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ABSTRACT 

No published chilling time prediction method which covers a wide range of practical 

conditions, and which can be applied using only simple algebraic calculations for chilling with 

evaporation at the product surface has been proven accurate. The objective of the present 

work was to develop and test a simple chilling time prediction method with wide application 

for situations where significant evaporation as well as convective cooling occurs from the 

product surface. 

A numerical method (fmite differences) was used to simulate convection and evaporation at 

the product surface in cooling of solid products of simple shape (infinite slab, infinite 

cylinder, and sphere) with constant surface water activity. Semi-log plots relating temperature 

change to be accomplished to time were linearised by appropriate scale transformations based 

on the Lewis relationship. The effect of evaporation on cooling rate was measured by 

considering the slope and intercept of such plots, and comparing these to the slope and 

intercept that would arise in convection-only cooling. The enhancement of cooling rate due 

to the evaporative effect depended on six parameters; initial product temperature, cooling 

medium temperature, Biot number, relative humidity, product shape factor, and surface water 

activity. 

Four simple algebraic equations were curved-fitted to the numerically simulated data for 

predicting temperature-time profiles at centre and mass average positions in the product. The 

numerically generated results and the simple algebraic equations agreed well with a mean 

difference close to 0 % for all three shapes, and 95% confidence bounds of about ±3 % for 

the infinite cylinder, and ±5 % for the infinite slab and the sphere geometries. 

To test the simple models, chilling experiments were conducted in a controlled air flow 

tunnel across a range of conditions likely to occur in industrial practice. Tr.ols were 

conducted using infinite cylinders of a food analogue as an idealised product (with saturated 

salt solutions percolating over a wet cloth on the product surface to maintain constant surface 

water activity),  and carrots (both peeled and unpeeled) as examples of real food products. 
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Measured centre temperatures for both the idealised products and peeled carrots were 

predicted by the proposed method, assuming a constant surface water activity, within a range 

of differences which was almost totally explainable by experimental uncertainty. For 

unpeeled carrots, predictions mode using three different surface water activities in the model 

(one to represent the initial condition, one to represent the active chilling phase, and one to 

represent the quasi-equilibrium state at the end of chilling) agreed sufficiently well with 

experimental centre temperature data for the lack of fit to be largely attributable to 

experimental uncertainty. No experimental verification for prediction of mass-average 

temperatures was attempted. 

The proposed method is recommended for predicting chilling times of food products of 

infinite slab, infinite cylinder or sphere shapes, across a wide range of commonly occurring 

chilling conditions provided the product has constant surface water activity. The 

establishment of bounds on a theoretical basis for limiting the ranges in which surface water 

activity values are selected for making predictions for products with non-constant surface 

water activity is proposed, and some guidance on application of these bounds established. 

Further work to refine the use of these bounds for a range of food products, to consider a 

wider range of shapes, to test the ability of the proposed method to predict mass-average 

temperatures is recommended. 
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