
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

An Investigation into Teaching

Description and Retrieval for

Constructed Languages

A thesis presented in partial fulfilment of the requirements

for the degree of Master of Science in Computer Science at

Massey University

Son Hoang_
2004

Abstract

The research presented in this thesis focuses on an investigation on teaching concepts

for constructed languages, and the development of a teaching tool , called VISL, for

teaching a specific constructed language.

Constructed languages have been developed for integration with computer systems to

overcome ambiguities and complexities existing in natural language in information

description and retrieval. Understanding and using properly these languages is one of

the keys for successful use of these computer systems. Unfortunately, current teaching

approaches are not suitable for users to learn features of those languages easily.

There are different types of constructed languages. Each has specific features adapted

for specific uses but they have in common explicitly constructed grammar. In addition,

a constructed language commonly embeds a powerful query engine that makes it easy

for computer systems to search for correct information from descriptions following the

conditions of the queries. This suggests new teaching principles that should be easi ly

adaptable to teach any specific structured language's structures and its specific query

engine.

In thi s research, teaching concepts were developed that offer a multi-modal approach to

teach constructed languages and their specific query engines. These concepts are

developed based on the efficiencies of language structure diagrams over the

cumbersome and non-transparent nature of textual explanations, and advantages of

active learning strategies in enhancing language understanding. These teaching

concepts then were applied successfully for a constructed language, FSCL, as an

example. The research also explains how the concepts developed can be adapted for

other constructed languages.

Based on the developed concepts, a Computer Aided Language Learning (CALL)

application called VISL is built to teach FSCL. The application is integrated as an

extension module in PAC, the computer system using FSCL for description and

retrieval of information in qualitative analysis. In this application, users will learn

FSCL through an interconnection of four modes: FSCL structures through the first two

modes and its specific query engine through the second two modes. After going

through four modes, users will have developed full understanding for the language.

This will help users to construct a consistent vocabulary database, produce descriptive

sentences conducive to retrieval, and create appropriate query sentences for obtaining

relevant search results.

11

Acknowledgements

There are a number of people I would like to thank for their support throughout this

study.

First and most importantly, I would like to express a deep gratitude to my supervisor,

Dr. Eva Heinrich for her encouragement, enthusiasm and invaluable advice. Without

her tremendous help, this study would not be possible.

I also would like to thank my family for their continuing encouragement, support and

for always being there for me.

Ill

TABLE OF CONTENTS

ABSTRACT I

ACKNOWLEDGEMENTS ... Ill

TABLE OF CONTENTS IV

TABLE OF FIGURES IX

CHAPTER 1: INTRODUCTION 1

1.1 What is language grammar? ... 3

1.1.1 Natural language grammar. 3

1.1.2 Constructed language grammar 5

1.2 Motivation and objectives of the research ... 6

1.2.1 Leaming constructed languages 6

1.2.2 Factors that enhance understanding in language learn ing 8

Active learning 9

1.2.3 Research objectives 9

1.3 Research methodology and steps .. 10

1.4 Thesis structure .. 11

CHAPTER 2: LANGUAGE SYNTAX LEARNING AND GRAPHICAL

PRESENTATION 13

2.1 Language for description and retrieval of information 13

2. 1.1 Natural language in information description and retrieval 13

2.1 . 1.1 Natural language 13

2.1.1.2 Limitations of natural language in information description and retrieval 15

2.1.2 Constructed languages for information description and retrieval 17

2. 1. 2.1 NLL languages for studying behaviour 17

2.1.2.1.1 Simple grammar 17

2.1.2.1.2 Restricted vocabulary 18

IV

2.1.2.1.3 Specific NLL languages for study of behaviours 19

2.1.2.2 Constructed languages for presenting document structures 21

2.2 Diagrams for presenting language structures ... 24

2.2.1 Diagrams for enhancing learners' understanding 24

2.2. l . l Efficiency of diagrams for enhancing human understanding 24

2.2. l .2 Efficiency of diagrams in computer science 25

2.2.2 Di agrams in language structure presentation 26

2.2.2. l Non-diagram presentation 27

2.2.2.2 Diagrams in presenting language structure 28

2.2.2.2. l Structure diagrams of different natural language theories 28

2.2.2.2.2 Structure diagrams of constructed languages 3 8

2.3 Computer Aided Language Learning40

2.3 . l Benefits of CALL in language learning 41

2. 3. 2 Areas of CALL in Language Learning 4 2

2.3 .3 Elements which influence CALL development 43

2.3 .3.1 Human Computer Interaction 44

2.3 .3.2 Computational Linguistics 45

2.3.4 CALL applications for natural grammar learning 45

2.3.4. l Non-diagram applications 46

2.3.4.1.l Focus On Grammar 46

2.3.4.1 .2 English Sentence Analysis 47

2.3.4.1 .3 Constraint Grammar Parser of English 48

2.3.4.2 Diagram applications 49

2.3.4.2.1 Diagramming Sentences 49

2.3.4.2.2 Syntax Student's Companion 50

2.3.4.2.3 Tree Drawing Tool Animation 52

2.3.4.2.4 Visual Interactive Syntax Leaming 53

2.3.4.2.5 TOSCA Tree Editor 56

2.3.4.2.6 VIA Grammar Practice 57

2.3.4.3 Computer application for learning constructed languages 58

2.4 Conclusions about current language learning systems 62

V

2.5 Suggestions for a teaching constructed languages .. 64

2.6 Summary ... 65

CHAPTER 3: FSCL, A LANGUAGE FOR DESCRIPTION AND RETRIEVAL ... 67

3.1 FSCL, a "natural language like" language for studying behaviour 67

3 .1 .1 Vocabulary 67

3.1.2 Grammar 68

3 .1.3 Using FSCL to describe and retri eve multimedia information 69

3.2 FSCL versus natural language ... 73

3.2.1 FSCL, a natural language like language 73

3.2.2 Differences in structures between natural language and FSCL 74

3.2.3 Specific query mechanism in FSCL 76

3.2.3.1 Textual description of the FSCL query mechanism 77

3 .2.4 Leaming FSCL. 80

3.2.5 The FSCL semantic tree 82

3.2.5.1 FSCL semantic tree, a simple syntax tree .. 83

3.2. 5.2 FSCL semantic tree, a representation of semantic roles of a sentence 86

3.2.5.3 FSCL semantic trees to present matching patterns 89

3.3 Summary ... 91

CHAPTER 4: CONCEPT DEVELOPMENT 93

4.1 VlSL, a unified approach to teach structured languages 93

4.2 Details of VISL concepts to teach constructed languages 96

4.2.1 Visualized Structure Tree mode 96

4.2.2 Structure Tree Manipulation mode 100

4.2.3 Visualized Query Matching mode 104

4.2.4 Visualized Building Query mode (VBQ) 108

4.3 Adaptation of VISL concepts to teach other constructed languages 111

4.4 Summary ... 113

VI

CHAPTER 5: KEY ISSUES TOWARD AN IMPLEMENTATION OF VISL 115

5.1 VISL's development issues .. 116

5.1. l VISL, a CALL application 116

5.1. l. l Issues of concern in developing CALL applications 116

5.1.1.2 Desi gn ofVISL 117

5.1 .2 VISL, a combined module with PAC 118

5.1.3 VISL's User Interface design 119

5.1.3. l Principles in designing UI for learning systems 119

5.1.3.2 Ul principles applied in VISL. 120

5.2 Technical issues .. 122

5.2.l Presentation ofFSCL structure and query matching conditions 122

5.2. l.1 Lesson ofFSCL structures 122

5. 2.1. 2 Lessons of the FSCL query engine 123

5.2.2 VISL's algorithm to display FSCL semantic tree 124

5.2.2. l Typical algorithms to draw a general tree 124

5.2.2.2 Drawing FSCL trees in VISL 127

5.2.3 Strategy to verify correctness of users ' input 129

5.2.3.1 Common errors 130

5.2.3. 2 Error checking for textual input 130

5.2.3.3 Structure checking for graphical input... 133

5.2.4 Some other issues 134

5.2.4.1 An approach to verify rules of a FSCL sentence 134

5.2.4 .2 Tree structure modification 137

5.2.5 Algorithm for query matching 138

5.2.5.1 VISL query matching algorithm 139

5.2.5 .2 An example illustrating the matching algorithm 140

5.2.5.3 Static visual display versus dynamic visual display 142

5.3 Summary ... 143

CHAPTER 6: DEVELOPMENT OF VISL 144

6.1 Object-Oriented tools for VISL development ... 144

6.1. l UML, a standard modelling technique 144

Vll

6.1.2 Rational Rose 145

6.1 .3 Java programming language 145

6.2 Object-oriented Analysis and Design of VISL .. 148

6.2.1 Use case analysis 148

6.2.1.1 Determine Use Cases 148

6.2.1 .2 Details of a specific use case 149

6.2.2 Activity diagrams 150

6.2.3 Interaction sequence diagrams 151

6.2.4 Collaboration diagrams 152

6.2.5 Class diagrams 153

6.3 Database in VISL ... 154

6.4 VISL implementation .. 155

6.5 Status of the VISL implementation .. 156

6.6 Summary ... 156

CHAPTER 7 : CONCLUSION AND FUTURE WORK 157

7.1 Research review ... 157

7.2 Contribution ... 159

7.3 Future work .. 162

REFERENCES 166

Vlll

TABLE OF FIGURES

FIGURE 1.1 RELATIONSHIP AMONG ELEMENTS IN AN ENGLISH SENTENCE 4

FIGURE 1.2 THESIS'S STRUCTURE DIAGRAM 12

FIGURE 2.1 BOTTOM-UP SYNTAX TREE OF A SIMPLE SENTENCE " THE BEAR RUNS OVER

THE MOUNTAIN" 30

FIGURE 2.2 T OP-DOWN SYNTAX TREE OF THE SENTENCE "THE BEAR RUNS OVER THE

MOUNTAIN" 31

FIGURE 2.3 AN ABSTRACT SYNTAX TREE FOR THE SENTENCE "THE BEAR RUNS OVER

THE MOUNTAIN" 32

FIGURE 2.4 DIAGRAMMING OF THE SENTENCE 'Tms NEW PANDA MAKES NEW FRIENDS

EASILY" 32

FIGURE 2. 5 D IAGRAM FOR A COMPLEX SENTENCE 33

FIGURE 2 .6 IC DIAGRAM OF THE SENTENCE "THESE NEW STUDENTS LEARN THE

GRAtvlMAR LESSONS EASILY" 34

FIGURE 2. 7 CHINESE BOX FOR THE SENTENCE " J OHN GIVES THE FLOWER TO LISA" 3 5

FIGURE 2. 8 DG DIAGRAM FOR A SIMPLE SENTENCE 3 5

FIGURE 2. 9 D EPENDENCY GRAMMAR TREE FOR THE SENTENCE "I WILL SEE ALL

STUDENTS AT 11 A.M. " 36

FIGURE 2.10 S ENTENCE STRUCTURE DIAGRAM FOR A SENTENCE USING lliE WG THEORY

... 37

FIGURE 2.11 FUNCTIONAL STRUCTURE REPRESENTATION FORA NOUN ASA SUBJECT .. 38

FIGURE 2. 12 F UNCTIONAL STRUCTURE FOR THE SENTENCE: " JOHN TRIED TO PLAY THE

GUITAR" 38

FIGURE 2.13 THE FSCL SEMANTIC TREE OF A FSCL SENTENCE 3 9

FIGURE 2.14 MAPPING TREE OF A Xl\.1L DOCUMENT 40

FIGURE 2.16 CALL AND RELATED DISCIPLINES (ADAPTED FROM L EVY, 1997) 44

FIGURE 2.17 A GRAMMAR EXERCISE OF "Focus ON GRAMMAR" APPLICATION 46

FIGURE 2.18 A PHRASE EXERCISE EXAMPLE OF " ENGLISH S ENTENCE A NALYSIS" 47

FIGURE 2.19 A ENGCG WINDOW FOR THE SENTENCE " JOHN CLOSES THE DOOR AND

ASKS LISA TO TURN OF THE LIGHT" 48

FIGURE 2.20 A DIAGRAM FOR A SENTENCE OF THE SUBJECT " C OMPOUND PREDICATE" 50

IX

FIGURE 2.21 USER INTERFACE OF TIIE SYNTAX S TUDENT COMPANION 51

FIGURE 2.22 B UILDING A SENTENCE DIAGRAM IN SYNTAX STUDENT'S C OMPANION ... 52

FIGURE 2.23 TDTA IN A PROCESS OF BUILDING A STRUCTURE TREE 53

FIGURE 2.24 DIAGRAM TO DISPLAY FUNCTIONS OF THE SENTENCE " JOI-IN CLOSES TIIE

DOOR AND ASKS LISA TO TURN OFF TIIE LIGHT" 55

FIGURE 2.25 A LEARNER IS REQUIRED TO INSERT FUNCTIONS FOR EACH WORD OF THE

SENTENCE "JOHN CLOSES THE DOOR AND ASKS LISA TO TURN OFF TIIE LIGHT" 55

FIGURE 2.26 TREE EDITOR WINDOWS FOR "THE MOOSE ATE TIIE BARK" 56

FIGURE 2.27 C ONSTITUENT STRUCTURE ANALYSIS OF A D ANISH NOUN PHRASE USING

VIA 57

FIGURE 2.28 AN EXAMPLE OF CHECKING XML STRUCTURE 59

FIGURE 2.29 AN EXAMPLE OF A XPA TH QUERY AND MATCHING NODES FOR AN XML

DOCUMENT 60

FIGURE 2.3 0 AN EXAMPLE FOR D T D CHART 61

FIGURE 2. 31 D EMONSTRATION OF QUERING AGAINST AN XML DOCUMENT USING

XP A TH EXPRESSIONS 62

FIGURE 3.1 P AC's VOCABULARYWINDOW 68

FIGURE 3.2 GUI OF PAC SYSTEM WHILE GENERATING FSCL DESCRIPTIONS 73

FIGURE 3.3 A SYNTAX DIAGRAM (IN PSG TIIEORY) FORA SIMPLE SENTENCE 83

FIGURE 3.4 AN ABSTRACT SYNTAX DIAGRAM (IN PSG THEORY) FORA SIMPLE

SENTENCE 84

FIGURE 3. 5 THE FSCL SEMANTIC TREE FOR A SIMPLE SENTENCE 84

FIGURE 3.6 COMPARISON BETWEEN PS G AND FSCL TREES 85

FIGURE 3. 7 A TREE DIAGRAM FOR A SIMPLE SENTENCE 87

FIGURE 3.8 SEMANTIC TREE FORA COMBINATION SENTENCE 87

FIGURE 3.9 A FSCL DIAGRAM FORAN INFINITIVE VERB SENTENCE 88

FIGURE 3.10 A MATCHING PATTERN BETWEEN QUERY AND DESCRIPTIVE TREES 90

FIGURE 3. 11 : No MATCHING PATTERN BETWEEN DESCRIPTIVE AND QUERY TREES 91

FIGURE 4.1 RELATIONSHIP AMONG MODES OF VISL 95

FIGURE 4.2 VISUALIZED INTERACTIVE S TRUCTURE LEARNING (VISL) ARCHITECTURE

..................... 96

FIGURE 4.3 STRUCTURE RULE AND AN ILLUSTRATIVE DIAGRAM FOR A MULTI-SUBJECT

SENTENCE 98

X

FIGURE 4.4 S TRUCTURE RULE AND AN ILLUSTRATIVE DIAGRAM FOR A MULTI-OBJECT

SENTENCE 99

FIGURE 4.5 PROCESSES OF DISPLAYING STRUCTURE TREES IN VST MODE 100

FIGURE 4.6 STM DURING BUILDING A FSCL STRUCTURE TREE 103

FIGURE 4. 7 P ROCESSES OF BUILDING A STRUCTURE TREE IN THE STM MODE 104

FI GURE 4 . 8 AN EXAMPLE OF MA TCHJNG SUBJECTS FOR QUERY AND DESCRIPTIVE TREES

.......... 107

FIGURE 4.10 PROCESSES OF AUTOMATICALLY PRESENTING PATTERN MATCHING IN

VQM MODE 108

FIGURE 4.10 U SERS CAN CHOOSE ANY WORD IN A HIERARCHY ON A QUERY TREE 110

FIGURE 4.11 P ROCESSES IN VBQ MODE 111

FIGURE 4.12 P RESENTING XML STRUCTURE BY USING DIAGRAM 112

FIGURE 4.13 AN EXAMPLE USING DIAGRAMS TO VIEW QUERY RESULTS IN A XML

DOClJMENT 113

FIGURE 5.1 VISL, A MODULE INTEGRATED INTO PAC 119

FIGURE 5.2: T HE DESIGN OF VISL 's USER INTERFACE 122

FIGURE 5.3 L OCATE NODES FORA GENERAL TREE 128

FIGURE 5.4 Ul OFTHEVISL APPLICATION FORA VIOLATING RULE 1 132

FIGURE 5. 5 Ul OF THE VISL APPLICATION FORAN ERROR SENTENCE 133

FIGURE 5.6 A N EXAMPLE OF A SENTENCE WITH MULTI-SUBJECT 135

FIGURE 5. 7 A N EXAMPLE OF NOUN INSTEAD OF PRONOUN SENTENCE 136

FIGURE 5. 8 A N EXAMPLE OF FSCL SENTENCE DISREGARDING ABOUT MORPHOLOGY 13 7

FIGURE 5.9 M ODIFYING A WORD GROUP 138

FIGURE 5. 10 STRUCTURE TREES OF DESCRIPTIVE AND QUERY SENTENCES 140

FIGURE 5.11 MATCHING PATTERN FOR A QUERY ANDA DESCRIPTIVE SENTENCE 142

FIGURE 6. 1 U SE CASE DIAGRAM OF THE VISL APPLICATION 149

FIGURE 6. 2 A CTIVITY DIAGRAM FOR "VIEW FSCL STRUCTURE RULES" USE CASE 150

FIGURE 6. 3 S EQUENCE DIAGRAM FOR " V IEW FSCL STRUCTURE RULES" USE CASE .. 152

FIGURE 6. 4 C OLLABORATION DIAGRAMS FOR " V IEW FSCL STRUCTURE RULES" USE

CASE 153

FIGURE 6. 5 C LASS DIAGRAM FOR LEARNING FSCL STRUCTURE 154

X1

Chapter 1

Introduction

The explosion of amount of information available in recent years has created an

accompanying problem in that the large number of multimedia documents such as

pictures, audios and videos has been a big challenge for information description and

retrieval. This leads to requirements for creating new technologies to handle that huge

volume of multimedia data. Christel et al. (1997, p23) claimed that "as digital video

libraries emerge, users will need tools that handle effectively the dynamic nature of

video; they will not likely invest hundreds of hours to find a single, relevant segment

within a 1000-hour library". Voss (2001 , pl) further confirmed that "A content

provider like CNN has more than a hundred thousand hours of tape in its video

archive-far too much for any human to view and annotate manually".

Natural language has widely been used for generating descriptive information as well

as assisting information retrieval. However, natural language has significant

drawbacks when confronted with large volumes of multimedi a documents. The use of

natural language in information description is significantly labour intensi ve (Sikora,

2001) and using of natural language for searching produces problems stemming from

too many synonyms, too many meaning and spelling variations (Feldman, 1999).

There are two kinds of context in which the use of natural language for descriptions

may be not suitable:

• Descriptions using in qualitative analysis in social psychology or education:

In this kind of analysis, descriptions are used to describe certain aspects of

context from collected multimedia materials. The use of natural language

causes difficulties for retrieving correct returns .

• Multimedia descriptions for documents having structures: In documents that

describe multimedia contents, users need to retrieve not only entire the

document content but also a single event or scene. In addition, users need to

obtain very detailed information such as where, how, and when a single event

should appear. When natural language is used for this kind of documents,

users may get incorrect returns by using current searching techniques. In

1

addition, the use of natural language for this type of descriptions 1s time

consummg.

With the requirements for new tools and new languages to handle, organise and

retrieve multimedia data, many new languages are built and incorporated with

computer applications to assist humans in describing and retrieving information of

multimedia documents, as mentioned earlier. These languages are called constrncted

languages and can be presented in two different forms:

• "Natural language like" languages: These languages have many similar

characteristics compared to natural language. Therefore, they are called

"Natural language like" languages. These languages are used for qualitative

analysis in social psychology or education and are commonly seen in studying

behaviours. Examples of these languages are the Caber language (Patrick,

1985), Observer's language (Noldus Information Technology, 2003) or

Flexible Structure Coding Language (FSCL - Heinrich, 1999).

• Structured languages: Descriptions of this kind of constructed languages are

generated based on specific rules or schemas. The languages are used to

describe documents that have structures such as multimedia documents like

video clips or films. The most common language used for this purpose is the

eXtensible Markup Language (XML - O'reilly Media, 2004).

The general purpose of these languages is to help users to attach notations or

descriptions easily to multimedia documents and to retrieve correct information later

on. When these descriptions are based on explicitly defined grammars, they can be

easily analysed by computer systems. Therefore, the efficiency of searching

information in a larger number of multimedia documents can be significantly

increased.

To exploit possible advantages of constructed languages in describing and retrieving

information, users have to understand the grammars of these constructed languages

before using them. Currently, there is a shortage of studies and research that could

provide an effective way to help users to understand those constructed languages.

Therefore, the research presented in this thesis investigates issues concerning the

2

development of learning tools to help users understand constructed languages and to

faci Ii tate the use of those languages in information description and retrieval.

This introductory chapter starts with a short review on the grammars of natural

languages and constructed languages. The chapter then outlines the motivation and

objectives of the research for learning constructed language grammars. Next, the

chapter presents the methodology used in this research. The structure of this thesis is

presented at the end of the chapter.

1.1 What is language grammar?

Language grammars can be defined into natural language and constructed language

grammars. Main features of these language grammars are presented in the following

sections.

1.1.1 Natural language grammar

The grammar of a language deals with the issues of how sentences are constructed

called syntax. Different languages have different syntaxes. The syntax of a language

includes two factors:

a. The orders of components such as subjects, verbs and objects in a

sentence.

Different natural languages may have different orders of subjects, verbs and

other components. For example, the orders of the Toba Batak language (an

Austronesian language of Indonesia - Valin, 2001) are syntactically

different from English language:

The teacher is reading a book.

Manjaha buku guru 1.

Read book teacher the

in English language

in Toba Batak language

the order ofToba Batak language

compared to English language

b. The combination of words into components.

A word group may be formed by several words and each word may be in a

different lexical category. In the example above, "the teacher" is a word

group called the noun group that plays the role of a subject. This word group

3

includes an article category "the" and a noun category "book". Different

languages have different word orders to form a word group. For example,

the word order in a noun group in English and Vietnamese is different:

The red book in English language

Mot quyen sach do in Vietnamese language

The book red the order of Vietnamese language compared to

English language

With English language, there is one more important component called morphology

that explains how a word is formed. For example, a word "student" has two forms: the

singular form "student" and the plural form "students". Figure 1.1 presents

relationships among different elements in an English sentence.

Downwards Sentence~ Upwards

~ . f consist of constituent o ~lause<
~ .

consist of constituent of >roup<
consist of constituent of >War~
consist of constituent of

~Iorpheme ~

Figure 1.1 Relationship among elements in an English sentence

There are many natural languages as discussed above and each of them has specific

structures. This research, from now on, will refer to the English language when using

the term "natural language". In addition, the words "grammar", "structure", and

"syntax" used in the research are equivalent.

4

1.1.2 Constructed language grammar

Constructed languages are created for incorporation with computer systems to help

users to describe information easily and retrieve information correctly. In general,

these languages' grammars are simplified from natural language or are structured so

that the languages are logically precise and computationally tractable, but still human

readable. Typical features of these languages can be summarised as the followings :

"Natural language like" languages (NLL languages): These languages have both

similarities and differences compared to natural language. The differences lie on

restricted vocabulary, formulated grammar and restricted structure:

• Restricted vocabulary: A restricted vocabulary is a list of words that is agreed

on among members. Therefore, vocabulary size and meaning for a particular

application domain are limited (Mitamura, 1999). In some languages, users

can then organise words into hierarchies as in FSCL (Heinrich, 1999).

• Formulated grammar: In NLL languages, their grammars may be formulated

explicitly such as LL based grammar in FSCL (Heinrich, 1999) or LR

grammar in CABER language (Patrick, 1985). Documents or descriptions are

written following rules set by the constructed language grammar. One

important purpose of formulated grammars is to improve the performance of

the retrieval process.

• Restricted structure to reduce ambiguity: In addition with a formulated

grammar, NLL languages also employ structures that can reduce ambiguities

compared with those of natural language. The reason for this is that

"common" natural language structures can cause difficulties for computer

application to "understand". For example, computer applications do not

process the natural language accurately and efficiently when pronouns are

used. Therefore, in NLL languages, pronouns are usually not encouraged

(Mitamura, 1999; Pulman, 1996). A learner/user naturally understands what a

pronoun stands for in a sentence. However computer applications may not

know which noun this pronoun refers to.

Stroctured languages: Structured languages have different structures compared to

natural language. These languages can be seen as "markup languages" as in XML.

5

Users normally have to study how to use these languages. For example, to use X11:L,

users have to learn how to create correct X11:L documents following defined schemas.

They also need to know how to search for information in a X11L document. Simple

learning tools can be developed that help users to understand basic X11:L structures or

how to create X11L schemas.

1.2 Motivation and objectives of the research

This section motivates the research by emphasising the importance of learning

constructed languages, and by reviewing approaches that support learners in

mastering language grammar. Following the motivation, the objectives of the research

are outlined.

1.2.1 Learning constructed languages

Leaming grammar is essential for learning a language. In a traditional sense, learning

grammar is "the study of the principles which govern the formation and interpretation

of words, phrases and sentences" (Radford, 1997, p 1). To emphasise the importance

of learning grammar, Lynn (2003, p 1) wrote "think of English vocabulary as the

bricks of the language and grammar as the mortar that hold those bricks together,

without the mortar the bricks can come tumbling down I A lack of grammatical skills

can cause embarrassing misunderstandings." However, many people do not want to

learn grammar as it as boring and not meaningful. Experience shows that students

have to do a lot of grammar exercises to learn a language but these exercises seem to

have little or no meaning to them (Onestop Magazine, 2003).

Leaming structures of NLL languages is important for users in view of describing and

retrieving information. Even there are similarities of structures between natural

language and these languages, improper understanding the specifics of these

languages' structures can lead users to the problems like the following:

• Generation of descriptive information that is difficult for querying: Although

there are advantages of NLL languages compared to natural language, they

still have limitations. For example, users may create correct sentences

following a language structure but it is hard to retrieve these sentences.

Therefore, users should be aware of these limitations of NLL languages.

6

• Misunderstanding of query engine leads to incorrect returns: NLL languages

usually employ specific query engjnes for searching for information. When

creating improper queries, users may obtain redundant results or fail to detect

descriptive sentences or documents that are appropriate to the users' search

topic.

Leaming structures is also essential for using structured languages, as their structures

are totally different compared to natural language. Learning the structures of this kind

of languages can be compared to learning the rules of a game. To be able to play a

game, players must be familiar with the rules. If players do not know the rules, the

game cannot be started or will soon collapse.

Therefore, to full y obtain advantages of constructed languages, users need to know

the complete details of those structures. Even though different constructed languages

may have different structures, there are some common principles that users are

required to learn. The following sections outline important aspects that users should

learn of constructed languages.

• The structure of constntcted languages: Users must understand how elements

of a constructed language can be combined into descriptions. For example, in

FSCL, users must understand how words in different categories can be

combined into word groups and how word groups can be integrated to create a

sentence. With XML, users must understand how to create documents that are

correct according the XML syntax, Data Type Definition (DID), or XML

schemas.

• Query-matching mechanisms: There are many different constructed languages

used in many computer systems and many of these languages possess

specific query engines. With NLL languages, the understanding of how the

languages ' query engines work will help users to set up suitable vocabularies

and create appropriate descriptions to get best matches between queries and

descriptions. With structured languages, users need to create correct queries

to retrieve accurate returns.

There are several studies that focus on assisting users m generating correct

descriptions using constructed languages. For example, there are some editor tools

7

that help users to check the compliance of user input with the structure rules and assist

them to write accurate descriptions (Schwitter et. al., 2003). In these editors, users

have to stick with the predefined vocabulary and grammar rules to generate

informative and consistent documents. However, these editors cannot help users to

understand the query mechanisms that are embedded in many constructed languages.

As a result, users may not discover the full potential of constructed languages for

information retrieval .

To address these issues, the research presented here focuses on developing concepts

to be applied in computer applications for teaching users constructed languages. The

research then implements those concepts in a teaching tool for teaching a specific

constructed language, FSCL, as a case study.

1.2.2 Factors that enhance understanding in language learning

There are several factors that can enhance users' understanding in language learning.

The factors discussed in this section are: learning by using diagrams and computers,

learning by example, and active learning.

Diagrams in language learning

Many authors of books or research on language theories use diagrams to present

sentences structures. The benefits of diagrams in presenting language structures are,

according to Ye Hedge School (2003), "Diagrams are unquestionably the best way to

map the word relationships within a sentence; only when we can understand how

words are related in a sentence can we study complex thought". Advantages of

diagrams in enhancing users ' understanding of language structures will be presented

in more details in the following chapter.

Computer in language learning

Books and classroom tuition are traditional ways for learners to learn grammar.

However, the invention of computers has leaded to an innovative method to teach

language structures. Computer applications, called Computer Assisted Language

Leaming (CALL), offer powerful self-assessment facilities to learners. CALL can

help learners to study many areas of languages such as grammar, vocabulary, reading

and writing. As diagrams can be easily drawn by computer applications, they are used

8

by many CALL applications as supporting tools to help users to learn natural

languages. However, there are limitations of current research in exploring the

advantages of diagrams in CALL applications for teaching constructed language

structures and their specific query engines.

Leaming by examples

Perry (1993) pointed out that command descriptions, syntax format and language

references are not enough for new learners to learn a new language. He suggested that

numerous examples could provide a better method to help users to understand the

language. Addressing the same issue, Walsh (2001) emphasised that computer

concepts are best taught with multiple examples and that using a variety of practical

and real world examples can lead learners step-by-step on the road of learning. Perez

(2004) claimed that humans have great ability to learn concepts from a set of

examples. Stauffer (2004) also concluded that learning by example allows learners to

start with initial concepts (what they have known already) then understand new

concepts (what they do not know yet) easily.

Active learning

Many researchers suggested that a passive learning environment in which students are

involved only passively in learning, i.e., in listening to the instructor or reading the

text book, generally leads to a limited retention of knowledge (McKeachie, 1998). In

contrast, in active leaning, learners can obtain better knowledge as they not only

merely listen or view the presentation of information but also work with the content

and reflect on the process of learning (Oppermann, 2004). In an active learning

environment, learners "are simply more likely to internalise, understand, and

remember material learnt through active engagement in the learning process" (BYU

Faculty Center, 2000, p.1). Active learning takes advantages of peoples' natural

motivations, abilities and interests to solve problems, discover relationships and make

comparisons. To learn language grammar, Eastwood (1999) claimed that the best way

is to follow the active learning approach.

I.2.3 Research objectives

Following the motivations above, the main objectives of this research are:

9

• Investigate the advantages of using language structure diagrams for teaching

natural languages.

• Identify the strategies of CALL applications to teach natural languages.

• Adjust the use of language structure diagrams and CALL strategies to the

teaching of constructed languages and their queries engines.

• Implement these resulting concepts in a language-teaching tool for a specific

constructed language.

1.3 Research methodology and steps

The research was carried out based on popular frameworks built by Galliers (1992)

and Yin (1994). Using these frameworks, a research methodology that is suitable for

fulfilling the stated research objectives has been developed:

literature review: Examine diagramming techniques and CALL applications

that assist language learning;

Concept development: Based on the literature review, develop concepts for

teaching constructed languages;

Prototype implementation for a case study: Apply these concepts m an

application for teaching a specific constructed language, FSCL;

Experiments to verify the concepts (due to time restrictions outside the scope

of thi s thesis).

Applying this methodology leads to the following steps:

• Literature review, including:

- Examining diagramming techniques using in natural language theories

and constructed languages: The project will study how the diagramming

techniques can support users in understanding language structures.

- Investigating CALL applications for teaching natural language structures:

The research will study features of CALL applications and their

advantages for teaching constructed languages.

- Inspecting in detail an existing constructed language, FSCL: The

research examines the language structures, its structure diagrams and the

query engine. This language will be used as a case study.

10

• Developing concepts to teach learners constructed languages using diagrams.

These learning concepts are developed based on/adjusted from teaching

concepts learnt from the literature review. The research employs these

concepts for teaching FSCL and then outlines how those concepts can be

adapted to teach other constructed languages.

• Implementing those concepts into a prototype application called Visualised

Interactive Structure Leaming (VISL) to teach FSCL. Specific technical issues

relating to the development of this application will be presented in detail. The

research will apply software engineering concepts using the Unified

Modelling Language for analysis and design, and the Java programming

language for implementation. VISL's interface will be developed based on

principles of Human-Computer-Interaction (HCI).

1.4 Thesis structure

The thesis is divided into seven chapters. After the introduction in Chapter 1, Chapter 2

reviews the importance of diagrams in enhancing users' understanding of language

structures. It also inspects typical CALL applications for teaching language structures.

Chapter 3 examines a constructed language, FSCL, in detail. In Chapter 4, concepts for

teaching constructed languages are developed. The chapter also illustrates how these

concepts can be applied for teaching FSCL. Chapter 5 discusses the key issues relating

to the development of a prototype CALL application called VISL for teaching FSCL.

Chapter 6 presents the VISL development process through the three phases of analysis,

design and implementation. Finally, Chapter 7 of the thesis summaries the contributions

and highlights future topics arising from this research. The diagram in Figure 1.2

illustrates this structure of the thesis .

11

Chaptw 1: h1troductiou

Investigate
diagrams in learning

languages

I nvesti gate C .ALL
applications for

teaching languages

.Apply UML, Rational
Rose, Java

technologies

Examine in detail a
constructed

language, FS CL

Qiapter 7: Conclusion and future works

Figure 1.2 Thesis's structure diagram

Chapter 2
Uterature

review

Chapter3

Language

analvsis :

Chapter4

Concept

development

Chapter 5

Concept
extension for

a specific
language

Chapter 6

Development
of CALL for a

language

12

Chapter 2

Language syntax learning and graphical presentation

This chapter first reviews languages used for description and retrieval of information

including both natural language and constructed languages. The chapter next studies

the efficiency of diagrams in presenting language structures for assisting learners to

understand these language structures. The chapter then discusses how computer

applications can explore the benefits of presenting diagrams in teaching natural

language structures. Finally, the chapter outlines the principles drawn from those

applications in teaching natural language and the possibilities of those principles in

teaching constructed languages.

2.1 Language for description and retrieval of information

As briefly discussed in Chapter I , the use of natural language is not suitable for

describing and retrieving information from multimedia documents. That is because of

the time consuming description process and the incorrect information achieved from

the search process. Therefore, other languages were designed to overcome those

limitations of natural language. One type of these languages are constructed

languages. This section reviews the use of natural language and constructed languages

and then discusses advantages of constructed languages compared to natural language

in information description and retrieval.

2.1.1 Natural language in information description and retrieval

This part provides the main characteristics of natural language, and then presents its

limitations in describing and retrieving information.

2.1.1.1 Natural language

Natural language is the language that people write and speak in everyday social

communication. There are, of course, a variety of natural languages (like English,

Vietnamese or German). The differences among natural languages lie in vocabulary

or grammar. For example, in English language, a word "book" is written as "sach" in

Vietnamese language.

13

As pointed out in Chapter 1, grammar in natural language includes two elements:

morphology and syntax. Morphology is the way in which words are formed. For

example, the plural form of the word "class" is the word "classes". Syntax, the second

element in grammar, describes the way in which words fit together to form sentences

or utterances. Fromkin and Rodman (1998, p28) defined that "Knowing a language

includes the ability to construct phrase and sentences out of morphemes and words.

The part of grammar that represents a speaker's knowledge of these structures and

their formation is called syntax".

There are many English language theories. The differences among them are based on

different definition of grammar or syntax for each theory . Several typical grammar

theories are (Hudson, 2002):

• Phrase Structure Grammar (PSG);

• Function Grammar;

• Head-driven Phrase Structure Grammar (HPSG);

• Link Grammar;

• Systemic Functional Grammar;

• Lexical Functional Grammar;

• Word Grammar.

Although there are many categories of grammar, they all share some common

elements. Following Hilferty (2002), the essential elements of grammar are word

order, dependencies and categories.

• Word order: types of words and their ordering in regard to other elements in a

phrase or sentence. When writing a sentence, a writer may have questions such

as "Can an element of type X precede or follow (or both) an element of type

Y".

• Dependencies: certain types of elements may need to co-occur (i .e., be

combined in some way) with certain other elements (whether they be specific

words or grammatical categories, etc .). This is known as valence.

• Categories: words are classified into categories called lexical categories (e.g.,

noun, verb, adjective, adverb, preposition, etc ...).

14

2.1.1.2 Limitations of natural language in information description and retrieval

The advantages of natural language as a description language are "its expensiveness

and flexibility, its immediate availability to every analyst with access to a word

processing facility, and the familiarity with and understanding of natural language for

every analyst" (Heinrich, 1999, p91). However, there are also some disadvantages

when using natural language for both information description and retrieval. These

disadvantages include lexical ambiguity, ambiguous sentence structure and

complexity causing incorrect search results. The two example sentences below

explain the ambiguity of using natural language in descriptive information:

1. The boy loves the dad more than the girl.

The sentence can be understood in two ways:

a. The boy loves the dad more than the girl loves the dad.

b. The boy loves the dad more than the boy loves the girl.

2. That house is created by a piece of glass and wood.

The sentence can be understood by two ways:

a. The house is created by a piece of both glass and wood.

b. The house is created by a piece of glass and with some wood.

The limitation of using of natural language in information description and retrieval is

more obvious when computer systems are used to store and extract information. In

this case, the richness, variance, and confusion in terminology of natural language

cause difficulties in information retrieval (Fast et. al., 2002). Here are some

significant drawbacks of using natural language in describing and retrieving

information using computer systems:

• Difficulty for computers to "understand" descriptions: Defining the meaning

of sentences is very difficult for a computer system while that meaning may be

easy for a human reader to understand. The reason is that natural language

processing is very complex for computer programs. Current computer

applications are not able to analyse all sentences correctly (Smeaton, 1997).

15

This weakness of natural languages as a descriptive language is more obvious

when it is used in computer systems to analyse behaviour (Heinrich, 1999).

• Difficulty in retrieval: Nowadays, information using natural language is stored

in large volumes in computer systems. In these systems, searching techniques

such as keywords and free texts are used widely . However, the use of natural

language is not suitable for searching information. This is because users may

get results in which descriptive information is not relevant to the search topics.

Yang (2004, p 1), pointed out that "Keyword search always results in low

precision, poor recall , and slow response time due to the limitations of the

indexing and communication methods (bandwidth)". The two examples

explain the limitation of keyword search:

> When a user wants to search documents relating to "children", he may

use the word "child" to search. One can recognise that the user would

miss the sentences/documents that use the word "infant" instead of

"child" .

> When a user wants to search for a person named "John" doing an

action "jump", he may use the query of a character sequence "John

jumps" or the keyword string "John*jumps". If he uses the first query,

he would miss the sentence "John runs and jumps". If the user utilises

the query "John*jumps", he may obtain incorrect sentence "John runs

and Lisa jumps" .

Many researchers in computational linguistics have been attempting to address the

problems of how to present English words, phrases, and sentences on a computing

machine and how to encode information about sentence types, parts of speech and

other grammatical information in a notation that a computer can digest (Dougherty ,

1994). However, Microsoft, (2003 , pl) pointed out that "Natural language, that is

easiest for humans to learn and use, is hardest for a computer to master. Long after

machines have proven capable of inverting large matrices with speed and grace, they

still fail to master the basics of spoken and written languages. The challenges faced

stem from the highly ambiguous nature of natural language".

To overcome those problems of natural language, constructed languages are invented.

This type of languages is widely used in computer applications for the purpose of

16

describing and retrieving information. Using these languages, users can extract the

meaning of any sentence in an automated way. Therefore, the required information

can be retrieved correctly and quickly through computer systems. Discussing the

advantages of these languages, Sch witter et al., (2002, p 1) pointed out that

"Constructed languages not only make life a lot easier with technical documents .. .

but they can also improve the whole knowledge acquisition process for any kind of

intelligent system". The features of these languages are presented in the following

section.

2.1.2 Constructed languages for information description and retrieval

Constructed languages for describing and retrieving information can be divided into

two categories. One of these is called "natural language like" languages (NLL

languages) used for qualitative analysis in social psychology or education that are

commonly seen in studying behaviours. Example languages are Observer's language

(Noldus Information Technology, 1998), CABER's language (Patrick, 1985), and the

Flexible Structure Coding Language (Heinrich, 1999). The other category can be

called structured languages, used to describe documents that have structures. One

well-known representative of such languages is XML. The main features of these

languages are discussed in detail in the following sections

2.1.2.1 NLL languages for studying behaviour

NLL languages have been developed for describing and retrieving information m

qualitative research in social psychology or education. Compared with natural

language, NLL languages share many common characters. The main differences

between NLL languages and natural language can be seen in their grammar and

vocabulary.

2.1.2.1.1 Simple grammar

A simple grammar of a NLL language is the grammar that is formulated (FSCL or

CABER's language see a following section). As the grammar is controlled and

formally specified, the sentences composed based on the grammar are not complex

and ambiguous (Lehtola, et. al. 2003 and Mitamura, 1999). In addition, when

documents are written following a set of rules that are standardized, computer

systems can easily determine the structure of a sentence. Therefore, the "computer's

17

understanding" of sentences or source texts can be improved. This leads to obtain or

extract correct information from descriptions through search mechanisms.

2.1.2.1.2 Restricted vocabulary

Restricted vocabulary can be seen as the restriction of both vocabulary size and

meaning for a particular application domain (Mitamura, 1999). For example, people

studying the same topics can agree on a list of words used for describing or retrieving

information. That list of words can be called restricted vocabulary. French et. al.

(2001) and Mitamura (1999) pointed out that, compared to "normal" vocabulary,

restricted vocabulary has the advantages to radically improve retrieval performance in

a computer system. The reason for this is that users can define equivalent words and

organise words into hierarchies.

• Equivalent words: Consider two descriptive sentences:

1. Pandas like to live in large areas

2. Pandas want to live in high spaces

If a user inputs the keyword "spaces" for searching sentences which explain

where Pandas want to live, he will miss the first sentence. If the words "area"

and "space" are considered equivalent in a restricted vocabulary, the above

problem can be avoided. In addition, a restricted vocabulary can help

researchers to avoid misspellings or connect abbreviations to the full words

(e.g. WS is understood as Wellington School). The benefits of searching

information written by restricted vocabulary were discussed in more details in

Fast, et al. (2002) and Lebanon Valley College (2000).

• Hierarchy vocabulary: By organising words into hierarchies, users can find

information via relationships (French, 2002 and Heinrich, 1999). They then

can construct detailed or aggregate levels of analysis. For example, in the case

of a research study about behaviour of children in a classroom, researchers

may want to know if boys or girls play games or read books during the

intervals. They may also want to know if a girl named "Lisa" plays or reads.

The first case constitutes an aggregate analysis and the second constitutes a

detailed analysis . If the names of the children are organised into hierarchies,

users can search information about "girls" by using keyword "girls" for the

aggregate analysis. All descriptive sentences having the word "girls" or the

18

words below the level of that word in the hierarchy (e.g. Lisa, Joan or Jane)

will be selected. Users can also search for an individual child (detailed

analysis) such as "Lisa", "Joan" or "Jane". The hierarchy of a vocabulary can

be presented as:

Kids
boys

Tommy
Mike

girls
Lisa
Jane
Julia
Joan

• Use of pronouns is not encouraged: The use of pronouns in natural language

is very common. However, the use of pronouns is not always useful for

retrieval of information. This is because computer applications may not know

what noun is replaced by a pronoun. For example "Lisa helps Jane to open the

book and then she starts to read the first chapter". A computer application may

not know if "she" stands for "Lisa" or "Jane". For reason like this , most

"natural language like" languages do not use pronouns. These languages

replace pronouns by nouns such as for example done in FSCL.

2.1.2.1.3 Specific NLL languages for study of behaviours

There are several NLL languages used for information description and retrieval m

studying behaviours such as Observer' language, CABER's language and the Flexible

Structure Coding Language.

Observer's language

The Observer Video-pro system, called Observer, has been developed for video

analysis (Noldus Information Technology, 2003). This system defines a

constructed language with a strict structure for generating descriptive sentences.

The language structure is identified as "actor-behavior-modifierl-modifier2" or

just "behaviour-modifier1-modifier2". The "actor" is the subject who displays

the behaviours. The "behaviour" describes the basic behavioural elements to be

observed. The "modifiers" allow a more detailed description of behaviours.

19

Each behavioural element can be supported by one or two "modifiers".

Descriptive sentences are built based on those structures and are attached to

video segments to describe behaviours of the actor in these segments.

CABER's language

The Caber system was developed to analyse behaviours through a computer

system presented in Patrick (1985). The system was built with two main

features: a build-in constructed language to provide sentence descriptions of

possible behaviours and a capability for capturing behavioural events in real

time. The built-in language is in the form of a LR(l)-type (see Patrick, 1985, for

more details about this LR(l)-type). The coding descriptions, which are

describing behaviours of video segments, are stored as code instances in a

database. Using the system, users can create queries to search correct

descriptions in this database. The query results can be used for statistical

analysis of behaviours or for viewing the video segments of the retrieved

descriptions .

Flexible Structure Coding Language (FSCL)

FSCL has been developed at Massey University (Heinrich, 1999, 2000). The

goal of FSCL was to create a constructed language that is suitable for describing

and retrieving information contained in multimedia recordings in the context of

behaviours, multimedia education systems, online teaching or e-leaning. In

FSCL, descriptive sentences are created by the combination of words which are

defined into different categories. The syntax of FSCL is based on an LL

grammar (see Louden, 1997 for more detail about LL grammars). The basic

structure of FSCL can be understood as "subject-activity- object". With that

specific structure, the language allows users to "retrieve correctly and

completely the subject-verb-object relationships within the descriptive

sentences" (Heinrich, 1999, p.iii) . This constructed language was successfully

integrated with a computer system called PAC for studying behaviour. Since the

language is considered as the case study for this research, the next chapter will

discuss this language in detail.

20

2.1.2.2 Constructed languages for presenting document structures

Different from the "natural language like" languages for studying behaviour, this type

of languages, called structured languages, is used for describing documents that have

structures. These documents can be seen in the form of product catalogues, digital

libraries, and scientific data in repositories. Using these languages, users are able to

retrieve precise information through specific query engines. A typical language in this

category is the eXtensible Markup Language (X1v1L). In this part, XML is described

in detail.

XML

XML was originally designed to meet the challenges of large-scale electronic

publishing to overcome the limitations of SGML (Standard Generalized Markup

Language) and IITML (HyperText Markup Language) (W3C(1), 2004). The

language can be used to store any kind of structured information, and to enclose

or encapsulate information to pass it between different computing systems

(Flynn, 2004). In general, a XML document can be seen as a document with

descriptive tags before and after the text values. The following example of a

catalogue for a music store gives a simple illustration of this language

The catalogue stores_ information about a music CD. The information contains

details about the performer, the composer, the title and tracks and the length of

each track etc. The textual presentation of this catalogue is displayed as

following:

Type of document: catalogue

Category: CD

Performer: Bob Marley

Composer: John Markey

Title : Is it love

Tracks:

Trackl : length: 2.34

Track2: length 5.32

21

The catalogue data above can be presented by using XML:

<catalogue>

<CD>

<performer> Bob Marley</performer>

<composer> John Markey</composer>

<title> Is this love </title>

<tracks>

<track1 length="2.34">

<track2 length="5.32"

</tracks>

</CO>

</catalogue>

The descriptive tags before and after the text values are written following Document

Type Definitions (DTDs) or X:iv1L schemas. DTDs or XML schemas can be seen as

blueprints for describing the structure of a XML document. In general, DTDs and

XML schemas define:

• The sequence in which elements appear in a XML document;

• The interrelationships between different elements, including parent and child

relationship and nesting levels ;

• The types of data that are contained in elements or attributes .

DTD: DTD uses markup declaration to define rules that a XML document must

follow These rules can be elements, the sequence of elements, attributes, and

entities that a XML document can contain. An element in XML commonly

contains Character data. Characters that can be changed (or parsed) into other

formats are presented as PCD AT A Characters that are not changed are presented

as CDATA (Wagner and Mansfield, 2003). The DTD used for the XML document

for the above CD catalogue can be displayed as:

<?xml version = 1. 0"?>

<! DOCTYPE catalogue

<!ELEMENT CD(performer, composer, title, tracks)

22

<! ELEMENT performer(#PCDATA)

<!ELEMENT composer (#PCDATA)

<!ELEMENT title (#PCDATA)

<!ELEMENT tracks(track)

<! ELEMENT track(length)

<!ELEMENT length(#PCDATA)

XlvfL schema: XML schema is a XML-based alternative to DTD for describing the

structure of a X:l\.1L document. The XNIL schema is also referred to as XML

Schema Definition (XSD). Following W3C(1) (2004, p1), XML Schemas

"provide a means for defining the structure, content and semantics of XML

documents"

Associated with XML, there are important languages used for different purposes such

as XSLT (Extensible Stylesheet Language Transformations) for transferring XNIL

documents, XLink for linking XML documents, XPointer for locating information

and XPath for retrieving information.

• XSLT for transformation of XML documents. Following W3C(2) (2004, p1),

XSLT "is used to transform an XML document into another XML document,

or another type of document that is recognized by a browser, like HTML and

XHTML. Normally XSLT does this by transforming each XML element into

an (X)HTML element".

• XLink for linking XML documents: XLink is similar to the URL links in

HTJvtL but with much greater power. For example, in HTML, a link always

has one source and one destination. In XML, a link may have multiple sources

and destinations.

• XPointer for locating the exact information: XPointer provides access to the

values of attributes or the content of elements anywhere in a XML document.

Using XPointer, users can link to sections of text, select particular attributes or

elements, navigate through elements, and so on.

• XPath for searching for information: XPath language is used to scout out

XML data. This language has responsibility for looking into a given XML

document and retrieving particular nodes that match a profile provided to it. In

23

• other words, Xpath helps users to fmd matching nodes between queries and

XML documents.

2.2 Diagrams for presenting language structures

The section reviews the benefits of diagrams in enhancing human's cognition. It then

studies how diagrams can be used for presenting language structures in different

language theories.

2.2.1 Diagrams for enhancing learners' understanding

Long time ago, humans have recognised the benefits of using pictures compared to

text to facilitate understanding. A number of research projects have been conducted to

study the efficiency of diagrams for improving understanding in many areas such as

applied psychology, linguistics, visual programming, data visualisation, graphic

design, education, history and philosophy of science, cartography, and decision

support sciences. Several benefits of diagrams in enhancing human cognition in

general are presented in the following sections.

2.2.1.1 Efficiency of diagrams for enhancing human understanding

Human, from ancient time, has been acknowledged that pictures have many

advantages compared to text explanation. For example, "A picture is worth 10,000

words" is a Chinese proverb that is widely known and believed (Larkin and Simon,

1987). Many people know that Chinese characters are written by means of

hieroglyphics for the ease of remembering (Jordan, 2003). A proportion of such

characters actually derive from fairly literal pictures of things. Below are some

examples of Chinese characters with their English meaning:

umbrella * tree • cart

One may recognise that the ":$:" or "*" looks like the picture of an umbrella or a

tree, respectively. The word"$" looks like a picture of a cart (when seeing the word

as a picture from the left; it seems that the word has one wheel at the top and one at

the bottom with an axle) .

24

Larkin and Simon (1987) suggested that diagrams could group together all

information that is used together, thus avoiding large amounts of search for the

elements needed to make a problem-solving inference. Moreover, "diagrams typically

use location to group information into a single element, avoiding the need to match

symbolic labels" (Ullman et al. 1990, p 1). In addition, Larkin and Simon (1987) also

concluded that diagrams automatically support a large number of perceptual

inferences, which are extremely easy for humans to understand. Addressing the same

issue, Winn (1987) commented that the diagrams are useful because they easily attract

learners. He also concluded that, getting learners to draw diagrams and maps of

content is a useful way of developing good mental models. Cheng (1996) pointed out

that expert knowledge in some domains commonly use diagrams encoded in

perceptual chunks, or diagrammatic configuration schema. His research also

emphasised that a diagram or graphic display have greater compatibility compared to

explanation text and if they were absent, it is likely that the solutions to problems

would be harder because there was less information available. Blackwell (1997)

suggested that diagrams provide an expressive power and specificity that assists

cognition as diagrams have fewer interpretations so they are more tractable than

unconstrained textual notations.

Steinberg (1991) pointed out that visuals were remembered better than words because

they are more likely to be encoded redundantly than words. Noldy, et al. (1990) also

suggested that pictures are invariably remembered better than words on tasks of recall

and recognition. This "picture superiority effect" is an "established memory

phenomenon". He proved that "memory for pictorial stimuli is extremely accurate,

durable and extensive compared to that for verbal stimuli" (Noldy, et al. 1990, p4 l 7).

He also explained that pictures are memorable because the processing of pictures in

the brain needs "additional allocation of attentional resources or effort" (Noldy, et. al.

1990, p4 l 8).

2.2.1.2 Efficiency of diagrams in computer science

Computer science has long history of creating and usmg diagrams. Flowcharts,

functional decomposition diagrams, data structures and input/output schemas are

examples of diagramming techniques (Koning et al, 2002). A well-known example of

25

diagram usage in computer science is the area of visual programming languages.

Chang (1989) suggested that visual programming languages have several advantages

compared to traditional programming languages based on the following premises:

1. People, in general, prefer pictures over words.

2. As a means of communication, pictures are more powerful than words. They

can convey more meaning in a more concise way of expression.

3. Pictures do not have language barriers that natural languages have. They are

understood by people regardless of what language they speak.

Diagramming is also a valuable tool to help users to understand concepts and ideas in

computer science. A good picture can be much better than thousand words because it

is concise, precise, and clear. It does not allow the "sloppiness and woolly thinking"

that are common in text specifications (Martin and McClure, 1985). It also assists

teachers in explaining their ideas easily when writing does not make sense.

Diagrams also are useful tools for the development of computer applications. For

example, the Unified Modelling Language (UML), a standard modelling tool for

analysing and designing computer software, use diagrams extensively Boggs, (1999,

p.5) explained why visual diagrams are widely utilised in this language "We seem to

be able to understand complexity better when it is displayed to us visually as opposed

to written textually . By producing visual models of a system, we can show how the

system works on several levels . We can model the interactions between users and a

system". Poling (2000, pl) further underlined that "A UML diagram is worth a

thousand lines of code".

2.2.2 Diagrams in language structure presentation

As discussed in the previous chapter, grammar includes two inter-related elements:

morphology which explains how words are formed out of smaller units or word

structures and syntax that determines how words can be combined to form phrases

and sentences. Syntax of a language can be presented by two forms: textual

explanations or structure diagrams. This section first reviews the textual approach

then looks closely at the more common approach that uses structure diagrams.

26

2.2.2.1 Non-diagram presentation

A very common method is the bracketing presentation. This method is used to display

Phrase Structure Grammar (PSG) referring to constituency-based syntactic analyses

developed by Leonard Bloomfield as reported for examples by Hilferty (2002). In this

technique, higher-level constituents are shown by having lower level constituents

included within "wider" brackets. The various brackets can be labelled to indicate the

kind of constituent in each case. The example below illustrates this type of

presentation (in similar form by Crowley et. al., 1995).

"This stupid politician will kill the country with economic rationalism"

s[NP[DET This ADJ stupid N politician]] AUX [will] VP [V kill NP [DET the N country]

PP [p with NP[ADJ economic N rationalism]]]

This sentence is created by a noun phase (NP) constituent "This stupid politician", an

auxiliary (AUX) "will", and a verb phase (VP) constituent "kill the country with

economic rationalism" . These constituents of the sentence can be divided into their

own immediate constituents. The NP consists of a determiner (DET), "This", and

adjective (ADJ) "stupid", and the noun (N) "politician". The V consists of a verb (V)

"kill", and another NP "the country" and a prepositional phrase (PP) "with economic

rationalism" . The PP consists of a preposition (P) "with" and another NP "economic

rational ism".

One can recogmse that it is not easy to see the overall relationships among the

constituents following this non-diagram presentation. With more complicated

sentences, more nested bracketing is required. Thus these kinds of sentences will be

difficult to interpret especially when there are a lot of small functional labels included

(Crowley et. al., 1995). The only reason this bracketing method is still applied is that

when a word processor is used, it is less of an effort to add brackets than to draw a

tree representation (Borjars and Burridge, 2001)

The above bracketing method can be presented in a different way called Phrase

Structure Grammar rules (PSG rules). This technique is presented by the example

below:

27

S7 NP(AUX)VP
NP7(DET) (ADJ)N
VP7 V (NP)(PP)
PP7P(NP)

Then, with the simple sentence "John gives the flower to Lisa", the structure of the

sentence is presented as following:

[s [NP[John]] [vP [v gives] [NP the flower] (ppto Lisa]]]

[NP [oet the] [N flower]]
[pp [p to] [NP Lisa]]

PSG rules can be written for other languages with a structure that is very different

from English. For example, the following PSG rules are for Fijian language presented

in Crowley et. al. (1995)

S7VP(NP)

VP7SUBJ(TENSE)V(NP)

NP7 DET N (ADJ)

Note: SUBJ is the subject-indexing pronoun and TENSE is the tense marker.

2.2.2.2 Diagrams in presenting language structure

To present language structures, a more common technique is the use of diagrams.

This subsection presents some typical diagrams used to display structures in different

natural language theories and constructed languages.

2.2.2.2.1 Structure diagrams of different natural language theories

The benefits of diagrams in studying language have been emphasised by numerous

linguists. Many grammarians and English instructors suggested that analysing a

sentence and presenting its structure with a visual scheme is very helpful-both for

language beginners and for linguistics. By placing the various parts of a sentence in

relation to the basic subject-verb relationship, the learner can see how these parts fit

together and "how the meaning of a sentence branches out, just as the branches of a

plant ramify from the stem in place and time" (Crowley et. al., 1995, p123). Bernstein

(1992, p 1) pointed out that, "When you are at school and learn grammar, grammar is

28

very exciting. I really do not know that anything has ever been more exciting than

diagramming sentences. I like the feeling the everlasting feeling of sentences as they

diagram themselves" . Capital Community College Foundation (2003 , pl) gave

another plausible quote: "Sentence diagramming is one of the best analytical

techniques I ever learned" .

As outlined in the previous discussion (Section 2.1 .1), there are many grammar

theories. Unlike the non-diagram presentation, which may be only used for Phrase

Structure Grammar (PSG), a grammar theory is commonly accompanied by its own

structure diagram to present its specific grammar structures. The next section will

review some typical grammar theories and their associated syntax diagrams.

Diagrams in Phrase Structure Grammar

Following Phrase Structure Grammar theory, sentences are broken into smaller

constituent parts step by step following the steps below:

• Take a whole and subdivide it into individual parts.

• Once this is done, the parts can in tum, be treated as wholes to be subdivided

into furth er parts.

• The process can be continued until the parts become words .

Following these steps, a sentence as a whole is broken down into phrases or parts at

the highest level of analysis . At next level of analysis, the phrases, which are wholes,

can be broken down into smaller phrases or individual words. There are several

versions of diagrams that show this type of structures including Phrase Structure Tree,

Diagramming and Chinese box.

Phrase Structure tree

This is one of the most popular ways to present sentence structures. The

method is considered as equivalent to the bracketing method discussed

previously (Section 2.2.2.1). In the Phrase Structure trees, the immediate

constituents of the sentence are like limbs of a tree while their constituents are

like branches. The diagram is clearer when the nodes are labelled with the

types of the constituents. There are two types of tree diagrams: bottom up and

29

top down. Figure 2.1 shows a syntax tree for the sentence "The bear runs over

the mountain" that is displayed as a bottom-up diagram.

The bear runs over the mountain

M N V p M N

\/
NP

/
pp

NP~
/

____,,..,VP
s

Figure 2.1 Bottom-up syntax tree of a simple sentence "The bear runs

over the mountain"

In thi s tree diagram, the bottom "S", which dominates the whole string of

words, is claimed for the sentence. The NP comprises the noun phrase "The

bear". VP presents for the verb phase, "runs over the mountain". The initial

NP itself comprises an article (Art) "The" and a noun (N) "bear"; the VP

comprises a verb (V) "runs" and a Prepositional Phrase (PP) "over the

mountain". This PP itself is made up of a preposition "over" and an NP " the

mountain", which is made up of an article "the" and a noun "mountain".

However, Crowley et al . (1995) said that it is more conventional in linguistics

to show the diagram as an upside down tree. The reason for this is that these

diagrams look like a family's hierarchy , organization, or files in a folder that

are very familiar in common life. Figure 2.2 shows this type of trees:

30

~s ~
VP

NP ~
pp

/)p
\

Art N V p Art N

I
The bear runs over the mountain

Figure 2.2 Top-down syntax tree of the sentence "The bear runs over the

mountain"

It can be seen that the tree provides very important information: the word class

or category of each word, the phrase structure of the whole sentence

(including what the word groupings are and their hierarchical structure - how

they are nested or not nested inside each other) and the phrasal category of

each phrase. Every branch in a tree ultimately ends in a word and every word

is at the bottom of just one path of branches starting from the "S" at the top

("root") of the sentence. When tree diagrams are initially seen, they may look

unfamiliar and difficult to understand. However, when users get used to them,

trees give a good overview of the structure of a sentence (Borjars and

Burridge, 2001).

To highlight phrases in a sentence, the Phrase Structure tree of a sentence can

be displayed with triangles presenting phrases or constituents. This kind of

diagram is called the abstract syntax diagram. Figure 2.3 displays this kind of

diagram for the sentence "The bear runs over the mountain". By using this

way, learners can easily recognise that the sentence includes two main

phrases: noun phrase and verb phrase. The noun phrase includes two words

"the" and "bear". The verb phrase includes two sub-verb phrases: verb phrase

and preposition phrase. The verb phrase contains only one word "runs". The

preposition phrase includes three words "over", "the" and "mountain".

31

VP

~
VP' PP

~~
The bear runs over the mountain

Figure 2.3 An abstract syntax tree for the sentence "The bear runs over

the mountain"

Diagramming

Reed-Kellogg diagramming techniques are visual maps used in the

schoolroom to display the structure of sentences. This kind of diagrams, along

with some other notations, was developed during the nineteenth century.

However, only Reed-Kellogg diagrams are still used in many schools today

(Thomas and Muriel, 1996). Figure 2.4 presents a Reed-Kellogg diagram of

the sentence "This new Panda makes new friends easily". In this diagram, the

main horizontal line represents the core of the sentence. A vertical line

intersects the horizontal between the main word "Panda" of the subject "new

Panda" and the main words of the predicate "makes new friends easily" . A

vertical line following the verb, "makes" , separates it on the horizontal line

from the main word of its direct object, "friends". Diagonal lines point

towards words they modify. The noun modifiers "This" and "new" are on

diagonals below "Panda" and the adverb "easily" is on the diagonal below the

verb "makes".

Panda makes friends

Figure 2.4 Diagramming of the sentence "This new Panda makes new

friends easily".

32

Figure 2. 5 shows the structure of a more complicated sentence - a compound

sentence "Forecasting technologies are more sophisticated and today's

forecasters are better trained, but weather predictions are still not very

reliable" (in similar form from Capital Community College Foundation, 2003,

pl):

are

I

· and

forecasters ' a~rtrained , c
: ~
'
'

I but

Figure 2.5 Diagram for a complex sentence

IC Analysis Diagram

reliable

Immediate Constituent (IC) is a system mainly used by American structural

linguists for analysing the hierarchical structure of sentence and their parts

(Thomas and Muriel, 1996). The system uses the Analysis Diagram to present

results of IC analysis. In this type of diagrams, arrows are used to show

sentence elements including words and phrases that modify these words.

Figure 2.6 presents an IC Analysis Diagram for an example sentence "These

new students learn the grammar lessons easily".

33

These new students learn the grammar lessons easily ·

~

... ...
~ ~

-
~

~ -

Figure 2.6 IC diagram of the sentence "These new students learn the grammar

lessons easily"

Studying the diagram from bottom-up, one can see how phrases contained in

the sentence form its parts. The third vertical line divides the entire subject,

"These new students", from the entire predicate, "learn the grammar lessons

easily". Each of these is divided into the parts that constitute it and so on. For

example, the subject has two major constituents, "These" and "new students".

The advantage of this kind of diagram is that it can show how there is a

hierarchy in modifiers with one modifying another that modifies yet another

(Thomas and Muriel, 1996). One can see that, in this diagram, lexical

categories of words in the sentence are not presented.

Chinese boxes

Another way to show the grammar structure of a sentence is the use of

Chinese boxes (also known as nested boxes). It looks like "hats and shoes"

(Hilferty, 2002). The Chinese box presenting the grammar structure of the

sentence "John gives the flower to Lisa" is displayed in Figure 2.7.

34

Sentence

NP VP

VP NP pp

John I vgives I ~ e ,~ower I Q ,~isa I

Figure 2. 7 Chinese box for the sentence "John gives the flower to Lisa"

In this diagram, the sentence includes two main phrases: noun phrase (NP) and

verb phrase (VP). The noun phrase has only one word "John". The verb phrase

includes three smaller boxes of its constituents: "verb", "noun" and

"prepositional" phrases. Each of these smaller boxes includes constituent

boxes and so on. The diagrams are easy to understand. However, if a sentence

is long, its Chinese box diagram will be very complicated as it will have many

nested boxes and require lots of space.

Diagrams in Dependency Grammar

Dependency Grammar (DG) is a very popular grammatical theory in linguistics. One

of the best-known approaches developed based on Dependency Grammar has been

constructed by Richard Hudson (Hilferty, 2002). The grammar does not rely on

constituency but on relationships between individual words and in some cases, the

linear ordering of words. There are two main elements of a dependency: the head and

its dependents. The meaning of the head is usually completed by a complement or

modified by an adjunct. In a DG diagram, the verb is considered as root. Figure 2.8

shows a DG diagram representing the simple sentence "Lisa reads a book".

reads

/ "--
obj ~

/ subj
Lisa book

/

/det

a

Figure 2.8 DG diagram for a simple sentence

35

In this diagram, the links with labels refer to the syntactical function of the dependent

element. Following DG structure, the sentence above can be interpreted as following:

"Lisa" depends on "reads";

"a book" also depends on "reads";

"a" depends on "book";

"reads" depends on nothing.

Therefore, "reads" is considered as the "root" of the sentence m Dependency

Grammar and is placed at the top of the diagram.

Figure 2. 9 shows a diagram of a more complicated sentence analysed by this type of

grammar (adapted from Tapanainen, 1997).

<Root>

/

v-ch.

/

see

~b- tmp
0 ~- ---........ -----..

students at
/

/det.

all 11

-.ocomo. ---.
AM

Figure 2.9 Dependency Grammar tree for the sentence "I will see all students at

11 a.m."

Diagrams in Word Grammar

Word Grammar theory (WG) was developed by Richard Hudson from the early

1980's (Hudson, 2002). This grammar uses word-to-word dependencies and a noun is

the subject of a verb . The main difference between the Word Grammar and the

popular language theory, Phrase Structure Grammar (PSG), is that the Word

Grammar does not recognise a noun phrase as the subject of a clause as the PSG does.

In addition, in Word Grammar, grammatical relations/functions between words are

presented by using labels. Figure 2.10 presents a Word Grammar structure for the

36

sentence "Syntactic dependencies make phrase structure redundant". Each word in the

sentence is in the centre of a small network of links to other words; and these

networks combine into a bigger network for the whole sentence. This network is not

equivalent to a phrase structure tree because there are double dependency links for the

word "structure" from the words "make" and "redundant". Figure 2.10 also displays

the relations/functions among words such as "subject", "object" or "adj unction".

objct
~t s~t /~-

~ " ~ " 1/ ~~
Synta:tic dependencies make phrase structur"e reclmda1.t.

~
Figure 2.10 Sentence structure diagram for a sentence using the WG theory

Diagrams in Lexical Function Grammar

Lexical-Functional Grammar (LFG) is a unification-based linguistic formalism which

is suitable for computation (Wong, 2001). Comparing with PSG, LFG uses different

structures to represent different levels of linguistic information of a sentence. While

PSG captures the external structure of a sentence, the Lexical Functional Grammar

represents the internal structure of a sentence. This includes the representation of the

higher syntactic and functional information of a sentence. The higher syntactic

information of a sentence shows the grammatical infonnation of a lexical item. For

example the word "books" is in plural form of the word "book", and the word

"played" is expressed in past tense of the word "play" . The functional information of

a sentence stores the information about functional relations between elements of

sentences and how elements of the sentence affect each other. The relationship is

presented by links drawn between them. The syntactic and.functional information of a

sentence is shown in a functional structure diagram as a set of "attribute-value pairs" .

In an "attribute-value pair" of a functional structure diagram, the attribute

corresponding to the name of a grammatical symbol (e.g. Numb, Tense) or a

syntactical function (e.g. Subj, Obj) and the value are the corresponding feature

possessed by the concerning constituent. For example, the functional structure

diagram representation of the NP (Noun Phrase) "John" which functions as the

subject in a sentence is presented in Figure 2.11 (in this diagram, Pred. and SG are the

abbreviations of the word "Predicator" and "Single" respectively).

37

Pred. "John"

Subj.
Spec.
Numb. SG
Person 3rd

Figure 2.11 Functional structure representation for a noun as a subject

The functional structure diagram can be a multi-levelled tree-like structure as it may

contain subsidiary functional structures. In the functional structure, some of the

attributes appear in different places and sometimes they are linked with each other.

For example, in the sentence "John tried to play the guitar", the subject of the

sentence "John" is also the subject of the complement clause "to play the guitar"

(Figure 2.12). The value of the attribute "Subj ." ("John") is linked to the value of the

same attribute in the functional structure of the complement (see Wong, 2001 for

more details) .

Pred

Tense

Subj .

XComp .

Try((fsubj) (f><Comp))

Past

[

Pred
Spec
Numb
Person

'John'

SG
3rd

Pred . 'Play((if'Subj .) Clf'Obj .))'
Subj .

Obj .

LJ

Pred .
Spec .
Numb .
Person

'Guitar']
'the'
SG
3rd

Figure 2.12 Functional structure for the sentence: "John tried to play the guitar"

2.2.2.2.2 Structure diagrams of constructed languages

Diagrams are not only commonly used in natural language to present natural language

structures. They are also utilised to display constructed language structures

38

extensively. This section presents diagrams used to display language structures for

FSCL and XML.

Diagrams in presenting FSCL structure

FSCL uses a structure tree called semantic tree to present the structure of FSCL

sentences (Heinrich, 1999). This kind of tree can be seen as a general tree that has an

unlimited number of nodes and lines. A tree may have a minimum level of two

presenting "subject-verb" structure or a maximum level of six presenting "subject­

verb-direct object-verb-indirect object" structure. Figure 2.13 presents a semantic tree

diagram for the sentence "John gives a book to Mike".

s

-----------------------~--
John

Subject

-----------------------~--
gives Activity

---------- 7 L-~~- -----------------------------
- Object a book to Mike

Figure 2.13 The FSCL semantic tree of a FSCL sentence

The semantic tree in this diagram is divided into four levels. The highest level is the

root "S" presenting for Sentence. The subject "John" and the verb "gives" are in the

second and third level respectively. The two objects "a book" and "to Mike" are

displayed in the fourth level. A FSCL sentence is read by going through the semantic

tree from top to bottom, left to right direction. As this language is used for the

research's case study, the language is discussed in more details in the next chapter.

Diagrams presenting XML structure

XML documents can be displayed through structure trees easily. For example, the

structure diagram of a catalogue document (first mentioned in Section 2.1.2.2) using

XML can be presented in Figure 2.14. In this figure, the textual format of the

39

document is located in upper left hand side and its mapping diagram is displayed in

the lower right hand side. The node in the top of the diagram presents the whole

structure of the document and nodes below it present sub-divisions of the documents.

These nodes may connect to other nodes or be leaves.

<Catalogue>

<CO>

<performer> Bob Marley</performer>

<composer> John Markey</composer>

<title> Is this love </title>

<tracks>

<track length="2:34">

</tracks>

</ CO>

</Catalogue>

Catalogue

I
CD

~I~
performer composer title tracks

Bob Marley John Markey Is it love track

I\
length

I
"2.34"

Figure 2.14 Mapping tree of a XML document

2.3 Computer Aided Language Learning

Users can learn language in different ways, such as by attending classes or by reading

books. Nowadays, with the invention of computers, users have one more choice:

40

usmg computer applications to learn language. These applications are called

Computer Aided Language Leaming (CALL) applications. Compared with other

methods of learning, computer applications have many advantages. This section first

reviews advantages of using computers in language learning. It then examines

elements that affect the development of computer applications for language learning.

Towards the end, the section reviews computer applications for learning natural

language with and without using graphical diagrams.

2.3.1 Benefits of CALL in language learning

Traditional language learning takes place in classrooms where one teacher addresses a

larger number of students . This brings some difficulties for students. Because there

are many students in the class, each student can get only a limited amount of

attention. The speed of the course or its difficulty is independent of the individual

student's ability. Now, with the invention of computers, those limitations of teaching

students through classrooms are not longer an issue.

Many computer applications have been developed to teach learners various aspects of

natural languages. These applications (Computer Aided Language Leaming

applications - CALL) offer powerful self-assessment facilities. They generate learner­

centred and self-paced activities. The CALL applications can be sensitive to the level

of proficiency of the leaner and also can self-adjust in real-time in response to the

learner input. Moreover, learning lessons can be called up by students at will. In

addition, computer applications can do everything very quickly . They never tire and

nor does their attention falter. Moy and Eliens (1994) pointed out some advantages of

computer applications in learning language as following:

• The student is able to get attention from a computer as a tutor.

• The course material and level of the lesson can be adjusted to the needs of

each student.

• The course can be held at a time and place as required by the student.

• The student can get direct feedback from exercises.

• The student can repeat anything without much effort. For example, if a student

does not understand a lesson, he can replay that lesson until he completely

understands it.

41

2.3.2 Areas of CALL in Language Learning

Computers can assist in teaching students in many fields: Grammar, Writing,

Vocabulary and Reading. The following section presents some benefits of CALL in

language learning.

• Grammar: Many researchers state that the first computer applications for

teaching languages focused on teaching grammar (Cameron, 1999). To teach

grammar, computer applications present grammar rules, display structure of

sentences or provide exercises that help students to learn language syntax. The

following points indicate that why a computer application can be a good tool

to support teaching grammar (Cameron, 1999).

Grammar rules can be presented in a manner, which takes account of

individual preferences.

The computer provides plenty of practice, combined with instant

feedback that prompts learners to reconsider their understanding of the

rules as soon as they make a mistake, instead of leaving them with an

incorrect rule for some time as so often happening with ordinary

homework.

• Writing: Dowling (1999) pointed out that CALL could help learners of all

ages for writing. She said that computers have made possibly a relationship

between the act of writing and the process of thinking and learning. Writing

using a computer, a learner can be free to explore and develop ideas, concepts

and relationships through the language. Therefore, the learner's thoughts can

be tentatively put into words, modified, rearranged and discarded if necessary.

This helps learners' understanding to grow. Moreover, writing using

computers can be particularly helpful to those students identified as having

learning difficulties or for whom the act of handwriting physically is difficult.

These learners gain benefits from the new freedom and flexibility offered by

word processing. Spelling is no longer an issue because the computers provide

convenient facilities such as spelling checkers.

• Vocabulary: Studying vocabulary is one important part of learning language.

It has been common to give learners lists of words to memorise together with

periodic tests. This method was successful to a certain degree, but computers

have the potential for more effective techniques. Computers now can teach

42

learners to learn vocabulary in exciting ways. A computerised word game is

an example. In this kind of game, a computer has many roles. For example, it

serves as a delivery medium, displays the puzzle to be solved and provides

clues. In some cases, computers act as an opponent for the leaner or even

facilitate for learners to compete against each other. The computer also records

the learners' guesses and can check their spelling.

• Reading skills: Computers can help learners to improve reading skill by using

many techniques. For example, FReader application (ReadingSoft, 2004)

provides various reading modes that offer an impressive acceleration of

reading pace within each training session. In another example, the

ACEREADER application improves learners' reading skill (both speed and

comprehension) through "the use of Drills and Games that are based on

fundamental and sound pacing principles" (Leaming Center, 2004, p 1) .

2.3.3 Elements which influence CALL development

CALL is inherently multidisciplinary. A joint policy statement of the international

research organisations CALICO, EUROCALL and IALLT (CALICO, 1999, pl),

s tated that "CALL applies research from the fi elds of second language acqui sition,

sociology, linguistics, psychology, cognitive science, cultural studies, and natural

language processing to second language pedagogy, and it melds these disciplines with

technology-related fields such as computer science, artificial intelligence and media

communication studies. In integrating these disciplines, CALL's work requires a huge

range of complex activities and initiatives in development, pedagogical innovations

and research". Addressing the same issue, Levy (1997) described the relationship of

CALL with other major fields by using a diagram which is presented in Figure 2.16.

43

Artificial
Intelligent

Human computer
interaction

C\LL

Applied
lingustics

Psychology

Introductional
technology and

design

Figure 2.16 CALL and related disciplines (adapted from Levy, 1997)

Among those major fields, two fields, Human Computer Interaction and

Computational Linguistics, are closely related with the development of CALL

applications. Details of these two fields are discussed in the following sections.

2.3.3.1 Human Computer Interaction

Human Computer Interaction (HCI) focuses on all aspects that relate to the interaction

between users and computers so that users can "use friendly" or "easily use"

computers. Preece et al. (1994, p 1) defined that "Human Computer Interaction (HCI).

is about designing computer systems that support people in such a way that they can

carry out their activities productively and safely".

HCI focuses on the design of interactive systems considering user requirements and

the natural elements of the tasks that users have to complete. HCI includes discussions

of the design aspects of menu selection systems, command languages and interaction

styles and so on. Thus, knowledge of HCI design can provide CALL developers with

a sense of the range of design options and the implications that are inherent in each of

them. To develop a CALL user interface, Chapelle (1991) recommended that

designers must consider three aspects of interactions: how the learners input data; how

the learners interact with the input and how the system produces outputs. By

analysing these interactions, designers can identify the important elements for the

development of computer applications that help learners to improve their abilities of

languages.

44

2.3.3.2 Computational Linguistics

Computational linguistics is the study of computer systems for understanding and

generating natural languages. Computational linguistics needs an understanding of the

entire process of natural language comprehension and generation (Grishman, 1986).

Achieving high quality Natural Language Processing (NLP) has been one of the

central goals of computational linguists (Levy, 1997). NLP is used for analysing

natural languages automatically with the help of software programs called parsers.

Most CALL applications include a NLP part which analyses natural language input by

using a parser that judges the input on the basis of linguistic or grammar rules. The

main functions of a parser are (Hausser, 1999, pl 8):

• Decomposition of a complex sign into its elementary components;

• Classification of the components via lexical lookup, and

• Composition of the classified components via syntactic rules m order to

achieve an overall grammatical analysis of the complex sign.

2.3.4 CALL applications for natural grammar learning

CALL applications can be used to explore and solve issues experienced in relation to

grammar learning. Key purposes of CALL applications for learning grammar are

(Levy, 1997):

• Building parsers that take a text and try to analyse it according to grammar

rules.

• Exploring different kinds of grammar and their suitably for presenting the

variations of natural language.

• Exploring ways of representing the meanmg of sentences so that an

appropriate response may be made.

• Integrating the syntactic and semantic components in terms of an effective

control structure.

In this section, a range of CALL applications to teach natural language grammar is

presented. The research separates CALL applications into non-diagram and diagram

applications.

45

2.3.4.1 Non-diagram applications

There are applications that do not use diagrams to present language structures.

Instead, these applications use textual explanations to teach language grammar. The

applications reviewed belonging to this category are : Focus On Grammar, English

Sentence Analysis and Constraint Grammar Parser of English.

2.3.4.1.1 Focus On Grammar

Focus On Grammar (FOG) software was developed by Exceller Software Corp

(Exceller Comp., 2003). FOG offers extensive grammar practices in the form of

grammar exercises. It can be used in or outside classrooms for learners to practice

areas where they have problems, or to improve their grammar skills. Learners first

learn language structures by viewing Grammar Notes . They then do exercises

provided by the application. FOG provides a number of exercises leading gradually

from isolated, simple tasks to more complex ones. The application can assess

knowledge of learners through a scoring system. Figure 2.17 presents a screenshot of

this application showing a practical grammar exercise. In this exercise, a learner has

to select a word group to fill a blank space in a sentence.

t1wrn:~t t Q4t¥n:ni.trn@nntn1nnrn:::,nn=nnn1t::nnrmnm=rrrrrtt:=tt=nntmtttn1nr:wrnrJ?tt1::rrtt:1·
:f~ [I!OOl:!@H 2 tm=[~! E l Practice Wil1Mli'-£l Practice B t!ilt1~:rn

:::::::i:idil~:i:i:i:i:: =i:N"~ i'fili~~i:=i= :=t=:=::=:=:::::::fi=uif::=tf:tt
::f'::'#.1Pi.6~it:':J t l iii~IHMi:J: i:W,lli•iRt6¥.m=:

Figure 2.17 A grammar exercise of "Focus on Grammar" application

46

2.3.4.1.2 English Sentence Analysis

The English Sentence Analysis (ESA) application has been developed at the

University of Groningen in Netherlands (Verspoor and Sauter, 2000). The main

purpose of this application is to make students aware of different levels of analysis in

sentence, clause and phrase level. It also helps students to familiarise themselves with

the traditional terminology of sentence constituents such as subject, predicate and

direct object; word classes such as noun, verb and object; and phrase constituents

such as head, pre-modifier and post-modifiers (Verspoor and Sauter, 2000). The

application contains many exercises including multiple-choice, drag & drop and fill­

in-the-blank questions . After each lesson, the application will assess the level of the

learner's grammar understanding. To get a "pass", a learner must score at least a

certain mark on each sub-topic in a set. An interesting feature of this application is

that if a user does not reach the pass mark for a certain period of time, a new set of

questions will be created focusing on the topics the user did not master. Figure 2.18

shows the application's user interface during an exercise .

. . . - .. ·

Thi.<: .;,sra;;.; d<!a!,:~ ~Dr>S~IJl!nto ai . PHR:~5F,. lf.Vfl. • ..
· tiisi ct~1~4: the:ieie:Vartf the<;.-r·by cl~,:..;~ ·« , t>-.e ~ght Ql.i:i ic-0<1 nr',th,} t~ i-k~.
_Qpen the·ft-~~~;;!(. l il\XI tf~.C Pl~¼.~:":»:, l t~'fl :t}' ~~ -.

Identify the type of eacl) phrasi{encJos;,,d in squB;e
brnckelii by choosing tl lobel !rum lhe list ttnd drugging il .

<to a gap. >
. - '....

. · .. · _· _ .. ·. ·. . . ·.· . . .
. _· .· -_ .· · .. · · .·.· . .

[Reguloi concert goers --1 judge that the [bast__} sound ·
_bolo.nee is usually to.be heo.rd[frbm within large _concrete bunkers
_some thirty-seven mHes from. the stage ~ .-while ihe musicians
)hems elves pl.o.y:[1heir instruments -~ by .remote coritiol ln;,m within.
ii [[heavily ~ insulated ~ J;paceship which stays in orbit . .
OrOlJOci the plenei C 01-tl10re irequen_tiy 0100nd ti COmple!ely different

plO:riec .· ·•··• . · ... · . . ••.... ·..
'(D~ A&,ns; The ReStauant a(the End ol the Urjve<ie)

...••••.• ;r:=:=:=::z•; =•: ::=::::;:;:;;~tiz;;;=:=:=:=:=:=:=:=:=:=%';%r:::l
. · · i~i • · • ·fll :~:.-:-~~\!.~,,~-~"-''ll*™--%.~»~m~A~,aj • • • • j

r~ J
Figure 2.18 A phrase exercise example of "English Sentence Analysis"

47

2.3.4.1.3 Constraint Grammar Parser of English

Constraint Grammar Parser of English (ENGCG) was developed by the Lingsoft team

in Finland (Lingsoft Comp., 2003). ENGCG performs morph syntactic analysis

(tagging) of English text. Learners can enter a sentence and the application will return

a mark-up for the grammatical function of the words in that sentence. These words are

not on ly assigned multiple tags but also multiple syntactical functions. Figure 2.19

shows the output of the application when a user enters the sentence "John closes the

doors and asks Lisa to tum off the light".

Parse l Reset l:;,;;·
,u .. , .. ,o::mL.:: .. o .. u r US/1 i1euristlc.-s

John c loses tile door and asks Lisa to turn off the light

(See the des cription of 1m,rpti1.llogt,,;~I hi!!:J~, ~;ytltm:tic ta~s and uthe1 rrntaiioll'$.)

" <*john> "
" john" <* > <Prop e r > N NOM SG @ SUBJ

"<closes> "
"close" <SVO> <SV> V PRES SG3 VFDl @+FMkINV

"<the>"
" the" <Def > DET CENTRAL ART SG/PL @DN>

"<door>"
"door" N NOM SG @OBJ

"<and>"
"and" CC @CC

"<ask s>"
"ask" <S VOO> < SVO> <SV> <P /of> <P/for > V PRES SG3 VFIN @+FMA INV

"<* l isa>"
"lisa" <*> <Proper> N NOM SG @OBJ

" <to> "
"to " INFMARK> @INFMARK>

" <turn> "
"turn" <SVOC/ A> <SVC/N> <SVC/A> <out/SVC/ N> <out/SVC/A> <SVO> <SV>

V INF @ - FMA. INV
"<off>"

"off" ADV ADVL @ADVL
"off" PREP @ADVL

" <the > "
"the" <Def> DET CENTRAL ART SG/PL @DN>

" <light>"
"light " N NOM SG @< P

Figure 2.19 A ENGCG window for the sentence "John closes the door and asks

Lisa to tum of the light"

It can be seen that each word is assigned all of its potential syntactical functions and

constraints to reduce ambiguities. However, the output of this looks complicated and

some words sti ll remain ambiguous (Granger, 1998).

48

2.3.4.2 Diagram applications

In this type of applications, diagrams are used to presents language structures. The

users are allowed to view or interact with the diagrams to learn language syntax.

Some applications are used for kids and some applications are used for beginning

linguistic students to learn language structure. Several diagram applications are

reviewed in the following sections.

2.3.4.2.1 Diagramming Sentences

To learn language grammar, there is a simple method developed by Charles Darling in

"Guide to grammar and writing" lessons regarded as an online-learning application

(Darling, 2003). This teaching approach is suitable for young kids or beginning

students who want to learn natural language structures. In his website, Darling teaches

learners to learn language syntax by using diagrams to present different categories of

sentence structures. Each page in this website is divided into two areas. The top area

displays categories and the bottom area displays a sentence of the selected category

and its structure diagram in the form of a Reed-Kellogg diagram (see Section

2.2.2.2.1 for a definition of Reed-Kellogg diagrams) . The application allows learners

to select any category and then presents any sentence in that category with its

structure diagram. Figure 2.20 shows the structure diagram of an example sentence in

the category "Compound predicate". By seeing categories with example sentences

and their detail structure diagrams, learners can understand simple language structures

without difficulties .

49

11 DIAGRAMMING SEt,ITENC:ES _- 1,\icro~ft l11_tern~t Exple1rer . - -~ - ·- - . -·-- · - - - . ~§~
Iools t:[elp ; J:lf

-- J

0 ~ • 0 - ~ ~ t{';) . j..J S..~ch i1 Favorites @' Mc61l €} r ~ • ~ ~ • »

: ,,.;jd1e<es 14fl http://webster .cormmet .eo.J/gr0mmar/diagrams2/di~grnms_frames.htm

: L,nks ~ Cu<tom12e un~.s ~ Free Hotmail ~ Wr.d<:>w,; ~ 'Mr,dow, Media "5rl' My Yahoo I ~ Ychool

Basic Sentence Parts, Phrase
Configurations

l. Simple sub ject and predicate 28. C otr!!)Ound adverbs
£,_ Understood subject {for 29. P reoosicionru QP.ras e

c<,mroands, direc ti\•es) 30. P re2ositional ehrase mo difvi_,g

1 Questions another prepositiona! phrase
4. C ome ound e redicate 31. P reposition "~th compound

L Comoound subicr,t an. ob1ccts
predicate 32. P repositional phras e modifying

~ 1bree subje~ an adverb

l Drrect obiect 33. P re20::itional eb.ras e· as

Compound predicate

The cat ltowled :uut sn'ltdu.•d ferociously.

Return to
t''~~~ ;,-f . " l / ·' . · • t · · 1 ' f~· ' 'i i l i ·~ ' . : ~
I ' . ; '~ • I .,,,._,_~

i • !nteme«

,.

...,.

Figure 2.20 A diagram for a sentence of the subject "Compound predicate"

2.3.4.2.2 Syntax Student's Companion

The Syntax Student's Companion is a learning program created to help students to

practice syntax exercises by visually building and manipulating syntax trees, and

writing simple grammars (Max, 2002). The program was developed as the result part

of a project at McGill University, London. The main features of the program are

(Max, 2002):

• Visual tree drawing: Users can draw trees without any limitation of the

number of sub-trees for a node. Trees can be downloaded over the network or

loaded from the local drive, and saved. Visual tree drawing also provides a

simple way of getting tree bitmaps for assignments and handouts.

• A context-free grammar editor: Learners can define new simple grammars

then check the validation of the learners ' input trees following these new

50

grammars. The application can classify grammars by name, language, and

author.

Figure 2.21 presents the user interface of the application (adapted from Max,

2002).

: lh8 Syntax Student's Companion &gf;]£1

big
good
little
nice
old
unwise

pick a lexical category
and place it on

the workspace

click on a word from
the lexicon and place

it on the workspace

the current access to
grammar the grammar

editor

The workspace where
you can draw trees

scroll lo view trees

Figure 2.21 User Interface of the Syntax Student Companion

Figure 2.22 displays the application's user interface while a user is doing an exercise

of building the syntax tree for the sentence "a boy may drink milk when he is thirsty".

51

V A. i

be
chase
come
count
deserve
draw

~

Free drawing mode

NP
/'--.....

Det N
I I
a boy

VP

-----------­pp V
I I

may drink

Figure 2.22 Building a sentence diagram in Syntax Student's Companion

2.3.4.2.3 Tree Drawing Tool Animation

Tree Drawing Tool Animation software (TDTA) was developed at the University of

Pennsylvania for displaying and manipulating syntactic trees and derivations (Kroch,

2003). It is recommended for the introductory level of syntax learning. The

application allows teachers or learners to:

• Demonstrate syntactic structures and derivations m a computer-equipped

classroom.

• Construct interactive exercises for students as homework assignments.

• Model syntactic analysis to demonstrate and informally test their descriptive

coverage.

• Build trees and paste them into word processing documents or web pages.

The salient point of this application is that it provides a range of available tree

"fragments" and lexical items. It then allows learners to select "fragment" trees from a

lexicon and combine them to form phrase sentences in a workspace (Figure 2.23).

After assembling, the trees can be saved, printed or inserted into any documents. The

52

application can also create grammars following learners' specifications. Learners then

can see how the new grammar works by inputting new sentences and observing

interpreted trees . Phillips (2003) commented that the program is very useful for

learning grammar because of the huge range of available tree fragments and lexical

items. He observed that the students who did not use the program in his class for

learning grammar lessons could make six times more mistakes compared to students

who did use the program.

v&
/ '-

XP V

A
V XP

I
UUI

1 ~~111:!!!:::iii•~, .z=·=-= 4.4®.JM.JWW_m ... _.w_._._.w_._._.w_._._.w_._._.w.:::::z:},z::::_¥:lWW©J@@@@44J.@©J@@44J.@4444441lr~rl,:ii;ri ···· ·····-·-··-·.-.-.·.·-·.-.-.-.-.-.·.·.·----.·-·-·-· ·········-·-·-·.---:-:-:-:-:-:-:-:-:-:-:.;.:-:-:-:-:-:-: :;::::::::::::_;·:··:-:-:.;-:-:-:-:-:

Figure 2.23 TDTA in a process of building a structure tree

2.3.4.2.4 Visual Interactive Syntax Learning

Visual Interactive Syntax Leaming application has been developed as the part of a

research project at the Institute of Language and Communication in Denmark

(Syddansk Universitet, 2003). The project started in September 1996, with the

purpose of implementing Internet-based grammar tools for education and research. At

the start of the project, four languages were involved: English, French, German, and

53

Portuguese. Since then, several additional languages have joined the project such as

Dutch, Japan and Italian.

The application provides a range of tools for an active learning environment to help

learners to learn syntactical functions of sentences. It allows learners to draw syntax

trees or to convert sentences into structure trees. Learners can expand or collapse

structure trees to see abstract or more detailed presentations of a sentence structure.

Each node is a combination of the function of a word, its category and its value

(Figure 2.24 in the following page). In general, the application can perform the

following tasks:

• Inspecting the tree m abstract or in detailed presentation. Depending on

learners' selection, the structure trees of pre-defined sentences can be

presented in abstract or detailed presentations.

• Allowing learners to draw new structure trees based on pre-defined grammars;

• Permitting learners to select various tree notations;

• Allowing learners to check the correctness of their input with the pre-defined

grammar;

• Calculating the "grade" of learners' performance. The application assesses the

'learners' understanding of the learning topics after each exercise.

Figure 2.25 shows the interface of the application when a user is doing an exercise. In

this exercise, a user inputs a sentence. The application displays the structure tree of

the sentence and asks the user to insert the correct categories for each word as well as

its function. The application sets a time and calculates the percentage of correctness

of the user's answers so that the user can assess his level of grammar knowledge.

54

Sentence:

X

Jo:,n

d o <:-e<:-

CONJUNCT / CONJOI N T r.! ;hJ s:: ,~

·3S1<S
Fl

A
<> *

Lisa

A ~
<> * * <>

t(· turn off

A
<> *

ttH~ light

Figure 2.24 Diagram to display functions of the sentence "John closes the door

and asks Lisa to turn off the light"

Sentence:

Seleet AII

Clear SeltctJon

Combine Nodes

Reveal No de

Show SttuCUe

BhowOauohter

Sha# Motner

X

John

John clos es the door end esks Liu to tum off the hght

and

clo~e==

A ..
tasks

lhe, doo

Figure 2.25 A learner is required to insert functions for each word of the

sentence "John closes the door and asks Lisa to turn off the light"

55

2.3.4.2.5 TOSCA Tree Editor

The Tree Editor was designed by the TOSCA Research Group, and implemented as a

commercial product by the MOOSE Language Technology Company (Tosca,

2003). This application can take several input formats (texts, SGML-Standard

Generalized Mark-up Language) and represent them in the form of structure trees.

Differently from trees previously discussed, trees of sentence structures in this

application are displayed in a left to right format. The trees use complex nodes to

present functions of each word. Figure 2.26 presents the tree created by the TOSCA

Tree Editor showing the structure diagram of the sentence 'The moose ate the bark"

(in a similar form from Tosca, 2003).

~ hcc fdJtOJ w'mdows Appl1c<lt1on - (MOOSE.INOJ ll!l!l!i'iJ!ra

'ff.il:.f:.rnllllll~ll~l l~l~l~::~;1;,!!i\~!jllRll:iil!;:1!.!ti:!1!Jl!l;!!!l!!i!i!i:~1:!::11::l1:!ij:!J!:!f!!:!::111:!!::1111:J!:!/:l!!l:!:!!Et,i:
{EE he moose ate the bark .

The
SU

I NPHD J
I

N
:com smg

moose

I UTT I S I I V I VP I I MVB I L V
I !act ded mote unml lact inchc mot! putl mdic mot! past

ate

I DT I DTP

I ld~~CE I ART I
I NOFU I TXTU I

I
OD I NP

I [1 NPH.D I I I N

I comsmg

the

b,uk

I PUNCI PM I
IPer I

Figure 2.26 Tree Editor Windows for "The moose ate the bark"

The application also provides many exercises to help learners to undertake language

structures exercises. For example, the application provides a structure tree and asks

learners to assign functions, categories and attribute labels for the selected leaves. The

56

application then checks the correctness of the learner's input and informs them

possible errors.

2.3.4.2.6 VIA Grammar Practice

Visualized Interactive Analysis (VIA) 1s the outcome of a project led by the

Department of Computational Linguistics at the Copenhagen Business School,

Denmark (Kromann, 1998). The program supports learners in practicing Danish,

English, Italian, French and Spanish by providing many exercises. One of the

interesting features of the program is that it provides structure diagrams for several

grammar theories such as Chomskyan syntax trees, Head-driven Phrase Structure

Grammar (HPSG) trees or Phase Structure Grammar (PSG) trees. Figure 2.27 shows

the structure tree of a sentence in Danish. Each node in the tree displays the category

of a word and its function and content. Learners can interact with the tree by adding,

deleting or modifying any node in the tree and then check the validation of the tree

following pre-defined grammars.

m VI A . Grammahktr<Dnmg l'i!l@D

,,..,.........___0pg......,...awer_· _ e_dlg_ e,_1ng _ __....=·lr · ~$sait9!" · ,'. 1'-sndatabase __!aw'kttlf ... HJaiip~~""'·, "'*""-'-"--"=-, i

Opgave: Find det direkte objekt I nedenstaende s.stning og tegn ·
el konstituentslrukturtr.s, der Viser dets indre opbygnlng.

r o.d prep]
l1t>1 IT>U [

•..t ait]
,~ dt [

NI adj]
ltx 11alolle [

"'I n]
,.,. billt<ltl

Figure 2.27 Constituent structure analysis of a Danish noun phrase using VIA

57

2.3.4.3 Computer application for learning constructed languages

No computer application could be found that teaches "natural language like"

languages such as FSCL, CABER or the Observer language. All the applications

using these languages provide are syntax checking mechanisms that can verify the

correctness of user input by using parsers as in PAC (the application using FSCL) or

CABER.

With structured languages such as XML, there are a number of applications that help

users to learn XML structure and its associated technologies . This section reviews

some applications that assist users to check XML structures, to understand DTD

constructions or to be familiar with the query engines, XPath.

XML tutor

The application is developed in Massey University for teaching beginner XML

(Massey University, 2004). Some of features of the application are:

• Check XML documents for well-formedness: Learners input XML

documents and then verify the correctness of the inputs .

• Validate XML documents against DID;

• Validate XML documents against XML Schema;

• Perform XSLT transformations: Users can enter a XML document then

view how the document can be transformed to another document by

using a pre-defined format.

The application utilises the Oracle XML parser, and the Oracle experimental

implementation of the XML Query language. Figure 2.28 presents an

example of XML tutor application for checking an entered XML document

for well-formedness:

58

Figure 2.28 An example of checking XML structure

XMLSpy

XMLSpy was developed by the Altova company for "standard XML

development environment for modelling, editing, transforming, and debugging

all XJv1L technologies" (Altova, 2004, p 1). The application provides many

powerful functions for both beginners and experts:

• XML checking and validation;

• Well formatedness checking;

• Validation for both DTD and XML schemas;

• Text view with syntax-colouring;

• DTD and XML schemas editing;

• DTD editor, generating XML instance documents based on DTD or

XML schemas;

• Generation of DID/Schema from use-cases.

XMLSpy contains a XPath Analyzer that assists in the building and verifying

of XPath expressions. Users can enter an Xpath query and then the application

59

will display matching nodes. Figure 2.29 presents the matching nodes of a

XPath query for a pre-defined XML document.

(} D;partm.en~······

Department ('4)

XPath: / OrgChart/Office / Department/Person[position()= 1]/Last

- XPath syntax.~---~ - XPath origin----~

r- Allow C~plete XPath r- From Docu~enl Root

r XML S~a. Selector ' r Fro~ Selected Eleme~t

r XML Schema Field

· Real-time evaluation

r- Evaluate when typing

r Evaluate on butt~n click

Evaluate . I
Dose · f

XPath Versioh

r- 1.0
(" 2.0(beta)

5i-i
ffi,

cc.01

ece:

CC01

ana(

}Ti

arkt !v alu e / attribute!5 !'."':I · ,._ _____________________________ __, ana<

1 --~ka:hcw..~--.--d ... __.,.._c=allaby~""""""
Martin ---
Martin

--l--~ -

Brunner
Djervo

·_Rutger .

rt l

reg:
a n a(

oft1

ngi1

oft1

ngi1

ech1
rt r.it(

ib::=============,====================e=!}Oft1

Figure 2.29 An example of a XPath query and matching nodes for an XML

document

DTDChart

The DTDChart application is used to draw graphical structure charts for any

DTD. The main goal of the application is to assist XML document analysts

and DTD designers to visualise the document structures and DTD designs.

The major functions of the application are (Intelligent Systems Research,

2004, pl):

• Draws any XML element declaration within a DTD;

• Vertical or horizontal chart display;

• Handles multi-page charts, with page layout shown on underlying grid;

• Optional display of leading comment for each element;

• Optional display of attribute declarations for each element;

60

To present each element declaration, DTDChart utilises a node with name

(and optional comment). Within each node, standard DTD symbols are used to

indicate optional element repetition within a document such as * for element

may be present 0 or more times; + for one or more times; or ? for 0 or I times.

The content specifications and optional attribute declarations for each element

are shown underneath with appropriate links. Figure 2.30 displays the

screenshot the tree structure for a DTD:

FIie Edit View Help

.:.J PLAY

f··• ACT
•- • EPILOGUE

[·• FM
• • GRPDESCR
f -• LINE
!- • p
i--·• PERSONA
!

t·- • PERSONAE

;··-• PGROUP
r- • PLAY
L. . • PLAYSUBT
; __ • PROLOGUE

1 · • SCENE
; • SCNOESCR

• SPEAKER
• lffi1ffi!I
• STAGEDIR
• SUBHEAD

·· • SUBTITLE
• TITLE

MSDN XPath

10 COATA #REQUREO (IPCOATA)

~ -
(SPEAl<ER+. (lJ',E I
I STAOEDIRI
Sl&EAO}+)

I

~
(IPCDATA,STAGB)fi)'I

I I

#PCOATA STA/I

(#PCOATA)

Figure 2.30 An example for DTD chart

(#PCOATA)

To help learners to understand how the XPath query engine works, Microsoft

Corporation has built an XPath tutorial application (Microsoft Corp., 2004). In

this tutorial, users can select any pre-defined XPath query and view the

matching pattern in the XML document presented nearby. In addition, users

can enter new XPath queries and view matching nodes. By studying the

matching pattern, learners will understand how the XPath engine works. If

learners enter an error query (following XPath rules), an error message will be

displayed. Figure 2.31 presents an example of the input query and the

matching nodes.

61

XPath Expression:
j authors/author

Some Sample Queries:
authors
au thors / author
author s/author/name
authors/*/name
authors/author / *
authors / author fna t i o n alitv j/name
authors / author fna tionality-'Canadian'j / nam

g
authors / author f@period- "moder n"j
authors/author/@oeriod

[Enter]
XML source document

<authors> @Mam.
<name>Mike Galos</name>
<nationaiity>French</nationality>

</author>
tajffi1otJt$$®;::::$$00~

<name> Eva Corets</name>
<nationality> British< /nationality>

</author>
f:$i!tt#!l>i$

<name>Cynthia Randall</name>
<nationality>Canadian</nationality
>

</author>
E-WWffl®

<name>Stefan Knorr</name>
<nationality> Canadian </nationality
>

</author>

<name> Paula Thurman</name>
<nationality> British </nationality>

</author>
</authors>

Figure 2.31 Demonstration of quering against an XML document using XPath

expressions.

The application is a good example explaining how the XPath works. However, it still

has limitation as it can only display the first nodes that are the result of the query. For

example, the application does not display the node <name>Mike Galos</narne> that

also is a result node.

2.4 Conclusions about current language learning systems

Based on the reviews presented in this chapter, the following conclusions can be

drawn:

• Wide use of diagrams in presenting language structures: Language structures

can be explained through textual descriptions alone. However, compared with

textual descriptions, diagrams have many advantages in enhancing learners '

understanding. Therefore,- diagrams are usually used in combination with

textual descriptions to present language structures for different language

theories.

• Use of computer applications to learn language structures: Computer

applications for language learning (CALL) are used widely to assist users to

62

understand natural language structures. These applications use diagrams

extensively to provide friendly and flexible environments to teach learners'

language structures.

• No application is used for teaching constructed languages: Most of the

reviewed applications for constructed languages only focus on checking

syntax, presenting language structures or verifying correctness of user input.

No application for teaching constructed language was found.

• Different strategies to teach language structures: The reviewed teaching

applications use various approaches to help learners the learning of language

structures, including:

1. Simple applications using passive learning: With simple teaching

applications, learners are only allowed to view structure diagrams from

pre-defined sentences. Learners can select any sentence following a

language structure's rule to view its details but they are not allowed to

create their own sentences. Diagramming Sentences or Constraint

Grammar Parser of English is in this category. This type of learning is

considered as passive learning.

2. Complicated applications using active learning: The more advantaged

applications not only present sentence structure diagrams but also allow

learners to interact with these diagrams in different ways such as to build

new structure sentences or add, delete and modify current trees to explore

possible sentence structures (TDTA, TOSCA and VIA applications). In

some applications, learners can choose either textual input or graphical

input to create graphical structure trees. Most of these applications are able

to check the validity of learner input and notify learners of syntax errors.

Many applications give the learners various ranges of exercises (TDT A or

VIA application). These exercises can cover different levels of difficulty.

The applications also provide feedback or supply correct solutions. Some

applications allow learners to set up their own grammars (e.g. Syntax

Student's Companion application). Learners then enter new sentences and

use the new grammars to validate these sentences. This type of learning is

considered as active learning.

63

2.5 Suggestions for a teaching constructed languages

The reviewed applications are very useful learning tools for learning language

structures. The approaches for teaching constructed languages drawn from examining

these applications include:

• Using diagrams and computer applications to teach constructed languages:

Diagrams can present constructed language structures easily. Therefore, they

can be used for teaching constructed languages. A combination of presentation

of language structure rules, examples and illustration diagrams can be used to

teach users language structures.

• Providing an active learning environment that allows users to interactive with

structure trees: Applications for teaching constructed languages should be

able to provide various exercises to create new descriptions (using both textual

input and graphical input). They should also provide extensive feedback that

supplies critical information such as where there is error, what is wrong and

how to fix it.

• Providing adaptable concepts: Each structured language is commonly used in

one specific computer application for specific purposes. For that reason, one

constructed language can be very different from other constructed languages.

Therefore, the concepts to learn constructed languages may be similar but the

implementation of those concepts for an individual constructed language may

be different. For example, the structure of "natural language like" language

such as FSCL is very different from the structure of languages presenting

metadata such as XML. For this reason, the focuses of teaching applications

for different constructed languages are not the same as the following

discussion shows :

};> "Natural language like" languages have some similar structures

compared with natural languages. This may cause confusion between

the two. Therefore, teaching tools for this kind of constructed

languages must be able to highlight the differences between the

structures of natural language and those for "natural language like"

languages such as the FSCL and Observer languages. Teaching tools

for NLL languages also need to teach query engines embedded in those

languages.

64

>" The structured languages such as XML are used for describing

documents that have structures. Teaching tools for this kind of

constructed languages will teach users how to create correct

descriptions or queries following structure or query rules.

2.6 Summary

As so many applications are using diagrams to assist users in the grammar-learning

process, it can be concluded that diagrams are one of the important tools to facilitate

grammar learning. Compared to the non-diagramming methods such as the bracketing

of Phrase Structure Grammar, sentence structure diagrams have many advantages.

Exploring efficiencies of diagrams in grammar learning, CALL applications use

diagrams extensively to help users to understand language syntax. These programs

can be simple applications which parse descriptions into tree diagrams or more

complicated applications which allow users to interact with structure diagrams in

exciting ways such as building new structure trees or modifying existing structure

trees. Most applications provide many exerci ses so that learners can master grammar

easily.

The reviewed applications are valuable examples of the use of graphics or diagrams to

support learners in learning natural language grammar. Methodologies used in these

applications are very suitable for teaching constructed languages. However, the aims

of applications for teaching of natural languages are different from those of

applications for teaching constructed languages. Therefore, those methodologies need

to be adapted for teaching constructed languages. In addition, constructed languages

normally embed specific query engines for searching information efficiently that are

not required in the context of teaching natural language. For that reason, teaching

applications for constructed languages must be able to teach users to understand this

specific feature .

Even though there are many similarities among different constructed languages, each

of them still has distinct features. This research now examines in detail an example of

a constructed language to investigate what specific features of the language have to be

learnt. The research uses FSCL for that purpose since the language contains all

65

specific features of the "natural language like" category of constructed languages for

describing and retrieving information as presented in Section 2.3. In the next chapter,

this language will be presented in detail including the language structure and its

retrieval mechanisms. Further, the suitability of the FSCL structure tree for teaching

FSCL is investigated.

66

Chapter 3

FSCL, a language for description and retrieval

This chapter first reviews the FSCL language in detail. This includes the language's

specific structures, a comparison between this language and natural language, and its

query engines. The chapter then examines the possibility of a teaching application using

diagrams to teach the language's structure.

3.1 FSCL, a "natural language like" language for studying behaviour

The Flexible Structure Coding Language has been developed at Massey University,

New Zealand (Heinrich, 1999). The initial aim of FSCL's development was to create a

"natural language like" language which is suitable to support the analysis of behaviour.

The language was later modified and applied to a new area, the support of computer­

based educational systems. FSCL has been incorporated into an information system to

support the analysi s of multimedia documents called PAC. As it is a "natural language

like" language, FSCL contains two essential elements: vocabulary and grammar.

3.1.1 Vocabulary

FSCL' s vocabulary is divided into eight categories. These categories are defined

following the "word classes" in natural language:

- Noun;

Verb;

- Article;

- Adjective;

- Adverb;

- Conjunction;

- Preposition;

- Auxiliary.

As will be recognised immediately, the word class "pronoun" which is the one of the

categories in natural language, is not part of the FSCL categories. Words of the

vocabulary can be stored into sets that are used for studying different topics. Figure 3.1

shows an example of the vocabulary window for a vocabulary set for studying

67

behaviours of children in a classroom. Words that have relationships with other words

are defined into hierarchies. For example, as "Jane" and "Lisa" are the names of two

girls, users can define the two lower-level words "Jane" and "Lisa" below the noun

word "girls".

Mike
Victor

';)girls
Jane
Julia
Lisa

';)Teachers
John

'\'Things
book
chess
game
interval
light
pen

. ';)Auxi liary
cou ld
may
might
will

3.1.2 Grammar

:.. i ';)Verb

'\'ask \.

j

asked
asking
asks

';'be
are
is
was
were

';)give
gave
gives

';)help
helped
hel in

';)Conjunction

affer
and
before
wi th

f,. : : 'i'Adjeclive
boring

difficult
easy
excit ing
hard
high

-, '• low
nice

; ' ~Preposition
at
by

in
otr

Figure 3.1 PAC's Vocabulary window

1 ·: quickly
slowly

a
the

Like in natural language, FSCL grammar determines how words from different

categories can be combined into components to form meaningful sentences. These

word groups form subjects, activities and objects in a sentence. A FSCL sentence

follows the general structures of "subject-activity-object" or "subject-activity-object-to­

verb-obj ect". For example, the two sentences "Lisa reads a book" and "John helps Lisa

to read the book" present these structures respectively. FSCL uses a LL-type grammar

to identify the relationships of these word components to each other. The LL-type

grammar is defined as parsing from left to right. This traces out a leftmost derivation

for the input string and uses input symbols for look-ahead (see Louden, 1997 for more

details on LL-type grammars). As the grammar allows any descriptive sentence to be

68

separated into components, it supports computer applications in extracting the sentence

meaning automatically (Heinrich, 1999, 2000).

3.1.3 Using FSCL to describe and retrieve multimedia information

FSCL is attached to a behaviours analysis system called PAC for information

description and retrieval purposes. Users utilise FSCL descriptive sentences to describe

multimedia documents. These descriptive sentences are stored into databases. Users

then can search for desirable sentences associated with multimedia documents through

the FSCL query engine. In detail, the process of using FSCL to describe and retrieve

multimedia information includes steps like the following:

• Collect data : Multimedia data can be collected in the different forms of text,

video or audio format from interviews, or participant observations.

• Set up vocabulary: Words need to be defined and stored in a database before

they can be used for formulating FSCL sentences. Users can define any word to

be used for information description . These words must be put into categories by

using a vocabulary window interface. One may define different vocabularies for

different topics of study. Users can modify words of the vocabulary in the

system at any time.

• Formulate descriptive sentences: Users formulate descriptive sentences by

selecting the words from a vocabulary. These sentences will be checked for

grammatical correctness. Descriptive sentences, which are syntactically

incorrect, are either discarded or corrected by users. Each descriptive sentence

can be linked with a video segment that presents behaviour. The users will store

descriptive sentences in the database inside the PAC system.

• Retrieve desirable sentences: After creating descriptive sentences, users can

search for specific sentences using FSCL's retrieval engine. FSCL offers

different types of queries such as keyword and sentence queries. In addition,

FSCL offers some flexibility in queries through the suppression of details or

the use of words having relationships . Details of this query mechanism are

explained in Section 3.2.3. The query results can be used for different

purposes such as for rev1ewmg video segments or analysing

activities/behaviours of subjects/actors in a video.

69

The steps described above can be adjusted depending on the requirements or the

purpose of the study The example below explains the steps of using FSCL to support a

behaviour study called "Context of Support: Learning to Read in Small Groups in New

Zealand" by Wilkinson and Townsend (1999) as reported in Heinrich (1999).

Studying purpose and data collection

The purpose of this study is to analyse the parameters which contribute to learning

to read in New Zealand primary schools. This study included an analysis of the

instructional procedures of the reading abilities in a number of selected students

over a year. Data was collected in three types: the video recording of reading

lessons, audio recordings of the interview with the teachers after these lessons and

results of word knowledge tests given to the students before and after the reading

lessons. There are three different types of descriptive information. The first type

was "word learning opportunities" describing every instance where one of the

target words featured in the lesson in any form. The second type was descriptions

of "procedural engagement" that captured the attention status of each student.

Descriptions for the last type were "substantive engagement" based on the

transcript of the interviews with the teachers. The descriptions resulting from all

of three descriptive types were combined and interpreted in the context of results

from the word knowledge tests.

Building the study's vocabulary

The development of vocabulary was based on the specifications presented by the

research members and the different types of descriptive information: word

learning opportunities, procedural engagement and substantive engagement. The

research members in the research team recognised that words needed for the

procedural and substantive engagements were simple and obvious. Therefore,

they agreed with a list of words that were needed to insert to the vocabulary. In

the case of "word learning opportunities", the research members had to write

down a set of sentences they were likely to use for the descriptive sentences. The

members in the research team identified the categories of the words involved in

the set. They then checked the compliance of these sentences with the FSCL's

structures. Words from those sentences were selected and entered into the

vocabulary in a form of hierarchies. Within the first few sentences of the

70

descriptive process, a number of new words had to be added or modified. In some

cases, the research members added some necessary vocabularies. After this initial

phase of the descriptive process, only several words had to be added or modified.

Some words were removed from the vocabulary, as they had not been used at all.

Generating FSCL descriptions

Following the study purpose, three types of behaviour descriptions were required

including descriptions for procedural engagement, descriptions for word learning

opportunities and descriptions for substantive engagement. The processes for

generating the first two descriptions are presented as following:

• Descriptions of procedural engagement: The descriptions are generated for

each target child participating in a lesson in a separate pass through the

behaviour recording. Changes in the attention status of a child were

described initially as point-of-time information and then converted into

periods of time, covering the whole timeline of the lesson. The procedural

engagement data were stored in one description set for all target children

in a lesson. For example, the descriptive sentences for the procedural

engagement would be:

The name of the child;

The attention status of the child.

• Descriptions of word learning opportunities: The descriptive sentences for

this behaviour were generated based on point-of-time basis for each

lesson. Words, which were thought to be a challenge to the students, were

defined. The children would be tested on their understanding of these

words. A descriptive set was commonly created for each lesson.

Descriptive sentences for the word learning opportunities might have

elements as following:

The actor - children or the teacher;

The activity word;

The objects of the action - children or the teacher;

The words in the book the word learning opportunity was about.

71

Some descriptive sentences for "word learning opportunities" of a challenge

word "FIND" are:

Lisa immediately calls out the words after the word FIND on page 3

John tells Lisa to read again a sentence with the word FIND on page 4.

John explains the meaning of words relating to the word FIND to Lisa.

John directs attention to the error on words relating to the word FIND.

Querying of descriptive instances

After these descriptive sentences were formulated, several questions could be

generated for the studying of "word learning opportunities":

What was the attention status of a child when a word learning opportunity

occurred?

Which word learning opportunities occurred for a particular word?

What sequence of child-teacher interaction occurred around a word learning

opportunity?

Based on query outputs, the domain expert started to analyse and interpret the

resulting data. Figure 3.2 displays the application window during the process of

generating descriptions for a video document.

72

IA)' ObJetlS
Obj1

Gener Med Descriptions -

: ? ohn he lps l.Jsa to read book

I Lisa ,eads book
Lisa Mike read the book

l
Usa Jane Wike read a book

onn a sks Julia J ane to reaa ttle book

Lisa read s the book anel Mike plays a game

Lisa opens ruds the book

girls read the book

Lisa reads a exciting book

Lisa Jane read the book
girls read

Mike plays oame with Usa

LJsap1irfS game

onn grves a book to Usa
ohn asks Usa Julia to read

ohn OIV'IS Un Julia the book

Ohn grves Jane tile book and i sks J.tne ID read the b - .

Mike

Vic.tor

fgirts
Jane
Julia

Un
fTeachers

,-~ . ..,
COUid m..,
might

1!
"""

~W\wlb(urQ

Geoentl
- ---

I• ~lftyV

opens

fPl"Y
plOl1!d
play,ng
ploys

t read
reading

foads]
l'lurn

, conjunction
ofter
ond
berore
w11h

' _ , ,. ..
- ---

bonng

difflcul1
easy
exerting
hard
htQl'I

low
nice

by
In
o"
on
10

fMverb ,..,
hardty

QUICIOy

Ille

Figure 3.2 GUI of PAC system while generating FSCL descriptions

3.2 FSCL versus natural language

This section describes the similarities between FSCL and natural language and then

highlights the differences between these two languages. At the end, the section

considers the possibility of using FSCL' s structure trees called semantic trees in

teaching FSCL's structures and its query engine.

3.2.1 FSCL, a natural language like language

In general, FSCL and natural language share many characteristics. FSCL has eight

categories which are similar to those of natural language. The only missing category is

"pronoun". However, in FSCL, users can easily replace words of the pronoun category

with the words of the noun category (see Section 3.2.2 for more details). The

similarities of FSCL's word categories and those of natural language help users, who

know the underlying natural language, to learn FSCL quickly. In addition, FSCL's

structure "subject-verb-object" is also similar to natural language so it is easy to

understand for human readers (Section 3 .2.3 .2 supplies more details). The similarities

of natural language and FSCL can be seen through the following analysis:

73

There are three essential components for forming FSCL sentences and each component

is a combination of words from different categories, including:

Subject: (Article][Adjective] Noun;

Verb: [Adverb] Verb;

Object: [Preposition][Article] Noun;

Note: [] indicates that a word of this category is optional.

A FSCL sentence is created by a combination of those components and is mainly

divided into three groups as following:

I. A simple FSCL sentence is in the form of "subject-verb-object".

Example: John gives Lisa a book;

2. A complex FSCL sentence is formed by simple sentences connected by

conjunctions.

Example: "Lisa reads a book and Mike plays a game";

3. An infinitive FSCL sentence is in the form of " subject-verb-object- "to "-verb­

object".

Example: "John helps Lisa to read a book".

With the examples above, one can see that FSCL structure is very similar to natural

language structure.

3.2.2 Differences in structur·es between natural language and FSCL

Despite the similarities of FSCL structures compared to natural language structures,

there are important differences between them in the tenns of vocabulary, grammar, and

presentation of sentence structures. This section discusses in detail the differences

between FSCL and natural language structures.

Compared to natural language, FSCL has some restricted features that do not:

- Have the "pronoun" category;

- Allow conjunctions between words within a word group;

- Use the word "not" in negative sentence;

74

- Support structures which use modal verbs;

- Support the inflection of words;

- Bother about morphology.

• FSCL does not support the use of pronouns such as "he", "she" or "him". FSCL

overcomes this deficiency by replacing pronouns with words of the category

"Noun". The reason for this omission is to keep the analysis of FSCL sentences

simple. This way, a sentence can sti ll be understood by a human reader as well

as be "understood" by a computer application. The replacement of a "noun" for

a "pronoun" in a FSCL sentence is illustrated by the two following sentences:

English: Lisa reads a book then she plays a game.

FSCL: Lisa reads a book then Lisa plays a game.

• FSCL does not use conjunctions in a word group . Instead, it provides a different

approach described as follows:

a. Where multiple subjects (multi-subject) perform exactly the same

activities on the same objects, FSCL expects that that the subjects are

not concatenated explicitly but there is an implicit " and" among them. In

other words, FSCL omits connection words in a multi-subject.

Example:

Engli sh: Lisa and Jane read a book.

FSCL: Lisa Jane read a book.

b. If a subject performs multiple activities (multi-activity) on the same

objects, the activities are not joined with a conjunction but an "and" is

assumed. In other words, FSCL does not use connection words for

multi-activity for the same subject.

Example:

English: Lisa opens and reads a book.

FSCL: Lisa opens reads a book.

c. If an activity relates to several objects (multi-object), FSCL assumes that

those objects are not joined with a conjunction but there is an "and"

between them.

Example:

English: Lisa reads page 4 and page 5.

75

FSCL: Lisa reads page 4 page 5.

• FSCL does not support negative sentences. However, users can use a different

way to describe a negative sentence by using a "not" word which can be defined

in the adverb category.

Example:

English: Lisa does not play game.

FSCL: Lisa not play game.

• FSCL does not support sentences which use modal verbs or auxiliaries. Users

can define modal verbs or auxiliaries in the category "Activity" and use them in

combination with other verbs. However, FSCL will not recognise the special

grammatical functions of these verbs. For example, with the sentence "Lisa is

reading the book", FSCL assumed that "Lisa" does two activities "is" and

"reading".

• FSCL does not support inflections of words. However, users have the ability to

define words in their different inflections. For example, users can use a

hierarchy to define the different forms of the word "play":

play

plays

playing

played

Then the different forms of this word can be used in FSCL sentences as:

- Lisa plays.

- Lisa playing.

- Lisa played.

• FSCL does not follow the morphology of natural language. The language does

not look at the morphological forms of the words and it does not use lexical

information to verify the structure of a sentence. It regards a sentence like

'Lisa play the game' as a correct sentence. In other words, a 'correct' FSCL

sentence may violate natural language rules.

3.2.3 Specific query mechanism in FSCL

FSCL supports users in posting different forms of queries against descriptions stored in

a repository. Users can search for information by using the traditional keyword search

method. Users can also use a specific query engine embedded in FSCL called "sentence

76

query" technique. By usmg sentence quenes, users can obtain "the correct and

complete retrieval of descriptive sentences by basing the query evaluation on the

grammar structure of descriptive and query sentences" (Heinrich, 1999, p 114). The

following section uses textual explanations to outline both FSCL query mechanisms,

keyword and sentence queries.

3.2.3.1 Textual description of the FSCL query mechanism

Query mechanisms in FSCL are separated into keyword search and sentence search as

following:

• Keyword quer;es: The simplest queries are keyword queries . Users select any

word from the vocabulary as a query. The matched sentences are descriptive

sentences that contain the keyword. For example, the sentence "Mikes plays

with Lisa" matches the keyword "Lisa". In addition, by using the concept of

equivalent words, users can find that sentence by using the keyword "girls" (see

the following section).

• Sentence queries: A more powerful query technique implied in FSCL is

sentence queries. In FSCL, a query is also a FSCL descriptive sentence. As

FSCL sentences are separated into word groups of components: " Subject",

"Activity" and "Object", sentence matching can be seen as the matching

between "Subjects", "Activities" and "Objects" of descriptive and query

sentences. In other words, a descriptive sentence is matched with a query

sentence if and only if the two following conditions are satisfied:

1. The subject of the descriptive sentence is same/equivalent to the subject

of the query, and

2. These subjects of the descriptive sentence and the query do the

same/equivalent activities on the same/equivalent objects.

For example, the descriptive sentence "Lisa goes to the library and reads a

grammar book" and the query sentence "Lisa reads a book" satisfy the matching

condition above. In the descriptive sentence, "Lisa" does two activities: "goes"

with an object "to library", and "reads" on another object "a grammar book". In

the query sentence, "Lisa" does an activity "reads" on an object "a book".

77

Following the conditions above, these two sentences match with each other

because:

1. "Lisa" is the subject in both descriptive and query sentences - the same

subjects;

2. "Lisa" does the same activity "reads";

3. "Lisa" reads the objects "a grammar book" in the descriptive sentence

that is equivalent with the object "a book" in the query sentence.

This subsection defines the concept of equivalent words and word groups then

explains the features of FSCL' s query engine in detail.

Equivalent words: A descriptive word (DW) is equivalent to a query word (QW)

if that word is the same word or is at a lower level of hierarchy compared to the

word QW. For example the DW "Lisa" is equivalent to the QW "girls" as the

word "Lisa" is at a lower level of hierarchy compared to the word "girls". By

using this concept, the descriptive sentence "Mike plays with Lisa" will match the

keyword query "girls" following the above keyword queries.

Equivalent word groups: A descriptive word group (DWG) is a word group of a

descriptive sentence. A query word group (QWG) is a word group of a query

sentence. A DWG is considered as an equivalent word group to a QWG only

when the DWG has all equivalent words to those in the QWG but not versa.

Example:

1. Equivalent word groups for the same words :

DWG: "Lisa Jane Mike"

QWG: "Lisa Mike"

In this example, the DWG has the same words "Lisa" and "Mike"

comparing with the QWG. One can recognise that the DWG has one more

word "Jane" (e.g. more details).

DWG: "The red book"

QWG: "book"

In this example, the DWG has the word "book" that is the same word with

the QWG. The DWG contains words from different categories.

2. Equivalent word groups for words that are at a lower level in hierarchy

78

DWG: "Lisa Mike"

QWG: "girls"

In this example, the DWG has the word "Lisa" that is at a lower level

compared to the word "girls". The DWG also has one more word "Mike"

that is a boy.

With this equivalence definition, it can be seen that the order of equivalent words

is not important and a DWG can have more details compared to a QWG.

Therefore, users can create suppression of details in query, and broaden or narrow

search results.

Suppression of detail in query: As an equivalent word group of a

descriptive sentence can have more details than a word group of a query

sentence, users can decide the level of detail by creating appropriate

word groups in query sentences. If a word group in a query has more

details, more details are needed for the matching sentences.

Example:

Query sentence: Lisa reads a grammar book

Matching sentence: Lisa reads a good grammar book

Lisa reads a grammar book

Not matched: Lisa reads a book

The sentence "Lisa reads a good grammar book" is matched with the

query and it contains more detail compared to the query (a good

grammar book) . The sentence "Lisa reads a book" does not match the

query "Lisa reads a grammar book" since it does not have the detail

"grammar".

Broadening and narrowing search by using hierarchy: Users can

broaden or narrow search results by using words in a query sentence at

different levels of hierarchy.

Example:

Query sentence: girls read a book - broadening search

Matched sentence: girls read a book.

Lisa reads a book.

79

Lisa reads a grammar book

Query sentence: Lisa reads a book - narrowing search

Matched sentence: Lisa reads a book.

The reason why the descriptive sentence "girls read a book" does not

match the query "Lisa reads a book" is that this query narrows the

matching result as it only searches for a girl with the specific name

"Lisa".

3.2.4 Learning FSCL

In the sentence query category, there is one type of query called the

wildcard query. In this type of query, a word can be replaced with a

wildcard of the appropriate category . As a wild card has a category,

FSCL can check the syntax of the query using that wildcard . FSCL

defined three wild card types :

ANY-NOUN;

ANY-VERB;

ANY-CONJUNCTION.

With this definition, a wild card query can be:

ANY-NOUN play

The matching results can be :

Lisa plays .

Lisa Mike play in the garden.

It can be seen that, to use FSCL efficiently, users must understand and remember

differences of the structures between FSCL and natural language Users also need to

understand clearly the specification of FSCL query engine. Any confusion between

FSCL and natural language may lead to the creation of incorrect FSCL sentences or to

producing inappropriate queries that can lead to inaccurate returns. There are two

common errors created by users. In the first case, users may enter incorrect FSCL

descriptions that do not follow FSCL structures. In the second case, users may create

FSCL descriptive sentences that are correct in following FSCL structures. However,

due to the structures of these descriptive sentences, it might be not possible to take full

advantage of these FSCL query options. The examples below illustrate this claim.

80

Case 1: Users enter descriptions with wrong FSCL structures. This type of errors

occurs when users are confused between FSCL structure and natural language structure.

Example 1:

Lisa turns the light off

FSCL does not allow users to enter sentences that have preposition words after a

noun. The correct FSCL sentence is "Lisa turns off the light".

Example 2 :

After watching television, John will go to bed.

FSCL does not allow users to enter a sentence that have connection words at the

beginning of a sentence. The correct FSCL sentence is "John will go to bed after

watching television".

FSCL is equipped with a syntax checking mechanism to eliminate errors belonging to

Case 1. This checking mechanism prevents the storage of incorrect FSCL sentences.

Case 2: Users enter sentences with correct FSCL stn,ctures but that are unsuitable for

retrieval.

Example 1:

Descriptive sentences:

1. Lisa plays guitar and chess.

2. Mike plays chess with Lisa.

Query sentence:

Lisa plays chess.

In the first sentence, the user utilises the connection word "and' for the objects "guitar"

and "chess" for "Lisa" who does the activity "plays". This is correct following the

FSCL structures. However, FSCL assumes that the word "chess" is a separated subject

as it is after a connection word "and". In contrast, in the query sentence, the word

"chess" is the object of the subject "Lisa" and the activity "plays". Therefore, this

descriptive sentence does not match the query sentence.

81

The second descriptive sentence is also correct following the FSCL structure rules.

However, FSCL assumes that the word group "with Lisa" in this sentence is an object

group (with the same function as the word "chess"). In contrast, "Lisa" is the subject of

the activity "plays" in the query sentence. Consequently, this descriptive sentence does

not match the query sentence.

When the two descriptions above are rewritten as "Lisa plays the game chess" and

"Mike Lisa play the game chess", they will match the query sentence "Lisa plays the

game".

Example 2:

Descriptive sentences:

1. Lisa was hit and Lisa was crying.

2. Lisa was hit and was crying.

Query sentence:

Lisa was hit and was crying.

In both first and second descriptive sentences, "Lisa" does two activities: "was hit" and

" was crying". However, FSCL structures of these sentences are different. The first

sentence contains two simple sentences "Lisa was hit" and "Lisa was crying" with a

connection word "and". Therefore, the activities "was hit" and "was crying" are in two

different sentence parts. In contrast, in the second description, "Lisa" does both

activities "was hit" and "was crying" . Therefore, only the second descriptive sentence

matches the query .

From the examples above, it is clear that users must understand how to create

descriptions following FSCL structures. They also need to know the limitations of

FSCL so they can generate descriptive sentences that are easily retrieved. In addition,

users also need to understand how the FSCL matching engine works as discussed in

Section 3.2.3.

3.2.5 The FSCL semantic tree

As discussed in the previous chapter, syntax diagrams of a language are used to present

language structure or to examine the grammatical correctness of a sentence. Similarly, a

simple tree called semantic tree is used to present FSCL structures. The tree can also

82

present semantic roles of each element in a sentence. In addition, the tree can be used to

teach users the FSCL matching engine. This section will discuss those possibilities in

detail.

3.2.5.1 FSCL semantic tree, a simple syntax tree

A s discussed in Section 2.3.2.2.2, Phrase Structure Grammar (PSG) uses Phrase

Structure Tree to present the structure of natural language. Figure 3.3 presents the

syntax tree of the sentence "John gives a book to Lisa".

s

N VP

V NP
pp

/\ ~
A N p N

I I I I
John gives a book to Lisa

Figure 3.3 A syntax diagram (in PSG theory) for a simple sentence

This syntax diagram can be also presented in a simple form of an abstract syntax tree

(Figure 3.4). In this abstract syntax tree, an isosceles triangle presents a word group's

function. The articl e "a" and the noun "book" now present a noun phrase, and the

preposition "to" and the noun "Lisa" are a preposition phrase. This tree presents less

detail and is simpl er than the full syntax diagram presented in Figure 3.3.

83

s

NP VP

~
VP NP PP

D6
John gives a book to Lisa

Figure 3.4 An abstract syntax diagram (in PSG theory) for a simple sentence

FSCL also uses trees called the semantic trees to present its structures (first mentioned

Section 2.1.2.2). This kind of tree is as well displayed in top-down layout. The FSCL

structure tree of the example sentence "John gives a book to Lisa" is shown in Figure

3.5. The highest level is the root S presenting the Sentence. The subject "John" and the

verb "gives" are in the second and third level respectively . The two objects "a book"

and "to Lisa" are displayed in the fourth level. A FSCL sentence is read by gomg

through the semantic tree from top to bottom, left to right direction.

s

-----1--

Reading direction John Su~ect

-----~--
Activity

a book to Lisa Object

Figure 3.5 The FSCL semantic tree for a simple sentence

84

When this FSCL semantic tree is presented by a left-right format, one can say that the

tree is identical with the abstract syntax trees in PSG theory (Figure 3.6). Therefore, the

FSCL is considered as the abstract syntax tree.

s

NP

s-John-gives

.,. .,-
'

a book

pp

to Lisa

Figure 3.6 Comparison between PSG and FSCL trees

Examining the FSCL and PSG trees, one may notice that the big difference of FSCL

trees comes from not having the grammatical information such as NP, VP or PP.

Instead, FSCL trees display the roles of word groups in FSCL sentences. This feature is

considered as an advantage of FSCL structure trees that helps users to understand FSCL

structures for the following reasons.

Users, who will use FSCL for describing and retrieving information, are assumed to

known natural language. Therefore, these users do not need to be concerned with

grammatical details of FSCL sentences. To learn FSCL, users need a notation to help

them to understand FSCL structures so that they can use the language for describing

and retrieving information. Diagrams used for analysing language structures such as

PSG tree are not suitable as they provide "more information" which is not necessary. In

addition, many grammar theories such as the dependency grammar and word grammar

do not recognize elements that create a sentence such as NP, VP or PP. Hudson (1984)

suggested that there was no need for having PSG structure complements such as NP or

85

VP if roles of word groups are presented. Therefore, the presentation of syntactical

functions, such as NP or VP, in FSCL structure diagram tree can be left out.

3.2.5.2 FSCL semantic tree, a representation of semantic roles of a sentence

A descriptive sentence is normally used to describe a situation or an event. For a given

event, it would be possible that different people may use different words for description

depending on how they perceive the event. However, no matter how different that given

event is described by different people, it always contains an actor or subject that can be

a person or a thing, its action or state of being and possible objects/recipient for the

subject or its actions. That information represents sentence meaning in logical terms

called semantic roles. Regardless to different language structures, semantic roles are

presented in every language.

This concept reflects the meaning of descriptive sentences in natural language and

reveals "what may be a universal aspect of human perception" (Thomas and Muriel,

1996 p.145) because human tends to see two aspects of events : things and actions . To

describe events, the thing that is most prominently involved can be called " topic",

"agent", "actor" or "subject" and then the event that contains it or what is said about it

can be called "recipient" or "object" about the topic, "activity" of the actor or the

"predicate" of the sentence. This perception was once considered as the basis for

developing the universal grammar or universal language for humans (Hartl , 2003).

A FSCL semantic tree separates a sentence into components then places these into tree

order. The tree is not only considered as an abstract syntax tree but also presents the

sentence's semantic roles . This subsection explains how FSCL semantic trees can

display that information.

• Semantic tree for a simple sentence (Group 1 see Section 3.2.1): The FSCL

semantic tree of a simple sentence "John give a book to Lisa" is presented in

Figure 3.7.

86

s

-------------~---------------------------------·
John Subject

------------~----------------------------------

gives Activity

-----/~ ----------------------- ·

a book to Lisa Object

Figure 3.7 A tree diagram for a simple sentence

The diagram divides the sentence into four components with three different

roles: a subject, an activity and two objects. The subject/actor answers the

question "who gives a book to Lisa" and the activity "gives" answers the

question "what John does". The objects "the book" and "to Lisa" answer the

question "what John gives" and "to whom John gives". This diagram, therefore,

is a presentation of what users need to describe an event. As word groups that

have the same roles are placed in the same level in the tree, the number of

replications of constituents is reduced. By using the links, the relationship

among the subjects, activities and objects in the sentence is also clearer.

• Semantic tree for a combination sentence (Group 2 see Section 3.2.1): The

FSCL semantic tree of a combination sentence can be seen through an example

sentence "Lisa reads a book and Mike plays a game". The functions and

relationships of word groups are shown in Figure 3.8.

s

------~ 1-~ ---------------------
Lisa and Mike Subject

---1------------- ---------------+--------------------·

__ re j ds ______ -----------------plls ______ Activity----·

a book a game Object

Figure 3.8 Semantic tree for a combination sentence

87

In this diagram, it is clearly that there are two simple sentences "Lisa reads a

book" and "Mike plays a game". Two sentences are linked together by using a

conjunction word "and".

• Sentences with infinitive verbs (Group 3-see Section 3. 2. J): The sentence

"John helps Lisa to read the book" is an example of an infinitive sentence.

Figure 3. 9 shows the semantic tree of this sentence.

s

------------1-------------------------------------
John Subject

------------i-------------------------------------
helps Activity

------------i-------------------------------------

Lisa Subject/object

------------1--------------------------------------

to read Activity

------------1--------------------------- ------ - -- -

book Object

Figure 3.9 A FSCL diagram for an infinitive verb sentence

In this diagram, the subject " John" does an activity "helps". The object "Lisa"

is a direct object to answer the question of whom "John helps". This object is

also the subject for another clause "Lisa to read the book". The infinitive verb

"to read" is the activity for the subject "Lisa". In this case, "John" does an

action and "Lisa" needs to do another action. The word "the book" is the

object for the activity "to read".

From the reviews above, one can conclude that using FSCL semantic trees can help

users to understand the FSCL structures easily. In that tree, semantic roles of subjects,

activities or objects/recipient of each sentence are obvious. Furthermore, the

relationship "subject-activity-objects" is clearly identified when following the branches

of the tree. Therefore, users can understand easily how to form a FSCL sentence from

words .

88

3.2.5.3 FSCL semantic trees to present matching patterns

Using FSCL semantic trees not only helps users to understand FSCL structures but also

assists them in understanding the language's query engine. As discussed in Section

3.2.3.1, the requirement for matching between a descriptive and a query sentence is that

they must have an equivalent "subject-activity-object" relationship. As a FSCL

semantic tree presents the "subject-activity-object" structure of a sentence, the

equivalent of "subject-activity-object" relationships between descriptive and query

sentences is easily recognised through finding matching tree branches between these

two trees . Therefore, to compare a query sentence and a descriptive sentence, both of

them will be presented as the semantic trees of "subject-activity-object" relationships .

The nodes presenting "subject", "activity" and "object" between the two trees are then

compared for possible matching.

Figure 3 .10 in the following page displays an example to explain this concept more

clearly. The two semantic trees (descriptive tree 1 and descriptive tree 2) present the

structures of the two descriptive sentences "Lisa opens the book and reads the first

page" and "Lisa plays the game and Mike reads a book". Now the sentence "Lisa

reads" is used to query these two descriptive sentences. The semantic tree of this query

is presented in the lower left half of the figure. Checking the three semantic trees, one

can see easily that the descriptive tree 1 has the same pattern "Lisa reads" as the query

tree. The second descriptive tree does not have the "Lisa reads" pattern, therefore it is

not a "result" of the query sentence.

89

Descriptive tree 1 s
I

Lisa

/ I~
opens and reads

the book the first page

Descriptive tree 2 s

~
Lisa and Mike

I I
plays reads

the game the book

The query and pattern-matching tree

s
s
I

I
Lisa

Lisa

/I ~
reads opens and reads

the book the first page

Figure 3.10 A matching pattern between query and descriptive trees

90

One important notion drawn from viewing the diagram above is that users can search

the sentence "Lisa opens the book and reads the first page" by using any sentence that

has a matching pattern with this descriptive sentence. For example, query sentences

such as "Lisa opens" or "Lisa opens and reads" can be used for queries since they have

the matching patterns with the descriptive sentence.

Given the example in Section 3.2.4 in textual representation, users may not understand

why the descriptive sentence "John plays chess with Lisa" does not match the query

sentence "Lisa plays chess". When those sentences are presented by semantic trees,

users can see easily why these descriptive and query sentences do not match (Figure

3.11).

Query tree s Descriptive tree

I
Lisa

John with Lisa

plays
plays

chess chess

Figure 3.11: No matching pattern between descriptive and query trees

The illustrations above prove that the presentation of matching patterns between query

trees and descriptive trees can help users to understand the FSCL query engine easily. It

also facilitates to avoid users creating descriptive sentences that are correct following

FSCL structures but difficult for retrieval.

3.3 Summary

FSCL bears many elements of natural language. However, there are major differences

between the structures of these languages. In addition, FSCL embeds a specific query

mechanism that helps users to search correct descriptive sentences that have the same

structures as queries. Therefore, there is a requirement for a teaching method for

teaching users both FSCL structures and its specific query engine.

91

Diagrams presenting FSCL semantic trees can be used to support users understanding

of the distinct features of FSCL. The reason for this is that users can understand two

important factors at the same time when studying semantic trees: the simplicity of an

" abstract" syntax tree and semantic roles of elements in a sentence. Presented as an

"abstract" syntax tree, the tree suppresses information that is not required in this

context and helps users to focus on the similarities and differences between FSCL and

natural language structures. The semantic roles of elements in a sentence allow users to

create FSCL sentences following the nature of human in describing events . In addition,

the visualisation of the matching patterns between query and descriptive sentences

supports the users in understanding the FSCL query engine much more easily than

explanatory text.

In the next chapter, teaching concepts to teach constructed languages based on the

structure diagrams of constructed languages are developed. FSCL and its semantic tree

structures discussed in this chapter will be used to illustrate the concepts ' development

process.

92

Chapter 4

Concept development

This chapter discusses the concept development for a visual teaching application

called Visual Interactive Structure Leaming (VISL) that assists users in learning

constructed language structures and their query-matching engines. The chapter also

explains how these concepts are applied to a specific constructed language, FSCL,

which has been introduced in the previous chapter.

4.1 VISL, a unified approach to teach structured languages

The concepts for an application to teach constructed languages are based on the

conclusions drawn from the literature review and an example language, FSCL. The

following factors are considered:

• Advantages of diagrams m enhancing learner ' s understanding of language

structures;

• Advantages of using computer applications m supporting the learning of

language structures;

• Effectiveness of active learning in assisting learner's understanding and m

their long term memory;

• Benefits of diagrams in presenting matching patterns between descriptions and

queries in enhancing user understanding of the query engines of constructed

languages .

The teaching concepts suggested for VISL include passive learning and active

learning to help users to mastermind constructed language structures and their query

engmes:

• Passive learning: Explains language structures and their matching engmes

through lessons and illustrates these lessons through example descriptions and

structure diagrams;

• Active learning: Provides an interactive learning environment in which users

work with structure diagrams to enhance their understanding of both language

structures and query engines.

93

The following section explains in detail the purpose of these passive and active

learning approaches for helping users with learning constructed languages:

•!• Understand structures of constructed languages for description by using passive

and active learning:

• Passive learning: At first, users will not know the language structures.

Therefore, the language structures will be presented by textual explanations

accompanied with illustrative diagrams so that users can understand how

descriptions are structured. Users will be familiarised with simple descriptions

through viewing their tree structures. This passive learning approach is

presented as "Visualized Structure Tree VST" mode.

• Active learning: Users tend to forget what they have learnt by observation but

they can remember and gain deeper understanding when they themselves have

practiced with the material. In this active learning model, users are allowed to

interact with structure trees by either building structure trees by both graphical

and textural inputs from scratch or by modifying existing ones so that they can

be actively involved in exploring possible language structures. This learning

approach is called "Structure Tree Manipulation STM'' mode.

•!• Understand query-matching engine for retrieval by passive and active

learning:

• Passive learning: Users work through textual explanations that are supported

by diagrammatic illustrations. Conditions of the matching mechanism are

presented by examples and illustrated by matching locations between query

and descriptions. Through studying those explanations and examples, users

can gradually understand how descriptions are satisfied with the requirements

of a query. This passive mode is called "Visualized Query Matching VQM''.

• Active learning: Users can learn better when they can actively explore the

ideas and formulate their own solutions. Therefore, in a further step of

learning, users will practice what they have understood in the passive learning

mode in an active learning environment. Users are allowed to build a new

query and then learn the matching locations between query and descriptions.

From these exercises, users will gain the necessary skills for creating suitable

94

queries to get the best returns. The project names this mode as "Visualized

Query Building VQB".

The relationships among these modes are presented in Figure 4.1. Mode VST and

Mode STM use the "Structure tree presentation" process to display the structure of

descriptions. Mode VQM and VQB use the "Matching pattern display" process

between descriptive and query trees to explain how these are matched to each other.

The "Matching pattern display" process is derived from the "Structure tree

presentation" process.

Learning
structure

Learning query
engine

Passive learning Active le aming

VSTmode STMmode

Structure rules
and examples

====:=:=c=e:::::c=:=:=:===:=<:===:=:=<:===:=:=:=:=:=:=:':':' + Text u a I input

~ 11111111 ~ + Graphical input

VO.Mmode

I
I

' "i

'

VBO.mode

Figure 4.1 Relationship among modes of VISL

The skeleton of the VISL architecture based on the concepts above is presented in

Figure 4.2. The four modes within VISL are seamlessly integrated to support users

step-by-step in learning constructed language structures and their query engines.

95

Natural language
like language

+ OBSERVER
+ FSCL

•

Structured
languages

+ XML
+
+

Constructed languages

Figure 4.2 Visualized Interactive Structure Learning (VISL) architecture

4.2 Details of VISL concepts to teach constructed languages

This section presents in detail how the learning concepts of the prev10us sections are

developed into four modes. FSCL is used as the illustration to explain these concepts.

The first two modes, VST and STM, have been implemented for FSCL as a training

tool. The figures in the respective sections have been produced from screen shots of

this implementation. Implementation details are described in Chapter 6. Figures used

in the second two modes, VQM and VBQ, are conceptual diagrams. The discussion

of each VISL mode is divided into three parts: the teaching concept, an illustrative

example and specific processes inside that mode.

4.2.1 Visualized Structure Tree mode

This section includes three subsections: the concept of Visualized Structure Tree

(VST), an example using FSCL and the processes happening inside VST.

•:• Concept ofVST
When using a constructed language for the first time, users will not know its

structures at all. With a "natural language like" language, a user may ask: Is the

96

structure of the language different from or similar to natural language? How is a word

group created or how is a sentence created from different word categories? What are

specific features of the language that I need to know? The VST mode provides this

information using the following approach:

• Display language stntcture diagrams with predefined examples: As users will

not know the structures of the language to be learnt, the mode firstly provides

predefined simple examples of language structures and allows users to select

any example from a list to view its structure. This gives users an overview

about the language structures.

• Describe sentence stntctures with textual explanations: The mode teaches

users the language structures by introducing the structure rules of the

language. Each structure rule will be presented by an explanatory text.

To teach FSCL, rules like the following can be presented to users:

- A subject of a FSCL sentence is created by a number of individual noun

words without any connection word;

- FSCL does not care about morphological forms of words.

The mode only presents simple sentences, but it outlines as much as possible

the differences between FSCL and natural language structures . Through these

descriptive texts , users will know how components in FSCL are created and

will learn the differences between natural language and FSCL.

• Illustrate structures of the language to be learnt by presenting its structure

diagrams: The conclusion from Chapter 2 pointed out that diagrams are

extremely useful to help users to understand language structures. That

conclusion is further emphasised by Mayer et al. (1995): "when illustrations

were placed alongside texts and contained annotated captions of the

information from texts, students' recall and comprehension improved".

Therefore, VST shows an illustrative diagram for each structure rule of a

constructed language. By studying the explanations of rules and seeing in

parallel the graphical display of sentence structures, users can understand

clearly the meaning of these explanations and gain better cognition about the

language structure. That is because diagrams are able to "bring out more

detailed, knowledgeable, responsive, awareness to the object, situation or text

being communicated" (Canning-Wilson, 2001, p 1).

97

With FSCL, graphical representation of the language structures provides both

overview and details of sentence structures with interrelationships and

interdependencies among elements. Chapter 3 has explained that by viewing

a FSCL semantic tree, users can immediately recognise the semantic roles

such as the subject, verb and object of each sentence component. Users can

easily recognize the similarities and differences between the subject, verb and

object of a FSCL sentence and natural language. By seeing the visual

information of FSCL descriptive sentences with the assistance of explanatory

text, users will not only know how "word groups" are linked together to

create a FSCL sentence, but also know how words from different categories

can be combined into "word groups".

Figures 4.3 and 4.4 present examples of a combination of explanatory texts and FSCL

tree structures for a FSCL structure rule : FSCL does not use connection words in a

multi-subject, multi-verb or multi-object component of a sentence. In the sentence

"Lisa Mike read the book" and "John gives Lisa Julia the book", the multi-subject

"Lisa Mike" and the multi-object "Lisa Julia" are highlighted, respectively. From

these explanations and examples, users will understand how the subject or activity in

a FSCL can be created.

Ale Help

tNoun
fl<lds

,boys
Mike
Victor

fglrls
Jane
Julia
Lisa

,Teachers
John

fThings
book
oame
lighl

pen

fAuxiliary
could
may
might

will

Werb
f•sk

asked
asktng
asks

'!'give

gives
fhelp

helped

helping
helps

fopen
opened
opening
opens

of th

:a.l ,Adjective 1 ,Adverb
boring fast
difficult hardty
easy quick
exciting skJw
hard
high
low

nice

!SenlBfJc3

I -I
~

I

Subject

Object

, 1

Figure 4.3 Structure rule and an illustrative diagram for a multi-subject sentence

98

~ Visual Interactive Structure 1.earning.(VISL) for fSQ. l2}(g]~
File Help ' -option

fNoun f Ve rb
f l<ids t ask boring

~boys asked difficult h ::i rrtlv I Sentenc3
Mike asking easy

I Victor asks exciting
~gi~s ~ give hard a Jane gave high Subject

Julia gives low I Lisa fhelp nice
~Teachers helped

~ John helping Activity

fThings helps ~ book t open
game opened - I the boog
light opening Object

pen opens

'i'Auxi liary t Conjunction
could aner
may and in
might before o" ,.
will with on -~l

FSCL rules

Oick here to '88 possible rules of the selected sentence

Figure 4.4 Structure rule and an illustrative diagram for a multi-object sentence

•!• Processes in the VST mode to display a language structure tree

Figure 4.5 presents the processes in the VST mode. A predefined database of

descriptions is set up in the repository as examples. These descriptions are carefully

selected to cover all possible language structure rules. The descriptions are presented

in a list. Users can select any structure rule of the language to view its details.

Descriptions that follow the selected rule will be displayed in a different format to

attract the user' s attention. Users then can choose any description in this list to see its

structure tree. When a description is selected, it is parsed resulting in a structure tree

that is presented in the nearby working space. The nodes presenting the selected rule

will be highlighted. There are some issues relating to the tree presentation such as

how to draw balanced trees in a working space or how to determine which of the rules

apply to a description. Those issues are discussed in detail in the next chapter.

99

--PresLd ----L!u~~~I ____ : ____ :, ~:~---------
,.

Database

ITcJ
Graphic a I tree

etatio n interpr

Structure par sing

Figure 4.5 Processes of displaying structure trees in VST mode

4.2.2 Structure Tree Manipulation mode

In the previous mode, the users have studied structure rules and illustrative examples

of constructed languages. The understanding users have gained by studying in the

VST mode will be used and taken further in the Structure Tree Manipulation (STM)

mode as they are allowed to build and manipulate constructed language structure

trees from available individual words. In this section, the concept of STM is

introduced, an example is provided and the processes to generate structure trees are

also presented.

•!• Concept of STM

The mode stimulates users to learn constructed languages through interactions on

constructed languages' structure diagrams in an enjoyable learning environment. This

active learning approach helps users to strengthen the understanding gained from the

previous mode. In this mode, users are allowed to create constructed descriptions by

100

both graphical and textual input. The STM mode then checks the correctness of these

inputs. In detail, the STM mode can help users to learn language structures by :

• Identify users' misconceptions by allowing them to check language structures

of descriptions that they have formulated: As users can create their own

constructed descriptions and check the validation of these descriptions

following structure rules of constructed languages, they can identify any

misunderstandings they might have developed from the previous mode. They

also can apply the advantages of trial-and-error feedback in language learning

as "More by trial and error than by the adequacy of definitions and

descriptions, we gradually gained some facility in analysing language"

(Eskew, 2001, p 1). STM locates errors and points out violated rules. STM also

offers solutions if the users are not able to correct these errors. By providing

instantaneous and extensive feedback and making users understand clearly the

errors, the application helps users to master the language easily.

• Reinforce users' understanding by allowing them to create their own

descriptions: The STM mode provides a working space for users to do

exercises on building structure trees from a set of vocabulary/elements of a

description. Users can input textual descriptions and see the resulting structure

trees. If users do not like the textual input method, they can build descriptions

by the graphical approach. As users have to create descriptions by themselves,

they have to concentrate their thoughts and have to be patient to create

descriptions correctly. Therefore, users can reinforce the understanding gained

from the previous mode. Users need to ponder over the words, examine the

language structures and then enter correct word groups so that they imbibe

little by little the language structure, since "listen and forget, see and

remember, do and understand" (Hyerle, 1996, p 13). The exercises also help

users to convert what they have learnt from the previous mode into long-term

memory. Furthermore, when users are motivated to use STM to build structure

trees, they may enjoy the intellectual challenge of active visual construction of

ideas.

• Explore possible constructed language structures by creating and modifying

their tree structures: This mode not only ailows users to create structure trees,

but also permits users to manipulate those structure trees. When users want to

101

drive the discovery process and want to interact with their own graphical trees,

they can modify these tree structures in different ways such as by adding,

deleting and moving nodes or changing contents of any node in these

graphical trees. Through these exercises, users will be able to explore

variations of language structures. By using the drawing space, users can easily

experiment to create new structure trees by simply moving and clicking the

mouse then checking the validation of those structure trees. By doing so, the

users will discover many possible language structures. They can also invent

many new descriptions that go beyond the available descriptions stored in the

database.

In the case of FSCL, users can check the structure of the each node in the

tree before checking the whole draft sentence. The correctness of a FSCL

word group is checked based on two conditions: the correct words inside

each node (i .e. words from different categories) and their proper function

(i .e. subject, activity or object) in the structure tree . Users can decide on the

function of a word group by placing it on the respective level in the tree .

Following FSCL structures, a word group can be correct for one function but

not for others. For example, the word group " to Lisa" is syntactical correct

when it is an object but is not correct when it is a subject. After users check

the correctness of the word groups in a tree, they continue to build the tree

by adding links between the word groups and then check the tree as a whole.

The example in Figure 4.6 explains how the concept in this mode is applied to teach

FSCL. In order to create an FSCL sentence that is equivalent to the simple natural

sentence "Lisa, Mike and Jane read a book", users need to employ knowledge learnt

from the previous mode. Users must firstly remember that they have to create a node

of "Lisa Mike Jane" without the word "and" for the subject. They must then create a

"read" node for the activity and a node of "a book" for the object. Users then link

these nodes into a tree to create the FSCL structure tree. When users have finished

building the tree, they can check its structure. If this sentence is correct following

FSCL structures, the structure tree of this sentence is displayed. At this stage, the tree

has the structure of "subject-activity-object" presenting the nodes for "Lisa Mike

Jane", "read" and "a book". Users may want to delete the node "a book" then check

the syntax for the tree again. Since this sentence is correct following FSCL structures,

102

users can understand or be reminded that FSCL allows the structure of "subject­

activi ty" .

i ~erb ;; ,Adjective
! ,ask bonng

----~,~,,~
• I

asked d11f1cult hardl'f
Mike asking easy quick
Victor asks ekC ilmg slow

~girls ~ ... hard
J.ine , ... nigh
Julla gives low

~

1
Subjecl)

us, fhe lp nice

I ~T eachers helped
John helping ,;

I
~Things helps ; b"ook ~open

game opened ' lighl opernflg
pen opens

~Au:xlhary I , conjunction
COUid I • .., ..
ma,

1

and ;,,
mi9hl
'Nill

Figure 4.6 STM during building a FSCL structure tree

When a user constructs the subject, "Lisa Mike Jane", he may enter a "natural

language like" subject as "Lisa Mike and Jane". An error message is displayed to

explain that the word "and" is not allowed in a multi-subject and the rule that the user

has violated is highlighted. STM will provide a solution of how to fix this error if

required by the user.

•!• Processes for building a structure tree in STM

Figure 4. 7 presents the process for building a structure tree. This mode provides a

working space in which users can draw trees with nodes of words and links. Trees

drawn yet not checked for grammatical correctness are called "draft trees". Users can

manipulate draft trees in the working space. When a draft tree is completed, users

initiate syntax checking to test for the correctness of the draft tree. Users will be

informed if the structure of the draft tree is correct. If the structure is not correct, an

error interpretation routine is executed. This routine finds the exact location of the

103

errors and highlights the errors in the draft tree. A node, which has structure errors,

will be displayed in a different format from that of correct nodes in order to attract the

user's attention. If users do not know how to fix the error, they can view a solution

provided by STM. This will help users to recognise the structural errors and correct

them. The processes are equivalent when users create descriptions by textual input.

Users input Presented '11: Presen1Ed
:)

Textual/graphical
input

:_~_LI.I
Error presentation ·

Structure tree
illustration

Incorrect structure

Correct structure

Figure 4.7 Processes of building a structure tree in the STM mode

4.2.3 Visualized Query Matching mode

Different constructed languages may have different query engines. However, these

query engines can be explained and illustrated easily through diagrams. Therefore, the

Visualized Query Matching mode (VQM) will assist users in understanding

constructed languages' query mechanisms through the presentation of structure

diagrams.

There are two subsections in this section. The first presents the concept of VQM. The

second section describes the processes inside VQM to present matching locations

presented in a description tree.

104

•!• Concept of VQM

To teach the query engines of constructed languages, VQM will explain how to create

a query and how a description is a result of a query. Diagrams are used to assist the

presentation of the issues.

• Explaining how to create queries with illustrative diagrams:

Creating queries such as keyword or free text queries in natural language is

simple. However, users usually do not know how to create queries in

constructed languages. Therefore, the first task in this mode is to explain how

to create those queries. Explanations, example queries and their structure

diagrams are used to help users to understand how to create a correct query . In

the case of FSCL, it is simple as a FSCL query is also a FSCL sentence.

• Teaching users how the query engine works by explanation and illustrative

examples: Again, the approach of using explanatory notations and diagram

illustrations is applied to assist users to understand the constructed language's

rules that explain how descriptions satisfy the requirements of a query. Each

requirement is presented by some concrete illustrative examples that assist

users in understanding the explanatory text.

For teaching the FSCL query engine, the mode explains how two nodes of

word groups are equivalent and how two structure trees have matching

patterns. By studying nodes that present two matching word groups and

viewing the explanation, users are able to understand how this "word group"

matches with that "word group" but not the others. For example, a node of

the subject word group "Mike Jane Lisa" of a descriptive sentence "Mike

Jane Lisa read the book" provides a match with the subject word group

"Mike Jane" of a query sentence "Mike Jane read the book", but not vice

versa.

• Automatically presenting matching pattern: VQM stores pre-defined queries

and descriptions and allows users to study the matches between queries and

descriptions. Users can see the visual structures of those queries and the

location of the matching positions in the retrieved descriptions. By studying

the match locations between the query and retrieved descriptions, users can

understand why a description satisfies the query requirements. VQM lets the

users select any query and adjusts the display of descriptions that match this

selected query.

105

For teaching the specific FSCL query engine, this mode will explain why

descriptive sentences do not match queries due to the limitations of FSCL

structures. This is because users may have entered descriptive sentences that

are correct following FSCL structures but, as discussed in the prev10us

section, might not produce the matches expected by a FSCL novice:

Section 3. 2 .4 outlined that the descriptive sentence "John plays chess

with Lisa" and the query "Lisa plays chess" will not match each

other, as they have different sentence structures.

Section 3.2.5.3 proved that users would easily understand why a description

would match a query by viewing their structure diagrams and the matching

pattern. From that point of view, the mode used for teaching FSCL will help

users to avoid the structures that can cause difficulty in the retrieval process

by:

Providing a list of FSCL structures that are difficult for the retrieval

process;

Providing sentence examples for both queries and descriptions;

Illustrating these examples by presenting structure trees of these

sentences (queries and descriptions).

Figure 4.8 presents an example of the suppression of details of the subject in a query

(see the issue of "suppression of details in a query" in Section 3 .2.3 .1) for a "matching

lesson". In the "Example queries" block, a list of examples presenting that lesson of

the query engine is presented. Users can choose any query in the list. In the "matching

descriptions", a list of descriptions matching the selected query is presented. Users

can choose any description in the list to view the matching pattern. In this example, a

user chooses the query "Lisa reads a book" and selects the matching descriptive

sentence "Both Lisa Mike read a book". It can be seen that the subject "Lisa" in the

query tree matches with the subject "Both Lisa Mike" in the descriptive tree. To

attract users' attention, VISL presents these matching nodes in a different colour

compared to other nodes in the trees.

106

Noun
kids

gi rls
Lisa
Jan e
Julia

boys
Mike
Victor

teachers
John

things
pen

ame
Auxiliary

could
may

Verb Adjective Adverb
ask fresh always

asks red quickly
asking green fas t
asked

help
helps
helping

helped
open

opens
read

reads

Conjunction Preposition Article
and of a
with on the

Youcmenterthe rubjectin~qutrythll!.has !fss dmilto
obulinm.ore ~ in the descriptiue sentence.
Exomp!f

Query:

Query tree

l .

I
~

~
Descriptive tree

Figure 4.8 An example of matching subjects for query and descriptive trees

•!• Process in presenting a matching pattern automatically:

Figure 4. 9 presents the process of presenting a matching pattern. A list of pre-defined

queries stored in the database is presented to users . Once users select a query from

the list, the VISL matching engine is called and descriptions that satisfy conditions of

the selected query are displayed. When users choose a description in the list, an

interpretation of the matching location is called to display the matching location

between the query and the description. This interpretation includes an algorithm to

compare the query and description. Details of an algorithm used for a specific

language, FSCL are discussed in the next chapter.

107

Use rs select Users select Presented

List of
matchirg

rules

GlJI
descriptions

Listofmatching ~Matching tree

~----~Pattern matching 6 interpretation

-------t-------------~------_-_-_-_-_--_-_-~---
Presented

Lookup

VI SL m atchng
engine

Database ITo

Figure 4.10 Processes of automatically presenting pattern matching in VQM

mode

4.2.4 Visualized Building Query mode (VBQ)

This active learning mode assists users in strengthening what they have learnt from

the previous mode. In this mode, users can create their own queries by drawing query

trees or entering queries in textual format. Uses will use these queries to search for

pre-defined descriptions or descriptions created by the STM mode that are stored in

the repository and then study the matching results.

This section first lays out the concept of the VBQ mode and then demonstrates this

concept by an example. At the end, the processes inside this mode are described.

•!• Concept of VBQ

After learning the matching conditions between descriptions and queries and viewing

examples, users now can practice creating queries by themselves. By allowing users

to build queries, search matching descriptions and view matching locations between

queries and descriptions, the mode will help users to :

108

• Clarify and reinforce users ' understanding of how the query engine works:

The mode helps users to learn better, remember longer what they have learnt.

In addition, they can gain better understanding of how to create sensible

queries to get correct returns. As different constructed languages have

different query engines, this section will explain how the VBQ mode can

assist users in learning the FSCL query engine.

o Assist users in creating vocabulary with appropriate hierarchies by allowing

them to change queries. Creating a suitable vocabulary with appropriate

hierarchies will help users to narrow or broaden matching descriptions . This

is useful for both detailed and aggregate analysis. For example, in a research

project focussing on children conducted with FSCL, researchers may want to

identify girls or boys who want to read books or play games during the lunch

break. They may also want to know whether a child named "Lisa" wants to

read a book or play a game. Users can create queries that retrieve only the

descriptive sentences using general word "girls" (aggregate) or descriptive

sentences that refer to a specific girl name "Lisa" (detailed). In FSCL, the

deeper a word is in a hierarchy, the more specific is the information it

describes. The VBQ mode will assist users in creating queries to get narrow

or broad results by allo\\<ing them to change queries and view matching

results. This practice helps users to recognise the importance of making use

of the hierarchy relationships in description and querying. Figure 4.10

presents the strategy applied by VISL to help users to understand that feature

ofFSCL.

o Encourage users to create a better vocabulary database and generate

descriptive sentences that are easy to locate: People may use several

different words referring to the same thing or same activity. To facilitate

searching, it is necessary to use a single word for those things or activities.

Since FSCL can be used by a group of users, words that need to be added into

the vocabulary should have a meaning everyone in the group can agree with.

A well-designed vocabulary can help to connect the ideas of vocabulary

creators and other users who use that vocabulary and avoid inputting

ambiguous vocabulary. This helps users to choose the right interpretation of

any description. The mode allows users to repeat changing each word or

word groups in a query and see the results with visual matching patterns. This

encourages users to select words to get exactly the expected results .

109

Figure 4.10 presents an example for the teaching concepts applied to help users to

understand better the issues around word hierarchies in FSCL. When users move the

mouse over a node of a query tree, a pop-up window will appear to present a list of

words that are available for selecting. Users can select any word in that list to modify

the content (words) of the node. With this feature, users can move up to a higher level

of hierarchy of the current word of the query to get a general result or move down to a

lower level of hierarchy of the current word to get more specific answers . The query

results will change following the modifications in the query .

T
Boys ---------------MiRe ____ _

Girls

Victor

Lisa

Julia

Figure 4.10 Users can choose any word in a hierarchy on a query tree

•:• Processes in VBQ mode:

Figure 4.11 presents the processes in the VBQ mode. Users can create textual input or

build query trees from available words. These queries then will be checked for

structural correctness. An error message will appear if users create a query with

incorrect structure. If the query is correct, a list of descriptions that satisfy the query

requirements will be presented. Users can select any of those descriptions to view the

matching locations between the query and the selected description.

110

Users input

Textual or
graphical

query input
Inform of error

1 GUI lnJec,
structure

Users select Presented

Matching
Engine

List of matching
descriptions

Pattern matching
interpretation

Correct structure
Database~

Figure 4.11 Processes in VBQ mode

4.3 Adaptation of VISL concepts to teach other constructed languages

The teaching concepts above use FSCL as an example for illustration. The concepts

are transferable to teach other languages that have constructed structures. For "natural

language like" languages such as the CABER and Observer languages, these concepts

can be applied in a straightforward manner.

The concepts above also can be used to teach structured languages such as XML. For

example, to teach XML structure and its associated query engine, XPath, the

approach for a teaching tool can be used:

1) Passively present the structures of XML documents and the XML query

engine by combining textual explanations and illustrative diagrams as

following:

a. Introduce the rules of XML structure and illustrate those rules with tree

presentations.

b. Explain how to generate correct quenes compliant with XPath

structures and show how a part of a XML document is the result of a

111

query by usmg rule explanations and illustrations of structure

diagrams.

2) Enhance users' understanding by providing an active learning environment

that helps users to mastermind the language and the query mechanism:

a. Allow users to create XML documents by textual input or graphical

input and the application will check structural correctness of these

inputs. The tool also allows users to interact with those diagrams so

they can discover possible structures of XML documents.

b. Allow users to create queries and review matching results . Users can

view locations of a XML document that is a result of the input queries

and understand clearly how the query engine works.

Figure 4.12 shows an exercise illustrating concept 2.a for learning XML structures.

Before doing this exercise, users will have familiarised themselves with the

underlying XML DID or Schema and will be able to test their understanding of this.

The exercise requires users to input a XML document following the pre-defined DID.

As the input document is correct, the structure tree of this XML document is

displayed with a congratulation message.

Enter XML document

<CD>
<performer> Bob Marley</performer>
<composer> John Markey </composer>
<title> Is it love </title>
<tracks> track </tracks>

</CD>

XML structure tree

Check

The input
sentence is

correct

CD

~I~
performance composer title tracks

Bob Marley John Markey Is it love track

Figure 4.12 Presenting XML structure by using diagram

112

Figure 4.13 presents an example illustrating the concept 1. b for learning a XML query

mechanism, XPath. Query examples are pre-defined and presented in the top left hand

side. The structure tree of the Xiv11.., catalogue document is presented in the right hand

side of the figure. In the figure , a user selects the first XPath query

"catalogue/CD/tracksf ' in the list and presses "Enter". The meaning of this query is

presented in the lower left hand side. The sections in the Xiv11.., structure tree that are

result of the query is displayed and presented in the right hand side. The matching

location is shown in a different format compared to other nodes in the structure tree.

Catalogue/CD'tracks

Query examples:
Catalogue/CD/tracks
Catalogue/CD/*

. Catalogue/CD/performer/*
Catalogue//
Catalogue/*/composer
.//title
.II*

Note:
The query will
select all nodes that
are descendant or
self of the selected
node "tracks"

· [Enter]
--·· - . -·· --~..,

performer composer title

Bob Marley John Markey Is it love

-
Figure 4.13 An example using diagrams to view query results in a XML

document

4.4 Summary

This chapter discussed in detail the concepts for teaching the constructed language

through four modes . The first two modes are used for teaching the language's

structures. The other two modes are used for teaching the language's query

mechanisms. For learning language structures, users will first go through the passive

learning mode to understand the language structures. They then go through the active

113

learning mode that consolidates what they have leant from the previous mode by

using an interactive graphical approach. For learning the language's query

mechanisms, users will understand why a description is satisfied with requirements

of a query through the passive learning mode. Users then practice building queries

and viewing result descriptions through the active learning mode. As different

constructed languages have different structures, the research explains how the

developed concepts were applied for a specific constructed language, FSCL.

Leaming through those modes, users will develop full understanding of how to

construct correct descriptions and create effective queries. All of these benefits are

obtained from using visual presentations extensively as they facilitate "constructing

and remembering, communicating and negotiating meaning, and assessing and

reforming the shifting terrain of interrelated knowledge" (Hyerle, 1996, p34) .

Designed with these four modes, VISL encourages users to learn and mastermind

both constructed language structures and their query engines. In the next chapter, the

details of how those concepts are implemented for the constructed language, FSCL,

will be discussed.

114

Chapter 5

Key issues toward an implementation of VISL

In the previous chapter, the concepts of teaching constructed languages with four

modes have been discussed. The example of a constructed language, FSCL, has been

used to illustrate the teaching concepts. This chapter will explain some key issues that

need to be considered before developing an application using these concepts to teach

FSCL. These issues are separated into two categories: application development issues

and technical issues.

1. Application development issues: The issues regarding to the development of the

application including:

• How VISL is developed as an efficient CALL application (Section 5.1.1). The

chapter discusses issues regarding to how VISL is designed.

• Should VISL be separated from or combined with the current PAC, the

computer application that includes FSCL. The chapter explains why the

approach of a combination between PAC and VISL was chosen (Section

5.1.2).

• How to create an effective user-interface (UI). The project reviews how a

graphical user interface (GUI) for training systems is designed in order to

create a suitable learning environment for users to interact with (Section

5.1.3).

2. Technical issues: The issues regarding to the development of VISL's functions

including:

• How the FSCL structure rules and matching rules are organised in lessons

(Section 5.2.1)- this issue is required for the VST mode and the VQM mode;

• How to draw a balanced tree to display FSCL structure trees - required for all

modes in VISL. The chapter reviews some possible algorithms to draw

balanced trees and then selects a suitable algorithm to display FSCL semantic

trees (Section 5.2.2).

• How VISL can deal with errors caused by novice users when they create their

own FSCL sentences (Section 5.2.3) - required for the STM mode. This

115

section discusses the way applied in VISL to present errors to users. It also

explains how VISL can help users to fix the errors.

• How VISL identifies the rules of FSCL structures included in FSCL sentences

(Section 5.2.4) - required for the VST mode and the STM mode. This section

also presents an approach used in VISL to help users to modify the content of

a node while building structure trees.

• How descriptive trees match with a query tree - required for the VQM mode

and the VBQ mode. This section presents an algorithm used for searching

descriptive sentences that match a query and display matching patterns

(Section 5.2.5).

5.1 VISL's development issues

This section discusses general issues regarding the development of the VISL

application including its features, its relationship with the computer application that

implements FSCL, database, and user interface design.

5.1.1 VISL, a CALL application

This part presents obstructions that developers may face when they develop CALL

applications. It then presents solutions to overcome these problems.

5.1.1.1 Issues of concern in developing CALL applications

Constructed languages are commonly integrated with computer applications for the

purpose of describing and retrieving information. Therefore, learning constructed

languages is only the first step of many topics that users need to learn before using

these computer applications. For example, in PAC, the application used for analysing

behaviour, users not only need to know how to generate correct FSCL sentences or

search for specific information but also need to know how to segment video files and

how to interpret or analyse the search results obtained. For these reasons, a teaching

tool for constructed languages should be simple to learn and interesting enough so

that users can learn the language quickly before they start to use the application.

In addition, Levy (1997) gives some constrains that developers may face when

developing a CALL application:

116

• People will always find a way to use things that the designers did not

anticipate.

• People will always want or need features that they did not know they wanted

or needed until they begin to see and use the software.

• Preferences and priorities among users and between developers and users will

certainly differ.

• Important aspects of the way people use the system depend on certain software

features and structures.

5.1.1.2 Design of VISL

Taking constrains and requirements above into account, the project develops a CALL

application called VISL to teach FSCL structures and its query engine. Built based on

the learning concepts developed in Chapter 4, the application provides an interactive

learning environment with specific features: flexibility, interactivity, step-by-step

learning, tutoring and student centeredness.

• Flexibility: In many language-teaching applications, users can only learn

through small sets of predefined examples. In VISL, besides storing many

predefined examples, VISL allows users themselves to input sentences in the

form of both textual input and graphical tree input. Furthermore, users can use

the pre-defined vocabulary or freely build their own vocabulary.

• Interactivity: VISL allows users to interact with structure diagrams by

practicing to construct structure trees or build graphical query trees. Users are

able to manipulate structure diagrams, such as delete, add or modify any

available trees, to explore possible structures of the learning languages.

• Step-by-step learning: VISL is implemented to support users to learn FSCL

step by step. VISL presents only one structure rule of the language at a time by

displaying each rule with some concrete illustrative diagrams as examples.

This will help users to reduce memory overload and will encourage users'

long-term memory.

• Tutoring: FSCL structure rules and FSCL matching conditions are divided

into categories and "lessons". Users can select any lesson to learn. VISL

provides effective feedback that assists users in knowing what types of errors

they have made and how to fix these errors.

117

• Student centeredness: As a constructed language may be used for different

groups of users and each user has individual needs, VISL provides a platform

that engages independent learning for many types of users. Users can choose

any mode to learn and create any domain to practice with. Since users can add

their own vocabularies or create their own descriptive sentences that are

suitable for their own purposes, the application provides a self-motivated

learning environment that can encourage slow learners.

5.1.2 VISL, a combined module with PAC

Two approaches were considered when the project was started:

• VISL is separated from PAC to be an independent teaching application. Any

change inside PAC does not affect the VISL application.

• VISL is integrated with PAC as a component. VISL can use some components

already available in PAC.

Building a training application that is separated from PAC as a stand-alone

application can be a simple approach as it is easy to start with. Developers would

have much more freedom to develop components for the VISL application. For

example, they can develop separate syntax checking to verify FSCL structures (for

the STM mode) or create their own database to store pre-defined FSCL sentences (for

the VST mode) . Developers can also use any programming language to develop the

application. However, developing a separate checking mechanism might be a

complicated process and might require considerable time.

On the other hand, if VISL is integrated with PAC, the developers must fully

understand the PAC structure, its components as well as its code. Developers also

have to use the programming language that has been used for the development of

PAC. However, there are many advantages if there is a combination between VISL

and PAC. The VISL application can inherit some functions already existing in PAC.

For example, it can use PAC' s current parser and can use the databases already set up

by PAC. Moreover, as PAC is developed with an Object-Oriented principle and the

popular Java programming language, an add-in module to PAC should be

118

straightforward. In addition, from the user ' s point of view, the user can easily access

the application for training when VISL is integrated with PAC. Therefore, the

approach of integration between VISL and PAC was chosen for the current project.

Using this approach, the VISL application is considered as an additional module

inside the PAC system (Figure 5.1). This would not necessary be the case for other

applications used for teaching other constructed languages.

PAC

Teaching
module
VISL

Descriptive
module

FSCL
parser

Database

Query
module

Figure 5.1 VISL, a module integrated into PAC

5.1.3 VISL's User Interface design

As it uses diagrams extensively to teach language structure, the VISL application can

be seen as a visual tool to teach users FSCL structures. Therefore, good user interface

(UI) design is one of the vital factors for the success of the application in enhancing

users' understanding. Due to the importance of the user interface, the project has

investigated how to develop an effective UI for the VISL application.

This section is divided into two parts. The first part presents some principles on

developing an effective UI for teaching applications and the second part discusses

how those principles can be applied for the UI of VISL.

5.1.3.1 Principles in designing UI for learning systems

The user interface design is commonly a central issue for the usability of a software

product. "Usability is measured by the extent to which the intended goals of use of

the overall system are achieved (effectiveness); the resources that have to be

expended to achieve the intended goals (efficiency); and the extent to which the user

finds the overall system acceptable (satisfaction)" (Oppermann 2002, p2). Poor usage

119

of design principles can increase instructional time and reduce completion rate and

persistence. Szabo and Kanuka (1998) found that people who used the lessons of a

computer-based tutorial with good design principles, completed the lessons in less

time (21 %) and had a higher completion rate (74% vs. 45%) than those who used the

lessons with poor design principles, even there was no difference in achievement

scores between the two groups. Oppermann (2002) pointed out that the user interface

of training applications should be self-descriptive and suitable for learning to a much

higher degree than for many other applications because the system is only used by a

user for a limited time until he or she has learnt the content of the system. He also

suggested that the designer should focus on the appeal of the diagrams (e.g. is the

diagram really attractive?). He explained that, in the modem days, many people are

overloaded with information. Therefore, if diagrams do not look nice, people may not

want to use them. In addition, Oppermann recommended that graphics must

immediately and automatically present the most important points. He also suggested

that diagrams should organise information into clear visual hierarchies. A diagram

should be designed with clear recognition (size, colour, brightness, position etc.). The

following section explains how those principles are applied in VISL.

5.1.3.2 UI principles applied in VISL

As discussed in Section 4.3, VISL allows users to do actions like the following:

• View FSCL structure rules, matching rules and graphical trees of

example sentences;

• Freely select words in a vocabulary window to create new graphical or

textual descriptive sentences or query sentences;

• Interact with diagram tree structures: add, delete or modify the content of

structure trees.

With those functions, VISL's UI should have a vocabulary window in which users

can freely select words. It should also present example sentences so that users can

easily choose to view their structures. In addition, VISL's user interface needs to

have a working space for users to view graphical trees or to build new structure trees.

In addition, the UI needs the graphical tools necessary for building structure trees.

From these requirements, the UI is designed with the following features:

120

Firstly, since users use VISL before they use PAC, the consistency between the VISL

interface and PAC' s GUI is important. This helps the users to reduce the time

required to learn the functions already existing in PAC. Therefore, some parts of the

VISL interface are designed similar to those of PAC's interface such as the

vocabulary window or the icon panel for textual input of FSCL sentences. Like the UI

of PAC, VISL uses many icons to speed up searching, for immediate recognition, for

better recall, and to save window space in the display area.

Secondly, VISL's GUI divides the screen into a limited number of clearly

recognisable rectangular areas to group information or functions following

suggestions by Koning et al., (2002):

• The vocabulary window and the working space window are used for all modes

and they are frequently used. Therefore, they are located at the top of the user

interface as "the higher the more important" (Koning et al., 2002, p.1).

• The users can select any word in the vocabulary window to draw new FSCL

trees in the working space window. Therefore, the vocabulary window is

located on the left and the working space window used to draw FSCL

structures is displayed on the right. This design follows the guideline "All

inputs are on the left side and all outputs are on the right side" (Koning et al.,

2002, p 1).

• The list of the structure rules or matching rules is placed on the left. When

users click on any rule in the list, descriptive sentences following that rule and

their structure trees will be shown on the right side. This design is

implemented following the instruction "The object of the right is active after

the object on the left" (Koning et al., 2002, p.1).

The diagram in Figure 5.2 illustrates the design of VISL's GUI based on the design

principles presented above.

121

t>Noun i 0\/erb l il!>Adjectrve E>Adverb

Subjec t

AttiVity

Object

e Auxiliary &Conjunction €>Pre position E>Article

Figure 5.2: The design of VISL's user interface

5.2 Technical issues

This section present technical issues relating to the development of functions in the

application following the teaching concepts developed in Chapter 4.

5.2.1 Presentation of FSCL structure and query matching conditions

As discussed in the previous chapter, in the VST mode and the mode VQM, users will

learn constructed language structures and their query engines though explanations and

illustrative examples. This section presents how the structure of FSCL is organised

into "lessons" that will be displayed to users. It also presents how the matching

conditions of descriptive and query sentences are arranged.

5.2.1.1 Lesson of FSCL structures

FSCL has both similar and different properties compared with natural language

(Section 3 .2). This section presents some lessons that describe different structures

between FSCL and natural language.

• FSCL does not use the pronoun category as natural language. Users can use

nouns instead of pronouns.

122

Lisa sees game movies before Lisa goes to sleep.

John gives the book to Lisa then John asks the class to read.

• FSCL does not follow the morphology rule as natural language does.

Therefore, a correct FSCL sentence may violate natural language structure.

Lisa read.

The teacher ask some students to stop the game

Students do many exercise before students can play.

• FSCL does not use connection words at the beginning of a sentence. See

example below:

Wrong sentences:

After finishing the lecture, Lisa will go to see movie.

During the interval, Mike Lisa play chess.

Correct sentences:

Lisa will go to see movie after.finishing the lecture.

Mike Lisa play chess during the interval.

5.2.1.2 Lessons of the FSCL query engine

FSCL allows users to create two types of queries. The first one is keyword search and

the second is sentence search. In sentence search, users can suppress details in a query

or broaden or narrow search results. This section presents several examples to explain

how VISL organises the sentence-searching engine for suppression of detail queries

into "lessons".

• Users can enter the subject in a query that has less detail and obtain the

descriptive sentences with more detail.

Example

Query:

Lisa read a book

Matching descriptions:

Mike Lisa read a book.

Both Lisa Mike read a book.

• You can create a query that has less detail in the object. The object of

matching descriptive sentences may contain more details.

123

Example

Query:

Lisa reads a grammar book.

Matching descriptions:

Lisa reads a German grammar book.

Lisa reads a good grammar book.

Lisa reads a grammar book.

5.2.2 VISL's algorithm to display FSCL semantic tree

There are two types of graphical trees that are commonly seen: normal trees and

binary trees. In a normal tree, a parent may have one or many children. Trees in this

type are a natural way to present information of organizational charts, design spaces

or directory structures. Binary trees are trees, in which, each parent may have only

one or two children. The binary tree is a fundamental data structure used in computer

science as it can be used for rapidly storing sorted data or rapidly retrieving stored

data (Rose, 2003). Drawing binary trees is simple because almost every node in a tree

has two children and therefore, node positioning is simple. With a normal tree (or

general tree), a parent may have one or many children so it is more difficult to

position the children for producing visually pleasing tree pictures. Various algorithms

have been proposed for this difficult problem of drawing general trees but

implementations only exist in special purpose software or are designed for special

environments (Bruggemann-Klein and Wood, 1996).

As discussed in Section 3.2.3, FSCL semantic trees can be seen as general trees. This

section reviews some typical algorithms for the drawing of general trees and then

selects a suitable algorithm to draw FSCL trees.

5.2.2.1 Typical algorithms to draw a general tree

Following HCI principles discussed in Section 5.1.3, to enhance users' understanding,

trees presenting FSCL structures must be aesthetic, pretty and easy to read. Several

rules have been introduced to define a well-shaped drawing of a tree. Luo (1993, p6)

introduced some rules to draw aesthetic trees, including:

• Rule 1: Trees impose a distance on the nodes; no node should be closer to the

root than any of its ancestors.

124

• Rule 2: Nodes at the same level of the tree should lie along a straight line and

the straight lies corresponding to the levels should be parallel.

• Rule 3: The relative order of the nodes on any level should be the same as in

the level order traversal of the tree.

• Rule 4: A parent should be centred over its children.

• Rule 5: A sub-tree of a given tree should be drawn by the same way regardless

of where it occurs in the tree.

To draw a tree that satisfies the conditions above, the basic task is to assign a pair of

coordinates (x and y) to each of nodes in a tree. It is easy to determine and change the

value of y that corresponds to the level of the nodes in a tree. The more difficult task

is to find out the value of x that corresponds to the order of the nodes in the tree. The

following sections review some typical tree drawing algorithms to display general

trees .

• RT algorithm. One of the first algorithms to draw general trees was the RT

algorithm. This algorithm was introduced by Reingold and Tilford (1981) and

is considered as a divide-and-conquer algorithm for determining the positions

of nodes. This algorithm lays out the sub-trees of a node independently and

then places them close together. It can be imagined that the sub-trees have

been drawn on paper and cut along their contours. Combining the sub-trees

can be done by a traversal of the parts of the contours that are among the sub­

trees until the bottom of one contour is reached. When the sub-trees are put

together, they will form a new contour of the combined sub trees if the sub­

trees are of different height. This algorithm does not allow any level of sub­

trees to move closer. They can only move apart from each other. Also, once a

sub-tree is laid out, its shape is fixed. More details of this algorithm were

presented by Reingold and Tilford (1981).

• Moen 's algorithm: In Moen's algorithm, to determine the nodes' positions, the

algorithm first traverses the tree to forms a contour for each node, which it

stores in the node's contour field. If a node is a leaf, a function is used to

calculate the contour directly. If a node is a branch, the function to form a

contour includes three steps:

125

- Form a contour for each sub-tree;

- Place the children's contours as close as possible;

- Compute the offset between parent and children and complete the

parent's contour.

After a contour for each sub-tree is formed, it is joined with other siblings of

the same parent in the tree. After the contours of all siblings are formed, the

algorithm computes the parent's position by putting the parent at the centre of

its children's contours. More details on this algorithm can be found in Moen,

(1990) .

• Walker 's algorithm: In Walker ' s algorithm (Walker, 1990), two tree

traversals are used to produce the final x-value of a node. The first

traversal assigns the initial x-value and modifier fields for each node

and the second traversal computes the final x-value of each node by

summing the node's initial x-value with the modifier fields of all of its

ancestors. This algorithm produces evenly distributed, proportional

spacmg among sub-trees. Two traversals are discussed in detail as

following:

The first tree traversal is a post-order traversal that positions the smallest sub­

trees (the leaves) first and recursively processes from left to right to build up

the position of larger and larger sub-trees. Sub-trees of a node are formed

independently and placed as close as possible. When the tree moves from the

leaves to the top, it combines smaller sub-trees and their roots to form a larger

sub-tree. For a given node, its sub-trees are positioned one-by one and

moving from left to right.

The second tree traversal is a pre-order traversal that determines the final x­

value for each node. It starts at the top node and computes the sum of each

node's x-value. As a drawing space can be used to display trees with different

shapes, the second traversal sets the top node at a position that respects both

the dimension of the drawing space and the shape of the drawn tree.

126

5.2.2.2 Drawing FSCL trees in VISL

Even both RT algorithm and Moen's algorithm satisfy the six rules of drawing well­

shape trees above, trees drawn by these algorithm are not easily recognised

(Bruggemann-Klein and Wood, 1996). This research selects Moen 's algorithm as the

trees drawn by this algorithm are aesthetically pleasing and have fairly evenly sized

sub-trees. To draw FSCL structure trees, Moen ' s algorithm needs to have some

adjustments . For example, Moen's algorithm requires that a child must have a parent.

In contrast, FSCL structure trees may allow for a grand parent - grandchild

relationships without a parent node in between.

This section discusses the modification of Moen's algorithm applied in FSCL and

then illustrates the algorithm through an example.

The algorithm follows these steps:

• Set distances for each level in the tree (=y);

• Follow post-order traversal for a general tree, do:

l . Calculate th e width of the left most node of the tree;

2. If this node has s ibling, recursively call the step l for its

sibling;

3. Place the siblings as close as possible without overlap;

4. Place the parent in the centre of its children. The distance

between this parent to its children (following y axis) is = y.

• Redistribute all positions of all nodes depending on th e diameter of the

working space (e.g. the place to draw the tree) and location of the root.

The width of each node is the length of that node' s words plus its bounds. After

positions of all nodes are determined, the locations of the centre top and the centre

bottom of each node are calculated to draw links between parent nodes and their

children. Then the algorithm draws the tree from top to bottom with links.

The example below illustrates how this algorithm works. Figure 5.3 displays a tree

that includes 9 nodes with different widths. Those nodes in the tree are marked from 1

127

to 9 following the post-order traversal m a general tree. The following steps are

applied to draw the tree:

m

al

m

l 2 3 6 7

a
a3 a7

-------- g------
--------h----------

-------------- k -------------1.-

Figure 5.3 Locate nodes for a general tree

- Set distance between levels of nodes (subject/activity/object) = m;

- Set distance among siblings for a parent = a;

1. Calculate the width of the most left node 1; get the value al;

2. Travel following post-order traversal , to node 2.

3 . Node 2 does not have any children, calculate width of this node and

get the value a2;

4. Calculate total al and a2 plus a; get c;

5. Travel to node 3;

6. Node 3 does not have any children, calculate the width of this node

and get the value a3;

7 . Calculate total c and a3 plus a distance a;

8. Travel following post-order traversal; no more sibling; calculate total

128

9. Travel to the parent node 4. Calculate the width of this node; get

value a4;

10. Check value ofa4<e, use e for total width (temporary) of the tree;

11. Travel following post-order traversal; get node 5. Node 5 does not

have children;

12. Calculate the width of node 5 and get a5;

13. Add a5 with e plus the distance a and get h;

14. Travel to the sibling node 8. This node 8 has two children, node 6

and node 7; go to node 6; node 6 has no children; calculate the width

of node 6 and get a6;

15. Travel to node 7. Node 7 has no children. Calculate the width of

node 7 and get a7;

16. Node 7 has no children, calculate total a6 and a7 plus distance a and

get d;

17. Travel to node 8. No more siblings Calculate total h and d plus

distance a, get k;

18. Locate of the root (node 9) based on k.

Following the algorithm above, if a node has a grandparent node, it must have a

parent node. Explained in another way, if a grandparent node (A) has a grandchild

node(C), it must have a child node (B) that is the parent node of the grandparent's

grandchild node (C). In a FSCL structure tree, a node can have grandchild node but

may not have a child node. The algorithm overcomes this problem by using an empty

node for the "missing" node in the case a node does not have a child node, but has

grandchildren nodes.

5.2.3 Strategy to verify correctness of users' input

In the active modes (the STM and VBQ modes), the users are allowed to graphically

draw structure trees or textually input FSCL sentences from individual words. A vital

task of VISL is to verify whether those inputs are syntactically correct or not, locate

structure errors if any, and then explain why and which structure rules are violated.

This section will firstly point out what are common errors made by users and provide

an approach to deal with those errors in both graphical and textual inputs.

129

5.2.3.1 Common errors

The errors users may create when formulating FSCL sentences commonly fall into

two categories:

• Type-1 . Users may enter sentences that are correct following the structures of

natural language but wrong following FSCL structures. These kinds of errors

may occur when users are confused between natural language structures and

FSCL structures. This type of errors can occur with both graphical and textual

inputs. For example, a user may textually input a sentence "John and Julia

help Lisa to read" or he may create a graphical tree of a sentence with four

words groups of "John and Julia", "help", "Lisa" and "to read" for a subject,

an activity and two objects respectively. In this research, VISL will focus on

how to deal with those kinds of errors as they indicate the areas where user

learning needs to occur.

• Type-2. There are obvious errors that would be wrong in both English and

FSCL structures. These types of error are generated when users, by some

unknown reasons, enter obviously wrong sentences. As it is assumed that the

users have a basic understanding of natural language, those errors can be seen

as clear mistakes. For example, users may input a wrong sentence by

mistakenly entering the word "and" at the end of the sentence "Mike reads

book and". It can be seen that, users do not likely make these errors, as those

errors are very easy to be recognized. As this kind of error is obvious, VISL

simply points out the location of the errors that violate FSCL structures.

5.2.3.2 Error checking for textual input

Chapter 3 pointed out that FSCL structure has restrictions compared to natural

language. Therefore, users may generate sentences that violate these restrictions. The

project selects all restrictions of FSCL and then builds algorithms to verify any

violation of an input sentence. A sentence has a Type- I error if that sentence violates

any of these restrictions. VISL assumes that other errors as Type-2 errors. VISL

verify Type-2 error by using the current FSCL parser. When VISL discovers a Type-

2 error, it only displays the location of these errors and lets users to fix incorrect

sentences themselves. This section discusses the errors belonging to Type- I that may

be created by novice users. Several examples below present users' common errors

and explain how VISL deals with these errors.

130

• Users use connection words for multi-subject, multi-activity or multi-object in

a sentence. For example, a user may enter sentences as the followings:

1. Lisa and Julia read the book.

2. John asks Mike and Lisa to stop talking.

3. John hits Jim and Lisa.

As FSCL does not allow users to enter connection words for multi-subject,

VISL will detect the errors, locate the errors in the graphical trees and display

error messages for these incorrect sentences. In addition, VISL will point out

the rules that users have violated to help users to understand which errors they

have made. Moreover, VISL presents a solution to users if they are not able to

fix errors or if they want to verify their answer. Error sentences belongs to

thi s type if in these sentences:

• There is connect word "and" or "or" between noun words, and

• The nouns after the connection word are not verbs or the sentence is

ended after these nouns.

Following the rules above, one can recognise that the sentence "John plays a

game and Lisa reads a book" is correct.

To link thi s type of error to "multi-subject" rule, the sentence with the error

will be marked as it has "multi-subject" structure . Therefore, after a user is

informed that there is an error, he can view the "multi-subject" rule that is

highlighted. Figure 5.4 presents the UI of VISL when a user enters an

incorrect sentence "Lisa and Julia read the book". In the structure diagram of

this sentence, the error message is displayed and the error node is highl ighted.

The user then can go to view the "multi-subject" structure rule.

131

~Noun
'?Kids

fboys
Mike
Victor

'i'glOS

Jane
Julia
Lisa

~Teachers
John

(?Things
book
game
light
pen

~Auxiliary
could
may

might

will
--·-··-····-·····--·--

FSO.. r»les

helped ... J ~Adjective

helping boring

helps ditr1cuN hardly j Sente~c3
fopen easy quick

opened e•ciling slow

opening hard

opens high

'i)p tay low

played nice

playing 8 plays Activity

fread I reading
reads j the booq

q>iurn
Object

turns .. !

~ Conjunclion
aner al

and in

before off
with on \ • I --------···---

st.,';

; .

Figure 5.4 UI of the VISL application for a violating rule 1

There may be several errors in one input sentence. VISL store a list of errors

and then inform to users.

• Users enter sentences with the structure of "verb + noun + preposition". For

example, a user may enter incorrect sentences as following:

1. John turns the light off

2. Lisa lifts the chair off

FSCL structure does not allow users enter sentences with the structure of "verb +

noun + preposition". In a sentence, if after verbs, there are nouns and after these

nouns, there is a preposition, the sentence has this type of error. Figure 5.5 presents

the UI of the VISL application when a user enters a wrong FSCL sentence: "John

turns the light off".

132

~ boys
Mike
Victor

~ gi~S
Jane
Julia
Lisa

c;,Teachers
John

(;)Tomas
book
game
light
pen

helped
helping
helps

, open
opened
openma
opens

fplay
played
playing
plays

tread
reading
reads

fturn
turns

!pCon1unct1on
aner
and
before

• i
~ AuXJ liary

could
may
might
WIii ________________ J __ with ______ __J

FSCL r»tes

Click the button to view VISL suggestions

difficult
easy
exciting
hard
high
low
nice

al
in

Off

hardly
qu ick
slow

!sentenc3

I
~
I

Figure 5.5 UI of the VISL application for an error sentence

5.2.3.3 Structure checking for graphical input

Subject

Activity

Objec t

When users want to build a structure tree for a FSCL sentence, they first create

individual nodes from individual words. They then may want to combine these

individual nodes into a "larger" node to present a word group. For example, users can

drag two individual nodes of two words "the" and "book" to create a single node "the

book". VISL will check these word groups of nodes to see whether they are correct or

not following FSCL structure rules (Section 4.2.2) . This word group-checking step

assists users to understand how word groups are created to build components in a

FSCL structure tree such as subjects, objects and activities. Therefore, VISL offers a

mechanism to discover errors in any word group and explains why that word group

violates FSCL structures. After a tree is completely built, its structure is checked as a

whole. The word group-checking process in VISL is presented as the following:

• Store words of word groups of a tree that has been built in a temporary place.

• Update the current words of these word groups when users add or delete any

individual word in a word group.

• Validate of these word groups following FSCL structure rules and inform

users about possible errors. The correctness of a word group is based on the

133

categories of words in that word group and its function in the tree (subject,

activity or object). Some examples below explain this:

o A multi-subject/activity/object node must not have connection word.

However, a connection word can stay alone. For example, in the

sentence "John reads and Mikes plays", the word "and" can stay as a

subject word.

o In an object node, the preposition word must stay in the front of noun

words (e.g. off the light, not the light off).

One can recogmse that a word group (or node) is correct or incorrect

depending on its function in a structure tree. For example, a word group "to

John" is incorrect when it is drawn in the subject level in a tree. However, this

word group is correct if it is drawn in the object level.

5.2.4 Some other issues

As discussed in Section 4.2.1, the VST mode allows users to view possible structures

or restriction inside a FSCL sentence. This section clarifies how VISL verifies the

structures for a FSCL sentence and how users can modify a word group when

constructing a structure tree.

5.2.4.1 An approach to verify rules of a FSCL sentence

To find out the structure rules of a selected sentence, VISL obtains the word groups

in this sentence and detects the rules relevant to each group of that FSCL sentence

and presents those rules to users. Here are some examples of how VISL can detect

rules (or restrictions) of a FSCL sentence:

• In the FSCL structures, there is rule claiming that FSCL sentences do not

allow connection words in a multi-subject, multi-activity or multi-object.

Therefore, if in the subject group or object group, the number of noun words is

more than one, the sentence complies this structure rule. In addition, if in an

activity word group, the number of the verbs is more than one, the sentence

also follows this structure rule.

134

Figure 5 .6 presents an example of the structure diagram for the sentence "Lisa

opens reads the book". In this sentence, the activity word group containing

two verbs "opens reads" is highlighted.

'f)Noun i • "'erb
~ Kids ,;>ask

,;>boys asked
Mike asking

Vic tor asks

,;>girts f be
Jane are
Julia IS

Lisa was
~Teachers were

ditr,cutt
easy
exciting
hard

high
tow
nice

hardty

quickty

stow

jsen1enc3

I
8
I

Subject

John ,;>gove -I
Activity

~Things gave
book gives
chess ,;>help
game helped Object

Interval l• helping

,Auxiliary ~ Conjunction , Preposition)• ! fAttic le
could afler at

by

in

a
the

Activity

may and
might befo re

will wi1h

FSCLru/es

in a sentence.. Please view examples in the "Al descriptions' window .n aSk.s Juha Jaf!e to,eao·tfk? book

I isa reads the book and Mike plays a game
· opei,& madt>-the ixi5i!< ~ · "': ,., =· .,, ·

help Lisa to react

Oick here to see possible rules of the selected sentence \llowfllles

Figure 5.6 An example of a sentence with multi-subject

• One of the FSCL structure rules claims that FSCL does not use pronouns but

uses nouns instead. Therefore, if any noun in the subject group is replicated in

other groups, the sentence complies this rule.

Figure 5.7 presents the structure of the sentence "Julia informed John after

Julia was hit by Victor" with the highlighted nodes "Julia". One can

recognise that, using natural language, a user can write "Julia informed John

after she was hit by Victor".

135

:1

~Noun
'l'Kids

\)boys

Mike
Victor

l)gi~s
Jane
Julia
Usa

'i)Teachers
John

fThmgs
book
che ss
game
interval

'!'Auxiliary
could
may

mighl
will

, FSCL ,ules

,-: ~erb

!!'i 'l'ask
asked
askino
asks

';>be

are

IS

was
were

';) give
gave
grves

l)help
helped
helping

f Conjunction
after
and

before
with

.. fAdjective
boring
difficult
easy
exciting
hard
high
low

nice

. FSCL does not use pronouns and use nowlS instead

Click here to see possible;, rules or the selected ,ent~nce

fa st
hardly
quickly
slow

asks Lisa Julia to read

OMS Lisa Julia the book

I Sentenc3

~ -~-I I

hn gHeS Jane the book and asks Jane to read the book

Mike plays chess In the lnlervol

Figure S. 7 An example of noun instead of pronoun sentence

Subject

Activity

Objec t

ActMty

• There is one FSCL structure rule stating that FSCL sentences do not follow

morphology as natural language does. As WordNet can determine whether a

verb is in plural or single form (see WordNet, 2004 for more details), VISL

uses W ordNet to verify if a FSCL sentence follows this structure rule or not.

For example, if in a sentence having multi-subject or plural subject and a verb

word in the active word group is in the single form, this sentence complies the

rule of "FSCL does not care about morphology" . Figure 5.8 presents a

structure diagram of the sentence following this structure rule: "Lisa Mike

plays chess in the interval" . In this diagram, the nodes "Lisa Mike" and

"plays" are highlighted.

136

tNoun
t Klds

t boys
M-kt

Vlcmr
f' gir1s

Jane
Julia

Usa
t Teachers

John
tnunos

book

Ch8S$

game
interval

t Auxlliary
could
may
m 1gtll

w,11

FSO..n,Jes

- "'erb ,.,k
asked
asking

astcs
~ ,b. .,.

Is
WU

were
, g,..

gave
OIVOS

tholo
nelped
helpmg

••- • M•··•·--· --

, con1unct1on
aller
and
before
w,th - -·

'

.. sy

hard

high
low
met

ha,dty

quickly

f Preposition ,Miele
at
by

In
off

•
lht

C~cl< here lo see po.oible rul .. or Ille selected sentence

g,i;es a boc* lD Lisa
asks usa Juh to read

lsa~enc3
I -I -~

_.LIQJINll,e­
~s.lllnothe-andasl<s Jono to readthe­

~eplil)'f <'-)flll-.-
$9 VICIOr 19;)d5 bOOlf

Subject

ObJect

Figure 5.8 An example of FSCL sentence disregarding about morphology

In some cases, a sentence may comply with more than one structure rule. VISL wi ll

present a list of rules contained in that sentence. The headings of these rules in the

FSCL rules panel also are highlighted to help users to find the rules that sentence is

related to.

5.2.4.2 Tree structure modification

When building a FSCL tree, users may want to modify a word group in the sentence

such as add or delete a word in this word group. To assist users to do so, the

application provides a dialog box to help users to modify the selected word group in a

tree easily. Figure 5.9 presents a dialog window that allows a user to change the

content of the node "the teacher" by adding and removing words.

137

OK 11 Delete 11 Qn:el I

Figure 5.9 Modifying a word group

5.2.S Algorithm for query matching

As discussed in Section 3.2.3.3, there 1s a requirement for presenting matching

patterns between query and descriptive sentences. In addition, when a descriptive tree

matches a query tree, the matching pattern between the two trees is presented in a

different format to get users' attention. In this research, VISL displays the matching

pattern in the descriptive tree with a different colour from other nodes.

With these requirements above, a query-matching algorithm is required to solve three

tasks: determine whether a descriptive sentence matches a query sentence, find out the

exact location of these matching nodes, and change colour for the matching pattern.

Heinrich (1999) presented an algorithm to find matches between descriptive sentences

and query sentences. However, this method is time consuming as it uses a recursive

algorithm. In addition, the algorithm is not suitable for changing colour of matching

nodes. Therefore, VISL develops its own algorithm that can handle the tasks above.

This section first presents the algorithm in detail then provides an example to explain

how the algorithm works. At the end, the section explains why the static visual

display is chosen to present matching patterns between query and descriptive trees.

138

5.2.5.1 VISL query matching algorithm

The algorithm includes steps below:

• Convert the descriptive sentence into an array of nodes. Each node stores

information about the word group of that node and its level. This array is

called the descriptive array.

• Convert the query tree into an array as in the procedure above. This array is

called the query array.

• Start from element O of descriptive array and query array, do:

While not end of descriptive array do:

Compare element i of descriptive array and elementj of query array

• If there is a match,

- Set positionj to the next element of the query array;

- If j = the query array size, return true- two sentences are

matched;

- Change the background colour of the node at position i of the

description array;

• If there is no match,

- Search backward from 0-1) to O of the query array. Find the

first element of 0-1) to O of the query array that is matched

with the current element i of the descriptive array.

o If found,

Set j to the position of this element of the query array;

Search back in the descriptive array from i to the

position of the element, which is matched with the

elementj in the query array.

If there are changed colour nodes, change them back to

original colour;

o If not found,

Keep current j ;

Increase one element in the descriptive array;

• Return false - the two sentences are not matched.

139

5.2.5.2 An example illustrating the matching algorithm

The example uses the descriptive sentence "John gives Jane the book and asks Jane to

read" and the query sentence "Jim asks Jane to read" to illustrate the matching

algorithm and change the colour for matching nodes. After converted into arrays, the

two sentences are presented as follow.

Descriptive Array (DV) for the description tree:

[O] [l] [2] [3] [4] [5] [6] [7]

I-John, 2-gives, 3-Jane, 3-the book, 2-and, 2-asks, 3-Jane, 4-to read,

Query Array (QV) for query tree:

[O] [I] [2] [4]

I-John, 2-asks, 3-Jane 4-to read

In this presentation, the first line displays the order of word group in the array. In the

second line, the first item of each element is node 's level and the second item is the

node value. The structure trees of the two sentences are shown on Figure 5.10.

Descriptive sentence

[OJ John

~
[1 J gives [4J and [SJ asks

~~ I
[2J Jane [3J the book [6J Jane

I
[7J to read

Query sentence

[OJ John

I
[1J asks

I
[2J Jane

I
[3J to read

Figure 5.10 Structure trees of descriptive and query sentences

Starting from the first element in the Descriptive Array (DA) and Query Array (QA),

1. Item [0-John] of DA matches item [0-John] in QA

140

2. Change colour of the node [O] in DA (0-John);

3. Increase DA and QA to items [1];

4. Item [I-gives] of DA does not match item [I-asks] in QA. Search backward

items from [1] to [O] in QA. None of them matches item [1] of DA. Keep item

[1] in QA;

5. Increase DA to item [2-Jane]. No match with [I-asks] of QA. Search

backward items from [1] to [O] in QA. No math;

6. Increase DA to item [3-the book]. No match with [I-asks] of QA. Search

backward items from [1] to [O] in QA. No math;

7. Increase DA to item [4-and]. No match with [I-asks] of QA. Search backward

items from [1] to [O] of QA. No match;

8. Increase DA to item [5-asks]. Match with [I-asks] of QA;

9. Change colour for item [5-asks] in DA;

10. Increase items in DA to [6-Jane] and in QA to [2-Jane];

11. Item [6-Jane] in DA matches item [2-Jane] in QA;

12. Change colour for item [6-Jane] in DA;

13. Increase items in DA to [7-to read] and in QA to [3-to read];

14. Item [7-to read] in DA matches item [3-to read] in QA;

15 . Change colour for item [7-to read] in DA;

All elements in query array are matched, return true.

Figure 5.11 presents a matching pattern between a query sentence and a

descriptive sentence to illustrate the result of the algorithm above. The user enters

a query "John asks Jane to read" then selects the description sentence "John gives

Jane the book and asks Jane to read". The matching pattern is presented in a red

colour.

141

!Joh~a~~~-'.~.'.~~d_ _:=-________ , ____ J ~ tg!EJU R V ljT.-•inin~ ••• t~ __________ ,_:JI New j
, Noun • informed • ~Adjective t MVerb r %;·~(~~, ! •

, Kids f open bonng rast ifol
t bays t opened difficult r11st d~ ! sentenc3

Mike
Victor

f glr1s
Jane
Juha

Usa
~ Teachers

John
' Things

book
chess
door
game

f Au>olla,y

could
may
m ight
WIii

opening
opens

f play
played
playing
plays

f reed
re ading
re ads

frun
ran
runs

~ !.1:J!"
f Con1unct1on

after
and
before
Wl!h ----

easy hardly

e,ccfting

hard
high

low

nice

quickly

Please dick any tab IO 1/i.w Nie and examples

Click here io see possible ,uJes of the selected .sentence

I -~

' WOJmed JOM after Julia was hit biJ' \l'k:t:Of

plays pme with Lisa
plarysgame
g1w$ a,,_ 10 Lisa

gi¥es Lisa Julia l he bOOk
g1,es.-111e1>oa1<.-.1ukl.i-toread

isa Mike plavs chess in the inlen,al

8 -
1 -I -

Figure 5.11 Matching pattern for a query and a descriptive sentence

5.2.5.3 Static visual display versus dynamic visual display

SubJeCI

Objecl

AtlMly

To present the matching pattern between a descriptive tree and a query tree using the

algorithm above, there are two possible approaches. One is the static visual approach .

in which the matching pattern is presented only after the algorithm is finished.

Another approach is the dynamical visual display in which each step of the algorithm

will be visually presented when the algorithm runs.

Many studies found that the dynamic visual displays (DVDs) might improve

cognitive processes. They suggest that DVDs could help learners understand more

computer science theories in presenting data structures (Stern and Naish, 2002;

Hamilton-Taylor and Kraemer, 2002). For example, the process of abstracting data,

operations, and semantics of computer applications can be presented by animated

graphical views. This helps students understand how the algorithms work. In the case

of the query-matching algorithm in VISL, users could see how each steps of the

algorithm is followed and the colours of these nodes are changed when the algorithm

is running. However, Hopkins and Park (1993) found that there are no superior effects

of DVDs compared with a static visual display. Moreover, this project only focuses

142

on why a descriptive tree matches a query tree and where the matching branches are

in these descriptive and query trees. The focus of this research is not on teaching the

user how the matching algorithm works. Therefore, the static visual display was

chosen in the VISL application to present matching patterns.

5.3 Summary

This chapter discusses a range of key issues regarding how the concepts of VISL

analysed in the previous chapter are implemented in a CALL application to teach

FSCL's structures and its query engine. The chapter was separated into two parts and

these are summarised as follows.

The first part discussed VISL's development issues. It first discussed features applied

in VISL to provide a friendly learning environment for users to learn FSCL. The part

then explains why a combination of PAC and VISL was chosen in this project. At the

end, this part reviewed some concepts for designing efficient GUis for training

systems and discusses how those concepts were applied in VISL.

The second part covered technical issues regarding to FSCL structures and its query

engine. This part first explained how VISL divides the unique structures and

matching conditions of FSCL into simple rules and presents them in easy lessons.

Each structure or matching rule is presented by a textual explanation and illustrated

by graphical trees to help users to learn effortlessly the FSCL structures and its query

engine. The part also discussed how to draw balanced trees to present FSCL

structures. At the end, this part presented a matching algorithm to display the

matching pattern between descriptive and query trees that is the key task of the VQM

and VBQ modes.

The following chapter, Chapter 6, focuses on the development of a CALL application

that implements the concepts discussed in the previous chapter, Chapter 4, and that

were further clarified in this chapter. The Chapter 6 will explain in detail how

software engineering concepts are used to construct the VISL application with the

use of Object Oriented Modelling (UML), and the Java programming language.

143

Chapter 6

Development of VISL

In Chapter 4, the concepts for teaching constructed languages were established. In

Chapter 5, key issues towards an application for teaching FSCL were highlighted.

This Chapter 6 presents the VISL development process based on these concepts and

key issues from a software engineering perspective. The chapter is divided into two

sections. The first section reviews object-oriented tools used for developing the VISL

application including the Unified Modelling Language (UML) for analysis and

design, and the Java programming language for implementation. The second section

discusses how the VISL application is developed using these object-oriented tools.

6.1 Object-Oriented tools for VISL development

Object-Oriented (00) technology has many advantages compared to traditional

development methods such as structured analysis and structured design as it helps to

"reduce development time, reduce the time and resources required to maintain

existing applications, increase code reuse, and provide a competitive advantage to

organizations that use it" (Shah et al. 1997, p 1). Therefore, in this research, 00

technology was applied for the development of the VISL application. The project

used the Unified Modelling Language (UML) for modelling the VISL application, a

model drawing tool called Rational Rose and the Java programming language for the

implementation. This section briefly reviews some features of these tools before

discussing how these tools were applied to develop the VISL application.

6.1.1 UML, a standard modelling technique

UML was developed by Grady Booch, Jim Rumbaugh and Ivar Jacobson and

accepted as a standard 00 methodology in 1997 (OMG news, 1997). It has been

developed based on a combination of all the best features from various 00 system

analysis and design methods. In addition, UML adds concepts and notations that have

proven to be useful but are missing from those earlier methods. With advantage

144

features, UML is able to support modelling complex systems (Douglass, 2000). In

general, UML provides comprehensive views of a system including:

• Functional view: describes the system's functional requirements. UML uses

use case diagrams and activity diagrams to present the static functional view

and the dynamic functional view separately.

• Dynamic strncture view: shows the transition behaviours of the system using

sequence diagrams and collaboration diagrams. In addition, UML uses state

transition diagrams to show the status changes of an object.

• Static strncture view: presents overall structure of the system. Class diagrams

are used to present the relationship of the classes and objects in the system. An

object diagram presents a particular configuration in which it shows a set of

objects and links at specific moments in time during the execution of the

system.

In the Section 6.2, the key UML diagrams for developing the VISL application are

discussed in detail.

6.1.2 Rational Rose

Rational Rose is an object-oriented Unified Modelling Language (UML) software

design tool intended for visual modelling and component construction of enterprise­

level software applications (TechTarget, 2004). The tool provides software

developers with a complete set of visual modelling tools to develop robust and

efficient solutions to satisfy business needs. It also helps developers to model the

system before writing any code to ensure that the system is architecturally reasonable

from the beginning. In addition, Rational Rose diagrams describe in great detail what

the system will include and how it will work so that developers can use the diagrams

as model for the system to be built. In this project, the tool is used to assists

developers to create all UML diagrams including use case, activity sequence,

collaboration, and class diagrams.

6.1.3 Java programming language

Java is a pure object-oriented programming language developed by Sun

Microsystems. As it strongly supports multimedia technology using Java Media

145

Framework (Sun Microsystems 1, 2004), the language was chosen for developing the

PAC application. The language also provides powerful components for developing

graphical applications. Therefore, the language is suitable for implementing the VISL

application. This section reviews a Java library of graphical components, called

Abstract Window Toolkit (A WT) that will be used for the VISL implementation to

create the user interface, and to draw and manipulate structure trees.

A WT includes platform independent components that are used to build graphical

components. A WT provides basic user interface components such as buttons, lists,

menus and text fi elds, etc. A WT also provides event handling mechanisms and image

manipulation. An extension of A WT, Java2D, provides enhanced two-dimensional

graphics, text and imaging capabilities for Java programs (JavaTech, 2004).

Therefore, A WT components and Java2D, are used to develop the VISL application.

The secti on provides more details about Java graphical components used in drawing

and manipulating graphical elements in the VISL application including panels,

canvas, graphics, and event handlers.

• Panel and Canvas: In Java, a panel is a rectangular area in which users can

place user interface components such as buttons, menus or text fields . To

support drawing 2D dimensional graphics such as Rectangle, Lines and String,

Java has a speci fic component called Canvas. A canvas is simply a rectangular

area in which users can draw diagrams by using "paint" methods. In the VISL

application, canvases are used for drawing and modifying structure trees as

well as displaying matching patterns in a tree.

• Graphics: In Java, every component comes with its own Java graphics object.

All drawing must go through this graphics object. This object contains a

collection of functions to draw images and texts . For example, to draw a

rectangle in a canvas, the code below might be used:

g.drawRect (x, y, I, w);

in that:

g is an instance of the graphic object of the canvas;

x, y are positions of the top left position of the Rectangle;

I, w are the length and width of the Rectangle.

146

Displaying text is considered as a special kind of drawing. For example, the

syntax below presents a method that defines font and size for a string "The

book" and then draws it at the location X and Y:

g.setFont (Font font);

g.setSize (int size);

g.drawString ("The book", int X, int Y).

A semantic tree can be seen as a combination of nodes and lines. A node is an

integration of text and a rectangle. To draw a semantic tree in a canvas, the

canvas's graphics object has to locate the positions of nodes in the tree before

drawing those texts, rectangles and lines (the algorithm to locate those nodes

was already presented in Section 5.4).

• Event handling in Java: One of the most important aspects of most non­

trivial applications is the ability to respond to events that are generated by

the various components of the application in response to user interactions.

In Java, to handle an event, a listener is regi stered with a component (e.g. a

button, menus or a node in a graphical tree). When a component fires an

event, the event will be transmitted from that component to the listener

(called event listener). What this event listener will do next depends on

methods defined in it. In VISL, mouse events are commonly used for

drawing nodes or lines to build graphical trees, and moving, deleting or

modifying any highlighted node. The following example presents the event

handling for drawing a straight line in a canvas.

At first, the canvas registers with it an event listener called

MouseListener to "hear" events. When a user clicks a mouse button

inside the canvas, an event is created and it actives the MouseListener.

A mousePress method defined inside this MouseListener will be

called. In the mousePress method, the two functions getX and getY

obtain values X 1 and Y 1 of the mouse's position. Those functions then

inform the graphics object (the graphics object that is associated with

the current canvas) of the start location (X1, Y 1) of the line. When the

147

user drags the mouse, a method mouseDrag in the MouseListener is

called to inform the graphic object to draw a line from the start

location (X1 , Y1) to the current location of the mouse pointer and to

update that line while the mouse is moving. When the user finishes

drawing the line, a function mouseExit will be called and the end point

of the line is located. The line connecting the first point and the

second point in the canvas is then completed.

6.2 Object-oriented Analysis and Design of VISL

U1\1L has been applied for the analysis and design processes in this project. Various

kinds of UML diagrams are used such as use case diagrams, activity diagrams,

interaction diagrams and class diagrams.

6.2.1 Use case analysis

Use cases describe an overall picture of what is planned to happen in the system. In

other words, use cases illustrate the interactions between users and the system to

perform functions inside the system. This section introduces the use cases for the

VISL application and then presents one use case in detail.

6.2.1.1 Determine Use Cases

As discussed in Chapter 4, there are four modes in the VISL application. In the first

mode, users can view FSCL structure rules or view rules of a sentence. In the second

mode, users can graphically or textually input FSCL sentences. Users then can check

the correctness of those sentences. In the third mode, users can view rules that

explain how a descriptive sentence can match a query sentence. In the last mode,

users are allowed to build their own queries, and then search for descriptive sentences

from a database using those queries. From those interactions between users and the

application, the use cases inside VISL application are created and displayed in Figure

6.1.

148

//,,,..--···-·- ,)

\..._ /

View rules of a sentence VieN FSCL structure rules

1
I

I
<<~tend>>

!
(____ ---1. ___ '

\., _______ /

Build graphical sentence

~' '\
\

\
\
\

\

<<exte{ld>>

\
\

\
> (--'-·· --------_.)

'--... -.. --
General User Create textual sentence

<<include>> \ - '1 .. ·, ... ··
"?c I ucle > >

\

..... ':::\ \ /
... , ... - ··- ··· ~

"-··--·----· /

View matching rules
VieN matching sentences

Figure 6.1 Use case diagram of the VISL application

6.2. l .2 Details of a specific use case

There are six use cases in the system (Figure 6.1). This section describes a use case

"View FSCL structure rules" in detail.

Use Case Name: View FSCL structure rules

Actor:

Description:

Precondition:

Main flow :

General User

The actor selects a FSCL structure rule to view its details or view

the structure diagram of any sentence illustrating that rule.

The application presents a list of descriptive sentences with a list of

FSCL structure lessons.

The system presents a list of FSCL structure rules or restrictions.

When the user selects a rule, the content of the rule is displayed.

The sentences illustrating the selected rule will be highlighted

inside the descriptive list. The semantic tree of the first sentence of

the highlighted sentences will be presented. The word groups

complying with the selected rule in that sentence will be

149

highlighted in the semantic tree. The users can select another

highlighted sentence in the descriptive list to view its structure and

the nodes that follow the selected rule. The use case ends here.

Post-condition: FSCL sentences complying with the selected rule are highlighted.

The semantic tree of the first sentence is displayed. Nodes of word

groups complying with the selected rule in this sentence are

high I ighted.

6.2.2 Activity diagrams

Activity diagrams are used to describe workflows of a use case graphically. They

consist of activities and states, and transitions between these. With those abilities, an

activity diagram can show all of the possible events for a use case in one place. The

activity diagram of the "View FSCL structure rules" use case is presented in Figure

6.2.

•
\:,'

Present 'differert .. 'i
i
!

modes

- -----,---

Se I e ct vjew rules

/'' . ····:····~\}' ·-,
· Display all :

rues j
----··:·············· ..)

Selec~ a rule
,:, ,,

Display content of the rule
Display matched sentences

----- -----
Se I e ct a !sentence

\l,'
--···-···-·········, ! Display the semantic tree !

! of the selected rule j
'· 1····· .. ····/

]...
j j

;~ ~ ..,,. :::...; - -----'

Figure 6.2 Activity diagram for "View FSCL structure rules" Use Case

150

6.2.3 Interaction sequence diagrams

In object-oriented systems, tasks are performed by objects interacting with each other

through passing messages. An interaction is a specification of the way in which

messages are sent between objects or classes in order to perform a task. Interactive

diagrams are used to model these interactions then present these interactions of

objects over time to fulfil a particular scenario of a use case. In this part, the

interactive sequences between objects, which cooperate to fulfil the "View FSCL

structure rules" use case, are presented in Figure 6.3 and described in a sequence of

actions as follows:

When an actor starts to study FSCL structure rules, he selects a FSCL rule

from an object interface called FSCLStructureRuleUI. The

FSCLStructureRuleUI object di splays the details of the rule. It then sends a

message with the rule's index to a control object called RulesControl. This

RulesControl object scans all FSCL sentences in the li st of FSCL current

descriptions to locate the matching sentences for the selected rule. The

indexes of matching sentences are sent to the FSCLDescriptionSet object

that is inside an interface named FSCLDescriptiveSetUI. Those matching

sentences will be highlighted in this interface. The first matching sentence

will be converted to a DescTree object (DescTree is the presentation of a

FSCL semantic tree) . This DescTree object is converted to a graphical data

structure through a converter. Before the tree is drawn, the RulesControl will

inform a GraphicalTreeUI object to highlight the nodes that comply with the

selected rule. At the end, a structure tree with highlighted nodes will be

presented in the GraphicalTreeUI.

151

,J sele ctRuleO>JJ~ I I I
: : l,J getRule()

T IJ g~t~e~::pes~fSel~ctedRule() I I I
I "~;o<::· •• ,, "tF0

~-'.~,~~- I I
I ~ 'r' °t""'""'""""'d~, I
I s ~ec~i~t~~~}edS~nt.""ceQ ... ~
I JI changeColoLode() r
I L~i ---~,---~,---~[,[-.~-is~-,.Y-_~-.. (-)~r;

~wru~~ f~a sentence I I Y

'T' I I getSentence() l I ,·r , .. .
~_;-as-es, ;1

1

T I
l , .. ofsen~nceti , ··r I r ·----·----·---·-···:,i I I

presenf u eosentence I re :::::::· I I I
r ·!····· c~·."~-::.orrN~d.•. l ·-~

I ·-.-·

I J displ~yTre<> ()""[_I,

I lr'

Figure 6.3 Sequence diagram for "View FSCL structure rules" Use Case

6.2.4 Collaboration diagrams

In an object-oriented system, each individual object provides a small element of the

functionality of the overall system. When working together, these objects can

produce a higher level of the functionality. In other words, a functionality required

from the system is produced by many objects working together. Collaboration

diagrams are used to show these objects with relationships that are identified by the

sequence diagrams when they are working together in a real time system. Figure 6.4

presents a collaboration diagram for the "View FSCL structure rules" use case.

152

4· display selected ruleO
14: presentRuleOfSentence

....... ;~ 3: getSentencesOISelectedRule()
··-->

/ \ /-'\ /-'\
r····:·~f ~~d~~;:····L ~:.~~.'.;~eo 1··~·~-Ltr~P.'·:····: r······:·~~;~·~i;y;·······!
! FSCL~tructuresUI ! ~FM~.~.9.9nY.q!. ; i .Y.!§!,~~,.~.P!.i,>ril.i_~). j

_; 13· get rules of sentence(.) ·7·--T·--~·' _____ .. -'··_-_;.·;.···········y··············'
1' ·· i ----~-------- _.,...,.,.,, ~

1: select
1
~7{> \ 10 'Aew rule~-!~~ ~~~'..'.'."..c_e •• J·---·---· -. >.;:// \

/' \ ___ . ___ ----·--·- j ,/./;',nde~atchedSentef\C~ \

/ __)_------ / /--(.,- ~ 6'·h~lightMatcri~d~i?itc\~ce()
/"·, 8: c ""~CclourNqpeO ! 12: submitS~tehc;eO ' \ T~-- ./ : ch:.~:~3~ode ! '~ \

' /' i . \
GeneralUser ·, • . ,....,,.. : i.

... >:,L ... /· ·.,.,:-_......... f I '., \ . . ,
j . <boundary> I·· ___ ! - - - ········· : .. Y.!~~[),a~c.n_p)!.c!~~~!j
! .G.r.aP.t'i.~.a!!.~.l!.1. · i _L !

9, :;2:;t::()'> I r sef~;;:i:~-~~entenceO
16: d1splayTreeO ! .

; .FSCLDescription .. ,

Figure 6.4 Collaboration diagrams for "View FSCL structure rules" use case

6.2.5 Class diagrams

In the previous sections, the interactions between objects were described through

sequence and collaboration diagrams. These interactions require diagrams methods

carried out by classes and relationships among classes. Diagrams that present

methods of classes and the relationships between these classes are called class

diagrams (Dennis et. al ., 2002).

A class diagram includes attributes, methods (or operations) and constraints. From

the objects presented in the sequence and collaboration diagrams (Section 6.2.3 and

6.2.4), a class diagram for the "View FSCL structure rules" use case is created and

displayed in Figure 6.5.

153

<boundary>
VISLOescriptionlist

f.
eateQ I
tUstData() i

alueChangeQ !
&,~etlistOfDes:~ plionQ I

-.I,

I NodeRules I
~reateQ
i!OOUnForProNounQ
setRuleNa meQ
withoutConectVVordQ
transitiveVe!bQ

• !W'OrdMophoQ
~ tc')nditionWordQ

T
RuleOISentence

("'" tRuteNameQ
pnameQ
etRuleNameO
ddNodesToRuleQ

I

TreeConver1er

lTreeNodeQ
elTreeNodeQ

FS~~~ui:~:sUI I
g;;••t•O

splayRuleQ I

\f

RulesCmtrol

aeateQ
getRulesOfSentenceQ -
gelRuleFromUIQ
~angeColorForNodeQ
1QetNodeOtsentenceO
~lectSentencesForRuleQ

<boundary>
GraphicalTreeUI

f.laeateQ
~isplayTreeQ

TreeNode

eleteNodeQ

label

ltlabelQ
tlabelO
tBoundQ

etBoundQ

Node

_.:,, ddNodeQ oneQ l
::~:~eQ

.,. amtQ rawNodeQ
youtTreeQ ddChildQ
PaintQ tColorNodeQ
tColorNodeQ ~ tBackGroundQ

etColo<NodeQ '-~'-

<boundary>
TreeParaU

, ,
el0eC5TreeO
tDescTreeO ,,

'-,"'-:,
r--~y __ ~

OescTree
-,

' ',
_: ____________ ~ ------~

line

ll elTopNode{)
! eSottomNode()
lll getColo,o

Figure 6.5 Class diagram for learning FSCL structure

Many classes have already been introduced in this class diagram through the

interactions among objects presented in the sequence diagram in Figure 6.3. Five

more classes are added. The four classes: Label, Node, Line and the boundary class

"TreeParaUI" are considered as supporting classes used to change Font, Colour and

Size for a TreeNode object. The class RuleAndNodes is used to determine what nodes

in a sentence follow the selected rule.

6.3 Database in VISL

To teach FSCL structure, VISL also reqmres pre-defined FSCL vocabularies and

FSCL descriptive and query sentences. For that reason, VISL needs a database

system to store that information. To simplify the VISL development process, VISL

uses the PAC database system to ·store all vocabularies and FSCL sentences required

for the training module.

154

A new user, who accesses PAC for the first time, will be asked whether he wants to

learn FSCL structures or not. If this user needs to learn FSCL structures, a

vocabulary and pre-defined FSCL sentences used for training will be installed only

for that user. If learning is not necessary, as the user may know the FSCL structures

already, the user can immediately use the other modules in PAC. In this case, the pre­

vocabulary and pre-defined FSCL sentences will not be installed for that user.

6.4 VISL implementation

It is straightforward from VISL's analysis and design phases to its implementation

phase. All coding of classes and their attributes, operations and constraints defined in

the design phase are generated using the Java programming language. All classes

developed in the VISL application are combined into a package and stored as part of

the PAC source code.

For example, in the VISL class diagram (Figure 6.5), there is the class called

RuleControl. This class is used to find structure rules inside a FSCL descriptive

sentence. It is also used to search FSCL descriptive sentences following a selected

rule inside a FSCL description list. Here are some of the operations available inside

this class:

• getRulesOfDescriptionSet(): get all rules of a FSCL descriptive sentenc.e set.

• getRuleOfCurrentDescription(): get all rules of a FSCL descriptive sentence

• selectindexOfMatchedSentence(): return indexes of all FSCL descriptive

sentences that follow a selected rule.

• nodesHighlighted(): set nodes that need to be painted for a treeNode object.

The coding of the first part of the function getRuleOfCurrentDescription() inside this

class can be written in Java language as the following:

public void getRuleOfCurrentDescription(FSCLDescription description) {
DescTree descTree = description .getDescriptionTree() ;

}

Vector wordGroups =descTree.getWordGroups();
for (int j=0; j<wordGroups.size(); j++){ //for rule 1

}

WordGroup wordGroup = (WordGroup)wordGroups.elementAtU);
if (isWordWithoutConnect(wordGroup)){

RuleAndNodes ruleAndNodes = new RuleAndNodes("rule1 ");
ruleAndNodes.addNodeU);
((Vector)ruleOfSentences .elementAt(i+ 1)) .add(ruleAndNodes);

}

6.5 Status of the VISL implementation

Due to time limitations, the implementation of the VISL application was not fully

completed. At the current stage, the work done in this application is:

• Mode 1: Visualized Structure Tree: completed;

• Mode 2: Structure Tree Manipulation: completed;

• Mode 3: Visualized Query Matching: completed the task of automatkally

presenting matching pattern;

• Mode 4: Visualized Building Query: completed the task of presenting

matching pattern between new textual query and descriptive trees;

6.6 Summary

This chapter discussed the development process for the VISL application following

software engineering principles. The development was based on the concepts

presented in Chapter 4 and the technical issues discussed in Chapter 5. At first, the

chapter introduced object-oriented tools used for developing the VISL application

including the modelling Ianguage-UML, the designing tool Rational Rose and the

Java programming language. It then explained how these tool s are used for the

analysis and design phases and illustrated those phases through an example for a sub­

function of the VISL application. The use of a database in VISL was also discussed.

At the end, the chapter outlined the VISL implementation illustrated by a piece of

simple Java code.

The next chapter, the final chapter of this thesis, will summary the development of

the research. The chapter then recommends future work arising from thi s study.

156

Chapter 7

Conclusion and Future work

Three sections are presented in this chapter. The first section reviews the process of

the research including the purpose of the research and how the research has addressed

this purpose. The second section highlights the contributions of the research. The last

section presents some recommendations and suggestions for further work.

7.1 Research review

This section first identifies the research tasks set for this research that were based on

requirements of a method to teach constructed languages. The section then discusses

how the research developed the visual learning concepts to accomplish those tasks

and applied those concepts for teaching a specific constructed language, the Flexible

Structure Coding Language, FSCL.

Research tasks

Many constructed languages have been developed in order for computer systems to

overcome ambiguities and complexities existing in natural language in information

description and retrieval. With the specific structures, these constructed languages

help users to create unambiguous sentences or documents with correct structures.

Therefore, computer applications can extract correct meanings or contents from a

sentence or document without difficulty.

Advantages of constructed languages in information description and retrieval are only

achieved when users apply these languages correctly. Incorrect usage of these

languages can lead to creating vocabularies that are not consistent, producing

descriptions that are incorrect following language structures, and generating

inappropriate queries that lead to incorrect/incomplete returns. Therefore, appropriate

applications designed for teaching constructed languages are required. These

applications must satisfy following conditions:

• Teach users constructed languages: The teaching application must cover the

specific features of constructed languages for creating correct descriptions and

their query engines for searching for information.

157

• Be simple and easy to understand: Leaming grammar/structure is one of the

most boring parts of learning a new language. Therefore, the application

should be simple and easy to understand. 1n addition it should be interesting

and enjoyable enough to encourage users to learn.

Research development

The research development process was separated into four stages. Each stage is

discussed in detail in each chapter (from Chapter 2 to Chapter 5). 1n brief, these stages

can be summarised as the following:

• Diagrams are extremely useful in assisting users in understanding concepts

and ideas. Therefore, in the first stage, the research reviewed how these

advantages are used for enhancing users' understanding of language

structures. A wide range of language grammar theories and their associated

diagrams were reviewed. Computer applications using diagrams for teaching

languages were also investigated. From study ing of this research, it can be

concluded that diagrams are very effective tools to help learners to learn

language structures. This seems especially true for beginners or students who

are studying lingui stic at universities.

• There are several kinds of constructed languages used for many purposes in

many computer systems. They share common features of having restricted

vocabulary and a formulated grammar. However, each constructed language

has its own specific features. Therefore, the second stage investigated in detail

a typical constructed language, FSCL, for a case study. The research examined

possibilities of using the language's structure diagrams to teach its structures

and query engine.

• In the third stage, the concepts for an application to teach constructed

languages based on their structure diagrams were developed. These concepts

explored the potentials of diagrams in language learning, as they are easily

understood and invariably remembered better than words on tasks of recall

and recognition. These concepts offer a multifaceted interactive approach that

allows users to mastermind both constructed language structures and their

query engines. It provides a step-by-step learning strategy to reduce memory

load and enhance users' long-term memory. It also offers an active drawing

158

environment that allows users to practice with learning materials. The research

also explained how these learning concepts developed in this research could

be adaptable to teach different constructed languages of both "natural

language like" language and structured language categories.

• In the fourth stage, a detailed specification for these concepts was developed

to allow the implementation of an application called VISL to teach a

constructed language, FSCL, as a case study. The application was integrated

with a computer application, PAC, used to study behaviour, as a learning

module. Four modes were designed and implemented in this application to

provide a comprehensive learning environment for teaching FSCL structures

and its query engine.

7.2 Contribution

The most significant contribution of this research was the development of

conceptualisations for teaching constructed languages. These conceptualisations were

partly applied in a CALL application called VISL.

Conceptualisation

This research has developed the concepts for teaching constructed languages . In these

concepts, the advantages of using computer systems and the richness of diagrams in

presenting information are intimately combined to develop an exciting CALL

application. The concepts provide a multifaceted learning approach by using passive

and active learning strategies. Four modes were built for teaching constructed

languages including:

• Passive learning of language structure: this mode exploits the benefits of

diagrams in enhancing users' understanding of language structures. The

important contribution of this mode is the automatic presentation of the

structure diagrams of descriptions to users. This concept uses a combination of

clear explanations, illustration of simple examples, and structure diagrams to

teach users constructed language structures.

• Active learning of language structures: The mode explores the advantages of

an active learning environment in enhancing users' understanding. In this

active learning mode, users are allowed to interact with structure trees in

159

different ways. Users can freely explore possible structures of constructed

languages by doing exercises such as building new trees or modifying any

nodes while studying existing trees. Alternatively, users can textually input

descriptions to view how their own inputs are interpreted as structure trees. In

addition, the mode provides comprehensive feedback to help users to

understand and correct structure errors when they are doing exercises.

• Passive learning of query matching engine: This mode, again, takes the

benefits of diagrams in improving users' understanding of concepts and ideas.

The mode provides many "matching lessons" to cover possible matching

conditions of constructed languages. Explanations and illustrative diagrams

are closely incorporated to teach users how to create a query and how query

and descriptions match with each other. The most significant contribution of

this mode is the presentation of matching patterns between queries and

descriptions. By studying the matching patterns, users can easily understand

how query and description are matched.

• Active learning of query matching: This mode explores the advantages of an

active learning environment for clarifying and reinforcing user understanding.

Through the repeatedly formulating new queries or modifying current queries

and studying the matching results, users gain deep understanding about the

search mechanisms in constructed languages. For the "natural language like"

language, this assists users not only in building suitable queries to obtain

better results but also in constructing appropriate vocabulary databases and

descriptions to generate correctly retrievable descriptive information.

Development of the application Visualisation Interactive Structured Language

The application, Visualisation Interactive Structured Language (VISL), was

developed based on the concepts specified above for a specific constructed language,

FSCL. The application was built based on an object-oriented technology using the

object oriented development tool UML and the Java language. The application was

seamlessly integrated as an extension module in the existing computer application

PAC that uses FSCL for studying behaviour. The development of VISL was divided

into three stages:

160

• The integration of the concepts of teaching constructed languages into a

CALL application: Several technical issues were solved such as how to draw a

balanced FSCL semantic tree and how to present matching patterns between

descriptive and query trees.

• The examination of the PAC application to see how VISL can "plug" into this

system: The project examined how VISL can use some available functions in

PAC (such as the parser for checking FSCL syntax).

• The employment of software engineering principles for developing the

application: The project used UML techniques for modelling use cases, class

diagrams, and activity diagrams for analysis and design. Knowledge of the

Java graphics library was acquired for implementing the application.

Finally, the VISL application with the following functions was built to teach FSCL

structures and its query engine:

1. Teach users FSCL structures: VISL identifies FSCL's structure rules and

their restrictions compared to natural language. These rules and restrictions

are organised into teaching lessons. VISL also stores a pre-defined

vocabulary and a number of FSCL sentences that clearly illustrate FSCL 's

structure rules . VISL presents the rules of FSCL structure, descriptive

sentences belonging to these rules and semantic trees interpreted from

those sentences for teaching users the structures of FSCL. Furthermore,

users are able to select any sentence to view its structure rules.

2. Allow users to do different types of exercises to learn the language

structures: Users will practice what they have learnt by actively creating

FSCL sentences using textual input and seeing how these sentences are

interpreted into tree structures. The application provides necessary

graphical tools that allow users to generate FSCL semantic trees, add,

delete or modify any element in those structure trees.

3. Provide extensive feedback: When doing exercises, users may generate

descriptive sentences with structure errors. The application will help users

to understand errors by using both textual and graphical displays that

inform users exactly where, why and how to fix errors when users generate

FSCL sentences.

161

4. Teach users the FSCL query engine: The application organises matching

conditions between query and descriptive sentences into matching lessons.

It also sets up pre-defined query sentences to illustrate matching

conditions. These conditions are separated into group word matching and

sentence matching. The application teaches users matching conditions by

presenting matching lessons using extensive help from graphical

presentations that display matching patterns between query and descriptive

trees.

5. Allow users to do different exercises to understand the language 's query

engine: The application allows users to generate/modify different FSCL

queries (by graphical and textual inputs) and to view the returned results.

The application then presents descriptive sentences that match the input

queries and highlights the matching patterns.

The VISL application is divided into four modes: the passive and active modes for

teaching FSCL's structure, and the passive and active modes for teaching FSCL's

query mechanisms. After going through four modes, users will have obtained the

three correlated goals: create a good vocabulary, produce findable sentences, and

build suitable queries to obtain correct returns.

7.3 Future work

In this research, teaching concepts have been developed and have been partly applied

in an application for teaching a constructed language. At the current stage, the

implementation in the VISL system is not completed. In addition, the concepts of this

research can be further expanded so they can be used for other purposes. This section

discusses the possible improvements in the VISL application, the necessity for user

testing and the possibility of further development of the research concepts .

Further development of VISL

VISL offers sufficient features for teaching FSCL structures and the query engine.

However, further work is needed to provide more functions and to improve usability

of the system:

162

• The application includes four modes: the first and the second are for teaching

FSCL structure for information description and the third and fourth are for

query engine for information retrieval. In the current stage, only the first and

the second modes are fully implemented. In the third and the four modes,

matching patterns between query and descriptive trees are implemented but

the links between explanations and diagram illustrations are still required.

• In the current development, users have to enter individual words and then drag

them together to create a word group when they want to build a structure tree.

This process can be slow. To let users build structure trees faster, the

application should allow users to enter word groups in the form of textual

input. These word groups could then be placed in the drawing space with a

simple action . This would simplify the drawing process of structure trees.

• There are two possible types for di splaying FSCL structure tree. One 1s a

presentation from left-to-right and the other is a top-down layout. No study

was found that claims which layout is better. In thi s application, only the top­

down layout was implemented. A future application should be able to present

sentence structures in both left-to-right and top-down layouts. Users then had

the freedom to select the most suitable layout fo r themselves.

User testing

The VISL application is considered a graphical CALL application for teaching FSCL

structures. Therefore, user testing is necessary to verify the usability of the

application in general and its graphical user interface (GUI) in particular. Questions

like the fo llowing could guide the user testing:

Testing for usability of the application:

• Is the application easy to learn?

• Are the FSCL's rules easy to understand?

• Are FSCL matching conditions easy to understand?

• How long it will take users to master the language by using VISL?

Testing usability of GUI:

• Is the interface easy to use?

• Is VISL' s GUI consistent with the interface of PAC?

163

• Are the error messages easy to interpret?

• Can users easily change from one mode to another mode?

Possible extensions to the concepts underlying VISL

The learning concepts developed in this research are primarily used for teaching

constructed languages. These concepts also lay foundations for possible applications

used for describing and retrieving information as the following:

• In library systems that store information of books or magazines in schools or

universities, data can be grouped in a hierarch structures. At the highest level,

books are separated into subjects or fields . Each subject or field is then divided

into publishers and books ' authors . Each author may have written several

books. In addition, there may be many books or magazines for the same

subject. New students might not know how to use these systems to find the

required books at the first time. A librarian can help them to learn how to

search. However, using a simple learning tool based on the learning concepts

in this research, students could more easily understand how to search for

required books.

• There are a growing number of computer systems that manage, organize and

retrieve multimedia data. In these systems, content-based queries are used to

retrieve multimedia data. Those queries are called image queries that based on

both textual descriptions and image characters such as colour (e.g. green,

magenta or purple), shape content (e.g. cross, oval or half-circle) , motion (e.g.

upward or left-right) , spatial relationships (above, left of, or row) and volume

(e.g. cube, ball or toroid-for 3D objects) of images (Bouet and Djeraba, 2003

and Wielbut, 2004). The matching images are images that have "similar"

characteristics as the image queries. It would be interesting to investigate how

the concepts developed in this research could be applied not only to teach

users the matching engine using natural words (as queries in FSCL) for textual

descriptions but also to teach users the image-character queries. Users could

learn this matching engine by viewing textual explanations illustrated by

diagrams and by practicing to create content-based queries to learn how to

select good image queries to get best matching images from multimedia

databases.

164

• Structured Query Language (SQL) is an ANSI (American National Standards

Institute) standard computer language for creating, accessing and manipulating

database systems. In this language, SQL statements are used to create, retrieve

and update data in a database (w3school, 2004). To use successfully the

language for creating databases and retrieving information, users must clearly

understand how to create databases with good structures and create proper

SQL statements to achieve correct information. There are several applications

that use diagrams to support users to understand database structure (e.g.

Skilled software, 2003). In addition, several graphical applications are

developed to help users to understand SQL statements. For example, Oracle

Corporation, (1999) uses structure diagrams to verify the validation of users '

SQL statements. There is still room available for computer applications that

explore advantages of the combination between diagrams and active learning

for teaching users to design databases with good structure and to generate

accurate SQL statements.

165

References

Akker, J., Branch, R. M., Gustafson, K., Nieveen, N. and Plomp, T. (1999). Design
approaches and tools in education and training. Kluwer Academic publishers.

Altova (2004). XMLSpy [Online] http://www.altova.com/products_ide.html. Accessed
19/03/2004

Bernstein, C. (1992). A Consumer Guide to Charles Bernstein [Online]

http: //www.poeticinhalation.com/bernstein.html Accessed 07/05/2004.

Blackwell, A. F. (1997). Diagrams about thoughts about thoughts about diagrams. In
M. Anderson, (Eds.). Reasoning with Diagrammatic Representations II: Papers from
the AAAI 1997 Fall Symposium. Menlo Park, California: AAAI Press, 77-84pp.

Boggs, W. and Boggs M. (1999). Mastering UML with Rational Rose. Published San
Francisco, Calif. London: Financial Times Management.

Bonwell, C. C. and Eison, J. A. (1991). Active Learning: Creating Excitement in the
Classroom. Washington, DC: George Washington University, 1991. [Online]

http://www. ntlf. com/html/liblbib/9 l-9dig. htm Accessed 13/06/2004.

Borjars, K. and Burridge, K. (2001) . Introducing English grammar. A member of the
Hodder Headdline Group London and co-published in the United States of America
by Oxford University Press Inc., New York.

Bouet, M. and Djeraba, C. (1998). Visual Content Based Retrieval in an Image
Database with Relevant Feedback [Online]
http ://www.cs.wayne.edu/-grosky/CSC8710/Papers/Bouet. pdf
Accessed 12/03 /2004.

Bruggemann-Klein, A. and Wood, D. (1996) . Drawing trees nicely with Tex
http://www.csit.fsu.edu/-mimi/tex/doc/plain/treetex/tree_doc.pdf. Accessed
12/12/2003.

BYU Faculty Center (2000). Active Learning in College Classrooms [Online]
http://www.byu.edu/fc/pages/tchlmpages/focusnewsletters/F ocus _ FOO. pdf. Accessed
08/02/2005.

CALI CO (1999. Scholarly activities in computer-assisted language learning:
development, pedagogical innovations and research. Joint policy statements of
CALICO, EUROCALL and IALL T Arising from a research Seminar at the University
of Essen. [Online] http://calico.org/CALL _ document.html. Accessed 09/10/2003.

Cameron, K. (Ed.) . (1999). CALL and Learning Community. Exeter: Elm Bank
Publications.

Canning-Wilson, C. (2001). Visuals and Language Learning: Is There A
Connection? EL T Newsletter. [Online]
http: //www.eltnewsletter.com/back/Feb2001 /art482001.htm.
Accessed 21 /09/2003.

Capital Community College Foundation, (2003). Guide to grammar and writing
[Online]. http ://webster.commnet.edu/ grammar/index.htm Accessed 12/10/2003.

Chamberlin, D., Florescu, D., Robie, J., Simon, J. and Stefanescu, M. (2001).
XQuery: A query language for xml. In W3C Working Draft, 15 February 2001.
[Online]. http: //www.w3.org/TR/xquery/. Accessed 17/03/2004.

Chang, S., Ichikawa, T., and Ligomenides, A. (1989) . Visual Languages. Plenum
Press

Chapelle, C. (1994). Theoretical bases for human-computer interaction research in
CALL. CALICO '94 Conference Proceedings in Duke University. 53-57pp.

Chen, C. , Meng, H. J. , Sundaram, H. and Zhong, D. (1998).A Fully Automated
Content-Based Video Search Engine Supporting Spatiotemporal Queries. IEEE
Transactions on circuits and systems for video technology, Vol. 8, No. 5, 602-615pp.

Cheng, P. C-H (1996). Functional Roles for the cognitive analysis of diagrams in
problem solving. In Proceeding of the 18th Annual conference of the cognitive
Science society. 207-212pp.

Christel, M. G. , Winkler, D. B., and Taylor, C. R (1997). Improving Access to a
Digital Video Library [Online]
http://www. informedia. cs .emu. edu/ documents/INTERA CT97tagged. pdf. Accessed
23/04/2004

Collins, P. and Hollo, C. (2000). English grammar an introduction. Macmillan Press
LTD.

Crowley, T., Lynch, J., Piau, J . and Siegel, J . (1995) . The design of language: an
introduction to descriptive linguistics. Auckland Longman.

Darling, C. (2003). Diagramming Sentences. [Online]
http://webster.commnet.edu/grammar/diagrams/diagrams.stm.
Accessed 26/12/2003 .

Debusmann, R . (2000). An introduction to Dependency grammar. In Hausarbeit fur
das Hauptseminar Dependenzgrammatick. SoSe 99. [Online] http://www.ps.uni­
sb.de/-rade/papers/dg.pdf. Accessed 21/09/2003.

Dennis, A., Wixom, B., H. and Tegarden, D. (2002). Systems Analysis & Design: An
Object-Oriented Approach with UML. The United States of America: John Wiley &
Son, Inc.

Dougherty, R. C. (1994). Beginner's Workbook in Computational Linguistics:
Preface. [Online] http://www.nyu.edu/pages/linguistics/acrpref. pdf. Accessed
22/10/2003.

Douglass, B. P. (2000). Real time UML. Massachusetts: Addison-Wesley, Inc

Dowling, C. (1999). Writing and learning with computers Australian Council for
Educational Research.

Eastwood, J. (1999). Oxford practice grammar: with answers, Oxford University
Press.

Edgar, J. (2000). CALL is new. Computer-Assisted Language Leaming Interest
Section Newsletter volume 18, number 1. [Online]
http: / /www.itp.innoved.org/wiki-files/callisnews/CALLnews 18-1.pdf. Accessed
03/ 10/2003.

Eskew, M. (2001). What is Grammar? [Online]
http://www.tulane.edu/-germgrarn/whatgram.html. Accessed 24/0 l /2003.

Eskew, M. and Carr, A. (2001). German grammar roadmap. [Online]
http://www.tulane.edu/-germgrarn/sent.html#sent4. Accessed 13/0 l /2003.

Exceller Comp. (2003).Focus on Grammar Series [Online]
http: //www.exceller.com/focus-on-grammar.html. Accessed 15/12/2003.

Fast, K., Leise, F., and Steckel, M. (2002). Creating a Controlled Vocabulary
[Online]
http://www.boxesandarrows.com/archives/creating_ a_ controlled_ vocabulary. php
Accessed 13/11/2003.

Feldman, S. (1999). NLP Meets the Jabberwocky: Natural Language Processing in
Information Retrieval. [Online] http: //www.onlinemag.net/OL1999/feldmanS .html
Accessed 12/06/2003.

Flippo, H. (2003). German Language. [Online]
http://german.about.com/library/weekly/aa032700a.htm. Accessed 09/04/2003.

Flynn, P. (2004). The XML FAQ [Online] http://www.ucc.ie/xml/ Accessed
23/06/2004

French, J., Powell, A. Gey, F. and Perelman, N. (2002). Exploiting a controlled
vocabulary to improve collection selection and retrieval effectiveness. In Proc. of
CIKM '01, pages 199-206. ACM Press, Nov. 2001.199-206. [Online]
http://metadata.sims.berkeley.edu/papers/cikmO 1-paper-with-french-powell. pdf
Accessed 12/09/2003.

Fromkin, V., and Rodman, R. (1998). An Introduction to Language. Fort Worth:
Harcourt Brace College Publishers, c1998.

Galliers, R. D. (1992). Information systems research: issues, methods, and practical
guidelines. Henley-on-Thames, Oxfordshire: Alfred Waller publisher

Granger, S. (Eds.) (1998). Learning English on computer. Addison Wesley Longman
Limited.

Grishman, R. (1986). Computational linguistics, an introduction. Cambridge
University Press.

Hamilton-Taylor, A.G. and Kraemer, E. (2002). Designing an Algorithm Animation
System to Support Instructional Tasks. Interactive Multimedia Electronic Journal of
Computer-Enhanced Leaming (IMEJ), Vol. 4, No. 2. [Online]
http://imej.wfu.edu/articles/2002/2/04/index.asp. Accessed 17/06/2003.

Harrison, N. (1991). How to design effective computer based training, a modular
course. McGraw-Hill Education - Europe Editor.

Hartl, H. (2003). Generative Grammar: A Historical Perspective [Online]
http://www2.rz.hu-berlin.de/angl/haertl/haertl_ history_ slides_ 1-18.pdf. Accessed
06/05/2003.

Hausser, R. (1999). Foundations of computational linguistics. Springer publisher.

Heinrich, E. (1999). A Multimedia Information System for the Support a/Studies of
Behaviour. Unpublished Doctoral Thesis, Massey University, New Zealand.

Heinrich, E. and Kemp, R. (2000). A Flexible Scheme for Representing and
Retrieving Multimedia Contents in Computer-Based Educational Systems. In
Kinshuk, C. Jesshope and T. Okamoto, IW ALT 2000, Los Alamitos, California, IEEE
Computer Society. 213 -214pp.

Heinrich, E., and Kemp, E. (2000). Description and Retrieval across Multiple Media
Formats. 2nd International Workshop on Query Processing and Multimedia Issues for
Distributed Systems at the DEXA2000 conference (Greenwich/London). A.M. Tjoa,
R.R. Wagner and A. Al-Zobaidie (Eds.). IEEE Computer Society, Los Alamitos,
California. 940-944pp.

Hilferty, J. (2002). English syntax lecture notes [Online]
http://lingua.fil.ub.es/-hilferty/SynNotes.pdf. Accessed 23/03/2003 .

Hopkins, R., and Park, C. (1993). Instructional conditions for using dynamic visual
displays: a review. Journal of Instructional Science 21 Kluwer Academic Publisher
427-449pp.

Hudson, R. (2002) . Word grammar [Online]
http:/ /www.phon.ucl.ac. uk/home/dick/wg.htm. Accessed 12/06/2003.

Hyerle, D. (1996). Visual Tools for Constructing Knowledge. [Online] Chapter 1
http:/ /www.ascd.org/publications/books/ l 996hyer1e/chapter I .html.
Accessed 24/12/2003.

Intelligent Systems Research, (2004). DTDChart: XML Document Structure Charts
[Online] http://www.intsysr.com/dtdchart.htm Accessed 03/06/2004.

Java (2004). Java Media Framework AP I [Online] http://java.sun.com/products/java­
media/jmf/index.jsp. Accessed 21/03/2004.

JavaTech, (2004). Java2D [Online]
http://www.particle.kth.se/-lindsey/JavaCourse/Book/Supplements/Chapter06/java2d.
html Accessed 10/06/2004.

Jeffrey, P. K. (1994). English grammar, principles and/acts. Prentice Hall
Englewood Cliffs, New Jersey 07632.

Jordan, D. K. (2003). Chinese language [Online]
http: //weber.ucsd.edu/-dkjordan/chin/hbchilang-u.html Accessed 07/03/2003

Kenning, M. M. and Kenning, M. (1990). Computers and language learning, current
theory and practice. Ellis Horwood Series in Computers and Their Applications. J
Ellis Horwood Limited.

Kim, J. and Hahn, J. (2003). Reasoning with multiple diagrams: focusing on the
Cognitive Integration process. [Online]
http: //hci.yonsei .ac.kr/non/e02/97-Cogsci-Reasoning_ with_ Multiple_ Diagrams. pdf
Accessed 27/04/2003.

King, M. (Eds.) (1983). Parsing Natural Language. Academic Press, London,
England.

Klinger, W. (2003). Effects of pictures on memory and learning [On-line].
http: //www2.ice.usp.ac.jp/wklinger/QA/articles/kiyou2000/kiyou2000.html. Accessed
04/10/2003.

Koning, H. Dormann, C. and Vliet, H. (2002). Practical Guidelines for the
Readability of IT-architecture Diagrams. In Proceedings of the 20th annual
international conference on Computer documentation. 90-99pp. [Online]
http: //www.cs.vu.nl/-henk/. Accessed 12/09/2003.

Kroch, A. (2003). Tree drawing tool animation [Online]
http://www.ling.upenn.edu/-kroch/trees/demo.html Accessed 10/09/2003 .

Korman, W. (2003). Climbing the data tree [Online]
http://www.go2net.com/intemet/deep/1997 /05/07 /body.html. Accessed 04/11/2003.

Kromann, M. T., (1998). Visum Project [Online]
http://www.id.cbs.dk/-mtk/files/visumtree. pdf Accessed 12/0 1/2003.

Kromann, M. T., (2002). Dependency grammar and local optimality parsing. [Online]
http://www.id.cbs.dk/-mtk. Accessed 02/07/2003.

Kruger, A. and Geurts, B. (1996). RECALL. [Online]
http: //www.infj.ulst.ac.uk/-recall/deliver/d5 .html. Accessed 05/05/2003.

Larkin, J. H. and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten
thousand words. Cognitive Science Volume 11. 65-99pp.

Learning Center, (2004). ACEREADER® speed reading software [Online]

http://www.certified-learning-centers.com/acereader.html Accessed 04/06/2004.

Lebanon Valley College (2000). Free-Text vs. Controlled Vocabulary [Online]
http://www.lvc.edu/library/guides/free-controlled.html. Accessed 12/07/2003.

Leech, G. N. and Candlin, C. N. (1986). Computer in English language Teaching and
research. Longman Group limited, London, 1986.

Lehtola, A., Tenni, J., Bounsaythip, C. and Jaaranen, K. (1999). Controlled languages
as the basis for Multilingual Catalogues on the WWW [Online]
http: //www.vtt.fi/tte/language/publications/emmsec99. pdf. Accessed 06/05/2003.

Levie, W. H. (1987). Research on Pictures: A Guide to the Literature. In D.M.
Willows and H. A. Houghton (Eds.). The Psychology of Illustration. Volume 1: Basic
Research.

Levy, M. (1997). Computer assisted language learning, context and
conceptualisation. Clarendon Press Oxford.

Lingsoft Comp. (2003). A Short Introduction to ENGCG. [Online]
http: //www.lingsoft.fi/doc/engcg/intro/. Accessed 12/09/2003.

Louden, K. C. (1997). Compiler construction, principles and practice. PWS
Publishing Company.

Luo, M. (2000). User Interface for FSCLIFSQL, Structure editor for novice user
interface. Honours project report. Massey University.

Luo, T. (1993). TreeDraw: A Tree-Drawing System. Unpublished mater thesis,
Waterloo, Ontario, Canada.

Lynn, E. (2003). Learn English - FAQs [Online]
http://www.learnenglish.de/F AQspage.htm. Accessed 12/02/2004.

Martin, J. and McClure, C. (1985). Diagramming techniques for analysts and
programmers. Prentice Hall, INC., Englewood Cliffs.

Martinez, J.M. (2003). MPEG- 7 Overview of MPEG-7 description tools [Online]
http:/ /www.chiariglione.org/mpeg/standards/mpeg-7 /mpeg-7 .htm.
Accessed 14/01/2004.

Massey University (2004). Using XML tutor [Online]

http://is157250.massey.ac.nz/h/Module_2_Extras/XML_Tutor/Using_XML_Tutor_S
oftware.doc. Accessed 10/9/2004.

Max, A. (2002). Syntax student's companion [Online]
http: //www-clips.imag.fr/geta/aurelien.max/SSC/frames.html. Accessed 04/01/2004.

Mayer, R. E. and Gallini, J. K. (1990). When is an illustration worth ten thousand
words? Journal of Educational Psychology, 82, 715-726pp.

Mayer, R. E. and Sims, V. K. (1995). For Whom is a Picture worth a thousand
words? Extensions of a Dual-Coding Theory of Multimedia Learning. Journal of
Educational Psychology, 86 (3), 389-40lpp.

Mayer, R. E., Steinhoff, K., Bower, G. and Mars, R. (1995). A generative theory of
textbook design: using annotated illustrations to foster meaningful learning of science
text. Educational Technology, Research and Development 43(1). 41-43pp.

McKeachie, W. J. (1998). Teaching tips: Strategies, research and theory for for
college and university teachers. Houghton-Mifflin Higher Education publisher

Michael, G., Christel, M. G. , Winkler, D, B. and Taylor, C. R. , (1997). Improving
Access to a Digital Video Library. This paper accepted for publication in Human­
Computer Interaction: INTERACT97, the 6th IFIP Conference on Human-Computer
Interaction. [Online]
http: //www. informedia.cs. cm u. edu/ documents/INTERA CT97tagged. pdf. Accessed
14/10/2003.

Microsoft Cop. (2003) . Natural Language Processing [Online}
http: //research.microsoft.com/nlp/. Accessed 07/02/2004.

Microsoft Corporation, (2004). XPath tutorial [Online]

http: //msdn.microsoft.com/library/default.asp?url=/ library/en­
us/xmlsdk/html/xmmthtransformnodetoobj ect.asp Accessed 08/05/2005.

Mitamura, T. (1999). Controlled language for multilingual machine translation,
[Online] http://www.lti.cs.cmu.edu/Research/Kant/PDF/MTSummit99.pdf. Accessed
05/09/2003.

Moen, S. (1990). Drawing dynamic trees. IEEE Software, 28. 7-21pp.

Moy, K. F. and Eliens, A. (1994). HyCES: a Hypermedia Chinese Education System.
Vrij e U niversiteit, Amsterdam [Online]
http://www.cs.vu.nl/-dejavu/papers/hyces.ps.gz Accessed 15/07/2004.

Najmi, M. (2004). XML, Platform-Independent and Well-Supported Technology
[Online J http://www. techiwarehouse.corn/ Articles/2002-09-02.html Accessed
10/05/2004.

Noldus Information Technology (2003). The Observer Video-Pro, Version 4.0 for
Windows, Specifications The Observer.

Noldy, N. E., Stelmack, R. M., and Campbell, K. B. (1990). Event-Related Potentials
and Recognition Memory for Pictures and Words: The Effects of Intentional and
Incidental Learning. Psychophysiology, 27 (4), 417-428pp.

Ollershaw, A., Aidman, E., and Kidd, 0. (1997). Is an Illustration Always Worth Ten
Thousand Words ? Effects of Prior Knowledge, Learning Style and Multimedia
Illustrations on Text Comprehension. International journal of instructional media, 24
(3), 227-238pp.

OMG new, (1997). What Is OMG-UML and Why Is It Important? [Online]

http: //www.omg.org/news/pr97 /umlprimer.html Accessed 28/06/2004.

Oppermann, R. (2002). User-interface design. Handbook on information technologies
for education and training. Pawlowski J. M. Springer publisher.

Oracle Corporation, (1999). Syntax diagrams [Online]
http://www.cit.uws.edu.au/docs/oracle/sqlref/ap _ syntx.htm Accessed 23/06/2004.

O ' reilly Media (2004). A Technical Introduction to XML [Online]
http://www.xml.com/pub/a/98/l 0/guide0.html. Accessed 12/11/2004

Park, C. and Hopkins, R. (1993). Instructional conditions for using dynamic visual
displays: a review. Instructional science 21, 427-449 pp.

Patrick, J. (1985). The capture and analysis of behavioural events in real time. ACM,
ACM Annual Conf. , Denver pp. 92-98pp. [Online]
http: //delivery.acm.org/l 0.1145/330000/320466/p92-
patrick.pdf?keyl =320466&key2=2117392801 &coll=portal&dl=ACM&CFID=20576
184&CFTOKEN=82528375. Accessed 24/03/2004 .

Pennington, M. C. (1993). Computer-assisted writing on a principled basis: the case
against computer-assisted text analysis for non-proficient writers. Journal of language
and education, vol.7, No . I. 43-59pp.

Penoff, B. and Brew, C. (2003). TREX-Q: A query language based on XML Scheme
[Online] http://xml.coverpages.org/PenofflRCS.pdf. Accessed 11/11/2003.

Perez, R. E. (2004). A New Algorithm for Learning From Examples [Online]
http:/ /dimacs.rutgers.edu/-edperez/ Accessed 08/02/2005

Perry, G. (1993) . C By Example . Que Publisher

Phillips, C. (2003). Teaching Syntax with Trees [Online]
http://www.ling.upenn.edu/-kroch/trees/glot-review.html. Accessed 10/06/2003.

Poling, D. (2000). Issues and Suggestions [Online]
http: //www.xerlin.org/listarchives/xerlin/2000/0001.html Accessed 09/02/2003.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and Carey, T. (1994).
Human-Computer Interaction. Wokingham, UK: Addison-Wesley publisher.

Pulman, S. G. (1996). Controlled language for knowledge Representation. Proceeding
of the first international workshop on controlled language applications, CLA W96,
233-242pp.

Radford, A. (1997). Syntax: a minimalist introduction. Published Cambridge
University Press.

ReadingSoft, (2004). Speed reading software [Online]

http: //www.readingsoft.com/freader.html Accessed 25/05/2004.

Reinghold, E. M. and Tilford, J. S. (1981). Tidier Drawings a/Trees.
IEEE Transactions on Software Engineering, Vol. Se-7, No.2.

Rogers, E. A. (1995). Cognitive Theory of Visual Interaction. In Diagrammatic
Reasoning: Cognitive and Computational Perspectives, Glasgow, J., Narayanan, H.N.
and Chandrasekaran, B. (Eds.). AAAI Press, 48 l-500pp.

Rose, E. (2003) . C++ objects to manage and draw trees dynamically. MacTech
magazine [Online]
http: //www.mactech.com/articles/mactech/Vol. l l/11.04/CplusplusTrees/. Accessed
05/10/2003.

Szabo, M. and Kanuka, H. (1998). Effects of violating screen design principles of
balance, unity, and focus on recall learning, study time, and completion rates. Journal
of Educational Multimedia and Hypermedia, 8 (1), 23-42pp.

Schallert, D. L. (1980) . The Role of Illustrations in Reading Comprehension. In Rand
J. Spiro, Bertram C. Bruce, and William F. Brewer (Eds.), Theoretical Issues in
Reading Comprehension. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Schlieder, T. (2003). ApproXQL: Design and Implementation of an Approximate
Pattern Matching Language for XML [Online]
http://www.inf.fu-berlin.de/inst/ag-db/publications/2001/report-B-01-02.pdf Accessed
06/09/2003.

Schwitter, R., Ljungberg, A. and Hood, D. (2002). Ecole: A look-ahead editor for a
controlled language [Online]
http://www.comp.mq.edu.au/-rolfs/papers/CLA W03-ECOLE.pdf.
Accessed 04/01/2004.

Shah, V., Sivitanides, M., and Martin, R. (1997). Pitfalls of Object-Oriented
development [Online] http://www. westga. edu/-bquest/ 1997 Io bj ect.html. Accessed
10/06/2004.

Shoebottom, P. (2001). How to learn grammar [Online]
http://www.fis.edu/eslweb/esl/students/teanotes/gram.htm Accessed 23/09/2003 .

Shu, N . C. (1986). Visual programming languages: a perspective and a dimensional
analysis, in Visual Languages. Chang, S.-K., Ichikawa, T., Ligomenides P. A (Eds.),
Plenum publishing corporation.

Sikora, T. (2001). The MP EG-7 Visual Standard for Content Description-An
Overview. IEEE Transactions on circuits and systems for video technology, VOL. 11,
No. 6. 696-702pp.

Skilled software, (2003). SQL diagrams [Online]
http://www.skilledsoftware.com/sqldiagrams.htm Accessed 10/06/2004.

Smeaton, A. F. (1997). Information Retrieval: Still Butting Heads with Natural
Language Processing? [Online] Pazienza, M.T. (Ed.), Information Extraction, A
Multidisciplinary Approach to an Emerging. Information Technology, Frascati, Italy.
http://gunther.smeal.psu.edu/smeaton97information.html Accessed 19/03/2004

Stauffer, T. (2004) . HTML By Example [Online] http://docs.rinet.ru/EtoHTML/
Accessed 12/ 11 /2004

Steinberg, E. R. (1991). Computer-assisted instruction: a synthesis of theory,
practice, and technology. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Stern, L. and Naish, L. (2002). Animating Recursive Algorithms in Interactive
Multimedia. Electronic journal of computer enhanced learning Volume 4, Number 2.
[Online] http://imej.wfu.edu/articles/2002/2/02/index.asp. Accessed 04/01 /2004.

Sun Microsystems 1, (2004). Java Media Framework AP I (JMF) [Online]

http://j ava.sun.corn/products/java-media/j mf/index.j sp Accessed 5/06/2004.

Sun Microsystems 2, (2004). What Is an Interface? [Online]
http ://j ava. sun. com/ docs/books/tutorial/} ava/interpacklinterface Def html Accessed
2/07/2004.

Syddansk Universitet (2003). About VISL. [Online] http://visl.hum.sdu.dk/visl/about/
Accessed O 5/01 /2003.

Szabo, M. and Kanuka, H. (1999). Effects of Violating Screen Design Principles of
Balance, Unity, and Focus on Recall Learning, Study Time, and Completion Rates.
Journal of Educational Multimedia and Hypermedia 8(1), 23-42pp.

Tapanainen, P. (2003). Dependency Diagram [Online]
http: //www.ling.helsinki.fi/-tapanain/dg/doc/TR-1/node41.html.
Accessed 14/04/2003.

TechTarget, (2004). Rational Rose [Online]
http ://searchvb. techtarget. com/sDe.finition/0,, sid8 _gci5 I 602 5, 00. html Accessed
31/06/2004.

The Onestop Magazine (2003). Teaching Teenagers Grammar [Online]
http: //www.onestopenglish.com/News/Magazine/children/teaching_grammar.htm
Accessed 14/ 12/2003.

Thomas, L. (1993). Beginning syntax. Blackwell Publishers.

Thomas, P. K. and Muriel, R. S. (1996). Analysing English grammar. Pearson
Longman publisher.

TOSCA Research Group, (2003). TOSCA Tree Editor [Online]
http: / /lands.let.kun.nl/TSpublic/tosca/te _ elaborate.html Accessed 24/08/2003.

Tschichold, C. (2003). Focus on grammar software. [Online]
http://www-writing.berkeley.edu/chorus/call/reviews/focusongrammar/index.html.
Accessed 21 /3/2003.

Ullman, D., Wood, S. and Craig, D. (1990). The Importance of Drawing in the
Mechanical Design Process. Computer & Graphics Vol.I 4, No. 2, pp. 263-274, 1990
[Online] http: //my.fit.edu/-swood/drwg.html. Accessed 10/04/2004.

Valin, R. D. V . (2001). An introduction to syntax. Cambridge University press.

Verspoor, M. and Sauter, K. (2000). English Sentence Analysis, An introductory
course. Jojn Benjamins Publishing Company.

VIA, (2003). Visualized Interactive Analysis grammar training program [Online]
http://progresso.dk/via/. Accessed 17/10/2003.

Voss, D. (2001). Upstream-video searching [Online]
http://www.technologyreview.com/articles/upstream0701.asp Accessed 17/09/2003.

W3C(l), (2004). XML Schema [Online] http://www.w3.org/XML/Schema Accessed
12/06/2004 .

W3C(2). (2004) . Introduction to XSLT [Online]
http://www. w 3schools. com/xsl/xsl _intro. asp Accessed 20/06/2004.

W3Schools, (2004). Introduction to SQL [Online]
http: //www.w3schools.com/sql/sql_intro.asp Accessed 15/06/2004.

Walker, II., J. Q. (1990). A node-positioning algorithm/or general trees. Softw. Pract.
Exp., 20(7). 685-705pp.

Walsh, A. E. (2001). XHTML: Example by example. Upper Saddle River, N.J.
London: Prentice Hall PTR Publisher.

Wagner, Rand Mansfield, R. (2003). XML All-in-One Desk Reference For Dummies.
New York, Hungry Minds - Wiley publisher

Warschauer, M. and Kern, R. (2000). Network-based Language Teaching: Concepts
and Practice. Cambridge: Cambridge University Press.

Wielbut, V. (2004). Image based content [Online]
http://sunsite.berkeley.edu/Imaging/Databases/Fall95papers/vlad2.html
Accessed 10/3/2004.

Wilkinson, I. A. G. and Townsend, M. A. R (1999). From Rata to Rimu: Grouping
for instruction in "best practice" New Zealand classrooms. The Reading Teacher.

Winn, B. (1987). Chart, Graphs and Diagrams in Educational materials. The
Psychology of illustration. Volume 1: Basic research. New York, Springer-Verlag
publisher.

Wong, S. H. S. K. (2001). Lexical Functional Grammar -- a brief introduction
[Online]
http:/ /www.fi.muni.cz/usr/wong/teaching/mt/notes/node 15 .html. iso-8859-
l #SECTION00051200000000000000. Accessed 04/11/2003 .

WordNet, Princeton University (2004). A lexical database for the English language
[Online] http://wordnet.princeton.edu/ Accessed 07/02/2004.

Yang, S. (2004). Research Interest: Internet Spiders [Online]

http://www.csis.hku.hk/- yang/spider.html Accessed 19/06/2004.

Ye Hedge School, (2003). Resources for Diagramming [Online]
http://hedgeschool.homestead.com/diagrams.html. Accessed 12/1 1/2003.

Yin, K. R. (1994). Case study research: design and methods. Thousand Oaks: Sage
Publications

