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Abstract  

Deriving land cover/land-use information from earth observation satellite data is one of the 

most common applications for environmental monitoring, evaluation and management. Many 

parametric and non-parametric classification algorithms have been developed and applied to 

such applications. This study looks at the classification accuracies of three algorithms for

different spatial and spectral resolution data. The performance of Random Forest (RF) was 

compared to Maximum Likelihood (MLC) and Artificial Neural Network (ANN) algorithms 

for the separation of subtropical land cover/land-use categories using Sentinel-2 and Landsat 8 

data. The overall, producers’ and users’ accuracies were derived from the confusion matrix, 

while local land use statistics were also collected to evaluate the accuracy of classified images.

The accuracy assessment showed the RF algorithm regularly outperformed the MLC and ANN

in both types of imagery data (>90%). This approach also exhibited potential in dealing with 

the challenge of separating similar man-made features such as urban/built-up and mining 

extraction classes. The ANN algorithm had the lowest accuracy among the three classification 

algorithms, while Landsat 8 imagery was most suitable for the classification of subtropical 

mixed and complex landscapes.

As the RF algorithm demonstrated a robustness and potential for mapping subtropical land 

cover/land-use, this study chose it to monitor and map temporal land cover/land-use changes 

in Thai Nguyen, Vietnam between 2000 and 2016. The results of this temporal monitoring 

revealed that there were substantial changes in land cover/land use over the course of 16 years. 

Agricultural and forest land decreased, while urban and mining extraction land expanded

significantly, and water increased slightly. Changes in land cover/land-use are strongly 

associated with geographic locations. The conversion of agriculture and forest into urban/built-

up and mining extraction land was detected largely in the Thai Nguyen central city and southern 



iii

regions. In addition, further GIS analysis revealed that approximately 69.6% (100.2km2) of 

new built-up areas had occurred within 2km of primary roads, and nearly 96% (137.6km2) of 

new built-up expansion was detected within a 5-km buffer of the main roads. This study also 

demonstrates the potential of multi-temporal Landsat data and the combination of remote sensing, GIS 

and R programming to provide a timely, accurate and economical means to map and analyse temporal 

changes for long-term local land use development planning.

Keywords: Random forest; Land cover mapping; Remote Sensing; Vietnam
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1 Introduction 

1.1 Background  

Deriving land cover/land-use information from remotely sensed data has become a critical 

component for effective environmental monitoring, evaluation and management. Accurate and 

up-to-date land cover information is essential to understand and assess the consequences of 

environmental change. Remote sensing, with recent advances in the technology and an open-

access data policy, together with increased temporal acquisition of data, can provide land 

cover/land-use information at a lower cost than traditional ground survey approaches (Szuster, 

Chen, & Borger, 2011). The analysis of these data can offer a better understanding of the 

subtropical landscape patterns and interactions between human activities and natural 

ecosystems (Rawat & Kumar, 2015). The expansion of urban and industrial areas on former 

cropland, grassland and forest could potentially cause significant consequences such as forest 

loss, biodiversity reduction and land degradation (Baker, Brazel, & Westerhoff, 2004; Zhao et 

al., 2006). Seto, Güneralp, and Hutyra (2012) estimated that three percent of the world 

biodiversity hotspots would be urbanized by 2030 due to rapid land cover/land-use change, and 

land cover/land-use changes are regarded as a main source of global warming emissions 

(Meyer & Turner, 1992). Given the scale and impact of land cover/land-use changes, the choice 

of classification algorithms is essential in accurately monitoring and assessing such dynamic 

changes for sustainable land use development planning.

Since the Landsat program was first launched in the 1970s, the derivation of land cover/land-

use change information has been made possible by advances in computing technology and the 

development of software applications. Along with the rapid development of computer systems

and machine learning algorithms, many parametric and non-parametric classification 

techniques (e.g., random forest, artificial neural network and maximum likelihood classifiers) 
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have been developed and applied to extract land cover/land-use information and monitor

temporal spatial changes. While parametric classification techniques are based on statistical 

assumption, non-parametric approaches are not dependent on such assumptions. The most 

widely used parametric techniques is the Maximum Likelihood Classification (MLC)

algorithm, whereas newer alternative non-parametric classification algorithms such as Random 

Forest (RF) and Artificial Neural Network (ANN) are gaining popularity in the remote sensing  

community, particularly land cover/land-use studies (Huang, Davis, & Townshend, 2002).

When producing land cover/land-use information from remotely sensed data , one of the 

challenging issues is the spectral mixture of different earth objects (Poursanidis, Chrysoulakis, 

& Mitraka, 2015).

Many studies have investigated the performance of different algorithms for land cover/land-

use classification. Seto and Liu (2003), for instance, assessed the performance of the ANN 

algorithm with the MLC using Landsat TM imagery for urban change detection. Szuster et al. 

(2011) used a 15-m ASTER image  to test the performance of SVM (support vector machine) 

against ANN and MLC algorithms in the coastal zones of Thailand, while Huang et al. (2002)

used Landsat TM to compare the accuracy of SVM against the MLC and ANN algorithms. Pal 

and Mather (2003) tested the performance of decision tree methods against the MLC and ANN  

using Landsat ETM+ data, and this approach was also compared to discriminant analysis (DA) 

and support vector machine (SVM) using an airborne thematic mapper image (5-m). Most of

these studies used Landsat to test the classification accuracies of algorithms. However, 

relatively little research has done to examine the performance of the RF algorithm against the

MLC and ANN techniques for different spatial and spectral resolutions (e.g., Sentinel-2 and 

Landsat 8). Therefore, assessing the performance of the three classification algorithms is 
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critically important in understanding the advantages and drawbacks for each technique in 

classifying multi-sensor data when deriving complex and mixed subtropical landscapes. 

Currently, national and local land managers are frequently requested for reliable and up-to-date 

land cover/land-use information, relatively little research has conducted to monitor and map 

temporal land cover/land-use changes in subtropical environments (e.g., Vietnam). Although 

earth observation data for deriving land cover/land-use information has been demonstrated to 

be relatively efficient and accurate (Khiry & Csaplovics, 2007), the use of satellite data to 

monitor and map local land cover/land-use changes in subtropical regions was inadequate. As 

an example, Thai Nguyen, a northeast province of Vietnam, has been experiencing relatively 

substantial changes in land cover/land-use over the past two decades. The local government 

keeps practising traditional survey approach to map its land cover/land-use. Alternative 

monitoring and mapping these temporal changes using a reliable algorithm and remote sensing 

data are more efficient to provide timely and accurate information for sustainable local land 

use development planning.

The objectives of this work are; (1) to compare the performance of the RF algorithm against 

the MLC and ANN using Landsat 8 and Sentinel-2 data for subtropical land cover/land-use 

mapping, (2) to provide a recent perspective for land cover types and land cover changes that 

have taken place in the last 16 years in Thai Nguyen, Vietnam, (3) to integrate R programming 

and GIS with remote sensing data in land cover/land-use monitoring and mapping.

1.2 Land cover/ land-use in Thai Nguyen, Vietnam 

After the adoption of a national economic reform (the Doi Moi) in 1986, Vietnam has 

substantially increased urban and industrial activities, and obtained impressive socio-economic 
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achievements over the three decades. The annual average growth rate of the economy stabilized 

consistently at 7.5% between 1991 and 2005 (Vuong, 2014), while the country continued to 

expand its urban and industrial zones, and is considered one of the fastest urbanized countries 

in the southeast Asian region (T. McGee, 1995; T. G. McGee, 2008). The rapid growth of 

urbanization and industrialization has long been considered a sign of national and regional 

economic prosperity, but its tremendous changes in the economic system has brought a

negative effect on the spatial structure and patterns of land cover/land use (Quang & Kammeier, 

2002).

Vietnam has also witnessed a substantial change in land cover/land-use across the country over 

the past two decades, particularly in metropolitans and its suburbs. The transition of economic 

infrastructure from agriculture to industrial and urban services was constantly targeted by the 

Vietnamese government (Ministry of Planning and Investment, 2005). Massive rural 

landscapes are quickly converted and occupied by urban residential and industrial zones 

(Castrence, Nong, Tran, Young, & Fox, 2014). Ministry of Planning and Investment (2005)

revealed that approximately 400 km2 has been planned to allocate for the construction and 

development of industrial zones alone between 2005 and 2010, and this figure is expected to 

reach 800 km2 by 2020. However, the actual amount of land mass was allocated to the 

construction and development of industrial zones alone by 2014 reached 810 km2 (Phan Manh 

Cuong, 2015). Noticeably, these changes in land cover/land-use are unevenly distributed 

between geographic regions, and frequently occurred in neighbouring provinces of Hanoi

capital city such as Thai Nguyen province.

Thai Nguyen province is located in the heart of southeast region of Vietnam, and it borders on 

Ha Noi city in the south and Bac Kan province in the north. Due to geographic terrain and 
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climate factors, Thai Nguyen is largely covered by forest and agriculture in the north and south 

regions respectively. Developed areas are clustered in the Thai Nguyen central city and 

southern portions such as Pho Yen and Song Cong districts, while rural land characterizes the 

northern region and its surrounding areas. The local government identified six main land 

cover/land-use categories representing across the province, namely agriculture, non-

agriculture, unused land, urban land, land for natural conservation and land for tourism 

development (Government, 2013). Among those land cover/land use types, agriculture and 

forest are the most prominent types of cover with an area of approximately 2830 km2. Unused 

land accounted for a small area, and presents in mountainous areas due to timber extraction 

and gold mining.

In recent years, Thai Nguyen province has been experiencing a substantial urbanization and 

industrialization expansion. With the advantages of accessible transport and geography, Thai 

Nguyen has prioritized key economic sectors (e.g., industry and mining); therefore, its 

industrial and urban development improved significantly. However, the rapid development of 

industrial zones and urban infrastructure has resulted in the loss of a significant area of forest 

and cropland. As an example, the local government has allocated more than 6 km2 of forest 

and agriculture for the construction and development of 20 industrial zones between 2002 and 

2010 (Thai Nguyen People's Committee, 2010), and this figure increased approximately 41.2

km2 in 2014 (Phan Manh Cuong, 2015).

The expansion of urban and industrial zones on rural landscapes is expected to continue in 

coming years. On 27th February 2015, the Vietnamese government issued the Decision No 

260/QD-TTg in the approval of a comprehensive socio-economic development strategy for the 

Thai Nguyen province until 2020 with a vision for 2030. This comprehensive strategy was 
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targeted to transform Thai Nguyen into a modernized, urbanized and industrialized province 

of the northeast region of Vietnam. With a primary focus on the industrial and urban 

development, the province has outlined and initialized the industrial zone development plan by 

2020. Figure 1.1 shows the spatial distribution of industrial zones and major developments

across the Thai Nguyen, and most of its industrial parks are located in the south and suburb 

areas of Thai Nguyen central city. This scheme is expected to allocate 638 km2 (18% of the 

total area) for non-agricultural purposes by 2020, and would potentially increase the 

disappearance of forest and agriculture.

Figure 1.1 Spatial distribution of industrial zone development by 2020, Thai Nguyen

Source: Thai Nguyen’s People Committee

A part from industrial developments, mining exploitation activities such as coal, iron and 

tungsten have been increasing in Thai Nguyen over the past decade. Most of these activities 

are taking place in forest or agriculture areas; and as a result, many fertile farming areas and

natural forests were made way for mining extraction projects. Recently, the local government 

has granted 169 mining licenses for 79 organizations and individuals with a total area of around 
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55 km2 (Vietnam Geology Society, 2014). The loss of farming and forest lands would

potentially result in food security and environmental problems. Therefore, accurate mapping 

and monitoring of land cover/land-use information is a pivotal step in long-tern sustainable 

land use development. 

While the local department of natural resource and environment is required by law to conduct 

regular ground surveys to monitor land cover/land-use change (Vietnam Government, 2013),

little research has done to derive land cover/land-use information from earth observation 

satellite data over the entire province. It is obvious that ground surveys can provide accurate 

land cover/land-use information, but this approach is very costly, labour-intensive and time-

consuming to produce geospatial data. Whereas there is an increasing availability of free-cost 

earth observation data and image processing software, this idea is clearly to produce massive 

updated and inexpensive land cover/land-use information over the same geographic region 

within a certain interval. Landsat and Sentinel-2 sensors, for example, continuously provide

relatively high spatial and spectral images over the entire globe every 16 and 5 days 

respectively. This source of data will be valuable for local and national policy-makers and 

politicians in the consideration of its sustainable land use development planning.

1.3 Research problem 

With the increasing availability of free and low-cost satellite data, the activities of the earth 

environment and its resources have become easier than ever before to monitoring and manage.

Many environmental variables can be derived from satellite remote sensing data, of which land 

cover/land-use information is considered to be one of the most commonly derived variables.

Over last few decades, there has been an increasing interest in machine learning algorithms for 
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land remote sensing, along with the rapid development of computer systems. Many parametric 

and non-parametric classifiers have been developed and applied to land cover classification. 

Although there is a need for a standard land cover classification technique, none of current 

classifiers has been internationally accepted (Anderson, 1976). This is partly because each 

algorithm has different capabilities to classify land cover surface, and each region usually 

represents various unique land cover complexes. Therefore, the comparison of classifiers plays 

an important role in the enhancement of the accuracies of land cover derived information, and 

minimizes time and costs. In this study, the focus is to explore the capability of the three land 

cover classification methods (maximum likelihood, artificial neural network and random 

forest) to classify subtropical land cover/land use categories using two different spatial and 

spectral Sentinel-2 and Landsat-8 data. The RF algorithm was then used to classify and monitor 

temporal land cover/land-use changes between 2000 and 2016 in Thai Nguyen using multi-

temporal Landsat data due to its high accuracy and stability.

1.3.1 Research goals 

This study aims to: 

Compare the performance of the RF against the MLC and ANN algorithms to derive 

land cover/land-use information using Sentinel-2 and Landsat 8 data;

Provide recent perspective for subtropical land cover categories and its temporal 

changes in Thai Nguyen, Vietnam.

1.3.2  Research concerns 

Comparison of land cover classifiers
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What are advantages and disadvantages of the parametric and non-parametric 

classifiers for subtropical land cover detection?

What are accuracies of each technique used? And which one yields the most accurate 

product?

What are differences in overall accuracies between two different spatial and spectral 

satellite data?

Which classifiers should local land managers choose in terms of overall accuracy and 

its accessibility?

Land monitoring and mapping

What were the trend and pattern of land cover change in Thai Nguyen over the last 16 

years?

How much land cover has been changed or converted? And what is the nature of its 

changes?

What is the spatial distribution of its change in the study area?

What are primary causes behind its changes?

1.4 The organization and structure of the research thesis 

This research thesis is consisted of six chapters concerning various aspects of land cover/land-

use, classification algorithms, accuracy assessment and temporal change detection. The first 

chapter introduces the research background, land cover/land-use status in Vietnam and Thai 

Nguyen in particular, and defines research goals and questions. Chapter 2 provides brief 

insights of image classification algorithms, land cover monitoring and mapping practices, role 

of remote sensing and GIS in land cover/land-use classification research, and change detection 

and accuracy assessment. Chapter 3 focuses on the description of study area and data

collection, including satellite remote sensing and reference data. Chapter 4 deals with 
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classification techniques used to classify the Sentinel-2 and Landsat data, accuracy assessment,

and to monitor and map temporal land cover/land use changes. Chapter 5 discusses and presents 

the results of the research, and its findings. The final chapter summarises the main research 

findings, and recommendations for future studies.

2 LITERATURE REVIEW

2.1 Remote sensing and GIS  

Remote sensing is the process of acquiring information about biophysical and biochemical 

properties of earth surface features without physical contact with it. The purpose of this 

acquisition process is to capture reflected or emitted energy from earth surface using a sensor,

installed on a satellite platform or aircraft system. 

Geographic Information System (GIS) is a computer-based tool for storing, managing,

mapping and analysing various spatial data, particularly vector and raster data. Recently, the 

integration of remote sensing and GIS has proved useful in monitoring and managing the earth 

environment and natural resources as well as modelling of urban expansion.

2.1.1 Remote sensing 

The term “remote sensing’ originated in the 1960s by geographers at the US Office of Naval 

Research (Cracknell, 2007). Since then, there have been numerous definitions of remote 

sensing, but Campbell and Wynne (2011) stated that “Remote sensing is the practice of 

deriving information about the Earth’s land and water surfaces using images acquired from an 

overhead perspective, using electronic magnetic radiation in one or more regions of the 

electronic-magnetic spectrum, reflected or emitted from the Earth’s surface”. Many earth 

observation programs have been developed and launched by various countries (e.g., USA,
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France, India and Japan) for monitoring and managing the earth environment. The Landsat

program started with the launch of its first satellite in 1972, and has become the longest-running 

program for the acquisition of the earth observation satellite data. There has been a total of 8 

satellites launched, of these 8 Landsat 6 failed to reach orbit in October 1993, while Landsat 7 

ETM+ suffered from scan line corrector failure in 2003, and Landsat 8 is the current platform

in orbit and expected to decommission in 2020 (NASA, 2017) the rest of the satellites reached 

the end of their operational life and were decommissioned.

With recent advancement in space technology and machine learning algorithms, some newer 

generations satellites with high spatial, spectral and temporal resolution have been developed 

and applied. Specifically, the Sentinel-2A satellite, a part of Copernicus program jointly 

developed by the European Space Agency and European Union, was first launched in June 

2015. The Sentinel-2B was recently launched in March 2017, it provides 13 high spectral and 

spatial resolution bands (Figure 2.1), of which there are 10-m pixel size for bands 2, 3, 4 and 

8, 20-m for bands 5, 6, 7, 8A, 11, and 12, 60-m for bands 1, 9, and 10, and with a 5-day revisit 

frequency respectively (Drusch et al., 2012; Spoto et al., 2012). The Sentinel-2 mission aims

to provide systematic global acquisitions of high-spatial and spectral resolutions, and 

continuity for the current SPOT and Landsat satellite sensors with an expected design lifetime 

of 7 years. With a wealth of high-resolution images, the Sentinel-2 would extensively enhance 

our understanding of the earth surface, atmosphere and oceans, while it potentially provides 

critical information for local and national policy-makers and land managers to make wise 

decisions about their environment and resource management.

In recent years, commercial satellites have contributed greatly to the continuous provision of 

high-quality satellite data with the launch of IKONOS, QuickBird and OrbView-3 that have 
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very high spatial resolutions ranging from 0.5-m to 5-m. These commercial sensors are very 

useful in urban planning and monitoring, emergency assistance, transportation, agriculture and 

forestry. However, it has associated limitations for land cover classification applications such 

as low coverage area and inaccessible affordability, and often records data in the visible and 

near-infrared electromagnetic region. GeoEye-1, for example, covers a narrow swath of 15.2 

km, and is unavailable to the public at zero cost.

Figure 2.1 Sentinel-2 spectral and spatial resolution
Source: European Space Agency

Thanks to satellite technology and GIS development, many natural and human-made processes 

have been effectively monitored and detected. Dewan and Yamaguchi (2009a) used Landsat 

and socio-economic data to quantify land cover changes in Greater Dhaka, Bangladesh from 

1975 to 2003. Their study revealed that the significant expansion of urban land was taking 

place in rural areas and water bodies, and largely correlated with elevation, population and 

economic growth. Similarly, Pham and Yamaguchi (2006) monitored and mapped temporal 

land cover/land-use changes in Ha Noi city, Vietnam between 1975 and 2003. The results of 

this study showed that the expansion of urban areas occurred largely along transport systems 

and transitioned to the southern and western regions. In addition, remote sensing is also used 

to monitor and provide rapid and accurate information about the nitrogen status in the 
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agriculture practice to improve the growth of crops (Bausch & Duke, 1996). Many other

applications of remote sensing in a wide range of disciplines have been documented by 

geographers, environmental managers, geologists, ecologists and cartographers (Govender, 

Chetty, & Bulcock, 2007; Green, Mumby, Edwards, & Clark, 1996; Sanyal & Lu, 2004).

2.1.2 Geographic Information System 

Geographic Information System (GIS) is a system designed to capture, manipulate, analyse, 

manage and display spatial or geographic data. In a broader context, GIS is part of geographic 

information science and technology, and has recently become one of the fastest growing fields

of study and application (David Dibiase, James L.Sloan, Ryan Baxter, Wesley Stroh, & King, 

2017). Many government agencies, commercial organizations, private companies and 

universities have produced a wide range of spatial and remotely sensed data (e.g., elevation)

for use in GIS.

GIS enables users to perform from basic tasks such as view, query and representation of spatial 

data to advanced statistical modelling such as modelling of natural and man-made processes

(Unwin & Fisher, 2005). Many examples of GIS have been used in combination with remote 

sensing to assess land cover/land-use change as well as the analysis of urban growth. Weng 

(2002), for example, used GIS and temporal satellite data to monitor and map historical land

cover/land-use dynamics in Zhujiang delta, China. Binh, Vromant, Hung, Hens, and Boon 

(2005) mapped the loss of forests and agriculture and expansion of shrimp farms in Ca Nuoc, 

Ca Mau province, Vietnam. GIS also used in many other disciplines such as ecology and 

agriculture. As an example, Joy and Death (2004) monitored and estimated the temporal 

changes of fish occurrence, and modelled the spatial habitat-suitability distribution of 14 

freshwater fish species over the regional river network in New Zealand. 
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2.2 Image Processing 

Digital image processing is referred to the use of computer algorithms to perform some 

operations on an image in order to either obtain an enhanced image or derive useful information 

from it. To effectively study the earth environment from remote sensing sensors, collected data 

should not be contained noise characteristics in radiometric and atmospheric conditions. 

However, the complexity of atmospheric conditions and technical limitations of sensors have

frequently caused undesired noise in recorded images. Thus, pre-processing is an essential step 

to remove existing distortion inherent in an image, and to enhance the visualization and 

interpretation.

Natural resource and environment management decisions are based on accurate and 

informative inputs. The choice of classification algorithms plays an important role in deriving 

accurate land cover/land-use information to serve such purpose. Given the importance of 

classification choices, several comparative studies of algorithms usage in land cover 

classifications have been conducted (Hansen, Dubayah, & DeFries, 1996; Pal, 2005; V. F. 

Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012). However, little 

research has been done to compare the performance of the three classifiers, namely MLC, RF 

and ANN using Sentinel-2 and Landsat 8 data.

2.2.1 Pre-processing 

Radiometric calibration and atmospheric correction are considered one of the most important 

components in digital image pre-processing. This process is to convert DNs to radiance at the 

sensor’s aperture, and then continue to transform the radiance to Top of Atmosphere (TOA) 

reflectance. Surface reflectance at the ground is ultimately extracted by removing path 

radiance.  Remote sensing data is processed to remove the effect of noise from atmosphere and 
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other sources. The main aim of these operations is to enhance the visual interpretation, increase 

spectral separability of earth surface features and provide better inputs for further automated 

image processing algorithms (Maini & Aggarwal, 2010).

Visual enhancement is the improvement of brightness and stretching to assist the interpreters’

visualization. Chuvieco (2016) defined criteria for visual interpretation and grouped them into 

a hierarchically according to their degree of complexity and spectral properties. Brightness and 

colour are the most prominent criteria for visual enhancement in terms of spectral resolution, 

while shape, size and texture can improve the spatial properties of the feature (Chuvieco, 2016).

In multispectral sensors, colour composites play vital role in distinguishing objects by 

assigning each of the primary colours (RGB) to spectral bands. This is because each object has 

distinct spectral signature within the electromagnetic spectrum (EM). Vegetation, for example, 

is strongly reflected in the near-infrared region, while low reflectance can be seen in the visible 

spectrum (Figure 2.2).

Figure 2.2 Spectral reflectance of green vegetation, Landsat 8 data

Image transformation reduces the redundancy of spectral information and existing noise in the 

images, while still maintaining the integrity of original data. Principal Component Analysis 
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(PCA) is widely used to transform original data to a new dataset with uncorrelated output 

bands. For automated classifiers, removing the redundancy of spectral information in each band 

and separating noise factors are important to create better classified output (Li & Yeh, 1998).

2.2.2 Classification algorithms  

Deriving land cover/land information is one of the major remote sensing applications for 

environmental monitoring and management activities. Many automated digital image 

classification techniques have been developed and applied for organizing image datasets into

classes based on their spectral properties using the similarity of spectral characteristics of each 

land surface (Figure 2.3). Supervised classification learning algorithms, for example, classify 

pixels into classes based on their spectral properties (reflectance values or DNs) with the 

selection of training data for each class manually defined by the interpreter (Campbell & 

Wynne, 2011; Chuvieco, 2016), and it is commonly used in the land remote sensing 

classification.

Figure 2.3 An example of land cover classification using spectral class 

Supervised classification algorithms are usually divided into two major approaches, namely

parametric and non-parametric classifications. The traditional parametric methods (e.g., MLC 
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and Minimum-Distance) are based on statistical assumption such as normal distribution of data.

This assumption, unfortunately, is not always satisfied within the data. As an example, the 

distribution of reflectance values of training data in mining class for this study is skewed to 

right (Figure 2.4). Despite having the constraints of statistical assumption, the MLC considered

among the most established algorithms for land cover change detection studies (Shalaby & 

Tateishi, 2007; Strahler, 1980).

Figure 2.4 Right-skewed distribution of reflectance for mining class, Sentinel-2 band 3

To eliminate such limitations, non-parametric classification algorithms were developed and 

now are commonly used among the remote sensing community. Neural network and random 

forest are two examples of non-parametric classifications. The various developments of 

parametric and non-parametric classifiers resulted in a question of which classification 

technique should be chosen to provide the desired results. This concern has led to the 

comparative studies of various classifiers for land cover classification. Lu, Mausel, Batistella, 

and Moran (2004) compared four different classifiers, namely minimum distance (MD), 

maximum likelihood (MLC), extraction and classification of homogeneous objects (ECHO), 
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and decision tree based on linear spectral mixture analyses (DTC-LSMA) to analyse 

multispectral data in Brazilian Amazon Basin. These were also investigated by Hansen et al. 

(1996), Szuster et al. (2011), Nangendo, Skidmore, and van Oosten (2007), and Pal (2005).

Although a substantial number of supervised classifiers were compared, little research has been 

done to investigate the accuracy of the three techniques: maximum likelihood, neural network 

and random forest using both Sentinel-2 and Landsat 8 data. This study attempts to examine 

the accuracy relationship between the classifiers, and to answer the question about the choice 

of classification algorithms, while the temporal land cover/land-use changes of Thai Nguyen 

province were mapped.

2.2.2.1 Maximum likelihood classifier (MLC) 

Maximum likelihood (MLC) was originated from electrical engineering field of study (Nilson, 

1925), whereas it has known in use for the applications of social sciences from the 1940s, and 

widely adopted in the field of pattern recognition in the following decades (Strahler, 1980).

The MLC algorithm is based on statistical assumptions that the statistics for each training class 

in each band should be following Gaussian distribution or bell-shaped distribution. Mean and 

variance is calculated from each training class to form the probability distribution of each pixel 

in an image. An unknown pixel will be assigned to a specific class if it has the highest 

probability belonging to that class. A sufficient number of training data should be required for 

calculating mean and variance of each class (Richards & Richards, 1999). The technical 

procedure will be further discussed in Section 4.3.1.1.

Since the first initiation of Landsat satellite in 1970s, the MLC algorithm has become a popular 

approach for environment and earth scientists in monitoring and deriving physical earth
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information from remotely sensed data. Detecting land cover/land-use changes was probably 

the most widely used this classification technique. Dewan and Yamaguchi (2009b), for 

example, derived land cover/land use maps for Dhaka Metropolitan of Bangladesh between 

1960 and 2005, and Muttitanon and Tripathi (2005) mapped temporal changes in land 

cover/land use from Landsat sensor TM in the coastal zone of Ban Don Bay, Thailand. 

The MLC algorithm suffers from the fundamental drawbacks of all conventional classification 

procedures although this approach has several benefits, mainly connected with its theoretical 

simplicity and robustness (Davis et al., 1978). Most spectral information is lost in the process 

of transforming the remote sensing imagery to produce a classified image (Maselli, Conese, & 

Petkov, 1994), whereas it is frequently faced with the challenge of separating the mixed and 

spectral confused pixels. As a result, this traditional approach was usually considered less 

powerful than non-parametric classification algorithms (e.g., Random forest and artificial 

neural network). For instance, Erbek, Özkan, and Taberner (2004) evaluated the performance 

of the ANN and MLC algorithms using Landsat data and revealed that the ANN approach 

produced a higher overall classification accuracy than the MLC technique, and Kavzoglu and 

Mather (2003) also reached a similar conclusion. V. Rodriguez-Galiano, Chica-Olmo, Abarca-

Hernandez, Atkinson, and Jeganathan (2012) conducted the comparison of classification 

performance between the RF and MLC algorithms, and found that the RF classifier consistently 

produced higher overall accuracy over the MLC.

2.2.2.2 Random Forest Classifier (RF) 

Random forest is a powerful assemble learning algorithm, which has been increasingly used in 

the field of remote sensing. According to V. F. Rodriguez-Galiano et al. (2012), random forests

are more robust because of its non-parametric nature and high accuracy. This approach has the 
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capability to handle a large number of independent variables without variable removal and 

quantify the importance of variables in the classification. The detailed operation of RF will 

describe in Section 4.3.1.2.

A random forest is an ensemble of classification trees, where each tree is built on a subset of 

original data, and contributes with a single vote for the assignment of the most frequent class 

to the input data (Leo Breiman, 2001). To produce several trees, the RF adopted bagging or 

bootstrap approach to make the decision trees grow from different training subsamples. With 

the bootstrap method, each training subsample is created by randomly resampling from the 

original dataset with replacement. Each individual decision tree is grown on approximately two 

third of each selected subset, and the remaining is included as a part of model assessment called 

“out of bagging” (OBB). This bootstrapping process contributes an unbiased estimation of the 

model and reduce correlation between the individual trees. Also, the RF uses the Gini Index as 

a measure for selecting the best split at each node, which measures the impurity of a given 

element with respect to the rest of the classes (Leo Breiman, Friedman, Stone, & Olshen, 1984)

Land cover classification using a group of learning algorithms used to classify multi-spectral 

and hyperspectral satellite sensor imagery has received increasing interests. V. Rodriguez-

Galiano et al. (2012) applied the RF method to map land cover/land-use using multi-seasonal 

imagery and texture in Spain. van Beijma, Comber, and Lamb (2014) investigated the use of 

the RF to map natural coastal salt marsh vegetation habitats in the Gower Peninsula, west of 

Swansea in South Wales. In addition, few authors have investigated the performance of the RF 

against other classification approaches such as MLC and SVM (support vector machine).

(Gislason, Benediktsson, & Sveinsson, 2006) compared the performance of the RF against 

CART technique, and found that the RF outperformed the basic CART classifier by 4%.
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Similarly, the performance of the RF was equally comparable to that of support vector machine 

(SVM) in terms of overall accuracy and training time, but required less number of user-defined 

parameters (Pal, 2005).

2.2.2.3 Artificial Neural Network Classifier (ANN) 

The artificial neural network (ANN) is a machine learning algorithm, which was developed 

based on the inspiration of human brain networks. This approach was considered one of the 

latest added techniques in the collection of classifiers system, but it has been increasing adopted

in the field of remote sensing studies. the ANN algorithm was widely recognized as an 

alternative for land cover/land-use classification because of its non-parametric nature and high 

overall accuracy (Kavzoglu & Mather, 2003; J. Paola & R. Schowengerdt, 1995). For example, 

there were many land cover/land-use studies published in major peer-reviewed international 

journals such as IEEE Transactions on Geoscience and remote sensing; International Journal 

of Remote Sensing; Photogrammetric Engineering and Remote Sensing and Remote Sensing 

of Environment (Figure 2.5).

Although the ANN algorithm is complexly described in its mathematical sense, it can be 

explained as a model of three layers: input layer, hidden layers and output layer (Kavzoglu & 

Mather, 2003). A set of random weights is assigned to the input layer, which will be passed to 

hidden layers with consideration of weightings correction. Number of hidden layers can be set 

by interpreter depending on land cover issues they are tackling. Output layer is the result of the 

network with activation function and will be repeated until an expected result is similar to the 

actual output. 
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Figure 2.5 Land cover studies publications using the ANN approach between 1990 and 2005 
Source: International Journal of Remote Sensing (J. F. Mas & Flores, 2008)

The ANN classifier requires no statistical assumptions of data normal distribution; it has been 

widely used in land cover classification studies over the past few decades. For instance, Civco 

(1993) used the artificial neural network learning algorithm as an alternative approach to derive 

land cover information from Landsat TM satellite. This study revealed that using the neural 

network technique to extract land cover maps from Landsat TM satellite data would provide 

more accurate and useful information for the integrated use with geographical information 

systems. G. F. Hepner (1990) investigated the use of the artificial network approach in 

processing satellite data with minimum number of training inputs. Although the ANN classifier 

in their study used a minimum set of training data, its classified output provided more accurate 

classification than conventional procedures. 

The comparison of neural network with other classifiers in the remote sensing classification

has been recently explored. J. D. Paola and R. A. Schowengerdt (1995), for example, described 

the comparison of the backpropagation neural network and maximum likelihood classifiers for 

detecting built-up land in various locations, namely Tucson, Arizona, Oakland, and California

using Landsat TM imagery. The result of their study showed that the classified maps derived 
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from neural network algorithm were more visually accurate in comparison with maximum 

likelihood. Similarly, Szuster et al. (2011) concluded that the ANN algorithm outperformed 

the MLC classifier with the respect of separating tropical coastal land covers. However, there 

are also several drawbacks associated with the ANN algorithm. It is frequently more 

computationally extensive and time-consuming than the MLC classifier (J. D. Paola & R. A. 

Schowengerdt, 1995). The ANN model also requires extensive amount of training input (Pal 

& Mather, 2003).

Although the performance of the ANN algorithm was extensively compared with the MLC 

classification approach, little research has been done to analyse the performance of land cover 

classification between the RF and ANN algorithms. Therefore, this study is in the hope of 

uncovering the capability of RF and ANN methods in classifying both Sentinel-2 and Landsat 

8 data.

2.3 Temporal land cover and land-use monitoring and mapping  

Before discussing land cover/land-use mapping in depth, the terms “land cover and land use’ 

should be defined. In many instances, this term is used interchangeably, and so does this study.

However, there are some distinctions between them. Land cover can be explained as the 

vegetation and man-made materials covering the earth surface such as forest, water and built-

up infrastructure, while land use is commonly referred to specific purpose in which land serves 

such as rice fields, road networks and recreational parks. Meyer (1995) formally defined land 

cover as the physical condition of earth surface regarding to its natural and artificial feature 

categories, whereas describing land use as the interference of human activities on land surface. 
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Although there are differences in defining the land cover and land use, they were changed and

influenced by human practices (Meyer & Turner, 1992). Many studies have been conducted to 

examine the relationship and interaction between land cover/land use and its dynamic 

environment. Meyer and Turner (1992) stressed that every parcel of land on the earth surface 

is unique in the cover it occurs and consistently linked to the developments of human activities. 

Anthropogenic activities have become recognized as the major force shaping the earth 

environment (Meyer & BL Turner, 1994) through the transformation and modification 

processes of land surface. Changes in land cover/land use may be caused by natural processes 

or human activities, but primarily by the conversion of natural land or forests to other land use 

purposes in which urbanization is the most obvious. Developing countries, for example, are 

undergoing the rapid growth of population and urbanization, which converts major agricultural 

and forestland to built-up uses (Meyer & Turner, 1992; Zhou et al., 2004), and even convert 

conservation zones or wild forests to urban development areas.

Changes in land surface may lead to serious consequences for both living animals and the 

environment. Many studies were carried out to estimate the impacts of land cover/land-use 

change on the environment and human health. (Foley et al., 2005), for example, revealed that 

changes in habitat environment would modify the transmission of infectious disease and lead 

to outbreaks. In Africa, Asia and Latin America where the increase of tropical deforestation 

was coincident with an upsurge of malaria is an example of this. Jha et al. (2005) investigated 

the impact of forest fragmentation on species diversity in India, and found a strong association 

between the loss of biodiversity and forest fragmented. Similarly, (Jetz, Wilcove, & Dobson, 

2007) revealed that changes in land cover and global climate system could cause substantial 

species extinctions, while several endangered species are estimated to disappear over the next 

few decades. Dale (1997) also indicated that there was a strong association between climate 
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change and land cover/land-use change, and its impact on ecosystem. Especially, land 

cover/land-use changes can alter atmospheric condition and cloud formations, which influence 

both local and global climate environment.  

Therefore, the provision of up-to-date and accurate land cover/land use map is essential to 

understand and evaluate the environmental consequences of its changes. Land cover 

information provides critical inputs for local and national agencies to better monitor and 

manage their environment and resources, particularly regarding to the formulation of socio-

economic development and planning policies (Anderson, 1976; Campbell & Wynne, 2011).

With the increasing availability of remote sensing data, statistical software and GIS tools,

monitoring land cover/land use changes will continue to provide essential information for 

government, non-government organizations and universities to make better decisions on their

natural resource and environment management.

2.4 Change detection and Accuracy assessment  

2.4.1 Change detection 

Change detection is the process of identifying the differences of land surface using multi-

temporal images acquired in the same extent of geographic area (Singh, 1989). Remote sensing 

data are repeatedly acquired over the same geographic coverage at regular time intervals. 

Therefore, the application of change detection techniques plays a vital role in monitoring and 

analysing the environmental, land cover, deforestation and disaster assessments.

Many change detection techniques have been developed and applied in the context of land 

cover classification. Among the different techniques, a post-classification comparison (PCC) 

was widely used to monitor and map land cover/land use change between two or more time 
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intervals (Singh, 1989). After each remote sensing image is classified independently, two 

classified images are compared through the confusion matrix in order to create a change “from 

to” map. Many land cover monitoring studies have applied this technique and stressed its 

advantages. Shalaby and Tateishi (2007) emphasized that the comparison of two independently 

classified images with distinct dates using the post-classification detection is the most effective 

technique because it can minimize the problem of normalizing atmospheric and sensor 

variability. Another comparison study of change detection conducted by J.-F. Mas (1999)

reported that post-classification not only outperforms over the other change detection 

techniques, but also provides the best information about the nature of its change. In addition, 

many other studies also reached the similar conclusions and prioritized post-classification 

comparison over other techniques (Liu & Zhou, 2004; Serra, Pons, & Sauri, 2003; Weismiller, 

Kristof, Scholz, Anuta, & Momin, 1977; Yuan, Sawaya, Loeffelholz, & Bauer, 2005).

2.4.2 Accuracy assessment  

Accuracy assessment is considered the last step in the digital classification, which validates a

thematic classified image and actual ground land cover type or reference data (Chuvieco, 

2016). Validation is a critical stage to quantify how well our classified land cover maps 

compare to actual land cover on the ground. The validation is carried out using ground control 

data, and compare it to the classified resultants to produce a table, called confusion matrix or 

contingency table (Campbell & Wynne, 2011; Joseph, 2005; Richards & Richards, 1999).

Based on the information from the confusion matrix, many measures can be derived to assess 

the fitness of a model to particular context, including an overall accuracy, producers’ and users’ 

accuracy for each class and Kappa statistic.
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According to Congalton and Green (2008) and Anderson (1976), an overall accuracy is 

obtained by dividing the total sum of diagonal over the total number of samples, while Kappa 

statistic is calculated more sophisticated. Kappa coefficient takes chance agreement and 

covariance term into account in calculation process. The result of Kappa statistic ranges from 

0 to 1, where values close to 0 indicate low agreement between two datasets, and values close 

to 1 indicate high agreement. These two coefficients indicate how well one classifier performs. 

Usually, the acceptable level of overall accuracy should be from or above 85% (Anderson, 

1976; Foody, 2002; Thomlinson, Bolstad, & Cohen, 1999). Additionally, producers’ and users’ 

accuracies provide essential information to evaluate the performance of a classification 

algorithm with respect to the separation of certain land cover/land-use categories.

Although the confusion matrix is widely used in the field of remote sensing, it was still in 

debate and yet hardly adopted as an accuracy assessment standard (Foody, 2002). This is 

because Kappa statistic is not always appropriate due to chance agreement probability (Morris 

et al., 2008). Another aspect is that the target accuracies (overall accuracy>85%) commonly

recommended by DeGloria et al. (2000); (Foody, 2002) are rarely achieved. Despite the

drawbacks of the confusion matrix, it still plays an important role in validating the classified 

products derived from remotely sensed data (Foody, 2002).
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3 STUDY AREA and MATERIALS 
This chapter describes the study area and techniques that are applied in the collection, analysis

and presentation of both satellite images and ground truth data.

3.1 Study Area 

Thai Nguyen province is located in the northeast region of Vietnam and covers 9 local districts

and parts of the Tam Dao national park with a total area of roughly 3534.45 km2 (Figure 3.1).

The study area is prominently characterized by subtropical climates (e.g., warm to hot in 

summers and cool to mild in winters) with strong inter-seasonal variability. Mean annual 

temperature and precipitation are comparably high, approximately 25oC and 2250 mm 

respectively, while its elevation ranges from 4 meters in flat areas to 1591 meters in the Tam 

Dao mountain range (NASA & Ministry of Economy Trade and Industry of Japan, 2011). The 

climatic and topographic variabilities produced complex characteristics of subtropical 

landscapes such as semi-deciduous, scrubs and maintain ranges (Phuong, 2007). At present, 

forest and scrubs are predominant and cover most of the north and northwest, while agriculture 

and urban/built-up primarily characterize lower areas and drainage corridors in the south and 

central. 

The historical vegetation of the study area was described as dense and diverse, with a 

prominence of the eucalyptus trees and shrubs (Hoang Ngoc Ha, 2008). Clement and Amezaga 

(2008) revealed that forest restoration programs implemented between 1985 and 2005 has 

significantly increased forest cover from 29.2% to 37.6% respectively. However, the recent 

expansion of industrial and urban zones and other infrastructure networks has increased 

pressure on local land-use. Conversion of agriculture and forest was largely occurred to serve 

industrial and urban development in the southern flat areas and suburb zones of districts and 
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towns. As an example, Nam Thai urban zone was built in 2014 and is expected to accommodate 

from 25 to 30 thousand people

Figure 3.1 A map of the study area

The study area is home to nearly 1.2 million people in 2016, which represents roughly 1.3% of 

the Vietnamese population. The population of Thai Nguyen increased significantly over the 

past two decades (Hao Ho, 2015), and the percentage of rural population against urban 

population remained high. For example, the rural population in 2010 was approximately 74%, 

while urban residents only accounted for 26% (General Statistics Department of Vietnam, 

2011). However, the movement of residential and commercial land use to rural areas at the 

periphery of urban areas has recently increased, and this trend is expected to continue 

occurring. The local government estimated that urban residents will account for 48% of the 

total population by 2025, whereas urban areas are expected to increase by 9% between 2015 

and 2025 (Thai Nguyen People's Committee, 2009).
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3.2 Biophysical and Scio-economic Characteristics  

3.2.1 Topology and Hydrology 

The topography of the Thai Nguyen province generally slopes from North to South with 

prominent high mountain landscapes and river networks (Figure 3.2). The structure of terrain

is highly weathered with many caves, small valleys, rivers and lakes. In the southwest, Tam 

Dao mountain range spans along high mountains and the Van Lang plateau and Dai Tu paddy 

fields, while the north and northeast are primarily covered by lower mountains, and the south 

lies on relatively low land. Cau river, for example, flows through 7 provinces (e.g., Bac Kan, 

Cao Bang, Thai Nguyen and Bac Giang provinces) with 288 km in length (Nguyen, Everaert, 

Gabriels, Hoang, & Goethals, 2014). In addition, the development of aquaculture also increased 

in recent years. For example, the total area of aquaculture was 5.881ha, including small lakes, 

pounds and rivers. These days, the province is planned to develop integrated agriculture-

aquaculture practices. In the words, traditional rice production is combined with aquatic 

development. 

Figure 3.2: Elevation and water network for Thai Nguyen derived from DEM
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3.2.2 Geology, Soil and Mineralogy  

Most territory of Thai Nguyen was formed about 240 million years ago and ended 67 million 

years ago, but the biophysical process continued to undergo continent changes until around 50 

million years. These natural change processes were resulted in shaping and dividing Thai 

Nguyen province into three main geological regions as today. Mountainous land is formed 

from the decaying of magma, rocks and sedimentary rocks with a major coverage, hilly land is 

made of condensed sand, clay and ancient alluvia while a small portion of plains is scattered 

along streams, rivers and lakes.

3.2.3 Flora and Fauna 

The tropical and subtropical moist evergreen forests dominate the province and cover over Tam 

Dao range and into the northern landscape. The diversity of vegetative landscapes and elevation 

variations is home to many valuable medicinal plants and animal species. Huong, Anh, Yen, 

Thanh, and Thin (2012) conducted a study on the current status of medicinal plant species in 

Thai Nguyen province and found that there is a collection of 25 species of vascular plants (e.g., 

Anoectochilus calcareus, Stephania kwangsiensis and Tacca subflabellata) in the protected 

areas, of which 20 species are placed in endangered species list (Vietnam red book). In addition 

to plant species, wildlife animals are also found in some places such as Than Sa conservation

area and Tam Dao mountain range.  The final report of rapid assessment of mammals in the 

Tam Dao national park prepared by GTZ Office Hanoi (2005) revealed that 77 species are

recorded in the park (e.g., Rodentia, Primates primates and Pingolin Pholidota), of which many 

species are considered to be threatened species.
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3.2.4 Population and Economic Development 

The population of Thai Nguyen has been increasing over the past decades and reached 1.156 

million in 2016, an increase of 5.6% from 1997. The distribution and density of demography 

greatly varies between rural and urban areas. The major population lives in rural region with a

low density, while urban residents are rapidly increasing from both seasonal and unseasonal 

flow of migrant farmers and workers.

Although urban population has been increasing over years, agriculture and livestock sectors 

are still traditional economic activities of the province. Recent economic development 

strategies have been transforming the traditional agricultural dominant land uses into a

province with modern urbanized and industrialised zones. These development programs led to 

the emergence a series of industrial complex zones, from mineral mining and processing zones 

to high-tech corporations, investing in the province. Samsung launched an investment package 

of approximately 2 billion USD in 2012 to build a high-tech complex in the hope of producing 

approximately 100 million of products per year (Thai Nguyen Department of Commerce and 

Industry, 2012). Thai Nguyen local government approved 18 industrial zones with a total area 

of 620 ha in 2010.

3.3 Data Collection 

A substantial number of satellite data and thematic maps (Table 3.1) were collected from 

NASA Landsat program, Copernicus program of European Space Agency, DIVA-GIS and 

Thai Nguyen Department of Land for this research project. Reference data were also captured 

between December, 2016 and January 2017 using a handheld GPS to enable the validation 

process of derived land cover/land-use maps, while Google Earth’s high spatial resolution 

imagery was also used to assist in the selection of training polygons.
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Table 3.1 Data layers used in this study

Data
Data 

Category
Spatial 

Resolution (m)
Date of 

Acquisition Data Source
Landsat ETM+ Imagery 30 4/11/2000 USGSa

Landsat OLI Imagery 30 6/10/2016 USGSa

Sentinel-2 Imagery 10 6/10/2016 ESAb

Road Vector DIVA-GISc

DEM Elevation 30 USGSa

Local Land Statistics 12/2016 TNMTd

a U.S. Geological Survey

b European Space Agency, Copernicus Program

c DIVA-GIS

d Thai Nguyen Department of Natural Resources and Environment 

3.3.1 Satellite Data and Thematic Maps 

The Landsat Enhanced Thematic Mapper (ETM+) image was acquired on 4th November 2000

(mid-winter), while Landsat Operational Land Imager (OLI) and Sentinel-2 were acquired on

6th October 2016 (early winter). The acquired Landsat 7 and Sentinel-2 data had no clouds over 

the study area in both years 2000 (Landsat ETM+) and 2016 (Sentinel-2) respectively, but little 

cloud was found in Landsat 8 imagery over Tam Dao mountain range and other landscapes in 

the northeast (Figure 3.3). Fortunately, all this cloud was presented in the mountainous region

so it did not affect the project outcomes.

The Landsat 7 carries the ETM+ sensor and has eight spectral bands, ranging from visible to 

mid-infrared and a portion of the electronic spectrum wavelengths, whereas the Landsat 8 

carries OLI sensor to capture spectral signatures from the Earth’s surface features within eleven 

spectral bands. These satellite systems were designed to collect data over the entire globe with 

a 185-km swath and 16-day revisit interval. Thai Nguyen province is entirely contained within 

one single Landsat ETM+ and Landsat OLI image path 127 and row 45 with Landsat 

Worldwide Reference System-2 (WRS-2). 
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Figure 3.3 Clouds in the Landsat 8 image

Sentinel-2 mission, as a part of Copernicus program from European Space Agency, comprises 

twin polar-orbiting satellites (Sentinel-2A and Sentinel-2B) in the same orbit. The Sentinel-2A 

was launched in June 2015 consisting of a single multi-spectral instrument (MSI), while the 

Sentinel-2B (MSI) just recently launched in March, 2017. The Sentinel-2 provides relatively 

high spatial-resolution images with 13 spectral bands in visible/ near-infrared (VNIR) and 

shortwave infrared spectral range (SWIV), as discussed in Section 2.1.1. Compared to Landsat 

satellite system, Sentinel-2 was designed to collect high spatial images over the entire planet 

with a wider swath of 290 km and at a shorter revisit frequency of 5 days. The Sentinel missions 

are promising to support different application domains, from natural disaster management to 

humanitarian assistance and many others. There are four tiles of Sentinel-2 covering the entire 

Thai Nguyen province.
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3.3.2 Training and Reference Data 

The reference data were collected from 25th December, 2016 to 5th January, 2017 in accessible 

roads and areas using a handheld GPS receiver (Trimble Juno SB) from Institute of 

Environment and Agriculture, Massey University. To ensure the quality level of collected 

ground data, a random stratified sampling method was implemented and only comparably 

homogeneous areas were chosen with a visual estimation of at least four Landsat pixel cells

(3600m2) for any given ground point for assessing the accuracy of Landsat 8 and Sentinel-2

maps.

A total of 169 reference points was obtained over a large extent area, and it was used for

accuracy assessment. According to Congalton (1991), a minimum number of around 75 to 100

ground points should be collected for each class. This study, however, was able to collect a

total of 169 ground points due to the limitations of time and road accessibility. The distribution

of ground control points for each land cover type ranged from 23 to 54 data points. For 

example, forest and water land classes had the lowest number of ground points, 23 and 24

points respectively while the largest number of ground points was in agriculture class with 54

data points. All the sample points were recorded in the world geographic coordinates of WGS-

84.

Local land use statistics were collected from the Thai Nguyen Department of Natural Resource 

and Environment (TNMT) in 2016 and used for area match-up assessment of 2016 classified 

maps. Every year, the local government implements land statistics based on existing cadastral 

documents to monitor the changes among land cover/land-use types. The land statistics are 

undertaken in each administrative commune, and are aggregated to form a map of land use for 

both the district and the province. The land use statistics are essentially area assessments made 
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by the administrators of each commune. Thai Nguyen province is required by law to implement 

a province-wide land survey program in every 5 years, and land statistics update every year. It 

is also important to note that planned areas for a specific purpose are included in land statistics 

document although these areas may not be occupied by built-up infrastructure on the ground. 

Training data used in this study were selected manually using the ENVI 5.3 software. The 

pixels in each polygon were visually uniform and representative for that class. A total of 20383 

and 183288 training data pixels was recorded for Landsat 8 and Sentinel-2 data respectively. 

The number of training pixels used for classifying Sentinel-2 image was much bigger than that 

of Landsat 8 because different pixel size between two images. The selected number of training 

data accounted for 0.29% of total pixels for each scene (Sentinel-2 and Landsat 8). While the 

ANN and MLC algorithms can accommodate a large number of training pixels to train its 

models in the ENVI software, this figure for the RF reduced to much smaller in the case of 

Sentine-2 data. This is because the RF algorithm in R programming cannot handle large

datasets in memory. The details of distribution of training data points of Sentinel-2 and Landsat 

8 data for each land cover/land-use are presented in Table 3.2.

Table 3.2 Training data statistics for Sentinel-2 and Landsat 8 data (pixels)

Landsat 8 Sentinel-2
MLC ANN RF MLC ANN RF

Agriculture 6204 6204 6204 55779 55779 4000
Forest 7183 7183 7183 64693 64693 4000
Mining 2518 2518 2518 22685 22685 4000
Urban 1750 1750 1750 15688 15688 4000
Water 2723 2723 2723 24443 24443 4000
Total 20383 20383 20383 183288 183288 20000
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3.3.3 Software  

Image pre-processing and processing was performed using SNAP (Zuhlke et al., 2015)

software, ENVI (Guide, 2008) and R programing language (Bivand, Pebesma, Gomez-Rubio, 

& Pebesma, 2008), while Quantum GIS and ArcMap was used to produce the summary 

statistics and make map layouts of classified outputs (Logan, Hanson, & Seeger, 2014).

Trimble Juno SB GPS was used to collect ground data for this study. All land cover/land-use 

classified maps used RF algorithm in this study were implemented in R programming language, 

and code can be found at github.com1.

4 METHODS 

4.1 Image Pre-processing 

Pre-processing operations are very important before using satellite imagery for environmental 

applications. In most cases, some degree of pre-processing is needed to correct for any 

distortion or removing any cloud existing in the images (Chuvieco, 2016). The aim of these 

operations is to enhance visual interpretation, increase spectral separability of earth surface 

features and provide better inputs for further automated image processing algorithms (Maini & 

Aggarwal, 2010).

Many commonly used and established functions and techniques in the rectification of earth 

observation satellite data have been developed and tested by environmental scientists, 

geologists, cartographers, ecologists, biologists, oceanographers, foresters and computer 

engineers. Although the categorization of pre-processing operations is not clearly defined and 

sometimes interchangeable, Campbell and Wynne (2011) grouped such techniques into four

main clusters: radiometric corrections, geometric corrections, enhancement and 

1 R code for RF algorithm at https://github.com/tuyenhavan/Sentinel-Data1
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transformations. In this study, both raster and vector data are georeferenced to the WGS 1984 

UTM 48 N coordinate system. Due to external and internal factors of noise caused by sensors 

and atmospheric conditions, the obtained remote sensing data may contain a certain amount of 

unwanted noise. To increase the quality of the images and visual interpretation, radiometric 

calibration and atmospheric corrections were applied to both Landsat and Sentinel-2 data. In 

addition, the process of combining multiple images from a single sensor to create a mosaic is 

also briefly described as it was applied to the Sentinel-2 tiles.

4.1.1 Radiometric Correction 

Radiometric calibration is a common pre-processing step in remote sensing to compensate for 

radiometric errors from sensor defects, variations in scan angle and system noise; the aim is to 

produce true-spectral images at the sensor. The underlying theory of radiometric correction is 

to convert Digital Numbers (DNs) to Top of Atmosphere (TOA) radiance values using the bias 

and gain values specific to individual bands. The resulting radiance values are further 

transformed using irradiance values to TOA reflectance at the sensor. For Landsat and Sentinel-

2 imagery, the process of converting DNs to surface reflectance can be done using the Semi-

automatic classification plugin in QGIS (Congedo, 2013).

4.1.2 Enhancement and Transformations 

Landsat data used in this study have moderate spatial resolution, (30-m), and since they have 

been acquired at two different times may contain internal and external factors of noise caused 

by sensor and atmospheric conditions. Therefore, enhancement of the satellite imagery is 

essential to increase visual discrimination between earth object features and remove noise in 

each image. The complementary capabilities of the human mind and computer tools are an 
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excellent way to enable a visual interpretation of images from low to moderate spatial-

resolution sensors (Shalaby & Tateishi, 2007).

There are a significant number of enhancement techniques in use to support the visualization 

of satellite images. Changing the band combination, from natural colour image to various false 

colour composites, is possibly the simplest technique to adjust images for human eye 

interpretation. As stated by Chuvieco (2016), the electromagnetic energy signals received by 

sensors from object features across different spectral regions vary with land cover categories 

and the biophysical and biochemical properties of surface features. Vegetation, for example, 

reflects strongly in the near-infrared region (NIR) while it is mostly absorbed in the visible 

region (VIS). A false colour composite (Figure 4.1) represents healthy vegetation as bright red 

in the Tam Dao mountain range and Vo Nhai district, while Thai Nguyen city and all the other 

urban areas are distinguished easily by the lighter tones in this image.

In multi-spectral remote sensing data, bands frequently contain redundant information either 

because some bands have similar spectral energy or because some features have similar 

radiances across spectral regions. Principal component analysis (PCA) has been developed to 

remove redundancies in the multi-band images without losing a substantial amount of original 

spectral information (Chuvieco, 2016). According to (Li & Yeh, 1998), PCA became one of 

the most widely used technique for producing uncorrelated output bands, separating noise 

factors and compressing remote sensing data. The process of principal component analysis is 

that the first principal component will store the highest variance, while the second principal 

component will describe the most of the remaining variance that is not explained by the first, 

and so forth (Taylor, 1977). This process may generate a large number of principal components, 
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but the first three or four principal components will describe more than 95% of variance while 

the remaining individual raster bands can be dropped (Jensen, 1986).

Figure 4.1 A false colour composite of the study area (Sentinel-2 bands 3, 4 and 8)

4.1.3 Mosaic from Multiple Images 

Satellite images are often acquired in a designated geographic area, and must be mosaicked to 

cover larger areas. Images of a mosaic dataset may represent the issues of inconsistent colour 

tones and uneven brightness intensity (Figure 4.2 A). Therefore, colour balancing is essential 

to remove such problems and obtain a more consistent seamless image.

The mosaic operation is used to merge a collection of independent georeferenced raster datasets

to a single seamless image. While Landsat data cover the entire extent of the study area, four 

Sentinel-2 tiles need to be collected to contain the entire Thai Nguyen province. In this study, 
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Sentinel-2 data were pre-processed using SNAP and QGIS software to subset the tiles to cover 

only the extent of the province and contain the four 10m resolution bands before converting it 

from DIMAP to Geotiff format. The Geotiffs ware opened in ENVI software and a Seamless 

Mosaic operation applied with colour correction to create a single mosaic seamless image 

(Figure 4.2). Noticeably, after applying the seamless mosaic operation, the colour and contrast 

are more consistent between the four subsets although there is a small scatter of brightness 

stretching the south.

Figure 4.2 Natural colour Sentinel-2 imagery without colour balancing (A), and colour balancing (B)

4.2 Classification Scheme 

The complexity of local landscape, topography and tropical climate results in a diverse pool of 

land cover. To form an initial classification scheme for the study area, the following process 

was followed. First, several band combinations for both Landsat and Sentinel-2 data were made 

to produce false colour composite images that could be interpreted visually. Secondly, the 

Normalized Difference Vegetation Index (NDVI) was calculated to simulate the density of 

vegetation surface (Figure 4.3). Finally, extensive field observation was carried out to verify 

and add or remove classes from the initial classification scheme. 
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Initially, seven land covers (built-up land, agricultural land, forest land, water bodies, bare land, 

mining extraction and tea plantation) were identified in the study area. However, during the 

field trip it was observed that the area of bare land and tea planation accounted for only a small 

portion. In addition, tea plantations were usually grown at the foot of mountains or under the 

canopy of other tall trees.  The mixture of tea plantations, shrubs and forest resulted in spectral 

confusion, and in turn making it challenging to distinguish those similar features by the 

algorithms. Thus, the tea plantation was merged with forest whereas bare land was grouped 

into mining extraction. 

Figure 4.3 Normalized differenced vegetation index of the study area (Sentinel-2 bands 8 and 4)

Up-to-date land use statistics such as the 2016 land use statistics and inventory from the local 

government, and land cover classification by Anderson (1976) were used as references for 
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constructing the land cover scheme. The final classification settled on five land cover classes:

urban/built-up land, agriculture, forest land, water bodies, and extraction. Although the Thai 

Nguyen 2016 land-use classification system did not have mining extraction, this study included 

it the classification scheme because of its large area. A detailed scheme of land cover classes 

for this study is presented in Table 4.1.

Table 4.1 Description of various land cover classes in Thai Nguyen, Vietnam

Classification Scheme Description 
Urban/Built-up Land Rural houses and urban buildings 

Road network and utilities 
Industrial zones, Commercial Complexes and ongoing 
construction areas
Mixed Urban or Built-up land
Other impermeable surfaces

Agricultural Land Crop and Pasture
Orchards, Groves, Nurseries and horticultural Areas
Other Agricultural Land

Forest Land Deciduous Forest Land, Evergreen Forest Land
Mixed Forest Land

Water Streams, Rivers, Canals, Estuaries and Reservoirs
Lakes and Ponds

Mining/Extraction Iron mines and coal mines
Bare Exposed Rocks, Transitional Areas 
Strip Mines, Quarries and Gravel Pits
Mixed Barren Land

Urban and built-up land

Built-up land is comprised of residential buildings, houses, industrial zones, urban and rural 

properties, road network and other infrastructures (Figure 4.4). Urban/built-up is mostly

concentrated in Thai Nguyen city and central towns of each district with current urban and 

industrial development. Fewer urban areas are located in the north and the more other rural 

regions in the east and west. In recent years, built-up areas have merged in the southern parts, 

especially the Pho Yen and Song Cong districts. The expansion of urban and industrial services 

has removed green open spaces and other vegetation in recent years for constructing industrial 
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and residential zones in the central districts and cities. Rural houses are often scattered along 

primary roads and sometimes covered by forest canopy, which make it challenging to separate 

those land cover classes.

Figure 4.4 Rural houses (left) and urban built-up infrastructure (right)

Agricultural land

All land used for growing crops and feeding livestock is classified as agricultural land (Figure 

4.5). During the field visit, it was observed that there were three main types of crops grown in

the study area. Paddy rice is grown mainly in the southern region and other rural areas with 

access to water (e.g., lakes, irrigation network and wetland). Noticeably, a large rice growing 

area can also be seen in the west and far northwest due to the availability of water such as lakes. 

Corn, cassava and sweet potatoes are substantially found in rural areas and along major rivers,

while short-rotation crops are also prominent in the south. Vegetables are mostly observed in 

suburban areas and along Cau river as these areas are planned to provide fresh vegetables for 

Thai Nguyen city.

Rice and other long-day crops are prominently grown across the province, but most rice fields 

have been harvested or replaced by corn or sweet potatoes and other short-rotation crops at the 
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time of ground trothing. In many mountainous areas, local farmers and small business family

often make use of open forest to grow cassava or combine cassava with commercial forests in 

order to increase the productivity. Similarly, fruit trees are also usually grown under the canopy 

of big trees, which resulted in similar cover between agriculture and forest (e.g., shrubs). 

Figure 4.5 Examples of agriculture; harvested rice field (left) and corn fields (right)

Forest land

Thai Nguyen is largely covered by forest, mostly in the north, east and the Tam Dao mountain 

range. There are still many big trees and dense forests in Tam Dao mountain range, while the 

other areas have been planted more commercial species (Figure 4.6).

Thai Nguyen has been known as a popular for tea plantation. These are located mostly in Dai 

Tu district and some less steep areas in the Tam Dao mountain range. Tea bushes (Figure 4.7)

in Thai Nguyen are grown in medium size fields, although some small land-holders have 

cultivated teas intersecting among fruit trees or timber species.  
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Figure 4.6 Mixed forests (left) and forest plantation (right)

Figure 4.7 Tea plantations (left) and tea intercropping (right), Dai Tu district, Thai Nguyen 

Water 

Water is identified as lakes, rivers, reservoirs, irrigation canals (Figure 4.8). There are many 

lakes and rivers in the province, but the significant water bodies are Coc lake and Cau river. 

Coc lake is the biggest lake in the province and covers a large area of land in the west, while 

Cau river flows across the province and provides much of the water for industrial and 

agricultural production.
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Although Thai Nguyen province is substantially expanding its urban and industrial 

development, agricultural and animal farms are dominating in rural areas. Water, therefore, is 

essential for crop growing, especially rice. Thanks to the Coc lake and Cau river, rice and other 

crops are annually grown to provide the stable food for more than 1 million people of the 

province, of which 74% live in rural area.

Figure 4.8 A part of Cong River (left) and Coc lake (right)

Extraction 

Extraction areas include all land that is used for mining activities (e.g., quarries, coal and iron)

and other bare land. There are various active mines in Thai Nguyen with significant reserves.

For example, coal mines (Figure 4.9) are located in Dai Tu and Phu Luong districts as well as 

outlying districts near Thai Nguyen city. Iron ore being mined in Trai Cau, and the Nui Phao 

mine is the second largest tungsten mine in the world.
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Figure 4.9 Coal mining activities in Dai Tu district (left) and iron exploitation (right) in Dong Hy district, 
Thai Nguyen province

4.3 Comparison of Land Cover Classifiers 

4.3.1 Classification Algorithms 

With the rapid development in machine learning algorithms, many supervised, unsupervised 

and object-based classifiers have been developed and used in the field of remote sensing, 

particularly for land cover classification. Many studies have been conducted to test the 

accuracy of parametric and non-parametric classification algorithms in the separation of land 

cover/land use classes using Landsat data (Dwivedi, Kandrika, & Ramana, 2004; Friedl & 

Brodley, 1997; Kavzoglu & Colkesen, 2009; Lu et al., 2004; V. F. Rodriguez-Galiano et al., 

2012; Rogan, Franklin, & Roberts, 2002), and ASTER (Szuster et al., 2011), but not with both 

Landsat and Sentinel-2 satellite imagery. In addition, alternative classification algorithms are 

frequently reported to have a higher overall accuracy, but few studies were concerned with the 

association of accuracy among those non-parametric classification algorithms. Therefore, this 

study has compared the accuracy of the three different classification algorithms to classify 

Landsat 8 and Sentinel-2 data; MLC, ANN and RF classification algorithms.
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4.3.1.1 Maximum Likelihood Classifier (MLC) 

The maximum likelihood classifier is a statistic-based technique, which is one of the most 

widely used classifiers for land cover classification (Erbek et al., 2004; Otukei & Blaschke, 

2010; Shalaby & Tateishi, 2007). According to Richards and Richards (1999), the algorithm is 

based on Bayes’ theorem to calculate the likelihood of every pixel. The MLC assumes that 

each class in each band is normally distributed, and calculates the probability distribution if a

given pixel belongs to a specific land cover class. A given user can define a threshold at which 

one pixel is assigned to unclassified if the probability of that pixel is below the threshold. Due 

to its simplicity and popularity, there are many open-source and commercial software packages 

supporting this classification algorithm such as ArcGIS and QGIS. I have used ENVI 5.3 

software was used to produce classified land cover maps and associated accuracy the confusion 

matrices.

4.3.1.2 Random Forest (RF) Classifier  

Random forests are a collection of decision trees aimed at improving the performance over a 

single decision tree. Figure 4.10 is an example of a decision tree model derived from Sentinel-

2 data using the “rpart” library (Therneau, Atkinson, & Ripley, 2010) in R programming. A 

random forest is constructed by generating decision trees for subsamples of the original data. 

This process is known as a “random sampling with replacement or bagging” approach, which 

was developed by Leo Breiman (2001) and widely used in the statistical world today. With the

bagging method, a single decision tree will behave differently from a random forest with a 

single tree. This means that the number of observations of each band in each class may not be 

always equal, and therefore some decision trees may perform better than others. However, on 

average they will produce a fairly unbiased and stable model, and this is also an advantage of 

the RF model.
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Figure 4.10 An example of decision tree

Random forest can contain an arbitrary number of N trees, where N is the number of trees to 

be grown. However, (Leo Breiman, Cutler, Liaw, & Wiener, 2011) advised that 500 trees is 

preferred to train the model. In this study, 100 trees were chosen based on number of trials and 

the graphical plot of effect of tree size to the model (in Section 5.1). Similarly, the number of 

variables is a user-defined parameter, and often set to the square root of number of inputs for 

selecting “best split” at each node (Leo Breiman, 2001). Interestingly, the algorithm is not 

sensitive to it, and the randomly selected number of variables substantially minimized the

correlation between trees (Gislason et al., 2006) because each tree only uses a portion of the 

input variables in a random forest. This also reduced considerably the algorithm’s 

computational intensity. 

The analysis of the RF shows that its computational time is  Nlog(N) where is a 

constant, is the number of trees in the model, is the number of variables and N is the 

number of observations in the dataset (L Breiman, 2003; Gislason et al., 2006). Noticeably, the 
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RFs are not computationally intensive, but they require a fair amount of memory as they store 

an N by T matrix in memory (Gislason et al., 2006). One advantage of the RF is that it can test 

itself after growing each tree. This means that approximately 2/3 data is used to train the model, 

while the remaining one is used to test the model, and its test result is known as “out of bag 

error”. In addition, the RF also has capability to determine the importance of a variable mth. 

This can be estimated by randomly permuting all the values of the mth variable in the out of 

bag samples for each classifier. If an increased out of bag error is produced, that is an indicator 

of the importance of that variable (Gislason et al., 2006).

A “randomForest” package (Leo Breiman et al., 2011) in R programming language was used 

to train the model and derive variable importance indicators, effect of tree size and other 

information. 

4.3.1.3 Artificial Neural Network (ANN) 

ANNs are explained as a collection of nodes with lines (synapses) connecting to each other

(Figure 4.11). The organization of ANNs is split in three main groups: one input layer, hidden 

layers of which the number may be small or large, and an output layer. To train the model, an 

initial set of randomly selected weights will be fed in the input and all of its weights will be 

calibrated by repeating two commonly used processes, forward and back propagation, to 

produce the output. In other words, the neural network repeats both forward propagation and 

back-propagation until the weights are accurately corrected to produce the output, which is 

comparable to the actual output. 

According to Kavzoglu and Mather (2003), the success of the model is pretty much dependent 

on the choice of network parameters such as number of hidden layers, number of training 
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iterations and minimum output activation threshold. In this study, all optimal parameters were 

selected to train the model based on a number of different trials. Especially, a total of 1000 

iterations was established, while only one hidden layer was necessary. ANN algorithm was 

available in ENVI 5.3 software for this model to derive land cover classified maps and the 

associated accuracy confusion matrix

Figure 4.11: The operational procedure of feed-forward neural network

Source: International Journal of Remote Sensing (Kavzoglu & Mather, 2003)

4.3.2 Sentinel-2 and Landsat 8 Accuracy Assessment  

Accuracy assessment was carried out using the confusion matrix method because of its 

simplicity and popularity, as discussed in Section 2.4.2. A total of 169 ground control points 

was collected from the fieldtrip, these were used in the accuracy assessment for Sentinel-2 and 

Landsat 8 classifications (Figure 4.12). Overall accuracy, users’ and producers’ accuracies and 

the Kappa statistic were then produced from the confusion matrix. Overall accuracy (OA) for 

a particular classified image was calculated by summing the number of correctly classified 

pixels and dividing the total number of pixels are located along the upper-left to lower-right 

diagonal of the confusion matrix (Story & Congalton, 1986).

=  
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Where is the number of classes, is the sum of correctly classified pixels, and is the total 

number of reference pixels. The kappa coefficient (k) measures the agreement between 

classified map and reference values. A kappa value of +1 represents perfect agreement, while 

a value of 0 represents no agreement. The kappa coefficient is computed as follows: 

= 1 11
Where represents the proportion of correct agreement in the test dataset and is the 

proportion of agreement that is expected by chance. As discussed in Section 2.4.2, the 

confusion matrix also has some fundamental limitations. Therefore, the latest land use statistics 

and inventory (December 2016) from the Thai Nguyen department of natural resources and 

environment (TNMT) were used as reference statistics for further accuracy evaluation of the 

classified images (Thai Nguyen Department of Natural Resource and Environment, 2016a).

Figure 4.12 Reference data for assessing the Sentinel-2 and Landsat 8 classification

The TNMT data was constructed from traditional surveys and historical land use records. The 

local government has classified this data into many subclasses such as residential urban land
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and residential rural land, while this study used only five land cover/land-use classes.

Therefore, it was important to redefine and characterize the TNMT classification system to 

ensure that it was similar and compatible with this study’s classification scheme. Based on 

characteristics as discussed in Section 4.2, five land cover/land use classes were built from the 

TNMT classification system (Appendix 1). As an example, residential, commercial and rural 

land uses were clustered into built-up/urban area, while annual crops, rice and short-rotation 

crops were grouped into the agriculture class. It was noted that the local land use classification 

system had no relevant mining class, and therefore the size of the mining area may not 

accurately represent the amount derived from this comparison. However, the TNMT statistic 

was generally considered unbiased, accurate and representative for land cover/land use types, 

and it was used with confidence, as reference statistics to compare with area statistics derived 

from Sentinel-2 and Landsat 8 data. 

4.4 Land Cover Monitoring and Mapping for Thai Nguyen 

Land cover/land-use monitoring and mapping is extremely important as it provides timely and 

accurate information for local planners and politicians to evaluate economic benefits and 

appreciate environmental aspects, particularly in the context of rapid growth of urbanization 

and industrialization in developing world. The RF classifier was used in this study to monitor 

and map temporal land cover/land-use changes between 2000 and 2016 due to its high overall 

accuracy, non-parametric nature and stability, which will be further discussed in Section 5.1.

The use of the RF algorithm has demonstrated superior characteristics over conventional 

classification approaches, while it is also less intensive computationally and time-consuming 

than the ANN classifier.
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4.4.1 Landsat 7 and 8 Classification Accuracy Assessment  

The same reference data described in Section 4.3.2 was used for assessing the accuracy of land 

cover product derived from Landsat 8 data, while nearly 1000 reference data points were 

recorded based on Google Earth’s high resolution imagery for assessing the accuracy of the 

Landsat 7 derived land cover map (Figure 4.13). While five land cover/land use classes were 

built from the local classification system for assessing three classification algorithms as 

discussed in Section 4.2, this section constructed only four land cover/land-use types 

(agriculture, urban/built-up, forest and water). The mining extraction class was merged with 

urban area to form a new class called urban/built-up class. This effort has provided a clear 

relationship between reference area statistics and Landsat-8 derived area statistics, which can 

be seen in Section 5.2.1.

Figure 4.13 Reference data for assess the accuracy of Landsat 7 (collected based on Google Earth and ESRI 
Imagery 2000)
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The accuracy assessment assumed the sample data points selected are accurate and 

representative for the maps being evaluated. This study produced error matrices to show the 

contingency table with each pixel truly belongs (columns) on the map unit to which it is 

allocated by selected analysis (rows). Overall accuracy, users’ and producer’s accuracies, and 

Kappa statistic were then derived from the confusion matrix.

4.4.2 Change Detection 

In this study, a post-classification change detection method was employed due to its advantages 

discussed in Section 2.4.1. Derived image pairs of two dates were compared using cross-

tabulation in order to determine the nature of change and quantity of change between 2000 and 

2016. In other words, this method provides a “from-to” change information, and identifies 

where such change has occurred, and how much has occurred (Stow, Tinney, & Estes, 1980).

Post-classification comparison can minimize the problem of normalizing for atmospheric and 

sensor differences between two dates (Singh, 1989). ENVI 5.3 software was used to produce a 

change matrix and display spatial distribution of gain and loss of each land cover/land-use type 

for the same period.

5 RESULTS AND DISCUSSION 

In this study, the Sentinel-2 and Landsat 8 data were classified into five land cover/land-use

categories using the three different classification algorithms, namely MLC, ANN and RF 

classifiers. Each classification algorithm produced relatively different results both 

classification accuracy and area statistics. While the RF classification algorithm outperformed 

the other two classification algorithms (ANN and MLC) for both Landsat 8 and Sentinel-2 data, 

the MLC algorithm demonstrated a high overall accuracy for Landsat 8. The ANN algorithm, 

however, was not as accurate as the other two for both datasets. 
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The RF algorithm was used to classify Landsat 7 and Landsat 8 data to monitor and map land 

use/land cover changes in Thai Nguyen province, Vietnam between 2000 and 2016; it had high 

accuracy stability and was less time-consuming. The following sections demonstrate two of 

the above mentioned problems.  

5.1 Comparison of Classifiers  

5.1.1 Land Cover Maps Derived from Sentinel-2 

Land cover classified maps for the 10-m spatial resolution Sentinel-2 data were produced using 

the MLC, ANN and RF classification algorithms (Figure 5.1). Overall and individual accuracy 

statistics for each classification technique were derived using a confusion matrix to analyse the 

performance of each classifier; these are summarized in Table 5.1. Area statistics for five 

different land cover/land-use categories derived from Sentinel-2 data using the three 

classification techniques were calculated and are presented in Table 5.2, while the TNMT 

statistics were summarised and clustered into five land cover characteristics, as discussed in 

Section 4.2, for further comparison.

In this comparison, overall accuracies for the MLC, ANN and RF classifiers were relatively 

low with 82.25% (kappa 0.77), 81.66% (kappa 0.76) and 89.94% (kappa 0.87) respectively.

However, the RF algorithm showed the best performance over the two remaining classification 

techniques with the highest overall accuracy. Unexpectedly, while the ANN classification is 

usually reported to have a high overall accuracy and outperforms traditional parametric 

classification techniques (Civco, 1993; G. Hepner, Logan, Ritter, & Bryant, 1990; Szuster et 

al., 2011; Tayyebi, Pijanowski, Linderman, & Gratton, 2014), this approach turned out to be

least accurate among the three classification algorithms in this comparison.
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Figure 5.1 Land cover/land-use maps derived from Sentinel-2 data using MLC, ANN and RF algorithms

The low overall accuracies for all three classification algorithms using Sentinel-2 data are

believed to be due to a heterogeneous landscape and the intersection of various land-use types 

in one field (Figure 4.7). In contrast these classification algorithms all produced high overall 

accuracy for Landsat 8 data, which will be seen in Section 5.1.2. While only 10-m resolution

Sentinel-2 bands were used in this comparison, it was thought that there may some effects of 

spatial and spectral information on the overall accuracy of the Sentinel-2 derived maps. A study 

was carried out that included 8 Sentinel-2 bands (20-metre spatial resolution) in the hope of 

increasing overall accuracy, but it turned out to be not significantly different from the overall 

accuracy of classified images derived from 10-m Sentinel-2 bands (Appendix 2). Therefore, 

this study excluded this comparison, and focused on 10-m Sentinel-2 bands instead. After 

testing 20-m Sentinel-2 bands, it seemed that the finer spatial resolution of Sentinel-2 data 

together with heterogeneous landscapes were likely to affect the overall accuracy of the derived 

maps in this comparison.
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Table 5.1 Summary of accuracy statistics for three classifiers using Sentinel-2 data (%)

Land covers MLC ANN RF 
Producer's  User's  Producer's  User's  Producer's  User's  

Agriculture 94.44 87.93 96.30 69.33 90.74 84.48 
Extraction 88.89 57.14 70.37 82.61 88.88 92.30 
Forest  87.96 100.0 86.96 95.24 78.26 100.0 
Urban 53.66 81.48 63.48 89.66 95.12 86.66 
Water 91.67 100.0 87.50 100.0 91.66 100.0 
Overall Accuracy 82.25 81.66 89.94 
Kappa Statistic 0.77 0.76 0.87 

Although overall accuracies of each classifier in this comparison were not very high, the

individual class accuracies revealed interesting insights in the performance of each 

classification technique in the separation of certain individual land cover categories. The RF,

for example, was separated the forest class poorly, but exhibited relatively accurate overall 

results. Agriculture, urban and water classes were well classified by the RF classifier with 

above 90% producer’s accuracy, while the separation of mining extraction was slightly less 

effective with 24 out of 27 pixels correctly classified (Appendex3). By contrast, the MLC and 

ANN classifiers produced similarly low overall accuracies, and classified less effectively in 

nearly every class, except for agriculture. While agriculture was classified accurately in both 

MLC and ANN classifiers at more than 94%, only 24 out of 41 pixels were classified correctly 

as urban and most misclassified pixels were in the forest and mining extraction classes for the 

ANN and MLC algorithms respectively (Appendix 3). This was expected and understandable 

in the context of rural land cover/land-use as forest and built-up areas are not clearly separated 

on the ground. Additionally, the removal of vegetation on the ground for constructing 

industrial, urban zones and mining activities make it challenging to distinguish between urban 

and mining classes due to its relatively similar surface (Figure 5.2) and confused spectral 

signatures on the image.
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Figure 5.2 The similarity in mining extraction and urban feature surface of the study area

The overall accuracy for land cover/land-use maps derived from remote sensing data is

expected to be at least 85% (Anderson, 1976; Thomlinson et al., 1999) and preferably 90% 

(Lins & Kleckner, 1996). It is obvious that two out of the three classification algorithms used 

were unsatisfactory. However, it is also important to examine the area statistics of each 

classification technique derived in comparison to the locally measured land use statistics.

General speaking, the statistics of areas of land cover maps derived from Sentinel-2 indicated 

that agriculture and forest are over the dominant covers in the study area, followed by urban 

and mining extraction. But each land cover classification algorithm produced slightly different 

areas for each individual class and total area for Thai Nguyen province (Table 5.2). For 

example, urban area derived from ANN and MLC was about 22.4 km2 (0.6%) and 104.5 km2

(3%) respectively, while that of RF was much larger with 268.02 km2 (7.6%). The ANN 

classifier classified agriculture with an area of approximately 1530.1 km2 (43.46%), while the 

other two algorithms found this class occupied an area of 1242 km2 (MLC) and 1224 km2 (RF).

Clearly, the urban area derived from the RF classifier (Figure 5.1c) was visibly larger than that 
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of the MLC and ANN algorithms (Figure 5.1a and 5.1b), while the area of agriculture in Figure 

5.1b was largest in the ANN classification.

Table 5.2 Summary of area statistics for the three classifiers using Sentinel-2 data

Land Covers 
MLC ANN RF 

Area (km2) Percent Area (km2) Percent  Area(km2) Percent 
Agriculture 1242.4 35.29 1530.12 43.46 1223.59 34.75 
Urban/Built-up 104.51 3.97 22.36 0.64 268.02 7.61 
Mining  117.07 3.33 45.32 1.28 231.72 6.58 
Forest 2001.86 56.86 1887.12 53.60 1730.63 49.15 
Water 54.97 1.56 35.88 1.01 67.08 1.91 
Total 3520.87  3520.80  3521.0  

Although each land cover classification algorithm classified Sentinel-2 data differently, there 

were some similarities and distinctions in area statistics when they were compared to TNMT

statistics (Thai Nguyen Department of Natural Resource and Environment, 2016b). Figure 5.3

shows that the land use area statistics provided by the local government for urban and water 

classes were larger than that of land cover products derived from Sentinel-2 data, but areas of 

mining and agriculture were smaller than those derived from the three classification algorithms. 

The ANN classifier provided an area of mining extraction that is nearly the same as that 

reported by the local government, but there is a substantial difference in urban area. The RF 

classifier, on the other hand, overestimated the area of mining. It is also important to note that 

there is a relatively large difference between TNMT urban area and classification-based urban 

area. This can be due to the fact that the local government statistics included planned urban 

area, which may not happen on the ground. Although the RF classifier was not perfectly 

matched with all individual reference statistics, it was likely to be more representative of the 

TNMT statistics (Figure 5.3).
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Figure 5.3 The comparison of area statistics reported between classification algorithms for Sentinel-2
data for the study area

The comparison of accuracy and area statistics indicates that the MLC and ANN algorithms 

have major advantages for the agricultural, mining and forest land classification, although there 

were substantial omission errors associated with these classes, except for forest. A significant 

difference between the MLC, ANN and RF algorithms is that RF had a higher overall accuracy 

and lower commission errors in nearly every individual class. While the MLC and ANN 

algorithms performed poorly on urban land classification, the RF classifier was much better for 

urban land classification. 

The RF algorithm also demonstrated the capability of analysing the importance of variables 

and the effect of trees. In this comparison, the RF classifier identified that 100 trees would be 

adequate for the model (Figure 5.4), while Sentinel-2 band 8 (near infrared band) was identified 

as the variable that contributed most to the model. Overall, the comparison suggested that the 

RF algorithm should be favoured among the three classification algorithms for subtropical land 

cover classification using Sentinel-2 data.
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Figure 5.4 The effect of tree sizes on the RF model accuracy using Sentinel-2 data

5.1.2 Land Cover Maps Derived from Landsat 8 

Three different land cover maps (Figure 5.5) were derived from the 30-m spatial resolution 

Landsat 8 image using the MLC, ANN and RF supervised classification algorithms. Accuracy 

assessment statistics for each classification technique were produced by adopting the confusion 

matrix approach to analyse the performance of each classifier. This was summarized in Table 

5.3, while area statistics for each classification algorithm were summarised in Table 5.4. In this 

comparison, the overall accuracy for MLC, ANN and RF algorithms was 90.53% (kappa 0.88),

84.02% (kappa 0.79) and 94.10% (kappa 0.92) respectively. Although ANN had the lowest 

overall accuracy among three classifiers, all these overall accuracies were considered relatively 

high, particularly for MLC and RF classifiers with 90.53% and 94.10% respectively. 

The difference in overall accuracy for the land cover maps derived from Landsat 8 is likely due 

to the moderate spatial resolution of the image and the underlying analysis for each algorithm. 

Among the three classification algorithms, the ANN produced the lowest overall accuracy with 

84.02% and high error rates for mining extraction, forest and water. Commission and omission 

error rates of individual land cover/land-use classes for the ANN classifier were higher than 
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that of the MLC and RF algorithms. As an example, commission error rate for agriculture by 

the MLC was 7.41%, while that of the ANN classifier was 22.86%. This high commission error 

could have contributed to the perfect producers’ accuracy for urban and agriculture classes

(Table 5.3). While the ANN has been found to have higher overall and individual accuracies

than the MLC (J. D. Paola & R. A. Schowengerdt, 1995), this study revealed the opposite. 

Figure 5.5 Land cover/land-use maps derived from Landsat 8 data using MLC, ANN and RF algorithms

The results of MLC showed that this conventional classification technique was relatively 

accurate in the separation of land covers using Landsat 8 data. While the MLC had a higher 

overall accuracy than the ANN, it was much lower than the RF classification. But the MLC 

was the best classifier for the separation of forest, and therefore would appear to be well suited 

for forest land classification. In addition, the MLC also separated agriculture, mining extraction 

and urban with minimum errors. Agriculture, for example, was correctly classified for 92.59%

of the test pixels while urban class was correctly classified for 92.68% of test pixels. The water 

class had only 83.33% of pixels classified correctly and had the lowest individual accuracy 

when using the MLC algorithm. 
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Table 5.3 Summary of accuracy statistics for the three classifiers using Landsat 8 data (%)

Land covers MLC ANN RF 
Producer's  User's  Producer's  User's  Producer's  User's  

Agriculture 92.59 92.59 100 77.14 98.15 92.98 
Extraction 92.59 75.76 62.69 80.95 92.59 89.29 
Forest  86.96 95.24 60.87 100 78.26 100.0 
Urban 92.68 92.68 100.0 85.42 100.0 93.18 
Water 83.33 100.0 66.67 100.0 91.66 100 
Overall Accuracy 90.53 84.02 94.10 
Kappa Statistic 0.88 0.79 0.92 

The RF classifier produced the highest overall accuracy with an improvement of about 4% and 

10% over the MLC and ANN algorithms respectively. The RF algorithm produced minimal 

commission and omission errors for most land cover classes, namely agriculture, urban, mining 

extraction and water. As an example, 22 out of 24 test pixels were classified correctly as water, 

while approximately 66.7% and 83.0% of test pixels were classified correctly as water with the

ANN and MLC algorithms respectively. In addition, this approach separated the urban/built-

up area from other land uses more effectively although there were substantial mixtures of 

spectral signatures between mining extraction class and urban features. The RF algorithm did 

not produce a high individual accuracy for the forest class like the ANN algorithm did. But the 

comparison of the local areas statistics and derived statistics for this land cover category 

revealed that there was a good match between local government-based statistics and 

classification-based area (Figure 5.6).

Figure 5.6 shows that the percentage of areas of each individual land cover category derived 

from Landsat 8 data using the RF algorithm was much closer to the locally acquired land use 

statistics (Appendix 1). For example, the percentage of forest land was nearly identical with 

statistics reported by the local government, while there was no significant difference in the 

percentage of agricultural area between actual statistics and the RF-based classified map. 
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Similarly, the MLC algorithm also produced similar statistics in relation to TNMT land use 

areas for each individual land cover type, except for forestland (Figure 5.6). By contrast, the 

ANN algorithm showed a substantial difference between the TNMT areas and classification-

based areas. Notably, the TNMT percentage of agriculture was 35% of total area, while this 

approach classified nearly 50%. The ANN algorithm was likely to overestimate agriculture, 

while other land uses were usually underestimated (Figure 5.6), except for the mining 

extraction.

Table 5.4 Summary of area statistics for the MLC, ANN and RF algorithms using Landsat 8 data

Land Covers 
MLC ANN RF 

Area (km2) Percent  Area (km2) Percent Area (km2) Percent 
Agriculture 1182.56 35.59 1756.61 49.9 1240.92 35.24 
Urban/Built-up 116.56 3.31 81.89 2.3 160.71 4.56 
Mining  127.82 3.63 83.10 2.4 211.07 5.60 
Forest 2055.27 58.37 1561.70 44.5 1848.67 52.50 
Water 38.86 1.10 37.79 1.1 59.66 1.69 
Total 3521.07  3521.09  3521.03  

Figure 5.6 The comparison of area statistics between algorithm-based and TNTM statistics

With regard to the area statistics for each land cover/land-use type, Figure 5.7 showed some 

similarities and differences between the three classification algorithms. The area of agriculture 
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classified from Landsat 8 data using the RF and MLC algorithms was relatively similar with 

1200 km2, while the ANN classifier estimated a much larger area of 1756 km2. The RF 

algorithm produced a larger urban area of 160 km2 (4.56%), whereas only 81.89 km2 (2.33%) 

was classified as urban using the ANN algorithm. For Sentinel-2 data, similar comparisons 

revealed that the pattern of land cover/land-use classification using the MLC and RF algorithms

was similar in individual area statistics to the Landsat 8 image, but there were substantial 

fluctuations in area for the ANN algorithm between Landsat 8 and Sentinel-2 data, especially 

for forest. It is, nevertheless, interesting to note that the surface area of water derived from both 

Sentinel-2 and Landsat 8 data using the MLC, ANN and RF algorithms was similar, ranging 

from 37 km2 to 67 km2.

Figure 5.7 The comparison of area statistics reported between classification algorithms using Landsat 8

The comparison of accuracy and area statistics indicates that the RF and MLC algorithms have 

major advantages for classifying moderate spatial resolution Landsat data. For instance, the 

MLC algorithm outperformed the ANN classifier with respect to the separation of water, 

mining extraction and forest classes, while the RF algorithm well classified nearly every land 

cover category correctly, except for forest. As discussed in Section 5.1.1, the RF algorithm also
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has a major advantage for analysing the importance of variables and the effect of trees. In this 

comparison, the RF classifier identified that 100 trees would be adequate for the model (Figure 

5.8), while Landsat-8 bands 1(Blue band) and 6 (Short-wave Infrared band) were determined

as the variables that contributed the most to the model (Figure 5.9). The Landsat 8 blue band 

had the most significant importance because it enables the classification of those land cover 

types with a seasonal behaviour (V. Rodriguez-Galiano et al., 2012). It should be noted that 

the Landsat 8 used in this study was collected in early Winter when forests start to fall its 

leaves. This explains the importance of blue band in distinguishing soil, built-up and mining 

from vegetation.

After analysing the accuracy and area statistics for both Sentinel-2 and Landsat 8 data, this 

study found that the RF algorithm should be favoured among the three classification algorithms 

for subtropical land cover classification regardless of the type of imagery.

Figure 5.8 The effect of tree sizes on the model accuracy using Landsat 8
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Figure 5.9 The variable importance identified by the RF model for Landsat 8 bands

5.2 Temporal Land Cover Change Monitoring   

5.2.1 Land cover/land use change  

Land cover maps were produced for two years (Figure 5.10), 2000 and 2016 respectively, and 

the statistics of individual class areas and changes between years were derived and summarised 

in Table 5.5. Overall, there was a substantial increase in the urban and mining areas from 2000 

to 2016, while the forest land decreased significantly over the same period and less agricultural 

land was also mapped.

Over the past 16 years, the study area witnessed a relatively substantial change in land 

cover/land-use, and these changes occurred largely in Thai Nguyen central city and southern 

regions (Figure 5.10). This can be seen through variability in the area statistics for each land 

cover between 2000 and 2016 (Figure 5.11). For example, the built-up area experienced an

unprecedented expansion, from 30.6 km2 (0.9%) to 160.7 km2 (4.6%) between 2000 and 2016

respectively, which represents an increase of 130.1 km2 (424.5%) in the urban/built-up class.

Similarly, the area in mining increased by 172.1 km2 (440.9%), while there was a small increase 

in the area of water by 8.1 km2 (15.6%) over the same period.
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Table 5.5 Summary of classification statistics for 2000 and 2016

By contrast, the forest and agriculture all decreased. The loss of forest and agriculture land 

between two periods is around 282.8 km2 and 27 km2 respectively (Table 5.5). Unexpectedly, 

water area increased over the period. This could be due to variations in precipitation, water 

levels of lakes and possible classification errors. However, this finding reflected the current 

demands for aquaculture growth and an increased area of fish farms in recent years

(Department of Agricultural and Rural Development, 2015), and therefore classification errors 

and water variations are less likely to account for this increase.

Figure 5.10 Land cover classification products derived from Landsat data for 2000 and 2016 

Land Cover 
Class

2000 2016 Change (2000-2016)
Area (km2) % Area (km2) % Area (km2) %

Agriculture 1267.9 36.0 1240.9 35.3 -27 -2.1
Built-up 30.6 0.9 160.7 4.9 130.1 424.5
Extraction 39.1 1.1 211.0 5.6 171.9 440.9
Forest 2131.5 60.5 1848.7 52.1 -282.8 -13.2
Water 51.6 1.5 59.7 1.8 8.1 15.6
Total 3520.7 3521.0  
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While the accuracy assessment of the land cover map derived from Landsat 7 data was solely

based its confusion matrix assessed from a comparison with a visual interpretation of high 

resolution imagery on Google Earth, the most up-to-date land cover/land-use statistics from 

local government were collected to complement the validation process of the accuracy of the

land cover map 2016 derived from the classification of 2016 Landsat 8 data. It was observed 

that the area statistics were similar in all classes (Figure 5.12), except for the water class. As 

discussed in Section 5.1.2, land cover map products derived from Landsat data agreed well 

with the statistics of land covers reported by the local government. These similarities may not 

be coincident as it is in relation to high accuracy of 2016 Landsat derived land cover map, 

which will be analysed in detail in Section 5.2.2.

Figure 5.11 Area statistics by land cover for 2000 and 2016 and the areas of change

5.2.2 Classification accuracy assessment  

Overall accuracy, Kappa statistic, producers’ accuracy and users’ accuracies were derived 

from the confusion matrices to assess the accuracy of classified maps from Landsat data and 

are summarised in Table 5.6. According to (Gislason et al., 2006), random forest classifier was 

commonly reported as an alternative for land cover classification because of its high accuracy 

derived products and variable importance. In this study, the overall accuracies for 2000 and 

2016 were high, at 96.83% and 94.10% and Kappa coefficients were also good at 0.95 and 0.92
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respectively. Users’ accuracies of individual classes for 2000 were all high, with only the

mining extraction lower at 88.10%, while producers’ accuracies are also excellent for all 

classes with a range from 93.7% to 100%. Similarly, producers’ and users’ accuracies of 

individual classes in 2016 were constantly high, except for producer’s accuracy of the forest

class with 78.26%.

The overall accuracy for land cover/land-use maps, as mentioned earlier in Section 5.1.1, is 

often regarded as acceptable above 85% (Anderson, 1976; Thomlinson et al., 1999), while Lins 

and Kleckner (1996) set a higher standard requiring 90% accuracy. Compared to those studies,

the overall accuracies for both 2000 and 2016 derived images were even better. This showed

that land cover information derived from remote sensing data using the RF algorithm has 

performed better than that produced by traditional parametric classifiers. This study also had a

higher overall accuracy than that produced by Shalaby and Tateishi (2007) using a maximum 

likelihood classifier on Landsat data. Furthermore, the results of this study in terms of overall 

accuracy were compatible with previous land cover classification research using Landsat data 

(Erbek et al., 2004); Kavzoglu and Mather (2003); (J. D. Paola & R. A. Schowengerdt, 1995).

Table 5.6 Summary of Landsat ETM+ and Landsat OLI classification accuracies (%)

Land cover class
Landsat data

2000 2016
Producer's User's Producer's User's 

Agriculture 97.70 93.81 98.15 92.98
Forest 95.99 98.50 78.26 100.0
Mining extraction 100 88.10 92.59 89.29
Built-up Area 93.68 99.44 100 93.18
Water 99.38 100.0 91.67 100.0
Overall accuracy 96.83 94.10
Kappa statistic 0.95 0.92
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Although overall accuracies were high for both Landsat 7 and Landsat 8 derived products,

some misclassification errors occurred, notably for forest land in 2016 at 78.26%. This was 

expected as forest and farming areas are sometimes confused on the ground. For example, rural 

farmers often grow cassava crops in forest land or practise slash and burn agriculture hilly 

areas. But the RF algorithm was very effective in the separation of urban/built-up and mining 

areas although there was substantial spectral confusion between these land surface features. 

Figure 5.12 Variations in the percentage of each land cover between local statistics and the RF classification 
derived from the Landsat 8 

5.2.3 Land cover change patterns 

The advantages of products derived from satellite remote sensing include the calculation of 

the statistics and the capability to display the distribution of temporal changes. In this study, a

matrix of land cover/land-use changes (Table 5.7) and a map displaying the spatial distribution 

of these changes (Figure 5.13) were created. Figure 5.13 shows that built-up/urban uses 

increased markedly between 2000 and 2016 in Thai Nguyen central city and southern areas 

(e.g., Pho Yen and Song Cong districts), while the forest in the north and east regions declined. 

Forest, agriculture, mining extraction and urban are the four main land cover categories; they

represent 98% of total area. 
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The rapid growth of urban and mining land uses come from declines in both forestry and 

agriculture. For example, 139.7km2 of urban/built-up land was gained from agriculture and 

forest land, while mining land encroached 67.8 km2 of agriculture and 131.9 km2 of forest 

during 16 years (Table 5.7). In addition, GIS analysis revealed a strong relationship between 

newly-developed area expansion and proximity to highways. Approximately 69.6% (100.2 

km2) of newly-built-up areas in this land cover classification occurred within 2km from main 

roads (Figure 5.13), while nearly 96% (137.6 km2) of urban expansion was within 5 km from 

primary roads. Also, 16.5% (23.6 km2) of new built-up area was detected within a 5 km radius 

the centre of Thai Nguyen city. 

Figure 5.13 Major changes in two land cover/ land-use categories using Landsat data between 2000 and 
2016

Almost all changes in land cover/land-use in Thai Nguyen have taken place in the central city 

(middle) and the southern regions (Song Cong and Pho Yen districts). Interestingly, growth 
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was largely concentrated in a strip from the southern perimeter following the Hanoi-Thai 

Nguyen national highway QL3. This highway is a major connector between Hanoi capital, Thai 

Nguyen and other northeast provinces of Vietnam. This pattern clearly reflected recent 

developments of the province, which focused on urbanization and industrialization. Between 

2010 and 2016, industrial zones and infrastructure construction have been significant in Thai

Nguyen city, Pho Yen and Song Cong districts. Samsung Electronics Vietnam Thai Nguyen 

Company Limited, for example, has occupied about 150 ha (primarily converted from 

agriculture and forest), while more than 50 other industrial zones have also occupied what was

rural land2. Also, the rapid growth of urban population and university infrastructure in Thai 

Nguyen city has resulted in the expansion of the road network and residential areas. For 

example, there are 7 universities and 25 colleges in the province, which is considered the third 

largest educational provider in Vietnam. 

Table 5.7 Matrix of land cover/land-use and changes (area in km2) between 2000 and 2016

2000

2016

Agriculture Forest Mining Land Urban Water
Class 
Total

Agriculture 940.4 117.6 67.8 131.8 10.2 1267.9 
Forest 263.5 1721.2 131.9 8.9 4.9 2131.5 
Mining Land 19.8 6.7 6.9 2.7 2.9 39.0 
Urban 10.2 0.5 2.3 16.7 0.9 30.6 
Water 6.7 1.9 2.0 0.7 40.3 51.6 
Class Total 1240.6 1847.9 210.9 160.8 59.2 3520.6 

Long-term development policies of the province (Vietnam Government, 2007) were targeted 

to transform Thai Nguyen into a modernized and industrialized province by 2020. The industry, 

construction and service activities were targeted to account for about 87% of province’s GDP, 

while agriculture, fisheries and forestry were predicted to occupy 13% of the land by 2020. 

2 Industrial development zones at http://enternews.vn/quy-hoach-phat-trien-kinh-te-xa-hoi-thai-nguyen-vung-
nen-tang-chac-tuong-lai.html
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This policy will continue to facilitate the conversion of agriculture and forest land into built-

up area (e.g., industrial zones and urbanized infrastructure) if land cover/land-use information 

is not adequate or taken into account. This explains the importance of integrating GIS and 

remote sensing in monitoring and mapping land cover/land-use changes to provide timely and 

accurate information for sustainable land use development. 

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

6.1.1 Comparison of land cover classification techniques 

Overall, the results of this study indicated that the RF algorithm performed best in the 

separation of subtropical land cover/land-use information on both Landsat 8 and Sentinel-2

data in comparison to the ANN and MLC algorithms. The RF technique also produced stable 

overall and individual accuracies for most classes. The ANN and MLC algorithms were less 

accurate in classifying Sentinel-2 data, but they did provide a higher overall accuracy for

Landsat 8 classification, especially the MLC.

Non-parametric classification techniques provided higher accuracies over traditional 

classification approaches in this study, supporting the results of (Erbek et al., 2004; Pal & 

Mather, 2003; J. D. Paola & R. A. Schowengerdt, 1995). Understanding of the advantages of 

each technique is an important aspect of land cover classification as more advanced and 

accurate classifier are often required, and therefore could potentially improve the quality of 

classified maps (Szuster et al., 2011). As urbanization and industrialization become more 

prominent, and are changing local landscapes, a good classification approach may be to adopt

such as the RF technique.
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The MLC and ANN seemed to be less suitable for classification of Sentinel-2 data (10-m

resolution) at regional scale due to the problems of smaller, mixed pixels and heterogeneous 

landscapes. But the MLC is proved to be suited for classifying Landsat data. In this study, the

RF algorithm is recommended as the most suitable for land cover classification in subtropical 

regions.

6.1.2 Temporal land cover monitoring and mapping  

The derived land cover products from Landsat data indicated that Landsat data can be used

successfully to map and monitor land cover/land-use changes with a high accuracy. Overall, a 

major change in land cover/land-use has taken place in Thai Nguyen province, particularly near 

Thai Nguyen central city and in southern regions over last 16 years. Agriculture has been 

converted into built-up land, mining extraction has expanded into forest land while water had 

little change. The main causes of land cover changes are due to recent development resulting 

in the expansion of mining activities, industrial and residential zones in formerly agricultural

and forest lands. 

The combination of satellite remote sensing, R programming and GIS demonstrated the 

potential of rapid data acquisition over large areas and the informative display of spatial 

changes to provide timely and accurate land cover information for efficient land management 

and policy decisions. The RF algorithm has advantages in producing more accurate and stable

overall and individual accuracies, and therefore offers the opportunity for better resource 

management and sustainable land development.
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6.2 Recommendations 

6.2.1 Comparison of land cover classification techniques 

After analysing the output of different classifiers, this study showed that the MLC could be 

used for extracting land cover/land use information when using Landsat data as it produced 

relatively high overall accuracy. Also, the MLC algorithm is simple, fast and available in QGIS 

which is free to use. The ANN algorithm is not recommended for classifying Sentinel-2 data 

as it resulted in lower overall accuracies in this study. In addition, the ANN algorithm is time-

consuming, as well as computationally and mathematically intensive. However, this classifier 

could be used to classify Landsat 8 data as it provided a relatively good overall accuracy, and 

is available for use in ENVI 5.3.  

The RF algorithm demonstrated its superior performance in classifying both Landsat 8 and 

Sentinel-2 data with high and stable accuracies. This approach should be preferred for Sentinel-

2 and Landsat 8 land cover classification. However, it is not available in ENVI 5.3 (at the time 

of writing this thesis), so users may not have access to this classifier. Another way to apply the 

RF classifier for any satellite data is to use R or Python to carry out land cover classification, 

but some skill in programming is needed.

6.2.2 Land cover monitoring and mapping 

With the increasing availability of free satellite imagery and open software like R 

programming, QGIS and Python, making use of these technologies can offer benefits for land 

cover classification with high accuracy. Local land managers and decision-makers should 

adopt these classification approaches as they are both cost-effective and provide good accuracy. 
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Appendices 

Appendix 1: TNMT land use statistics 

TNMT land use statistics

TNMT Land Use Type Total Area 
(ha)

Redefined Land 
Use Classes Total Area (ha)

Total Area (ha) 352666 352666
Agriculture 112673

Agriculture 112673
Annual Agriculture 51064
Rice 45067
Other annual agriculture 16322
Other farming land 219
Forestry 185922

Forest 185922Production forest 109717
Defensive forest 36846
Special forest 39359
Land for Aquaculture 13954

Water 13954Rivers, streams, canals 5651
Special water surface 3662
Aquaculture farms 4641
Residential land 12135

Urban/built-up 35337

Rural residential land 9907
Urban residential land 2228
Special-use Land 23202
Land for construction of offices 143
Land for national defence 3473
Land for national security 479
Land for construction of state facilities 1234
Land for non-agricultural business 5093
land for public use 11808
Land for religious organizations 79
Land for other religious facilities 68
Land for cemetery and funeral services 813
Other non-agricultural land 12
Unused land 4780

Mining 4780Flat unused land 1084
Mountainous unused land 1534
Bare land 2162
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Five land cover/land-use extracted from the TNMT area statistics

Land Use Type Total Area (km2) Percent (%) 
Agriculture 1126.7 31.9 
Forest 1859.2 52.7 
Built-up/Urban 353.4 10.0 
Mining Extraction 47.8 1.4 
Water 139.6 4.0 
Total Area (ha) 3526.7 100.0 

Appendix 2: Accuracy statistics for 20-m Sentinel-2 data using the three classification

algorithms

Accuracy statistics for 20-m Sentinel-2 data using MLC

Overall accuracy: 82.8%

  Agriculture Forest Mining Urban Water Total 
Users' 
Accuracy 

Agriculture 51 2 2 2 0 57 89.5 
Forest 1 21 0 0 0 22 95.5 
Mining 1 0 23 16 1 41 56.1 
Urban 1 0 1 23 1 26 88.5 
Water 0 0 1 0 22 23 95.7 
Total 54 23 27 41 24 169  
Producers' 
Accuracy 94.4 91.3 85.2 56.1 91.7   

Accuracy statistics for 20-m Sentinel-2 data using ANN

Overall accuracy: 86.3%

Agriculture Forest Mining Urban Water Total
Users' 
Accuracy

Agriculture 48 1 0 2 0 51 94.1
Forest 2 22 0 0 0 24 91.7
Mining 0 0 20 0 7 27 74.1
Urban 4 0 7 39 0 50 78.0
Water 0 0 0 0 17 17 100
Total 54 23 27 41 24 169
Producers' Accuracy 88.9 95.7 74.1 95.1 70.8



87

Accuracy statistics for 20-m Sentinel-2 data using RF

Overall accuracy: 89.9%

Agriculture Forest Mining Urban Water Total
Users' 
Accuracy

Agriculture 52 4 0 0 0 56 92.9
Forest 0 19 0 0 0 19 100
Mining 0 0 23 0 4 27 85.2
Urban 2 0 4 38 0 44 86.4
Water 0 0 0 0 20 20 100
Total 54 23 27 38 24 166
Producers' Accuracy 96.3 82.6 85.2 100 83.3

Appendix 3: Accuracy statistics for 10-m Sentinel-2 data using the three classification 

algorithms

Accuracy statistics for 10-m Sentinel-2 data using MLC

  Agriculture Forest Mining Urban Water Total Users' Accuracy 
Agriculture 51 3 1 2 1 58 87.9 
Forest 0 20 0 0 0 20 100 
Mining 0 0 24 17 1 42 57.1 
Urban 3 0 2 22 0 27 81.5 
Water 0 0 0 0 22 22 100 
Total 54 23 27 41 24 169  
Producers' Accuracy 94.4 86.9 88.9 53.7 91.7  

Accuracy statistics for 10-m Sentinel-2 data using ANN

  Agriculture Forest Mining Urban Water Total 
Users' 
Accuracy 

Agriculture 52 3 6 12 2 75 69.3 
Forest 1 20 0 0 0 21 95.2 
Mining 0 0 19 3 1 23 82.6 
Urban 1 0 2 26 0 29 89.7 
Water 0 0 0 0 21 21 100 
Total 54 23 27 41 24 169  
Producers' Accuracy 96.3 86.9 70.4 63.4 87.5  
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Accuracy statistics for 10-m Sentinel-2 data using RF

  Agriculture Forest Mining Urban Water Total Users' Accuracy 
Agriculture 49 5 2 1 1 58 84.5 
Forest 0 18 0 0 0 18 100 
Mining 0 0 24 1 1 26 92.3 
Urban 5 0 1 39 0 45 86.7 
Water 0 0 0 0 22 22 100 
Total 54 23 27 41 24 169  
Producers' Accuracy 90.7 78.3 88.9 95.1 91.7  

Appendix 4: Accuracy statistics for Landsat 8 data using the three classification 

algorithms

Accuracy statistics for Landsat 8 data using MLC

  Agriculture Forest Mining Urban Water Total Users' Accuracy 
Agriculture 50 3 1 0 0 54 92.6 
Forest 1 20 0 0 0 21 95.2 
Mining 2 0 25 3 3 33 75.8 
Urban 1 0 1 38 1 41 92.7 
Water 0 0 0 0 20 20 100 
Total 54 23 27 41 24 169  
Producers' 
Accuracy 92.6 87 92.6 92.7 83.3   

Accuracy statistics for Landsat 8 data using ANN

Agriculture Forest Mining Urban Water Total Users' Accuracy 
Agriculture 54 9 3 0 4 70 77.1 
Forest 0 14 0 0 0 14 100 
Mining 0 0 17 0 4 21 80.9 
Urban 0 0 7 41 0 48 85.4 
Water 0 0 0 0 16 16 100 
Total 54 23 27 41 24 169  
Producers' 
Accuracy 100 60.8 62.7 100 66.7  
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Accuracy statistics for Landsat 8 data using RF

  Agriculture Forest Mining Urban Water Total Users' Accuracy 
Agriculture 50 3 1 0 0 54 92.6 
Forest 1 20 0 0 0 21 95.2 
Mining 2 0 25 3 3 33 75.8 
Urban 1 0 1 38 1 41 92.7 
Water 0 0 0 0 20 20 100 
Total 54 23 27 41 24 169  
Producers' 
Accuracy 92.6 86.9 92.6 92.7 83.3   

Appendix 5: Accuracy statistics for Landsat 7 data using the RF classification algorithms

Accuracy statistics for Landsat 7 data using RF

Agriculture Forest Mining Urban Water Total Users' Accuracy 
Agriculture 212 10 0 3 1 226 93.8
Forest 4 263 0 0 0 267 98.5
Mining 0 1 74 9 0 84 88.1
Urban 1 0 0 178 0 179 99.4
Water 0 0 0 0 160 160 100
Total 217 274 74 190 161 916
Producers' 
Accuracy 97.7 95.9 100 93.7 99.2




