Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

BIOGENESIS AND SIGNIFICANCE OF LIPOFUSCIN IN THE EQUINE THYROID GLAND.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in Veterinary Pathology

at Massey University.

Rosalind Ruth Dalefield 1991

ABSTRACT

Yellow-brown granules of lipofuscin (age pigment) accumulate in the cytoplasm of long-lived cells of many eucaryotes, including man. The granules are derived from lysosomes, and are defined by characteristic morphology, colour, fluorescence, and histochemistry. They increase in number with age in post-mitotic cells, and are regarded as markers of the aging process. Lipofuscin is widely assumed to consist of products of peroxidised fatty acids crosslinked with amino groups of proteins, nucleic acids, and phospholipids, but this theory has not been proven.

The occurrence, histology, structure, and composition of lipofuscin in thyrocytes from horses of a wide range of ages were studied. Granules were absent at birth but were widespread by the age of 5 years. In young horses, granules were largest in follicles which contained abnormal colloid. After 5 years the amount of lipofuscin in thyrocytes was not age-related. Lipofuscin was fluorescent, and stained with PAS, Schmorl's, and Masson's Fontana stains, although the staining intensity varied between horses. Lectin histochemistry demonstrated the presence of mannose and/or glucose. Small subpopulations of granules in some sections contained iron and some granules contained DNA.

Lipofuscin granules were irregular in size and shape, and consisted of an electron-dense matrix and relatively electron-lucent 'vacuoles', which did not contain lipid. They appeared to fuse with colloid droplets, and small granules were observed within colloid droplets.

Thyroid lipofuscin granules isolated by osmotic shock and differential centrifugation showed the same ultrastructure as <u>in</u> <u>situ</u>. The protein content ranged from 15% to 77% w/w (mean = 36%). In contrast, the amino acid composition was constant and similar to that of thyroglobulin. The most distinctive feature of lipofuscin protein was the presence of four proteins of 14-18 kDa. The halide concentration of lipofuscin was approximately twice that of thyroid tissue. Lipofuscin contained no triglycerides, and only small quantities of phospholipids (mean = 1.25% w/w). In contrast, the concentrations of cholesterol and dolichol, up to 19% and 15% respectively, were high although very variable. Small amounts of nuclear DNA were detected. The empirical formula of the rest of lipofuscin indicated that it was principally carbohydrate, which was consistent with the PAS and lectin histochemistry.

Most of the lipofuscin mass was analysed and there was no evidence that it arose from lipid peroxidation. The protein fraction of thyroid lipofuscin probably consists of proteolytic intermediates of thyroglobulin. Components from other sources, and turnover of granule contents, contribute to the chemical heterogeneity.

The composition of lipofuscin probably varies between tissues. However all lipofuscins are likely to share lysosomal functions such as storage of proteolytic intermediates, metals and dolichol. As with thyroid lipofuscin, they may be more soluble and more readily analysed than is generally assumed in the literature. They may also be active organelles of metabolic significance, rather than inert indicators of the aging process. On the basis of this study, they should be re-evaluated.

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Dr. D.N. Palmer and Professors R.D. Jolly and B.W. Manktelow, for their practical and intellectual contributions to this thesis.

I wish to acknowledge the help of many people who assisted with this study. Mrs. P. Slack and Mrs. P. Davey prepared tissues for light and electron microscopy. Mr. D. Hopcroft and Mr. R. Bennett of the Department of Scientific and Industrial Research gave advice on electron microscopy and printed the electron micrographs, and Dr. A. Craig, also of the Department of Scientific and Industrial Research, supervised the immunogold labelling. Miss S. Bayliss electroblotted the proteins for sequencing. The metal analyses were performed by Dr. R. Reeves of the Department of Chemistry and Biochemistry, and Mr. J. Reid and Dr. G. Midwinter, of the same department, supplied the quantitative amino acid analyses. Dr. G. Ionas of the Department of Microbiology and Genetics assisted with, and instructed me on, the nucleic acid analyses. Sequencing of proteins was undertaken by J.E Walker, J.M. Skehel and I.M. Fearnley at the M.R.C. Laboratory of Molecular Biology, Hills Road, Cambridge, UK. The staff of the Microanalytical Laboratory, Department of Chemistry, University of Otago supplied the analyses of nonmetallic elements. Mr. F. Sharpe and other staff of the Department of Veterinary Pathology and Public Health assisted with horses submitted for post mortems, and many others assisted with the supply of tissues from horses.

I would also like to thank Mr. T. Law for the production of the photographs, Dr. H. Varela-Alvarez for the production of Fig. 4:14 and Mr. S. Grant for the production of Fig. 7:1.

Finally I would like to thank my husband Wes for his patience and support and my son Martin for being a delightful diversion.

This work was supported by the New Zealand Medical Research Council grant 87/91.

i

TABLE OF CONTENTS

-

		Page
Acknowledgement	ts	i
Table of Conter	nts	ii
List of Figures	3	vi
List of Tables		ix
Abbreviations		xi
Chapter 1: Int	roduction	1
	Characteristics of lipofuscin	2
	Distribution of lipofuscin	6
	Intracellular significance of lipofuscin	9
	Other lipopigments	10
	Theories of lipofuscin biogenesis	14
	Age pigment and the aging process	18
	Other theories of aging	20
	Glycation	22
	Concluding comments	23
Chapter 2: The	thyroid gland: a review of its gross and	
microscopic ana	atomy, physiology, and lipofuscin accumulation	26
	Gross anatomy	26
	Histology	26
	Normal thyroid ultrastructure	27
	Thyroglobulin	28
	Thyroglobulin endocytosis and catabolism	30
	Regulation of thyrocyte activity	31
	Lipofuscin in thyrocytes	32
	Other age-related changes in the thyroid gland	36
Chapter 3: Gene	eral materials and methods	38
	Histology	
	Horses	38
	Fixation and light microscopy	39
	Statistical analysis	39
	Concanavalin A labelling	39
	Fluorescence microscopy	40
	Frozen sections	40
	Electron microscopy	40

ii

	Production of antibody for	
	immunocytochemistry	40
	Electroblotting and immunostaining	41
	Immunogold labelling of equine	
	thyroid tissue	42
Isolatio	on and analyses of lipofuscin	
	Horses	42
	Isolation of lipofuscin	43
	Density determination	43
	Amino acid analysis	43
	Tryptophan analysis	44
	Soluble protein extraction	44
	Lithium dodecyl sulphate-polyacrylamide	
	gel electrophoresis	44
	Silver staining of gels	44
	Electroblotting from gels	45
	Protein sequencing	45
	Lectin affinity labelling of	
	electroblotted proteins	46
	Proteolipid analysis of equine thyroid	
	lipofuscin	46
	Elemental analysis	46
	Lipid extraction and analysis	47
	DNA concentration	47
	DNA characterisation	48
	Phenol-sulphuric acid assay for	
	neutral sugars	49
	Sample preparation for	
	Gas-liquid chromatography of sugars	49
	Derivatisation of samples for	
	Gas-liquid chromatography of sugars	49
	Gas-liquid chromatography of sugars	49
	Chemicals	50
Chapter 4: Subclinical	pathology and lipofuscin accumulation	
in the equine thyroid o	gland	51
Introduc	ction	51
Special	methods	51

iii

Results		
	Thyroid size and colour	51
	Follicle size and activity	52
	Lipofuscin	52
	Changes in colloid	55
	Thyrocyte lipofuscin related to colloid	
	abnormalities	58
	Lipofuscin granule numbers per cell in	
	section	59
	Lipofuscin and follicle activity	61
	Lipofuscin and follicle size	62
	Lipofuscin and frequency of abnormal	
	colloid	62
Discuss	ion	62
Summary		69
Chapter 5: Lipofuscin	in the equine thyroid gland:	
histochemical and morph	hological heterogeneity	71
Introdu	ction	71
Results		
	Fluorescence and histochemistry	71
	Comparison of stain affinities	74
	Histochemistry of lipofuscin in the	
	5 year old horse	76
	Ultrastructure of equine thyroid	
	lipofuscin	76
	Immunogold electron microscopy	77
Discuss	ion	
	Histochemistry of lipofuscin	78
	Ultrastructure	82
Summary		84
Chapter 6: Lipofuscin	in the equine thyroid gland:	
isolation and chemical	analyses	86
Introdu	ction	86
Special	methods	87
Results		
	Dry matter content of equine thyroid	89
	Isolation of lipofuscin	89

Density determinati	on 91
Elemental analysis	of lipofuscin 91
Proteins	96
Lipids	103
Carbohydrates	104
Nucleic acids	107
Discussion	108
Summary	118
Chapter 7: General Discussion	120
Experimental	120
Equine thyroid lipofuscin a	nd the lipid
peroxidation theory	127
Lysosomes, residual bodies	and lipofuscin 129
Possible mechanisms for bio	genesis of equine
thyroid lipofuscin	132
Avenues of further study	135
Chapter 8: References	138

v

LIST OF FIGURES

Figure 4:1.	
Gross appearance of fresh thyroid glands.	52
Figure 4:2.	
Histology of equine thyroid tissue.	52
Figure 4:3.	
Basophillic zone in the colloid.	55
Figure 4:4.	
Solid colloid, divided into fragments.	55
Figure 4:5.	
Fluorescence microscopy.	55
Figure 4:6.	
Fluorescence microscopy.	55
Figure 4:7.	
Shreds of colloid and erythrocytes in follicles.	55
Figure 4:8.	
Spherites.	55
Figure 4:9.	
Multiple abnormalities in the colloid.	56
Figure 4:10.	
Multiple abnormalities in the colloid.	56
Figures 4:11 and 4:12.	
Comparison of H&E and Schmorl's stain.	58
Figure 4:13.	
H&E-stained section of the five year old horse.	58
Figure 4:14.	
Lipofuscin granules per cell.	61
Figure 5:1	
Lipofuscin granules by light microscopy.	72
Figure 5:2	
Thyroid tissue stained with PAS.	72
Figure 5:3	
Thyroid tissue stained with Masson's Fontana.	74
Figure 5:4	
Thyroid tissue stained with AFIP stain for lipofuscin.	74

Following page

Figure 5:5 Thyroid tissue stained with Perl's stain for iron. 75 Figure 5:6 75 Thyroid tissue stained with Feulgen-NAH stain. Figure 5:7 Thyroid tissue stained with Methyl Green-Pyronin (MGP). 75 Figure 5:8 Frozen section of thyroid stained with Sudan Black B. 75 Figure 5:9 Frozen section of thyroid tissue stained with Oil Red O. 76 Figure 5:10 Thyroid tissue labelled with Concanavalin A/Horseradish 76 peroxidase. Figure 5:11 Ultrastructure of equine thyroid tissue. 76 Figure 5:12 Variations in electron density of lipofuscin and colloid droplets. 76 Figure 5:13 Lipofuscin granule with vacuole of high electron density. 76 Figure 5:14 Fine detail of lipofuscin granules. 76 Figure 5:15 Thyroid tissue processed without osmium and not stained. 77 Figure 5:16 Apparent fusion between a lipofuscin granule and a colloid droplet. 77 Figure 5:17 77 Variations in contents of colloid droplets. Figure 5:18 Anti-thyroglobulin immunogold labelled thyroid tissue. 77 Figure 6:1. Isolated lipofuscin granules. 89 Figure 6:2 Montage of lipofuscin proteins separated by 97 LDS-polyacrylamide electrophoresis. Figure 6:3

: 1

	viii
Lipofuscin granules after Folch extraction.	103
Figure 6:4	
Thin layer chromatogram of phospholipids.	103
Figure 6:5	
Thin layer chromatogram of neutral lipids.	103
Figure 6:6	
Agarose gel electrophoresis of nucleic acid	
from thyroid lipofuscin.	107
Figure 6:7	
Agarose gel electrophoresis of nucleic acids	
after incubation with nucleases.	107
Figure 6:8	
Agarose gel electrophoresis of nucleic acids	
after incubation with restriction enzymes.	107
Figure 7:1	
Proposed pathways of lipofuscin biogenesis.	132

LIST OF TABLES.

	Page
Table 3:1	
Horses used for histology	38
Table 4:1	
Thyroid activity, presence of colloid abnormalities	
and numbers of lipofuscin granules counted in plane of section	53
Table 4:2	
Presence of cold follicles	54
Table 4:3	
Frequencies of types of colloid abnormalities observed	57
Table 4:4	
Lipofuscin granules per 100 cells in differently stained	
sections from horse 25G	60
Table 5:1	
Histochemistry of equine thyroid lipofuscin	73
Table 6:1	
Dry matter content of equine thyroid tissue	89
Table 6:2	
Yields of lipofuscin granules isolated from	
equine thyroid glands	90
Table 6:3	
Density of lipofuscin granules	91
Table 6:4	
Elemental composition of equine thyroid lipofuscin (I):	
non-metallic elements (% by weight)	92
Table 6:5	
Elemental composition of equine thyroid lipofuscin (II):	
metallic elements, boron and phosphorus (ug/g)	93
Table 6:6	
Metal content of thyroid tissue and thyroid lipofuscin	94
Table 6:7	
Ratio of stored elements in lipofuscin compared to	
thyroid tissue	95
Table 6:8	
Amino acid composition of thyroid tissue, isolated lipofuscin,	

ix

and extracted proteolipid compared to thyroglobulins	98
Table 6:9	
Amino acid composition of lipofuscin protein, lipofuscin p	protein
fraction soluble in LDS/2-mercaptoethanol, and lipofuscin	
protein fraction insoluble in LDS/2-mercaptoethanol	100
Table 6:10	
Protein content of lyophilised equine thyroid lipofuscin	102
Table 6:11	
Protein content of equine thyroid lipofuscin in 98%	
formic acid	102
Table 6:12	
Neutral lipids of equine thyroid lipofuscin	104
Table 6:13	
Ratios of nonprotein carbon, hydrogen and oxygen in lipofuscin	106

.

x

ABBREVIATIONS

AFIP	Armed Forces Institute of Pathology
BHT	Butylated hydroxytoluene
BSA	Bovine serum albumin
DIT	diiodotyrosine
EDTA	ethylenediaminetetraacetic acid
Feulgen-NAH	Feulgen-Naphthoic acid Hydrazine
HPLC	high performance liquid chromatography
H&E	haematoxylin and eosin
IgG	immunoglobulin G
kDa	kiloDalton
LDS	Lithium dodecyl sulphate
LDS-PAGE	LDS-polyacrylamide gel electrophoresis
MIT	monoiodotyrosine
NMR	nuclear magnetic resonance
PAS	periodic acid-Schiff
PBST	phosphate-buffered saline/Tween 20
PVDF	Polyvinylidene difluoride (Immobilon $^{\text{TM}}$,
	Millipore Corporation, MA.)
TBS	Tris-buffered saline
TLC	thin layer chromatography
TRH	TSH-releasing hormone
Tris	Tris(hydroxymethyl)aminomethane
Trizma TM	Tris(hydroxymethyl)aminomethane (Sigma)
TSH	Thyroid stimulating hormone
TTBS	Tween 20/Tris + Cations
тЗ	Triiodothyronine
Т4	Tetraiodothyronine, = thyroxine

xi