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Abstract

Artificial Intelligence can be applied to a wide variety of real world problems, with

varying levels of complexity; nonetheless, real world problems often demand for

capabilities that are difficult, if not impossible to achieve using a single Artificial

Intelligence algorithm. This challenge gave rise to the development of hybrid systems

that put together a combination of complementary algorithms. Hybrid approaches

come at a cost however, as they introduce additional complications for the developer,

such as how the algorithms should interact and when the independent algorithms

should be executed. This research introduces a new algorithm called Cascading

Genetic Network Programming (CGNP), which contains significant changes to the

original Genetic Network Programming. This new algorithm has the facility to

include any Artificial Intelligence algorithm into its directed graph network, as either

a judgement or processing node. CGNP introduces a novel ability for a scalable

multiple layer network, of independent instances of the CGNP algorithm itself. This

facilitates problem subdivision, independent optimisation of these underlying layers

and the ability to develop varying levels of complexity, from individual motor control

to high level dynamic role allocation systems. Mechanisms are incorporated to

prevent the child networks from executing beyond their requirement, allowing the

parent to maintain control. The ability to optimise any data within each node

is added, allowing for general purpose node development and therefore allowing

node reuse in a wide variety of applications without modification. The abilities

of the Cascaded Genetic Network Programming algorithm are demonstrated and

proved through the development of a multi-behavioural robot soccer goal keeper, as

a testbed where an individual Artificial Intelligence system may not be sufficient.

The overall role is subdivided into three components and individually optimised

which allow the robot to pursue a target object or location, rotate towards a target

and provide basic functionality for defending a goal. These three components are

then used in a higher level network as independent nodes, to solve the overall multi-

behavioural goal keeper. Experiments show that the resulting controller defends the

goal with a success rate of 91%, after 12 hours training using a population of 400

and 60 generations.
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Chapter 1

Introduction

As the technological world further develops into unexplored territory due to con-

sumer requirements or research breakthroughs in varying fields, additional require-

ments and constraints are placed upon computer systems for complicated behaviours,

analysis or detection algorithms. Artificial Intelligence is a mainstream solution for

these increasing requirements, however often the requirements set by these industries

are beyond the scope of any single Artificial Intelligence algorithm. This limitation

incites further research to develop hybrid algorithms or use a combination of mul-

tiple intelligent architectures to meet the expectations placed upon developers and

researchers alike. Hybrid systems introduce considerations as to how these algo-

rithms should interface with one another and using multiple intelligent systems to

solve a problem introduces further decisions as to under which conditions these

algorithms should be independently executed.

Genetic Network Programming was introduced by Katagiri et al.[5], this algo-

rithm is a network of nodes connected to one another in a directed graph. These

nodes can be either Judgements for branching and decision making, or Processing

nodes for actions or interfacing with the environment they are designed for. This al-

gorithm has found success in solving agent based systems[5, 6], double-deck elevator

control systems[7] and some robotic applications[9, 10].

This Genetic Network Programming architecture has the ability to optimise the

connections between these nodes and the node types themselves from a predefined

library of potential node types. While this algorithm efficiently finds solutions for

the required tasks the networks are designed for, the networks themselves are limited

by the contents of the node library. The contents of the node library are specifically

designed for the problem that the network is to achieve, increasing the required

programmer development time to specialize nodes to this task. For complicated

behaviours with a large number of objectives, the networks designed using this al-

gorithm will become complicated for human interpretation.
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The research discussed within this thesis proposes the Cascaded Genetic Network

Programming architecture that is significantly modified from the original, to facili-

tate multiple layers of network structures with varying complexity, general purpose

nodes reducing the need for problem specific node development and the optimisation

of internal node data to exceed the limitations of predefined node libraries. This

new architecture bridges the gap between different Artificial Intelligent systems, by

treating them as independent nodes within a network and handles problem com-

plexity, by allowing subdivision of any task into a new Cascaded Genetic Network

Programming layer.

This new architecture is applied to the goal keeper behaviour in robot soccer,

where the environment is repeatedly changing and the goal keeper must adhere to

multiple objectives in order to efficiently defend the goal. The goal keeper prob-

lem is one possible case where multiple artificial intelligent systems are required

to achieve the overall objective with a high success rate. To aid in the training

optimisation a simulation environment is implemented to accurately represent the

platform at Massey University, this is done by utilizing realistic physics and ac-

curately representing the shape of the robot and environment. The goal keeper

controller developed in conjunction with this research could be used in the Massey

University robot soccer team for the FIRA MiroSot Middle League[12] competition.

1.1 Research Objectives

The primary objective of this thesis is to enhance the Genetic Network Program-

ming architecture for environments that require multiple objectives, allowing it to

extend to problems that are too complicated for the original. This new architec-

ture should allow GNP to cascade into multiple sub-layers and allow more general

purpose nodes to be developed by optimising the data internal to every node, these

general purpose nodes will then be applicable to any problem thus reducing any re-

quired programming time. To test the capabilities of this new architecture a real life

applicable, multi-behavioural goal keeper controller for the Massey University robot

soccer platform is developed. It should have a high success rate when defending

the goal, remain within the goal area so that it isn’t left undefended and be able to

reposition itself if knocked out of the goal area.

1. Develop a Cascading GNP architecture that facilitates subdivision of Artificial

Intelligence problems into smaller, manageable tasks by allowing CGNP’s to

be contained within another in a complex multilayer network.

2. Investigate the current GNP architecture and make any changes required to

allow a full object orientated design that can easily integrate any Artificial
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Intelligence algorithm as either a processing or judgement node.

3. Develop a method to allow trained CGNP networks to be saved and imported

into another CGNP network as a pre-trained Artificial Intelligence node for

either processing or judgement.

4. Develop a method to represent all the node properties in a chromosome and

provide an interface for future node development.

5. Develop a robot soccer simulation which accurately represents the FIRA MiroSot

platform, using a full-fledged physics engine.

6. Build a platform independent C++ library for the new CGNP architecture.

7. Develop an interface that can bind the simulation environment with the CGNP

architecture and allow modification to the CGNP properties for each node.

8. Prove that the CGNP architecture can be used to identify and fix issues in

pre-existing AI systems.

9. Train and test the new architecture on a complex multi-behavioural controller

such as the robot soccer goal keeper.

1.2 Significance of the Research

This research investigates the use of the Genetic Network Programming architecture

for complex tasks where multiple objectives must be met and shows a modified

implementation of the architecture that will significantly improve the development

times of future AI research and allow trained AI systems to be reused in other

applications. The GNP architecture can be used to solve problems or to improve

existing solutions developed using any AI algorithm.

To aid in the re-usability of GNP systems a new approach is implemented to

allow GNP to cascade into multiple layers of independent GNP systems, where a

pre-trained system (or even untrained) can be treated as a node within another

GNP, this allows complex behaviours to be designed and trained using predefined

sub-behaviours. Since GNP is inherently a diverse algorithm, by using it to solve

generic problems the resulting systems can be easily reused in other applications

within the same scope, therefore there is no need to create a new controller to move

a new robot if one has already been created for another.

This research is undertaken due to the recent research by Wenhan Wang[10] at

Massey University, while he used the GNP architecture with Reinforcement Learn-

ing nodes he did not optimise data within Judgement nodes or other Processing
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nodes. Within his research long training times were encountered for a Target Pur-

suit with Wall Avoidance system. This research further extends on Wang’s research

by allowing all data within nodes to be optimised regardless of type, develops the

new Cascading GNP architecture and develops a robot soccer goal keeper, which

is considered to be a more complicated behaviour than Target Pursuit with wall

Avoidance.

1.3 Scope and Limitations

This research is directly applicable to the FIRA MiroSot Middle League[12] envi-

ronment however, with modifications the GNP architecture could be applied to any

AI based application including but not limited to, stock markets, game development

or other robot controllers.

Within the robot soccer simulation, only two dimensions are simulated and there-

fore does not take into consideration any situation where the ball or robot bounce

or jump, nor in the situation where a robot is somehow pushed onto its side.

This research does not consider AI systems that transmit data to others, therefore

all nodes act independently. Data transmission between nodes could be implemented

and would be a useful feature, this is further discussed in the Further Research

section (Section 8.2.1).

As Genetic Algorithms are used within the GNP architecture, there is no guaran-

tee that the best solution will be received. However with a large enough population

and number of generations, the optimisation algorithm will find a solution that can

solve the problem assuming a well defined objective function is used.

1.4 Structure of the Thesis

This thesis begins with an introduction to two relevant intelligent systems; Fuzzy

Logic and Genetic Algorithms, both of these are used regularly throughout the

controller design process. Next a detailed review on the current Genetic Network

Programming architecture, other approaches to complete the goal keeping behaviour

and other relevant research. Then the software design and implementation is ex-

plained with descriptions and examples from the external libraries that are used in

this application. Following this is a chapter that describes the simulation platform

developed in conjunction with this research and specific design considerations.

Chapter 6 discusses the original GNP architecture and then all modifications

required to produce the desired Cascaded GNP architecture. Chapter 7 covers the

controller designs for Target Pursuit, Target Rotation, basic Goal Defending and

the Multi-Behavioural Goal Keeper, this chapter discusses each component in detail
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and how they could be further improved. Lastly the conclusions of the research, a

summary of the achievements made by this research and a series of future research

topics using CGNP and other components of this research.
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Chapter 2

Primer on Relevant Intelligent

Systems

This chapter covers a basic outline on Fuzzy Logic and Genetic Algorithms; two

Intelligent Systems used within this research. Fuzzy Logic is generally used as a

type of controller where outputs are based on some form of input and Genetic

Algorithms are used for optimisation purposes when specific parameters need to be

optimised for a certain objective function.

2.1 Fuzzy Logic

Fuzzy Logic is a computational technique that reasons with the environment using

imprecise terms and operates on a set of rules to generate a precise output. Fuzzy

Logic is useful in situations where there is not a definite answer to a problem, but

can be interpreted as a degree of multiple answers. One such example is climate

control, where the temperature can be stabilized between Warm and Hot.

The algorithm has had a long history, where the term being initially defined

by Lotfi A. Zadeh[13] in his 1965 paper regarding fuzzy set theory. Takagi and

Sugeno[14] later expanded on Zadeh’s ideas to include a degree of membership for

each fuzzy set, so instead of each fuzzy set outcome being true or false, they can

be any real number between 0 and 1 to donate the degree of membership. The

Takagi-Sugeno Fuzzy Logic systems are used in this research.

Fuzzy Logic can be separated into three concise parts, Fuzzification, Fuzzy Rule

Sets and Defuzzification, Figure 2.1 shows these stages in a fuzzy controller and

that they interact with an external system; which could be anything from climate

control[15] to parking a car[16].
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Figure 2.1: Fuzzy Logic in a Control Loop [1]

2.1.1 Fuzzification

The Fuzzification process itself has three components, the input values, membership

functions and degrees of membership. All inputs that are used in the fuzzy system

are taken from the environment that they are being used to control, be it a output

voltage error, volume levels of a tank or output from another fuzzy system. Mem-

bership Functions are a collection of shapes that span the potential values for each

input and are used to map the input value to a set of degrees of membership which

are defined as real numbers between zero and one; trapeziums, triangles and bell

curves are often used as membership functions. Figure 2.2 shows an example set of

membership functions which takes a voltage as an input.

Figure 2.2: Example set of membership functions [1]
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Looking at Figure 2.2, if the voltage input was 2.5v then the first two membership

functions and the last (LN, MN and LP) would get a membership degree of 0.0, both

S and MP would get a membership degree of 0.5 as that is where a value of 2.5 would

intercept the membership functions.

2.1.2 Rule Evaluation

Once Fuzzification has been evaluated the degree of membership for each member-

ship function must be assigned to an output value. This is done with a predefined set

of if/then rules called the fuzzy rule set, there is one fuzzy rule for every membership

function.

Each output is assigned a value that is relative to the problem, in the case of

the voltage membership functions the output could control the speed of an engine.

This could range between zero and one, zero being off and one being full power.

Shown in Code 2.1 and Code 2.2 are examples of what these output values and

fuzzy rule sets could be. When the fuzzy rule sets are defined the process moves

onto Defuzzification.

Code 2.1: Example Fuzzy Logic, output values

TURNOFF = 0.0

SMALL = 0.2

MEDIUM = 0.5

LARGE = 0.7

VERYLARGE = 1.0

Code 2.2: Example Fuzzy Logic, fuzzy rule sets

i f vo l t age i s LN then output TURNOFF

i f vo l t age i s MN then output SMALL

i f vo l t age i s S then output MEDIUM

i f vo l tage i s MP then output LARGE

i f vo l t age i s LP then output VERYLARGE

2.1.3 Defuzzification

The last stage of Fuzzy Logic is Defuzzification, this involves taking the degree of

membership values and translating them into a single crisp output value by using

both the output values and fuzzy rule sets, which can then be used in the control

system it is built for.

This is done with some form of equation, the most common of which is the

Weighted Average equation shown in Equation 2.1.
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CrispOutput =
Σn

i=0(MiOi)

Σn
i=0(Mi)

. (2.1)

Taking the previously defined data for the Membership Functions (Figure 2.2),

Output Values (Code 2.1) and Fuzzy Rule Sets (Code 2.2), along with the voltage

input of 2.5v then the evaluated fuzzy logic system is shown in Equation 2.2.

CrispOutput =
Σn

i=0(MiOi)

Σn
i=0(Mi)

,

=
0.0(0.0) + 0.0(0.2) + 0.5(0.5) + 0.5(0.7) + 0.0(1.0)

0.0 + 0.0 + 0.5 + 0.5 + 0.0
,

= 0.6 (2.2)

Therefore the value of 0.6 will be the final output of the fuzzy system and would

then set the engine to just over half speed.

2.2 Genetic Algorithms

Genetic Algorithms are a form of optimising algorithm where given an objective

function which defines the ideal scenario, can evolve a population of candidate solu-

tions using biology inspired natural selection to find an ‘acceptable’ solution. This

algorithm is well suited to situations where there are many local maxima, so long as

the population remains diverse, but it should be noted that it does not guarantee

finding the global maximum for any situation.

First introduced by John H. Holland in the 1970s[17], Genetic Algorithms have

had many applications over the past forty years as it is a general purpose optimisa-

tion algorithm that can be applied to almost any situation. To name a few proven

applications genetic algorithms have been used optimise a dynamic anti-terrorism

strategy for maritime piracy[18] and even airline revenue management systems[19].

The algorithm is best described in three parts, the population which contains all

candidate solutions, evaluation is the process of testing each candidate solution and

evolution breeds a new generation of the population and incorporates any form of

mutations. Figure 2.3 shows a basic flowchart of the process.
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Figure 2.3: Genetic Algorithm Flowchart

2.2.1 Population

The population is of a user defined size which contains a set of candidate solutions

(also called chromosomes or genomes), these candidate solutions contain a set of

parameters or genes that are the subject of this optimisation process, this is shown

in Figure 2.4. Therefore every variable that should be optimised should be accounted

for in the predefined chromosome blueprint, along with all its potential values.
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Figure 2.4: Genetic Algorithm Population Contents, P denotes parameter

There are two prominent encoding schemes that are used within genetic algo-

rithms, both can apply to any situation but they both have benefits and flaws that

may influence the applications they are applied to. They are binary and float-

ing point encoding, binary encoding is the original design set forward by John H.

Holland[17] and floating point encoding was later developed to make floating point

value representation easier.

Binary encoding views all data as a binary string, which is composed of all genes

stitched together in their binary form. This works well for integers and boolean

values as they are natively represented in an expandable binary string and can be

easily stitched together. There is a small issue with integer representation, when

using ranges that do not match the maximum representation with the same number

of bits. If the developer is to represent the range 0-14 which has a maximum binary

value of 1110, since there are four binary digits in this maximum value using binary

representation will also output 1111 (15) at some point throughout the optimisation

process. This will therefore exceed the desired range of 0-14, which means special

considerations need to be made when the value of 15 is used. Usually the value 15

will simply be converted to 14 as it is the maximum desired value, however then the

value 14 is twice as likely to occur in the population meaning the population is no

longer uniformly randomised.

One solution to this issue is using unary encoding, however this introduces a

large amount of redundancy in the chromosome length. The 0-14 range in unary

encoding will use 14 binary bits, these 14 bits will be summed together to receive

the final value. This exponentially increases the length of a single gene and will

consequently increase the required time conducting crossover or mutation.

Another consideration and the main reason why floating point encoding would be

used, is to represent a floating value. Using binary encoding to represent a floating

point value, there needs to be two binary strings one for the whole number and one

for the decimal. These values will later need to be decoded into the floating point

value these strings represent, this introduces additional time requirements to do this

conversion.

Both of these issues make binary encoding difficult to initially design, but once
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it is created it uses less memory than floating point encoding and gains more diver-

sification when evolving (discussed further in Section 2.2.3).

The floating point method encodes the data as an array of floats, this increases

the memory usage in contrast to binary encoding, but it can easily represent values

within any range (both whole values and floating point) with very little effort from

the developer. With a large number of parameters, floating point representation

excels in execution time as it more accurately represents the format that the data

will be used in, therefore not requiring constant decoding that binary encoding

requires[20] (decoding is discussed in Section 2.2.2).

When the Genetic Algorithm initially begins the entire population is randomly

generated to conform to the chromosome requirements, the population is then used

in each of the successive stages of the algorithm and is ultimately modified to better

suit the problem by the end of each generation.

2.2.2 Evaluation

For every candidate solution within the population, a fitness value must be found;

this is always specific to the problem and often involves some form of external sim-

ulation along with an objective function, which defines what is a desirable outcome.

The objective function can either be maximized or minimized depending on the re-

quirements of the problem, an example would be to attempt to minimize drag force

in a wind tunnel, which would be useful for designing the contours of a plane or car.

In order for any evaluation to occur, the gene data must be readable by the

simulation or test environment, therefore it must be decoded for every evaluation

step. If this decoding process or the simulation evaluation takes a long time, then

the the genetic algorithm process can easily take an excessive amount of time; since

they are evaluated for every candidate solution in every generation. The process

of binary decoding involves separating a binary string and converting it to their

natural integer or real valued forms, floating point encoding does not require any

form of decoding as it remains in its natural state throughout the evolution process.

2.2.3 Evolution

Genetic Algorithms replicate the concept of breeding organisms by the use of Crossover,

randomized mutations are also included into the evolution process in attempt to keep

the population diverse. The more diverse the population, the more likely that an

acceptable solution will be encountered by crossover.

Crossover will start by randomly choosing mating pairs of Genomes, the decision

as to which individuals are chosen to form a mating pair is based on the results from

the Objective Function. The Genome with the most ideal fitness value are more
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likely to breed than those that are not ideal, this process is called Roulette Wheel

Selection. Producing the next generation of Genomes can be done in many ways,

an example of this is One Point Crossover. One Point Crossover will produce two

offspring for every mating pair by randomly choosing a position in the Genome to

split the data. The first child will be given the data to the left of this point from

the first parent and to right of this point from the second parent. The second child

will get the opposite, this is shown in Figure 2.5. Once all of the mating pairs have

produced offspring, mutation of the new generation occurs.

Figure 2.5: Binary Encoded One Point Crossover [2]

Mutation replicates the propensity to have genetic anomalies with each genera-

tion of a species, within the algorithm random offspring may mutate by modifying a

Gene in its genome. Mutation adds small amounts of variation to the population in

the hope that it is beneficial in successive generations. Each gene has a preset chance

each generation to mutate after crossover; binary encoding does this by changing

individual bit values and floating point encoding will re-randomize the entire gene.

As previously mentioned genetic algorithms excel when the population is diverse,

when executing the algorithm diversity will be different between encoding types. Bi-

nary encoding does its crossover at the binary level, where every bit in the string

could be selected as a crossover point. Mutation also occurs at a binary level, so all

changes (if any) will be spread throughout the genome. Floating point representa-

tion conducts both mutation and crossover at the gene level, where all mutations

change an entire parameter value and crossover splits the array at a random index

rather than a random bit. Floating point representation therefore may encounter

diversification issues unless the mutation rate is high.

Another useful feature in the evolution stage of the genetic algorithms is elitism;

it is used when the population in a new generation has a lower optimal fitness than

that of the previous generation. It involves replacing the worst candidate solution in

the current population, with the best from the previous generation. This prevents

the overall population from deteriorating, so the best overall solution encountered

will be available at the end of the optimisation process regardless of any population
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changes.

After the Evolution process has finished, the next generation will begin and

this will continue until a specified number of generations has elapsed or when the

population converges on an optimal solution.
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Chapter 3

Related Literature

3.1 Genetic-Fuzzy

Genetic-Fuzzy is a hybrid algorithm that combines Fuzzy Logic (Section 2.1) and

Genetic Algorithms (Section 2.2), it provides optimisation of Fuzzy Logic systems

using the evolution and natural selection process in Genetic Algorithms. Any fuzzy

logic component can be optimised or even the entire system at once, however this

may result in a large search space.

This hybrid algorithm removes or at least reduces the need for hand calibrated

Fuzzy Logic systems, which is often a long and tedious process. Instead the developer

needs to produce test scenarios to evaluate the candidate solutions and a objective

function that numerically defines which solutions are better than others. The process

of creating test cases and objective function can also be a difficult task, but once

these are created any future optimisation or change of requirements will be quickly

solved using the previously developed test cases and objective function.

Within this section a few papers that utilize Genetic-Fuzzy are investigated,

specifically the inverted pendulum problem (3.1.1) and controlling pH level (3.1.2).

3.1.1 Integrating Design Stages of Fuzzy Systems using Ge-

netic Algorithms

In 1993 Michael Lee and Hideyuki Takagi from the University of California explored

the integration of Genetic Algorithms and Fuzzy Logic, to optimise a controller for

Inverted Pendulum Problem [3]. The Inverted Pendulum Problem involves balancing

a pole on a moveable cart, this is shown in Figure 3.1. In their simulation this cart

may move infinitely to the left or right, therefore it may not be feasible to apply

their controller to a real life situation where the cart is on a limited surface area.

However unless large forces are acting on the pendulum this controller will work well

anywhere.
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Figure 3.1: Inverted Pendulum Cart [3]

The Fuzzy System used has two input parameters representing:

1. Angle of the pole in degrees (shown in Figure 3.1 as θ)

2. Angular velocity of the pole (degrees per second)

The final output from the Fuzzy System is a force that should be applied to the

cart, the overall system architecture is shown in Figure 3.2.

Figure 3.2: Inverted Pendulum System Diagram [3]

The Genetic Algorithm component (Figure 3.2) binary encodes the entire Fuzzy

System into a Genome. In this encoding scheme there are ten triangle membership

functions for each of the input parameters, and 100 rule outputs. This encoding

scheme results in a Genome with 360 Genes containing 8 bits of data each, a total of

2880 bits to represent the entire Genome (shown in Figure 3.3 and Figure 3.4). Since
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the fuzzy system only requires integer values and only small precision, using binary

encoding would be better suited to the application than floating point encoding. The

Genetic Operators involved in the research implementation are One Point Crossover

and Bit String Mutation.

Figure 3.3: Chromosome substructures [3]

Figure 3.4: Entire chromosome [3]

The raw score is based on the termination criteria of the simulation, which are

to either successfully balance the pendulum, the pendulum falls over or when the

simulation time expires. A significant reward is given to a Genome if it successfully

balances the pendulum earlier in the simulation process, likewise a large penalty is

given if the pendulum falls (Figure 3.5).

Figure 3.5: Raw Score for the objective function[3]

Additional to the raw score, the objective function strives to minimise the angle

of the pendulum at each time step of the simulation and the overall number of rules
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in the Fuzzy System. Minimising the number of rules is very useful for robots that

have limited memory storage or processing power, as would be the case with the

cart used in this research. The final objective function is shown in Figure 3.6.

Figure 3.6: Inverted Pendulum Objective Function [3]

3.1.2 Fuzzy Control of pH Using Genetic Algorithms

In the same year as the above research paper, Charles Karr and Edward Gentry used

Genetic Algorithms to adapt a pre-existing Fuzzy Logic Controller for maintaining

a desired pH level [4]. This controller is produced with the primary purpose of real

world application. The pH environment is modified by 5 separate pumps, two of

which are Control Streams where their throughput is maintained by the Fuzzy Logic

Controller and the remaining three are external influences. Figure 3.7 shows these

pH influences.

Figure 3.7: System wide pH Influences [4]

As mentioned the Fuzzy Logic Controller will maintain the Control Input Streams

shown in Figure 3.7, these are the outputs from the Fuzzy Controller. The two in-

puts to the Controller is the pH Error (desired actual) and the rate of change of

that error, Figure 3.8 shows these inputs and outputs. In this figure pH denotes

the pH error and not the actual pH, which was not initially clear when reading this

paper.
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Figure 3.8: Genetic-Fuzzy interfacing with the pH environment [4]

Optimisation of the Fuzzy Logic Controller is solely done on the Trapezoidal

Membership Functions, each parameter is represented by seven bits in the binary

encoded Genome, which are subsequently decoded to a floating point value within

a user defined range. This method of encoding has a very low level of precision,

but for the given task it is acceptable. By solely using 7 bits per Membership

Function the overall length of the binary string is considerably reduced, but at

the cost of precision. To allow for Genetic Optimisation, the pH environment is

simulated and then the resulting controller is tested on the real implementation.

The overall resulting controller had significant improvements over the pre-existing

controller, however there remains a small amount of ‘jitter’ in the output graph

shown in Figure 3.9. This variable output when trying to stabilise the pH could

be reduced by increasing the precision of each parameter, this would increase the

required execution time for the Genetic Algorithm. If the optimisation process

is only going to be executed once for this given set-up, there is no reason why it

shouldn’t be as accurate as possible. It would also be interesting to see this controller

tested in situations where the desired pH level gradually increases or decreases.
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Figure 3.9: Final Output Data of the pH Controller (a) desired, (b) actual [4]

3.2 Genetic Network Programming

Genetic Network Programming (GNP) is a directed graph based algorithm where

nodes interlink each other to define a sequence of steps that should be executed to

achieve the problem it is designed for. There are three node base types that make

up a GNP; the start node is where the network begins, processing nodes which are a

form of action and judgement nodes which are decision making nodes which branch

out to other nodes.

With repeated executions of GNP it will retain the knowledge of its previous

node and execute from that point, this allows it to implicitly remember the current

and previous states. The entire network and its nodes are optimised using genetic

algorithms, this is further discussed in Chapter 6.

GNP has not been applied to many multi-behavioural robot control applications,

20



despite being proposed in 2000 by Katagiri, Hirasawa and Hu[5]. This algorithm

has however been applied to agent based systems[5, 6], double-deck elevator control

systems[7] and some robotic applications[9, 10] to name a few.

3.2.1 Genetic network programming - application to intel-

ligent agents

Katagiri et al.[5] proposed the initial Genetic Network Programming architecture

in this paper, along with a small problem to prove its functionality and real world

applications.

The problem case involves using intelligent agents to navigate a two dimensional

grid that contains obstacles and push tiles into holes, this is a simple task but would

be useful to test the basic functionality of the algorithm, proving that GNP can be

optimised and that it can solve problems. The overall objective of the agents is to

push the tiles into the holes as soon as they can, each candidate solution is partially

rewarded for getting close to the hole but not necessarily dropping the tile into the

hole and lastly is rewarded for finishing the task with the least number of steps.

Once a tile fills a hole then both will disappear and the location is treated like

an ordinary floor. The agent may not push a tile when either a barrier or another

agent is in the way, this means that the task can be failed if any tile gets stuck in

a corner or between agents. Figure 3.10 shows an example tile world along with a

key that is used in the training process.

Figure 3.10: Example Tile World[5]

Two approaches were used in the test cases, absolute process which defines agent

movements as general directions relative to the world and relative process which con-

siders the problem from the agents perspective, where they may move forward or
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rotate. Absolute Process retrieves cell information based on North, South, East and

West and moves the agent in a similar manner. Relative Process retrieves cell infor-

mation from behind, ahead, left and right and may only move the agent forwards,

but introduces a rotate left and rotate right. These Judgement and Processing nodes

for each perspective are shown in Figures 3.11 and 3.12 respectively.

Figure 3.11: Absolute Process Nodes[5] Figure 3.12: Relative Process Nodes[5]

This paper made three findings which incited further research into the GNP

algorithm over the next few years; the first was that the more instances of nodes in

a training session the more likely that a better result will be found, secondly using

the relative process nodes there is a significant improvement in fitness over that of

absolute process as the same problem can be solved with a smaller number of nodes

and lastly that GNP is useful for generalizing a problem based on its past behaviour,

therefore it would be useful in other applications.

The GNP training process may yield better results overall if additional node

types were included to determine if a tile can be pushed in a specific direction, this

would prevent agents repeatedly attempting to push a tile into a barrier or another

agent as they would with the current nodes and force them to make alternative

routes. It would not benefit the scenario where a tile is stuck in a corner, but it

would help with barriers that are in the way of the nearest hole.

3.2.2 Performance of genetic network programming for learn-

ing agents on perceptual aliasing problem

Genetic Network Programming has been applied to the Perceptual Aliasing problem,

where a robot can not differentiate between locations in a maze solely using sensor

data. This sensor data could be camera input or sonar to name a few, it would be

very common for a robot to encounter this perceptual aliasing in a maze or office

layout.

Murata et al. proposed solving this problem with GNP [6] as a comparison

against another algorithm that is regularly used as a solution for this perceptual
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aliasing problem (PAP), called Adaptive Genetic-Programming Automata (AGPA)

which is a tree based structure that has a series of branches and conducts an action

at a terminal node (shown in Figure 3.13). AGPA has flaws where it will generate

too many rules for each solution, the theory was that GNP could solve the same

problem with a much smaller number of rules.

This paper defines a rule as an IF/THEN statement, both AGPA and GNP can

be unrolled to these rules by following the node structure until either a terminal

node or processing node is reached.

Figure 3.13: Adaptive Genetic-Programming Automata example [6]

To prove their theory both AGPA and GNP are applied to two mazes which

regularly encounter PAP scenarios, their results are later compared in terms of

average fitness and number of rules used in the solution. One of the mazes used

in this test is shown in Figure 3.14, ‘S’ is the robot start location, ‘G’ is the goal

location and each circle is a location where the PAP is encountered.

To evaluate the fitness of this simulation the proposed method is to assign points

to each tile and when the robot begins its action on a tile, it is awarded points from

that particular tile (shown in Figure 3.15). This point system increments as the robot

gets closer to the goal and when reaching the goal, it continues to be awarded these

points. While this fitness evaluation may separate those candidate solutions that

can reach the goal in the most efficient manner, it neglects to include the secondary

objective where they should attempt to minimize the number of rules. This could

be added by simply adding 1/ruleNumber to the end of the fitness function, this

would continue to encourage robots to reach the objective as efficiently as possible,

but would further separate these ‘ideal solutions’.
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Figure 3.14: Simulated Perceptual Aliasing Maze [6]

Figure 3.15: Simulated Perceptual Aliasing Maze Point System [6]

The paper does not state the type of judgement and processing nodes used in

this experiment (nor function nodes and terminal nodes for AGPA), it is likely that

they only use these nodes to evaluate sensor data to determine if there is a wall

present in each direction and to move in the four directions. Without additional

environmental data or even the inclusion of heuristics, the absolute best solution

will only be able to navigate the maze it is trained on and would severely struggle

with any other scenario which would likely affect its real life applicability.

The results from this paper suggests that GNP outperforms tree based structures

like AGPA in terms of both number of rules and the average fitness of the entire

population. This is due to GNP’s recursive design where loops are implicitly created,

this significantly reduces the need for any duplicated nodes and allows it to represent

more complicated behaviours.
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3.2.3 A Double-Deck Elevator Group Supervisory Control

System Using Genetic Network Programming

In 2008 Hirasawa et al.[7] proposed a solution to a Double-Deck Elevator Control

problem using Genetic Network Programming. This problem involves optimising a

building elevator that has two cages in a single shaft, this elevator design reduces

the amount of floor area required for efficient transportation in high-rise buildings.

However this design comes with a few case specific considerations that would

deteriorate the transport throughput. If both cages are to release passengers at

the same floor only one cage could be serviced at time, leaving the passengers in

the other cage to wait until the first cage has been emptied, the passengers in the

second cage may experience stress if they have not been in a double-deck elevator

before or if they are running late and waiting for another cage to empty. Another

consideration is the number of passengers in each cage, where those with a large

number should probably get first priority.

Figure 3.16 shows the double-deck elevator control problem in a simulation en-

vironment along with how it would relate to the resulting GNP controller.

Figure 3.16: Proposed structure for a double-deck elevator system [7]

Hirasawa et al. approach this problem using 28 node types designed specifically

for this problem, they include judgement nodes to determine the destination floor,

directions of the destination floor and nodes to determine which elevator cage should

reach the destination floor.
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These nodes and the GNP structure are optimised to complete a few select

objectives, specifically minimizing the wait time for passengers, maintaining a com-

fortable ride for passengers and eliminating loops within the network, these loops

would prevent the solution from returning to the start state and may effectively cut

out required logic.

Each candidate solution is evaluated by randomly simulating arrival times and

destination floor of 300 to 4500 people per hour, to give a broad test of possible situ-

ations. After the population of 300 candidate solutions are evaluated for 300 gener-

ations, the GNP solution reduced the average service times (wait times + transport

times) to 4.8 seconds, in the situation where 3600 people need transportation in an

hour.

This research shows that while GNP can be applied to complicated tasks, it uses

a large amount of custom nodes that would require a lengthy amount of program-

ming time, some of the elements could have been independently optimised using

artificial intelligence nodes. Specific examples, such as speeding up the elevator and

decelerating could be done with Fuzzy Logic, or Reinforcement Learning could be

used to determine which elevator cages should answer calls. Using Artificial Intelli-

gence nodes the average waiting time may further decrease, this would also reduce

the amount of programming time for problem specific nodes. The idea to include

conditions that would eliminate loops from the population would likely be useful for

any application to prevent the algorithm getting stuck.

3.3 Robot Control

Robotics can be used for a variety of purposes, they can be used to replace limbs,

manufacture goods or entertainment purposes, all forms of robotics require a con-

troller. These controllers state what actions should be taken and how they should

be achieved, robotics are becoming increasingly complicated as their requirements

expand.

This section describes a few approaches at solving robotic control systems that

are relevant to this research, they include using Fuzzy Logic to determine actions

a robot should take[8] and two different applications using GNP to control robot

systems[9, 10].

3.3.1 Evolving Fuzzy Rules for Goal-Scoring Behaviour in

Robot Soccer

The book chapter entitled Evolving Fuzzy Rules for Goal-Scoring Behaviour in

Robot Soccer by Jeff Riley [8], utilises Genetic Algorithms to optimise a decision
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based rule set for implementing Goal-Scoring Behaviour. The input to this Fuzzy

Rule set is the Degree of Membership for the Distance and Direction of both the Ball

and Goal locations, based on pre-compiled Membership Functions and environmen-

tal data. The output from the Fuzzy System is the Action to be taken and a crisp

output that denotes either power or direction, therefore the behavioural decisions

are not concerned about the underlying action implementation. The process of op-

timising for this behaviour is done by utilising a variable length, Messy-coded gene

encoding scheme[21], which defines the entire rule set and its consequent outputs.

Each rule contains one or more Premise and a Consequent, as shown by the colour

coding in Figure 3.17. Note that the lower case ‘n’ within the premise, stands for

the “not” operator, while the ‘n’ in the consequent is a placeholder for unnecessary

data. An example of this placeholder is shown in Rule 1, the rule does not require

a direction (second parameter) as the required action in the first parameter (run

towards the ball) implicitly defines the direction.

Figure 3.17: Chromosome Encoding and Decoded Fuzzy Rules [8]

Each Premise is made up of an Object, Qualifier, Distance or Direction and a

Connector, the range of possible values for each parameter are shown in Figure 3.18.

Figure 3.18: Premise Components [8]

Similarly each Consequent contains an Action, Direction and Power (shown in

3.19), the use of Direction or Power will be based on the type of action that is used,

for example in Rule 3 of Figure 3.17 there is no need for a power parameter if the

robot is turning left. When a parameter is unused it will be represented as null.
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Figure 3.19: Consequent Components [8]

This research uses a variable length encoding scheme to allow the premise and

consequent to shift anywhere among the chromosome, to facilitate this Cut and

Splice crossover is used, this is similar to One Point Crossover except each parent

has its own separation point resulting in different length children.

Utilising the RoboCup Soccer Simulator the Goal-Scoring behaviour is optimised

using the formula in Figure 3.20. The objective function is conditionally split into

sub parts, the primary objective is to get as many soccer goals as possible, if this

cannot be attained using the current candidate solution then the distance to the goal

is minimised. This is to increase the amount of diversity in the objective function

and in the hope that the successive population will successfully get a goal. Since

variable length encoding is used it would be useful to add components to this fitness

function, that attempt to minimize the length of the candidate solution otherwise

the controller optimisation could result in huge fuzzy system.

Figure 3.20: Goal Scoring Objective Function [8]

This chapter contains a lot of useful information regarding robot controllers. In

particular the use of a variable length genome could be used as a future extension

to this research in order to try minimize the number of nodes in a GNP system,

rewarding those systems that remove any unnecessary nodes. The paper success-

fully instructs the robot on actions that should be taken using fuzzy rules, Genetic
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Network Programming would also be suitable for solving this problem if nodes were

created to encompass all possibilities of both the premise and consequent compo-

nents.

3.3.2 Using Genetic Network Programming to Get Com-

prehensible Control Rules for Real Robots

Murata and Okada applied a Genetic Network Program to a Sony AIBO ERS-7M2

robot[9] with the objective of reaching a ball as quickly as possible. The robot

contains dog-like features, including four legs, tail and ears all of which can move.

This robot has seen many entertainment uses, but has seen a lot of success in the

RoboCup Four-Legged League between the years 1999 and 2008. Figure 3.21 shows

this robot and its ball.

This robot contains only a select few sensors most of which are touch based,

therefore the robot unfortunately lacks the ability to sense distance to the ball. It

can however detect the direction of the ball, which is used as the primary input

within this research.

Figure 3.21: Sony AIBO Robot and a Ball [9]

In order to allow efficient GNP optimization a basic simulation environment was

used, which defines the robot as a circle with a 15 unit radius, with the target

ball being a 10 unit radius circle, shown in Figure 3.22. Each candidate solution

underwent 100 randomly generated trials, with randomized starting positions and

rotations for the robot and ball.

Three processing nodes were used which allow the robot to move forward, left

and right. Only one judgement node was used within the design which specifically

determines the direction of the ball in six directions. These directions are either

‘left’, ‘right’, ‘center’ which conforms to the robot’s field of vision, then there is
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‘lost’ which is anywhere outside of the previous three directions. This lost state is

further separated into two more states ‘lost left’ and ‘lost right’ which occur when

the ball was previously located in a specific direction, but then moves into the lost

area.

These lost states would be very useful for when the ball is moving past the robot,

as it will retain a direction in which it should move to relocate the ball. The states

of the robot vision and also the one judgement node is shown in Figure 3.23.

Figure 3.22: AIBO Simulation [9]

Figure 3.23: AIBO Proposed States [9]

For this problem a rather sophisticated fitness function is used, which incorpo-

rates all features required by the problem. It attempts to minimize the number of

movements and turns that the robot must undergo, therefore implicitly minimizing

the time it takes to reach the ball. A penalty is included when the robot loses sight

of the ball and a set reward for seeing the ball at least once, a large reward is given

to any controller that manages to reach the ball. These rewards and penalties are

summed and then averaged over the 100 randomized trials. This paper also includes

another component to the fitness function which minimizes the overall number of

nodes used in the GNP, this is especially useful considering all processing will be

done on the robot itself and it has limited processing power.

From a set of ten GNP training sessions the best five controllers are then applied

to the real robot in four different scenarios, to test the states of the judgement node.

The best system overall is shown in Figure 3.24, the lower six arrows on the key

denote specific transitions from the judgement node, the acronyms within the figure

are as follows:

• BW - Ball Where, is a judgement node that states the direction of the ball in

one of six states, which are listed in the figure
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• L - Left, a processing node that turns the robot to the left

• R - Right, processing node that turns the robot right.

• MF - Move Forward, another processing node that simply moves the robot

forward

Figure 3.24: AIBO Best Trained Network [9]

This overall system is what would be expected from a controller that simply

pursues a ball, with one exception; when the ball is ‘lost left’ the robot will undergo

two forward movements. This is totally against what should happen in this scenario

it would be better to have the robot move left, as left was the last known direction

that the ball was in. This likely occurred due to the simulation randomization,

randomization is typically a good feature to use when diversifying a problem, but

something this simple it would be detrimental. In this problem, only four different

base types of node are used and the only optimization involved is the node types

and their connections and only six states that actually matter in the simulation,

better results would have been obtained from hard coding the simulation states to

test these six problems.

A more complicated problem would have tested the GNP functionality more

thoroughly, this could be finding a ball and then kicking it to a target destination. It

is much more difficult, but could have been done in the same simulation environment

and would require more than one judgement node.
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3.3.3 Genetic Network Programming with Fuzzy Reinforce-

ment Learning Nodes for Multi-Behavioural Robot

Control

In a previous year Wenhan Wang at Massey University conducted research into GNP

with Reinforcement Learning nodes for the Target Pursuit with Wall Avoidance

behaviour in robot soccer[10]. It is based on the same platform as this research

however his simulation environment does not use realistic physics, it lacks proper

friction with the field and the actual shape of the robot used is not accurate. Due

to these inaccuracies any controller built from the simulation will not accurately

represent the real platform, therefore they could not be used in any situation other

than the simulation. His soccer field is shown in Figure 3.25.

Figure 3.25: Soccer Field [10]

The use of reinforcement learning nodes would significantly increase the likeli-

hood of reaching an acceptable solution (defined by the objective function) as it

provides online learning, meaning that it will continue to optimise during the sim-

ulation process. In contrast GNP without reinforcement learning only conducts its

optimisation process after a simulation has been executed, including reinforcement

learning nodes would provide this functionality without affecting the overall GNP

architecture.
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Wang uses a very complicated fitness function to conduct target pursuit with

wall avoidance behaviour, with very rigid and large conditional statements attached

to rewards. One of which requests specific speeds depending on how far away from

the wall the robot is. These fitness functions can be considerably decreased in size

especially considering that a penalty for the wall collisions is not actually applied,

this alone would make a lot of the fitness function redundant. It was mentioned

that additional objectives would make the fitness function too complicated, this is

true for all forms of optimisation a potential solution is allowing modularization of

the problem, if the problem is split into smaller tasks then they are easier to achieve

for both humans and genetic optimization.

The overall approach at wall avoidance could be improved Wang prioritizes wall

avoidance over everything else, therefore if the ball is near to the wall the robot will

never actually get close to it, this is visible by looking at the robot and ball paths

in Figure 3.26. A solution that prioritizes the target pursuit would significantly

increase the amount of time the robot possesses the ball, as the robot would be able

to move closer to the wall and push the ball back into the playing field.

Figure 3.26: Trained Target Pursuit with Wall Avoidance [10]

The inclusion of Hill Climbing is another useful feature as it would further im-

prove the results after genetic evolution, since genetic algorithms never guarantee a

perfect result nor a local maximum result, using Hill Climbing in conjunction with
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GA’s would guarantee finding a local maximum. Hill Climbing was utilised in this

research and is further discussed in Sections 6.1.3 and 6.2.3.

This paper has a very interesting approach at multi-behavioural controllers and

provides a lot of insight on many difficulties that should be considered in any further

research within this platform.

3.3.4 Reinforcement Learning Approach to AIBO Robot’s

Decision Making Process in Robosoccer’s Goal Keeper

Problem

Using the AIBO robots in 2011, Mukherjee et al. developed a Reinforcement Learn-

ing controller for the goal keeper problem[11]. Their approach is focused on the

movement decision making of the robot, they use predefined functions for all move-

ment and the Reinforcement Learning controller will only decide which direction the

robot should move in, or if it should remain stationary.

In their solution the field is separated into seven potential states for the ball

location. It should be noted that within the paper states Five and Six are exactly

the same, it is likely that they intended one of these states to be the near right

corner. Each of these states are defined below:

• State One: Ball is at the far left

• State Two: Ball is at the far right

• State Three: Ball is at the far middle

• State Four: Ball is in front and heading towards the goal keeper

• State Five: Ball is near the left corner

• State Six: Ball is near the left corner

• State Seven: Ball is near the middle

These individual states are used within the Reinforcement Learning algorithm to

allow it to learn the optimal movements based on the ball location. Three movement

types are considered within the algorithm, that is move left, move right and remain

stationary. They do not consider the location of the goal keeper itself within the

algorithm and it is likely that they assume that the robot is always in the centre

of the goal area. This would be detrimental for situations where the robot moves

to one side to protect the goal, then without giving the goal keeper enough time to

reposition itself, an attacker shoots at the other side.
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The controller was optimised on a set of one attacker configurations and managed

to achieve a 80.7% success rate in defending the goal from a single attacker (shown

in Figure 3.27). This controller achieved a slightly better performance compared

to a hand calibrated system that they aim to replace, this is a significant result

considering that the controller began with zero knowledge of the problem.

Figure 3.27: Single goal attacker layouts [11]

To further test the controller optimised using the single goal attacker, it is tested

on multiple goal attacker configurations where an attacker will pass the ball to

another attacker that is located near the goal. Figure 3.28 depicts the four additional

configurations that this controller is tested on.
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Figure 3.28: Multiple goal attacker layouts [11]

Mukherjee et al. achieved an overall success of 77.5% for the goal keeper prob-

lem using Reinforcement Learning with seven states. The overall success of the

controller would be limited by the movement capabilities of the individual move-

ment functions, as they may not move in an optimal manner. This controller may

be further improved with additional states and considering the position of the goal

keeper within the goal keeper may further improve results.

3.4 Summary

In this chapter many diverse papers relating to this research have been discussed

and evaluated, they all directly relate to the tasks this research hopes to achieve or

are using Genetic Network Programming as the primary algorithm.

If Fuzzy Logic nodes are incorporated into a GNP network and that network op-

timises those nodes in some way, then that task is inherently Genetic-Fuzzy therefore

understanding how Genetic-Fuzzy can be optimised is a useful addition to this re-

search. Lee and Takagi[3] proposed using a binary encoded string to represent each

point in the membership functions and the rule system. While binary encoding

would be useful for small systems, this research aims to develop an expandable

GNP network which is only limited by computer hardware. Therefore an encod-

36



ing scheme will need to be created for every parameter type, using floating point

encoding would be much easier to implement.

It is proven that GNP can adapt to highly complicated dynamic environments

like the double-deck elevator control system[7] and that the algorithm can be applied

to real robots outside of a simulation environment[9]. It can be used to control the

overall actions of agents[5, 6] and can use other artificial intelligent nodes to complete

control based tasks[10]. Therefore if GNP is powerful enough to do each of these

tasks individually and excel in the respective roles, then it should also be able to

tie these components together to make a single controller. This controller would

not only instruct the robot on how to move, but also control the overall role as

an agent. This task would be far too complicated to optimise in one session as

the objective function will become excessively large as seen in Wang’s research[10].

Thus the objective of this research is to modularize the GNP architecture, so that

components can be trained individually and then be bound together to complete

complicated behaviours.

Lastly it is proven that the goal keeping behaviour can be solved with some suc-

cess using Reinforcement Learning[11], therefore it is likely that the same behaviour

can be solved with other algorithms. Using a Reinforcement Learning node within a

GNP would likely result in a similar or better outcome compared to what is achieved

using Reinforcement Learning alone.
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Chapter 4

Software Architecture and

Implementation

Within this chapter the various external libraries are discussed, with examples of

their usage and any specific considerations that were made. Towards the end of the

chapter the application design is briefly discussed and has diagrams to show how

each section relate.

4.1 Artificial Intelligence Libraries

Two external Artificial Intelligence libraries are used within this research, by using

external libraries it saves a considerable amount of time which would be better used

exploring the GNP architecture.

Fuzzylite is the first of these two libraries, which is a free and open source fuzzy

logic control library developed by Juan Rada-Vilela[22]. This library is used within a

robot processing node in GNP, it therefore allows any user defined fuzzy logic system

to interface with the simulation environmental variables and control the robot based

upon them.

The second library is GALib written by Matthew Wall[23] at the Massachusetts

Institute of Technology, this library is used as a foundation in which the GNP

architecture is built. Although other Genetic Algorithms can be used for GNP, this

library is definitely easy to understand and has many features.

4.1.1 Fuzzylite

As previously mentioned, the Fuzzylite library provides some of the robot motor

control within the GNP controllers. While the library is free and open source,

the complimentary application ‘QtFuzzyLite’ is not. This application graphically

displays and modifies fuzzylite systems and allows the user to export to a file or
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source code. While fuzzy systems can also be built in code it can get very long

and tedious, which is where QtFuzzyLite excels. Shown in Code 4.1 is an excerpt

of C++ code which shows the creation of a fuzzylite system with one input and

one output, each containing only one term, where typically fuzzy systems contain

upwards of three terms per input and output and often multiple inputs and outputs

themselves.

Code 4.1: Creating a basic fuzzylite system

// Creat ing a F u z z y l i t e engine

Engine∗ eng ine = new Engine ;

engine−>setName ( ” TargetPursu i tDe fau l t ” ) ;

// Def in ing a s i n g l e input v a r i a b l e

InputVar iab le ∗ i nputVar iab l e = new InputVar iab le ;

inputVar iab le−>setEnabled ( true ) ;

inputVar iab le−>setName ( ” TargetAngle ” ) ;

inputVar iab le−>setRange (−180.000 , 1 8 0 . 0 0 0 ) ;

inputVar iab le−>addTerm(

new Trapezoid ( ” stra ightAhead ” , −27.000 ,

−18.000 , 18 .000 , 2 7 . 0 0 0 ) ) ;

engine−>addInputVariable ( inputVar iab l e ) ;

// Def in ing an output v a r i a b l e

OutputVariable∗ outputVar iab le = new OutputVariable ;

outputVariable−>setEnabled ( true ) ;

outputVariable−>setName ( ”LeftWheel ” ) ;

outputVariable−>setRange ( 0 . 0 00 , 1 . 0 0 0 ) ;

outputVariable−>fuzzyOutput()−>setAccumulation ( f l : : n u l l ) ;

outputVariable−>s e t D e f u z z i f i e r (new WeightedSum ) ;

outputVariable−>se tDe fau l tVa lue ( 1 . 0 0 0 ) ;

outputVariable−>setLockPreviousOutputValue ( fa l se ) ;

outputVariable−>setLockOutputValueInRange ( true ) ;

outputVariable−>addTerm(new Constant ( ”medium” , 0 . 3 7 0 ) ) ;

engine−>addOutputVariable ( outputVar iab le ) ;

// Descr i b ing how the input r e l a t e s to the output

RuleBlock∗ ru l eB lock = new RuleBlock ;

ru leBlock−>setEnabled ( true ) ;

39



ru leBlock−>setName ( ”” ) ;

ru leBlock−>setConjunct ion (new Minimum ) ;

ru leBlock−>s e t D i s j u n c t i o n ( f l : : n u l l ) ;

ru leBlock−>s e t A c t i v a t i o n ( f l : : n u l l ) ;

ru leBlock−>addRule ( f l : : Rule : : parse (

” i f TargetAngle i s stra ightAhead

then LeftWheel i s medium” , eng ine ) ) ;

engine−>addRuleBlock ( ru l eB lock ) ;

As can be seen by the code excerpt in Code 4.1 manually writing a fuzzy system

can be very long but thankfully fuzzylite comes with the ability to import these

fuzzy engines, significantly decreasing the amount of code required and making the

overall application more adaptable, which was one of the major factors considered

when choosing an appropriate Fuzzy Library.

Within the application produced by this research, the initial fuzzy systems would

be designed in QtFuzzyLite and then imported as a GNP node for further optimiza-

tion. The code used within the application to import a fuzzylite engine is shown

in Code 4.2, it is very generic code that could be used in any application using

fuzzylite.

Code 4.2: Import a fuzzylite system

St r ing f i l e C o n t e n t s = Read Ent i re F i l e Into the St r ing

f l : : Engine∗ eng ine = NULL;

f l : : Importer∗ importer = new f l : : F l l Importe r ;

try {
eng ine = importer−>f romStr ing ( f i l e C o n t e n t s ) ;

} catch ( f l : : Exception& ex ) {
// Error Reading Engine

}

Once a fuzzylite engine has been imported or coded via one of the above methods

(Code 4.1 or Code 4.2, the only remaining requirement is the actual usage. To use

the engine it only takes a few lines of code to set the input variables, process using

the engine and then read the final output for use in other areas of the application.

A small example of this process is shown in Code 4.3.

Code 4.3: Executing a fuzzylite system

// S e t t i n g the Input f o r Target Angle

engine−>get InputVar iab l e ( ” targetAngle ”)−>
s e t Input ( targetAngleValue ) ;

// Process the Fuzzy System
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engine−>proce s s ( ) ;

// Get the Fuzzy Logic Output

OutputSpeedLeftWheel = engine−>
getOutputVariable ( ” l e f tWhee l ”)−>d e f u z z i f y ( ) ;

Overall fuzzylite is a well designed library that is simple to use and understand,

but even easier along with QtFuzzyLite as a design and debug tool.

4.1.2 GAlib

GAlib is the genetic algorithm library used within this research, written by Matthew

Wall at the Massachusetts Institute of Technology in 1995 and was regularly updated

until 2007. It contains many different classes and examples to suit almost any

situation, while providing the foundations for those situations it doesn’t directly

support. Simply using one of the pre-built classes is very easy due to the numerous

examples, however custom classes can be reasonably complicated to write if one is

actually required. Within this research the GARealGenome was used as it is both

easy to use and can represent a diverse number of variable types. The fact that

GARealGenome can easily represent multiple data types makes it perfect for the

GNP architecture, as it requires to be able to represent floating numbers, boolean

values and integers.

The most utilized function when creating a GARealGenome in this genetic al-

gorithm library is add, which is used in defining each gene or parameter to be

optimized. It takes five parameters to define the allele of each gene. The first two

are the Min and the Max values, the third is an Increment value to define the poten-

tial values between Min and Max and the last two define whether Min and Max are

included or excluded in the list of potential values. In the case where the increment

is not evenly spaced between the Min and Max, the maximum value will not be

placed into the potential outcomes at all.

The variable staticObjectiveFunction is an actual function within the program

which the genetic algorithm will repeatedly execute for every candidate solution

within the evolution process. The entire process of creating a GARealGenome is

shown in Code 4.4.

Code 4.4: Designing a GAlib chromosome

GARealAlleleSetArray∗ encoding = new GARealAlleleSetArray ( ) ;

encoding−>add (Min ,Max, Increment ,

GAAllele : : INCLUSIVE, GAAllele : : EXCLUSIVE) ;

// The above l i n e can be repea ted to s u i t the number o f

// r e q u i r e d Array Encoded parameters .
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GARealGenome genome (∗ encoding , s t a t i cOb j e c t i v eFunc t i on ) ;

Once the GARealGenome is initialized the Genetic Algorithm process can begin,

shown in Code 4.5 the required C++ code to create the Genetic Algorithm engine,

along with the definition of the various settings that should be defined before ex-

ecution. The line that contains minimize and maximize shows the functions that

should be run to define whether the ideal situation from the Objective Function is

minimizing or maximizing, internally the library simply translates each minimizing

fitness value into a maximization when executing.

Code 4.5: Initialize a GAlib genetic algorithm

GASimpleGA genet i cA lg ( genome ) ;

genet i cA lg . popu la t i onS i z e ( 1 0 0 ) ;

genet i cA lg . nGenerat ions ( 5 0 ) ;

genet i cA lg . pMutation ( 0 . 0 8 ) ;

genet i cA lg . pCrossover ( 0 . 6 ) ;

genet i cA lg . minimize ( ) ; //OR g e n e t i c A l g . maximize ( ) ;

genet i cA lg . e l i t i s t ( gaTrue ) ;

Lastly to begin the Genetic Algorithm, the simplistic approach is to execute the

evolve() function. This Function will perform the entire Genetic Algorithm process

and call the Objective Function when a Genome needs evaluation and once the

defined number of generations has been completed then the Function will end. The

evolve function is displayed in Code 4.6, along with the method of obtaining the

best candidate solution from the library.

Code 4.6: Executing a GAlib genetic algorithm

genet icAlg−>evo lve ( ) ;

GARealGenome∗ currentBest = (GARealGenome∗)

genet i cA lg . populat ion ( ) . bes t ( ) . c l one ( ) ;

4.2 Physics Engine

Box2D is the Physics Engine used in this implementation as it is a highly recom-

mended two dimensional physics engine that has been used in many applications,

it was created by Erin Catto[24] in 2007 and has been significantly improved since

the initial release.

A two dimensional engine is used in this research as the only additional accuracy

from having three dimensions is when a ball bounces or when a robot falls over,
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both of which are very unlikely to happen within robot soccer. A limitation to

using Box2D in a top down view is that objects would be considered floating in mid

air; since these objects are considered floating no form of friction will be evaluated.

Friction was implemented in the simulation platform and is further discussed in

Section 5.2.

When initially using Box2D a b2World object must be created and this is easily

done using two lines of code, the first defines the world gravity and the second

creates the world. In this application the gravity should be zero in both dimensions

as its being used as a top down view, shown in Code 4.7.

Code 4.7: Creating a Box2D world

b2Vec2 g rav i ty = new b2Vec2 ( 0 , 0 ) ;

b2World world = new b2World (∗ g rav i ty ) ;

Within the world there are two main types of bodies; these are static bodies which

will never move and dynamic bodies which can move. They are both created in a

similar process with a select few differences; for example, a static body would not

require density or restitution as they will never move.

Code 4.8 shows a box being created as a static object and Code 4.9 shows a

circle being created as a dynamic object. The code example for the static box is one

section of code used to create the outside wall for the soccer field and the dynamic

circle is the code used for creating the ball in the simulation.

Code 4.8: Creating a static body for Box2D

// Define the shape o f the s t a t i c body , t h i s case i s a box

b2PolygonShape∗ boxDef = new b2PolygonShape ( ) ;

boxDef−>SetAsBox ( boxHeight , boxWidth , boxCenter , ang le ) ;

// Container to ho ld the shape d e f i n i t i o n

b2FixtureDef f i x t u r e D e f ;

f i x t u r e D e f . shape = boxDef ;

// Define the body as a s t a t i c o b j e c t

b2BodyDef∗ bodyDef = new b2BodyDef ( ) ;

bodyDef−>type = b2 stat i cBody ;

// Create S t a t i c Body

body = world−>CreateBody ( bodyDef ) ;

// Attach the Shape to the body

body−>CreateFixture (& f i x t u r e D e f ) ;
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Code 4.9: Creating a dynamic body for Box2D

// Define the shape o f the dynamic body , t h i s i s a c i r c l e

b2Circ leShape ∗ c i r c l e D e f = new b2Circ leShape ( ) ;

c i r c l e D e f−>m radius = 2 1 . 3 3 5 ;

// Container to ho ld the shape d e f i n i t i o n

b2FixtureDef f i x t u r e D e f ;

f i x t u r e D e f . shape = c i r c l e D e f ;

// s e t the d e n s i t y o f the b a l l and r e s t i t u t i o n

f i x t u r e D e f . dens i ty = 1 . 2 9 1 ;

f i x t u r e D e f . r e s t i t u t i o n = . 9 ;

// Define the body as a dynamic o b j e c t

b2BodyDef∗ bodyDef = new b2BodyDef ( ) ;

bodyDef−>type = b2 dynamicBody ;

bodyDef−>p o s i t i o n . Set ( 500 , 500 ) ;

bodyDef−>ang le = 0 ;

// Create Dynamic Body

body = world−>CreateBody ( bodyDef ) ;

// Attach the shape to the body

body−>CreateFixture (& f i x t u r e D e f ) ;

Once all the bodies have been added to the world, the physics can be emulated

using the world object to step through time. There are a few parameters used for

this function, TimeStep, VelocityIterations and PositionIterations. TimeStep is the

amount of time that should pass with each call, using 1/60 as the TimeStep means 60

frames per second. VelocityIterations improve the stability of the simulation, while

PositionIterations increases the collision detection accuracy[25]. The higher these

values the more accurate the simulation, but there will be an increased execution

time. The simulation in this application uses 6 for the VelocityIterations and 2 for

the PositionIterations, the code excerpt in Code 4.10 is all that is needed to move a

simulation by one TimeStep.

Code 4.10: Executing a Box2D simulation

world−>Step ( TimeStep , V e l o c i t y I t e r a t i o n s , P o s i t i o n I t e r a t i o n s ) ;
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4.3 Application Architecture

The application built in this research was designed and produced as three separate

components, the User Interface, Simulation Environment and GNP Library. Both

the Simulation Environment and GNP Library can be used totally independent of

one another, but the User Interface is primarily there to bind these two separate

components and make it easy to understand how the controllers are running.

4.3.1 User Interface

The Interface had specific requirements that were defined prior to development,

it needed to visually display the simulation environment and the GNP that was

currently being executed within the simulation. It also needed the ability to load

and save GNP controllers, view and modify parameters within each node in the

controller and lastly the ability to initiate the GNP training process. The resulting

interface from these requirements, is shown in Figure 4.1.
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Figure 4.1: Shows the full application User Interface

Looking at Figure 4.1, at the top left there is a graphical display of a GNP

controller, every node within the display can be moved or selected. Selecting a node

within the GNP display will allow the node to be deleted or its internal data viewed

within the GNP Properties window at the bottom left, every modifiable parameter

for each node can be changed within the properties section, this also remains true

for both Fuzzy Logic nodes and GNP nodes which have the ability to import and

export other pre-built controllers. Each GNP node when selected will allow the

user to move down into the visible cascades or move back up a level, selecting these

options will change the visible GNP Controller within the display. Between the

GNP display and properties, are the controls for creating and deleting nodes within

the currently visible GNP.

On the right side of the user interface are the controls for selecting a simula-
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tion to be executed, a button to begin training the GNP controller for the selected

simulation along with progress bars for that process and lastly the simulation en-

vironment is displayed at the top, which can execute the GNP controller on the

selected simulation by pressing the ‘Simulate GNP’ button.

Within the ‘File’ menu at the very top is the controls for loading, saving and

creating a new GNP controller. Examples of network save files are shown in Appen-

dices A.1,B.1,C.1 and D.1.

4.3.2 Simulation Environment

When designing the simulation environment the main consideration was re-usability,

it should allow other developers to easily create their own simulation for use within

the application, regardless of whether it is Robot Soccer or something else. A small

diagram displaying the major components of the simulation is shown in Figure 4.2.

Figure 4.2: A diagram of the Simulation Environment design

The base class for the simulation environment is ‘Simulation’, this class con-

tains basic functions for starting, stopping and drawing the current simulation, it

also provides interfaces keyboard and mouse control which can be implemented if

required. Everything that extends the ‘Simulation’ class must implement a ‘Run’

function, this is the main function within the RobotSoccer Simulation and should
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contain all processing logic, once this function finishes the simulation is considered

complete.

RobotSoccer Simulation both creates the Box2D world and builds the FIRA

MiroSot Middle League[12] field into it, it controls the creation of Robots and Balls

by providing an ‘addEntity’ function and provides various interfaces for any class

that extends it. Some of the interfaces this class provides are various execution

stages or collision events, these execution stages include PreRun, which is used for

initializing data before the simulation begins and PerRun which is executed every

display frame of the simulation (currently 60 per second) to name a few.

Each of the remaining classes that extend RobotSoccer Simulation provide any

additional functions or data specific to that purpose, this includes the actual robot

placements within the field, how the GNP controllers affect these robots and defines

the overall objective function for each task.

4.3.3 GNP Library

As is with the Simulation Environment the main consideration was re-usability,

but also the ability to cascade GNP controllers. It should be designed in a way

that allows any type of Processing or Judgement node to be included into a GNP

controller and thus this library should only provide the bare minimum to allow

further specialization without compromising the algorithm behaviour. The diagram

in Figure 4.3 shows the components in this GNP Library.
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Figure 4.3: A diagram of the GNP Library design

Everything within this GNP design stems from the GNP_Node class, which con-

trols movement of each node within the display and provides a large number of in-

terfaces which should be implemented in either GNP_Processing or GNP_Judgement,

most notably the loading and saving functions and an ‘execute’ function that can

be called to run any code related to the specific node.

Both GNP_Processing and GNP_Judgement are very similar, the only significant

difference between the two is that GNP_Processing can only have one connection

and GNP_Judgement can have as many as it requires. Both classes implement the

‘execute’ function and have some security within them to prevent the GNP controller

going out of bounds in the case where something goes wrong, this function then calls

either ‘Judge’ or ‘Process’ respectively. These functions are defined in any subclass

as it is where the bulk of the computation is done, they should be custom designed to

the situation and for any additional libraries that they may use, an example would

be the fuzzy logic nodes which interface directly with Fuzzylite.

A GNP in itself is a type of GNP_Processing this allows it to be treated as
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a GNP_Node, therefore a GNP that contains many GNP_Nodes will not only create

the desired ability to have any type of node within a GNP but also facilitate the

cascading GNP feature. There is not much difference between a GNP and other

types of processing nodes except that it has functions for inserting and deleting

nodes and the content within its ‘Process’ function would be unique, which is further

discussed in Section 6.2.5.

What isn’t shown in the above diagram is a class called ‘GNP_Genetic’ which di-

rectly interfaces with GALib and controls the entire optimization process (discussed

in Section 6.2.3).
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Chapter 5

Robot Soccer Simulation Platform

Massey University has an implementation of the FIRA MiroSot Middle League soc-

cer field located at the Albany campus, it is located in a basement level with no

windows and lights are uniformly distributed across the room to minimize variable

lighting conditions. A camera is located directly above this soccer field which is used

to identify the location and orientation of the robots and ball on the field, robots are

uniquely coloured for unique identification. The images from this overhead camera

is sent directly to a computer for the bulk processing, once images have undergone

colour correction and the locations of all objects have been identified, it is up to

the controllers to determine the next course of action. These controllers submit a

set of wheel speeds to each robot roughly three times a second via an XBee Radio

Frequency transmitter. The entire platform is shown in Figure 5.1.

Figure 5.1: Depiction of the Massey University Robot Soccer Platform

The real system would likely struggle under a competition scenario as any number

of problems can occur. For example, the time it takes between object location data

updates is totally unaccounted for. While it is a small amount of time, this reduces

the accuracy of the overall system. Other problems that may be encountered are that
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the camera could temporarily lose connection with the computer or an unexpected

lag in the colour classification process, both of these events would cause the robots

to falter or even crash.

This simulation was built with the intention that it could be integrated with the

real robot soccer system and open the potential for further research, where robot and

ball data are updated in the simulation environment as the data becomes available.

This would not only estimate the robot location data between the data updates,

but it could also help protect from any unforeseen issues. Integration into the real

platform would also allow opposition move prediction systems to be developed and

therefore allow more accurate strategies to be devised, it would have the additional

benefit of creating smoother robot movement as they could receive commands at

the same rate that the simulation is evaluated.

With all these considerations in mind when developing the robot soccer simu-

lation, the accuracy of the simulation was paramount. Therefore this simulation

is based on the FIRA MiroSot Middle League and uses exact measurements of the

robots used in the Massey University system.

5.1 Playing Field and Robot Design

The soccer field design must replicate the FIRA field specifications in Figure 5.2

and must be done using the Box2D physics library, otherwise wall collisions would

not be evaluated. The best way to form the required shape is by stitching together

primitive shapes, as Box2D doesn’t accept concavity in its shapes or holes in the

middle of each shape.

Therefore this field built using eight rectangles and four triangle, all defined as

static objects so they will not move at all when a robot or ball collides into them.

There are four rectangles that comprise the outside border, they are placed against

the northern and southern walls and then span the width of the field at the back end

of each goal. The last four rectangles form the sides of each goal and creates the back

wall above and below the goals. The triangles are the placeholders in each corner of

the field, which are there to prevent the ball getting stuck in the corners[12]. View

Figure 5.3 for a depiction of these wall placements. For code examples on how to

create static and dynamic objects refer to section 4.2.
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Figure 5.2: The FIRA MiroSot Middle League field specifications [12]

Figure 5.3: The soccer field wall that is comprised of twelve basic shapes in Box2D
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As for the robot that is used in the simulation it is in itself a complex shape

made up of primitive shapes, it is 7.5cm by 7.5cm and has scoops on both the front

and back, which are ideal for catching and kicking the ball. If these scoops were not

simulated then any controllers created using the simulation would not be applicable

to the real implementation.

There is the main body of the robot which is 55mm by 75mm, two rectangles on

each side of the scoop and then three triangles to make up the rest of the scoop.

Figure 5.4: Robot Design and Dimensions

Figure 5.5: Real Robot and Ball

5.2 Physics Considerations

Unfortunately the default settings for Box2D involve at least one of the four di-

rections having some form of gravity, therefore every object that isn’t touching the

ground is considered to be free-falling. The Robot Simulation requires a birds-eye

view, totally negating all forms of gravity because all objects are considered to

already be on the ground.

Disabling gravity is a simplistic task within Box2D as it only requires changing

a vector value before the world is created. The issue encountered is that all objects

are practically floating as far as the physics engine is concerned, therefore no form

of friction (unless moving along a wall) is computed by the engine. Robots colliding

would either send them perpetually spinning, sliding in some direction or a combi-

nation of the two and the ball would only ever lose momentum when colliding with

a wall or robot.

In order to correct this fault the friction calculations had to be implemented for

these three situations, forward velocity, lateral velocity and angular velocity. To

limit the complexity lateral velocity was completely removed from the robots, as

they have rubber wheels and would be unlikely to slide unless another robot collides
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into the side. Forward and angular velocities are dampened, but not removed to

allow the ball and robot to slow down and eventually stop in a realistic manner.

Forward and lateral directions are shown in Figure 5.6.

A Box2D tutorial available on the internet by iforce2d[26] looks at a similar

situation, involving a car moving around a track in a birds-eye view. The approach

used in this tutorial was implemented into the Soccer Simulation and can be further

optimized to replicate the friction within the real robot soccer implementation.

Figure 5.6: The Forward and Lateral directions of the robot

There are three sections of code that are executed in every time step within the

Soccer Simulation. The first removes lateral velocity (to the side) for robots by

calculating the force required to negate this velocity and applying an impulse in the

opposite direction, this is shown in Code 5.1.

Code 5.1: Removing lateral velocity

b2Vec2 currentRightNormal = body−>
GetWorldVector ( b2Vec2 ( 1 , 0 ) ) ;

b2Vec2 l a t e r a l V e l o c i t y = b2Dot ( currentRightNormal ,

body−>GetLinearVe loc i ty ( ) ) ∗ currentRightNormal ;

b2Vec2 impulse = body−>GetMass ( ) ∗ − l a t e r a l V e l o c i t y ;

body−>ApplyLinearImpulse ( impulse ,

body−>GetWorldCenter ( ) , true ) ;

The second piece of code reduces the angular velocity for both the robot and

the ball, but not all of this angular velocity should be removed, since both Robot

and the ball can still rotate or be forced into a spin via collisions. Code 5.2 shows

the required steps and can be tweaked by modifying the 0.1f to a value that closely

represents the real environment.
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Code 5.2: Reducing angular velocity

body−>ApplyAngularImpulse ( 0 . 1 f ∗ body−>Get Ine r t i a ( )

∗ −body−>GetAngularVelocity ( ) , true ) ;

Similar to the code which removes lateral velocity, the last code excerpt shown

in Code 5.3, introduces a form of drag which continues to reduce the speed of the

ball and robot until they stop. Once again, the strength of the drag can be modified

by changing the 2.0f value.

Code 5.3: Introducing a drag force

b2Vec2 forwardNormal = body−>GetWorldVector ( b2Vec2 (0 , 1 ) ) ;

b2Vec2 fo rwardVe loc i ty = b2Dot ( forwardNormal ,

body−>GetLinearVe loc i ty ( ) ) ∗ forwardNormal ;

f loat forwardSpeed = forwardVe loc i ty . Normalize ( ) ;

f loat dragForceMagnitude = −2.0 f ∗ forwardSpeed ;

body−>ApplyForce ( dragForceMagnitude ∗ fo rwardVeloc i ty ,

body−>GetWorldCenter ( ) , true ) ;
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Chapter 6

Genetic Network Programming

Within this chapter the original architecture is discussed which covers various ap-

plications, approaches and the types of nodes used. It also discusses the modified

architecture which is the approach made by this research and all changes to the orig-

inal architecture. All experiments in subsequent chapters are based on the modified

architecture.

6.1 Original Architecture

The original Genetic Network Programming architecture was first introduced and

described by Katagiri, Hirasawa and Hu[5] in their research paper “Genetic network

programming - application to intelligent agents”. This initial structure has remained

unchanged since its initial proposal, the main differences between research papers

are the type of nodes used and the problem it has been used to resolve.

GNP is a collection of nodes that interlink in a directed graph, there is no

termination point in the network as it is designed to recursively loop based on the

state of the environment it is being used for and the previous states of the network.

Each GNP system contains one ‘start’ node, zero or more ‘judgement’ nodes and

zero or more ‘processing’ nodes. Figure 6.1 shows a GNP system with each of the

node types.

The start node simply states the initial position in the GNP by connecting to

the node where execution should begin the first time it is used.

Judgement nodes have two or more connections, these judgement nodes are

branching points like an if statement it will move to one node if a condition is

true and move to another if the condition is false. These judgement nodes can be

coded in many different ways, one would be to simply use a conditional statement

internally, they could use a series of these conditional statements or use artificial

intelligence libraries to decide which node should be executed next.
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Processing nodes are the last type of node in any GNP system, they are a form

of action that influences the environment it is designed for. They could be adjusting

a motor on a robot, modifying some data or anything else related to the problem at

hand. These nodes only have one connection, which states the next node after the

execution has been completed.

Figure 6.1: Example GNP System

These judgement and processing nodes can form a series of implicit actions that

are often seen in general programming environments. A chain of judgement nodes

can be nested to form an AND configuration, a node will only be executed if two

or more conditions are true, an example of this situation is shown in Figure 6.2 for

node 2. Similarly a chain of Judgement nodes can form an or configuration, this is

also shown in Figure 6.2 as node 1. One judgement node and a set of processing

nodes can be formed into a loop which directly replicates the behaviour of the while

loop in most programming languages, the behaviours will continue until a certain

condition is met, these could also be nested within one another. Lastly if a single

judgement node has a connection that links back to itself, then this behaviour acts

like a wait or sleep until a certain condition is reached. Some of these behaviours

may or may not be useful for specific problems, but if they are not required then

they are likely to be optimised out of the population.
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Figure 6.2: Possible GNP Node Configurations: Node 1 is in an OR and Node 2 is

an AND

Figure 6.3: Possible GNP Node Configurations: Wait until condition

As stated previously the network begins at the start node when it is executed

for the first time, the network is executed whenever the robot or platform requires

an action to be made, this could be run repeatedly at certain time intervals or

whenever data becomes available. At the end of each execution the network retains

the knowledge of the state(node) it was in and the next execution it will continue

from that previous state, this prevents the system from repeatedly executing the

same nodes. In the original architecture a maximum of five judgement nodes or up

to four judgement nodes and one processing node are executed each time the network

is used, as soon as a processing node is executed the network ends its execution at

that point. The network execution ends as soon as a processing node is evaluated to

prevent another processing node from overwriting any changes to the system that
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the previous may have done.

A time delay concept is also included which is to represent any delays between

making an action and being able to make another action, or a judgement and an

action. However this time delay is largely unused despite stating that it seems to

make improvements when this node transition delay is used[5, 27].

6.1.1 Node Types

Most applications that use GNP use very specific nodes to the problem, for agent

based systems there could be nodes to send the agent forward, backwards or condi-

tions to test whether they can move in a certain direction[5]. If a node is too specific

to the problem it is designed for, then the code and networks will not be reusable for

other applications. However if generic nodes like ‘move forward’ are used to train a

complicated behaviour, then these individual nodes can be replaced with nodes that

provide the same functionality for another robot, then this new robot will posses

the same complicated behaviour and requires very little to no additional training.

Only recently have additional artificial intelligent systems been implemented as

nodes within a GNP network, this is generically Reinforcement Learning or Fuzzy

Logic[10, 27]. While these two algorithms are useful and for the tasks they are

required to do, it would be interesting to see a broader selection of node types

included in the networks, specifically path finding nodes or neural networks.

Wang[10] proposed including pre-calibrated AI systems into a GNP network, up

until this point all nodes were trained along with the GNP which is not practical

when it comes to large control issues. The ability to include previously developed

AI systems is the first step towards a modularized GNP.

6.1.2 GNP Individual Definition

In Figure 6.4 the gene structure for a single node is displayed, K is the node type

being either Judgement or Processing nodes, ID is an identification number for a

node within their node library and T is predefined to one for Judgement nodes and

five for processing nodes.

Connections are listed as C, this is an identifier to the next nodes that should

be processed. CT stands for Connection Time, this is a delay between one node

and the next node. The parameter is never actually used within any research and

seemingly redundant for the architecture, if a waiting period is actually required for

a network then the design in Figure 6.3 could be used or even modified to include a

specific number of loops.

The figure displaying the gene structure (Figure 6.4) is slightly deceiving as in

the paper that originally proposed GNP[5] it states that only the connections are
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optimised. Therefore in actual fact the gene structure would only contain a series

of connections (C), the remaining parameters could in theory be optimised except

for K but they never are.

If K were to be optimised then there will be significant redundancies when listing

the connections and connection times, as it will have to account for every potential

situation, specifically the maximum number of connections used in any given node

within the node library.

Figure 6.4: Original Architecture Gene Structure for Node i[5]

More recent advances in the GNP architecture that includes Reinforcement

Learning nodes allow optimisation of their Q Values and the node types internally[10,

27], while this is a significant improvement over the original GNP it is still limited

by the contents of the node library used in the optimisation process. If a required

node or variant of a node is not present within the node library, then the overall

architecture will struggle to complete the task, this does include the reinforcement

learning aspect.

6.1.3 Training Strategy

The typical approach at optimisation in Genetic Network Programming is to solely

use Genetic Algorithms, while GA’s are effective at finding solutions when the so-

lution space is large, it does not guarantee an optimal result. In previous research

there has been very few attempts to further enhance the optimisation process, with

the exception of Wang[10] who incorporated Hill-Climbing every five generations for

the top three individuals and Yu et al.[28, 29] who modified the Genetic Algorithm

to include Ant Colony Optimisation.

Hill-Climbing is an iterative search in the local area of a solution space, where

it modifies individual parameters in order to obtain a locally optimal fitness. Due

to the iterative nature of the algorithm, it is often time consuming especially if the

candidate solution has neighbours with a relatively small increase in solution fitness

(a plateau on the solution space). Conducting this search repeatedly throughout

the genetic optimisation process, as was proposed by Wang[10] would significantly

increase training times.

The Hybrid GNP with Ant Colony Optimisation approach introduced by Yu et

al.[28, 29], where every ten generations in the typical genetic process there is a “spe-
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cial generation”. In each special generation, crossover and mutation are computed

with a weighted probability based on pheromones. The pheromones are influenced

by the overall fitness of the current generation and the number of transitions that

occur from one node to another. Therefore the more often a particular node connec-

tion is used within the population, the more likely it is that the successive generation

would use the same connection and visit its parent node. Yu et al. show that this

hybrid optimisation is more efficient than simply using Genetic Algorithms; how-

ever more tests should be conducted, as the reduction in population diversity may

be detrimental to the operation of the standard GA component.

The actual encoding scheme used in previous research is not often discussed in

detail, but those that do mention it are using binary encoding[7] scheme. However it

has been shown by Janikow and Michalewicz[20] that floating point representation

is more time efficient as they do not require decoding, this is especially true with a

large number of optimized parameters.

Only two different types of parameter are optimised within this GNP architec-

ture, that is the connections which define all the transitions from one node to the

next and in some cases the node identification number is optimised[5, 27]. In terms

of the identification number a library of potential nodes is used, this library is in-

dexed by this identification number thus allowing the actual nodes to be optimised

based on this library. This however means that only nodes within this library are

considered and nothing outside of it. While this will keep the solution space small,

it will reduce the likelihood of reaching the best potential solution, if a required

node or variation of a node is not included in the node library.

When a node identification is being optimised by the GNP, the selection process

will be limited to a subset of the actual node library; effectively those nodes with the

same node type and the same number of connections. Otherwise, swapping nodes

with different node types (or number of connections) will result in an incompatible

number of node connections. This problem can be avoided by optimising an excessive

number of connection data for each node, the actual amount of connection data

would reflect the worst case node (node with the most connections). For any node

that uses less than this number of connections, there is redundant optimisation

parameters and thus increases the solution space exponentially with the number of

nodes in the network.

In this architecture uniform crossover is used, this is similar to one point crossover

discussed in Section 2.2.3 except that every point in the binary string is considered

as a crossover point based on the set probability of crossover. Mutation occurs in a

very similar way, using the defined probability of crossover, each bit has a chance of

being flipped.
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6.1.4 Pseudo-code

The actual code that executes a GNP system is not very large, as most functionality

is included in the nodes themselves. Before the system is run for the first time the

“Initialization” section of Code 6.1 is run, then subsequently every execution stage

is run every time it is required, this could be in set time intervals or when new data

becomes available.

The lines that state “CurrentNode = CurrentNode.NextNode” may well be more

complicated depending on the developer, this line is used to represent both Judge-

ment and Processing nodes returning the next node to be executed. This may in

fact require searching through an array or table of nodes.

Code 6.1: Original GNP Architecture Pseudo-code

I n i t i a l i z a t i o n :

CurrentNode = StartNode

−−−−−−
Each Execution :

JudgementCount = 0

While CurrentNode i s JudgementNode and

JudgementCount not equal 4

Execute CurrentNode

CurrentNode = CurrentNode . NextNode

JudgementCount = JudgementCount + 1

Execute CurrentNode

CurrentNode = CurrentNode . NextNode

6.1.5 Strengths and Limitations

The original architecture works well with most applications, it is proven to work

in many diverse problems such as agent control[5, 6], elevator systems[7] and robot

control[9, 10]. However the algorithm will struggle with larger, more complicated

systems for multiple reasons:

• Using the binary encoding scheme[5] will increase optimisation times in large

problems

• Genetic Algorithms alone do not guarantee finding an optimal solution, or

even a local maximum

• Networks are restricted to relatively small tasks, otherwise the solution space

becomes too large
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• It is difficult to remove sections of a network and reuse them in a different

application

• Most node types are problem specific and only a few types of AI nodes have

been implemented. The full-potential of GNP architectures using various AI

nodes is not yet fully explored.

• Optimisation is limited to the contents of the node library that is used, an

acceptable solution will not be found if a required node or variant of a node

is not present in the library

6.2 Major Architecture Modifications

For the most part the Modified GNP or also known as Cascading GNP is very

similar to the original, it will work for all applications that the original has been

applied to and will only require very small changes to work with any network that

has previously been optimised with the original GNP architecture.

Changes have been made to how execution time operates, increased re-usability

from general purpose nodes, it has become modular by allowing problem subdivi-

sion into multiple layered networks, the training process adds hill climbing and the

internal data of all nodes are now optimised.

Execution Time

First, the execution time has changed; in the original architecture when the network

is run, it will execute a maximum of five judgement nodes or less than five judge-

ment nodes and a processing node. Instead of having this strict limit on judgement

nodes a time system is implemented, where every time the network is run there is a

maximum time allowance of 1. Each node type will have its own time requirements,

so a simple IF statement judgement node could have a requirement of 0.1 in which

case a maximum of ten of these IF statements will be executed per network run.

If there is not enough time remaining for a node to be processed, in the situation

where 0.1 time is remaining and the current node requires 0.2 then the network will

end at this point. When the network is run again, it will have 1 time remaining

and that current node will be executed. This is similar to the original architecture

but this change was required to implement cascading, which is discussed further in

Section 6.2.1.
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Object Orientated Design

The node structure is developed in a pure object orientated design, which implements

most of the node functionality and allows new nodes to be easily developed and

integrated into the network. While this is not a significant change, it does increase

the re-usability of the algorithm by allowing other developers to add new node types

to the GNP. Unfortunately this does come with one limitation where nodes can not

transmit data between each other, this is not a specific requirement of the GNP

architecture and can be fixed sometime in the future, it would be a useful feature

to have.

Repeated Execution

To facilitate the modularization of GNP using cascading a new feature is imple-

mented for nodes that require an excessive amount of time, it allows processing

nodes retain its current state for a set number of GNP executions, effectively al-

lowing them to loop temporarily before continuing towards the next node. After

each of these loops the GNP network will finish as the current node is a processing

node, therefore it loops with each call of the network. Currently this is implemented

by adding an integer parameter that counts down to zero, upon reaching zero the

current node will be updated with the next node in the network. This additional pa-

rameter could be removed later and the node execution time mentioned above could

be used to implement this feature. This feature is initially implemented to allow

Cascaded GNP networks, but would be useful for nodes that conduct complicated

manoeuvres.

Cascaded GNP networks are further discussed in Section 6.2.1 and all changes

to the training process are discussed in Section 6.2.3.

6.2.1 Node Types

Three changes regarding the node types have been made, the first is that the system

is built in a way that allows any node type (artificial intelligence or problem specific

nodes) to be developed and integrated with ease, the only limitation is that they

must act independently and can not transmit data between nodes but this could be

implemented in the future. This change also allows Genetic optimisation to be given

to any node that requires it, a fuzzy logic node that has a connection to itself and

is optimised via GNP is effectively Genetic-Fuzzy, this remains true for any future

integrated nodes.

Secondly the use of a specific “Start” node has been removed as its only purpose
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was to identify the first node to be executed, instead the start is identified as a

property of the network.

The third however is the ability to have a Cascading GNP network. These

Cascading GNP’s are GNP networks that contain other GNP networks, theoretically

there is no limit to the number of layers that can be used, however this has only been

tested on two layered networks. A developer could have a top level network that acts

as a dynamic role allocation system, where a robot will change roles based on the

environment, then the next layer could control specific actions regarding roles and

then a further layer could describe how the robot should move. These Cascading

GNP (CGNP) will be especially useful for complicated robotics with many motors

and behaviours, for example a robotic hand or even a complete humanoid robot. A

very small CGNP network is shown in Figure 6.5, the top level network has three

nodes one of which is another GNP network, the second layer only has two nodes

that point to one another.

Figure 6.5: Cascaded Genetic Network Programming Example

There were two main problems preventing the use of CGNP in the original ar-

chitecture, both of which are discussed in Chapter 6.2. These are the time facility

and the need for repeated executions.

In the original architecture a maximum of five judgement nodes or less than five

judgements and one processing node are executed, if that same theory was applied to

CGNP then with a large number of layers the system would be allowed to infinitely

traverse through new layers. This would result in a system that hangs, lags or

otherwise freezes while waiting for a response from the GNP. This is because each

layer of GNP would itself be allowed to process these five judgements and or less

than five and one processing node, a CGNP itself is a processing node as they will

influence the system in some way, so the first layer could execute four judgements

and then a CGNP, the second layer could execute four judgements and a CGNP

etcetera. Therefore by allowing a single layer of GNP to have a maximum of 1 time

allowance, a second GNP layer could cost a total of 1 time and it will then only be

executed when the network is freshly run without any previous node execution. This
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will cause a delay of one network run before the next layer is executed however this

would be negligible for most applications, for time critical applications the remaining

time could potentially be passed as a parameter to the next GNP layer.

Repeated executions are required for CGNP as when a multi layer network is

executed without the repeated execution facility, then the second GNP layer will

be executed and may reach another GNP node however this third layer will never

be executed because the second layer has finished its single evaluation and the top

level network has already moved to the next node. Instead the required number of

repeated executions can be trained using the genetic algorithm, so the third layer

may only require one execution, the second layer could require three executions and

then the top layer will not leave the CGNP node prematurely. Whenever a CGNP

node becomes the current node in the layer above the new layer will reset its current

node to the start. Therefore the subsequent layer will act like it has never been

executed before, with every repeated execution the state will remain the same as

it was in the previous execution. This allows all nodes to be visited with repeated

executions but will also behave in the same or similar way each time the node is

visited.

6.2.2 GNP Individual Definition

The approach taken by this research does not allow node types to be optimised

like the original (discussed in 6.1.2), instead this thesis proposes the use of gen-

eral purpose nodes which both increases re-usability of nodes and provides more

optimisation.

Prior to optimisation the developer can add any number of nodes to a GNP, these

could be Fuzzy Logic nodes, problem specific nodes, simple IF statement Judgement

nodes, Reinforcement Learning, literally any type of node. The node types do not

change within the optimisation process but data within the nodes can change, each

node can request any data optimisation that it may require and depending on the

developers preferences. A Fuzzy Logic node could optimise the membership func-

tions, inputs, outputs, rules or any combination of these. A Reinforcement Learning

node could use the GA to set initial states for the Q values or a simple IF statement

Judgement node could choose its own input parameters and formulate its own con-

ditional statement. Additional to the internal node data, the node connections can

be optimised as well as the Repeated Execution parameter described in Section 6.2.

The gene structure for Node i is depicted in Figure 6.6, R is an integer value that

states the number of Repeated Executions, there is a series of numbers that define

the next potential nodes (C) and lastly is ND which is the Node Data, all node

specific data is concatenated onto the end of each individual nodes gene structure.
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Figure 6.6: Modified Architecture Gene Structure for Node i

As an example a Fuzzy Logic Node’s gene structure is shown in Figure 6.7, in

this case it is only optimising the membership functions as denoted by MF and its

Input type which is marked by an I, this input type is selected from a list of potential

environmental variables. This could expand to include all other Fuzzy components

but for the sake of simplicity only these two components are shown.

Figure 6.7: Example Gene Structure for a Fuzzy Node

This optimisation process can span multiple CGNP layers, this would be done in

cases where a sub-layer has a similar objective function to the top layer but contains

different nodes. Of course the sub-layer optimisation can be disabled for situations

where pre-trained systems are being imported as CGNP nodes. Figure 6.8 displays

how these node genes (N) are stitched together to form the CGNP Chromosome,

at the very start is SNID which the Start Node Identification number. If multiple

layers of CGNP is optimised at the same time, then this same structure will also be

used as one of the internal node gene structures.

Figure 6.8: CGNP Chromosome with Nodes

Allowing a node to optimise its internal data means that better solutions will

be found in the situations where the original architecture does not contain fine

tuned nodes in its library of potential nodes. This increases the solution space as

each node will potentially add more data parameters, this will increase the required

population and generation thus increasing the overall training times. This is not

necessarily a limitation of the data optimisation, as it is scalable from mere con-

nection optimisation to multiple level CGNP’s with Reinforcement Learning, but

should be considered when designing a network for optimisation.

6.2.3 Training Strategy

The method used to train the network and the encoding scheme has also been

improved, by the use of Hill Climbing at the end of the Genetic Algorithm process
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and using floating point encoding.

Hill Climbing is implemented at the very end of the GA training process which is

unlike any other GNP research, this can be beneficial in situations with any number

of local maxima as the GA will find an acceptable solution and Hill Climbing will

further improve this result to the local maxima of the best solutions. Instead of

applying hill climbing every few generations as is done by Wang[10], it is applied at

the very end of the GA optimisation process only to the top 5% of the population.

This increases the overall optimisation time but guarantee at least a local maxima

solution, if the GA is lucky enough to have one of the top solutions somewhere near

the global maximum then using hill climbing will find it by iteratively searching

the local area of the solution space. As a further research this could be changed

further to include Ant Colony Optimisation (ACO) as well, as it is proven to work

more efficiently than GA alone[28], ACO works in tandem with Genetic Algorithms

therefore using Hill Climbing at the end of the optimisation process will remain

beneficial to the overall optimisation process. A simplified implementation of the

Hill Climbing algorithm used in CGNP is shown in Code 6.2. Within the pseudo-

code, neighbouring values N in G, refers to finding potential values near to the

current value for a specific gene, that will potentially increase the fitness of the

individual GNP. The search may proceed by decreasing or increasing the gene G in

each iteration of the hill-climbing process.

Code 6.2: Simplified Hill Climbing Pseudo-code used for CGNP

Best = Best i n d i v i d u a l in the populat ion

For each s o l u t i o n Current in the top 5% of the populat ion

For every gene G in Current

For every ne ighbour ing value N in G

Poten t i a l = Current with gene N

Evaluate Po t en t i a l

i f Poten t i a l . f i t n e s s > Best . f i t n e s s

Best = Poten t i a l

Since the CGNP is designed to be expandable to any number of nodes, it is

not feasible for binary encoding to be used otherwise the time required to decode

candidate solutions would become exponential[20]. Therefore to prevent the need

for repeatedly decoding the data, the data itself is kept in its natural form using

Floating point representation (discussed in Section 2.2.1). The crossover method

used for this encoding type is Uniform Crossover, while it is similar to the binary

version instead of separating the parents on the binary level, they are instead split

at an array level therefore individual numbers are not split in any way. Mutation

is conducted by randomly selecting a gene in the array and re-randomizing it, this
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includes additional variation to the population but sticks to the constraints set by

the individual gene, therefore it will not go out of a predefined set of potential values.

6.2.4 Cascaded GNP Example

This section steps through a multiple layer Cascading Genetic Network Program-

ming example for a total of six executions, each execution of the network is displayed

in an image and a accompanying table. Within each table ‘RE’ is the Repeated Ex-

ecutions parameter at each stage, the images are labelled with the current step in

Red, these steps directly correspond to the table.

Within these figures many features of the CGNP architecture are depicted, spe-

cific components that should be noted are:

• In the first execution, the new processing node is not executed because it lacks

enough remaining time allowance to execute the node.

• Within the multiple layered networks, the Repeated Execution parameter is

reduced for every layer.

• Since CGNP does not contain termination nodes, the parent network will de-

cide when the child network should end. This is shown in the fourth execution,

step 8 where the child network ends because the Repeated Executions reach

zero.

Not shown in this example is what will happen when a previously visited CGNP

processing node is revisited, each new visit to the node will reset the current node

to its start position and it will then continue as normal.
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Figure 6.9: Cascading GNP Example Execution: 1

Step Action Layer Node RE Time
1 Begin 1 0 1 1
2 Judge 1 0 0 0.9
3 Transition 1 1 5 0.9

Table 6.1: CGNP Example Steps Execution: 1
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Figure 6.10: Cascading GNP Example Execution: 2

Step Action Layer Node RE Time
1 Begin 1 1 5 1
2 Process 1 1 4 0
3 New Layer 2 1 1 1
4 Process 2 1 0 0.7
5 Transition 2 2 2 0.7

Table 6.2: CGNP Example Steps Execution: 2
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Figure 6.11: Cascading GNP Example Execution: 3

Step Action Layer Node RE Time
1 Begin 1 1 4 1
2 Process 1 1 3 0
3 New Layer 2 2 2 1
4 Process 2 2 1 0
5 New Layer 3 2 1 1
6 Judge 3 2 0 0.8
7 Transition 3 4 1 0.8
8 Judge 3 4 0 0.7
9 Transition 3 3 2 0.7
10 Process 3 3 1 0.2

Table 6.3: CGNP Example Steps Execution: 3
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Figure 6.12: Cascading GNP Example Execution: 4

Step Action Layer Node RE Time
1 Beginning 1 1 3 1
2 Process 1 1 2 0
3 New Layer 2 2 1 1
4 Process 2 2 0 0
5 New Layer 3 3 1 1
6 Process 3 3 0 0.5
7 Transition 3 2 1 0.5
8 Transition 2 3 1 0

Table 6.4: CGNP Example Steps Execution: 4
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Figure 6.13: Cascading GNP Example Execution: 5

Step Action Layer Node RE Time
1 Beginning 1 1 2 1
2 Process 1 1 1 0
3 New Layer 2 3 1 1
4 Judge 2 3 0 0.2
5 Transition 2 0 2 0.2

Table 6.5: CGNP Example Steps Execution: 5
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Figure 6.14: Cascading GNP Example Execution: 6

Step Action Layer Node RE Time
1 Beginning 1 1 1 1
2 Process 1 1 0 0
3 New Layer 2 0 2 1
4 Process 2 0 1 0.5
5 Transition 1 3 1 0

Table 6.6: CGNP Example Steps Execution: 6

6.2.5 Pseudo-code

In comparison to the pseudo-code for the original architecture shown in Code 6.1,

the code for CGNP (Code 6.3) has a few noticeable changes specifically the time

management and the repeated executions. There is one other aspect that is not
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covered throughout the thesis, that is the “Reset CurrentNode” line this is used

to reset any data within a node which may persist between repeated executions.

Currently the only use for this section is to reset any subsequent CGNP layers to

the start node, this may find use in other nodes developed in the future.

Code 6.3: CGNP Architecture Pseudo-code

I n i t i a l i z a t i o n :

CurrentNode = StartNode

CurrentExecutionCount = CurrentNode . RepeatedExecutions

−−−−−−
Each Execution :

TimeAllowance = 1

While TimeAllowance i s g r e a t e r than or

equal to CurrentNode . Time

Execute CurrentNode

CurrentExecutionCount = CurrentExecutionCount − 1

TimeAllowance = TimeAllowance − CurrentNode . Time

PreviousNode = CurrentNode

I f CurrentExecutionCount equa l s 0

Reset CurrentNode

CurrentNode = CurrentNode . NextNode

CurrentExecutionCount =

CurrentNode . RepeatedExecutions

I f PreviousNode i s Process ingNode then Fin i sh

6.2.6 Strengths and Limitations

Cascading Genetic Network Programming contains many strengths it is, directly

applicable to all all cases that the original architecture is used, it is also more

adaptable for larger systems as it can be modularized into smaller components that

can be individually trained. Since the cascading feature allows problem subdivision

and that the training methods allow data optimisation within the nodes themselves,

the developed nodes and trained systems are reusable and can be applied to other

related problems. It also allows any other AI system to be easily integrated into a

CGNP, either trained or untrained. The algorithm also guarantees finding a local

maxima due to the addition of Hill Climbing at the end of the Genetic optimisation

process.

All nodes should act independently as there is no form of data transmission

between nodes, except for any changes one node makes to the environment, data
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transmission between nodes could be developed in the future. Unlike the original ar-

chitecture the types of nodes themselves can not be changed within the optimisation

process, however by training data within the nodes this overcomes this limitation.

6.3 Summary

Genetic Network Programming is a directed graph algorithm that uses Processing

Nodes (actions) and Judgement Nodes (decisions), the network is traversed by pass-

ing from one node to another completing the respective tasks. Nodes themselves can

be specific to the problem they are hoping to achieve, such simply setting the speed

of a motor or Artificial Intelligence nodes that also have the ability to control motors,

but have additional intelligence. In the original architecture only the connections

between nodes are optimised, but has the ability to optimise node types from a

pre-compiled library of potential nodes. This optimisation process is achieved via

the use of Genetic Algorithms, however could be further improved using Ant Colony

Optimisation or Hill Climbing.

The original architecture has been applied to complicated tasks such as elevator

control[7]. However the original architecture does contain limitations such as; using

binary encoding will increase optimisation times in larger problems, networks are

trained all at once therefore its restricted to small problems otherwise the solution

space will become too large and the contents of nodes themselves are not optimised

therefore a perfect solution will not be found unless the required node or variation

is present in the node library.

To approach these limitations a new architecture is proposed in this thesis, called

Cascading Genetic Network Programming. It allows multiple level networks to be

designed and executed, this increases re-usability of networks and allows problem

division into modular components that can be easily solved, while providing the

functionality to execute these separately trained networks as part of a cascaded

network. To facilitate the new architecture two main changes were made; one of

which views the execution times of nodes in terms of a remaining time allowance, if

there is not enough time remaining the node will not be executed until the next time

the network is called. The second change allows time consuming nodes to repeatedly

execute before progressing to the next node, this is specifically useful to allow an

infinite number of cascading levels in the network design.

The data optimisation methods also changed so the data internal for every node

can be optimised at the developers discretion, this allows more general purpose nodes

to be developed, significantly increasing the re-usability of nodes. This also means

that there is no need to keep a library of potential nodes, as all nodes in the network

are statically defined prior to the optimisation process. An example node would be
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a simple IF statement node, within the optimisation process it could decide on its

own conditional statement, from the input parameters to the comparator. Therefore

this one node type can be used in every situation or problem where an IF statement

may be required.

To improve the overall training results, Hill Climbing was included at the end

of the Genetic training process. This increases the training time, but guarantees a

local maxima result at minimum. This would be useful for any situation where the

controller is absolutely critical to the situation.

Cascading Genetic Network Programming has enhanced re-usability and is more

modular than the original architecture and can therefore be applied to larger prob-

lems, it can also scale down to apply to the same situations where the original

architecture was applied and any pre-trained GNP systems can be ported to CGNP

with ease.
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Chapter 7

Genetic Network Programming

Controller Design

In this chapter an approach at making a Cascaded GNP for Robot Soccer goal

keeping is covered, the success of the final goal keeper will prove the effectiveness of

the overall CGNP architecture introduced in Section 6.2. This goal keeper contains

multiple objectives as it must successfully defend the goal, remain inside the goal

area and if it is pushed out of the goal area for any reason it must be able to

reposition itself completing each of these objectives will result in an autonomous

goal keeper controller.

As all these objectives will amount to a rather complicated fitness function,

with very little guarantee of finding an acceptable solution the overall controller is

split into three subsections; Target Pursuit, Target Rotation and Goal Defending.

Splitting the controller into smaller parts also shows how a CGNP controller can

be modularized, this allows individual components to be retrained with additional

requirements and then plugged into the final controller without the need to retrain

the entire network.

7.1 Target Pursuit

Target Pursuit is one of the fundamental aspects of Robot Soccer, it allows the

Robot to move to a specific position on the field, pursue a ball or even another

robot. In an ideal situation, the robot would get to the specific target as soon as

possible. The robot should also end the pursuit facing the target, if the robot wasn’t

aimed at the target then subsequently kicking a ball would require rotating first.

Therefore it would be advantageous if one system both pursued a target and was

facing the correct direction.

A Target Pursuit system for Robot Soccer has previously been developed using
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Genetic optimised Fuzzy Logic, however this system needs some improvements. If

the robot begins very near to the target (around 180 millimetres) at close to 90

degrees from the robots initial position, instead of rotating on the spot and then

moving towards the target the Genetic Fuzzy controller will rotate around the ball

in a circle. This is shown in Figure 7.1, the red line is the previous path of the robot.

Figure 7.1: Issue with the Genetic Fuzzy Target Pursuit

While this issue could be corrected by retraining the Genetic Fuzzy system, it

could also be fixed by using additional basic nodes in a CGNP. Therefore this first

CGNP test will prove its ability to improve a pre-trained system and the ability to

import other AI systems into the network.

7.1.1 Test Simulation

The Target Pursuit behaviour should be represented in a simulation with specific

objectives. The easiest way to represent a Target Pursuit system is when a Robot

pursues a ball, a collision between the robot and the ball would show the target

has been reached. As previously stated the robot should also face its target once

it reaches the target, therefore an ideal simulation would be where a robot collides

with a ball and attempts to minimize the angle to the ball when the collision occurs.

In order to represent the entire target pursuit problem for robot soccer, one

option is to have a robot for every single location and rotation within the playing
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field, however the time it would take to evaluate all these possibilities would be

unrealistic. A subset of 24 locations evenly spread across the field, with four 90

degree rotations for each location, will execute within a more realistic time frame

and provide a general representation of the problem. This test is conducted five

times with different ball starting positions, Figure 7.2 displays the robot starting

positions and the numbers represent the ball starting points, these robot positions

are shuffled around to accommodate the ball position in the respective test.

Figure 7.2: Target Pursuit Test Cases

Disabling collisions between robots allows multiple instances to be executed on

the same field, so multiple robots can be at the same location without interfering

with one another, however some collision detection is still required to identify when

a robot collides with a ball. This simulation will end as soon as all robots have

collided with the ball or after a set time frame.

7.1.2 Objective Function

As is with all objective functions the required components of an objective function

comes directly from the requirements of the task, in the case of Target Pursuit the

robot should get to the ball as fast as it can and be facing the ball when it collides.

To further improve the controller the angle to the ball at every given step should

be minimized, therefore the controller the robot will move directly towards the ball
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rather than a slow rotation. Another consideration is that the robot will often

oscillate its movement, where the angle to the ball will repeatedly increase and

decrease especially when the angle to the ball is small. Equation 7.1 displays the

final fitness function attained from these requirements, with the addition of a Worst

Robot parameter which ensures that the entire population does well in a task, this

prevents the robots from exceeding expectations in some situations and failing to

meet the basic requirements in other scenarios.

Fitness =
1

ΣnRobots
n=0 (w1 · CollisionIterationn + w2 · |CollisionAnglen|

+ IterSumn) + w5 ·WorstRobot

,

where

IterSumn =
ΣnIterations

m=0 (w3 · |AngleToBallnm|+ w4 · |AngleDeltanm|)
nRobots · nIterations

. (7.1)

Each component of the fitness function is described below:

• CollisionIteration is the effectively the time in which robots collide with the

ball

• CollisionAngle is the angle to to the ball from the robots perspective at the

time of collision

• AngleToBall is again the angle to the ball from the robots perspective

• AngleDelta is evaluated as the actual angle change from the previous move-

ment to the current position, if it has increased from the previous movement

if it decreases then it is treated as zero for that movement

• WorstRobot is the summation of the previous weighted components for the

robot that performed the worst in the test

The first four major components of the fitness function (CollisionIteration, Col-

lisionAngle, AngleToBall, AngleDelta) are scaled down to between zero and one and

are then weighted, as for the WorstRobot it is scaled up to between zero and 6.3 (the

sum of the first four component’s weights) before being weighted itself. Therefore

the absolute worst fitness possible would be 1
11.34

.

The five weights are used to bias each of the main components of the fitness

function. These were were manually changed until the desired results were achieved,

their values are listed below:
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• w1 = 1.8

• w2 = 0.5

• w3 = 0.8

• w4 = 3.2

• w5 = 0.8

7.1.3 System Training

Very early on when developing this target pursuit controller a need for symmetry was

identified when solving this problem, the first few controllers would prefer to travel

in a certain direction regardless of what may be an ideal situation. Figure 7.3 shows

an extreme situation encountered in these early developments, the nodes used here

are the Genetic Fuzzy Target Pursuit, a set of Judgement nodes for the angle to the

ball and Processing nodes that set wheel speeds. The problem was not specifically

the objective function as it was optimising well, it was more related to personal

preference for the task since it would be difficult to modify the fitness function to

compensate for this, symmetry was forced upon some of the nodes. The Genetic

Fuzzy Target Pursuit system alone is shown in Figure 7.4 as a comparison against

the GNP trained version shown in Figure 7.3. In the GNP trained solution, trail

marks show relatively straight lines towards the target, which is indicative of better

fitness. However, the desired behaviour is a smooth path (without jagged edges)

that efficiently reaches the target.
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Figure 7.3: Target Pursuit Symmetry Issue

Figure 7.4: Genetic Fuzzy Target Pursuit Simulation
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Since the current CGNP architecture does not have the ability to optimise global

parameters that can be used to force symmetry across different nodes, a new node

type was developed by modifying the original node that purely set wheel speeds to

specified values. It was modified so that if the target was on the left of the robot,

the wheel speeds will be reversed (right wheel will become left wheel, left wheel will

become right wheel). The ability to force a robot to rotate on the spot was also

included at this time, so using these two modifications to the original set wheel speed

node a single parameter is optimised for both wheel movements. This parameter will

be somewhere between negative one and one (inclusive), using a single parameter

to represent both wheels significantly reduces the solution space and enforces the

symmetrical nature that is desired. This is definitely not an elegant solution, but it

worked for the task that was required.

As this situation is primarily to improve on the Genetic Fuzzy controller, it was

determined that only a very small network is required. In fact only three nodes

were used in the end, the Genetic Fuzzy node which does not optimise any internal

data, a modified set wheel speed node which can only rotate on the spot and an

if statement judgement node. Despite the small size of the network it contains a

large solution space, as both the if statement and set wheel speed nodes optimised

internal data. The connections for this network were set as it is such a small network

that any connection optimisation would only be detrimental.

Within this training process the network used three nodes:

• Set Wheel Speeds Processing Node with only rotation and using forced sym-

metry, can be any value between -1 and 1 to three decimal places.

• If Statement Judgement Node set to be the Absolute Angle to the Ball, com-

parison operator could either be less than or greater than and the comparison

value can be between 0 and 180

• Fuzzy Logic Processing Node, this node is set to use a pre-calibrated Target

Pursuit system and does not conduct any optimisation

With the optimisation of these nodes the total solution space is 724,362 potential

solutions, the genetic optimisation process uses a population of 120 and is evolved

for 40 generations, potentially covering 4,920 candidate solutions which includes the

initial random generated population.

• Population: 120

• Generations: 40

• Probability of Crossover: 60%

• Probability of Mutation: 8%
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7.1.4 Results and Analysis

Shown in Figure 7.5 is the final trained Target Pursuit network, there is not much

data shown on this figure as the connections remained the same throughout the

training process. The If Statement Judgement node result is: if the Absolute Target

Angle is greater than 81 degrees then move to the set wheel speed node, otherwise

move to the Fuzzy Logic node. The set wheel speed node was trained to move the

wheels at 89.5% power when the node is called, forcing it to spin on the spot towards

the ball location.

Figure 7.5: Target Pursuit Network

Comparing against the Genetic Fuzzy controller simulation in Figure 7.4 the

final GNP controller simulated in Figure 7.6 has much more compact paths than

the pure Genetic Fuzzy, they maintain the same shape as they are both symmetrical

however the GNP controller requires less time to get to the ball in all cases.

The GNP controller has an overall fitness value of 0.7394, where the pure Genetic

Fuzzy has only 0.6539. They may not differ much in overall value but in time critical

situations for example intercepting a ball, the GNP controller will get there first.
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Figure 7.6: Simulation of the best Target Pursuit individual

Referring back to the original problem with the Genetic Fuzzy controller (shown

in Figure 7.1) that instigated the need to further optimise the Target Pursuit prob-

lem, the GNP version was not trained on this specific issue but it is solved after the

optimisation process (shown in Figure 7.7).
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Figure 7.7: Genetic Fuzzy Target Pursuit problem corrected using a GNP

Figure 7.8: Target Pursuit Genetic Optimisation Fitness

Shown in Figure 7.8 is fitness data (computed from Equation 7.1) for each genera-

tion in the genetic component of the optimisation process, after this was completed
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the best individual had a fitness of 0.69516, this was further improved using hill

climbing to a fitness of 0.73947. The maximum value never decreases throughout

the optimisation process due to elitism and it can be observed that, the mean val-

ues went up and down during the optimisation period, and this likely reflects the

evolutionary mechanism to maintain population diversity.

In Figure 7.8 the maximum fitness value has not increased much in actual value

since the beginning of the optimisation process, however this slight change signifi-

cantly affects the performance of the actual controller. In relation to the objective

function for this problem (Equation 7.1), an increase of fitness from 0.69516 to

0.73947 as is achieved in the hill climbing could result in a reduction of the average

time to collide with the ball by two and a half seconds. With a longer training

time this fitness would likely increase further, but gains in actual fitness score will

diminish as the population moves closer to a global maximum result.

This optimisation process is using set connections and only a very small network

meaning it is not as difficult to train and could potentially have been manually

calibrated in less time than the optimisation process. However this was the first

test conducted for a CGNP within this research, so this test is used as an initial

proof of concept and testing environment while the CGNP architecture was being

developed. It could be further improved by reducing the number of robots in the

simulation environment, which will in turn speed up the evaluation times. Increasing

the variation of node types and also the instances of them would also likely bring

better results.

The result described in this section is the best result achieved over 14 different

tests, this is in terms of fitness and visual inspection of the controller execution.

The save file for this controller can be viewed in Appendix A.1 and figures depicting

various steps in the controllers execution is visible in Appendix A.2.

7.2 Target Rotation

Despite the fact that Target Pursuit should directly face a target, there is a trade-off

between the time it takes to get to the target and the accuracy of the final angle to

the target. Reducing the final angle to an absolute minimum requires more time.

Due to this predicament, Target Pursuit was designed to minimize the angle as much

as possible, while remaining within time constraints.

There are times where a high angular accuracy is required despite time con-

straints. One example of this would be when a team is awarded a corner kick, where

a robot has the chance to kick the ball towards another team member, in the hopes

that they manage to score a goal. Target Rotation is one solution to this high

accuracy requirement.
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The controller is to be built without any form of external AI systems, to prove

that with only simple GNP nodes that this behaviour can still be sufficiently solved.

A scenario with very little environmental data and no external forms of Artificial

Intelligence, could be considered the worst case when developing any form of AI.

7.2.1 Test Simulation

Since this behaviour is similar to that of Target Pursuit the simulation would also

be similar, however the main difference between the two is that Target Rotation

requires a higher accuracy. Where Target Pursuit has many robots in a grid with an

even spread of angles, Target Rotation should be randomized for both location and

rotation this will force the controller to learn how to rotate a fraction of a degree.

This is shown in Figure 7.9.

Figure 7.9: Target Rotation Simulation

Like Target Pursuit, this simulation executes multiple independent robots on the

same field by disabling physics collisions for the robots. This simulation will run

until time has elapsed regardless of what happens, as are not any realistic escape

conditions (like colliding with a ball).

One assumption was made when developing this test simulation, that is robots

can not actually move from their current position they may only rotate on the

spot. Therefore nodes should only be included in the network that adhere to this
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assumption, otherwise the desired results will not be achieved.

7.2.2 Objective Function

For Target Rotation the objective function is similar to that of Target Pursuit de-

scribed in Section 7.1.2, this is because the problem itself is very similar. In fact

rotating towards a target could be considered a precursor to any Target Pursuit

system. For this test however no collisions are evaluated at all because it is assumed

that robots can not move from their initial positions.

There is only three components in this objective function (Equation 7.2), they

are AngleToBall, FinalPenalty and again the WorstRobot. These have similar usage

as in the Target Pursuit system, AngleToBall the angle to the ball from the robots

perspective. FinalPenalty calculated after the simulation has completed it is again

the angle to the ball, but is included as an additional penalty because at the end

of the simulation process all robots should be directly facing the target with little

variation. Lastly the WorstRobot component is used to ensure that the controller is

useful in all situations rather than excel under a few conditions. These components

are also scaled in a similar way to the Target Pursuit system, where AngleToBall and

FinalPenalty is between zero and one before weighting and WorstRobot is between

zero and four.

The AngleDelta component in the TargetPursuit system could have been used

in this training as well, but was omitted since this system is required to direct itself

towards the target as soon as possible regardless of any smooth movement.

Fitness =
1

ΣnRobots
n=0 (IterSumn) + w2 · FinalPenalty + w3 ·WorstRobot

,

where

IterSumn =
ΣnIterations

m=0 (w1 · |AngleToBallnm|)
nRobots · nIterations

. (7.2)

In this objective function w1 = 3.0 and w2 = w3 = 1.0, this system did not

require much fine tuning at all due to its simplicity.

7.2.3 System Training

This network design uses multiple instances of two different node types, both of

which were used in the Target Pursuit controller (Section 7.1.3). The overall network

begins with four copies of an If Statement Judgement Node, that is set to use the
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Absolute Target Angle as its comparison parameter and four copies of the modified

Set Wheel Speed Processing Node, that will flip the wheel speeds if the target is to

the left of the robot. This processing node also only allows the robot to rotate on

the spot and not physically move from its starting position.

In this instance all eight nodes have their connections optimised as well as some

internal data, the Judgement node optimises its comparison operator and the com-

parison value can be from zero to 180 degrees. Again the processing node will

optimise one parameter for the wheel speed, which is between negative one and one

to three decimal places. This problem has huge solution space which may not be

feasible for finding a global maxima, however since Genetic Algorithms are useful

for finding acceptable solutions and the inclusion of hill climbing will find a local

maxima, it is likely that a decent result will be achieved from the training process.

Training used the same Genetic Algorithm parameters as were previously used,

primarily to see what sort of results will be achieved from this large solution space.

These parameters are as follows:

• Population: 120

• Generations: 40

• Probability of Crossover: 60%

• Probability of Mutation: 8%

7.2.4 Results and Analysis

After the training process it is noticed that two nodes that have been optimised out

of the network, the final network in Figure 7.10 shows this. On the far left there

are two Judgement nodes that do not have a direct link from the start node to the

nodes themselves, therefore these nodes will never be executed.
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Figure 7.10: Target Rotation Network

This network is described in pseudo-code due to its complexity, therefore in terms

of the Judgement nodes it is described in Code 7.1.

Code 7.1: Target Rotation Description

// F i r s t Judgement Node (Top Lef t , a l s o S t a r t Node )

i f AbsTargetAngle < 90 degree s then

Rotate toward the b a l l with 10.5% st r ength

Rotate toward the b a l l with 2% st r ength

else

Rotate toward the b a l l with 69% st r ength

// Second Judgement Node ( Middle Right )

i f AbsTargetAngle > 27 degree s then

Rotate toward the b a l l with 69% st r ength

else

Rotate toward the b a l l with 0.5% st r ength

Rotate toward the b a l l with 2% st r ength

There are no paths that can be drawn since the robots do not actually move,

Figure 7.11 shows the result of the simulation after only a few seconds of execution

begins. All robots are facing towards the ball in this figure, however every robot

slightly osculates its angle in the actual implementation. This is because the nodes
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themselves do not have the ability to provide smooth movement like Fuzzy Logic

does. The controller itself has the ability to rotate towards the target at variable

distances from the target, but the movement will not be smooth and it will not stop

moving once it has reduced the angle to the target down to zero.

This controller could be further improved by using Fuzzy Logic nodes and with

a larger population since only a small number of candidate solutions are evaluated.

For networks with large number of nodes like this one, it will likely yield an easier

network to read if the number of nodes were minimized in the fitness function.

Figure 7.11: Simulation of the best Target Rotation individual
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Figure 7.12: Target Rotation Genetic Optimisation Fitness

The Target Rotation Fitness data is shown in Figure 7.12, calculated using the

objective function (Equation 7.2). The genetic process obtained an individual with

a fitness of 12.3490 and this was further improved to 13.8176 using Hill Climbing.

It is noticeable that there is a considerable fitness improvement at generation 29.

The stochastic search was fortunate in finding a solution that considerably improved

over the previous best result. This controller has a very large solution space and

that is apparent in this graph, as the best individual at each generation is effectively

an outlier in comparison to the rest of the population.

The solution described in this section is the best result achieved in terms of

fitness, over five different training sessions with varying number of nodes. The save

file for this controller is shown in Appendix B.1 and figures depicting its execution

are in Appendix B.2.

7.3 Goal Defending

Goal Defending/Keeping requires very little explanation, it is arguably the most

significant role in soccer. Primarily there to protect the goal from any attacks by

the opposing team, if the keeper manages to defend the goal from all incoming

attacks, then in the worst case scenario the game will end in a draw.

Programmatically defending a goal is not a difficult task, a simple comparison

is the retro computer game ‘Pong’, where the player takes command of a paddle by
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moving it up and down the side of the field to defend an area. The approach to keep

the robot parallel to the goal area at all times is useful to minimize any unnecessary

movements including rotations, therefore the robot will be able to directly move

forwards and backwards to defend the goal without any ‘lag’ time where it is rotating.

7.3.1 Test Simulation

As the basic goal defending behaviour is being modelled after the ‘Pong’ game, the

Robot should start in the middle and parallel to the goal line. The controller should

move up and down to protect the goal as required. A few assumptions were made

when developing the controller for this behaviour, that the ball can not move the

robot with enough momentum and that the goal keeper always begins within the

goal area.

Unlike both Target Pursuit and Target Rotation, the Goal Defending test cases

can not be run on the same field. This is because the ball-robot collision physics are

required to create a controller that represents the real scenario, instead the robot

will be reinitialized to its starting position after each test for a maximum of 1000

test cases. For all test cases the ball starting position, target location and speed

will be randomized, each simulation execution will remain the same to give a fair

comparison between results. Each test case within the simulation will end when the

ball gets into the goal area or is successfully blocked by the robot, after all test cases

are evaluated the simulation will end.
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Figure 7.13: Goal Defending Simulation

The initial position for the robot and one potential starting point for the ball is

shown in Figure 7.13.

7.3.2 Objective Function

For a goal defending objective function the actual fitness evaluation could be as

simple as attempting to minimize the number of goals that the ball achieves. While

this would likely be sufficient for the task, there is no method of distinguishing

between two different solutions that successfully defend the goal against the same

number of shooting attempts.

Therefore it would be better if the problem itself is further separated into into

subcomponents, in Equation 7.3 two of these potential parameters are included. For

situations where the robot successfully defends a goal the DistanceToBall is included,

this component is the closest distance between the robot and the ball within a single

test case. Including this component rewards the robot for colliding with the ball

directly in the middle of the robots side and slightly punishes it for colliding on the

corner of the robot. This separates a save where the robot only just manages to

reach a position to protect the goal, from saves where the robot is prepared for the

incoming shooting attempt and blocks it in the middle of the robots body.

To help increase the chances of protecting the goal, the interception point where

the ball will cross the goal line is calculated, the robot is further rewarded for being
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on this spot before the ball reaches the goal. This reduces the need for additional

movement when the ball gets near to the goal.

Fitness =
1000

40 ·NumberOfGoals+ 40
1000
· ΣnTests

t=0 (DistanceToBallt) + AvgIter
,

where

AvgIter =
ΣnIterations

n=0 (20 ·DistanceToBallInterceptionn)

nIterations
. (7.3)

To show a different approach to the previous two controllers, the fitness compo-

nents are not scaled down to be less than one, they are however weighted by their

importance. Each goal that the ball manages to achieve comes with a penalty of 40

points. Since the closest distance to the ball component is only included in cases

where the goal was actually protected using its weight it is scaled between zero and

40 points, this keeps the value under the 40 point penalty which is given for an

unsuccessful save. This approach was inspired by Riley’s[8] objective function for

goal scoring (Figure 3.20).

The last component is the DistanceToBallInterception, has a reasonably small

weight of 20 as it is significantly less important than protecting the goal but is useful

to reduce the amount of movement required when the ball is near to the goal.

7.3.3 System Training

The design of this network possesses an intentionally large solution space, which is

likely too large for the Genetic Algorithm to sufficiently solve. The node connections

are not optimised within this network, but each node optimises all internal data like

previous networks. Considering that the Target Rotation controller in Section 7.2

successfully completes the basic objective despite a large solution space, this test is

to evaluate how it will perform in a larger solution space with a more complicated

problem.

This network contains four If statement Judgement Nodes and five wheel speed

setting Processing Nodes, these nodes are structured to follow a set of logical steps

for solving the problem. The first judgement node determines if any movement

should actually take place, or if the robot is already positioned on the interception

point between the ball and the goal. The next judgement if movement is required

determines if the interception point is in front of the robot or behind, then the last

set of judgements evaluate the distance of the robot from the interception point

thus allowing fine tune movements when the robot is near to the interception point.

Each of the processing nodes are forced into only moving forwards and backwards
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with no rotation, as this controller is modelled after the paddle in the ‘Pong’ game.

This network structure can be seen in Figure 7.14, the expected output for a trained

network is that one of the pairs of nodes at the bottom of the figure will be positive

and the other pair would be negative, one node inside each pair should also be much

closer to zero than the other to allow for fine tuned movements.

Figure 7.14: Goal Keeping Network

As the Goal Defending network has a larger solution space than both the Target

Pursuit and the Target Rotation networks, this network uses an increased population

size and number of generations. The initial predictions for this network optimisation

is that the Genetic Algorithm will not be able to complete the objective, due to the

large solution space and the complexity of the problem.

The Genetic Algorithm parameters are as follows:

• Population: 400

• Generations: 60

• Probability of Crossover: 60%

• Probability of Mutation: 8%

7.3.4 Results and Analysis

Since this network contains constant connections, it does not have the ability to

remove unrequired nodes from the network. After the training process however it
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is noticed that some of the judgement nodes have conditions that have one partic-

ular outcome in nearly every situation. This is effectively the optimisation process

removing one of the branches from the judgement, which also makes the judge-

ment node itself redundant. The only judgement node that will regularly visit both

branches is the node that determines if the interception point is in front of the robot

or behind. Therefore only three nodes will be regularly used in the goal defending

CGNP, that is the judgement node that determines if the ball is in front or behind

and two processing nodes that will either move the robot forward or back.

This outcome is due to an insufficient objective function and the assumption

that multiple processing nodes will be required to regulate the robots speed. The

robot will move forward as far as it can after colliding with the ball and successfully

defending the goal, the robot will then collide with the northern wall and remain

there until the next test begins. When this new test begins its position is reset to the

middle of the goal area, this behaviour can not be used in the real implementation

or the multi-behavioural controller as the robot itself will never have its position

reset. This goal keeper fault is shown in Figure 7.15.

Figure 7.15: Goal Keeping Fault

To correct this flaw the network was manually modified to stop movement when

within 5 millimetres of the interception point, for future calibration the objective

function could be modified to include conditions that will force the robot to reposi-

tion itself in the middle of the goal area. New nodes should also be added to judge
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the distance to the middle of the goal area. This controller managed to defend the

goal from 99.1% of the incoming shooting attempts despite this flaw. But as the

controller requires manual modification to make it feasible for the real application,

this success rate should not be expected from the Multi-Behavioural controller.

Figure 7.16: Goal Defending Genetic Optimisation Fitness

Figure 7.16 shows the fitness data (from Equation 7.3) for each generation, the

best individual had a fitness of 0.23841. Hill climbing slightly improved this result to

0.23852. Within the graph there is a considerable difference between the Maximum

values and the Mean, therefore it is likely that the population achieved a high fitness

at the beginning of the training process by chance and that the population may not

have been large enough to sufficiently represent the solution space. Further training

for this controller should be tested with a larger population for any differences in the

training process, however a larger population will result in significantly increased

training times.

In the initial randomization of this controller, a solution was obtained with a

large fitness. This is largely due to the size of the initial population and luck,

other training situations for this controller had a more noticeable fitness increase

when training. As the initial population contains a large fitness individual, the

subsequent gains are minimal. This could also be attributed to the optimisation

parameters themselves, where a difference in one degree for a judgement node that

evaluates an angle will make very minimal change in overall fitness.

This controller was one of four results acquired from different training processes,
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these training processes were used to fine tune the objective function by visual

inspection of the trained controller execution. The save file for this controller is

shown in Appendix C.1 and various stages of execution for this controller is shown

in Appendix C.2.

7.4 Multi-Behavioural Goal Defending

Unfortunately a Pong-like goal defender produced in section 7.3 is not enough for

the robot soccer environment, if the robot is hit with enough force then it can be

pushed out of the goal area or rotated - leaving the goal defenceless.

A controller with the ability to defend a goal, maintain its position within the

goal area and had a high accuracy when rotating to become parallel with the goal,

would be superior to its predecessor which will only move forward and back in the

hopes of defending the goal.

This goal keeper is made using the cascading facilities in CGNP, it allows in-

tegrating the three previous controllers into a new layer. This new layer will only

need to decide under what conditions the sub-layers are executed, this is a relatively

small problem in comparison to some of the previous controllers, but is necessary to

provide the additional functionality.

7.4.1 Test Simulation

The multi-behavioural goal defending simulation is very similar to the one described

in section 7.3.1, instead the robot will no longer have its location reset after every

test case and the goal keeper can begin its first test anywhere within the left quarter

of the field. This is shown in Figure 7.17.
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Figure 7.17: Multi-Behavioural Goal Keeper Simulation

In this situation the robot will need to initially position itself correctly within

the goal area and rotate to the correct angle in order to defend the goal. With

subsequent collisions between the robot and ball, the robot will eventually need to

reposition itself in the goal area otherwise it will get stuck and every subsequent

ball will go straight into the goal.

Once again the controller will encounter 1000 randomized test cases, once all

have either been averted or failed the simulation will end. Each execution of the

simulation will remain the same to allow a fair comparison between controller results.

7.4.2 Objective Function

This multi-behavioural goal keeper could use the exact same fitness function for the

previous goal defender in Equation 7.3. However it will take a lot longer to find

a suitable solution since this multi-behavioural goal keeper can begin anywhere on

the left quarter of the field and the previous version only considered defending the

goal. Any controller built using the previous equation for this test environment will

result in a robot that attempts to defend the goal wherever it is, be it next to the

goal or half way across the field.

Equation 7.3 can be extended to consider the robots position relative to the goal

line and its angle as well, this extension is shown in Equation 7.4.
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Fitness =
1000

40 ·NOfGoals+ 40
1000
· ΣnTests

t=0 (DistanceToBallt) + 20 · AvgIter
,

where

AvgIter =
ΣnIterations

n=0 (DistBallInterceptn + 2.5 ·GoalLineDistn + |AngToNn|)
nIterations

.

(7.4)

This equation introduces two additional components, the distance to the goal

line and the angle to north. The goal line in this case is an arbitrary line that is

in-front of the goal area, this is where the robot should be positioned and is close

enough to the goal for the robot to defend it, without actually entering the goal

area. The distance to the goal line is from the robots current position, to the closest

point on this line. The angle to north is quite literally the angle from the current

rotation of the robot, to facing directly up from the robot in this birds eye view.

The angle to north is weighted by 20 points as it is less important than the actual

goal defending and the distance to the goal line is weighted by 50 points as the robot

should always be in the goal area regardless of whether it successfully defends the

goal or not, they serve as a recommendation that the robot should be in-front of the

goal and face directly north so any incoming balls will hit the side of the robot.

7.4.3 System Training

The Multi-Behavioural Goal Defending CGNP is an amalgamation of the three pre-

viously optimised controllers, Target Pursuit, Target Rotation and Goal Defending.

This network is designed with one instance of each of these separate CGNP con-

trollers, as theoretically additional instances would be redundant. Four Judgement

nodes are also included into this network to allow it to branch between each con-

troller as the environment changes.

All the second layer CGNP nodes remain constant throughout the optimisation

process, as they have already been optimised for their respective tasks. Within the

top layer network all connections between the nodes are optimised, as well as the

internal data for the Judgement nodes. The four Judgement nodes have their input

data set, the comparison operator and comparison values will both be optimised.

These judgement nodes are as follows:

• One node that evaluate the distance from the robot to the goal line, which

allows the decision when Target Pursuit should be used
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• One node to evaluate the absolute angle to north, allowing the network to

decide when to use Target Rotation

• One node to evaluate the distance between the robot and the interception

point, once again this node is assumed to be redundant for the application

• The last node will evaluate whether the interception point is in front of the

robot or behind, this is included as it was the most prominent node within the

Goal Defending behaviour

For both Target Pursuit and Target Rotation nodes, the actual target is manually

changed. Target Pursuit will now pursue the nearest position on the goal line and

Target Rotation will rotate towards the northern wall (top wall) of the soccer field.

The Goal Defending nodes remain unchanged from the original optimisation process.

Despite that all complicated behaviours have been previously optimised and

this controller is only used to amalgamate them by optimising the connections and

conditions that they are executed, a large population and number of generations are

used to ensure that an effective multi-behavioural goal keeper is achieved at the end

of the training process. The GA parameters are the same as those used in the Goal

Defending optimisation, these are:

• Population: 400

• Generations: 60

• Probability of Crossover: 60%

• Probability of Mutation: 8%

7.4.4 Results and Analysis

The resulting network contains a two Judgement nodes that will be evaluated to

the same result in every situation and one Judgement that will never be executed

as it does not have a direct connection from the start node, these nodes are shown

in Figure 7.18. These excess nodes can be manually removed and the connections

updated with the final result, this is shown in Figure 7.19.
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Figure 7.18: Multi-Behavioural Goal Keeper Trained Network

As can be seen in Figure 7.19, there is only one Judgement node remaining and

three Processing nodes. This Judgement node will evaluate whether the distance

from the robot is larger than 113.72 millimetres, if it is then the Target Pursuit node

(bottom left) will be engaged. Another aspect to note with this network is that once

the Robot is near to the goal line, control will then begin repeatedly looping between

Target Alignment and Goal Defending. Once this loop begins the Target Pursuit

node will never be executed again, therefore in extreme situations where the Robot

is moved a large distance from the goal area, the goal keeper will not be able to

realign itself if required.
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Figure 7.19: Multi-Behavioural Goal Keeper Reduced Trained Network

This trait is undesired but easily corrected with one of two solutions. The Goal

Defending node (far right) could connect back to the start node or alternatively half

way through the training process, the robot’s position could be randomly relocated

to another location on the field, this would force the optimisation process to retain

access to Target Pursuit if it is required. It is also noted that an additional penalty

should be added to the objective function for this controller, to penalize the robot

for entering the goal itself.

Despite the limitation in the network, this multi-behavioural goal keeper suc-

cessfully positions itself in the goal area at the beginning of the simulation (shown

in Figure 7.20) and protects the goal from 91% of the goal shooting attempts. This

result would likely be improved with additional training for both the basic Goal

Defending controller and the Multi-Behavioural controller.
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Figure 7.20: Multi-Behavioural Goal Keeper Repositioning Itself

Figure 7.21: Multi-Behavioural Goal Defending Genetic Optimisation Fitness

Fitness data for this controller is shown in Figure 7.21, this is calculated by

evaluating each candidate solution and computing the fitness from Equation 7.4.
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The best individual had a fitness of 0.12105 and was improved using Hill climbing

to 0.12163. As is with the previous Goal Keeper and Target Rotation training, this

controller has a considerable difference between the Maximum values and the Mean.

All three of these controllers have a large solution space in comparison to the Target

Pursuit controller, therefore it is likely that the high initial result was achieved by

chance and that a larger population will be beneficial for training these controllers.

As previously stated this controller optimises the internal data for four judgement

nodes and the connections between the nodes themselves. The comparison value

for the judgement nodes have a very large solution space, where each value could

potentially have a thousand or more potential values for the individual parameter.

Since the overall solution space is excessively large, there is not enough variation

in the population. A higher mutation rate would have added more variation into

the population and would have likely increased the resulting gains from the genetic

optimisation process. As is with the Target Pursuit controller, a small increase in

fitness constitutes a large difference in controller effectiveness.

Over the course of the genetic component of the optimisation process, the goal

defending success rate was increased by 3.5%. The controller performance initially

began with a high success rate and the final goal defending success rate at the end of

this process is more than 90%. This increase is significant and would greatly effect

the outcome of the overall goal defence in a competition scenario.

The save file for this controller is shown in Appendix D.1 and various stages of

execution for this controller is shown in Appendix D.2.
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Chapter 8

Conclusions

This thesis introduces an improved algorithm, Cascaded Genetic Network Program-

ming (CGNP) that contains significant changes over the original architecture. This

algorithm provides the ability to develop complex networks of nodes, over multiple

levels of CGNP. This facilitates the simplification of optimisation based problems

into small tasks that can be individually trained and reused. These multiple levels

or layers can be scaled across a spectrum of complexity. In terms of robot soccer

a low level network may control wheel movement and top level networks could dy-

namically manage player roles. After multiple level CGNP development, low level

networks can be replaced with new networks that exceed the previous ability at the

specific task, reducing the need to optimise a complete controller for every modi-

fication. Mechanisms such as time management and repeated executions of nodes

are incorporated into this architecture, to prevent the top level network from losing

control of the actions in lower layers. These mechanisms prevent infinite loops in

lower layers, by giving the parent layer the ability to halt execution of a lower level

after a set number of repeated executions.

Using a complete object orientated design approach any Artificial Intelligence

algorithm can be incorporated into a CGNP network as either a Judgement or

Processing node, these new node types are developed as general purpose nodes

to allow re-usability in all situations where they are required. Every node within

a CGNP network has the ability to add its respective data parameters into the

chromosome for optimisation purposes, all nodes are therefore completely optimised

for the required task while retaining re-usability in other problems.

A multiple layer CGNP network was created for a robot soccer goal keeper, by

subdividing the problem into tasks for Target Pursuit, Target Rotation and basic

Goal Defending. To facilitate the training of each of these tasks, a simulation en-

vironment was developed and tailored to the FIRA MiroSot Middle League robot

soccer platform, while using Box2D to provide accurate physics calculations. Test

situations within this simulation platform and objective functions were developed
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for each task to individually evaluate the performance of trained CGNP networks.

It was proven that a CGNP can further improve a pre-existing Artificial Intelligence

system, by adding primitive nodes to a network along with a pre-trained Genetic

Fuzzy Target Pursuit system, the optimisation process identified the conditions and

values within these primitive nodes and increased the overall fitness of the system.

After optimising each of these tasks, the resulting CGNP networks were imported

into a new layer as independent nodes and a multi-behavioural goal keeper is opti-

mised. This multi-behavioural controller allows the robot to align itself within the

goal area and successfully defend the goal from 91% of all goal shooting attempts.

The Cascaded Genetic Network Programming architecture developed within this

research has the ability to represent complicated behaviours in multiple layered

networks which are modular and human interpretable. This architecture can be

used to solve situations where multiple Artificial Intelligent systems are required to

achieve a task and could be used in a wide variety of fields beyond the scope of robot

soccer.

8.1 Summary of Achievements

This research contains a series of achievements and unique contributions, some of

which are beyond the initial scope of this research. These achievements are listed

below:

1. Cascaded Genetic Network Programming (CGNP) algorithm was introduced

(introduced in Section 6.2), which is based upon the original Genetic Network

Programming algorithm (described in Section 6.1).

2. CGNP allows complex controller design over multiple levels of networks (Sec-

tion 6.2.1), much like a function in traditional programming.

3. Using an Object Orientated design any Artificial Intelligence algorithm can be

incorporated into a CGNP network as a node (Section 6.2.1).

4. This algorithm can use generic internal nodes, which are reusable by all ap-

plications.

5. CGNP can optimise any data within Judgement or Processing nodes, instantly

considering all comparators, operators, environmental data and their permu-

tations (Section 6.2.2). Previous GNP architectures limit the allowable node

variations stored in their fixed library of nodes.

6. The network allows injection of a priori knowledge about the problem, reducing

the potential solution space.
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7. A Hill Climbing algorithm is included at the end of the Genetic optimisation

process (Section 6.2.3), to guarantee a local maxima solution from within the

solution space.

8. A Robot Soccer simulation platform is developed using Box2D to produce

realistic physics (Chapter 5), involving accurate collision detection, friction

calculations and the complex shape of the robot and soccer field

9. Successfully applied the new CGNP architecture to a complex multi-behavioural

control problem for a robot soccer goal keeper by using problem subdivision

(Section 7.4).

10. Using this simulation platform, controllers for Target Pursuit (Section 7.1),

Target Rotation (Section 7.2), basic Goal Keeping (Section 7.3) and the multi-

behavioural goal keeper (Section 7.4) are optimised.

11. The CGNP architecture is developed to be multi-purpose and applicable to

solving other multiple objective problems.

12. In the experiments Genetic Fuzzy processing nodes, If statement judgements

and simple nodes to set the wheel speeds are are used, but this could expand

to include any Artificial Intelligence or problem specific nodes (Section 6.2.1).

The Cascaded Genetic Network Programming algorithm allows a variation of

optimisation settings, allowing a developer to define which individual parameters

should be optimised. Some of the combinations that can be used are defined below:

1. Allowing only connections to change during training.

2. Allowing only internal node parameters to change in training.

3. Allowing both connections and internal parameters to change during training.

4. Allowing or disallowing some connections or some internal parameters to change

during training, each node can be individually allowed or disallowed for both

connections or internal parameters.

5. Theoretically multiple layers of a Cascaded GNP can be evolved at the same

time, however this has not been tested.
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8.2 Future Research

8.2.1 Cross Node Data Transfer

One aspect that is lacking in this architecture is the ability for nodes to transfer data

between one another. This could be achieved by adding a new type of connection

where nodes could “request” data and others could “provide” it, this would mean

that a node could then obtain data from the previously evaluated node. If the

previous node doesn’t provide data then the input would likely default to zero, to

overcome this issue environmental data and global variables could also be used as a

“Data Node”.

These Data Nodes would simply provide data to the network, they would only

be evaluated when the current node requires information from them. Environmental

data would be accessible by any node on the same CGNP layer and would usually

involve interfacing with the environment to obtain the information required. Global

variables would be accessible by every node within the same CGNP layer and any

child layers, these global variables could be optimised within the genetic process and

would allow the network to solve situations that should be solved using symmetry.

Local variables that take on similar access rights to environmental data would also

be a possibility, these could be optimised via the genetic process similar to the global

variables.

This addition would bring CGNP closer to traditional programming methods

and could solve more complicated situations, this addition will reduce the solution

space for situations that can utilize symmetry, however, it will also increase this

solution space if an excessive number of global variables are used. An excessive

number of global variables will add to the solution space in two methods, the first

being the data being optimised within each Data Node and the second is the “Data

Connections” where all nodes that require data will have an additional potential

input for each Data Node within the network.

With proper network planning the solution space could be significantly reduced

using this feature, resulting in quick training times and more reliable training results.

8.2.2 Further Simulation Parallelism

Simulations are the most time consuming aspect of the CGNP optimisation in this

research, these simulations are executed for every candidate solution during the op-

timisation process. Each individual in a generation can be evaluated independently

from one another, thus there is the potential for massive parallelism. This paral-

lelism could be done via a processing cluster or even on a graphics card (GPU), in

the case of GPU parallelism the population can be split into processing blocks of
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variable sizes depending on the GPU used and memory requirements, which will

make large populations feasible for complicated problems.

The down side to the GPU option is that the entire simulation platform will need

to be redesigned for the new architecture, this would take a considerable amount

of time but would be worth the effort for a problem that requires high accuracy

or requires regular optimisation. Once the simulation platform is implemented for

GPU optimisation, incorporating it into the application developed in this research

would be trivial in comparison and ultimately reduce a problem that took hours on

the CPU to a matter of minutes. This reduced optimisation time would increase

developer productivity as any bugs could be quickly identified and corrected.

8.2.3 Additional Artificial Intelligence Nodes

New node types should be incorporated into the CGNP architecture created along-

side this research, specifically Reinforcement Learning and Neural Networks would

be a useful addition. Both Neural Networks and Reinforcement Learning could

apply to Judgement nodes, where n number of connections could span from the

nodes to determine the next action based on environmental variables. The genetic

component of CGNP could be used to set the initial values for these algorithms.

Neural Networks could also be used for a Processing node to train the ideal

output speeds for the wheels based on the environmental variables, this would be

especially useful for fine tuning the movements among obstacles.

8.2.4 Parallel CGNP Node Execution

The current CGNP architecture is confined to problems that can be solved sequen-

tially, so setting motor speeds are done one at a time. This is a problem when

developing AI for complicated robotics or other applications that are inherently

parallel for example, a robotic hand. Any robotic hand would require motor move-

ments for every knuckle to clench a fist, the current architecture would turn on each

of these motors one at a time and then turn them off once they are no longer needed.

To compensate for these issues each motor could have its own CGNP system

which is executed independently of one another, but that would require a significant

amount of duplicated code as each CGNP system would have to independently

decide when they should be turned on based on the environmental data.

A better solution would be to have a single CGNP system that controls the entire

hand, which initiates nodes in parallel when required. The top level CGNP system

would decide that it needs to clench the hand into a fist, then a theoretical “Par-

allel Node” would execute all the lower level CGNP systems required to complete
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the clenching behaviour, control would return to the parallel node and would then

continue on to the next node like normal.

This concept could be expanded to include image related problems that use the

GPU or tasks that require a master slave cluster configuration.

8.2.5 Goal Shooter Role

Having successfully designed a Goal Keeper (GK) for the Robot Soccer platform, the

next logical step would be the Goal Shooting (GS) behaviour. The GK controller

could be used as an ‘opposition’ to any GS controllers therefore each controller

could be further trained against one another. Although there is a possibility that

these controllers would only optimise for each others behaviour meaning they could

struggle against other systems.

8.2.6 Integrate the Simulation with the Real Platform

Reusing the simulation environment developed in conjunction with this research and

integrating it with the Massey University robot soccer platform would likely improve

the system stability by approximating object positions when environmental data is

not available.

This inclusion could allow new research into opposition prediction systems, while

giving the Massey University soccer team a competitive edge over opposing teams.

8.2.7 Implement Adaptive Genetic Algorithms

The traditional Genetic Algorithm used in this research involves presetting the prob-

ability of crossover and probability of mutation, this often results in a population

that converges on a local maxima. Using an adaptive genetic algorithm[30] could

avoid this problem by maintaining a diverse population using the two evolution

probabilities. This addition would likely make the the CGNP architecture react

more dynamically to different situations and potentially reduce the overall number

of required generations evaluated, significantly improving the optimisation times.

8.2.8 Solution Space Look-up Table

Within this research the simulations used to evaluate candidate solutions required

a significant amount of the training time. For situations where complicated and

time consuming simulations, it may be worth implementing a solution space look-

up table which could be either a database or a simple list of previously evaluated

solutions. This would remove the need to re-evaluate any candidate solutions that
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have already been examined, potentially reducing the overall genetic optimisation

times.

This would only be feasible for simulations that are very time consuming, as this

inclusion would add a few microseconds before every candidate solution evaluation

to test whether it has already been evaluated. With small simulations this lookup

process could eventually exceed the duration of the actual simulation, meaning this

inclusion would be detrimental to the overall optimisation times.

8.2.9 Test Multiple Layer Optimisation

The Cascading Genetic Network Programming architecture introduces the ability

to have multiple levels of intelligent systems, these multiple layers have the ability

to add their respective data to the gene structure for optimisation.

Tests should be conducted to evaluate the performance of multiple layer opti-

misation within a CGNP, using one overall objective function and the potential for

each sub-layer to have its own individual objective definition should be explored.
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Appendix A

Target Pursuit Control System

A.1 Network Save File

This section describes the best Target Pursuit individual, it is XML encoded for

readability and re-usability.

Each node has its own unique data defined as properties in each element within

the document. Properties that occur among most nodes are described below:

• xLocModifier - X Coordinate for the node location in the visual representation

of the CGNP network

• yLocModifier - Y Coordinate for the node location in the visual representation

of the CGNP network

• executionTime - The number of Repeated Executions for the node, described

in Section 6.2

• connectionNumber - The number of outgoing connections for the node

• optimizeCon - Boolean value to define whether the connections should be

optimised

• con[X] - All con values are an identification number to the next node to be

executed, [X] represents the connection number and the value associated to

the property is the node ID.

If statement judgement nodes contain unique properties, these are operate, com-

pare and selectedDataType. The operate property is the operator for the compar-

ison, either less than (value of zero) or greater than (value of one). The compare

value is a comparison value, it contains a real value this is one of the main com-

ponents in the if statement. Lastly is the selectedDataType, this is a text input

of an actual environmental variable used within Robot Soccer. These components
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work together to form the statement IF(selectedDataType operate compare), if this

result is true then the next node is con0, otherwise it is con1.

The set wheel nodes also contain unique data, these are described below:

• speedL and speedR - These are values between -1 and 1, to define the actual

speed percentage that the wheels should be set to when this node is visited.

• movementType - This allows the restriction of individual movement types. A

value of zero is normal movement, both left and right wheels can have different

values. One is no movement, meaning the robot can only rotate on the spot,

the right wheel will be the negation of the left wheel speed. Lastly, two will be

no rotation, this results in a robot that can only move forwards and backwards.

• optimizeLWheel and optimizeRWheel - These are boolean values to enable or

disable the optimisation of the individual wheel speeds.

• flipIfNegativeTargetAngle - If this boolean value is one, then both wheel speeds

will be negated if the TargetAngle environmental variable is negative.

Fuzzy Logic nodes do not contain additional properties, however the entire fuzzy

system is included between the beginning and ending tags for the element. This

code is sent directly to the fuzzylite decoder for interpretation, this is an example

of how a node could store its own unique data and allow interfacing with a library

without requiring a redefinition of the loading and saving functions.

The last node type is the GNP node itself, this contains two additional param-

eters. The first is start, this is an identification number for the start node in the

network. Secondly there is root, which is a boolean value to state whether the

current GNP node is the top level node or a child.

The Target Pursuit system is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<GNP_NodeProcessing_GNP xLocModifier="0" yLocModifier="0"

executionTime="1" connectionNumber="1" optimizeCon="1"

con0="-1" start="0" root="1">

<GNP_Robot_IfStatement xLocModifier="-89"

yLocModifier="82" executionTime="-1"

connectionNumber="2" optimizeCon="0"

con0="1" con1="2" operate="1" compare="81"

selectedDataType="AbsTargetAngle"/>

<GNP_Robot_SetWheels xLocModifier="-89"

yLocModifier="-67" executionTime="4"

connectionNumber="1" optimizeCon="0"
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con0="0" speedL="0.895" speedR="-0.895"

movementType="1" optimizeLWheel="1"

optimizeRWheel="1" flipIfNegativeTargetAngle="1"/>

<GNP_Robot_FuzzyLogic xLocModifier="-1"

yLocModifier="-104" executionTime="1"

connectionNumber="1" optimizeCon="0"

con0="0">

Engine: TargetPursuitDefault

InputVariable: AbsTargetAngle

enabled: true

range: 0.000 180.000

term: straightAhead Trapezoid 0.000 0.000 18.000 27.000

term: smallRight Trapezoid 15.000 25.000 41.000 61.000

term: mediumRight Trapezoid 44.000 53.000 91.000 113.000

term: largeRight Trapezoid 91.000 105.000 180.000 180.000

InputVariable: TargetDistance

enabled: true

range: 0.000 650.000

term: smallDistance Trapezoid 0.000 0.000 100.000 133.000

term: mediumDistance Trapezoid 93.000 184.000 292.000 402.000

term: largeDistance Trapezoid 329.000 378.000 500.000 619.000

term: massiveDistance Triangle 496.000 650.000 650.000

OutputVariable: LeftWheel

enabled: true

range: 0.000 1.000

accumulation: none

defuzzifier: WeightedSum Automatic

default: 1.000

lock-previous: false

lock-range: true

term: still Constant 0.000

term: small Constant 0.300

term: medium Constant 0.400

term: large Constant 0.750

term: full Constant 1.000

OutputVariable: RightWheel

enabled: true

range: 0.000 1.000

accumulation: none
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defuzzifier: WeightedSum Automatic

default: 1.000

lock-previous: false

lock-range: true

term: still Constant 0.000

term: small Constant 0.300

term: medium Constant 0.400

term: large Constant 0.750

term: full Constant 1.000

RuleBlock:

enabled: true

conjunction: Minimum

disjunction: none

activation: none

rule: if AbsTargetAngle is straightAhead and TargetDistance

is smallDistance then LeftWheel is medium and

RightWheel is medium

rule: if AbsTargetAngle is straightAhead and TargetDistance

is mediumDistance then LeftWheel is large and

RightWheel is large

rule: if AbsTargetAngle is straightAhead and TargetDistance

is largeDistance then LeftWheel is full and

RightWheel is full

rule: if AbsTargetAngle is straightAhead and TargetDistance

is massiveDistance then LeftWheel is full and

RightWheel is full

rule: if AbsTargetAngle is smallRight and TargetDistance

is massiveDistance then LeftWheel is full and

RightWheel is large

rule: if AbsTargetAngle is smallRight and TargetDistance

is largeDistance then LeftWheel is full and

RightWheel is medium

rule: if AbsTargetAngle is smallRight and TargetDistance

is mediumDistance then LeftWheel is large and

RightWheel is medium

rule: if AbsTargetAngle is smallRight and TargetDistance

is smallDistance then LeftWheel is medium and

RightWheel is small

rule: if AbsTargetAngle is mediumRight and TargetDistance
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is massiveDistance then LeftWheel is full and

RightWheel is medium

rule: if AbsTargetAngle is mediumRight and TargetDistance

is largeDistance then LeftWheel is large and

RightWheel is medium

rule: if AbsTargetAngle is mediumRight and TargetDistance

is mediumDistance then LeftWheel is large and

RightWheel is medium

rule: if AbsTargetAngle is mediumRight and TargetDistance

is smallDistance then LeftWheel is medium and

RightWheel is small

rule: if AbsTargetAngle is largeRight and TargetDistance

is massiveDistance then LeftWheel is medium and

RightWheel is small

rule: if AbsTargetAngle is largeRight and TargetDistance

is largeDistance then LeftWheel is large and

RightWheel is still

rule: if AbsTargetAngle is largeRight and TargetDistance

is mediumDistance then LeftWheel is large and

RightWheel is still

rule: if AbsTargetAngle is largeRight and TargetDistance

is smallDistance then LeftWheel is full and

RightWheel is still

</GNP_Robot_FuzzyLogic>

</GNP_NodeProcessing_GNP>
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A.2 Figures of Network Execution

Figure A.1: Target Pursuit Execution Image: 1

Figure A.2: Target Pursuit Execution Image: 2
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Figure A.3: Target Pursuit Execution Image: 3

Figure A.4: Target Pursuit Execution Image: 4
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Figure A.5: Target Pursuit Execution Image: 5

129



Appendix B

Target Rotation Control System

B.1 Network Save File

A description of all parameters within the save file is located in the Target Pursuit

section, Appendix A.1.

<?xml version="1.0" encoding="UTF-8"?>

<GNP_NodeProcessing_GNP xLocModifier="-16" yLocModifier="110"

executionTime="1" connectionNumber="1" optimizeCon="1"

con0="4" start="4" root="1" optimizeGNP="0">

<GNP_Robot_SetWheels xLocModifier="-35" yLocModifier="-124"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="4" speedL="0.69" speedR="-0.69" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="0"/>

<GNP_Robot_SetWheels xLocModifier="138" yLocModifier="41"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="12" speedL="0.105" speedR="-0.105" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="0"/>

<GNP_Robot_SetWheels xLocModifier="-155" yLocModifier="78"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="12" speedL="0.005" speedR="-0.005" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="0"/>

<GNP_Robot_SetWheels xLocModifier="77" yLocModifier="136"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="5" speedL="0.02" speedR="-0.02" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"
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flipIfNegativeTargetAngle="0"/>

<GNP_Robot_IfStatement xLocModifier="88" yLocModifier="-121"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="10" con1="6" operate="0" compare="90"

selectedDataType="AbsTargetAngle"/>

<GNP_Robot_IfStatement xLocModifier="-39" yLocModifier="-55"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="6" con1="7" operate="1" compare="27"

selectedDataType="AbsTargetAngle"/>

<GNP_Robot_IfStatement xLocModifier="-134" yLocModifier="-131"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="8" con1="0" operate="0" compare="0"

selectedDataType="TargetAngle"/>

<GNP_Robot_IfStatement xLocModifier="-131" yLocModifier="-95"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="9" con1="2" operate="0" compare="0"

selectedDataType="TargetAngle"/>

<GNP_Robot_SetWheels xLocModifier="-139" yLocModifier="-98"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="4" speedL="-0.69" speedR="0.69" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="0"/>

<GNP_Robot_SetWheels xLocModifier="-114" yLocModifier="-4"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="12" speedL="-0.005" speedR="0.005" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="0"/>

<GNP_Robot_IfStatement xLocModifier="106" yLocModifier="-41"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="11" con1="1" operate="0" compare="0"

selectedDataType="TargetAngle"/>

<GNP_Robot_SetWheels xLocModifier="69" yLocModifier="14"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="12" speedL="-0.105" speedR="0.105" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="0"/>

<GNP_Robot_IfStatement xLocModifier="-8" yLocModifier="78"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="13" con1="3" operate="0" compare="0"
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selectedDataType="TargetAngle"/>

<GNP_Robot_SetWheels xLocModifier="-60" yLocModifier="143"

executionTime="3" connectionNumber="1" optimizeCon="1"

con0="5" speedL="-0.02" speedR="0.02" movementType="1"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="0"/>

</GNP_NodeProcessing_GNP>

B.2 Figures of Network Execution

Figure B.1: Target Rotation Execution Image: 1
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Figure B.2: Target Rotation Execution Image: 2

Figure B.3: Target Rotation Execution Image: 3

133



Figure B.4: Target Rotation Execution Image: 4
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Appendix C

Goal Defending Control System

C.1 Network Save File

A description of all parameters within the save file is located in the Target Pursuit

section, Appendix A.1.

<?xml version="1.0" encoding="UTF-8"?>

<GNP_NodeProcessing_GNP xLocModifier="93" yLocModifier="105"

executionTime="1" connectionNumber="1" optimizeCon="1"

con0="3" start="0" root="1" optimizeGNP="0">

<GNP_Robot_IfStatement xLocModifier="-50" yLocModifier="-115"

executionTime="-1" connectionNumber="2" optimizeCon="0"

con0="1" con1="2" operate="0" compare="5"

selectedDataType="LeftGoalInterceptDistance"/>

<GNP_Robot_SetWheels xLocModifier="-108" yLocModifier="17"

executionTime="3" connectionNumber="1" optimizeCon="0"

con0="0" speedL="0" speedR="0" movementType="2"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="1"/>

<GNP_Robot_IfStatement xLocModifier="67" yLocModifier="-72"

executionTime="-1" connectionNumber="2" optimizeCon="0"

con0="5" con1="6" operate="1" compare="86.4"

selectedDataType="RobotLeftGoalInterceptAbsAngle"/>

<GNP_Robot_SetWheels xLocModifier="-60" yLocModifier="122"

executionTime="3" connectionNumber="1" optimizeCon="0"

con0="0" speedL="0.96" speedR="0.96" movementType="2"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="1"/>

<GNP_Robot_SetWheels xLocModifier="88" yLocModifier="124"
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executionTime="3" connectionNumber="1" optimizeCon="0"

con0="0" speedL="0.665" speedR="0.665" movementType="2"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="1"/>

<GNP_Robot_IfStatement xLocModifier="9" yLocModifier="15"

executionTime="-1" connectionNumber="2" optimizeCon="0"

con0="3" con1="7" operate="1" compare="1620.51"

selectedDataType="LeftGoalInterceptDistance"/>

<GNP_Robot_IfStatement xLocModifier="142" yLocModifier="15"

executionTime="-1" connectionNumber="2" optimizeCon="0"

con0="4" con1="8" operate="0" compare="2331.26"

selectedDataType="LeftGoalInterceptDistance"/>

<GNP_Robot_SetWheels xLocModifier="16" yLocModifier="120"

executionTime="3" connectionNumber="1" optimizeCon="0"

con0="0" speedL="-0.98" speedR="-0.98" movementType="2"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="1"/>

<GNP_Robot_SetWheels xLocModifier="156" yLocModifier="125"

executionTime="3" connectionNumber="1" optimizeCon="0"

con0="0" speedL="-0.735" speedR="-0.735" movementType="2"

optimizeLWheel="1" optimizeRWheel="1"

flipIfNegativeTargetAngle="1"/>

</GNP_NodeProcessing_GNP>
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C.2 Figures of Network Execution

Figure C.1: Goal Defending Execution Image: 1

Figure C.2: Goal Defending Execution Image: 2
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Figure C.3: Goal Defending Execution Image: 3
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Appendix D

Multi-Behavioural Goal Keeper

Control System

D.1 Network Save File

A description of all parameters within the save file is located in the Target Pursuit

section, Appendix A.1.

<?xml version="1.0" encoding="UTF-8"?>

<GNP_NodeProcessing_GNP xLocModifier="0" yLocModifier="0"

executionTime="1" connectionNumber="1" optimizeCon="1"

con0="-1" start="1" root="1" optimizeGNP="1">

<GNP_NodeProcessing_GNP xLocModifier="-90" yLocModifier="109"

executionTime="4" connectionNumber="1" optimizeCon="1"

con0="1" start="0" root="1" optimizeGNP="0">

Target Pursuit Contents (Appendix A.1)

</GNP_NodeProcessing_GNP>

<GNP_Robot_IfStatement xLocModifier="-78" yLocModifier="-29"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="2" con1="3" operate="1" compare="113.72"

selectedDataType="RobotLeftGoalDistance"/>

<GNP_Robot_IfStatement xLocModifier="10" yLocModifier="-97"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="5" con1="5" operate="1" compare="144"

selectedDataType="AbsRobotNorthAngle"/>

<GNP_NodeProcessing_GNP xLocModifier="-17" yLocModifier="110"

executionTime="1" connectionNumber="1" optimizeCon="1"

con0="4" start="4" root="1" optimizeGNP="0">
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Target Rotation Contents (Appendix B.1)

</GNP_NodeProcessing_GNP>

<GNP_NodeProcessing_GNP xLocModifier="93" yLocModifier="104"

executionTime="4" connectionNumber="1" optimizeCon="1"

con0="3" start="0" root="1" optimizeGNP="0">

Goal Defending Contents (Appendix C.1)

</GNP_NodeProcessing_GNP>

<GNP_Robot_IfStatement xLocModifier="92" yLocModifier="-83"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="5" con1="0" operate="0" compare="178"

selectedDataType="RobotLeftGoalInterceptAbsAngle"/>

<GNP_Robot_IfStatement xLocModifier="148" yLocModifier="0"

executionTime="-1" connectionNumber="2" optimizeCon="1"

con0="5" con1="4" operate="1" compare="230"

selectedDataType="LeftGoalInterceptDistance"/>

</GNP_NodeProcessing_GNP>

D.2 Figures of Network Execution

Figure D.1: Multi-Behavioural Goal Keeper Execution Image: 1
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Figure D.2: Multi-Behavioural Goal Keeper Execution Image: 2

Figure D.3: Multi-Behavioural Goal Keeper Execution Image: 3
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Figure D.4: Multi-Behavioural Goal Keeper Execution Image: 4

Figure D.5: Multi-Behavioural Goal Keeper Execution Image: 5
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Figure D.6: Multi-Behavioural Goal Keeper Execution Image: 6
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