald [14] and Stanton [16] prove the two variable case using the method
described in Section 1.5. The method we use to determine the constant term is new.

In our proof we use substitutions X = x/x,'x;* and y = x;%,° to convert f_, into

can be obtained by multiplying two Macdonald's identities for A, together.

s,t

a function of three variables. This also gives a product with a high degree of symmetry.
f (X%, %55 9)
_ 2,-1,-1 -2 -1,2,,-1 -2 -2 -1,-1,,2.
- (Xl XZ X3 ’qxl XZXS’ Xl X2 X3 ’qXIXZ X3’ X1X2X3 ’qxl X2 X37q)oo

x (x3%5%, g% X3, XS, axox; 2, x0%2, g%, ° %3 q), ,6.1.1 (28)
with the Laurent expansion,
m m m
f (%1, %, X550) = c(my, my, M5 q) X%, X, % Xs 2,

my+my+mg=0
valid in the annulus 0<|X1|,|X2|,|X3|<00. Because of homogeneity of f we place

m, + m, + m, = 0 restriction on the triple sum.

6.2 Proof of G, identity

We state the identity in the following theorem.

Theorem 6.1 For Xx#0 and |q| <1,

2y,-1,-1 -2 -1,2,,-1 -2 -2 -1y-1y2 ~-
(Xl XZ X3 ,le X2X3’X1 X2X3 ’qX1X2 X3’X1X2X3 ,le X2 X3’q’q)oc
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303 =303 v3u3 ~u3u=3 y3y=3 ~u-3u3 .
X (X7 Xg™, OX X5, X Xs, OX X5, X5 X5, 0% X5, 05 ).,

2.2, 2
2(m1 +m5+mg )—2m1—3m2 )(12ml X12m2 X12m3
1 2 3

m+m, +m3:0

< H (qml/SXl, quISXZ,qm3/3X3),6.2_1 (29)

2 2 3 3 3
212151
X5 X3 X X3 X3 X3 X X3

Proof. To prove this theorem we let f (X, X,,X;) asin (6.1.1).

where

6.2.1 Deriving recurrence relations

As with the previous identities we start the proof by considering recurrence

relations involving f. Observe that,
1 1

f(X,9%%,,0 °X,)
f (X1 X5, X3)
2.,-1,,-1 -2 -1,,2,,-1 -2 -2 -1,-1,,2.
_ (Xl X2 X3 ,le X2X3,qX1 X2X3 ,Xlx2 X3,QX1X2X3 ,Xl X2 X\,),q)ao

T (y2,-1,-1 -2 1,2 -1 -2 -2 “1,-1,2.
(Xl Xy Xg ™y OXy "X Xg, XXy X5 OX X5 Xg, X X X5, OX X, X31Q)00

(O XX, 05, X0, 470X, 4%, 7% 4),,
(X3, O X5, %G, X X5 XG0 X5, %5 %53 ).,
_ (1=x06%) (1= %7 %3 ) (1= X x5 ) (1 - %% )
(1% %5 ) (L= %%, %5 ") (1= % %5 ) (1= %, °%5)
(1-07%"%)(A-%"%3) _ %’
(1-6%")(1-ax5%°)  oxy’
Similarly we can show that,

.6.2.2 (30)

1 1
3 3 12
f(q Xl’XZ’q XS) - )2(3 = 623 (31)
(X %p, X3) a X
1 1
3 3 12
f(q Xl’q XZ’XS) — )3(1 = 624 (32)

f(Xl’XZ’XS) q X2
From (6.2.2) we can obtain the following relation,
m. m m
C(ml’ m27 m3)X1 1X2 2X3 ’

ml+m2+m3=0
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0 m o my S m
= c(my, m,,my)x g ° X,2q ° X;°

12
X3
my+my+my =0

1
12 ~12 —(m —m. )+l
= C(mlvmz’r’nz)xlml)(;2+ X3m3 q° 2

my+m, +m3:0

Equating the powers of X on the two sides we get,
1

3(m2—12—m3—12)+1
c(m;,m,,m;) =q

c(m;, m, =12, m, +12)

1(m —-m,y)-7
32 7% ¢(m,m, —12,m, +12).

Similarly from (6.2.3) and (6.2.4) respectively we derive,
1
c(m;, m,,m;) =q?

(my-m

Ve (m, ~12,m,,m, +12)
and

c¢(m,,m,,m,) = q%(mzfml)fsc(m1 +12,m, —12,m,).
Now, from the product representation of f (X, X,,X;) we see that only integer power of
g should be present in the series expansion. Therefore, from the last recurrence
relation we derive,

=z wherezeZ.

Further we conclude that,
m, —m, =0 (mod 3).
Hence,
m, =m, (mod 3).

We will use the above three recurrence relations to show that every coefficient of the
form c(m;,m,,m,) can be expressed in terms of c(j,, J,, J;) where, 0< j, J,, J; <11

Initially we will use the first of the recurrence relations. We replace m, with
12m. + j, for i e {1,2,3}.

c(12m, + j,,12m, + j,,12m, + j,)

1,. .
4("‘2*"‘3)*5( P *J3)*7

=q c(12m, + j,;,12(m, -1)+ j,,12(m, +1) + j,).
We can iterate the above equation. After the first iteration,
c(12m, + j,;,12m, + j,,12m, + j,)

1. . 1. .
4(m2—m3)+§( Jp—lig)-7 4(m2—1—m3—1)+§(12—13)—7
q

xc(12m, + j;,12(m, —2) + J,,12(m; + 2) + j,).
After m, iterations this becomes,
c(12m, + j,,12m, + j,,12m, + j,)

1 S
4(m, —m3)+4(m2—m3—2)+...+4(m2—m3)—2(m2 —l)+§m2 (ip- 13)—7m2
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xc(12m, + j;, J,,12(my +m,) + J,).
We can sum up the power of q to write,
c(12m, + j,,12m, + j,,12m, + j,)

1 S
_ 4m, (my—mg)-4m, (M, -1)+-m, (j,—Jj3)-7m, .. .
=q : c(12m, + j;, j,,12(my +m,) + J,).

6.2.5 (33)
Now, we will use the second recurrence relation in order to fix m, and to iterate m,
and m,, We let m—>12m+j, m,—>j, and m,—>12(m,+m,)+ j, where
m, +m, +m, = 0. Then,

1. .
4(m1—m3—m2)+§(11—13)—6

c(12m, + j;, j,,12(m; +m,) + j;) =
xc(12(m, -1) + j;, J,,12(my +m, +1) + .
Simplifying we get,

. : 8y 2y~ ig)-6 . :
c(12m, + j;, J,,12(my +m,) + j;) =q Pen e c(12(m, -1)+ jj, j,,—-12(m, -1) + j,.
After m, iterations,
c(12m, + j;, j,,12(m; +m,) + J,)

1 -
8m1+8(m1—1)+...8(m1—(m1—1))+§m1( - 13)—szL

=q C(Jys Jo» Js)

1 ..
4m1(ml+1)+§m1( h—i3)-6m

=q c(Jy Jz 1:)-6.2.6 (34)
Combining (6.2.5) and (6.2.6),
c(12m, + j,;,12m, + j,,12m, + j,)

1 . 1 A
_ 4m2(mz—m?’)—4m2(m2—1)+—m2(12—13)—7m2+4m1(m1+1)+—m1(11—13)—6m1 } . .
=0 : : (s 2o Ja)-
The power of q can be reduced to give,

1 . . .
2(m12+m§+m§ )—2m; —3m, +§(mljl+m2 io +m3j3)

c(12m, + j,,12m, + J,,12m, + j;) = q
xC(Jy, Jpy J5)-6.2.7 (35)
Hence we have shown that every coefficient can be expressed in terms of one of the
coefficients c(jy, J,, J;), where 0< j;, J,, J; <11.
Now, we let S be the set of all such coefficients which are non-zero, i.e.
S ={(0,0,0), (-3,3,0), (-4,5,-1),(-4,8,-4),(-3,9,-6), (0,9,-9),
(2,-1,-1),(5,-1,-4),(6,0,-6),(6,3,-9), (5,5,-10), (2,8,-10)}
The set S can be derived in similar way used at the end of Section 4.2.1. Elements of
the set correspond to the powers of X, X, and X, in the expansion of H (X}, X,,X;).

Using (6.2.7) and summing over S, the Laurent expansion for f becomes,
f (%, X, %) = C(ml’mz’ms)xlmlxg]zxg%

ml+m2+m3=0
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= c(12m, + j,12m, + j,,12m, + j,)

2SO iy Jy)es

2m+j,  12my+j,  12ma+j
171 2772 3713
Xl X2 X3

= (s Jz» Ja)
+My+my=0,. . .
MM M3=0 ) iy ig)es
2(m2+m2+m2)—2m -3m +l(m Ji+Ms jo+Maja) i i i
W Mz +M3 oMy +o Myl +My Jp+Mal3 X12m1+11X12m2+12X12m3+13
1 2 3
— q2(m12+m§+m§)—2m1—3m2 X12ml X12m2 X12m3
1 2 3
m1+m2+m3:0
1
... 3
X(ipigimes S Jas 1)

2. .2, .2
2(m1 +my+m3 )—2m1—3m2 XlZm1 X12m2 X12m3
1 2 3

(myjg+myip+mais) o, j
X1 X52 %53

m1+m2+m3=0
m ) m m

1 -2 . 3 .
X(lejz!ig)es C(jl’ jz’ js)(q s Xl)Jl (g3 Xz)J2 (g3 X3)13

2.2, .2
2(m1 +my+m3 )—2m1—3m2 XlZm1 X12m2 X12m3
1 2 3

=C,(q) g

ml+m2+m3=0
My m M3

X H(q?xl’qTqu?XS)

2 2 3 3 3
H (X11 X2’ X3) = (1_ Xl j[l_ XZ j(l_ X1)2(2 j[l_x_%s}(l_x_éj[l_x_é]
X, X, X, X, X3 X; X; X,

Therefore, our problem has been reduced to determining c,.

where,

6.2.2 Specialization

This proof for G, is similar to the method used to prove Winquist's identity in
the sense that we employ only one specialization on both sum and product
representations of f. Let X =1,Xx,=-1and x,=pu', where u=exp(zi/6), the
twelwth root of unity. After the substitution we sum f(x,X,,X;) over j for 0< j<12.

Firstly, we will look at what happens to the series side under this substitution.
Observe that,

(1)"°™ (=1)"*™ exp(27ij/12)*™ =1.
Then we get,
2(m? +m2 +mZ)-2m; -3m,

le:O f (1!_111UJ) :]jl:O CO (q) q

ml+m2+m3:0

% H (q m1/3,_q m2/3’ qm3/3/Jj )

37



Expanding H we get that,

m 5m,/3 8m,/3
m,/3 my/3 ma/3 i 2 2 2
H ( 1% _ 2 3 J) =1+ q _ _
a°-.-9°.q° # m _AmB mg3 | Ami3_amg3 4]
g "q x4 q°q°u
3m 3m 2m,/3 5m,/3
2 2 1 1
9 q g . q
2m, m 6 3m, 9j m,/3 _mal3 m,/3 4m./3 4
3 1 J 3 J 2 3 J 2 3 ]
QqQx” q - qg°qQ u qQ°q U
2m 2m, .m 5m,/3 _5m,/3 2m,/3 _8m,/3
1 1 2 1 2 1 2
_qr q 9 'q
2m, i 3m, 9j 10m,/3 10 10m,/3 10j
3 ] 3 ] 3 ] 3 ]
qQ “#° Q-4 q " u q " u

It can be checked that,
n 1 OunlessA =0 (mod12).

j=0 luAj
Using this we can see that all but the first two terms of H sum up to zero. Therefore,
we compute that,
11 m,/3 my/3 ma/3 iy _ m,—m
o H@ =977, 9 ') =12(1+q 2 7).
Now, the Laurent series for f (X, X,,X;) is,

H m2+m2+m2 —2m, —3m ms—m
MOf(L,-1, 6') =12¢,(q) q T (14 g2,
m1+m2+m3:O

_ 2(m2+m2+m2)—2m -3m
- 1200 (q) q 1 2773 1 2

m1+m2+m3=0

2(m2+m2+m2)—3m -2m
+12¢,(q) Q")

ml+m2+m320
By interchanging m, and m, in the first series the two series become equal,

im0 F(1,-1, 1') = 24c,(a) q

m1+m2+m3:0

2(ml2 +m§ +m§ )—3m1—2m2

Since my =-m, —m,, we rewrite this result as a product of the three infinite separate

sums, where we are only interested in the coefficient of X and we emphasise this by
including [x°] in our notation, i.e. if f(x)=2.__ c x", then [x"]f(x)=c,.

. m27 m, m,*® mz—m m
o F(L=1, 1) = 24¢, ()IX°T; 0™ "X =" "X

o 2m§+m3Xm3

Xm3:—oo

Using the Jacobi triple product identity we write the three sums as three infinite
products,

: q4 q3
lj1:0 f (1,—1,,UJ) = 24C0(q)[xo][_ X,— q4;q4] [_ Xq,— q4;q4)

X X
X(—qu,—ﬂ,q":q“j
X o0
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(@*a°).,

Once again we will use the Jacobi triple product identity, but this time to convert the
two infinite products involving X into their sum equivalences.

= 26, () D)y ]{—x—q—,q qN—qx,—%,qz;qZ].

(q q)oo 0 2m2-2m,,m®
)( ). [X’Tr-—.q X" X",

In order to pull out only the coefficient of x° we need to have m+n=0. In other
words, we can write N =—m and combine the two sums.

Lo F (X %,,%;) = 24c, (g

4; 4N\2 n2+n
B f (%X, %) = 24c,(q) 010 e quntian,

(@%9%)., .00
By the Jacobi triple product identity,
4, 4N2 _ . 2 6. 6
5 (0000 = 240y (q) L0V C 00D, (€50,
(@%9°).(-a%a°)..

Secondly, we can turn our attention to the product representation of f(x;,X,,X;). We

will use the same substitution and summation as for the Laurent expansion. Before we
continue with the substitution we rewrite f as,
2 2 2
X X, X X X, X, XX X
f(xlyxz,xa)z[ LoweX X B XX, qs;qJ

XX XXX X2 X2 XX,

3

X X3 X X X X

y q 2 q q =g
P D R

2 ! ! 2 ! 2

2 2
- ox; quxs OX; 9XX; OXX, O%; .
= H (X, Xy, %3) , q
XX XD XX, X2 X2 XX,

3 3 3 3
[qx qx3 LA LA qj
) b 3’ 31 b )

X3 X1 XX X3 Xz w

where H(X;,X,,X;) was defined in Section 6.2.1. Then we let X, =1,X,=-1 and

= ,uj and observe how f(l,—l,yj) behaves for different values of 0 < j <11.
f (11_1!/'!]) =H (1’_1111*[])

6+] 12— | 6-2] 6+2] 6-3] 6+3]

x (e qu g qut qut qut ™ qu gt —a,-a,qu” ! qu® ),
It can be checked by hand or by computer that H(1,-1,4') is non-zero only for
j=1,5,7,11. Therefore,
BOF(L-L ) = [HEAL )+ HE AL 25) + H@ -1, 1) + H (-1, )]
x(Qu, qu’, qu, qut i, au’ au’ qu’ qu, au’, i’ i ).,
We simplify the infinite product and since the missing eight terms are all zero we also
sum H(1,-1, ") overall j's, to get,
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12, 412 4, 4 3.43Y (_n- u _
1jl:0.|:(l,_1”uj) - (q ’q )oc(q6’.q6)oc(q.’q2)oc( q’q)oo H(l,—l,,u’)
(q ’q )oo(q1q)oo j;o
Using (6.2.8) we can deduce that the sum on the right-hand side is equal to 24 . Hence,
1 g 11, )= 240000507, (0% 7). (-0:0).
i=0 H 1
‘ (@%a%)..(a;9);

6.2.3 Evaluating constant term

One thing left to do is equate the product and the series substitutions to get,

PNk GO 1 G MO C e G A W A it P 1

@%9%)..(-9%9°%), @%a°%)..(a;q)?
Further,
e (@)=t (@%599).@%9). (69).@59). ("),
" @a)? (9%09).a%9%).(-9:9%).(a% %),
_ 1 (9%:9%).(a%9).(-9:9%).(%a%).(=9%:q°)..
(@:9)? (@*9%).(-a%9%.a*a9")..(-9:9%).@%a%).
_ 1 (9%:9").(=9%9%),
(@:9)? (-9%9%).(a%0a°),
_ 1
(CHY)
Summarizing the result,
X 0% X5 QXX XX, O X_f X3 X_g X, X_g x5 0,0 q
XX X2 XX X2 XD XX x5 XX xS )
— 2(m12+m§+m§)—2m1—3m2 X112m1 X;Zm2 X;st H (q m1/3X1’ qm2/3x2 , qm3/3X3),
m1+m2+m3=0
where

2 2 3 3 3
XoXq X1 Xq X3 X3 X X;

This completes the proof of Theorem 6.1.

40



7 Conclusion

In this thesis several of the Macdonald identities were studied and proved.

We supplied the details for Macdonald's proof of A, as the one provided by
Macdonald in [14] can be somewhat difficult to follow. Also a proof of Winquist's
identity was provided in the thesis. This identity was proved in a similar way to A,
identity. The only fundamental difference in the proof of Winquist's identity was that we
employed only one specialization and summed such specialization over some integers.
The proof of the Macdonald identity for G, in Section 6.2 follows the same procedure
as that of Winquist's identity. In this proof for the Macdonald identity for G,, a method
used to evaluate the constant term is new.

Following the four steps described in Section 1.5 we gave a new proof for the
quintuple product identity, in Section 3.2.

Chapters containing the Jacobi triple product identity, the quintuple product
identity and Winquist's identity contain some further implications of the identities. We
showed how to derive several interesting formulas in number theory using these
identities.

Further work in this area could involve similar analysis for the exceptional root
systems: F,, E;, E, and E,. These have not been studied in detail but are known to

also give way to some beautiful identities in number theory.
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