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ABSTRACT

Maximum likelihood techniques for estimating variance
components have desirable features. Nevertheless, the use of
maximum likelihood methods for estimating variance components from
unbalanced data is difficult. Moreover, additional complications
arise in the context of maternal effects models. In this thesis,
procedures for generating maximum likelihood estimates of variance
components in a maternal effects model are derived for the case of
unbalanced data. A hierarchical design where by each sire is
mated to several dams is used, there being observations on parents
and offspring. The special structure of the data together with
the assumption that the sires and the dams are unrelated is
exploited in order to obtain explicit expressions for the inverse
and the determinant of the variance-covariance matrix of the
observations, which arises in the likelihood function and the
partial derivatives thereof. Algorithms are proposed to generate
the likelihood function and its partial derivatives which are
required for constrained and unconstrained optimization of the
function. As an illustration, the procedures are applied to
weaning weight data of sheep and 8-week weights of pigs. The
procedures are extended to estimate variance components in a

multiple-trait setting.

Provided the relevant genetic variances and covariances are
known, best linear unbiased prediction techniques can be used to
predict direct and maternal genetic values. Predicting direct and
maternal genetic values of all animals is not difficult since this
is a special case of a multiple-trait evaluation. However, if the
objective is to eliminate the influence of the maternal effect so
that selection is for direct genetic merit, predictions are
required for the direct genetic values of all animals of interest
and the maternal genetic values of just their dams. Although no
analysis is carried out using actual data, best linear unbiased
prediction equations for predicting direct genetic values of all

animals and the maternal genetic values of their dams are derived.
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In the process, the rapid method of inverting the relationship
matrix is modified to enable the inversion of the
variance-covariance matrix of the genetic effects. The
requirements that have to be satisfied in order to generate the

correct inverse are given.
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CHAPTER 1. INTRODUCTION

In mammalian species, maternal effects are those differences
between progeny performances that are attributable to differences
in maternal environment provided by dams during gestation and the
pre—weaning period in the life of the progeny. Although a
maternal effect contributes an environmental component to progeny
performance, variation between dams in maternal performance may
arise from either genetic or environmental causes. The expression
of the maternal genetic effect which only occurs if an animal
subsequently becomes a dam, lags behind the expression of the
direct genetic effect by one generation. Thus, in writing a model
to describe the performance of a progeny, the genetic component
can be subdivided into the direct genetic effect of the progeny
and the maternal genetic effect of the dam. Several studies have
indicated that the variation in the genetic component of maternal
effects can be substantial and that a genetic correlation between
direct and maternal effects may exist. Maternal environmental
variability is assumed to be caused by non-genetic differences
that are common to certain members of families such as full-sibs

and maternal half-sibs.

Legates (1972) made a distinction between the terms maternal
effects and maternal influences. Maternal effects are the
measured phenotypic expressions arising from influences of the
mother on a trait measured in her offspring, apart from the direct
influence of the genes she transmits. The factors which condition
the expression of the maternal effects are the maternal
influences. He subdivided maternal influences into pre-natal and
post-natal factors. The pre-natal factors are associated with the
uterine influences of the mother which result from the genotype of
the mother and also from environmental influences on her which are
mediated to her offspring in-utero. Post-natal maternal
influences arise from the influence of the mother on her offspring
following parturition. Legates considers lactational output to be

a major factor while factors such as temperament and maternal



instinct are important. According to Robison (1972) cytoplasm of
the egg is another factor other than the intra-uterine environment
and post—-natal environment that is responsible for the maternal
influence. However there is little evidence regarding the role of

cytoplasmic effects on maternal performance.

Information on the magnitudes of genetic variation of
maternal effects and the sign and magnitude of the correlation
between direct and maternal genetic effects is, for certain traits
essential in the planning of optimal breeding programmes and also
for predicting a reliable response from selection. The prediction
of genetic gain becomes complicated in the presence of maternal
effects. Hanrahan (1976) examined the influence of maternal
effects on the relative efficiency of progeny and performance test
selection. He concluded that progeny testing is very inefficient
for selection purposes when the traits considered are influenced
by maternal effects. Van Vleck, St.Louis and Miller (1977)
presented an equation to predict expected response to selection
when traits under selection are affected maternally. Robison
(1981) made suggestions for altering management plans to increase

efficiency of selection in the presence of maternal effects.

Although selection for genetic gain in the direct and
maternal genetic components is possible, the large negative
genetic correlation that may exist petween these components
has indicated that simultaneous improvement of direct and maternal
genetic effects by selection, could be difficult. For example,
selection for direct effects lower the maternal ability of the

dams that nurture the offspring in succeeding generations.

Best linear unbiased procedures [Henderson (1963)] can be
used to predict the direct and maternal genetic effects of
animals, provided that the genetic and environmental variances and
possible covariances are known. In this thesis, procedures for
generating maximum likelihood estimates of the relevant variance
components are derived for the case of unbalanced data, the usual

situation in animal breeding. These procedures will be applied to



weaning weight data from sheep and pigs. The methods will also be
extended to estimate the variance components in a multiple-trait
setting. The use of the best linear unbiased procedure to predict
direct genetic effects of a set of animals and the maternal
genetic effects of their dams is demonstrated. 1In the process,
the rapid method of inverting the relationship matrix [Henderson
(1975a,1976) ;Quaas (1975,1976,1984)] will be modified to enable
the inversion of the variance-covariance matrix of the direct and

maternal genetic effects.



CHAPTER 2. LITERATURE REVIEW

2.1. Estimation of variance components

Estimation of variance components is an important area in
animal breeding. The proportion of the additive genetic variance
is used to assess the potential for genetic improvement by
selection. In addition, estimates of variance components are
required for predicting (most often) the breeding values of

candidates for selection.

2.1.1. Balanced data

Traditionally, variance components have been estimated from
balanced data (equal number of observations in each sub-class) by
the analysis of variance (ANOVA) method. This method involves
computing mean squares in the analysis of variance and equating
these mean squares to their expected values. The estimators
resulting from this method have explicit expressions and

computation is not difficult.

ANOVA estimators of variance components obtained from
balanced data have several optimal properties. Graybill and
Hultquist (1961) showed that the estimators obtained by this
method (ANOVA) for a random model with balanced data are best
quadratic unbiased (BQUE), a property of the estimators that is
not dependent on normality assumptions. A best quadratic unbiased
estimator is the quadratic form of observations which is unbiased
and which, from among all such quadratic forms has minimum sampling
variance. Albert (1976) showed that ANOVA estimators obtained
from balanced data are BQUE for mixed models. Further Graybill
and Wortham (1956), Graybill and Hultquist (1961), Seely (1971)
and Albert (1976) showed that, if the data are normally
distributed ANOVA estimators are best unbiased estimators (BUE).
That is, of all unbiased estimators, ANOVA estimators have the

smallest sample variance. Anderson, Henderson, Pukelsheim and



Searle (1984) showed that ANOVA estimators are BQUE under
arbitrary kurtosis. As a result of these optimal properties, the
analysis of variance method is popular for estimating variance
components when data are balanced. A shortcoming of the method is
the fact that it can lead to negative estimates of variance
components. It has been suggested that when negative estimators
arise, these could be truncated to zero, but when this is done,

the method of estimation is no longer unbiased.

2.1.2. Unbalanced data

Most of the early published work on estimation of variance
components has dealt with random models with balanced data.
Henderson (1953) was the first to develop alternative methods of
estimation to handle mixed models with unbalanced data. In his
study, he proposed three methods of estimating variance
components, which subsequently became to be known as Henderson's
Method 1, Method 2 and Method 3, respectively.

2.1.2.1. Henderson's methods

Henderson's Method 1 involves computing sums of squares as in
the standard analysis of variance of the corresponding case for
balanced data, equating the sums of squares to their expectations
under the assumptions of a random effects model and then solving
the resultant linear equations in the unknown variance components.
Although this method is computationally simple, it leads to biased
estimates if any of the effects in the model, other than the
general mean, are fixed. Therefore Method 1 is not appropriate

for mixed models.

In Method 2, the fixed effects of the model are estimated by
the method of least squares (computing as though random effects
are fixed), and then Method 1 is used on the data that has been
corrected for the fixed effects. Henderson, Searle and Shaeffer

(1974) proved that Henderson's Method 2 is invariant for a wide



class of models including the mixed models where there are no
interactions between fixed and random effects and also for the
models that do not have nesting of fixed and random effects within

each other.

Henderson's Method 3, which is also known as the method of
fitting constants, involves computing reductions in sums of
squares due to fitting different models. Each computed reduction
in sums of squares is equated to its expected value under the

assumption of the full model. For example,

X’X1§1+e (2-1)

is a sub model of

y = x‘IB'I + )(232 + e (2.2)

where
¥ is the vector of observations;
B' = (B{,Eé) and the elements of 8, and 22 are unknown fixed

or random effects;

<

= (¥1v¥2) and X; and X, are known matrices; and

is the vector of residuals.

2D

If R(B,y) and R(B;,B,) are the reductions due to fitting (2.1) and
(2.2), respectively, the difference of the expectations under the
model (2.2) is the reduction due to fitting 8, after fitting B4,
which is denoted by R(B5|By). If B in the model

Y= X8 +e (2.3)

is partitioned into 84 and QZ in such a way that éz contains only
random effects, E[R(§2|§1)] would not involve any fixed effects.
Therefore, by a proper choice of the sub models, one can obtain
unbiased estimates of variance components. Also, even if the
elements in g4 are correlated with the elements of §2, no

correlated terms appear in E[R(82|Q1)].



Henderson's Method 3 has the disadvantage that it is
computationally difficult. Obtaining reductions in sums of
squares as well as the coefficients of variance components in the
expectations of the reductions can involve the inversion of
matrices with order equal to the number of random effects in the
data. In animal breeding studies, in particular, this could be

very large and as a consequence the computing is difficult.

All three methods of Henderson are based on the single
optimality criterion of unbiasedness. Except in the case of
balanced data, estimators obtained from Henderson's methods do not
have minimum variance properties. In the case of balanced data,

these methods yield ANOVA estimates of variance components.

2.1.2.2. Maximum likelihood and restricted maximum likelihood

methods

Hartley and Rao (1967) initiated the current revived interest
in the use of the maximum likelihood (ML) method for estimating
variance components. Earlier, this method had been rejected by
Bush and Anderson (1963) for the reason that the procedure is

computationally difficult.

With the ML method, the likelihood function of the
observations are maximized over the entire sample space in order
to obtain estimates of variance components and fixed effects
simultaneously. Combined estimation of the fixed effects and the
variance components by the method of ML involves the numerical
solution of a nonlinear optimization problem. Non—-negativity

constraints can also be imposed.

Hartley and Rao (1967) established the large sample
optimality properties, such as consistency and asymptotic
efficiency, for the ML estimators. Harville (1977) comments that
Hartley and Rao were the first to attempt an asymptotic theory
that would be appropriate for the complicated analysis of variance

models. However, Hartley and Rao imposed a restriction that the



number of observations in a particular level of any random factor
should stay below some universal factor. This limited the
applicability of the results of Hartley and Rao. Miller
(1973,1977) developed an asymptotic theory which does not exclude
the models of usual interest, although it is similar to that
presented by Hartley and Rao. Searle (1971) derived a general
expression for obtaining the large-sample variances of ML
estimators, although explicit expressions for the variance

components do not exist.

However, in practice, the maximum likelihood procedure has
not generally been used to estimate variance components because of
the computation difficulties involved. The estimation of variance
components by ML does not take account of the loss in degrees of
freedom that results from estimating the fixed effects of the
model. Also, these estimators are derived under the assumption of
a particular distributional form, the most popular being
normality.

By extending an idea of Thompson (1962), Patterson and
Thompson (1971) developed the restricted maximum likelihood (REML)
method for estimating variance components in which, unlike ML, the
loss in degrees of freedom from estimating the fixed effects of
the model is taken into account. In this method, the likelihood
is partitioned into two components where one of which is entirely
free of fixed effects. Maximization of the likelihood over this
portion leads to restricted maximum likelihood estimators of
variance components. This is equivalent to saying that the
likelihood of a set of error contrasts is maximized. An error
contrast is defined as a linear function of the observation vector
!, say g'x, where a does not involve any unknown parameters, and
E(a'y) = 0, so that a'X = 0. Patterson and Thompson (1971) state
that no information is lost by basing the estimates of the

variance components on the likelihood of error contrasts.



The REML estimators are free of the fixed effects of the
model as well as being invariant to them. Anderson (1979)
demonstrated that in general, solutions to REML equations with
balanced data are identical to ANOVA estimators. Corbeil and
Searle (1976a) showed the same result for special cases (the 1-way
random, the 2-way nested random and the 2-way crossed
classification mixed, with or without interactions). This is a
useful property because of the optimal properties of ANOVA

estimates of variance components for balanced data.

There are several iterative numerical algorithms which can be
used to compute ML and REML estimates of variance components. The
method of steepest ascent and the Newton Raphson procedures are
the most common algorithms used. Fisher's method of scoring is
another method that has been used in applications. The Newton Raphson
procedure can be expected to locate an optimum in a relatively few
iterations provided the starting values are sufficiently close to
the optimum. Also, it may converge to a point which is not a
local or global optimum, if the starting value does not lie in a
small neighbourhood of the optimum. The extended Newton Raphson
procedure which, under special circumstances is identical to the
steepest ascent method [Powell (1970)], overcomes this problem.
Apart from the methods mentioned above, there are numerous other
algorithms which can be used [see Harville (1977)]. Harville
(1977) comments that there is no iterative routine for ML or REML

that will be satisfactory for every application.

There are routines that have been developed especially for
estimating variance components by ML or REML method. Amongst
these is the routine that uses a transformation called a W
transformation which was developed by Hemmerle and Hartley (1973)
for ML estimation. Corbeil and Searle (1976b) extended the W
transformation to estimate variance components by the REML method.
Henderson (1973a) demonstrated that the same solution as that of
ML can be obtained by solving the mixed model equations proposed
by Henderson (1950) and then later derived by Henderson,

Kempthorne, Searle and Von Krosigk (1959). He also showed that
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the mixed model equations can be used to compute the large-sample
variances of the maximum likelihood estimators by using the method
explained by Searle (1971).

2.1.2.3. Quadratic estimation of variance components

Townsend and Searle (1971) derived best quadratic unbiased
estimators (BQUE) of variance components for the 1-way
classification random model with zero mean and normally
distributed errors, for unbalanced data. Previously the
estimation of variance components from unbalanced data was usually
carried out using Henderson's methods. For the vector Y, normally
distributed with zero mean and variance-covariance matrix V,
Townsend's and Searle's BQUE of a variance component, 02, was the
quadratic form y'Ay, where A was determined so that 2tr(AVAV) is
minimized, subject to 02 = tr(gY) ("tr" denoting the trace of a
matrix). For balanced data, these estimators reduce to ANOVA
estimators. La Motte (1973) extended the best quadratic unbiased
estimation to a general linear model. Noting that, except for
special cases, BQUEs do not necessarily have uniformly minimum
variance, he considered "best" as a local property. He showed
that, in addition to the lower bounds, the "locally best"
estimators have other useful analytical properties.

the

Rao (1970) introducedminimum norm quadratic unbiased
estimation (MINQUE) procedure for estimating heteroscedastic
variances. Rao (1971a,1972) studied the optimization problems
which occur in MINQUE theory and used this method to determine
minimum norm quadratic unbiased estimators of variance components.
In the MINQUE approach, a linear function of the variance

components, a'g2

~

» is estimated as a quadratic form y'Ay where the
choice of A depends on the following criteria:
142

(1) y'Ay is an unbiased estimate of a's“. That is,



1"

E(y'ay) = a'd°

Since for a general linear model as in (2.3), the expected
value of y'Ay is given as

~ ~Aa

E(y'Ay) = B'X'AXg + tr(AV)

where V is the variance-covariance matrix of y, y'Ay will be

2

an unbiased estimator of a'oc™ for all B and 92 if and only if

and

= tr(AV);

(2) Y'Ay is translation invariant. A quadratic form is said to
be translation invariant if it is unaffected by changes in
the vector of fixed effects. Thus y'Ay is translation

invariant if
y'Ay = (y - Xg)'A(y - X8)
which implies that
AX = 0; and

(3) y'Ay minimizes a suitable norm. Rao (1971a) minimized

the Euclidian norm of Z'AZ - A, where A is a suitable diagonal
matrix and demonstrated that this is equivalent to the problem
of determining A such that tr(AVAV) is minimized.
La Motte (1973) noted that Rao's minimum norm quadratic
estimators are best quadratic estimators at eo, where eo is

determined by the choice of the norm minimized.

Rao (1971b) minimized the variance of a quadratic form of the
observations in a linear model to obtain locally best unbiased

estimators (MIVQUE) of variance components. La Motte (1973)
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presented the general approach for such estimation. When the
variables are normally distributed, MIVQUE is identical to the

MINQUE under the Euclidian norm mentioned earlier.

2.2. Estimation of variance and covariance components:

Maternal effects models

The biometrical aspects of maternal effects were first
developed by Dickerson (1947). He utilized path coefficient
diagrams to demonstrate the relationship between the individual
phenotype and the genetic influences which affect phenotype
directly (direct effects) and indirectly (through maternal

environment).

2.2.1. Equating covariances between relatives to their expected

values

The use of covariances between relatives is the most common
method of estimating maternal genetic variances. The usual method
in the past has been that of making general statements about the
maternal influence by comparing correlations observed in various
relationships. For example, maternal half-sibs versus paternal
half-sibs; and dam-offspring versus sire-offspring. Koch and
Clark (1955) used path coefficient diagrams between different
relatives to assess the importance of maternal effects on

economically important characters in beef cattle.

Willham (1963) examined the theoretical compositions of
covariances between specific relatives in the presence of maternal
effects. He expressed the phenotypic observation of animal X,
whose dam is animal W, as

P + e +e (2.4)

x = 8Box * 8mw ox mw
where
8ox 18 the direct effect of the genotype of x;
8w is the maternal effect on X caused by the genotype of
animal's dam W;
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€ox is the direct effect of environment on X; and

€nw is the effect of the environment on the maternal

value of W.

Then the genotypic covariance between two related animals X and Y

is given as

Cov(gx,gy) = Cov(gox,goy) + Cov(goy,smw)

) (2.5)
+ Cov(goy18mz) * COV(8mu18mz

where Z is the dam of the individual Y. For additive genetic

effects only, (2.5) reduces to

2

ayy980 * (a + a

2
xz * ayw)UAoAm wz%Am* (2.6)

Dickerson (1947) and Koch and Clark (1955) used the same result as
in (2.6) to obtain covariances between specific relationships when
maternal effects were considered. Eisen (1967) proposed three
mating designs that generate different types of relatives. He
used these designs to estimate direct and maternal additive and
dominance variances, direct-maternal additive and dominance
covariances, maternal environmental variance and random

environmental variance.

Ahlschwede and Robison (1971a), Hohenboken and Brinks
(1971a), Robison (1972) and Koch (1972) estimated variance
components for direct and maternal effects and the correlation
between direct and maternal effects by equating observed
covariances between relatives to their expected compositions. The
theoretical compositions of covariances between different types of
relationships are given in Willham (1963,1972), Eisen (1967), Koch
(1972), Thompson (1976a), and Foulley and Lefort (1978). Willham
(1972) included the grand maternal effect in the path diagram
showing the biometrical relationships of the phenotypic expression

of a trait.



Falconer (1964) attributes some of the inconsistencies
observed in predicted heritabilities and realized heritabilities
to the influence of maternal effects. He used daughter-dam
covariance and response to selection to estimate the variance
components. Falconer expressed the phenotypic value, P, of an

individual, measured as a deviation from the population mean, as

P=A+M+D+C+E
where
is the individual's breeding value;
is the maternal effect;

is the dominance deviation;

O o X e

represents the environmental factors common to full-sibs
that are not included in the maternal effect; and
E represents the environmental factors particular to

the individual.

The maternal effect, M, was defined as a linear function of
the dam's phenotypic value, P', measured as a deviation from the

population mean. That is,
M = mP'

where the coefficient m is the partial regression coefficient
relating the phenotypic values of dams to their daughters in the
absence of genetic variation amongst mothers. He derived the
equations for the daughter~-dam covariance and the expected value

of the response to selection which can be expressed as
COVPP' - VA./(Z"m) + mVP'
and

R = (VAN/VPW)S ¥ mQ:

respectively, where VP' and VA' are the phenotypic and additive

14

variances of the dams, VAw and Vpy are the additive and phenotypic

variances within families, R is the total response to selection,

is the mean deviation from the control during the period from

Q
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which R is estimated and S is the cumulated selection
differential. Falconer expressed VAw in terms of VA' using the
proportion of the phenotypic variance of the dams to that of
daughters. Then the two equations with two unknowns were solved
to find VA' and m. The variance attributed to the maternal effect

was then estimated as
VM = msztn
The expession for CovAM, which is given by

was used to find the covariance between the individual's breeding
value and the maternal effect. Finally, the expressions for
phenotypic variance and the full-sib covariance were used to
estimate the variances attributed to the dominance deviations,
environmental factors common to full-sibs other than those
included in the maternal effect, and environmental factors

particular to the individual.
VP=VA+2COVAM+UM+VD+VC+VE
Cov(FS) = (UA.S+VA.d)/M + 2mVA.d/(2~m) + UM + VD/H + VC
In the above expressions, the subscripts s and d refer to the sire
and dam, respectively. These two expressions do not give
estimates for VD, VC and VE' However estimates for 3VD/N + VE and

VD/M + VC can be obtained.

2.2.2. Method of least squares

Van Vleck and Hart (1966) used the method of least squares to
estimate the genetic variances and covariances attributed to
direct and maternal effects in their analysis of first lactation
milk records of Holstein cows. Eisen (1967) used this method to

obtain the variance components as partial regression coefficients.
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He considered the model

y=X8+e
where the ith element of vector y is the covariance of the ith
relationship generated by his mazing designs; § is the matrix of
expected coefficients; and B is the vector of causal components
of the observed variances ana covariances. It was also assumed
that the mean and the variance of the vector of errors, €, are

given by
E(e) = 0 and Var(e) = V.

The least squares estimate for B, is then given by

This is an unbiased estimate of 8, and the variance-covariance

matrix of ] is given by
Var(g) = (x0T X' VX0,

Noting that some of the elements of y are estimated with greater
precision than others, leading to unequal weighting, and that

there may also be cases of heterogeneous variances, Eisen (1967)
suggested the weighted least squares procedure as an alternative.

The weighted least squares estimate of g is

with variance-covariance matrix
var(g.) = (x'v2'x)7"
W ~ ~W *
The diagonal elements of Yw are the variances of the estimates of

the elements in Y and the off-diagonal elements represent the

variances of the estimates of pairwise covariances of the elements
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in y. Van Vleck and Hart (1966) used the number of pairs of
records included in the estimation of the covariances, for
standardizing the covariances where a multiple regression was
performed on the standardized covariances. They report that this
procedure is similar to the weighting according to the inverse of

the variances of the regressions or covariances.

2.2.3. Restricted maximum likelihood approach

Thompson (1976a) states that the least squares procedure is
not very efficient if the variances and covariances between
relatives are not homogeneous. The weighted least squares
procedure which is suggested by Eisen (1967) in the case of
heterogeneous variances, reauires the calculation of the
variance-covariance matrix of the covariances between relatives

which is computationally difficult.

Thompson (1976a) demonstrated how the restricted maximum
likelihood method suggested by Patterson and Thompson (1971) can
be used to estimate maternal genetic and environmental variances.
In this approach, he formed symmetric sums of squares and product
matrices representing variation in a number of variates by
subdividing the data into independent parts according to different
sources of variation. Then the likelihood of the symmetric sums
of squares and products matrices were maximized in order to obtain
estimates of variance components. As an example, he suggested the
hierarchical design considered by Hill and Nicholas (1974) and
Thompson (1976b), where each of a set of sires is mated to several
dams and number of offspring raised from each mating. Thompson

(1976a) formed the sums of squares and products matrices using,

(1) separate sums of squares within dams, between dams within
sires and between sires from offspring data;

(2) a 2x2 matrix that represents the variation between dams
within sires with two variates corresponding to offspring
and dams;

(3) a 3x3 matrix representing variation between sires with
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three variates corresponding to offspring, dams and sires.

Examples of elements of such matrices are given in Thompson
(1976b) where he estimated the heritability when observations were

available on parents and offspring.

He assumed that the observations are multivariate normal with

means py, My and 3 for the sires, dams and offspring,
2
p*
and product matrix, S, which is assumed to be independent with

respectively, and common variance g Let the kth sums of squares

§J(j=k), be associated with dk degrees of freedom. Then the mean

squares and product matrix, wk, is given by

Me = Si/dy-

Thompson (1976a) expressed the expected value of M, as

Vg = E(M) = 121 i1 4

where 84 (1=1,2,....p) are the variance components of interest and
Fki are known symmetric matrices. The log likelihood, L, is then

written as,

L = constant - é [k§1 d, (In|V, | + tr(@k2;1)}

where s is the number of symmetric sums of squares and products
matrices, !VKI is the determinant of !k' Following Anderson
(1973), Thompson showed that the restricted maximum likelihood

estimates of Ch satisfy the equations

-1y -1 _ ~1 .
f1 d [ erVe M B g) = tr(V ' Eey) ] =0

for i=1,2,.....,p. This is equivalent to solving the equations
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e

too
"

1o

where A is a pxp matrix with (i, j)th element as

N
ajj = kz1 d trVy EppVy Egs) s

b is a px1 vector with ith element as

g vl
By = kz1 dy tr(V MV Ey)s

and ¢ is a px1 vector with 6; as the ith element. The asymptotic
variance-covariance matrix of @ is given by ZQ—1.

Thompson reports that the difference between this particular
multivariate analysis and the usual multivariate analysis is that
the number of variates associated with the different sources of
variation need not be equal. He illustrated the method by using
some data on pupae weight of Tribolium. He also demonstrated how

this approach can be applied to Eisen's (1967) designs.

2.2.4. Analysis of reciprocal crosses

Cockerham and Weir (1977) used analysis of reciprocal crosses
to estimate maternal and paternal variances. They discussed the
estimation of variance components for two types of mating designs.
The first involves a factorial mating design between two distinct
sets of parental lines and the other is a diallel of all crosses

from a single set of parental lines.

Earlier diallels have been used to measure additive and
dominance variation and to describe the properties of parental
lines. Jinks (1954) applied diallel crosses on inbred lines of
Nicotiana Rustica. Hayman (1954) developed the theory of diallel
crosses and investigated complex genetical systems. Kempthorne
(1956) and Griffin (1956) described the situation in general,

including arbitrary epistacy.
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Cockerham and Weir represented a cross as

Yigk =M * 815 * eyjk (Call)

where
yijk is an observation on an offspring of maternal
parent i (parental line i) mated to paternal parent j
(parental line j) (j=i);
py is the general mean;
gij is the total of effects attributed to the parents; and
eijk is the total of other effects.

The reciprocal of the above cross is giverr by yjik'

They considered several models for gij in (2.7), and first of
these takes the factorial nature of the pairwise matings into

consideration. That is,

gij =m; + PJ' it (mp)ij (2.8)
where

my is the total maternal effect;

p\j is the total paternal effect; and

(mp)ij is the interaction between the maternal and

paternal effects.

G o
ogp, respectively. Further, they defined the two covariances Cm

These effects are assumed to be random with variances ¢ and

p

and mep' where Cm represents the covariance between m and Pj

p

and C,.., is the covariance between (mp)ij and (mp)ji.

P
Another model for reciprocals can be generated by
transforming the effects of the model given in (2.8). This is the

diallel model and is expressed as
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# #
where the transformations are defined as follows:

* * r3 I3
gy = (my + pyl)/2, (gj defined similarly);
d; = (m; - p;)/2, (d\j defined similarly);
sij = [(mp)iJ + (mp)ji]/Z;
rij = [(mp)iJ - (mp)jiJ/Z;
with
%4 ™ 931
and
PR3y =Yg l
The variances of the effects in (2.9) can be obtained directly by

using the transformations. That is,

2 2 1
og = (og * op * 2Cmp)/u.
2 BB )
og = (op + op 2Cmp)/“.
2 2 3
gg = (omp + mep)/Z,

and

05 = (c%p - mep)/2.

In the factorial mating design mentioned earlier, a set of
maternal parents (i=1,2,....,N) is mated to a set of paternal
parents (j=N+1,N+2,....,2N). This, with the reciprocal, leads to
two factorial mating designs ij and ji. Cockerham and Weir
suggested separate analysis for the two factorials and the pooling
of the corresponding sums of squares, for estimating the variance
components for the effects in model (2.8). The mean squares are
computed for the marginals and the interactions between the two
factorials. The estimates of the variance components are then
obtained by equating mean squares or products to their

expectations.
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2.3. Prediction techniques

The most common aim of animal breeding is to improve the
genetic merit of the population by selecting the genetically
superior animals as the parents for succeeding generations. For
this, the animal breeder may have a vector of observations on some
random variables from which to predict values of some
non-observable random variables. Generally, the problem can be

stated as follows:

"If y and w are two jointly distributed

vectors of random variables with elements

of y and W being observable and non-observable,
respectively, then the problem is to predict

w from the observed values of x".

Predicting future records is a special case of the above
problem where w is a function of future records. Predicting the
genetic merit of a dairy bull from the milk yield of his female
relatives is another example. The predictor of the ith element of
W, which is denoted as ;i’ is a function of the observable random
variables. That is,

-~

wi = f(Z)-

Detailed accounts of prediction techniques in animal breeding are
given in Henderson (1973b,1977).

2.3.1., Best prediction

In the method called best prediction (BP), the predictor w;

is found such that E(;i-wi)2 is minimized, the ;i obtained being
known as the best predictor (BP). The BP of Wi is given by

;1 - E(wilx)'
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that is, the conditional mean of LN given y. A proof of this
appears in Rao (1965). Searle (1973) provided proofs for the

following properties of best predictors.
(1) LA is an unbiased predictor of Wi That is,

E(wi) = Wy
(2) The variance-covariance matrix of the prediction errors is

the average conditional variance of w|y
Var[ (w-w) (w-w)'] = E/[Van(w[y)]

(3) Of all functions of y, w; maximizes the correlation between

-~

wi and Wi

(4) Var(w) = Cov(w,u')

(5) Cov(w,y') = Cov(g,!')

The form of the joint distribution of records and the genetic
values to be predicted, together with the numerical values of the
parameters of the distribution should be known in order to find
best predictors. 1In addition, the conditional mean of Wy given Y
should be computed. These requirements have made prediction by
this method difficult and hence best predictors are not generally

used in practice.

2.3.2. Best linear prediction (Selection index)

Hazel (1943) was the first to apply the selection index to
animal breeding. In best linear prediction (BLP), the predictor
which is also known as the selection index (denoted as I) is

calculated as a linear function of the observations. That is
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where "a" is a scalar and bi is a vector of weights chosen so that

E(wi—wi)2 is minimized. The vector of predictors found as such is

given by
W= E(w) + oV [y-E(y)]
where
C = Cov(w,y")
and

V = Var(y).

Some properties of BLP are outlined beloy [see Henderson
(1973b,1977) 1.

(1) w is unbiased. That is,
E(w) = E(w)
(2) Var(w) = Cov(w,w') = CcV_'c"

1

(3) Var(w-w) = G - CV 'C' where G = Var(w)

(4) Of all linear functions of y,» BLP of w; maximizes the

correlation between Wi and LIE

(5) The BLP of a linear function of W is the linear function

of the BLP of y. That is, BLP of 1l'w is 1l'w.

In best linear prediction the form of the joint distribution

of the records and of the genetic values to be predicted need not

be known, but the first and the second moments of the

distributions must be known. Animal breeders substitute estimates

of the variance parameters as if they were the true values and
proceed with BLP. However, the expected value of y creates a

problem since this is usually unknown. In such cases, it is

assumed that this has the form Xg where 5 is a known matrix and 8

is an unknown vector of fixed effects. Estimates of some or all
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of the g's are available from prior data and can be used. 1In the

case of the normal distribution, BLP is the same as BP.

2.3.3. Best linear unbiased prediction

Henderson (1963) developed the theory of best linear unbiased
prediction (BLUP) which overcomes the problem of estimating XB.
In this method, he minimized E(wi-wi)2 subject to E(wi)= E(wi).

The resultant predictor is given by

W= cV ' [y-xg]

~

where ¢ and V are defined as in the selection index method and g

is a solution to the generalized least squares equations

x'v 'xg = x'v Ty, (2.10)

1™ »

A
When E(x) in the selection index is replaced by XB the best linear
unbiased predictor is obtained. Best linear unbiased predictors

have the following properties [see Henderson (1973b,1977)].

(1) E(w) = E(w) (This was a requirement for the derivation).

1 1 1 1

(2) Var(w-w) = Var(w) = CV 'C' + CV "X(X'V 'X) X'V 'C' where

1

(X'y-1§)— is a generalized inverse of X'V~

(3) Var(w) = Cov(w,u') = cv™'c' = ¢y x(x v ' Xy e
(4) Of all linear functions in y that have zero means, Qi

maximizes the correlation between W4 and Wi

(5) When the distribution is multivariate normal, w is the best
linear unbiased estimator and the maximum likelihood estimator

of the conditional mean of w given y.
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(6) BLUP of l'w is 1'w where w is the BLUP of w.

So far it has been assumed that the animals to be evaluated
for selection are from the same population. Consequently the
means of all animals have been considered to be equal, since it
would not affect the ranking of the predictors. However, animal
breeders are usually confronted with animals that come from
different populations or from herds that have undergone selection.,
Henderson (1963,1975b) presented methods to deal with such data.
Here he considers w;'s of the form kig + mju where u is assumed to
have zero mean. As shown by Henderson (1963), the best linear
unbiased predictor of k'R + m'u for the general mixed model is

given by
k'g + m'GZ'V" (y-X8)

where G is the variance-covariance matrix of w and g is any
solution to the generalized least squares equations given in
(2.10).

The selection index method and the best linear unbiased
prediction technique involve the inversion of the matrix V which
is computationally difficult when the number of records is large
as in the case of animal breeding. Henderson (1975b) shows that
the use of mixed model equations suggested by Henderson (1950) is
an easier method for certain prediction problems. He considered

the mixed linear model of the form

y=Xg+Zu+e

where

B is a vector of fixed effects;

Q and e are non-observable random vectors with mean zero
and variance 02Q and 02&, respectively, where G and R
are known non-singular matrices; and
X and Z are the matrices of coefficients associated
with g-and u respectively.

It was also assumed that Cov(g,g') is a null matrix.



27

Henderson et al (1959) proved that g in the following set of
equations is a generalized least squares solution for B and
Henderson (1963) proved that u in (2.11) is the best linear

unbiased predictor of u.

[xR7'x xRz 8] =[xy
-1 -1 -1 ~ _1 (2.11)
Z'R X Z'R 'Z+G u Z'R 'y
In addition, if B is known, u is the solution to the equation

z+ 6 u =28y - x8)

which is the same as the selection index. Henderson (1977)
reports that this method has the further advantage that the
sampling variances can be derived from the generalized inverse of
the coefficient matrix in (2.11). When u is a vector of breeding
values, the variance-covariance matrix of u is given Dby

G = of A

where A is the numerator relationship matrix and og is the

additive genetic variance. This implies that,

In the past, the BLUP technique has not been routinely applied
because of the computing difficulties and costs incurred when a
large set of data is involved. However, with the increase in
computing power this technique is becoming more applicable. 1In
fact, the BLUP technique is routinely applied to dairy cattle and
beef cattle data in North America. Another major impact is the
introduction of computing shortcuts. For example, Henderson
(1976) showed that the inverse of the numerator relationship
matrix can be computed without generating the relationship matrix
itself.
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2.4. Prediction Techniques: Maternal effects models

2.4.1. Selection index for direct and maternal genetic

comgonents

Van Vleck (1970) extended the selection index procedure to
multiple trait selection when the traits may have both direct and
maternal effects. For selection involving q traits, each with
direct and maternal genetic components, the total economic value,

H, was defined to be
H=-p'g

where g and p are 2qx1 vectors of genetic values and economic

values, respectively. These vectors can be partitioned as

g' = (g],85----,8y) with g} = (g45,8p;)
and

Et - (E{,Eé’l.o..ga) Wj.th Bj = (de’pm)

where q is the number of traits involved. The gd's and gm's in
vector §j correspond to 8ox and 8 mw in Willham's model [model
given in (2.4)].

The selection index for each animal is based on records on
the q traits of n relatives. Therefore the data vector can be

partitioned as

!l o (z{’Xé"“"xr‘l)

where

Y = (311'Y12'------Y1q)-

The latter is the observation vector of the q traits on the ith

relative. It was assumed that
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E(y) =

10

and Var(y) = v
and also that
E(g) =

1o

and Var(g) = G.

The weights for the elements of y which maximize the correlation

between the index criterion and H satisfy the equation
Vb = A'Gp

where A is the 2q by qn matrix of additive relationships between
the animals being evaluated with its relatives and the dams of the

relatives. This can be partitioned as

where each éi is given as

with

aj = (834135440

In above, a4 is the additive relationship between the ith
relative and the animal being evaluated, 3§ dq is the additive
relationship between the dam of the ith relative and the animal
being evaluated and "*" refers to the Kronecker product of
matrices. It follows that the index criterion for selection is
given by
I=Db'y=p'CAV y.
Van Vleck (1976) extended this procedure to include an effect

of the maternal grand dam. In this case, additional effects were

included in the vectors 5J and Pj' That is,
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53 - (de,gmjsgm.j)

and

2j = (Pqy+Puy+Pury)

where gm'j and pm'j are the grand maternal genetic effect for
trait j and the economic value for the grand maternal component of
trait j, respectively. Also, the vector of additive

relationships, a is extended so that

ir
a

al = (854+314q721d"o)

where aid1y is the additive relationship between the animal being

evaluated and the maternal grand dam of the ith relative.

2.4.2. Best linear unbiased prediction

Quaas (1975) defined an equivalent model (a model that

generates the same first and second moments) for

Gx=r'3+r*d,

where Gx' r_ and ry represent the random variables for the

s
breeding value of animal X, average effect of the genes that X
received from its sire and average effect of the genes X received

from its dam, respectively. The equivalent model is given by

Gy = é (Gg + Gg) + E, (2.12)

where Gg and Gd are the random variables representing breeding
values of the sire and the dam, respectively, and Ey is an

independent variable representing Mendelian sampling.

Slanger (1977) extended (2.12) to two related traits where he
introduced a constant coefficient to each of GS and Gd in addition

to the constant 0.5 that already exists. Let the breeding values
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of the offspring for the two traits i and j be given by €oi and

goj' respectively. Then Slanger's model is given by
g.:l(c + C ) + e
oi =5 "“Cdi8dp si8sq oi
(2.13)
1
€oj = 5 (C4i8m * Csj8sn) * €oj
where

gdp and gsq are the genetic values of the dam and the sire
contributing to the genetic value for trait i of offspring;
8dm and 8gn are the genetic values of the dams and the sire
contributing to the genetic value for trait j of offspring;
and €oi and eoj are the Mendelian sampling random variables
which are uncorrelated with any of the parents genetic

values.

The possible values for the coefficients Cqi* Csi cdj and Csj are
1, °ij/°§’ °ij/°§ and 0 where o?, o? and 03 j are the genetic
variance for trait i, the genetic variance for trait j and the
genetic covariance between traits i and j, respectively. For
example, if i=p (that is, contribution from the dam to the ith
trait of the offspring is the genetic value of the ith trait of the
dam), then Cqi is equal to 1. If i=k, the value for C4i is given

by °ij/°2 When neither genetic value of the parent is included

j.
in the pedigree this coefficient is zero. Using (2.13), Mendelian

sampling variables can be expressed as

= P
€oi ~ 8oi 2(cdigdp * Cgi85q)-

When it is assumed that the mates are unrelated, the variance of

ey can be obtained as

2 2 02) =

2., 1.2 1
Var{egg) = o + ;(casop * S519g) ~ (Cq191p * Ca191¢)-
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For example, consider the following possibilities.

(1) both parent coefficients are zero; Var(eoi) = 0?

(2) both parents are included and i=p=q; Var(eoi) = o§/2
(3) both parents are included, i=p and j=q; Var(eoi) = o§(3-p2)/u

where p is the genetic correlation between traits i and j
Similarly, assuming that the mates are unrelated, the covariance

between the Mendelian sampling variables of trait i and trait j of

the same individual is found to be as follows:
Cov(eoi,eoj) = 04 + (Cdicdjopm + Csicsjoqn)/u
i (cdchp + cSiojq + cdjcim * Csjoin)/ll
In matrix notation (2.13) is given as
g = ng + e (2.14)
5% =
where g is the vector of additive genetic values, g is the matrix

of coefficients of the parent genetic values and e is the vector

of Mendelian sampling variables. From (2.14),

g = (I - 1) e
g kL~ 00 e

which implies that

where

and

e o]

= Var(e).
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If the covariance between the Mendelian sampling variables of two
individuals is assumed to be zero, computing ﬂ_1 involves
inverting scalars or 2x2 matrices only. Then diagonal elements

and off-diagonal elements of 9”1 are given by

f 0%, hop + 2 ni‘ f byp byg h j=i
p=i p=1 g=p+1 *P 19 P9
gij =
) Pip ) ®jq Ppq J>1
p= q=p

Slanger (1979) used this procedure to compute g'1, in the
genetic evaluation of beef cattle for weaning weights, by BLUP.

He specified the weaning weight of livestock as

where hi is the mean for herd-year i; dj is the direct additive
genetic value of individual j; and my, is the maternal additive
genetic value for individual k influencing her offspring j's
weaning weight, yijk‘ The sum of the maternal and direct

environmental errors is given by eijk' It was assumed that,

i i

9
My

| €53k 0

and
Var d = 02 0 0
J d gm
my Odm  m 02
L eijk 0 0 Je |-

The number of equations to be solved were reduced by predicting
the direct or the maternal genetic value for some animals. He

imposed the restriction that at least one of the genetic values
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would be predicted for each animal. Slanger provided an example
using 13 identified individuals. He made predictions on 15
genetic values whereas if all direct and maternal breeding values
were included in the pedigree this number would be at least 26.
He excluded the direct genetic values of the unidentified dams,
the direct genetic values of the identified dams with no
individual records and the maternal genetic values of the animals
with individual records, but have no offspring. However, except
under special circumstances, this procedure does not yield the

exact 9-1. Slanger reported that the exact g'1

can be generated
by this approach if the direct genetic values of the identified
dams with no records but having more than one progeny are
included. For his particular example, this meant, the addition of

two more genetic effects.

Slanger (1980) applied model (2.15) to actual beef cattle
weaning weight data by three different approaches which are

outlined below:

(1) predicting both direct and maternal genetic values for each
animal in the pedigree (2n genetic values if the number of
animals in the pedigree is n);

(2) the 2n genetic values except the direct genetic values of
unidentified dams, the direct genetic values of identified
dams with no individual records and only one progeny each,
and maternal genetic values of animals with individual
records but no progeny;

(3) the direct genetic values of dams with no records and two
or more progeny were excluded in addition to the effects

mentioned in (2).

Since approach (3) does not generate the correct g‘1, the
predictors obtained are not BLUP [Slanger (1979)]. For his
example, the time required for computing was reduced by 37 percent
and 43 percent for obtaining solution sets for (2) and (3),
respectively. He compared the three sets of solutions by

calculating the correlations between the predictors obtained by
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the three methods and the average differences in rank. Very high
values of correlations and small average differences in rank
showed that the solution sets from the three methods are similar.
Similar genetic, environmental and phenotypic trends were shown by
the three sets of evaluations. This confirmed that genetic
progress made from selection decisions based on the 3 sets of

solutions would be similar.

Quaas and Pollak (1980) demonstrated how equivalent models
can be used to simplify computations involved in mixed model
methodology. They applied the equivalent model concept to predict
direct and maternal breeding values for weaning weight and direct

breeding values for yearling weight of beef cattle. The model

Zw‘¥w0§w+gw9§mgp_9w+§w

J o xllegd loozg o ollul leg]  c2ae
%m
LUn)

was assumed for beef cattle performance data, where

yw(yg) is the vector of weaning weight(gain) records;
gw(gg) is the vector of fixed effects affecting Xw(Xg)‘
gw(gg) is the known matrix associated with gw(gg);

Uy (4g) is the random vector of direct breeding values for
weaning weight(gain);

Un is the random vector of maternal breeding values for

weaning weight;

Yp is the random vector of permanent environmental effects

on weaning weight;

Zys gg' gm and gp are the known matrices associated

with Uy and up, respectively; and

g2" Un P
gw(gg) is the vector of random environmental effects

peculiar to each weaning weight(gain) record.
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If an animal with no record is represented in the u vectors, then

the corresponding column in the Z matrix is considered to be null.

This was also the case if a random effect which is not in (2.16)

is included in u, such as a maternal effect of a sire.

It was assumed that the vectors of random effects of (2.16)

have zero means and that the u vectors are uncorrelated with e.

Letting uj = (g*,gé,gé) and u, = u,, the variance covariance

matrix of u' = (uj,u}) was assumedp;o be
Var(u) = | G O
0 r3sl
where
G =G, * A

In above A is the numerator relationship matrix, g is the 3x3

o]
matrix of genetic variances and covariances. Further, assuming

that records on both traits are available on each animal,

Var(e) = B = B, * 1

where g¢' = (e ,gé) and R, is the variance-covariance matrix of

1
temporary environmental effects influencing weaning weights and

gains. Appropriate rows and columns were deleted from R, in the

absence of records on some traits of animals.

The mixed model equations that yield the BLUP of the random

effects of (2.16) are given by

X'B7'x  X'R7'Z X'R™'2, B = [x&'y]

2R 'x 27 V'z.+67' Rz u ziR"! (2.17)
S0 R SR e 2 4 &8 X .
23X ZR 7'z 23R 2,40 331 [ | u Z3R 'y
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where
B' = (8, 8g)
X =[% O
o %)’
gl”—%w 0z,
[0 zg 0 |
Zo = -.z,p
Lo |
and r33 . j/r33.

The u's, G, rss and R were defined earlier. The set of equations
given in (2.17) is a modification of the equations presented by

Henderson and Quaas (1976).

Quaas and Pollak (1980) suggested several approaches for
simplifying the computations involved in solving (2.17). The
number of nonzero elements in the coefficient matrix were reduced
by assuming that certain off-diagonal elements of 90 and &0 are
zero. Elimination of some equations by absorption was suggested

as a second approach. They noted that absorption of u equations

if the data are sorted by the dam reduces the problem Ey a factor
equal to the number of dams. The structure of Q—1, when the
animals are ordered so that parents preceded progeny was also
exploited greatly in order to reduce the equations. This

particular structure is given by

AT = [ Aga ¢ 2oy -.sH'D

-~

-.5DM D
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where 5;é is the inverse of the relationship matrix of the sires
and the dams, M is the matrix relating parents to progeny and Q is
a diagonal matrix. This structure makes it possible to eliminate
the equations in (2.17) pertaining to animals with no progeny.
Quaas and Pollak reported that solutions for a non-parent can be
obtained by solving three equations since they depend only on its
own records, the fixed solutions and the solutions of its parents.
Quaas and Pollak (1980) presented rules for forming the reduced

equations directly, by using the concept of equivalent models.

Consider the models

Y =RE tdndy & Z3e~ & (2.18)
with _
Var u = ') 0 0
21 ~1 b= -
U, 0 Vv 0
L €1 g 2 &
and
Y= X8+ iy e (2192
with
Var u = V 0
=i 1 2
) 0 R
where

By = 2p¥323 * Bys

The two models are equivalent since the mean vector and the

variance-covariance matrix of the observations are given by

E(y) = XB

and
Var(y)-= ZNi2f * ZoVok3 * By
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for y in (2.18) and (2.19). The difference between (2.18) and
(2.19) is the effects included in the error term. Any random
effect can be included in the error term as long as they are not
correlated with other random effects of the model. The mixed

model equations corresponding to (2.18) and (2.19) are given by

X'Ry X X'Ry'Z4 X'Ry'Zp 8 = [X'Hy'Y
z1RIVx  ziRTlz,+vT' ziR7Vz " z!R7! (2.20)
131 & By3t A1 L1230 142 Y4 418 X .
27X zZsR7'zZ 23RV, +v3 | u Z4R7]
ZR1 X Z3Rq'Z4 L3R 2%V, up Z5Ry
and
' '_1 1 —1 ° = - 1 '_I
X'"Rp X X'Ry Z4 8 = | X'Ry'y
-1 -1 -1 > -1 (2.21)
Z{Ry'X  ZiRy'Zy + V, uj ZiRo'y 1»
respectively.

In the case of diagonal R; and V,, forming (2.20) is not very
difficult. However, (2.21) has the advantage that it involves
fewer number of equations. Also, noting that

=1 =1 . ard =1 il v
Ro' = Ry — Ry Zp (23R 'Zp + V)

1 1

Z3 By
it can be observed that u; in (2.20) is equivalent to §1 in (2.21)
and that estimable functions of B obtained from (2.20) and (2.21)
are equivalent. Therefore if one chooses to solve (2.21) for é

and §1, then Ee can be obtained as
u, = (Z3R7'Z, + V3172, R (y - XB - Zyuy)
Up = (Z3Ry 2o + Vo' ) "Zp Ry (y = XB = Zquy).

However, this depends on whether the inverse of gég; is

obtained easily.

This concept was applied to the performance data of beef

cattle, where the weaning weight and the gain of the calf can be
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expressed as (from (2.16))

yg " + uS + ug + ug + eS
and
Cp. ol (R
Yg = Hg T Ug T €g
where

“S and ug are the linear functions of fixed effects

affecting yg and yg, respectively;

u3 and ug are the calf's direct breeding values;

ug and ug are the maternal breeding value and the
permanent environmental effect of the calf's dam; and
es and eg are the environmental effects associated with

y$ and yg, respectively.

(c; c
a and ug

was obtained by expressing the calf's breeding values in terms of

An equivalent model for yS and yg which does not involve u

its parents, with the assumption that there was no inbreeding.

©

g were expressed as

That is, uS and u

ug = (ud + ug /2 + o8

and
c S d - G
Ug ( ug * ug 2 ¢g

where ¢8 and ¢§ represent Mendelian sampling variables. This was
referred to as a gametic model whereas the former was defined as a

genotypic model.

By considering records of a dam and her offspring, Quaas and
Pollak demonstrated that the gametic model is not always
equivalent for records on different animals. Although the gametic
model is not equivalent for ancestors and descendents, it is
equivalent when records of collateral relatives are considered.
Therefore Quaas and Pollak suggested the use of both models where
genotypic model and gametic model are to be used on records of

animals who become parents and with no progeny, respectively.



41

This reduces the lengths of W Eg and g

number of columns in the respective Z matrices. The columns of

and consequently the

gw(gg) contain either a single "1" or two "1/2"s depending on
whether an animal corresponding to a particular record is a parent
or not. The variance-covariance matrix of u is of similar form as
before except for the fact that the relationship matrix pertains
only to parents. The within-animal error variance-covariance
matrix depend upon whether the animal is a parent or not. For a
parent, this is given by Bo (defined earlier), whereas for a

nonparent the error structure becomes

fo. 12 | 811 &g | * &

12 82

Pollak and Quaas (1981) applied (2.16) on a within-herd
multiple trait evaluation, based on information on relatives from
simulated beef cattle. One of their objectives was to compare the
accuracy of estimating breeding values using equivalent or
approximate models discussed by Quaas and Pollak (1980). They
examined four models where model 1 was a complete representation
of the observations. Models 2,3 and 4 were approximate models

which were defined in order to reduce computations.

Model 1 was the same as that given in (2.16), except for the

fact that g, is replaced by g: where

The vector en contains the error terms for maternal performance
which represent the environmental variation directly affecting the
dam's maternal performance. It was assumed that genetic
covariance between maternal ability and weaning weight (313);
genetic covariance between maternal ability and yearling gain
(323); and environmental covariance between weaning weight and
gain were zero. The mixed model equations have the form given as
in (2.17). However this has fewer nonzero elements as a result of

assuming that g13=323=r12=0. This means
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xR = [rllxx 0
i 0 ZZXéXg .
xRz = [rllgz, o rllygzy
L o Pz, o0 ]

A = g'I2§—'I 1T§Q2m

9

rz5z 0 r!zzgeed3n

1~
3=1]
J
13
n
1
I
=3
[a]
[

and

where Y is the permanent environmental variance.

Model 1 was simplified by approximating 3115—1 to be g11l as
well as reducing the number of equations by predicting maternal
breeding values for the dams only, which led to model 2. This
makes r11Z'Z + 33A—1, a diagonal matrix which implies that this
can be absorbed with r Z Z + Y_1;, into the remaining equations.

In model 3, contains u and u. in addition to em and eyr as a

*

Cw Ym Yp

result of assuming zero covariances among maternal half sibs due
to common maternal environment. Model 4 deals with a single trait

evaluation of Yw where Yw is the sum of weaning weight and
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yearling gain.

For Pollak's and Quaas's study where 413 animals were
evaluated , the number of equations for the four models were 1376,
1083, 842 and U421, respectively. They found that obtaining
solutions to equations resulting in model 1, to be a formidable
task. The iterative procedures resulted in slower convergence
rates due to the fact that the diagonal elements are not large
comparative to the off-diagonal elements as in the case of sire
models. They reported that further study of equivalent forms and
methods to increase the rates of convergence is neccessary before
applying the models usefully, in practice. Also, the effect of
assuming zero covariances when in fact they exist have to be

investigated.

Crow and Howell (1982) regard measuring maternal ability in
beef cattle using calf weaning weight, as a complicated task since
the expression of maternal ability in calf performance is
confounded with the genes for growth, half of which were received
from the dam. They estimated the approximate magnitudes of
maternal effects from the variation in weaning weight contributed
by the maternal grandsire (MGS). The model considered, included
fixed herd-year effects and random MGS effects. The estimates of
variance components for MGS and error were obtained by using

Henderson's method 4 described in Searle (1968).

Crow and Howell (1983) evaluated the maternal ability of beef
sires using BLUP technique. The sires were evaluated for their
daughter's influence on offspring weaning weight. The maternal
grandsire and error variance components were estimated as in Crow
and Howell (1982).
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2.4.3. Using linear functions of breed means

Dickerson (1973) demonstrated how linear functions of least
squares breed means can be used to compute breed trasmitted
effects, breed maternal effects and heterosis. Gregory, Cundiff,
Koch, Laster and Smith (1978), Gregory, Laster, Cundiff, Koch and
Smith (1978), Gregory, Koch, Laster, Cundiff and Smith (1978), and
Gregory, Crouse, Koch, Laster, Cundiff and Smith (1978) used this
method to estimate heterosis and breed maternal and transmitted
effects on economic traits of beef cattle (Red Poll, Brown Swiss,
Hereford and Angus breeds). Cundiff (1980) reviewed the
exploitation of breed differences with alternative breeding
systems and experimental approaches to assess breed differences.
Here he discussed the experimental evaluation of maternal and
paternal performances using breed differences. He also reviewed
the results from the Cattle Germ Plasm Evaluation Program at the

Roman L.Hruska US Meat Animal Research Center.

Alenda, Martin, Lasley and Ellersieck (1980) developed
methods, based on linear functions of breed means to estimate
additive genetic effects of each breed, individual and maternal
heterosis effects for each two breed combination, and total
maternal effects decomposed into maternal and grand maternal
effects. Heterosis was defined as the deviation of the two breed

crosses from the mean of the parental breeds. It was assumed that

(1) the population mean is equal to the mean of the purebreds,
and deviation from this mean by any breed class is due to
genetic or maternal effects;

(2) the means of the additive, maternal and grand maternal

effects are zero.

The data from a diallel structure were used to estimate the
additive, total maternal (maternal and grand maternal) and
heterosis effects. Additive effect and the total maternal effect

of the ith breed are estimated as
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I - 8 o= B
gl = & [(n=1)Byy; 321 (Bj55* Bjii Bijy)]
J=i
and
Moo=t e g = [V -8 02
i~ 8" 8 FETRRRAES S S R
J=i

where n is the number of breeds and Bi K is the least squares mean

of the breed class having breed i as tie sire, breed j as the
maternal grand sire and breed k as the maternal grand dam. The
values of gT and g?v correspond to maternal and grand maternal
effects of the ith breed, respectively. They estimated the
individual heterosis effect due to interaction between breed i and

breed j as
Bty o [(Beos® Buyed ~ Byt B 122
ij ijJ il iii BEH| *
The individual heterosis effect can be decomposed into
I I I
hiJ = dij + aaiJ/2

. L
J 1]
additive by additive effects. However, additional information is

where d% is the sum of dominance effects and aa is the sum of
required to obtain estimates of maternal heterosis effects and to
decompose the total maternal effects into maternal and grand
maternal effects. Allenda et al added information on backcrosses
to the diallel in order to estimate maternal heterosis effects.

This is given by,

M
15 = [(Bygg* Bygs* Byyy* Byyg)

h

The backcross information can also be used to estimate the
grand maternal effect which subtracted by the total maternal

effect would lead to the maternal effect. That is,
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and

M
ij
the information from three breed-crosses are available.

Ml

They also suggested alternative estimates for h and gj if

2.5. Evidence for the existence of maternal effects

Litter size, which is determined by ovulation rate,
fertilization rate and pre-natal survival, is one of the main
factors mediating maternal performance. Bradford (1972) reports
that ovulation rate and fertilization rate are characteristics of
the dam while pre-natal survival which too can be subject to
maternal effects is a characteristic of the offspring. He also
reports that it is the genotype of the dam rather than that of
offspring which is responsible for genetic variation in pre-natal

survival.

Bradford (1972) claims that birth weight and post-natal
survival are closely related. The environmental effects on birth
weight are the effects provided by the environment in-utero from
conception to birth. Koch and Clark (1955) report that all
pre-natal environmental variation is variation in maternal
environment. Maternal environment for gain from birth to weaning
is more easily understood than that of birth weight [Koch and
Clark (1955)]. The milk supplied by the cow and the differences
in the milking ability are the most obvious features of the
maternal environment, since milk is the major source of nutrients
during the early months of growth in mammals. Characters such as
the number of offspring born, the number of offspring reared andl
the age of dam also affect the weaning weight of offspring, mainly
due to milk production of the dam. It is known that, in the case

of cattle and some breeds of sheep, the milking ability of the dam
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affects the producing ability of the dam, apart from affecting the
ability to produce good offspring. The dam's maternal ability, of
which a main factor is her milking performance, will also affect

her female offspring's lactational ability.

The relationship between birth weight and subsequent growth
depends on the primary cause of variation in birth weight. There
is no evidence that lower birth weight,which on average results
from having large litters, affects growth rate when adequate
post-natal nutrition is available. Koch and Clark (1955) report
that the yearling gain and the yearling score are not directly
influenced by maternal environment, but may be influenced by the
carry-over effects from the pre-weaning period which is directly

influenced by the maternal environment.

Koch (1972) reports that evidence on the existence and the

magnitude of maternal effects comes from experiments which

(1) measure known components of maternal effects such as milk
production, from cows rearing their young;

(2) from reciprocal crosses or cross-fostering;

(3) by comparing the observed correlations with theoretical

expectations for various kinds of relatives.

Comparison of various kinds of relatives has been commonly used
while less attention is given to cross-fostering studies.
Cross-fostering is generally used to partition pre-natal maternal
influences from post-natal maternal influences. While several
studies have indicated the importance of maternal effects for most
mammals, only a few studies have reported the relative magnitudes
of the direct and maternal genetic effects. Also, limited
attention is given to the role of cytoplasmic effects. Most of
the experimental work has been involved with mice and other
laboratory species. Swine have received more attention than sheep
or cattle, due to their large litter size and relatively rapid

reproduction rate.
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2.5.1. Swine

Dickerson (1947) was the first to include maternal effects in
his work on genetic association of hog carcass character traits.
His results suggested that a genetic antagonism exists between the
suckling ability and economical fattening ability. This was given
as the explanation for the slow progress in swine improvement.
Using data from crosses among inbred lines, Bradford, Chapman and
Grummer (1958) showed the existence of a high negative correlation
between direct and maternal genetic effects for weaning weight
(-0.4) and 5-month weight (-0.8). The maternal effects were more
important than the general combining ability at 56 days of age

whereas the opposite was observed at 5 months.

Cox and Willham (1962) carried out cross-fostering
experiments to study the feasibility of such experiments and also
to examine maternal effects in swine. Pre-natal effects accounted
for 6 to 13% of the variance. Post-natal effects were maximum at
42 days representing 26% of the variance, sharply reducing to 5%
at 154 days. Garwood, Waltz and Heidenreich (1967) observed a
percentage between 4 and 10 for pre-natal effects in 56, 112 and
154 day weights. The post-natal effects accounted for only 0 to
2% of the total variance. Neither pre-natal nor post-natal

effects were significant for backfat thickness.

Bereskin, Shelby and Hazel (1971) compared the carcass
character data of straightbred Duroc and Yorkshire pigs and the
reciprocal crossbred litters. Breed of dam was significant for
all carcass traits whereas the breed of sire was significant only
for carcass length, suggesting the existence of maternal
influence. Ahlschwede and Robison (1971b) used cross-fostering
techniques to investigate the relative importance of pre-natal and
post—-natal effects on growth and development of swine. The
pre-natal and post-natal effects were almost similar in magnitude
for weekly weights between 2 to 8 weeks. However, for weekly
weight changes during first 5 weeks, post-natal effects were

considerably larger than pre-natal effects. Contributions from
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pre-natal and post-natal effects were approximately 17% and 11% in
post-weaning growth and backfat. An antagonism was observed
between direct and maternal effects after 4 weeks whereas there

was no such indication for the first 3 to U4 weeks.

Ahlschwede and Robison (1971a) estimated the genetic and
environmental components of variance for maternal effects by
equating observed covariances to their expected compositions in
order to assess the importance of maternal influences in Duroc and
Yorkshire breeds. Genetic variances for direct and maternal
effects were large for birth weight and 140 day weight. However,
they obtained negative variance components for maternal effects of
56 day weight of Yorkshire breed and backfat thickness of Duroc
breed. The proportion of maternal genetic variance for 140 day
weight was approximately 4 times larger than that for 56 day
weight., The direct genetic variance was larger than the maternal
genetic variance for weaning weight (56 days) whereas the opposite
was observed for 140 days. The correlation between direct and
maternal effects were negative and large for all traits, exceeding

0.95 in all cases and even 1 in some cases.

Robison (1972), in his review on maternal effects in swine
concluded that there is substantial evidence that maternal effects
account for a significant portion of variance for most traits
including the traits that manifest relatively late in life such as

140 day weight, backfat and litter size.

2.5.2. Cattle

Most of the published work in cattle is on pre-weaning growth
traits such as birth weight, daily gain from birth to weaning and
weaning weight. Koch (1972) reports that evidence for the
existence of maternal effects in cattle comes from cross—-breeding
experiments where differences among reciprocal crosses are used to

estimate maternal effects.
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Koch and Clark (1955) concluded that maternal environment
from conception to birth and from birth to weaning has a large
influence on birth weight, gain from birth to weaning and weaning
score whereas the influence on yearling gain and yearling score is
small. They also reported a negative genetic correlation between
direct and maternal effects on pre-weaning growth traits in beef
cattle. Similar results were observed by Deese and Koger (1967).
Everett and Magee (1965) obtained small heritabilities for
maternal ability of gestation length and birth weight compared to
the heritabilities obtained for direct effects. Their results
also suggested that the sire influences the birth weight to a

greater extent than the dam which conflicts with other results.

Van Vleck and Bradford (1966) investigated the first three
lactation milk records of Holstein cows in order to assess the
importance of maternal influence. It was indicated that maternal
genetic effects are significant and these become smaller in
succeeding lactations until the third. The results are in
conflict with the results of Van Vleck and Hart (1966), who
observed that the additive direct genetic effects are more

important for first lactation milk records.

Hohenboken and Brinks (1971a) investigated the genetic and
environmental relationships between direct and maternal effects on
weaning weights in Hereford cattle. The results indicated that
the heritability of maternal effects is slightly higher than that
of direct effects. A weak genetic antagonism between direct and
maternal effects on weaning weight was detected, which was later
confirmed by Hohenboken and Brinks (1971b). Mangus and Brinks
(1971), in their study of relationships between direct and
maternal effects on growth in Herefords, concluded that weaning
weight is a poor indicator of subsequent cow productivity. Higher
pre-weaning nutritional levels and high cow inbreeding levels have

detrimental effects on beef cow productivity.
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Koch (1972) in his review of maternal effects in cattle
concluded that genetic and environmental components of direct and
maternal effects and covariance between direct and maternal
effects accounted for 15-20% of variation in birth weight and
35-45% of variation in daily gain from birth to weaning. He
comments that although reciprocal crosses provide evidence that
maternal effects exist, they are not helpful for obtaining the

magnitudes of the relevant variance components.

Mavrogenis, Dillard and Robison (1978) observed an antagonism
between direct and maternal effects, which was apparent at least
up to yearling stage.TR?nvestigation of Allenda et al (1980) where
they used linear functions of breed means to estimate direct and
maternal effects on birth and weaning weights of Angus, Charolais
and Hereford cattle, implied that the rearing environment of the
mother influences her own maternal ability. Positive maternal and
negative grand maternal effects or vice versa were obtained for
each breed they studied. Dillard, Rodriguez and Robison (1980)
estimated the direct and maternal effects from cross-breeding
Angus, Charolais and Hereford cattle. Birth weight, daily gain,
weaning weight and a type score were analyzed using two models.
Additive direct and maternal genetic effects were shown to be
significant sources of variation, with maternal ability of some

breeds exceeding others.

Baker (1980) reviewed the role of maternal effects in beef
cattle. He concluded that a negative environmental correlation
exists between maternal effects in adjacent generations. High
levels of feeding during pre-weaning or post-weaning reduce the
milk production in daughters. Baker noted that the exclusion of
dam-offspring relationships in the estimation of variance
components, led to very different estimates of the genetic
correlation between direct and maternal effects. An average
estimate of -0.42 was obtained for the correlation whereas when
the estimates that involved the dam-offspring relationships were

excluded the average correlation approached a value towards zero.
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2.5.3. Sheep

Bradford (1972) states that maternal effects may be expected
to be more important in sheep than in cattle or in swine because
of the greater variation in litter size in sheep and the fact that
many lambs are partially dependent on their mother's milk supply
until the time of marketing or at least until they have achieved a
higher proportion of their slaughter weight than in the case of

swine and cattle.

Fewer studies have been reported on sheep, although
characters such as birth weight and post-natal growth are well
documented. Burris and Baugus (1955) studied the effects of milk
production of the ewe on post-natal growth of its lamb. More
emphasis was given to fat-lamb production. Their studies
indicated that early growth and milk production is highly
correlated (0.9), the magnitude rapidly decreasing as the lambs
grew older. Also the total milk production and growth up to 16
weeks were highly correlated (0.83). The study also implied that
post-natal maternal effects on weights are due to variation in
milk production. Owen (1957) investigated lactation, effects of
lactation and factors affecting it in hill sheep on hill and on
lowland. He observed close (but diminishing) relationships
between milk yield and growth of young. The relationships between
milk yield and fleece weight or milk yield and fleece type were
not significant. There was a significant positive correlation
between dam's milk production and daughter's fertility at 2 years.
However, there is not much information available on the role of
maternal effects on reproduction. Ch'ang and Rae (1972) observed
that in the Romney breed, maternal environment is positively
correlated with the number of hogget oestruses but negatively

correlated with the fertility of the ewe.

Gjedrem (1967) investigated the relative importance of
pre-natal and post-natal maternal influence on lamb weights from
birth to 160 days. The component of variance for pre-natal

environment decreased from 100% at birth to 22% at weaning which
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also implies that post-natal environmental component increased
from O to 78%. His results also indicated that the maternal
contribution is greater for weights at 2-6 weeks than at birth or
160 days, which is consistent with the studies of Burris and
Baugus (1955). Ch'ang and Rae (1972) conducted a series of
experiments to study growth and reproductive characters of New
Zealand Romney ewes. Their studies indicated that the maternal
effect is essentially a reflection of the variation in milk supply
during lamb's growth from birth to weaning. A carry-over maternal

effect was assumed in the study of post-weaning characters.

Holtmann and Bernard (1969) investigated the growth from
birth to weaning, to assess the relative performance of pure-bred
and cross-bred ewes. Their study involved Oxford, Suffolk and
North Country Cheviot breeds. They obtained evidence for breed
differences in maternal performance as well as evidence for the
existence of maternal effects. Mothering ability of Suffolk breed

was superior than that of the other breeds.

Schinckel and Short (1961) studied the effects of high and
low feed intake during pregnancy in ewes and from birth to 4
months of age in lambs on adult body weight and wool production.
Lambs of ewes that had a low intake were 34% smaller at birth and
9% smaller at maturity. Wool production too, was affected where
the number of follicles per sheep was 15% less, and as adults, the
wool production was 8.5% less. Shelton (1964) observed that birth
weight has a positive correlation with fibre diameter and clean
fleece weight. The study also indicated that an adverse pre-natal
or early post-natal environment could permanently damage the
potential for wool production. Wiener and Slee (1965)
investigated the effect of maternal environment on follicle and
fleece development of lamb, using egg transfer from Lincoln to
Welsh Mountain breed and vice versa. The study indicated a strong
maternal influence and also that the difference in maternal
environment due to egg transfer affected follicle density,
primary/secondary follicle ratio, fibre medulation, fibre diameter

and fibre length. They report that wool production is not
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influenced by maternal effects.

2.5.4. Laboratory species

Chapman (1946) used a cross-nursing experiment to study the
importance of the variation in the weight response of immature rat
ovary to a standard dose of gonadotrophin. The post-natal
maternal effects accounted for 6% of the variation whereas the
pre-natal effects were negligible. Bateman (1954) in his
partitioning of the variance in 12 day weight of mice observed
that pre-natal and post-natal factors accounted for 41% and 32% of
the total variance. However, the set of data was too small to
show that the results were statistically reliable. The results of
Cox, Legates and Cockerham (1959) were in contrast to Bateman's
(1954) results. The pre-natal and post-natal effects accounted
for 9.7% and 71.5% of the total variance of 12 day weight of mice,
which implied that post-natal maternal influence is the most
important single factor determining the weight through weaning.
Young, Legates and Farthing (1965) observed a large post-natal
effect from 12-21 days and a decline in pre-natal component from
birth to 12 days. The post-natal maternal influences on litter
size and 12 day litter weight were negligible. Harvey, Casady,
Suitor and Mize (1961) in their assessment of the importance of
pre—natal and post-natal effects in rabbits observed that
post-natal influences were less than those for mice. A similar
study on rats [Blunn (1969)] indicated that post-natal influences
were smaller than those for mice. The magnitude was comparable to
that of rabbits.

Brumby (1960) carried out an ova transplantation to
investigate the importance and nature of maternal influence on
growth of large and small strains of mice. They noticed that
neither transplantation nor fostering influenced the growth
potential of the embryo. There was a marked difference between
the maternal environments of large and small strains. Also an
interaction between the pre-natal maternal environment of the

female and the genotype of the implanted embryo was apparent.
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Study of Carman (1963) indicated the existence of maternal effects
for weights in mice. He concluded that there is no interaction
between maternal effects and mating systems. Kidwell, Weeth,
Harvey, Haverland, Shelby and Clark (1960) observed highly
significant maternal effects in rats by using a diallel mating of
four inbred lines. Legates (1972) in his review of maternal
effects on laboratory species concluded that a low positive
genetic correlation exists between post—natal maternal performance
and direct effects for growth in mice. Legates recommends
standardization of litter size commenting that maternal effects
attributed to factors not related to size are difficult to detect

in the absence of standardization.

Rutledge, Robison, Eisen and Legates (1972) used
cross—fostering techniques to investigate the dynamics of direct
and maternal genetic effects. The genetic correlation between the
direct and maternal effects were small and positive for weights
and gains in the absence of fostering effects. For tail length
and gain the maternal component was greater than the direct

component.



CHAPTER 3. MATHEMATICAL AND STATISTICAL PRELIMINARIES

3.1. Maximum likelihood estimation under the assumption of a

normal distribution

Consider the general mixed linear model of the form

where
¥ is an nx1 vector of observations;
g is a tx1 vector of unknown fixed effects;
X, of order nxt, is a known matrix;
Yy, of order cix1 (i=1,...,k) are vectors of
non-observable random variables; and

Zi, of order nxcj (i=1,...,k) are known matrices.

Assuming that,

(1) E(yy) = Q for i=1,...,k;

(ii) elements of u; are independently distributed

with variance 8 for all i; and

(iii)elements of uy and Ej are independent for i=j,

then, from (3.1), the mean and the variance of the vector of

observations, y, are

E(y) = X8 and Var(y) =V = 151 8;Uy
where U; = Z;Z].

An alternative representation of (3.1) is

56

(3.1)

(3.2)
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Yy = Xg + Zu
where
E' - (Eis---:Eis---,E&)

and
z2=0z | 2 ]eeeee] 3 1
Hence, the variance-covariance matrix can also be represented as

V = ZDZ'

where

D = E* 8:1;.
= = i<1

In the above expression £i is the identity matrix of order Cy and

Z+ denotes the direct sum of matrices.

Let elements of y in general mixed linear model (3.1) have a
multivariate normal distribution with parameters specified as in
(3.2). Then the likelihood function of y can be expressed in

terms of B and 6; (i=1,...,k) as [see Hartley and Rao (1967)]

” 1 »
L = (2m)-12 |y Yaxpi- S - X8y Yy - xp)}

so that the log likelihood is

1 1 =
A = 1nL = const - 51n|y| = 5(1 - x8)'V Ny - x8). (3.3)

Solutions to maximum likelihood equations are obtained by
maximizing (3.3) with respect to g and 8 (i=1,...,k). The log
likelihood function can be differentiated with respect to 6,

using the Lemmas [see Searle (1979)]

56;(1n[¥|] = trly7'Y;]

and
2 ry 17 o -y ly.y!
go, LV 1= Y
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where
Hi = 3!/381-

Partial differentials with respect to g and CH (that is dA/3g and
31/36y) are given by

-X'v" 'y - X8)
and

1 _ 1 _ C
- St e Sl - e TN - e,

respectively. Solutions to maximum likelihood equations are
obtained by solving 3A/3g = 0 and oA/96; = 0 for i=1,...,k, which

means solving the following equations simultaneously:

~_ -~ A_.I

X'V 'Xg = X'V 'y (3.4)

~ ~

1

RTINS R AR O O (3.5)

Solving (3.5) is equivalent to maximizing F or minimizing -F with

respect to 6; (i=1,...,k), where F is given by
F=-1n|V|] - (y - Xg)'V" '(y - X8). (3.6)

Large-sample variance-covariance matrices of the maximum

likelihood estimates of B and @ are given by [see Searle (1971)]
€ o om (3.7)
and

a1, (3.8)
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respectively, where the (i,j)th element of A is given by
tr{v v, v v.)
~ =~~~

and V; and Ej are the partial derivatives of V with respect to 6§;

and ej, respectively.

3.2. Computing the inverse of a numerator relationship matrix

Henderson (1973b) demonstrated how to incorporate the
relationships among all animals that are to be evaluated, when
using best linear unbiased prediction (BLUP). The advantages of
using all available information on relatives in BLUP evaluation
programmes have been discussed by Henderson (1975c¢,1975d).
Incorporation of all relationships necessitates the computation of
the inverse of the numerator relationship matrix amongst the
animals, which usually is a prohibitive task if the conventional
routines are used. Henderson (1975b,1976) presented a method for
computing the inverse of a numerator relationship matrix directly
from pedigree information without computing the relationship

matrix itself.
Henderson expressed the numerator relationship matrix A as
A = LL'

where E is a lower triangular matrix, which can easily be computed
recursively. He presented an algorithm to compute L, where the
upper txt submatrix of é is I and corresponds to the base
population (the animals with unspecified parents define a "base"
population and these animals are regarded as non—inbred and

unrelated). Henderson (1976) gave another expression for A as

T (3.9)
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where T is a matrix computed by exactly the same method as &

except that all diagonal elements of T are 1 and D is a diagonal

matrix.

Quaas (1976) presented a modification to Henderson's
(1975b,1976) procedure for finding the diagonal elements of L or A
without storing the elements of L or A in computer memory. Here,
two vectors of length n, where n is the number of animals,are used
to accumulate the sums of squares of the elements of each row of L
and to store the diagonal elements of A as they are computed. Let
the two vectors be u and v, respectively. The number of
iterations required to evaluate u and v is n. As in the previous
cases, the animals are ordered so that parents precede progeny.

Let unknown parents be identified by zero.

Steps for the kth iteration

(1)

-

[1= 2500, + uq)]”2 if 0<p<aq
Vim b = < [1 - .25u.]1/2 if p=0<gq

0 if p

[
Fe]
]
(@]

-

(2) Compute v; = £;, for i=k+1,...,n. That is,

r

(vp + vq)/z 'Rl R B ipiall g
vy = <vq/2 if p<ksgq
0 if psS q<k
L
(3) For i=k,...,n
u£k) = uik_1) + v?
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where ugk_1) is the value of uy after iteration k-1. The

values of vy and uj for i=1,...,k=1 remain unchanged.

1

(4) To obtain p™', calculate

2 2
d = 1/Vg = 1/£kk

(i) If both parents are known (0<p<q);
store (k,k,d); (p,k,-.5d); (q,k,-.5d);
(p,p,.25d); (p,q,.25d) and (q,q,.25d)

(ii) If one parent is known (p=0<q);

store (k,k,d); (q,k,-.5d) and (q,q,.25d)

(iii)If both parents are unknown (p=q=0);
store (k,k,d)

Quaas (1975,1984) presented the theory underlying the
calculations given in this section. The vector of breeding values
to be predicted is expressed in terms of a matrix, P, that relates

parents to progeny. That is,

1
u = _P + (3.10)
R B

where elements of ¢ are the Mendelian sampling random variables.
From (3.10),

(1 1P)"
u=(1- B

which implies that

2 1\ 11
G = Var(u) = g (I - EE) D (f - EE)

where
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2

o, D = Var(¢)

Since,

Var(u) = oﬁ

=g

it follows that

1 -1 1 -1
ME D E =R) D G - sBEh . (3.11)
- = o~ A o~
By comparing (3.9) and (3.11), Quaas noted that T in (3.9) is
identical to (I - .‘52)—1 in (3.11) and that 92 in Henderson's
(1976) expression is the same as D in his expression for A. From
(3.11), the inverse of the numerator relationship matrix can be

obtained as

PR W 1
- =p'D”! = =D"'P' + =P'D"'P.

-1

Therefore, A can be computed by proceeding through a list of

animals and adding contributions from each animal. For the ith

animal with j and k as parents, the contributions are as follows:
d;1 to all;
—.5d;1 to ald, alk aJl anq aki;

.25d;1 to add, akKK, aJK ang akJ,

The di's are the elements of the diagonal matrix D and aij is the
(i,j)th element of 5—1.

The diagonal elements of A are required to calculate the

di's, since



1= (ajj + a4 j and k are parents of i
di -1 - ajjfu Jj is the only known parent
0 both parents are unknown

L]

Quaas proved that, T can be written as

1 1 1 1
T=(I--P) T =1+-P+p2+. ...+ (-pK
- - 2~ 2 4= 2
where k is the minimum number of segregations seperating an
ancestor-descendant pair. In the case where only the

parent-offspring relationships are considered

63

As a consequence, T can be computed recursively and the elements

of T are obtained as

tii.':T

and

big = (tjm + tkm)/2 j and k are parents of i

Also, since A

-~ ~— ~

By using,
the matrix L can be computed as

1/2
Loy = 45" (Byg ® by )2

LL', the diagonal elements of A can be written

as
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= ('—Jm + Q.km)/Z

and

1/2
L = d;°°.

Therefore two vectors of length equal to the number of animals are
sufficient to store the diagonal elements of L and to accumulate
the sums of squares of each row in L which are required for the

computation of A .

3.3. Vec operator and Kronecker product of matrices

The vec operator stacks the columns of a matrix one beneath
the other (the (i+1)th beneath the ith) to form a single vector.
Foﬁf}xc matrix X with %4 (i=1,...,c) being the columns of X, vecX
is a vector with rc elements, and is given by

vecX =

12

I e o = @

The Kronecker product of the two matrices, A (order pxg) and B

(order rxs) is the prxqgs matrix
A*B - {a;Bl.

Henderson and Searle (1979a) in their review, traced the origins
of the vec operator and the Kronecker product. More recently,
these concepts have been exploited in several applications of
statistics, especially in the area of multivariate statistics, by
Aitken (1949), Neudecker (1969), Anderson, Quaas and Searle
(1977), Anderson (1978), Searle (1978), Anderson (1979), Henderson
and Searle (1979b), Anderson, Henderson, Pukelsheim and Searle
(1984) and several others. Some useful properties of the vec
operator and Kronecker product are given below. When required,

the matrices A, B and C are assumed to be conformable for
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multiplication.

(1)

(2)

(3)

()

(5)

(6)

(7)

(8)

(A% B)(C * D) = AC * B

(A+B) * (C+D) = (

e
E 3
@]
~
+
—~
tw
*
He]
~
+
—~
e
*
]
-
+
—~
tw
*
1o
~

tr(A * B) = (trA)(trB)

If A and B are square matrices of order a and b respectively,
|a %8| = |a]® ||

tr(AB) = (vecA')'vecB

vec(ABC) = (C' * A)vecB

vec(AB) = (I * A)vecB (a special case)

Results (1) - (7) are given in Neudecker (1969). The result in

(8)

was first derived by Roth (1934) and rediscovered by Aitken

(1949) and Neudecker (1969).

3.4,

Inverse and determinant of a partitioned matrix

It is possible to express the inverse and the determinant of

a partitioned matrix which is non-singular, in terms of its

submatrices. Consider the matrix,

A =1 Ay A2

Ao Ao
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where 511 and 522 are both square and non-singular. Then the

inverse of A is given as [see Morrison (1976)],

-1
A =] By Bi2

(3.12)
By Boo

where

e
Byq = (Aqq = AypA5045)
By, = —ByqAqoAc)
Bi2 B11812422
B sk UAL B
Bo1 Ao2Ro1Bq1
and
Blss e Al ¥ WG R B Ry A5
Bop = App * ApoAyBy1Aq0R55-

An alternative expression can be obtained by reversing the

positions of Ay, and A,, in the original matrix.
The determinant of A can be computed as [see Morrison (1976)]
|41 = [811] IA22 = A21471A12| if Ay is non-singular
or
|8l = 18250 847 = By282080¢ | if Ayp is non-singular. (3.13)

Now consider the matrix, V, where V is partitioned into 32

submatrices. That is,
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V=1V Vie Yy3
Vo1 Voo Vo3
V3 Vi Va3 |-

Suppose that the submatrices at position (2,3) and (3,2) are zero,
which is the case in the variance-covariance matrix of the
observations for the particular design used in this thesis for
estimating fixed effects and variance components in maternal

effects models. Then the above matrix is given by

V=1 Y4 Vi2 Vi3
Vo1 Voo 0 (3.14)
. V3 0 Vi3 J-

Assume that !11, Y22 and 233 are non-singular and let

Vig = Ay

[ v Viz ] = A2

Vo

= A

Asq
V3
and
Voo Y
= A
Ao

0 V33

Then, the inverse of the matrix V in (3.14) can be easily obtained

by using (3.12). This is given by
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U1 U2z Uz3 (3.15)

where
W, = (Ve — WELNGAVE: ~ Wl Ve
U1 Vip = Vq2VooVog — Vq3V33Vsy
Ugp = =UqgqVeoVol
Uyo = ~Upq1 VY52
Wys B UV Val
<3 <11-13<33
Uoy = =Volv,.uU
Uz VooVo1Usg
Uoo = Vob + VoIV, Uy q Vo V5)
Uop = Voo *+ VooVo1UgqVyoVso
Usa = VoV, Uy qVyaVal
Uoz = VooVaqUq1qVq3V33
Ugq = ~VadVa,U
U3y V33V31Usg

g -1
U3zp = V33V31Uqq¥q2Y22
and

% -1 -1
U3z = V33 + V33V3UpqV3Y33.

Assuming V,, and V34 are non-singular and by using (3NN, it

determinant of the matrix given in (3.14) can be obtained as

- -1
1VI = [Vaal 1V33] 1¥4q = ¥y2V22V0 = Vy3¥33Vsl-

he

(3.16)
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CHAPTERY4. MAXIMUM LIKELIHOOD METHOD FOR ESTIMATING VARIANCE
COMPONENTS WITH UNBALANCED DATA IN A MATERNAL EFFECTS MODEL

For the case of balanced data, Thompson (1976a) used a
maximum likelihood approach based on the multivariate analysis of
variance to estimate maternal genetic variances when observations
are available on parents and offspring. Thompson (1977) modified
this procedure to estimate heritability when data are unbalanced
and suggested it could be applied to estimate variance parameters
when maternal effects are included in the model. Following
Patterson and Thompson (1971), he maximized the log likelihood
function of certain symmetric sums of squares and product
matrices, which led to the restricted maximum likelihood estimates
of variance components. In this thesis, the log likelihood
function of the observations is maximized over the entire sample
space in order to obtain estimates of the variance components and

the fixed effects in a maternal effects model, simultaneously.

4.1. A maternal effects model

Suppose that the measurement on a trait of individual i,
which is influenced by the maternal effects of i's dam, w, can be

expressed as

Vi = £1(8) * 84; * Bmy * Cmw * qi (.1
where

fi(g) is a linear function of the unknown fixed effects;
84i is the direct additively genetic effect of i;

Emw is the maternal additively genetic effect of w,
influencing i's phenotypic value;

B represents the residual effect common to the

of fspring of w; and

eqj represents the residual effect unique to the

individual i.
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Assuming that the genetic effects are independent of the
residual effects and that the two residual effects are independent
of each other, the covariance between phenotypic values of two
related individuals i and i', whose dams are w and w',

respectively, can be expressed as

2 2 2 2
3jj1080 * (B341*350)000am * 3w Oam * Puw'OEm * Pij10ge (4:2)

where
050 is the direct additively genetic variance;
GEm is the maternal additively genetic variance;
OpoAm is the covariance between direct additively genetic and

maternal additively genetic effects;

2
OEm

full-sibs and maternal half-sibs;

2
OEo

are unique to the individuals;

is the variance of the residual effects common to
is the variance of those residual effects which

a4 is the coefficient of additive relationship between
i and i'; and
1 if i=i" (w=w"')
bii!(bwwl) L
0 if i=i' (w=w').

In matrix terminology, the model can be written as

Yy = XB + 121 Z;u; (4.3)

where

g is the vector of unknown fixed effects;

u; is the vector of direct additively genetic effects;

U, is the vector of maternal additively genetic effects;

us is the vector of residual effects common to full-sibs

and maternal half-sibs; _

uy is the vector of residual effects unique to the

individuals; and

X and Z; (i=1,...,4) are known matrices.
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The mean vector and the variance-covariance matrix of y are given
by

E(y) = X8 and V = 121 8;U; (4.4)

respectively, where 6; and Ui for i=1,...,5 are given in Table
b.1.

Table 4.1 - Expressions

for 6; and U; in (4,4)

1 83 Ui

1 %o 2424
2 hm 2223
3 Tp0Am 212}
. o LY
5 oo Zy24

4,2. Estimation of the parameters: A single-trait setting

The hierarchical mating design used by Hill and Nicholas
(1974) and Thompson (1976a,1976b,1977) will be considered
initially. In this design, each of a set of sires is mated to
several dams and a number of offspring raised from each mating.
Suppose s, ny and nij are the number of sires, the number of dams
mated to the ith sire and the number of offspring of the jth dam
mated to the ith sire, respectively. Assume that

(1) observations are available on all animals;

2

(2) the phenotypic variance of an observation is Op»

irrespective of the generation;
(3) the families are independent of each other, where the ith
family consists of the ith sire, the dams mated to the ith

sire and the progeny of the ith sire; and
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(4) the sires and the dams within a family are unrelated.

This design generates four relationships, namely; full-sibs,
paternal half-sibs, damoffspring and sire-offspring. This means
that the variance-covariance matrix of the observations consists
of five distinct elements, namely; the phenotypic variance and
the covariances arising amongst the above relationships. Let h
(h=1,...,5) be the phenotypic variance, the covariance between
full-sibs, the covariance between paternal half-sibs, the
covariance between dam and offspring and the covariance between
sire and offspring, respectively. Then from the expression given

in (4.2), it is clear that Yh (h=1,...,5) can be written as

where the values of fhm are given in Table 4.2.
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Table 4.2 - Coefficients (fhm) associated with

the variance parameters (em) in the phenotypic

variance and the full-sib, paternal half-sib,

damoffspring and sire-offspring covariances

h = 1 2 3 y 5
1 1 1 1 1 1
2 172 1 1 1 0
3 1/4 0 0 0 0
h 1/2 1/2 5/4 0 0
5 172 0 1/4 0 0

Therefore the expression (4.5) shows that the relationships
generated by this mating plan provide sufficient information to

estimate the variance components of the model.

4,2.1. The likelihood function under normality assumptions

Suppose that the observations are ordered within the sires,

so that the vector of observations can be written as

Y' o= (Yiseees)ylreeenys)

where y; is the vector of observations of the ith family. The
coefficient matrix corresponding to the fixed effects can also be

partitioned according to the families. That is
X' = [Xfleee|Xg] e X8
where §1 corresponds to the ith family.

Now assume that y in (4.3) is normally distributed with

-~

parameters specified as in (4.4). Then the log likelihood of y

(say A), can be written as



Th

1 1 -
A = const - £1n|g| = 5(1 - Xg) 'V (y - XB).

Since the families are independent, Cov(yi,vﬁ) is null for i=j.

Therefore

where V,; is the variance-covariance matrix of the observations of
the ith family and z+ denotes the direct sum of matrices. Then

v'! and |V| can be written as

and

which means that A can be rewritten as

= E = 1 § = o1
e RLINTE RSN SRl T2 FRNC Rl ST O PR SR

1
2
Equations for obtaining ML solutions for the fixed effects and ML

estimators of variance components are generated by differentiating

(4.6) with respect to g and 8. These equations are given by

ax i
— = E XJV7' gy - X48)

g i=1
and
LR tr (V] V) * =7 (y3 = X48)'V7'VynV7' (yy = X48)
36y, 24syr ™ = 2 i=1 ke =g
where

oV

i
V B oe—
~im aem
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Then B and Om (m=1,...,5) can be obtained by solving,

simultaneously, the equations

X{V' (yy - X48) = 0 (4.7)
and

i§1tr(E;1Yim) '1§1(!1 - X8) 'V Viali (g - X4B) = 0, (4.8)
for m=1,...,5.

4,2.2. The structure of the variance-covariance matrix

Let the vector of observations of the ith family be written

as

xi - (zéis!aisysi) (4.9)

where Yoi» Ydi and Ysi represent the vector of observations of the
progeny of the ith sire, the vector of observations of the dams
mated to the ith sire and the observation of the ith sire,

respectively. Let

¥oi = (!611""'X61j'---'Xéini) (4.10)
and

léi = (ydi1,...,ydij,...,ydini) (u.11)

where Xaij is the nijx1 vector of observations of the offspring of
the jth dam mated to the ith sire and ydij is the observation of

the jth dam mated to the ith sire. The vector yoij is given by

!(’)iJ = (yoij1'..-,yoijk,....yoijnij) (u.12)
where yoijk is the observation of the kth offspring of the jth dam
mated to the ith sire. From (4.9),



where

Vit

Vit

Vi3

Vioo

Vio3
and

Vi3s3

From (4.10) it is clear that, Viqq can be partitioned into n

block matrices.

Vi = | Viq
Vit
- V{13
Var(!oi)

Cov(yoss¥ai)
Cov(yois¥si)
Var(zdl)

Cov(ygss¥si)

Var(ysi).

Vi12 Vit
Vioo Vios
¥ia3 Vi33
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2

1

It can also be observed that the jth diagonal

block and the (j,k)th off-diagonal block of V,.11 can be expressed

as

and

Var(xoij) =

(Y1 -

Y2115 * Yadiyy

Coviyoijo¥oik) = Y3dijk

where fijj is the identity matrix of order nij and iijk is the

nij X Ny matrix of "1"s. The Y's were defined earlier. Hence

Viyq has the following form:

[(Y1=72) 13 11+Y2d4 11

Y3d421

Yad
a0 3-ini1

Y3di12

Ygﬂiniz

(Y1=Y2) 1100+ Y2d 400

Yod
3-ini1

Y2d
3-in12

(71-72)11n1ni+729

(4.13)
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From (4.10) and (4.11) note that

Vitg = | Cov(y¥piq:¥4i)

Cov(yoipr¥di)

_.Cov(zoini,zai)_.

Now COV(Xoij'Zéi) has Yy in the jth column with all other elements

zero. Therefore,
L
+
Yivz = Y gb Lug i)

~1j ij
observations of the offspring of the ith sire

where 1 is the vector of n;. "1"s. Since Yoi is the vector of

Yi13 = Yslio (h=ii5)

where 1, is the n; x1 vector of "1"s and

n,
In
n; . = 10
io 351 ij
It was assumed that the sires and the dams within a family are
unrelated. Therefore,

and

Yrog ™ Y (Ctilp

where 1j is the identity matrix of order n; and Q; is the n;x1

null vector. Finally,
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and

Vikj = Yijk for j=1,2 and k=2,3. (4.19)

4.,2.3. The inverse of the variance-covariance matrix

Estimating variance components using ML method with
unbalanced data can be computationally difficult. Thompson
(1976a) comments:

"The ML method is probably most useful when the

data are Dbalanced. When the data are unbalanced,

full ML methods can be computationally unfeasible."
One of the main difficulties is obtaining the inverse of the
variance-covariance matrix of the observations which is involved
in the likelihood function and its derivatives. 1In the previous
section, expressions for the variance-covariance matrices of the
observations of the families were derived under the assumption
that the sires and the dams are unrelated. Also, the observations
within the families were arranged in such a way that the
variance-covariance matrix became highly structured. In this
section, this particular structure is exploited in order to obtain
explicit expressions for the elements of the inverse of the
variance-covariance matrix of the observations. This means that
iterative routines are nct required to generate the inverse of the
variance-covariance matrix. This saves considerable computing

time and cost.

The matrix ui has similar form as that of (3.14). Therefore,
from (3.15)
-1
Vi =] Ain Ai12 A3
A1z Bio2  Aja3 oc )
Af13  Afx3  Ay33

where



_ -1 - -1 -1
Aygq = (i1 = Vi12Y520V 12 = Vi13Y133Y113)

-1
Ai12 = A111V512V520

_ ~1
Aj13 = “A5111Y513V533
=1

=1
Aioo = Vioo = ViooVito4i12

-1
Ajp3 = “Vi20V1124413

and
R w0 Vot = ¥ L Vliud
i33 i33 133~113=%i13"
But
- Py 10" g Tl ]
Vi12¥i22¥{12 = Yuj=1 1igllYe I3 Yuj-1 i
Nis
l+
) = T5,by iy
an
-1 -1
Vi13Yi33¥i13 = YslioY1 Yslio
= Ypdio -
where
2
Y6 = Yu/Y1
and

2
Y7 = YS/Y1 .
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_ =al _ -1
Therefore !i11 !1122122!i12 Yi13!i33!i13 can be written in the

form

[aljq1+0d4q, cdji12 6w e °:’11ni
cdj21 aljoo*bdijon ¢« - Saeny
cd cd .. . al +bdJ

L ~1n11 ~ini2 ~1nini

~1nini_

(4.21)
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where
b‘Yz-Y6—Y7
and

C‘YB-YT-

The only inverses required to obtain the submatrices of 2;1
(that is, éijk for j=1,2,3 and k=j,3) are the inverses of V,,,,
Vizz and Vigq = VigaVidoVine = Vir3Vi3aVisg. Hovever, Vi3s3 isa
scalar and Y122 is given by Y1}i' Therefore, obtaining the
inverse of Vjyy = ViqoVizalire = ViqaVisaVisg (that is Ajqq) is
the only computational difficulty. As seen in (4.21), this matrix
is highly structured. Therefore explicit expressions for the

elements of Ajqq can be obtained by following the procedure given
in Appendix 1.

As shown in Appendix 1, Aj 14 has the form

Bi1g e+ Bj1j e+ Bigg - §i1n;1

oo

§1j1 L Bijj LI Eijk .o Bijni (,4322)
B vwse Bioo: swzs B 5% 1Bs
- ~1ni1 ~in;J ~1nik =inn,
where
9 kjYijk TE

~

Bijk =4PLijj ™ 9ij3digy  If k=J
94 jkd1 jk 1f k>3.

The values of p and 9 jk (i=1,...,8; J=1,...,ny; k=j,...,n;) can
be computed using the algorithm given in Appendix 1. Once 5111 is
generated, obtaining the other submatrices of 211 involves matrix

multiplication only. Using (4.20) it can be shown that



(1) Bjq9, is an nj xn;, matrix which can be partitioned into nf

(2)

(3)

(5)

(6)

block vectors and the (j,k)th vector is given by

“YgM ik 95k i 1f k<
(J,k)th vector = -Y8(p+nquijJ)1iJ if k‘j
CY8™ k91 gkl 1f k]

where Y8 = Yu/Y1.

Aj13 is an n; X1 vector which can be partitioned into n;

column vectors and the jth vector is given by

“Yo(p *+ ryidlyy
where
and
j=1 i |
Fij = kZ1 Mikdikg * kZJ Nik9 gk
A;55 is an nyxn; matrix and the (j,k)th element is given by

r

2 . -
YB“ijnikqikj if k<j

(J'k)th element = 41{11 + aniJ(p+n1quJJ) if k‘J

2 - .
\

A123 is an nix1 vector and the jth element is given by

Ysani‘j (p b & rij).
A133 is a scalar and is given by

n
i i
Y11 + ?S[pnio + JZlnijriJ]'

81
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4.,2.4. The determinant of the variance-covariance matrix

The equations given in (4.7) and (4.8) can be solved
alternately until the solutions converge to obtain ML solutions
for fixed effects and ML estimates of variance components. This
procedure does not guarantee non-negative variances nor a genetic
correlation between -1 and +1, as no constraints were imposed on
the solutions. Another procedure is to maximize the log
likelihood function subject to constraints using a constrained
optimization routine, substituting the solutions to (4.7) as the
values for the fixed effects. That is, solving (4.7) and
maximizing the log likelihood function subject to constraints is
carried out alternately, until convergence occurs. The log
likelihood function involves the determinant of the
variance-covariance matrix, in addition to the inverse.
Therefore, once again, the special structure of the
variance-covariance matrix is exploited in order to find the
determinant. The derivation of this determinant is outlined in

Appendix 2.
As shown in Appendix 2, the determinant of lYil is given by

n.
lv,| = Y%1(n)af1(n) nl(a+n-

vi L ij%ij) (4.23)

where
gi(n) = ng + 1
and

fi(n) = Njo = Ny

The values of Cij for i=1,...,s and J-1,...,ni are generated using

the algorithm given in Appendix 2.
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4,2.5. Generating the equations

The ML solutions for fixed effects and the ML estimates of
variance components can be obtained by solving the two systems in
(4.7) and (4.8) simultaneously. If estimates of the variance
components are available, the system in (U4.7) becomes linear.
Therefore a convenient procedure would be to solve the two systems
alternately until the solution converges. Since there are several
routines available for solving linear and nonlinear systems of
equations, all that needs to be done here is, to construct

algorithms for generating (4.7) and (4.8).

4,2.5.1. Generating the linear equations (system (4.7))

An alternative representation for (U4.7) is given by

0

B =n (4.24)

where Q is a txt matrix (t is the number of levels of fixed

effects in the model) and n is a tx1 vector such that

10

L}
" o~xn
1<
[

and

respectively. The elements of @ and p are functions of 6.
Suppose each Xi is partitioned according to the partitioning of

the y vector. That is

Xj = | Xoi

X4i
Zsi °

Then the (i,j,k)th row of Xoi (féijk)' the (i,j)th row of X
(féij) and the only row of Xg; (xéi) represent the coefficients of

the fixed effects pertaining to the kth offspring of the jth dam
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mated to the ith sire, the jth dam mated to the ith sire and the

ith sire, respectively. Therefore

X515k = (Xoijk1r+=++Xoijkrs***Xoijkt)

Xa15 = (Xaigro--=rXdijrs-+r%qijt)
and
Esi = WKgggeemsBggprsemaBafip)
where xoijkr' xdijr and Xgip are the coefficients associated with

the rth fixed effect and these coefficients take the values one or

zero.
Explicit expressions for the elements of VZ‘ were given in
Section 4.2.3. This means that the equations given in (4.7) can

be generated by using the following algorithm:

An algorithm for generating the linear equations in (4.7)

Step 1
Assume initial values for @, (m=1,...,5).
Step 2
Calculate v, (h=1,...,9).
Step 3
Calculate p and qijk (i-1,....s;j=1....,ni;ksj,...,ni). An
algorithm for computing these are given in Appendix 1.
Step 4

Calculate xoij.r and yoij.’ where

Xoij.r = k21 Xoijkr

and
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nij
Yoij. = k21 Yoijk*

Step 5

For r=1,...,t and r'=r,...,t
(1) calculate opn.,, where

appr = Ny(rrt)/a + [No(rrt) + No(re') ]/,

o

In the above expression,

n. n, .
i Mij
' - . B s s
Ny(rr') 121 321 kZ1 XoijkrXoi jkr'
n.
i
') = o e
No(rr') 121 321 XdijrXdijr'
and
Ng(rr') a 121 XsirXsir'*

s M
(2) Calculate ) jz1 ajypprs Where

ajjrpr = 619 (1IN (13rrt) + 09 (13)N o0 1grr ")
+ ¢13(1J)N13(ijrr') + oo (13N, (1rr?)

* 0p3(13)No3(igrrt) + ¢33(13)Ng5(igrrt).

In the above expression

Npq(1dre') = X515 pXoij.rt

Nio(LIrr') = Xo1 5. rXaigrer * Xot4.r'¥atjr

Ny3(iJrr') = X555 pXsipt * Xoij.r'Xsir
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Npo (1Jrr') = Xgi jpXqj jp

Nog(4Jrr') = Xg;5pXgipr * Xgijpr¥sip
e
N33(13rr ) X

sir¥sip!

¢11(13) = qj 35

WyglLd) = ~Yghpi# Wy gu5 430
(i3) = Y8
022(13) = vgny;(p + nj3qy4;)
¢23(1j) - Taanij(p + nijqijj)
and
(13) = ¥an, 4(
¢33 J = Tgnij p + niJQijJ)-
n,~1 ny
(3) Calculate § )i aj jkrpro Where

121 j=1 k=j+1

aijkrr' L ¢11(ijk)N11(iijr') + ¢12(ijk)N12(ijkrr')

+

¢13(13KINy 3(1Jker") + 55 (15KINyo(13ker ")

+

¢23(1jk)N23(ijkrr') + ¢33(ijk)N33(ijkrr').

In the above expression

Npq(13ker') = Xo4 5 rXoik.rt * Xoij.r'Xoik.r

Nyop(igkrr') = ny (Xgi5 pXdiker * xoij.r'xdikr)

\

* N3 Xoik.r¥diget * Xoik.r'¥dijr)



N13(ijkr'f") nik(xoij.rxsir" + xoij.r'xsir‘)

* Ny Xoik.rXsir' * Xoik.r'Xsir)
Nop (13krr®) = ny4ny ), (X5 5pXqiker * XdikeXdijr')
Np3(LJkrr®) = nj jnjixgim (Kaggr * Xdikr)

+ 0y Xsir(Xaiger * Xdiket)
611 (13k) = Qj jk
¢13(13k) = ~¥ga 3

2
622(13K) = Ygaj 51
023(1JK) = Yg¥qaj j
and

933(13K) = Ygay j-

(4) Then obtain the (r,r')th element of Q as

n, n;=1 n;

- .0 W . 3 T oa
L I LI LGt TER T, FORSs L

Note that w.p+ Can be obtained without storing N's , ¢'s or the

a's in computer memory.

Step 6

For r=1,...,t
(1) Calculate o,, where

op = Wy(r)/a + [Wy(r) + Wa(r)]/vy.

r

87
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In the above expression

", [ P
i irj
Wy(r) = 121 j£1 Ly Yoijk¥oijkr
Py
wZ(r) = 14 j;1 ydijxdijr
and
W3lr) = 121 YsiXsir®
(2) Calculate E gi 0f yp» Where
i=1 j=1 J

gijr = ¢11(ij)w11(ijr) g7 ¢12(ij)w12(ijr)
* 0q3(13)W 5(1dr) + ¢ (15)Wp5 (13r)

+ ¢23(1j)w23(13r) + ¢33(ij)w33(ijr).

In the above expression

Wi (1Jr) = yoi5.%01j.r
Wi2(1dr) = y4i5%0ij.r * Yoij.Xdijr
Wi3(1r) = ygiXoij.r * Yoij.Xsir
Wys(1jr) = Ydij*dijr
W23(ijr) L ydijxsir + ysixdijp

and
W33(1jr) = ygiXgip-

The values of ¢'s are as for step 5.

(3) Calculate 1§

Ly gE1 we§er Cidker MREFE



O jkp = $11(13KIWq (13kr) + ¢4,(15KIW 5 (15kr)

+

* 093(13KIW; 3(13kr) + o5 (1JKIW,, (1 5kr)

Fa

+ ¢23(ijk)w23(ijkr) ¢33(ijk)w33{ijkr).

In the above expression

Wyq(idkr) = Yoik.%oij.r * Yoij.Xoik.r

Wyp(ijkr) = ny5(q;%0ikr * yoik.xdijr)
* 05 YaikXoijere * Yoij.Xdike)
Wy3(idkr) = n;;(VgiX0ik.r * Yoik.*sir)
* nik(ysixoij.r & yoij.xsir)
Woo(13kr) = nysny (Vg5 5Xgikr * YaikXdijr)
Wo3(1Jkr) = nj 305 Ys; (Xaigr * Xaikr)
*niniXsiraig * Yaik
and
W33(1Jkr) = 2nijnikysixsir.

The values of ¢'s are as for step 5.

(4) Then obtain the rth element of n as
Np = 0p * E ;101 r* ? ni—l El Oj ikr*
i=1 g=1 4 i=1 j=1 k=j+1 HJ

Note that n, can be obtained without storing ¢'s, W's or ¢'s in

computer memory.

Step 7
Then the rth equation in (4.7) is given by



r=

D)

i=1

90

wipy * izr piBy = Mpe

4,2.5.2. Generating the nonlinear equations (system (4.8))

. . . . -1 .
Since V; is a partitioned matrix, tr(\(i Yim) in (4.8) can be

written as

tr(AyqqVigqm) * tr(A3qoV i1op) *+ tr(Aj93Vi13p)

* tr(Af1oVi10m) * (A o0V 00n) + tr(A 53Viogy)

*er(Aly3Viqgn) * tr(BiosViosn) + tr(Ry33V;aan)

where Aijk's were defined earlier (in section 4.2.3.) and

Expressions for V

i jkm

a
v et

Yijkm 36, 13K’

can be obtained by replacing Y, in (4.13) to

(4.18) by fy.. Also let,

-1 _
u; = V5 (yg - Xi8)

where u. can also be partitioned according to the sire, the dams
. That is

i
and the offspring

where

~

u

and

oi

di

uf = (ug;,ug;.ug;)

* * *
Ri11¥oi * Aj12¥di * Ai13Ysi

+ +

* * *
Ri12Yoi * RiooYai * A123Ysi
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* * *
Usi = A113¥0i * Afo3¥ai * Ai33¥si-

" . * * N *
The (i,j,k)th element of Yoi (yoijk)’ the (i,j)th element of Y4i

* *
(ydij) and yg; are given by
*
Yoijk = Yoijk ~ XoijkB

*
Yaij = Ydij ~ ¥aijb

and

Ysi = ¥Ysi T Xsib»

respectively. These are known if estimates of the fixed effects

are available. This means that (y; - Zig)'y;1yimyi1(xi - X;B8) in

(4.8) can be written as

UsiVitimYoi * 2Y%iYitom¥ai * 2Y0iVi13mYsi
* UgiVioomUdi * 2Y4iViz3m¥si * UsiVi33mYsic

By arranging elements of Yoi

vectors, it can be shown that:

and Ugi corresponding to the y

(1) The kth element of u where

oij®
Mgy = Qlogqressaligyyrrsvalioin,)

can be expressed as
*

+ uoij.

*
Uoijk = Yoijk
In above

* * _ * _ *
Uoijk = PWoijk ~ Y8¥dij ~ Yo¥si)
and
" j=1 Ry

Yolj = £§1 €5£9i¢5 * LZJ €1£091 5L
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where
* * nil*
€1g = TYgNig¥dar T Yoig¥si * k§1yoi£k-

(2) The jth element of uqj is given by

-1 ¥ *
Ugij = Y1 Ydij ~ PYgeij ~ YgMijYoij-

(3) ug; is given by
-1 ¥ Ky Iy *
Uggy = Y1 Ysi ~ pY9JZ1EiJ - ngzlnijuoij.

Therefore the following algorithm can be proposed for obtaining

the nonlinear equations in (4.8):

An algorithm to generate the nonlinear equations in system (4.8)

Step 1
Assuming some values for 8m (m=1,...,5), calculate
Yh (h‘1""15)-

Step 2
Calculate p and qj jk (i=1,...,8;J=1,...,n55kK=d,...,n4).
Step 3
Calculate “ﬂm for £=0,...,4 and m=1,...,5, where
ﬂom = 1

Tim = f1m - 2Y8fum - 2Y9f5m

Tom = f1m = fon

ﬂ3m L] fzm - 2Y8fum - 2Y9f5m
and

ﬂum = f3m — 2Y9f5m-

The values of f, ~were given in Table 4,2,
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Step U

Calculate SK for ¢=0,...,4, where

51 = Phgg
.
i
g™ 121 jz1niiqiij

n.
1
2
53 1, Tndsesg

i=1 j=1
S kS Ei
=2 v, AMnAQEL .
E i=1 j=1 k=j+1 ij71k7ijk
and
Sp = Yq (s*ny) + (Y§ + Tg)(S1 g 53) + ¥38,

In the above expressions

n = n;
o 121 i
and
n.
1
Fics o T
50 121 321 i

Step 5

Then obtain Mmn for m=1,...,5, where

4
A = z - Sp .
1m £=O Kml
Step 6
. . * * *
Using an estimate for g, calculate yoijk' ydij and Ysi for
i=1,...,s; j=1,...,ni and k-1,...,nij.
Step 7
Calculate Eij and then u;ij for i=1,...,s and j=1,...,ni.
Step 8

s for i=1,...,s; j=1,...,ni

and k=1,...,n

Calculate u i udij and uoijk

ije



Step 9
Calculate Tm for 3-0,...,5 and m=1,...
Tom = 1
Tim = f1im ~ fom
Tom = fom
’[Qm = Zme for' Q_" 3)“,5.
Step 10
Calculate Tp for ¢ =0,...,5, where
n. N: s
1 1] 2)
T, = . me)
! 121 jZ1 by (Yoidk
n,;
i
2
T, = 121 jz1(u°13 )¢ where Uo §
ng=1 n
i
T = sawat UL
3 121 351 k=§+1 oij.” oik
n;
i
Ty = 121 Jz1uoij Udij
n;
i
Tg = 121 jZ1UOiJ.uSi
and
n,
2 a 2
Ty - i};(u31> ' 121 1 gy
Step 11
Obtain Aop for m=1,...,5, where
h2m = ‘EZOT:KNTAE..
Step 12

9y

»9, where

Then the left hand side of the mth equation in system

(4.8) is given by

Mp = App-
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Obtaining the ML solutions for the fixed effects and the ML

estimates of variance components

Maximum likelihood solutions for g and ML estimates of 6 are
obtained by solving (4.7) and (4.8) simultaneously. Therefore a

convenient procedure would be as follows:
(1) Assume initial values for the variance components.

(2) Using these estimates, solve the linear system in (4.7) in

order to find solutions for the fixed effects.

(3) Using these solutions obtain a new set of estimates for the

variance components.

(4) Follow (2) and (3) alternately until the solution converges.

However, this procedure does not avoid negative estimates of
the variance components. Also, it is possible that the estimate
of the genetic correlation between direct and maternal effects may
be outside the range -1 and +1. In such situations an obvious
procedure is to minimize (A1m'A2m)2 subject to the constraints
that the estimates of the variances are greater than or equal to
zero and the genetic correlation between the direct and maternal

effects is between -1 and +1.

4,2.6. Constrained maximization of the likelihood function

Negative estimates of variance components and the correlation
between direct and maternal genetic effects outside the range -1
and +1 can also be avoided by maximizing F or minimizing -F,

instead of solving the system (4.8), subject to

91 962.9“:65 2 0
and

-
616, -85 20
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where F is given by

P Loyl - §on - weia - xe.

From (4.23),

n

i
In|Vs| = (n;+1)1ny, + (n;~n;)lna + jz1ln(a+nijcij)

which gives

Iy
) 1n(a+n
151 j=1

In|V;| = (n.+s)lnY, + = lna + )
121 | ll Wgrie) 1 (noo ﬂo)

13513

Generating the above expression is not difficult, since an
explicit expression for |yi| is derived in Appendix 2. Since
explicit expressions for the elements of y;‘ have been derived, it

is also possible to generate

31(21 - X;8) Vi (y; - X8)

easily. Therefore, the following algorithm can be proposed to

generate -F.

An algorithm for generating -F

Step 1
Assume initial values for e, (m=1,...,5).

Step 2
Calculate p and qijk fior' ‘I=1%5m .S, j-1,...,ni and
k=j,...,ni.

Step 3

Calculate Cij for i=1,...,s and j=1,...,n The formulae

i.
for calculating Cij are given in Appendix 2.
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Step 4

Calculate A, where

n.
1
A = (n.+s)lnY, + -n Jlna + § 1n(a+n; .z: ).
o 1 (nOO no i=1 j21 1JC1J

Step 5

Calculate p, where
p. - MT/a i (Mg * MB)/T1-
In the above expression

AT
321 k=1 oijk

(Fai4)°
1 j£1 Yaij
and

(y;i)z.

Step 6
Calculat i Ei h
alculate s s where
151 o PLd

¢££|(1J)M££v(ij).

PLy = 321 ﬁi:ﬂ

In the above expression

Mqq(13)

(Yo14.)°

* *
M12(13) = 2y45i5 Yaij
*

Mi3(1j) = 2Y;ij.Y51

Mys(1])

* 2
(ydij)
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5 * *

and
_ ¥
M33(1j) = (Y31)2.
Step 7
n.-1 n.
i
Calculate : s, where
121 jzi k=§+1lek
Pijk = Q21 v21 ¢ gt (13KOM 00 (1K)
In the above expression
5 s * *
Myq(13K) = 2¥55 5 Yoik.
- ¥ * ¥ %
Myo(13k) = 2(ny¥4iWYoij. * Mij¥aijYoik.)
. * * *
Mi3(13k) = 2(nyye; . * Nij¥oik. Wsi
B * *
Ma2(1dk) = 20y 304,¥ 5 37 gk
el * % *
Ma3(1jk) = 2ny4ni,¥s5 (Vazs * Yaiw
and
. i * 2
Step 8
Calculate ¥, where
n n.-1 n
i i
¥ =p + pyq * t ; P ik
121 321 iJ 121 321 k=341 13K
Step 9

Then obtain -F, where
-F‘A+‘l’~

The expressions for ¢'s in step 7 and step 8 are the same as those

for section 4.2.5.1. As before the ¢'s, M's or the p's do not
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have to be stored in computer memory when calculating vy.

4,2.7. Large-sample variances for the estimates of fixed effects

and variance components

The large-sample variance-covariance matrices of the vectors
of the estimates of fixed effects and the variance components are

given by [see section 3.1.]

[121(x3v;1xi)]'1

and

respectively, where the (m,m')th element of H is given by
S te{vilv, vilv, ]
14 ~1 ~im<i ~im'!}*

In the above expression

Bgi

08,

Vim

The (r,r')th element of
[ 1 oxqui'ep)”

is the covariance between Br and Bp... This is not difficult to

compute, as an explicit expression for the (r,r')th element of

(RIV7 )
121 X{Vi X4
was given in section 4.2.5.

The covariance between the estimates of the mth variance
component and the m'th variance component is given by the (m,m')th

element of 2§_1, where H was defined earlier. The matrix H can
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alternatively be represented as

triz1 JZ1 kZ1BikaBikJm'

where

Bittm = 2i11Vitim * Ai12Y%i12m * Ri13Yi13m
Bitom = Ai11Vi1om * Ri12
Bi13am = Ai11Yi13m * Ai13

* Aio3Vi13m

Bioim = A112Yi11m * Bi22Yi12m
Bioom = A{12Yi1om * Ai22
Biosm = 2i12¥i13m * 4123
Biztm = A113Vi11m * Ai23Vi12m * 2i33Yi13m
Bizom = Ai13Vi1om * Al23

and

Bi3gm = Ai13Vi13m * Ai33e

Since explicit expressions for the elements of the matrices &ijk
are available, obtaining the large-sample variance-covariance
matrix of the estimates of the variance components, is not

difficult.

4,3. Estimation of the parameters: A multiple-trait setting

Sheep, swine and beef cattle breeders are often concerned
with multiple-trait selection. This also applies for maternally

affected traits. An example is the weaning weight and
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post-weaning gain records of beef cattle [see Quaas and Pollak
(1980)]. The direct and maternal genetic covariances amongst
these multiple traits are required in order to predict the genetic
values of the animals in a multiple-trait selection programme.

The method of estimating variance components for a single trait
with unbalanced data, by analogy, suggests a method which can be
applied in a multiple-trait setting. The ML estimators of
variance components for a multiple-trait setting will be derived

in this section.

Suppose ¥iq and Yjip are the measurements on trait 1 of
individual i, whose dam is w, and trait 2 of individual i', whose
dam is w', respectively. Then by extending (4.1) we can express

Yiq and Yirp as

Yir = £3(B1) * Bai1 * Bmwt * Cmw1 * ©aid

and (4.25)

+

Yio = £10(Ba) * 8qirp * Bpyro * Cpuro * Cgjrp

where
fi(B1) (fi.(BZ)) is a linear function of the unknown fixed
effects of trait 1 of individual i (trait 2 of individual

i),

8di1 (gdi'z) is the direct additively genetic effect of
trait 1 of i (trait 2 of i');

8mwi (Smw'z) is the maternal additively genetic effect of

trait 1 of w (trait 2 of w') influencing Yip (¥iip)s

e (emw'2) is the residual effect common to trait 1

mwl
(trait 2) of offspring of w (w'); and

€4i1 (ed{z) is the residual effect unique to trait 1
(trait 2)"of individual i (i').
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Assume that all genetic effects are independent of all
residual effects. Also assume that the residual effects common to
full-sibs and maternal half-sibs are independent of the residual
effects unique to the individuals. Then the covariance between

Yiq and Yirp can be written as

3111806 * w'Enm * 31wiBom * 311ung * DuiTmg * Dyjires (4.26)

where

g;g is the covariance between the direct additively genetic

effects of traits 1 and 2;

géé is the covariance between the maternal additively genetic

effects of traits 1 and 2;
géé is the covariance between the direct additively genetic
effect of trait 1 and maternal additively genetic effect of

trait 2;

12
€mo

effect of trait 1 and direct additively genetic effect of

trait 2;

12

== is the covariance between the residual effects

common to full-sibs and maternal half-sibs of trait 1 and

is the covariance between the maternal additively genetic

the residual effects common to full-sibs and maternal

half-sibs of trait 2;

12
oo

unique to trait 1 of an individual and the residual

is the covariance between the residual effects

effects unique to trait 2 of an individual;

a is the coefficient of additive relationship between

131
i and i'; and
1 iff i=1" (w=w")

b (b

iir (Bypge) =

0 if i = i'" (w = w').

For two correlated traits, the total number of variance
components involved are 16. In general, for q correlated traits

this number is given by
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5q + 3q(gq-1).

For estimating these components, consider the previous mating plan
with the additional assumption that measurements on all traits are
available on all animals. This makes the use of this method
restrictive as measurements on all traits of all animals are
usually not available. Then, if the vector of observations is
normally distributed with parameters specified as in (4.4), the
log likelihood function of the observations has the form given in
(4.6).

4.3.1. The structure of the variance-covariance matrix

As before, let Yi» the vector of observations of the ith

family be partitioned as

¥i = (Yoi-Yais¥si)
with
Yoi = (o112 ++++¥o1 50+ ¥oin,)
and

Yai = (Zéiiv'°-'Xéij'°--v¥bini)'

The vector yéij can be written as

Yoij = (25131'°--'¥61jk'---'¥613nij)

where !oijk is the vector of observations on q traits of the kth
offspring of the jth dam mated to the ith sire. Similarly, Xdij
and Ysi represent the vectors of observations on q traits of the
jth dam mated to the ith sire and the ith sire, respectively.
Suppose that the qxq variance-covariance matrices of Zoijk’ Zdij
and Ygi are denoted as 51. Then the (p,p')th element of I4 is
given by

L L ] 1 ] ] 1 )
orp = SB2' + 6B « 1 (eBR' + o)) + rh'  eEE'.
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Define
Ip = Coviyoijkedorjkr)  for k =k

where the (p,p')th element of I, is the covariance between trait p
of X and trait p' of Y when X and Y are full-sibs which means that

this element is given by

1 " 1) 1 \l \l L
- PP PP - ppP pDb pp
%2pp' =  Boo " &mm * > (8om * 8mo ) * Tmm -

Also define ) .

where O3pp! which is equal to ggg'/u is the covariance between the
observations on trait p of X and trait p' of Y when X and Y are
paternal half-sibs. From above, it is clear that 1y 22 and 23

are symmetric matrices. Then the variance-covariance matrix of

Yoi can be written in the form
Yepr =] [Biaa =+ = Blqg < = % B4in,
§ij1 . . . BiJ‘J' . . . Bijni
B: . L] . B' S . oB'
- =in;1 ~in;j ~ingn; .
where

Iygg * (B9~ Z2) * dygy3 * I for J=k
Bijk =

Jijk *

™M

3 for J*ko

In the above expresions Zijj
Jijk is the nijxnik matrix of "1"s. Suppose

-~

is the identity matrix of order nij'

Ly = Coviyoijke¥aij)-

The (p,p')th element of L) gives the covariance between trait p of

the offspring and trait p' of the dam. This is equal to
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1 [] 1 ] 1 | ]
=P -oPP e pp
Oypp' = 2888 + ngm * uggg * 8mo -

Then the covariance between Yoi and Yqi can be written as

n
+
Yita = jZ1 (lig * 2o

Similarly, define the variance-covariance matrix of the q traits
between a sire and its offspring as Ig. Then the (p,p')th element

of 25 is given by

1 ' 1 '
- —-gPP —-oPP
95pp' = 800 * Eom -

Then it follows that
Vi1z = lio * Is-

Note that Ly and 25 are not symmetric. Since the sires and the

dams within a family are assumed to be unrelated
Vepp = Li v 2y A00 Yppg > Q-

4.3.2. The inverse of the variance-covariance matrix

As for the single-trait case, an explicit expression for the
inverse of the variance-covariance matrix of the observations is

derived in this section.

The inverse of this matrix has the form given in (4.20).

Using properties (1) - (4) of section 3.3., it can be found that

ViioVia Vi, = §i+<J % 3.)
Yr2Viza¥ine = (L, (digy * Le
and

-1
Vi13VizsViiz = dio * I7
where
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e = Iuly Ll
and

-1
L7 = Isiy L&-

In the above expressions dio is the n;,xn matrix of "1"s. Since

i io
L, is symmetric, Le and ;7 are also symmetric. Therefore the jth
diagonal block matrix and the (j,k)th off-diagonal block matrix of
_ -1 _ -1 .

Yitr 7 Yir2Yiz2¥ite ~ Yj13¥i33Uiq3 can be written as

t139
and

dijk ¥ C
respectively, where 5, B and C are symmetric matrices which are

given by

and

The matrix Ai11 has to be computed in order to obtain the inverse
of the variance-covariance matrix. Aiqq can be computed by
proceeding in a similar manner as to that for the single-trait

situation. This matrix is found to be

2o § Bl = = ¢ Bing e - - Bhimy
Bage = = - Bigg - == Bign,
S PR T
-1ni1 ~iniJ ~inini

where



Jijk * g far k&

= = L. * n * ddhee =17
?ijk IiJJ g % ‘.‘IiJJ 9133 for k=j
Jijk * 9k fer k3.

An algorithm to compute the matrices P, Qijk (for i=1,...,s;

J=il pasrenety s

setting is given in Appendix 3.

i3 K=j»...,ny), and then A;q, for 'a multiple-trait

Then by simple matrix multiplication, it can be shown that

2

(1) Ajq, can be partitioned into nj

(j,k)th block is given by

“li5 * niQikjls

(j,k)th block = 143 X (P nijgijj

“liy * nQi ks
where

-1
g = Iy -

)tg

block matrices and the

for k<j
for k=j

for k>j
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(2) 5113 can be partitoned into a column of block matrices and the

jth block is given by

“145 * (B + Ry4)ig
where
j-1 . i
Ry = I MikSikg kzjnikgijk
and

-1
Lg = Isly -

2

(3) Ajoo can be partitoned into nj block matrices and the (j,k)th

i
block is a qxq matrix which is given by



108

nisnikE89ikjLe f k4
(3,K)th block =<7 + nyIE(P + nyyQ;55)Lg  if k=J
nyjnikE891 jkie ir k>J.

(W) A123 can be partitioned into a column of ny block matrices and

the jth block is given by
ny sZR(P + By 5)Lg-

(5) 5133 is given by

n.
g i
U el T j£1“ij§§(f *+ Rij)ig-

4.3.3. Generating the equations

Denote gbP, Bk RE2, MaR| [and g 1by 8pp (M=1,...,5),

respectively. Also denote ggg', ggg', rgg', rgg', ggg' and ggg'

by 8pppr (m=1,...,6), respectively. Then oy,

(h=1,...,5;p=1,...,9;p"'=1,...,Qq) can be written as

4
L Thnfmp * (fns * fnglésp  for p=p’

Uhpp! = g
n1 rhmempp' for p=p'

where fy o (h=1,...,5;m=1,...,6) are given in Table 4.3.



Table 4.3 - Values of fhm

m

2 1 2 3 4 5 6
1 1 1 1 i 422 e
5 172 i 0 1 1/2 172
3 |1/ 0o o0 0 0 0
¥ |1/2 172 0o 0o /4 1
5 |12 0o 0o 0o 1/4 o0

By differentiating the log likelihood function of y with

mp mpp| (m=1,-.-,5;
p=1,...,9;p'=1,...,q9) and equating to zero, we obtain 3q2 + 2q

respect to 6__ (m=1,...,5;p=1,...,q) and ©

(that is 5q + 3q(q-1)) equations.It can be observed that

aZh
- 1
W 3hm‘?.p?.p
where np
fhm mg 4
€hm =
and &p is a gqx1 vector with "1" as the pth element. All other
elements of ép are zero. Also
a;‘h L] 1
36 = &1nhm€pSp' * E2nmEp'Ep
mpp'
where

g1hm = fhm for m = 1,..-,6

and

109
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[ Ta
=

fhm for m

(]
wm

gghm = <fh6 for m

]
(o)}

th for m

*
The vector 8 (with t elements), for the multi-trait case can

be defined as

B' = (BfseevsBhrenesBy)

where §p is the vector of fixed effects associated with the pth

trait, and

*

In the above expression t_. is the number of fixed effects

P
associated with trait p. By proceeding as for the uni-trait case,
the following algorithms can be proposed for generating the

maximum likelihood equations:

4.3.3.1. An algorithm to compute the system of equations used for

obtaining solutions for the fixed effects

Step 1
Assume initial values for emp and empp"
Step 2
Calculate the gxq matrices f, (h=1,...,9).
Step 3
Calculate the gxq matrices P and gijk' An algorithm for
computing these are given in Appendix 3.
Step 4

Suppose féijkp’ féijp and féip are the vectors of



coefficients associated with the fixed effects of trait p
of the kth offspring of jth dam mated to the ith sire, the
jth dam mated to the ith sire and the ith sire,

respectively.
Def ine
+
Xo0ijk = p21 %01 jkp
+
Xaij = p21 X4ijp
and
+
Xsi = pz1 Xsip®
Further define
nij
Sign = Zowgr T ¥ouy. ™ kZ1 Xo1 jk
Xije = Xdij
and
X133 = %s1-

(1) Calculate ¢, where

n
§ X1 . B [ix' M
X4127 %o Ly si%aisEr Zaig

i
n n
i ij
* 121 jz1 Ly %613kE%o1 gk

(2) Calculate $.:, where
Z‘l 321 ~1J

815 = 221 £,21 X{ehise0 X500

Expressions for Aijﬂﬂ' are as follows:
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(1) Calculate w, where

- 1 2 3
N
2|-z4(p+ “130133) nijgé(g+nijgijj)§8 n; j28(B*n13Q;45)%g
(2) Calculat E Ei gi@ h
alculate s wnere
151 jo1 k= ~LIK?
k#]j
Bige ™ 321 5.21 X3485yt Xikr -
Expressions for Fijkﬂl’ are as follows:
'} 1 2
g 3
1 QUkj Ny kjLs N3 QikjZy
k<3 [ 2 |7n;528Q%y  Mijnikl8QikiZs  MijMikE8QkjLo
3 1 n33Z8Q%ky  MijnikléQkiZs MigNikE§¥ikjlg
1 Qjk N9 jkIsg 039 jklg
k>3 | 2 | ~niyZ8Qi4k  NijNikE8Q4ijkis  MijnikZ89 ki
317155289 5k PMignikZoQigkIs PijnikEd9i ki
Step 5
Then calculate the t*xt* matrix
n n n
i £ B
-1
XIVi X, = ¢ + 0 + Sysia
121"1" =k R 121 321 ekl 121 321 oy 3K
K#j
Step 6
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§ 1 ol 1

= ' 2 . 'c o A s o

w i=1).(.si§1 ¥si * 121 321 XaijZ1 Ydij
n, n

s
i 121 jZ1 Lo Xo1 5kBYoi jk-

il
(2) Calculate 3 Y w;;, where
i=1 j=1 ~1J

wij = £21 £,i1 Xisehiseerdije -

E ni ni
(3) calculate w;: s, Where
is1 321 oy 213k

K#]j

wijk = 321 3.21 Xi 5081 jkeer diker

In the above expressions
dij1 = Yoij.

dij2 = Ydij
and

1<

di 53 = ¥si-

Step 7

Then the t*x1 right hand side vector is given by

ny Ry Mg

e 121 JZ1 215 * 121 321 Egg =ijk*

4,3.3.2. An algorithm to compute the equations used to obtain

the ML estimates of variance components

Step 1
Assuming initial values for Om

h (h=1,...,9).

p and empp" calculate



Step 2

Step 3

Step U

Calculate 5 and gijk‘

Calcu

where

and

Calcu

and

late

801m
802m
803m
Soum

811m
812m
é13m
81um

é21m
bo2om

B213m

8oy

late

(1) 80nm
(2)8 ppm

81m1

= (8 -

= 8opl

= 83m-I~ -

= 811ml
= &1
= 81oml
= 813pml

= 821pl
- (321m

8o2omli

= 8p3pl

Ih for

for h=1,..,4 and m=1,...,5

for £=1,2; h=1,...,4 and m=1,..

28umLg ~ 28splg
8om) 1
= 28unLg ~ 28splg
28smlg

282Nm§8 - 2825m§9
- 81pp)1

28oumLg ~ 282s5mlg
2825mLg

- 28q1ynplg ~ 2815pig
g22m)l

281umlg ~ 2815pL9

2815mig-

h=1,..., 4, where

e

114



Step 5

Step 6

Step 7
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n
- - ,
Iy " 151 321 Byyfsg where RBige Rig —npiQigge

(1) Calculate D where
D = (ng*s)Zy' + IR(Ty + T3)Zg + Z4(Ty + I3 + Tyig-

(2) Dm for £=1,2 and m=1,...,6, where

Dpm = n21 Thd ¢hm-

(3) Dom for m=1,...,5, where

Bom = 3. Trlonn-
2om = 4, Infohm

Then calculate T1mp and T1mpp' for p=1,...,qQ

and p' = p+1,...,q, where
Timp = 95(9 * QOm)gp

and

Timpp' = 811m€p'D€p * E21mEplep:
* eprDin€p * epRomspr-

Using an estimate for g, calculate y;ijk' y;ij and y;i

where
*
Yoijk = Yoijk ~ XoijkB

*
Ydij = Yaij ~ Xaijt

and



Step 8

Step 9

Step 10
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*
Ysi = ¥si ~ XsiB-

*

Calculate € 3 and 901j

ij for i=1,...,s and j=1,...,ni, where

* _ %* = %*
€1j = Yoij. ~ MijZ8¥dij ~ MijloXsi

and

*

v,
Lol = k§1 Qkjtik *

04
kzj 9 jkEike

In the above expression

x SR
Yoij. = kz1 Yoijk®

Calculate Yoi jk» Bdij and Ugi

where
* _ * _ * + *
Yoijk = BWoijk ~ Z8¥aij ~ Zo¥si) * Yoij

- -1* - - *
Ygij = L1 Ydij ~ LBReij ~ nyiLBYoij
and

1 % 21 ot *
Usj = Iq ¥sq ~ LoP J§1 €15 - L jZT Ny 4Y5135-

Calculate (1) §gn, for h=1,...,5 and m=1,...5
(2) éppy for £=1,2; h=1,...,5 and m=1.,,,6
where
8m ~ 8om for h=1
Sonm = 8hm for h=2,3
28nm for h=4,5



gam - 8&m for h=1
Sbym = 8£hm for h=2,3
2g b for h=4,5
Step 11
Calculate §h' where
NG Nz
i ij
= . ' .
2 iz1 jz1 kZ1 Yoi jk¥oi jk
n
i
Se = 121 321 Yoij-Hoiy
n n
i i
= n ' .
23 144 jZ1 k§1 Yoij-Yoik
K=j
s T
= u U .
24 i=1 j=1 ~dij~oij
and
ny '
%5 = L, 4L, Ysi¥ouye
Step 12
Calculate G and gﬂm for £=0,1,2, where
n.
i
g iz, Usi¥ss * 121 54y Yai34a1;
~Gom = ? 60hmsh for' m=1,---5
h=1 e
and
G = E 8 S for m=1,...,6 and =1,2.
Shy = L,58mn
Step 13

Calculate T2mp and T2mpp' for m=1,...,5;

p=1,...,q and p'= 1,...,q, where

17
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T2mp = 25(9 & gOm)Ep

and

Tompp' = 811m€p'G€p * B21mEpSepr

= gb'§1m§p * ngngp"

Step 14
Then the left hand sides of the equations corresponding

to 8 and 8 y are given by

mp mpp

Timp = Tomp
and

Trmpp' = Tompp'

respectively.

In the case where constraints are imposed on the variance
parameters, an obvious procedure is to minimize
- 2
(T,mp szp)

and

_ 2
[Tt = P

subject to

> :
B1g> 82pu 93p0 S & 8
81p2p ~ Osp 2 O
61p62p' - esppv 2 0;
and

B«Ip'sz = eﬁpp| & 0,

The method of estimating variance components and fixed
effects developed in this chapter for a single-trait case was
applied to weaning weight data of Romney sheep and 8-week weights
of Yorkshire or Large White pigs. The results of these analyses

are given in Chapter 6.
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CHAPTER 5. BEST LINEAR UNBIASED PREDICTION
OF DIRECT AND MATERNAL GENETIC EFFECTS

Henderson's (1963) best linear unbiased prediction procedure
(BLUP) can be used for predicting direct and maternal additively
genetic values. However, practical applications of BLUP technique
to animal breeding data require efficient computing strategies.
One of the main difficulties is obtaining the inverse of the
variance-covariance matrix of direct and maternal genetic effects
which is essential in forming the BLUP equations. When
predictions are made of the direct and the maternal genetic values
of all animals, inversion of the variance-covariance matrix is not
difficult since predicting direct and maternal genetic values of
all animals is a special case of multiple-trait evaluation [see
Henderson and Quaas (1976)]. Then the variance-covariance matrix
has order 2nx2n, where n is the number of animals, the general

form being

where A is the numerator relationship matrix of the n animals and

2
Op0 9p0Am

™M

2
CAcAm OAm -

for °§o’ Uim and 9p0Am being as defined in (4.2). The inverse of

this matrix is
=1 o 2-1 * A_1.

nm

Since L is a 2x2 matrix and simple methods of inverting the

numerator relationship matrix exist, it is not difficult to obtain

gr

~
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The use of BLUP for predicting direct and maternal genetic
values for weaning weights of beef cattle is considered in detail
by Slanger (1979, 1980). Three general approaches for applying a
maternal effects model to actual data were discussed. In the
first instance, direct and maternal genetic values of all animals
were predicted. 1In the second and third cases the number of
genetic predictions were reduced by excluding certain genetic
values. For example, in the second approach, the direct genetic
values of unidentified dams, the direct genetic values of
identified dams with records but having just one progeny and the
maternal genetic values of animals with records but no progeny,

were excluded.

If the objective is to predict the genetic merit of each
individual free of the maternal genetic effects of their dams,
predictors are required for the direct genetic values of the
animals of interest together with the maternal genetic values of
just their dams. Such situations arise in the case of meat
breeds, where maternal genetic ability for offspring growth is of
no importance commercially. Then the animals are selected on
their individual genetic merit. However, since the genetic effect
of an individual is a combination of the direct genetic value of
the individual and the maternal genetic value of its dam, it is
important to distinguish the individual's genetic ability from the
maternal ability of the dam. In such circumstances predicting
direct and maternal genetic values of all animals would make the

number of BLUP equations unnecessarily large.

Although no analysis was carried out using actual data, BLUP
equations for predicting direct genetic values of all animals and
the maternal genetic values of their dams are derived in this
thesis. In the process, Quaas's (1975, 1984) method of inverting
the relationship matrix is modified to derive rules for obtaining
the inverse of the variance-covariance matrix of the direct
genetic values of all animals and the maternal genetic values of

their dams. If required, it is also possible to predict the
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maternal genetic values of sires or the maternal genetic values of
animals with no progeny. An expression for 5'1 where R is the
variance-covariance matrix of the combined residual effects
(combined residual effect is the sum of the residual effect common
to full-sibs and maternal half-sibs and the residual effect unique

to the individual) is also derived.

5.1. BLUP equations for predicting direct genetic values

of all animals and the maternal genetic values of

their corresponding dams

The expression given in (4.1), that is, for a phenotypic
observation on an individual which is influenced by the maternal

effects of it's dam, can also be written as
yi = £3(B) + 845 * Bpy * €4 (5.1)

where e is a combined residual effect, that is

ei - emw + edi (5-2)

for ey and eqi defined in (4.1). In matrix terminology, (5.1)

can be expressed as

y =Xp*+Zu+e (5.3)
where
.y is the vector of records adjusted, if possible, for known
;ixed effects estimated from prior data;
g is the vector of remaining unknown fixed effects;
u is the unknown vector of direct genetic and maternal
;enetic effects;
is the vector of combined residual effects; and

e
X and Z are known matrices.
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Assume that

and

Var

e
n
(i ep]
o

1@
1O
=]

where G and R are known non-singular matrices. Then, the best
linear unbiased estimator of g and the best linear unbiased

predictor of u are obtained by solving the following set of

equations:
X'RX X'R'z 8] =[xy
.-1 _1 _1 Cad _1 (5-“)
Z'R™'X Z'R7'Z + G | g Z'R”y

Suppose there are n animals whose direct additively genetic
values and the maternal additively genetic values of their dams
are to be predicted. Let the vector of genetic values be written

as
u' = (ug,up)

where Ug is the nx1 vector of direct genetic values of the n
animals and Un is the nox1 vector of maternal genetic values of
the dams of the n animals (no is the number of dams). Then the

variance-covariance matrix of u is the (n+no)2 matrix

2
G = | daolaq OpoAmAdm

2
OpoAmAdm OAmPmm
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where Add is the numerator relationship matrix of the n animals,
5dm is the matrix of additive relationships amongst all n animals
and the dams thereof and ﬁmm is the numerator relationship matrix
amongst the dams of the n animals. Then

=1

G ' =] Hyq Ham

Ham Hnm

where Hyq4, Hqq and Hp. are matrices of order nxn, nxn, and ng,xng,

respectively. Also let,
g - [gd zm];

where the two matrices Zy and Z correspond to uy and ug,
respectively. Then from (5.4), the best linear unbiased estimator
of B and the best linear unbiased predictors of uq and y, can be

obtained by solving

-1 -1 -1 2 - -1
X'R ‘X X'R "Z4 X'R "Z, Bl (3] = | [E0RE "y
2R 'x zwm 'z, +H 2R 'z +H u 2R
4% & S48 éd T fddl  fat Fem T Kdm ¥4 £q8 XY
-1 -1 -1 - -1
Zn")B Z.( .Z.r}lg Zd + ijém .Z.['nB gm * I.-.{mm ‘:‘,lm 5 .%'B Y

Direct inversion of G (using (3.10)) for obtaining Hyqr» Ham

and Anm involves inverting either

1

= O
A r “AimAddAdm

~mm

or

1

- 2 =
Rda = © Aamfanbdm

where r is the correlation between direct and maternal genetic
effects. Although the method of computing the inverse of a
relationship matrix [Henderson (1975b,1976), Quaas (1975,1976)]

can be used to invert ﬁdd and Amm’ inverting the above matrices is
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a formidable task. However, if the elements of u are rearranged,
the methods used in Quaas (1975,1984) can be modified to enable

inversion of the matrix G.

5.2. The inverse of the variance-covariance matrix of direct and

maternal genetic values

In this section, Quaas's (1975,1984) method for obtaining the
inverse of the numerator relationship matrix is modified to enable
inversion of the variance-covariance matrix of direct and maternal

genetic effects defined in (5.3).

Without loss of generality, denote the vector of genetic
values of the ith individual by uj . If both direct and maternal

genetic values of i are to be predicted, Ui is a vector with two

elements, otherwise it is a scalar. That is

U! - (Udi.u

=1 mi)

or

21 T Yaiv

respectively, where Ugi and Unpj are the direct and maternal

genetic values of the ith individual. 1In above, Uni is only

expressed in the phenotype of the offspring of individual i.

Following Quaas (1975,1984), define uqj and ug; as

1 1
Uaq: = —U,: + U + da;
di 2 dj 5 dk di

and

1 1
Unji = Eumj * Eumk * i

where

udj and upj are the direct and maternal genetic

J
values of i's dam (j);
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Udk and Upk are the direct and maternal genetic
values of i's sire (k); and
b4i and ¢mi represent Mendelian sampling effects.

In Slanger's (1979) expressions for uy; and u the coefficients

mi’
associated with the parents genetic values were not taken to be

V27,

Let the n vectors of the n individuals be arranged in such a
way that the vectors of parents precede the vectors of progeny.
That is

where vectors of i's parents (uj and Hk) precede u The vector u

ic
can be expressed as (see Chapter 3)

u = (I- ég)“‘g (5.5)

~

where P, in contrast to its definition in Slanger's (1979) paper,

is a matrix of zeroes and ones and

In the expression above, ¢ corresponds to Uy and therefore is a

vector with two elements,or alternatively a scalar. Then it
follows that

Var(u) = G = (I - ég)"g(; - ;g')'1 (5.6)

where
D = Var(g).

Assuming that



COV(Qi;QJ') = 9

it can be observed that

where

1

Each Di is a scalar or a 2x2 matrix depending on whether u

contains just ugj or both Ugi and Upi -

_ i 1 - 1
RN L
G D 'R s

Inverting D is not difficult, since

- e

D; = Var(g;)

for i=j,

From (5.6)

+ —p'p7'p,

1
n
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(5.7)

Therefore simple modifications of Quaas's (1975,1984) rapid method

of inverting the relationship matrix can be utilized in inverting

G.

5.2.1. Expressions for D

The Mendelian sampling random variables bqi and émi can be

written as

and
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Then
¥ 2 %
D;j = | 234d%0 2dm%oAm
(5.8)
* * 2
89m%aoAm  Zmm%Am
where

* * * _ _ l - l
add = adm - amm— 1 uan uakk-

However, certain genetic values are not included in the vector of
genetic values to be predicted. For example, maternal genetic
values of some animals (sires and animals with no progeny) are not
considered in (5.3). For such cases, Ei is a scalar and is given
by a;d°§0' If the genetic values of one or both parents are not
included, ajj and/or a are assumed to be zero. The possible

expressions for Di are outlined below:

(1) U; = Ugis both parents of i are unknown

2
Dj = opo

(2) u! = (uqjsUpi)s both parents of i are unknown

~

D. has the form given in (5.8) with
* _ * *
8dd = 3m = 2mm = !

(3) u; = uqj; direct genetic value of one parent (udj)
is included
* -1
aq4q L uaJJ

(4) uf = (udi,umi); dam's direct and maternal genetic
values are included

£ oa 1 = 1a

* *
3dd = %dm ~ %mm yo3J
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(5) Ui = Ugis direct genetic values of both parents are

(6)

(7)

included

- . | 2
by = (1 uaJJ uakk)UAo

8{ = (udi,umi); direct genetic values of both parents

and the maternal genetic value of the dam are included

*_!_1_1 _1_
#dd = %dm ~ 1233 7 %k
a- =1 -1
mm uajj
g! = (udi’umi); direct and maternal genetic values

of both parents are included

* % 1 1
3dd = 3dm = 3mm = 1 7 (355 T %kk

The above expressions for Qi involve the diagonal values of

the relationship matrix. Quaas (1975,1984) demonstrated how these

can be computed using only two vectors of length n. This method

which is outlined in Chapter 3 can be used to obtain the diagonal

elements of the relationship matrix.

Denote D;1 as

i .
doo if u; =y
-1 i i
D. = d d
=] [e]e] om
[ all 4l ] if ui = (uyg,ups)
mo mm

where

ii ii
dom = 9mo-
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Then 9_1 can be computed using simple modifications of the methods

used in Henderson (1975b,1976) and Quaas (1975,1984) for inverting
the numerator relationship matrix.

5.2.2. Generating 9—1

Step 1
Initially, let

Step 2
Determine contributions to 9—1 by proceeding through the
list of animals ordered so that the parents precede
progeny. There will be no further contributions from
the "base" animals. The contributions from the other
animals are given below for different possibilities.
In what follows §ég, gé% and gé% refer to the elements
of g—1 corresponding to the direct genetic value of i
and the direct genetic value of j, the direct genetic
value of i and the maternal genetic value of j and the
maternal genetic value of i and the maternal genetic

value of j, respectively.

(1) Uj = Uggs direct genetic value of one parent is

included
ii ij Ji
subtract 'Sdoo from g5 and ggq
ii JJ
add .25d,5 to ggy

(udj and ug, ) are included

= Ugjis direct genetic values of both parents

subtract .Sdéé from gé%, gég, ggé and ggé
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n L
add .250i% to g3, ek, gkl and g

(3) v = (ugqjrupi)s direct genetic value of the sire

is included
subtract .Sdéi from goJ 1J and ng
ii
subtract .5do from gom and gmo
add 25d11 to g

(4) Ei mi);

of the dam are included

= (udi,u direct and maternal genetic values

ii ij ji
subtract .SdO from g5 and 850

ii ij ji i
subtract .5dg. from ggi, 83, ng and gJ

subtract 5dll from g v 1J ang g%é
add 25011 to gld

add .25dil

JJ JJ
om to 8om and &mno

add 25dli to gJJ

(5) ul = (udi,umi); direct and maternal genetic values of the

dam and the direct genetic value of the sire are included

ii ij ji ik ki
subtract .5doo from 800’ 850’ 800 and 800

subtract .5dil from gid, gii, giJ 1 ang glK

ji
mo’ g%o’ 8om

subtract 5dli from glJ and ng



(6)

generate the exact G~
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ii Ji Jk kJj kk
add .25d ;5 to ggy» 850® 8o and 800
add .25déé to gg% and g%g

ii JJ
add .25d . to gyn

gi = (udi,umi); direct and maternal genetic values of

both parents are included

ii ij ji ik ki
subtract 'Sdoo from 800’ 800’ 8o aNd 84

ii
om

ik _ji

subtract .5d_ - from gé%, gég, gé;, 8mo’ Som’ g%é, 35;

and ggé

subtract .Sdéé from gé%, g%&, gé; and g;é

ii JJ Jjk k
add .25d00 to g

j Kk
00’ 800’ 8oo and 8ng

if ji .33 ik Lk _kj _kj _kk kk
add .25d,, to 8omr Bnos 8Bome 8Bmo’ Bom’ 8mo’ 8om 2Md 8mo
ii ii ik _kjJ Kk
add .25dmm to gmms 8mm 8mm N9 Emm

However, certain conditions have to be satisfied in order to

1, by using this method. These conditions

are :

(1)

(2)

If the maternal genetic value of an animal is included, then
the direct genetic value of that animal should also be
included. For instance, if the maternal genetic value of an
unidentified dam is included, then the direct genetic value
of the dam should also be included, although this would not

be considered in the selection process.

If direct and maternal genetic values of the dam are
included, then both genetic values of the sire should also

be included.
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When additional genetic values are included, the vectors Ugr Yp

and the matrices A4y, Ayp and Ao in (5.4) should be altered
appropriately.

Examples to demonstrate how the inverse of G is generated and
to illustrate why certain conditions have to be satisfied by the

vector of genetic values to be predicted are given in Appendix 4.

5.3. The inverse of the variance-covariance matrix of the

residual effects

In addition to G—1, the inverse of the matrix R (as defined
in (5.3)) is required to form BLUP equations. In this section, an
expression for 3—1 will be derived. An individual record of y in

~

(5.3) can also be written as

Yij = XijB * Yaiy * Umg * €y (5.9)

where
udij is the direct genetic effect of the jth offspring
of the ith dam;
Unj is the maternal genetic effect of the dam i
influencing the phenotype of her offspring; and

eij is the combined residual effect of the jth offspring

of dam i.
From (5.2) the combined residual effect can be written as
¥ *
eij = ei *¥ eij

where e; is the residual effect common to full-sibs and the

maternal half-sibs of dam i and e;j
peculiar to the jth offspring of ith dam. Then it follows that

is the residual effect
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02, + 05, if i=i' and j=k

Covie;j,einy) = < ofp if i=i' and j=k (5.10)

0 if f=1"
Therefore it is convenient to compute 5-1, by writing the vector e

as

e' = (ef,e}secer€]seeere] )

where ¢; for i=1,....,n,

offspring of the ith dam), which is given by

is an n;x1 vector (ni is the number of

! = : Py :
e} (e11,...,e1J,...,eln1)

and €0 is the vector of combined residual effects of animals with
unidentified dams and the animals with no full-sibs or maternal

half-sibs. The above arrangement means that the elements of ¢;
are the combined residual effects of the offspring of the ith dam.

Since COV(eij'ei'k) = 0 when i=i', the matrix R can be written as

=)
t~1
1

'—l

where

But from (5.10), Ei is :n njxny matrix with o%o + o%m as the

diagonal elements and og, as the off-diagonal elements. That is,

for i=1,...,nO

2 2
Ri = 0goli * 9Emdi»
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where Ii is the identity matrix of order nj and Ji is the njxny

matrix of "1"s. Then it follows that

-1
Ry = al; + byd;

where
_ 2
a = 1/0Eo
and
2
TR OEm
i Z 2 Z
OEo( 9o * NiOER)
for i=1,...,n Also,

o*
1

=i
R = —— Ip-
%Eo

Therefore 3—1 can be obtained as

5.4. A multiple-trait setting

Suppose that there are n related animals each with records on
q traits whose direct genetic values and the maternal genetic
values of their dams for the q traits are to be predicted. Let

the vector of genetic values be written as
u' = (uj.upg)

where Yy is the qnx1 vector of direct genetic values and up is the
qnox1 vector of maternal genetic values of the dams of the n
animals. Then the variance-covariance matrix of u can be written

as
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G = | Gyq Cdm
Gim Cmm
where
Ggq = Var(yq)
Sam = €OV, 1)
and
G = Var(gm).

Suppose Un is ordered by the dams within traits. That is

ut = (Ulapeessiad

Ym1 » vesl

T ! )
mi ~mn
where Umi is the gqx1 vector of maternal genetic values of the q

traits of the ith dam. Similarly uy can be ordered by dams within
traits which leads to

U = (Udree e Udgeee ol )

where Ugi is the qnix1 vector of the direct genetic values of the

q traits of the ny offspring of the ith dam. This means that

Gyd = Zaa * Add

where Edd is the gxq variance-covariance matrix of the direct
genetic values of the q traits and édd is the numerator
relationship matrix of the n animals. The (p,p')th element of Z4d
is the covariance between direct genetic effects of trait p and

direct genetic effects of trait p'. Similarly,
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Cam = Zdm * Adm

and

Com = Emm * Amm

where ﬁdm is the matrix of additive relationships between the n
animals and the dams of the n animals and ﬁmm is the numerator
relationship matrix of the dams of the n animals. The (p,p')th
elements of Lam and Zom give the covariance between direct genetic
effects of trait p and the maternal genetic effects of trait p'
and the covariance between maternal genetic effects of trait p and
maternal genetic effects of trait p', respectively. This means

that g can be expressed as

G = [ Zyq* Add  Zdm" Pdm

(5.11)

-E-('im* é('jm -}:*mm* ﬁmm

5.4.1. Generating the inverse of the variance-covariance matrix

of the genetic effects

The inverse of G can be generated easily by ordering u so

that the vectors of the genetic effects of the parents precede the

vectors of genetic effects of the progeny. That is

u' = (g{,...,gi,...,gﬁ)
where 4 is a 2gqx1 vector if the maternal genetic values of the q
traits of the ith individual are included, in addition to the
direct genetic values of the q traits of the ith individual. 1If
the maternal genetic values of the q traits are not included, u;

i
has q elements. This means

ui = (Ug;»Ypi)

or
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L " U

depending on whether the maternal genetic values of the ith

individual have been included or not.

Let the vector of genetic values of the ith individual be

written as

where Ej and u, represent the vectors of genetic values of the dam

and the sire, respectively. The elements of ¢; represent the

Mendelian sampling random variables. Then

- g ECR
91 7 Y1 T ¥y T ke

which implies that

Var(g¢;) = Var(u;) - %Cov(yi,gj) = éCov(gi.g&) - éCov(gj,gi)

1 1 1
+ EVar(gj) + ECov(gj,g&) - ECOV(EK'Ei)
1
+ —Cov(gk.gj) + -Var(gk).
y y
Suppose direct and maternal genetic values of q traits of the ith

individual are to be predicted and that direct and maternal

genetic values of both parents are included. This means that

=
[

- (951'9:':11)‘

uj = (ugyrdns)



and
ue = (uge uny)
where
Uas = (UdgqseeaUgpree e Udyq)
and

= (pggeee s U U g)-

In the above vectors, udip and umip

of the pth trait of the ith individual and the maternal genetic

value of the pth trait of the ith individual, respectively.

Therefore
(1) Var(u;) = ay;Z
(2) Cov(uj,uj) = Cov(uj,u}) = a;j;I

191G

(3) Cov(gi,gﬁ) = [Cov(gk,gi)]' = a;, L

(4) Cov(uj,up) = [Cov(y,uj)l" = a1

J

(5) Var(gj) = I; and

a3ij

(6) Var(u,) = a,,L

where

Then it follows that
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are the direct genetic value



139

Pi = | %dlda  “amidm
%midm  “mmimm
where
Ggq = 85§ T @43 T 2k * 0.25&13j + O.Sajk + 0.25a;,
=1l - 0'25ajj - 0.25a,,
and

%m = %mm 1 - O.25ajj - O.25akk.
In the case where certain genetic values of the parents are
excluded from the vector of genetic values to be predicted, the
corresponding values of a's are considered to be zero. For

example, if

Ye = Yk
then

G ™ = O.ZSaJJ-

Also, if only the direct genetic values of q traits of the
ith individual are to be predicted and that direct genetic values

of j and k are included, then

and
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which implies that

Let the matrix G be partitioned according to the n
individuals. Then the (i, j)th block of G gives the covariance

between u; and u

i Suppose uj and u; consist of direct genetic

i J
values only. Then gij is a qxq matrix and can also be denoted as
Qij(d,d). If u; consists of direct and maternal genetic values

and gj consists of direct genetic values only, Qij
matrix which can be further partitioned as

is a 2qxq

Giy = | Gy3(dsd)

Gjj(md)

If Uy and uj consist of both direct and maternal genetic values,

Gij is a 2qx2q matrix which can be denoted as

Qij(d,m) gij(m,m)

Let g“ be partitioned according to g. Then 9-1 is generated

as follows.

Step 1

Let gii - 971

i for all i = 1,...,n

Step 2

Add contributions to 9—1 by proceeding through the
list of animals ordered so that the parents precede
the progeny. The "base" animals do not make further

contributions.



(1)

(2)

(3)
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direct genetic values only; direct genetic values of only one

parent are included
subtract 0.5L44 from gij(d,d) and gji(d,d)
add 0.25544 to G3J(d,q)

direct genetic values only; direct genetic values of both

parents are included

subtract 0.5544 from G1J(d,d), ¢I(d,a), ¢¥(d,qd) and
ckl(a,a)

add 0.25L44 to G3J(d,d), 6I¥(d,q), ¢*I(d,d) and
ckk(d,d)

direct and maternal genetic values; direct and maternal

genetic values of the dam are included
subtract 0.5344 from G1J(d,d) and ¢Ii(d,q)
subtract 0.5L4, from Gl(d,m) and ¢Il(d,m)
subtract 0.5f, from GH(m,d) and ¢3i(m, )
subtract 0.5f . from gij(m,m) and gji(m,m)
add 0.25544 to GIJ(d,d)

add 0.2554, to G3(d,m)

add 0.25g}, to GII(m,d)

add 0.25g,, to 63 (m,m)



(4)

(5)
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direct and maternal genetic values; direct and maternal
genetic values of the dam and the direct genetic values

of the sire are included

subtract 0.5f44 from gij(d,d), gji(d,d), gik(d,d)
and gki(d,d)

subtract 0.5Ly. from ¢t(d,m, ¢It(d,m), and ¢*K(d,m)
subtract 0.5g4, from gij(m,d), jS(m,d) and gki(m,d)
subtract 0.5L,. to gij(m,m) and gji(m,m)

add 0.25544 to G3J(a,d), 6I*(a,d), ¢*(d,d) ana
ckk(d,q)

add 0.2554, to ¢(d,m)
add 0.2554, to G3J(m,a)
add 0.25z,, to GJJ(m,m)

direct and maternal genetic values; direct and maternal

genetic values of both parents are included

subtract 0.5544 from ¢1J(d,d), ¢I(d,0), ¢t¥(a,q)
and GK1(d,q)

subtract 0.5L,, from Qij(d,m), jS(d,m), Qik(d,m)
and ¢1(d,m)

subtract 0.5gy, from ¢li(m,d), ¢3i(m,a), GK(m,da)
and gki(m,d)

subtract 0.5f . from gij(m,m), jS(m,m), Qik(m,m)
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and gki(m,m)

add 0.25544 to ¢39(d,a), 6¥%(d,a), ¢*(d,q) and G**(d,a)
add 0.25z4, to 6I(da,m), 6I¥(a,m), ¢¥I(d,m) and ¢*K(d,m)
add 0.25354, to ¢3(m,d), ¢*(m,a), ¢KI(m,d) and ¢KK(m,aq)

add 0.25f - to ij(m.m), ij(m,m), ij(m,m) and GK(m,m)

Zmm

As in the uni-trait case, the exact 9_1 is obtained when
similar requirements are imposed on the structure of genetic
effects to be predicted. In addition direct genetic values of all
traits on all animals and the maternal genetic values of all
traits of the dams of the animals should be predicted. When
additional genetic values are included, the matrix in (5.11)
should be altered appropriately. An example to illustrate the
inversion of G for a multiple-trait setting is given in Appendix
S5

5.4.2. Inverting the variance-covariance matrix of the

residual effects

Let the vector of combined residual effects be ordered by

dams, so that

e' = (gétg{so--sgis--ovg;l )
(o]

where e; (i=1,...,n ) is the qn;x1 vector of the residual

effects of the q traits of the ny offspring of the ith dam and e
is the vector of combined residual effects of the animals with
unidentified dams and the animals with no full-sibs and maternal
half-sibs. Let these elements be ordered by animal within traits,

which means that
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el = (§i1""’9ij""’9ini)'

Then each eij is a vector of q elements, where the pth element is

the combined residual effect of trait p of the jth offspring of
the ith dam. That is

*
where eijp
the dam i and eip is the residual effect common to the pth trait

of the offspring of dam i. This means that

is the residual effect unique to the jth offspring of

Cov(eijp,eijp

= PP’ pp'
DR o
where rgg' and rgg' were defined in Chapter 4. Then it follows

that, for i=1,...,no

Bd i Bm if i=i' and j=k
COV(gijygik) = Bm lf i=i, and J:k
0 iR Meil

]
where Ry and Em are gqxq matrices, the (p,p')th elements being rgg

and rgg', respectively. Therefore, for i=1,...,no

. = " = . ¥ o T
Bl Var‘(gl) El BO * gl Bﬂl

and
COV(gi,git) - g

where I, is the identity matrix of order ny and Ji is the n;xny

matrix of "1"s. The variance-covariance matrix of ep is given by

= . * .
BO ll Bd




Then it follows that

where

I1.%A for i=0

In the above expression

and

By = (Bq + nyRy) ™ BRG

I.*A + J.*B;, for i=1,

eeeyn

(o)
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CHAPTER 6. A STUDY OF MATERNAL EFFECTS
IN WEANING WEIGHTS OF SHEEP AND SWINE

6.1. Sheep

Weaning weights (kg) of 2174 Romney lambs born between 1971
and 1981 were analyzed. The data used were obtained from a
random-bred experimental flock maintained at Massey University,

Palmerston North, New Zealand.

Observations on parents and offspring are required to obtain
estimates of variance components by the method described in
Chapter 4. However, the data used were not from an experiment
especially designed to carry out such an analysis. Therefore the
following procedure was adopted for obtaining data suitable for
analysis:

(1) All sires with records, which were born between 1971 and
1981 were included. The number of sires was equivalent to
the number of families.

(2) The records of all dams which produced offspring with records
were included, thereby completing information on all families.

Animals with no records were deleted.

It was assumed that the sires and the dams were unrelated so
that the families and the parents within the families became
independent. The vector of fixed effects for the model included a
general mean, 11 year-of-birth effects, 2 sex effects, 3 birth and
rearing rank effects, 4 age-of-dam effects and a regression

coefficient associated with the age in days at weaning. Let,

By = general mean;

B> = Byp = year of birth effects (1971 - 1981);

By3 ~ Byy = effects of sex (ewe, ram);

B1s — By7 = effects of birth and rearing rank (single,

twin reared as single and twin, respectively);
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Big ~ Bp1 = effects of age of dam (2 years - 5 years);
Boo = regression coefficient associated with the age at
weaning (in days).

The variance components of the model, 6., (m=1,...,5), were

m
defined in Chapter 4. The phenotypic variance, and the
covariances between the relatives, Y, (h=1,...,5), which are

functions of the 8's were also defined in Chapter 4.

A constrained maximization of the likelihood function was
carried out to obtain solutions for the fixed effects and
estimates of the variance components. Using initial values for
the variance components (go), the equations given in (4.7) were
solved to find é. The algorithm in Section 4.2.4. was used to
generate the equations. Substituting these solutions for g8, the

likelihood function was maximized subject to the constraints

(1) 8y, 85, 8y, 65 20

(to avoid negative estimates of variances) and

(1) 68, = 65 2 0
(to ensure that the estimate of the genetic
correlation between direct and maternal effects

lies within the range of -1 and +1)

The algorithm given in section 4.2.6. was used to generate -F
where -F was minimized subject to the above constraints
(minimizing -F is equivalent to maximizing the likelihood

function).

Routine EQYUAF of NAG FORTRAN library [Numerical Algorithms
Group (1983)] was used to minimize -F subject to the above
constraints. This routine is intended for functions and
constraints which have continous first and second derivatives.
However, it is not required to generate the derivatives. The

computing routine uses a sequential augmented Lagrangian method,
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the minimization sub-problems involved being solved by a

Quasi-Newton method.

The solutions to the ML equations corresponding to the fixed
effects and estimates of variance components were obtained
alternately, until convergence occured. The solutions for the
fixed effects and ML estimates of variance components are given in
Table 6.1 and Table 6.2, respectively. The solution values for

B12s Bqy» By7 and B,y were set to zero.
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Table 6.1 : ML solutions for fixed effects

resulting from a constrained optimization

using weaning weights of Romney lambs (kg)

Round 1 2 3 y 5 6

general mean

B? 10.2678 10.3068 10.3077 10.3077 10.3080 10.3082
year~of-birth
B> -3.0860 -3.1251 -3.1264 -3.1262 -3.1271 -3.1270
B3 -1.2194 -1.2669 -1.2680 -1.2678 -1.2686
By -0.7797 -0.8223 -0.8234 -0.8232 -0.8240 -0.8239
85 -0.6143 -0.6726 -0.6740 -0.6737 -0.6T74T7 -0.6T7L6
Be -0.5469 -0.6093 -0.6105 -0.6102 -0.6112 -0.6111
By  ~0.4313 -0.4620 -0.4627 -0.4625 -0.4632 -0.4631
B8 1.5950  1.6087 1.6089  1.6091 1.6087 1.6090
Bg —0.4901 -0.5006 -0.5006 -0.5004 -0.5009 -0.5006
B10 -2.8993 -2.9178 -2.9180 -2.9178 -2.9183 -2.9181
Byq ~0.7487 =-0.7668 =-0.7669 -0.7670

BY3 ~3.6472 -3.6104 -3.6095 -3.6098 -3.6088 -3.6091
birth and rearing rank
Byg  4.1941  L4.2023  4.2020 4.2020 4.2019  4.2018
B1g 2.2071 2.2236 2.2231 2.2230 2.2229 2.2228
age of dam
Blg ~1.2055 ~=1.1949 =1.1947 =-1.1948 ~1.1946 -1.1947
Bjg 0.2090 0.2121 0.2122 0.2122  0.2123
B —0.0157 =-0.0144
age at weaning
Bro, 0.1583  0.1577
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Table 6.2 : ML estimates of variance components

resulting from a constrained optimization using

weaning weights of Romney lambs (kgz)

Round 1 2 3 4 5

8; 2.5375 2.5MUT  2.5448  2.5498 2.5516
6, 6.3971 6.4209  6.4179  6.4306  6.4376
6; -2.0320 -2.0466 -2.0453 -2.0517 -2.0553
Oy o

65 6.1439  6.1148  6.1144  6.1103  6.1060
o5 13.0464 13.0319 13.0318 13.0421 13.0400

From 61, 62 and 63, the genetic correlation between direct and
maternal effects can be estimated (-0.507). The fraction of the
selection differential realized if selection is on phenotypic

values [Dickerson (1947)1],
2 2 2
S = (GAO + 1050A0Am + 0-50Am}/0p.

is 0.206. The large-sample variance-covariance matrices of the
vectors of estimates for p and g were obtained using the
expressions given in Section 4.7. The standard errors of the ML
estimates of g and 6 are given in Tables 6.3 and 6.4,

respectively.
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Table 6.3 : Standard errors of the ML

solutions for the fixed effects

factor solution + std. error

general mean

Bi 10.3082 + 0.8160

year-of-birth

eg -3.1270 + 0.7320

eg -0.2686 + 0.5129

BZ -0.8239 + 0.5409

eg -0.6746 + 0.4709

B -0.6111 + 0.4802

33 -0.4631 + 0.42u3

eg 1.6090 + 0.4336

eg -0.5006 + 0.4429

o

B3 o -2.9181 + 0.4523

8], -0.7670 + 0.5082
sex

B°3 -3.6091 + 0.1818
birth d8d rearing rank -

(o]

Bl 4.2018 + 0.1958

B 2.2228 + 0.4383
age of gam

(o]

Blg -1.1947 + 0.2285

o

s 0.2123 + 0.2238

Bgo -0.0144 + 0.2238
age at weaning

o

Bsn 0.1577 + 0.0093

o /\ .
Note : 62 - 2-819 and the std. error quoted is the std. error

of that contrast.
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Table 6.4 : Standard errors of ML estimates

for the variance components

variance component estimate *+ std.error

direct additively

genetic variance 2.5516

I+

0.4896

maternal additively

genetic variance 6.4376 +5.7070

covariance between

direct and maternal

genetic effects -2.0553 * 2.47s8
variance of the
residual effects common

to a litter 0.0 3.5576

1+

variance of the

residual effects unique

+

to the individuals 6.1060 + 0.8999

Ch'ang and Rae (1972) estimated the genetic correlation
between hogget characters and maternal environment by using
dam-offspring covariance components. In addition, they estimated
the fraction of the contribution from maternal sources to
dam-offspring covariance (Mi)' which is a function of the maternal
genetic variance and the covariance between direct and maternal
genetic effects. Since individual estimates of the maternal
genetic variance and the covariance between direct and maternal
genetic effects were not available from Ch'ang and Rae (1972), the

estimates for Mi will be compared, where
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2 2
Mi - (1'50A0Am + DQSOAm)/Up&

The source of data for the study of Ch'ang and Rae (1972) is the
same as that for this study. However, their data was obtained in
the period 1955 - 1965. A comparison of some estimates from
Ch'ang and Rae (1972) and this study is given in Table 6.5. The
estimate of the standard deviation was obtained from Ch'ang and
Rae (1970).
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: A comparison of estimates obtained from

this study and that of Ch'ang and Rae (1970,1972)

Estimate of Ch'ang and Rae this
(1970,1972) study
standard deviation (ep) 15 7.9
——— 2 _ ke_r2
heritability (h® = op4/05) 0.30 0.20
p
genetic correlation between -0.76 -0.51

direct and maternal effects

Mi’ a function of the amount

-0.134 0.01

of contribution from maternal

sources to dam-offspring

covariance

The magnitudes of the heritability and the genetic

correlation are lower than those for the study of Ch'ang and Rae

(1972).
deviation is negligible.

between the estimates of Mi'

The difference between the estimates of the standard

There is a considerable difference

Ch'ang and Rae (1961,1970) studied

the effects of type of birth and rearing, age-of-dam,

year-of-birth,
sheep.

in both studies.

sex and age at weaning, on weaning weights of

Table 6.6 presents a comparison of the estimates obtained
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Table 6.6 : A comparison of the estimates(kg) of effects

of birth and type of rearing, age of dam, sex and age at

weaning on wean

ing weight of Romney sheep

Ch'ang and Rae This
1961 1970  Study
flock A flock B flock C
1948-1954 1955 1956
age of dam
5-year-old - 2-year-old 2.16 1.86 1.94 2.0 1.20
5-year-old - 3-year-old 0.90 0.00 0.38 - -0.21
5-year-old - 4Y-year-old 0.15 1.10 -0.10 - 0.01
type of birth and rearing
single - twin 4.65 L. 54 4,24 b2 4.20
single - twin reared as 3.04 - 1.99 2.9 1.98
single
sex of lamb
ram - ewe = 2.19 2.99 = 3.61
linear regression on age 0.13 - 0.08 0.12 0.16
of lamb at weaning
mean - ﬁi 10.96 - 14,47 - 10.31

In Table 6.6, B is the regression coefficient on age of lamb at

weaning and x is the average age at weaning.

Jury, Johnson and Clarke (1979) obtained adjustment factors

for environmental sources of variation for weaning weights of
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Romney lambs using 12 commercial flocks participating in the
National Flock Recording Scheme (Sheeplan) of New Zealand.
Adjustment factors were estimated for birth-rearing rank, sex,
age-of-dam and age at weaning. Newman, Wickham, Rae and Anderson
(1983) obtained least squares estimates for the factors affecting
weaning weights of lambs. Table 6.7 compares the adjustment
factors obtained by Jury et al(1979), the adjustment factors used
by the Sheeplan, the adjustment factors obtained by Newman et al

(1983) and the adjustment factors obtained in this study.
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Table 6.7 : Adjustment factors for

Romney lamb weaning weight (kg)

Birth and dam age sex age at

rearing rank weaning

SS-TS SS-TT 4-2 U4-3 U4-5 M-F

source

flock 1 2.3 4.3 1.8, 10.20 10 205 0.21

flock 2 1.4 L1 1.1 0.2 0.5 1.6 0.16

flock 3 2.1 4.6 0.7 0.3 0.2 2.9 0.15

flock 4 1.8 .2 1.4 0.1 -0.5 1.9 0.13

flock 5 1.6 4.3 0.4 0.2 0.0 2.2 0.18

flock 6 1.8 3.9 1060 (0.3 =02 1.5 [0

Jury et al flock 7 1.9 4.y 0.9 0.3 0.1 2.1 0.17
(1979) flock 8 1.9 3.8 1.3 0.4 -0.4 1.9 0.20
flock 9 2.0 b2 1.5 0.4 -0.1 1.9 0.18

flock 10 2.0 3.7 1.0 0.0 -0.2 2.3 0.14

flock 11 1.9 b7 1.6 0.6 -0.4 2.1 0.12

flock 12 2.7 4.6 2.2 0.2 -0.2 2.2 0.20

average 2.0 y, 2 1.3 10.8=0L2 2.4 0.17

Sheeplan 3.2 4.5 2.3 0.9 0.0 1.8 0.14
Newman et al flock D 1.4 3.6 0.5 0.0 - 1.6 0.16
1983 flock E 1.9 3.9 -0.4 -1.0 = 1.3 0.18
This study 2.0 2l 112 <6.2 ono 3W6 (@6

In Table 6.7, SS, TS and TT refer to single, twin reared as single

and twin, respectively.
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Adjustment factors obtained in this study for birth-rearing
rank, dam age and age at weaning where a maternal effects model is
assumed are almost identical to the average adjustment factors
obtained by Jury et al (1979). However, there is a large
difference in the estimated adjustment factors for sex. The
adjustment factors obtained by Newman et al (1983) are also
similar to the adjustment factors obtained in this study with the
exception of the adjustment for sex. The estimate of the
adjustment factor obtained for sex by Jury et al (1979), by Newman
et al (1983) and that used by Sheeplan are similar.

6.2. Swine

Weaning weights (8-week weights in 1b) of 1035 Yorkshire or
Large White pigs born between 1964 and 1971 were studied. The
data used were obtained from the Animal Husbandry Department of
West of Scotland Agricultural College, Auchincruive, Scotland.
The families were formed as in Section 6.1., to enable use of the
method of estimation described in Chapter 4. As before it was

assumed that the sires and the dams were unrelated.

The vector of fixed effects of the model included a general
mean, 2 sex effects, 8 year-of-birth effects, 7 parity-of-the-dam
effects and a regression coefficient associated with tne litter

size. Let

By = general mean;

Bos 83 = effects of sex (male and female respectively);
By - Byq = effects of year (1964 to 1971 respectively);
Bi2 - Byg = effects of season (spring - winter);

B1g ~ Bop = effects of the parity of the dam (1-7); and

823 = regression coefficient associated with the litter size.

Initially, an analysis of variance was carried out using the
Generalized Linear Models computing programme REG [Gilmour

(1983)]. The aim was to obtain initial values for some of the
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parameters. The linear equations and the nonlinear equations
developed in Chapter U4 were solved alternately until the solutions
converged. No restrictions were imposed on the solutions.

Routine COSNAF of NAG FORTRAN library [Numerical Algorithms Group
(1981)] was used to solve the nonlinear equations, the solutions
to these being the estimates of variance components. The
algorithm used in COS5NAF is a combination of Newton-Raphson and
steepest descent methods in such a way as to give a steady
progress and a fast rate of ultimate convergence. In the latest
NAG FORTRAN library (mark 10), COSNAF is replaced by CO5NBF, which
is a readily available routine for solving a system of nonlinear

equations by a modification of the Powell hybrid method.

By using éo (estimates obtained using REG) a set of estimates
of the variance components were obtained in round 1. Several sets
of initial values of § had to be attempted before a solution to
the nonlinear equations was obtained in the initial round of
iterations. In the subsequent rounds of estimating variance
components the solution from the previous round was used as the
initial value of §. Tables 6.8 and 6.9 present the results
obtained from the unconstrained optimization of the likelihood
function. The solution values for 83, 811, 815 and 322 were set

to zero.
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Table 6.8 : ML estimates of variance components

resulting from an unconstrained optimization

using 8-week weights of Yorkshire pigs (1b2)

6, 6.0936 10.0248 10.3964
6, 52.2220 88.1778 96.0844
83 -24.7516 -39.0324 -42,3280
6y -18.3210 -41.3268 -145.9529
65 32.1190 29.0339 28.8054
92 47.3620 46.8773 47.0053

10.3512 10.2784 10.2276 10.1956
97.4392 97.6044 97.5854 97.5502
-42.8596 -42.9008 -42.8752 -42.8496
-46.7473 -46.8461 -46.8363 -46.8164
28.8178 28.8665 28.8935 28.9105
47.0013 47.0024 46.9950 46.9903

Table 6.8 continued

Round 8 9 10

1" 12 13 14

8, 10.1768 10.1652 10.1588
B, 97.5262 97.5096 97.5024
?3 -U42.8332 -47.8224 -42.8172
6, —46.8029 -4T7.7933 -46.7893
65 28.9206 28.9267 28.9301

Bg 46.9875 46.9858 46.9848

10.1548 10.1524 10.1508 10.1500
97.4960 97.4932 97.4906 97.4894
-42.8132 -42.8112 -42.8096 -42.8088
-46.7857 -u46.7841 -46.7825 -46.7819
28.9323 28.9336 28.9343 28.9348
46.9842 46.9839 46.9836 46.9835
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ML solutions for the equations corresponding
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to the fixed effects resulting from an unconstrained

optimization using 8-week weights of Yorkshire pigs

Round 1 2 3 4 5 6 Ut
general mean

B 33.5004 33.2370 33.2389 33.2501 33.2576 33.2621 33.2647
Sex

g, 0.6237 0.5560 0.5500 0.5476 0.5465 0.5458  0.5455
year-of-birth

By 12.2942 11.6846 11.5410 11.4977 11.4801 11.4713 11.4664
B5 10.4952 10.0717  9.9941  9.9685 9.9571  9.9510  9.9476
Bg 7.9512 8.0745 8.0050 7.9672 7.9465  T7.9346  7.9277
g7  4.7064  4.8253  4.7790  4.7500  4.7333 4.7237 4.7180
Bg 2.1315  2.2199 2.1698 2.1422 2.1272 2.1186 2.1136
By  3.9527  3.9794 3.9490  3.9284 3.9162 3.9090  3.9047
Bjp —0.8762 -0.8135 -0.8366 =-0.8517 -0.8603 -0.8653 =-0.8682
season-of-birth

gy, 0.0012 -0.0590 =-0.0815 =-0.0896 =-0.0933 =-0.0953 =-0.0964
B33 ~0.5943 -0.6237 -0.6467 -0.6535 -0.6561 =-0.6574 -0.6581
g1y -2.5728 =-2.6656 -2.6859 -2.6900 -2.6911 -2.6915 -2.6917
parity of the dam

Bl —1.4694 -1.4132 -1.3737 -1.3648 -1.3622 -1.3612 -1.3607
Bl7 1.9579 1.7866 1.8154 1.8260 1.8306 1.8330  1.8343
Blg 3.2428 3.2396 3.2759 3.2871  3.2918  3.2942  3.2956
Blg —1.1847 =1.1891 =-1.1416 -1.1249 -1.1175 -1.1136 ~-1.1114
B9 —1.6153 -1.6745 =-1.6549 -1.6481 -1.6451 -1.6436 -1.6426
B> 1.7852  1.9323  1.9644 1.9735 1.9770 1.9786  1.9796
litter size

853 ~0.5553 =0.5299 =-0.5275 =0.5271 =-0.5270 =-0.5269
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Round 8 9 10 11 12 13

§, 33.2663 33.2673 33.2678 33.2681 33.2683 33.2685

€ 0.5452 0.5451  0.5450

g, 11.4635 11.4619 11.4609 11.4603 11.4599 11.4597 11.4596
B 9.9456  9.94u44  9.9437  9.9432  9.9430  9.9429  9.9428
Bg 7.9236 7.9212 7.9197  7.9189  7.9184 7.9181  7.9179
g7 4.TINT L.T127 L7115 H.T108  H.T104  H.7101  4.7100
Bg 2.1107 2.1089 2.1079 2.1073 2.1069 2.1067 2.1066
Bg 3.9022 3.9007 3.8999  3.8993 3.8990  3.8988  3.8987
Blo —0.8699 -0.8709 -0.8715 -0.8719 -0.8721 -0.8722 -0.8723
87, -0.0971 =-0.0975 =-0.0977 =-0.0978 =-0.0979 -0.0980

By3 —0.6585 -0.6588 -0.6589 =-0.6590 -0.6591

By —2.6918 -2.6918 -2.6919

Blg —1.3604 -1.3603 -1.3602 -1.3601

gy 1.8351 1.8355 1.8358 1.8360 1.8361

Blg 3.2964  3.2969  3.2972 3.2974  3.2975

Blg -1.1102 -1.1094 -1.1089 -1.1087 -1.1085 =-1.1084

Bop —1.6420 -1.6417 -1.6415 ~-1.6414 ~-1.6414 =1.6413

B 1.9801  1.9804 1.9806  1.9807  1.9808

823

The ML estimate of the residual variance common to full-sibs

and maternal half-sibs is negative (see Table 6.8).

The negative

estimate can be accepted as evidence that the parameter is zero
the likelihood is

which results in a truncation.

If this happens,

not maximized unless adjustments are made to other estimates.

Also, these estimates result in a genetic correlation between

direct and maternal effects, which lies outside the range -1 and

+1 (-1.3609).

The most unacceptable result is the estimate of the

maternal genetic variance, which is approximately twice as large

as the estimate of the phenotypic variance.



This problem was overcome by maximizing the likelihood

function subject to the constraints given in Section 6.1.

(routine EOLUAF of NAG FORTRAN library was used).

The ML
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estimates of the variance components and the ML solutions for the

fixed effects are given in Tables 6.10 and 6.11, respectively.

Table 6.10 :

ML estimates of the variance components

resulting from a constrained optimization (1b2)

using 8-week weights of Yorkshire pigs

Round 1 2 3 4

8 6.9364 6.7764 6.7735 6.7736
6, 20.5913  21.0065  21.0971  21.0972
§3 -11.9512  -11.9310  -11.9541  -11.9542
oy 0.0959 0

o 31.7059 30.6697 30.6558 30. 6558
02 47.3785 46.5216 46.5723  46.5724




Table 6.11

: ML solutions to the equations corresponding

to the fixed effects resulting from a constrained

optimization using 8-week weights of Yorkshire pigs

Round 1 2 3 4
general mean

87 33.3790  33.3060  33.29860  33.29861
sex

£, 0.6025 0.6013 0.60115
year-of-birth

g,  12.6070  12.6193  12.62026

Bs, 10.4539 10.4878 10.49106  10.49105
B 8.1983 8.2316 8.23405

87 4.8230 4.8578 4.86059

Bg 2.3556 2.3859 2.38838

By 3.9242 3.9365 3.93691  3.93692
8o ~0.7860 -0.7568  -0.75408 -0.75409
season-of-birth

£,  0.0917 0.0902 0.08986

By3 —0.4648  -0.4831 -0.48510  -0.48509
By —2.4422  -2.4816  -2.48587 -2.48586
parity of the dam

g ~1.7160  -1.6633  -1.65773 -1.65774
877 1.6417 1.6688 1.67175 1.67174
Blg  3.0290 3.1110 3.12004  3.12002
Blg ~1.4916  -1.4496  -1.44479  -1.44LBO
B59 -1.7979  -1.7567  -1.75218 -1.75219
By  1.6619 1.6562 1.65442

litter size

B3 -0.5443  -0.5528  -0.55265

164
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The estimate of the variance attributable to the residual
effects which are common to full-sibs and maternal half-sibs is
zero. The maternal genetic variance is about three times as large
as the direct genetic variance. The genetic correlation between
the direct and the maternal genetic effects is -1.0 which implies
that there is a very strong antagonism between direct and maternal
genetic effects. The fraction of the selection differential

realized, if selection is on phenotypic values is 0.013.

Ahlschwede and Robison (1971a) estimated the genetic and
environmental variances and covariances relevant to birth weight,
56-day weight, 140-day weight and back fat of swine (Duroc and
Yorkshire breeds). They estimated the variance components by
equating the theoretical compositions to the covariances between
relatives, where the covariances between relatives were estimated
using analysis of variance procedures. In Table 6.12, the
estimates they obtained for the 8-week weights (in kg) of
Yorkshire pigs are compared with the ML estimates of the variance

components obtained in this study.
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Table 6.12 - A comparison of three sets of variance

components (kgz) for 8-week weights of Yorkshire pigs

estimate of Ahlschwede and ML estimates

Robison (1971a) constrained unconstrained

phenotypic variance 13.573 9.7073 9.6224

direct additively -0.766 2.097M 1.3995

genetic variance

maternal additively -0.843 20.1424 4,.3589

genetic variance

covariance between direct 0.816 -8.8u48 -2.4699
and maternal additively

genetic variance

variance of residual effects 4.631 -9.6657 0

common to a litter

variance of residual effects 9.736 5.9783 6.3338

unique to individuals

The estimates for the phenotypic variance, direct additively
genetic variance and the variance of the residual effects unique
to the individuals obtained from the unconstrained and constrained
maximization of the likelihood function are similar. In fact, the
differences between the estimates for the phenotypic variance and
the variance of the residual effects unique to the individuals are
very small. However, the estimates obtained by Ahlschwede and
Robison (1971a) and the estimates obtained in this study vary
greatly. They obtained negative genetic variances for direct and

maternal genetic effects and a positive, but small, estimate for
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the covariance between direct and maternal genetic effects which
is contrary to the ML estimates obtained in this study, for the

same trait (8-week weight of Yorkshire pigs).
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CHAPTER 7. DISCUSSION

Despite the computing difficulties often encountered when
using maximum likelihood procedures, the maximum likelihood
approach for estimating variance components has many advantages.
The most common method of estimating maternal variance and
covariance components has been equating covariances between
relatives to their expected compositions where the covariances
between relatives are estimated using analysis of variance
procedures. However, the estimates obtained in this method do not
always lie within the parameter space [see Ahlschwede and Robison
(1971a)]. Therefore one of the advantages that maximum likelihood
methods have over other methods for estimating variance components
is the ability to impose constraints on the solutions obtained.
However, maximization of the likelihood function without imposing
constraints and truncating the solutions to certain bounds if
required (truncating to zero if negative estimates of variances
are obtained), is not recommended since the likelihood is not

maximized unless adjustments are made to the other estimates.

The estimation of variance components by maximum likelihood
methods involves the numerical solution to a constrained nonlinear
optimization problem. Although this has been difficult and
sometimes not feasible in the past, the availability of increased
computing power and technology, means that these methods are
becoming more applicable. The use of maximum likelihood methods
is also becoming easier with the development of effective
computing algorithms for nonlinear optimization problems. Hartley
and Rao (1967) established large sample optimality properties of
maximum likelihood estimators and commented that these properties
should provide justification for additional computing time
necessary (if any). In the case of animal breeding where large
sample sizes are usually involved, even the less sophisticated

methods could consume considerable amounts of computing time.
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Maximum likelihood estimates are derived under the assumption
of a particular distributional form for the observation vector,
usually normal, which is the case in this study. This is one of
the drawbacks of the maximum likelihood techniques. However,
Harville (1977) suggested that the maximum likelihood estimators
derived on the basis of normality assumptions may well be suitable

even if the form of the distribution is unspecified.

Thompson (1976) commented that the maximum likelihood method
is probably most suitable for balanced data and added that, when
the data are unbalanced, the use of full ML methods can be
computationally not feasible. However, there are circumstances
when the special structure of the data can be exploited. 1In this
thesis, a highly-structured variance-covariance matrix of the
observation vector which can be easily inverted was utilized. 1In
fact, explicit expresions for the inverse and the determinant of
the variance-covariance matrix were developed. Therefore no
iterative computing algorithm was required to obtain the
determinant or the inverse of the variance-covariance matrix.
This reduced the computing time required to evaluate the

likelihood function and its partial derivatives.

General expressions for the large-sample variance-covariance
matrices for maximum likelihood estimators exist [see (3.7) and
(3.8)]. However, obtaining the large-sample variances using (3.7)
and (3.8) can be computationally difficult since it involves the
inverse of the variance-covariance matrix of the observation
vector. This was not a problem in this study, since an explicit
expression for the inverse of the variance~-covariance matrix was

developed.

The optimization problem in this study was carried out using
two procedures for estimating variance components. The first of
these solved nonlinear equations, which are the first derivatives
with respect to variance components. The second procedure was to
maximize the likelihood function subject to non-negativity

- constraints of certain functions of the variance components. The
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computer time required for solving the nonlinear equations
(unconstrained) was less than that for the maximization problem.
However, generating the likelihood function which is essential for
the second procedure, is easier than generating the partial
derivative with respect to the variance components. One of the
disadvantages in maximum likelihood solutions is that one is never
entirely sure whether the solution is the global maximum of the
likelihood. However, the fact that several starting values had to
be attempted in both procedures (constrained and unconstrained)
before solutions were obtained, implies that the probability that

the global maximum was achieved was high.

Predicting direct and maternal genetic values of all animals
is a special case of a multiple-trait evaluation where breeding
values of all traits are predicted [see Quaas and Henderson
(1976)]. Therefore, inverting the variance-covariance matrix of
direct and maternal genetic values involves inverting the
numerator relationship matrix of the animals and a matrix of order
two. This means that the number of equations pertaining to the
number of random effects to be predicted is twice as large as the
number of animals. Also, the maternal genetic values of the

unidentified animals are not predicted by this method.

In the case of meat animal species, maternal genetic ability
for offspring growth is of no importance commercially. Since the
total genetic effect of an individual is the sum of the direct
genetic value and the maternal genetic value of its dam, it is
important to distinguish the individual's genetic ability from the
maternal ability of its dam. Then the animals can be selected on
their individual genetic merit. This means that the objective of
the prediction problem is satisfied as well as reducing the number
of BLUP equations by predicting the maternal genetic values of the
dams only. In practical applications, where large numbers of
animals are evaluated, it is desirable to reduce the number of
equations as possible. When the objective is to select for
maternal ability or a linear combination of the direct and

maternal genetic values, then the direct and maternal genetic
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values of all animals have to be predicted.

Quaas (1975,1984) demonstrated how the inverse of the
numerator relationship matrix can be derived from first principles
by writing a linear model for an individual's breeding value in
terms of its parents breeding values. In this thesis, this method
was modified to obtain the inverse of the variance-covariance
matrix of the direct genetic values of all individuals of interest
and the maternal genetic values of their dams. However,
additional genetic values have to be included in order to generate
the correct inverse of the variance-covariance matrix and these
were specified in Chapter 5. The increment in the number of
equations, caused by the second condition (see also Chapter 5) is
small, since there are comparatively few sires in a pedigree
compared to the number of animals. The first of these restricions
causes the number of equations to increase unnecessarily, since
the direct genetic values of the unidentified dams are not of any
importance. This can be avoided by excluding the maternal genetic
values of the unidentified dams or assuming that the dams with no
records are unknown. However, such exclusions cause in a change

in ranking of the predictions.

The proportion of genetic variation explained by the direct
genetic and maternal genetic effects are considerably large for
8-week weight of Yorkshire pigs and for the weaning weight of
Romney lambs. This means that substantial improvement of direct
and maternal genetic values is possible, provided there is no
negative correlation between direct and maternal genetic effects.
The estimates of these proportions are 14.5%, 45.3%, 19.6% and
49.4% for direct genetic effects of 8-week weight of Yorkshire
pigs, maternal genetic effects of 8-week weight of Yorkshire pigs,
direct genetic effects of weaning weights of Romneys and maternal
genetic effects of weaning weights of Romneys, respectively. The
estimate of heritability obtained by Ch'ang and Rae (1972) for

weaning weight of Romneys is 30.0%.
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The genetic correlation between direct and maternal genetic
effects is negative and large for 8-week weight of Yorkshire pigs
and the weaning weight of Romney sheep; the constrained
maximization of the likelihood resulting in the estimates -1.0 for
pig data and -0.51 for sheep data. This implies that simultaneous
improvement for direct and maternal genetic effects is difficult
in both cases, pig breeders being confronted with the more severe

problem.

The estimate of the variance of the residual effects common
to a litter (that is full-sibs and maternal half-sibs) is zero in
both cases. Ahlschwede and Robison (1971a) obtained an estimate
of 4.631 (kg) for the variance of the environmental effects common
to a litter for 8-week weight of Yorkshire pigs. The estimates
they obtained for the direct additive genetic variance and the
maternal additive genetic variance were -0.766 and 0.843,
respectively. This would have had some influence on their
estimate of the variance of the environmental effects common to a
litter.

The analyses of the sheep and pig data show that, the methods
developed in this thesis for estimating genetic parameters for
mixed models involving maternal effects are computationally

feasible. The results obtained were generally satisfactory.
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APPENDIX 1

An algorithm for computing A.,, for a single-trait setting

Suppose the ith sire is mated to n dams. Then the matrix in

(4.21) for this case can be written as

Eomedin e = e ¢d1n
ey aleetiog == = ¢d2n
: (A1)
.. %n ¢dn2 » o o alnp*bdp, f.

The inverse of the above matrix has the form

PL11*211d1y Q2912 © 0 Qpdin
Q12921 Ploo*appdon + -+ Gppdop (42)
L Qpdnt Pndne « « « PLyn*apndnn |

where £jj is the identity matrix of order nj and ij is the njxn

matrix of "1"s.

The inverse of the matrix given in (A1) for n 2 3

Multiplying the first column of matrices of (A2) by the

matrix in (A1), gives

(alyq * bdy)(PIyq + apqdyq) * cqipdipdoy v v
-« et cqpdipdy = I (A3)
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edo1(PIyq * Q1qdqq9) * qqplalyy + Bdooddoy + v

<« s *vequpdondyy = 0 (AL)

¢dn1 (PI1q * Ag9dye) * CAgpdppdoy * - - -

n
o

Ap(alpn * 9dnn)dng (A5)

From (A3), two equations are obtained, namely,

aplyy = Iy,
and

(op + aqqq + nybgqq * npeqqp * . . Lt nncqm)g11 = 0,
The first of these two equations gives
p = 1/a.
Then the second equation with the equations from (Al4) to (A5S)

gives the following set of equations which can be used to find q1j

(j=1,...,m):

(a+nyb)gqey +  nycaq, * + e * ngegq, =-b/a (A6)
nyeqqq  *+ (a*nyd)qqp * . . .+ npeqq, = -c/a (AT)
nycqq, +  n,cqqo LI (a+nnb)q1n = -c/a (A8)

subtracting the jth equation from (A7) for j=3,...,m gives

a + nzb - n20

q1‘j a "'I'l-b"l'lJC d1e

J

Substituting this in (A6) and (A7), obtain
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(a + nyblagy +  [nye + £(n)]qy, = -b/a (A9)
and
nycqq, + [a + n,b + f(n)]qlz = -c/a (A10)
where
f(n) = c(a+n,b-nye) jz3 [nj/(a+njb-njc)].
Equations (A9) and (A10) give

where

d = n1n202 - (a + nyb)(a + nyb) - (a + nydb - nyc)f(n).
Then, as shown earlier q1j (j=3,...,m) can be computed using

a + n2b + nye

P q2-

a*njb“‘njc

Finally from (A6)

Q“] =~ [ g + chszQ1J ]/(a+n1b).

Multiplying the second column of matrices of (A2) by the

matrix in (A1), gives

Quplalyy * bdyq)dqp * edin(plyn + Qppdpp) *+ o .

* Clpdindne = 9 (A11)
cqypdp1dyn * (alpn *+ Bdoo)(Plos *+ Gppdpp) *+ v v
- =« ¥ cOonlondme = op (812)
cqqpdp1din * edna(Plon + appdon) + v v
« o ot an(aInn + bgnn)‘ln2 - Q (A13)

From above, the following set of equations with n-=1 unknowns is

obtained (p and qq, are already known):



(a*nyb)aqp *+  NpCdpp * . . .+ ncqy, = -c/a
nqcqqo -b/a

+

(a+nyblayy *+ . o .+ npeqp,

nqcqqo +  n,cqy, I - (a+nnb)q2n = -c/a

subtracting the jth equation from (A14) for all j=3,..

(a + n4b - n1c)q12 = (a + njb - njc)q2j

which implies that

Then from (A15),
Ay = - g i Engians & cj23niq23 J/(awmzp).

ith step
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(A14)
(A15)

(A16)

.,m gives

Multiply the ith column of matrices of (A2) by the matrix in

(A1). Then the following set of equations is obtained:

(a*njblajf* 0zCdpy *. o+ nyedyy e ot NpCdyn
nqcqq g +(a+n2b)q21+. .+ njeqjy *o o+ NpCQjp

njeqqy  * Npcdpy  te .+(a+tn;b)qy4*. .+ npeqy, =

neqqy * NpCdpy *. .+ njeqyg  *. .+(atn b)ay,

= -c/a

= -c/a

-b/a

-c/a

(A17)
(A18)

(A19)

(A20)

At this stage there are m—-i+1 unknowns. subtracting (A19) from

(A17), gives



Wi

a n1b - ne

Qi 3 Q4

a + an - njc

which implies that

. (a+n1b-n1c)(a+n2b—n20)

Qis = q75 s
1 (a+nib-nic)(a+njb-njc) 12

Then from (A19)

b i-=1
g == [ g A Jogy Cj=2+1njqij]/(a+nib)'

The sequence proceeds until the last columm is attained. The only

unknown at this stage is Apne which is
=1
.
- [ B+ CJZ1anJﬂ 1/ (a+nb).

The expressions for the inverses of the matrix given in (A1)
when the number of dams mated to the ith sire are one and two are
given below for completion, although in practice it is not

recommended to use the information from such small families.

Then the matrix reduces to

alry * Bdn
and the inverse is given by

PI1q * Q11d19
where
p=1/a

and

Q11 L -b/[a(a+n1b)]-
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When n =2, the inverse is given by
PI1r * 91d1 912912
992921 PIoo * 922922

where

p=1/a
qQyp = c/d

Q1 = - [ g + nch12 ]/(a+n1b)
and

a2 = = [ 8+ nyeayp V(amyp).
In the expression for q12
d 2 .
= nynyc (a+nyb) (a+nyb).

Therefore, the following algorithm can be proposed to
generate Ai11 (or the values for p and qiJk (i=1,...,s;
j=1,...,ni; k=j,...,ni).

Algorithm for computing Ajq;

(1) p=1/a
nilni202 - (a*nj b)(a+n;,b) if ng= 2
(2) di -
“11“1202 = (atny b)(a+nj,b) - gy(n) if ny> 2
where

n
i

gi(n) . c(a+ni1b*n11c)(a+n12b—nizc)_Ea{niJ/{a+nin-nijC)}
‘]ﬂ
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(3) q“z - C/di

(4) 1f n1> 2,
(a+ni1b-ni1c)(a+n12b—n12c)

q.. = = -
ijk Ia+nijb nijcita+niko nikcj

for j=1,...,n;-1 and k=j+1,...,n

i i*

(5) If ng= 1,

9591 = -b/lala+n;yp)].

If n;= 2

ag11 = = [ 3+ njpeayyp 1/(asnyb)
and

9322 = = [ 2 + njjeazqp V(atn,p).
If ni> 2y

-1 By
R T -
asyj = [ 2+ °k£1nikqikj + °k=§+1nikqijk 1/(a*n; ;b)

for j = 1,...,ni.
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APPENDIX 2

An algorithm to generate the determinant of the

variance-covariance matrix

From (3.14),

*
Vil = Vil [Vi22] 1¥i33l (A21)
where

¥ - =1 ' " =1 1
Vi = Vi1 7 Yi12Yi22Vi12 © Yi13Yi33Vit3-

* *
Denote V; by V;(g) where L is the value of nj.

*
For example, when n; = 1, V., is given by

2
*
Vi (1) = aljqq + bdyqg.
*
It is well known that the determinant of Vi(1) is given by

|vi()] = af' (") (an b) (A22)
where

f1(n) - ni-| = a

*
Vi(2) = [ alji1+*bdypq ¢djr2
cd 2 al122"0 402 |-

From (3.11),

Vi@] = [y |¥;(2)]

where
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-1
Wi(2) = aljop * bdypn = edjpq(@ljyy + bdjqq) cdyqp-
It was shown earlier that
=
(aljqq * ddiq9) = PLiqq * 8311(2)d419
where
p=1/a

and

8i11 = - b/[a(a+ni1b)]

Therefore, yi(z) can be written as

Wi(2) = aljpp * g32d400
where
2 2.2
Gia = D=pe By = eTny 8y (2)

which implies that

*
Vi@ = laljqq * odyqq| lalioe * ei2dioal-

This means that

l¥1(2)] = af ™ (a v nypo)(a + ngpup)
where

f2(n) - ni1 * niz i 2.
For the case n; = 3h

Vi3] = Vi) ] |W;(3)]
where

But,
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*,_1-1
(Vi)™ = [ pIi19%6411(3)d 1y §512(3)d412
8§312(3)d 29 PLi22*8122(3)d42)
where

§112(3) = c/d;

6111(3) . 3 [ 2 + n1206112(3}]/(a+ni1b)
and

8100(3) = = [ 2+ nj;08;1,(3)1/(an,b).

In the expression for §;15(3),

dj = nyynipe® = (amyyb) (amy,D).
Also, wi(3) can be written in the form

Hil3) = mligg * Rigdiay
where

¢33 = b - pe?(ngyangp) - e2(nf 6517 (3) + nip8;55(3)
= 202ni1n126112(3}

which means that

Vi3] = a3 (arnyy0) (atnpey5) (amysey3)
where

By following the above procedure, an algorithm can be proposed to

*
compute the determinant of !i for ni>3.

Algorithm to compute |V;| when n;>3 (n; is the number of dams

mated to the ith sire)

Step 1
gjp = b
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Step 2
2 2.2
Gjp = b - penyy - enj8544(2)
where
§;11(2) = -b/[ala+ny;b)]
Step 3
2
Ti3 = b = pelnyi*n;5) = c®(nfy8591(3) + n§r8;55(3))
2
- 20 n11n126112(3)
where
8112(3) = e/d;
6111(3) - [b/a i n1202/dl]/(a+n“b)
and
8155(3) = - [b/a + ny;e/d 1/ (a+n,b)

In the above expressions,

2
dj. = r'l“nizc - (a+ni1b)(a+n12b).

Step 4
Calculate gyp for 4 < p < ny
where 21 01
2 ¢ 2 v 2
C1£= b - pc z niJ = C 2 nljéijj(z)
j=1 j=1
. -2 £
-2c° )} )

N 8. (2
3= k=j+1n1Jn1k61Jk( :

The expressions for p and Gijk(E)'s are the same as those in

(4.22), except that L is substituted for nj.

Step 5
Then
* £i(n) b
i(n
|¥i| = a jE1(a + nijcij)

where fi(n) = Ngy = N
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Since Vi22 is given by Y1Ii, where Ii is the identity matrix

of order ny,

n.
[Viool = 1q*

Vi33 is a scalar (Y1). Therefore from (A21) the determinant of vy

is given by

n.
_ wgi(n)_fi(n) *
|yi| = Y% )a )j£1(a+nijcij)
where

gi(n) = n; + 1.
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APPENDIX 3

An algorithm for computing Ajqq for a multiple-trait setting

Step 1

Step 2
-1 _

niynjCA +nyB)71C = (A +np,B) - Gy(n)  if np> 2
where
_.1 N
Gi(n) = (A + nypB = n;50)T;ln; C(AMB) 'C - C]

In the above expression

n.
1
- -1
Ty = 323 njj(4 + nyyB = ny0) T

~

Step 3
Qi1 = (A + ny;B)7 CD7!

Step U

If nj> 2, calculate Qijk for j=1,...,ni and k=j,...,n1,

where

- ey - *
Qijk = (A + ny3B = nyC) T(A + njpB = 050001450 -
In the above expression
* -1
Qpk = (& + nyyB = nyy QYA + nyyB - ng € .

Step 5
If ni-1,
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Si -1
Qi1 = A B(A + ni1§) v

If ny =2,
—rpa- ”
Qiqq = (A "B+ n12911gg](é + ni1§)
and
a1} -1
Qipp = ~[A7'8 + ny;Qy,CIA + nipB) .
If ng> 2

n

Jzl i .
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Appendix U

Examples to illustrate the inversion of the variance-covariance

matrix of direct and maternal genetic effects (single—traiq)

Consider the predigree information of the example considered
by Slanger (1979) [see Table A1].

Table A1 - Pedigree information of

the example (from Slanger (1979)

Individuals

with records sire dam
A unknown R
B M P
€ M P
D unknown Q
E M R
F A R
G A R
H A E
I unknown unknown

He computed the inverse of G where the direct genetic values of
A-1 and the maternal genetic values of P, Q, R, A, E, G and M and
the unidentified dam of I were included in the vector of genetic
values to be predicted. The objective of this study is to predict
the genetic values of the individuals A - I, free of the maternal
genetic values of their dams. That is, in addition to the direct
genetic values of A - I, we require the maternal genetic values of

P, Q, R, E and the unidentified dam of I (U).
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It was explained earlier, that if the maternal genetic value
of any individual is included, then the direct genetic value of
this individual should also be present in the vector of genetic
values to be predicted, in order to generate the correct 9-1.
Therefore, it is required to include the direct genetic values of
P, Q, R and the unidentified dam of I. The other option is to
exclude the maternal genetic values of the unidentified dam of I,
which leads to biased results. Also, since the direct and
maternal genetic values of the dam and the direct genetic value of
the sire of F and G are included, it is required to include the
maternal genetic value of the sire of F and G. This means that,
genetic values which are not present in the model are predicted
(the direct genetic values of P,Q,R and U and the maternal genetic
value of A). Neither genetic value of M is included in the model.
Therefore let us assume that the sires of B, C and E are unknown.
The following examples demonstrate how the inverse of G is
generated and also demonstrate why restrictions have to be imposed
on the vector of genetic values to be predicted. The first
example generates the exact 9—1 whereas the second generates an

approximate to the inverse.
Example 1

In addition to the direct genetic values of A-I and the
maternal genetic values of their dams, direct genetic values of P,
Q, R and U (dams with no records) and the maternal genetic value
of A (a sire) are included. Arrange the genetic values so that
the direct genetic values of parents precede the direct genetic
values of their progeny. The maternal genetic value of an
individual, if present, will follow it's direct genetic value.

For this example,

'I..l' - (Pd’Pm’Qd'Ql’l’l'Rd'RI'D'AG’A[TI'Bd’Cd'Ed'Efﬂ'Fd'Gd’Hd'Ud'UM'Id)

where the subscripts d and m refer to direct genetic values and

maternal genetic values, respectively. Suppose that the elements
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of u after they are ordered are numbered as follows:

1 2 3 ¥ 5 & ¥ & 9 10 11 12 13 14
Pa Pm Q@ Qn Rg Ry Aq Ap By Cyq Dg By Ep Fy

15 16 17 18 19
Gg Hq Uyq Up Ig

It can be noted that all diagonal elements of the relationship
matrix of individuals P, Q, R, U and A - I are 1.

Computation of the inverse of the matrix of the mendelian

sampling random variables

P, Q, Rand U

direct and maternal genetic values are required; both

parents are unknown

-1 _p=1 = p=! o p! _2g -1
Dp' =DBq =Dg =Dy =108 -36
-36 158

A and E

direct and maternal genetic values are required; dam's
direct and maternal genetic values are included; sire is

unknown

-1 _ - 1 -1
Brt o ) = aeia 108 -36
=& =R 075

=36l 158

B, C, Dand I

direct genetic values only; dam's direct genetic value is

included; sire is unknown
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= ol wpd o] -1
D =Dc =Dp =D = [0.75x108]

F, G and H

direct genetic value only; direct genetic values of both
parents are included

-1

1
Dp

- Dg' = ' = [0.5x108]""

Generating the inverse of G

Denote the (i,j)th element of G ' as Y(i,j).

Step 1

-1

Initially, let G| = D™'. That is

parents individual

unknown P Y(1,1) = 0.010020
Y(1,2) = 2.2831x1073
Y(2,1) = 2.2831x1073
Y(2,2) = 6.8493x1073

unknown Q ¥(3,3) = 0.010020
Y(3,4) = 2.2831x1073
Y(4,3) = 2.2831x1073
Y(L,4) = 6.8493x1073




19

unknown Y(5,5) = 0.010020
Y(5,6) = 2.2831x10°3
Y(6,5) = 2.2831x10 3
Y(6,6) = 6.8493x1073
dam P, Y(7,7) = 0.013360
sire unknown ¥(7,8) = 3.0u441x1073
Y(8,7) = 3.0441x1073
Y(8,8) = 9.1324x10”3
dam P, Y¥(9,9) = 0.012346
sire unknown
dam P, Y(10,10) = 0.012346
sire unknown
dam Q, Y(11,11) = 0.012346
sire unknown
dam R, Y(12,12) = 0.013360
sire unknown Y(12,13) = 3.0441x1073
Y(13,12) = 3.0441x10° 3
Y(13,13) = 9.132Ux1073
dam R,sire A Y(14,14) = 0.018519
dam R,sire A ¥(15,15) = 0.018519
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dam E,sire A H Y(16,16) = 0.018519

unknown 0] Y(17,17) = 0.010020
Y(17,18) = 2.2831x10° 3
Y(18,17) = 2.2831x10°3
Y(18,18) = 6.8493x10™3

dam U, I ¥(19,19) = 0.012346

sire unknown

Step 2
No further contributions to G~| from the individuals P,

Q, R and U. Contributions from other individuals are as

follows:
(1) A
Y(1,7) = Y(7,1) = -0.5x(0.01360) = =6.68x10"3
¥(1,8) = ¥(8,1) = v(2,7) = v(7,2)
- -0.5x(3.0441x1073) = -1.5221x1073
Y(2,8) = Y(8,2) = .5x(9.1324x1073) = -4.5662x1073
Y(1,1) = 0.010020 + 0.25x(0.013360) = 0.013360
Y(1,2) = Y(2,1) = 2.2831x1073 + 0.25x(3.0441x10-3)
= 3.0441x1073
Y(2,2) = 6.8493x10-3 + 0.25x(9.1324x1073) = 9.1324x1073



(2)

(3)

(4)

(5)

|

el

Im
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Y(1,9) = Y(9,1) = -0.5x(0.012346) = -6.173x10"3

Y(1,1) = 0.013360 + 0.25x(0.012346) = 0.016447
Y(1,10) = ¥(10,1) = -0.5x(0.012346) = -6.173x10"3
Y(1,1) = 0.016447 + 0.25x(0.012346) = 0.019533
Y(3,11) = ¥(11,3) = -0.5%(0.012346) = -6.173x10"3
Y(3,3) = 0.010020 + 0.25x(0.012346) = 0.013107
Y(5,12) = Y(12,5) = -0.5x(0.013360) = -6.68x10"3
Y(6,12) = Y(12,6) = ¥(5,13) = Y(13,5)

= -0.5x(3.0441x1073) = -1.5221x10"3
Y(6,13) = Y(13,6) = -0.5x(9.1324x1073) = -4.5662x10"3

Y(5,5) = 0.010020 + 0.25x(0.013360) = 0.013360
Y(5,6) = Y(6,5) = 2.2831x1o’1 + 0.25x(3.ouu1x1o'3)
= 3.0441x10°3

Y(6,6) = 6.8493x1073 + 0.25x(9.1324x1073) = 9.1324x10"3



Y(5,14) = Y(14,5)

Y(5,5) = 0.013360

Y(5,7) b Y(715) =

Y(7,7) = 0.013360

Y¥(5,5) = 0.017990

¥(5,7) = ¥(7,5) =

Y(7,7) = 0.017790

.6298x1073 + 0.25x(0.018519) = 9.2596x10"
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Y(7T,14) = Y(14,7)
= -0.5x(0.018519) = -9.2595x10™ 3

0.25x(0.018519) = 0.017990

.25%(0.018519) = 4.6298x10" 3

0.25x(0.018519) = 0.017990

= -0.5x(0.018519) = -9.2595x10" 3

0.25x(0.018519) = 0.022620

3

0.25x(0.018519) = 0.022620

¥(12,16) = Y(16,12)

= -0.5x(0.018519) = -9.2595x10™3

Y(7,7) = 0.02262 + 0.25x(0.018519) = 0.027250

Y(7,12) = Y(12,7) = 0.25x(0.018519) = 4.6298x10™3
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Y(12,12) = 0.013360 + 0.25x(0.018519) = 0.017790
(9) I

Y(17,19) = Y(19,17) = -0.5x(0.012346) = -6.173x10"3

Y(17,17) = -0.010020 + 0.25x(0.012346) = 0.013107

The exact inverse of G generated by this method is given in Table
A2.



Table A2 - The exact inverse of G for Example 1

Pa ™ Q U R4 Pm = . B4 Ca Bq Eq Em Fa Gy t Yy Up, Iy
1.953  .304 0 0 0 0 -.668 -.152 -.617 -.617 0 0 0 0 0 0 0 0 0
.913 0 0 0 0  -.152 -.us57 0 0 0 0 0 0 0 0 0 0 0
1,311 .228 0 0 0 0 0 0 -.617 0 0 0 0 0 0 0 0

685 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.262  .304  .926 0 0 0- 0  -.668 -.152 -.926 -.926 0 0 0 0

913 0 0 0 0 -.152  -.u57 0 0 0 0 0 0

2.725  .304 0 0 0 -.u27 0  -.326 -.926 -.926 0 0 0

.913 0 0 0 0 0 0 0 0 0 0 0

1.235 0 0 0 0 0 0 0 0 0 0

) 1.235 0 0 0 0 0 0 0 0 0

Symmetric 1.235 0 0 0 0 0 0 0 0

1.799 304 0 0 -.926 0 0 0

S13 0 0 0 0 0 0

1.852 0 0 0 0 0

1.852 0 0 0 0

1.852 0 0 0

1.311  .228  -.61

685 ¢

1.23

All numbers in this table are obtained by multiplying the actual numbers by 100.

96T
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Example 2

Direct genetic values of the dams with no records are removed
(Pd, Qq4» Ry and Ud). The objective of this particular selection
problem is to predict direct genetic values of individuals A - I
and the maternal genetic values of their dams. Therefore the
direct genetic values of P, Q, R and U are not required. As
before the maternal genetic value of a sire (Am) is included.

Then u for this example is given by
B' = (Pm’Qm,Rm,Ad,Am,Bd,Cd,Ed,Em’Fd,Gd,Hd,Um, Id)

Following is a demonstration that the exclusion of the direct
genetic values of P, Q, R and U does not result in the exact 9-1.
The elements of g-1 generated by this method and the elements of

the exact §°1 are given for comparison.
Suppose the genetic values are ordered so that the genetic
values of parents precede the genetic values of the progeny,. For

this example the order is given as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
By Qy Ry Ay By By Cy By Ey Bp By € Hy Ui T

P, Q, Rand U

only direct genetic values; both parents are unknown

1 7l

-1

- -1 -1

The D matrices for the other individuals are the same as those in

the previous example.

Step 1



sire unknown

parents individual

unknown P Y(1,1) = 6.3291x10™3

unknown Q Y(2,2) = 6.3291x10°3

unknown R Y(3,3) = 6.3291x103

dam P, A Y(4,4) 0.013360

sire unknown Y(4,5) = 3.0441x10"3
Y(5,4) = 3.0441x1073
Y(5,5) = 9.1324x1073

dam P, B Y(6,6) 0.012346

sire unknown

dam P, C Y(7,7) = 0.012346

sire unknown

dam Q, D Y(8,8) 0.012346
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dam R,

sire unknown

Y(9,9) = 0.013360

Y(9,10) = 3.0441x1073
Y(10,9) = 3.0441x1073
Y(10,10) = 9.1324x1073

dam R, sire A

dam R, sire A

dam E,sire A

Y(11,11) = 0.018519
¥(12,12) = 0.018519
¥(13,13) = 0.018519

unknown

Y(14,14) = 6.3291x1073

dam U,

sire unknown

Y(15,15) = 0.012346

Step 2

As before there is no further contribution from P, Q, R and U.
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Also, only the direct genetic values of B,C,D and I whose parents

come from the "base" population (P, Q, R and U) are included.

Therefore B, C, D and I make no further contribution to Qf1.

L

Y(1,4) = Y(4,1) = - 0.5x(3.0441x1073) = -1.5221x1073

Y(1,5) = Y(5,1) = - 0.5x(9.1324x10"3) = -4.5662x10 3



Y(1,1) = 6.3291x1073 + 0.25x(9.1324x1073) = 8.6122x10"3

Y(3,9) = Y(9,3) = -0.5x(3.0441x1073) = -1.5221x10"3

Y(3,10) = ¥(10,3) = -0.5x(9.1324x1073) = -4.5662x10"3

Y(3,3) = 6.3291x1073 + 0.25x(9.1324x1073) = 8.6122x10" 3

F
Y(4,11) = vy(11,4) = -0.5x(0.018519) =
Y(4,4) = 0.013360 + 0.25x(0.018519) =
G
Y(4,12) = Y(12,4) = -0.5x(0.018519) =
Y(4,4) = 0.017990 + 0.25x(0.018519) =
H

Y(4,13) = v(13,4) = v(9,13) = Y(13,9)

= -0.5x(0.018519)

+

Y(4,4) = 0.022620 + 0.25x(0.018519)

Y(usg) = Y(gsu) =

o

+

¥(9,9) = 0.013360 0.25x(0.018519)

Table A3 compares the elements of the exact

.25x(0.018519) = 4.

-9.2595x10" 3

0.017990

-9.2595x10" 3

0.022620

-9.2595x10" 3

0.027249
6298x1073
0.017990

inverse and the

approximate inverse of the variance-covariance matrix.
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Tahle A3 - Comparison of the exact and the approximate @

1 for Example 2

-

a O
£ w
w"w

B Q, R, Ay An By 4 Dy E, E. Py /1 i, u, I
. 861 0 e -.151 -.u457 0 0 0 0 ) 0 0 0 0 0
866 0 0 -.088  -.u433 .096 .096 0 0 9 0 0 0 0 0
.633 0 0 0 0 0 0 0 0 0 0 0 0 0
.6uS c o 0 0 0 .108 0 o 0 0 0 0 0
I g 0 0 0 0 -.152 -.u57 0 0 0 0
.87: -.125 0 0 0 0 -.062 -.436 .125 125 0 0 0
2.725 304 0 0 0 .427 0 -.926 -.926 -.926 0 0
2.118 .252 L211 -.211 0 .736 .062 -.547 -.5u7 -.926 0 0
.913 0 0 0 0 o 0 0 0 0 0
.901 ous -.0u2 0 0 0 0 0 0 0 0
235 0 0 0 g 0 0 0 0 0
040 -.195 0 0 0 0 0 0 0 0
1.235 0 0 0 0 0 0 0 0
1.040 0 0 o 0 0 0 0 0
.235 0 0 0 0 0 0 0
) .9uy 0 0 0 0 0 0 0
Symmezric 1.336 .304 0 0 -.926 0 0
1.602 .259 -.273 -.273 -.926 0 0
.913 0 0 0 0 0
.203 -.062 -.062 0 0 0
1.852 o 0 0 0
1.473 -.379 0 0 0
1.852 0 0 0
1.473 0 0 0
85 0 0
0 0
0
.108
.235

.9uy

. . . -1
The top line of each row contains the elements of approximate G

All numbers in this tatle are obtained by multiplying the actual numbers by 100.

and the bottom line of each row contains the exact

T0Z



202

APPENDIX 5

An example to illutrate the inversion of the variance-covariance

matrix of direct and maternal genetic effects (multiple-trait)

Consider two traits (trait 1 and trait 2) with the following
variance-covariance matrices between direct genetic effects,
between direct and maternal genetic effects and between maternal
genetic effects respectively:

Zdd = 108 56 Lim ™= -36 -10 P = 158 60

56 98 -15 =40 60 100

Also define

Consider the individuals A - E with the pedigree information

given in Table AM.

Table A4 - Pedigree information of example 3

individual dam sire
A unknown unknown
B unknown unknown
c A unknown
D A B
E C B

Predict direct genetic values of A - E and the maternal
genetic values of the dams of the individuals A - E.

This is equivalent to predicting direct genetic values of
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A - E and the maternal genetic values of A, C and the
unidentified dam of A (U). The direct genetic values of U
and the maternal genetic values of B have to be included

in order to generate the exact 9-1.

That is,

u' = (Byy+Bg2sBm +BposUa12Ug2Umt »Umo s At 1A A » Ao »

C41+Cq2+Cm1 +Cm22Pq1+Pa2Eqr +Ea2)

Let
1 2 3 b 5 6 7 8 9 10

a1 B2 Bm Bm Usyr Us2e Um Um Ag1 A

1" 12 13 14 15 16 17 18 19 20

Ami Am Cq1 Ca2 Cmp Cpp Dg1 Dgp Egqp Egp

The diagonal elements of the realtionship matrix of A - E and U

are 1.

Expressions for the 9 matrices

B,U

"base" animals; direct and maternal genetic values are to be

predicted
(eI = w1 =g

= [ .015751 -.010499  .094648 -.005413]
.019292 -.004005 .009070

.009635 -.006918

.017238
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A'C
direct and maternal genetic values; dam's direct and maternal
genetic values are included
(p(a)1™" = [0(e)1™" = [0.755]7"
= [ .021001 -.013998 .006197 =-.007217 |
.025723 -.005340 .012093
.009635 =-.006918
L .022983“
D,E

direct genetic values only; direct genetic values of both

parents are included
[(D(0)17" = [D(E)]™! = [0.55441"
= .026312 ~-.015038
.029002

The inverse generated by this method is given in Table AS5.



Table A5 - The inverse of 3 for Example 3

a1 Baz Bn1 Bn2 Uas U S Un2 A1 A2 m1 An2 Ca1 Ca2 Cmi Cm2 Pa1 Dgp Ed £a2
2.891  -1.802  .465  -.S5u1 0 0 0 0 658 -.376 0 0 658 -.376 0 0 -1.316 .752 -1.316  .752
3.379  -.u401  .907 0 0 0 0 -.376  .725 0 0 -.37 .725 0 0 .752 -1.450  .752 -1.450
.94 -.692 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.724 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.100 -1.400  .520 -.7.7 -1.050  .700 -.310 .361 0 0 0 0 0 0 0 0

2.572  -.534  1.2C% .700 -1.286  .267  -.605 0 0 0 0 0 0 0 0

1.285 -.920  -.310  .267  -.6u2 .u61 0 0 0 0 0 0 0 0

2.243 .361  -.605  .u6l  -1.149 0 0 0 0 0 0 0 0

3.283 -2.126  .775  -.902 -1.050 700 -.310  .361 -1.316  .752 H 3

3.941 -.668  1.512  .700 -1.286  .267 -.605 .752 -1.450 S 3

1.606 -1.153  -.310 267 -.6u2  .udl 0~* %o 0 0

) 2.873 .31  -.605  .461 -1.1u3 0 0 o o

Symmetoic 2.758  -1.776  .620 -.722 0 0 -1.316  .752

3.297  _ .53y 1.209 0 0 .752 -1.450

1.285 -.922 0 0 0 0

2.298 0 0 0 0

2.631 -1.504 0 0

2.900 0 0

2.631 -1.50u4

2.900

All numbers in this table are obtained by multiplying tre actual numbers by 100

S0z
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