Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Phenotypic correlations between linear type conformation traits, production and fertility in a once-a-day milked dairy cattle herd

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Veterinary Science

At Massey University, Palmerston North, New Zealand.

Roberta Anita Harris

2015

There is widespread adoption of OAD milking of dairy cattle in New Zealand, and to maximize the benefits, selection of animals which function well on this system is necessary. Selection can be facilitated through the use of linear type trait scoring in the selection procedure and this study aimed to quantify the correlations between the linear type traits and economically important traits in an OAD milked herd. Jersey cows in this study had lower mean scores for the body type traits, milk and protein yield and lactation length, but similar udder type scores, somatic cell score, fat yield and fertility performance compared with Holstein-Friesian and crossbred cows. The phenotypic correlations between individual body type traits were positive and strong, and likewise between individual udder type traits, however, between the two groups, the phenotypic correlations were weak and negative as found in previous TAD studies. There were also indications of a more consistent association of highly curved legs in larger animals in this study. Reduced udder support was correlated with higher somatic cell scores, and greater body type scores were strongly associated with high yield, while higher yielding animals tended to have less desirable udders. The linear type traits were not correlated with lactation length except for a weak positive correlation with rump angle. Older animals with higher scores for stature, weight and body condition were submitted earlier, and the likelihood of early conception and pregnancy was most dependent on early calving and higher body condition score and was associated with reduced rump width. The suggestion was put forward that the number of linear type traits to be used in OAD systems can be reduced to include only one or two body type and one or two udder type traits, and the linear type traits to be considered for inclusion in the selection index for OAD milking systems are: stature/weight, udder support/fore udder attachment, body condition score, udder overall, and dairy conformation. Of these, udder support and stature appear to be the most suitable. In general, higher values for these traits would be desirable to improve yield and fertility in the case of the body type traits, and somatic cell score in the case of the udder type traits.

Firstly, I would like to thank my supervisors Professor Nicolas Villalobos-Lopez and Dr. Rebecca Hickson for their sound advice and guidance throughout this research. I would also like to thank Felipe Lembeye and Nick Sneddon who assisted in the data collection and recording process, and were extremely helpful in my understanding of the preliminary information. Mrs. Jolanda Amoore, farm manager at Massey Farms Dairy No. 1 was also of great assistance in the completion of this project, as she provided additional data and rapid responses to questions and queries I had.

Many thanks also, to my family and friends both in New Zealand, and in my home-country Jamaica, including my partner, O'Dane Daley. Your words of encouragement, love and support were much appreciated. Finally, I would like to thank God for His many blessing towards me throughout this year, and enabling me to accomplish this task.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES AND TABLES	ix
LIST OF ABBREVIATIONS	xi
Chapter 1: INTRODUCTION	1
Chapter 2: LITERATURE REVIEW	3
2.1 Once-a-day milking in New Zealand	3
2.1.1 Motivation to adopt OAD milking	
2.1.2 OAD milking concerns	5
2.1.3 Improvement through selection for OAD milking	6
2.2 Linear type traits	
2.2.1 Linear-type traits: means and standard deviations	10
2.2.2 Difference in means and standard deviations between breeds	11
2.3 Phenotypic correlations between linear type traits	14
2.3.1 Correlations between body type traits	14
2.3.2 Correlations between body and leg traits	15
2.3.3 Correlations between udder type traits	15
2.3.4 Correlations between udder and leg traits	17
2.3.5 Correlations between body and udder traits	17
2.3.6 Summary (correlations between linear type traits)	18

2.3.7 Difference between breeds in correlation between linear type traits	19
2.4 Difference between OAD and TAD milking in production and fertility	20
2.4.1 Breed differences in performance on OAD vs. TAD milking	21
2.5 Phenotypic correlations between linear type traits and production	23
2.5.1 Influence of udder type traits on dairy system production	23
2.5.2 Influence of body, leg type traits and lameness on production	
2.5.3 Influence of milking speed on dairy system production	24
2.5.4 Correlation of linear type traits with milk, fat and protein yield	25
2.5.5 Correlation of linear type traits with lactation length	
2.5.6 Correlation of linear type traits with somatic cell score	27
2.5.7 Differences in correlations between breeds	
2.5.8 Summary (correlations between linear type traits and production)	
2.6 Phenotypic correlations between linear type traits and fertility	
2.6.1 Body type traits	30
2.6.2 Leg trait	32
2.6.3 Udder type traits	
2.6.4 Logistic regression modelling of fertility	
2.7 Phenotypic correlations between linear type traits and survival	36
2.7.1 Body type traits	37
2.7.2 Leg trait	37
2.7.3 Udder type traits	
2.7.4 Other influences and interactions	
2.7.5 Logistic regression modelling of survival	

2.8 Specific linear type traits for OAD selection indices40
2.8.1 Milking speed
2.8.2 Udder support and fore teat placement
2.9 Summary and research questions (literature review)44
Chapter 3 MATERIALS AND METHODS
3.1 Data collection
3.1.1 Animals
3.1.2 Linear type traits
3.1.3 Production
3.1.4 Fertility
3.2 Statistical analysis
3.2.1 Preliminary data analysis49
3.2.2 Analysis by breeds
3.2.3 Phenotypic correlation analysis between linear type traits
3.2.4 Phenotypic correlation analysis between linear type, production and fertility traits
3.2.5 Regression modelling of linear type on production and fertility traits
Chapter 4 RESULTS53
4.1 Preliminary data analysis53
4.1.1 Linear type traits
4.1.2 Production traits
4.1.3 Fertility traits
4.2 Difference between breeds in linear type traits, production and fertility56

4.2.1 Linear type trait variations between breeds	56
4.2.2 Production and fertility trait variations between breeds	57
4.3 Phenotypic correlations amongst linear type traits in OAD milked cows	58
4.3.1 Correlation between body type traits	59
4.3.2 Correlation between body and leg traits	59
4.3.3 Correlation between udder type traits	60
4.3.4 Correlation between udder and leg type traits	60
4.3.5 Correlation between body and udder type traits	61
4.4 Phenotypic correlations between linear type, production and fertility trai OAD milked cows	
4.4.1 Correlation between the production traits	62
4.4.2 Correlation between the fertility traits	62
4.4.3 Correlation between the production and fertility traits	63
4.4.4 Correlation between linear type traits with production and fertility	65
4.5 Regression of linear type traits on production and fertility	68
4.5.1 Regression models of linear type traits on production traits	68
4.5.2 Regression models of linear type traits on fertility traits	70
Chapter 5 DISCUSSION	72
5.1 Preliminary data analysis	72
5.2 Difference between breeds in linear type traits, production and fertility	75
5.3 Phenotypic correlations amongst linear type traits	76
5.4 Phenotypic correlations between linear type, production and fertility traits	79
5.5 Regression of linear type traits on production and fertility	83

5.6 Summary and implications	85
5.7 Limitations and future research	86
Chapter 6 CONCLUSIONS	88
REFERENCES	90
APPENDICES	

Table 2.1. Differences between Jersey and Friesian cows in production and fertility on once-a-day
(OAD) versus twice-a-day (TAD) milking. Adapted from Dalley and Bateup,
2004
Table 2.2. Linear type traits used in New Zealand dairy cattle. Adapted from NZ Animal
Evaluation Unit (2009) and Advisory Committee on Top (2011)9
Table 2.2.1. A compilation of means and standard deviations of linear type traits in dairy herds
using data from various studies
Figure 2.2.2. Comparison of mean scores for linear type traits in Holstein and Jersey cows.
Adapted from Cue <i>et al.</i> (1996)
T-11-411 D - 14' - 44' - 6 - 4 - 1' - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 1 - 1
Table 4.1.1. Descriptive statistics for the linear type traits in the once-a-day milked herd
Table 4.1.2. Descriptive statistics for the production traits in the once-a-day milked herd
Table 4.1.3. Descriptive statistics for the fertility traits in the once-a-day milked herd
Table 4.2.1. Least square means (LSM) and standard errors (SE) for the linear type traits in
Holstein-Friesian (F), Jersey (J), and crossbred (F×J) cows in the once-a-day milked
herd
Table 4.2.2. Least square means (LSM) and standard errors (SE) for the production and fertility
traits in Holstein-Friesian (F), Jersey (J) and crossbred (F×J) cows in the once-a-day milked
herd
Table 4.3. Phenotypic correlations amongst all linear type traits across the three breed
groups

Table 4.4.3. Phenotypic correlations between production and fertility traits in the once-a-day
milked herd63
Table 4.4.4. Phenotypic correlations between linear type with production and fertility traits in the
once-a-day milked herd65
Table 4.5.1 Regression coefficients (b) and standard errors for each linear type trait when modeled
to production
Table 4.5.2 Regression coefficients (b) and standard errors for each linear type trait when modeled
to fertility

BCS	Body condition score
C21	Conception to Day 21
C42	Conception to Day 42
F	Holstein-Friesian cows
F x J	Crossbred cows
J	Jersey cows
LIC	Livestock Improvement Corporation (New Zealand)
LL	Lactation length
MS/cow	Milksolids production per cow
MS/ha	Milksolids production per hectare
OAD	Once-a-day milking
S21	Submission to Day 21
S42	Submission to Day 42
SBCO	Interval from start of breeding to conception
SBFS	Interval from start of breeding to first service
SCS	Somatic cell score
TAD	Twice-a-day milking
ТОР	Traits other than production